
ibm.com/redbooks

Front cover

System z Mean Time to
Recovery Best Practices

Frank Kyne
Judi Bank

David Sanders
Mark Todd

David Viguers
Cheryl Watson

Shulian Yang

Optimize your processes to minimize
application downtime

Customize products to minimize
shutdown and startup times

Understand the benefit of new
product functions

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

System z Mean Time to Recovery Best Practices

February 2010

SG24-7816-00

© Copyright International Business Machines Corporation 2010. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (February 2010)

This edition applies to Version 1, Release 10 of z/OS (product number 5694-A01).

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team who wrote this book . ix
Now you can become a published author, too! . xii
Comments welcome. xii
Stay connected to IBM Redbooks . xii

Chapter 1. Introduction. 1
1.1 Objective of this book . 2
1.2 Thoughts about MTTR . 2

1.2.1 Data sharing . 3
1.2.2 How much is a worthwhile savings . 4
1.2.3 The answer is not always in the ones and zeroes . 4

1.3 Our configuration. 4
1.4 Other systems . 6
1.5 Layout of this book . 6

Chapter 2. Systems management . 7
2.1 You cannot know where you are going if you do not know where you have been 8
2.2 Are we all talking about the same IPL time . 8
2.3 Defining shutdown time. 9
2.4 The shortest outage . 9
2.5 Automation . 10

2.5.1 Message-based automation . 10
2.5.2 Sequence of starting products . 10
2.5.3 No WTORs . 11
2.5.4 AutoIPL and stand-alone dumps. 12

2.6 Concurrent IPLs . 13
2.7 Expediting the shutdown process . 14
2.8 Investigating startup times . 15

2.8.1 Role of sandbox systems . 15
2.9 Summary. 15

Chapter 3. z/OS tools . 17
3.1 Console commands . 18
3.2 IPLDATA control block . 20
3.3 Syslog . 24
3.4 Resource Measurement Facility (RMF). 26
3.5 SMF records . 30
3.6 JES2 commands . 32

Chapter 4. z/OS IPL processing . 35
4.1 Overview of z/OS IPL processing . 36
4.2 Hardware IPL . 38
4.3 IPL Resource Initialization Modules (RIMs) . 38
4.4 Nucleus Initialization Program (NIP) . 43

4.4.1 NIP sequence (Part 1) . 44
© Copyright IBM Corp. 2010. All rights reserved. iii

4.4.2 NIP sequence (Part 2) . 47
4.4.3 NIP sequence (Part 3) . 55
4.4.4 NIP sequence (Part 4) . 57
4.4.5 NIP sequence (Part 5) . 63

4.5 Master Scheduler Initialization (MSI), phase 1 . 66
4.6 Master Scheduler Initialization (MSI), phase 2 . 67

Chapter 5. z/OS infrastructure considerations. 71
5.1 Starting the z/OS infrastructure. 72
5.2 Workload Manager . 72

5.2.1 z/OS system address spaces . 73
5.2.2 SYSSTC . 74
5.2.3 Transaction goals . 74
5.2.4 DB2 considerations. 75
5.2.5 CICS considerations . 77
5.2.6 IMS considerations . 77
5.2.7 WebSphere Application Server considerations. 78
5.2.8 Putting them all together . 79

5.3 SMS . 80
5.4 JES2 . 81

5.4.1 Optimizing JES2 start time . 81
5.4.2 JES2 shutdown considerations. 84

5.5 OMVS considerations . 85
5.5.1 BPXMCDS . 85
5.5.2 Mounting file systems during OMVS initialization . 87
5.5.3 Commands processed during OMVS initialization . 88
5.5.4 Mounting file systems read/write or read/only. 88
5.5.5 Shutting down OMVS . 88

5.6 Communications server . 89
5.6.1 VTAM . 89
5.6.2 TCP/IP . 89
5.6.3 APPC . 90

5.7 Miscellaneous . 90
5.7.1 Use of SUB=MSTR . 90
5.7.2 System Management Facilities (SMF) . 91
5.7.3 System Logger enhancements . 97
5.7.4 Health Checker . 98
5.7.5 Optimizing I/O . 98

5.8 Stand-alone dump processing . 99
5.8.1 Best practices for stand-alone dump processing . 99
5.8.2 Creating efficient stand-alone dumps . 100
5.8.3 AutoIPL feature . 100
5.8.4 Test results . 101

Chapter 6. CICS considerations . 107
6.1 CICS metrics and tools . 108
6.2 The CICS and CICSPlex SM configuration used for testing . 108
6.3 CICS START options . 109
6.4 General advice for speedier CICS startup . 110
6.5 The effects of the LLACOPY parameter . 112
6.6 Using DASDONLY or CF log streams?. 117
6.7 Testing startup scenarios . 121
6.8 The effects of placing CICS modules in LPA . 122
iv System z Mean Time to Recovery Best Practices

6.9 Starting CICS at the same time as VTAM and TCP/IP . 124
6.10 Other miscellaneous suggestions . 126

6.10.1 CICSPlex SM recommendations. 126
6.10.2 The CICS shutdown assist transaction . 126

Chapter 7. DB2 considerations . 129
7.1 What you need to know about DB2 restart and shutdown . 130

7.1.1 DB2 system checkpoint . 130
7.1.2 Two-phase commit processing . 131
7.1.3 Phases of a DB2 normal restart process . 132
7.1.4 DB2 restart methods . 137
7.1.5 DB2 shutdown types . 139

7.2 Configuration and tools for testing . 140
7.2.1 Measurement system setup . 140
7.2.2 Tools and useful commands . 141
7.2.3 How we ran our measurements . 142

7.3 Improving DB2 startup performance . 142
7.3.1 Best practices for opening DB2 page sets . 142
7.3.2 Impact of Enhanced Catalog Sharing on data set OPEN processing 147
7.3.3 Generic advice about minimizing DB2 restart time . 148

7.4 Speeding up DB2 shutdown . 151
7.4.1 Impact of DSMAX and SMF Type 30 on DB2 shutdown. 151
7.4.2 Shutdown DB2 with CASTOUT (NO) . 153
7.4.3 PCLOSET consideration. 154
7.4.4 Active threads . 154
7.4.5 Shutdown DB2 with SYSTEMS exclusion RNL . 154

Chapter 8. IMS considerations. 155
8.1 Definition of startup and shutdown times . 156
8.2 How we measured . 156
8.3 Test configuration . 157
8.4 Startup and shutdown functions, and when performed. 157

8.4.1 Startup functions . 158
8.4.2 Shutdown functions. 159

8.5 IMS parameters. 159
8.5.1 DFSPBxxx member. 159
8.5.2 DFSDCxxx member . 161
8.5.3 DFSCGxxx member . 161
8.5.4 CQSSLxxx member . 162
8.5.5 DFSMPLxx . 162

8.6 Starting IMS-related address spaces . 162
8.6.1 IMS-related address spaces . 162

8.7 Other IMS options . 164
8.7.1 IMS system definition specifications . 164
8.7.2 Starting dependent regions. 166
8.7.3 Opening database data sets . 167
8.7.4 DBRC Parallel Recon Access. 168
8.7.5 Message-based processing for CFRM Couple Data Sets 169
8.7.6 Shutdown . 170

8.8 Summary. 170

Chapter 9. WebSphere considerations . 171
9.1 WebSphere Application Server 7 initialization logic . 172
9.2 General recommendations . 173
 Contents v

9.2.1 Understanding WLM policy . 173
9.2.2 Using zAAPs during WebSphere initialization. 173
9.2.3 Optimizing WebSphere log stream sizes . 174
9.2.4 Working with the Domain Name Server . 175
9.2.5 Uninstalling default applications . 175
9.2.6 Enlarging the WebSphere class cache for 64-bit configurations. 175
9.2.7 Optimizing zFS and HFS ownership . 175
9.2.8 Defining RACF BPX.SAFFASTPATH FACILITY class . 176
9.2.9 Turning off Java 2 security . 176

9.3 Startup enhancements in WebSphere Application Server 7 . 177
9.3.1 Ahead-of-time (AOT) compilation . 177
9.3.2 Provisioning (starting components as needed) . 177
9.3.3 Development Mode. 178
9.3.4 Disabling annotation scanning for Java EE 5 applications 178
9.3.5 Parallel Start . 178
9.3.6 Parallel Servant Startup . 179

9.4 WebSphere Application Server 7 startup test results . 179
9.4.1 Test methodology . 179
9.4.2 WebSphere Application Server measurements results. 180

Appendix A. Sample IPLSTATS report . 191
IPLSTATS report . 192
IPLSTATS comparisons. 195

Appendix B. Optimizing use of LLA and VLF . 197
Module Fetch Monitor . 198

Using the Monitor . 198
Sample CSVLLIX2 exit routine. 204

Appendix C. Sample IPL statistics data . 207
Sample IPLSTATS average elapsed times . 208

Related publications . 213
IBM Redbooks . 213
Other publications . 213
Online resources . 214
How to get Redbooks. 214
Help from IBM . 214

Index . 215
vi System z Mean Time to Recovery Best Practices

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2010. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICSPlex®
CICS®
DB2®
developerWorks®
DS8000®
FICON®
IBM®
IMS™

Language Environment®
OMEGAMON®
OS/390®
Parallel Sysplex®
RACF®
Redbooks®
Redpaper™
Redbooks (logo) ®

S/390®
System z®
Tivoli®
VTAM®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

InfiniBand, and the InfiniBand design marks are trademarks and/or service marks of the InfiniBand Trade
Association.

ACS, and the Shadowman logo are trademarks or registered trademarks of Red Hat, Inc. in the U.S. and other
countries.

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
viii System z Mean Time to Recovery Best Practices

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication provides advice and guidance for IBM z/OS® Version 1,
Release 10 and subsystem system programmers. z/OS is an IBM flagship operating system
for enterprise class applications, particularly those with high availability requirements. But, as
with every operating system, z/OS requires planned IPLs from time to time.

This book also provides you with easily accessible and usable information about ways to
improve your mean time to recovery (MTTR) by helping you achieve the following objectives:

� Minimize the application down time that might be associated with planned system
outages.

� Identify the most effective way to reduce MTTR for any time that you have a system IPL.

� Identify factors that are under your control and that can make a worthwhile difference to
the startup or shutdown time of your systems.

The team who wrote this book

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization (ITSO), Poughkeepsie Center.

Frank Kyne is an Executive IT Specialist at the IBM ITSO, Poughkeepsie Center. He writes
extensively and teaches IBM classes worldwide on all areas of Parallel Sysplex® and high
availability. Before joining the ITSO 11 years ago, Frank worked for IBM in Ireland as an MVS
systems Programmer.

Judi Bank is a Senior Technical Staff Member for IBM U.S. She has 29 years of experience in
z/OS Performance. She holds an MS degree in Computer Science from Fairleigh Dickinson
University. Her areas of expertise include performance analysis of the z/OS operating system,
z/OS middleware, CIM, WebSphere® Application Server, processor sizing, and DB2®. She
has written many technical documents and presentations about various topics including z/OS
performance, JES2 performance, WebSphere Portal Server, and HTTP Servers and
performance problem diagnosis.

David Sanders is a member of the Global System Operations team for IBM U.S. He has 12
years of experience in the mainframe field, the past seven working for IBM. He holds a BA in
English from the State University of New York at New Paltz. He has extensive experience as a
generalist, working on IBM mainframes including z/OS, IMS™, CICS®, DB2 and other
subsystems. He has been involved with developing process improvements and writing
procedures for the IBM mainframe.

Mark Todd is a Software Engineer for IBM in Hursley, U.K. He has been with CICS Level 3 for
the last 12 years. He also has another 13 years of experience in working as a CICS and MVS
Systems Programmer. He holds an HND in Mathematics, Statistics and Computing from
Leicester Polytechnic.
© Copyright IBM Corp. 2010. All rights reserved. ix

David Viguers is a Senior Technical Staff Member with the IBM IMS Development team at
Silicon Valley Lab, working on performance, test, development, and customer support. He
has 38 years of experience with IMS. Dave presents at technical conferences and user group
meetings regularly and is also responsible for developing and delivering training about IMS
Parallel Sysplex.

Cheryl Watson is an independent author and analyst living in Florida, U.S. She has been
working with IBM mainframes since 1965, and currently writes and publishes a z/OS
performance newsletter called “Cheryl Watson’s Tuning Letter.” She is co-owner of Watson &
Walker, Inc., which also produces z/OS software tools. She has concentrated on
performance, capacity planning, system measurements, and chargeback during her career
with several software companies. She has expertise with SMF records.

Shulian Yang is an Advisory Software Engineer from IBM China Development Lab. He has
been in DB2 for z/OS Level 2 for the last 5 years. He is a critical team member and is being
recognized for many contributions in delivering the best possible service to our customers.
Before joining IBM in 2004, Shulian worked as a CICS application programmer at a bank
located in China. His areas of expertise include DB2 performance, database administration,
and backup and recovery.

Thanks to the following people for their contributions to this project:

Richard Conway
Robert Haimowitz
International Technical Support Organization, Poughkeepsie Center

Michael Ferguson
IBM Australia

Bart Steegmans
IBM Belgium

Juha Vainikainan
IBM Finland

Pierre Cassier
Alain Maneville
Alain Richard
IBM France

Paul-Robert Hering
IBM Germany

Silvio Sasso
IBM Switzerland

John Burgess
Carole Fulford
Catherine Moxey
Grant Shayler
IBM U.K.

Riaz Ahmad
Stephen Anania
Dan Belina
Mario Bezzi
Rick Bibolet
x System z Mean Time to Recovery Best Practices

Jack Brady
Stephen Branch
Jean Chang
Sharon Cheloha
Scott Compton
Keith Cowden
Mike Cox
Jim Cunningham
Greg Dyck
Willie Favero
Dave Follis
Joe Fontana
Marianne Hammer
David A. Harris, Jr.
Debra S. Holverson
Akiko Hoshikawa
Beena Hotchandani
John Hutchinson
Steven Jones
Kevin Kelley
John Kinn
Rob Lebhart
Colette Manoni
Nicholas Matsakis
Geoff Miller
Mark Nelson
Bonnie Ordonez
Walt Otto
Mark Peters
David Pohl
Dale Reidy
Peter Relson
Robert Rogers
Judy Ruby-Brown
Bill Schoen
Neil Shah
Anthony Sofia
John Staubi
David Surman
Joe Taylor
James Teng
John Vousden
Tom Wasik
David Whitney
Mark Wisniewski
David Yackel
Doug Zobre
IBM U.S.A.
 Preface xi

Now you can become a published author, too!

Here's an opportunity to spotlight your skills, grow your career, and become a published
author - all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/pages/IBM-Redbooks/178023492563?ref=ts

� Follow us on twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xii System z Mean Time to Recovery Best Practices

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/pages/IBM-Redbooks/178023492563?ref=ts
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Chapter 1. Introduction

This chapter introduces the objective and contents of this book and provides a description of
the configuration we used for the measurements presented in this document.

1

© Copyright IBM Corp. 2010. All rights reserved. 1

1.1 Objective of this book

Some of you might remember when MVS (as z/OS was named at the time) moved from 24-bit
to 31-bit mode in 1983. That transition started a multi-year journey to move system control
blocks from below the 16-MB line to above the line (you might recall the term virtual storage
constraint relief, or VSCR). The reason for the change from 24-bit to 31-bit was to increase
the capacity and scalability of MVS. However, the primary reason that the VSCR voyage went
on for many years was that the changes had to be implemented in a manner that allowed
programs, which had been running on MVS for many years, to continue to run without
change.

Move forward to the year 2010. z/OS, the “grandchild” of MVS, now runs in 64-bit mode and
supports processors that can scale up to tens of thousands of MIPS, and sysplexes that can
contain hundreds of thousands of MIPS. Now, we are embarking on a new journey, one that is
designed to help customers minimize the application downtime when a system or subsystem
has to be restarted, and is called mean time to recovery (MTTR) reduction. While IBM
provides many changes and enhancements in support of this journey over coming releases,
there are already things that you can do, and functions that you can exploit to potentially help
you reduce your MTTR today.

The objective of this book is to help you identify the most effective way to reduce MTTR for
any time you have a system initial program load (IPL). To develop an understanding of the
activity during an IPL, and ways that we could shorten that time, we carried out a number of
planned scenarios. We did not create failures because the amount of time to recover from a
failure depends on precisely what the system was doing at the instant of the failure. However,
a change that you make to reduce the time for your applications to be available again after an
IPL should deliver benefits for every subsequent IPL, planned or otherwise.

Also, the overwhelming majority of z/OS outages tend to be planned outages, therefore we
thought that a more useful approach was to provide information to help you speed up the
majority of the cases rather than the exceptions. However, remember that a change that
improves restart time, in case of a planned outage, might also improve restart times following
an unplanned outage.

1.2 Thoughts about MTTR

You might be wondering precisely what is included in the scope of MTTR. Basically, it covers
the time period from the instant you start your shutdown process, through to the time where
the online applications are available again. This range is shown diagrammatically in
Figure 1-1 on page 3.

Assumptions: As stated previously, the objective of this book is to help you identify things
that are under your control and that can make a worthwhile difference to the startup or
shutdown time of your systems.

We assume that this information will be applied to a production environment (because
those environments typically have more stringent availability requirements). We also
assume that the configuration has sufficient capacity to handle the peak workload
requirements of your production systems (because the capacity required to IPL is usually
less than that required to run your production work).
2 System z Mean Time to Recovery Best Practices

Figure 1-1 Scope of mean time to recovery

We tend to focus more on changes that you can make to improve the startup time. As
Figure 1-1 shows, startup after an IPL tends to take longer than the shutdown process, so
there may be more room for tuning in that area. However, where we encounter items that can
improve your shutdown times, we of course mention them also.

1.2.1 Data sharing

Why do businesses care about how long it takes to bring a system back up after an outage?
In reality, the business really cares about the amount of time that critical applications are
unavailable. If the application runs only on one system, the elapsed time from when you start
to shut down the system, through when the applications are available for use again (the
MTTR) can become an issue. This is the situation depicted in Figure 1-1.

However, if you can remove all single points of failure from the application, stopping any
single component that is used by the application while maintaining application availability is
possible. Therefore, the amount of time that one system is down becomes less of an issue.
The only way to remove nearly all single points of failure from a z/OS application is by
exploiting Parallel Sysplex data sharing.

Data sharing helps you maintain application availability across unplanned and planned
outages. Therefore, if you enable all your critical applications for data sharing and dynamic
workload balancing and embrace the concept of doing rolling IPLs, then MTTR becomes less
of an issue.

A better solution combines improved MTTRs, data sharing, and rolling IPLs, and you might
find that recycling all the members of a large sysplex in a single shift is now possible. By
reducing the length of time that each system is unavailable, the combined elapsed time for all
the IPLs might reduce to the point that all systems can run an IPL in one night, which is
valuable if you need to apply service or a new feature in a short time.

all business processes available

TIME

problem occurs

possibly orderly shutdown

For Unplanned - gather diagnostic information

For Planned - implement planned changes

z/OS

subsystems

middleware

applications

business impact

shutdown restart
Chapter 1. Introduction 3

1.2.2 How much is a worthwhile savings

If you ask any two individuals how much of a savings would be required before they would
bother implementing an MTTR-related change, you are likely to get two different answers.
However, the reality is that you are unlikely to find a single change that will reduce many
minutes from your MTTR. A more likely situation is that any improvements will consist of a
minute here and some tens of seconds there. However, a few of these small changes can add
up to a valuable improvement.

For this reason, we have attempted to provide as much guidance as possible to reducing
MTTR, even if a given improvement might save only a couple of seconds. We decided that a
better approach was to provide a menu of potential improvement items and let the reader
decide which are of interest and which are not. Also, keep in mind that the scale of the benefit
of a change can depend on the environment. So, a change that yields little benefit for one
customer can shave valuable minutes off the MTTR in another environment.

In this book, we also provide information about changes that made little or no difference. Why
bother providing this information, you wonder? For most customers, IPLs of production
systems are few and far between. So, if you are going to test some change during one of
those IPLs, we do not want you wasting that opportunity on a change that will not make any
difference. We hope that by providing this information, we can help you receive the maximum
benefit from any IPL opportunities you get.

1.2.3 The answer is not always in the ones and zeroes

Technicians frequently look to a technical answer to challenging business questions. Fine
tuning your configuration and setup can deliver tangible benefits.

However, MTTR is somewhat similar to availability, in that many improvements can be
achieved by carefully reviewing and enhancing your processes and practices. In fact, for
some customers, more improvements can be obtained from systems management changes
than from software or setup changes. For this reason, we include Chapter 2, “Systems
management” on page 7.

Another reason exists for placing that chapter near the beginning of the book. We do not want
you wasting time tuning a process that is perhaps not even required. By placing the systems
management chapter early in the book, we hope to help you make your IPL process as
efficient and intelligent as possible. The remainder of the book can then help you tune the
remaining processes.

1.3 Our configuration

Although not in one centralized place, the public domain has some information about ways to
improve your startup time for z/OS or its subsystems. Some of the way are valid and valuable,
but others might be out of date or applicable only to very special situations.

To know which actions deliver real value, and which might not, you must take controlled
measurements of the impact of each item. However, the reality is that no one can afford the
number of outages to a production environment that are required to carry out such
measurements. And, most test configurations are not completely representative of their
respective production configurations. Therefore, using a test system for such measurements
might be only partly indicative of the benefit you might see in your production environment.
4 System z Mean Time to Recovery Best Practices

Therefore, we carried out several controlled measurements using our configuration, so that
we can give you an indication of which changes delivered the largest benefit for us. An
extremely unlikely scenario is that you will see exactly the same results as ours, but the scale
of benefits we saw, from one change to another, will bear a relationship to the improvements
that you would see if you were to make the same changes that we did.

The configuration we used consisted of a three-way Parallel Sysplex, with two coupling
facilities (CFs). Each CF had a single dedicated ICF engine. We had six dedicated CP
engines that we were able to assign between the three z/OS partitions. We also had 24 GB of
storage that we were able to assign across our z/OS partitions.

All our partitions resided on a single z10 system, and that z10 was also being used for other
projects. The reason we used dedicated PUs for our measurements was to try to factor out
the impact of other partitions on the z10 and to enable us to get more consistent results.

Our CFs were both running CF Level 16 and were connected to some of the systems using
peer mode internal links, and to the other systems using ISC links. The z/OS logical partitions
(LPARs) were capable of running either z/OS V1R9 or V1R10, depending on the test.
Information Management System (IMS) was V10, DB2 was V9, CICS and CICSPlex® SM
were CICS TS V3.2, and WebSphere was V7. Figure 1-2 shows the logical configuration.

Figure 1-2 Logical configuration used for this book

Important: The measurements provided in this document are not formal benchmark
results. Some of the components that we used in our configuration (such as our direct
access storage device, DASD, subsystems) were shared with other workloads. The
numbers we provide are intended to provide insight into the results achieved in our test
environment only.

Formal IBM benchmarks are carried out by teams of performance specialists using
dedicated configurations.

Note: Our systems use somewhat unusual naming conventions because they are sold to
customers for operator and system programmer training, so we use names that we hope
will not match those used for any customer systems.

FACIL04FACIL03

MVS #@$2

CICS
DB2 D8Q1*
IMS IM1A*
WAS T2*

MVS #@$3

CICS
DB2 D8Q2*
IMS IM2A*

MVS #@$A

CICS
DB2 D8QA*
IMS IM3A*
Chapter 1. Introduction 5

The DASD that was accessible to the systems consisted of a mix of IBM 2105-F20, 2105-800,
and 2107-922 devices. About 2800 DASD volumes were accessible to the systems. None of
the volumes were mirrored. There was also a mix of tape drives, switches, and various
communication devices.

1.4 Other systems

In addition to the ITSO systems that were used for IPL testing, we obtained IPL data from
about 150 customer and IBM systems. This data gave us a metric to compare our results
against. It also gave us valuable insight into the range of elapsed times that a reasonable
sample of systems were experiencing.

Based on our analysis of this data, we made the following observations:

� Of the roughly 120 phases of the IPL process, only a relatively small number take more
than one second to complete on average.

� Some of the phases exhibited large discrepancies between the average and maximum
elapsed times. In nearly all those cases, the discrepancy was related to either prompting
the operator, or I/O-related delays.

� The sites that are most likely to find an easy way to significantly reduce their IPL times are
those whose elapsed times for one or more of these phases are significantly greater than
the average. For example, one process had an average elapsed time (across all the
systems) of 1.5 seconds, but on one system the elapsed time was 196 seconds. In this
particular case, the customer was prompting the operator for a response, resulting in that
out-of-line elapsed time.

The median elapsed times for each component in the IPL process is provided in Appendix C,
“Sample IPL statistics data” on page 207. This information helped us identify the parts of the
IPL that we should concentrate on in our investigations.

1.5 Layout of this book

One of our objectives in writing this document is to provide you with easy-to-access and
easy-to-use information about ways to improve your MTTR. This document does not provide
huge amounts of detail about the meaning of one keyword or option versus another; that
information is usually available elsewhere and can only clog up this document. Therefore, to
keep this document readable, we aim to keep things as concise as possible, with
easy-to-interpret figures, showing the effect of using various methods, options, or
technologies.

We also want to make the book valuable to, and usable by, specialists in various disciplines.
Therefore, we have a chapter about systems management techniques that are related to
MTTR, which everyone should read. That is followed by chapters about z/OS, which are
primarily of interest to z/OS system programmers. The book then includes individual chapters
about CICS, DB2, IMS, and WebSphere, so that you may read only the parts of the book that
interest you.

As you read through this book, you might find suggestions that seem obvious, because that is
already your practice. Other times, you might find answers to issues that you have wondered
about for years. Finally, you might find possibilities that you can explore to improve your
MTTR. We hope that you find this document easy to use and informative and that it helps you
provide the optimum MTTR for your unique environment.
6 System z Mean Time to Recovery Best Practices

Chapter 2. Systems management

This chapter provides valuable information and experiences in the area of systems
management that can contribute to your achieving significant improvements in your MTTR.

2

© Copyright IBM Corp. 2010. All rights reserved. 7

2.1 You cannot know where you are going if you do not know
where you have been

As with any tuning exercise, the first step in a project to improve your mean time to recovery
(MTTR) is to document how long it takes to stop and restart your systems today, and how
consistent those stop and start times are. This information is critical to enable you to judge
the effect of any changes you make.

Establishing a baseline also provides important tracking information. Even if you are content
with your restart times today, changes in your configuration, workload, and software mix might
cause elongation to those times, to the extent that they become unacceptable to your
business. Putting a measurement and tracking process in place will allow you to be aware of
any such changes, and act before they become a business issue.

This book describes a number of programs that can help with this task. One, IPLSTATS,
formats information from a set of MVS control blocks that record the elapsed times for each of
the phases in z/OS IPL, NIP, and Master Scheduler Initialization processing1. Others analyze
system log (syslog) and extract information about how long it takes to start each of your major
subsystems. Record and track this information to understand your trends and any unexpected
change in these values.

Additionally, IBM System Automation for z/OS now produces a System Management Facility
(SMF) record (Type 114) containing the elapsed time to start each subsystem that is under its
control. You can find more information about how to create this information in Tivoli System
Automation for z/OS: Customizing and Programming, SC33-8260. If you use System
Automation for z/OS, consider enabling this record and tracking the information it provides
about the startup and shutdown times for your most critical subsystems.

2.2 Are we all talking about the same IPL time

While preparing for this book, we asked a number of customers how long their IPLs took. The
answers ranged from “two minutes” to “two hours”. So the obvious next question was “exactly
what are you including in that time?”

For the purpose of this book, we define the duration of an IPL to be the elapsed time from the
point where you activate or load the LPAR, and concluding at the point where all the
production applications are available for use again.

Having said that, the bulk of our investigations were at the z/OS or subsystem level. We
wanted to find techniques or options that would have a positive impact on the elapsed time to
start the associated system or subsystem for nearly all customers.

We could have started all our subsystems together and then worked to reduce the overall IPL
time. However, we thought that the value of such an exercise was limited, for example:

� Some of the delays could have been addressed by moving data sets to different devices or
adding more paths to a particular device. This would have reduced our IPL time, but what
benefit would that have provided for you?

� Our configuration consisted of a three-way Parallel Sysplex running on a z10 with
dedicated CPs.

1 You can also get this information by using IPCS Option 6 and entering “VERBX BLSAIPST MAIN.”
8 System z Mean Time to Recovery Best Practices

Each z/OS had:

– 200 IMS-dependent regions
– 38 CICS and CICSPlex SM regions
– 1 DB2 subsystem
– 8 WebSphere servants

� Specific tuning actions might be of interest to a customer with a similar configuration, but
what about a customer that only has CICS and DB2, or that has WebSphere, IMS, and
DB2? Because every customer’s configuration, workloads, and software mix is so
different, there is limited value in knowing how long it took to bring up the entire workload
on our systems, or in any tuning we might have done to improve that.

If you decide to initiate a project to reduce your MTTR, one of the first things to do is to agree,
and clearly and precisely document what is included in the scope of your project: what event
or command or message indicates the start of the shutdown, and what message indicates the
point where all applications are available again. You might be surprised at how many opinions
exist about when the outage starts and ends.

2.3 Defining shutdown time

The shutdown time is a little more nebulous than IPL time. The obvious description is that
shutdown time starts when the automation script to shutdown the system is initiated, and
ends when the target system places itself in a wait state.

However, from a user perspective, the shutdown of the system may have started a long time
before that. For example, a common practice is to start closing down batch initiators,
especially those used for long running jobs, an hour or more before the rest of the system is
taken down. Another example might be stopping long running queries ahead of the rest of the
system. From the data center perspective, the system is still available during these times, but
from the user’s perspective, the application is not available.

The particular definition you use for shutdown time has presumably been honed over many
years. However what is most important is that everyone in your installation that is involved in
an MTTR improvement project is using the same definition. A positive side effect of this
discussion might be that starting to shut down these services so far ahead of the IPL is
something you no longer find necessary, because technology improvements have reduced
the average time of a long-running batch job.

2.4 The shortest outage

The shortest outage is the one you never have. Most planned outages are used to implement
a change to the hardware or software configuration. Some are done to clean up the system.
Whatever the reason, every planned outage can mean a period of unavailability for the
services running on that system.

Based on discussions with customers, most customers have scheduled IPLs between once a
month to once a quarter. A small number of customers IPL more frequently than once a
month, and some customers run for more than three months between scheduled IPLs. But for
most installations, a common trend is pressure from the business to IPL less frequently than
is done today.

But you have to ask yourself: Are all those outages really necessary? Obviously you must be
able to make changes to your configuration. However, many changes that at one time
Chapter 2. Systems management 9

required a system outage or a subsystem restart can now be done dynamically. z/OS and its
major subsystems have delivered significant enhancements over recent releases that enable
many options and attributes to be changed dynamically. The book z/OS Planned Outage
Avoidance Checklist, SG24-7328, describes many of the things that can be changed
dynamically in z/OS (that book, however, was written at the 1.7 level of z/OS). And the
subsystem chapters in this document provide pointers to information about what can be
changed dynamically in each of those products.

2.5 Automation

Automation is one of the best ways to reduce the elapsed time for an IPL. Although most sites
implement some sort of automation, finding ways to improve MTTR by reviewing automation
is not unusual. Remember that the automation product provides only the infrastructure to
issue commands; what triggers those commands to be issued, and the sequence in which
they are issued, is under the control of the installation. Therefore, you must consider many
factors when designing your automation.

2.5.1 Message-based automation

Be sure that the startup and shutdown of all address spaces are driven by messages, which
indicate that the initialization or shutdown of any prerequisite products has completed. Some
installations begin the commands to stop or start address spaces based on waiting a fixed
amount of time after an action against a predecessor component; however these methods
usually result in startup and shutdown times that are longer than necessary. A much better
approach is to trigger actions based on specific messages.

2.5.2 Sequence of starting products

Be sure to consider the criticality of products or functions to your production applications
when designing your startup rules. The startup of products that are not critical to production
online applications should be delayed until later, after the applications are available. Products
in this category might include performance monitors, file transfer products, batch scheduling
products: basically anything that is not required to deliver the production online service.

Also consider the relationship between various products. For example, CICS used to require
that VTAM® initialization be completed before it was started. As a result, many customers
start CICS, DB2, and other subsystems only after VTAM has started. However, this is no

Tip: When asked why they IPL as frequently as they do, system programmers commonly
respond “because we have always done it this way.” Do not automatically accept this as a
valid reason. What might have been a valid and necessary reason for an IPL five years ago
might no longer require an IPL today.

For example, if you IPL very frequently because at some time in the past you suffered from
a storage leak, do not simply keep using IPL years later for that reason. Are you still
suffering from that problem? If not, it should not be necessary to IPL so often. And if you
are, then consider approaching the vendor to have the product fixed.

Additionally, the methodology you use for stopping and starting your systems may also be
a product of “we have always done it this way.” We would be surprised if simply
re-examining how you are starting and stopping your systems does not yield surprising
benefits.
10 System z Mean Time to Recovery Best Practices

longer the case, meaning that CICS can now be started concurrently with VTAM. Although
users will not be able to initiate VTAM sessions with CICS until VTAM has initialized, at least
you might save some time by having CICS initialization run in parallel with VTAM initialization.

You might also want to review the messages that you use to trigger dependent address
spaces. Using CICS as an example again, starting CICS-related products before CICS issues
the “Control is being given to CICS” message might be possible. Not possible, however, is to
make a general statement about when dependent address spaces may be started: it depends
on which specific capabilities are required by the dependent address space. However,
consider investigating improvements that you may be able to make in this area; a relatively
easy way to determine this information is to try overlapping the startup on a test system.

2.5.3 No WTORs

There are various places in the startup of z/OS where you have the ability to pause
processing and wait for the operator to enter information or make a choice. Although this
flexibility is convenient because the operator can alter how the system comes up, the
downside is that it takes an amount of time for the operator to enter the requested information.
In fact, in the systems that we investigated as part of this project, those that took longer than
average to IPL inevitably had one or more WTORs during the IPL.

Another problem with issuing operator prompts early in the IPL process is that all further IPL
processing will likely be delayed until the operator responds to the prompt. This fact is
especially important during the early part of the IPL: if the operator is prompted for a
response during CICS startup (for example), the start of that CICS region will be delayed.
However, if the operator is prompted early in the IPL, everything will be delayed by the
amount of time that the operator takes to respond.

Based on this observation, one of the best things you can do to improve MTTR is to eliminate
all WTORs from the IPL. Although this step might require a change to your processes and
operations procedures, the resulting savings can be significant.

Duplicate volsers
Operators being presented with duplicate volser messages during the IPL is not uncommon.
If at all possible, such messages should be avoided. For one thing, the IPL does not progress
until each duplicate volser message is replied to.

From the operator’s perspective, two situations exist:

� The operator has not seen the message for this particular pair of devices before.

In this case, the operator must contact the owner of the volumes to determine which is the
correct volume to keep online. This step can be especially painful and time-consuming in
cases where there are dozens or even hundreds of such volumes, because each one has
to be replied to one at a time. If you assume an average of 10 seconds per reply, this can
add up very quickly. Avoid this potentially very time-consuming process.

� The operator has seen the message before and therefore knows which volume to keep
online.

Although the operator is able to respond in a more timely manner in this case, a delay in
IPL processing still occurs while the system waits for the operator to respond. However, in

Note: For most of the early stages of an IPL, the system runs the tasks in a serial manner,
with only a single engine, so if a task is delayed, by waiting for an operator response, all
subsequent tasks also have to wait.
Chapter 2. Systems management 11

a way, this is actually a worse situation than the previous one. A “planned” situation where
duplicate volsers are available to a system should not exist. If something is unique about
your configuration that requires that two devices with the same volser are accessible, you
should update the OS CONFIG in the input/output definition file (IODF) to control which
volume will be taken online to each system, thereby ensuring that the operator does not
get prompted to decide which device to keep online.

The other reason why duplicate volser prompts should be avoided is that they introduce the
risk of a data integrity exposure if the operator were to reply with the wrong device number.

Syntax errors in Parmlib members
A mistake can easily be made when you enter a change to a Parmlib member. Something as
simple as a missing or misplaced comma can result in a member that cannot be successfully
processed. In the worst case, you must correct the error and re-IPL. In the best case, the
operator is prompted with a message, asking for valid input. Both of these events result in an
elongated IPL process.

To avoid these situations, we strongly recommend using the Symbolic Parmlib Parser where
possible, to ensure that the syntax of any members you change is correct before you do the
IPL. This tool is included in SYS1.SAMPLIB and is documented in an appendix in z/OS MVS
Initialization and Tuning Reference, SA22-7592.

z/OS 1.10 introduced a new tool, CEEPRMCK, to syntax-check the CEEPRMxx parmlib
members. For more information, see the section titled “Syntax checking your PARMLIB
members” in z/OS Language Environment Customization, SA22-7564. The USS BPXPRMxx
parmlib member can be syntax-checked by using the SETOMVS SYNTAXCHECK command.

2.5.4 AutoIPL and stand-alone dumps

z/OS 1.10 introduced a function called AutoIPL. AutoIPL allows you to specify to z/OS what
action should be taken when the system enters one of a specific set of wait states. You can
specify that the stand-alone dump program do an automatic IPL, or that z/OS do another
automatic IPL, or both. You can also specify that the system should do an automatic IPL as
part of the V XCF,xxx,OFFLINE command.

The use of AutoIPL can be a valuable time-saver in the case of a non-restartable wait state
where you want a stand-alone dump. Most installations run for long periods of time between
stand-alone dumps. In fact, the operator might never have performed one before. If that is the
case, the operator must first determine whether a dump is required and, if so, what is the
correct volume to IPL from. If you enable AutoIPL, the stand-alone dump program will likely
be IPLed and ready for operator input in less time than it would have taken the operator to find
the stand-alone dump documentation. And, the faster the stand-alone dump can be
completed, the faster the system can be restarted.

In addition to providing the ability to automatically IPL the system following a failure, the
AutoIPL support also provides the option to specify on the V XCF,xxx,OFFLINE command
(with the REIPL keyword) that the target system should shut itself down and then automatically
IPL again without the operator having to use the Hardware Management Console (HMC).
Although the resulting IPL does not take any less time than a manually-initiated one, you do
save the time that would be associated with logging on to the HMC and initiating the IPL from
there. Note that using the AutoIPL feature with the V XCF,xxx,OFFLINE command is effective
only if you are using the same IPL volume and load parameters as previously used (unless
you update the DIAGxx member to specify the new sysres and load parameters). If you are
changing the sysres or load parameters and will not be updating the DIAGxx member, you
must use the HMC.
12 System z Mean Time to Recovery Best Practices

2.6 Concurrent IPLs

Some times you might have to IPL multiple systems at the same time. In general, the
recommendation has been that customers do rolling IPLs, which is IPLing one system at a
time. This recommendation however, is based on minimizing application impact, rather than
because of any specific performance considerations. Obviously, situations do exist, following
a disaster, for example, when you must bring all the systems back up at the same time.
However, in this section we are primarily concerned with normal sysplex operations and
planned IPLs.

If you are in a situation where you have a number of systems down and want them back as
quickly as possible, the recommendation has been to IPL one system, log on to make sure
that everything is as expected, and then IPL the remaining systems in groups of four.
However, as with all guidelines, fine tuning of this recommendation is possible, depending on
your configuration.

For example, performance benefits might exist from IPLing a number of systems that share a
common sysres all at the same time. The rationale behind this is that the first system to touch
a given data set or program will load that into the storage subsystem cache, and all the
following systems should then receive the benefits of faster reads from the cache.
Measurements taken at IBM confirm that doing an IPL in this manner does result in faster
IPLs than if the systems were IPLed from different sysres volumes at the same time.

You might also look at the placement of the partitions across multiple processors. Although
the IPL process is generally not CPU-constrained, in certain environments, parts of the IPL
process can consume significant amounts of CPU (WebSphere initialization, for example). In
situations like this, try to group systems that are resident on different processors, rather than
having a group of systems on the same processor all vying for CPU cycles at the same time.

Based on JES2 messages about contention on the JES2 checkpoint, some customers IPL
one system at a time, with the IPL of each system starting only when the previous system has
completed JES2 initialization. However, the combination of enhancements to JES2 and
improved performance for both DASD and CF means that such practices are not necessary.
The messages issued by JES2 about contention on the checkpoint only inform you that
another JES2 was holding the checkpoint when this JES2 tried to obtain it; if issued when
multiple systems are IPLing, these messages do not necessarily indicate a problem. If you
have many systems to IPL and traditionally shut them all down together (rather than doing a
rolling IPL), changing this methodology can result in significant MTTR improvements for the
systems that are further down the list and had to wait for an IPL of all their peers before they
can start.
Chapter 2. Systems management 13

2.7 Expediting the shutdown process

There are many address spaces on a typical z/OS system. Most installations stop all these
address spaces as part of their normal shutdown process. And for some address spaces,
taking the time to do an orderly shutdown process more than pays for itself by resulting in a
faster startup the next time that address space is started (this applies to database managers
in particular).

However, for some system address spaces, startup processing is the same regardless of
whether or not they were cleanly shut down; LLA system address space is an example.
Because many of these types of address spaces run on most z/OS systems, we discuss them
in more detail in Chapter 5, “z/OS infrastructure considerations” on page 71.

In this section, we simply want to point out that automation might not necessarily have to wait
for every last address space to end cleanly. We recommend that you go through each
address spaces that is stopped as part of your automated shutdown process and determine
whether a clean shutdown process is really required. In general, any process whose startup
is exactly the same, whether or not it was stopped cleanly, is a candidate for removing from
your shutdown scripts, or at least escalating the shutdown for the task from a gentle stop to
an immediate cancel. Other candidates might be products that are designed to handle
frequent restart operations; a good example is a file transfer product, which regularly has to
deal with restarts resulting from network glitches.

Note: We have seen cases where two systems can get into a deadly embrace if they are
IPLed at the same time. For example, SYSA gets an exclusive ENQ on Resource 1 and
tries to get an ENQ on Resource 2. However SYSB already has an exclusive ENQ on
Resource 2 and is now hung, waiting to get an ENQ on Resource 1.

Customers get around this situation by spacing out the IPL of the two systems. However,
fixing the problem in this way is really only addressing the symptoms; it is not addressing
the root cause of the problem. Situations like this must be addressed by ensuring that
resources are always ENQed on in the same sequence.

So, in this example, both systems would try to get the ENQ on Resource 1 before they
would attempt to get it on Resource 2. If this methodology was followed, the first system to
request Resource 1 would get it. It would also be able to get the ENQ on Resource 2,
because the other system would not attempt to get Resource 2 until it was able to serialize
Resource 1, and that would not happen until Resource 1 is freed up by SYSA.

If you have this type of situation in your installation, you should work with the vendor of the
associated product to get this behavior rectified.
14 System z Mean Time to Recovery Best Practices

2.8 Investigating startup times

One of the challenges in trying to improve startup times is that Resource Measurement
Facility (RMF), or other performance monitors, are not running very early in the IPL process,
so your visibility of what is happening and where any bottlenecks exist is very limited. Also,
the timeframes are very short: many things are happening, but the elapsed time of each one
is quite short. So if you have a 20- or 30-minute SMF interval, the activity of each of the
address spaces blend together and become smoothed out.

Having said that, facilities are available to provide you with insight into what is happening
during the system startup window. For the very earliest stages of the IPL process, you can
use the IPLSTATS information. You can also use the RMF LPAR report to get information
about the CPU usage of all partitions on the processor. Finally, contention might exist on
some ENQs, so you can run an ENQ contention report to obtain insight into what is
happening with ENQs during the startup. And, of course, perhaps the most valuable tool is
the syslog for the period when the system is starting up.

2.8.1 Role of sandbox systems

In general, installations that are large enough to be concerned about restart times have
system programmer test systems. Such systems can be valuable for MTTR reduction
projects. For example, you can use a sandbox system to investigate what happens if you start
product X before product Y.

The sandbox system is ideal for function testing like this. However, the configuration of most
test systems is very different to the production peers: they typically have a lot fewer devices,
much less storage, probably fewer CPs, and almost definitely far fewer started tasks.
Therefore, be careful not to take any performance results from the test system and infer that
you will get identical results from the production environment.

2.9 Summary

The remainder of this book is dedicated to the IBM System z® technology and how it can best
be exploited to optimize your MTTR. However, the reason we inserted this chapter about
systems management at this location in the book is that we want to encourage you to
investigate and address any issues in that area before you get into the technical details. It is in
the nature of technical people to look for technical solutions to challenges such as improving
MTTR, and we hope that you will find information in this book to help you obtain those
improvements. However, we urge you to first take a step back and determine whether there is
room for improvement in your current processes.
Chapter 2. Systems management 15

16 System z Mean Time to Recovery Best Practices

Chapter 3. z/OS tools

This chapter describes the z/OS tools and utilities that we used during our testing.
Subsequent chapters refer back to these tools. The tools described in this section are:

� MVS Operator commands

� Interactive Problem Control System (IPCS) IPLSTATS

� Syslog analysis programs

� Resource Measurement Facility (RMF)

� System Management Facilities (SMF) records

� JES2 commands

3

© Copyright IBM Corp. 2010. All rights reserved. 17

3.1 Console commands

One prerequisite to understanding the impact of any MTTR-related changes you might have
made is to understand what other changes have occurred in the environment. For example, if
you change a parameter and then find that the next IPL completes in less time, you want to be
sure that the improvement is a result of your change, and not the fact that the LPAR now runs
on a z10 whereas it was running on a z990 for the previous IPL.

Several operator commands are available to provide information about your configuration.
You might want to have them issued by your automation product just after the IPL so that the
information can be recorded in system log (syslog). All MVS commands are described in
z/OS MVS System Commands, SA22-7627.

If you want to quickly and easily get the status of all systems in the sysplex at a given time,
Example 3-1 contains an example of a simple little started task that will do this for you.

Example 3-1 Sample started task to issue system commands

//STATUS PROC
//STEP EXEC PGM=IEFBR14
// COMMAND 'RO *ALL,D M=CPU'
// COMMAND 'RO *ALL,D M=STOR'
// COMMAND 'RO *ALL,D ETR'
// COMMAND 'RO *ALL,D XCF,S,ALL'
// COMMAND 'RO *ALL,D IPLINFO'
// COMMAND 'RO *ALL,D PARMLIB'
// COMMAND 'RO *ALL,D SYMBOLS'
// COMMAND 'RO *ALL,D CF'
// COMMAND 'RO *ALL,D XCF,C'
// COMMAND 'D XCF,CF,CFNM=ALL'
// COMMAND 'D R,L'
// COMMAND 'RO *ALL,D GRS,ALL'
// COMMAND 'RO *ALL,D A,L'
// COMMAND 'RO *ALL,D SMF,O'
// COMMAND 'RO *ALL,D SMF,S'
// COMMAND 'RO *ALL,D IOS,CONFIG'
// COMMAND 'RO *ALL,D LOGGER'
//*

You should tailor the list of commands to report on the configuration information that is of
particular interest to you. The example gathers the information listed in Table 3-1 on page 19.
18 System z Mean Time to Recovery Best Practices

Table 3-1 Commands

Command Description

D M=CPU Provides information about the number of engines available, the
number that are currently online, and additional information for each
online engine. Note: The one thing that this command does not report
on (but that might be important to you) is whether the engines are
dedicated or shared. This information can be obtained from RMF.

D M=STOR Shows how much real storage is available to the system.

D ETR Provides information about the sysplex time configuration.

D XCF,S,ALL Shows information about the members of your sysplex and their status.

D IPLINFO Shows the time of the last IPL, the version and release of z/OS, and
load and device information for the IPL.

D PARMLIB Displays the data sets in the Parmlib concatenation, together with the
volume that each data set resides on.

D SYMBOLS Displays the system symbols defined on this system, and the current
value of each symbol. This information can be useful if you
subsequently try to determine which Parmlib members were used, and
you use system symbols to control which members are selected.

D CF Shows the status of the coupling facilities and the links and
subchannels that are used to communicate with them. As of z/OS 1.10,
this also shows you whether each CF engine is shared or dedicated.

D XCF,C Provides a wealth of information about the sysplex Couple Data Sets,
and the setting of many sysplex options.

D XCF,CF,CFNM=ALL Lists the structures in each CF.

D R,L Lists outstanding WTORs for all systems in the sysplex.

D GRS,ALL Shows the status of the systems in the global resource serialization
(GRS) complex, and also GRS configuration options. Adding ,ALL adds
information about the GRS RNLs to the output.

D A,L Shows nearly all active address spaces. The sequence of address
spaces in the resulting display reflects the sequence in which the
address spaces were started after an IPL. Note that this command
does not show every system address space running under z/OS;
address spaces started using the ASCRE macro are not displayed (the
D A,A command can be used to show all address spaces, however the
output can be quite lengthy).

D SMF,O Displays the SMF options that are currently in effect.

D SMF,S Displays the names, sizes, and status of the SMF data sets in use by
each system.

D IOS,CONFIG Displays information about the system IOS configuration.

D LOGGER Displays the status of the logger subsystem for the system where the
command is issued.
Chapter 3. z/OS tools 19

Note that some of these commands are against sysplex resources (for example, D
XCF,CF,CFNM=) so you would expect to get the same response on every system. Therefore,
issuing those commands on just one system should normally be sufficient. Also, remember
that to be able to issue commands as in our example, the Converter/Interpreter must be
properly authorized to issue commands, as follows:

� For JES2, this is defined with the JOBCLASS(x) AUTH= and COMMAND= specifications.

� For JES3, it is defined with the CIPARM AUTH= and COMMAND= specifications.

3.2 IPLDATA control block

Information about the elapsed time spent in various modules that make up the IPL process is
stored in a system control block called IPLDATA. This information can be formatted by using
the IPCS VERBX BLSAIPST MAIN command. Because this information is included in every
dump, you can display the same information from an SVC dump or a stand-alone dump.

To get this information for the current running system, follow these steps:

1. Select option 6 in IPCS (Commands).

2. Enter the DROPD MAIN command to clear any previous output.

3. Enter the VERBX BLSAIPST MAIN command to format and display the IPLDATA control block
for the current running system.

If you are analyzing a dump and want to display the IPLDATA information, you can simply
enter IP VERBX BLSAIPST (or IPLDATA STATUS) using the dump you have selected. An example
of the output is shown in three parts: Figure 3-1 on page 21, Figure 3-2 on page 22, and
Figure 3-3 on page 23. We provide a description of many of these events in Chapter 4, “z/OS
IPL processing” on page 35.

Another possibility is to format the IPLDATA control block by using a program called
IPLSTATS that is available from the z/OS Tools and Toys Web site at:

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty2.html#IPLSTATS

We added a command to the COMMNDxx member in our systems to start a started task to
run this program after every IPL, writing this information to the Syslog and to a data set. The
Message Analysis program described in 3.3, “Syslog” on page 24 can then collect and
analyze the IPL statistics.
20 System z Mean Time to Recovery Best Practices

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty2.html#IPLSTATS

Figure 3-1 Sample IPLSTATS output (part 1 of 3)

IPLST000I z/OS 01.10.00 #@$A 20970019DE50 2 CPs
IPLST001I IPL started at: 2009/05/05 21:27:58.972
**** IPL Statistics ****
IEAIPL10 0.000 ISNIRIM - Read SCPINFO
IEAIPL20 0.000 Test Block storage to 2G
IEAIPL11 0.006 Fast FIND service
IEAIPL31 0.001 LOAD service
IEAIPL30 0.001 IPLWTO service
IEAIPL46 0.096 Read SCHIBs into IPL workspace
IEAIPL49 0.000 Process Load and Default parameters
IEAIPL50 0.007 IPL parmlib - process LOADxx and NUCLST
IEAIPL51 0.000 System architecture
IEAIPL43 0.006 Find and Open IODF data set
IEAIPL60 0.000 Read NCRs from IODF
IEAIPL70 0.042 UIM environment - load CBD and IOS services
IEAIPL71 0.029 Build DFT for each device
IEAIPL08 0.001 Read EDT information from IODF
IEAIPL40 0.023 Read MLTs from nucleus
IEAIPL42 0.002 Read NMLs from nucleus (IEANynnn modules
IEAIPL41 0.343 Read PDS directory entries and CESD records
IEAIPL05 0.000 Build and sort NUCMAP
IEAIPL02 1.214 Load nucleus modules
IEAIPL04 0.003 Allocate PFT and SQA/ESQA
IEAIPL14 0.000 Build LSQA/ELSQA for Master
IEAIPL09 0.037 IAXMI - PFT, master RAB, etc.
IEAIPL07 0.006 Update AMODE for nucleus resident SVCs
IEAIPL03 0.013 Build UCBs, ULUT, etc.
IEAIPL18 0.017 Copy and relocate EDT to ESQA
IEAIPL99 0.176 Page frame table and cleanup
 2.022 TOTAL IPL TIME (seconds)
NIP started at: 2009/05/14 22:43:31.730
**** NIP Statistics ****
IEAVNIP0 0.008 NIP Base
IEAVNIPM 0.050 Invoke NIP RIMs
IEAVNPE6 0.049 Service Processor Interface
IEAVNPFF 0.029 Loadwait/Restart
IEAVNPA6 0.008 RTM - RTCT and recording buffer
IEAVNPC6 0.008 WTO
IEAVNPC3 0.007 Issue messages from IPL message queue
IEAVNP24 0.020 SMS Open/Mount
IEAVNP06 0.010 Machine Check
IEAVNP27 0.011 Reconfiguration
IEAVNPA2 3.948 IOS - Non-DASD UCBs
IEAVNPCA 0.008 NIP Console
IEAVNPB2 0.682 IOS - DASD UCBs
IEAVNP11 0.011 Locate and Open master calalog
IEAVNPC7 0.027 Open SYS1.SVCLIB
Chapter 3. z/OS tools 21

Figure 3-2 Sample IPLSTATS output (part 2 of 3)

IEAVNPOP 0.046 Open PARMLIB
IEAVNPIL 0.010 Process IEALSTxx
IEAVNPC4 0.018 Prompt for System Parameters
IEAVNP03 0.004 Merge and analyze system parameters
IEAVNPCF 0.134 Process system name and system variables
IEAVNP76 0.009 Open LOGREC
IEAVNPE8 0.027 RSM - Process REAL=
IEAVNP23 0.013 Build GRS blocks in SQA
IEAVNP04 0.024 ASM - Open page and swap data sets
IEAVNPA8 0.005 VSM - Expand SQA
IEAVNP14 0.031 ASM part 2 - Build SQA control blocks
IEAVNPGD 0.001 Move console data to ESQA
IEAVNP25 0.027 Process SVC=
IEAVNP05 4.726 LPA, APF
IEAVNP44 0.001 ASA Reuse stuff
IEAVNPB1 0.001 Process CSCBLOC=
IEAVNPE2 0.002 RACF SAF
IEAVNPB8 0.007 Create CSA
IEAVNP47 0.002 ENF
IEAVNPD6 0.001 RTM - SDUMP, ABDUMP, ESTAE
IEAVNP09 0.002 Build ASVT
IEAVNPD8 0.769 RSM - Frame queues, VRREGN= and RSU=
IEAVNP10 0.007 SRM - OPT=, IPS=, etc.
IEAVNPD1 0.009 ABDUMP
IEAVNPD2 0.012 SDUMP
IEAVNPCX 0.001 Context services, registration
IEAVNPX1 0.001 NIP cleanup
IEAVNPF5 0.025 PCAUTH
IEAVNPF8 0.011 RASP
IEAVNP1F 0.028 SRM - I/O measurement blocks
IEAVNPC2 0.011 IOS - Move CDT to SQA
IEAVNP51 0.016 TRACE
IEAVNP20 0.004 Process CLOCK=
IEAVNP21 0.024 TOD clock
IEAVNP57 0.006 SDUMP
IEAVNPF9 72.231 XCF
IEAVNP33 2.790 GRS
IEAVNPED 0.008 PROD
IEAVNP26 1.244 SMS
IEAVNPE5 2.008 LNKLST
IEAVNPD5 0.274 Load pageable device support modules
IEAVNP88 0.077 Allocation move EDT II
IEAVNPA1 3.602 CONSOLE
IEAVNPDC 0.265 WLM
IEAVNP16 0.247 EXCP appendages
IEAVNP13 0.018 Prepare NIP/MSI interface
IEAVNP17 0.002 GTF Monitor Call interface
IEAVNPG8 0.003 VSM defined monitor call enablement
IEAVNP18 0.053 PARMLIB Scan Routine interface
IEAVNPF2 0.047 Process IOS=
IEAVNP15 0.149 Process VATLST
IEAVNPRR 0.001 RRS
22 System z Mean Time to Recovery Best Practices

Figure 3-3 Sample IPLSTATS output (part 3 of 3)

We recommend that you download the sample IPLSTATS programs and JCL at this point.
Note also, that this program might be enhanced periodically, so make sure that you always
have the latest version of the program from the Tools and Toys Web site.

IEAVNPOE 0.152 USS
IEAVNPSC 0.001 Metal C RTL
IEAVNPLE 0.010 System LE RIM
IEAVNPUN 0.012 Unicode
IEAVNPXL 0.007 zXML Parser
IEAVNP1B 0.045 Close catalog
IEAVNIPX 0.000 NIP final cleanup
 94.137 TOTAL NIP TIME (seconds)
**** IEEVIPL Statistics ****
IEETRACE 0.001 Master trace
ISNMSI 2.019 SPI
UCMPECBM 0.268 CONSOLE address space
ENFPC005 0.000 CONSOLE ready ENF
IEFSCHIN 0.207 IEFSCHAS address space
IEFJSINT 0.002 Subsystem interface
IEFSJLOD 0.018 JESCT
IAZINIT 0.038 JESXCF address space
IAZFSII 0.008 FSI trace
IEFQBINT 0.015 SWA manager
IEFAB4I0 0.118 ALLOCAS address space
IEEVIPL 2.694 Uncaptured time: 0.000
MSI started at: 2009/05/14 22:45:08.870
**** IEEMB860 Statistics ****
ILRTMRLG 0.277 ASM
IECVIOSI 6.748 IOS dynamic pathing
ATBINSYS 0.007 APPC
IKJEFXSR 0.080 TSO
IXGBLF00 0.016 Logger
COMMNDXX 0.069 COMMANDxx processing
SMFWAIT 0.163 SMF
SECPROD 0.843 Security server
IEFJSIN2 2.279 SSN= subsystem
IEFHB4I2 0.009 ALLOCAS - UCB scan
CSRINIT 0.004 Windowing services
FINSHMSI 0.034 Wait for attached CMDs
MSI ended at: 2009/05/14 22:45:19.500
IEEMB860 10.630 Uncaptured time: 0.100
 109.482 TOTAL TIME (seconds)

Note: The sequence of modules shown in the IPLSTATS report generally reflects the
sequence in which processing for that module starts. However, minor changes can exist
from one release to another as small changes and fine tuning are applied to the operating
system.
Chapter 3. z/OS tools 23

In Chapter 4, “z/OS IPL processing” on page 35, we go through the report in some detail and
provide sample elapsed times from a number of systems. As you read through that chapter,
having the corresponding values from your own systems available will be helpful so you can
see where your systems fall compared to other systems.

3.3 Syslog

The system log (Syslog) and the operations log (Operlog1) provide most of the information
that is used to understand the flow of the IPL. A Syslog is kept by each system. Optionally,
console services can also write to Operlog, which stores the messages it receives in a log
stream. The Operlog contains all of the messages (not necessarily in complete chronological
sequence) from all systems; Syslog contains the messages from just a single system. If one
log is unavailable, you can use the other log. The advantage of Operlog is that it provides a
sysplex-wide view of console message activity.

Although scanning through all lines of a system log to extract information about the activity
during the IPL is possible, an easier way of achieving this is available. IBM provides a
non-warranted tool called MSGLG610 that can read any Syslog or major subsystem job log
and summarize the information. You can download the tool from the z/OS Tools and Toys
Web site at:

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty2.html#MSGLG610

Sample JCL to run the program is shown in Example 3-2 on page 25. The example shows the
MSGLG610 control statements that we used to obtain IPL information and save it to a data
set. The IPLID(FK09) is used to differentiate this IPL from another we will subsequently
compare it to.

Important: The information provided in the IPLSTATS report is not a formal IBM published
interface, and the IPLSTATS program is provided on an as-is basis. You might find that all
the times do not add up. The reason is because not every module that executes during the
IPL process is reported on. However, the information provided for each process and
module is reliable and provides an invaluable insight into where the time is being spent
during IPL that you would not otherwise have.

1 You can find information about how to set up Operlog in S/390 Parallel Sysplex: Resource Sharing, SG24-5666.
24 System z Mean Time to Recovery Best Practices

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty2.html#MSGLG610

Example 3-2 JCL to run Syslog analysis program

//STDOUT OUTPUT CLASS=I,FORMS=STD,JESDS=ALL,
// CHARS=GT20,FCB=STDC,COPIES=1
//MSGRATE EXEC PGM=MSGLG610,REGION=5000K
//STEPLIB DD DSN=ZS9037.MSGANAL.LOAD,DISP=SHR
//OPTIN DD *
TITLE: ITSO MTTR RESIDENCY
OFFSET(1)
REPORT(SUM,AMSG,CMSG)
IPLSTATS(LIST,NOFILTER)
IPLID(FK09)
YEAR4
/*
//DATA DD DSN=input_syslog_data_set,
// DISP=SHR
//TTLLIB DD DSN=ZS9037.MSGANAL.TEXT,DISP=SHR
//SYSUDUMP DD DUMMY
//SYSPRINT DD DUMMY
//IPLST DD SYSOUT=*
//IPLSQ DD DSN=ZS9037.RUNFK09.IPLSTATS.D090514.S#@$A,
// DISP=(,CATLG),DCB=(RECFM=FA,LRECL=256),
// UNIT=SYSDA,SPACE=(TRK,(5,5),RLSE)
//PRNTOUT DD DUMMY
//COMPRATE DD DUMMY
//COMPMSG DD DUMMY
//UNKNOWN DD DUMMY
//PREVIEW DD DUMMY
//IMSGRATE DD DUMMY
//BURST DD DUMMY
//DUMPCNT DD DUMMY
//DUMPMSG DD DUMMY
//DUMPCMD DD DUMMY
//DUMPRATE DD DUMMY
//OUT DD DUMMY

If the IPLSTATS were written to the Syslog, the program will also include them in the report.
An option in MSGLG610 allows you to save information from each IPL into a data set. This
data set can then be merged with other IPLs using the IPLMERG4 program (included in the
MSGLG610 package on the Tools and Toys Web site) to allow you to compare two IPLs.

After we created two data sets to compare, we then ran the IPLMERG4 program to produce a
comparison report. The JCL we used for IPLMERG4 is shown in Example 3-3.

Example 3-3 JCL for IPLMERG4 to compare two IPL runs.

//IPLMERG EXEC PGM=IPLMERG4,REGION=5000K
//STEPLIB DD DSN=KYNEF.MSGLGPGM.LOAD,DISP=SHR
//INPUT1 DD DISP=SHR,DSN=ZS9037.RUNFK08.IPLSTATS.D090514.S#@$A
//INPUT2 DD DISP=SHR,DSN=ZS9037.RUNFK09.IPLSTATS.D090514.S#@$A
//OUTPUT DD SYSOUT=*
//OUTPUT1 DD SYSOUT=*
//OUTPUT2 DD SYSOUT=*

The first part of a sample merged report is shown in Figure 3-4 on page 26. The first column
in the report contains the elapsed time from the start of the IPL to the listed event in the
INPUT1 data set, and the second column shows the time from the start of the IPL for the
INPUT2 data set. The remainder of the report is shown in Chapter 4, “z/OS IPL processing”
on page 35.
Chapter 3. z/OS tools 25

Figure 3-4 Sample output from IPLMERG4 program, comparing two IPLs

3.4 Resource Measurement Facility (RMF)

Although the RMF is not started until after most of the z/OS IPL has completed, it can be used
to identify constraints that might be restricting both the IPL process and the startup of the
subsystems. In this section, we describe the reports that we used during our testing. We ran
the RMF Monitor I background processing at one-minute intervals to provide the granularity
we needed to identify any spikes of activity during our processing. Most installations run with
15-minute or 30-minute intervals.

The reports we used are:

� Type 70 - Summary Report

This report was used to show the general activity of the CPU and storage during the last
part of the IPL and starting up and shutting down of subsystems. An example is shown in
Figure 3-5, which shows that the startup of a subsystem occurred at 21.28 time. You can
see that both the CPU usage and the DASD rate increased during this period. Obtain this
report by specifying SUMMARY(INT) as a parameter to the RMF postprocessor.

Figure 3-5 RMF Monitor I: Summary report

*** MERGED RECORDS, SORTED BY INPUT1 EVENT TIME ***

Bold-faced events occurred in INPUT2 after they occurred in INPUT1.

 0.00 0.00 0.00 IEA371I SYS0.IPLPARM ON DEVICE D056 SELECTED FOR IPL PARAMETERS
 0.00 0.00 0.00 IPLST101I IEAIPL50 IPL PARMLIB - PROCESS LOADXX ANDNUCLSTXX
 0.01 0.01 0.00 IPLST101I IEAIPL70 UIM ENVIRONMENT - LOAD CBD AND IOSSERVICES
 0.05 0.05 0.00 IPLST101I IEAIPL41 READ PDS DIRECTORY ENTRIES AND CESDRECORDS
 0.05 0.05 0.00 IPLST101I IEAIPL42 READ NMLS FROM NUCLEUS (IEANYNNNMODULES)
 0.39 0.39 0.00 IPLST101I IEAIPL07 UPDATE AMODE FOR NUCLEUS RESIDENTSVCS
 0.40 0.39 -0.01 IPLST201I IEAVNPCF PROCESS SYSTEM NAME AND SYSTEMVARIABLES
 0.53 1.43 0.90 IPLST201I IEAVNPCX CONTEXT SERVICES, REGISTRATIONSERVICES
 2.02 2.29 0.27 IEA008I SYSTEM PARMS FOLLOW FOR Z/OS 01.10.00 HBB7750 IEASYS00
 2.04 2.40 0.36 IEA007I STATIC SYSTEM SYMBOL VALUES &SYSALVL. = "2"
 6.90 9.97 3.07 IAR013I 4,096M STORAGE IS RECONFIGURABLE
 8.84 12.11 3.27 IXC418I SYSTEM #@$A IS NOW ACTIVE IN SYSPLEX #@$#PLEX
24.48 26.25 1.77 IXL014I IXLCONN REQUEST FOR STRUCTURE ISGLOCK WAS SUCCESSFUL. JOBNAME: GRS ASID: 0007
24.52 26.32 1.80 ISG300I GRS=STAR INITIALIZATION COMPLETE FOR SYSTEM #@$A.
25.74 27.23 1.49 IGW061I SMSPDSE INITIALIZATION COMPLETE.

z/OS V1R9 SYSTEM ID #@$2 START 05/15/2009
 RPT VERSION V1R9 RMF END 05/15/2009

NUMBER OF INTERVALS 32 TOTAL LENGTH OF INTERVALS 00.31.45
DATE TIME INT CPU DASD DASD JOB JOB TSO TSO STC STC ASCH
MM/DD HH.MM.SS MM.SS BUSY RESP RATE MAX AVE MAX AVE MAX AVE MAX
05/15 21.27.37 01.00 3.2 0.4 368.4 10 1 1 1 118 117 0
05/15 21.28.37 01.00 31.9 0.3 1738 10 10 1 1 108 108 0
05/15 21.29.37 01.00 35.7 0.3 1438 10 10 1 1 108 108 0
05/15 21.30.37 00.59 38.5 0.3 1222 10 10 1 1 108 108 0
05/15 21.31.37 01.00 39.7 0.3 1109 10 10 1 1 108 108 0
05/15 21.32.37 01.00 41.5 0.3 982.1 10 10 1 1 108 108 0
26 System z Mean Time to Recovery Best Practices

� Type 72 - RMF Workload Activity

If you want to collect detailed information about any address space, you should put it in a
unique WLM Report Class. At the end of every RMF interval, you can obtain information
about that address space. This information can be used to see whether changes you
made had any effect on the CPU usage of the address space.

� Type 74 - Device Activity Report, OMVS Resource, XCF Activity, Coupling Facility Activity,
and Cache Subsystem Facility

These reports provide great detail about the online devices, the OMVS kernel, XCF
activity, the coupling facilities, and the cache subsystem activity.

� Type 77 - RMF Enqueue Activity

The Enqueue Activity report can be especially useful during the startup of a subsystem. It
identifies any enqueues that occurred during the period, and can help you reduce delays
by reducing enqueue conflicts. An example is shown in Figure 3-6.

Figure 3-6 RMF Enqueue Contention report

� Type 79 - RMF Monitor II

If you want to see what is happening on a second-by-second basis, running RMF II in
background (that is, recording to SMF) can provide a fairly low-cost monitor. For some of
our tests, we ran RMF II at one-second intervals. Example 3-4 shows the Parmlib member
we used to control RMF Monitor II.

Example 3-4 Parmlib member ERBRMFT1 to monitor SMF

ARDJ(SMF)
SINTV(1S)
STOP(10M)
RECORD
NOREPORT
DELTA

We then issued the F RMF,S T1,MEMBER(T1) command before starting a measurement run.

An example of the use of RMF Monitor II to monitor SMF activity is shown in Figure 3-7 on
page 28. Because both SMF and RMF II were recording at one minute intervals at this
time, you can see increases in device connect time at the one-minute intervals. Because
CPU time is so small for SMF, you could track the CPU time better by using the ASRMJ
command, which provides service unit consumption.

 E N Q U E U E A C T I V I T Y
 PAGE 1
 z/OS V1R9 SYSTEM ID #@$2 DATE 06/11/2009 INTERVAL 00.59.999
 CONVERTED TO z/OS V1R10 RMF TIME 12.18.00 CYCLE 1.000 SECONDS

ENQUEUE DETAIL ACTIVITY GRS MODE: STAR
-NAME- ----- CONTENTION TIME ----- -- JOBS AT MAXIMUM CONTENTION-- -%QLEN DISTRIBUTION- AVG Q -REQUEST TYPE - TOTAL
MAJOR MIN MAX TOT AVG ----- OWN ----- ----- WAIT ---- 1 2 3 4+ LNGTH -EXCL- -SHARE- EVENT
 MINOR TOT NAME TOT NAME MIN MAX MIN MAX
 SYSNAME SYSNAME
IGWLHANZ
 SERIALIZEPDSEANALYSIS
 0.000 0.000 0.000 0.000 1 SMSPDSE (E) 1 SMSPDSE1(E) 100 0.0 0.0 0.0 1.00 1 1 0 0 1
 #@$2 #@$2
Chapter 3. z/OS tools 27

Figure 3-7 RMF Monitor II background monitor of SMF

Another use of RMF Monitor II is to obtain a list of the address spaces in the sequence
they were created during IPL. The easiest way to do that is to run an RMF Monitor II with a
request for ASD. An example is shown in Figure 3-8 on page 29. This shows that the
MASTER address space was the first one started, followed by PCAUTH, then RASP, then
TRACE, and so on. This report confirms our discussion of the IPL sequence in Chapter 4,
“z/OS IPL processing” on page 35.

++++++++++ SMF +++++++ DELTA MODE +++++++++++++++
SMF DEV FF FF PRIV LSQA X C SRM TCB CPU EXCP SWAP LPA CSA NVI V&H
 TIME CONN 16M 2G FF CSF M R ABS TIME TIME RATE RATE RT RT RT RT
14:04:59 0.001 8 23 8 1106 X 7.1 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
14:05:00 0.013 8 23 8 1106 X 29 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
14:05:01 0.013 8 23 8 1106 X 32 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
. . .
14:05:25 0.001 8 23 8 1106 X 6.1 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
14:05:26 0.001 8 23 8 1107 X 0.0 0.00 0.00 2.00 0.00 0.0 0.0 0.0 0.0
14:05:27 0.001 8 23 8 1107 X 267 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
14:05:28 0.001 8 23 8 1107 X 0.0 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
. . .
14:05:41 0.001 8 23 8 1107 X 5.1 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
14:05:42 0.004 8 23 8 1107 X 0.0 0.00 0.00 15.0 0.00 0.0 0.0 0.0 0.0
14:05:43 0.001 8 23 8 1107 X 1K 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
. . .
14:05:59 0.001 8 23 8 1107 X 0.0 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
14:06:00 0.023 8 23 8 1107 X 76 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
14:06:01 0.001 8 23 8 1107 X 0.0 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
. . .
14:06:35 0.001 8 23 8 1107 X 11 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
14:06:36 0.001 8 23 8 1107 X 0.0 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
14:06:37 0.002 8 23 8 1107 X 478 0.00 0.00 2.00 0.00 0.0 0.0 0.0 0.0
14:06:38 0.001 8 23 8 1107 X 0.0 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
. . .
14:06:59 0.001 8 23 8 1107 X 11 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
14:07:00 0.019 8 23 8 1107 X 37 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
14:07:01 0.006 8 23 8 1107 X 37 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
14:07:02 0.001 8 23 8 1107 X 0.0 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.0
28 System z Mean Time to Recovery Best Practices

Figure 3-8 RMF Monitor II ASD report

 RPT VERSION V1R9 RMF TIME 14.08.04
++++++++++ +++++++ DELTA MODE ++++++++++++++++
14:08:04 S C R DP CS ESF CS TAR X PIN ES TX SWAP WSM
JOBNAME SRVCLASS P L LS PR F TAR WSS M RT RT SC RV RV
MASTER SYSTEM 1 NS FF 5211 0 ---- 0 0
PCAUTH SYSSTC 1 NS FE 121 0 X ---- 0 0
RASP SYSTEM 1 NS FF 288 0 X ---- 0 0
TRACE SYSSTC 1 NS FE 162 0 X ---- 0 0
DUMPSRV SYSTEM 1 NS FF 346 0 ---- 0 0
XCFAS SYSTEM 1 NS FF 77.4K 0 X ---- 0 0
GRS SYSTEM 1 NS FF 8715 0 X ---- 0 0
SMSPDSE SYSTEM 1 NS FF 899 0 X ---- 0 0
SMSPDSE1 SYSTEM 1 NS FF 2114 0 X ---- 0 0
SMSVSAM SYSTEM 1 NS FF 13.5K 0 X ---- 0 0
CONSOLE SYSTEM 1 NS FF 3509 0 X ---- 0 0
WLM SYSTEM 1 NS FF 4117 0 X ---- 0 0
ANTMAIN SYSTEM 1 NS FF 1213 0 X ---- 1 998
ANTAS000 SYSSTC 1 NS FE 1230 0 X ---- 1 998
DEVMAN SYSTEM 1 NS FF 178 0 X ---- 0 0
OMVS SYSTEM 1 NS FF 26.0K 0 X ---- 0 0
IEFSCHAS SYSTEM 1 NS FF 91 0 X ---- 1 0
JESXCF SYSTEM 1 NS FF 644 0 X ---- 0 998
ALLOCAS SYSTEM 1 NS FF 5941 0 X ---- 1 0
IOSAS SYSTEM 1 NS FF 505 0 X ---- 0 0
IXGLOGR SYSTEM 1 NS FF 19.5K 0 X ---- 0 0
RACFDS SYSTEM 1 NS FF 313 0 X ---- 1 0
AXR OPSDEF 1 NS F4 446 0 X ---- 0 0
CEA SYSTEM 1 NS FF 336 0 X ---- 0 0
SMF SYSTEM 1 NS FF 1721 0 X ---- 0 0
LLA SYSSTC 1 NS FE 2394 0 X ---- 0 0
ZFS SYSSTC 1 NS FE 23.0K 0 X ---- 0 0
RMF SYSSTC 1 NS FE 138K 0 X ---- 0 0
NET SYSSTC 1 NS FE 2803 0 X ---- 0 0
RRS OPSDEF 1 NS F4 2526 0 X ---- 1 0
JES2 SYSSTC 1 NS FE 3739 0 ---- 0 0
VLF SYSSTC 1 NS FE 2355 0 X ---- 0 0
JES2MON SYSTEM 1 NS FF 215 0 ---- 0 0
JES2AUX SYSSTC 1 NS FE 202 0 ---- 1 0
TCPIP SYSSTC 1 NS FE 6040 0 X ---- 0 0
SDSF OPSDEF 1 NS F4 1166 0 X ---- 0 0
SMS SYSSTC 1 NS FE 487 0 X ---- 0 998
RACF SYSSTC 1 NS FE 552 0 X ---- 0 0
CATALOG SYSTEM 1 NS FF 2631 0 X ---- 0 0
TNF SYSSTC 1 NS FE 199 0 X ---- 0 0
VMCF SYSSTC 1 NS FE 259 0 X ---- 0 0
JES2S001 SYSSTC 1 NS FE 313 0 ---- 0 0
RESOLVER SYSSTC 1 NS FE 239 0 X ---- 0 998
RMFGAT SYSSTC 1 NS FE 7880 0 X ---- 0 0
TN3270 SYSSTC 1 NS FE 1880 0 X ---- 0 0
Chapter 3. z/OS tools 29

3.5 SMF records

The following SMF record types might provide insight into what is happening during the IPL
process. You can find additional information about SMF and the various record types in z/OS
MVS System Management Facilitiies, SA22-7630.

The records are described in the following list:

� Type 0 - IPL record

Although this record seems like it might contain the time that the IPL process was started,
it does not. It is actually the time that SMF started creating records. But the time is
certainly within a minute or two of the actual IPL. The record contains information about
the amount of real and virtual storage available to the system, plus a subset of the SMF
parameters.

� Type 8 - I/O Configuration

This record contains a 4-byte entry for every device that is online at IPL time. It contains
the device class, unit type, and device number.

� Type 10 - Allocation Recovery

Although allocation delays might occur any time during the day, you should avoid any
allocation delays during IPL or the startup of any subsystem. If you have any type 10
records during the start up period, you should investigate the reason and eliminate the
problem.

� Type 19 - Direct Access Volume

See “SMF Type 19 records” on page 91 for a discussion of how the collection of these
records affects IPL time.

� Type 22 - Configuration

This record is written at each IPL and when certain CONFIG operator commands are
issued. A record indicator of 1 (one) indicates the IPL record. The record contains the
configuration of the system at IPL, including the CPUs, storage, channel paths, and
storage controllers. This record can be used to determine whether significant configuration
changes occurred between IPLs.

� Type 30 - Job Activity

The interval records (subtypes 2 and 3) and step termination records (subtype 4) provide
much information about each address space. Information about system address spaces is
written to subtype 6 records each interval. If you want more detailed information about any
of the system or subsystem address spaces, the type 30 record can provide usage details
about CPU, storage usage, paging, and other resource usage.

� Type 43 - JES Start

These records are written when JES2 or JES3 are started, and contain the type of JES
start (for example, cold start or quick start).

� Type 45 - JES Stop

These records are written when the stop command is issued for JES, and indicate the
reason for the shutdown (operator command or abnormal).

� Types 70 through 79 - RMF records

See 3.4, “Resource Measurement Facility (RMF)” on page 26.
30 System z Mean Time to Recovery Best Practices

� Type 90 - System Status Change

The type 90 record can be helpful when you want to know what things might have
changed since the last IPL. Some of the subtypes also provide information about options
that were in effect at IPL time. See Table 3-2.

Table 3-2 Subtypes of a type 90 record

Subtype Description

1: SET TIME Provides the time of day at IPL or when the time is changed by the
operator.

2: SET DATE Provides the date of IPL or when the date is changed by the operator.

5: SET SMF Is produced when the operator issues a SET SMF command to
change SMF parameters. This is not produced at IPL time (see
subtype 9).

6: SWITCH SMF A record is created whenever the SMF data sets are switched.

7: HALT EOD Is written as the last record when SMF is shut down with a HALT EOD
command.

8: IPL PROMPT Is created if the operator is prompted at IPL (based on parameters in
SMFPRMxx). You should eliminate any reason for the operator to be
prompted because it can delay the IPL.

9: IPL SMF Contains every SMF parameter in effect at IPL time, although the
SMF data sets are not known at this time.

10: IPL SRM Is produced at IPL time and contains the suffix of the IEAOPTxx
member, and information about the active WLM service definition and
service policy at IPL.

11: SET OPT Is created when an operator changed the OPT member.

13: SETSMF This record is created when a SETSMF command is issued to
change an SMF parameter.

14: SET MPF Is produced when the operator issues a SET MPF command.

15: SET SMF Is created when a SET SMF command is issued, and contains all of
the new SMF parameters.

16: SET DAE Is produced when the SET DAE command is issued.

17: PFK Is generated when a change in PFK parameters occurs.

18: SET GRSRNL Is created when the GRS resource name list is altered with a SET
GRSRNL operator command.

19: SET APPC Is written when the operator issues the SET APPC command.

20: SET ASCH Is written when the operator issues the SET ASCH command.

21: SET SCH Is produced when the operator issues a SET SCH command.

22: SET CNGRP Is created when the operator issues a SET CNGRP command.

23: IPL WLM Contains a map of the WLM policy at IPL time.

24: VARY WLM Is created when a WLM policy is activated and contains a map of the
entire policy.

25: MODIFY WLM Also produces a record containing the WLM policy when a modify
command is issued.
Chapter 3. z/OS tools 31

3.6 JES2 commands

The following JES2 commands can be helpful. They provide information about the JES2
resources being used when shutting down JES2, during normal operation, and as part of
starting up after an IPL. See z/OS JES2 Commands, SA22-7526 for more details about these
and other JES2 commands:

� $DJES2

Shows the current activity in the JES2 address space that would hold up the normal
shutdown of JES2 if a $PJES2 was issued. It has a much cleaner and more
comprehensive display than issuing a $DA or a $DU command. It can be issued anytime
to display JES2 activity.

� $JDDETAILS

Displays resource, sampling, and wait statistics for JES2 on the system on which the
command is issued. This information helps when you determine whether a resource issue
is affecting JES2.

� $JDJES and $JDSTATUS

Displays the current status and possible issues that can affect JES2.

� $DPERFDATA

shows the CPU and elapsed time for each initialization routine module, warm start
processing, and MVS initialization (from JES2 start until when HASPNUC is first entered).
To measure the JES2 startup time we used this very useful JES2 diagnostic command,
$DPERFDATA,INITSTAT. The output from the command for one of our systems is shown in
Figure 3-9 on page 33. Note that because this command is specifically intended to help
IBM diagnose possible JES2 problems, the command and its output can change at any
time; it is not a formal JES2 interface.

26: IPL LOGREC Provides the name of the Logrec data set name or log stream name
at IPL.

27: SETXCF START
to enable ARM

Is produced when Automatic Restart Management Policy is started.

28: SETXCF STOP
to disable ARM

Is produced when an ARM policy is stopped.

29: SET PROG
for LNKLST activation

Is not produced for IPL libraries because SMF is not yet running.

30: RESET Is created when the operator resets a job to a different service class.

31: SET PROG
for LPALST activation

Is created when the link pack area (LPA) is updated dynamically.

32: WLM policy change Is created whenever the active WLM policy is changed.

Subtype Description
32 System z Mean Time to Recovery Best Practices

Figure 3-9 JES2 $D PERFDATA(INITSTAT) command

The combined time for the listed JES2 routines on our limited test system was about five
seconds.

For reference purposes only, a large customer reported that a four-system sysplex with a
large number of jobs in the spool and many explicitly defined lines, printers, functional
subsystem (FSSs), and so on had a combined Initialization Routine (IR) time of 16 seconds.
Although those are a small sampling of times, knowing this might give you an idea about what
might be abnormal.

For a more detailed discussion about the output from the $DPERFDATA command, see
“Understanding where the time is being spent” on page 83.

In addition, the ($D PERFDATA) command provides a display of several other JES2 internal
performance statistics that are useful for tuning your systems. If issued without any
parameters it will display all of the statistics that it collects, or you can limit the output to
information about processing during initialization, as we did with the use of the INITSTAT
keyword in example Figure 3-9.

For further information regarding the use of the $D PERFDATA command, including additional
parameters, see:

� JES2 Performance and Availability Considerations, REDP-3940, available at:

http://www.redbooks.ibm.com/redpapers/pdfs/redp3940.pdf

� IBM Flash Document FLASH100008, available on the Web at:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10008

$HASP660 $DPERFDATA,INITSTAT
$HASP660 STATISTICS FROM INITIALIZATION:
$HASP660 ROUTINE=MVSSTART,TIME=3.519227,CPU=0.002103,
$HASP660 ROUTINE=LOADINIT,TIME=0.389312,CPU=0.002087,
$HASP660 ROUTINE=IRMODCHK,TIME=0.439876,CPU=0.002019,
$HASP660 ROUTINE=IRSSI,TIME=1.437123,CPU=0.043638,
$HASP660 ROUTINE=IROPTS,TIME=0.036760,CPU=0.000751,
$HASP660 ROUTINE=IRSETUP,TIME=0.055736,CPU=0.017000,
$HASP660 ROUTINE=IRENF,TIME=0.000127,CPU=0.000126,
$HASP660 ROUTINE=IRPL,TIME=0.038796,CPU=0.019641,
$HASP660 ROUTINE=IRPOSTPL,TIME=0.185225,CPU=0.004521,
$HASP660 ROUTINE=IRDCTDCB,TIME=0.000352,CPU=0.000277,
$HASP660 ROUTINE=IRURDEV,TIME=0.000001,CPU=0.000001,
$HASP660 ROUTINE=IREMVS,TIME=0.013050,CPU=0.012225,
$HASP660 ROUTINE=IRDA,TIME=0.822872,CPU=0.080047,
$HASP660 ROUTINE=IRNJE,TIME=0.050709,CPU=0.048423,
$HASP660 ROUTINE=IRRJE,TIME=0.002247,CPU=0.002237,
$HASP660 ROUTINE=IRCSA,TIME=0.000213,CPU=0.000196,
$HASP660 ROUTINE=IRDCTCP,TIME=0.000006,CPU=0.000006,
$HASP660 ROUTINE=IRMVS,TIME=0.009742,CPU=0.000470,
$HASP660 ROUTINE=IRPCE,TIME=0.000343,CPU=0.000301,
$HASP660 ROUTINE=IRINFO,TIME=0.000004,CPU=0.000004,
$HASP660 ROUTINE=IRFINAL,TIME=0.000093,CPU=0.000092,
$HASP660 ROUTINE=WARMSTRT,TIME=0.063073,CPU=0.011566
Chapter 3. z/OS tools 33

http://www.redbooks.ibm.com/redpapers/pdfs/redp3940.pdf
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10008

34 System z Mean Time to Recovery Best Practices

Chapter 4. z/OS IPL processing

This chapter describes the steps of the z/OS initial program load (IPL) process and changes
you might be able to make to reduce the overall elapsed time. We used several of the tools
described in Chapter 3, “z/OS tools” on page 17 to help you gain a greater understanding of
this process and to illustrate how you can use the tools to identify potential areas for
improvement in your environment.

4

© Copyright IBM Corp. 2010. All rights reserved. 35

4.1 Overview of z/OS IPL processing

At the highest level, a z/OS IPL event consists of the following three phases:

� Phase 1: The IPL of the operating system

This phase starts when the load process is invoked for the z/OS partition, and logically
ends when everything that is automatically started by the operating system has initialized.
Specifically, it does not include address spaces that you start by using automation or from
the COMMNDxx member. This phase is shown in the top portion of Figure 4-1 on
page 37, from the Hardware IPL through issuing of any commands found in the
IEACMD00 and COMMNDxx Parmlib members.

This phase is the subject of this chapter.

� Phase 2: The startup of the system infrastructure

This phase includes starting things such as JES2, VTAM, TCP/IP, and so on. Chapter 5,
“z/OS infrastructure considerations” on page 71 provides recommendations for the major
z/OS components.

This phase is described in Chapter 5, “z/OS infrastructure considerations” on page 71.

� Phase 3: The startup of the subsystem infrastructure that runs or supports your business
applications

This phase includes the startup of CICS, DB2, IMS, and so on. This phase is covered in
the subsequent subsystem chapters.

To clarify which phase we are referring to, we call the first phase the z/OS IPL, and the
second phase infrastructure startup.

We used two primary sources of information to gain a greater understanding of what is
happening during the z/OS IPL:

� Introduction to the New Mainframe: z/OS Basics, SG24-6366

� z/OS MVS System Initialization Logic - Initial Program Load (IPL)

This excellent presentation can be found at:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3699
36 System z Mean Time to Recovery Best Practices

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3699

Figure 4-1 IPL flow diagram

To know which areas to focus on when attempting to reduce the elapsed time for the z/OS IPL
phase, you must understand the sequence and elapsed time of events during this phase. The
elapsed time for some of the events can be influenced by the installation; others cannot. This
information can help you use the tools, described in Chapter 3, “z/OS tools” on page 17, to
determine where time is being spent during the IPL. The five steps in the z/OS IPL process
(shown in Figure 4-1) are:

1. Hardware IPL

2. IPL Resource Initialization Modules (RIMs)

3. Nucleus Initialization Program (NIP)

4. Master Scheduler Initialization (MSI Phase 1)

5. Master Scheduler Initialization (MSI Phase 2)

For each step, we describe the sequence of the logic, and then follow it with our experiences
and recommendations for how to reduce the time of each step.

In 3.2, “IPLDATA control block” on page 20 and 3.3, “Syslog” on page 24, we described tools
that analyze the steps and durations of an IPL. We include details from a sample IPLSTATS
output in the introduction to each of these phases where we describe them below.

In this section, we refer to several Parmlib members. These are all documented in z/OS MVS
Initialization and Tuning Reference, SA22-7592.

Now we look at each step in more detail.

H/W IPL

IPL RIMs

NIP RIMs

MSI

IEACMD00 COMMNDxx

System STCs Auto Ops

JESx

WebSphere

Lock Mgrs Monitors

IMS

CICS

MQDB2
Chapter 4. z/OS IPL processing 37

4.2 Hardware IPL

Prior to an IPL of a system, the ICKDSF utility is used to write IPL records on an IPL volume
(starting at cylinder 0, track 0). This volume is called the SYSRES volume. A LOAD command
on the HMC causes a hardware system reset to occur, and the IPL records to be read. Only
one engine is used for this part of the z/OS IPL, and any others are placed in a stopped state.
The fourth record, IEAIPL00, contains the initial program status word (PSW). The hardware
IPL, which is all controlled by hardware, is then complete.

Note that the hardware IPL completes before any of the programs included in the IPLSTATS
report are initialized, so the processing involved in the hardware IPL is not included in that
report. The hardware IPL step completes when you see the message on the HMC telling you
that the IPL has completed successfully.

We ran a number of tests to determine whether we could significantly change the hardware
IPL time. We tried doing a LOAD NORMAL instead of a LOAD CLEAR (even though LOAD
CLEAR is the recommended way to load z/OS). We tried assigning varying amounts of
storage to the partition. And, we tried defining varying numbers of engines to the partition.
None of these changes resulted in an IPL duration that fell outside the normal fluctuation from
one IPL to the next.

Also, in our tests, the hardware IPL takes only a few seconds. As a result, little benefit seems
to be gained from trying to reduce this portion of the IPL time. We do not believe that any
changes in relation to the options you use for the IPL, or in how you configure the partition,
will make any significant difference to the hardware IPL elapsed time.

4.3 IPL Resource Initialization Modules (RIMs)

The IPL RIMs are responsible for reading the LOADxx and NUCLSTxx Parmlib members,
locating and loading information from the IODF data set, loading the MVS nucleus from the
SYS1.NUCLEUS data set, and initializing the *MASTER* address space. Referring to Figure 3-1 on
page 21, this step of the z/OS IPL includes all the IPLSTATS entries that start with “IEAIPL”.

The elapsed time of the IPL RIM part of the z/OS IPL can vary significantly from one system
to another. In the systems we studied, this time varied from about 3 - 45 seconds, indicating
that there is some scope for tuning or optimizing the processing in this step.

Figure 4-2 on page 39 shows the first part of the IPLSTATS output for one of our systems. It
shows the elapsed time for each module, along with the total time for the IPL RIM processing
(at the end of this section of the report). We added comments and related Syslog messages
(in blue) below several of the steps to further clarify what is happening. The longest-running
steps (across our set of customer systems) are shown in bold.

Elapsed time: The elapsed times for many of the processes we study in this chapter are
small. Based on that, you might think it is not worth investigating. However, for most of the
processing discussed in this chapter, only a single CP is being used by the system, and
most of the processing is serial. This means that if one process is taking (for example)
three minutes longer than necessary, every subsequent part of the IPL will be delayed by
that amount. Therefore, an important approach is that you optimize this part of the overall
IPL process as much as possible.
38 System z Mean Time to Recovery Best Practices

Figure 4-2 IPLSTATS showing the IPL RIM sequence

Figure 4-2 shows that the load of the nucleus modules was the longest step in this part, with
the reading of the PDS directories being the next largest component. You might also notice
that, in general, the steps with the longest elapsed times are those that were doing I/O.

To ensure that the behavior of our systems was representative, and to understand the
variability of elapsed times from one system to another, we reviewed IPLSTATS reports for
over 150 other systems. Based on that analysis, we found the following entries tended to have
the longest median elapsed times in this phase of the IPL:

� Load nucleus modules
� Test block storage to 2 GB
� Build and sort NUCMAP
� Read PDS directory entries and CESD records
� IPL Parmlib: process LOADxx and NUCLSTxx

IPLST000I z/OS 01.10.00 #@$A 20970019DE50 2 CPs
IPLST001I IPL started at: 2009/05/05 21:27:58.972
IEAIPL10 0.001 ISNIRIM - Read SCPINFO
IEAIPL20 0.000 Test Block storage to 2G

This clears storage up to 2 GB
IEAIPL11 0.029 Fast FIND service
IEAIPL31 0.005 LOAD service
IEAIPL30 0.001 IPLWTO service
IEAIPL46 0.124 Read SCHIBs into IPL workspace
IEAIPL49 0.000 Process Load and Default parameters
IEAIPL50 0.009 IPL parmlib - process LOADxx and NUCLST

Displays the first message on the console
IEA371I SYS0.IPLPARM ON DEVICE D056 SELECTED FOR IPL PARAMETERS
IEA246I LOAD ID FK SELECTED
IEA246I NUCLST ID $$ SELECTED

IEAIPL51 0.000 System architecture
IEAIPL43 0.003 Find and Open IODF data set

IEA519I IODF DSN - IODF.IODF02
IEA520I CONFIGURATION ID = TRAINER. IODF DEVICE NUMBER = D056

IEAIPL60 0.000 Read NCRs from IODF
IEAIPL70 0.164 UIM environment - load CBD and IOS services
IEAIPL71 0.033 Build DFT for each device
IEAIPL08 0.001 Read EDT information from IODF
IEAIPL40 0.050 Read MLTs from nucleus
IEAIPL42 0.018 Read NMLs from nucleus (IEANynnn modules
IEAIPL41 0.645 Read PDS directory entries and CESD records

Time is dependent on number of parmlibs specified in LOADxx
IEAIPL05 0.000 Build and sort NUCMAP
IEAIPL02 1.728 Load nucleus modules

Time is dependent on the size of the nucleus
IEA091I NUCLEUS 1 SELECTED

IEAIPL04 0.021 Allocate PFT and SQA/ESQA
IEAIPL14 0.000 Build LSQA/ELSQA for Master
IEAIPL09 0.042 IAXMI - PFT, master RAB, etc.
IEAIPL07 0.006 Update AMODE for nucleus resident SVCs
IEAIPL03 0.015 Build UCBs, ULUT, etc.
IEAIPL18 0.015 Copy and relocate EDT to ESQA
IEAIPL99 0.211 Page frame table and cleanup
 3.121 TOTAL IPL TIME (seconds)
Chapter 4. z/OS IPL processing 39

The minimum, median, and maximum times for each of these activities are shown in
Figure 4-3.

Figure 4-3 Largest elapsed time components in IPL RIM phase

Apart from the entry that is related to testing storage, all the other most time-consuming
events are DASD I/O-intensive, so anything you can do to speed up that processing and
minimize the number of I/Os will deliver the most benefit.

Testing storage
Prior to z/OS 1.10, the IEAIPL20 module validated all defined storage up to 2 GB. The
elapsed time for this processing could vary from a fraction of a second up to over 10 seconds,
depending on the configuration and whether sufficient CPU capacity was available to the
system.

In z/OS 1.10, this processing has been changed so that the validation runs asynchronously.
As a result, you generally see a time of zero or close to zero seconds being reported for
IEAIPL20 on any z/OS 1.10 system.

Loading nucleus modules
There is little you can do to directly reduce the load time of the nucleus modules, other than to
place the sysres on the fastest device available. However, if you are faced with IPLing multiple
systems around the same time, initiating the IPLs of the systems that share a sysres should
mean that the first system will load the modules into the disk subsystem cache, reducing the
elapsed time for the other systems to read those modules.

One of the modules that, in some configurations, might take several seconds to complete is
building the NUCMAP - IEAIPL05. In z/OS 1.10, this process has been optimized and
streamlined with other processing of nucleus. As a result, the elapsed time for this module on
most z/OS 1.10 systems tends to be very small fractions of a second.

IPL RIM Largest Components

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

Test Block storage to
2G

Build and sort NUCMAP IPL parmlib - process
LOADxx and
NUCLSTxx

Read PDS directory
entries and CESD

records

Load nucleus modules

Event

S
ec

o
n

d
s Min

Median

Max
40 System z Mean Time to Recovery Best Practices

The LOADxx member
When you initiate the IPL from the HMC, the activation profile for the system that is being
loaded must contain a load parameter, as described in Figure 4-4. Part of the load parameter
is the suffix that identifies which LOADxx member to use. The LOADxx member (among other
things) tells the system which other Parmlib members to use for the IPL.

Figure 4-4 Format of load parameter for IPL

The load parameter also contains the Initial Message Suppression Indicator (IMSI). An IMSI
value of blank or M will suppress the Enter System Parameters operator prompts during the
IPL process. The possible IMSI values are described in the section “Loading the System
Software” in z/OS MVS System Commands, SA22-7627.

Note that you can specify the alternate nucleus ID both in the load parameter and in the
LOADxx member. If you specify it in both places, the value on the load parameter overrides
what you specified in the LOADxx member.

The LOADxx member defines the Parmlib concatenation that will be used for the IPL, the
name of the sysplex, the name of the Master catalog, information about the IODF data set to
be used, and other system attributes. The sample member shown in Example 4-1 on page 42
specifies that the IPL use member IEASYMXX from the Parmlib concatenation, that the
system use member IEASYS00 from the Parmlib concatenation, that it load IEANUC01 from
SYS1.NUCLEUS, and that it use member NUCLST$$ from the same library that contains the
LOADxx member.

Recommendation: Use only Initial Message Suppression Indicator values of blank or M. If
any other value is used, the operator is prompted for a reply, which will increase the
elapsed time for the IPL.

Load Parameters

IODF
dddd

LOADxx
xx

IMSI
i

NUCx
n

IODF
dddd

LOADxx
xx

IMSI
i

NUCx
n

 DDDD: Device number of the volume containing the IODF dataset

 DDDXXINN Load Parameter Values

(Default is SYSRES)

 XX: ID of the LOADxx member to be used (the default is 00)

 I: Initial Message Suppression Indicator (IMSI)

The default (blank or period) suppresses most informational messages and
does not prompt for system parameters; will use the LOADxx values

 N: Nucleus ID to be used (default is 1: IEANUC01)
Chapter 4. z/OS IPL processing 41

Example 4-1 LOADxx member

IODF ** IODF TRAINER 01 Y
NUCLEUS 1
NUCLST $$
IEASYM XX
SYSPLEX #@$#PLEX Y
SYSCAT #@$#M1123CMCAT.V#@$#M1
SYSPARM 00
PARMLIB SYS1.PARMLIB
PARMLIB CPAC.PARMLIB
PARMLIB SYS1.IBM.PARMLIB

Specifying IODF information
A little background information about the use of double asterisks (**) when specifying the
IODF parameter in the LOADxx member might be helpful. Specifying ** on the IODF
statement in the LOADxx member informs z/OS to retrieve the current IODF suffix and
hardware token from the hardware system area (HSA). This information gets loaded into HSA
every time a power-on reset (POR) is done or when a dynamic hardware activation from a
new IODF is done. Then, z/OS takes that IODF suffix from HSA and merges it with the IODF
data set high-level qualifier (which is also specified on the IODF statement in LOADxx) to
create the name of the IODF data set that the system expects will contain information about
the current configuration.

As long as you ensure that the system has access to the expected IODF data set before you
update the HSA, the use of ** provides great flexibility, and eliminates the need to update the
LOADxx member every time you switch to a new IODF. However, let us imagine that the HSA
was updated from an IODF data set with a suffix of 97, that your LOADxx member specifies
an IODF HLQ of SYSZ, and that for some reason this system does not have access to a data
set called SYSZ.IODF97. In this situation, z/OS first searches for a data set called SYSZ.IODF97.
When it does not find that data set, it searches for a data set called SYSZ.IODF00. If it finds the
the data set, z/OS opens it and searches it for the hardware token that was found in HSA. If
that data set does not contain that token, z/OS then searches for a data set called
SYSZ.IODF01. If one is found, it will again be searched for the hardware token. This process
could potentially go on for all 256 possible IODF data sets until either a data set with the
required token is found, or the token is not found in any of the data sets, in which case the
system enters a wait state.

Tips: Regarding the search sequence, an important point to remember is that the search
order for libraries differs from parameters:

� When looking for a member in library concatenations, such as Parmlib and Linklist, the
first member found are used, and members in later libraries are ignored. As an
example, if IEASYS00 is in all three of the Parmlib members specified in Example 4-1,
only the IEASYS00 from SYS1.PARMLIB is used.

� When determining parameters when multiple members are specified, the parameters in
the last member will be used, and will override the corresponding parameters in earlier
members. As an example, if IEASYS01 is concatenated after IEASYS00, then any
parameter in IEASYS01 will override the same parameter in IEASYS00. See z/OS MVS
Initialization and Tuning Reference, SA22-7592 for any exceptions to this rule.
42 System z Mean Time to Recovery Best Practices

To be able to use ** (but without the risk of encountering the situation described here), we
recommend using the following process:

1. Create your new IODF data set and make sure that it is accessible to every z/OS system
running on the processor that is going to be updated.

2. On all but one partition on the processor, do activate the software by using the new IODF.

3. Finally, activate the hardware on the last partition. This step updates the hardware token in
the HSA.

Even if you are only making a software-only change, perform a hardware-activate
operation to update the hardware token in the HSA.

4.4 Nucleus Initialization Program (NIP)

Having loaded the nucleus and started the *MASTER* address space, the next step includes
most of the work to get the core of z/OS up and running. This step also includes validating the
I/O configuration (based on information about the configuration that was loaded from the
IODF data set), starting communication with the NIP console, and finding and opening the
Master Catalog and the data sets in the Parmlib concatenation. Optionally, the operator is
prompted for system parameters. The various members of Parmlib are processed and system
address spaces are started as appropriate (for example, PCAUTH, RASP, TRACE, and so
on). Also processed at this time are initialization of the sysplex services and XCF connectivity,
GRS, SMS, Console communication, and WLM.

In the IPLSTATS report, NIP processing includes all the lines that start with IEAVNP. Because
NIP processing has many steps, we have divided them into several parts to discuss the steps

Recommendations for the LOADxx members:

� Because SYS0.IPLPARM and SYS1.PARMLIB are read in this part of the IPL, you
should ensure that no RESERVESa are issued against the volumes containing those
data sets.

� When looking for the LOADxx member, the IPL process starts by looking for a data set
called SYS0.IPLPARM on the IODF volume. If that data set is not found, it looks for a
data set called SYS1.IPLPARM, and so on through SYS9.IPLPARM. Then it looks for
SYS1.PARMLIB. If you place your LOADxx member in a data set called
SYS0.IPLPARM on the IODF volume, the time for all that data set searching can be
minimized.

� Review the description of the LOADxx member in z/OS MVS Initialization and Tuning
Reference, SA22-7592, specifically in relation to placement of the IODF data set and
the use of the double asterisks (**) in that member to identify the IODF that is to be
used for this IPL.

� Try to keep the Parmlib concatenation as short as possible. Specifying a long
concatenation of Parmlibs increases the IPL time because more data sets must be
searched for every referenced member. Some installations define a minimum set of
Parmlibs during IPL, and then add PDSE libraries later with a SETLOAD command.

� A possibility is to define LOAD parameters for multiple images in the same LOADxx
member, and use filtering techniques as described in “IEASYMxx member” on page 50.
If you do this step, remember to remove unused or obsolete images from the LOADxx
member.

a. Monitor the RMF Postprocessor DEVICE reports or use the GRS ENQ/DEQ monitor to identify
and address RESERVE activity.
Chapter 4. z/OS IPL processing 43

that take the most time. In the systems that we looked at, the total NIP phase took between 22
and 525 seconds. Those systems at the lower end of the scale were typically smaller
configurations; those with the larger times appeared to be the ones that issued WTORs and
had to wait for the operators to respond, or those that encountered RESERVEs while trying to
communicate with devices. Depending on which end of this scale you fall, there may be more
or less room for savings in your configuration.

Figure 4-5 shows the minimum, median, and maximum values for the largest parts of the
processing (those with a median elapsed time of greater than one second) in this phase of
z/OS IPL across a number of systems. We discuss each of these parts in more detail in this
section.

Figure 4-5 Largest elapsed time components in NIP RIM phase

4.4.1 NIP sequence (Part 1)

The first part of NIP processing creates Recovery Termination Manager (RTM) recovery and
control blocks, creates WTO control blocks, and initializes machine check handling (MCH).
The non-DASD devices are mapped (UCWs to UCBs), the availability of the devices is
checked, and the devices are initialized. The NIP console is initialized, and the DASD devices
are then mapped, tested for availability, and initialized. If there are errors, an operator WTOR
might be issued. In terms of the steps shown in the IPLSTATS report, this part starts with
module IEAVNIP0 and ends with module IEAVNPB2.

The steps during this part of NIP are shown in Figure 4-6 on page 45. This report is taken
from the IPLSTATS output, but we have added comments and Syslog messages to help you
position this processing against the messages that you are familiar with. In this first part, we
can see that building the UCBs for the various I/O devices (both DASD and non-DASD)
typically takes the longest time. We have seen this part of NIP vary from a few seconds to
over 300 seconds, depending on the configuration, whether any operator responses were
required, or if RESERVEs were encountered.

NIP RIM Largest Components

0

50

100

150

200

250

300

350

EXCP a
pp

en
da

ge
s

RSM
 -

Fra
m

e
qu

eu
es

, V
RREG

N=
an

d
RSU=

IO
S -

DASD U
CBs

SM
S

CONSOLE

LN
KLS

T

TOD c
loc

k
XCF

LP
A, A

PF

IO
S -

Non
-D

ASD U
CBs

Event

S
e

co
n

d
s Min

Median

Max
44 System z Mean Time to Recovery Best Practices

Figure 4-6 NIP sequence (part 1 of 5)

Several common reasons for elongated IPLs, and where they are reported in the IPLSTATS
output, are as follows:

� Duplicate volser

If you have duplicate volsers at IPL time, message IEA213A is issued, and the time that
the system spends waiting for the operator to respond is included in module IEAVNPB2.

This time can be extensive if many duplicate volsers exist. These duplicate volser
messages appear one pair at a time. After the support team verifies which volser is to
remain offline, the operator has to enter R 00,XXXX for which of the two volsers should
remain offline, and then wait for the next pair to come up, type in the next entry, and so on.
At 5 - 10 seconds per reply cycle, this could take an extra 8 - 16 minutes to respond to only
100 duplicate DASD.

� Message IEA101A

If you specify that the operator should be prompted for System Parameters, message
IEA101A is issued. The time spent waiting for the operator to respond to this message is
included in module IEAVNPC4 (this is covered in 4.4.2, “NIP sequence (Part 2)” on
page 47).

� Operator prompts

Various Parmlib members provide the option of prompting the operator for configuration
options. Depending on where the prompt is specified, the resulting wait time will be
reported in different modules. Unfortunately no source of information exists that ties
PROMPT options to the related modules. However, you should be able to easily test this
on a test system by changing the PROMPT value, re-IPLing, and identifying the IPLSTATS
field that has significantly changed.

NIP started at: 2009/05/14 22:43:31.730
**** NIP Statistics ****
IEAVNIP0 0.011 NIP Base
IEAVNIPM 0.099 Invoke NIP RIMs
IEAVNPE6 0.108 Service Processor Interface
IEAVNPFF 0.028 Loadwait/Restart
IEAVNPA6 0.009 RTM - RTCT and recording buffer
IEAVNPC6 0.014 WTO
IEAVNPC3 0.015 Issue messages from IPL message queue
IEAVNP24 0.029 SMS Open/Mount
IEAVNP06 0.017 Machine Check
IEAVNP27 0.028 Reconfiguration
IEAVNPA2 25.697 IOS - Non-DASD UCBs
IEAVNPCA 0.301 NIP Console

IEA434I (DF65) ONLINE IS NOT ALLOWED, GREATER THAN 65520 CYLINDERS
IEA311I UNLABELED DASD ON D40B. UNIT PUT OFFLINE
You might also see other errors from IODF at this point.

IEAVNPB2 3.260 IOS - DASD UCBs
29.116 Total time for this part of NIP
Chapter 4. z/OS IPL processing 45

Minimizing the time to establish the I/O configuration
Finding a system where the COMMNDxx member or the automation product varies the
unneeded devices offline is not uncommon. However, this is a costly activity for two reasons:

� Having the devices defined as being online at IPL (OFFLINE=NO in HCD) means that the
system will do many I/Os to the device during the IPL. This activity is relatively
time-consuming, especially if you have a large number of devices. (There is also more
device-related activity later in the IPL.)

� Having gone through the cost of processing these online devices, you then give the
system yet more work to do to vary them offline.

A far more efficient way to achieve the same end result (from the perspective of speeding up
the IPL at least) would be to define any devices that are not required as being offline
(OFFLINE=YES) at IPL in the OS CONFIG that is used by that system.

In a large configuration, specific MIH definitions may improve online processing (refer to
OA27436 for more information). Changing the IECIOSxx member as described in the APAR
should also deliver improvements for the IPL elapsed time.

Sysplex IPL considerations
Hopefully you will never have to do a sysplex IPL. However, if you do have to do a planned
sysplex IPL for any reason, ensure that the last system in the sysplex to be shut down is the
first one that is then IPLed when you are ready to bring up your systems again. The reason
for this approach is that very early in the IPL process, XCF checks the sysplex CDS to see if
any other systems are active. If the system being IPLed is not the last system to be shut
down, the operator is prompted with messages IXC404I and IXC405D and the IPL pauses
until a response is received. If the system being IPLed is the last one to be shut down, those
messages are not issued and the related delay is avoided.

Recommendations for minimizing the elapsed time NIP processing (Part 1):

� Avoid any operator prompts during the IPL process. For example, the presence of
duplicate volsers cannot only cause confusion, they also elongate the IPL, so should be
avoided if at all possible.

� Do not define any devices that will not be needed by this system as being online at the
IPL. That applies to both DASD and non-DASD devices.

� Heavily used libraries or data sets should be placed on the best-performing DASD
devices available to reduce the I/O connect time for much of the startup process. In one
test in IBM, moving the system volumes from traditional DS8000® volumes to solid
state disk volumes reduced the IPL elapsed time by about 15%.

� Review the Syslog from the most recent IPL and eliminate any error messages that are
displayed during IPL. The presence of such errors adds unnecessary time to the IPL.
46 System z Mean Time to Recovery Best Practices

4.4.2 NIP sequence (Part 2)

The IPLSTATS report that relates to the second part of NIP processing is shown in Figure 4-7
on page 48. During these steps (starting with IEAVNP11 and continuing through to
IEAVNP05), NIP opens the Master catalog, creates system symbols based on the definitions
in IEASYMxx, and opens the SVCLIB, Parmlib, and Logrec data sets. If errors occur, or if the
IPL load parameter IMSI indicated that the operator should be prompted, a WTOR is issued.
This situation should be avoided in order to minimize the elapsed time of the IPL.

Also during this part, the Parmlib members are read, merged, and analyzed, page data sets
are opened by the auxiliary storage manager (ASM), and the SQA parameter is processed.
User SVC table entries are specified, and the pageable link pack area (PLPA) is defined using
the LPALSTxx Parmlib member and UIM-specified device support from SYS1.NUCLEUS.
This can be the most time-consuming step during this part of NIP processing, depending on
whether you specified clear link pack area (CLPA) and the number of libraries that you
specified in LPALSTxx members.
Chapter 4. z/OS IPL processing 47

Figure 4-7 NIP sequence (part 2 of 5)

IEAVNP11 0.044 Locate and Open master catalog
IEA370I MASTER CATALOG SELECTED IS MCAT.V#@$#M1

IEAVNPC7 0.012 Open SYS1.SVCLIB
IEAVNPOP 0.008 Open PARMLIB

IEE252I MEMBER IEASYMXX FOUND IN SYS1.PARMLIB
IEA008I SYSTEM PARMS FOLLOW FOR z/OS 01.09.00 HBB7740 019

IEASYS00
IEASYS00
IEASYS01

IEE252I MEMBER IEASYS00 FOUND IN SYS1.PARMLIB
IEE252I MEMBER IEASYS01 FOUND IN SYS1.PARMLIB
IEA007I STATIS SYSTEM SYMBOL VALUES 025

&SYSALVL. = “2”
This is followed by all of the symbols from IEASYSxx

IEAVNPIL 0.041 Process IEALSTxx
IEAVNPC4 0.096 Prompt for System Parameters
IEAVNP03 0.017 Merge and analyze system parameters
IEAVNPCF 4.491 Process system name and system variables

The time for this step is dependent on the size of IEASYMxx
IEAVNP76 0.032 Open LOGREC

IFB086I LOGREC DATA SET IS SYS1.#@$2.LOGREC 060
IEAVNPE8 0.051 RSM - Process REAL=
IEAVNP23 0.012 Build GRS blocks in SQA

IEE252O MEMBER GRSCNF00 FOUND IN SYS1.PARMLIB
ISG313I SYSTEM IS JOINING A GRS STAR COMPLEX. RING CONFIGURATION
KEYWORDS IN GRSCNF00 ARE IGNORED.
IEE252I MEMBER GRSRNL00 FOUND IN SYS1.PARMLIB

IEAVNP04 0.121 ASM - Open page and swap data sets
IEA940I THE FOLLOWING PAGE DATA SETS ARE IN USE:

PLPA - PAGE.#@$2.PLPA
COMMON - PAGE.#@$2.COMMON
LOCAL - PAGE.#@$2.LOCAL1

IEAVNPA8 0.009 VSM - Expand SQA
IEAVNP14 0.121 ASM part 2 - Build SQA control blocks
IEAVNPGD 0.002 Move console data to ESQA
IEAVNP25 0.007 Process SVC=

IEE252I MEMBER IEASVC00 FOUND IN SYS1.PARMLIB
SVCPARM 213,REPLACE,TYPE(2) /* IMS TYPE 2 SVC */

IEAVNP05 9.828 LPA, APF
The length of this step depends on whether CLPA was specified
IEE252I MEMBER PROGA0 FOUND IN SYS1.PARMLIB
CSV410I APF FORMAT IS NOW DYNAMIC
IEE252I MEMBER PROGS0 FOUND IN SYS1.PARMLIB
IEE252I MEMBER PROGD0 FOUND IN SYS1.PARMLIB
....
IEE252I MEMBER LPALST00 FOUND IN SYS1.PARMLIB
IEA713I LPALST LIBRARY CONCATENATION
SYS1.SYSPROG.LPALIB
SYS1.LPALIB
... the rest of the LPA libraries are listed here
IEE252I MEMBER IEAPAK00 FOUND IN SYS1.PARMLIB

*ILR005E PLPA PAGE DATA SET FULL, OVERFLOWING TO COMMON
IEE252I MEMBER IEALPA00 FOUND IN SYS1.PARMLIB

15.320 Total time for this part
48 System z Mean Time to Recovery Best Practices

Looking across IPLDATA data we had access to, the elapsed time for this part of NIP
processing ranged from 8 seconds to about 225 seconds. The step that took consistently
longer than all other steps in this part was processing LPALST and the authorized program
facility (APF) list (about 13 seconds on average). Other steps that had low average values, but
high maximums, were opening the Master catalog, merging and analyzing the system
parameters, and processing the system variables, all with maximums over 10 seconds.

The large difference between average and maximum values for these steps indicate that a
possibility might be to reduce these times through actions such as avoiding the use of
RESERVE commands, using faster DASD, reducing the number of defined system symbols,
reducing the number of data sets in the Parmlib concatenation, or cleaning up the Master
catalog.

Processing Parmlib members
Most of the information about how you want to configure your system is contained in
SYS1.PARMLIB or concatenated Parmlib data sets. As a result, much of the activity during
z/OS IPL revolves around either reading Parmlib members or taking action based on the
content of those members.

Explicitly specifying default values or not: Some installations explicitly specify every
possible Parmlib keyword, either with their own override value, or with the default. The
advantage of doing this is in being able to see exactly what value is being used for every
parameter. However, the disadvantage of this philosophy is that if IBM changes a default
value, your system might still be running years later with an outdated value. For this
reason, we recommend that if you use a default value do not explicitly specify that value.

Tip: z/OS does not retain a record of all the Parmlib members used at IPL. Although
possible, a time-consuming task is to identify which members are used by reviewing the
several thousand lines of Syslog at IPL time. As an alternative, we recommend that you
keep track of these in a spreadsheet.

The one we used for these examples is listed in Table 4-1 on page 50. You start with the
LOADxx member, which points to the IEASYMxx member. The IEASYSxx member (or
members) are specified in the LOADxx and IEASYMxx members. The IEASYSxx member
(or members) in turn provide the suffixes for the other Parmlib members.
Chapter 4. z/OS IPL processing 49

Table 4-1 Parmlib members used at IPL time

IEASYMxx member
The IEASYMxx member is key to the ability to efficiently manage a sysplex environment with
the minimum of duplication. Further, the intelligent use of system symbols can deliver
significant benefits by simplifying operations and automation, and enforcing good naming
conventions. The symbols can be used in any Parmlib member except LOADxx. The
IEASYMxx member typically consists of blocks of statements like those shown in
Example 4-2.

Example 4-2 Sample IEASYMxx statements

SYSDEF SYSCLONE(&SYSNAME(3:2))
 SYMDEF(&LNKLST='C0,C1') /* LNKLST */
 SYMDEF(&LPALST='00,L') /* LPALST */
 SYMDEF(&VATLST='00') /* VATLST */
 SYMDEF(&SMFPARM='00') /* POINT TO SMFPRM00 */
 SYMDEF(&SSNPARM='00') /* POINT TO IEFSSN00 */
 SYMDEF(&BPXPARM='FS') /* SYSPLEX FILE SHARING */
 SYMDEF(&SYSR2='&SYSR1(1:5).2')
.
SYSDEF HWNAME(SCZP201)
 LPARNAME(A05)
 SYSNAME(#@$2)
 SYSPARM(00,01)
 SYMDEF(&SYSNAM='#@$2')
 SYMDEF(&SYSID1='2')
 SYMDEF(&TVSID1='2')
 SYMDEF(&OSREL='ZOSR19')
 SYMDEF(&TCPM='LOAD')
 SYMDEF(&VTAMAP='$2')
 SYMDEF(&CNMTCPN='TCPIP')
 SYMDEF(&CNMNETID='USIBMSC')
 SYMDEF(&SADOMAIN='SYS$2')
 SYMDEF(&CLOCK='00') /* USE CLOCK00 */
 SYMDEF(&COMMND='$2') /* USE COMMND00 */

LOADFK IEANUC01
NUCLST$$
IEASYMXX
IEASYS00

IEASYMXX IEASYS00
IEASYS01

IEASYS00 ALLOC00
BPXPRM00
BPXPRMFS
CLOCK00
COMMND$2
IEFSSN00
LPALST00
PROGA0
PROGS0
PROGD0
PROGC0
PROGC1
50 System z Mean Time to Recovery Best Practices

In this example, the first SYSDEF statement defines symbols that are used by the system if
not overridden in later SYSDEF statements. The HWNAME and LPARNAME define the
second SYSDEF statement in the example, and your IEASYMxx member, like ours, will likely
contain many SYSDEF statements. The parameters in the second SYSDEF apply only to the
image that is IPLed with that hardware name (CPC) and LPAR name. In this case, the system
name is #@$2, and members IEASYS00 and IEASYS01 are used for the IPL.

Looking across the IPLSTATS reports for a number of systems, we found that the time to
process the IEASYMxx member varied from .05 seconds up to nearly 19 seconds. The only
significant variables between the processing time for one IEASYMxx compared to another
would be the number of statements to be processed and the amount of CPU available to the
LPAR at the time it was IPLing.

IEASYSxx member
This member (or members) contain pointers to most of the other Parmlib members that are
used during the startup process. Example 4-3 shows an abbreviated IEASYS00 member.

Notice that the IEASYS01 Parmlib member, shown in Example 4-4 on page 52, contains only
the parameters that will override those in IEASYS00. This approach is in line with the IBM
recommendations.

Example 4-3 IEASYS00 (partial)

ALLOC=00,
CLOCK=&CLOCK.,
CLPA,
CMD=&COMMND.,
LPA=(&LPALST.),
OMVS=(00,&BPXPARM.),
PROG=(A0,S0,D0,&LNKLST.,L0,E0),
RSU=4G,
SMF=&SMFPARM.,
SSN=&SSNPARM.,
VAL=&VATLST.

Recommendations for the IEASYMxx member:

� Be aware that, for in the IEASYMxx member, you remove all the statements for the old
processors when you migrate to a new CPC. If you have many systems and do not
perform this cleanup, the result can be that IEASYMxx member will contain (and
process) hundreds of lines of unnecessary definitions.

� Although, IEASYMxx can possibly override the IEASYSxx members that are specified
by the LOADxx member, you should avoid long concatenations of many members.
Because the system uses the last parameters found in the IEASYSxx concatenation,
they must all be read before the parameters can be determined. Most installations use
two members: “00” to apply to all images in the sysplex, and “xx” for parameters
specific to a given image. This approach allows you to have an IEASYS00 for multiple
z/OS images, but include release- or system-specific parameters in the “xx” member.

� In the description of IEASYMxx, concatenate two IEASYMxx members, with the first
being for global SYSDEFs, and the second defining each of the LPARs.
Chapter 4. z/OS IPL processing 51

Example 4-4 IEASYS01 (complete)

MAXUSER=14000

CLPA
At IPL time, you have the choice of either using the LPA members that are carried over from a
previous IPL (and which reside in the PLPA Page Data Set) or loading the PLPA data set with
a fresh copy of the modules (a CLPA start). Doing a CLPA is necessary only if you have made
any changes to a program in any of the LPALST data sets.

The elapsed time for a CLPA will depend on the performance of your DASD devices, the
number of LPALST libraries, and the number of load modules to be loaded. This time tends to
be about 13 seconds on average, but one of the systems we analyzed had a maximum of 206
seconds. Changing your IPL definition to not do a CLPA would save most of the time that is
associated with loading LPA.

Alternatively, not automatically doing a CLPA on every IPL can complicate your IPL process
because you would need to have one procedure for the case where a CLPA is not wanted,
and another case where it is wanted. The easiest way to set up your system so that you have
the choice of doing a CLPA or not is to remove CLPA from IEASYS00, and define another
IEASYSxx with only CLPA. In one LOADxx member, you would specify both members (such
as CLPA), and in another LOADxx member, you would specify only IEASYS00 (no CLPA).

To get an indication of the potential savings, we did a number of IPLs with CLPA, followed by
an IPL with no CLPA. The results are shown in Figure 4-8 on page 53. You can see that in our
configuration, not doing a CLPA would have saved us roughly six seconds.

Tip: z/OS 1.11 adds the ability to update nearly all the values specified in the ALLOC00
member without doing an IPL.

Recommendations for the IEASYSxx member:

� If you use an IEASYSxx member, include only the parameters that are unique to that
member or that override the same keyword in the IEASYS00 member.

� To reduce search time, try to keep the number of concatenations to a minimum. In our
example, six PROGxx members were specified. Some installations have dozens.

� If you have any APF=xx, LNKLST=xx, or EXITxx parameters in your IEASYSxx
members, convert them to be dynamic by using the PROGxx members. Although this
step might take slightly longer during an IPL, it will reduce the number of IPLs that you
will need to take just to refresh changed modules or exits.
52 System z Mean Time to Recovery Best Practices

Figure 4-8 Impact of using CLPA

You can determine how long loading LPA takes in your system by looking at the IEAVNP05
line of the IPLSTATS report. With that information, you can decide whether the reduction in
IPL time would be sufficient to justify the added complexity. By IPLing without a CLPA, there is
a risk that you forget to include the changed modules that should be brought in. That might
cause an extra IPL, which would easily remove the savings on each IPL.

Recommendation for CLPS:

Whether or not you default to always doing a CLPA really depends on the procedures in
your installation. Some sites want to control when new LPA modules are loaded, and they
specifically schedule CLPAs. Other sites want to always pick up any changes to any
changed LPA modules, so they use CLPA every time. We do not recommend one method
over another, but you should consider which option is the best in your installation. The
options and considerations are:

� Always use CLPA to simplify your IPL process and prevent IPLing with old load
modules. This will increase your IPL time by some number of seconds.

� Only specify CLPA when you specifically want to bring in new load modules. This option
will take less time for each IPL, but might require an additional IPL if the operator
specifies the wrong LOADxx member.

Impact of using CLPA

0

1

2

3

4

5

6

7

CLPA CLPA CLPA No CLPA

Seconds
Chapter 4. z/OS IPL processing 53

LPALSTxx Member
This member contains a list of data sets that are to be concatenated to SYS1.LPALIB for
building the LPA area. Our LPALST00 member is shown in Example 4-5.

Example 4-5 LPALSTxx member

SYS1.SICELPA,
SYS1.SORTLPA,
SYS1.SERBLPA,
CEE.SCEELPA,
ISF.SISFLPA,
ISP.SISPLPA,
EOY.SEOYLPA,
SYS1.SDWWDLPA,
TCPIP.SEZALPA,
SYS1.MLPA.LOAD,
CICST32C.CICS.SDFHLPA(DISTC1)

PROGxx members
The PROGxx members define dynamically-added modules, libraries, and exits for the APF
libraries and Linklist libraries. This is the recommended method to define APF and Linklist
libraries. It allows you to add and delete the libraries without requiring an IPL. The four types
of parameters in a PROGxx member are:

APF Defines Authorized Program libraries (APF).

LNK Defines linklist libraries. These libraries are searched after any JOBLIB or
STEPLIB libraries, and after the LPA directory is searched.

EXT Defines modules that are installation-defined exits.

LPA Defines link pack area libraries that can be added after IPL. These are
loaded into extended common service area (ECSA), so you must ensure
that ECSA is large enough to hold them.

Recommendation for the LPALSTxx member:

� Remove any old LPA libraries when they are no longer needed. This technique reduces
startup time and reduces the size of LPA in storage.

� Consider including only libraries that are required at IPL in this list. In our example, a
group of recommended CICS modules are included in the LPA. This technique takes
additional time during IPL and means that those modules cannot be replaced without
an IPL. A potentially better technique is to add a SET PROG=xx command in
COMMNDxx or your automated operations product to dynamically add any additional
modules to LPA before CICS is brought up. This approach would speed up the IPL and
allow you to subsequently replace those modules without an IPL. Remember, however,
that dynamic LPA modules reside in Extended Common System Area (ECSA), so if you
are going to use this approach you need to adjust the size of ECSA accordingly.

� Generally speaking (there are always exceptions), the optimal fetch performance for
load libraries is achieved by using a block size of 32760. This size is the ServerPac
default for load libraries and we recommend that you use this.
54 System z Mean Time to Recovery Best Practices

4.4.3 NIP sequence (Part 3)

The IPLSTATS report for the third part of NIP processing is shown in Figure 4-9 on page 56.
During these steps, NIP processes the CSA parameter, builds tables for real storage and
processes the VRREGN and RSU parameters of IEASYSxx. It also initializes system
resources manager (SRM), and creates the first four address spaces after *MASTER*:
PCAUTH, RASP, TRACE, and DUMPSRV. The longest step during this phase is for
processing real storage, and is dependent on the amount of real storage you have on this
image.

Recommendations for PROGxx members:

� Use PROGxx to dynamically define the APF and LNKLST libraries, and any dynamic
installation exits.

� Remove any libraries, which are no longer needed, from the PROGxx members that
define LNKLST and APF libraries. Having unnecessary or obsolete entries increases
the length of the IPL. And remember that these lists can be modified dynamically, so
you do not need spare data sets defined just in case.
Chapter 4. z/OS IPL processing 55

Figure 4-9 NIP processing (part 3 of 5)

Looking at the IPLSTATS reports, we see a similar pattern across all the systems. Only two
modules in this part of NIP processing had median elapsed times of greater than one second.
One of them was IEAVNPD8, which is the module that is responsible for checking real
storage. And as we stated, the elapsed time for that module depends on the amount of real
storage in the LPAR.

The other module was IEAVNP21. Some of the systems had very low elapsed times for this
module: a small fraction of a second. However the remaining systems had long elapsed
times: up to tens of seconds. Although the CLOCKxx member offers an OPERATOR
PROMPT option, in the majority of cases, the prompt is not actually used. We believe that
difference was because of a combination of reasons:

� Whether the LPAR was running in ETRMODE(YES) or STPMODE(YES)

� Waiting for CPU release

If the LPAR is running with ETRMODE(YES), the system has to communicate with both the
primary and alternate ETR ports during the process of setting the TOD clock. If the LPAR has
ETRMODE(NO), this communication is not necessary. Although STPMODE is also
susceptible to longer elapsed times, on average, our experience was that the IEAVNP21 time
for STPMODE systems was significantly less than for the ETRMODE systems.

IEAVNP44 0.008 ASA Reuse stuff
IEAVNPB1 0.002 Process CSCBLOC=
IEAVNPE2 0.003 RACF SAF
IEAVNPB8 0.011 Create CSA
IEAVNP47 0.002 ENF
IEAVNPD6 0.002 RTM - SDUMP, ABDUMP, ESTAE

IEE252I MEMBER DIAG00 FOUND IN SYS1.PARMLIB
IEAVNP09 0.002 Build ASVT

IAR013I 4,096M STORAGE IS RECONFIGURABLE
IEAVNPD8 5.864 RSM - Frame queues, VRREGN= and RSU=

This time is dependent on the size of storage and not RSU
IEAVNP10 0.030 SRM - OPT=, IPS=, etc.

IEE252I MEMBER IEAOPT00 FOUND IN SYS1.PARMLIB
IEAVNPD1 0.007 ABDUMP

IEE252I MEMBER IEAABD00 FOUND IN SYS1.IBM.PARMLIB
IEE252I MEMBER IEADMP00 FOUND IN SYS1.PARMLIB
IEE252I MEMBER IEADMR00 FOUND IN SYS1.IBM.PARMLIB

IEAVNPD2 0.020 SDUMP
IEAVNPCX 0.002 Context services, registration
IEAVNPX1 0.002 NIP cleanup
IEAVNPF5 0.043 PCAUTH

This is ASID=0002, the 2nd address space created after *MASTER*
IEAVNPF8 0.033 RASP

This is ASID=0003
IEAVNP1F 0.041 SRM - I/O measurement blocks
IEAVNPC2 0.011 IOS - Move CDT to SQA
IEAVNP51 0.023 TRACE

This is ASID=0004
IEAVNP20 0.013 Process CLOCK=

IEE252I MEMBER CLOCK00 FOUND IN SYS.PARMLIB
IEAVNP21 0.057 TOD clock
IEAVNP57 0.008 SDUMP

This creates the DUMPSRV address space, ASID=005
6.184 Total time for this part
56 System z Mean Time to Recovery Best Practices

Reducing NIP processing in part 3
Little can be done to reduce this part of NIP processing, because most of the time is spent
building tables, and is based on the amount of real storage in your system. We had
considered the possibility that changing the reconfigurable storage (RSU) parameter might
make a difference in either the IPL time or in the subsystem startup times, especially for CICS
and DB2. We started by using an RSU=4G parameter in a system with 8 GB of real storage.
Then, we reduced it to RSU=0, however we could not detect any difference in the elapsed
time between the IPLs or the DB2 and CICS startup processing times.

A valid RSU specification does not directly change how much processing RSM does for
storage at the time that the RSU statement is read. What it does do is change what might
happen later in the life of the system. If too large a value is specified, RSM might have to
convert the reconfigurable storage into non-reconfigurable storage and that can be a time
consuming process. Also, an RSU value other than 0 (zero) can also have a measurable
impact on performance throughout the life of the system, because RSM must move frames
from preferred to non-preferred storage when a Page Fix is done and the page resides in a
preferred frame.

4.4.4 NIP sequence (Part 4)

The IPLSTATS report for the fourth part of NIP processing is shown in Figure 4-10 on
page 58. During these steps, NIP starts the cross-system coupling facility (XCF) and
cross-system extended services (XES), starts GRS to connect to other systems, and starts
System Managed Storage (SMS), which includes bringing up the PDSE address spaces.
From this point on, the system can communicate with others members of the sysplex, can
handle GRS requests, and can access PDSE libraries.

As you see in Figure 4-10 on page 58, in our test configuration, XCF was the longest-running
step in this part of NIP processing. In our case it was over 20 seconds. The next largest step
was SMS initialization, at 3.6 seconds. In the IPLSTATS reports, the median time for XCF
initialization was about 10 seconds, and a little over 2 seconds for SMS initialization, with
maximums of 91 and 45 seconds respectively.

Note: Over-specifying the RSU value can result in an operator prompt, affecting NIP time.
The RSU value should not be specified in “storage increment values” because the size of a
storage increment can change with each processor or storage upgrade. Instead, RSU
value should be specified with xM, xG, or OFFLINE as appropriate.
Chapter 4. z/OS IPL processing 57

Figure 4-10 NIP processing (part 4 of 5)

XCF and XES considerations
XCF initialization in a sysplex can be one of the longer-running steps in the IPL process.
Therefore, taking the time to tune your XCF setup as much as possible is important.

The most likely cause of elongated XCF initialization times is if you have over-specified the
number of XCF objects in the sysplex Couple Data Set.

The other likely cause of long XCF initialization times is poor XCF signalling response times.
Because XCF initialization includes XCF contacting its peers on all the other members of the
sysplex, delays in XCF signalling could also result in longer initialization times.

Both of these issues are addressed in this section.

IEAVNPF9 21.169 XCF
The XCFAS address space is created here.
IEE252I MEMBER COUPLE12 FOUND IN SYS1.PARMLIB
IEE252I MEMBER CRIXCF00 FOUND IN SYS1.PARMLIB
IEE252I MEMBER CRIXES00 FOUND IN SYS1.PARMLIB
IXL157I PATH A0 IS NOW OPERATIONAL TO CUID: FFE1 117

COUPLING FACILITY 002097.IBM.02.00000001DE50
PARTITION: 1E CPCID: 00

. . . all paths are shown
IXC306I START PATHOUT REQUEST FOR STRUCTURE IXC_DEFAULT_1 124
COMPLETED SUCCESSFULLY: PARMLIB SPECIFICATION
. . . all PATHINs and PATHOUTs for all structures are processed here
IXC466I INBOUND SIGNAL CONNECTIVITY ESTABLISHED WITH SYSTEM #@$A 166

VIA STRUCTURE IXC_BIG_2 LIST 8
. . . all signals for all systems and structures processed here
IXC286I COUPLE DATA SET 184
SYS1.XCF.MAXSYS12.CFRM01,
VOLSER #@$X2, HAS BEEN ADDED AS THE PRIMARY FOR CFRM ON SYSTEM #@$2
. . .all couple data sets processed here, including SFM if used

IEAVNP33 1.442 GRS
IEE252I MEMBER CTIGRS00 FOUND IN SYS1.IBM.PARMLIB
IXL014I IXLCONN REQUEST FOR STRUCTURE ISGLOCK 206
WAS SUCCESSFUL. JOBNAME: GRS ASID: 007
CONNECTOR NAME: ISGLOCK##@$2 CFNAME: FACIL03
ISG337I GRS LOCK STRUCTURE (ISGLOCK) CONTAINS 4194304 LOCKS.

IEAVNPED 0.021 PROD
IEE252I MEMBER IFAPRD00 FOUND IN SYS1.PARMLIB
ISG300I GRS=STAR INITIALIZATION COMPLETE FOR #@$2.

IEAVNP26 3.659 SMS
IEE252I MEMBER IGDSMS00 FOUND IN SYS1.PARMLIB
IEE252I MEMBER CTISMS00 FOUND IN SYS1.IBM.PARMLIB
PDSE processing produces several messages at this point
Address spaces SMSPDSE and SMSPDSE1 are created
Optionally, address space SMSVSAM is created

26.2912 Total for these steps
58 System z Mean Time to Recovery Best Practices

Sysplex Couple Data Set size
The sysplex Couple Data Set contains a multitude of information about the sysplex. When
you format the data set (using the IXCL1DSU utility), you must specify:

� The maximum number of systems that will be in the sysplex
� The maximum number of XCF groups that will be concurrently active in the sysplex
� The maximum number of members that will be active in an XCF group

The normal IBM recommendation is to specify these values to be a little larger than you
actually need. The values can be dynamically increased at any time by formatting new Couple
Data Sets and dynamically switching to them.

However, some customers specify values that are significantly larger than they will ever need,
thinking that over-specifying the values cannot hurt. The down-side of this approach is that
when you switch Couple Data Sets, or when z/OS is IPLed, XCF reads through the entire
allocated data set to validate it. Table 4-2 illustrates the impact that over-specifying the format
values can have on the Couple Data Set (CDS) size.

Table 4-2 Sysplex Couple Data Set sizes

To understand the impact that the very large Couple Data Set would have on our IPL times,
we switched from the average-sized CDSs to the very large ones, and then IPLed one of the
systems. The results of this change are shown in Figure 4-11. With the average-sized sysplex
Couple Data Sets, XCF initialization took about 14 seconds. With the maximum-sized CDS,
the XCF initialization time increased to 92 seconds.

Figure 4-11 Impact of sysplex CDS size on IPL times

Unfortunately, although moving to a larger Couple Data Set is easy, moving to a smaller one
requires a sysplex IPL, which hopefully is a very rare event. However, if you have small
Couple Data Sets today and are planning to increase their sizes, keep in mind the impact of
making them far larger than necessary. You can use the D XCF,C command as shown in
Figure 4-12 on page 60, to display the size of the current sysplex CDS and its maximum
actual usage.

CDS size Systems Groups Members Tracks

Average 12 500 250 2021

Maximum 32 2045 2047 40921

Im pact o f S ysplex C D S siz e

0

10

20

30

40

50

60

70

80

90

100

A verage Run 1 A verage Run 2 A verage Run 3 M ax im um

S econds
Chapter 4. z/OS IPL processing 59

Figure 4-12 Determining CDS size and actual usage

In Figure 4-12 you can see that the sysplex CDS was formatted to support a maximum of 203
members in an XCF group, however the largest actual number of members in a group was
only 68. You should use this information to help you determine the values to use when
allocating new Couple Data Sets.

XCF signalling performance
The two aspects to the performance of XCF signalling links are: response times and
throughput capacity. During XCF initialization, XCF communicates with its peers that are on
the other members of the sysplex, so the response time is important during this period. Later
in the IPL, when the subsystems are starting, the volume of traffic is typically higher, so the
throughput capacity becomes more important in that interval. The largest influence in both
response times and throughput capacity is the technology you use for the XCF signalling
paths. Figure 4-13 on page 61 shows the response time achieved with various technologies
in an IBM lab measurement.

D XCF,C
IXC357I 09.36.26 DISPLAY XCF 282
SYSTEM SC47 DATA
 INTERVAL OPNOTIFY MAXMSG CLEANUP RETRY CLASSLEN
 85 88 4096 15 10 956

 SSUM ACTION SSUM INTERVAL SSUM LIMIT WEIGHT MEMSTALLTIME
 ISOLATE 0 NONE 50 NO

....

SYSPLEX COUPLE DATA SETS
PRIMARY DSN: SYS1.XCF.CDS06
 VOLSER: TOTDSA DEVN: D01B
 FORMAT TOD MAXSYSTEM MAXGROUP(PEAK) MAXMEMBER(PEAK)
 11/20/2006 11:56:34 16 200 (172) 203 (68)
ALTERNATE DSN: SYS1.XCF.CDS07
 VOLSER: TOTDSC DEVN: 8038
 FORMAT TOD MAXSYSTEM MAXGROUP MAXMEMBER
 11/20/2006 11:56:35 16 200 203

Note: The consideration about CDS sizes applies to all Couple Data Sets under XCF
control (ARM, BPSMCDS, CFRM, LOGR, SFM, and WLM). Although the sysplex CDS is
the one that is most likely to be oversized, be careful that when formatting all CDSs you do
not make them significantly larger than necessary.
60 System z Mean Time to Recovery Best Practices

Figure 4-13 XCF response time by message size and type of link

You can see that the bandwidth of the signalling link makes a bigger difference as the
message size increases. But even with small (1 K) messages, ICB4 and InfiniBand 12x links
provide superior response times to FICON® channel-to-channels (CTCs).

Figure 4-14 shows the throughput rates of the different signalling link types. Again, you see
that ICB and InfiniBand links provide the best performance, but even the ISC links (which did
not stand out in the response time measurement) provide more than double the throughput
than the highest bandwidth FICON links.

Figure 4-14 XCF signalling throughput

0

0.25

0.5

0.75

1

1K 8K 32K

X
C

F
 I

/O
 R

es
p

o
n

se
 T

im
e

(m
se

c)

XCF Message Size

FICON EX4

FICON EX8

ISC3

ICB4

IB 12X

XCF Signalling Response Times

0
10
20
30
40
50
60
70
80
90

100

Req/Sec (1K)

T
h

o
u

s
a

n
d

s

FICON EX4

FICON EX8

ISC3

ICB4

IB 12X

XCF Signalling Rates
Chapter 4. z/OS IPL processing 61

Other observations
An interesting side effect that we noticed during our testing was that the XCF initialization time
was over a minute longer when the Couple Data Sets specified in the COUPLExx member did
not match those actually in use by the sysplex. Obviously, the incoming system has additional
work to do in this case to communicate with its peers to determine the actual Couple Data Set
topology. The best practice is that any time you switch any of the Couple Data Sets you
should always update the COUPLExx member to accurately reflect the current topology, even
if the switch is only temporary.

Other sources of information
Several excellent sources of information about XCF performance and setup are:

� Parallel Sysplex Performance: XCF Performance Considerations (V 3.1), an IBM white
paper that is a replacement for WSC FLASH 10011 XCF Performance Considerations

� Analyzing XCF Performance with the RMF Spreadsheet Reporter, a presentation
available from the RMF home page on the Web at:

ftp://ftp.software.ibm.com/eserver/zseries/zos/rmf/RMF_SpreadsheetReporter_XCF.pdf

� Merging Systems into a Sysplex, SG24-6818

� z/OS MVS Setting Up a Sysplex, SA22-7625

� IBM Software Developer’s forum. RMF in z/OS V1R9 added the jobname to the SMF Type
74 Subtype 2 record so that you can see what address spaces are associated with each
XCF group. This is discussed on developerWorks® forum at:

http://www.ibm.com/developerworks/blogs/page/MartinPacker

Recommendations for XCF:

� Use the fastest paths available. Based on current technology, those would be IC links,
followed by ICB4, 12x InfiniBand, 1x InfiniBand, and finally ISC.

� If using CTCs for XCF communication, the use of the highest performing FICON links is
strongly recommended.

� Tune the XCF transport classes to your configuration: the number of classes, the
CLASSLEN values, and the MAXMSG sizes.

� Ensure that enough paths exist between all systems in a sysplex, with at least two
failure-isolated paths between every pair of systems.

� Use the D XCF commands, and RMF reports to understand XCF performance and to
tune the system.

� Activate and monitor the XCF Health Checks.

� Do not grossly over-specify the values when allocating any of the XCF-managed CDSs.
CDS sizes can be increased dynamically at any time, however decreasing the size of a
CDS requires a sysplex IPL. Having a very large CDS can affect IPL times.

� Ensure that the COUPLExx member always accurately reflects the names of the CDSs
that are currently in use.

� Refer to z/OS MVS Setting Up a Sysplex, SA22-7625 which contains a number of
sections with performance recommendations for various aspects of sysplex.
62 System z Mean Time to Recovery Best Practices

http://www.ibm.com/developerworks/blogs/page/MartinPacker
ftp://ftp.software.ibm.com/eserver/zseries/zos/rmf/RMF_SpreadsheetReporter_XCF.pdf

GRS initialization
The initialization time for GRS is reported in module IEAVNP33. The bulk of the initialization
time consists of communicating with XCF, and using XCF to communicate with the GRS
instances on the other members of the sysplex. As such, the elapsed time for GRS
initialization is based largely on the performance of the underlying XCF infrastructure. The
remainder of the time consists of loading GRS modules from sysres and obtaining storage for
its control blocks.

SMS considerations
Although SMS reports its initialization time in one of the fields in the IPLDATA control block,
we discuss SMS in Chapter 5, “z/OS infrastructure considerations” on page 71. The reason is
because, strictly speaking, SMS is not started automatically by the system so you must
include an entry in the IEFSSN member to get it to start. For that reason, we discuss it in the
same chapter where we discuss all other infrastructure address spaces that you are
responsible for starting.

4.4.5 NIP sequence (Part 5)

The IPLSTATS report for the fifth and final part of NIP processing is shown in Figure 4-15 on
page 64. During this part, NIP loads the directories for the LNKLST libraries, creates the
CONSOLE address space and initializes console services, initializes WLM, initializes data
management, and creates the OMVS address space to provide UNIX® System Services.

The longest step in this part is typically the initializing of LNKLST, and this time is strictly a
function of the number of LNKLST libraries, the number of modules in the libraries, and the
performance of the DASD devices containing those data sets. The next longest step is
typically setting up the consoles. Also, defining the EXCP appendages is usually the only
other module that can take a considerable time.
Chapter 4. z/OS IPL processing 63

Figure 4-15 NIP processing (part 5 of 5)

LNKLST considerations
The z/OS LNKLST enables you to define a set of load libraries that are logically concatenated
to SYS1.LINKLIB. The libraries in the concatenation can be defined in the LNKLSTxx
member of Parmlib, or using the PROGxx members. All the libraries in LNKLST cannot sum
to more than 255 extents.

Although having the flexibility to have a large number of libraries that can be searched without
having to specify a STEPLIB or JOBLIB statement is an advantage, the disadvantage is that
having a very large LNKLST concatenation can significantly increase the time required to

IEAVNPE5 3.590 LNKLST
The linklist libraries are used from this point on

IEAVNPD5 0.821 Load pageable device support modules
IEAVNP88 0.112 Allocation move EDT II
IEAVNPA1 1.829 CONSOLE

The CONSOLE address is created here
IEE252I MEMBER CONSOL00 FOUND IN SYS1.PARMLIB
IEE252I MEMBER CTIOPS00 FOUND IN SYS1.IBM.PARMLIB
IEA630I OPERATOR #@$2 NOW ACTIVE, SYSTEM=#@$2 , LU=#@$2
IEA549I SYSTEM CONSOLE FUNCTIONS AVAILABLE 240

IEAVNPDC 0.533 WLM
The WLM address space is created here, and WLM is initialized

IEAVNP16 2.722 EXCP appendages
IEE252I MEMBER IEAAPP00 FOUND IN SYS1.PARMLIB

IEAVNP13 0.033 Prepare NIP/MSI interface
IEAVNP17 0.002 GTF Monitor Call interface
IEAVNPG8 0.004 VSM defined monitor call enablement
IEAVNP18 0.099 PARMLIB Scan Routine interface

IEE252I MEMBER IEACMD00 FOUND IN SYS1.PARMLIB
IEE252I MEMBER COMMND$2 FOUND IN SYS1.PARMLIB
IEE252I MEMBER MSTJCL00 FOUND IN CPAC.PARMLIB
IEE252I MEMBER SCHED00 FOUND IN SYS1.PARMLIB
IEE252I MEMBER IECIOS00 FOUND IN SYS1.PARMLIB
IEE252I MEMBER CTIIEFAL FOUND IN SYS1.IBM.PARMLIB
IEE252I MEMBER VATLST00 FOUND IN SYS1.PARMLIB
IEE252I MEMBER ALLOC00 FOUND IN SYS1.PARMLIB
IEE252I MEMBER BPXPRMFS FOUND IN SYS1.PARMLIB
IEE252I MEMBER BPXPRM00 FOUND IN SYS1.PARMLIB

IEAVNPF2 0.083 Process IOS=
IEAVNP15 0.350 Process VATLST
IEAVNPRR 0.002 RRS
IEAVNPOE 0.415 USS
IEAVNPSC 0.010 Metal C RTL
IEAVNPLE 0.060 System LE RIM

Language services are initialized here
UNIX system services are initialized here
OMVS address space is created here

IEAVNPUN 0.071 Unicode
IEAVNPXL 0.013 zXML Parser
IEAVNP1B 0.117 Close catalog

CATALOG address space is created here
IEAVNIPX 0.001 NIP final cleanup

10.867 Total for this part
 94.128 TOTAL NIP TIME (seconds)
64 System z Mean Time to Recovery Best Practices

initialize the LNKLST. In the IPLSTATS reports, the LNKLST initialization time varied from a
low of .75 seconds up to nearly 10 seconds.

Consoles
The elapsed time that is required to initialize all the consoles is related to the number of
consoles defined to the system, the performance of the XCF signalling infrastructure, and the
release of z/OS that is being used. Obviously, the more consoles that are defined, the longer
the time to initialize them, so you should try to minimize the number of consoles, both actual
and defined in the CONSOLxx member.

Starting with z/OS 1.10, you can operate z/OS console services in distributed mode within a
sysplex. According to the z/OS V1R10 Introduction and Release Guide, GA22-7502, the
potential advantages of distributed mode include:

� Reducing the time to IPL a system

� Reducing the time for a system to join a sysplex

� Reducing the scope of console-related hangs

� Reducing the possibility of console-related outages

� Allowing more multiple console support (MCS), SNA MCS (SMCS), and subsystem
consoles to be configured

Although we did not run timing tests on this, we expect that installations with a large number
of MCS and SMCS consoles will see some reduction in CONSOLE startup time. Distributed
mode consoles are only available when all members of a sysplex are running z/OS 1.10 or
later. For more information about distributed mode consoles, see z/OS Version 1 Release 10
Implementation, SG24-7605.

An interesting paper, Console Performance Hints and Tips for a Parallel Sysplex
Environment, can be found at:

http://www.ibm.com/systems/resources/servers_eserver_zseries_library_techpapers_pdf_gm130166.pdf

The paper refers to identifying the rate of messages by type of message. You can do this with
the MSGLG160 program described in 3.3, “Syslog” on page 24.

WLM
In general, WLM initialization time is very short so, from that perspective, WLM is typically not
an issue during this part of the IPL. However, WLM does play a vital role as the infrastructure
and major subsystems get started. Therefore, WLM, and specifically the setup of the WLM
policy, is discussed in detail in 5.2, “Workload Manager” on page 72.

Recommendation for Linklist (LNKLST) libraries:

� Remove any old Linklist libraries when they are no longer needed. This technique
reduces startup time and reduces the search of linklist for all applications during the life
of the image.

� Generally (there are always exceptions), the optimal fetch performance for load libraries
is achieved by using a block size of 32760. This size is the ServerPac default for load
libraries and we recommend that you use this.
Chapter 4. z/OS IPL processing 65

http://www.ibm.com/systems/resources/servers_eserver_zseries_library_techpapers_pdf_gm130166.pdf

EXCP appendages
I/O appendages, if any, are defined in the IEAAPP00 member of Parmlib. If you find that the
IEAVNP16 module is taking a long time (many seconds), consider checking if you have an
IEAAPP00 member defined, and if so, whether the appendages defined in that member are
actually still required.

Language Environment initialization
On a small number of systems, large values for module IEAVNPLE have been observed.
However those cases all appear to be related to systems that are severely CPU-constrained.
We tested various options in the CEEPRM00 member, and even not using that member at all,
and couldn’t find any measurable difference between the runs.

4.5 Master Scheduler Initialization (MSI), phase 1

The MSI phase follows NIP processing. The statistics in IPLSTATS refer to this phase as
IEEVIPL because that is the name for the master scheduler base initialization module. The
IPLSTATS report for the first phase of MSI is shown in Figure 4-16.

During this phase, MSI initializes the Master Trace table, enables all MCS consoles, initializes
sysplex-wide ENF (Event Notification Facility) services, creates the IEFSCHAS address
space (used for cross-system GRS communication), and initializes the MSTR subsystem. It
also initializes common Job Entry Subsystem (JES) services, such as creating the JESXCF
address space, creates the ALLOCAS address space (for allocation services), and attaches
an initiator to start the Master job control language (JCL).

Figure 4-16 Master Scheduler Initialization (phase 1)

As you can see in Figure 4-16, this phase took less than five seconds on our system. In fact,
looking at the IPLSTATS reports for those 150 systems, this phase of the IPL varies from a
low of just .479 seconds to a high of only 6.251 seconds. Little can be done to tune this phase
of the IPL, and with such low elapsed times, there would seem to be little point in doing any
tuning even if you could.

**** IEEVIPL Statistics ****
IEETRACE 0.003 Master trace
ISNMSI 0.758 SPI
UCMPECBM 0.996 CONSOLE address space
ENFPC005 0.000 CONSOLE ready ENF
IEFSCHIN 0.256 IEFSCHAS address space
IEFJSINT 0.003 Subsystem interface
IEFSJLOD 0.015 JESCT
IAZINIT 0.059 JESXCF address space
IAZFSII 0.012 FSI trace
IEFQBINT 0.021 SWA manager
IEFAB4I0 0.194 ALLOCAS address space
IEEVIPL 2.334 Uncaptured time: 0.000

4.667 Total for MSI phase 1
66 System z Mean Time to Recovery Best Practices

4.6 Master Scheduler Initialization (MSI), phase 2

The final phase of z/OS IPL includes validating dynamic paths to I/O devices, bringing all the
available CPs out of their stopped state so they are available for use, starting the System
Logger and SMF address spaces, starting the subsystems defined in the IEFSSN members,
and processing the COMMNDxx and IEACMD00 members. Also during this phase, the
Advanced Program-to-Program Communication (APPC) and Time Sharing Option (TSO)
services are started.

The IPLSTATS report for the MSI phase 2 part of our IPL is shown in Figure 4-17.

Figure 4-17 MSI Phase 2

MSI started at: 2009/05/14 22:45:08.870
**** IEEMB860 Statistics ****
ILRTMRLG 3.079 ASM
IECVIOSI 17.735 IOS dynamic pathing

IEE252I MEMBER IEAAPP00 FOUND IN SYS1.PARMLIB
IEC336I STORAGE SUBSYSTEM X’89E3’ INITIALIZED
IEC336I STORAGE SUBSYSTEM X’89E5’ INITIALIZED
. . . plus one message for each subsystem

ATBINSYS 0.025 APPC
IKJEFXSR 0.161 TSO
IXGBLF00 0.015 Logger

*IFB081I LOGREC DATA SET IS FULL,16.06.21, 360
DSN=SYS1.#@$A.LOGREC

COMMNDXX 31.315 COMMANDxx processing
Most of this time is executing the immediate commands
The rest of the CPUs are varied online at this point

SMFWAIT 116.122 SMF
IEE252I MEMBER SMFPRM00 FOUND IN SYS1.PARMLIB
Initialize SMF, create SMF address space
SMF will create all of the SMF IPL records at this time

SECPROD 3.473 Security server
IEE712I CONTROL PROCESSING COMPLETE
ICH508I ACTIVE RACF EXITS: NONE

IEFJSIN2 6.733 SSN= subsystem
IEFHB4I2 0.013 ALLOCAS - UCB scan
CSRINIT 0.011 Windowing services
FINSHMSI 0.077 Wait for attached CMDs
MSI ended at: 2009/05/14 22:45:19.500
IEEMB860 10.630 Uncaptured time: 0.100

Remaining CPUs are varied online at this point
178.759 Total time for this phase
Chapter 4. z/OS IPL processing 67

Figure 4-18 shows the modules that had the highest median times across our sample of 150
systems.

Figure 4-18 Largest elapsed time components in MSI Phase 2

You see that the longest running modules on our system reflect the behavior across that
larger set of systems. The one exception we had was that our COMMNDxx processing took
an unusually long time.

Dynamic pathing considerations
At this point in the IPL, all online paths to any device that supports dynamic pathing (DASD,
tape, and maybe printers) are validated.

Prior to z/OS 1.10, any CPs in the partition that were in a stopped state would be brought out
of the stopped state and made available for use near the end of this phase. However, z/OS
1.10 changed this so that the CPs are made available earlier, providing more CPU capacity
available to drive the dynamic path processing.

The elapsed time for this processing is affect by:

� The number of online devices that support dynamic pathing

� The number of defined and online paths to those devices

� The number of PAV base devices

PAV aliases are not initialized during path validation.

In z/OS 1.11, changes were made to reduce contention in the disk subsystems during path
validation. As a result, reductions of greater than 50% were seen in some tests in IBM,
comparing z/OS 1.10 with z/OS 1.11.

MSI Phase2 Largest Components

0

50

100

150

200

250

SMF SSN= subsystem Security server IOS dynamic pathing

Event

S
ec

o
o

n
d

s

MIN

MEDIAN

MAX
68 System z Mean Time to Recovery Best Practices

Note that the use of Intelligent Resource Director (IRD) Dynamic Channel Path Management
(DCM) can affect dynamic path validation time. When the system is IPLed, any CHPIDs that
are defined as being dynamic will be varied offline. The varying of these CHPIDs back online
happens in parallel with dynamic path validation and has the following results:

� If the dynamic CHPIDs are still offline when the dynamic paths for a device are being
validated, the elapsed time for dynamic path validation can be reduced (compared to a
configuration with the same overall number of paths, where all paths are using static
CHPIDs).

� If you increase the total number of potential paths to a device as part of implementing
DCM, and all the dynamic CHPIDs have been varied online by the time dynamic path
validation runs, the elapsed time can increase.

SMF considerations
In our case, SMF initialization was the largest part of this phase. However, our system was set
up to prompt the operator during SMF startup. It was also set up to collect the SMF Type 19
records, which involves going out to each volume to gather space utilization information that
is then stored in the Type 19 records. This is discussed in more detail in “SMF Type 19
records” on page 91.

To reduce the SMF start time, do not collect the Type 19 records and also (especially) do not
prompt the operator during startup.

Security server considerations
The median time to complete security server initialization across the set of IPLSTATS reports
was less than 2 seconds. However, the maximum time was nearly 34 seconds, indicating that
there is some scope for tuning this time to reduce it.

The processing that security server carries out during this time includes:

� Waiting to get access to the RACF® database if other systems that share the same
database have the database serialized.

� Loading information from the RACLISTed profiles into storage from the database.

Both situations can be assisted by minimizing access to the RACF database (through the use
of the RACF cache structures in the CF, for example), and by placing the RACF database
data sets on the best performing DASD available to you. In addition, RACGLIST processing
can be used to speed up the loading of profiles into storage.

SSN considerations
Subsystem processing involves reading the IEFSSNxx members of Parmlib, and also the
processing associated with defining all the specified subsystems to the operating system and
initializing those subsystems. The system reads the first subsystem definition from the
IEFSSN member and then does all the processing that is associated with initializing that
subsystem. Then, it reads the next subsystem definition and initializes that subsystem, and so
on until all the subsystem definitions have been processed and the subsystems initialized.

Because of this method of processing the definitions, you should place the most important
subsystems near the top of the member, and the least important subsystems later.

The median elapsed time to process the IEFSSN member was only a little over two seconds,
but the maximum was about 35 seconds.
Chapter 4. z/OS IPL processing 69

If you find that the SSN startup time (listed under the IEFJSIN2 module) is taking too long,
you should be sure that:

� the IEFSSNxx members do not contain large numbers of subsystem definitions for
subsystems that are never used, or for old software or subsystems that are no longer
used.

� you do not have an inordinately large Parmlib concatenation or a large number of
IEFSSNxx members that must be processed.

� The definition for the SMS subsystem is placed as early in the IEFSSNxx member as
possible.

The IEFSSNxx member actually supports two formats; keyword and positional. The keyword
format has been available for many years now, and is the recommended format. As with the
PROGxx members, we would expect that any potential future enhancements related to this
member would only apply if the newer format (keyword) is used.

Also, remember that dynamically adding subsystems after the IPL is possible. This process,
and several related limitations, is discussed in the “Dynamic Subsystems” section of z/OS
Planned Outage Avoidance Checklist, SG24-7328. However, if you order the subsystems in
the IEFSSNxx member in a manner that reflects the relative importance of each subsystem,
moving the definition of some subsystems out until after the IPL may not buy you much.

COMMNDxx considerations
In parallel with the last items of the z/OS IPL process, MVS starts processing commands that
are typically contained in the COMMNDxx members or issued from an automation product.
These commands are typically responsible for starting the infrastructure address spaces
(VTAM, TCP, JES2, TSO, and so on).

As stated previously, our system was atypical in the amount of time elapsed for COMMNDxx
processing. The reported time for COMMNDxx processing does not actually include the time
to process the commands that are contained in these members. During this module, the
COMMNDxx members are read, and any commands that are encountered are queued for
execution, however the execution time is not included in the IPLSTATS report. Note that there
is no guarantee that the commands will actually be processed in the same order that they are
specified in the COMMNDxx members.

The best way to reduce the elapsed time to process the COMMNDxx members is to reduce
the number of commands issued in those members. Previously we suggested that the
COMMNDxx member should not be used to vary devices offline; if the devices are not
needed by the system, they should not be marked as being online at IPL in the IODF. Also, in
2.5.2, “Sequence of starting products” on page 10, we suggested that the early part of IPL
(when the COMMNDxx members are processed) should be kept for starting the parts of the
system that are critical for your online service. Other address spaces should be started by
automation later, after the critical components are up and running.

z/OS actually provides two Parmlib members where you can specify system commands:
COMMNDxx and IEACMDxx. Both members are read during MSI processing and all
commands that are encountered are queued for later processing. Given that both members
are treated in the same way, there really is nothing to be achieved by placing a command in
one member rather than the other. For that reason, we recommend following the official IBM
guidance which is that you should leave the IEACMD00 member as it is delivered by IBM, and
apply any customization you want to the COMMNDxx member (or members).
70 System z Mean Time to Recovery Best Practices

Chapter 5. z/OS infrastructure
considerations

Now that we have described the IPL sequence, we move on to the next part of the IPL; the
infrastructure startup. This chapter also covers other miscellaneous z/OS topics that are
related to both starting and stopping the system, including what happens after you stop it and
before you start it again.

5

© Copyright IBM Corp. 2010. All rights reserved. 71

5.1 Starting the z/OS infrastructure

At the end of Chapter 4, “z/OS IPL processing” on page 35, we had a basic z/OS system up
and running. The next step to providing a fully functioning z/OS environment is to start the
products that provide infrastructure functions for the middleware and applications that support
your business.

The infrastructure functions should be started in a sequence that reflects their importance to
that environment, and the dependencies between products.

If you have an automation product that is defined as a subsystem in IEFSSNxx, that product
should probably be the first entry in the IEFSSNxx member, because it will start most of the
middleware products; we want it up as soon as possible. Also, because many automation
products can take some time to start, by placing it first in IEFSSNxx, we can overlap its
startup with the initialization of other important subsystems.

For example, because so many data sets are SMS-managed on most systems, the SMS
subsystem should be the first started after the automation product is started. And because
most started tasks run under the control of a job subsystem, JES should be the next address
space to be started.

Before any transactions can be submitted to the system, VTAM and TCP must be started.
However TCP requires that OMVS is available before it can start. Therefore, OMVS should be
started next (in fact, in recent releases of z/OS, OMVS gets started automatically by the
system, using the BPXPRMxx member that you point to in your IEASYSxx member). VTAM
and TCP should be started next.

There is one other important subsystem that we discuss: WLM. The WLM policy that you
create determines how system resources are distributed across the work running on the
system, which in turn can affect how quickly various subsystems and started tasks will start.
For that reason, we discuss your WLM setup first, and then continue with the other
infrastructure components, in the sequence in which we suggest that you start them.

5.2 Workload Manager

The MVS Workload Manager (WLM) controls the amount of resources that are allocated to
every address space in attempting to meet their goals. The early startup of the base z/OS
system is unlikely to be affected if the priorities and goals specified for WLM are less than
ideal. However these priorities become increasingly important the further we get into the IPL,
and especially when we get to the point of starting all the middleware and subsystems.

If you read the documentation for most applications or subsystems, they frequently
recommend that their products be placed in the SYSSTC service class, and that everybody
else’s address spaces be defined below them. However, as we all know, everyone cannot be
top priority. An important point is that you establish effective priorities based on your
installation’s requirements.

In this section, we give you guidelines for Workload Manager that can help you optimize your
startup, shutdown, and normal processing times. Of course, your installation might have
different priorities. For additional information about setting up WLM, see these resources:

� z/OS MVS Planning: Workload Management, SA22-7602

� System Programmer’s Guide to: Workload Manager, SG24-6472
72 System z Mean Time to Recovery Best Practices

� OS/390 Workload Manager Implementation and Exploitation, SG24-5326

� The WLM home page contains several presentations and documents:

http://www.ibm.com/servers/eserver/zseries/zos/wlm/

� The IBM Techdocs Web site also has several articles about WLM (do a search on WLM):

http://www.ibm.com/support/techdocs/atsmastr.nsf/Web/Techdocs

5.2.1 z/OS system address spaces

A change was made in z/OS 1.10 to automatically assign certain z/OS address spaces to the
SYSTEM service class. The reason for this change is that installations sometimes did not
classify these address spaces correctly, potentially resulting in performance issues. If you are
not running z/OS 1.10 yet, you should change your WLM policy to classify the following
started tasks to the SYSTEM service class:

� CATALOG: Catalog address space

� CONSOLE: Console address space

� GRS: Global resource serialization address space

� IEFSCHAS: Cross-system ENF notifications

� IXGLOGR: Logger address space

� SMF: System Management Facilities

� SMSPDSE: PDSE address space

� SMSPDSE1: PDSE optional address space

� XCFAS: cross-system coupling facility

General WLM recommendations:

� Keep your WLM policy as simple as possible. Service classes with only a single period
are usually better than two periods, and two periods are almost always better than three
periods. Of course there are exceptions to every recommendation, but this provides a
good place to start.

� Use response time goals, especially percentile response time goals, when you can.
Only use velocity goals when transactions goals are not supported, or for test
subsystems. Specifically, you should use percentile response time goals for DB2, CICS,
IMS, and WebSphere.

� Remember to review and possibly adjust velocity goals after any hardware upgrade.

� If you have a very large number of classification rules, consider their sequence
carefully. The rules are applied serially, starting with the first one, until a match is found.

� Do not have too many service class periods with non-discretionary goals. A good
guideline is to have less than 30 non-discretionary service class periods that are active
on any one system.

� Any service class with velocity goals should have multiple address spaces assigned to
it so that it can collect meaningful statistics. If you need more granularity for reporting
reasons, assign the address spaces to report classes.

� If you have not reviewed your WLM policy in several years, take the time to do it now.
Several enhancements to WLM have been made that can simplify your policy, or
improve response time for transactions.
Chapter 5. z/OS infrastructure considerations 73

http://www.ibm.com/servers/eserver/zseries/zos/wlm/
http://www.ibm.com/support/techdocs/atsmastr.nsf/Web/Techdocs

After you migrate to z/OS 1.10, you will no longer need these to be explicitly classified and
therefore the associated classification rules should be removed. All work in the SYSTEM
service class runs at dispatching of priority FF (the highest), and is not storage-managed; that
is, pages are not stolen from these address spaces until storage is critical. You can identify all
of the SYSTEM services classes by looking at any display of dispatching priorities and at the
service class name, or check for address spaces that have a dispatching priority of FF.

5.2.2 SYSSTC

SYSSTC is a service class that is provided by z/OS and runs in the second highest
dispatching priority (FE). Like SYSTEM, it is not storage-managed. Unfortunately, this class is
over-used in many installations. It should be used only for that work that must run higher than
your most important online address spaces. A good example of address spaces that should
be assigned to SYSSTC are the lock managers for DB2 and IMS, some monitors or
schedulers, and some system tasks. You can find the SYSSTC address spaces on your
system by looking at a display for SYSSTC or dispatching priority of FE.

Another candidate for SYSSTC, especially in a WebSphere Application Server environment,
is to run the OMVS kernel there. Instead of using the STC subsystem for classification, the
OMVS kernal is classified in the OMVS rules, by classifying a UI of OMVSKERN to SYSSTC.

5.2.3 Transaction goals

Most major subsystems support the use of WLM transaction goals. This is very important; we
recommend that you use them when possible.

For CICS and IMS, transaction goals are classified in the WLM policy’s CICS and IMS
subsystems. Other transaction goals are set for enclaves. Enclaves are created and deleted
by each subsystem for each request, and are assigned a goal that carries with the enclave
across multiple address spaces. Some enclaves are created for short-running work that has
to traverse multiple address spaces, and some are created for long-running work. DB2 and
WebSphere Application Server enclaves are addressed in this publication.

CICS and IMS transaction goals can only have a single period, but DB2 and WebSphere
Application Server can have multiple periods. When possible, try to use a percentile response
time goal and a single period. Velocity goals should be reviewed and possibly adjusted with
every processor upgrade, but response goals can generally handle upgrades with no
changes. It is important that the response time goals are based on your Service Level
Agreements, not on the best possible response time the system can deliver.

Recommendation: If running an earlier release than z/OS 1.10, classify these address
spaces to the SYSTEM service class: CATALOG, CONSOLE, GRS, IEFSCHAS,
IXGLOGR, SMF, SMSPDSE, SMFPDSE1, and XCFAS.

Recommendation for SYSSTC:

SYSSTC should be used only for important work that does not take over the system. Work
in this service class runs higher than any of the other address spaces associated with your
online applications. Periodically, you should review the address spaces in SYSSTC and
determine the amount of CPU time that each uses. If one address space appears to be
taking an exceptionally large amount of CPU time, consider moving it to another service
class that is managed to a velocity goal.
74 System z Mean Time to Recovery Best Practices

A problem with average response time goals is that they can be skewed by a few very
long-running transactions, which is why we generally recommend using percentile response
time goals. Although some overhead exists when using transaction goals, most installations
find that the improved management of the address spaces compensates for the overhead.

When transaction goals are used, the owning address spaces are managed to attempt to
meet the goals for the transactions running in that address space; the address space is not
managed to the started task service class goal, except at startup and shutdown. Therefore, it
is best to assign those started tasks to a high importance, high velocity service class that
does not contain any non-managed address spaces; this should ensure that those address
spaces receive sufficient resources to start in a timely manner. We suggest a unique service
class for all of these servers. In our example, we call it the OPS_SRV service class, which has
an assigned velocity of 60 and an importance of 2. We discuss the specific address spaces
for each subsystem later.

For IMS and CICS, you can use transaction goals for some regions and use velocity goals for
other regions (test regions, for example). We recommend using velocity goals for test regions.

5.2.4 DB2 considerations

Before we describe the DB2 considerations, you should realize that almost all DB2 work, with
the exception of distributed data facility (DDF), is managed to the originator’s goal. So if a
CICS transaction requests a DB2 service, such as a stored procedure, the DB2 work will run
at the dispatch priority of the CICS transaction, and not the dispatch priority of any DB2
address space. As a result, the WLM goals assigned to most DB2 address spaces are only
applied during startup and shutdown.

The six types of address spaces used by DB2 are:

� xxxxIRLM

The DB2 lock manager. If this is associated with a production DB2, this address space
should be assigned to the SYSSTC service class.

� xxxxMSTR (master control region) and xxxxDBM1 (database management, including
buffers)

These are the two primary regions for DB2. After they are started, they are generally
managed according to the transactions they are running. Therefore, these two address
spaces can be run at a high priority and importance.

� xxxxDIST

This address space controls DDF transactions. Its transactions are run as independent
enclaves and should have transaction goals that are classified in the WLM DDF
subsystem. If you do not have a default transaction goal defined for DDF, any transactions
that are not explicitly classified will be assigned to the SYSOTHER service class, which is
the same as discretionary. If you used THREADS=INACTIVE and DBAT is pooled

Recommendations for subsystems with transaction support:

� Use transaction goals when possible, with the exception of development or test regions.

� If you use transaction goals with test regions, avoid using the same service classes as
your production subsystems.

� Use only a single period, and use a percentile response time goal for them, such as
80% less than .5 seconds.

� Do not specify the CPU Critical option unless you have no alternative.
Chapter 5. z/OS infrastructure considerations 75

(connection inactive), you can use percentile response time service classes. You can also
use multiple periods if you need them.

If THREADS=ACTIVE, multiple transactions are treated as one and the user think time is
included in the response times. These transactions should be classified to a service class
with a single period velocity goal.

If you cannot differentiate between the two types (inactive and active) of transactions, you
can use a two-period service class with a percentile response goal on the first period and
a velocity goal on the second period. The address space xxxxDIST should be classified to
OPS_SRV in the STC subsystem. Be sure that the goal of the xxxxDIST address space is
higher (of more importance) than the associated transactions, or DDF logons could be
delayed.

� xxxxSPAS

These started tasks are for DB2-managed stored procedures. The transactions are run as
dependent enclaves and will be run at the dispatch priority of the originator. The
xxxxSPAS address space can be classified in the STC subsystem to OPS_SRV.

� xxxxWLMx

These started tasks are for WLM-managed stored procedures. This is a function that was
provided in DB2 V9 with APAR PK75626. These started tasks should be managed the
same as the xxxxSPAS address spaces.

The DB2 server can use sysplex query parallelism to distribute parts of a complex query
across multiple systems within a sysplex. When these sysplex query transactions arrive on
another system, they are classified in WLM using the DB2 subsystem (that is, the WLM
service class information does not get sent with the transaction). Because they are expected
to be long-running and you no longer have the characteristics of the originator, you can
classify these to a separate service class, preferably a one or two-period service class with a
velocity goal. APAR PK57429 creates independent enclaves for the DB2 subsystem that are
managed by WLM.

A good description of the various WLM recommendations related to DB2 is provided in a
SHARE Austin 2009 session 1342, titled Using WLM with DB2 for z/OS, available at:

http://ew.share.org/proceedingmod/abstract.cfm?abstract_id=19582&conference_id=20

Recommendations for DB2:

� Assign the DB2 IRLM address space to the SYSSTC service class.

� Assign xxxxMSTR and xxxxDMB1address spaces to a high importance, high velocity
service class.

� Assign the xxxxDIST and xxxxSPAS address spaces to a server service class (slightly
lower importance and velocity than MSTR, but they will eventually be managed by the
transactions).

� Always classify DDF transactions. You can use two service classes for different types of
work, or a single two-period service class with a percentile response goal on period one
and a velocity goal on period two.

� Always classify DB2 query transactions. These can be a single-period service class
with a velocity goal.
76 System z Mean Time to Recovery Best Practices

http://ew.share.org/proceedingmod/abstract.cfm?abstract_id=19582&conference_id=20

5.2.5 CICS considerations

CICS is one of the easiest systems to classify, especially when you are using transaction
classes. The two types of CICS-provided address spaces are:

� One for running CICSPlex System Manager

� One or more for the regions that run the business workload, the most common of
which are:

– Terminal-owning regions (TOR)

– File-owning regions (FOR)

– Application-owning regions (AOR)

Transactions typically arrive into a TOR and are routed to an AOR (which might use an FOR
to access data). If you are using transaction classes by classifying work in the CICS
subsystem portion of the WLM policy, then the TORs, FORs, and AORs are managed to the
transaction goals.

If you use transaction goals for CICS, performance blocks (PBs) are created in every TOR
region. The number created is equal to the number specified in MXT (max tasks). If you are
using transaction goals, the PBs are sampled every 250 milliseconds, whereas when using
region goals, the PBs are sampled every 2.5 seconds. Therefore, you can reduce the cost of
using transaction goals in CICS by reducing the MXT to a reasonable number for the region
and not setting it to the maximum possible. This is especially true for any smaller CICS
systems.

5.2.6 IMS considerations

IMS work can be managed to transaction goals by using the IMS subsystem in WLM. In the
WLM policy, you would assign the IMS transaction classes to service classes with response
time percentile goals. Except for batch processing, the other IMS address spaces are
managed in order to achieve the transaction goals. To improve startup time, however, the
primary address spaces should be assigned to a fairly high velocity and importance service
class. See 8.6.1, “IMS-related address spaces” on page 162 for a description of the IMS
address spaces.

Recommendation for CICS:

� Use transaction goals, but only after tuning the MXT parameter.

� Use a single period service class for the transactions, with a percentile response goal
(for example, 80% within .5 seconds).

� Assign the CICS regions to a high importance server service class so they get sufficient
resources for an efficient and timely startup. After the startup phase has completed, the
regions will be managed based on the transaction goals for the work running in those
regions.

� If CICSPlex SM is used, it must be run as a high importance, high-velocity started task
(for example, importance 1, velocity 70). Keep in mind that prior to CICS TS Version 4,
CICSPlex SM uses the percentile response goal as an average goal.

� For more recommendations about setting up CICS, see Chapter 6, “CICS
considerations” on page 107.
Chapter 5. z/OS infrastructure considerations 77

For more information about the relationship between IMS and WLM, see the presentation
titled Non IMS Performance PARMS, available on the Techdocs Web site at:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3842

5.2.7 WebSphere Application Server considerations

The WebSphere Application Server has two types of configurations:

� Base Application Server, which is used for testing but not ideally suited to large production
environments,

� Network Deployment (ND), which can support multiple Application Servers.

A WebSphere Application Server controller region feeds transactions to WLM. WLM then
sends the transactions to one or more servant regions that WLM is responsible for creating
and deleting, based on a minimum and maximum number of regions specified by the user
and WLM’s calculation of how many servant address spaces are required to meet the stated
goals.

WebSphere transactions can be classified into a service class using the WLM CB subsystem.
If you do not specify a default service class for this subsystem, any transactions that are not
explicitly classified will fall into SYSOTHER (discretionary).

Recommendations for IMS:

� IMS IRLM - IMS lock manager: assign this address space to the SYSSTC service
class.

� Of the remaining IMS started tasks, the most important one (in terms of having access
to the CPU when necessary) is DBRC. DBRC does not use much CPU time, but it must
get access to CPU in a timely manner when needed.

The Control Region started task is also very important to IMS. This started task uses a
lot more CPU time than DBRC. DLISAS is also a server type of address space for IMS
and should be classified along with the control region.

These started tasks should be assigned to the OPS_HI service class to ensure good
performance during startup, shutdown, and recovery.

Of the SCI (structured call interface), OM (operations manager), RM (resource
manager), and DLISAS (database support), only DLISAS tends to use much CPU time.
SCI, OM, and RM are optional, however if enabled, then those functions become
critical. These started tasks could be assigned to the OPS_SRV service class.

� Online transaction started tasks: MPPs/MPRs (message processing
programs/regions), IFPs (IMS fast path programs), JMPs (Java™ message processing
programs). These started tasks could also be assigned to our OPS_SRV service class.
The IMS transactions should be assigned to one or more IMS transaction classes, and
the transaction classes in turn assigned to one or two single-period service classes with
a percentile response goal.

� Batch jobs are: BMPs (batch message processing) and JBPs (Java batch message
processing). Assign all batch jobs to one or two service classes, usually one of the
standard JES batch service classes. If you want the longest-running jobs to have a
lower priority, you can use a multi-period service class that has a lower goal or velocity
than the first period. Depending on the characteristic of the work running in the job, use
a percentile response goal if possible. Because these transactions are run in batch,
these service classes can run at a lower importance, such as 3, 4, or 5.
78 System z Mean Time to Recovery Best Practices

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3842

The first step of the control region startup procedure invokes the BPXBATCH shell script, so
is managed by the OMVS subsystem. To reduce the startup time for the control region, it is
important to classify the BPXBATCH work to a high importance and velocity OMVS service
class.

For more information about WebSphere Application Server and WLM, see Techdocs
presentation PRS3317, available at:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3317

The presentation includes an excellent set of references. Technote TD102730 (available on
the same Web site) provides a further explanation of the OMVS classification process.

5.2.8 Putting them all together

Although each subsystem would like to run at the highest dispatch priority, each installation
must choose which subsystems get priority. This choice is greatly simplified by using
transaction goals on the subsystems that support them: CICS, DB2 DDF, DB2 sysplex
queries, DB2 stored procedures, IMS, OMVS tasks, and WebSphere server regions. This
approach both reduces the need to change the goals when a hardware change occurs, and
simplifies the classification of the other address spaces associated with a subsystem.
Creating an easy-to-manage workload policy for all of these subsystems by keeping it simple
is easy to do. Most of the subsystems can be managed in a very few service classes. To
determine the resource usage for each type of work, use several report classes instead of
separate service classes.

Suggestions
Although these are our suggestions for defining your work to WLM, adjust them as
appropriate for your installation:

� SYSSTC service class:

– DB2IRLM and IMS IRLM lock manager started tasks

– Certain monitor started tasks, such as RMF and RMFGAT

– Certain auto operations started tasks

WLM recommendations for WebSphere Application Server:

� Assign controller regions (Daemon, Node Agent, Deployment Manager, and application
servers) to a high velocity, high importance server class, but not SYSSTC.

� Use transaction goals to manage servant regions (those managed by WLM), but start
at a high velocity, high importance service class (but lower than the controllers) for initial
startup. Put them with the OPS_SRV service class.

� Classify transactions that are using the APPLENV name or transaction class in the CB
subsystem, using a single period service class with importance 2, and a percentile
response goal (for example, 80% within .5 seconds). You can create one or more
service classes for these transactions if needed.

� Because the start up of the controller region runs as a UNIX transaction, you will need
to classify it in the OMVS classification rules, using the started task name of the
controller region.

� Be cautious when defining limits on the number of server regions. A minimum number
that is too low can could delay the start up of these regions. A maximum number that is
too low could cause some transactions to time out.
Chapter 5. z/OS infrastructure considerations 79

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3317

– Certain system address spaces: LLA, ZFS, NET, JES2, VLF, JES2AUX, TCPIP, SMS,
RACF, TNF, VMCF, JES2S001, RESOLVER, and TN3270

– The OMVS kernel

� Highest velocity started tasks (for example, OPS_HI, importance 1, velocity 70):

– CICSPlex SM CMAS started task

– DB2MSTR and DB2DBM1 started tasks

– IMS controller regions (Control Region, DLISAS, and DBRC) started tasks

– WebSphere Application Server controller region (Daemon, Node Agent, Deployment
Manager) started tasks

� High velocity service class for started tasks whose work will use transaction goals (for
example, OPS_SRV, importance 2, velocity 60). The velocity service class is only used
during startup and shutdown

– CICS AOR, TOR, and FOR started tasks
– DB2DIST, and DB2SPAS started tasks
– IMS SCI, OM, RM, MPP, IFP, and JFP started tasks for handling transactions
– WebSphere Application Server servant region started tasks

� Medium or low velocity started tasks (for example, OPS_DEF, importance 4, velocity 20:
test subsystems should be assigned to a service class like OPS_DEF)

Test regions for all subsystems; these are managed by using region goals rather than
transaction goals.

� Batch processing (depending on priorities, run these as normal batch jobs):

IMS BMP and JBP jobs (defined in the JES subsystem).

� OMVS high importance transactions (for example, OMVS_HI, importance 1, velocity 60):

– WebSphere Application Server control regions (for first step)
– FTPSERVE

� CICS and IMS subsystem transactions (for example, ONL_HI, single period, 80% less
than .5 seconds). If different response goals are needed, two classes might be needed:
CICS transactions and IMS transactions.

� DB2, DDF, and CB (WebSphere Application Server) enclaves (for example, DDF_DEF,
importance 2 or 3, first period 80% within .5 seconds, second period velocity of 40.
DB2_DEF and WAS_DEF are similar to the settings for DB2, DDF, and CB enclaves).
Although a better solution is using just one period, this is not always possible. Two service
classes can be used if the volume of transactions is high enough, and you can identify
lower importance work.

5.3 SMS

The first subsystem that is defined in the IEFSSNxx member should be SMS (except perhaps
the automation subsystem, and that decision depends on the specific automation product you
are using). Because so many data sets are currently capable of being SMS-managed,
SMS-managed data sets will very likely be required by other address spaces as they start up
after the IPL. In fact, you may have noticed messages in Syslog stating that various address
spaces are waiting for SMS to initialize.

As observed previously, SMS initialization was the second-largest contributor to the elapsed
time of the part of NIP processing, taking 3.6 seconds in our test, and a maximum of 49
seconds in the systems we had IPLDATA data for.
80 System z Mean Time to Recovery Best Practices

SMS initialization includes locating and reading the SMS ACDS and COMMDS data sets and
loading information about the SMS objects (groups, classes, and ACS routines). Near the end
of its initialization, SMS writes information back to the ACDS data set. Although SMS obtains
information about the space usage of each volume and places that information in the ACDS,
this processing only happens when data sets get allocated on an SMS-managed volume, and
not at IPL time.

As with the other system volumes, you should place the SMS CDS data sets on volumes that
do not have any RESERVEs issued against them. And ensure that APAR OA23197 is applied
to all members of the sysplex. But beyond these actions, there is not much that can be done
to impact/improve the SMS initialization time. However, be careful not to jump to conclusions
if you see a message about an address space waiting for SMS to initialize; on our system,
SMSVSAM issues such a message, but SMS actually finished initializing just two seconds
later. So, if you see these messages, be sure to check how long they are actually waiting
before you invest a lot of time into trying to speed up SMS startup.

5.4 JES2

JES should be one of the first subsystems started after the core MVS IPL completes. In fact,
the z/OS MVS Initialization and Tuning Reference, SA22-7592, recommends that JES2 be
defined in IEFSSN immediately after SMS.

5.4.1 Optimizing JES2 start time

In this section, we review some of the more important considerations for getting JES2 up and
running as quickly as possible.

You can start JES2 from either the COMMNDxx member or from IEFSSNxx. We tried placing
the START JES2 command in the COMMNDxx member and IPLed, then we moved the start
to the IEFSSNxx member and IPLed again. The difference in the time to get to the point
where JES started was only two seconds, which was well within the normal difference from
one IPL to another. Based on this, where JES is started from appears to makes no material
difference.

JES2 checkpoint in coupling facility rather than on DASD
Many good reasons exist to put your JES2 Primary checkpoint data set in a coupling facility
(CF) rather than on DASD; the speed of the shutdown and subsequent re-IPL of your systems
are only two of the reasons. More information about the benefits of the use of CF compared to
DASD is available in JES2 Performance and Availability Considerations, REDP-3940.

If your checkpoint is still on DASD, we recommend that you convert the JES2 RESERVE to a
Global ENQ if you are using GRS Star (which we hope everyone is). The response time for an
ENQ request when using GRS Star should be better than can be achieved by using a
RESERVE, assuming that the GRS Star structure is in a CF that is configured to deliver good
response times. If the CF response time is very poor, the response time benefit of an ENQ
over a RESERVE will be reduced, however ENQs are still preferable from the perspective of
not locking out all other access to the volume containing the checkpoint data set while the
ENQ is held.
Chapter 5. z/OS infrastructure considerations 81

JES2 PROC data sets
Two types of data sets can be specified in the JES2 PROC: data sets containing the JES2
parameter members, and data sets containing JCL procedures that JES2 will use. In both
cases, we recommend not having huge concatenations with many data sets. The more data
sets there are, the longer that allocation processing takes to get through them all. We have
seen cases with customers having many hundreds of data sets referenced in the JES2
PROC, resulting in significant delays in starting JES2.

Although it will not change the JES2 start up time, we recommend moving the definitions of
the JES2 procedure libraries out of the JES2 PROC and into a JES2 parameter member. The
advantage of defining the libraries in this way is that you can subsequently change a proclib
concatenation without having to restart JES2.

Impact of JES2 parms on startup time
For installations that have been in existence for many years, finding that the JES2 parms
contain definitions for resources that are no longer needed or used, or perhaps do not even
actually exist any more is not unusual. Remember that JES2 has work to do to process every
initialization statement, so the more statements there are in the JES2 parms member, the
more time it takes JES2 to come up. For this reason, spend a few minutes to review your
JES2 parms to see if all the statements there are still actually required.

Also, regarding the JES2 parms, avoid using the asterisk (*) and other generic characters in
JES2 initialization statements that contain ranges, such as NODE(1-*) or PRT(1-*). For JES2
devices, referencing a device as part of a range (for example, LINE(1-*)) results in JES2
creating the control blocks it needs to manage that device. Note the following information:

� A subscript with a range references all devices in the range. So subscripts such as
(1-10), (50-1000), or (1-*) will create control blocks for all the logical devices in the
range.

� A subscript that contains only a generic does not. So specifying a subscript of (*) only
effects already-defined devices.

We conducted a test where we used a range containing an asterisk (*) to define printers and
nodes to JES2 - the statement we used is shown in Example 5-1. This resulted in 32,767
printers being defined to JES2, all with the same attributes.

Example 5-1 Example of use of * in JES2 initialization parameter

PRINTDEF SEPPAGE=LOCAL=HALF,TRANS=NO,NIFCB=STD3,NIUCS=GT10,LINECT=60
PRT(1-*) WS=(W,R,Q,PMD,LIM/F,T,C,P),CLASS=A

The time needed for JES2 to initialize jumped by more than 10 times, from an average of 4.84
seconds to over 50 seconds when using this definition statement. The CPU time used by
JES2 experienced an even larger jump as shown in Figure 5-1 on page 83.
82 System z Mean Time to Recovery Best Practices

Figure 5-1 Impact of use of * on JES2 initialization CPU and elapsed time

Understanding where the time is being spent
If you feel that your JES2 is not initializing as quickly as you would like, the first thing to do is
gain an insight into what is taking place between the time you enter the START JES2
command, and when JES2 completes initialization. The best tool for this is the JES2
$DPERFDATA command (this was discussed in 3.6, “JES2 commands” on page 32). In the
output from that command, the following fields are particularly of interest:

MVSSTART This field represents the time from the creation of the JES2 address
space until when JES2 code gets control. The main processing in this
time period is the allocation processing for the JES2 PROCxx
statements. If this time is large, focus on the processing of the JES2
PROC. In one case, an installation had hundreds of DD statements in the
JES2 PROC. Processing such a large number of DD statements
significantly delayed JES2 start processing.

IRPL This field represents the time that JES2 spends reading and processing
the JES2 initialization parameters. Improving performance of the volume
containing the JES2 initialization parms can help here, and so can
removing any parameters that are no longer required.

Also, any time waiting for WTORs as a result of syntax errors in the JES2
initialization parameters will be included here.

IRPOSTPL Similar to IPRL, this field is part of the post-initialization deck processing.
This too can be affected by the contents of the initialization stream.
Cleaning up any devices that are not necessary or no longer used can
help here.

Recommendation: Ideally each node or printer should be defined individually in the JES2
parms. However, if you still want to define multiple devices with one parm statement, use a
specific range such as PRT(1-100), rather than using (1-*).

0.25

4.84

41.53

50.67

0

10

20

30

40

50

60

S
ec

on
ds

JES2 Start Time
JES2 CPU Time
JES2 Start Time
JES2 CPU Time

Impact of JES2 Parms

With generic JES2
parms for printers

and nodes

With specific JES2
parms for printers

and nodes
Chapter 5. z/OS infrastructure considerations 83

IRDA This field is the processing that reads the JES2 checkpoint, allocates the
spool volumes, and validates the job and output queues. This is a
significant point in the initialization process. It is in IRDA processing that
JES2 gets the checkpoint data set lock; this serializes the checkpoint and
locks out other members. The lock is held by this member until JES2
warm or hot start processing completes.

WARMSTRT This field is the warm starting of the job queue. During warm start, jobs
that were active when a system comes down must be released for further
processing. Certain control blocks are read from the spool and validated
for consistency. The timing of this phase is very dependent on the amount
of work that was active and the type of start being done. This processing
can be greatly improved if reset member processing is done by an active
member when a member has to be re-IPLed. See the AUTOEMEM
operand on the JES2 MASDEF parm statement for more information.

Starting multiple systems concurrently
Extensive work was done on JES2 as part of implementing its sysplex support to better (and
automatically) handle situations where multiple JES2 subsystems are contending for access
to the JES2 checkpoint. As a result, JES2 is much better able to handle the situation where
multiple JES2s are being started concurrently.

Some customers do not start more than one JES2 member at a time because of the
contention messages that might be produced by JES during its initialization. However these
messages are simply informing you that JES2 is waiting for access to the checkpoint; they do
not necessarily mean that there is a problem. Even with the JES2s contending for access to
the checkpoint during the IPL, it is still far faster to IPL all system concurrently than to hold off
the IPL of each system until the previous system has gotten past the JES2 initialization
process.

5.4.2 JES2 shutdown considerations

The JES2 address space should be terminated prior to bringing down z/OS. Although this
should be done as cleanly as possible, it does not mean that you must use the $PJES2
command and wait for JES2 to completely shut down.

The preferred command to remove JES2 from the system when you plan to IPL is actually to
issue a $PJES2,TERM command. Considered “kinder” than using the ABEND parameter,
$PJES2,TERM removes JES2 but does not terminate active programs and devices that are
running under JES2. In fact, if nothing would have stopped a $PJES2 command from
completing, the $PJES2,TERM command behaves in exactly the same manner as $PJES2.

Although the $PJES2, ABEND command ends JES2 abruptly, in a similar manner to how JES2
ends in case of a JES2 abend, the TERM option stops JES2 in a more orderly way, ensuring
that track groups are not lost.

However, if you issue a $PJES2,TERM you must IPL; you cannot do a hot start of JES2 after
stopping JES with the TERM parameter. If you plan to stop and then hot start a JES2 without
an IPL, then the $PJES2,ABEND command should be used. Because of this approach, some
sites choose only to use the $PJES2,ABEND for an escalated shutdown, to maintain a
consistency point and avoid any confusion that might lead to an unscheduled IPL when only a
hot start of JES2 was needed.
84 System z Mean Time to Recovery Best Practices

If JES2 terminates while work is being done, it will require a warm start which takes longer
than a quick start. However, if most of the tasks running under JES2 are already down, the
elapsed time for the warm start is likely to be less than the time that would be spent waiting for
JES2 to come to an orderly stop. In addition, if you have specified the MASDEF parms of
AUTOMEM=ON and RESTART=YES, then another member of the JES2 MAS can do the
warm start while the system being stopped is finishing its shutdown and subsequent IPL.

The following ways can help ensure that JES2 is stopped safely and quickly:

� Drain JES2 initiators a reasonable amount of time before the planned shutdown of your
system. This approach both reduces the amount of work that JES2 needs to checkpoint at
shutdown, and helps you avoid having to either abend the jobs or wait for them to finish
before proceeding with the IPL. You might want to stop the initiators in groups: stop the
initiators used for long-running jobs first, followed by medium-length jobs, and finally short
jobs. Also, you should keep an initiator available to run the IMS archive jobs and similar
jobs.

� Cancel any remaining batch jobs running on the system that is being shut down prior to
initiating the system shutdown process using your automation. This approach ensures that
JES2 and any batch management software will have correct status information about
those jobs.

� Most likely your shutdown routine is well established and includes an order in which things
are shut down. This process should include bringing down all subsystems and resources
that run under JES2 as it needs to have all work completed to exit the system cleanly. To
bring down JES2, issue a $PJES2, however if JES2 has any tasks or work being
performed it will not stop until either that work finishes, or you escalate the shutdown. How
long you wish to wait before your escalation of the JES2 shutdown is something you need
to determine based on your unique circumstances. However, as mentioned before, if you
have most of the work that JES2 performs completed and you have other members of the
MAS up and configured to process the warm start for the departing member, the time you
save on the shutdown should easily exceed the warm start time. You can issue a $DJES2
command at anytime to easily see all resources that are still running under JES2. A helpful
approach is to issue the command before you start the shutdown process, and then
throughout the shutdown process to track your progress and determine where your
sticking points are.

5.5 OMVS considerations

Those of you with many years of experience with z/OS (and previously OS/390® and MVS
before that) will have noticed the growing role of UNIX System Services in the z/OS
environment. OMVS is now an integral part of z/OS, and critical parts of the system cannot
initialize without OMVS being available. For this reason, we provide recommendations for how
to keep the time for OMVS initialization as short as possible.

5.5.1 BPXMCDS

In “Sysplex Couple Data Set size” on page 59 we describe how XCF reads the entire Couple
Data Set (CDS) at IPL time, and how a very large CDS can elongate the time for XCF to
initialize. Similarly, the size of the BPXMCDS Couple Data Set can affect how long OMVS
takes to initialize.

To understand the impact of oversizing your BPXMCDS data set, we IPLed with two
BPXMCDS data sets formatted as shown in Table 5-1 on page 86.
Chapter 5. z/OS infrastructure considerations 85

Table 5-1 BPXMCDS attributes

The two things to consider in relation to the size of the BPXMCDS are:

� How the size affects the amount of time that OMVS takes to initialize at IPL time
� Whether the size affects the processing of each mount command

To determine the former, we IPLed the system with the normal-sized BPXMCDS, and then
again with the maximum-sized BPXMCDS. The results are shown in Figure 5-2. As you can
see, changing the OMVS size doubled the initialization time for OMVS. As with the sysplex
CDS, if you already have a very large (larger than necessary) OMVS CDS, you are unlikely to
want to do a sysplex IPL simply to reduce the CDS size. However if you are planning to
increase the size of your existing CDS, consider making a small increase, on the basis that
you can always make the CDS larger nondisruptively.

Figure 5-2 Results of BPXMCDS size on OMVS initialization time

We also tried issuing a Mount command for a file system using both the normal-sized
BPXMCDS and the maximum-sized BPXMCDS. Unfortunately, there is no console command
to mount or unmount a file system, so getting precise timing for these commands is difficult. In
the end, we submitted batch jobs containing Unmount and Mount commands, and monitored
the elapsed time of the jobs.

Size Number of
systems

Number of
mounts

Number of
AUTOMOUNT rules

Run 1: Normal size 12 500 50

Run 2: Maximum size 32 50000 1000

Note: Subsequent to our residency tests, z/OS 1.11 (and APAR OA26802 for z/OS 1.9 and
1.10) added the ability to MOUNT or UNMOUNT a file system from the console using
SYSREXX.

Impact of OMVS CDS Size

0

5

10

15

20

25

30

35

40

Time to zFS Start Time to OMVS Initialization
Complete

S
ec

o
n

d
s

Small

Maximum
86 System z Mean Time to Recovery Best Practices

With the maximum-sized CDS, the elapsed time for the job averaged 3.78 seconds. When we
switched to the normal-sized CDS (which required a sysplex IPL), the average elapsed time
dropped to only .2 seconds.

As with the sysplex couple data sets, we do not expect anyone to do a sysplex IPL simply to
move to a smaller BPXMCDS data set. However, if you want to increase the size of your
couple data sets, consider making small adjustments (because you can always move to a
larger CDS nondisruptively) rather than one large adjustment.

5.5.2 Mounting file systems during OMVS initialization

During OMVS initialization, OMVS attempts to mount any file systems that are referenced on
MOUNT statements in the BPXPRMxx Parmlib members that are pointed to on the OMVS
parameter in IEASYSxx. Obviously, the more file systems that are listed in this member, the
longer OMVS takes to initialize (because it mounts each one serially). Therefore, if you find
that important subsystems are being delayed in their startup because they are waiting for
OMVS to complete initialization, consider moving non-critical file systems out of the
BPXPRMxx member and mounting them later in the IPL process.

One way to achieve this is to define these file systems as AUTOMOUNT-managed, so that if
any process attempts to use them before you have a chance to mount them, the file system
will be automatically mounted. However, to avoid the delay that is encountered by the first
process that causes the file system to be mounted, you can run a small batch job that touches
all these file systems, causing them to be mounted before any user actually tries to use them.

Alternatively, after OMVS has initialized, you can:

� Run a little job that would issue MOUNT commands for all those other file systems.

� Use a set omvs=xx command to issue MOUNT commands contained in another
BPXPRMxx member.

� Exploit the new SYSREXX APIs for mounting UNIX System Services file systems, for
example F AXR,MNTMORE (where MNTMORE is a SYSREXX routine that mounts more file
systems.

We highly recommend using the following methodology to determine from where the MOUNT
for a given file system is issued:

� In the BPXPRMxx member, mount the SYSPLEX and version file systems, product file
systems (including IBM subsystems such as CICS, DB2, and so on), and the /etc, /tmp,
and /var file systems.

� In /etc/rc, mount the file systems for critical applications.

� In /etc/local/rc (or some other location) issue the mounts for non-critical applications.
You would run a batch job after the system has IPLed to mount these file systems.

One contributor to this book reduced the length of time to make OMVS available by over
20 minutes by organizing the mounts in this matter.

Use of SUB=MSTR for colony address spaces
Colony address spaces are normally started under JES. However if you are concerned with
how long JES takes to start, you have the option of starting the colony address spaces with
SUB=MSTR. This capability can allow the startup of the colony address spaces to proceed
before JES initialization completes. To use this capability, in your BPXPRMxx member, use
SUB=MSTR on FILESYSTYPE statements that use ASNAME. This can apply to zFS, NFS,
and TFS.
Chapter 5. z/OS infrastructure considerations 87

For more information about this capability, see “Starting colony address spaces outside of
JES” in z/OS UNIX System Services Planning, GA22-7800.

5.5.3 Commands processed during OMVS initialization

Just as mounting files can elongate OMVS initialization time, so can the processing of
commands. The /etc/rc file contains commands that are issued during OMVS initialization.
Review this file to ensure that only commands that must be issued at this time are contained
in the file. Any commands that can be issued later in the IPL process should be moved to a
different file and issued by automation after the critical subsystems that depend on OMVS
being available have completed initialization.

5.5.4 Mounting file systems read/write or read/only

The UNIX System Services sysplex file-sharing method that is implemented by UNIX System
Services is basically a function-shipping model, conceptually similar to a CICS FOR. For each
file system that will use sysplex file sharing, the file system is mounted on one member of the
sysplex, and all read or write requests for that file system from any member of the sysplex is
forwarded to that system using XCF. This provides great flexibility, because work that uses
that file system can be run anywhere in the sysplex. However, the cost of this flexibility is in
reduced performance: asking another system to retrieve some data and pass that data back
over XCF obviously takes longer than if the requesting system could just read the data itself.

For file systems that contain mainly programs, such as the version root (that is, the vast
majority of accesses are reads), consider moving any files or directories that require write
access to another file system. The file system that contains only code can then be mounted
as read-only on every member of the sysplex, meaning that each system can do its own I/O,
and receive correspondingly better performance.

z/OS 1.11 includes performance enhancements for sysplex file-sharing. However even with
these enhancements, performance would still not be equivalent to a file that is mounted as
read-only.

5.5.5 Shutting down OMVS

All I/Os to a UNIX file system are processed by OMVS. Just as you would not intentionally IPL
a system without first doing an orderly shutdown of your database managers, equally, you
should not IPL a system without doing an orderly shutdown of OMVS. The preferred way to
shut down OMVS is to follow these steps to bring down OMVS in an orderly manner:

1. Stop any address spaces such as TSO, TCPIP, VTAM, DFSS, FTP, WebSphere
Application Server, batch jobs and other address spaces that might use any part of OMVS
prior to stopping OMVS.

2. Stop the NFS file system. To do this, issue:

F OMVS,STOPPFS=NFS

3. When you are ready to stop OMVS, issue:

F OMVS,SHUTDOWN

If you need to escalate the shutdown, issue:

F BPXOINIT,SHUTDOWN=FILEOWNER
88 System z Mean Time to Recovery Best Practices

If you have thousands of OMVS file systems, OMVS shutdown could take quite a long time.
To minimize the impact of this time, try to shut down all the OMVS tasks/subsystems, then
shut down OMVS, and in parallel, shut down any other non-OMVS tasks

5.6 Communications server

To enable communication between z/OS and the outside world, VTAM, TCP, or both must be
started.

5.6.1 VTAM

In general, VTAM startup should take very little time. The most likely reason for an elongated
VTAM startup time is if it has to process a huge number of members in VTAMLST. Some sites
create one VTAMLST member per resource. Although this approach can help to more easily
change and manage the resources, if a very large number of resources (in the thousands)
exist, this approach could result in a significantly longer start time for VTAM.

Apart from elongating the start of VTAM itself, TCP cannot initialize until VTAM completes
processing all VTAMLST members listed in the ATCSTRxx member (or members), so the
longer this takes, the longer TCP startup is delayed.

Also, some subsystems (CICS, for example) cannot complete their initialization until they are
able to successfully communicate with VTAM. For all these reasons, you should ensure that
VTAM starts as quickly as possible.

Shutdown considerations
The processing to start VTAM is the same regardless of whether VTAM was stopped in an
orderly way, or if you just IPLed over it.

However, VTAM provides one of the ways for work to be routed into z/OS. Stopping VTAM
before the IPL will stop the flow of that work, helping you achieve the objective of stopping all
work prior to the IPL. For this reason, ensure that you stop VTAM before all planned IPLs.

5.6.2 TCP/IP

There is very little that you can do to influence the startup time of TCP itself. However, TCP
requires that both VTAM and OMVS are initialized before it can complete its initialization, so
any steps you take to reduce VTAM and OMVS startup time can have a positive effect on
TCP.

The only TCP attribute that is known to negatively affect TCP startup time is if you have a very
large number of VPN tunnels defined to TCP.

Important: Ensure the zFS address space stops in an orderly manner when possible (the
commands in the previous list will stop the zFS address space, along with OMVS). The
recovery time for a zFS or NFS file system that was mounted Read/Write and that was not
stopped in an orderly way prior to an IPL will far exceed the time that would be required for
an orderly shutdown.
Chapter 5. z/OS infrastructure considerations 89

Shutdown considerations
The start of TCP/IP itself is unaffected by whether TCP was shut down cleanly or not before
an IPL. So, from that perspective, stopping TCP before you IPL is not necessary.

However, TCP provides a conduit for work to come into z/OS. And because we want all work
to be stopped before we IPL, you should include TCP in the list of address spaces that should
be stopped in an orderly manner before the system is IPLed.

5.6.3 APPC

APPC startup generally does not depend on how APPC was shut down. No special startup
processing is necessary for APPC if it was not shut down cleanly. So whether the operator did
an orderly shutdown of APPC, or simply IPLed the system without shutting down APPC, the
startup of APPC in the next IPL would be the same.

However, when using protected conversations (the two-phase commit support in APPC),
APPC does maintain some persistent information. When protected conversations are in use,
additional information is maintained in a log stream. The recovery of data in the log stream is
handled transparently; however if APPC was not stopped cleanly, the recovery of that data
might take longer.

5.7 Miscellaneous

In addition to the infrastructure address spaces that provide direct services to middleware and
other products and programs, other things should also be considered in your quest for
optimizing z/OS IPL times.

5.7.1 Use of SUB=MSTR

Started tasks can be started either under JES or as a master subsystem. Starting a started
task with SUB=MSTR means that the started task can be started before JES finishes
initializing. If the command to start the started task is issued very early (possibly in the
COMMNDxx or IEACMDxx member), and if JES initialization takes a long time, starting these
tasks quicker than if they were started as normal started tasks is possible.

However, be aware of the restrictions that are associated with running a started task as
SUB=MSTR. For one thing, such started tasks do not have a job log, so there is no way to
view the messages (either normal messages or error messages) that normally appear in the
job log. You still, however, would see messages that went to Syslog, and any dumps
generated for the task, because those go to data sets. Also, the started task cannot use any
JES services. So, for example, you cannot have a DD SYSOUT=* statement. Also, started tasks
that are started with SUB=MSTR cannot use the internal reader to submit jobs.

In an attempt to get RMF started sooner in the IPL process, and to see how much benefit the
use of SUB=MSTR would provide, we changed RMF so that it could run as SUB=MSTR. This
meant having to change the existing JCL for RMF and RMFGAT, and also adding DD
statements for files that were previously allocated dynamically and used SYSOUT. (This
procedure, of course, would have to be done for any tasks that you want to run outside of
JES2 control.) Having done all that, we found that RMF was only started about eight seconds
earlier in the IPL process than was the case when RMF was started under JES.
90 System z Mean Time to Recovery Best Practices

Based on our experiences, unless the started task has a specific technical need to run with
SUB=MSTR as indicated by the software provider, converting your started tasks to run in this
way is probably not worth the effort.

5.7.2 System Management Facilities (SMF)

SMF provides a mechanism for applications to record measurement data to a single source:
the SMF logs. Parameters for SMF are specified in an SMFPRMxx member, with the suffix
being specified in member IEASYSxx. Several parameters in SMFPRMxx can affect the IPL
time and subsystem shutdowns. This section addresses those parameters: DDCONS,
PROMPT, EMPTYEXCPSEC, INTERVAL, DETAIL, and SMF Type 19 records. The record
types are described in z/OS MVS System Management Facilitiies, SA22-7630. The
SMFPRMxx parameters are defined in z/OS MVS Initialization and Tuning Reference,
SA22-7592.

SMF Type 19 records
SMF Type 19 records contain information about every DASD volume online to the system at
IPL time, when a QUIESCE command is issued, or when the SMF data set is switched. The
specifics about the content of the Type 19 records can be found in z/OS MVS System
Management Facilitiies, SA22-7630. The important point is that, depending on how many
DASD volumes are accessible to the system at the time of the IPL, the level of activity on
those volumes from other systems, and the performance characteristics of those volumes, it
can take a considerable amount of time to gather this information because a number of I/Os
are issued to each volume and a RESERVE is placed on each volume. Fortunately, if you do
not use these SMF records (and there are other ways to get this type of information), both the
records and the work involved in obtaining the information for the records, can be avoided by
turning off the collection of Type 19 records in the SMFPRMxx member.

When you IPL, the time that is spent gathering the information for the Type 19 records is
included in the SMFWAIT field in the IPLSTATS report; by monitoring that field, you can get a
reasonably accurate indication of the effect of turning on or turning off the Type 19 records.

To determine the effect of collecting this information about our system, we measured with
both the Type 19 records turned on and turned off, and with z/OS R9 and R10. The values of
the SMFWAIT field for the various runs are shown in Figure 5-3 on page 92.
Chapter 5. z/OS infrastructure considerations 91

Figure 5-3 Impact of enabling SMF Type 19 records

The first run was done using z/OS R10, with the Type 19 records turned on and about 3000
online DASD devices. The SMFWAIT time in that case was 33 seconds. We then IPLed the
same configuration again, to allow for the fact that the first IPL would have loaded the VTOCs
into the disk subsystem’s cache. The result was that the SMFWAIT time was just under 14
seconds. We then IPLed the z/OS R9 system using the same configuration and, again, with
the Type 19 records turned on. The SMFWAIT time was very close: just a little over 14
seconds time. We then turned the Type 19 records off in the SMFPRMxx member and IPLed
both systems again. The SMFWAIT time for the z/OS R10 system dropped to about .15
seconds, and for the z/OS R9 system it was about .6 seconds.

Obviously, turning the SMF Type 19 records off gave us a valuable performance benefit.

From looking at the actual Type 19 records, we found that SMF was processing roughly 100
devices per second. Obviously, this number can vary depending on your configuration.
However if you want to, you can look at the timestamps in the Type 19 records that are
created during an IPL of your system and determine how long processing all of your DASD
can take.

Given that most or all of the information in the Type 19 records can be obtained by some other
means (DCOLLECT, for example), our recommendation would be to turn off the recording of
these SMF records unless you have a specific need for them.

Turning off the collection of the Type 19 data has a side benefit of eliminating all the
RESERVEs (and the WAITs if there is contention on a volume) that are issued during this
processing.

Type 19 Impact

0

5

10

15

20

25

30

35

z/OS R10
19s On

z/OS R10
19s on

z/OS R9
19s On

z/OS R10
19s Off

z/OS R9
19s Off

S
ec

o
n

d
s

SMFW AIT
92 System z Mean Time to Recovery Best Practices

SMF Type 30 records
The SMF Type 30 record provides interval, step-level, and job-level information about batch
jobs, started tasks, and TSO users. These records are used by almost every installation for
accounting, reporting, or tuning.

Possible subtypes within a Type 30 record are as follows:

1 Job start or start of other work unit
2 Activity since previous interval ended
3 Activity for the last interval before step termination
4 Step-end total
5 Job termination or termination of other work unit
6 System address space, which did not go through full function start

One section that potentially exists in subtypes 2 through 6 is the EXCP section. It contains the
device type, DDname, device connect time for DIV, blocks read and written, and the largest
blocksize for every data set allocated during the life of the currently running step or job. There
is one 30-byte section for each DD/device pair (for SMS-managed data sets, if the data sets
have a VolCnt or DynVolCnt value greater than one). Many installations do not use the EXCP
sections because the information is available in an easier-to-use format in other SMF records.

The data for the EXCP sections comes from the TCTIOT control block. The data is placed in
the control block by the access method that is managing the associated data set. The data is
later retrieved from the TCTIOT by SMF. Note that information is stored in the TCTIOT and
retrieved by SMF regardless of whether or not the Type 30 records are enabled: even if the
Type 30 records are not enabled now, the possibility exists that they might be enabled before
the job ends, in which case the information to populate them must be available.

Certain subsystems, such as DB2, CICS, and IMS might allocate many thousands of data
sets, so the EXCP section can be quite large, and therefore take a long time to create. The
creation of the EXCP section occurs at the end of an interval (if interval processing is in
effect), the end of a step (if Type 30 subtype 4 records are enabled), and at the end of the job
(if Type 30 subtype 5 records are enabled). One potential way to reduce the shutdown time for
these subsystems, is to reduce the impact of the processing of the EXCP sections.

Four parameters in SMFPRMxx determine how the Type 30 EXCP sections are handled:

� EMPTYEXCPSEC parameter

In z/OS 1.10, a parameter (EMPTYEXCPSEC) was added to enable you to reduce the
number of empty EXCP sections. EMPTYEXCPSEC(NOSUPRESS) is the default. In this
case, you get an EXCP section for each data set that was allocated, and also get an
empty EXCP section for each SMS candidate volume in the storage group that was not
allocated to the DD statement. Specifying SUPRESS will suppress the creation of these
empty sections.

� DDCONS parameter

The DDCONS(NO) parameter turns off the consolidation of the EXCP sections before
they are written to the SMF data sets. This consolidation can take a considerable amount
of time when there are thousands of DDs, elongating the shutdown. Using DDCONS(NO)
can cause some records to be larger than would otherwise be the case, because there
can be multiple sections for the same DD/device pair if the program issued multiple OPEN
commands.

“Common wisdom” for years has been to use DDCONS(NO) on the basis that the time to
write more SMF data would be offset by the avoidance of the time required to consolidate
the records. However, our tests, using a z10 running with both z/OS 1.9 and 1.10, did not
show that DDCONS(NO) significantly reduced the shutdown time for either DB2 or IMS.
Chapter 5. z/OS infrastructure considerations 93

We suspect that the speed of the z10 is such that the benefit which is achieved from
reducing the amount of SMF data to be written is similar to the cost of doing the
consolidation.

If DDCONS(YES) is specified, the EXCP data is merged during interval processing into
the step-end hold area. This results in more time spent during interval processing, but
smaller step-end and job-end records.

� DETAIL and INTERVAL parameters

For started tasks, EXCP sections are generally created at the end of every interval (that is,
in the subtype 2 and 3 records) regardless of the setting of the DETAIL keyword.

However, the setting of the DETAIL parameter does affect the subtype 4 and 5 records, as
follows:

– If INTERVAL and NODETAIL are specified, the EXCP sections are written to the
subtype 2 and 3 records, but not to the subtype 4 and 5 records.

– If INTERVAL and DETAIL are specified, the EXCP sections are written to both the
subtype 2 and 3 records and the subtype 4 and 5 records.

– If NOINTERVAL is specified, the EXCP sections are written to the subtype 4 and 5
records, irrespective of the setting of the DETAIL keyword.

Specifying NODETAIL (the default), along with specifying INTERVAL for started tasks,
eliminates the EXCP sections for the subtype 4 and 5 records (end of step and job
respectively), but will still create them for the interval records (subtypes 2, 3, and 6). This
technique does not eliminate all EXCP processing during shutdown because the subtype
3 is created just before the subtype 4. However, it does reduce the processing and
creation of EXCP sections at shutdown (in the subtypes 3, 4, and 5) from three times to
one.

Specifying NOINTERVAL for started tasks means that no subtype 2 or 3 records are
created; instead, the EXCP sections are created for the subtype 4 and 5 records. It also
means that you would not get any subtype 6 records from the system address spaces,
which are only produced at intervals. Most installations use interval recording so that they
will not lose all of the job accounting information for their started tasks if the system fails
before the started tasks end.

In an attempt to understand the impact of the various options when used on modern
hardware, we ran the following seven tests on z/OS 1.10, and measured the elapsed
shutdown times for each case. The tests were made after DB2 had opened 100,000 data
sets, so that there were about 100,000 EXCP sections of 30 bytes each (or about 3 MB of

Note: Although DDCONS(NO) and DDCONS(YES) resulted in similar DB2 shutdown
times in our measurements, remember that specifying DDCONS(YES) will result in a
spike in CPU activity for the consolidation activity at the end of each SMF interval. In a
system that is CPU-constrained, this could affect other important workloads, which are
running on that system.
94 System z Mean Time to Recovery Best Practices

EXCP data in each of the Type 30 records). The elapsed times for the DB2 shutdowns are
shown in Figure 5-3 on page 92. The SMF interval was set to 15 minutes for these runs.

The tests were ran include:

� Test T1: This test was the baseline measurement, using INTERVAL, NODETAIL,
EMPTYEXCPSEC(NOSUPPRESS), and DDCONS(NO). A little over 3 MB of SMF data
was created in the subtype 3 records at DB2 shutdown. The subtype 4 and 5 records had
only about 5 KB of data each.

� Test T2: This test was similar to T1, except that the subtype 2 and 3 records for
SUBSYS(STC) were turned off in SMFPRMxx. Because INTERVAL was specified, the
EXCP sections were placed in the subtype 2 and 3 records, rather than in the subtype 4
and 5 records. However because the subtype 2 and 3 records were turned off in
SMFPRMxx, those records were never actually written to the SMF data sets. This setup
could be used by installations that do not use interval records and do not use the EXCP
sections.

The volume of SMF data created in this run was insignificant, about 11 KB in total.
Interestingly, turning off the subtype 2 and 3 records did not result in any noticeable
reduction in shutdown time. We think this was because the collection of the data is still
being done: turning off the subtype records stops only that data being written to the SMF
data sets.

� Test T3: This test was also similar to T1, except that NOINTERVAL was specified. This
approach resulted in EXCP sections being written for both the step (subtype 4) and job
(subtype 5) termination records, however no subtype 3 records needed to be created as
part of the shutdown. Although twice as much SMF data was written during DB2 shutdown
in this test compared to test T1 (the subtype 4 and 5 records each contained about as
much data as the subtype 3s did in T1), this resulted in the shortest shutdown elapsed
time of all the tests.

We suspect that the reduction in shutdown time is because the EXCP sections from all of
the intervals did not need to be added up to get the totals for the subtype 4 and 5 records.
This means that if you do not use the interval records, consider turning them off to reduce
the shutdown time, and eliminate SMF CPU time that is used at the synchronization of
every interval.

� Test T4: This test was again similar to T1, except that DDCONS(YES) was specified. As
you can see in Figure 5-4 on page 96, this combination resulted in the longest shutdown
time. The amount of SMF data created during DB2 shutdown was roughly the same as
test T1.

All measurements consisted of running a set of jobs to open 100,000 DB2 data sets. The
jobs ran for about one hour. After all the jobs completed, DB2 was stopped, and the
shutdown time was measured.

Most measurement cycles ran for about five SMF intervals. Presumably, as the number of
SMF intervals that has to be consolidated increases, the shutdown time would also
increase.

� Test T5: This test was also based on T1, except that DETAIL was specified. This caused
EXCP sections to be written for the subtype 3, 4, and 5 at DB2 shutdown. Interestingly,
even though this combination of parameters resulted in the largest volume of SMF data
being written at DB2 shutdown time (about 30 MB, compared to 3 MB for test T1), the
shutdown elapsed time was not as long as test T4.
Chapter 5. z/OS infrastructure considerations 95

� Test T6: Again, this test was based on test T1, except that any empty EXCP sections were
suppressed (EMPTYEXCPSEC(SUPPRESS)). For this test, the elapsed times of the DB2
shutdown were very similar to test T1, however the number of bytes of SMF data created
was a little more than half that created during T1.

� Test T7: This test was also the same as test T1 except that SMF Type 30 records were
turned off (NOTYPE(30)). Based on the elapsed time of the shutdown, it appears that the
processing relating to gathering the information for the Type 30 records still takes place;
turning off the Type 30s simply stops the records from being written to the SMF data sets.

Figure 5-4 SMF parameter effects on shutdown

Based on all our measurements, changing the SMF parameters has only a relatively small
impact on the DB2 shutdown times. One clear result was that the volume of SMF data that
was written to the SMF data sets at DB2 shutdown is only one of the factors in determining
the length of time taken to stop DB2.

NOPROMPT
One very important parameter to specify in SMFPRMxx is NOPROMPT. The default of
PROMPT(IPLR/LIST/ALL) requires a response from the operator. This technique could result in
a long delay at IPL time, waiting for the operator to reply. If you specify NOPROMPT and the
system finds an error in SMFPRMxx, a PROMPT occurs. Your operators should alert the
system programmer that an error occurred in the SMFPRMxx members, but simply reply
with u to let system initialization continue. Errors in SMFPRMxx can delay an IPL because of
the operator prompt.

Note: All these tests were run using a workload that opened 100,000 DB2 data sets. The
DB2 DSMAX value was set to 100,000, so no data sets were closed prior to DB2 being
shut down.

To see if closing and reopening data sets would make much difference, we did a run with
DSMAX set to 10,000. The resulting shutdown time was comparable to the equivalent run
when DSMAX was set to 100,000.

Impact of SMF options

505

510

515

520

525

530

535

540

545

550

T1 T2 T3 T4 T5 T6 T7

Test

S
h

u
td

o
w

n
 t

im
e

Min

Avg

Max
96 System z Mean Time to Recovery Best Practices

5.7.3 System Logger enhancements

There are many users of System Logger: CICS, IMS, APPC, WebSphere, and Operlog are
just some of the more common ones. Normally, when an address space disconnects from a
log stream, all the data for that log stream that is still in a CF structure, or a Staging data set
on DASD, are moved to an offload data set. However, if a system goes down in a manner that
does not allow orderly disconnect operations from the log streams, those log streams must be
recovered when the system comes back up. Recovery processing depends on whether the
log stream is a CF log stream or a DASDONLY log stream:

� CF log streams have the log data recovered by reading all the data from the appropriate
staging data sets, writing it out to the CF structure, and then moving the log data to offload
data sets.

� DASDONLY log streams have their log data recovered by reading it all from the staging
data set and placing it into the Logger data space. No specific movement to the offload
data sets is required for the DASDONLY log streams.

Two important structures in System Logger are the Connect/Disconnect tasks, and the
Allocation task. The Connect/Disconnect tasks handles the Logger processing related to
connecting to, or disconnecting from, a log stream. And, prior to z/OS 1.11, the Allocation
task handled all processing related to the Staging data sets during recovery; specifically, the
Allocation task does the SVC 99 (dynamic allocation) and then reads all the data from the
Staging data set.

Prior to z/OS 1.10, there were 256 Connect/Disconnect tasks for CF log streams, and just one
Connect/Disconnect task for DASDONLY log streams. In z/OS 1.10, Logger was enhanced so
that there would also be 256 DASDONLY Connect/Disconnect tasks. This enhancement
allowed many more Connect/Disconnect tasks for DASDONLY log streams to run in parallel.

In all releases of z/OS up to and including z/OS 1.11, there is only one Allocation task. And
because that task potentially has a lot of work to do for each Connect request for a log stream
that has a Staging data set, that task was effectively the biggest bottleneck during System
Logger recovery processing.

In z/OS 1.11, Logger was again enhanced. This time, much of the processing that was
previously carried out in the Allocation task was moved out to the Connect/Disconnect tasks
(and remember that we have up to 512 of these). Therefore, instead of just one Staging data
set being read at a time (during recovery processing), potentially 512 staging data sets could
be read in parallel. There is still only a single task to do the SVC 99 processing for all Logger
offload data sets, however, the scalability of Logger recovery processing has been
significantly enhanced.

Recommendation for SMF Parameters:

� Specify NOPROMPT.

� Turn off Type 19 records.

� If you have subsystems with a large number of open data sets, and want to reduce the
shutdown time, specify the following information:

– SUBSYS(STC,INTERVAL,NODETAIL,...)
– DDCONS(NO), although this recommendation might change in a future release
– EMPTYEXCPSEC(SUPPRESS), if at z/OS 1.10 or later.
Chapter 5. z/OS infrastructure considerations 97

5.7.4 Health Checker

The IBM Health Checker for z/OS evaluates your active system and potentially provides
recommendations to improve the system. The Health Checker provides several checks
relating to items that might affect the elapsed time of IPLs and shutdowns, so we recommend
that you enable all checks to run on a regular basis and that you take action if any exceptions
are detected.

An example of a check that is related to shutdown time is the XCF_CLEANUP_VALUE check.
This checks determines whether the XCF cleanup time is greater than 15 seconds, which is
the time allowed for members of an XCF group to clean up their processing before the system
is placed in a wait state. If this time is set too long, the system waits for longer than necessary
before placing itself into a wait state (at which point it can be IPLed again).

Another example is the VSM_CSA_CHANGE check. This check determines whether the
amount of CSA has changed from before the last IPL. A change in CSA size can result in the
size of below-the-line private storage being decreased by 1 MB. Such a change can result in
programs abending, which in turn would require an unplanned IPL to restore the private area
to the prior size.

By default, all checks are run when the Health Checker address space (usually called
HZSPROC) is started. Because a few of the checks can issue many I/Os, you might decide to
delay the starting of the Health Checker until after your online systems start up. However, a
good reason to run the VSM_CSA_CHANGE check as soon as possible after the IPL is so
that if another IPL is required to address a decrease in below-the-line private size, that IPL
can be initiated before all the subsystems are up and running. Each installation site should
decide the most appropriate strategy for the site.

For additional information, see IBM Health Checker for z/OS User’s Guide, SA22-7994.

5.7.5 Optimizing I/O

The following items are considered best practices by IBM, but provide a different amount of
benefit at each installation depending on the way that the installation is currently configured.
These best practices might help you reduce start up time for applications with large amounts
of device activity:

� HyperPAV is not expected to play a large role in the z/OS startup processing, but several
studies have shown the benefits to major subsystems. Use HyperPAV if it is available; the
startup time of DB2, CICS, IMS, and WebSphere should be reduced.

� Especially for systems that run for a long time between planned IPLs, you should ensure
that any data sets required during the IPL are not eligible for migration by HSM or a similar
product.
98 System z Mean Time to Recovery Best Practices

5.8 Stand-alone dump processing

In the processing shown in Figure 1-1 on page 3, there is a period between the end of the
shutdown and the start of the subsequent IPL. An activity that might take place in this period
is a stand-alone dump. Of course, we hope that this is not something you will ever have to do.
you will never need to take a stand-alone dump. However if you must, the suggestions in this
section should help you reduce the amount of time required to complete the stand-alone
dump.

5.8.1 Best practices for stand-alone dump processing

In the case of a system hang, a stand-alone dump (SAD) is frequently taken. The elapsed
time for the dump can be reduced by having the most efficient dump processing and
exploiting all the latest enhancements. Performance improvements to stand-alone dump
processing were made in z/OS 1.9 and z/OS 1.10, and more were announced for z/OS 1.11.

IBM has published several documents that describe best practices for dump processing. You
should understand and use those recommendations in order to reduce MTTR. The
documents are:

� z/OS Best Practices: Large Stand-Alone Dump Handling Version 2:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD103286

� WSC Flash10143, z/OS Performance: Stand-Alone Dump Performance:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10143

For more information about stand-alone dumps, see z/OS MVS Diagnosis Tools and Service
Aids, GA22-7589.

Recommendations for stand-alone dumps:

� Use a multi-volume stand-alone dump data set and use the ADMSADDD utility to
create those data sets.

� Place each part of the data set on a separate DASD volume that does not contain other
data sets (other than different stand-alone dump data sets).

� Place each part on a separate logical subsystem (LSS).

� Place each part on a controller that will not conflict with other high-activity work. For
example, avoid the cache that is being used by DB2 on another system.

� Use FICON-attached DASD volumes, rather than ESCON-attached.

� Use a minimum of 4 or 5 DASD volumes per stand-alone dump data set, plus any
additional volumes needed to contain the dump size (up to 32).

� Do not define stand-alone dump data sets as targets of a hyperswap, eligible to be
moved, eligible for automatic migration, or eligible for automatic RLSE.

� Use DASD rather than tape volumes.
Chapter 5. z/OS infrastructure considerations 99

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD103286
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10143

5.8.2 Creating efficient stand-alone dumps

To prepare for a stand-alone dump:

1. Create a dump data set. You can either use the IPCS SADMP utility or use the REXX
AMDSADDD utility described in z/OS MVS Diagnosis: Tools and Service Aids,
GA22-7589. Example 5-2 shows JCL for AMDSADDD. The advantage of using the
AMDSADDD utility is that you can save the parameters in a library (we put them in our
JCL library) as a pattern for later jobs.

Example 5-2 AMDSADDD utility

//*
//* CREATE 2 STAND-ALONE DUMP DATA SETS
//*
//STEP1 EXEC PGM=IKJEFT01,REGION=64M
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
EXEC 'SYS1.SBLSCLI0(AMDSADDD)' -
 'DEFINE (MTTRD1,MTTRD2,MTTRD3,MTTRD4,MTTRD5)(SYS1.SADMP01) -
 3390 3300 Y'
EXEC 'SYS1.SBLSCLI0(AMDSADDD)' -
 'DEFINE MTTRD6(SYS1.SADMP02) 3390 3300 Y'
/*

2. Create the stand-alone dump program text with your options on an IPL-ready volume. For
our tests, we used the simplest version of the ADMSADMP macro, as shown in
Example 5-3. This builds a standalone dump program on device number 6E20, indicating
that the dump should be written to data set SYS1.SADMP02 on DASD device 193B.

Example 5-3 AMDSADMP macro

SADMPA AMDSADMP VOLSER=MTTRD2,
IPL=D6E20,
OUTPUT=(D193B,SYS1.SADMP02), X
MINASID=PHYSIN, X
CONSOLE=SYSC, X
REUSEDS=ALWAYS, X
IPLEXIST=YES

END

5.8.3 AutoIPL feature

z/OS 1.10 introduced a feature called AutoIPL. This can provide a quicker method of taking a
stand-alone dump and re-IPLing. In fact, the main advantage of AutoIPL is that it removes the
operator from the decision about whether or not to take a stand-alone dump. In the time most
people would need to determine whether to do a dump or not, and then to find the dump
procedures, AutoIPL will have completed the dump.

The option can be invoked because of one of a set of wait state codes or when you vary a
system offline with the V XCF,sysname,OFFLINE command. Parameters are specified on the
AUTOIPL keyword in the DIAGxx member of SYS1.PARMLIB.
100 System z Mean Time to Recovery Best Practices

Example 5-4 shows several parameters.

Example 5-4 DIAGxx parameters for AUTOIPL

AUTOIPL SADMP(device,loadparm) MVS(device,loadparm)
This is the format of the AUTOIPL parameter

AUTOIPL SADMP(D111,TEST1) MVS(LAST)
This directs that a stand-alone dump be taken when any of the pre-defined
wait state codes are encountered. An AutoIPL of MVS will occur after the
SADMP using the same load parameters as were used during the previous MVS
IPL. The name ‘TEST1’ can be anything, and does not reflect a loadparm.

AUTOIPL SADMP(NONE) MVS(NONE)
This statement turns off AUTOIPL.

AUTOIPL SADMP(6E20,TEST2) MVS(C425,C730FKM1)
This causes a stand-alone dump to be taken when any of the pre-defined
wait state codes are encountered. The dump will be IPLed from device
6E20. An AutoIPL of MVS will be done using the IPL volume of C425 and a
loadparm of C730FKM1.

When you remove an image from a sysplex, you can request a SADMP, an immediate re-IPL,
or both with the following commands:

� V XCF,sysname,OFF,SADMP

� V XCF,sysname,OFF,REIPL

� V XCF,sysname,OFF,SADMP,REIPL

Further information about AutoIPL can be found in:

� z/OS MVS Initialization and Tuning Reference, SA22-7592, which describes the DIAGxx
parameters

� z/OS MVS Planning: Operations, GC28-1760, which describes the wait states that trigger
AutoIPL.

� WSC Flash10655, z/OS: AutoIPL for Sysplex Failure Management Users, which
describes changes that allow AutoIPL to coexist with sysplex failure management (SFM),
and adds support of SADMP with the V XCF command. These were introduced through
PTFs in January 2009.

5.8.4 Test results

For our testing, we created two stand-alone dump data sets: a single volume dump data set
and a five-volume dump data set. We executed a stand-alone dump using MINASID(ALL) on
a z/OS 1.10 system to both dump data sets. We also dumped to a 5-volume data set with
MINASD(PHYSIN).

To have a consistent amount of information to dump, we started with a freshly IPLed image,
varied the system out of the sysplex, then executed the stand-alone dump. Finally, we did a
VARY OFFLINE command with AutoIPL. Figure 5-5 on page 102 shows the results of

Recommendation: In z/OS 1.10 or later, implement AutoIPL, even in installations using an
SFM policy. Be sure that the PTFs mentioned in WSC Flash10655 are installed.
Chapter 5. z/OS infrastructure considerations 101

following three tests of stand-alone dumps. The results clearly show how multiple volumes
can reduce the elapsed time of a stand-alone dump:

� S1: One volume with full data
� S2: Five volumes with full data
� S3: Five volumes with minimal data

Figure 5-5 Elapsed stand-alone dump times

To save the stand-alone dump statistics to a data set, we issued the commands under TSO
and IPCS, as follows:

1. In TSO (select option 6), enter the following commands:

free ddname(ipcstoc)
free ddname(ipcsprnt)
attrib (list1) dsorg(ps) recfm(v b a) lrecl(125) blksize(1254)
alloc ddname(ipcsprnt) dataset('zs9037.sadmttrp') mod keep space(10,5) cyl

using(list1)
alloc ddname(ipcstoc) dataset('zs9037.sadmttrt') mod keep space(10,5) tracks

using(list1)

2. In IPCS, browse the stand-alone dump data set (option 2), and enter the name of the
stand-alone dump data set.

3. Enter the following IPCS commands:

ip open print (file(ipcsprnt) title(‘Test S1’))
ip verbx sadmpmsg ‘stats’ noterm print
ip close print

To determine the timings for the dump, we used the following command:

IP VERBX SADMPMSG ‘STATS’

Figure 5-6 on page 103 shows an extract from the result of that command. From this output,
we can determine the elapsed time to complete the dump. In this case, the dump started at
16:21:06.82 (after the operator replied) and ended at 16:22:27.72, for an elapsed time of
20.90 seconds.

E la p s e d S A D M P tim e

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

S 1 S 2 S 3

T e st ru n

S
ec

o
n

d
s

102 System z Mean Time to Recovery Best Practices

Figure 5-6 Message log from stand-alone dump

The ‘STATS’ option on the IPCS VERBX SADMPMSG command is intended for the use of
IBM developers. But most of the information is fairly easy to understand. Figure 5-7 on
page 104 shows a portion of the information provided by ‘STATS’ option. The headings in blue
with an underline show the main sections of dump processing and provide the times, data
rates, and other significant information about each section. The very last section provides
information about the entire dump processing. This section actually gives us better
information about the elapsed time, the console delay time, and the real elapsed time of the
dump than is provided in the message log. The data rate shows that this dump was able to
dump an average of 59.3 MB per second. The data rate is dependent on the speed of the
devices, the controllers, the connections, and the speed of the processor. The length of the
dump is dependent on the data rate, the speed of the processors, and the amount of storage
that was dumped.

Note: The multi-volume support in standalone dump is designed to write more data to the
faster devices and connections. In our tests, we used five volumes for our multi-volume
tests. As you can see in Figure 5-6, because one of the volumes was on the latest DS8000
model, more data was written to that volume (23%) than to the other volumes, which were
on ESS devices. You can determine the distribution among the dump data sets by looking
at the end of the SADMP log.

*** STAND-ALONE DUMP MESSAGE LOG ***
16:20:51.37 AMD083I AMDSADMP: STAND-ALONE DUMP INITIALIZED. IPLDEV: D111
16:20:51.40 AMD001A SPECIFY OUTPUT DEVICE ADDRESS (1)
16:21:06.82 -193B
16:21:06.82 AMD114I AMDSADMP INITIATED BY MVS, WAIT STATE CODE = 001840A2
16:21:52.68 AMD094I 193B MTTRD1 SYS1.SADMP
16:21:52.71 IS VALID, HOWEVER, IT MAY ALREADY CONTAIN DATA FROM A PREVIOUS
DUMP.
16:21:52.74 THE INSTALLATION CHOSE TO ALWAYS REUSE THE DUMP DATA SET.
16:21:52.94 AMD101I OUTPUT DEVICE: 193B MTTRD1 SYS1.SADMP
16:21:52.97 SENSE ID DATA: FF 3990 E9 3390 0A BLOCKSIZE: 24,960
16:21:53.06 AMD101I OUTPUT DEVICE: 6E20 MTTRD2 SYS1.SADMP
16:21:53.09 SENSE ID DATA: FF 3990 E9 3390 0C BLOCKSIZE: 24,960
. . .
16:21:53.50 AMD011A TITLE=
16:22:11.85 -S1
16:22:11.94 AMD005I DUMPING OF REAL STORAGE NOW IN PROGRESS.
16:22:13.27 AMD005I DUMPING OF PAGE FRAME TABLE COMPLETED.
16:22:13.73 AMD010I PROCESSING ASID=0001 ASCB=00FDC800 JOBNAME=*MASTER*
16:22:14.06 AMD076I PROCESSING DATA SPACE SYSDS000, OWNED BY ASID 0003.
. . .
16:22:27.52 AMD005I DUMPING OF REAL STORAGE COMPLETED.
16:22:27.57 AMD104I DEVICE VOLUME USED DATA SET NAME
16:22:27.60 1 193B MTTRD1 4% SYS1.SADMP
16:22:27.63 2 6E20 MTTRD2 4% SYS1.SADMP
16:22:27.66 3 8407 MTTRD3 7% SYS1.SADMP
16:22:27.69 4 C425 MTTRD4 4% SYS1.SADMP
16:22:27.72 5 D50D MTTRD5 23% SYS1.SADMP
16:22:27.78 AMD113I IPLDEV: DB44 LOADP: C730FKM1 AUTOIPL REQUESTED BY MVS
Chapter 5. z/OS infrastructure considerations 103

Figure 5-7 Output from STATS parameter

Restriction: Stand-alone dumps use a single CPU for processing the dump. The practical
limit for the speed of any stand-alone dump is the speed of the CPU. In test environments,
the SADMP seems to max out at about 80% busy of a single processor. Adding additional
data sets at that point does not provide any added benefit.

IARPFT Data Space Dump Statistics
Start time 05/29/2009 16:20:51.373440
Stop time 05/29/2009 16:22:13.736530
Elapsed time 00:01:22.36
Elapsed dumping time 00:00:03.58
Console reply wait time 00:01:18.77
. . .
Average output data rate 37.31 megabytes per second
Page buffers 888
SVC Frequency
0 8,724
3 43
. . .
120 224
252 67,642
In Real Virtual Dump Statistics
Start time 05/29/2009 16:22:13.736538
Stop time 05/29/2009 16:22:17.644181
Elapsed time 00:00:03.90
. . .
In Use Real Dump Statistics
Start time 05/29/2009 16:22:17.644192
Stop time 05/29/2009 16:22:17.872555
Elapsed time 00:00:00.22
. . .
Paged Out Virtual Dump Statistics
Start time 05/29/2009 16:22:17.872567
Stop time 05/29/2009 16:22:18.558727
Elapsed time 00:00:00.68
. . .
Available Real Dump Statistics
Start time 05/29/2009 16:22:18.558909
Stop time 05/29/2009 16:22:27.550227
Elapsed time 00:00:08.99
. . .
Total Dump Statistics
Start time 05/29/2009 16:20:51.373440
Stop time 05/29/2009 16:22:27.550227
Elapsed time 00:01:36.17
Elapsed dumping time 00:00:17.40
Console reply wait time 00:01:18.77
Logical records dumped 263,381
. . .
Average output data rate 59.12 megabytes per second
104 System z Mean Time to Recovery Best Practices

Additional recommendations for stand-alone dumps:

� Keep the control statements for AMDSADDD and AMDSADMP in a JCL library so that
you can use them as a pattern for the next dumps.

� Use the MINASID(PHYSIN) option for the shortest dumps, although the dump may not
contain all the information you need to debug the problem. In that situation, you might
have to wait for a repeat of the problem, in which case you would get a full dump.

� Use IPCS to gather information about stand-alone dumps, such as the usage of the
multiple volumes.

� Use multi-volume dumps. Although the Best Practices guidelines say that you can use
up to 32 volumes, 16 seems to be the maximum based on the speed of the current
processors.
Chapter 5. z/OS infrastructure considerations 105

106 System z Mean Time to Recovery Best Practices

Chapter 6. CICS considerations

This chapter concentrates on the startup and shutdown times of CICS regions. It does not
cover the performance for transactions running in a fully-initialized CICS region. For more
information about the performance of a CICS region, see CICS Transaction Server for z/OS
V3R2 Performance Guide, SC34-6833.

The startup times for your CICS regions only become a major issue when your users do not
have access to the applications that run in your CICS regions. If you have a High Availability
setup that allows the applications to be spread across a number of regions (which in turn are
spread over a number of z/OS systems), providing continued access to your applications,
even if one or more CICS regions are down, MTTR should be less of an issue.

This chapter explores options that might help reduce CICS startup times, from a configuration
with just a single CICS region, up to a CICSplex with over 100 regions, spread over three
z/OS systems. It also shows the results of various measurements to give an indication of
where savings can occur.

6

© Copyright IBM Corp. 2010. All rights reserved. 107

6.1 CICS metrics and tools

The metric we were specifically interested in was the elapsed time for the CICS regions to
initialize. We defined the elapsed time as being the time between when the
$HASP373 aaaaaa STARTED message is presented for the first CICS region, to when the
DFHSI1517 aaaaaa Control is being given to CICS message is presented for the last CICS
region to complete initialization.

In our investigation we utilized a number of tools to study the CICS regions. We used the
following tools and products to review the CICS Monitoring Facility (CMF) SMF 110 records
(which are produced if CICS starts the Monitoring Facility):

� DFH$MOLS

A sample program supplied by CICS that processes and prints SMF records produced by
the CICS Monitoring Facility.

� CICS Performance Analyzer

A product that provides comprehensive reporting based on the SMF records produced by
the CICS Monitoring Facility, CICS Statistics, and CICS Server Statistics.

� RMF

The RMF Postprocessor program produces workload management reports based on
information from the MVS Workload Manager (WLM).

The focus for most of the tests in this chapter was the elapsed time for the CICS regions. We
obtained this information from the job logs of the CICS regions.

6.2 The CICS and CICSPlex SM configuration used for testing

The z/OS systems used for our measurements contained both CICS and CICSPlex SM
address spaces. Each of the three systems contained five TORs and 30 AORs. Each one
also contained a CICSPlex SM CMAS and had a CICSPlex SM WUI region defined. The
Maintenance Point CMAS was the one running on LPAR $2. One further address space was
started on each LPAR, to be used by CICSPlex SM. This address space was the Environment
Services System Services (ESSS) and it provided MVS system services to the CICSPlex SM
components. The structures for each region were placed in the same coupling facility,
FACIL03.

Figure 6-1 on page 109 shows a simplified diagram of our CICSplex.
108 System z Mean Time to Recovery Best Practices

Figure 6-1 Our sysplex: #@$#PLEX

We also carried out some tests without the CICSPlex SM address spaces. Those tests
required only the five TORs and 30 AORs on just one system

6.3 CICS START options

CICS provides a number of startup options:

� Cold

CICS starts with limited reference to any system activity recorded in the CICS global
catalog and system log from a previous run of CICS.

� Initial

CICS starts with no reference to any system activity recorded in the CICS global catalog
or system log from a previous run of CICS. The CICS global catalog and system log are
initialized, and all prior information is lost. Resynchronization information for remote
systems is not preserved, so damage might be done to distributed units of work.

An INITIAL start differs from a COLD start in the following ways:

– The state of the global catalog is ignored. It can contain either data from a previous run
of CICS, or it can be newly initialized. Any previous data is purged.

– The state of the system log is ignored. It can contain either data from a previous run of
CICS, or it can reference new log streams. CICS does not keep any information saved
in the system log from a previous run. The CICS system log streams (DFHLOG and
DFHSHUNT) are purged and CICS begins writing a new system log.

– Because CICS is starting a new catalog, it uses a new logname token in the exchange
lognames process when connecting to partner systems.

– User journals are not affected by starting CICS with the START=INITIAL parameter.

#@$#PLEX

CMAS
CM$2

WUI
PW21

TORs
PT21-5

AORs
PA21-x

#@$2 #@$3

CMAS
CM$3

TORs
PT31-5

AORs
PA31-x

#@$A

CMAS
CM$A

TORs
PTA1-5

AORs
PAA1-x
Chapter 6. CICS considerations 109

� Warm

CICS starts, after a normal shutdown, restoring CICS to the status it was in at the last
normal CICS shutdown, except for some facilities that it initializes as for a cold start. CICS
always restores the trace domain according to the system initialization parameters, and
will restore other facilities unless the COLD option is specified on their system initialization
parameters.

� Emergency

CICS starts, after an abnormal shutdown, restoring recoverable resources to their
committed states.

You should specify START=AUTO, which causes a warm start after a normal shutdown, and
an emergency restart after failure.

You should also always use the same JCL, even if it specifies START=COLD or
START=INITIAL, to ensure that CICS restarts correctly when restarted by the MVS Automatic
Restart Manager (ARM) after a failure. With Automatic Restart Manager support, CICS
overrides the START parameter when restarted by ARM and enforces START=AUTO if both
of the following conditions are met:

� Your startup system initialization parameter specifies START=COLD (or INITIAL).

� Your ARM policy specifies that the Automatic Restart Manager is to use the same JCL for
a restart following a CICS failure.

The change in the CICS startup to START=AUTO is reported by message DFHPA1934, and
ensures that the resulting emergency restart handles recoverable data correctly.

If the ARM policy specifies different JCL for an automatic restart, and that JCL specifies
START=COLD, CICS obeys this parameter but risks losing data integrity. Therefore, if you
need to specify different JCL to ARM, specify START=AUTO to ensure data integrity.

6.4 General advice for speedier CICS startup

In this section, we provide a checklist of the areas of CICS that can benefit from a review and
that can help with your startup times:

 Ensure your GCD, LCD, CSD, temporary storage data sets, and transient data
intra-partition data sets are correctly defined for that release of CICS. For details about
how to define these data sets, see CICS Transaction Server for z/OS Installation Guide,
GC34-6812, at:

http://publibfp.dhe.ibm.com/epubs/pdf/dfha1c02.pdf

 When defining terminals, pay attention to the position of the group names within the
GRPLIST. If the group containing the TYPETERMs is last, all the storage used for building
the terminal definitions is held until the TYPETERMs are known. This could result in a
CICS region becoming low on storage. For this reason, place the groups containing the
model TERMINAL definitions followed by their TYPETERMs in the GRPLIST before the
user transactions and programs. Note that GRPLISTs are only used during cold and initial
starts.

 Ensure that the DFHVTAM group precedes any TERMINAL or TYPETERM definition in
your GRPLIST. The DFHVTAM group is contained in the DFHLIST GRPLIST, so adding
DFHLIST first to your GRPLIST ensures this order. If you do not do this, the programs that
are used to build the terminal control table (TCT) are loaded for each terminal, thus
slowing initial and cold starts.
110 System z Mean Time to Recovery Best Practices

http://publibfp.dhe.ibm.com/epubs/pdf/dfha1c02.pdf

 Try not to have more than 100 entries in any group defined in the CSD. Having more might
cause unnecessary overhead during startup processing.

 Make sure that changing the START= parameter does not change the default for any
facilities that your users do not want to have auto-started. Any facility that you might want
to override may be specifically coded in the PARM= parameter in the EXEC statement; or all
of them may be overridden by specifying START=(...ALL).

 If you do not intend to use of CICS Web support or the Secure Sockets Layer, be sure that
TCPIP=NO is specified in the system initialization table (SIT). If TCPIP=YES is specified,
the Sockets domain task control block is activated, increasing the CICS startup time.

 If a group list contains resource definitions that are needed by another group list, the group
list containing those definitions must be installed first.

 Specify the buffer, string, and key length parameters in the LSR pool definition. This step
reduces the time taken to build the LSR pool, and reduces the open time for the first file to
use the pool.

 Keep the number of program library data sets that are defined by DFHRPL to a minimum,
especially if you are using LLACOPY=YES. One large program library data set requires
less time to perform the LLACOPY operation than many smaller libraries. Similar
considerations should be applied to any dynamic LIBRARY resources installed at startup.

 Placing shared modules in the link pack area (LPA) can help to reduce the time to load the
CICS nucleus modules. For more information, refer to:

http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/topic/com.ibm.cics.ts.inst
allation.doc/topics/dfha11d.html#dfha11d

 CICS does not load programs at startup time for resident programs. The storage area is
reserved, but the program is actually loaded on the first access through program control
for that program, which speeds startup. The correct way to find a particular program or
table in storage is to use the program-control LOAD facility to find the address of the
program or table. The use of the LOAD facility physically loads the program into its
predefined storage location if it is the first access.

The use of a PLTPI task to load these programs is one possible technique, but bear in
mind that the CICS system is not operational until the PLTPI processing is complete, so
you should not load every program. Load only what is necessary, or the startup time will
increase.

 Try to eliminate any incorrect or obsolete CICS parameters that result in messages being
issued unnecessarily.

 Avoid writing program list table (PLT) programs that run at startup and issue WTORs.

 Ensure that all resources, that are required by startup, are available and avoid WTORs
being issued. Such WTORs require an operator response before initialization can
continue.

 The use of DISP=(...,PASS) on any non-VSAM data set used in steps preceding CICS
reduces allocation time, when they are needed next. If you do not use PASS on the DD
statement, subsequent allocation of these data sets must go back through the catalog,
which is a time-consuming process.

Terminal and program autoinstall checklist items include:

 With autoinstall, you do not have to define and install every resource that you intend to
use. CICS dynamically creates and installs a definition for you when a resource is
requested. CICS bases the new definition on a model definition provided by you. By
defining fewer resources during CICS startup, you can reduce the startup elapsed time.
Chapter 6. CICS considerations 111

http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/topic/com.ibm.cics.ts.installation.doc/topics/dfha11d.html#dfha11d

 Consider the use of autoinstalled terminals as a way of improving cold start, even if you do
not expect any storage savings. On startup, fewer terminals are installed, thereby reducing
the startup time. CICS provides a transaction called CATD, which delete autoinstalled
terminals that are not being used.

 Program autoinstall offers the potential for faster restart times. For benefits, see:

http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/index.jsp?topic=/com.ibm.c
ics.ts.doc/dfha3/topics/dfha30d.html

 You might want to increase the number of buffers to improve autoinstall performance. For
performance considerations, see:

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.
cics.ts.performance.doc/topics/dfht3ak.html

 The receive-any pool (RAPOOL) system initialization parameter should be set to a value
that allows faster autoinstall rates. For more information, see:

http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/index.jsp?topic=/com.ibm.c
ics.ts.performance.doc/topics/dfht34f.html

6.5 The effects of the LLACOPY parameter

To optimize performance, CICS generally obtains information about the location of CICS
modules once and then keeps an in-storage copy of that information. That information is then
used on subsequent retrievals of that module. This means that CICS does not need to go out
to the PDS or PDSE every time a program is loaded. The information about the location of the
module is obtained using either a BLDL call or an LLACOPY call.

BLDL can get its information from one of two places:

� By reading the actual PDS or PDSE, or

� If the module resides in a library in the LLA FREEZE list, the information will be returned
from LLA’s in-storage directory, thereby avoiding the I/O to DASD.

LLACOPY gets its information from LLA. In this case, CICS will pass the module and library
information to LLA and LLA obtains the information from the PDS and passes it back to CICS.

Whether CICS uses BLDL or LLACOPY to obtain the module information is controlled by the
CICS LLACOPY SIT parameter. But before we discuss CICS’ use of LLA, let us look at what
LLA does.

LLA
Library lookaside (LLA) minimizes disk I/O in two ways:

� By keeping a version of the library directory in its own address space

� By keeping a copy of frequently used load modules in a virtual lookaside facility (VLF) data
space

LLA manages modules (system and application) whose library names you have specified in
the appropriate CSVLLAxx member in SYS1.PARMLIB. The two optional parameters in this
member that affect the management of specified libraries are:

FREEZE Tells the system always to use the copy of the directory that is
maintained in the LLA address space.

NOFREEZE Tells the system always to search the directory that resides on DASD.
112 System z Mean Time to Recovery Best Practices

http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/index.jsp?topic=/com.ibm.cics.ts.doc/dfha3/topics/dfha30d.html
http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/index.jsp?topic=/com.ibm.cics.ts.doc/dfha3/topics/dfha30d.html
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.performance.doc/topics/dfht3ak.html
http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/index.jsp?topic=/com.ibm.cics.ts.performance.doc/topics/dfht34f.html

To have a library managed by LLA, you must specify its name in the CSVLLAxx member. The
only exception is libraries in LNKLST, which LLA manages by default.

If a library is included in the FREEZE list in the CSVLLAxx member, a BLDL for a member in
that library will result in information from the LLA address space being returned. Specifically,
the actual PDS or PDSE directory on DASD is not read. This approach provides improved
performance, because retrieving the information from the LLA address space is much faster
than having to do an I/O.

However, if a load module is updated in the load library, the information in the LLA address
space is not automatically updated. This situation can be addressed in one of two ways:

� An LLA UPDATE command can be issued from the console, pointing at a Parmlib member
that tells LLA which directory information it needs to get an up-to-date copy of.

� A system service called LLACOPY can be invoked by a program (CICS, in this case),
telling LLA which directory information it needs to get an up-to-date copy of.

LLACOPY is a service provided by z/OS to enable address spaces to coordinate their use of
LLA-managed libraries with the LLA address space. See z/OS V1R9.0 MVS Authorized
Assembler Services Guide, SA22-7608 for more information about the LLACOPY macro.

And that brings us to how CICS uses LLACOPY.

CICS use of LLA
The LLACOPY service can be used by CICS to ensure that LLA has the latest version of the
data set directories at CICS startup time, and then to refresh the LLA directory any time that
CICS is made aware that a module has been updated.

How CICS uses the LLACOPY service is controlled by the LLACOPY parameter in SIT; the
default value is LLACOPY=YES.

When LLACOPY=YES is specified, CICS issues an LLACOPY macro the first time a module
is located from the DFHRPL data set concatenation or from a dynamic LIBRARY
concatenation. The LLACOPY macro tells LLA to acquire the latest BLDL information from
the PDS, update the LLA in-storage copy (if the library is defined in the FREEZE list), and
pass the information back to CICS. This ensures that CICS always obtains the latest copy of
any LLA-managed modules. However, it is important to point out that if you specify
LLACOPY=YES, that CICS does not actually get the benefit of the LLA in-storage directory;
every time CICS uses LLACOPY to obtain directory information for a load module, it causes
the directory on DASD to be read again. In fact, from a CICS perspective, if LLACOPY=YES
is specified, there is really no benefit to be obtained from defining the CICS libraries in the
LLA FREEZE list.

The other disadvantage of specifying LLACOPY=YES is that a huge number of LLACOPY
calls will result during CICS initialization, when CICS is building its information about all the
programs defined to it. This approach drives up the CPU utilization of the LLA address space,
which can end up competing with CICS for access to the CPU. Also, because each LLACOPY
operation is serialized by an exclusive ENQ on SYSZLLA1, if a large number of CICS regions
are started at the same time, they can spend a considerable amount of time queuing for
access to this ENQ.

As an alternative to LLACOPY=YES, you can specify LLACOPY=NEWCOPY. In this case,
CICS does not issue an LLACOPY at startup time, but it does use the LLACOPY service
when loading a module as a result of a NEWCOPY or PHASEIN request. This eliminates the
contention and CPU use associated with all the LLACOPY requests, however it introduces
Chapter 6. CICS considerations 113

the risk that the directory information for the CICS libraries in LLA is out of date at the time
that CICS is starting.

Specifying the LLACOPY=NEWCOPY has the same effect on CICS startup as
LLACOPY=NO, except that when CICS issues a NEWCOPY for a module it then uses the
LLACOPY macro to update the BLDL information in LLA.

The other option is to specify LLACOPY=NO. In this case, CICS uses the BLDL macro to get
the BLDL information from the LLA or PDS. If you code LLACOPY=NO, CICS never issues an
LLACOPY macro. This means that if you issue a NEWCOPY or a PHASEIN for a module,
CICS will not request LLA to refresh its in-storage directory. Therefore, if you use
LLACOPY=NO, you must have a process in place to update the LLA in-storage directory
when a module is changed or added—otherwise CICS will end up using an old copy of the
module.

If you specify either LLACOPY=NEWCOPY or LLACOPY=NO, there is a benefit from placing
the CICS libraries in the LLA FREEZE list, because CICS will use BLDL to obtain directory
information in both of these cases, and BLDL will use the LLA in-storage information.

The CICS Statistics and dump formatter display status information for the programs running
in CICS. The various states are:

UNUSED The program has been defined but not yet acquired.

LOCATED An LLACOPY or BLDL has been issued for the program and it has
been found in a data set in the DFHRPL concatenation or in a dynamic
LIBRARY concatenation.

LOADED The program has been loaded.

DELETED The program definition has been deleted.

LLA effect on CICS performance
To better understand the effect of the various LLACOPY options on CICS startup times, we
ran a number of tests. The attributes that we changed for the various tests were:

LLACOPY We tried setting this to both YES and NO.

START We started our CICS regions using both an INITIAL and an AUTO start.

CICSPlex SM The CICSPlex SM address spaces typically take longer to start than a
regular CICS region. But initialization of a regular CICS region cannot
complete until it has communicated with CICSPlex SM. This usually
means a brief pause in CICS initialization while it waits for
CICSPlex SM to respond. To understand the impact of using
CICSPlex SM, we ran a suite of measurements, where CICS would
use CICSPlex SM, and another set where it would not use it.

Tip: When CICS performs a warm or emergency restart, it batches many modules onto
each LLACOPY or BLDL, resulting in a smaller number of LLACOPY or BLDL calls,
thereby reducing the overhead. Alternatively, when CICS does a cold or initial start, it
issues a separate LLACOPY or BLDL call for each module, resulting in increased CPU
utilization.

Note: Regardless of which LLACOPY option you use, you should still define the CICS
libraries to LLA. Even if you do not add them to the FREEZE list, having the data sets
managed by LLA means that the most-frequently used modules are eligible for caching in
VLF, providing a performance benefit every time those modules need to be loaded.
114 System z Mean Time to Recovery Best Practices

The first set of measurements were run with CICS set up to not use CICSPlex SM. We ran a
number of starts with a variety of LLACOPY=YES and NO, and START=INITIAL and AUTO.
The results of the runs are shown in Figure 6-2. Note that these values represent the time
from issuing the command to start all the CICS regions, through to the time the last CICS
region issued the Control is being given to CICS message. Also see Table 6-1.

Figure 6-2 LLACOPY timings excluding CICSPlex SM

Table 6-1 Elapsed time to start CICS with different LLACOPY options (without CICSPlex SM)

Given the additional work that is generated by the use of LLACOPY=YES, and the
serialization involved in processing the LLACOPY requests, we expected that it would take
longer to start CICS with LLACOPY=YES than with LLACOPY=NO, and this proved to be the
case. The test involved starting a total of 35 CICS regions, on a system with two dedicated
z10 CPs. When LLACOPY=YES was specified, the CPs were 100% utilized for periods
during the CICS startup (with the LLA address space using a significant amount of CPU). A
subsequent test with six dedicated CPs (to reduce the CPU bottleneck) reduced the CICS
startup time by about 6 seconds, however there was still a clear gap in the startup time
between LLACOPY=YES and LLACOPY=NO because of the serialized LLACOPY
processing. Remember that when LLACOPY=NO is specified, CICS uses BLDL instead of
LLACOPY to obtain the directory information. BLDL does not require the exclusive
SYSZLLA1 ENQ and is therefore less prone to being delayed by other BLDLs on the same
system.

The second set of measurements included CICSPlex SM. Figure 6-3 on page 116 contains
the elapsed time (in seconds) to initialize the CICSPlex SM and CICS regions in a single
system, with the different LLACOPY and START options specified in each region’s SIT. Also
see Table 6-2 on page 116.

Start LLACOPY=YES LLACOPY=NO

START=INITIAL 39 18

START=AUTO 35 15

CICSplex without CICSPlex/SM

0

10

20

30

40

50

Yes No

LLACOPY Value

S
ec

o
n

d
s

Start=Initial

Start=Auto
Chapter 6. CICS considerations 115

Figure 6-3 LLACOPY timings including CICSPlex SM

Table 6-2 Elapsed time to start CICS with different LLACOPY options

As expected, adding CICSPlex SM to the environment increased the overall CICS startup
time. However, the use of LLACOPY=YES no longer resulted in the longer startup; in fact,
using LLACOPY=YES in this configuration appears to result in a slightly faster startup.

If the SIT parameters indicate that CICS is to communicate with CICSPlex SM, CICS
initialization pauses until it receives a response from the CICSPlex SM address space. If the
CICSPlex SM regions are started at the same time as the CICS regions, CICSPlex SM might
not be ready to accept the connection request from the CICS regions at the time they issue
the requests; as a result, the CICS regions might have to wait for some time for the response
back from CICSPlex SM. This time allows the LLACOPY requests to complete while the CICS
regions are still waiting to hear back from CICSPlex SM. When CICSPlex SM activates, it
responds to all the CICS regions. The CICS regions then complete their initialization and
issue the Control is being given to CICS messages. In our measurements, this time
waiting to hear back from CICSPlex SM meant that the start times for LLACOPY=YES and
LLACOPY=NO were much closer.

From our investigation of the use of LLA and LLACOPY, we see that the use of
LLACOPY=YES does result in increased CPU utilization and (depending on your
configuration) might result in a longer CICS initialization time. You must decide the following
information:

� If you want to be certain that CICS is always using the latest version of each module, and
do not want the additional system management complication of issuing an
F LLA,UPDATE=xx before you start CICS, then you will probably prefer the use of
LLACOPY=YES.

� If the startup speed of CICS must be as short as possible, and you are willing to
implement some mechanism to ensure that the LLA in-storage directory is up to date, you
may prefer the use of LLACOPY=NEWCOPY.

LLACOPY=YES LLACOPY=NO

START=INITIAL 72 seconds 79 seconds

START=AUTO 59 seconds 75 seconds

CICSplex including CICSPlex/SM

0

20

40

60

80

100

Yes No

LLACOPY Setting

S
ec

o
n

d
s

Start=Initial

Start=Auto
116 System z Mean Time to Recovery Best Practices

In a test or development environment, where startup times are less critical, and changes are
likely to be more frequent, you might decide to use LLACOPY=YES for simplicity. For
production CICS regions, where the frequency of module updates is probably less, and
systems management processes may be more stringent, you might prefer to use
LLACOPY=NEWCOPY.

6.6 Using DASDONLY or CF log streams?

Another configuration option that we wanted to investigate was how the use of DASDONLY
log streams, as opposed to CF log streams, would affect CICS startup times. We were also
interested in whether the number of log streams defined in a single CF structure would make
much difference to startup times.

CICS uses the MVS System Logger for all its logging and journaling requirements. CICS uses
the services provided by the MVS System Logger for the following CICS logs:

� The CICS system log is used for:

� Dynamic transaction backout

� Warm and emergency restarts

� Cold starts, but only if the log contains information required for resynchronizing in-doubt
units-of-work

� Forward recovery logs, auto-journals, and user journals.

The MVS System Logger is a component of z/OS and provides a programming interface to
access records on a log stream

The three most common configurations for CICS to operate in are:

� The coupling facility is non-volatile, meaning that the log stream data can be duplexed to a
System Logger data space.

� The coupling facility is volatile, meaning that the CICS log streams should be duplexed to
a System Logger staging data set.

� The log stream is defined as DASDONLY, meaning that one copy of the log stream data is
kept in a staging data set and the duplexed copy is kept in a System Logger data space.

Note: CICS Transaction Server for z/OS Version 4 implemented changes that should result
in a faster startup of the CICSPlex SM regions. These changes can affect the dynamics of
combining LLACOPY=YES with the use of CICSPlex SM that we observed in our
measurements.
Chapter 6. CICS considerations 117

Coupling facility and DASDONLY log streams
Each log stream contains a sequence of blocks of user data that the System Logger internally
partitions over three types of storage:

� Primary (or interim) storage

This can be in a structure within a coupling facility that holds the most recent records
written to the log stream. Log data written to the coupling facility is also copied to either a
data space or a staging data set.

For DASDONLY log streams, a CF structure is not used. The primary medium for
DASDONLY log streams is the staging data set. Log data written to a DASDONLY log
stream is held in a data space and in a staging data set.

� Secondary storage

When the primary storage structure for a log stream reaches the installation-specified
HIGHOFFLOAD threshold, older records that have not been logically deleted are
automatically moved to secondary storage on DASD (also known as offload data sets by
System Logger). This process is known as DASD offloading. For DASDONLY logging, the
offloaded log blocks are retrieved from the Logger data space for that log stream. For a CF
log stream, log blocks to be offloaded are retrieved from the CF structure. After data is
offloaded, it is still available to the MVS System Logger.

� Tertiary storage

This is HSM ML1 or ML2. Your HSM or SMS policy controls the point at which old offload
data sets get moved to tertiary storage. However, even when the data sets move to tertiary
storage, the data in the data sets remains available to System Logger.

Log data is considered hardened when it is written to the Logger offload data sets.

DASDONLY log streams do not use the coupling facility storage. A DASDONLY log stream
has a single-system scope; only one system at a time can connect to a DASDONLY log
stream. However multiple applications from the same system can simultaneously connect to a
DASDONLY log stream. Alternatively, a CF log stream may be connected to by applications
that are running on multiple systems in the sysplex.

We first ran a set of three measurements on a single system, to see how long the CICS
startup would take using the following options:

� Each log stream defined as DASDONLY.

� Each log stream defined to use a CF structure and System Logger data spaces, with 15
log streams per structure (we call these tests CF15).

� Each log stream defined to use a CF structure and System Logger data spaces, and only
one log stream per structure (we call these tests CF1).

The CICS regions were started with START=INITIAL during all of these tests. We changed
the AORs and TORs to use the set up options we listed here. Also, to filter out the effect of
waiting for the CICSPlex SM response, we started the CICS regions without CICSPlex SM.
We also used LLACOPY=NO to remove the impact of waiting for LLACOPY processing to
complete.

In the first test, we started all CICS regions on just one system ($3). The results of the
measurements are shown in Figure 6-4 on page 119.
118 System z Mean Time to Recovery Best Practices

Figure 6-4 Impact of log stream location: single system test

Table 6-3 contains the timings, in seconds, from the tests.

Table 6-3 Timings for $A LPAR testing

Based on these results, when running on a single LPAR, the DASDONLY log streams appear
to give the best performance for the TORs, but the worst performance for the AORs. However
from analyzing the TOR job logs, it appears that the major cause of the increased startup time
for the TORs was contention on the CICS CSD as a result of the shorter AOR initialization
times. It important to note as well that there was a considerable amount of variability in the
startup time from one region to another, varying by as much as 4 seconds from one region to
another during the same measurement run. Also, because the AOR initialization completed in
less time when using the CF log streams, there was more CPU contention, with CPU usage
hitting 100% a number of times during CICS initialization and this may have contributed to the
increase in the TOR startup time.

Note that these tests were conducted on a z/OS 1.10 system; z/OS 1.10 included
enhancements to System Logger to enable increased parallelism in connect and disconnect
processing for DASDONLY log streams.

We then ran the same series of tests again, but this time we started CICS on all three
systems in the sysplex. Other than the fact that we were starting three times as many CICS
regions, everything else was the same between these tests and the previous tests.

Because the systems were running different releases of z/OS, we thought it was more
meaningful to present the results for each system separately, in each case showing the
average startup times for the TORs and AORs when using each of our different log stream
options.

TOR or AOR DASDONLY CF1 CF15

Average TOR time 4.2 5.5 7

Average AOR time 19.6 14.9 13.4

CICS Log Stream Type

0

5

10

15

20

25

DASDONLY CF1 CF15

Type

S
ec

o
n

d
s

TORs

AORs
Chapter 6. CICS considerations 119

Figure 6-5 shows the startup times for the CICS regions running on system $2 (z/OS 1.9).
Again, you see that the longest startup times were when we used DASDONLY log streams.

Figure 6-5 Impact of log stream type on CICS startup times on system $2

The corresponding results from the $3 system (z/OS 1.10) are shown in Figure 6-6. Again,
you can see the pattern where the startup using the DASDONLY log streams was the slowest.

Figure 6-6 Impact of log stream type on CICS startup times on system $3

System $A showed a similar pattern to these two systems.

$2 Log Stream Comparison

0

10

20

30

40

50

60

DASDONLY CF1 CF15

Log Stream Type

S
ec

o
n

d
s

TORs

AORs

$3 Log Stream Comparison

0

10

20

30

40

50

60

DASDONLY CF1 CF15

Log Stream Type

S
e

c
o

n
d

s

TORs

AORs
120 System z Mean Time to Recovery Best Practices

Overall, there is a pattern that using CF log streams appears to result in the fastest CICS
startups. However, consider the following observations:

� The numbers shown in the figures are averages. In any run, we saw significant differences
from one CICS region to another. In general, the difference was less than 10 seconds, but
in one extreme case, the slowest region took nearly twice as long to initialize as the fastest
region.

� Comparing the startups on a single system to those where we started the CICS regions
on all systems at the same time, we see that starting roughly 100 CICS regions across
three LPARs took significantly longer than starting 35 regions on just one system.

� All the CF log stream runs we did were with log streams that were duplexed to System
Logger data spaces. If you were using Staging data sets with these log streams, the
performance advantage of CF log streams over the DASDONLY runs might disappear.

These observations indicate that contention between the CICS regions plays a significant
part in the startup time of a given region. If you do not have many CICS regions to start, the
impact of contention is probably not worth worrying about. However, if you have hundreds of
regions to start, then starting the regions in waves, instead of all in parallel, can help. Also, if
you are using a release of z/OS prior to z/OS R10, the performance difference between CF
and DASDONLY log streams might be greater. Although we did not have a chance to
measure it, z/OS R11 includes parallelization enhancements to System Logger that should
improve the startup times for large numbers of CICS regions that use Staging data sets,
especially when restarting after a system failure.

For more information about optimizing the use of CICS and the MVS System Logger, see
Systems Programmer’s Guide to: z/OS System Logger, SG24-6898.

6.7 Testing startup scenarios

The objective of the next set of measurements was to identify whether any benefit would be
observed from starting the different regions in groups, rather than starting them all at the
same time. We thought that perhaps reduced contention between the regions might result in
a shorter overall startup time.

For the first test, we started the CICSPlex SM address spaces first. When the
EYUXL0010I aaaaaaaa CMAS initialization complete message had been issued on the
CMAS, we then started the TORs. As soon as the TORs had issued message DFHSI1517
Control is being given to CICS, we then started all the AORs. See Table 6-4.

Table 6-4 Timings for starting CICS regions in groups

The combined startup time of 80 seconds is slightly better then when we started all the
regions at the same time, where we observed an elapsed time of 84 seconds. However, we
were starting the regions manually; the use of automation to start each of the groups of CICS
regions would almost certainly result in a larger difference.

Regions Base

CMAS 48

TORs 3

AORs 19

Total elapsed time (including
manual intervention)

80
Chapter 6. CICS considerations 121

The next test was to start the AORs in groups of five rather than all together. Again, we
started the CICSPlex SM address spaces first, then the five TORs, and then the AORs in
groups of five.

After the CICSPlex SM address spaces were started, we waited 50 seconds and then started
the TORs. We waited 50 seconds because the time from the first run told us that the
CICSPlex SM CMAS region took about 50 seconds to initialize. We waited this long to try and
avoid any sort of contention. We then started the TORs, followed by the first group of AORs.
We waited for about four seconds and then started the next group of AORs and so on.

We used a number of combinations of wait times and groupings of AORs. As you would
expect, the reduced contention resulted in a shorter startup time for a given CICS region.
However, the total elapsed time to start the full set of CICS regions did not vary by more than
a few seconds, which is easily within the margin of error from one test to another.

If you have CICS regions that are more critical than others, consider staggering their startup
in this manner, starting the more important ones first, especially if you have a large number of
CICS regions. However, if all regions support all applications, a simpler approach is probably
to start all the regions together. If you do decide to stagger them, starting the AORs first would
make sense, followed by the TORs. If you start the TORs first, CICS will appear to the user to
be available again, even though, in fact the applications will not be available until the AORs
start.

6.8 The effects of placing CICS modules in LPA

The link pack area (LPA) contains common reentrant modules shared by the system, and
exists to provide:

� More efficient use of real storage exists by sharing one copy of the module.

� Improved protection: LPA code cannot be overwritten, even by key 0 programs.

� Performance can be improved and the demand for real storage reduced if you use the LPA
for program modules.

If more than one copy of the same release of CICS is running in multiple address spaces
of the same system, each address space requires access to the CICS nucleus modules.
These modules may either be loaded into each CICS address space, or shared in the LPA.
Sharing the modules in LPA reduces the working set and, therefore, the demand for real
storage.

Additionally, placing the modules in LPA means that they have to be retrieved from DASD
only once, instead of every CICS region encountering the delay while the programs are
loaded from DASD. This should result in reduced times for CICS to load these modules.

Some CICS modules must be installed in LPA. These modules can be found in data set
DFHLPA.

You can optionally install other CICS modules into the LPA. CICS provides a usermod called
DFH$UMOD which can be used to move the modules you would like to be in the LPA from the
CICS load libraries. It also provides a description and whether the module would be good to
include in the LPA; for example, if you are a heavy user of a particular function. And
information about whether the module requires USELPACOPY(YES) is provided. User
modules may also use the LPA, if they are read-only and have been link-edited with the RENT
and REFR options.
122 System z Mean Time to Recovery Best Practices

The SIT parameter LPA is used to indicate whether you want to use LPA for that CICS region.
When the LPA parameter is set to YES, CICS modules installed in the LPA can be used from
there instead of being loaded into the CICS region.

Additionally, for each non-nucleus CICS-supplied LPA-eligible module you must specify
USELPACOPY(YES) on the associated PROGRAM resource definition. CICS provides a
sample DFHCSDUP input called DFH$ULPA, which can be used to change the program
definitions in your CSD.

If necessary, you can use the PRVMOD system initialization parameter to exclude a particular
module from using the LPA. CICS nucleus modules do not need to specify USELPACOPY(YES),
so the way to stop using these modules from the LPA is to use the PRVMOD system
initialization parameter.

To determine the benefit of specifying LPA=YES as a SIT parameter, we ran a base
measurement with the CICS TORs (5) and AORs (30) on LPAR $3 and using
LLACOPY=YES, Start=Auto, LPA=NO, and using the CF1 log stream. We started all the
regions in parallel.

For this particular test, we did not use CICSPlex SM because we wanted to see any
improvements in startup time using the LPA, and we did not want these values to be lost in
the time for the CICS regions to connect to the CICSPlex SM CMAS address space.

We use this run as our base measurement and refer to it as Run 1.

For the next run (which we called Run 2), we ran the CICS-supplied usermod to copy a
number of CICS modules into an LPA library and updated the program definitions accordingly.
The only other change we made was to change LPA=NO to LPA=YES in the SIT overrides.

For the final measurement, we ran with the same configuration as Run 2, with the exception
that we changed LLACOPY=YES to LLACOPY=NO. The results of the three sets of
measurements are summarized in Figure 6-7 on page 124.

Note: If you specify USELPACOPY(YES) for a load module that does not exist in an LPA
library, you will receive a message similar to the following one:

+DFHLS0109I DSTCPTA1 753
DFHLDLD1 is unable to locate module DFHWBMTH in the LPA. DFHRPL or dynamic
LIBRARY version of module will be used.
Chapter 6. CICS considerations 123

Figure 6-7 Impact of CICS use of LPA for CICS modules

The results show that specifying LPA=YES results in an immediate improvement in the
initialization time of the CICS regions (Run 2). For Run 3, when we used LLACOPY=NO, we
see the initialization time has decreased again.

We believe that using the LPA=YES SIT parameter is beneficial because it offers you
significant improvement in initialization times, and offers you the protection of having your
modules in the LPA. It also offers you a saving in the real storage used on your system; a
saving that increases as the number of CICS regions you are running increases. The only
thing you should be careful about is the impact that placing all those CICS modules in LPA
might have on the size of the above-the-line private area. There are also a small number of
CICS modules that can optionally be placed in LPA that reside below the line; if you are tight
on below-the-line private storage, you should check the size of the CICS modules that would
reside in below-the-line LPA to determine if adding them to LPA would adversely affect the
size of your below-the-line private area.

6.9 Starting CICS at the same time as VTAM and TCP/IP

Our next area of investigation was to understand how CICS would react if it was started
before VTAM initialization had completed. There was a time when CICS would abend if it was
started before VTAM, so we wanted to see if this was still the case. If your VTAM takes a long
time to initialize, you might be able to save some time if you could start CICS and VTAM in
parallel, instead of having to delay the CICS start until after VTAM initialization completes.

The first test was to delay the start of VTAM until we had started all the CICS and
CICSPlex SM regions. When the CICS regions reached the point where they tried to
communicate with VTAM, they each issued a DFHSI1572 message, as shown in
Example 6-1.

Example 6-1 VTAM not available message

DFHSI1572 DSTCCM$A Unable to OPEN VTAM ACB - RC=00000008, ACB Code=5C.

Total CICS Startup time

0

10

20

30

40

50

Run 1 Run 2 Run 3

Test run

S
ec

o
n

d
s

Total CICS Startup time
124 System z Mean Time to Recovery Best Practices

If a CICS region has been defined to use TCP/IP, and the TCP stack has not completed
initialization when CICS tries to communicate with it, you see a DFHS00117 message, as
shown in Example 6-2.

Example 6-2 TCP/IP not available message

DFHSO0117 DSTCPTA1 131
Unable to determine the TCP/IP host name. OpenEdition return code
X'00000070', reason code X'110A00B6'.

Following these messages, the CICS regions then issue message DFHZC0200, as shown in
Example 6-3.

Example 6-3 CICS VTAM retry message

DFHZC0200 DSTCPAA2 547
An attempt by the COVR transaction to OPEN VTAM has failed with
return code X'0000005C'; CICS will retry.

CICS then retries to connect to VTAM and TCP every 60 seconds. When it has tried
unsuccessfully for 10 minutes, it stops, issues message DFHZC0201, and not try the OPEN
again. If VTAM is available, but TCP is not, users can proceed with logons through VTAM; that
is, the fact that TCP is not ready yet would not stop VTAM users from being able to use that
CICS region.

The only region to have a problem, and in fact shut itself down, was the CICS region
controlling the CICS Web User Interface. It issued the messages shown in Example 6-4.

Example 6-4 WUI messages when TCP/IP is not available

EYUVS0001I DSTCPWA1 CICSPlex SM WEB USER INTERFACE INITIALIZATION STARTED.
DFHAM4897 W DSTCPWA1 The definition of TCPIPSERVICE EYUWUI specified STATUS=OPEN
but the open failed.
EYUVS0005S DSTCPWA1 CICSPlex SM Web User Interface initialization failed. (CICS
Web Interface initialization.)

A more realistic scenario is that you would issue the start commands for VTAM, TCP/IP, and
the CICS regions at the same time. In our experience, VTAM and TCP initialization had
completed before CICS got to the point where it tried to communicate with them. Obviously,
this depends on how long your VTAM and TCP/IP take to start. But if you are like we are and
your VTAM and TCP start in less time that your CICS regions, moving the CICS start to be in
parallel with the VTAM and TCP/IP start should improve the time it takes to get your CICS
regions on the air by roughly the amount of time it takes for VTAM and TCP/IP to initialize.
Chapter 6. CICS considerations 125

6.10 Other miscellaneous suggestions

This section includes other miscellaneous things to consider that might improve either startup
or shutdown times.

6.10.1 CICSPlex SM recommendations

For CICS region startup when using CICSPlex SM, the following parameters are
recommended when using Business Application Services (BAS), Workload Manager (WLM),
or both:

� MASPLTWAIT(YES): This parameter prevents any CICS applications from running and
users signing on until CICSPlex SM has initialized and completed installing all the
resources for that CICS region from BAS. This parameter should be set when you use
BAS because allowing users to log on to CICS is pointless if the transactions have not yet
been defined.

� MASINITTIME: The maximum length of time that is allowed for CICSPlex SM initialization
is determined by the this parameter. The default is 10 minutes. You should monitor the
length of time that it takes for your CICS systems to initialize and install their BAS
definitions, and where necessary, increase the MASINITTIME. If MASINIITIME expires
before CICSPlex SM initialization completes, that region does not become part of the
CICSplex.

If you have a large CICSplex and use CICSPlex SM with many managed application systems
(MAS), might find that some of the MASs are very slow to reinitialize if you leave your CMASs
active and only restart the MASs. This situation is addressed by CICSPlex SM APAR
PK44192.

6.10.2 The CICS shutdown assist transaction

When performing an immediate shutdown, CICS does not allow running tasks to finish, and
backout is not performed until emergency restart. This can cause an unacceptable number of
units of work to be shunted, with locks being retained. On the other hand, when doing a
normal shutdown, CICS waits indefinitely for running transactions to finish, which can delay
shutdown to a degree that is unacceptable. The CICS shutdown assist transaction (CESD)
improves both these forms of shutdown and, to a large degree, removes the need for an
immediate shutdown.

The operation of CESD, for both normal and immediate shutdown, takes place over a number
of stages. CESD controls these stages by sampling the number of tasks present in the
system, and proceeds to the next stage if the number of in-flight tasks is not reducing quickly
enough.

The stages of a normal shutdown with CESD are as follows:

1. In the initial stage of assisted shutdown, CESD attempts to complete a normal shutdown
in a reasonable time.

2. After a time is allowed for transactions to finish normally (that is, after the number of tasks
has not reduced over a period of eight samples), CESD proceeds to issue a normal purge
for each remaining task. The transaction dump data set is closed at this stage.

Note: In CICS TS 4.1, changes have been made to help improve the start up time of the
CICSPlex SM CMAS address space.
126 System z Mean Time to Recovery Best Practices

3. If transactions are still running after a further eight samples (except when persistent
sessions support is being used), VTAM is force-closed and interregion communication
(IRC) is closed immediately.

4. Finally, if transactions are still running, CICS shuts down abnormally, leaving details of the
remaining in-flight transactions on the system log to be dealt with during the subsequent
emergency restart.

The operation of CESD is quicker for an immediate shutdown, with the number of tasks in the
system being sampled only four times instead of eight.

You should always use the CESD shutdown-assist transaction when shutting down your CICS
regions. You can use the DFHCESD program as is, or use the supplied source code as the
basis for your own customized version. The CEMT PERFORM SHUTDOWN command
automatically uses the CESD transaction to expedite the shutdown unless you specify the
NOSDTRAN or SDTRAN(tranname) options on the command or as a SIT parameter.

CICS MAXTASKS
If you have a large number of terminals that are autoinstalled, shutdown can fail because of
the MXT system initialization parameter being reached or CICS becoming short on storage.
To prevent this possible cause of shutdown failure, you should consider putting the CATD
transaction in a class of its own to limit the number of concurrent CATD transactions. Also,
AIQMAX can be specified to limit the number of devices that can be queued per autoinstall. If
this limit is reached, the AIQMAX system initialization parameter affects the LOGON,
LOGOFF, and BIND processing by CICS. CICS requests VTAM to stop passing such request
to CICS. VTAM holds the requests until CICS indicates that it can accept further commands.
Chapter 6. CICS considerations 127

128 System z Mean Time to Recovery Best Practices

Chapter 7. DB2 considerations

This chapter delivers basic concepts to help you understand the DB2 restart and shutdown
processes and provides advice for reducing the elapsed time for DB2 startup and shutdown.

This chapter covers the following topics:

� What you need to know about DB2 system Restart/Shutdown

� Configuration and tools we used for testing

� How to improve DB2 restart performance

� How to speed up DB2 shutdown process

7

© Copyright IBM Corp. 2010. All rights reserved. 129

7.1 What you need to know about DB2 restart and shutdown

This section explains what you need to know about DB2 restart and shutdown. These
concepts are important background for your work to speed DB2 startup and shutdown times.

7.1.1 DB2 system checkpoint

Startup and shutdown performance has been continuously improved over recent releases of
DB2. One of the key factors that affects DB2 restart time is how often the system checkpoint
was taken: how many log records DB2 has to process during restart time. Figure 7-1 shows
that the longer the time between checkpoints, the more work-status information must be
processed when DB2 has to process the checkpoint.

Figure 7-1 DB2 checkpoint

DB2 checkpoints are taken:

� At DB2 startup time

� When the CHKFREQ value is reached

� When the Active Log data sets switch

� At DB2 shutdown time

Other things that trigger a system checkpoint are:

� When you issue one of the following commands to take a system checkpoint:

-SETLOG LOGLOAD(0)
-SET CHKTIME(0)

� When you issue a -SET LOG SUSPEND command in a non-data sharing environment

Functions performed at checkpoint
DB2 records the unit of recovery (UR) information in the system checkpoint so that if DB2
terminates abnormally, DB2 can restart back to the state it was in at the time it failed. DB2
records all data modifications in the DB2 log data sets when data is updated. Both the before
image and the after image are recorded in the log for REDO or UNDO processing. At system
checkpoint, DB2 performs the following actions:

� Externalizes all changed data (except for workfiles) to a GBP or database on DASD.

� Records the table space (pageset) status information in the log, including database
pending writes.

LOG

UR (Unit of Recovery) status
R/W Pageset status

STARTRBA ENDRBA

CHECKPOINT
BSDS
130 System z Mean Time to Recovery Best Practices

� Detects candidate data sets for R/O switching.

� Records pageset exception status.

� Records UR status (for all URs that have not completed).

� Updates the LOGONLY recovery log scan starting point.

� Updates the data sets’ down level detection IDs. The status of all URs is recorded at
system checkpoint time.

Checkpoint history in BSDS
At system checkpoint, DB2 also records the checkpoint status information in the bootstrap
data set (BSDS). The DSNJU004 (Print Log Map) utility can report the checkpoint status.
From the report, you can determine the elapsed time between two consecutive DB2 system
checkpoints and calculate the average log record length based on this formula (RBA is the
relative byte address):

Avg log record size = DECIMAL (BEGIN CHECKPOINT RBA - PRIOR END CHECKPOINT RBA)
 --

LOGLOAD

Based on the average log record size and the elapsed time between the two checkpoints,
DB2 users can control how frequently DB2 takes system checkpoints by changing the
CHKFREQ value. Normally, taking checkpoints too often (not more than once per minute) is
not recommended because doing so can cause noticeable system overhead.

7.1.2 Two-phase commit processing

DB2 supports the two-phase commit protocol. Figure 7-2 shows the two-phase commit
processing, using IMS or CICS as the transaction coordinator.

Figure 7-2 DB2 two-phase commit

A unit of recovery (UR) is generated only for updating transactions and not for read-only
transactions. When a transaction first updates a database as part of an insert, update, or
delete operation, a UR is created on behalf of this transaction by writing a “begin UR” log
record. The UR persists until a commit is issued by the application.

DB2

IMS/CICS

PHASE 1

BEGIN
UR

INCOMMIT

PHASE 2

END
UR

APPL PGM
SYNCPT

INSTANT OF
COMMIT

NEW
COMMIT

SQL
UPDATE

PREPARE TO
COMMIT OK COMMIT OK

INFLIGHT INDOUBT

PHASE 1 PHASE 2
Chapter 7. DB2 considerations 131

When an application program reaches a synchronization point and prepares to commit, the
phase-1 commit processing begins. DB2 writes a “begin phase-1” log record and starts to
perform phase-1 processing. If DB2 ends before it completes its phase-1 processing and
writes the “phase-1 end” log record, the transaction is considered to be in inflight status. At
restart time, DB2 rolls back all the database updates done by this inflight transaction to its last
commit point.

If DB2 stops after the commit phase-1 end log record is written, but before it receives the
notification from the transaction coordinator to proceed with the phase-2 processing, then the
UR is considered to be in indoubt status.

The UR will be reclassified as in-commit status as soon as DB2 writes the begin phase-2 log
record. And the UR is ended as soon as the commit phase-2 end log record is written after
the phase-2 processing is completed.

7.1.3 Phases of a DB2 normal restart process

The five phases that DB2 goes through during restart are:

� Phase 1: Log Initialization is the start-up phase.

� Phase 2: Current Status Rebuild is the analysis phase. DB2 is trying to determine the
transaction status when it was last stopped.

� Phase 3: Forward Log Recovery scans the log in a forward direction and performs a redo
operation for all database updates that have not been written to GBP or DASD.

� Phase 4: Backward Log Recovery backs out database updates for the inflight and in-abort
URs. If long running URs exist, this is the phase where DB2 backs out those URs,
meaning that this phase can potentially run for a long time.

� Phase 5: End Restart finishes the processing and makes DB2 ready to start work. DB2
takes a system checkpoint at the end of this phase.

After the End Restart phase is completed, DB2 can accept new work and will perform indoubt
resolution with the assistance of the two-phase commit coordinator.

Phase 1: Log Initialization
The first phase of DB2 restart is called the Log Initialization phase. During this phase, DB2
attempts to locate the last log RBA that was written before termination as shown in Figure 7-3
on page 133. Logging continues at the next log relative byte address (RBA) after that.

Note: Indoubt UR is resolved by the coordinating system (CICS, IMS, WebSphere
Application Server, and so on) of the two-phase commit, not by DB2 on its own.

Note: DB2 always goes through these phases, but they can be very short if the system
was shut down in a clean way (with a shutdown checkpoint).
132 System z Mean Time to Recovery Best Practices

Figure 7-3 Log Initialization phase

This phase includes processing that starts the DB2 address spaces and loads DB2 load
modules into DB2’s MSTR and DBM1 address spaces. It also implicitly starts Internal
Resource Lock Manager (IRLM) if IRLM was not explicitly started. The IRLM startup time is
typically about one second.

This phase also includes the time spent to open the BSDS and active log data sets. If dual
logging is used, both copies of the active log data sets must be opened. After the BSDS and
active log data sets are opened, DB2 scans the log to determine the actual endpoint of the
log. It uses a pseudo log endpoint stored in the BSDS as the log scan starting point. The
pseudo log endpoint value is updated when one of the following situations occur:

� The log output buffer is ready to wrap.

� The active log data sets is filled.

� The system checkpoint is taken.

� DB2 is terminated normally.

Message DSNJ099I identifies the log RBA at which logging will commence for the current
DB2 session. This message DSNJ099I signals the end of the log initialization phase of
restart.

Phase 2: Current Status Rebuild
The second phase of restart is called the Current Status Rebuild (CSR) phase. During this
phase, DB2 determines the status of objects and units of recovery (UR) at the time of
termination. By the end of the phase, DB2 has determined whether any URs were interrupted
by the termination.

This phase also includes the forward log scan pass that is used to determine the transaction
status and the attributes and the restart REDO log scan points for all the R/W pending
Pagesets or Partitions.

DB2 scans the log, starting from the Begin Checkpoint log record for the last completed DB2
system checkpoint. The maximum number of log records that will be scanned is bounded by
the DSNZPARM CHKFREQ value.

This phase also rebuilds the database exception status table (known as the DBET). The
DBET information is recorded in every system checkpoint. In a non-data sharing

X XCHKPT

BSDS01 BSDS02
Approximate
end of LOG

READ

LOG

CHKPT

SYSTEM FAILURE
Chapter 7. DB2 considerations 133

environment, DB2 reconstructs the status information and build the list of URs from the log.
For example, the DBET records the status if a table space is in Recovery Pending State. In a
data sharing environment, DB2 does not use the log to rebuild the status; rather, it gets
information from the shared communication area (SCA) structure in a coupling facility.
However, DBET log records will be used to rebuild the DBET if the SCA is damaged.

At the end of the CSR phase, console message DSNR004I is displayed with all the
transaction status information showing how many transactions are inflight, how many are
indoubt, and so forth. DB2 can also determine how far it has to go back in the log to start the
forward scan, which is the Phase 3 (Forward Log Recovery) of restart.

Phase 3: Forward Log Recovery
Before the Forward Log Recovery (FLR) phase, DB2 will not perform any database updates.
The FLR phase is the first phase where the database actually gets modified. During this third
restart phase, DB2 completes the processing for all committed changes and database write
operations. Figure 7-4 shows how the FLR phase starts processing at the checkpoint
preceding the first log records for the oldest indoubt UR, or the oldest redo logpoint for any
pageset, and proceeds forward in time from there.

Figure 7-4 Forward Log Recovery phase

Basically, DB2 performs a REDO operation on the pending writes for all transactions. If no
indoubt URs exist, DB2 scans the log, starting from the lowest restart REDO log points from
all the R/W pagesets. In general, the log scan starting point is the Begin Checkpoint log of the
last completed checkpoint.

If indoubt URs exist that are very long-running URs, DB2 has to go back to the oldest indoubt
UR to scan the log to reacquire locks. DB2 uses log information to rebuild lock information.
During the Forward Log Recovery phase, DB reads the log records and accesses the data
pages to see if the changes actually were hardened to the database. This is why DB2 restart
can potentially take a long time.

When processing a log record, DB2 has to read the associated data or index page from GBP
or DASD into a buffer pool buffer to determine whether the change has been externalized.
DB2 uses the log record sequence number (LRSN) stored in the page header and the LRSN
value of the log record to determine whether the database update was successfully
externalized to GBP or DASD.

In a non-data-sharing environment, DB2 uses the log data set’s relative byte address (RBA)
of the log record as the LRSN value. In a data sharing environment, the LRSN value is
derived from the system-generated ascending STCK (Store Clock) value.

Prior to DB2 V6, if a page was not in the DASD subsystem cache, it could take many
milliseconds to read the page into the bufferpool using a synchronous read I/O. With the V6
Fast Log Apply List Prefetch technique, reading in a page typically takes just a few
milliseconds. However, even with this enhancement, DB2 still has the overhead of waiting for

X X X X X

CHECKPOINT PRECEDING OLDEST PENDING WRITES

Oldest in-doubt UR

CHKPT

LOG

CHKPT
134 System z Mean Time to Recovery Best Practices

the I/O to bring the page into the memory, even if it then determines that it does not need to
reapply the change.

At the end of the FLR phase, DB2 externalizes all the changed pages either to a GBP or to
DASD.

During phase 3 of restart in a data sharing environment, DB2 also purges the retained page
p-locks. This is because they are no longer needed to protect the unwritten data. DB2 also
writes log records to change each in-commit UR to complete UR status.

Phase 3: FLR Example
As mentioned previously, DB2 records the LRSN value of the log record in the data page
header when a page is updated. For example, when a record is inserted into a table, DB2
writes an insert log record and records the LRSN value of the insert log record in the data
page header. During phase 3 of restart, DB2 compares the LRSN value of the log record and
the page header LRSN value to determine whether or not the changes were saved to DASD.
If not, then redo the changes. Figure 7-5 shows the log records and database records related
to three transactions.

Figure 7-5 Example for Forward Log Recovery phase

The committed transaction modified page P4, with 300 as the LRSN value of the log record.
During the restart, DB2 reads the Commit log record for the transaction that updated page
P4. It then reads page P4 from the database. At this point DB2 discovers that the LRSN for
the Commit log record and the LRSN in the page on DASD are different. This means that the
update to page P4 was committed, but the write back to DASD had not completed before DB2
went down. As a result, DB2 has to write the updated page to the database on DASD.

For pages P6 and P9, no changes to the database are needed because the page LRSN
values are the same as the log LRSN values. Despite this, DB2 still has the cost of reading
the pages from DASD before it can decide whether or not any changes must be applied.

Phase 4: Backward Log Recovery
During the fourth restart phase, Backward Log Recovery (BLR), DB2 changes previously
performed for in-flight or in-abort units of recovery are backed out.

The in-flight and in-abort URs are processed during this phase. An in-abort UR is generated
when DB2 fails during a transaction rollback. An in-flight UR occurs if a transaction has not
committed or DB2 has not completed its phase-1 commit process when DB2 ends. During the

Note: Fast Log Apply also reads and sorts log records before applying them. It also applies
updates in parallel to the pagesets involved.

BEGIN
UR P4 commtd END UR P6 inabort CHKPT P9 indoubt

LOG
RBA

200 300 400 500 600 700 800

100
 P4

500
 P6

700
 P9 BEFORE PH 3

AFTER PH 3 P4
300

 P6 P9
500 700
Chapter 7. DB2 considerations 135

BLR phase, DB2 scans the logs for all log records belonging to the in-flight and in-abort
transactions, as shown in Figure 7-6. It then backs out any changes that had been applied to
the database, and writes another log record to compensate the (uncommitted) change made
earlier. For example, in the case of an insert log record, DB2 actually writes a delete log
record to compensate the insert. It might take a long time to do backout if there are long
running URs that do not issue frequent commits.

Figure 7-6 Backward Log Recovery phase

Phase 4: BLR Example
Figure 7-7 shows the backout process during restart. Basically, DB2 is UNDOing the changes
for the inflight and in-abort URs. The in-abort UR that updated page P6 has a log LRSN value
of 500. DB2 writes a compensation log record for this in-abort UR at log LRSN value 800 and
changes the P6 page LRSN value from 500 to 800. Depending on whether DB2 consistent
restart (see “DB2 consistent restart” on page 138) is being used, DB2 restart might end
before all UNDOs have been finished.

Figure 7-7 Example of Backward Log Recovery phase

Phase 5: End Restart processing
DB2 uses claims and drains instead of locking to serialize between Utilities and SQL. If there
are indoubt transactions associated with a particular table space, DB2 has to make sure the
table space or Index is not being recovered or reorganized by a database utility before
in-doubt URs are resolved. Therefore, write claims are made for every table space or Index
touched by the indoubt transactions to prevent a utility from taking over until the indoubt is
resolved. As a result, no utility can be run until indoubt URs are resolved.

Thousands of DB2 data sets might open at the time DB2 ends. During the restart process,
DB2 opens only the data sets that have restart pending activities. DB2 does not open the
objects for read-only table spaces or R/W table spaces without a log record for that object. For
a R/W object without a log record, or an object without inflight URs or outstanding

X X X X X

Oldest In-Flight UR

Oldest in-abort UR

X

LOG

CHKPT CHKPT

BEGIN
UR P4 commtd END UR P6 inabort CHKPT P9 indoubt

LOG
RBA

200 300 400 500 600 700 800

300
P4

500
 P6

700

 P9 BEFORE PH 4

AFTER PH 4 P4
300

 P6 P9
800 700

CLR

WRITE CLR
136 System z Mean Time to Recovery Best Practices

uncommitted updates, DB2 versions prior to DB2 V9 still tries to close the SYSLGRNG
entries during the End Restart phase because there was a SYSLGRNG entry created on
behalf of that object. In DB2 V9, this processing was moved to take place at the first system
checkpoint after the restart; this approach allows the restart to complete quicker so that DB2
can start accepting work sooner.

DB2 externalizes all the data that was modified during the BLR phase to GBP/DASD. It will
also purge all the remaining retained locks and trigger a system checkpoint to record the
current status of the DB2 subsystem. After the End Restart phase, DB2 is then available for
new work.

7.1.4 DB2 restart methods

Beside a normal restart, DB2 can restart in several various methods. Some methods are
based on how DB2 is terminated or are based on your DB2 environment. The methods are:

� DB2 group restart

� DB2 conditional restart

� DB2 consistent restart

� DB2 restart light

DB2 group restart
In a data sharing environment, every active member of a data-sharing group must have
access to both the SCA and the DB2 lock structure. If a member loses access to either
structure, the member fails unless the structure can be rebuilt to another coupling facility that
all DB2s in the data-sharing group have access to.

The failure of an individual member is not a reason for a group restart. If at least one member
is active that can access both structures successfully, no group restart takes place. Only if
none of the other members are active, and the restarting member determines during the DB2
Initialization phase that the SCA or the DB2 lock structure must be recovered, will it
automatically perform a group restart.

Recommendation
Although one member can perform restart on behalf of the group, you should restart all of the
non-quiesced members together, perhaps by using an automated procedure. This approach
shortens the total restart time. Also, because retained locks are held for non-starting
members, it is best to start all members of the group for maximum data availability.

DB2 conditional restart
At restart time, DB2 always attempts to locate the last log RBA written before termination and
continues from there. A conditional restart is a special process, activated by a conditional
restart control record (CRCR) in the BSDS, which is used when you need to skip some
portion of the log processing during DB2 restart (perhaps because of a damaged log data
set).

Note: A group restart does not mean that all members of the data-sharing group are
automatically restarted. Rather, it means that the SCA or DB2 lock structure are recovered
from the logs of the members of the data-sharing group by those members that are
restarted.
Chapter 7. DB2 considerations 137

To perform a conditional restart, use the following procedure:

1. While DB2 is stopped, run the Change Log Inventory Utility (DSNJU003) using the
CRESTART control statement to create a new conditional restart control record in the
BSDS.

2. Restart DB2. The types of recovery operations that take place are governed by the current
CRCR.

A conditional restart can safely be performed only when the objects are recovered to a prior
point of consistency because normal recovery operations can be partially or fully bypassed.
Choosing this point of consistency carefully is very important. A useful approach is to run the
DSN1LOGP utility and review a summary report of the information contained in the log before
setting the conditional restart.

DB2 consistent restart
This function allows DB2 to come up more quickly after a subsystem failure by limiting the
backout activities for long running applications that issue very infrequent or no commits. The
DSNZPARM LBACKOUT and BACKODUR parameters can be modified based on your workload
characteristics.

The consistent restart function helps bring DB2 up faster so that it can accept new work
faster. For non-data-sharing subsystems, DB2 marks the entire object as “Restart Pending”
and unavailable, so those objects touched by the long running URs will not be available until
the long running URs are backed out.

DB2 also supports consistent restart in a data sharing environment. Pages that are updated
by long-running transactions are protected by the retained lock. DB2 does not purge those
retained locks at End Restart; they are held until the backout is finished. The retained locks
are on the page or row level and not on the entire pageset level.

If you tend to have long-running jobs that do not issue commit operations as frequently as
they should, consider using this DB2 consistent restart capability to get DB2 up and running
more quickly. This will mean that objects affected by the long-running job might not be
available immediately when DB2 starts accepting new work, but at least all other objects will
be available sooner than would otherwise be the case.

DB2 restart light
For a data-sharing environment, you can use the LIGHT(YES) parameter on the start
command to quickly bring up a DB2 member solely to recover retained locks. When DB2 is
started with LIGHT(YES), if indoubt URs exist at the end of restart recovery, DB2 will remain
up and running so that the indoubts can be resolved, either automatically through resynch
processing with the commit coordinators, or manually through the -RECOVER indoubt operator
command. After all the indoubt URs have been resolved, the LIGHT(YES) DB2 member
self-terminates. APAR PK29791 introduced a new LIGHT(NOINDOUBTS) option on the
-START DB2 command. This option specifies that DB2, during a restart light, does not wait for
indoubt units of recovery to resolve before it terminates.

Restart Iight mode is not recommended for a restart in place. It is intended only for a
cross-system restart of a system that does not have adequate capacity to substain the DB2
and IRLM in the event of a failed z/OS system.

Note: Although conditional restart is faster than normal restart (because it skips some
portion of the log processing), data in the associated objects can become inconsistent if a
conditional restart skips any database change log record. Any subsequent attempt to
process them for normal operations can cause unpredictable results.
138 System z Mean Time to Recovery Best Practices

7.1.5 DB2 shutdown types

DB2 terminates normally in response to the -STOP DB2 command. If DB2 stops for any other
reason, the termination is considered abnormal.

DB2 normal shutdown
At normal system shutdown, DB2 takes a shutdown checkpoint and updates the BSDS. DB2
also quiesces all transactions and flushes out all changed pages from the local bufferpools to
a GBP (for shared objects) or to DASD. DB2 also closes all its open data sets.

Now, all URs are completed with the exception of the indoubt URs, if any exist. If indoubt URs
do exist, DB2 records the indoubt UR status in the Shutdown Checkpoint log record.

When possible, ensure that DB2 terminates normally because this will result in a significantly
faster startup time.

To terminate DB2, issue either of the following commands:

� -STOP DB2 MODE (QUIESCE)

� -STOP DB2 MODE (FORCE)

You should always attempt a -STOP DB2 first (MODE(QUIESCE) is the default). If shutdown is
taking too long, you can issue -STOP DB2 MODE (FORCE) command. However be aware that the
resulting need to roll back work can take as long as, or even longer than, the completion of
QUIESCE. The -STOP DB2 MODE (FORCE) command is the same as MODE (QUIESCE), except
that work in process is aborted instead of quiescing to normal termination.

During shutdown, use the DB2 -DISPLAY THREAD TYPE(SYSTEM) command to check the
shutdown process.

When stopping in either mode, the following steps occur:

1. Connections end.

2. DB2 stops accepting commands.

3. DB2 disconnects from the IRLM.

4. The shutdown checkpoint is taken and the BSDS is updated. At this point, the DB2 Buffer
Manager will also write checkpoint log records, complete all committed database I/O, and
close all open page sets.

Stopping DB2 in data sharing environment
Consider specifying CASTOUT(NO) option when you stop an individual member of a data
sharing group for maintenance. This option speeds up shutdown because DB2 bypasses
castout and associated clearup processing in the group buffer pools.

Note: A data sharing group member started with the LIGHT option is not registered with
the Automatic Restart Manager (ARM). Therefore, ARM does not automatically restart a
member that has been started with LIGHT(YES).
Chapter 7. DB2 considerations 139

DB2 abnormal terminations
An abnormal termination, or abend, is said to happen when DB2 does not, or cannot,
terminate in an orderly way. It leaves data in an inconsistent state for any of the following
reasons:

� Units of recovery might be interrupted before reaching a point of consistency.

� Committed data might not be written to external media.

� Uncommitted data might be written to external media.

7.2 Configuration and tools for testing

In this section, we introduce the ITSO environment, and the workloads and tools we used for
the DB2 measurements.

7.2.1 Measurement system setup

The DB2 measurements were based on a three-way DB2 data-sharing group (DB2 V9)
running in a three-way Parallel Sysplex, with 2 CFs. Each system had only one DB2 member.
All the systems were on the same z10 and all LPARs had dedicated CPs. The logical
configuration is shown in Figure 7-8.

Figure 7-8 DB2 System Environment

We used two workloads for the DB2 measurements. For the measurements that were focused
on startup and shutdown times, we created 100,0001 small DB2 segmented table spaces.
Relevant information about these table spaces is shown in Table 7-1 on page 141.

1 With APAR PK29281, the DSNZPARM DSMAX has been raised from 65,000 to 100,000.

D8Q1

Locks Buffer Pools

D8Q2

Locks Buffer Pools

D8QA

Locks Buffer Pools

Global
Locks

Global
Buffer Pools

z/OS R9 z/OS R10

Coupling Facility

ITSO

z/OS R10

Sysplex Timer

3-Ways Data
Sharing Group

D8Q1
Log

D8Q2
Log

D8QA
Log

Shared
DB2 Data

Shared
DB2 Catalog

Shared Disks
140 System z Mean Time to Recovery Best Practices

Table 7-1 DB2 Objects

We also had another DB2 workload that we used for some of the measurements. That
workload is based on the IBM Relational Warehouse Workload.

Information about this workload includes:

� Workload: IBM Relational Warehouse Workload, OLTP type of workload

� Processor: model 2097

� IBM Relational Warehouse Workload DB: 1 GB

� BP and GBP: each are 400 MB

� LOGLOAD: 160,000 log records

� Checkpoint Interval: 3 - 4 minutes

7.2.2 Tools and useful commands

We used OMEGAMON® XE for DB2 Performance Expert V4 to produce DB2 trace and
report data for our investigation. We also used the DISPLAY THREAD(*) TYPE(SYSTEM) DB2
command to help us understand what the DB2 System Agent Thread was doing at specific
points in time.

If the command is issued during DB2 startup or shutdown, the output tells you what phase of
restart or shutdown DB2 is currently in. For example, when the command was issued during
DB2 shutdown, the output told us that DB2 was performing a system shutdown checkpoint.

Storage groupsa

a. Each storage group uses a separate user catalog.

Database Table spacesb

b. There was only one table for every table space.

Tablesc

c. Each table had only one column, one record, and no index.

DB2MT1 DBMT1DB 10,000 10,000

DB2MT2 DBMT2DB 10,000 10,000

DB2MT3 DBMT3DB 10,000 10,000

DB2MT4 DBMT4DB 10,000 10,000

DB2MT5 DBMT5DB 10,000 10,000

DB2MT6 DBMT6DB 10,000 10,000

DB2MT7 DBMT7DB 10,000 10,000

DB2MT8 DBMT8DB 10,000 10,000

DB2MT9 DBMT9DB 10,000 10,000

DB2MT10 DBMT10DB 10,000 10,000
Chapter 7. DB2 considerations 141

7.2.3 How we ran our measurements

Depending on what we wanted to study, we used the following methods to measure the
startup and shutdown times:

� Syslog and job logs: These times could be used for those situations where total times or
specific functions within startup or shutdown could be tied to various messages.

� SMF records: We turned on DB2 Accounting and Statistics traces with DEST (SMF). The
following statistic classes were enabled:

– 01
– 03
– 04
– 05
– 06

The following accounting classes were enabled:

– 01
– 02
– 03
– 07
– 08

� RMF reports: RMF writes SMF Type 70 - Type 79 records, which can then be reported by
the RMF Postprocessor. RMF provides sysplex-wide information about processor
utilization, I/O activity, storage, and paging.

7.3 Improving DB2 startup performance

For this section, we performed a number of experiments with opening 100,000 DB2 page sets
with various setups.

7.3.1 Best practices for opening DB2 page sets

During restart, DB2 only opens data sets that belong to GBP-dependent objects if it needs to
process log records for uncommitted transactions. Additionally, DB2 only opens and accesses
data/index page sets when it encounters log records related to those non-shared objects. If
no log records were encountered for those non-shared objects in the last one or two
checkpoints, then those data sets will not be opened, even if read only (R/O) switching did not
occur before DB2 stopped.

During the forward log recovery phase of restart, any page sets for which log records are
found must be opened. The number of page sets that must be opened can number in the
thousands. The remaining DB2 data sets (which could be a very large number of data sets)
that have not been opened during DB2 restart will subsequently be opened physically when a
user or application accesses them.

DB2 V9 increased the limit on the number of tasks for the parallel open or close of Virtual
Storage Access Method (VSAM) data sets to 40. However, if you have tens of thousands of
data sets to open, data set opens can still amount to a significant part of the elapsed time of
restart.

Because of this, and the growing trend for customers to have many thousands or many tens
of thousands of DB2 data sets open, we performed a number of performance measurements
for opening data sets.
142 System z Mean Time to Recovery Best Practices

DB2 data sets are usually opened as a result of:

� SQL SELECT statements or other SQL thread

� Using the DB2 ACCESS DATABASE command with MODE (OPEN).

In DB2 V9, DB2 introduced a new command, ACCESS DATABASE, which forces a
physical open of a table space, index space, or a partition. It can also be used to remove
the GBP-dependent status for a table space, index space, or partition. With Mode(OPEN)
specified, DB2 forces the physical opening of the page set or partition in read mode on just
the local member. This approach moves the cost and delay of the physical open from an
SQL thread to the command thread. This approach should improve the response time for
the first SQL thread to reference a given page set or partition.

One other thing we wanted to investigate was the impact of improvements in z/OS V1R10 to
reduce the elapsed time to open a data set. As a result, you see that many of our tests were
run under both z/OS V1R9 and V1R10.

Using the ACCESS DATABASE command to open DB2 data sets
When the PTF for DB2 APAR PK80925 is applied, the ACCESS DATABASE command can be
used in one of two ways: the database and table space names can be fully qualified; you can
use an asterisk (*) to specify a name generically.

Examples of both forms of the -ACCESS DATABASE command are shown in Example 7-1.

Example 7-1 ACCESS DATABASE commands using fully specified names

-ACCESS DATABASE (DBMT10DB) SPACENAM (MTA01000) MODE(OPEN)
-ACCESS DATABASE (DBMT10DB) SPACENAM (MTA01001) MODE(OPEN)
-ACCESS DATABASE (DBMT10DB) SPACENAM (MTA01002) MODE(OPEN)
-ACCESS DATABASE (DBMT10DB) SPACENAM (MTA01003) MODE(OPEN)
-ACCESS DATABASE (DBMT10DB) SPACENAM (MTA01004) MODE(OPEN)
-ACCESS DATABASE (DBMT10DB) SPACENAM (MTA01005) MODE(OPEN)
-ACCESS DATABASE (DBMT10DB) SPACENAM (MTA01006) MODE(OPEN)
-ACCESS DATABASE (DBMT10DB) SPACENAM (MTA01007) MODE(OPEN)
-ACCESS DATABASE (DBMT10DB) SPACENAM (MTA01008) MODE(OPEN)
-ACCESS DATABASE (DBMT10DB) SPACENAM (MTA01009) MODE(OPEN)
-ACCESS DATABASE (IRWW1DB) SPACENAM (*) MODE(OPEN)
-ACCESS DATABASE (IRWW2DB) SPACENAM (*) MODE(OPEN)
-ACCESS DATABASE (IRWW3DB) SPACENAM (*) MODE(OPEN)
-ACCESS DATABASE (IRWW4DB) SPACENAM (*) MODE(OPEN)

Although the generic form of the command is certainly easier to use, the benefit of the explicit
form is that you could place your most heavily used table spaces among the first -ACCESS
commands, thereby improving the chances that those tables will already by open by the time
the first user transaction is entered. You can, of course, use a combination of the two
methods. So you might explicitly identify your most important table spaces and place those
statements at the top of the list, and then use generics to get DB2 to open all the remaining
table spaces.
Chapter 7. DB2 considerations 143

The results shown in Figure 7-9 are for a number of runs to open 100,000 DB2 data sets
(100k) using the -ACCESS DATABASE command and explicitly specifying the database and
table space names, and using generics for the table space names. Specifically, the following
tests were run on both z/OS R9 and R10:

� A single job, that issues 100,000 -ACCESS DATABASE commands with the database and
table space names explicitly specified.

� Ten jobs, each issues 10,000 -ACCESS DATABASE commands with the database and table
space names explicitly specified.

� A single job that issued 10 -ACCESS DATABASE commands. This time we used the generic
support so that each --ACCESS DATABASE command opened 10,000 data sets.

Figure 7-9 Open data sets with ACCESS DB command

The performance benefit we observed with z/OS R10 is because of improvements in a
number of MVS system services such as GETMAIN, CATALOG, ALLOCATE, and so on. The
R10 runs were done using the new GETMAIN rules. Although APAR OA27291(which lets
z/OS R10 operate with the R9 rules) was applied to our systems, the DIAGxx member
specified USEZOSV1R9RULES(NO).

Notice that we opened the data sets faster by using ten jobs instead of just one. Although
there is only a single DB2 command processor, much of the setup and cleanup work can be
parallelized by splitting the ACCESS commands across multiple jobs, resulting in the reduced
elapsed times.

You might also notice that the elapsed time was nearly the same whether we used the generic
form of the ACCESS command in a single job, or split the specific ACCESS DATABASE
commands across ten jobs. In this case, we believe that the reduction in elapsed time
between one job with 100,000 specific commands and a single job with just ten generic
commands is because of the reduced time that DB2 has to spend processing all those

Note: There was only one batch job that invoked ten -ACCESS DB commands with
generic names. This job was submitted on one DB2 member.

Open Data Sets with ACCESS DB Command

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

z/OS R10
with 1 job

z/OS R10
with 10 jobs

z/OS R10
with generic
commands

z/OS R9
with 1 job

z/OS R9
with 10 jobs

z/OS R9
with generic
commands

S
e

c
o

n
d

s

100k Data Sets
144 System z Mean Time to Recovery Best Practices

commands. Although we did not have a chance to measure ten jobs using generic
commands, we believe that this would have resulted in a further reduction in elapsed time.

Using SQL SELECT statements to open the DB2 data sets
Prior to the availbility of the -ACCESS DATABASE command, many customers would run DB2
batch jobs to open all the DB2 data sets immediately after DB2 started. Therefore we wanted
to also test this method, to help people identify which method is the best for them. Figure 7-10
shows the results of these measurements.

Figure 7-10 Open data sets with SELECT Statement

Again, these measurements show the benefit of using z/OS R10 compared to R9. In
particular, you might notice that the elapsed time increased when we moved from 10 to 40
jobs on z/OS R9, whereas it was largely unchanged when we made the same change in
z/OS R10. We believe that the CATALOG improvements in z/OS R10 resulted in a smaller
impact from the contention associated with forty jobs accessing the ten user catalogs than
was the case in z/OS R9.

However, more significant is the elapsed time to open 100,000 DB2 data sets using an SQL
SELECT statement compared to using the ACCESS DATABASE command if the opens are
spread over multiple jobs. The elapsed time to open 100,000 data sets in one job was roughly
the same, regardless of whether the SQL SELECT or ACCESS DATABASE command was
used. However, the elapsed time to open 100,000 data sets using ten jobs issuing SQL
SELECT commands was just 4000 seconds, compared to about 6700 seconds when using
ten ACCESS DATABASE jobs. Figure 7-11 on page 146 shows the elapsed times for the
options when using z/OS R10; the equivalent numbers for z/OS R9 are shown in Figure 7-12
on page 146. The main reason for the large difference between multiple ACCESS DATABASE
jobs compared to multiple SQL SELECT jobs is that DB2 has only one command processor,
so all the ACCESS commands, from all 10 jobs, must be processed by that one processor.
Alternatively, DB2 can process many SQL commands in parallel.

Open Data Sets With SELECT

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

z/OS
R10

with 1
job

z/OS
R10

with 10
jobs

z/OS
R10

with 40
jobs

z/OS
R9

with 1
job

z/OS
R9

with 10
jobs

z/OS
R9

with 40
jobs

S
ec

o
n

d
s

100k Data Sets
Chapter 7. DB2 considerations 145

Figure 7-11 Select versus ACCESS DATABASE on z/OS R10

Figure 7-12 Select versus ACCESS DATABASE on z/OS R9

You might wonder why the performance did not improve further when moving from 10 to 40
SQL SELECT jobs. We believe the reason for this is that DB2 has a maximum of one task per
user catalog, and you might recall that our DB2 data sets were spread over 10 user catalogs.
Although we did not get an opportunity to test with a larger number of user catalogs, we
believe that having the DB2 data sets split over more user catalogs would have resulted in
further elapsed time improvements when 40 jobs were used, especially on z/OS R10.

Select vs Access DB on z/OS R10

0

1000

2000

3000

4000

5000

6000

7000

8000

z/OS R10
with 1

access job

z/OS R10
with 10

access jobs

z/OS R10
with generic
commands

z/OS R10
with 1 select

job

z/OS R10
with 10

select jobs

z/OS R10
with 40

select jobs

S
e

c
o

n
d

s

100k Data Sets

Select vs Access DB on z/OS R9

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

z/OS R9
with 1

access job

z/OS R9
with 10

accessjobs

z/OS R9
with generic
commands

z/OS R9
with 1

select job

z/OS R9
with 10

select jobs

z/OS R9
with 40

select jobs

S
e

c
o

n
d

s

100k Data Sets
146 System z Mean Time to Recovery Best Practices

7.3.2 Impact of Enhanced Catalog Sharing on data set OPEN processing

Enhanced Catalog Sharing (ECS) was introduced with DFSMS/MVS 1.5. It exploits the
capabilities of the coupling facility (specifically, the cross-invalidation capability of cache
structures) to provide the integrity required when you share ICF catalogs across the members
of a sysplex, but without the performance impact normally associated with shared catalogs.

More information about Enhanced Catalog Sharing can be found in z/OS DFSMS Managing
Catalogs, SC26-7409 and in Enhanced Catalog Sharing and Management, SG24-5594.

To determine if your catalogs are eligible for ECS, issue the F CATALOG,ECSHR(STATUS)
command, as shown in Figure 7-13.

Figure 7-13 Output of F CATALOG,ECSHR(STATUS) command

For our test, we took the results of the earlier measurement with 10 jobs running SQL
SELECT statements to open a total of 100,000 data sets (that measurement was run with
ECS turned on), and then ran the same test again, this time with ECS disabled.

The elapsed time with ECS active, as shown in Figure 7-14 on page 148 was significantly
less than that without ECS active: 4028 seconds compared to 5574 seconds.

F CATALOG,ECSHR(STATUS)
IEC351I CATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
IEC380I ENHANCED CATALOG SHARING 957
*CAS***
* CF Connection: AutoAdd *
* ------------------CATALOG------------------- -----STATUS------ *
* UCAT.DB2DB9 Active *
* UCAT.DB2DB8 Active *
* UCAT.DB2DB7 Active *
* UCAT.DB2DB6 Active *
* UCAT.DB2DB5 Active *
* UCAT.DB2DB4 Active *
* UCAT.DB2DB3 Active *
* UCAT.DB2DB2 Active *
* UCAT.DB2DB10 Active *
* UCAT.DB2DB1 Active *
Chapter 7. DB2 considerations 147

Figure 7-14 Open 100,000 data sets with ECS

7.3.3 Generic advice about minimizing DB2 restart time

In addition to the specific measurements described previously, there are other general
guidelines you should consider to optimize your DB2 startup times.

DB2 consistent restart
Consistent restart will allow DB2 to start up first and then process the backout work, so the
whole DB2 system will not suffer from long running URs that do not issue frequent commits.
The time saving is in the Backward Log Recovery Phase.

The two ZPARM parameters related to this activity are: LBACKOUT and BACKODUR.
Options are:

� LBACKOUT=NO states that no consistent restart should be done, meaning that DB2 must
complete all backout work before it can complete its startup.

� LBACKOUT=AUTO (the default) indicates that some backout work might be delayed and
will be triggered automatically after DB2 comes up.

� LBACKOUT=YES indicates that users have to issue the RECOVER POSTPONED
command to complete the backout activity after DB2 comes up.

The number of checkpoints processed during the Backward Log Recovery phase when doing
a consistent restart is defined with the parameter BACKODUR. Specifying a larger value can
cause DB2 to go back further in the log. This approach might increase the number of objects
that are backed out during this phase, but might also increase the elapsed time of this phase
(and therefore, the elapsed time of the DB2 startup).

Open Data Sets With ECS

0

1000

2000

3000

4000

5000

6000

z/OS R10
with ECS

active

z/OS R10
with ECS
inactive

z/OS R9
with ECS

active

z/OS R9
with ECS
inactive

S
ec

o
n

d
s

100k Data Sets
148 System z Mean Time to Recovery Best Practices

Fast Log Apply storage
The Fast Log Apply technique sorts the log records for a given pageset into an ascending
page number sequence. This can eliminate multiple Getpages for the same page. The Fast
Log Apply also improves I/O performance by using list prefetch.

During restart, Fast Log Apply is always enabled. Fast Log Apply involves reading the log and
sorting records. Finally the updates are processed by one or more apply tasks, with list
prefetches being done to read the appropriate pages. The default value for Fast Log Apply
storage starting with DB2 V8 is 100 MB. For more information about the performance
considerations of this feature, see DB2 UDB for z/OS Version 8 Performance Topics,
SG24-6465.

Minimize the number of data sets to be opened
DB2 restart will only open data sets to perform redo/undo activities if they belong to pagesets
that were in a R/W state when DB2 crashed. DB2 restart can potentially read logs for up to
two system checkpoints. But, in general, it should only read one system checkpoint worth of
logs during restart operation.

During restart, DB2 opens data sets that belong to only GBP-dependent objects if it needs to
process log records that belong to uncommitted transactions. Therefore, for infrequently
updated pagesets or partitions, R/O switching can help to improve restart performance for
non-shared or for non-GBP dependent objects in a data sharing environment because logs
are skipped for those R/O objects (to avoid data set open and unnecessary read I/Os).

During Restart, DB2 opens and accesses data or index page sets only when it encounters log
records belonging to those non-shared objects. If no log records were encountered for those
non-shared objects in the last one or two checkpoints, those data sets will not be opened
even if R/O switching has not occurred before DB2 was crashed.

If those R/W objects are not opened during forward and backward recovery, DB2 closes
SYSLGRNX rows for those table space objects or COPY YES index objects during the End
Restart phase in DB V8 and update DBET entries to record the data-set-level ID for Down
Level Detection (DLD) checking. In DB2 V9, the process of closing SYSLGRNX and casting
out changed pages has been moved to occur after DB2 is up (it is triggered during the first
DB2 system checkpoint after DB2 is up).

For GBP-dependent objects in R/W that were not opened during forward and backward
recovery, DB2 also must open and cast out changed pages for objects that were only updated
by the restarting member (that is, this object was in R/W sharing and only updated by a single
member).

To further reduce the number of data sets that must be opened during restart, the
DSNZPARMs PCLOSEN and PCLOSET parameters can be used to trigger the read only
switching feature. If all updates to a table space or object have been committed and there are
no more updates for some time (controlled by PCLOSEN and PCLOSET), DB2 does a
read-only-switching, by closing SYSLGRNG entries and indicating that this object is no longer
in read/write mode. As a result, DB2 cannot open it at restart time.

Note: Backout against DB2 Catalog or Directory page sets cannot be postponed and are
always completed before DB2 completes initialization, regardless of the setting of the
LBACKOUT and BACKODUR parameters.
Chapter 7. DB2 considerations 149

DB2 checkpoint interval
The DB2 checkpoint interval indicates the number of log records that DB2 writes between
successive checkpoints. This value is controlled by the DB2 subsystem CHKFREQ
parameter. The default is 500,000, however a smaller value of 50,000 log records results in
the fastest DB2 startup time in most cases.

More frequent checkpoints (that is, a smaller CHKFREQ value) can reduce DB2’s startup
time after a subsystem failure. However, there is a cost. A checkpoint is a snapshot of all
activity in DB2 that would need to be restored at restart. The more activity there is in a DB2
subsystem, the more expensive it is to take a checkpoint. Taking checkpoints too frequently
can possibly negatively affect DB2’s performance. To find the correct CHKFREQ value for
you, decide which is more important: reduced cost for DB2 in normal operation, or a reduced
restart time for DB2.

Control long-running URs
DB2 rolls back uncommitted work during startup. On average, the amount of time required for
this activity is approximately twice the time that the unit of recovery was running for before
DB2 stopped. For example, if a unit of work runs for two hours without a commit before a DB2
abend, it would take at least four hours to restart DB2. In fact, this is a good example of why
you should enable DB2 consistent restart: You would not want to delay all DB2 work by four
hours just because of this one misbehaving job.

To determine what is an acceptable time for a unit of work to run without a commit, decide
how long you can afford to wait during startup, and address any units of work that run for
more than half that long.

Long-running URs can be detected using the DB2PM Accounting report. You can control
long-running URs by changing the application programs to commit more often. In particular,
watch out for single SQLs that are doing mass insert, update, and delete operations.

DB2 can set the threshold to display long-running URs on the console log. The DSNZPARM
field is URCHKTH. By default, this function is turned off, however we recommend enabling it
by specifying a value of 5 checkpoints.

A related DSNZPARM field, URLGWTH, also exists. It causes DB2 to issue a warning
message when an inflight UR writes the specified number of log records without a COMMIT.
The current default value is to turn this function off (0 log records), however we recommend
setting this value to 10,000.

Avoid archive tape reads
Tape is not well-suited to backout processing because of its one-direction sequential nature.
To optimize DB2 restart time, using archive log data sets on tape is not desirable. Instead,
consider keeping the archive log data sets on DASD.

Note: You can use the LOGLOAD or CHKTIME option of the SET LOG command to
modify the CHKFREQ value dynamically without recycling DB2. However, DB2 will revert
to the value that was specified on the CHKFREQ parameter after the restart.

Recommendation: To detect long-running units of recovery, enable the UR CHECK FREQ
option of installation panel DSNTIPL. If long-running units of recovery are unavoidable,
consider enabling the LIMIT BACKOUT option on installation panel DSNTIPL. And ensure
that all applications do commit operations at reasonable intervals.
150 System z Mean Time to Recovery Best Practices

Size of active logs
Especially if your archive can be migrated to tape (but even if they do not), you can avoid
unnecessary startup delays by making each active log data set large enough to hold the log
records for a typical unit of work. This approach lessens the probability that DB2 must wait for
tape mounts or many data set allocations during startup. You can also increase the number of
active log data sets; with DB2 V9, you can have up to 93 active log data sets for each log
copy.

Define large group buffer pools
GBP accesses are in terms of microseconds, compared to DASD access at milliseconds. So
having larger GBPs means that the majority of pages touched during restart can be
transferred in microseconds which can shorten the restart time by a significant amount.

7.4 Speeding up DB2 shutdown

As you know, the two aspects to the amount of time to restart DB2 are:

� The amount of time to start DB2, which is the aspect we have been focussing on so far.
� The amount of time to complete a planned stop of DB2 prior to the restart.

This section examines the second aspect.

7.4.1 Impact of DSMAX and SMF Type 30 on DB2 shutdown

The number of data sets in use by DB2 can affect the DB2 shutdown time in two ways.

� Some amount of time (.1 - .3 seconds per data set, according to DB2 Administration
Guide, SC18-7840) is spent to physically close each data set open at shutdown time. The
maximum number of concurrently open data sets is determined by the DB2 subsystem
parameter DSMAX.

� Assuming that SMF Type 30 records are enabled, z/OS needs time to populate SMF
Type 30 records with information about every data set that DB2 opened since DB2 startup.

From the perspective of reducing the cost of constantly opening and closing data sets while
DB2 is running, a large DSMAX value is considered a good thing. If DB2 can keep more data
sets open concurrently, it is less likely to have to close one data set to be able to open another
one. However, a small DSMAX value might be considered a good thing because it would
reduce the number of data sets that need to be closed at DB2 shutdown time.

Note: Because “force at commit” is applied to GBP-dependent objects, the restart process
can speed up because there is no need to access GBP during restart: updated data
belongs to committed transactions.

For log records that are related to non-GBP-dependent objects (for either committed or
uncommitted transactions) or log records related to uncommitted transactions, restart will
need to read logs (possibly up to two checkpoint’s worth of logs) and examine whether
updates were being externalized to GBP or DASD.

Note: DB2 APAR PK29281 increased the maximum number of concurrently open DB2
data sets from 65,000 to 100,000.
Chapter 7. DB2 considerations 151

To understand the effect of the number of open data sets on DB2 shutdown time, we ran a
number of measurements. We started with a DSMAX value of 2k, then increased it to 40k,
60k, 80k, and 100k, measuring how long it would take to stop DB2 in each case. The results
are shown in Figure 7-15.

Figure 7-15 Shutdown times for DB2 with differing numbers of open data sets

You can see that the shutdown time scales nonlinearly. There are obvious advantages to
shutdown times in having a lower DSMAX value. However, you should balance the shutdown
time advantages against the increased overhead if DB2 has to close and reopen many data
sets because the DSMAX value is being reached. Although DB2 does not do a physical close
operation on its VSAM data sets at shutdown time, it does have to invoke IRLM to free
pageset or partition physical (P) locks for each open pageset or partition.

Also, consider the PCLOSET and PCLOSEN values, which also have a role in deciding when
a data set should be closed. When the PCLOSET time (or PCLOSEN number of checkpoints)
passes without an update to the pageset (or partition), then a pseudo-close is done. This
makes that DB2 Read Only DB2 with respect to that pageset/partition.

Additionally, for any object (defined with CLOSE YES) that has ever been GBP-dependent, a
physical close operation will eventually be done. After another interval of PCLOSET, the
objects that were pseudo-closed in the prior PCLOSET interval will be physically closed. As
with DSMAX, determining the correct PCLOSET and PCLOSEN values for your system will
depend on your evaluation of the relative priorities of faster DB2 shutdown times versus
reduced overhead while DB2 is running.

We also wanted to understand the impact on DB2 shutdown times of various SMF settings.
For these measurements, we ran with 100,000 DB2 data sets and then with 20,000 data sets,
and measured how long the time was to stop DB2 with the following settings:

� The SMF DDCONS option set to YES
� The SMF DDCONS option set to NO

Shutdown DB2 with different open data sets

0

50

100

150

200

250

300

350

400

450

500

20k open
data sets

40k open
data sets

60k open
data sets

80k open
data sets

100k open
data sets

S
ec

o
n

d
s

z/OS R10
152 System z Mean Time to Recovery Best Practices

The SMF DDCONS parameter controls whether SMF consolidates all the EXCP sections for
each DD/device pair when the SMF Type 30 job end (subtype 5) records are being created.
Specifying NO results in larger volumes of SMF data being created, however this was the
recommended value, on the basis that jobs would end faster if they did not have to wait for the
EXCP sections to be consolidated. The results of our measurements are shown in
Figure 7-16.

Figure 7-16 Shutdown DB2 with DDCONS(YES) or DDCONS(NO)

As you can see, consolidating the EXCP sections in the SMF Type 30 records by specifying
DDCONS(YES) resulted in DB2 taking slightly longer (about 9%) to stop than when
DDCONS(NO) was specified.

7.4.2 Shutdown DB2 with CASTOUT (NO)

Normally, when DB2 is shut down, it will cast out all pagesets/partitions for which it is the last
updating member. If thousands or tens of thousands of data sets are open, this number could
be a lot of castouts and could take a considerable amount of time to complete.

If you are shutting down DB2 for a brief period, to apply maintenance, for example, you can
use the CASTOUT(NO) option on the DB2 STOP command. This option causes DB2 to skip
doing its normal castout processing, and instead an IX mode P-lock for the pageset/partition
is retained to track whether the pageset/partition still has changed pages in the GBP.

Recommendation
Consider specifying CASTOUT(NO) when you stop an individual member of a data sharing
group for a brief period. This option speeds up shutdown because DB2 bypasses castout and
associated cleanup processing in the group buffer pools.

Shutdown DB2 with DDCONS

0

100

200

300

400

500

600

100K w ith
DDCONS(YES)

100K w ith
DDCONS(NO)

20K w ith
DDCONS(YES)

20K w ith
DDCONS(NO)

S
ec

o
n

d
s

z/OS R10
Chapter 7. DB2 considerations 153

7.4.3 PCLOSET consideration

A very large PCLOSET value can result in one DB2 being the Global Lock Manager for a very
large number of lock entries. This in turn can result in an elongated DB2 shutdown time
because DB2 must release all the locks of which it is the Global Lock Manager.

7.4.4 Active threads

DB2 cannot shut down until all threads have been terminated. If the DB2 shutdown is taking
longer than expected, issue the DB2 DISPLAY THREAD command to determine if any
threads are active. If necessary, those threads can be cancelled.

7.4.5 Shutdown DB2 with SYSTEMS exclusion RNL

If you are not doing DB2 data sharing, and you are positive that no other system will attempt
to open your DB2 data sets, you can place the DB2 data sets in the SYSTEMS exclusion
resource name list (RNL); this approach changes the scope of the ENQs to a single system,
and should result in reduced DB2 shutdown times. For details, see z/OS MVS Planning:
Global Resource Serialization, SA22-7600.

Note: Do not use CASTOUT(NO) when you shut down multiple members of a data sharing
group and you need to maintain consistent data on disk. For example, if you shut down all
members to get a consistent copy of the databases on disk that you can copy and send
offsite, do not specify CASTOUT(NO), because some of the changed data could still reside
in the group buffer pools after all the members have shut down
154 System z Mean Time to Recovery Best Practices

Chapter 8. IMS considerations

This chapter discusses the Information Management System (IMS) and the options to provide
faster startup and shutdown of the subsystem. IMS is an IBM premier transaction and
database manager for critical online applications. It is primarily used where high volume
transaction processing with data and message integrity is essential, while also providing a
low cost per transaction.

IMS has been highly optimized over the 40 plus years it has been in existence. However, IMS
and system parameters can affect the time to start IMS (to the point of being able to run
applications), and to shut it down in an orderly manner. Those options and parameters are
explored in this chapter. Although most information in this chapter is for the normal startup
and shutdown situation, various options are discussed that minimize the time to start IMS
after an abnormal shutdown.

8

© Copyright IBM Corp. 2010. All rights reserved. 155

8.1 Definition of startup and shutdown times

For the purposes of this book, the startup time includes everything necessary to begin
processing transactions. Everything includes initialization, restart, start dependent regions,
and open databases. Key messages that delineate these phases in the startup process are:

� DFS0578I is the first message issued by IMS after it is started.

� DFS810A (or DFS3931I) signals the end of initialization.

� DFS058I is issued when the restart command is in progress.

� DFS994I indicates the end of restart processing.

Shutdown is defined as starting when you enter the IMS checkpoint command to terminate
IMS, or from when an abnormal termination starts until the time that the IMS control region is
gone from the system. Messages include:

� DFS994I indicates that the checkpoint command is in progress.

� DFS994I informs you when shutdown has completed.

� DFS627I is also issued, indicating that the recovery termination manager (RTM) cleanup
is complete.

8.2 How we measured

Depending on the situation, we used the following methods to measure the startup and
shutdown times:

� Syslog and JOBLOG

These sources can be used for situations in which total times or specific functions within
startup or shutdown can be tied to various messages.

� IMS log record analysis

This method was used in cases to verify what was happening internally between certain
messages. However log records cannot be used to analyze initialization or restart because
no log records are written during those times.

� CQS log record analysis

The IMS Common Queue Server (CQS) writes log records for certain activities, and
statistics records when a CQS checkpoint is taken. These statistics can be used to obtain
certain timings.

� SMF

IMS does not specifically write System Management Facility (SMF) records except for the
Type 79 Subtype 15 long lock detection record.However, SMF records (such as Type 30
records) may be created for any job, which, of course, includes IMS.

� RMF

Resource Management Facility (RMF) writes SMF Type 7x records, which can then be
reported on by the RMF Postprocessor.
156 System z Mean Time to Recovery Best Practices

8.3 Test configuration

All tests were done using one to three LPARs in a sysplex. These LPARs were on a single z10
processor, along with the two CF LPARs. All LPARs were using dedicated engines.

IMS Version 10 was used for measurements, running under either z/OS 1.9 or 1.10.

Depending on the measurement, either one, two, or three IMS subsystems were brought up.
IMS was always in data-sharing mode, using the IRLM with databases registered as
SHARELVL=3, even if only one IMS was active. Most measurements were done with IMS
shared message queues, except where comparisons were made with a private queue
environment.

Up to 200 dependent regions were activated on each IMS. More than 5,000 each of
databases, applications, and transactions were defined.

The IMS Structured Call Interface (SCI) and Operations Manager (OM) functions were active.

Figure 8-1 shows the basic configuration. The SCI, OM, and dependent regions are omitted
for clarity.

Figure 8-1 IMS configuration

8.4 Startup and shutdown functions, and when performed

In this section, we look at several functions that are performed during startup and shutdown of
IMS. This is certainly not a complete list, but should point out some of the important functions.

IM1ACTL
IM2ACTL

IM3ACTL

IM1ADLS

IM1ADBRC

IM1ACQS

IM2ADBRC

IM2ADLS

IM3ADBRC

IM3ADLS

#@$2 #@$3 #@$A

#@$#PLEX

SMQ SEMH

IM2ACQS IM3ACQS

Shared DB

IMS
Configuration

IM1AIRLM IM2AIRLM IM3AIRLM
Chapter 8. IMS considerations 157

8.4.1 Startup functions

For the purposes of this book, we divide IMS startup time into three separate phases:

� Initialization

Initialization is the time from issuing the START IMS command, until either the DFS810A
IMS READY message, or the DFS3931I IMS INITIALIZED, AUTOMATIC RESTART PROCEEDING,
message is presented. The DFS3931I message is presented if automatic restart
processing has been enabled. Included in this time are functions such as:

– Loading IMS modules

– Allocating virtual storage for blocks and pools

– Reading and processing IMS PROCLIB members

– Issuing start commands for the other IMS address spaces

– Initializing the various IMS Task Control Blocks (TCBs)

– Initializing the IMS logger and allocating the OLDS and WADS data sets

– Attempting to acquire the IMS master terminal

– DLI connects to the OSAM and VSAM cache structures, if used

– CQS, if used, connects to its CF structures and issue the CQS0020I CQS READY
message

� Restart

Restart is the time from when the RESTART command is entered by the user, or from the
DFS3931 message, until the DFS994I xxxx START COMPLETED message (where xxxx is the
type of restart) is issued. It includes the following activities:

– If this is a warm or emergency start, IMS determines the checkpoint to be used and
opens the OLDS and WADS data sets from the previous execution and processes as
necessary.

– IMS identifies to IRLM, and then IRLM connects to the lock structure.

– Issue BLDLs for the DBDs and PSBs that are defined to IMS.

– Page-fix the specified areas of storage.

– Open OLDS and WADS.

– Take a simple checkpoint.

– Pre-open specified Fast Path (FP) areas.

– Connect (allocate) any shared VSO structures.

– Preload specified FP areas.

� Post restart

Post restart is the time from the restart complete message (DFS994I), until user logons
can begin, dependent regions are started, and applications can begin processing, as
follows:

– Start Data Communications (DC) to allow logons.

– Start dependent regions, including any preload processing.

– Open database data sets, either specifically by using the /STA DB command with the
OPEN option or implicitly when they are first used by an application.
158 System z Mean Time to Recovery Best Practices

8.4.2 Shutdown functions

Shutdown of IMS can be normal or abnormal. A normal shutdown is where an IMS
checkpoint command is issued. In this case, IMS cleans up all storage, closes database data
sets, and finally takes a checkpoint which will subsequently be used by a warm start. The
elapsed time for the shutdown process starts from when the /CHE FREEZE, PURGE, or DUMPQ
command is entered, and ends when IMS is completely out of the system and can be started
again

Abnormal shutdown can be because of a failure in IMS where the z/OS system stays active.
This type of failure typically means that dump processing will be invoked, and this can affect
shutdown time. IMS ESTAE processing cleans up common storage and closes the log if
possible. In the case of a z/OS or hardware failure, IMS of course does not get control so it is
up to Fast Database Recovery (FDBR) and emergency restart to handle cleaning up locks
and in-flight or in-doubt units of work. The shutdown time in this case is the time from the
point of the abend through to when IMS is out of the system, and includes the time for dump
processing.

8.5 IMS parameters

As anyone who uses IMS already knows, there are many startup parameters in several
different PROCLIB members. However, only those parameters that might affect startup or
shutdown time are discussed here. Any parameters or specifications that might affect startup
or shutdown, but cannot be changed without affecting system function, are not discussed.
Those things might be active transaction and database definitions, pool sizes, and so on.
Although certain things could or should be changed for better overall performance, that is not
the subject of this book.

8.5.1 DFSPBxxx member

DFSPBxxx contains most of the startup parameters for IMS. It also specifies other members
of IMS PROCLIB to be loaded and processed. Those members are discussed separately.
The following parameters are processed during IMS startup:

� ARMRST

This parameter tells IMS whether or not to register with the MVS Automatic Restart
Manager (ARM). Although the default is yes (Y), for this to take any effect, the necessary
ARM policy must have been set up. When using ARM to restart IMS, the AUTO=
specification is overridden to YES so that IMS can both initialize and restart with no
manual intervention. If you do not want to use ARM because you have other automation in
place, then specify ARM=N.

� AUTO

Many installations have automation products to handle the restarting of IMS. However,
specifying AUTO=Y enables IMS to internally determine the type of restart that is
necessary and proceed to perform the restart without delay. For those instances where a
cold start is desired, a manual override of this parameter could be done on those rare
occasions. To override at startup, specify S IMS,PARM1=’AUTO=N’ command. The one
confusing thing about the AUTO=Y approach is that the normal DFS810A message is
replaced by the DFS3139I message stating that automatic restart proceeding is being
used and this WTOR remains outstanding until a reply of some type is entered, at which
time it will be replaced by the DFS996I IMS READY message. A good practice is to have
an automated reply to the DFS3139I WTOR simply to avoid confusion: Although IMS is
Chapter 8. IMS considerations 159

not typically in restart processing for very long, this message can remain outstanding for
hours or days even though normal processing has continued.

� CPLOG

CPLOG controls when IMS will take automatic checkpoints. Some installations set this
very high and perform checkpoints with automation. The frequency of checkpoints is a
consideration when an emergency restart must be performed. Most times, IMS goes back
to the second most current checkpoint to begin processing the log for restart. Of course,
the amount of log data that must be processed affects the time to complete the emergency
restart process, not necessarily the time between checkpoints, because the amount of log
data produced in a given period will probably vary quite a lot depending on the time of day.
The speed of the DASD is also a factor in how long restart takes, therefore you might want
to run tests to determine how long, in your environment, processing a given amount of log
data takes. That information can then be used as input to determine how to set this value.

� FDRMBR

Specifying the use of Fast DataBase Recovery (FDBR) is mostly considered as an
availability option in a data sharing environment; it does provide full data availability to
surviving IMS subsystems in the event that one IMS fails. However, by performing the
necessary backout or redo processing on behalf of the failed IMS, FDBR eliminates the
need to do that processing during the restart and thus reduces the time to get IMS back to
the point of processing new transactions. Although FDBR was designed for availability in a
data sharing environment it could, in fact, be used in a non-data sharing environment also,
to provide faster restart times.

� FMTO

This is an abnormal termination parameter and determines the type of dump that IMS will
take. The default setting is D which in most cases is fine. However M or R might be better
as long as SYSMDUMP has been set up to provide an alternative dump location if for
some reason the offline dump process were to fail. The important point here is to avoid
SYSABEND or SYSUDUMP processing because it will take considerably more time and
delay IMS getting out of the system.

� FPOPN

Fast Path areas have several options for open and preload. Pre-open and preload are
specified in DBRC and these options, as well as opening of areas that are not specified as
pre-open, might be affected by this setting. Fast Path pre-opens (or opens) and preloads
data sets concurrently with other operations. As a result, whatever option is chosen should
not affect the time to initialize and restart IMS. The main effect should be in getting
applications to run as soon as possible. Using the DBRC pre-open option for critical
databases, and specifying FPOPN=R or A should provide for maximum parallel
processing of transactions and the open process.

� PST

This value should specify enough Partition Specification Tables (PSTs) to accommodate
all of the dependent regions (or threads for DBCTL) that are expected to be started. IMS
allows more regions than this number to be started, up to the specification of MAXPST.
However, anything above the PST value causes extra processing when the regions are
started. For quickness of restart processing, this is a trade-off of where you want the cost
of getting the storage and initializing various control blocks to be incurred. However, it is
generally more efficient for IMS to acquire and initialize the blocks during the initialization
process to avoid delays during critical online processing.

� SHAREDQ

Specification of this parameter tells IMS to use shared queues instead of private queues.
Although more overhead is involved in transaction processing with shared queues, there is
160 System z Mean Time to Recovery Best Practices

a definite advantage in restart processing. A process that is performed by private queues
called QFIX can sometimes be lengthy during emergency restart processing, and
depends very much on the amount of queue manager log data to be processed. With
shared queues, this process is eliminated, and IMS must only connect to CQS.
Considerations for CQS restart, however, must be addressed to optimize that process.
These are discussed in 8.5.4, “CQSSLxxx member” on page 162.

8.5.2 DFSDCxxx member

The DFSDCxxx member of PROCLIB contains many parameters with regards to
communications options. Two specific parameters can affect restart:

� VACBOPN

This parameter is used to tell IMS when to open the VTAM ACB. Whether this is important
depends on how much of your network is SNA. The effect of this parameter is well
documented in IMS System Definition Reference, GC18-9966, but is summarized here.

The default value of INIT tells IMS to open the VTAM ACB during initialization. The other
value is DELAY, which delays the open until the /STA DC command is executed. With
DELAY the logon request is rejected until the ACB is opened with the /STA DC command. If
INIT is specified, user logons will be queued by VTAM until the /STA DC command is
executed. Depending on the number of requests queued, this can cause a flood of logons
when the start command is completed and some or many of those requests might have
already timed out. This in turn can cause a considerable amount of unnecessary
processing and delays just after restart, when you want to have transaction processing
begin.

� PMTO

The value specified for this parameter overrides the node name from the system definition
for the master terminal. Regardless of whether this name, or the one from system
definition is used, be sure that this node is defined to VTAM, especially if it does not really
exist. This approach will prevent VTAM from searching the SNA network for this node,
which in some cases can take a very long time.

8.5.3 DFSCGxxx member

The DFSCGxxx member specifies items for the common service layer of IMS including
Structured Call Interface (SCI), Operations Manager (OM), and Resource Manager (RM).
From a startup perspective, a few key parameters are:

� RMENV

If you intend to use Resource Manager services and specify Y here, the next two items
(OMPROC and SCIPROC) are not used. However, although the OMPROC and SCIPROC
keywords are ignored, those address spaces must be started in a timely fashion to avoid
startup delays. This point is important.

� OMPROC

For this parameter, you can specify the OM procedure name. If RMENV=N is specified,
IMS will automatically issue the START command for OM. Certain considerations, about
when this START command is issued are covered later in this chapter.

� SCIPROC

Similar to the OMPROC value, this parameter tells IMS to automatically issue the START
command for SCI if it has not previously been started. If using SCI or OM or both, a good
Chapter 8. IMS considerations 161

idea is to code these values even if you have other procedures in place to start them. This
approach provides a fallback in the event that they had not already been started.

Although you might ask why RMENV=Y causes the OMPROC and SCIPROC values to be
ignored and why IMS could not start RM as well, the answer at this time is: This is working as
designed.

8.5.4 CQSSLxxx member

The CQSSLxxx member specifies information regarding a particular instance of CQS. The
only value we discuss is SYSCHKPT.

This SYSCHKPT value is much like the CPLOG value for IMS. It specifies how many CQS
logger records there should be between CQS system checkpoints. These checkpoints are for
an individual instance of CQS. These checkpoints have very little impact to the system when
they occur. Much like IMS, the frequency of these checkpoints has an impact on the time to
restart CQS in the unlikely event of a failure. Unfortunately, this setting cannot be changed
dynamically while the system is running. However, if you want to take more frequent system
checkpoints, you could do this by having automation issue the /CQC command at regular
intervals.

8.5.5 DFSMPLxx

This IMS PROCLIB member specifies modules to be preloaded into IMS regions. Although
not exclusive to dependent regions, this is the most common use. The number and size of the
modules specified in this member can affect region startup times especially when starting
many hundreds of dependent regions. Additional information about this subject is covered in
8.7.2, “Starting dependent regions” on page 166.

8.6 Starting IMS-related address spaces

The order in which various IMS address spaces are started can affect (in a good or bad way)
the startup process. In this section, we look at which address spaces (such as IRLM, SCI,
OM, RM, and so on) may be started before or concurrently with the IMS control region.

8.6.1 IMS-related address spaces

The IMS functions that you exploit in your configuration determines which IMS address
spaces are needed. Possibilities include:

� IRLM

The IRLM may be used as the lock manager for IMS in both data-sharing and
non-data-sharing environments. It should be started before or perhaps at the same time
as IMS. However, you definitely want it to be active before IMS attempts to identify to the
IRLM, an action that takes place early in the restart process. If IRLM is not active when
IMS tries to identify, IMS issues a DFS039A WTOR, which must then be replied to after
the IRLM has been started. When possible, of course, avoid manual intervention.

� FDBR

The Fast DataBase Recovery (FDBR) address space is started separately, and for
availability should run on a different LPAR, preferably on a separate physical machine. It
can be started at any time before or after IMS. Because we focused primarily on the
162 System z Mean Time to Recovery Best Practices

normal shutdown and startup situation, we did not have a chance to demonstrate the time
that probably would have been saved on emergency restart by not having to do database
backout, because FDBR would have done that in advance.

� SCI

The Structured Call Interface (SCI) is used for many functions and is the communications
interface for the various IMS address spaces. SCI is optional and can be started
automatically by IMS if the procedure name is specified in the DFSCGxxx member of IMS
PROCLIB and RMENV=Y has not been specified. The SCI does not terminate if either a
normal or abnormal termination of IMS should occur, so this address space need only be
started once per IPL of the system. Consider placing the start for SCI in the COMMNDxx
member of Parmlib. Depending on the functions being used, IMS might or might not
complete initialization before SCI is started. However, IMS automatically detects when SCI
has been started without operator intervention.

� OM

Operations Manager (OM) is also an optional address space that might be started
automatically by IMS if specified in the DFSCGxxx member. However, as with SCI, IMS
does not automatically start either SCI or OM if RMENV=Y is specified in that same
member. So, if using the Resource Manager component of IMS you must start RM, SCI,
and OM by using COMMNDxx, automation, or manually.

� RM

Resource Manager (RM) is optional too. If using RM, consider the options in the preceding
discussion of OM.

� AVM

Availability Manager (AVM) is used with extended recovery facility (XRF) or FDBR. If it is
not started, IMS starts it automatically. Although AVM starts in very little time, it also can
easily be put in the COMMNDxx member. There is no way to stop AVM other than with an
MVS FORCE command. If you stop AVM in this way, you must restart AVM manually
because IMS will not start it again until after the next MVS IPL.

� RRS

This parameter is only used if RRS=Y is specified in the DFSPBxxx member. Resource
Recovery Services (RRS) is normally started in the COMMNDxx member of parmlib. If
IMS tries to use RRS but it is not started, IMS will complete initialization but issue the
following message during restart processing and wait for RRS to be started and the reply
to the WTOR to be completed:

DFS0548A RRS NOT ACTIVE BUT RRS=Y SPECIFIED - REPLY: RETRY, CONTINUE OR CANCEL

RRS is also used with DBRC parallel recon access but that is separate from the IMS
specification.

To understand the impact of starting SCI and OM before IMS, or having IMS start these
address spaces, we ran with both options and obtained the results shown in Figure 8-2 on
page 164. As it turned out, the delay with SCI being started by IMS was because DBRC,
which had already been started, was waiting for SCI and the IMS control region had not
yet issued the START command. IMS was actually then waiting for DBRC to complete
initialization. This delay can be eliminated by starting SCI prior to, or concurrently with,
IMS.
Chapter 8. IMS considerations 163

Figure 8-2 SCI & OM started before or during IMS startup

8.7 Other IMS options

This section discusses various other options that can affect the time to start or stop IMS.
Options include various system definition items, various functions, and options to improve the
mean time to recovery (MTTR).

8.7.1 IMS system definition specifications

The system definition options that can affect startup time are the resident options for
databases and applications. These are specified as positional keywords as follows in the IMS
stage 1 input:

� DATABASE RESIDENT,DBD=

� APPLCTN RESIDENT,PSB=

RESIDENT option may also be dynamically specified with the SET(RESIDENT(Y)) parameter
on the CREATE DB, UPDATE DB, CREATE PGM, or UPDATE PGM commands but will not
actually be in effect until IMS is restarted.

The RESIDENT option may be turned off by the RES=N startup option. RES=Y is the default.
Startup time can be affected by the number of resident blocks that are loaded. IMS does a
BLDL operation at startup for all the defined resources, however those that are defined as
resident are actually loaded into storage during the startup process. The DMB and PSB pools
can be made large enough such that resident blocks are not necessary, but tuning options are
associated with those pools. Tuning for online performance is not covered in this book so only
the affect on startup time is shown.

Affect of SCI & OM

0

2

4

6

8

10

12

14

16

18

SCI/OM active SCI/OM not active

S
ec

o
n

d
s

sta - rdy
164 System z Mean Time to Recovery Best Practices

Figure 8-3 shows the effect of the resident option. For this test we had 5,000 databases and
5,000 applications defined as resident in one case and nonresident in the other. The time
from start until the IMS ready message remains constant but the time to load the requested
control blocks shows up in the resident case in the time between the NRE command and
when IMS restart is complete (because this is when the BLDL and resident block load takes
place). Of course, this time can vary depending on how many resources are defined to your
system.

Figure 8-3 Impact of RESIDENT option on IMS startup times

In addition to the RESIDENT option, there is another consideration, which is the number of
databases or applications that are defined, whether resident or not, that are not actually being
used. These fall into at least two categories:

� Those that are defined and have ACBs defined. These are very difficult to find and require
log analysis over some period of time to identify.

� Those that are defined to IMS but no longer have ACBs. These can be identified by the
DFS830I messages that are written during startup, and could be candidates for cleanup.

A few unnecessary applications or databases being defined will have minimal impact on
startup, but if there are many hundreds or thousands, then there could be savings in both time
and storage. In Figure 8-4 on page 166 we removed 500 DMBs and 500 ACBs from ACBLIB
and measured the time from the NRE command until cold start was complete. We then
removed those same 1000 resources from the IMS definition to see the impact of cleaning up
unused resources. Even though the impact was not a lot, it does show that removing
unnecessary resources is a good idea.

Resident vs non resident

0

1

2

3

4

5

6

7

8

9

10

resident non-resident

S
ec

o
n

d
s

Start-R eady

NRE-RST Comp
Chapter 8. IMS considerations 165

Figure 8-4 BLDL failure impact

8.7.2 Starting dependent regions

Starting the regions is necessary to begin transaction processing. The number of regions
used varies considerably by installation. Some sites use only 10 or 20 regions; others use
several hundred. We want the dependent regions to be started as quickly as possible. There
are a number of options to expedite this process:

� PST value in DFSPBxxx

IMS acquires storage and initializes these control blocks during initialization. Although
having more than necessary is probably a good idea, be sure not to get carried away. For
example, if you normally need 100 regions, specifying 120 or so would be reasonable.
However, specifying the maximum of 999 would waste a lot of storage, and would take
more time during initialization.

� Use of JES2 initiators versus WLM-Managed initiators

Always use JES2-managed initiators for IMS-dependent regions. Using WLM-managed
initiators slows down the starting of these regions significantly and in some cases might
prevent all of the regions from actually starting.

� Use of LLA and VLF for IMS reslib and preloaded modules

Most IMS modules are only loaded once per execution and so the use of LLA and VLF
might not provide any significant benefit. However, depending on how many regions are
being started and how many of the same modules are being preloaded into each region
and their size, using LLA and VLF to reduce the time to load these modules is possible.

� Use of a CSVLLIX2 exit routine to influence the staging process

This exit can be dynamically enabled and disabled after the regions complete startup in
the case where you do not want it active all of the time. This exit could also be used to
force staging for modules, which might not be preloaded but instead loaded dynamically
during application execution. A sample routine is shown in Appendix B, “Optimizing use of
LLA and VLF” on page 197.

BLDL Failure Impact

5.4

4 .8

0

1

2

3

4

5

6

BL DL Fa il Rem ove d

S
ec

o
n

d
s

NRE - Co ld
166 System z Mean Time to Recovery Best Practices

As you can see in Figure 8-5, the use of LLA and VLF with the exit routine enabled had some
measurable impact on startup time for the 200 dependent regions. In our case the 20
preloaded modules were about 68 KB each. Today’s DASD is very fast and these 20 modules
would of course be cached in the DASD controller so this must be considered as to why the
impact was not more. LLA with VLF and the CSVLLIX2 exit routine can be a benefit to the
online application performance more than startup if numerous subroutines are being called.

You can see that using WLM-managed initiators for the dependent region job class was very
detrimental to region startup time. In fact, we only ever got 186 of the 200 regions to start, no
matter how long we waited.

Figure 8-5 Time to start 200 regions

8.7.3 Opening database data sets

Databases must be allocated, authorized with DBRC, and opened before they can be used.
The options for fast path databases were discussed with the FPOPN option in 8.5.1,
“DFSPBxxx member” on page 159.

For full function databases, IMS will, by default, open those data sets when they are first
referenced by an application. This option is probably the best one from the standpoint of
getting to the point of having applications running in the dependent regions. However, it might
be advantageous to start the open process after IMS is restarted, in parallel with the starting
of the dependent regions. This can be done by using the IMS START DATABASE command
with the OPEN option. Unfortunately, the form of the command with the open option does not
support the ALL keyword, and of course you do not want to enter thousands of commands
manually. For our test, we created time controlled option (TCO) scripts and used this facility to
open our databases. Although opening all of your databases in this way might not be
practical, you might consider it for some of the most highly used databases so that they are
available immediately when the applications are scheduled, rather than tying up dependent
regions waiting for the open process.A sample TCO script that was used to open our
databases is shown in Example 8-1.

Start Region Times

8 12 8

398

0

50

100

150

200

250

300

350

400

450

JES2 In it JES2 & 20 preload m odules JES2 & PRLD & LLA WLM init

S
ec

o
n

d
s

Start Region
Chapter 8. IMS considerations 167

Example 8-1 Sample TCO script

/STA DB DB00001 OPEN
/STA DB DB00002 OPEN
/STA DB DB00003 OPEN
/STA DB DB00004 OPEN
/STA DB DB00005 OPEN
.
.
.
.
/STA DB DB00997 OPEN
/STA DB DB00998 OPEN
/STA DB DB00999 OPEN
/STA DB DB01000 OPEN
*TIME DFSTXIT0 S

8.7.4 DBRC Parallel Recon Access

IMS Version 10 introduced an optional function called Parallel Recon Access (PRA), which
affects how DBRC accesses its RECON data sets. To maintain integrity and provide backout
in the event of an error, DBRC has always provided an internal mechanism for locking and
backing out changes if necessary. Basically, the locking mechanism consisted of issuing a
RESERVE macro for each of the data sets and tracking updates within the RECON data sets.
This could be converted potentially to a global enqueue by the GRSRNLxx member of
SYS1.PARMLIB. Either way, the RECON access was serialized across all the IMS images in the
sysplex.

With the PRA function of Version 10, DBRC uses the functions of transactional VSAM to
provide locking and logging for backout. The implementation of PRA itself is easy, with a few
simple DBRC commands. However, implementation of the prerequisite transactional VSAM
function (TVS) is much more complex. More details about this implementation can be found in
IBM IMS Version 10 Implementation Guide: A Technical Overview, SG24-7526.

Although implementing PRA can require significant planning and tuning to make it perform
well, the results could prove valuable. We conducted several measurements, opening 5,000
databases using various methods of locking; the results are shown in Figure 8-6 on page 169.
168 System z Mean Time to Recovery Best Practices

Figure 8-6 DBRC access times for serial and parallel access

As you can see, there was very little difference in using the RESERVE or Enqueue functions
with serial access. However, after tuning transactional VSAM, we were able to significantly
improve this time. The first column shows the time when the DBDs were non-resident in order
to compare with the other columns, which represented the measurements with RESIDENT.
The only reason this first measurement was done was to determine whether loading the
DMBs had any significant impact on the overall time.

8.7.5 Message-based processing for CFRM Couple Data Sets

IMS shared queues uses a cross-system extended service (XES) called IXLUSYNC to
quiesce and resume activity to the shared queues structures during a structure checkpoint. A
good practice is to take a structure checkpoint after starting up IMS and CQS, allowing log
stream data to be cleaned up and to provide a current point of recovery. The most critical time
for delays because of structure checkpoint is during heavy online activity when any stoppage
of the queuing function can affect the entire IMSplex. Although this slight delay at startup
might not be critical, it did give us a chance to better understand the factors that can delay or
speed up this process.

In addition to the amount of data on the queue that must be read, the other variables are the
size of the CFRM Couple Data Set and whether Message-based CFRM processing
(delivered with z/OS V1R8) is used. We did not have time, and it was not within the scope of
this book, to look at the impact that the amount of data on the queue would have on IMS
initialization time. However, we did look at the CFRM Couple Data Set options because they
can also affect startup time.

Figure 8-7 on page 170 shows the impact that the size of the CFRM Couple Data Sets had on
the time to quiesce activity to the message queue structure. The size of the CFRM CDS is
based on variables such as the number of structures and systems in the sysplex. Using
CFRM Message-based processing makes the size of the CDS much less important.

DBRC Options

2 61 26 0

249

1 21

0

50

100

150

200

250

300

non-res, grs conv se rial, grs excl se rial, g rs conv pa rallel

S
ec

o
n

d
s

Auth-A lloc-Open
Chapter 8. IMS considerations 169

So, although milliseconds might not be a factor in startup time, showing these times seemed
worthwhile because they can have a much more significant impact during heavy online
processing.

Figure 8-7 Couple data set size impact

8.7.6 Shutdown

IMS shutdown time was very repeatable and short in most cases. The one thing that can
affect an abnormal shutdown is the FMTO setting, which was discussed in 8.5.1, “DFSPBxxx
member” on page 159.

The other rather long wait at shutdown was between the shutdown checkpoint being issued
and when the checkpoint is initiated. Investigation showed that this is mostly because of a
couple of STIMER waits for APPC and OTMA client cleanup. These waits are for 10 seconds
each and they probably will happen even if you do not use one or both of these functions.

8.8 Summary

Although we tried to exercise as many variations as possible for IMS startup and shutdown,
only a few made much difference. We probably brought IMS up and down more times in a few
weeks than you would in many years; we hope we have given you an idea of what parameters
will affect the mean time to recovery.

Structure Checkpoint

38

199

61

430

0

50

100

150

200

250

300

350

400

450

500

Message Based Non Message Based

M
ill

is
ec

o
n

d
s

Small CDS

Large CDS
170 System z Mean Time to Recovery Best Practices

Chapter 9. WebSphere considerations

This chapter introduces the WebSphere Application Server initialization logic and provides
recommendations for reducing the time for WebSphere Application Server to start and
restart. The scope of this discussion is primarily limited to WebSphere Application Server
Version 7.0 because it features a number of configuration enhancements designed to enable
faster initialization.

Some information in this book is also applicable to WebSphere Application Server Version 6.1
and will be identified as such. The following topics are included in this chapter.

� Introduction to WebSphere Application Server 7 Application Server Initialization Logic

� General recommendations

� How we evaluated WebSphere startup time

� WebSphere Application Server 7 startup enhancements

9

© Copyright IBM Corp. 2010. All rights reserved. 171

9.1 WebSphere Application Server 7 initialization logic

WebSphere Application Server can be configured in a single server standalone environment
called a Base configuration. On z/OS, a Base configuration has at least three address
spaces, a Control Region, a daemon, and one or more servant regions. Each servant
executes in a separate address space. A Base server is managed from its own administration
console and is independent of other WebSphere Application Servers.

WebSphere also supports another configuration option called Network Deployment (ND).
Using Network Deployment, you can create a more distributed WebSphere environment that
is centrally managed by a Deployment Manager and Node Agents. Multiple Application
Servers can be grouped in clusters to provide workload distribution and failover. ND is also
required for horizontal scaling and rolling upgrades for continuous operations.

We elected to study the ND architecture because many of our larger customers have selected
this option. We found that the initialization behavior of the WebSphere Application Server
(control region and servants) in an ND configuration is equivalent to that of a basic server in
most cases.

Our ND environment consisted of the following components:

� Daemon

� Deployment Manager (control region plus servant)

� Node Agent

� Application Server (control region, adjunct, and n servants)

The Application Server in an ND environment can be started independently of the
Deployment Manager and NodeAgent using a command similar to this:

S T1ACRA,JOBNAME=T1SR00A,ENV=T1CELL.T1NODEA.T1SR00A

It can also be terminated independently of the Deployment Manager and other address
spaces.

When an Application Server is started, the Control Region initializes first. If the daemon has
not been started already, the Control Region will start it. Then, a Java virtual machine (JVM)
is created and the WebSphere classes are loaded. The Control Region invokes WLM to start
the first (or only) servant address space. The servant also requires a JVM to initialize and
classes to be loaded. Each Control Region must execute shell scripts during initialization. You
may notice BPXAS address spaces being created or starting. They are required to run the
initialization shell scripts. The role of WLM is discussed further in 9.2.1, “Understanding WLM
policy” on page 173.

The number of servants started by WLM is determined by the combination of the current
workload and two WebSphere parameters specifying the minimum and maximum number of
servant regions. During our study, we set the minimum equal to the maximum to ensure that
the same number of servants was started every time for consistency. Ordinarily, you would
allow WLM to manage the number of servants in a more dynamic manner.

Most of the elapsed and CPU time in WebSphere startup is a result of JVM creation,
compiling Java methods with the Java Just-In-Time (JIT) compiler, loading classes, and
checking various parts of the file system to ensure that WebSphere files are in a consistent
state.

When the server detects that the first servant has reached open for e-business status, it
signals WLM to start the remaining servants. Depending upon the initialization options you
172 System z Mean Time to Recovery Best Practices

have selected, the remaining minimum number of servants, as specified, are started. Note
that WebSphere Application Server itself does not start anything, it tells WLM to start them.
WebSphere Application Server is only interested when they have all completed starting, but
WLM is what controls the start up flow.

If multiple Control Regions are configured at your installation, each Control Region and its
servants initialize independently. This means that multiple Control Region/servant pairs can
initialize concurrently. This is true of both WebSphere Application Server 6.1 and WebSphere
Application Server 7. Therefore, one approach to reducing long initialization time for
WebSphere Application Server 6.1 is to divide your servants among multiple Control Regions.
However, in doing so, you would lose the ability to balance the workload among all your
servant address spaces. You can find more information about WebSphere Application Server
workload balancing options in:

http://publib.boulder.ibm.com/infocenter/wasinfo/v5r1//index.jsp?topic=/com.ibm.we
bsphere.zseries.doc/info/zseries/ae/crun_wlmzos.html

As each servant completes initialization, the following messages are written to Syslog:

BBOO0222I: WSVR0001I: Server CONTROL PROCESS t2sr00a open for e-business
BBOO0020I INITIALIZATION COMPLETE FOR WEBSPHERE FOR Z/OS SERVANT PROCESS T2SR00A.

The Control Region does not fully initialize until all servants have signaled open for
e-business. However, sometimes the Control Region initialization complete message can be
written before all servants have issued their equivalent messages. This occurs when a time
lag occurs between the open for e-business and BBOO0248I messages. However, regardless
of the sequence in which the messages reach Syslog, the Control Region is ready for work
when the following initialization-complete message is issued:

BB000222I: WSVR0001I: SERVER CONTROL PROCESS t2sr00a open for e-business

9.2 General recommendations

The recommendations in this section apply to both WebSphere Application Server 6.1 and
WebSphere Application Server 7.

9.2.1 Understanding WLM policy

To optimize initialization time, it is important to classify WebSphere address spaces and UNIX
BPXAS address spaces with appropriate WLM performance objectives. WebSphere requires
adequate CPU resource and priority when starting up, and BPXAS address spaces are
needed for executing shell scripts during initialization. More information about our WLM setup
is in 5.4, “JES2” on page 81.

9.2.2 Using zAAPs during WebSphere initialization

Because WebSphere is primarily written in Java, a beneficial approach is to configure one or
more IBM System z Application Assist Processors (zAAPs), especially if your installation uses
Business Class (BC) System z processor models. zAAPs run at full Enterprise Class (EC)
model speed on lower speed models of System z. However, you should be aware of the
effects of specifying IFAHONORPRIORITY=NO in the IEAOPTxx member of Parmlib.

If IFAHONORPRIORITY=NO is selected, programs eligible to run on a zAAP, for example
Java WebSphere methods, are not permitted to run on a general purpose processor unless
Chapter 9. WebSphere considerations 173

http://publib.boulder.ibm.com/infocenter/wasinfo/v5r1//index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/crun_wlmzos.html

the zAAP (or zAAPs) are not online. Java programs are confined entirely to the zAAP (or
zAAPs). Therefore if you have five general purpose CPs and only one zAAP, only the zAAP is
eligible to execute Java code during WebSphere initialization. This can cause elongated
WebSphere initialization time if zAAP resources are insufficient.

The value of this keyword can be changed dynamically. Depending on your use of zAAPs and
the capacity in the LPAR, and if you normally run with IFAHONORPRIORITY set to NO, you
may consider setting IFAHONORPRIORITY to YES during the WebSphere Application
Server startup period (when WebSphere Application Server typically requires more CPU
capacity) and then change it back to NO for normal operation. Specifying
IFAHONORPRIORITY=YES means that work will be dispatched on the general purpose CPs
if WLM determines the zAAP needs help and there are not higher priority tasks that would like
to be dispatched. You could even write a simple automation routine that would switch back
and forth between the two IEAOPT members, depending on whether WebSphere Application
Server initialization is starting or completing.

With z/OS 1.11 and later, zAAP workloads can run on zIIP engines; this is controlled using
the ZAAPZIIP parameter in the IEASYSxx member of Parmlib. The default is YES. See z/OS
MVS Initialization and Tuning Reference, SA22-7592 for more information about this
capability.

9.2.3 Optimizing WebSphere log stream sizes

Many installations configure the WebSphere Application Server to write error messages to a
log stream. Alternatively, you can write the error messages to the spool or to a HFS data set.

To send the messages to a data set, the JCL for all server components be augmented to add
the following DD statements:

//HRDCPYDD DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE
//DEFALTDD DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE

Additionally, the following properties must be set on the server:

ras_hardcopy_msg_dd=HRDCPYDD
ras_default_msg_dd=DEFALTDD

This setting takes take all the WebSphere errors messages away from Syslog and places
them instead into the JOBLOG for the task. Be aware, however, that this makes finding
potentially useful WebSphere error information in Syslog impossible.

If you specify that the messages should go to a log stream, but then fail to supply a log stream
name, or if you specify the name of a nonexistent log stream, WebSphere will write the
messages to Syslog. If you specify a non-existent log stream name you will receive an error
message similar to the following message:

02:21:25.311 01 SYSTEM=ZZ01 SERVER=WASCRA1
BBOO0082E System Logger service IXGCONN for stream WAS1.ERROR.LOG returned with
failure

Recovering from the log stream connection failure usually takes 2 - 3 seconds for each of the
Control Region and servant address spaces.

However, creating the log stream and specifying the correct name can delay WebSphere
even more if you fail to allocate sufficient storage for DASD log streams. You might want to
consider using a coupling facility (CF) log stream as that provides the ability to have a
sysplex-wide repository of these messages and delivers better performance than DASDONLY
log streams.
174 System z Mean Time to Recovery Best Practices

The log stream size for offload data sets is defined by the LS_SIZE parameter, which is
specified in 4 KB blocks. If LS_SIZE is not specified in the log stream definition or in the
associated SMS data class, the value is taken from the ALLOCxx member of PARMLIB. The
default value in ALLOCxx is only two tracks.

WebSphere writes thousands of messages to the error log at initialization. They certainly
require more than two tracks. This lack of space in the offload data set causes Logger to
allocate multiple offload data sets. The creation of multiple Logger offload data sets can delay
WebSphere initialization. Using the SMF Type 88 record, you can determine the number of
offload data sets being created. These are reported as DASD SHIFTS.

Log stream specifications can be customized using the data reported by the IXCMIAPU utility.
A methodology for computing optimal log stream sizes is beyond the scope of this book.

9.2.4 Working with the Domain Name Server

The gethostbyname function returns the IP address of a network host when the host name is
specified. It is invoked by WebSphere to capture the IP address of the system on which it is
executing. If your Domain Name Server (DNS) is not working, or if WebSphere is using a
DNS in the network that requires multiple hops, WebSphere Initialization can be delayed.

Another potential problem is if there are dead entries in the list of configured DNSs. In this
case, TCP/IP can potentially wait a long time, waiting to hear back from these nonexistent
DNSs.

You can circumvent this problem by entering the system host name and IP address in the
local /etc/hosts file and have the resolver use that first, rather than calling the DNS.

9.2.5 Uninstalling default applications

If you elected to install the default applications when you initially installed WebSphere
Application Server, do one of the following steps before you go to production mode:

� Remove them after you have completed your verification testing.
� Not set them to become active at startup time.

Leaving them installed causes an elongated elapsed time and increased CPU utilization each
time WebSphere Application Server is started.

9.2.6 Enlarging the WebSphere class cache for 64-bit configurations

Enlarging the WebSphere class cache for 64-bit configurations applies only to WebSphere
Application Server 7 or to WebSphere Application Server 6 when running in 64-bit mode. The
default size of 50 MB for the WebSphere class cache is normally insufficient when operating
in 64-bit mode. We have found that increasing it to 75 MB has a beneficial effect on startup
time. The precise number will vary dependent on your configuration, so you should
experiment with this if you want to get optimal performance.

9.2.7 Optimizing zFS and HFS ownership

In a sysplex environment, it is important that the file systems used by a WebSphere server
are owned by the z/OS system where that server is running. The WebSphere Application
Server SMP/E file system (that is, the WebSphere Application Server executables and other
files that are maintained by SMP/E) should be mounted Read-Only on every system in the
Chapter 9. WebSphere considerations 175

sysplex. The WebSphere Application Server configuration file systems for the WebSphere
Application Server server and the Deployment Manager should be unique to each
WebSphere Application Server instance and should be mounted Read-Write on the system
where the corresponding WebSphere Application Server server will run. If this is not the case,
file access requests will be sent to the owning system through XCF, incurring additional CPU
and elapsed time. These delays can be very long.

Even if you initially mount the file system on the “correct” system, if that system is IPLed,
ownership of the file system might automatically move to another member of the sysplex. You
can display file ownership using the D OMVS,F operator command. You receive a response
similar to the following response:

ZFS 37 ACTIVE RDWR 05/24/2009 L=46
 NAME=OMVS.WAS70.T2CELL.T2DMNODE.ZFS 16.25.46 Q=0
 PATH=/wasv7config/t2cell/t2dmnode
 AGGREGATE NAME=OMVS.WAS70.T2CELL.T2DMNODE.ZFS
 OWNER=#@$2 AUTOMOVE=N CLIENT=N

We recommend implementing simple automation to ensure that any file systems written to by
a given WebSphere Application Server instance should be mounted on the same system as
that instance. You can change the system that owns a shared file system using a command
similar to the following command:

SETOMVS FILESYS,FILESYSTEM='POSIX.PAYROLL.HFS',SYSNAME=SYSFRED

This command moves ownership of the shared file system called POSIX.PAYROLL.HFS to the
system called SYSFRED. Typically, a command such as this is issued as part of the process
of starting WebSphere Application Server, to ensure that any file systems that WebSphere
Application Server writes to will be mounted on the correct system. Obviously WebSphere
Application Server will work regardless of where the file system is mounted (as long as you
specify that it should be shared with UNIX System Services sysplex file sharing). However,
the performance is better if the owning system is the same one that does most of the writing
to that file system.

9.2.8 Defining RACF BPX.SAFFASTPATH FACILITY class

To improve the performance of security checking done for z/OS UNIX, define the
BPX.SAFFASTPATH FACILITY class profile. Defining the profile reduces overhead when
doing z/OS UNIX security checks for a wide variety of operations. These checks include file
access checking, IPC access checking, and process ownership checking.

When the BPX.SAFFASTPATH FACILITY class profile is defined, the security product is not
called if z/OS UNIX can quickly determine that file access will be successful. When the
security product is bypassed, better performance is achieved, but the audit trail of successful
accesses is eliminated. Also, if you do not define this profile, a large numbers of SMF Type 80
and Type 92 records are created, and you probably do not want these.

For more information about the use of this facility, see z/OS UNIX System Services Planning,
GA22-7800.

9.2.9 Turning off Java 2 security

Java 2 security is enabled automatically when you enable WebSphere Global Security. It
provides an extra level of security in addition to J2EE role-based security. It can be disabled
independently of Global Security. It is appropriate only for applications developed using the
Java 2 security programming model.
176 System z Mean Time to Recovery Best Practices

Enabling Java 2 security will negatively impact WebSphere start time. Many installations
consider it to be unnecessary when other security mechanisms are in effect.

To disable Java 2 security, use the following steps in the Administration Console navigation
tree:

1. Select Security Global Security.

2. Clear the Enforce Java 2 Security check box.

3. Click OK or Apply.

9.3 Startup enhancements in WebSphere Application Server 7

WebSphere Application Server 7, in conjunction with Java 6, delivered enhancements that
you can exploit to help you reduce the elapsed time to start WebSphere Application Server.
This section summarizes these enhancements.

9.3.1 Ahead-of-time (AOT) compilation

Ahead-of-time (AOT) compilation was introduced with IBM Java JRE for Java 6. It enables the
Java compiler to compile Java classes prior to their execution. Ordinarily, Java classes are
interpreted at each invocation until they have been executed a predetermined number of
times. They are then compiled by the just-in-time (JIT) compiler. The number of executions
prior to using JIT varies with releases of Java and is tailored to avoid wasting resources by
compiling methods that are executed infrequently.

In WebSphere Application Server 7, the default is to enable AOT compiling. Access to
precompiled Java code saves CPU time during WebSphere 7.0 initialization. WebSphere
stores pre-compiled code in a shared class cache that is initially created the first time it is
started. The class cache remains populated during the life of an IPL. The shared class
caches are shared by address spaces in the node that have the same groupid. Control
regions and servant regions do not share a cache, because control regions run authorized.

Java commands can tell you about the caches, their names, utilization, connectors, and so
on. The cache is searched each time WebSphere restarts. For more information about the
Java command to display information about the class caches, see the Java documentation:

-Xshareclasses:name=webspherev70_%g_servant,controlDir=/wasv7config/x7cell/x7noded
/AppServer/java64/cache,groupAccess,nonFatal

If you modify your WebSphere configuration options, some additional classes might have to
be added to the cache, which can cause a small delay the first time you restart WebSphere.

9.3.2 Provisioning (starting components as needed)

In most cases, WebSphere Application Server 7 will initialize faster if you select the
Provisioning option. It is enabled from the Administration Console if you select
Applications Application Types Enterprise Applications Start Components as
Needed.

When this property is enabled, server components are dynamically started as needed,
instead of immediately at server startup. Starting components as needed can result in a small
delay when WebSphere applications are subsequently invoked. Depending upon the
applications, this may be negligible.
Chapter 9. WebSphere considerations 177

Starting components dynamically is most effective if all the applications deployed on the
server use the same components. For example, this option is more beneficial if all of the
applications are Web applications that use servlets, and JavaServer Pages (JSP). This option
is less effective if the applications use Enterprise JavaBeans (EJB).

9.3.3 Development Mode

The Development Mode option is available with WebSphere Version 6.0 and higher. If you
enable Development Mode, it utilizes the Generic JVM properties -Xverify:none and
-Xquickstart. These options, which are not recommended for production servers, are:

� The -Xverify:none property eliminates the byte code verification stage during class
loading. It is reported to improve startup time by 10 - 15%. However, corrupted or invalid
class data is not detected and can potentially cause unexpected behavior on the part of
the Application Server.

� Using -Xquickstart can result in faster WebSphere startup time, but might cause a small
overall throughput degradation, which can lessen over time. The startup improvement
comes from a reduction in JIT operating overhead, achieved through two main tactical
decisions. First, in quickstart mode, JIT compiler disables one of its profiling mechanisms
used to guide the optimization process. Second, the JIT compiler applies a more
conservative set of optimizations to methods compiled for the first time. However, the JIT
compiler continuously seeks to recompile the methods it considers important at higher
optimization levels, thus replacing the old code with more efficient one and gradually
improving the application's throughput.

The default setting for the Development Mode option is FALSE, meaning that the server does
not start in this mode. Setting this option to TRUE can decrease server startup time, however
the checking that Development Mode disables is highly recommended in a production
environment, so we recommend that Development Mode not be used in a production
environment.

9.3.4 Disabling annotation scanning for Java EE 5 applications

You can disable annotation scanning of Java EE 5 applications during WebSphere Application
Server 7 startup because the applications are scanned for annotations during installation.
The default for normal startup is to examine application byte codes, which is a costly
operation. This can be disabled only at the time the application is deployed.

To exploit this option, during deployment of an enterprise archive (EAR) file:

1. Do not select the Fast Path option.

2. Select the Detailed option. Proceed as normal until you reach the next-to-last step called
“Metadata for Modules.”

3. Select the metadata-complete attribute check box of each EAR file for which you want to
eliminate annotation scanning.

9.3.5 Parallel Start

The Parallel Start selection should not be confused with Parallel Servant Startup (described
in 9.3.6, “Parallel Servant Startup” on page 179). Parallel Start applies to the initialization
behavior of applications installed in the server. It controls the way that server components,
services, and applications start.
178 System z Mean Time to Recovery Best Practices

The default setting for this option is TRUE. This results in the server components, services,
and applications starting on multiple threads. Setting this option to false causes the server
components, services, and applications to start on a single thread, which might elongate
startup time. We recommend retaining the default setting of TRUE for this option.

The order in which individual applications start further depends on the weights that you
assign to them. Applications that have the same weight start in parallel.

To set the weight of an application, in the Administrative Console:

1. Select Applications Application Types WebSphere enterprise applications
application_name Startup behavior.

2. Specify a value in the Startup Order field. More important applications should be assigned
a lower startup order value.

9.3.6 Parallel Servant Startup

The Parallel Servant Startup option potentially enables servants for a given Control Region to
initialize in parallel. It only applies to the servants covered by the minSRS value. If this value
is two (or more), the first servant starts and then WLM will start the remaining servants in
parallel.

Having sufficient CPU resource to allow the servant address spaces to start simultaneously is
beneficial. Note, more total CPU time is required to start servants in parallel than serially,
because of contention caused by concurrent execution of the initializing servants. If sufficient
CPU resources are available, using this option can significantly reduce WebSphere
Application Server 7 startup time.

The interrelationship between the savings of Parallel Servant Startup and the increased CPU
time caused by starting all the servants in parallel is a complex one. We recommend that you
try this in your own configuration, preferably in a controlled environment. Depending on how
many servants you have to start, and how many CPs you have available, the use of Parallel
Servant Startup might (or might not) be beneficial in your environment.

9.4 WebSphere Application Server 7 startup test results

We tested a number of WebSphere Application Server 7.0 options and configurations to
determine their effect on startup time. We hope this information will be helpful for reducing
WebSphere Application Server initialization time at your installation.

9.4.1 Test methodology

All of our measurements were made on one member of a three-way sysplex with two z10 CPs
and no zAAPs. All tests had a single Control Region and eight servants, except for the one
test where we started just a single servant. The emphasis of this book is on multiple servants
because we believe most of our customers configure more than one. All other factors being
equal, installations with a greater number of servants will experience longer WebSphere
Application Server startup time. WebSphere start time is also significantly influenced by the
number and type of applications that initialize.

All our measurements, except one, were made with Java 2 security disabled.
Chapter 9. WebSphere considerations 179

We used the following events in Syslog to evaluate the startup time of WebSphere Application
Server 7:

� We considered initialization to begin at the time we issued the command to start the
Application Server and servants.

� The end of WebSphere Application Server initialization occurs when the Control Region
writes the open for e-business message. Additional processing occurs subsequent to the
appearance of this message, but WebSphere is ready to start accepting transactions at
the time it is written. The message that indicates that WebSphere Application Server is
ready is:

BBOO0222I: WSVR0001I: Server CONTROL PROCESS t2sr00a open for e-business

We did not include the startup time of the Deployment Manager and Node Agent in our
calculations. This allows our data to be more consistent with the startup results reported by
the WebSphere Performance Team. The WebSphere performance tests were made with a
Basic WebSphere configuration. We found that after the Deployment Manager and Node
Agent were started, the elapsed time for starting the Application Server was equivalent to that
of a Basic configuration.

The elapsed startup time for the ND Manager and Node Agent is reported in “Run8: Time to
start the Deployment Manager and node agent” on page 187. You can simply add them to the
Application Server start times to approximate the restart behavior of all WebSphere address
spaces at once.

The length of time for WebSphere to initialize at your installation depend on many factors,
including your hardware configuration, WebSphere Application Server applications, number
of servant regions, and interactions with other subsystems and applications that might be
initializing or executing at the same time WebSphere is starting.

The application running under WebSphere and that was used during this project is called
DayTrader 1.2. This application is more lightweight than many enterprise applications
developed by our customers. Therefore, our WebSphere startup performance may be more
optimal than is observed in production environments. You can find information about the
DayTrader application at:

http://cwiki.apache.org/GMOxDOC20/daytrader.html

9.4.2 WebSphere Application Server measurements results

Having identified the features and functions that we believed would have the largest effect on
WebSphere Application Server startup times, we created a set of measurement runs to
determine whether the actual results were in line with our expectations.

We first did a run of an untuned configuration, to set a base line for comparison. In each
subsequent run we only made one change, so we could clearly see the effect of that change.
Table 9-1 on page 181 shows the options that were enabled or disabled for each run.

Note: The RACF BPX.SAFFASTPATH FACILITY profile was defined before any of the
measurements were started.
180 System z Mean Time to Recovery Best Practices

http://cwiki.apache.org/GMOxDOC20/daytrader.html

Table 9-1 Details of measurement runs

Run1: Turning off Java 2 security
The first pair of measurements we ran was to determine the impact that turning off Java 2
security would have compared to an untuned startup. An initial measurement with eight
servants was made with all configuration defaults and with the default WebSphere
applications still installed; this established the base measurement so we could determine the
impact of turning off Java 2 security. We then turned off Java 2 and took another
measurement. See Figure 9-1.

Figure 9-1 Impact of turning off Java 2 security

As can be seen in Figure 9-1, turning Java 2 security off reduced CPU time and elapsed time.
Both decreased by a little over 10%, with the CPU time decreasing by a little more than the
elapsed time. This is good news, given that WebSphere Application Server startup tends to
be CPU-constrained, so anything that reduces CPU utilization is a very positive move.

Run Provisioning Default
apps

AOT Development
Mode

Parallel Java 2
Security

Base No Yes Yes No No Yes

Run1 No Yes Yes No No No

Run2 No No Yes No No No

Run3 No No Yes No No No

Run4 Yes No Yes No No No

Run5 Yes No Yes Yes No No

Run6 Yes No No No No No

Run7 Yes No Yes No Yes No

Run 8 Yes No Yes No No No

Run0 Yes No Yes No No No

Impact of turning off Java 2 security

0

100

200

300

400

500

600

700

800

Elapsed Sec CPU Sec

S
ec

o
n

d
s

8 Servants No Tuning

8 Servants, No Java 2
Chapter 9. WebSphere considerations 181

Run2: Removing the default applications
The next measurement used Run1 (no Java 2 security) as the base. We uninstalled the
default WebSphere applications and took another measurement. Removing the default
applications meant that WebSphere Application Server had less work to do during its startup,
resulting in the times shown in Figure 9-2.

Figure 9-2 Impact of removing the default WebSphere applications

This change resulted in a savings of about 21% in both elapsed and CPU time, compared to
the run with the default applications still installed. This improvement is worthwhile, and was
obtained without any cost or trade-off.

Run3: Importance of sufficient CPU resource
Providing adequate CPU resource is one of the most important things you can do to
accelerate WebSphere Application Server startup time. So, for our next set of measurements,
we reduced the number of CPs available during the WebSphere Application Server startup.
The base for this set of measurements was the WebSphere Application Server that we used
for Run2, that is, after we removed the default applications.

Figure 9-3 on page 183 illustrates the effect on elapsed time when we configured one of our
two CPUs offline. WebSphere Application Server initialization time increased from 381
seconds to 509 seconds, an increase of just over 33%. A similar test conducted by the z/OS
Performance lab showed that elapsed startup time continually improves as more CPUs are
configured.

Impact of removing default apps

0

100

200

300

400

500

600

700

Elapsed Sec CPU Sec

S
ec

o
n

d
s

With Default Apps

No Default Apps
182 System z Mean Time to Recovery Best Practices

Figure 9-3 Benefit of providing more CPU resource

Interestingly, the CPU time increased by even more than the elapsed time. You might imagine
that the CPU time would be about the same, given that eight servants were starting up in both
cases. However, when significant contention exists for CPU resources, WLM and SRM must
work harder to ensure that the CPU time is distributed according to the specifications in the
WLM policy. Periodic workload monitoring occurs more often at high CPU loads and more
work units are queued waiting for the CPU.

Run4: Provisioning
The next measurement run was to determine the effect of starting all WebSphere Application
Server components as part of the WebSphere Application Server initialization process,
compared to starting them later as needed. The results are in Figure 9-4 on page 184.

Benefit of additional CPU

0

100

200

300

400

500

600

700

800

Elapsed Sec CPU Sec

S
ec

o
n

d
s

8 Servants 2 CPUs

8 Servants 1 CPU
Chapter 9. WebSphere considerations 183

Figure 9-4 Impact of starting WebSphere Application Server components during startup

An interesting outcome is how much of the WebSphere Application Server startup time can
actually be postponed until later: the startup time reduced from 381 to 315 seconds, a saving
of over 17%. This is good news for the startup, however you must balance this against the
effect on the first application to subsequently require any of these services.

Run5: Enabling -Xquickstart option
WebSphere Application Server 6 delivered the option to start WebSphere in Development
Mode. As described in 9.3.3, “Development Mode” on page 178, this mode enables two Java
options: -Xquickstart and -Xverifynone. We recommend that -Xverifynone should not be
used in any WebSphere Application Server region, however -Xquickstart might be
acceptable in a test or development WebSphere Application Server. In return for a reduced
startup time (important if you are constantly stopping and starting WebSphere Application
Server, as in a test or development system), WebSphere Application Server does not do as
much optimization of the runtime environment.

Figure 9-5 on page 185 shows the difference that the use of -Xquickstart can make to the
startup time of WebSphere Application Server. The elapsed time for the startup of
WebSphere Application Server decreased by over 12% or about 40 seconds. Even more
impressive was the reduction in CPU time: a decrease of nearly 22%.

Impact of provisioning

0

100

200

300

400

500

600

Elapsed Sec CPU Sec

S
ec

o
n

d
s

Start components at start

Start components as needed
184 System z Mean Time to Recovery Best Practices

Figure 9-5 Impact of -Xquickstart option

Although we do not recommend the use of Development Mode or -Xquickstart in a
production WebSphere Application Server, the potential savings should definitely encourage
you to consider its use for at least some of your test and development WebSphere Application
Server subsystems.

Run6: Ahead-of-time (AOT) compilation
AOT compilation is enabled by default in WebSphere Application Server 7 with Java 6. To
determine whether this actually helps the initialization time of WebSphere Application Server,
we ran two measurements: one with AOT enabled and one with it disabled. See Figure 9-6.

Figure 9-6 Impact of AOT setting

Impact of -Xquickstart option

0

100

200

300

400

500

600

Elapsed Sec CPU Sec

S
e

c
o

n
d

s

xQuicktart Off

xQuickstart On

Impact of AOT setting

0

100

200

300

400

500

600

700

Elapsed Sec CPU Sec

S
ec

o
n

d
s

AOT On

AOT Off
Chapter 9. WebSphere considerations 185

As you can see, disabling AOT resulted in a 50-second decrease in CPU time, but a small
increase (20 seconds) in elapsed time. Based on our results, we recommend that you run
with the default setting, which is that AOT is enabled.

Run7: Parallel Servant Start
The ability to start multiple servants in parallel was delivered with WebSphere Application
Server 7. The intent is to reduce the overall elapsed time to start all the WebSphere
Application Server address spaces; however, it is dependent on having enough CPU capacity
to handle all the concurrent startups.

In our initial configuration with two CPs, starting servants in parallel actually took longer than
serial startup because we had insufficient CPU resource, even with both CPUs configured.
This is shown in Figure 9-7.

Figure 9-7 Comparing Parallel to serial servant start with constrained CPU

To determine whether adding more CP resource would make a difference, we ran two
additional measurements: one with four dedicated CPs and another with six dedicated CPs.
The results are shown in Figure 9-8 on page 187.

P arallel vs. Serial S ervant S tart

0

100

200

300

400

500

600

700

E lapsed S ec CP U S ec

S
ec

o
n

d
s

No P arallel S vts

P arallel S vts 2 CPU
186 System z Mean Time to Recovery Best Practices

Figure 9-8 Impact of using starting servants in parallel

As you can see, enabling Parallel Servant Startup and reducing the number of CPs to just one
had a very negative effect on both elapsed and CPU times (startup time increased from 315
seconds to 840 seconds, and CPU time increased by 27%). Using Parallel Servant Startup
with the same number of CPs as the base measurement also resulted in increased elapsed
and CPU times, although nowhere nearly as drastic as the one CP measurement. However,
when using four CPs, we can start to see the benefit of Parallel Servant Startup, with a
reduction in elapsed time of over 50%. Moving to six CPs had minimal additional impact on
elapsed times.

Run8: Time to start the Deployment Manager and node agent
As we mentioned previously, for our tests, we used WebSphere Application Server in Network
Deployment (ND) mode, compared to the Basic mode used by the formal performance group
for their tests. To understand how ND mode would affect start times, we did a separate
measurement of just the start of the Deployment Manager and the node agent. The results of
this measurement are shown in Figure 9-9 on page 188.

Parallel Servant Starts

0

100

200

300

400

500

600

700

800

900

Parallel Svts 1
CPU

Parallel Svts 2
CPU

Parallel Svts 4
CPU

Parallel Svts 6
CPU

S
ec

o
n

d
s

Elapsed Sec

CPU Sec
Chapter 9. WebSphere considerations 187

Figure 9-9 Startup times for Deployment Manager and node agent

This run was not a comparison; the objective was purely to determine how much additional
time you would expect to experience if you start WebSphere Application Server in ND mode
rather than Basic mode. The elapsed time we observed was just over 200 seconds, with CPU
time of about 240 seconds.

Run9: Different numbers of servants
The final configuration option that we wanted to investigate was how the number of servants
affects the WebSphere Application Server startup time. For this measurement, we reduced
the number of servants from eight to one. The results of this measurement are shown in
Figure 9-10 on page 189.

Note: Node agent might have to be up before applications will work. If IIOP clients
bootstrap into the Node agent, they will fail if it is not started. We recommend to start the
node agent with the option to not verify the contents of the file system with the Deployment
Manager.

Deployment Manager and node agent startup

0

50

100

150

200

250

300

Elapsed Sec CPU Sec

S
e

c
o

n
d

s

DM + node agent
188 System z Mean Time to Recovery Best Practices

Figure 9-10 Impact of varying numbers of servants

As expected, there was a decrease in both CPU time and elapsed time. The elapsed time
reduced by a little over 71% and CPU time reduced by a little under 70%. Obviously there is
some CPU and elapsed time required for the WebSphere Application Server server, and this
does not change. However changing the number of servants being started does appear to
have a consistent impact on both CPU and elapsed times.

Summary
The objective of our testing was to help you identify the changes that you can make to
WebSphere Application Server 7 and that have the best chance of delivering significant
results. We started with an untuned WebSphere Application Server 7 environment and made
a series of changes. Not all of these changes will be applicable to every installation; we hope
you can assess our findings and apply them to your particular environment.

However, to show the savings that might be achievable, we included the CPU and elapsed
times for the base, untuned configuration, for a tuned configuration, and for our best case
(when we added more CP capacity) and display them in Figure 9-11 on page 190.

Different numbers of servants

0

100

200

300

400

500

600

Elapsed Sec CPU Sec

S
ec

o
n

d
s

8 Servants

1 Servant
Chapter 9. WebSphere considerations 189

Figure 9-11 Overall tuning results

The difference between the base case elapsed time (535 seconds) and the tuned
environment (295 seconds) was achieved by:

� Uninstalling the default WebSphere Application Server applications

� Enabling provisioning

� Turning off Java 2 security

We also found changes that resulted in further savings, however those changes could not
necessarily be applied to every configuration.

Finally, we found that adding more capacity (in terms of CPs) to the configuration delivered
significant benefits during the WebSphere Application Server startup window, decreasing the
startup elapsed time from 535 seconds to 146 seconds.

Overall results

0

100

200

300

400

500

600

700

800

Base Tuned environment Parallel Svts 4 CPU

S
ec

o
n

d
s

Elapsed

CPU
190 System z Mean Time to Recovery Best Practices

Appendix A. Sample IPLSTATS report

This appendix provides a sample of the output from the IPCS command to format the
IPLDATA control block.

A

© Copyright IBM Corp. 2010. All rights reserved. 191

IPLSTATS report

Information about the elapsed time spent in the various modules that make up the IPL
process is stored in a control block that can be formatted using the IPCS VERBX BLSAIPST
MAIN command. A sample of the output from this command is shown in Figure A-1, Figure A-2
on page 193, and Figure A-3 on page 194.

Figure A-1 IPLSTATS report (part 1 of 3)

**** IPL Statistics ****
IEAIPL10 0.000 ISNIRIM - Read SCPINFO
IEAIPL20 0.000 Test Block storage to 2G
IEAIPL11 0.006 Fast FIND service
IEAIPL31 0.001 LOAD service
IEAIPL30 0.001 IPLWTO service
IEAIPL46 0.096 Read SCHIBs into IPL workspace
IEAIPL49 0.000 Process Load and Default parameters
IEAIPL50 0.007 IPL parmlib - process LOADxx and NUCLST
IEAIPL51 0.000 System architecture
IEAIPL43 0.006 Find and Open IODF data set
IEAIPL60 0.000 Read NCRs from IODF
IEAIPL70 0.042 UIM environment - load CBD and IOS services
IEAIPL71 0.029 Build DFT for each device
IEAIPL08 0.001 Read EDT information from IODF
IEAIPL40 0.023 Read MLTs from nucleus
IEAIPL42 0.002 Read NMLs from nucleus (IEANynnn modules
IEAIPL41 0.343 Read PDS directory entries and CESD records
IEAIPL05 0.000 Build and sort NUCMAP
IEAIPL02 1.214 Load nucleus modules
IEAIPL04 0.003 Allocate PFT and SQA/ESQA
IEAIPL14 0.000 Build LSQA/ELSQA for Master
IEAIPL09 0.037 IAXMI - PFT, master RAB, etc.
IEAIPL07 0.006 Update AMODE for nucleus resident SVCs
IEAIPL03 0.013 Build UCBs, ULUT, etc.
IEAIPL18 0.017 Copy and relocate EDT to ESQA
IEAIPL99 0.176 Page frame table and cleanup
 2.022 TOTAL IPL TIME (seconds)
NIP started at: 2009/05/14 22:43:31.730
**** NIP Statistics ****
IEAVNIP0 0.008 NIP Base
IEAVNIPM 0.050 Invoke NIP RIMs
IEAVNPE6 0.049 Service Processor Interface
IEAVNPFF 0.029 Loadwait/Restart
IEAVNPA6 0.008 RTM - RTCT and recording buffer
IEAVNPC6 0.008 WTO
IEAVNPC3 0.007 Issue messages from IPL message queue
IEAVNP24 0.020 SMS Open/Mount
IEAVNP06 0.010 Machine Check
IEAVNP27 0.011 Reconfiguration
IEAVNPA2 3.948 IOS - Non-DASD UCBs
IEAVNPCA 0.008 NIP Console
IEAVNPB2 0.682 IOS - DASD UCBs
IEAVNP11 0.011 Locate and Open master calalog
IEAVNPC7 0.027 Open SYS1.SVCLIB
192 System z Mean Time to Recovery Best Practices

Figure A-2 IPLSTATS report (part 2 of 3)

IEAVNPOP 0.046 Open PARMLIB
IEAVNPIL 0.010 Process IEALSTxx
IEAVNPC4 0.018 Prompt for System Parameters
IEAVNP03 0.004 Merge and analyze system parameters
IEAVNPCF 0.134 Process system name and system variables
IEAVNP76 0.009 Open LOGREC
IEAVNPE8 0.027 RSM - Process REAL=
IEAVNP23 0.013 Build GRS blocks in SQA
IEAVNP04 0.024 ASM - Open page and swap data sets
IEAVNPA8 0.005 VSM - Expand SQA
IEAVNP14 0.031 ASM part 2 - Build SQA control blocks
IEAVNPGD 0.001 Move console data to ESQA
IEAVNP25 0.027 Process SVC=
IEAVNP05 4.726 LPA, APF
IEAVNP44 0.001 ASA Reuse stuff
IEAVNPB1 0.001 Process CSCBLOC=
IEAVNPE2 0.002 RACF SAF
IEAVNPB8 0.007 Create CSA
IEAVNP47 0.002 ENF
IEAVNPD6 0.001 RTM - SDUMP, ABDUMP, ESTAE
IEAVNP09 0.002 Build ASVT
IEAVNPD8 0.769 RSM - Frame queues, VRREGN= and RSU=
IEAVNP10 0.007 SRM - OPT=, IPS=, etc.
IEAVNPD1 0.009 ABDUMP
IEAVNPD2 0.012 SDUMP
IEAVNPCX 0.001 Context services, registration
IEAVNPX1 0.001 NIP cleanup
IEAVNPF5 0.025 PCAUTH
IEAVNPF8 0.011 RASP
IEAVNP1F 0.028 SRM - I/O measurement blocks
IEAVNPC2 0.011 IOS - Move CDT to SQA
IEAVNP51 0.016 TRACE
IEAVNP20 0.004 Process CLOCK=
IEAVNP21 0.024 TOD clock
IEAVNP57 0.006 SDUMP
IEAVNPF9 72.231 XCF
IEAVNP33 2.790 GRS
IEAVNPED 0.008 PROD
IEAVNP26 1.244 SMS
IEAVNPE5 2.008 LNKLST
IEAVNPD5 0.274 Load pageable device support modules
IEAVNP88 0.077 Allocation move EDT II
IEAVNPA1 3.602 CONSOLE
IEAVNPDC 0.265 WLM
IEAVNP16 0.247 EXCP appendages
IEAVNP13 0.018 Prepare NIP/MSI interface
IEAVNP17 0.002 GTF Monitor Call interface
IEAVNPG8 0.003 VSM defined monitor call enablement
IEAVNP18 0.053 PARMLIB Scan Routine interface
IEAVNPF2 0.047 Process IOS=
IEAVNP15 0.149 Process VATLST
IEAVNPRR 0.001 RRS
Appendix A. Sample IPLSTATS report 193

Figure A-3 IPLSTATS report (part 3 of 3)

IEAVNPOE 0.152 USS
IEAVNPSC 0.001 Metal C RTL
IEAVNPLE 0.010 System LE RIM
IEAVNPUN 0.012 Unicode
IEAVNPXL 0.007 zXML Parser
IEAVNP1B 0.045 Close catalog
IEAVNIPX 0.000 NIP final cleanup
 94.137 TOTAL NIP TIME (seconds)
**** IEEVIPL Statistics ****
IEETRACE 0.001 Master trace
ISNMSI 2.019 SPI
UCMPECBM 0.268 CONSOLE address space
ENFPC005 0.000 CONSOLE ready ENF
IEFSCHIN 0.207 IEFSCHAS address space
IEFJSINT 0.002 Subsystem interface
IEFSJLOD 0.018 JESCT
IAZINIT 0.038 JESXCF address space
IAZFSII 0.008 FSI trace
IEFQBINT 0.015 SWA manager
IEFAB4I0 0.118 ALLOCAS address space
IEEVIPL 2.694 Uncaptured time: 0.000
MSI started at: 2009/05/14 22:45:08.870
**** IEEMB860 Statistics ****
ILRTMRLG 0.277 ASM
IECVIOSI 6.748 IOS dynamic pathing
ATBINSYS 0.007 APPC
IKJEFXSR 0.080 TSO
IXGBLF00 0.016 Logger
COMMNDXX 0.069 COMMANDxx processing
SMFWAIT 0.163 SMF
SECPROD 0.843 Security server
IEFJSIN2 2.279 SSN= subsystem
IEFHB4I2 0.009 ALLOCAS - UCB scan
CSRINIT 0.004 Windowing services
FINSHMSI 0.034 Wait for attached CMDs
MSI ended at: 2009/05/14 22:45:19.500
IEEMB860 10.630 Uncaptured time: 0.100
 109.482 TOTAL TIME (seconds)
194 System z Mean Time to Recovery Best Practices

IPLSTATS comparisons

As described in 3.3, “Syslog” on page 24, the MSGLG610 program can read the IPLSTATS
information in syslog and save the information to an output data set. The IPLMERG4 program
can then be used to compare the IPLSTATS information for two IPLs.

The MSGLG610 and IPLMERG4 programs, and information about their use, can be
downloaded from:

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty2.html#MSGLG610

A sample of part of the output from the IPLMERG4 program is shown in Table 9-2.

Table 9-2 Sample output from IPLMERG4 program
Appendix A. Sample IPLSTATS report 195

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty2.html#MSGLG610

196 System z Mean Time to Recovery Best Practices

Appendix B. Optimizing use of LLA and VLF

This appendix provides information about tools that can help you fine tune, and monitor, your
use of library lookaside (LLA) and virtual lookaside facility (VLF) for caching load modules
and load library directories.

B

© Copyright IBM Corp. 2010. All rights reserved. 197

Module Fetch Monitor

IBM provides an unsupported tool called the Module Fetch Monitor that you can use to
monitor the activity and the benefits that LLA and VLF can provide in terms of improving the
efficiency of fetching load modules. The tool consists of a set of ISPF panels and an LLA exit
to collect information about LLA activity. The tool, and supporting documentation, can be
obtained from Peter Relson in IBM, by sending e-mail to:

relson@us.ibm.com

Using the Monitor

Details about installing and using the Monitor are provided with the Monitor, so do not repeat
that information here. Instead, we step through a sample invocation of the Monitor,
highlighting the fields that might be of interest to you.

Figure B-1 shows the initial menu that you are presented with when you invoke the monitor
ISPF application.

Figure B-1 Module Fetch Monitor Main Menu

To understand which load libraries are being heavily used, and the service time that is being
experienced by requests to retrieve load modules, we select option 2. DATA_SET List from
the menu. The panel shown in Figure B-2 on page 199 opens. Note that data sets must be
managed by LLA (that is, they must be defined in the CSVLLAxx member) in order to be
tracked by the Monitor.

Module Fetch Monitor - Main Menu

Select an option:

__ 1. MODULE List Date & Time : 2009.349 14:22
 2. DATA_SET List Monitor started at : 2009.348 18:51
 3. LLA Allocated Data_Sets Elapsed seconds : 70268
 4. Filter List SMF System ID : #@$A
--
COUNTERS:

Number of LINK : 411195 Number of LOAD: 21444
Number of XCTL: 17 Number of ATTACH . . .: 18821
Number of ESR SVC. . .: 3

Data_set Names. . . . : 10 Module Names. : 245
Job Names : 15694 Data Space Used .bytes: 672776 32 %
Lost Events : 0 Active Filter.: 06

198 System z Mean Time to Recovery Best Practices

Figure B-2 MFM Data Set List

The data set list helps you identify the data sets that are being most heavily used, together
with the minimum and maximum response times being delivered by both VLF and DASD.

However, to provide an effective list of candidate programs to LLA, you need an
understanding of which modules are heavily used, and the length of time it takes to retrieve
the modules from DASD. A finite amount of storage is available to use by VLF, so be sure that
you select modules for caching that will deliver the most benefit to the system. In the Monitor
data set list panel, you can place an L beside a data set to get information about the usage
characteristics of each load module in that data set, as shown in Figure B-3 on page 200.

Module Fetch Monitor - LLA Dsname List Row 1 to 10 of 10

Enter S for the Module list.
 L dsname on command line to locate a Dsname.
 ----------- milli_sec -----------
 DSNAME (max 24 char) Min-Dasd Max-Dasd Min-VLF Max-VLF Dasd-Ct VLF-Ct
S ------------------------ -------- -------- -------- -------- ------- -------
_ IMSPSA.IMS0.SDFSRESL .32 17.01 .07 19.51 4101 3300
_ ISF.SISFLOAD .31 82.22 50 0
_ ISF.SISFMOD1 .34 2.05 3 0
_ ISP.SISPLOAD .31 .40 4 0
_ KYNEF.LLA.LINKLIB.APF .59 .59 1 0
_ SYS1.CMDLIB .35 1.28 9 0
_ SYS1.LINKLIB .30 4.52 443 0
_ SYS1.SERBLINK .44 1.90 .02 .04 429 198
_ SYS1.SYSPROG.LINKLIB .01 .01 0 1
_ SYS1.USER.LOAD .33 .57 3 0
******************************* Bottom of data ********************************
Appendix B. Optimizing use of LLA and VLF 199

Figure B-3 Load module information

As you can see in Figure B-3, the Module List panel provides summary information about the
service time for DASD and VLF that is being experienced for each module in the data set. It
also provides information about counts and service times for the data set as a whole (near the
top of the panel). If you want to get more information about a specific module, enter an S
beside the module you are interested in. The panel shown in Figure B-4 on page 201 opens.

Module Fetch Monitor - Module List Row 27 to 38 of 38
List for Dsname : IMSPSA.IMS0.SDFSRESL
 Min-Dasd : .32 Max-Dasd : 17.01 Dasd-Cnt: 4101
 Min-VLF : .07 Max-VLF : 19.51 VLF-Cnt : 3300

Enter S to select a Module for statistics, J for Jobname list.
 L module on command line to locate a Module.
 V on command line for Modules on VLF data space, R to re-initialize
 ---- Dasd milli_sec ---- ---- VLF milli_sec ----
 Module Ref_Cnt Size Average Min Max Average Min Max
S -------- ------- ------- -------- -------- -------- ------- ------- ---------
_ DEVTST12 200 69848 .16 .08 3.57
_ DEVTST11 200 69848 .22 .07 4.81
_ DEVTST10 200 69848 .22 .07 7.49
_ DEVTST09 200 69848 .20 .07 6.31
_ DEVTST08 200 69848 4.64 2.22 10.97 .17 .07 3.05
_ DEVTST07 200 69848 3.76 2.02 9.04 .14 .07 2.19
_ DEVTST06 200 69848 .25 .07 7.31
_ DEVTST05 200 69848 4.57 2.14 8.97 .24 .07 6.08
_ DEVTST04 200 69848 3.82 1.92 8.12 .11 .07 1.82
_ DEVTST03 200 69848 4.72 2.05 10.96 .14 .07 3.58
_ DEVTST02 200 69848 3.52 1.99 7.22 .09 .07 .74
_ DEVTST01 200 69848 3.40 1.69 11.57 .09 .08 .29
200 System z Mean Time to Recovery Best Practices

Figure B-4 Module Statistics panel

This panel shows you how many times the module was retrieved from each of DASD and VLF,
as well as the average and maximum fetch time for each. You can also see where the module
was last fetched from. You can see in Figure B-4 that the average time to retrieve the module
from DASD (4.64 ms) was over 20 times longer than the time to retrieve the module from VLF
(just .17 ms). This should give you an idea of much helpful LLA and VLF can be if used for the
correct load modules.

If you enter V (rather than an S) beside any load module on the Module List panel, the display
shown in Figure B-5 on page 202 opens. This panel provides a list of the modules from this
data set that are currently being cached in the VLF data space.

Module Fetch Monitor - Module Statistics

 Module : DEVTST08 Last reference time: 2009.348 18:51:23
 Library : IMSPSA.IMS0.SDFSRESL
 Size : 69848
 References : 200 Link: 0 Load: 200
 Esr_Svc : 0 Xctl: 0 Attach: 0

 LLA statistics ---- ---------------- milli_sec -------------- -------------
 Dasd Avg: 4.64 Min: 2.22 Max: 10.97 Cnt: 49

 DASD last fetch : 2009.348 18:51:18 DASD time of Max: 2009.348 18:51:17

 ---- ---------------- milli_sec -------------- -------------
 VLF Avg: .17 Min: .07 Max: 3.05 Cnt: 151

 VLF last fetch : 2009.348 18:51:23 VLF time of Max: 2009.348 18:51:21
 VLF age secs. : 4 VLF total secs.: 4

 Last fetch from : VLF Elapsed seconds : 69162
Appendix B. Optimizing use of LLA and VLF 201

Figure B-5 List of modules cached in VLF data space

You can also get a list of the jobs that referenced any of the modules by entering J beside the
module you are interested in. The display shown in Figure B-6 opens.

Figure B-6 List of jobs that referenced a given load module

Module Fetch Monitor - Modules Resident into VLF D.S Row 1 to 15 of 20
List for Dsname : IMSPSA.IMS0.SDFSRESL
 Min-Dasd : .32 Max-Dasd : 17.01 Dasd-Cnt: 4101
 Min-VLF : .07 Max-VLF : 19.51 VLF-Cnt : 3300
Total Modules K_byte : 1364 Elapsed seconds: 69162
Enter S to select a Module for statistics, J for Jobname list.
 L module on command line to locate a Module.
 ----- seconds ----- ---- VLF milli_sec ---
 Module Ref_Cnt Size AGE Total Average Min Max
S -------- ------- --------- -------- ---------- ------- ------- --------
_ DEVTST20 200 69848 6 6 .16 .07 4.72
_ DEVTST19 200 69848 4 4 .20 .07 7.91
_ DEVTST18 200 69848 6 6 .14 .07 3.90
_ DEVTST17 200 69848 6 6 .32 .07 10.64
_ DEVTST16 200 69848 4 4 .25 .07 9.47
_ DEVTST15 200 69848 6 6 .30 .09 19.51
_ DEVTST14 200 69848 6 6 .19 .07 7.04
_ DEVTST13 200 69848 6 6 .14 .07 2.67
_ DEVTST12 200 69848 6 6 .16 .08 3.57
_ DEVTST11 200 69848 6 6 .22 .07 4.81
_ DEVTST10 200 69848 6 6 .22 .07 7.49
_ DEVTST09 200 69848 6 6 .20 .07 6.31
_ DEVTST08 200 69848 4 4 .17 .07 3.05
_ DEVTST07 200 69848 3 3 .14 .07 2.19
_ DEVTST06 200 69848 6 6 .25 .07 7.31

Module Fetch Monitor - Jobname List Row 1 to 17 of 200
Enter L Jobname on command line to locate a JOB.
List for Module : DEVTST08 Last reference time: 2009.348 18:51:23
 Library : IMSPSA.IMS0.SDFSRESL
 References : 200 Link: 0 Load: 200 Xctl: 0
 Size : 69848 Attach: 0 Esr: 0
 -------- --------- ------------------- --------------------
 Jobname Count Last reference time First reference time
 I300200 1 2009.348 18:51:23 2009.348 18:51:23
 I300199 1 2009.348 18:51:23 2009.348 18:51:23
 I300198 1 2009.348 18:51:23 2009.348 18:51:23
 I300197 1 2009.348 18:51:23 2009.348 18:51:23
 I300196 1 2009.348 18:51:23 2009.348 18:51:23
 I300195 1 2009.348 18:51:23 2009.348 18:51:23
 I300194 1 2009.348 18:51:23 2009.348 18:51:23
 I300193 1 2009.348 18:51:23 2009.348 18:51:23
 I300192 1 2009.348 18:51:23 2009.348 18:51:23
 I300191 1 2009.348 18:51:23 2009.348 18:51:23
 I300190 1 2009.348 18:51:23 2009.348 18:51:23
 I300189 1 2009.348 18:51:23 2009.348 18:51:23
202 System z Mean Time to Recovery Best Practices

In the list shown in Figure B-6 on page 202, the Count of 1 for each job might not seem very
impressive. However, 200 jobs referenced this module, so if the module was cached in VLF,
every one of those jobs would have benefitted from that.

And, that brings us back to the LLA exit we mentioned previously, where you can provide LLA
with a list of modules that you want it to cache in VLF. In Figure B-7 we have activated an exit
that specifies that all the DEVTST modules and selected DFS modules should be cached in
VLF. After activating the exit and resetting the counters, you can see that all the DEVTST
modules in this data set are being retrieved from VLF (note the blank fields in the DASD
columns.

Figure B-7 Module activity after activation of LLA exit.

The exit that we used to achieve this is CSVLLIX2, which is described in “Sample CSVLLIX2
exit routine” on page 204.

Module Fetch Monitor - Module List Row 27 to 38 of 38
List for Dsname : IMSPSA.IMS0.SDFSRESL
 Min-Dasd : .49 Max-Dasd : .49 Dasd-Cnt: 1
 Min-VLF : .00 Max-VLF : 32.35 VLF-Cnt : 7400

Enter S to select a Module for statistics, J for Jobname list.
 L module on command line to locate a Module.
 V on command line for Modules on VLF data space, R to re-initialize
 ---- Dasd milli_sec ---- ---- VLF milli_sec ----
 Module Ref_Cnt Size Average Min Max Average Min Max
S -------- ------- ------- -------- -------- -------- ------- ------- ---------
_ DEVTST12 200 69848 .46 .08 19.27
_ DEVTST11 200 69848 .65 .08 21.22
_ DEVTST10 200 69848 .80 .07 16.16
_ DEVTST09 200 69848 .59 .07 22.24
_ DEVTST08 200 69848 .64 .07 21.46
_ DEVTST07 200 69848 .60 .08 16.23
_ DEVTST06 200 69848 .33 .07 13.49
_ DEVTST05 200 69848 .25 .07 17.11
_ DEVTST04 200 69848 .24 .07 19.16
_ DEVTST03 200 69848 .17 .08 4.54
_ DEVTST02 200 69848 .11 .07 .77
_ DEVTST01 200 69848 .11 .08 .67
Appendix B. Optimizing use of LLA and VLF 203

Sample CSVLLIX2 exit routine

The exit routine shown in Example B-1 was used to influence the default staging algorithm
used by LLA. It must be linked into a LNKLST library and called CSVLLIX2.

Example B-1 Sample CSVLLIX2 exit

CSVLLIX2 AMODE 31
CSVLLIX2 RMODE ANY
 USING *,R15
 MODID
 STM R14,R12,12(R13) Save entry registers.
 LR R8,R15 Initialize code register.
 DROP R15 Drop temporary addressability.
 USING CSVLLIX2,R8 Establish R8 as code register.
 USING LLP2,R1 Addressability to LLP2.
 LA R15,#RCIX2_EVALUATE Initialize return code.
 LA R0,#RSIX2_EVALUATE Initialize reason code.
 L R2,LLP2EPTR GET LLP2EP AREA
 USING LLP2EP,R2
 LA R3,LLP2PDS2 GET LLP2PDS2 AREA
 USING PDS2,R3
 CLC PDS2NAME(6),=C'DEVTST' CHECK FOR PRELOAD PREFIX
 BE MUST AND STAGE IF EQUAL
 CLC PDS2NAME(3),=C'DFS' DO A QUICK CHECK FOR PERF
 BNE EXIT AND EXIT IF NOT IMS
 LA R7,IMSLIST
IMSLOOP DS 0H
 LA R7,8(,R7) INCREMENT TO NEXT ENTRY
 CLC 0(8,R7),=CL8'DFSEND00' IS THIS THE END?
 BE EXIT
 CLC PDS2NAME,0(R7) IS THIS THE MODULE?
 BNE IMSLOOP
MUST DS 0H
 LA R15,#RCIX2_OVERRIDE INITIALIZE RETURN CODE.
 LA R0,#RSIX2_MUSTSTAGE INITIALIZE REASON CODE.

* Standard exit linkage. *

EXIT L R14,12(,R13) Restore the return address.
 LM R1,R12,24(R13) Restore others except R15 and R0
 BR R14 Return to the caller.
 EJECT

* Register assignments *

 SPACE
R0 EQU 0 Register 0
R1 EQU 1 Input parameter address
R2 EQU 2 Register 2
R3 EQU 3 Register 3
R4 EQU 4 Register 4
R5 EQU 5 Register 5
R6 EQU 6 Register 6
R7 EQU 7 Register 7
204 System z Mean Time to Recovery Best Practices

R8 EQU 8 Code register
R9 EQU 9 Register 9
R10 EQU 10 Register 10
R11 EQU 11 Register 11
R12 EQU 12 Register 12.
R13 EQU 13 Save area address
R14 EQU 14 Return address
R15 EQU 15 Entry point address at entry,
* return code at exit.
IMSLIST DS 0H
 DC C'DFSBEGIN' Add modules after this
 DC C'DFSATCH0'
 DC C'DFSHSPI0'
 DC C'DFSPCC20'
 DC C'DFSPLDR0'
 DC C'DFSPLDT0'
 DC C'DFSPLPP0'
 DC C'DFSPRPX0'
 DC C'DFSRRA00'
 DC C'DFSRRA10'
 DC C'DFSRRA20'
 DC C'DFSRRA40'
 DC C'DFSRRA50'
 DC C'DFSRRC00'
 DC C'DFSRRC10'
 DC C'DFSSBI00'
 DC C'DFSVC000'
 DC C'DFSEND00' Add modules before here
 EJECT
 IHALLP2
 IHAPDS
 END

To be able to activate and deactivate the exit, we created two members in Parmlib with the
following statements:

� Member CSVLLADE

EXIT2(ON) /* FOR VIGUERS IMS STAGING*/

� Member CSVLLADF

EXIT2(OFF) /* TURN VIGUERS OFF*/

To dynamically activate and deactivate the exit we used the following MVS commands:

F LLA,UPDATE=DE to enable the exit
F LLA,UPDATE=DF to disable the exit
Appendix B. Optimizing use of LLA and VLF 205

206 System z Mean Time to Recovery Best Practices

Appendix C. Sample IPL statistics data

This appendix provides information about the average elapsed times for the IPL modules that
are reported by the IPLSTATS program across a sample of customer and IBM systems. This
information can be used to identify parts of your IPL process that might be good candidates
for tuning. These elapsed times represent a mix of large and small systems, from z800 up to
z10, so you should make some allowance based on the size and utilization of your system. A
very large system, or one running on older technology, or one running at very high utilizations,
or using shared CPs on a CPC that is very busy would reasonably be expected to display
elapsed times somewhat larger than these averages.

C

© Copyright IBM Corp. 2010. All rights reserved. 207

Sample IPLSTATS average elapsed times

The following tables contain the median elapsed times (across 150 representative systems)
for the named modules or processes that are reported by the IPLSTATS tool.

IPL RIM Median elapsed times are shown in Table C-1.

Table C-1 IPLSTATS: IPL RIM Median elapsed times

Activity Median elapsed time (in seconds)

Load nucleus modules 2.146

Build UCBs, ULUT, and so on 0.011

Allocate PFT and SQA/ESQA 0.007

Build and sort NUCMAP 0.244

IARMI - RSM blocks, master SGT 0.000

Update AMODE for nucleus resident SVCs 0.020

Read EDT information from IODF 0.001

IAXMI - PFT, master RAB, and so on 0.041

ISNIRIM - Read SCPINFO 0.000

Fast FIND service 0.016

Build LSQA/ELSQA for Master 0.000

Copy and relocate EDT to ESQA 0.064

Test Block storage to 2G 0.180

IPLWTO service 0.001

LOAD service 0.010

Read MLTs from nucleus 0.054

Read PDS directory entries and CESD records 0.722

Read NMLs from nucleus (IEANynnn modules) 0.013

Find and Open IODF data set 0.039

Read SCHIBs into IPL workspace 0.132

Process Load and Default parameters 0.000

IPL parmlib - process LOADxx and NUCLSTxx 0.648

System architecture 0.002

Read NCRs from IODF 0.001

UIM environment - load CBD and IOS services 0.117

Build DFT for each device 0.046

Page frame table and cleanup 0.275
208 System z Mean Time to Recovery Best Practices

NIP RIM Median elapsed times are shown in Table C-2.

Table C-2 IPLSTATS: NIP RIM Median elapsed times

Activity Median elapsed time (in seconds)

NIP Base 0.031

Invoke NIP RIMs 0.084

Service Processor Interface 0.051

Loadwait/Restart 0.035

RTM - RTCT and recording buffer 0.011

WTO 0.012

Issue messages from IPL message queue 0.011

SMS Open/Mount 0.029

Machine Check 0.013

Reconfiguration 0.016

IOS - Non-DASD UCBs 23.160

NIP Console 0.014

IOS - DASD UCBs 1.786

Locate and Open master catalog 0.070

Open SYS1.SVCLIB 0.044

Open PARMLIB 0.112

Process IEALSTxx 0.028

Prompt for System Parameters 0.046

Merge and analyze system parameters 0.027

Process system name and system variables 0.473

Open LOGREC 0.053

RSM - Process REAL= 0.029

Build GRS blocks in SQA 0.036

ASM - Open page and swap data sets 0.074

VSM - Expand SQA 0.010

ASM part 2 - Build SQA control blocks 0.168

Move console data to ESQA 0.002

Process SVC= 0.015

LPA, APF 12.909

ASA Reuse stuff 0.002

Process CSCBLOC= 0.002

RACF SAF 0.004
Appendix C. Sample IPL statistics data 209

Create CSA 0.020

ENF 0.003

RTM - SDUMP, ABDUMP, ESTAE 0.002

Build ASVT 0.002

RSM - Frame queues, VRREGN= and RSU= 1.727

SRM - OPT=, IPS=, and so on 0.030

ABDUMP 0.019

SDUMP 0.033

Context services, registration services 0.002

NIP cleanup 0.002

PCAUTH 0.044

RASP 0.036

SRM - I/O measurement blocks 0.037

IOS - Move CDT to SQA 0.014

TRACE 0.032

Process CLOCK= 0.035

TOD clock 9.851

SDUMP 0.011

XCF 9.887

GRS 0.279

License Manager 0.008

PROD 0.034

SMS 2.134

LNKLST 2.491

Load pageable device support modules 0.310

Allocation move EDT II 0.093

CONSOLE 2.183

WLM 0.331

EXCP appendages 1.057

Prepare NIP/MSI interface 0.041

GTF Monitor Call interface 0.003

VSM defined monitor call enablement 0.006

PARMLIB Scan Routine interface 0.068

Process IOS= 0.059

Activity Median elapsed time (in seconds)
210 System z Mean Time to Recovery Best Practices

MSI Phase 1 Median elapsed times are shown in Table C-3.

Table C-3 IPLSTATS: MSI Phase 1 Median elapsed times

Process VATLST 0.231

RRS 0.002

UNIX System Services 0.377

Metal C RTL 0.003

System LE RIM 0.067

Unicode 0.060

zXML Parser 0.011

Close catalog 0.127

NIP final cleanup 0.000

Activity Median elapsed time (in seconds)

CONSOLE ready ENF 0.000

FSI trace 0.004

JESXCF address space 0.032

Master trace 0.002

ALLOCAS address space 0.087

Subsystem interface 0.003

SWA manager 0.009

IEFSCHAS address space 0.057

JESCT 0.027

SPI 0.606

CONSOLE address space 0.277

Activity Median elapsed time (in seconds)
Appendix C. Sample IPL statistics data 211

MSI Phase 2 Median elapsed times are shown in Table C-4.

Table C-4 IPLSTATS: MSI Phase 2 Median elapsed times

Activity Median elapsed time (in seconds)

APPC 0.033

COMMANDxx processing 0.087

Windowing services 0.003

Wait for attached CMDs 0.001

IOS dynamic pathing 6.554

ALLOCAS - UCB scan 0.006

SSN= subsystem 1.827

TSO 0.119

IBM License Manager 0.028

ASM 0.502

Logger 0.016

Security server 1.876

SMF 1.547
212 System z Mean Time to Recovery Best Practices

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on page 214.
Note that some of the documents referenced here may be available in softcopy only.

� ABCs of z/OS System Programming Volume 2, SG24-6982

� Enhanced Catalog Sharing and Management, SG24-5594

� IBM IMS Version 10 Implementation Guide: A Technical Overview, SG24-7526

� Introduction to the New Mainframe: z/OS Basics, SG24-6366

� JES2 Performance and Availability Considerations, REDP-3940

� OS/390 Workload Manager Implementation and Exploitation, SG24-5326

� System Programmer’s Guide to: Workload Manager, SG24-6472

� z/OS Planned Outage Avoidance Checklist, SG24-7328

� z/OS Version 1 Release 10 Implementation, SG24-7605

Other publications

These publications are also relevant as further information sources:

� CICS Transaction Server for z/OS V3R2 Performance Guide, SC34-6833

� DB2 Administration Guide, SC18-7840

� z/OS MVS Diagnosis Tools and Service Aids, GA22-7589

� z/OS MVS Initialization and Tuning Reference, SA22-7592

� z/OS MVS System Management Facilitiies, SA22-7630
© Copyright IBM Corp. 2010. All rights reserved. 213

Online resources

These Web sites are also relevant as further information sources:

� z/OS Tools and Toys

http://www.ibm.com/servers/eserver/zseries/zos/unix/tools/

� IBM Flash Document FLASH100008

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10008

� z/OS MVS System Initialization Logic - Initial Program Load (IPL) presentation

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3699

� The WLM home page contains several presentations and documents:

http://www.ibm.com/servers/eserver/zseries/zos/wlm/

� WSC Flash10143

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10143

� WebSphere Application Server workload balancing options in:

http://publib.boulder.ibm.com/infocenter/wasinfo/v5r1//index.jsp?topic=/com.ibm
.websphere.zseries.doc/info/zseries/ae/crun_wlmzos.html

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft publications
and Additional materials, as well as order hardcopy Redbooks publications, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
214 System z Mean Time to Recovery Best Practices

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.com/servers/eserver/zseries/zos/unix/tools/
http://publib.boulder.ibm.com/infocenter/wasinfo/v5r1//index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/crun_wlmzos.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v5r1//index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/crun_wlmzos.html
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10008
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS3699
http://www.ibm.com/servers/eserver/zseries/zos/wlm/
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10143

Index

Symbols
MASTER address space 43
/etc/rc, role in OMVS initialization duration 88
$DPERFDATA command 32

A
ahead-of-time (AOT) compilation 177, 185
analyzing CICS-related SMF data 108
annotation scanning 178
application availability 3
ARMRST IMS parameter 159
AUTO IMS parameter 159
autoinstall shutdown failure 127
AutoIPL 12
Automatic Restart Manager

and IMS 159
considerations for DB2 139

automation
considerations 10
design 10
IEFSSN definition 80
products 72
relationship of importance and startup sequence 10
sequence in which subsystems are started 10
triggering the startup of address spaces 10
triggers 11

AUTOMOUNT to accelerate OMVS startup 87
avoiding WTORs during IPL 41

B
baseline measurements 8
BPX.SAFFASTPATH RACF profile 176
BPXMCDS Couple Data Set 85
BPXMCDS size

impact on mount times 86
BPXPRMxx parmlib member 87

C
CFRM Message-based processing 169
CICS

Automatic Restart Manager considerations 110
configuration for our tests 108
considerations for WLM 77
correct data set definitions 110
defining terminals 110
DFHVTAM group 110
High Availability setup 107
LLACOPY option 111
LSR pool definitions 111
Performance Analyzer 108
placing modules in LPA 122
release used in this document 5
© Copyright IBM Corp. 2010. All rights reserved.
service class definitions in WLM 77
shutdown assist transaction 126
startup options 109
startup time, definition of 108
use of autoinstall 112
use of LPA 124
WLM considerations 74, 77
WLM recommendations 77

CICSPlex SM
recommendations 126
WLM goals 77

CLPA 52
potential savings 52

commands, useful 18
COMMNDxx member 36, 70
comparing elapsed times for two IPLs 25
concatenation rules 42
concurrent IPLs 13
configuration used for our measurements 4
considerations for doing orderly shutdowns 14
console commands 18
CPLOG IMS parameter 160
CSVLLAxx member 112
CSVLLIX2

exit 203
using to control loading of IMS load modules 166

D
DASD offloading 118
data sharing

relationship to MTTR 3
role in planned outages 3

DB2
ACCESS DATABASE command 143
address spaces and WLM 75
Backward Log Recovery phase 135
checkpoint

triggers 130
Checkpoint Interval 150
Conditional Restart 137
Consistent Restart 138, 148
Current Status Rebuild phase 133
DDF

WLM considerations 75
Fast Log Apply function 149
Forward Log Recovery phase 134
Group Restart 137
Log Initialization phase 132
log records 131
log records in data sharing environment 134
Normal Shutdown 139
opening data sets at DB2 startup 142
options for opening data sets 143
PCLOSEN parameter 149
 215

PCLOSET parameter 149
processing in-abort URs 135
processing inflight URs 135
release used in this document 5
Restart Light 138
restart phases 132
restart processing 130
restart types 137
Shutdown types 139
System Checkpoint 130
two-phase commit processing 132
Unit of Recovery 131
WLM considerations 75
WLM recommendations 76

DB2-managed stored procedures, and WLM 76
DBET 133
DBRC Parallel Recon Access 168
DCOLLECT, using to eliminate collection of SMF Type 19
records 92
DDCONS 93
deadly embrace during IPL 14
definition 9
Deployment Manager 180, 187
Development Mode in WebSphere Application Server
178
DFH$MOLS program 108
disk subsystem cache 40
duplicate volser messages 11
dynamic changes as a way to avoid outages 10
dynamic LPA 54
dynamically activating LLA exits 205

E
EMPTYEXCPSEC parameter for SMF 93
Enhanced Catalog Sharing

impact on DB2 147

F
Fast DataBase Recovery (FDBR) 162
FDRMBR IMS parameter 160
FMTO IMS parameter 160
FPOPN IMS parameter 160

G
GETMAIN changes in z/OS R10 144

H
hardened log data 118
hardware IPL 37–38
hardware used for measurements 5

I
IEACMD00 member 36
IEAIPL02 39
IEAIPL20 40
IEAIPL41 39
IEASYMxx member 50–51

IEAVNP05 48, 53
IEAVNPA2 45
IEAVNPB2 45
IEAVNPCF 48, 51
IEEMB860 67
IEEVIPL 66
IEFSSNxx member 69, 72, 80–81
IFAHONORPRIORITY 173
improving load module fetch performance 198
IMS

abnormal shutdown 159
address spaces

WLM recommendations 78
common service layer 161
configuration 157
considerations for opening databases 167
description of test configuration 157
dump considerations 160
key messages during IMS shutdown 156
key messages during IMS startup 156
Parallel Recon Access 168
RECON data sets 168
release used in this document 5
Resource Manager 161
Shared Message Queue 160, 162
Shared Message Queues checkpoint considerations
169
shutdown elapsed time 170
shutdown phases 159
sources of metrics data 156
startup parameters 159
startup phases 158
tips for starting dependent regions 166
use of resident DBDs and PSBs 164
warm start 159
WLM considerations 74, 77

in-commit 132
indoubt 132
inflight 132
Initial Message Suppression Indicator (IMSI) 41
investigating startup times 15
IODF

data set 38
hardware token 42
parameter in LOAD member 42

IPCS
viewing IPLSTATS 20

IPL
duration, definition 8
elapsed time reduction project 37
frequency 9
hardware IPL 38
overview 36
phases 36
process

helpful documentation 36
process elapsed times 20
Resource Initialization Modules 37–38
sources of information 36
start sequence for system address spaces 28
216 System z Mean Time to Recovery Best Practices

steps in the IPL process 35
time, definition 8

IPLDATA control block 20
IPLing multiple systems concurrently 13
IPLMERG4 program 25
IPLMERG4 sample report 25
IPLSTATS 8, 15, 20

example output 21
NIP parts 43
RIM parts 38

IPLSTATS data 6
IPLSTATS program 20, 37
IPLSTATS report 24
IRLM

for IMS 162
issuing commands from started task 18
ITSO configuration 5
IXCL1DSU utility 59

J
Java 2 security 177, 181
Java Just-In-Time (JIT) compiler 172
JES2

$DPERFDATA command 32
checkpoint and concurrent IPLs 13
checkpoint location 81
checkpoint performance considerations 81
commands 32
considerations for IPLing systems concurrently 13
displaying interesting statistics 32
displaying reasons for shutdown delays 32
initialization 81
MASDEF parameters 85
parms 82
parms, impact on startup time 82
place in z/OS IPL process 36
proclibs 82
shutdown considerations 84
shutdown tips 85
shutting down in a timely manner 84

L
library search order 54
link pack area (LPA)

use by CICS 122
LLA

considerations for IMS 166
CSVLLIX2 exit 166
exits 205

LLACOPY, use by CICS 112
LNKLST initialization 63
LOAD CLEAR 38
LOAD NORMAL 38
Load parm

role in IPL 38
LOAD process on the HMC 38
LOADxx member 41
LPALSTxx Member 54
LRSN 134

M
making dynamic changes 9
Master catalog 49
Master Scheduler Initialization 37
Module Fetch Monitor tool 198
MSGLG610

program 24
sample JCL 24

MTTR
best practices 11
definition 3
enhancements 40
scope 2
setting the baseline for measurements 8

MVS LLA 112

N
Nucleus Initialization Program (NIP) 37, 43
nucleus modules

loading during IPL 40

O
objective of this book 2
OMPROC 161, 163
OMVS

considerations 85
initialization

issuing commands during 88
initialization duration

importance of an orderly shutdown 88
initialization time 85
initialization times 87
shutdown 88
startup 72
WLM considerations 74

open for e-business status 172
operator prompts 11, 45
Operlog 24
OPS_DEF service class 80
OPS_HI service class 80
OPS_SRV service class 80
optimal block sizes 54
our configuration 4

P
Parallel Servant Start 186
Parallel Servant Startup 179
Parallel Start 178
Parmlib

concatenation 41, 43
search order 42

phases in IMS startup 158
planned outage avoidance 9
planned outages 3
PMTO IMS parameter 161
PROGxx members 54
PST IMS parameter 160, 166
 Index 217

R
recording system status 18
Redbooks Web site 214

Contact us xii
RMF

Enqueue Activity Report 27
in relation to understanding IPL processing 26
LPAR report 15
Monitor II 27
using to analyze CICS performance 108

rolling IPLs 13
RRS parameter

considerations for IMS 163

S
SCIPROC 161, 163
servant regions 172
SHAREDQ IMS parameter 160
shutdown failure 127
shutdown time 9
SMF 91

initialization 69
records that provide insight into IPL process 30
suppressing empty EXCP sections 93
Type 0 records 30
Type 10 records 30
Type 114 record 8
Type 19 records 30, 91
Type 22 records 30
Type 30 records 30, 93
Type 43 records 30
Type 45 records 30
Type 79 records, creating from RMF 27
Type 8 records 30
Type 80 and Type 92 records 176
Type 90 records 31
Types 70 to 79 records 30

SMFWAIT time from IPLSTATS report 92
SMS initialization 80–81
SMS subsystem

position in IEFSSN member 72
software levels used for our measurements 5
sources of additional information 36
speeding up the re-IPL process 12
standalone dump

using AutoIPL 12
stand-alone dump recommendations 99
starting IMS related address spaces 162
starting JES2 81
status

open for e-business 172
stopping JES2 84
storage types 118
SUB=MSTR limitations 90
SUB=MSTR use 90
subsystems

SMF Type 30 records 93
support for WLM transaction goals 75

Symbolic Parmlib Parser 12

SYS0.IPLPARM, use in IPL process 43
SYSCHKPT IMS parameter 162
syslog 15, 24
sysplex

Couple Data Set size 59
file sharing

impact on OMVS initialization times 88
SYSSTC

address spaces assigned to this service class 79
service class 74

system address spaces 43
System Automation for z/OS 8
System Logger enhancements 97
SYSTEM service class 73

T
target audience 6
TCP startup 72, 89
TCP/IP, place in z/OS IPL process 36
Techdocs Web site 73
Tools and Toys Web site 23

U
understanding LLA and VLF usage 198
UNIX file system considerations for WebSphere Applica-
tion Server 176
UNIX System Services

file systems mounted at IPL time 87
Mount times 86
sysplex file sharing 88
version root 88

V
VACBOPN IMS parameter 161
viewing IPLSTATS with IPCS 20
virtual lookaside facility 112
virtual storage constraint relief 2
VTAM

and CICS 125
considerations for IMS 161
place in z/OS IPL process 36
startup 72
startup times 89

VTAMLST
impact on VTAM and TCP startup times 89

W
WebSphere Application Server 172

Ahead of Time compilation 185
Ahead of Time Compile 177
annotation scanning 178
Base Server configuration 172
BPXAS address spaces 172
class cache 175
configuration used for testing 179
default applications 175, 182
Deployment Manager 180
Development Mode 178
218 System z Mean Time to Recovery Best Practices

DNS considerations 175
error messages 174
Global Security 176
IFAHONORPRIORITY 173
impact of lack of CPU 182
initialization complete message 173
Java 2 security 176, 181
log stream 174
Network Deployment configuration 172
Parallel Servant Start 186
Parallel Servant Startup 179
Parallel Start 178
Provisioning 177, 183
servant regions 172
SMF Type 80 and Type 92 records 176
starting the servant regions 172
startup 172
startup time 179–180
summary of measurements 180
use of zAAP processors 173
WLM considerations 74, 78, 172
WLM recommendations 79
workload balancing options 173
-Xquickstart 184
zFS and HFS considerations 175

WebSphere release used in this document 5
WLM

CICS considerations 77
DB2 considerations 75
enclaves 74
general recommendations 73
goal types 74
IMS considerations 77
IMS recommendations 78
introduction 72
performance blocks 77
reference material 72
report classes 79
response time goal considerations 75
role in IPL and subsystem startup times 72
role in starting servant regions 172
SYSSTC service class 74
SYSTEM service class 73
transaction goals 74

address space startup 75
WebSphere Application Server considerations 78

WLM-managed initiators
use for IMS dependent regions 166–167

WLM-managed stored procedures, and WLM 76

X
XCF

initialization 58
signalling performance 60

-Xquickstart 178, 184
-Xverify

none 178

Z
z/OS

infrastructure
startup sequence 72

releases in this book 5
tools 17
 Index 219

220 System z Mean Time to Recovery Best Practices

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

System
 z M

ean Tim
e to Recovery Best Practices

System
 z M

ean Tim
e to Recovery Best

Practices

System
 z M

ean Tim
e to Recovery

Best Practices

System
 z M

ean Tim
e to Recovery Best Practices

System
 z M

ean Tim
e to Recovery

Best Practices

System
 z M

ean Tim
e to Recovery

Best Practices

®

SG24-7816-00 ISBN 0738433934

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

System z Mean Time to
Recovery Best Practices

Optimize your
processes to
minimize application
downtime

Customize products
to minimize shutdown
and startup times

Understand the
benefit of new
product functions

This IBM Redbooks publication provides advice and guidance for IBM
z/OS Version 1, Release 10 and subsystem system programmers. z/OS
is an IBM flagship operating system for enterprise class applications,
particularly those with high availability requirements. But, as with
every operating system, z/OS requires planned IPLs from time to time.

This book also provides you with easily accessible and usable
information about ways to improve your mean time to recovery (MTTR)
by helping you achieve the following objectives:

� Minimize the application down time that might be associated with
planned system outages.

� Identify the most effective way to reduce MTTR for any time that
you have a system IPL.

� Identify factors that are under your control and that can make a
worthwhile difference to the startup or shutdown time of your
systems.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction
	1.1 Objective of this book
	1.2 Thoughts about MTTR
	1.2.1 Data sharing
	1.2.2 How much is a worthwhile savings
	1.2.3 The answer is not always in the ones and zeroes

	1.3 Our configuration
	1.4 Other systems
	1.5 Layout of this book

	Chapter 2. Systems management
	2.1 You cannot know where you are going if you do not know where you have been
	2.2 Are we all talking about the same IPL time
	2.3 Defining shutdown time
	2.4 The shortest outage
	2.5 Automation
	2.5.1 Message-based automation
	2.5.2 Sequence of starting products
	2.5.3 No WTORs
	2.5.4 AutoIPL and stand-alone dumps

	2.6 Concurrent IPLs
	2.7 Expediting the shutdown process
	2.8 Investigating startup times
	2.8.1 Role of sandbox systems

	2.9 Summary

	Chapter 3. z/OS tools
	3.1 Console commands
	3.2 IPLDATA control block
	3.3 Syslog
	3.4 Resource Measurement Facility (RMF)
	3.5 SMF records
	3.6 JES2 commands

	Chapter 4. z/OS IPL processing
	4.1 Overview of z/OS IPL processing
	4.2 Hardware IPL
	4.3 IPL Resource Initialization Modules (RIMs)
	4.4 Nucleus Initialization Program (NIP)
	4.4.1 NIP sequence (Part 1)
	4.4.2 NIP sequence (Part 2)
	4.4.3 NIP sequence (Part 3)
	4.4.4 NIP sequence (Part 4)
	4.4.5 NIP sequence (Part 5)

	4.5 Master Scheduler Initialization (MSI), phase 1
	4.6 Master Scheduler Initialization (MSI), phase 2

	Chapter 5. z/OS infrastructure considerations
	5.1 Starting the z/OS infrastructure
	5.2 Workload Manager
	5.2.1 z/OS system address spaces
	5.2.2 SYSSTC
	5.2.3 Transaction goals
	5.2.4 DB2 considerations
	5.2.5 CICS considerations
	5.2.6 IMS considerations
	5.2.7 WebSphere Application Server considerations
	5.2.8 Putting them all together

	5.3 SMS
	5.4 JES2
	5.4.1 Optimizing JES2 start time
	5.4.2 JES2 shutdown considerations

	5.5 OMVS considerations
	5.5.1 BPXMCDS
	5.5.2 Mounting file systems during OMVS initialization
	5.5.3 Commands processed during OMVS initialization
	5.5.4 Mounting file systems read/write or read/only
	5.5.5 Shutting down OMVS

	5.6 Communications server
	5.6.1 VTAM
	5.6.2 TCP/IP
	5.6.3 APPC

	5.7 Miscellaneous
	5.7.1 Use of SUB=MSTR
	5.7.2 System Management Facilities (SMF)
	5.7.3 System Logger enhancements
	5.7.4 Health Checker
	5.7.5 Optimizing I/O

	5.8 Stand-alone dump processing
	5.8.1 Best practices for stand-alone dump processing
	5.8.2 Creating efficient stand-alone dumps
	5.8.3 AutoIPL feature
	5.8.4 Test results

	Chapter 6. CICS considerations
	6.1 CICS metrics and tools
	6.2 The CICS and CICSPlex SM configuration used for testing
	6.3 CICS START options
	6.4 General advice for speedier CICS startup
	6.5 The effects of the LLACOPY parameter
	6.6 Using DASDONLY or CF log streams?
	6.7 Testing startup scenarios
	6.8 The effects of placing CICS modules in LPA
	6.9 Starting CICS at the same time as VTAM and TCP/IP
	6.10 Other miscellaneous suggestions
	6.10.1 CICSPlex SM recommendations
	6.10.2 The CICS shutdown assist transaction

	Chapter 7. DB2 considerations
	7.1 What you need to know about DB2 restart and shutdown
	7.1.1 DB2 system checkpoint
	7.1.2 Two-phase commit processing
	7.1.3 Phases of a DB2 normal restart process
	7.1.4 DB2 restart methods
	7.1.5 DB2 shutdown types

	7.2 Configuration and tools for testing
	7.2.1 Measurement system setup
	7.2.2 Tools and useful commands
	7.2.3 How we ran our measurements

	7.3 Improving DB2 startup performance
	7.3.1 Best practices for opening DB2 page sets
	7.3.2 Impact of Enhanced Catalog Sharing on data set OPEN processing
	7.3.3 Generic advice about minimizing DB2 restart time

	7.4 Speeding up DB2 shutdown
	7.4.1 Impact of DSMAX and SMF Type 30 on DB2 shutdown
	7.4.2 Shutdown DB2 with CASTOUT (NO)
	7.4.3 PCLOSET consideration
	7.4.4 Active threads
	7.4.5 Shutdown DB2 with SYSTEMS exclusion RNL

	Chapter 8. IMS considerations
	8.1 Definition of startup and shutdown times
	8.2 How we measured
	8.3 Test configuration
	8.4 Startup and shutdown functions, and when performed
	8.4.1 Startup functions
	8.4.2 Shutdown functions

	8.5 IMS parameters
	8.5.1 DFSPBxxx member
	8.5.2 DFSDCxxx member
	8.5.3 DFSCGxxx member
	8.5.4 CQSSLxxx member
	8.5.5 DFSMPLxx

	8.6 Starting IMS-related address spaces
	8.6.1 IMS-related address spaces

	8.7 Other IMS options
	8.7.1 IMS system definition specifications
	8.7.2 Starting dependent regions
	8.7.3 Opening database data sets
	8.7.4 DBRC Parallel Recon Access
	8.7.5 Message-based processing for CFRM Couple Data Sets
	8.7.6 Shutdown

	8.8 Summary

	Chapter 9. WebSphere considerations
	9.1 WebSphere Application Server 7 initialization logic
	9.2 General recommendations
	9.2.1 Understanding WLM policy
	9.2.2 Using zAAPs during WebSphere initialization
	9.2.3 Optimizing WebSphere log stream sizes
	9.2.4 Working with the Domain Name Server
	9.2.5 Uninstalling default applications
	9.2.6 Enlarging the WebSphere class cache for 64-bit configurations
	9.2.7 Optimizing zFS and HFS ownership
	9.2.8 Defining RACF BPX.SAFFASTPATH FACILITY class
	9.2.9 Turning off Java 2 security

	9.3 Startup enhancements in WebSphere Application Server 7
	9.3.1 Ahead-of-time (AOT) compilation
	9.3.2 Provisioning (starting components as needed)
	9.3.3 Development Mode
	9.3.4 Disabling annotation scanning for Java EE 5 applications
	9.3.5 Parallel Start
	9.3.6 Parallel Servant Startup

	9.4 WebSphere Application Server 7 startup test results
	9.4.1 Test methodology
	9.4.2 WebSphere Application Server measurements results

	Appendix A. Sample IPLSTATS report
	IPLSTATS report
	IPLSTATS comparisons

	Appendix B. Optimizing use of LLA and VLF
	Module Fetch Monitor
	Using the Monitor

	Sample CSVLLIX2 exit routine

	Appendix C. Sample IPL statistics data
	Sample IPLSTATS average elapsed times

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

