

ibm.com/redbooks

Leveraging CICS Events
with an ESB

Chris Rayns
George Bogner

Erich Hoppe
Ron Lotter

Edward McCarthy
Fintan McElroy

Randy Miller
Steven Webb

Dennis Weiand
Frances Williams

Paul Wilson

Exploit CICS events using your
enterprise service bus

Learn about CICS events and
governance in depth

Transform and enrich
CICS events with an ESB

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Leveraging CICS Events with an ESB

August 2010

International Technical Support Organization

SG24-7863-00

© Copyright International Business Machines Corporation 2010. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (August 2010)

This edition applies to Version 4, Release 1, of IBM CICS Transaction Server for z/OS
(5655-S97).

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team who wrote this book . xii
Now you can become a published author, too! . xv
Comments welcome. xv
Stay connected to IBM Redbooks . xvi

Part 1. Introduction . 1

Chapter 1. Introduction to event processing . 3
1.1 Events . 4
1.2 Event processing. 4

1.2.1 Simple events . 5
1.2.2 Complex events . 5

1.3 Why you need events . 5
1.4 Business application events and system events . 6
1.5 IBM solutions for business event processing . 7

1.5.1 CICS Transaction Server . 7
1.5.2 CICS Explorer . 8
1.5.3 WebSphere Business Events . 8
1.5.4 WebSphere Business Monitor. 9
1.5.5 WebSphere Enterprise Service Bus . 10
1.5.6 WebSphere Message Broker . 11

1.6 DataPower. 12
1.7 WebSphere Process Server . 12
1.8 IBM solution for system events . 15

1.8.1 Tivoli OMEGAMON XE for CICS on z/OS . 15
1.9 Solutions reviewed . 15

Chapter 2. CICS event processing. 17
2.1 Why emit events from CICS applications . 18
2.2 How CICS event processing works . 18
2.3 CICS Event Binding editor. 19
2.4 Event specification . 21
2.5 Capture specification. 22

2.5.1 Capture point. 23
2.5.2 Filter and predicates . 25
© Copyright IBM Corp. 2010. All rights reserved. iii

2.5.3 Information sources. 26
2.6 Event binding. 29
2.7 Non-invasive events or SIGNAL EVENT. 30

2.7.1 Automatic capture specification for SIGNAL EVENT 31
2.8 Event processing adapters . 34

2.8.1 Temporary storage queue EP adapter . 36
2.8.2 Transaction start EP adapter . 36
2.8.3 WebSphere MQ (WMQ) . 37
2.8.4 Custom (user-written) EP adapter. 38

2.9 Exporting event schema or copybook . 38
2.10 EP adapter advanced options . 39

2.10.1 Dispatch priority . 40
2.10.2 Transaction ID. 40
2.10.3 User ID . 40
2.10.4 System ID . 40
2.10.5 Transactional events . 41

2.11 Bundles . 41
2.12 Deploy a bundle to zFS . 42

Chapter 3. Integrating event processing and enterprise service bus . . . 45
3.1 Conceptual architecture . 46
3.2 Why use an enterprise service bus as the Event Bus 53

Part 2. Environment . 55

Chapter 4. Overview of the application and business scenarios 57
4.1 Objectives . 58
4.2 Overall architecture . 58
4.3 The catalog manager example application . 59
4.4 ESB structure . 65
4.5 Using WebSphere Enterprise Service Bus as the ESB. 66
4.6 Using DataPower as the ESB . 67
4.7 Using WebSphere Message Broker as the ESB . 68
4.8 Event scenarios used by our team . 68

4.8.1 Successful events . 70
4.8.2 Failure events . 72
4.8.3 Scenario 1: Successful order event . 74
4.8.4 Scenario 2: Multiple high value orders in three days event. 78
4.8.5 Scenario 3: Failed order due to insufficient stock event 80
4.8.6 Scenario 4: Multiple insufficient stock failures event. 83

4.9 Testing each scenario . 87

Part 3. Scenarios . 89
iv Leveraging CICS Events with an ESB

Chapter 5. WebSphere Enterprise Service Bus business scenario 91
5.1 Environment overview . 92
5.2 Environment configuration. 93

5.2.1 CICS configuration . 93
5.2.2 WebSphere Business Events configuration 104
5.2.3 WebSphere Business Monitor configuration 106
5.2.4 WebSphere Process Server configuration 106
5.2.5 WebSphere Enterprise Service Bus configuration 106

5.3 Scenario 1 . 112
5.3.1 ESB transformation . 113
5.3.2 Test results . 121

5.4 Scenario 2 . 121
5.5 Scenario 3 . 121

5.5.1 ESB transformation . 122
5.5.2 Test results . 123

5.6 Scenario 4 . 124
5.7 Problems encountered, hints, and tips . 124

5.7.1 Cross-cell Pub/Sub in WebSphere Application Server V7 124
5.7.2 WebSphere Business Events plug-in for WebSphere Integration

Developer . 125
5.7.3 Modifications to WebSphere Business Events event schema 127
5.7.4 When WebSphere Business Monitor and WebSphere Enterprise

Service Bus are in the same cell . 128
5.7.5 CBE details in the WebSphere Application Server run time 128
5.7.6 Deploying to the next test stage . 129

5.8 Summary . 130

Chapter 6. WebSphere Message Broker business scenario 131
6.1 Environment overview . 132
6.2 Configuring the environment . 132

6.2.1 Configuring CICS . 133
6.2.2 WebSphere Message Broker configuration 143
6.2.3 WebSphere Business Events configuration 145
6.2.4 WebSphere Business Monitor configuration 145
6.2.5 WebSphere Process Server configuration 145

6.3 Scenario 1 . 146
6.3.1 WebSphere Message Broker transformation 146

6.4 Scenario 2 . 167
6.5 Scenario 3 . 168

6.5.1 Scenario 3 overview . 168
6.6 Scenario 4 test . 181
6.7 Problems encountered, hints, and tips . 182
6.8 Summary . 182
 Contents v

Chapter 7. DataPower business scenario . 185
7.1 Environment overview . 186
7.2 Environment configuration. 187

7.2.1 CICS configuration . 187
7.2.2 DataPower configuration. 198
7.2.3 Scenario 1 . 204
7.2.4 Scenario 3 . 225

7.3 Hints and tips. 232
7.3.1 Probe for debug . 232
7.3.2 External tools to help create stylesheets. 232

7.4 Summary . 233

Chapter 8. Scenario flow . 235
8.1 Scenario 1 . 236
8.2 Scenario 2 . 239
8.3 Scenario 3 . 242
8.4 Scenario 4 . 245

Chapter 9. WebSphere Business Events scenario. 249
9.1 Development setup and WebSphere Business Events tooling 250

9.1.1 WebSphere Business Events . 250
9.1.2 WebSphere Business Events development tooling 250
9.1.3 WebSphere Business Events scenario description. 251
9.1.4 Building the WebSphere Business Events project 251
9.1.5 Configuring and testing WebSphere Business Events 264
9.1.6 Tips and hints for developing with WebSphere Business Events . . 269

Chapter 10. WebSphere Business Monitor . 271
10.1 Configuring WebSphere Business Monitor . 272

10.1.1 Defining a CEI bus destination in WebSphere Business Monitor . 272
10.1.2 Establishing the MQ to CEI link. 273
10.1.3 Defining the MQ channels and queues . 273

10.2 Designing the monitor model. 276
10.2.1 Creating the monitor project and model . 277
10.2.2 Importing CBE schema . 277
10.2.3 Defining the monitor details model . 277
10.2.4 Defining the KPI model . 280

10.3 Creating the Business Space dashboard . 281
10.4 Viewing the CICS CBE monitor dashboard. 283

10.4.1 Sending test events with the Integrated Test Client 283
10.4.2 Successful order instances . 291
10.4.3 Insufficient stock instances . 292
10.4.4 Total successful and failed orders. 293
10.4.5 Event rate and average meantime between failure orders 293
vi Leveraging CICS Events with an ESB

10.5 Summary . 294

Chapter 11. WebSphere Process Server . 295
11.1 Process . 296

11.1.1 Designing the process flow . 296
11.2 Building the process . 298

11.2.1 Products we used . 298
11.2.2 CICS Web Services Description Language 298
11.2.3 Starting WebSphere Integration Developer V7 299
11.2.4 Creating a business integration project . 299
11.2.5 Defining business objects . 301
11.2.6 Creating a new business process . 306
11.2.7 Variables . 312
11.2.8 Adding a snippet . 314
11.2.9 Time for a first test run . 318
11.2.10 Adding a web service call to get item details 324
11.2.11 Adding the ForEach activity . 329
11.2.12 Defining new Business Objects. 331
11.2.13 Adding a global variable to hold the total cost. 332
11.2.14 Adding the Assign activity . 333
11.2.15 Adding an intermediary interface . 336
11.2.16 Connecting the process to the Web Service 341
11.2.17 Updating the mediation flow . 344
11.2.18 Adding the invoke activity . 348
11.2.19 Adding the snippet to calculate the cost 351
11.2.20 Testing the process. 352
11.2.21 Adding the choice activity . 353
11.2.22 Adding a reply activity . 357
11.2.23 Adding a human to-do task . 358
11.2.24 Completed process . 362
11.2.25 Testing the completed process . 364
11.2.26 Testing using the Integrated Test Client 366
11.2.27 Exporting the process wsdl . 371
11.2.28 Exporting the ear file . 373
11.2.29 Application to test the process . 373
11.2.30 WebSphere Business Events to process the mediation flow . . . 373
11.2.31 Supplied files. 374
11.2.32 Summary. 375

Part 4. Best practices . 377

Chapter 12. Best practices . 379
12.1 Plan and organize . 380

12.1.1 Naming conventions . 380
 Contents vii

12.1.2 Transport . 381
12.1.3 Communication formats . 381

12.2 Governance. 381
12.2.1 CICS events and governance . 384
12.2.2 Artifacts . 385
12.2.3 Audit and change control . 387

12.3 Security considerations for CICS events. 389
12.3.1 Development security . 391
12.3.2 Resource security . 392
12.3.3 Deployment security . 395
12.3.4 Runtime security . 395

12.4 Troubleshooting. 397
12.4.1 Problems we encountered . 397

Appendix A. Additional material . 401
Locating the web material . 401
Using the web material . 402

System requirements for downloading the web material 402
How to use the web material . 402

Related publications . 403
IBM Redbooks publications . 403
Other publications . 403
Online resources . 403
How to get IBM Redbooks publications . 404
Help from IBM . 404
viii Leveraging CICS Events with an ESB

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2010. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
CICS Explorer™
CICSPlex®
CICS®
DataPower device®
DataPower®
DB2®
Domino®

FileNet®
IBM®
IMS™
Lotus Notes®
Lotus®
MVS™
Notes®
OMEGAMON®

Rational®
Redbooks®
Redbooks (logo) ®
System z®
Tivoli®
WebSphere®
z/OS®
zSeries®

The following terms are trademarks of other companies:

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x Leveraging CICS Events with an ESB

http://www.ibm.com/legal/copytrade.shtml

Preface

Many functions exist to help you use an enterprise service bus (ESB) as the
event bus:

� Transformation: Function that transforms the incoming event by translating or
splitting it

� Enrichment: Function that enriches the content of events with reference data
from multiple possible sources

� Validation: Function to provide validation against required criteria

� Pattern detection: Function that recognizes actual and retrospective patterns;
a combination from possibly multiple events, characterizing a significant
business situation

� Filtering: Stateless function that filters events based on their content; that is,
the information that is carried by the message generated when the event
happened

� Aggregation: Function that can group events as necessary

� Routing: Function that routes events to the destination based on various
possible routing patterns, such as pre-established itinerary, calendar-based,
subscription or “intelligent” routing decisions

In this IBM® Redbooks® publication, we show examples of using an ESB to
transform and enrich an event received from Customer Information Control
System (CICS®) Transaction Server. We also show an example of enriching an
event.

This book contains four parts:

� Part 1, “Introduction” on page 1 introduces event processing. We explain what
it is and why you need it. We also review the CICS TS implementation of
event processing. We discuss enterprise service bus technology and how to
integrate event processing with an ESB.

� Part 2, “Environment” on page 55 of the book focuses on our environment
and the application we chose to use.
© Copyright IBM Corp. 2010. All rights reserved. xi

� Part 3, “Scenarios” on page 89 describes our scenarios with three separate
ESBs along with information about the IBM WebSphere® Business Events,
IBM WebSphere Business Monitor, and IBM WebSphere Process Server for
z/OS® setup details:

– Scenario 1: IBM WebSphere Enterprise Service Bus for z/OS business
scenario

– Scenario 2: IBM WebSphere Message Broker for z/OS business scenario

– Scenario 3: DataPower® business scenario

– Scenario flow

– WebSphere Business Events

– WebSphere Business Monitor

– WebSphere Process Server

� Part 4, “Best practices” on page 377 of this book describes best practices:

– Governance

– Security

– Best practices for performance

The team who wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Raleigh Center.

Chris Rayns is an IT Specialist and Project Leader at the ITSO Poughkeepsie
Center in New York. Chris specializes in security and writes extensively about all
areas of CICS. Before joining the ITSO, he worked in IBM Global Services in the
United Kingdom as a CICS IT Specialist.

George Bogner is a Software IT Specialist working in IBM Sales and Distribution
supporting the CICS Transaction Server product suite. George has worked at
IBM for 25 years, specializing in the DB/DC area working with CICS, IMS™, and
DB2®, supporting client accounts in IBM Global Services. He currently works out
of Raleigh, North Carolina, supporting North American clients by providing CICS
seminars, proofs of technology (POT), proofs of concept (POC), and consulting
services for CICS-related topics.

Erich Hoppe is a CICS Level 2 Technical Support Software Engineer in Raleigh,
NC. He has two years of experience in Level 2 technical support. He holds a
Bachelor of Science degree in Computer Engineering from Pennsylvania State
xii Leveraging CICS Events with an ESB

University in State College, PA. His primary areas of focus are CICS event
processing, CICS Explorer™, storage, and CICS Web Services.

Ron Lotter is a Senior Software Engineer in the Software Services for
WebSphere organization in Raleigh, NC. He has worked for IBM for 27 years
holding various management and technical positions and has 11 years of
experience with the WebSphere product family. He holds a Masters degree in
Electrical Engineering from Case Western Reserve University in Cleveland,
Ohio. His areas of expertise include WebSphere Application Server on z/OS and
WebSphere Process Server on z/OS, as well as Service Component
Architecture (SCA) and Java™ 2 Platform, Enterprise Edition (J2EE)
development.

Edward McCarthy joined IBM Global Technology Services in 2000 and
designed and built WebSphere Application Server environments on Windows®,
AIX®, Linux®, zLinux and z/OS for various clients. For the past two years, he has
worked in Software Group providing technical support to sales staff in the
Asia/Pacific region focusing on WebSphere on System z®. Prior to joining IBM,
he worked as a CICS and MQ system programmer for an Australian Government
department. He has written several ITSO Redbooks publications and presented
at various technical conferences.

Fintan McElroy is a Certified Consulting IT Specialist working for IBM Software
Services for WebSphere (ISSW), whose mission it is to assist IBM clients in their
adoption of the WebSphere middleware product suite. Fintan has over 15 years
IT experience in a variety of roles, including infrastructure architecture and
design, application architecture, business analysis, and application development.
He has been a leading proponent of business process management (BPM) with
service-oriented architecture (SOA) since its inception and before that had been
a practitioner of object-oriented architecture and design methods. He currently
provides consultancy to IBM clients on enabling agility in their enterprise through
the adoption of IBM WebSphere Business Process Management solutions.

Randy Miller is an Advisory Software Engineer in the Application and Integration
Middleware division of IBM. He has held various hardware-related and
software-related positions in IBM over his 31-year career. In 2001, Randy joined
the Level 2 Support Team for WebSphere Message Broker. His current
responsibilities include working directly with clients to help to resolve issues
related to WebSphere Message Broker.

Steven Webb is a CICS Knowledge Engineer (KE) in the United States. He has
14 years of experience with CICS and was a CICS Level 2 Technical Support
Software Engineer for 12 years where his primary areas of focus were CICS Web
services, CICS Web support, and Simple Object Access Protocol (SOAP). As a
KE, he leads the creation, maintenance, management, and delivery of
support-related content for the CICS Transaction Server and CICS Tools
 Preface xiii

products. He holds a Bachelor of Science degree in Computer Science from
Michigan Technological University.

Dennis Weiand is a Technical Sales Specialist at the IBM Dallas Systems
Center. Currently, Dennis works primarily with Web services, Web 2.0, Events,
and Java as they relate to CICS, plus the CICS Transaction Gateway. He holds a
Masters degree in Computer Science from Tarleton State University in central
Texas.

Frances Williams is a Senior Consultant with IBM Systems & Technology Group
Infrastructure Solutions in the United States. She has over 20 years of
experience in the IT field as an application IT architect. Her focus is on z/OS
platform technologies, which include the WebSphere suite of products, CICS,
and many development languages.

Paul Wilson is an Advisory Software Engineer at IBM in the United States with
over 25 years of design and development experience. His current assignment is
with the WebSphere Business Events development team at the Mass Lab in
Littleton, Massachusetts. His broad experience includes WebSphere,
DataPower, Lotus® Notes®, and Domino®, object-oriented databases, and
numerous operating systems internals. Paul holds degrees in Education and
Computer Science from the University of Massachusetts and the Wentworth
Institute of Technology.

Thanks to the following people for their contributions to this project:

Richard M. Conway
International Technical Support Organization, Raleigh Center

Jefferson Lowrey, WebSphere Message Broker Level 2 Customer Support
IBM US

Peter MacFarlane, Software Developer
IBM Hursley

Catherine Moxey, IBM STSM CICS TS
IBM Hursley

Peter Crocker, Development Lead, Architect, WebSphere Business Events
IBM Hursley

Albert Chung, Sofware Developer
IBM Raleigh

Satyan Bodla, Advanced Technical Sales Specialist
IBM Dallas
xiv Leveraging CICS Events with an ESB

Luis Sanchez, Software Developer
IBM Raleigh

Steve Bolton, Software Developer
IBM Hursley

The team of authors of Implementing Event Processing with CICS,
SG24-7792-00

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a
published author - all at the same time! Join an ITSO residency project and help
write a book in your area of expertise, while honing your experience using
leading-edge technologies. Your efforts will help to increase product acceptance
and client satisfaction, as you expand your network of technical contacts and
relationships. Residencies run from two to six weeks in length, and you can
participate either in person or as a remote resident working from your home
base.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xv

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the
IBM Redbooks weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent IBM Redbooks publications with RSS feeds:

http://www.redbooks.ibm.com/rss.html
xvi Leveraging CICS Events with an ESB

http://www.facebook.com/pages/IBM-Redbooks/178023492563?ref=ts
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Part 1 Introduction

In this part of the book, we introduce event processing, how Customer
Information Control System (CICS) implements event processing, and how you
can integrate event processing in your enterprise service bus (ESB).

Part 1
© Copyright IBM Corp. 2010. All rights reserved. 1

2 Leveraging CICS Events with an ESB

Chapter 1. Introduction to event
processing

In this chapter, we define event processing and explain the distinctions between
simple and complex events.

We show why event processing is useful to your business, describe business
events, and conclude with a summary of IBM products for event processing.

1

© Copyright IBM Corp. 2010. All rights reserved. 3

1.1 Events

An event is something that happens that is significant to a system, for example:

� Open a bank account.
� Sense a temperature change.
� Click a mouse button.
� Browse an inventory without making a purchase.
� Observe an unusual history of purchases on a credit card.

For this book, event is the term used to describe an electronic message
indicating a change in the state of an enterprise. An event has a name and
usually data, and it is sometimes referred to as the event payload.

Events are generated and processed asynchronously in near real time. The
processing of an event is decoupled from the computer operations that caused it
to be emitted.

1.2 Event processing

Event processing is the capture, enrichment, formatting, and emission of events,
the subsequent routing and any further processing of emitted events (sometimes
in combination with other events), and the consumption of the processed events.

Events can be produced throughout a business enterprise. At the edges of the
enterprise, events can be detected by sensors. In the enterprise network, events
can be produced when business processes start and then either complete or fail.
The activity of the enterprise and its business can be monitored and changed as
a result of events. Event processing consists of three main steps:

� Event sources emit events into the event processing system. Examples of
event sources are simple radio frequency identification (RFID) sensors and
actuators, business flows, and Customer Information Control System (CICS)
applications. The event processing system can perform a variety of actions on
events:

– Simple enriching of the event (for example, adding a time stamp to the
event data).

– Adding information about the source of the event.

– Processing multiple simple events, from multiple event sources, against
event patterns to produce a new derived event. Processing of this kind is
often referred to as complex event processing.

� The event resulting from processing is made available for consumption.
4 Leveraging CICS Events with an ESB

� The event consumer reacts to the event. The event consumer might be simple
and just update a database or a visual dashboard with the data carried with
the event, or it might carry out new business processing based on the event.

We categorize events as simple or complex.

1.2.1 Simple events

The first three examples in the list in 1.1, “Events” on page 4 are simple events.
For many years, organizations have used simple event processing to detect and
respond to discrete events (for example, when bank customers open a new
account, sending them a welcome letter that explains other facilities that are
provided by the bank).

1.2.2 Complex events

The last two examples in the list in 1.1, “Events” on page 4 describe what we call
complex events or derived events that are obtained by looking at the patterns of
simple events over time. To detect customers browsing an inventory without
making a purchase, we can emit events when the customers perform the
following actions:

� Browse an item in the inventory
� Buy an item

Detecting the patterns from these simple events can produce the complex event
as shown in example four in 1.1, “Events” on page 4.

In large organizations, tens of millions of events occur every day, but not all
events are of equal importance. Greater insight can be obtained when a pattern
of related or seemingly unrelated events from one or more sources is detected
and responses to that pattern are coordinated. Considerable complexity, time,
and cost can be involved in writing custom code for such a solution. This
complexity, time, and cost can be replaced by general software technology that is
designed to detect event patterns and coordinate responses, which is known as
complex event processing software.

1.3 Why you need events

Events allow businesses to be more responsive and flexible and to address
governance and compliance concerns.
 Chapter 1. Introduction to event processing 5

The mainstream adoption of service-oriented architecture (SOA) has opened
new opportunities for highly responsive business solutions. SOA brings greater
flexibility to business processes and helps bring business and IT in line with each
other. Enterprises are challenged by seeking to maximize SOA solution
advantages (such as speed to market), in addition to complying with business
controls, industry standards, and government legislation.

Business governance and compliance are increasingly important in many
industries. These terms cover a crucial range of issues including financial
transparency, information privacy, and process control. The Sarbanes-Oxley Act,
the Health Insurance Portability and Accountability Act (HIPAA), or Basel II and
their associated information requirements are a few of the standards required for
business compliance and governance.

Governance describes a formalization of the decision-making processes within
an organization. It can cover many aspects of business and depends on
accurately maintaining and auditing which decisions can be freely made and
which decisions need specific approvals. It also determines who can make the
decisions.

Compliance is about ensuring adherence to mandated standards and
governance policy. Compliance includes the definition of information about which
governance decisions are based. Also, it includes maintaining accurate
operational control to ensure that business application execution meets the
required enterprise, industry, and government standards.

1.4 Business application events and system events

CICS event processing is designed for business application events. All events in
an enterprise can be seen as having a business consequence and so can be
described as business events. Whether the event and event processing are
specified by a line-of-business manager or an IT programmer, the event relates
to the business application or system that is running. It therefore has business
relevance. For example, an event that implies the imminent failure of a system
running an order-processing application can be considered relevant to the
line-of-business manager. In general, the procedures that emit and consume
business events are distinct from those procedures that process IT
infrastructure-related events.

System-level events generally have a technical focus and relate to monitoring
operating system, application execution, and middleware running on the system.
The event data is usually equally technical, specifying the identifiers of the
resources under observation.
6 Leveraging CICS Events with an ESB

Business application events are usually related to higher-level business
processes. They specify conditions in terms of what the application does for the
business. For example, contrast the business event “a new order has been
placed” with the system events that are used to assess the compute time for
processing the order: inventory file opened, order information storage released,
and so forth.

The consumers of business events are often required to be independent of the
implementation specifics of the systems that emit the events. For example, it is
possible for one event consumer to process events from several disparate
ordering systems and provide a single consolidated view of the business
application’s state.

In general, we consider system events and business events as distinct event
types with separate software solutions and audiences.

1.5 IBM solutions for business event processing

The IBM software portfolio enables a range of options for integrated processing
of business events.

1.5.1 CICS Transaction Server

IBM CICS Transaction Server (TS) business applications are the major source of
business information in most large enterprises. The CICS run time detects
instances of events that are enabled, and it captures the events and payload
without the need to make application code changes. CICS event processing is a
core component of the CICS run time and provides all the qualities of service that
you expect of CICS. When CICS captures events, it carries out specified filtering,
enriches the event with information about the application context in which it
occurred, formats the event and routes it to the appropriate event consumer.

You can emit events in formats that are suitable for consumption by WebSphere
Business Events, WebSphere Business Monitor, and other consumers.

CICS event processing support is extensible with options for customization.

See CICS Transaction Server for z/OS, Version 4 Release 1 at the following web
page:

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
 Chapter 1. Introduction to event processing 7

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

1.5.2 CICS Explorer

IBM CICS Explorer is the new face of CICS and an integration point for CICS
tooling with rich CICS views, data, and methods. It provides a common, intuitive,
and Eclipse-based environment for architects, developers, administrators,
system programmers, and operators.

CICS Explorer has the following features:

� Provides task-oriented views giving integrated access to a broad range of
data and control capabilities

� Has powerful, context-sensitive resource editors and manages all CICS
resources, including those resources for event processing

� Is an integration point for IBM CICS Transaction Server for z/OS, IBM CICS
Tools Family, IBM CICS Transaction Gateway for z/OS, IBM Problem
Determination Tools Family, and IBM Rational® Tools

For CICS event processing, the CICS Explorer contains the CICS Event Binding
Editor, which you use to perform the following tasks:

� Defines events to be emitted and their payload data
� Specifies to the CICS run time how to detect when the events occur
� Indicates how events are formatted and routed
� Deploys the event definitions to the System z file system (zFS) for installation

into CICS

For more information, see the CICS Explorer at the following web page:

http://www-01.ibm.com/software/htp/cics/explorer/

1.5.3 WebSphere Business Events

IBM WebSphere Business Events is an IBM software product designed to
support business event processing by meeting the high-volume demands and
processing required across industries and application domains. IBM WebSphere
Business Events provides graphical, codeless user interfaces that simplify
implementation and empower business users to develop and maintain event
processing logic.

IBM WebSphere Business Events consists of the following basic constructs:

� Connectivity to business events
� Event processing engine for evaluating and detecting event patterns
� Initiation of business responses (actions)
8 Leveraging CICS Events with an ESB

http://www-01.ibm.com/software/htp/cics/explorer/

Business events can exist anywhere within the extended computing
infrastructure, both inside and outside the firewall. Events can be communicated
directly between systems or pushed into the communications backbone for use
by any system. A message-based publish-or-subscribe or request-or-reply
transport, such as IBM WebSphere MQ, is an ideal transport infrastructure for
event processing.

Based on user definitions, the WebSphere Business Events processing engine
detects and sifts though the mass of events occurring across the information
infrastructure, identifying only those events and patterns of interest. Upon
detecting a defined event or pattern (actionable situation), the engine initiates
one or more business responses (actions).

Responses range from sending electronic alerts to initiating the execution of
follow-on processes. These actions are communicated directly to systems (or
over the communications backbone), indicating that an actionable event or
pattern has been detected.

For more information, see WebSphere Business Events at the following web
page:

http://publib.boulder.ibm.com/infocenter/wbevents/v6r2m1/index.jsp

1.5.4 WebSphere Business Monitor

IBM WebSphere Business Monitor is a comprehensive business activity
monitoring (BAM) product that provides business users and managers with a
real-time and end-to-end view of business processes, events, and operations.
WebSphere Business Monitor aggregates and correlates events into metrics that
give objective measurements about the status of business processes.

WebSphere Business Monitor shows business users real-time information about
the performance of critical business processes. It offers user-friendly and
customizable dashboards that enable complete insight into the business flowing
through the system. These dashboards can calculate and display key
performance indicators (KPIs) and metrics derived from the following sources:

� Business processes
� Business activity data
� Business events

Business users can view these KPIs, metrics, events, and alerts through various
means, including lightweight web interfaces, Smartphones, corporate portals,
and on desktops. These options give business users immediate actionable
information and insight into their business operations to mitigate risk and take
advantage of opportunities.
 Chapter 1. Introduction to event processing 9

http://publib.boulder.ibm.com/infocenter/wbevents/v6r2m1/index.jsp

The following list details many of the real-time events from which WebSphere
Business Monitor enables collection:

� CICS

� IBM Business Process Management (BPM) Suite and Connectivity portfolio:

– WebSphere Process Server
– IBM FileNet® P8 Business Process Manager
– WebSphere MQ Workflow
– WebSphere Business Events
– WebSphere Message Broker
– WebSphere Enterprise Service Bus
– WebSphere DataPower Integration Appliance XI50
– WebSphere Partner Gateway

� Events and data through the use of WebSphere adapters and the IBM
Connectivity portfolio from the following sources:

– Oracle
– SAP
– Siebel
– Other enterprise resource planning (ERP) and customer relationship

management (CRM) applications

� Other third-party applications through the IBM Connectivity portfolio

A bidirectional flow of events between WebSphere Business Monitor and IBM
WebSphere Business Events is enabled. Clients can use a single dashboard to
view the performance of business processes through KPIs and view any alerts
generated by IBM WebSphere Business Events to get real-time insight into what
is happening within the organization. Similarly, the bidirectional event flow
enables clients to feed any alerts about processes or business that is generated
by WebSphere Business Monitor to IBM WebSphere Business Events for
detecting patterns within those alerts, which might otherwise go undetected, and
to initiate follow-on processing.

See WebSphere Business Monitor at the following web page:

http://www-01.ibm.com/software/integration/wbimonitor/

1.5.5 WebSphere Enterprise Service Bus

IBM WebSphere Enterprise Service Bus provides Web services connectivity and
Java Message Service (JMS) messaging, improving flexibility through the
adoption of service-oriented interfaces.

WebSphere Enterprise Service Bus provides a smart approach to SOA,
delivering a standards-based connectivity and integration solution that allows you
10 Leveraging CICS Events with an ESB

http://www-01.ibm.com/software/integration/wbimonitor/

to create and deploy interactions quickly and easily between applications and
services, with a reduced number and complexity of interfaces.

WebSphere Enterprise Service Bus provides the following features:

� Offers easy-to-use tools that require minimal programming skills

� Is simple to install, configure, build, and manage

� Supports hundreds of independent software vendor solutions through
WebSphere adapters

� Reconfigures dynamically to meet changing business processing loads

� Provides easy interactions with any JMS and HTTP applications

See WebSphere Enterprise Service Bus at the following web page:

http://www-01.ibm.com/software/integration/wsesb/

1.5.6 WebSphere Message Broker

IBM WebSphere Message Broker is built for universal connectivity and
transformation in heterogeneous IT environments. It distributes information and
data generated by business events in real time to people, applications, and
devices throughout your extended enterprise and beyond.

WebSphere Message Broker offers the following features:

� Provides a smart approach to SOA, extending the reach of your business
beyond your firewall by supporting a broad range of multiple transport
protocols and data formats

� Integrates multiple applications, networks, and device types using a
platform-independent-based enterprise service bus (ESB) that lets you
conduct business reliably and securely

� Increases business agility and flexibility, extending easily to a federated ESB
model, while reducing development costs by separating integration logic from
applications

� Improves the flow of information around the business, moving away from
hard-coded point-to-point links to more flexible distribution mechanisms, such
as publish/subscribe and multi-cast

� Uses a simple programming model for connectivity and mediation, including a
robust set of pre-built mediation functions and ways to customize mediations

� Exploits the industry-leading WebSphere MQ messaging infrastructure
 Chapter 1. Introduction to event processing 11

http://www-01.ibm.com/software/integration/wsesb/

� Supports transformation options with graphical mapping, Java, ESQL,
Extensible Stylesheet Language (XSL), and WebSphere Transformation
Extender

� Delivers extensive administration and systems management facilities for
developed solutions

See WebSphere Message Broker at the following web page:

http://www-01.ibm.com/software/integration/wbimessagebroker/

1.6 DataPower

The IBM WebSphere DataPower Integration Appliance XI50 is a complete
hardware platform for delivering highly manageable, more secure and scalable
integration solutions, which offers the following functions:

� Simplifies infrastructure with the Application Optimization option to provide
intelligent back-end application workload balancing (available only for 9235
machine type)

� Bridges to Web 2.0 technologies with JavaScript Object Notation (JSON)
filtering and validation, supports Representational State Transfer (REST)
verbs, and converts and bridges REST and Web services

� Offers rapidly configurable Web Application Firewall security to protect
against cross-site scripting, SQL injection, and a wide variety of XML threats

� Provides fast and flexible application integration with declarative any-to-any
transformations between disparate message formats

� Reduces integration costs with wirespeed mediation, protocol bridging,
transport mediation and content-based message routing

� Enables extreme reliability by securing services at the network layer with
advanced XML/SOAP/WS-Web services processing and policy enforcement

� Lowers operational costs with native connectivity to existing access control,
monitoring, and database and management systems and processes

� Offers standards-based, centralized governance and security, with support for
a broad array of standards, such as WS-Security and WS-SecurityPolicy

1.7 WebSphere Process Server

IBM WebSphere Process Server is a high-performance business process
automation engine to help form processes that meet your business goals.
12 Leveraging CICS Events with an ESB

http://www-01.ibm.com/software/integration/wbimessagebroker/

Built on open standards, it deploys and executes processes that orchestrate
services (people, information, systems, and trading partners) within your SOA or
non-SOA infrastructure.

WebSphere Process Server helps increase efficiency and productivity by
automating complicated processes that span people, partners, and systems. It
helps cut costs by enabling flexible business processes with reusable assets,
reducing the need to hard-code changes across multiple applications. IT extends
the value of core applications by centralizing business processes and sharing
them across the enterprise to maximize resources and increase return on
investment (ROI). WebSphere Process Server provides strong support for
human workflow and enables rapid process changes, providing the business
agility required to compete in emerging markets by using resources efficiently. It
accelerates time to value by enabling rapid change and reconfiguring existing IT
assets without redeployment.

WebSphere Process Server offers the following features:

� Increases business flexibility with powerful human workflow capabilities:

– Reacts dynamically to changing business requirements with the ability to
install new versions of a process and migrate running processes to a new
version

– Supports additional human workflow scenarios, including parallel approval
with voting and result aggregation

– Offers new human tasks and workflow widgets that deliver more
scenarios, such as human task, workflow, escalation management, ad hoc
multi-column filtering, and adaptive paging

– Provides richer capabilities to manage in-flight processes, such as
modifying ownership of a process instance and enhanced activity repair
capabilities

� Empowers users and accelerates productivity across all process roles:

– Faster server start-up time and deployment of BPM solutions from
WebSphere Business Modeler and WebSphere Integration Developer

– Improved user experience for Interactive Process Design scenario with
faster deployment

– Enhanced operational visibility with new and improved role-based widgets,
enabling better service monitoring and health determination

– Improved problem determination with consistent fault handling across
Service Component Architecture (SCA) bindings and cross-component
trace enhancements
 Chapter 1. Introduction to event processing 13

– New widgets for solution administrators enable better module
administration

� Accelerate time to value for implementing and deploying BPM solutions:

– Simplifies system installation, including easier cluster configuration

– Provides consistent, flexible, and independent BPM topology and
database configuration and management

– Simplifies handling of runtime environment outages with support for
unexpected service downtime with “store and forward” capability to queue
events until service is restored

– Eases the process of loading or unloading static relationship data through
a data import and export capability

– Uses web-based forms rendered from Lotus Forms Server, in addition to
the existing Lotus Forms Client rendering capabilities

� Enhancements for easier migration from WebSphere Business Integration
heritage server solutions:

– Enhances the maintainability of the generated Business Process
Execution Language (BPEL) from migrated WebSphere InterChange
Server repositories

– Improves performance of WebSphere InterChange Server migration with
an improved user experience for migrating large repositories

� Enhances support for open standards:

– Java enhancements, including Java Enterprise Edition (EE) 5, Enterprise
JavaBeans (EJB) 3.0, Java Persistence API (JPA), Java Development Kit
(JDK) 6 support, and enhanced Java integration

– Web services enhancements, including WS-Addressing, Attachments,
Kerberos token profile, and WS-Policy support

– OpenSCA support, enhanced Open Service Gateway initiative (OSGi)
support, and enhanced XML fidelity

� Platform alignment and currency:

– Exploits and extends WebSphere Application Server V7.0, providing
enhanced standards support, simplified system installation and
administration, and enhanced WebSphere MQ V7 integration

– Enables the use of SQL Server 2008 as the underlying database for
storing WebSphere Process Server program data (excluding Business
Process Choreographer (BPC) Explorer reporting capabilities)

– Improves the integration of the WebSphere Customization Tool with the
WebSphere Process Server for z/OS and WebSphere ESB for z/OS
installation experience, enhanced tool support to assist with the DB2
14 Leveraging CICS Events with an ESB

database creation process, and a Common Installer Framework that
provides an integrated “look and feel” for all z/OS BPM products

– Complies with the security settings as defined by the Federal Desktop
Core Configuration (FDCC) for the U.S. Federal Government

1.8 IBM solution for system events

Next, we discuss the IBM solution for systems events, Tivoli® OMEGAMON® XE
for CICS on z/OS.

1.8.1 Tivoli OMEGAMON XE for CICS on z/OS

Although this book is about business application event processing, we mention
an available solution for processing system events for CICS.

IBM Tivoli OMEGAMON XE for CICS on z/OS enables the monitoring and
management of CICS transactions and resources. It quickly detects and isolates
problems when they occur on your complex CICS systems to minimize or
eliminate any effect on your customers and your business.

See IBM Tivoli OMEGAMON XE for CICS Transaction Gateway on z/OS: User’s
Guide, SC23-5963.

1.9 Solutions reviewed

With our review of several of the products involved in event processing, we
consider the question of which products to use in which situations.

If your business processing runs in CICS, CICS will be the source of your events
and forms the subject of this publication. There will be situations in which the
actions to take as a result of the events also involve processing in CICS. In other
situations, you will want to use other products.

If you want to monitor the processing that happens in CICS, to look at key
performance indicators, to provide a dashboard to allow business users to
understand the behavior of the business, and to receive alerts, you can use
WebSphere Business Monitor.

If you want to derive additional information from combinations of events,
potentially including events from other sources in addition to CICS, or to consider
events over time, you can use WebSphere Business Events.
 Chapter 1. Introduction to event processing 15

You might also want to monitor processing based on certain derived events, in
which case, WebSphere Business Events can look for the patterns of interest
and can send the resulting events to WebSphere Business Monitor.
16 Leveraging CICS Events with an ESB

Chapter 2. CICS event processing

In this chapter, we explain why Customer Information Control System (CICS)
event processing (EP) is useful. We discuss the implementation of event
processing in CICS, which uses event specifications, capture specifications, and
EP adapter information contained in an event binding.

In this chapter, we introduce the Event Binding editor by including snapshots of
the CICS catalog sample as we explain the concepts in CICS event processing.
To explore the catalog sample event, download the CICS Explorer and use the
wizard to generate the sample binding automatically.

In addition, we show how to deploy event bindings to System z file system (zFS)
using a CICS bundle.

2

© Copyright IBM Corp. 2010. All rights reserved. 17

2.1 Why emit events from CICS applications

Given the massive amount of business processing that occurs in CICS systems
across the world (over 30 billion transactions a day), CICS is a significant source
of business events.

Emitting events from CICS applications can provide enhanced business flexibility
and help you to meet governance and compliance regulations, as described in
1.3, “Why you need events” on page 5.

2.2 How CICS event processing works

Using event specifications defined to CICS, events can be captured from existing
business application programs without altering the original code. Figure 2-1
shows an overview of the process.

Figure 2-1 CICS and event processing overview

CICS and event processing Overview

Development & Deployment
Tools

Existing

Business

Logic

Code

NOT

changed

CICS Event Processing

Event Capture

Filtering

Enrichment

Formatting

Routing

Extensible

Secured

Monitored

etc.

Captured

Events

CICS Transaction Server for z/OS

WebSphere

Business

Events

WebSphere

Business

Monitor

Other

Event

Consumers

E
ve

n
ts

1
0

10
20
30
40
50
18 Leveraging CICS Events with an ESB

During execution of the business application, many potential capture points
occur. These capture points include relevant CICS Application Programming
Interface (API) calls and when a program starts. Each time a program executes a
capture point, CICS checks each enabled capture specification that matches the
capture point.

Each matching capture specification contains optional filters to be compared
against the application context, several command options on the API call, and
data passed on the API call.

If the filters match, CICS collects the payload information from information
sources described in the capture specification, enriches it with context data, then
queues the event for dispatch so that the application can continue to execute
quickly.

A separate process in CICS routes the event and any payload data through the
event processing adapter described in the event binding. Events with a high
dispatch priority are routed first. Events marked as transactional are only emitted
after the transaction reaches a sync point and commits. The EP adapter then
emits the event to a consumer, such as WebSphere Business Events or
WebSphere Business Monitor.

2.3 CICS Event Binding editor

Use the CICS Event Binding editor in the CICS Explorer resource perspective to
create an event binding that contains one or more event specifications (see 2.4,
“Event specification” on page 21).

Deploy a bundle, which contains the event specification to zFS, and install it in
CICS (see 2.11, “Bundles” on page 41).

We show panel snapshots from the editor for the catalog sample when
discussing the concepts, because the editor can automatically generate the
catalog sample for you. You can download the CICS Explorer onto your
workstation through the CICS Explorer website:

http://www-01.ibm.com/software/htp/cics/explorer/
 Chapter 2. CICS event processing 19

http://www-01.ibm.com/software/htp/cics/explorer/

To generate the catalog sample in the editor, perform the following steps:

1. Switch to Explorer Resource perspective. If you do not see the options for
Resource and CICS SM shown, click the plus (+) on the left or use Window
Open Perspective Other to show it. See Figure 2-2.

Figure 2-2 Explorer Resource perspective

2. Create a CICS bundle project by clicking the create a bundle project icon. See
Figure 2-3.

Figure 2-3 Creating a CICS bundle project

3. Generate the catalog sample event binding file. See Figure 2-4.

Figure 2-4 Catalog sample binding file
20 Leveraging CICS Events with an ESB

2.4 Event specification

An event specification defines a business event to CICS. An event specification
can be created using the CICS Event Binding editor by business analysts and
developers or by an application analyst in response to a business requirement.
An event specification describes an event and its processing in natural language.

See Figure 2-5, which shows the components of an event specification.

Figure 2-5 Event specification components

An event specification also defines the business information to be contained in
the event (if a payload is required). Example 2-1 is an example of an event
specification.

Example 2-1 Sample event specification

When The stock level is low and there is no re-order in place, capture:
Progam name (text)
Item Ref (numeric)
Item Description (text)
In Stock (numeric)
On Order(numeric)

The event specifies the order in which the payload is produced.

The event description can also indicate the intended use for this event, such as
sending the data to the business orders dashboard.

The event specification is associated with one or more capture specifications.
See 2.5, “Capture specification” on page 22 for more information about capture
specifications.

Note: The event specification represents what the event is. The capture
specification represents when and how to capture it.

Business
Information

Name Text 25
ID Text 12

Event
Specification

Capture
Specification
 Chapter 2. CICS event processing 21

Figure 2-6 shows the event specification for the catalog sample.

Figure 2-6 Catalog sample event specification

You need at least one capture specification to detail where to capture the event
(normally only one capture specification is required). However, there might be
more than one place in your application where the event can occur and it is
represented by separate capture points. For example, in a stock application,
orders can be placed through an online form or through a queue. These orders
require separate capture points and the format of the incoming data might differ.
In this case, you can define more capture specifications to describe these
additional places.

2.5 Capture specification

An application analyst with knowledge of your business applications takes a
defined business event and defines one or more capture specifications to satisfy
the event (Figure 2-7 on page 23).
22 Leveraging CICS Events with an ESB

Figure 2-7 Components of a capture specification

A capture specification consists of the capture point, such as an EXEC CICS
command, relating to the event, and several filter predicates that give more
information about the exact location or locations where the event occurs. The
location of the event in the application logic depends on how it is specified. If a
CICS application contains two instances of the same EXEC CICS API command,
and the filter specification does not distinguish between the two commands, an
event is emitted when both instances of the command are executed.

The capture specification must contain an information source for each item of
business information in the event specification.

You add a capture specification by clicking Add a Capture Specification on the
window for an event specification or by right-clicking the event specification in the
tree at the left and selecting Add a Capture Specification on the pop-up menu.

2.5.1 Capture point

The capture point is the place in a CICS application where a particular event can
be captured (for example, an EXEC CICS READ FILE command or a program
starting).

The program initiation capture point is the only one that is not an EXEC CICS
API call.

Table 2-1 on page 24 lists the EXEC CICS capture points.

Information
Sources

Capture
Point

 Capture Specification

Filters
 Chapter 2. CICS event processing 23

Table 2-1 Capture points

With most capture points, if the filter is TRUE, the event is generated after the
capture point has executed. For CONVERSE, INVOKE SERVICE, and LINK
PROGRAM capture points, choose whether to generate the event before or after
the call. For the program initiation, RETURN, and XCTL capture points, the event
is always generated before the call.

Figure 2-8 shows the capture point for the catalog sample.

Figure 2-8 Catalog sample capture point

CONVERSE DELETE FILE DELETEQ TD

DELETEQ TS INVOKE SERVICE LINK PROGRAM

PUT CONTAINER READ READNEXT

READPREV READQ TD READQ TS

RECEIVE RECEIVE MAP RETRIEVE

RETURN REWRITE SEND

SEND MAP SEND TEXT SIGNAL EVENT

START WEB READ WEB READNEXT

WRITE FILE WRITEQ TD WRITEQ TS

XCTL
24 Leveraging CICS Events with an ESB

2.5.2 Filter and predicates

The filter is a set of predicates connected by AND, which is used to determine
whether an event is captured. If all predicates evaluate to TRUE, the event is
captured. Predicates that evaluate to FALSE filter out events.

A predicate is an expression used as part of a filter, consisting of a data item, an
operator, and a value. A predicate is used with data values on the API call or
context data to restrict the occasions when an event is emitted to the
occurrences of interest.

In the following example of a predicate, Current Program Starts With EXAM, the
data item is Current Program, the operator is Starts With, and the value is EXAM.
Any program name starting with EXAM will be TRUE, such as in the following
example:

EXAMPLE EXAM01

Depending on the capture point, you might be able to specify predicates for the
application context, options on the API command, and application data.

You use the following predicates to filter the application context:

Transaction ID Current Program User ID
Response Code EIBAID EIBCPOSN

You can use predicates to filter by application command options. For example, on
a SEND MAP command, use these available command options:

MAP* MAPSET ALARM

At program initiation, use the command options:

PROGRAM* CHANNEL

In these examples, MAP and PROGRAM are marked with an asterisk in the editor to
indicate that they are primary predicates. Specify filter operators and values for
primary predicates to maintain CICS performance. Primary predicates are
defined for all commands with the following exceptions:

CONVERSE, RECEIVE, RETRIEVE, RETURN, SEND TEXT, WEB READ, and WEB
READNEXT

Primary predicate: All commands have a primary predicate. For these
commands, the primary predicate is not a command option, but it is typically
the current program in the application context.
 Chapter 2. CICS event processing 25

When using capture points for API calls that pass data between the application
and CICS, you can specify predicates for the application data. You can import a
language structure for the application data to help specify the type of data, the
offset into the application data and the length and precision, if applicable. For
example, on an XCTL capture point, the application data areas are COMMAREA
and CHANNEL.

The command will either use COMMAREA or CHANNEL, so you cannot define
application data for both data areas in one capture specification.

Figure 2-9 shows filtering for the catalog sample. The filtering on this panel
checks that the transaction equals EGUI, the current program is DFH0XVDS for all
user IDs, and the response is Ok.

Figure 2-9 Catalog sample filtering

2.5.3 Information sources

If you want to supply a payload for the event, perform the following tasks:

� Add business information items to the event specification in the order you
want them emitted.

� Define an information source for each item of business information in the
capture specifications for the event.
26 Leveraging CICS Events with an ESB

Figure 2-10 shows information sources for the catalog sample.

Figure 2-10 Catalog sample information sources

You add an information source by choosing from the following options:

� Application context
� Application command options
� Application data

Application context
Choose from USERID, PROGRAM, or TRANSID. CICS knows the format and
length of these choices.

Application command options
These application command options are the values of options passed on the API
command. For example, at the INVOKE SERVICE capture point, use these
choices for the application data areas:

SERVICE OPERATION URI
CHANNEL URIMAP

CICS knows the format and length of these choices. So, if you chose SERVICE
for an application data area, CICS supplies a 32-character value, which is the
length of the SERVICE parameter on the INVOKE SERVICE call.
 Chapter 2. CICS event processing 27

Application data
For capture points that pass data between the application and CICS, you can
specify application data as the information source. For example, at the program
initiation capture point, the choices for the application data areas are
COMMAREA and CHANNEL. In this case, CICS does not know the format and
length of the data area so you must supply it.

For example, if you choose CHANNEL, you must supply the name of the
container holding the data, the type of data, its offset into the container, and the
length of the data. If the data type is Packed Decimal or Zoned Decimal, you are
given the option to supply the precision. If the data type is Character, you can
choose an alternate code page from the default code page IBM037. You can
import a language structure for the application data to help specify this
information.

Figure 2-11 shows the information source editor.

Figure 2-11 Editing an information source
28 Leveraging CICS Events with an ESB

2.6 Event binding

An event binding is an XML definition that defines one or more business events
to CICS. An event binding consists of event specifications, capture specifications,
and EP adapter and dispatcher information.

The event binding is the unit for installing, enabling, and disabling CICS events.
The event binding groups together sets of events that are to be handled using the
same EP adapter, configuration, and dispatching policy. Event bindings are
deployed to CICS in a bundle that can contain other resources. All of the
resources in a bundle can be enabled and disabled together.

You create an event binding in a CICS bundle project using the CICS Event
Binding Editor. Figure 2-12 shows an event binding containing three event
specifications.

Figure 2-12 Event binding containing three event specifications

The event binding contains the following information:

� Description
� User tag

Tip: You can use the CICS Systems Management (SM) perspective, which is
a part of CICS Explorer, to display the user tag for an event binding installed in
CICS.

EP Adapter Configuration

Event Binding

Event
Specification

Capture
Specification

ES
 Chapter 2. CICS event processing 29

Figure 2-13 shows the event binding details for the catalog sample. The EP
adapter information is shown on the Adapter tab.

Figure 2-13 Catalog sample event binding

2.7 Non-invasive events or SIGNAL EVENT

CICS EP support allows existing business applications to be instrumented to
emit events without altering the existing application code. We call this function
non-invasive event processing.

If you want to identify explicitly a place in an application program where one or
more events can be emitted, add an EXEC CICS SIGNAL EVENT call to your
program. This call is invasively adding the opportunity for an event to be
captured. The SIGNAL EVENT call is also useful, because you might need to
collect the data available for the event payload from diverse sources. You can
collect the information in containers on the FROMCHANNEL or pass a single
data area using FROM.
30 Leveraging CICS Events with an ESB

The SIGNAL EVENT identifies a place in an application program where one or
more events can be emitted. Events are emitted when the following conditions
are satisfied:

� Event processing is active.

� There is least one matching capture specification enabled. A capture
specification matches if it has a capture point of SIGNAL EVENT, and all its
predicates evaluate to TRUE.

SIGNAL EVENT has a primary predicate of EVENT and allows other predicates
on the FROM data area or the FROMCHANNEL and its containers. You can also
define predicates on the context data, which you can do for all capture points.
The data in any CICS event emitted as a result of SIGNAL EVENT is defined in
the business event that contains the matching capture specification.

SIGNAL EVENT works in the same way as any other capture point in CICS,
except for the following differences:

� You can explicitly choose where in the application logic the capture point
occurs.

The capture points that we provide might not meet your requirements.

� You provide the name for this capture point:

– This name might be unique, or you can provide a common name, such as
the application area.

– Capture points can filter on this name with Equals or Begins With, for
example.

� You can assemble the data that you want to make available from diverse
sources.

A capture specification for this signal event can then select information
sources from this data to build the event payload.

SIGNAL EVENT is also useful for application vendors to provide prepared
capture points for their customers. Again, a range of useful information can be
provided for event payloads.

2.7.1 Automatic capture specification for SIGNAL EVENT

If you create a SIGNAL EVENT using FROMCHANNEL and write the data into
containers, you can use the editor to create a capture specification for the event
automatically.
 Chapter 2. CICS event processing 31

You add an automatic capture specification using the Event Binding editor by
performing the following steps:

1. Add a new event specification with a name that matches the EVENT predicate.

2. Add the business data that you want to capture with the names of the
containers that you are passing on the FROMCHANNEL.

3. Click Add, which is an automatic capture specification.

The editor creates a capture specification for a SIGNAL EVENT capture point
with the following filter:

EVENT Equals <name of event specification>

It also adds information sources for each business data item:

� The information is in a container with the name of the business data passed
on the FROMCHANNEL.

� The data is at offset 0 in the container.

� The length is the same as the length of the business data.

Figure 2-14 shows an event specification to be used with SIGNAL event.

Figure 2-14 Event specification for a SIGNAL EVENT

Figure 2-15 on page 33 shows an automatically generated capture specification.
instead of defining the event specification to yield the most appropriate automatic
capture specification, you can also use this option to generate a template, which
can then be tailored as needed.
32 Leveraging CICS Events with an ESB

Figure 2-15 Automatically generated capture specification
 Chapter 2. CICS event processing 33

Figure 2-16 shows the automatically generated information sources in the
capture specification.

Figure 2-16 Automatically generated information sources

2.8 Event processing adapters

Specify information in your event binding to control how CICS emits events
produced by the event binding. Use the Adapter panel to define what will happen
to events created by this binding. Select the EP adapter to emit events, then
select options relevant to the EP adapter. Figure 2-17 on page 35 shows the
adapter configuration for the catalog sample.
34 Leveraging CICS Events with an ESB

Figure 2-17 Adapter information for the catalog sample

Click the Adapter tab in the CICS Event Binding Editor, as shown. The Adapter
pane is where you specify the type of EP adapter to use for this event binding,
the parameters for the EP adapter, and any advanced information.

Choose the EP adapter type from the Adapter list. You can specify four EP
adapter types, which are discussed in 2.8.1, “Temporary storage queue EP
adapter” on page 36 through 2.8.3, “WebSphere MQ (WMQ)” on page 37.

You can export a description of your event as an XML schema or COBOL
copybook. See 2.9, “Exporting event schema or copybook” on page 38.

You can optionally set advanced dispatcher settings. See 2.10, “EP adapter
advanced options” on page 39.
 Chapter 2. CICS event processing 35

2.8.1 Temporary storage queue EP adapter

This EP adapter emits events in the CICS flattened event (CFE) format to a
named CICS temporary storage (TS) queue and can be used to perform the
following tasks:

� Validate that the correct events are being captured with the correct data
� Emit events to any consumer that reads from a TS queue

This EP adapter is a good choice when initially implementing new events. You
can use it as a temporary adapter, because you can browse TS queues with the
CICS CEBR transaction easily to check the payload. You can refresh the view to
check for new events in the queue.

However, TS queues are limited to a maximum of 32,767 entries. You can only
delete the entire queue rather than deleting individual entries within the queue,
so you will need a strategy for clearing out events that you have processed.

Specify the following options for the TS queue EP adapter:

� Specify the CICS queue name. You must specify a queue name.
� Specify the System ID, if your target queue is remote.
� Select Use Auxiliary Temporary Storage, if required.

2.8.2 Transaction start EP adapter

The transaction start EP adapter emits events in the CICS channel-based event
(CCE) format to a named CICS transaction that consumes the event. You can
specify the CICS system that will run the transaction. You can use an existing
transaction, if the event data is not required.

Specify the following options for the transaction start EP adapter:

� Specify the transaction ID of the CICS application that runs as a result of the
events. You must specify a transaction ID.

� Optionally, specify a transaction user ID.

If unspecified, the started transaction will run under the CICS region user ID.

The transaction that is started by the transaction start EP adapter will run under
this user ID. The CICS region user ID needs to be defined as a surrogate of any
user ID specified here.
36 Leveraging CICS Events with an ESB

2.8.3 WebSphere MQ (WMQ)

This EP adapter emits events to a WebSphere MQ queue either in the common
base event (CBE) XML format for consumption by products that use the common
event infrastructure, such as WebSphere Business Monitor, in the WebSphere
business event (WBE) format for WebSphere Business Events, or in a non-XML
character format.

Specify the following options for the WebSphere MQ (WMQ) EP adapter:

� Specify the queue name of the WebSphere MQ queue on which events
emitted by this event binding are placed. You must specify a queue name.

Specify whether messages are persistent. Select one of the following values
from the Persistent list:

– No

Messages put on the queue by the WebSphere MQ (WMQ) EP adapter
are non-persistent.

– Yes

Messages put on the queue by the WebSphere MQ (WMQ) EP adapter
are persistent.

– Queue default

Messages put on the queue inherit the default persistence of the named
queue.

� Specify the message priority. You can either select the queue default, or type
a value in the Priority field, for the WebSphere MQ message priority, from
0–9.

� Specify the expiry time. You can either select Never Expire, or type a value for
the WebSphere MQ message expiry in the Expiry Time field. This period of
time is expressed in tenths of a second. A message becomes eligible to be
discarded if it has not been removed from the destination queue before this
period of time elapses.

� Specify a data format for the event. Select one of the following values from the
Data Format list:

– CICS Flattened Event (CFE) format

Event data is in a non-XML character format.

– WebSphere Business Events XML format

Messages are put on the queue in the XML format required by WebSphere
Business Events.

– CBE format for WebSphere Business Monitor
 Chapter 2. CICS event processing 37

Messages are put on the queue in the CBE event format required by
WebSphere Business Monitor.

2.8.4 Custom (user-written) EP adapter

This adapter emits events in any format that you require. A custom EP adapter is
a CICS program that you write to provide a combination of formatting and routing
of an event that is not supported by the CICS-provided EP adapters. It must not
perform out any other processing, such as consumption of the event.

Specify the transaction ID for your user-written CICS application that formats,
routes, and emits the event. You must specify a transaction ID.

Write the data to be passed to the custom EP adapter. Your custom EP adapter
will receive this data, which can be used to configure the custom EP adapter.

2.9 Exporting event schema or copybook

You can export descriptions for one or more event specifications in this event
binding as a schema or copybook for use elsewhere.

If you are using the WebSphere MQ (WMQ) EP adapter and the CBE format or
the WebSphere Business Events (XML) format, the exported file will be an XML
schema definition (.xsd) file.

If your chosen EP adapter and data format emit events to a system in a non-XML
character format, the exported file will be a COBOL copybook (.cpy) file. The TS
Queue adapter and the WebSphere MQ (WMQ) EP adapter using the CICS
Flattened Event format emit events in a non-XML character format.

To export event schema or copybook, perform the following steps:

1. Click Export Event Specifications. The Export Event Specifications window
opens.

HTTP EP adapter: An HTTP EP adapter is now available through an
authorized program analysis report (APAR). New Function (NF) APAR
PK94205 adds an event processing (EP) adapter that uses the HTTP
transport mechanism to CICS Transaction Server for z/OS V4.1. This new EP
adapter supports event formats of Common Base Event REST (CBER),
WebSphere Business Event, and Common Base Event (CBE). APAR
PK94205 closed on 29 April 2010.
38 Leveraging CICS Events with an ESB

2. Select the event specifications that you want to export.

3. Specify a directory to which to export the event specifications in the “To”
directory field.

4. Click Export.

A file is created in the specified directory for each event specification that you
selected.

For example, if you specify the WebSphere MQ adapter and the CBE format and
select two event specifications called example1 and example2, two XML schema
files are created, which are called example1.xsd and example2.xsd. You can
import these schema files to WebSphere Business Monitor to help define an
inbound event.

If you specify the WebSphere MQ adapter and the WebSphere Business Events
(XML) format and select an event specification called example1, an XML schema
file is created, which is called example1.xsd. You can use this schema file in the
WebSphere Business Events Design Data tool to help define an event.

If you specify the TS Queue adapter and select two event specifications called
example1 and example2, two COBOL copybooks are created, which are called
example1.cpy and example2.cpy. You can use these copybooks to process data
in your own event consumer programs.

If you export an event specification and then export the same event specification
again to the same directory, the CICS Event Binding editor prompts you to either
overwrite the existing file or cancel the export operation.

2.10 EP adapter advanced options

Specify any required advanced dispatcher options, as shown in Figure 2-18.
These options are for advanced users and control the way that the EP adapter is
run in a CICS system. These options are not mandatory; default values will be
assigned if you do not supply any values.

Figure 2-18 Advanced options for dispatch
 Chapter 2. CICS event processing 39

2.10.1 Dispatch priority

You can specify Normal or High priority to control the dispatching of events from
which the event was captured. High priority events are emitted as soon as they
are available based on the “Events are Transactional” setting. Normal priority
events are emitted as soon as they are available, unless the “Events are
Transactional” option is selected, but they are emitted after any outstanding high
priority events.

2.10.2 Transaction ID

Specify the Transaction ID, which is not available for the CICS Transaction EP
adapter or a custom EP adapter. The EP adapter program will run under this
transaction ID. If you do not specify a transaction ID and you do not specify a
user ID, the EP adapter is linked to under the dispatcher transaction.

2.10.3 User ID

You specify a user ID so that the EP adapter transaction runs with this user ID;
otherwise, it runs under the CICS region user ID. If you select “Use context User
ID”, the EP adapter runs with the user ID under which the event was captured.

If you specify a user ID, but you do not specify a transaction ID, the EP adapter
will run under the default transaction for the EP adapter type:

� The WebSphere MQ (WMQ) EP adapter runs under the CEPQ transaction.
� The TS Queue EP adapter runs under the CEPT transaction.

When you install a BUNDLE resource that includes an event binding for which
you specified a user ID in the Adapter tab of the CICS Event Binding Editor, CICS
checks that the User ID performing the installation operation is authorized as a
surrogate user of the user ID specified in the CICS Event Binding Editor. This
check also applies to the CICS region user ID during the group list installation on
a CICS “cold” or initial start.

2.10.4 System ID

Specify the system ID (only available for the CICS Transaction EP adapter). The
transaction started by the EP adapter will run on the CICS system with this
system ID.
40 Leveraging CICS Events with an ESB

2.10.5 Transactional events

Specify whether events are transactional:

� Select the check box if you want CICS to emit captured events only if the unit
of work (UOW) associated with the event completes successfully. The events
are either emitted when there is an internal sync point within the program or
when the program ends and reaches an implicit sync point.

If the transaction fails and backs out, the events will be discarded.

� Clear the check box if you want CICS to process events associated with this
event binding in near-real time regardless of whether the UOW commits.

2.11 Bundles

You can now deploy applications into CICS using bundles. A bundle is a
collection of CICS resources, artifacts, references, and a manifest that
represents an application. Use bundles to more easily manage the availability of
an application and the life cycle of its resources.

For an example of a bundle containing three event bindings, see Figure 2-19.

Figure 2-19 A CICS bundle containing three event bindings

Bundles are created by an application developer using a tool, such as Rational
Developer for System z, the CICS XML assistant, or the IBM CICS Explorer. A
bundle contains only the resources that are required by the application. The

EP Adapter Configuration

Event Binding

Event
Specification

Capture
Specification

ES

E

E

E

E

CICS Bundle
 Chapter 2. CICS event processing 41

system resources that the application requires might be defined as prerequisites,
but they are not included in the bundle. This separation means that you can
install the same application into multiple CICS regions without having to
repackage or redeploy the bundle.

A bundle is defined in CICS using a BUNDLE resource. For information about
how to define this resource and for more information about the format of its
contents, see the following web page:

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics
.ts.resourcedefinition.doc/bundles/defining_app_resources.html

The BUNDLE resource differs from a Resource Definition Online (RDO) group,
because it maintains a relationship with all the resources after they are installed,
so that you can manage all the related resources as a single entity. For example,
if you disable a BUNDLE resource because you want to stop an application from
running, CICS disables all of the related application resources for you. To view
the contents of a bundle and the state of its resources, use the IBM CICS
Explorer.

The types of applications that you can deploy as bundles include event
processing, channel-based services, and XML-based services. Each of these
application types is represented by one or more CICS resources. These
resources are dynamically created as part of the bundle deployment.

If you deploy an application that uses event bindings from the CICS Event
Binding Editor, installing the BUNDLE resource generates one or more
EVENTBINDING and CAPTURESPEC resources. The resource signatures for
each resource indicate that they were created during a bundle deployment and
contain the name of the BUNDLE resource.

2.12 Deploy a bundle to zFS

You export the bundle to z/OS UNIX® (zFS) storage from which it can be
installed into CICS by referencing the bundle directory in a CICS bundle resource
definition. To deploy a bundle to zFS, right-click the bundle and select the deploy
option, as shown in Figure 2-20 on page 43 (where the option is called Export to
System z HFS).

Important: This option is shown as Export to System z HFS, as shown in
Figure 2-20 on page 43.
42 Leveraging CICS Events with an ESB

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.resourcedefinition.doc/bundles/defining_app_resources.html

Figure 2-20 Selecting the export panel

Complete the information in the Export panel to provide the host, FTP port, user
name, and password for the z/OS system. Enter the hierarchical file system
(HFS) directory or browse for the desired directory. See Figure 2-21 on page 44.
 Chapter 2. CICS event processing 43

Figure 2-21 Export bundle panel
44 Leveraging CICS Events with an ESB

Chapter 3. Integrating event processing
and enterprise service bus

In this chapter, we describe the conceptual architecture for event processing
systems, in addition to the three typical layers of an event-driven system:

� Event producer and associated components
� Event consumer and associated components
� Intermediary Event Bus layer

3

© Copyright IBM Corp. 2010. All rights reserved. 45

3.1 Conceptual architecture

The conceptual architecture builds on the concepts of the event processing
network (EPN) by defining the components that can be involved in an event
processing solution. Several of these components are equivalent to an event
processing agent (EPA), or a set of connected EPAs, at the EPN level. Other
components are more involved in the flow of events and are equivalent to
channels in the EPN. Later in this section, we show how the conceptual
architecture maps to the EPN (see Figure 3-3 on page 53).

Any system architecture that supports business event processing must enable
the flexible definition of the event-processing logic: detection of event patterns,
derivation of new events, transformation, and routing from producers to
consumers based on the business logic required. Thus, businesses can react to
changes, execute the relevant processes, and influence ongoing processes
based on the changes. Furthermore, such a definition of event processing must
be easy to modify and quick to deploy in accordance with business needs, such
as changes in business processes and policies.

To understand how this business value can be derived from event processing
systems, it is important to consider a further layer of granularity than the event
processing network, to consider components that can be used to construct an
event processing system, and their interactions. The outcome of this process is
what we term a conceptual architecture for event processing systems. In addition
to the three typical layers of an event-driven system (the event producer and
associated components, event consumer and associated components, and an
intermediary Event Bus layer), the conceptual architecture needs to include
components for security, monitoring, analytics, and management of events and
event flows.

At the simplest level, a minimal set of conceptual components required for an
event processing system consists of an Event Emitter layer to emit events from
event producers, an Event Bus, and an Event Handler layer to handle events for
consumption by event consumers. Figure 3-1 on page 47 illustrates this
architecture and also includes examples of event producers and event
consumers.
46 Leveraging CICS Events with an ESB

Figure 3-1 Minimal event processing conceptual architecture

There might be a need for additional capabilities within the Event Emitter layer,
the Event Bus, and the Event Handler (or receiver) layer. In practice, generated
events from an event producer cannot always be immediately shared with event
consumers. Because the event producer does not require awareness of the
event consumers in an event processing system, there is typically a need for a
middleware layer between the producer and consumer. This middleware layer
performs additional event-related tasks, as well as enabling the consumer to
receive those events, or derivatives of them, that are of interest. Not all events
are generated by the producer in the required format, and, in such cases, the
events need to be transformed to the required (enterprise standard) format prior
to being published to the intermediate layer. In certain cases, an ordinary event
can be evaluated for notability by an event preprocessor (router or filter), resulting
in the generation of a new notable event. Also, an event producer can choose not
to emit all of the events. Event processing agents can filter and mediate raw
events within the domain of the producer.

Similarly, all of the events received at the consumer side might not be in a
ready-to-use form, so there might be processing and mediation required at the
consumer end. An ordinary event might be evaluated for notability by an event
preprocessor (filter) before detailed handling at the consumer end. The
consumer might choose to ignore part of the events it receives. Event processing
services fulfill these pre-publish and pre-receive event processing requirements
at the event handler layer.

E
ve

nt

C
h

an
nel

Business
Processes Services

State
Machines

Monitors and
Probes

Event
Sensors . . .

Event
Producers

Event
Bus

Event Channels

Event Emitter

Event Handler

Business
Processes

Services State
Machines

DashboardsEvent
Actuators . . .

Event
Consumers

E
ve

n
t F

lo
w

 Chapter 3. Integrating event processing and enterprise service bus 47

Figure 3-2 shows all the components of the event processing conceptual
architecture. Any event processing implementation must be achievable with this
architecture as the base set of components at the conceptual level, but not every
component will be required in every implementation. Similarly, not all of the
components will be required for any given scenario. When we look at the
scenarios and see how they map to the conceptual architecture, we see that
every component is not involved in every scenario.

Figure 3-2 Event processing conceptual architecture: Components that can be involved
in an event processing system

Architectural components
The event flow in the conceptual architecture is from producer to consumer, and
the components shown in the conceptual architecture diagram are summarized
in that order. At the implementation level, event consumers will often also be
producers of events, but at a conceptual level, the roles of consumer and
producer are separate.

� Event producer

The event producer emits an event when something of interest happens (or
does not happen). The event producer does not include logic for manipulating
events, nor any decision logic on what to emit when, and the events that are
generated can be redundant or irrelevant.

Event
Emitter

Event
Bus

Event
Handler

Event Producers

Event Instantiator

Event Processing Services (Simple)

Event Adapters

Publication Services

Event Security
Services

Subscription Services Notification Services

Event Channels

Event Adapters

Event Processing Services (Simple)

Event Orchestration Services

Event Consumers

E
ve

n
t

C
ha

n
ne

l

Event
Information

Management
and Query
Services

Repositories

Registries

Event
Processing

Services

E
ven

t M
o

n
ito

rin
g

 an
d

 A
n

alytic In
fras

tru
ctu

re

E
ven

t G
o

v
ern

an
ce a

n
d

 R
elated

 S
e

cu
rity S

ervices

E
v

en
t F

lo
w

48 Leveraging CICS Events with an ESB

Typical examples of event producers include:

– Event sensors, which detect situations (things that happen) and generate
raw events, or originate events from data streams or business flows, for
example, the transmission of temperature

– Monitors and probes, which produce events about availability and
problems in systems, such as faults in an IT network

– Business processes, which produce events at significant points in the
processing (for example, at milestones or checkpoints), or when a specific
process task is reached or started

– Services and applications, which produce events at key points in the
processing, such as when the service is invoked and completes, or when it
fails

– State machines, which generate events when changing state

� Event emitter

The event emitter is logically (although not necessarily physically) associated
with the event producer and is responsible for converting and packaging raw
events from producers, for delivery to the Event Bus. The event emitter can
include an event instantiator, which creates the instances of events; simple
event processing services, such as filtering and mediation of events emitted
by a single producer, enriching the event with information available at the time
the event occurs; and event adapters. The event instantiator takes events
from the producer and does whatever (if anything) is needed to make it
available for further event processing or delivery, which can include
aggregation, caching, and serialization of events. The event instantiator might
be required to manipulate the event header to embed semantic metadata into
the event message itself, and to make it self-describing (with information such
as the time, date, instrument type, process ID, and so forth). The event emitter
can provide optimization by carrying out simple event processing at this stage
rather than after events reach the Event Bus. Event adapters can provide
formatting and protocol conversion of the event into a form to be received by
the event processing network, such as wrapping event records as event
messages and sending the event messages to the Event Bus.

� Event Bus

The Event Bus receives events from event emitters, potentially at an
extremely high volume of events, and invokes consumers through event
handlers as a result of events. Among the capabilities of an Event Bus can be
processing to derive a lower volume of more informative events from the
incoming events. The components of the Event Bus do not have to be
co-located. The section “Event Bus components” on page 51 gives further
detail about the Event Bus.
 Chapter 3. Integrating event processing and enterprise service bus 49

� Event handler

This component prepares the events from the Event Bus for consumption by
the event consumer, receiving events and deciding how to react. The event
handler has event adapters to receive event messages from the Event Bus
and unwrap them to get event records. The event handler can also provide
simple event processing services, which carry out consumer-side processing
to filter and mediate events received from the Event Bus. Event handlers can
also determine the appropriate consumers to react to an event, and invoke
the consumers with context derived from the event. Finally, an event handler
can provide event orchestration services to manage the distribution of events
to consumers.

� Event consumer

The event consumer performs tasks in reaction to an event. The event
consumer has limited concern about the origins of the event and is merely
aware that it is being invoked as a result of the event along with context about
the event. The following examples are typical event consumers:

– Event actuators, which are invoked to perform physical tasks, such as
operating valves, switches, or alarms

– Operator dashboards, which display information about the behavior of IT
systems and affected services

– Business dashboards, which display information about the behavior of
business processes

– Business processes, which can be initiated or resumed in response to an
event

– Services and applications, which can be invoked in reaction to an event
and can include external content management systems or event
repositories

– State machines, whose state can be changed in reaction to an event

This view of the conceptual architecture is based on the roles of each
component, but that is not to say that a particular participant in the architecture
cannot perform more than one role: an event producer can also carry out event
processing and can act as an event consumer. In particular, the publication and
subscription services are only required where a Publish/Subscribe-style model is
used.

The conceptual architecture can be regarded as “nested,” in that any participant
can contain within it a network of further components. For example, an event
producer might emit an event to the main Event Bus. In the process of producing
that event, you can envision a mini version of the overall model, in which a
50 Leveraging CICS Events with an ESB

producer emits an initial simple event for pattern matching with other events in a
mini Event Bus, residing logically within the overall event producer.

Event Bus components
The Event Bus transmits events from producers to consumers and can provide
additional services for processing and routing events. The Event Bus can have
an associated event registry and can have the capability to perform transactional
storage of in-flight events (transient or persistent) by using an event repository.

The Event Bus can be local or implemented at an enterprise level, and the events
received need to be processed based on the business requirement. This solution
is achieved using simple and complex event processing services. These services
are provided by event processing agents, which are wired through event
channels.

The Event Bus can provide the following services or building blocks:

� Event channels, which transmit events from event emitters to the Event Bus,
between components of the Event Bus, and onto event handlers.

� Publication services, to enable producers to send events to the appropriate
channels.

� Subscription services, to enable the dynamic registration of producers and
consumers, such as allowing event handlers to find the appropriate channels
and subscribe to receive events from those channels.

� Notification services to notify subscribed event handlers when events are
available, supporting both the push and pull of events.

� Query services to allow a repository to be queried for events (and metadata).

� Event security services, to control access and authority for events; for
example, to control authorization for adding and removing events to and from
the Event Bus, as well as privacy and non-repudiation of event contents.

� Event processing services, which provide filtering, transformation, and
enrichment of events, and can also provide pattern matching and event
derivation. These services can include complex event processing, which
processes events from multiple sources, and perform long-running pattern
matching among events.

� Event information services, which enable administrators to add, remove, and
organize channels, to organize event type metadata (syntax and semantics)
and to alternatively store event data in a relational format rather than using
persistence based on an event message, that is, atomic persistence.

� An event registry, to provide a taxonomy of event types and an ontology of
event relationships.
 Chapter 3. Integrating event processing and enterprise service bus 51

� An event repository, to store events for medium-term to long-term event
persistence.

The following function types are the most significant function types that must be
provided by processing within the Event Bus:

� Transformation: Function that transforms the incoming event by translating or
splitting it

� Enrichment: Function that enriches the content of events with reference data
from multiple possible sources

� Validation: Function to provide validation against required criteria

� Pattern detection: Function that recognizes actual and retrospective patterns;
a combination from possibly multiple events, characterizing a significant
business situation

� Filtering: Stateless function that filters events based on their content; that is,
the information that is carried by the message generated when the event
happened

� Aggregation: Function that can group events as necessary

� Routing: Function that routes events to the destination based on various
possible routing patterns, such as pre-established itinerary, calendar-based,
subscription, or “intelligent” routing decisions

The conceptual architecture also includes event governance and security
services, to manage and control the life cycle of events and event metadata.
Event monitoring and analytic infrastructure are needed for mainly administrative
purposes, to notify users of failures in the event infrastructure, and to gather and
display statistics about the event flow. These capabilities must cover the full event
flow and are, therefore, shown on the right side of the conceptual model diagram.

Thus, the conceptual architecture represents event producers emitting events to
the Event Bus, where they might be processed, and where they are finally
consumed by event consumers. A consumer can, as a result of an event,
produce another event, or react in other ways with another component, which
itself produces an event as a result.

Figure 3-3 on page 53 shows an example of how the conceptual architecture
builds on the concept of an EPN, by illustrating components that are equivalents
of event processing agents (EPAs), or sets of connected EPAs, and other
components that provide event channel services.
52 Leveraging CICS Events with an ESB

Figure 3-3 An example of EPN used by the event processing conceptual architecture

3.2 Why use an enterprise service bus as the Event Bus

The following function types are the most significant function types that must be
provided by processing within the Event Bus:

� Transformation: Function that transforms the incoming event by translating or
splitting it

� Enrichment: Function that enriches the content of events with reference data
from multiple possible sources

� Validation: Function to provide validation against required criteria

� Pattern detection: Function that recognizes actual and retrospective patterns;
a combination from possibly multiple events, characterizing a significant
business situation

� Filtering: Stateless function that filters events based on their content; that is,
the information that is carried by the message generated when the event
happened

Event
Emitter

Event
Bus

Event
Handler

Event Producers

Event Instantiator

Publication Services

Event Security
Services

Subscription Services Notification Services

Event Consumers

E
ve

n
t

C
h

an
n

e
l

Event
Information

Management
and Query
Services

Repositories

Registries

E
ven

t M
o

n
ito

rin
g

 a
n

d
 A

n
alytic In

fras
tru

c
tu

re

E
ve

n
t G

o
v

ern
an

ce an
d

 R
ela

te
d

 S
ec

u
rity S

ervice
s

E
ven

t F
lo

w
EPA

EPA

EPA

EPAEPA

EPA EPA

EPA

: Events flowing via channels

: Event Processing Agent, or set of EPAs

Event Processing Services (Simple)

Event Processing Services (Simple)

Event Adapters

Event Orchestration Services

Event ChannelsEvent
Processing
Services

Event Adapters
 Chapter 3. Integrating event processing and enterprise service bus 53

� Aggregation: Function that can group events as necessary

� Routing: Function that routes events to the destination based on various
possible routing patterns, such as pre-established itinerary, calendar-based,
subscription or “intelligent” routing decisions

In this book, we show examples of using an enterprise service bus (ESB). See
Chapter 5, “WebSphere Enterprise Service Bus business scenario” on page 91,
Chapter 7, “DataPower business scenario” on page 185, and Chapter 6,
“WebSphere Message Broker business scenario” on page 131 to transform and
enrich an event received from CICS Transaction Server.

The ESB receives the common base event (CBE) and then fires off a Web
Service call, inquireSingle, which is located in box WS2, to enrich the payload
with the product item price. The price is in the VSAM inventory file available to
CICS. See Chapter 4, “Overview of the application and business scenarios” on
page 57 for more details.

The ESB transforms the input event changing the format from a CBE format to a
WebSphere business event (WBE) format and sends the enriched event to
WebSphere Business Events. See Chapter 4, “Overview of the application and
business scenarios” on page 57 for more details.
54 Leveraging CICS Events with an ESB

Part 2 Environment

In this part of the book, we describe the application that we used, and we review
our business scenario.

Part 2
© Copyright IBM Corp. 2010. All rights reserved. 55

56 Leveraging CICS Events with an ESB

Chapter 4. Overview of the application
and business scenarios

In this chapter, we describe our environment and the application we chose to use
to build our scenarios.

4

© Copyright IBM Corp. 2010. All rights reserved. 57

4.1 Objectives

For this book, we wanted to build a test application with several event-based
scenarios to demonstrate ideas and techniques about integrating an enterprise
service bus (ESB) into your WebSphere Business Events solutions.

We wanted a test environment with which CICS clients were familiar and that
they might be able to utilize for demonstration purposes; therefore, we chose to
use the CICS Transaction Server-supplied catalog manager example
application.

4.2 Overall architecture

IBM provides three ESB solutions: WebSphere Enterprise Service Bus,
WebSphere Message Broker, and DataPower. We incorporated all three
solutions into our testing and came up with a flexible environment where we
independently tested each of the three ESBs with the same application and
product mix.

Figure 4-1 on page 59 shows a CICS region communicating to WebSphere
Business Events, WebSphere Business Monitor, and WebSphere Process
Server through an ESB. In the ESB diagram, we configure one of the three ESBs
for each test scenario.
58 Leveraging CICS Events with an ESB

Figure 4-1 Overall architecture diagram

4.3 The catalog manager example application

CICS Transaction Server V3.1 ships with a sample application called the CICS
catalog manager example application to help you set up, configure, and test
connecting CICS applications to external clients and servers.

For this book, we run the catalog manager example application in our CICS
region to drive our event scenarios using the ESB as an integration platform.

We summarize the catalog manager application. For complete details, consult
the CICS Transaction Server V3.1 Information Center or another information
center by searching CICS Catalog Manager Example Application.

Figure 4-2 on page 60 shows the components that make up our implementation
of the catalog manager example application running in CICS. We used the
application as supplied; therefore, we did not modify any of the supplied modules
or components.

CICS

WebSphere
Business
Events

WebSphere
Business
Monitor

WebSphere
Process
Server

ESB
 Chapter 4. Overview of the application and business scenarios 59

Figure 4-2 Catalog manager example application components diagram

The catalog manager example application is an office supply sales catalog and
order processing application that allows you to list, inquire about, and order
products out of an office items catalog that is stored in a VSAM file.

The application is made up of a Presentation Manager module, DFH0XGUI, that
communicates to a Catalog Manager interface module, DFH0XCMN, which is a
mainline driver routine that buffers the front-end and back-end components. The
data is stored in a VSAM file and is accessed by one of the back-end modules:
the File Manager, DFH0XVDS, the Dispatch Manager, DFH0XSOD, or the Stock
Manager, DFH0XSSM.

In our diagram, the file is only attached to the Data Handler module, because our
Dispatcher and Stock Manager modules are dummy stubs and do not perform
any function. If desired, you can modify them to interact with the EMPCAT file.

There are a several ways to configure the application. We use the configuration
transaction, ECFG, as shown in Figure 4-3 on page 61.

Catalog Manager

Presentation
Manager

Data
Handler

Dispatcher
Stock

Manager

CICS
60 Leveraging CICS Events with an ESB

Figure 4-3 Catalog manager example application configuration parameters from transaction ECFG

The Datastore Type lets you choose to configure a STUB program, DFH0XSDS,
as the Data Handler program to run as an IEFBR14 style program or to configure
the VSAM module, DFH0XVDS, which uses an actual VSAM file to provide
sample stock inventory data.

We left all of the options as defaults, which means that the Dispatcher and Stock
Manager are both dummy stubs that do nothing but return to the caller.

This configuration allows us to get a functional application up and running that
gives us the ability to order products and affects the actual stock available (or on
hand) values stored in our EXMPCAT VSAM stock file.

Our plan is to utilize the catalog manager example application as the major driver
for our testing of our event scenarios. One problem that we ran into is restocking
our data in the inventory file. When you install the application, the EMPCAT file is
loaded with initial stock values and can start running out of stock extremely
quickly. Because we configure the application using the default Stock Manager
module, DFH0XSSM, there is no provision to restock our inventory.

Obviously, we might have modified the Stock Manager module to provide this
function. However, because we are demonstrating adding or modifying the
functionality of an existing application without touching it, for example, in our

CONFIGURE CICS EXAMPLE CATALOG APPLICATION

 Datastore Type ==> VSAM STUB|VSAM
 Outbound WebService? ==> NO YES|NO
 Catalog Manager ==> DFH0XCMN
 Data Store Stub ==> DFH0XSDS
 Data Store VSAM ==> DFH0XVDS
 Order Dispatch Stub ==> DFH0XSOD
Order Dispatch WebService ==> DFH0XWOD
 Stock Manager ==> DFH0XSSM
 VSAM File Name ==> EXMPCAT
 Server Address and Port ==> myserver:99999
 Outbound WebService URI ==> http://myserver:80/exampleApp/dispatchOrder
 ==>
 ==>
 ==>
 ==>
 ==>
 Chapter 4. Overview of the application and business scenarios 61

fictitious sample, we assume that the catalog manager example application has
been installed and running for years. Perhaps our programming staff is not
trained in the complexities of the application design. Or, perhaps part of the
source code has been lost and we are adding new functionality to the application
without touching the original application.

To solve our problem, we create a restock program that, when given a stock item
reference number, simulates ordering and restocking that specific item.
Figure 4-4 shows our Restock Item module added to our application diagram,
accessing the EMPCAT VSAM file.

Figure 4-4 Adding the Restock Item component

We simulate a modification to an existing application by using our business
process management suite of products and the integration with our ESB. By
using event processing and the integration functionality of our ESBs, we
successfully add and modify the functionality of our existing application without
altering the original code. The catalog manager example application runs
untouched as though you unloaded and installed it directly from CICS. We add
new features and functionality to it, demonstrating the power of event processing

Catalog Manager

Presentation
Manager

Dispatcher

CICS

Data
Handler

Restock
Item

Stock
Manager

restockItem
Web Service
62 Leveraging CICS Events with an ESB

and ESB technologies. We include the source for our Restock module in
Appendix A, “Additional material” on page 401.

The catalog manager example application provides Web Service front ends to
the various functions, List, Inquire, and Place Order. Figure 4-5 shows how to
access our application back-end components, along with our Restock Item
module, as a Web Service.

Figure 4-5 Web Service front-ends diagram

We chose to use the interfaces that are shown in Figure 4-5, but CICS also
provides three additional wrapper programs that present a much cleaner
interface to these same functions. Figure 4-6 on page 64 shows how we can
alternatively access our application back-end components as Web services that
invoke a wrapper program to provide a cleaner interface to the Catalog Manager
COBOL program interface module, DFH0XCMN.

Typically, you do not use the cleaner interfaces that are provided by the wrapper
programs, but in our example, we show you how the ESB can buffer the
interfaces of your back-end applications. Either interface can work with our ESB.
We chose one interface, but the alternative wrapper program interfaces can
work, too.

Presentation
Manager

Dispatcher

CICS

Data
Handler

Restock
Item

Stock
Manager

restockItem
Web Service

placeOrder
Web Service

Catalog Manager

inquireSingle
Web Service
 Chapter 4. Overview of the application and business scenarios 63

Figure 4-6 Improved Web Service front-ends diagram

If you have an application that uses an older style interface similar to our previous
example and you do not want to clean up that interface in CICS, you can use an
ESB to provide a separate interface without having to write a wrapper program in
CICS. The disadvantage is that if the original interface in CICS changes, you now
have a second interface to update. You must consider this disadvantage in your
governance and production turnover procedures. Also, if response time is critical,
you have introduced additional code. When problems occur, you have an
additional component that might be the problem.

Our objective is to show you the flexibility that is available. You can configure your
environment to take advantage of the flexibility to combine products using the
ESB to hide or buffer certain interfaces.

Catalog Manager

Presentation
Manager

Dispatcher

CICS

Data
Handler

Restock
Item

Stock
Manager

placeOrder
Wrapper

inquireSingle
Wrapper

restockItem
Web Service

inquireSingle
Web Service

placeOrder
Web Service
64 Leveraging CICS Events with an ESB

4.4 ESB structure

We chose to use all three ESB products in our testing scenarios: WebSphere
Enterprise Service Bus, DataPower, and WebSphere Message Broker. Also, we
wanted to work WebSphere Process Server into the testing.

We decided to build a flexible test environment that allowed us to plug in one of
the three ESB products, with the capability to have one or more tests running at
the same time. We built the architecture that is shown in Figure 4-7.

Figure 4-7 ESB structure diagram

In the ESB structure diagram that is shown in Figure 4-7, we show a CICS
Transaction Server V4.1 test region interfacing with an ESB, which can be any of
the three ESB products: WebSphere Enterprise Service Bus, DataPower, or
WebSphere Message Broker. Then, the diagram shows the ESB interface with
our three business process management products: WebSphere Business
Events, WebSphere Business Monitor, and WebSphere Process Server.

CICS is running our catalog manager example application, which generates
events to be handled by WebSphere Business Events, WebSphere Business

CICS

WebSphere
Business
Events

WebSphere
Business
Monitor

WebSphere
Process
Server

DataPower WebSphere
Message Broker

WebSphere
Enterprise

Service Bus
 Chapter 4. Overview of the application and business scenarios 65

Monitor, or WebSphere Process Server. We further explain these event
scenarios in 4.8, “Event scenarios used by our team” on page 68.

In our test environment, we configure a single ESB product into the model that
we have described and create three copies that allow us to test the same
scenario using all three ESB products separately. In an actual implementation,
you might have a more complex environment with one or more ESBs and many
instances of our products, along with many other products, plugging into the
ESB. But, we kept our test simple.

4.5 Using WebSphere Enterprise Service Bus as the
ESB

Using the model outlined in our ESB structure diagram in Figure 4-7 on page 65,
we configured a CICS Transaction Server V4.1 region to communicate to an
instance of WebSphere Business Events, WebSphere Business Monitor, and
WebSphere Process Server through a WebSphere Enterprise Service Bus, as
shown in Figure 4-8.

Figure 4-8 WebSphere Enterprise Service Bus diagram

CICS

WebSphere
Business
Events

WebSphere
Business
Monitor

WebSphere
Process
Server

WebSphere
Enterprise

Service Bus
66 Leveraging CICS Events with an ESB

We configured our catalog manager example application to run the same event
scenarios, communicating to the same product mix and setup that were used in
all our other ESB setups.

4.6 Using DataPower as the ESB

Using the model outlined in our ESB structure diagram in Figure 4-7 on page 65,
we configured a CICS Transaction Server V4.1 region to communicate to an
instance of WebSphere Business Events, WebSphere Business Monitor, and
WebSphere Process Server through a DataPower XI50, as shown in Figure 4-9.

Figure 4-9 DataPower diagram

We configured our catalog manager example application to run the same event
scenarios, communicating to the same product mix and setup that were used in
all our other ESB setups.

CICS

WebSphere
Business
Events

WebSphere
Business
Monitor

WebSphere
Process
Server

DataPower
 Chapter 4. Overview of the application and business scenarios 67

4.7 Using WebSphere Message Broker as the ESB

Using the model outlined in our ESB structure diagram in Figure 4-7 on page 65,
we configured a CICS Transaction Server V4.1 region to communicate to an
instance of WebSphere Business Events, WebSphere Business Monitor, and
WebSphere Process Server through a WebSphere Message Broker, as shown in
Figure 4-10.

Figure 4-10 WebSphere Message Broker diagram

We configured our catalog manager example application to run the same event
scenarios, communicating to the same product mix and setup that were used in
all our other ESB setups.

4.8 Event scenarios used by our team

Our major focus was integrating an ESB with our existing applications and
products to show how you can enhance and integrate your existing environment
with event-based processing technology. Because our focus was not on the
actual event processing setup but on integration with an ESB, we tried to keep
our actual event scenarios simple and limited our testing to the four event
scenarios that are listed in Figure 4-11 on page 69.

CICS

WebSphere
Business
Events

WebSphere
Business
Monitor

WebSphere
Process
Server

WebSphere
Message Broker
68 Leveraging CICS Events with an ESB

For more information about event processing with CICS using WebSphere
Business Events and WebSphere Business Monitor, see the companion book to
this publication called Implementing Event Processing with CICS, SG24-7792.

For more information about the CICS Explorer, which we used to set up events in
CICS and to monitor and manage the CICS environment, see CICS Explorer,
SG24-7778.

Figure 4-11 Event scenario chart

The CICS region running the catalog manager example application created two
events, one successful event and one failure event, which both relate to ordering
products from our catalog.

We generated a total of four events, two events from CICS, one event
representing a positive situation, and one event representing a failure situation.
We then complemented each of those events with events that were generated
from WebSphere Business Events based on multiple CICS events being
received and combined in a complex scenario.

Additionally, not listed in the diagram, we also added a message to a
Publishing/Subscription queue to notify any interested party when a High Value
order takes place.

Scenarios Actions

1. Successful Order

2. Multi High Value Orders in 3 days

Enrichment, WBE Analysis, Log

Email Coupon, Log

3. Failed Order - Insufficient Stock

4. Multi Insufficient Stock Failures

Drive Re-Stock Order, WBE Analysis, Log

Increase Re-Order Size Point, Log
 Chapter 4. Overview of the application and business scenarios 69

4.8.1 Successful events

Scenario 1 is a successful event that is generated by CICS when a product is
ordered. Refer to Figure 4-12 and Figure 4-13 on page 71 to see where in the
processing cycle the event is captured.

Figure 4-12 Emitting successful order events diagram

The emitting successful order events diagram in Figure 4-12 shows the data
flowing in the communications area (COMMAREA) from the Catalog Manager
module to the Data Handler module to trigger and build our event payload.

In Figure 4-13 on page 71, we show the expanded structure of the COMMAREA,
identifying the fields inside the COMMAREA that are used for event processing
and capture.

Catalog Manager

Presentation
Manager

Data
Handler

Dispatcher
Stock

Manager

CICS

CICS Catalog Manager Application

Order
Events

Communication
Area
70 Leveraging CICS Events with an ESB

Figure 4-13 Successful order COMMAREA diagram

The successful order event is triggered by the ReqID Field being equal to 01ORDR
and a RetCD value of 00. When the event is triggered, we capture and build the
event payload using the UserID, Dept--Num, Item--Num, and Quantity fields.

Scenario 2, depicted in Figure 4-14 on page 72, is an event generated by
WebSphere Business Events when multiple orders have been received,
exceeding a set value over a defined period of time.

Description: This scenario looks for three orders that are over USD200 for
the same customer in four days.

UserIDRetCD RespMsg Int-use Dept--Num Quantity

Fields used to Trigger
Event Capture

Commarea

Event Payload
Information

ReqID Item--Num

01ORDR 00
 Chapter 4. Overview of the application and business scenarios 71

Figure 4-14 Scenario 2 complex event flow

In scenario 2, complex event flow, in Figure 4-14, we show time units of T1, T2,
T3, and so on where the time units can be days, weeks, or months.

In our actual testing, we configure WebSphere Business Events to monitor all
successful orders, looking for a pattern of orders placed by the same customer
where the orders total over a set value and all orders are placed within a
three-day time frame.

4.8.2 Failure events

Scenario 3 is a failure event generated by CICS when a product is ordered but
fails due to an insufficient stock available condition. See Figure 4-15 on page 73
and Figure 4-16 on page 73 to see where in the processing cycle the event is
captured.

Scenario 2 Complex Event Flow

WebSphere
Business
Events

T3 T4 T5T1 T6T2 T3 T4 T5T1 T6T2

John S.
Dept A
0080
10

$335.40

John S.
Dept A
0120

15
$389.85

George B.
Dept C
0030

8
$23.20

Order2 Order3 Order4

Intermediate
Values

Time

Event

Triggered

Alice E..
Dept Y
0010

25
$72.50

Order5

George B.
Dept C
0060

3
$11.67

Order6

John S.
Dept A
0210
50

$218.50

Order1

Three Orders > $200 in Four Days

CICS
72 Leveraging CICS Events with an ESB

Figure 4-15 Emitting failed order events diagram

The emitting failed order events diagram that is shown in Figure 4-15 shows that
we are looking at the data flowing in the COMMAREA from the Catalog Manager
module to the Data Handler module to trigger and build our event payload.

In Figure 4-16, we show the expanded structure of the COMMAREA, identifying
the fields inside the COMMAREA that are used for event processing and capture.

Figure 4-16 Insufficient stock COMMAREA diagram

Catalog Manager

Presentation
Manager

Data
Handler

Dispatcher Stock
Manager

CICS

CICS Catalog Manager Application

Insufficient Stock
Events

Communication
Area

UserIDRetCD RespMsg Int-use Dept--Num Quantity

Fields used to Trigger
Event Capture

Commarea

Event Payload
Information

ReqID Item--Num

01ORDR 97
 Chapter 4. Overview of the application and business scenarios 73

The failed order event is triggered by the ReqID Field being equal to 01ORDR and
a nonzero RetCD value of 97. When the event is triggered, we capture and build
the event payload using the UserID, Dept--Num, Item--Num, and Quantity fields.

Scenario 4, which is depicted in Figure 4-17, is an event that is generated by
WebSphere Business Events when multiple orders have failed repeatedly for the
same product over a defined period of time.

Figure 4-17 Scenario 4 complex event flow

In our scenario 4 complex event flow diagram in Figure 4-17, we show time units
of T1, T2, T3, and so on where our Time units can be days, weeks, or months.

In our testing, we configured WebSphere Business Events to monitor all failed
orders, looking for a pattern of repeat failed orders for the same product
Item--Num over a period of three days. We assumed that this repeat failure
situation indicated that our Restock Item process was deficient and that we
needed human interaction to adjust the restock process.

4.8.3 Scenario 1: Successful order event

The successful order event is generated from the catalog manager example
application transaction, EGUI, running in our CICS region.

Whenever a successful product order is placed, CICS emitted an event on the
WebSphere MQ (WMQ) EP adapter in common base event (CBE) XML format.

Scenario 4 Complex Event Flow

WebSphere
Business
Events

T3 T4 T5T1 T6T2 T3 T4 T5T1 T6T2

John S.
Dept C
0080

3

Jack S.
Dept D
0030

45

Steve S.
Dept B
0030

38

Failed
Order2

Failed
Order3

Failed
Order4

Intermediate
Values

Three Failed Orders in Four Days

Event

Triggered

Alice E..
Dept E
0030

53

Failed
Order5

George B.
Dept F
0210

12

Failed
Order6

Bill J.
Dept A
0210
23

Failed
Order1

Time

CICS
74 Leveraging CICS Events with an ESB

We emitted the event to our ESB so that it was able to perform enrichment,
transformations, and routing.

An alternative is to emit the event directly to WebSphere Business Events;
however, because this book is about integration with an ESB that allows us to
perform the enrichment and transformation, we send all messages to the ESB for
processing. This approach allows us to manage a flexible environment. For
instance, we plug additional products into the bus and integrate them into our
existing event processing mix with minimal configuration.

Event setup
We use the CICS Event Binding editor to configure CICS to emit an event
whenever the Data Handler program, DFH0XVDS, is called with a COMMAREA
parameter equal to 01ORDR and successfully completes with a valid return code of
zero.

Information emitted
The successful order event emits the following four fields that are shown in
Example 4-1 in a CBE format to our ESB.

Example 4-1 Successful order event-emitted business information

Order Item Number
Order Quantity
User Name
Charge Dept

We describe the full details about the event setup and configuration in 6.2.1,
“Configuring CICS” on page 133.

Event flow
Using the diagram in Figure 4-18 on page 76, we explain the event flow.
 Chapter 4. Overview of the application and business scenarios 75

Figure 4-18 Scenario 1: Successful order event diagram

The following steps describe the successful order event scenario:

1. CICS emits an event in CBE format using the WebSphere MQ (WMQ) EP
adapter onto a queue that is received by the ESB, identified as Q1 in the
diagram.

2. The ESB receives the CBE event and then fires off a Web Service call,
inquireSingle, located in box WS2, to enrich the payload with the product item
price. The price is in the VSAM inventory file that is available to CICS.

3. The ESB transforms the input event, changing the format from a CBE format
to a WebSphere business event (WBE) format, and sends the enriched event
to WebSphere Business Events runtime through a Java Message Service
(JMS) topic, JMS3.

4. WebSphere Business Events receives and evaluates the event. If the event
represents an order over USD700, the information is placed on a
publish/subscribe (Pub/Sub) queue for interested parties through Q4.

5. The ESB transfers the original CBE-formatted event to Q5 for consumption by
WebSphere Business Monitor.

6. Finally, the ESB logs the event by placing the original CBE-formatted event on
Q6.

Scenario 1 Successful Order EVENT

CICS

WBE WBM

ESB

JMS3 Q5 Q6

WS2 Q1

LOG

Price Enrichment

WPSP/S Q4

orders > $700
76 Leveraging CICS Events with an ESB

Managing traffic flow
Our environment is not necessarily realistic. One of our goals was to create three
identical test environments to plug in and test each of the three ESB products.
We set up our architecture to use MQ Series queues to communicate among all
our products. We developed a queue naming standard, which is not usable
outside of our environment, but it works for us.

You must create an architecture and establish naming conventions to allow all
your applications and products to communicate and to allow plug-in compatibility.

Figure 4-19 shows the scenario diagram, along with our MQ queue names.

Figure 4-19 Scenario 1: Successful order event queue mapping diagram

Our queue names consist of four parts:

� The ESB product that we used or tested for this run
� Where the message came from
� The data type format of the data flowing over the queue
� The queue name

We also included the Web Service resource names in Figure 4-19 to account for
all the parts.

CICS

WBE WBM

ESB

JMS3 Q5 Q6

WS2 Q1

LOG

Price Enrichment

WPSP/S Q 4

orders > $700orders > $700

ESB-Product . Source . Format . Name

esb.CICS.CBE.ORDER

inquireSingle Web Service

WBE Runtime JMS Topic

esb.esb.PUB.TOPIC

esb.esb.CBE.ORDER

esb.esb.CBE.LOG

esb = [WESB or DP or WMB]

Scenario 1 Queue Name

Successful Order EVENT

1

2

3

4

5

6

1

3 5

6

2

4

 Chapter 4. Overview of the application and business scenarios 77

4.8.4 Scenario 2: Multiple high value orders in three days event

The multiple high value order event is created by WebSphere Business Events
by reviewing each CICS event from scenario 1 and matching orders placed by
the same person over a defined period of time whose total order value exceeds a
trigger value, indicating a high value customer.

Whenever a successful product order is placed, CICS emits an event on the
WebSphere MQ (WMQ) EP adapter in CBE format. We emit the event to our
ESB so that it can perform enrichment, transformations, and routing.

Event setup
We used the WebSphere Business Events Design tool to create an interaction
set to execute the business logic for this flow. WebSphere Business Events
normalizes the incoming event data for use in the evaluation of the interaction
blocks contained within the interactions set.

Information emitted
In the scenario, when the system identifies a high value customer, the company
sends that customer a coupon; thus, the output is an email.

We describe the scenario event setup and configuration in detail in Chapter 9,
“WebSphere Business Events scenario” on page 249.

Event flow
Using the diagram in Figure 4-20 on page 79, we explain the event flow.
78 Leveraging CICS Events with an ESB

Figure 4-20 Scenario 2: Multiple high value orders in three days event diagram

Scenario 2 consists of these steps:

1. CICS emits an event in CBE format using the WebSphere MQ (WMQ) EP
adapter onto a queue that is received by the ESB, identified as Q1 in the
diagram.

2. The ESB receives the CBE event and then fires off a Web Service call,
inquireSingle, which is located in box WS2, to enrich the payload with the
product item price. The price is in the VSAM inventory file available to CICS.

3. The ESB transforms the input event, changing the format from a CBE format
to a WBE format, and sends the enriched event to WebSphere Business
Events runtime through a JMS topic, JMS3.

4. WebSphere Business Events receives and evaluates the event. If the event
represents an order over USD700, the information is placed on a Pub/Sub
queue for interested parties through Q4.

5. WebSphere Business Events reviews the order, comparing it with previous
orders by the same customer, checking to see if the total value exceeds a
trigger value during a specified time window. If true, a complex scenario has
occurred and WebSphere Business Events generates an event that results in
sending the customer a coupon through email.

6. The ESB transfers the original CBE-formatted event to Q5 for consumption by
WebSphere Business Monitor.

CICS

WBE WBM

ESB

Scenario 2 Multi High Value Orders in 3 days EVENT

JMS3 Q5 Q6

EMAIL
COUPON

3 orders > $3003 orders > $300

LOG

Price Enrichment

WS2 Q1

P/S Q4

orders > $700orders > $700

WPS
 Chapter 4. Overview of the application and business scenarios 79

7. Finally, the ESB logs the event by placing the original CBE-formatted event on
Q6.

Managing traffic flow
Figure 4-19 on page 77 shows the scenario diagram along with the MQ queue
names used for scenario 2.

Figure 4-21 Scenario 2: Multiple high value orders in three days event queue mapping

Our queue names consist of four parts:

� The ESB product that we used or tested for this run
� Where the message came from
� The data type format of the data flowing over the queue
� The queue name

We also included the Web Service resource names in Figure 4-21 to account for
all the parts.

4.8.5 Scenario 3: Failed order due to insufficient stock event

The catalog manager example application transaction, EGUI, running in our
CICS region, generates the failed order event.

Whenever a product order is placed and insufficient stock exists to fill the order,
the catalog manager example application causes the order to fail and CICS emits

CICS

WBE WBM

ESB

JMS3
Q5 Q6

EMAIL
COUPON

3 orders > $300

LOG

Price Enrichment

WS2 Q1

P/S Q 4

orders > $700orders > $700

WPS

ESB-Product . Source . Format . Name

esb.CICS.CBE.ORDER

inquireSingle Web Service

WBE Runtime JMS Topic

esb.esb.PUB.TOPIC

esb.esb.CBE.ORDER

esb.esb.CBE.LOG

esb = [WESB or DP or WMB]

Scenario 2 Queue Name

Multi High Value Orders in 3 days EVENT

1

3 5

6

2

4

1

2

3

4

5

6

80 Leveraging CICS Events with an ESB

an event on the WebSphere MQ (WMQ) EP adapter in CBE format. We emit the
event to our ESB so that it can perform enrichment, transformations, and routing.

We also can emit the event directly to WebSphere Business Events. However,
this book is about integration with an ESB; therefore, we are sending all
messages to the ESB for processing. This action allows us to manage a flexible
environment. For instance, we can install multiple products and run them even if
we have more products to install.

Event setup
We used the CICS Event Binding editor to generate a CICS event whenever the
Data Handler program, DFH0XVDS, is called with a COMMAREA parameter
equal to 01ORDR and fails to fill the order due to an insufficient stock condition,
which is indicated by a return code of 97.

Information emitted
The failed order event emits the following four fields that are shown in
Example 4-2 in a CBE format to our ESB.

Example 4-2 Failed order event-emitted business information

Order Item Number
Order Quantity
User Name
Charge Dept

We describe the event setup and configuration in 6.2.1, “Configuring CICS” on
page 133.

Event flow
Using the diagram in Figure 4-18 on page 76, we explain the event flow.
 Chapter 4. Overview of the application and business scenarios 81

Figure 4-22 Scenario 3: Failed order due to insufficient stock event diagram

Figure 4-22 shows the following steps:

1. CICS emits an event in CBE format using the WebSphere MQ (WMQ) EP
adapter onto a queue that is received by the ESB, identified as Q1 in the
diagram.

2. The ESB receives the CBE event and then fires off a Web Service call,
restockItem, which is located in box WS2, to generate a reorder of the stock to
meet future orders. Our simple application performs a basic stock order. We
did not build in intelligence to calculate how much to order. We always order a
predefined amount, such as 50 units.

3. The ESB transforms the input event, changing the format from a CBE format
to a WBE format, and sends the enriched event to WebSphere Business
Events runtime through a JMS topic, JMS3.

4. The ESB transfers the original CBE-formatted event to Q4 for consumption by
WebSphere Business Monitor.

5. Finally, the ESB logs the event by placing the original CBE-formatted event on
Q5.

Managing traffic flow
Our environment is not realistic, because it was designed for demonstration
purposes. We wanted to create three identical test environments to plug in and
test each of the three ESB products. We set up our architecture to use MQ

CICS

WBE WBM

ESB

Scenario 3 Failed Order - Insufficient Stock EVENT

JMS3 Q4 Q5

WS2Q1

LOG

ReStock Order

WPS
82 Leveraging CICS Events with an ESB

Series queues to communicate among all our products. Therefore, we created a
queue naming standard, which works for us.

You must create an architecture and naming conventions to allow all your
applications and products to communicate, and also allow plug-in compatibility.

Figure 4-19 on page 77 shows the scenario diagram along with our MQ queue
names.

Figure 4-23 Scenario 3: Failed order due to insufficient stock event queue mapping

Our queue names consist of four parts:

� The ESB product that we used or tested for this run
� Where the message came from
� The data type format of the data flowing over the queue
� The queue name

We also included the Web Service resource names in Figure 4-23 to account for
all the parts.

4.8.6 Scenario 4: Multiple insufficient stock failures event

The multiple insufficient stock failure event is an event created by WebSphere
Business Events by reviewing each CICS event from scenario 3 and matching
failed orders for the same product item number over a defined period of time.

CICS

WBE WBM

ESB

JMS3 Q4 Q5

WS2Q1

LOG

ReStockOrder

WPS

ESB-Product . Source . Format . Name

esb.CICS.CBE.INSUF.STOCK

restockItem Web Service

WBE Runtime JMS Topic

esb.esb.CBE.INSUF.STOCK

esb.esb.CBE.LOG

esb = [WESB or DP or WMB]

Scenario 3 Queue Name

1

2

3

4

5

Failed Order - Insufficient Stock

2

3 4

5

1

 Chapter 4. Overview of the application and business scenarios 83

This task indicates that the reorder process does not work and needs human
intervention to identify why orders continue to fail.

WebSphere Process Server enriches the information that it receives with the
item prices. If the failed orders are greater than a predetermined value, the
system contacts a manager along with dispatching a person to review the
process.

Event setup
We used the WebSphere Business Events Design tool to create an interaction
set to execute the business logic for this flow. WebSphere Business Events
normalizes the incoming event data for use in the evaluation of the interaction
blocks contained within the interaction set.

Information emitted
The failed order event sends the following four fields that are shown in
Example 4-3 to WebSphere Process Server through a Web Service invocation
for further processing.

Example 4-3 Failed order event-emitted business information

Order Item Number
Order Quantity
User Name
Charge Dept

We describe the event setup and configuration in detail in Chapter 9,
“WebSphere Business Events scenario” on page 249.

Event flow
Using the diagram in Figure 4-24 on page 85, we explain the event flow.
84 Leveraging CICS Events with an ESB

Figure 4-24 Scenario 4: Multiple insufficient stock failures event diagram

The following steps describe the event flow:

1. CICS emits an event in CBE format using the WebSphere MQ (WMQ) EP
adapter onto a queue, which is received by the ESB, identified as Q1 in the
diagram.

2. The ESB receives the CBE event and then fires off a Web Service call,
restockItem, which is located in box WS2, to generate an order and replenish
the available or on-hand inventory for the item that was involved in the failed
order.

3. The ESB transforms the input event, changing the format from a CBE format
to a WBE format, and sends the enriched event to WebSphere Business
Events runtime through a JMS topic, JMS3.

4. WebSphere Business Events reviews the failed order, comparing it with
previous failed orders by the same product item number, and checking to see
if the number of failures exceeds a trigger value within a specified time
window. If true, a complex scenario has occurred, and WebSphere Business
Events generates and sends a request to WebSphere Process Server
through a Web Service call, requestFailedOrderIntervention, which is located
in box WS4. WebSphere Process Server requests that a person get involved
to review the reorder process to make the necessary adjustments to prevent
future failed orders. Additionally, if the failed orders are over a specific value,
WebSphere Process Server also makes a request to get a manager involved.

WBM WPS

CICS

ESB

Scenario 4 Multi Insufficient Stock Failures EVENT

JMS3 Q6 Q7

WS2Q1

LOG

ReStock Order

Order Cost > $$$
Call a Manager

Human ActionWS4

WS5

3 ReStock Fails 3 ReStock Fails

WBE

Price Enrichment
 Chapter 4. Overview of the application and business scenarios 85

5. The ESB transfers the original CBE-formatted event to Q6 for consumption by
WebSphere Business Monitor.

6. Finally, the ESB logs the event by placing the original CBE-formatted event on
Q7.

Managing traffic flow
Figure 4-19 on page 77 shows the scenario diagram, along with the MQ queue
names used for scenario 4.

Figure 4-25 Scenario 4: Multiple insufficient stock failures event queue mapping diagram

Our queue names consist of four parts:

� The ESB product that we used or tested for this run
� Where the message came from
� The data type format of the data flowing over the queue
� The queue name

We also included the Web Service resource names in Figure 4-25 to account for
all the parts.

CICS

WBE WBM

ESB

JMS3 Q6

WS4

Q7

WS5

Q1

LOG

ReStock Order

Order Cost > $$$
Call a manager

Human ActionWPS

ESB-Product . Source . Format . Name

esb.CICS.CBE.INSUF.STOCK

restockItem Web Service

WBE Runtime JMS Topic

requestFailedOrderIntervention WS

inquireSingle Web Service

esb.esb.CBE.INSUF.STOCK

esb.esb.CBE.LOG

esb = [WESB or DP or WMB]

Scenario 4 Queue Name

Multi Insufficient Stock Failures EVENT

3 6

7

1

4

1

2

3

4

5

WS2

2

3 ReStock Fails 3 ReStock Fails

Price Enrichment

7

6

5

86 Leveraging CICS Events with an ESB

4.9 Testing each scenario

Our implementation of the catalog manager example application is
terminal-based and driven by a person logging onto CICS and executing the
EGUI transaction. Because this book is not a performance-based book, our
testing was low volume and limited to driving our test scenarios only. Therefore,
you will not see any high volume scenarios.

One change that we made was to simulate events over time, such as three high
value orders over three days. We were unable to wait days or weeks to produce
results, so we adjusted our actual parameters to force the environment to
actually trigger and emit several events. Figure 4-26 shows the input sources to
our scenarios.

Figure 4-26 Sources of Input to the CICS catalog manager example application

We considered having WebSphere Process Server send events; however, we did
not have enough time to implement this part.

CICS
WebSphere

Process
Server

External
Feeder

Application

CICS
Feeder

Application

CICS

WebSphere
Business
Events

WebSphere
Business
Monitor

WebSphere
Process
Server

DataPower WebSphere
Message Broker

WebSphere
Enterprise

Service Bus
 Chapter 4. Overview of the application and business scenarios 87

88 Leveraging CICS Events with an ESB

Part 3 Scenarios

In this part of the book, we show you several enterprise service bus (ESB)
scenarios. We have included the Customer Information Control System (CICS)
environment setup in each scenario chapter. However, with regard to the setup
for WebSphere Business Events, WebSphere Business Monitor, and WebSphere
Process Server, unless it is specific to the ESB, it is in a separate chapter.
Therefore, we have three chapters for these products in this sequence:

� WebSphere Enterprise Service Bus business scenario
� WebSphere Message Broker business scenario
� DataPower business scenario
� Scenario flow
� WebSphere Business Events
� WebSphere Business Monitor
� WebSphere Process Server

Part 3
© Copyright IBM Corp. 2010. All rights reserved. 89

90 Leveraging CICS Events with an ESB

Chapter 5. WebSphere Enterprise
Service Bus business
scenario

In this chapter, we discuss the scenarios from the point of view of WebSphere
Enterprise Service Bus acting as the enterprise service bus (ESB). We examine
details of the following topics:

� Overview of the environment with WebSphere Enterprise Service Bus
� Configuration of the environment with WebSphere Enterprise Service Bus
� Implementation and test of the first and third scenarios

5

© Copyright IBM Corp. 2010. All rights reserved. 91

5.1 Environment overview

We perform all of our development work for the WebSphere Enterprise Service
Bus solution on Microsoft® Windows XP using WebSphere Integration Developer
V7. Included in the WebSphere Integration Developer tooling is a WebSphere
Enterprise Service Bus server that we configure and use for our unit and
functional testing. After we test the WebSphere Enterprise Service Bus artifacts,
we can deploy them to a WebSphere Enterprise Service Bus server running in
an integration test environment. This server can be on a separate platform or
might be configured in a more robust configuration, such as a network
deployment topology.

When considering the environment for WebSphere Enterprise Service Bus
development and functional test, we generally have two options for most projects.
We can attempt to simulate the systems driving requests into WebSphere
Enterprise Service Bus and build stubbed implementations of the services that
will be needed, and, in certain cases, these mechanisms might be necessary.
However, the second option is by far the better option and assumes that we can
physically connect to the driving systems and required services. This preferred
option is more efficient. We do not need to spend time developing test drivers or
stubbed services, and we know that our testing is valid because we have used
the actual systems and services.

So, our approach is to have the following connectivity for our development
environment:

� Connectivity to WebSphere MQ in order to receive the event that Customer
Information Control System (CICS) has written to a queue, as well as to place
the event on the queue for WebSphere Business Monitor

� Connectivity to CICS Web services in order to invoke the services required to
enrich the event or reorder stock

� Connectivity to WebSphere Business Events in order to send the event

In our environment, we do not involve security for the initial development and
testing.
92 Leveraging CICS Events with an ESB

5.2 Environment configuration

We now describe the configuration details of the environment for WebSphere
Enterprise Service Bus development. We have specific considerations for the
following products:

� CICS: We need to call two Web services provided by CICS.

� WebSphere Business Events: We need to send events to the Java Message
Service (JMS) topic to which WebSphere Business Events has subscribed.

� WebSphere Business Monitor: We need to consume the CICS event
messages from WebSphere MQ and produce messages for consumption by
WebSphere Business Monitor and the Audit service.

See Figure 5-1 for a topological overview of our environment.

Figure 5-1 Environment topology

5.2.1 CICS configuration

First, we configure CICS to emit events.

CICS

WebSphere
Business
Events

WebSphere
Business
Monitor

WebSphere
Process
Server

WebSphere
Enterprise

Service Bus
 Chapter 5. WebSphere Enterprise Service Bus business scenario 93

Creating a bundle project
To configure CICS to emit events, we first create a new CICS bundle project in
the IBM CICS Explorer. The bundle project will contain the event binding (evbind)
files and other metadata that will be deployed to CICS.

We follow these steps to create a new bundle project in the CICS Explorer:

1. Click Explorer on the menu bar.
2. Hover the mouse over New Wizards.
3. Click CICS Bundle Project.

Figure 5-2 Creating a CICS bundle

After we click CICS Bundle Project, we are prompted to name the project. For our
project, we named it CatalogManager. After we name our project, it shows under
the Project Explorer.

Creating an event binding file
After the project has been created, you can create the event binding file. The
event binding is an XML definition that defines one or more business events to
CICS. It consists of the event specifications, capture specifications, and event
processing (EP) adapter and dispatcher information. We follow these steps to
create the event binding file:

1. Right-click the bundle project name.
2. Hover the mouse over New.
3. Click Event Binding.

See Figure 5-3 on page 95.
94 Leveraging CICS Events with an ESB

Figure 5-3 Creating an event binding

You will be prompted to enter a name for the event binding file. In our scenario,
we named our first event binding file SuccessfulOrder and the second event
binding file InsufficientStock. We chose these names, because we are
capturing two events in CICS and want the bind file names to have a name
representing each event.

Creating an event specification
After the event binding file is created, the event binding tab editor is displayed.
On this window, you can add the event specifications. An event specification
describes an event and its processing. In the event binding tab, we click Add to
create an event specification. See Figure 5-4 on page 96.
 Chapter 5. WebSphere Enterprise Service Bus business scenario 95

Figure 5-4 Creating an event specification

For our successfulOrder event, we created a specification called ItemOrder.

After the specification has been created, we select it in the table, and we click
Edit Details, which opens the Specification tab window.

Data to be emitted
We start by defining the information that we want CICS to emit when the event is
triggered. For our scenario, we want to emit four pieces of data when the event is
triggered. We describe the fields that we want to emit in the DFH0XCP1 copybook.
See Example 5-1 on page 100 for the copybook layout. We want to add the
following fields to the emitted event:

� userid (text field)
� charge_dept (text field)
� item_ref_number (numeric field)
� quantity_req (numeric field)

At this time, we do not need to specify a length or precision value. The emitted
business information section looks like Figure 5-5 when completed.

Figure 5-5 Emitted business information
96 Leveraging CICS Events with an ESB

Adding a capture specification
Now that you have defined what you want to emit, you need to set up when you
want the event to be triggered. You can define this trigger by adding a capture
specification to the event binding.

For this scenario, we named our capture specification OrderSuccess, because
when an item is ordered successfully, we want to trigger an event. We add a
capture specification by clicking “Add a Capture Specification.”

Figure 5-6 Creating a capture specification

When the capture specification is selected, you will see three additional tabs at
the top of the editor window when you have the Specifications editor tab open.
Using these three additional tabs at the top, you can configure under what
conditions you want to trigger the event (Figure 5-7 on page 98).
 Chapter 5. WebSphere Enterprise Service Bus business scenario 97

Figure 5-7 Tab layout

When to trigger the event
After creating the capture specification, determine when you want to trigger the
event. You can select the EXEC CICS command to use as the capture point by
clicking the drop-down menu next to the Capture Point.

In our scenario, we want to trigger the event on the EXEC CICS LINK
PROGRAM command.

Note: We used the “Capture after” option, which allows us to filter on the
return code.
98 Leveraging CICS Events with an ESB

Creating event filters
After selecting a capture point, we go to the second tab to set up filters. In our
scenario, we set the Operator for the response code to Equals. We also set up for
an event to be triggered only when the link is to DFH0XVDS. We need to define
predicates for application data, because we only want to capture successful
orders. Breaking down the COMMAREA, when the first six bytes are 01ORDR and
the next two bytes are 00, we know that the order was successful. We use this
application data as a filter. We click Add. A new window titled Application Data
Predicate opens. We fill in the operator and value fields, as shown in Figure 5-8,
and we click “Select from imported language structure.”

Figure 5-8 Application Data Predicate
 Chapter 5. WebSphere Enterprise Service Bus business scenario 99

We export a COBOL copybook named DFH0XCP1 from the enterprise server to our
desktop. This step enables us to use the copybook as input to the CICS Explorer
Event Binding editor so that we can map the COMMAREA accurately.
Example 5-1 shows the copybook that we import.

Example 5-1 Portion of DFH0XCP1

 03 CA-REQUEST-ID PIC X(6).
 03 CA-RETURN-CODE PIC 9(2).
 03 CA-RESPONSE-MESSAGE PIC X(79).
 03 CA-ORDER-REQUEST.
 05 CA-USERID PIC X(8).
 05 CA-CHARGE-DEPT PIC X(8).
 05 CA-ITEM-REF-NUMBER PIC 9(4).
 05 CA-QUANTITY-REQ PIC 9(3).
 05 FILLER PIC X(888).

After the CICS Explorer parses the copybook, the window shown in Figure 5-9
opens. The first field in which we are interested is ca_request_id, because this
field must have 01ORDR to signify an order. We select the row for ca_request_id,
and then, click OK. This step returns to the Application Data Predicate window
where you notice that the type, offset, and length fields were updated by the
CICS Explorer based on the values in the copybook.

Figure 5-9 Language Structure input
100 Leveraging CICS Events with an ESB

After creating a filter on 01ORDER, we created an additional filter on the
ca_return_code field in our copybook. We took the same steps as previously
described to create a filter for 00. When these two conditions are met, we know
that we have a successful order and an event is to be emitted. The Filtering tab
looks like Figure 5-10 now.

Figure 5-10 Completed Filters view

Now that the filters are set up, the last task in the specification tab is to define
from where the emitted business information is obtained. Under the Information
Sources tab, we see the four fields that we defined earlier. We can use the
copybook that we exported earlier to specify where these fields are located in the
COMMAREA. We select userid, and we click Edit, which opens a window titled
“Information Source for userid”.

Because the emitted information is application data, we select COMMAREA
under the application data tree. On the right panel, we click “Select from imported
language structure.” We take the same steps as before when setting a filter on
the ca_request_id, except that this time, we select the fields that we want
emitted during the event. When completed, the information sources look like
Figure 5-11 on page 102.
 Chapter 5. WebSphere Enterprise Service Bus business scenario 101

Figure 5-11 Information Sources tab

Event adapter
The last step in creating the evbind file is to choose the EP adapter through
which you want the events emitted.

For our scenario, we use a WebSphere MQ adapter that allows the events to be
emitted to a queue that is used as input into WebSphere Enterprise Service Bus.
In the editor, we select WMQ Queue as the adapter. For the queue name, we
specified WESB.CICS.CBE.ORDER. For our scenario, we set the data format to
Common Base Event (CBE) (XML).

Exporting schemas
Now that the event binding file is configured to capture the successful order
event, we click Export Event Specifications. This step creates an xsd schema file
that describes the format of the payload of the event that will be emitted by CICS.
During the WebSphere Enterprise Service Bus configuration, we import this
schema into the tooling. Because we use a CBE-formatted event, there are two
additional schemas that are needed to describe the entire message. The schema
generated by the explorer is considered the payload or the dynamic portion of the
event. The other portion of the event is the static portion. The static XML schema
ships with CICS and is in this location:

/usr/lpp/cicsts/cicsts41/schemas/eventprocessing/cics_cbe_static.xsd
102 Leveraging CICS Events with an ESB

The last schema needed describes the entire CBE envelope in which the event
will be included, which is at this website:

http://www.eclipse.org/tptp/platform/documents/resources/cbe101spec/Com
monBaseEvent_SituationData_V1.0.1.pdf

We use these three schema definitions later as input into the WebSphere
Enterprise Service Bus tools.

Insufficient stock event
The only difference between the successful order and insufficient stock event is
the return code and the queue to which the event is written. Everything else
remains the same, so we can take the same steps previously described to create
a second event. There are two changes to make:

1. When setting up the filter predicates, filter on a 97 for ca_return_code.
2. Define a separate queue for the event; we called our queue

WESB.CICS.CBE.INSUF.STOCK.

Deploying the events to CICS
Now that the event binding files have been created, the next step is to deploy
these artifacts into CICS. As long as you have connected the CICS Explorer to a
host system, you can perform this step within the CICS Explorer.

We right-click the project name under the Project Explorer in the left pane.We
select “Export to System zFS” and fill in the destination system detail credentials,
as necessary. We determine the location on the System z file system (zFS)
where we want to export the bundle.

You want to organize the zFS in a way that works for your environment, for
example, production versus test, or by region. You probably do not want to use
your home (/u/userid) directory.

For this scenario, we use the /cicslab/cics/epred1/bundles/events/ directory.
The CICS Explorer appends the name of the project to the directory. In our case,
the directory is /cicslab/cics/epred1/bundles/events/CatalogManager. When
we browse that directory, we see the META-INF directory and the two event
binding files.

Defining the bundle resource
Now that we have exported the event binding files into zFS, we need to create a
bundle definition. If we have a CICS management client interface (CMCI)
connection, we can create a bundle definition directly through the explorer. We
switch to the CICS Systems Management perspective (which is part of CICS
Explorer), select the CICS region where we want to install the bundle, and click
 Chapter 5. WebSphere Enterprise Service Bus business scenario 103

http://www.eclipse.org/tptp/platform/documents/resources/cbe101spec/CommonBaseEvent_SituationData_V1.0.1.pdf

Administration Bundle Definitions. When we define our bundle definition, we
need to specify the bundle directory. In our scenario, the bundle directory is
/cicslab/cics/epred1/bundles/events/CatalogManager. If we view the
attributes for the new bundle definition that we created, it looks like Figure 5-12.

Figure 5-12 Bundle attributes

After defining the bundle definition, we install it, and then, the events portion of
the CICS configuration is complete.

5.2.2 WebSphere Business Events configuration

We used essentially the same configuration of the WebSphere Business Events
Server in our WebSphere Enterprise Service Bus development and test
environment that was used with the other ESB products. The standard
WebSphere Business Events configuration includes the following resources that
we used:

� WbeBus: A service integration bus (SIBus) using the default JMS provider
that comes as a standard part of WebSphere Application Server

� WbeTopicSpace: A destination on the WbeBus that is used for
Publish/Subscribe (Pub/Sub) interactions with message producers and
consumers

� jms/WbeTopicConnectionFactory: A JMS resource bound into the Java
Naming and Directory Interface (JNDI) namespace allowing connection to the
WbeBus and WbeTopicSpace
104 Leveraging CICS Events with an ESB

� jms/eventTopic: A JMS resource that is also bound into the JNDI namespace
where nondurable messages can be published

In addition to these standard resources, we added a foreign bus definition from
the WbeBus to the SCA.Application bus in the WebSphere Enterprise Service
Bus server. Figure 5-13 is the view of the foreign bus from the WebSphere
Business Events server.

Figure 5-13 Foreign bus in WebSphere Business Events for WebSphere Enterprise
Service Bus

The heart of the foreign bus is the bus link that defines the physical connection
between the SIBus in WebSphere Business Events and the SIBus in WebSphere
Enterprise Service Bus. Figure 5-14 is the view of the active bus link from the
WebSphere Business Events server.

Figure 5-14 Bus link between WebSphere Business Events and WebSphere Enterprise
Service Bus

This configuration is required for WebSphere Business Events to enable the
interaction with the WebSphere Enterprise Service Bus server. See “WebSphere
Business Events configuration in WebSphere Enterprise Service Bus” on
page 109 for a description of a similar set of resources that must be defined in
WebSphere Enterprise Service Bus to complete the configuration.

See 5.7.2, “WebSphere Business Events plug-in for WebSphere Integration
Developer” on page 125 for a description of the Jython script that is delivered
with the WebSphere Business Events plug-in for WebSphere Integration
Developer.
 Chapter 5. WebSphere Enterprise Service Bus business scenario 105

You can use the script for reference if you define these resources manually, or
you can execute the script with input parameters appropriate to your environment
to automate the configuration task.

5.2.3 WebSphere Business Monitor configuration

The WebSphere Business Monitor configuration is identical for all ESB solutions.
We describe it in detail in Chapter 10, “WebSphere Business Monitor” on
page 271.

5.2.4 WebSphere Process Server configuration

There is no WebSphere Process Server configuration required for any of the
ESB products. We defined scenario 4, which involves WebSphere Process
Server, so that WebSphere Business Events makes a Web services call directly
to WebSphere Process Server. As a result, there is no ESB function required to
complete scenario 4.

5.2.5 WebSphere Enterprise Service Bus configuration

When we installed WebSphere Integration Developer, we had an option to create
a profile for WebSphere Enterprise Service Bus, which we chose. The profile
provides a stand-alone server topology that has been augmented with the
WebSphere Enterprise Service Bus runtime components. Global Security is
enabled by default, but we disabled it. We made significant configuration
changes to this server, so, in an environment where many WebSphere
Enterprise Service Bus projects are being developed, we create a new
WebSphere Enterprise Service Bus server profile for this project. We can use a
pop-up menu item from the server.

After we start the WebSphere Enterprise Service Bus server, we launch the
Administrator Console and begin to add the needed configuration updates.

There are no special steps needed to access Web services from WebSphere
Enterprise Service Bus. We have already verified that we can ping the CICS host
system. We still have more tasks to perform to access WebSphere MQ and
WebSphere Business Events.

WebSphere MQ configuration in WebSphere Enterprise
Service Bus
In our environment, WebSphere MQ is running on the z/OS host system, and we
have installed, customized, and started the Client Attach Feature. We can
106 Leveraging CICS Events with an ESB

connect to the WebSphere MQ system from our WebSphere Enterprise Service
Bus development environment using a Client Attachment.

We will read events from the two WebSphere MQ queues where CICS has
placed the events, so we have two inbound queues. We also have two outbound
queues to which we will write for WebSphere Business Monitor and the Audit
service.

In WebSphere Enterprise Service Bus, therefore, we use Service Component
Architecture (SCA) components that have MQ bindings. Our import components
(those components that will write the messages) use the JNDI names for the
connection factory and the queue. Our export components (those components
that receive inbound messages) also use the JNDI names for the queues and
need activation specifications to drive the message into WebSphere Enterprise
Service Bus.

In order to configure the WebSphere Enterprise Service Bus, we need the
information in Table 5-1 about WebSphere MQ.

Table 5-1 WebSphere MQ resources

With the information in Table 5-1, we can configure the needed resources in
WebSphere Enterprise Service Bus (notice that these resources use the MQ
Messaging Provider). Table 5-2 on page 108 shows the export components.

Resource Resource name

Queue manager name MQCR

Queue manager host name wtsc66.itso.ibm.com

Queue manager host port 1415

Server connection channel SYSTEM.DEF.SVRCONN

CICS order event queue name WESB.CICS.CBE.ORDER

CICS failed order event queue name WESB.CICS.CBE.INSUF.STOCK

WebSphere MQ queue name WESB.WESB.CBE.ORDER

Audit queue name WESB.WESB.CBE.LOG
 Chapter 5. WebSphere Enterprise Service Bus business scenario 107

Table 5-2 Export resources

You can define these resources at any scope that makes sense in your
environment.

We defined them at the node scope. When the configuration definitions are
complete, we have resources that match those resources shown in Figure 5-15
and Figure 5-16.

Figure 5-15 Connection factory

Figure 5-16 Queues

Resource name Resource type JNDI name

MQCR Connection factory jms/CICS_WBE_CF

CBE_LOG Queue jms/CBE_LOG

CBE_ORDER Queue jms/CBE_ORDER

CICS_CBE_Failed Queue jms/CICS_CBE_Failed

CICS_CBE_ORDER Queue jms/CICS_CBE_ORDER

AS_FAILED Activation specification jms/AS_FAILED

AS_ORDER Activation specification jms/AS_ORDER
108 Leveraging CICS Events with an ESB

For the queues in Figure 5-16 on page 108 that are used as input, we need to
add the following custom properties to their definitions in WebSphere Enterprise
Service Bus:

� MDWRITE = YES
� MDREAD = YES
� MSGBODY = MQ

If you forget to add these custom properties, WebSphere Enterprise Service Bus
issues a descriptive error message so that you can resolve the problem easily
(Figure 5-17).

Figure 5-17 Activation specification

WebSphere Business Events configuration in WebSphere
Enterprise Service Bus
We use the Default Messaging Provider for the resources that need to interact
with WebSphere Business Events. The WebSphere Business Events server
uses the JMS Publish/Subscribe (Pub/Sub) capabilities built into WebSphere
Application Server V7. It has a topic space and two topics (a durable and a
nondurable topic) to which it has subscribed. WebSphere Enterprise Service Bus
will need to publish the events to either of those topics.

Because our WebSphere Enterprise Service Bus server is in a separate cell than
the WebSphere Business Events server, we need to configure a bus link
between the two servers. A foreign bus is the abstraction WebSphere Application
Server uses to identify the SIBus in the other cell. When we define the foreign
bus, we can specify it to support Pub/Sub, as well as point-to-point messaging. In
WebSphere Enterprise Service Bus, we create a destination on our SIBus that is
a topic space. The foreign bus definition has a topic space map entry that maps
the topic space in WebSphere Enterprise Service Bus to the topic space in
WebSphere Business Events. We also need to define the two topics in
WebSphere Enterprise Service Bus.

If you use the WebSphere Business Events plug-in for WebSphere Enterprise
Service Bus (see 5.7.2, “WebSphere Business Events plug-in for WebSphere
Integration Developer” on page 125, you notice that it provides a Jython script to
automate this configuration. The script is handy, yet it might be best to perform
 Chapter 5. WebSphere Enterprise Service Bus business scenario 109

the configuration work manually the first time so that it is well understood and the
values of the parameters that are required by the script are clear. Then, you can
configure additional development servers or the WebSphere Enterprise Service
Bus servers that will be created for the various stages of the test cycle much
more efficiently by using the Jython script supplied by the WebSphere Business
Events plug-in.

It is best to start with the configuration definitions needed on the SIBus. In
WebSphere Enterprise Service Bus, we have three SIBuses already configured,
as shown in Figure 5-18.

Figure 5-18 SIBuses in WebSphere Enterprise Service Bus

We use the SCA_Application bus to perform the needed configuration for
WebSphere Business Events.

It is best to start by creating a new destination on the bus, which is a topic space
as shown in Figure 5-19.

Figure 5-19 Topic space

Next, we can define the foreign bus. Figure 5-20 shows the result.

Figure 5-20 Foreign bus

If you have configured the foreign bus correctly, you will see the bus link show
with a Started status, as shown in Figure 5-21 on page 111.
110 Leveraging CICS Events with an ESB

Figure 5-21 Bus link in Started state

Notice that the buses have exchanged messages. These messages indicate,
along with the messages in the server logs, that the Pub/Sub topology has been
successfully updated between the two servers.

When defining the foreign bus, make sure that you have selected to include
support for Pub/Sub and that you were given an opportunity to create the topic
space mapping, as shown in Figure 5-22.

Figure 5-22 Topic space mapping

We have completed the configuration needed based on the SIBus topology. Now,
we need to configure the JMS resources. We need to have a topic connection
factory, as shown in Figure 5-23.

Figure 5-23 Topic connection factory

Finally, we need to define the topics for durable and non-durable subscriptions,
as shown in Figure 5-24.

Figure 5-24 Topics

We have completed the configuration of the WebSphere Enterprise Service Bus
server for development. We can now build the mediation modules required for
our solution.
 Chapter 5. WebSphere Enterprise Service Bus business scenario 111

5.3 Scenario 1

Virtually all WebSphere Integration Developer development begins by creating a
library project. Libraries are where we want to keep the XML Schema Definitions
(xsd) and Web Services Description Language (wsdl) that are required for the
solution. Therefore, we can share the definitions among multiple projects. For
WebSphere Enterprise Service Bus, any project that is not a library will be a
mediation module. Our solution for both scenarios includes the projects
illustrated in Figure 5-25.

Figure 5-25 WebSphere Integration Developer projects in WebSphere Enterprise Service
Bus solution

We describe the content of each library and its origin:

� cbe_library: We imported the cbe101.xsd schema into this library. It is the
same as cbe101_lib except that the namespace was changed, which we will
explain later.

� cbe101_lib: We imported the cbe101.xsd schema and left the namespace in
its original form. We actually do not use this library at this time.

� cicsEventsLibrary: We imported the cics_cbe_static.xsd, which defines the
static portion of the CBE event from CICS. We also imported the
ItemOrder.xsd and FailedOrder.xsd into this library, which define the
payload carried by the static portion of the cbe.

� cicsServicesLibrary: We imported the inquireSingle.wsdl and the
restockItem.wsdl into this library. These files contain the definitions that are
required to interact with the CICS Web services.

� wbe_Library: Here we imported both Event_FailedOrder-esb.xsd and
Event_ItemOrder-esb.xsd, which define the contents of the event sent to
112 Leveraging CICS Events with an ESB

WebSphere Business Events in each of the two cases. We also defined an
interface for each of the two event types in this library.

We examine the mediation modules next.

5.3.1 ESB transformation

As we began development of our mediation module, we first want to be certain
that WebSphere Enterprise Service Bus was able to successfully consume the
CBE event coming from CICS. We found this action to be a problem, and our
implementation had to change somewhat to accommodate the unexpected
behavior.

CBE uses the http://www.ibm.com/AC/commonbaseevent1_0_1 namespace,
which is special in WebSphere Application Server. Because the logging
framework in WebSphere Application Server uses this namespace, a static
Eclipse Modeling Framework (EMF) model was developed for it. WebSphere
Enterprise Service Bus uses dynamic models for the schema that it consumes.
Dynamic models in WebSphere Enterprise Service Bus allow us to convert easily
between XML and the Service Data Objects (SDO) framework. Unfortunately,
after WebSphere Application Server loads the static model, WebSphere
Application Server will not attempt to use the dynamic model. The effect of the
limitation is that WebSphere Enterprise Service Bus cannot use SDOs to
process any XML using the CBE namespace. Our workaround addresses that
problem by splitting the mediation function into two modules.

For now, we have the following solution diagram in WebSphere Integration
Developer (Figure 5-26).

Figure 5-26 WebSphere Enterprise Service Bus solution diagram
 Chapter 5. WebSphere Enterprise Service Bus business scenario 113

http://www.ibm.com/AC/commonbaseevent1_0_1

All processing of events with the CBE namespace is performed in the first
module, which essentially implements the routing requirements. The second
module is responsible for additional routing, enrichment, and transformation. This
approach is a reasonable division of the required functions. We might have
arrived at this implementation without the limitation that forced us to adopt it.

CICS_WESB_Gateway
This module processes all incoming CBE events from CICS but without
attempting to parse the XML. We do not create business objects (BOs) in
WebSphere Enterprise Service Bus from the incoming events. This module also
places the event on the WebSphere Business Monitor and audit queues with the
original CBE namespace. In the assembly editor, the module looks like
Figure 5-27.

Figure 5-27 CICS_WESB_Gateway assembly

We initially generated the module using the Static Service Gateway pattern
dialog in WebSphere Integration Developer. We remove the Request/Response
operation and make several other modifications for the final implementation, yet
the pattern was a helpful starting point. The essential aspect of developing this
module is its use of the predefined resources, as shown in Figure 5-28 on
page 115.
114 Leveraging CICS Events with an ESB

Figure 5-28 Predefined Resources used by CICS_WESB_Gateway

The Native Body schema and the service gateway interface allow us to process
the CBE event without actually creating business objects from the elements in
the message. Looking at the SCA components individually, we can better
understand what this module contributes to our solution.

CICS_Order_Events
This SCA export has an MQ binding and uses the service gateway interface. The
component receives the incoming ItemOrder event from the queue where CICS
has written it.

CICS_Failed_Events
This SCA export also uses an MQ binding and the same service gateway
interface. The component receives the incoming FailedOrder event from
WebSphere MQ.

WBM_Import
This SCA import uses an MQ binding and the ServiceGateway interface to send
the CBE event unmodified to the WebSphere Business Monitor queue.

Audit_Import
This SCA import also uses an MQ binding and the ServiceGateway interface,
which allows us to send the CBE event unmodified to the audit queue.

ImportEventProcessing
This SCA import has an SCA binding to an export in the CICSEventsMediation
module. It uses the cicsEvent interface. Before sending the event, we have
changed the namespace.
 Chapter 5. WebSphere Enterprise Service Bus business scenario 115

CICS_WESB_Gateway
The SCA mediation flow component is responsible for routing and a small
amount of transformation. We look inside the component to understand its
function in more detail (Figure 5-29).

Figure 5-29 CICS_WESB_Gateway mediation flow component

The mediation flow component has four custom primitives. The first three custom
primitives with names beginning with “Display” simply print a message to the
system log. The custom primitive named ModifyNameSpace modifies the
namespace. It looks at the message text for the string
“http://www.ibm.com/AC/commonbaseevent1_0_1” and, if it finds the string,
replaces it with “http://www.ibm.com/AC/commonbaseevent1_0_A”. This change
allows us to circumvent the limitation discussed earlier and to send the message
across an SCA interface to the CICSEventsMediation module.

The remaining primitives in the flow are fairly self-evident. The FlowOrder
primitive allows us to fire each of its output terminals in order. The
SetMessageType primitive essentially recasts the xsd:any that is the message
body to a TextBody type for the downstream primitives to process. The three
Service Invoke primitives call the reference partners that we saw in the assembly
(the three SCA imports).

CICSEventsMediation
This module processes the CBE with the slightly altered namespace, so that we
can perform the necessary processing and send the WebSphere Business
Events event. Because the WebSphere Business Events event does not use the
116 Leveraging CICS Events with an ESB

CBE namespace, we have no problems with our dynamic model and can easily
consume the XML, creating the BOs as needed. Figure 5-30 shows the structure
of the module in the assembly editor.

Figure 5-30 CICSEventsMediation assembly

To understand the module fully, we start by looking at each of the SCA
components in the assembly.

CICS_CBE_Queue
This SCA export uses an SCA binding and the cicsEvent interface, which allows
the CICS_WESB_Gateway to access the module.

WBE_Queue
This SCA import uses a JMS binding and the Pub/Sub protocols to send a
WebSphere Business Events event to a non-durable topic (jms/eventTopic). We
needed to create the interface, WBE_Ops, after we imported the schema for the
WebSphere Business Events event.

WBE_Failed_Event
This SCA import also uses a JMS binding configured for Pub/Sub. It publishes
the event to the same topic, yet it uses the WBE_Failed_Ops interface, which we
also created.

CICS_INQ
This SCA import has a Web Service binding and uses the DFH0XCMNPort
interface, which was created when we imported the inquireSingle.wsdl.
 Chapter 5. WebSphere Enterprise Service Bus business scenario 117

CICS_Restock
This SCA import also has a Web Service binding and uses the CATREODRPort
INterface, which was created when we imported the restockItem.wsdl.

Mediate_CBE
This SCA component is the mediation flow component that implements the
needed processing. We explain the implementation of the component
(Figure 5-31) now.

Figure 5-31 Mediate_CBE flow component: Part 1

We look at the flow in three parts and focus on the ItemOrder path. After the
Display custom primitive, we need to set the abstract (xsd:any) element, which is
the static portion of the cbe, to its actual type, which, in our case, is an event BO.
This event BO was defined when we imported the cics_cbe_static.xsd into the
cicsEventsLibrary.

The MessageFilter primitive looks at the context-info/eventname element and
routes accordingly.

We then use a Trace primitive to log which path through the flow has been taken
(Figure 5-32 on page 119).
118 Leveraging CICS Events with an ESB

Figure 5-32 Mediate_CBE flow component: Part 2 (ItemOrder)

Now that we have an ItemOrder event, we must set the actual type of the
payload-data element. We set the actual type in the SetMessageTypePayload
primitive.

The Extensible Stylesheet Language Transformation (XSLT) primitive that is next
in the flow actually has two important functions. It transforms the body of the
service message object (SMO) to the format that is required to call the
InquireSingle CICS Web Service. Yet, it also must store the elements of the
original message that we will need to construct the WebSphere Business Events
event. We have created a private BO in this module that we are using as the
Transient Context object. So, the XFormToCICSInq also sets the needed fields
into the Transient Context.

We then use a Service Invoke primitive to call the partner reference, and if the
Web Service is successful, we will flow to the XFormToWBE XSLT primitive.
Here, we store the item’s unit cost into the Transient Context and construct the
WebSphere Business Events event from the fields that are already stored there
(Figure 5-33).

Figure 5-33 Mediate_CBE flow component: Part 3 (ItemOrder)
 Chapter 5. WebSphere Enterprise Service Bus business scenario 119

The final part of the flow consists of computing the total cost and sending the
event. The computation is done using Java in a custom primitive. We then use a
Service Invoke to call our partner reference, which causes the event to be
published to the eventTopic in WebSphere Business Events. Notice that we set
the Document root name and the Document root namespace properties in our
DataHandler (Figure 5-34), which allows us to suppress the operation element
from the XML passed to WebSphere Business Events.

Figure 5-34 Data Handler properties

Testing in WebSphere Integration Developer
Testing in WebSphere Integration Developer is facilitated by the use of the
Integrated Test Client. When working with messaging systems, the client can be
launched in Attach mode. Figure 5-35 is the Session contents from a successful
ItemOrder CBE from CICS as it flows through the CICS_WESB_Gateway
module.

Figure 5-35 Integrated Test Client trace of CICS_WESB_Gateway module

We have not included the details, but you can examine each of the requests in
the Integrated Test Client and display the contents.

Figure 5-36 on page 121 shows a similar trace as the message flows through our
second mediation module. The Fine-Grained Trace shows each primitive that
was traversed, and we can display the details of the SMO after each primitive has
been executed.
120 Leveraging CICS Events with an ESB

Figure 5-36 Integrated Test Client trace of CICSEventsMediation module

5.3.2 Test results

From the perspective of CICS, WebSphere Business Monitor, and WebSphere
Business Events, there are no differences in the test results due to the specific
ESB product in the solution. Chapter 10, “WebSphere Business Monitor” on
page 271 describes the test results, where we have treated the ESB layer
generically.

5.4 Scenario 2

The implementation of scenario 2 does not require any ESB function.

5.5 Scenario 3

We have already completed many of the activities that we need to do for scenario
3. This scenario uses many of the same libraries and mediation modules that are
used in scenario 1. Our CICS_WESB_Gateway module does not need to
change, because it does not rely on the type of event that is sent from CICS. We
 Chapter 5. WebSphere Enterprise Service Bus business scenario 121

need to look at the mediation flow component in the CICSEventsMediation
module and add the functions that are required for the FailedOrder event.

5.5.1 ESB transformation

From our discussion in scenario 1, we have a good understanding of what the
mediation flow component does for the ItemOrder event. Now, we work with the
FailedOrder event.

The first part of the flow made a determination about which kind of event was
received from CICS. Now, we focus on the primitives in the flow after the
FailedOrderTrace primitive (Figure 5-37).

Figure 5-37 Mediate_CBE flow component: Part 2 (FailedOrder)

The SetFailPayloadType primitive must set the actual type of the xsd:any element
representing the payload-data element.

Next, we use an XSLT primitive, named XFormToCICSRestock, to transform the
SMO body to the request message required by the Restock service. Again, this
primitive is performing double duty, because it also stores the fields from the
incoming event BO into the Transient Context object in the SMO. We will use
these fields later in the flow to construct the WebSphere Business Events event.

The Service Invoke primitive is used to call the partner reference, which
represents the CICS Restock Web Service. If the Web Service fails, we raise an
exception and terminate the flow.

Assuming that the Web Service call was successful, the XSLT named
XFormFailToWBE constructs a new SMO body according to the WebSphere
Business Events event schema definition. We use the fields that are stored in the
Transient Context object to set the contents of the event.
122 Leveraging CICS Events with an ESB

Figure 5-38 shows the final primitive in the flow.

Figure 5-38 Mediate_CBE flow component: Part 3 (FailedOrder)

This Service Invoke causes the WebSphere Business Events event to be
published to the eventTopic in WebSphere Business Events, which completes the
processing.

Testing in WebSphere Integration Developer
The Integrated Test Client, running in Attach mode, is helpful during our testing.
Figure 5-39 shows the trace of the CICSEventsMediation as a FailedOrder event
is processed by WebSphere Enterprise Service Bus.

Figure 5-39 Integrated Test Client trace of the CICSEventsMediation module

5.5.2 Test results

From the perspective of CICS, WebSphere Business Monitor, and WebSphere
Business Events, there are no differences in the test results due to the specific
ESB product in the solution. See Chapter 10, “WebSphere Business Monitor” on
 Chapter 5. WebSphere Enterprise Service Bus business scenario 123

page 271 for a description of the test results, where we have treated the ESB
layer generically.

5.6 Scenario 4

The implementation of scenario 4 does not require any ESB function.

5.7 Problems encountered, hints, and tips

We made a number of discoveries during the development and testing of the
solution for WebSphere Enterprise Service Bus. We did have one problem that
we discuss next that dealt with cross-cell Pub/Sub. The remaining sections offer
suggestions for alternative ways of implementing the solution and tips for the
developer.

5.7.1 Cross-cell Pub/Sub in WebSphere Application Server V7

We configured a foreign bus in each of the WebSphere Enterprise Service Bus
and WebSphere Business Events servers. With an active bus link and the
appropriate topic spaces and topics defined, the idea was to publish the event in
WebSphere Enterprise Service Bus to the local eventTopic and to let the foreign
bus configuration, along with the topic space mapping configured in WebSphere
Enterprise Service Bus, be responsible for forwarding the published message to
subscribers in the WebSphere Business Events server.

Unfortunately, and although the configuration was correct and operational, the
event published in WebSphere Enterprise Service Bus never arrived at
subscriber destinations in WebSphere Business Events.

To work around this problem, we made a simple configuration change. In
WebSphere Enterprise Service Bus, instead of defining the eventTopic to use the
SCA.Application Bus, we pointed the eventTopic directly at the bus in
WebSphere Business Events (WbeBus). We also had to specify the name of the
topic space in WebSphere Business Events, rather than the name in WebSphere
Enterprise Service Bus.

As a result of making this single configuration change, we were able to publish
events from WebSphere Enterprise Service Bus to WebSphere Business Events.
124 Leveraging CICS Events with an ESB

It is likely that the topic space mapping between the two cells was not functioning
properly, and it is also likely that by the time that this book is published, that
problem will be resolved.

5.7.2 WebSphere Business Events plug-in for WebSphere Integration
Developer

WebSphere Business Events supplies runtime and tooling support for
WebSphere Integration Developer and WebSphere Enterprise Service Bus that
is helpful if you work with WebSphere Business Events events frequently. We did
not originally use this support to develop our mediations, primarily because we
thought it was important to understand the details of interacting with WebSphere
Business Events from WebSphere Enterprise Service Bus.

The instructions for installing the plug-in in WebSphere Integration Developer
and then updating the WebSphere Enterprise Service Bus run time with the
provided jar file are located at this website:

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/index.jsp?topi
c=/com.ibm.wbe.integrating.doc/doc/installingsibx.html

In WebSphere Integration Developer, the plug-in provides three new mediation
primitives that simplify interactions with WebSphere Business Events. In our
scenarios, the WebSphere Business Events EventEmitter primitive is useful.

Figure 5-40 is the final part of the ItemOrder flow in the CICSEventsMediation
module that has been rewired to use the primitive.

Figure 5-40 Using the WebSphere Business Events EventEmitter primitive in the
ItemOrder flow

Similarly, we can rewire the FailedOrder portion of the flow to use another
WebSphere Business Events EventEmitter primitive, as shown in Figure 5-41 on
page 126.
 Chapter 5. WebSphere Enterprise Service Bus business scenario 125

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/index.jsp?topic=/com.ibm.wbe.integrating.doc/doc/installingsibx.html

Figure 5-41 Using the WebSphere Business Events EventEmitter primitive in the
FailedOrder flow

The primitive provides property details that you can use to customize its
behavior. For our flows, we point the primitive to the correct portion of the SMO
body element to pass to WebSphere Business Events, as shown in Figure 5-42.

Figure 5-42 WebSphere Business Events EventEmitter primitive event properties

The JMS-related properties allow us to define the topic factory and topics to use
when sending the event to WebSphere Business Events, as illustrated in
Figure 5-43.

Figure 5-43 WebSphere Business Events EventEmitter primitive JMS properties

When you build the Assembly, you do not need to wire the references to import
components, because the WebSphere Business Events EventEmitter is
configured to include the information otherwise specified on the import. You need
a reference in the mediation flow component that has the operation used to send
the event.
126 Leveraging CICS Events with an ESB

The effect in our scenarios is an assembly diagram with two warnings that did not
exist before, because we have not wired the references (Figure 5-44).

Figure 5-44 CICSEventsMediation assembly using WebSphere Business Events tooling
enhancements

If you use these primitives in WebSphere Integration Developer, you must add
the jar file included in the package to your WebSphere Enterprise Service Bus
server.

You must complete the JMS configuration that we did in WebSphere Enterprise
Service Bus and WebSphere Business Events, regardless of your choice to use
the WebSphere Business Events plug-in in WebSphere Integration Developer.
However, the package provides well-documented Jython scripts that make the
required work significantly easier.

We used the scripts as reference when we made the manual updates.

Decide if the enhancements have value in your environment. For the
EventEmitter primitive, the incremental value might be small. However, if you
send or receive actions from WebSphere Business Events, the primitives can
simplify your development effort.

5.7.3 Modifications to WebSphere Business Events event schema

We discussed early in this chapter the various libraries that we created and the
XML schema definitions that we imported. We needed to make a small
modification to the xsds that were imported into the wbe_Library in order for the
events that we generated to be consumed properly by WebSphere Business
Events.

As imported, the schema causes the creation of a connector BO. The connector
is an element and not a type, however; so, in the imported form, WebSphere
 Chapter 5. WebSphere Enterprise Service Bus business scenario 127

Enterprise Service Bus automatically generates an xsi:type definition in the XML
that is sent to WebSphere Business Events. This xsi:type definition appears to
cause WebSphere Business Events problems consuming the XML, so we
changed the top-level element in both schemas to a complexType, and
WebSphere Business Events readily accepted the messages.

5.7.4 When WebSphere Business Monitor and WebSphere Enterprise
Service Bus are in the same cell

In many cases, a topology with a single WebSphere Application Server cell is
preferred as a means to ease administration. It is likely that the cell that contains
WebSphere Enterprise Service Bus also contains WebSphere Business Monitor,
although commonly these products are in separate clusters within the cell.

In such cases, after the event arrives in WebSphere Enterprise Service Bus from
WebSphere MQ, it makes little sense for WebSphere Enterprise Service Bus to
write the event back to a WebSphere MQ queue for WebSphere Business
Monitor to retrieve it. A more likely approach is for WebSphere Enterprise
Service Bus to write the message to the destination on the Common Event
Infrastructure (CEI) bus where it otherwise arrives from WebSphere MQ. In our
example, you can use a JMS binding on an SCA import and point to the JMS
queue that was defined during the WebSphere Business Monitor configuration
for this purpose. This JMS queue is the queue that is being mediated by the
handler that was installed (MQtoCEIMediation EAR file). Be sure to write this
message as a JMSText message.

5.7.5 CBE details in the WebSphere Application Server run time

During our development effort, we took time to more fully understand how the
WebSphere Application Server foundation deals with CBEs. There is a bit of a
collision between WebSphere Application Server (a CBE is generally an instance
of org.eclipse.hyades.logging.events.cbe.CommonBaseEvent) and WebSphere
Enterprise Service Bus, which treats the CBE coming from CICS as a business
object using the SDO framework. Our solution illustrates a simple way to manage
the limitation. We think the article at the following link is helpful to build a better
understanding of the CBE processing in WebSphere Application Server:

http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/autonomic
/books/cbepractice/index.htm
128 Leveraging CICS Events with an ESB

http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/autonomic/books/cbepractice/index.htm
http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/autonomic/books/cbepractice/index.htm

5.7.6 Deploying to the next test stage

After the solution is verified to function properly in the WebSphere Integration
Developer test environment, you are ready to deploy it to the next stage in the
test cycle. You export the two projects as EAR files and deploy them using the
Administrator Console for WebSphere Enterprise Service Bus or through an
automated script. Be aware of the following two points:

� Web services endpoints: The CICSEventsMediation application has fixed
references to the two CICS Web services endpoints. Often, you use a
separate CICS region in a more advanced test stage, so you might have to
change these endpoints. You can use a Jython script to change these
endpoints easily by using the Jython script as a part of your automated
deployment processing. Or, you can use the Administrator Console to update
the endpoint, as shown in Figure 5-45.

Figure 5-45 Verify target endpoint address

� WebSphere MQ Resource JNDI names: All of our SCA components used
JNDI names for the resources that they accessed. This approach allows for
much easier deployment to an environment where the resource names have
changed. When we select to use JNDI names in our components,
WebSphere Integration Developer generates the associated resource
reference in the deployment descriptor for the module. As a result, you only
need to map the JNDI name used in the module to the actual JNDI name of
the resource during deployment. You can perform this mapping manually from
the Administrator Console or automatically with scripts.
 Chapter 5. WebSphere Enterprise Service Bus business scenario 129

5.8 Summary

In this chapter, we looked at the detail of the WebSphere Enterprise Service Bus
implementation of scenarios 1 and 3. We discussed the configuration of the
development environment, including CICS, WebSphere MQ, WebSphere
Business Events, and WebSphere Enterprise Service Bus. We examined the two
mediation modules that together perform the needed functions for the solution.
We looked at the mediation flow components and how they route, transform, and
enrich the event payload for downstream consumers.

If we plan to continue to build our solution, we consider security and the
transactional behavior of the services involved in the flow, as well as the
requirements for persisting the events.

If you are interested in the fine-grained details of the WebSphere Enterprise
Service Bus implementation, download the project interchange file that is
available with the source materials for this book and import the project into
WebSphere Integration Developer. A PDF file, which was generated by
WebSphere Integration Developer and that fully documents the implementation,
is available.
130 Leveraging CICS Events with an ESB

Chapter 6. WebSphere Message Broker
business scenario

In this chapter, we perform the following tasks:

� Present an overview of the environment

� Set up the environment:

– CICS setup

– WebSphere Message Broker setup

– WebSphere Business Events setup

– WebSphere Business Monitor setup

– WebSphere Process Server setup

� Show how each scenario works and how each product in our environment
handles the event

6

© Copyright IBM Corp. 2010. All rights reserved. 131

6.1 Environment overview

The environment that we use in this scenario is IBM Customer Information
Control System Transaction Server (CICS TS) V4.1 with WebSphere MQ 7.0.1
on z/OS, WebSphere Message Broker 7.0 with WebSphere MQ V7.0 on
Microsoft Windows XP, WebSphere Business Events V7.0 running on Microsoft
Windows XP, and WebSphere Business Monitor V7.0 running on Microsoft
Windows XP.

Figure 6-1 shows the topology of our environment.

Figure 6-1 Topology

6.2 Configuring the environment

In the following sections, we discuss the configuration for these products:

� CICS
� WebSphere Message Broker
132 Leveraging CICS Events with an ESB

� WebSphere Business Events
� WebSphere Business Monitor
� WebSphere Process Server

6.2.1 Configuring CICS

Next, we step through the CICS configuration.

Creating a bundle project
To configure CICS to emit events, the first task to take is to create a new bundle
project in the CICS Explorer. The bundle project will contain the evbind files and
other metadata that will be deployed into CICS.

We perform these steps to create a new bundle project in the CICS Explorer
(Figure 6-2):

1. Click Explorer on the menu bar.
2. Hover the mouse over New Wizards.
3. Click CICS Bundle project.

Figure 6-2 Creating a CICS bundle

After clicking CICS Bundle Project, we are prompted to name the project. We
name our project CatalogManager. After we enter the project name, the project
shows under the Project Explorer.
 Chapter 6. WebSphere Message Broker business scenario 133

Creating the event binding file
After the project has been created, we can now create the event binding file. The
event binding is an XML definition that defines one or more business events to
CICS. It consists of the event specifications, capture specifications, and event
processing (EP) adapter and dispatcher information. We follow these steps to
create the event binding file:

1. Right-click the bundle project name.
2. Hover the mouse over New.
3. Click Event Binding.

Figure 6-3 Creating event binding

We are prompted to enter a name for the event binding file. In our scenario, we
named our first event binding file SuccessfulOrder and the second event binding
file InsufficientStock. We chose these names, because we are capturing two
events in CICS and want the bind file name to represent each event.

Creating the event specification
After the event bind is created, the Event Binding tab editor is displayed. On this
tab, we can add the event specifications. An event specification describes an
134 Leveraging CICS Events with an ESB

event and its processing. On the Event Binding tab, we click Add to create an
event specification.

Figure 6-4 Creating an event specification

For our successfulOrder event, we create a specification called ItemOrder.

After the specification has been created, we select it in the table, and we click
Edit Details. This option causes the Specification tab to open.

Data to be emitted
We start by defining the information that we want CICS to emit when the event is
triggered. For our scenario, we want to emit four pieces of data when the event is
triggered. The fields that we want to emit are described in the copybook
DFH0XCP1. See Example 6-1 on page 139 for the copybook layout. We want to
add the following fields to the emitted event:

� userid (text field)
� charge_dept (text field)
� item_ref_number (numeric field)
� quantity_req (numeric field)

At this time, we do not need to specify a length or a precision value. The emitted
business information section looks like Figure 6-5 on page 136 when completed.
 Chapter 6. WebSphere Message Broker business scenario 135

Figure 6-5 Emitted Business Information

Adding a capture specification
Now that you have defined what you want to emit, you need to set up when you
want the event to be triggered. You can define when you want the event to be
triggered by adding a capture specification to the event binding.

For this scenario, we named our capture specification OrderSuccess, because we
want to trigger an event when an item is ordered successfully.

You can add a capture specification by clicking “Add a Capture Specification”
(Figure 6-6).

Figure 6-6 Creating a capture specification

When the capture specification is selected, you see three additional tabs at the
top of the editor window when you have the Specification editor tab open. Using
these three tabs at the top, you can configure the conditions under which you
want the event triggered (Figure 6-7 on page 137).
136 Leveraging CICS Events with an ESB

Figure 6-7 Tab layout

When to trigger the event
After creating the capture specification, consider when you want to trigger the
event. You can select the EXEC CICS command as the capture point by clicking
the drop-down menu next to Capture Point.

In our scenario, we want to trigger the event on the EXEC CICS LINK
PROGRAM command.

Tip: We use the Capture after option, which allows us to filter on the return
code.
 Chapter 6. WebSphere Message Broker business scenario 137

Creating event filters
After selecting a capture point, we select the second tab to set up filters. In our
scenario, we set the Operator for Response Code to Equals. We also set an
event to be triggered only when the link is to DFH0XVDS. Last, we define
predicates for the application data, because we want to capture successful
orders only. Breaking down the COMMAREA, we know that the order was
successful when the first six bytes are 01ORDR and the next two bytes are 00. We
use this application data as a filter by clicking Add. A new window titled
Application Data Predicate opens. We fill in the operator and value fields, as
shown in Figure 6-8, and then, click the “Select from imported language
structure”.

Figure 6-8 Application Data Predicate
138 Leveraging CICS Events with an ESB

We export a COBOL copybook DFH0XCP1 from the enterprise server to our
desktop to use as input into the CICS Explorer Event Binding editor so that we
can map the COMMAREA accurately. Example 6-1 shows the copybook that we
imported.

Example 6-1 Portion of DFH0XCP1

 03 CA-REQUEST-ID PIC X(6).
 03 CA-RETURN-CODE PIC 9(2).
 03 CA-RESPONSE-MESSAGE PIC X(79).
 03 CA-ORDER-REQUEST.
 05 CA-USERID PIC X(8).
 05 CA-CHARGE-DEPT PIC X(8).
 05 CA-ITEM-REF-NUMBER PIC 9(4).
 05 CA-QUANTITY-REQ PIC 9(3).
 05 FILLER PIC X(888).

After the CICS Explorer parses the copybook, the window that is shown in
Figure 6-9 opens. The first field that we are interested in is ca_request_id,
because this field must have 01ORDR to signify an order. We select the row for
ca_request_id, and then click OK, which returns us to the Application Data
Predicate window. Notice that the type, offset, and length fields have been
updated by the CICS Explorer based on the values in the copybook.

Figure 6-9 Language Structure input
 Chapter 6. WebSphere Message Broker business scenario 139

After creating a filter on 01ORDER, we create an additional filter on the
ca_return_code field in our copybook. We use the same steps that we used
previously and create a filter for 00. When these two conditions are met, we know
that a successful order has occurred and an event is emitted. Figure 6-10 shows
the Filtering tab.

Figure 6-10 Specifications Filtering tab

Now that the filters are set up, the last task in the Specification tab is to define
from where the emitted business information is obtained. The Information
Sources tab shows the four fields that were defined earlier. We use the copybook
that we exported earlier to specify where these fields are located in the
COMMAREA. We select userid, and we click Edit, which causes the “Information
Source for userid” window to open. Because the emitted information is
application data, we select COMMAREA under the application data tree. On the
right panel, we now click “Select from imported language structure”. We perform
the same steps as before when setting a filter on the ca_request_id; only this
time, we select the fields that we want emitted during the event. When
completed, the information sources look like Figure 6-11 on page 141.
140 Leveraging CICS Events with an ESB

Figure 6-11 Information Sources tab

Event adapter
The last step in creating the evbind file is to choose the EP adapter through
which you want the events to be emitted. For our scenario, we use a WebSphere
MQ Queue adapter that allows the events to be emitted to a queue, which will be
used as input into WebSphere Message Broker. In the editor, we select
WebSphere MQ Queue as the adapter. For the queue name, we specify
WMB.CICS.CBE.ORDER. For our scenario, we set the data format to Common
Base Event (CBE) (XML).

Exporting schemas
Now that the event binding file is configured to capture the successful order
event, we click “Export Event Specifications”. This action creates an xsd schema
file that describes the format of the payload of the event that will be emitted by
CICS. During the WebSphere Message Broker configuration, we import this
schema into the tooling. Because we use a CBE-formatted event, we need to
describe two additional schemas to describe the entire message. The schema
generated by the explorer is considered the payload or dynamic portion of the
event. The other portion of the event is the static portion. The static XML schema
ships with CICS at this location:

/usr/lpp/cicsts/cicsts41/schemas/eventprocessing/cics_cbe_static.xsd
 Chapter 6. WebSphere Message Broker business scenario 141

The last schema needed describes the entire CBE envelope within which the
event will be included. You can obtain this schema at this website:

http://www.eclipse.org/tptp/platform/documents/resources/cbe101spec/Com
monBaseEvent_SituationData_V1.0.1.pdf

We use these three schema definitions later as input into the WebSphere
Message Broker tools.

Insufficient stock event
The only differences between the successful order event and insufficient stock
event are the return code and the queue to which the event is written. Everything
else remains the same, so you can take the same steps just described to create
a second event. There are two changes that you need to make:

� When setting up the filter predicates, filter on a 97 for ca_return_code.
� Define a separate queue for the event; we called our queue

WMB.CICS.CBE.INSUF.STOCK.

Deploying the events to CICS
Now that the event binding files have been created, the next step is to deploy
these artifacts into CICS. As long as you have connected the CICS Explorer to a
host system, you can perform this step within the Explorer. Right-click the project
name under the Project Explorer in the left pane. Select Export to system z HFS.
Fill in the Destination system detail credentials, as necessary. Determine the
location on zFS where you want to export the bundle. You want to organize it in a
way that works for your environment, for example, production versus test, or by
region. You probably do not want to use your home (/u/userid) directory.

For this scenario, we use the /cicslab/cics/epred3/bundles/events/ directory.
CICS Explorer appends the name of the project to the directory. We use the
/cicslab/cics/epred3/bundles/events/CatalogManager directory. When we
browse that directory, we see the META-INF directory and the two event binding
files.

Defining the bundle resource
Now that we have exported the event binding files into the hierarchical file system
(HFS), we need to create a bundle definition. If you have a CICS management
client interface (CMCI) connection, you can create a bundle definition directly
through the explorer. We switch to the CICS Systems Management perspective
(which is part of CICS Explorer), select the CICS region where we want to install
the bundle, and click Administration Bundle Definitions. When you define your
bundle definition, you need to specify the bundle directory. Our bundle directory
is /cicslab/cics/epred3/bundles/events/CatalogManager. Figure 6-12 on
page 143 shows the attributes for the new bundle definition.
142 Leveraging CICS Events with an ESB

http://www.eclipse.org/tptp/platform/documents/resources/cbe101spec/CommonBaseEvent_SituationData_V1.0.1.pdf

Figure 6-12 Bundle Attributes

After defining the bundle definition, we install it. The events portion of the CICS
configuration is complete.

6.2.2 WebSphere Message Broker configuration

We had to set up our environment to facilitate communications among the
various components, which consisted of the following activities:

� Defining MQ channels between the Qmgr MQCR on z/OS and the broker
Qmgr QM70 on Microsoft Windows XP

� Defining remote queue definitions from MQCR pointing to local queues on
QM70

� Adding the WebSphere Business Events V7 event nodes to the WebSphere
Message Broker V7.0 toolkit

� Making broker component runtime changes to accommodate the new
WebSphere Business Events nodes

� Defining MQ channels between Qmgr QM70 and WebSphere Business
Monitor
 Chapter 6. WebSphere Message Broker business scenario 143

� Defining a remote queue definition between Qmgr QM70 and WebSphere
Business Events

Figure 6-13 shows the MQ resources that need to be defined on the Microsoft
Windows XP server that hosts WebSphere Message Broker and WebSphere
Business Events.

Figure 6-13 Queue Manager resources

We add the WebSphere Business Events event nodes.

Installing WebSphere Business Events support
After installation, we restart the toolkit for the two nodes to appear in the
WebSphere Business Events folder within the message processing node palette.
Before deploying a message flow using these nodes, we must install the runtime
support for the Business Events nodes on the WebSphere Message Broker
runtime. To install the runtime support for these nodes, we copy the
com.ibm.wbe.broker.runtime_7.0.0.0.jar file into the broker
<$MQSI_WORKPATH/shared-classes> directory. We locate this jar file in the
<WMBT700>\features\com.ibm.wbe.broker.feature_7.0.0.0\runtime directory
where <WMBT700> is the WebSphere Message Broker V7 toolkit installation
directory.

The next step is to configure the node to use the WebSphere_WAS_Client Java
Message Service (JMS) provider service. This provider service is a configurable
service that ships as part of the V7 broker. We must alter this service to point to
the WebSphere Business Events runtime libraries. Example 6-2 shows the
commands to use to set and verify this change.

Example 6-2 Commands to point to WebSphere Business Events runtime libraries

C:\Program Files\IBM\MQSI\7.0>mqsichangeproperties QM70BRK -c
JMSProviders -o WebSphere_WAS_Client -n jarsURL
-v c:\Progra~1\IBM\WBE70\WAS\runtimes
BIP8071I: Successful command completion.
144 Leveraging CICS Events with an ESB

C:\Program Files\IBM\MQSI\7.0>mqsireportproperties QM70BRK
-c JMSProviders -o WebSphere_WAS_Client -r

JMSProviders
 WebSphere_WAS_Client
 clientAckBatchSize='0'
 clientAckBatchTime='0'
 jarsURL='C:\Progra~1\IBM\WBE70\WAS\runtimes'
 jndiEnvironmentParms='default_none'
 nativeLibs='default_Path'
 proprietaryAPIAttr1='default_none'
 proprietaryAPIAttr2='default_none'
 proprietaryAPIAttr3='default_none'
 proprietaryAPIAttr4='default_none'
 proprietaryAPIAttr5='default_none'
 proprietaryAPIHandler='default_none'

BIP8071I: Successful command completion.

We must restart the broker to pick up these changes. The tooling and broker
runtime environments are now set up for the WebSphere Business Events event
nodes. We proceed with setting up the scenarios.

6.2.3 WebSphere Business Events configuration

See Chapter 9, “WebSphere Business Events scenario” on page 249 for details
about the WebSphere Business Events configuration.

6.2.4 WebSphere Business Monitor configuration

The WebSphere Business Monitor configuration is identical for all ESB solutions.
We describe this configuration in detail in Chapter 10, “WebSphere Business
Monitor” on page 271.

6.2.5 WebSphere Process Server configuration

There is no WebSphere Process Server configuration required for any of the
ESB products. We defined scenario 4, which involves WebSphere Process
Server, so that WebSphere Business Events will make a web service call directly
to WebSphere Process Server. As a result, no ESB function is required to
complete scenario 4.
 Chapter 6. WebSphere Message Broker business scenario 145

6.3 Scenario 1

Now, we describe scenario 1.

6.3.1 WebSphere Message Broker transformation

Scenario 1 shows a WebSphere Message Broker transformation.

Overview of scenario 1
In this scenario, CICS generates an ItemOrder event message and forwards it to
WebSphere Message Broker. WebSphere Message Broker forwards the
message unchanged to a local queue, which serves as an archive log, and to
WebSphere Business Monitor, which consumes this message and other
ItemOrder messages. Additionally, WebSphere Message Broker performs a web
service call to retrieve pricing information for the ordered item. After this
information is returned, WebSphere Message Broker enriches the original event
message with the total order cost and forwards it to WebSphere Business Events
in its desired format. Figure 6-14 shows the high-level flow design needed to
accomplish this scenario.

Figure 6-14 Flow design overview

We now explain the steps that were used to build the message flow and the
message sets that were used to process this scenario. We assume that you have
a general knowledge of the WebSphere Message Broker Toolkit and the activities
that relate to creating and building message flows and message sets.

Transformation nodes: WebSphere Message Broker provides a number of
transformation nodes for performing message transformation. You can use
any of the nodes within the Message Flow Editor Transformation folder to
transform the CICS event message. These scenarios merely show one
method of WebSphere Message Broker enriching and transforming a CICS
event message prior to sending it to downstream consumers.

Receive
CICS
order
event

message

Send
message
to Log

and WBM

Prepare
web

service
call

Call web
service /
receive

response

Prepare
enriched
message
for WBE

Send CICS
order

event to
WBE
146 Leveraging CICS Events with an ESB

Refer to the IBM WebSphere Message Broker, Version 7.0, Information Center
for additional details related to message broker application development.

We chose the Start from Scratch Quick Start wizard, because it allows us to
create both a message flow project and a message set project at the same time
(Figure 6-15).

Figure 6-15 Start from scratch wizard

Creating the message sets from schemas
WebSphere Message Broker needs to know the structure of an incoming
message so that the message can be parsed and a logical message tree
structure can be built. Then, the various elements within the message can be
referenced and modified by the message flow.

Most applications that generate XML-based messages can also provide an XML
schema file, which defines the structure of the message it produced. In certain
cases, multiple schemas are used to define a single message for purposes, such
as ease of maintenance, reuse, and readability.
 Chapter 6. WebSphere Message Broker business scenario 147

http://publib.boulder.ibm.com/infocenter/wmbhelp/v7r0m0/index.jsp

In our case, the following three schema descriptions define the CICS event
message that is received:

� Common base event
� Static event
� Dynamic payload

WebSphere Message Broker needs to use all three schema definitions to
successfully validate the incoming message. To initiate this setup, we first import
the schemas into the toolkit using File Import File System. Then, we point
to the location where the schemas are located on the file system and to the
message set project to which we want to import them. Importing these schemas
into the message set project helps keep all the resources used to build the
solution in a single location.

In our example, we import the schema files into the message set project named
cbeMSP (Figure 6-16).

Figure 6-16 Schema import

We have successfully imported the three schema files into the workspace. Now,
we define three message definition files. We use Message definition files to store
the message model objects that are used by message broker. We create
148 Leveraging CICS Events with an ESB

message definition files within the cbeMSP project by using New Message
Definition File using XML schema. This option launches the New Message
Definition File wizard that takes us through the schema selection and message
definition process (Figure 6-17 and Figure 6-18 on page 150).

Figure 6-17 New Message Definition File: Schema selection
 Chapter 6. WebSphere Message Broker business scenario 149

Figure 6-18 New Message Definition File: Element selection

We repeat these tasks two more times to create message definition files for the
two remaining schema files. Figure 6-19 on page 151 shows the three message
definitions within the cbeMSP project folder.
150 Leveraging CICS Events with an ESB

Figure 6-19 Newly added message definition files

Importing the schemas
We use the message set editor Add Import function to link the namespaces used
within the three schemas, which allows the WebSphere Message Broker run time
to parse the entire message. To be able to process all three portions of the
incoming message, we need to import the two schemas into the primary schema.
To add these imports, we use the message set editor to open the cbe101.mxsd
file, select the Properties view, and then, select Imports Add Import
(Figure 6-20 on page 152).
 Chapter 6. WebSphere Message Broker business scenario 151

Figure 6-20 Add Import

Figure 6-21 shows how we drill down into the namespaces until we locate one of
the two message definition files that we want to import.

Figure 6-21 Message definition import selection
152 Leveraging CICS Events with an ESB

We then repeat the process to select the remaining message definition. We verify
that we successfully imported these message definitions by examining the
cbe101.mxsd xsd file.

Example 6-3 Snippet of cbe101.mxsd showing imports

<?xml version="1.0" encoding="UTF-8"?><xsd:schema
elementFormDefault="qualified"...
<xsd:import namespace="http://www.ibm.com/prod/cics/v1/ItemOrder"
schemaLocation...
<xsd:import namespace="http://www.ibm.com/xmlns/prod/cics/events/CBE"
schemaLocation...<xsd:complexType name="CommonBaseEventType">
....

We have now successfully created and linked the three message definitions that
represent the three portions of the incoming event message.

Creating the message set from Web Services Description
Language
The message flow is required to call a CICS-based web service to retrieve
pricing information for the item that was ordered. The New Message Definition
wizard provides an option to build a message definition using a specific Web
Services Description Language (WSDL) to set the message definitions needed
to interact with the web service. A WSDL definition tells a client how to compose
a webservice request and describes the interface that is provided by the web
service provider. To begin this process, we create a new message set project to
accommodate the WSDL message set.

After creating the inquirySingleMSP message set project, we then create a new
message definition file using the imported WSDL as its source. This task results
in a “deployable WSDL” object appearing within the inquireSingleMSP project.
We can then use a deployable WSDL to configure SOAP nodes for the
webservice request and response portion of the flow.

Building the message flow
We construct our message flow and configure it to perform the required tasks. To
begin, we populate a blank canvas with the nodes that are needed for input,
output, and enrichment/transformation. Then, we label the nodes to describe
their functionality (Figure 6-22 on page 154).
 Chapter 6. WebSphere Message Broker business scenario 153

Figure 6-22 Message flow editor

Next, we drag the deployable WSDL from the message set project to the
message editor canvas, which results in launching the Configure New Web
Service Usage wizard. We select the Invoke web service from message flow
option to drive the correct node selections. Figure 6-23 on page 155 shows the
web service parameters and binding operations setting, which were
automatically set from the WSDL.
154 Leveraging CICS Events with an ESB

Figure 6-23 Configure new web service

This action results in a subflow labeled DFH0XCMNOperation_inquireSingle that
is added to the message flow, which is configured with the details derived from
the WSDL. Double-clicking the subflow node results in the message flow editor
displaying the underlying nodes (Figure 6-24 on page 156).
 Chapter 6. WebSphere Message Broker business scenario 155

Figure 6-24 Subflow created by WSDL drag and drop

Displaying the properties of the SOAP Request node reveals the web service
configuration properties, which were set automatically as a result of the WSDL
(Figure 6-25).

Figure 6-25 SOAP Request node properties

We wire the nodes and subflow and code the compute node’s extended SQL
(ESQL) to perform the following actions.

We use the PrepareRequest compute node for the following functions:

� Passing the original CICS event message to MQ queue serving as an archive
log
156 Leveraging CICS Events with an ESB

� Passing the original CICS event message to WebSphere Business Monitor for
dashboard display

� Saving a copy of the original message in an environment variable for later use

� Preparing the message for a web service call

We code the ESQL that is shown in Example 6-4 into the PrepareRequest
compute node.

Example 6-4 PrepareRequest compute node ESQL

DECLARE ns37 NAMESPACE 'http://www.DFH0XCMN.DFH0XCP4.Response.com';
 DECLARE ns13 NAMESPACE
'http://wbe.ibm.com/6.2/Event/ItemOrder-wbe';
 DECLARE ns NAMESPACE 'http://www.DFH0XCMN.DFH0XCP4.Request.com';

 DECLARE cbe NAMESPACE 'http://www.ibm.com/AC/commonbaseevent1_0_1';
 DECLARE ns2 NAMESPACE 'http://www.ibm.com/prod/cics/v1/ItemOrder';
 DECLARE cics NAMESPACE
'http://www.ibm.com/xmlns/prod/cics/events/CBE';

CREATE COMPUTE MODULE CICSItemOrder_PrepareRequest

CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

 -- Save off a copy of the original msg for later use..
 CREATE LASTCHILD Of Environment.Variables.Input DOMAIN('XMLNSC');
 Set Environment.Variables.Input.XMLNSC=InputRoot.XMLNSC;

 -- Send a copy of original mesage to the log queue.
 Set OutputRoot=InputRoot;
 PROPAGATE TO TERMINAL 'out1';

 -- Send a copy of original mesage to WBM.
 Set OutputRoot=InputRoot;
 PROPAGATE TO TERMINAL 'out2';

 -- Prepare the webservice call message..
 Set
OutputRoot.XMLNSC.ns:DFH0XCMNOperation.ns:ca_request_id='01INQS';
 Set OutputRoot.XMLNSC.ns:DFH0XCMNOperation.ns:ca_return_code=0;
 Set
OutputRoot.XMLNSC.ns:DFH0XCMNOperation.ns:ca_response_message='0';
 Chapter 6. WebSphere Message Broker business scenario 157

 Set
OutputRoot.XMLNSC.ns:DFH0XCMNOperation.ns:ca_inquire_single.ns:ca_item_
ref_req=

InputRoot.XMLNSC.cbe:CommonBaseEvent.cics:event.cics:"payload-data".ns2
:payload.ns2:item_ref_number;
 Set
OutputRoot.XMLNSC.ns:DFH0XCMNOperation.ns:ca_inquire_single.ns:filler1=
'0';
 Set
OutputRoot.XMLNSC.ns:DFH0XCMNOperation.ns:ca_inquire_single.ns:filler2=
'0';
 Set
OutputRoot.XMLNSC.ns:DFH0XCMNOperation.ns:ca_inquire_single.ns:ca_singl
e_item.ns:ca_sngl_item_ref=0;
 Set
OutputRoot.XMLNSC.ns:DFH0XCMNOperation.ns:ca_inquire_single.ns:ca_singl
e_item.ns:ca_sngl_description='0';
 Set
OutputRoot.XMLNSC.ns:DFH0XCMNOperation.ns:ca_inquire_single.ns:ca_singl
e_item.ns:ca_sngl_department=0;
 Set
OutputRoot.XMLNSC.ns:DFH0XCMNOperation.ns:ca_inquire_single.ns:ca_singl
e_item.ns:ca_sngl_cost='0';
 Set
OutputRoot.XMLNSC.ns:DFH0XCMNOperation.ns:ca_inquire_single.ns:ca_singl
e_item.ns:in_sngl_stock=0;
 Set
OutputRoot.XMLNSC.ns:DFH0XCMNOperation.ns:ca_inquire_single.ns:ca_singl
e_item.ns:on_sngl_order=0;

 RETURN TRUE;
 END;
END MODULE;

We use the AugmentAndRebuild compute node for these functions:

� Extracting pricing information from the webservice response
� Computing the total order cost
� Transforming the original CBE message to WBE format message
� Adding the total order cost

We code the ESQL that is shown in Example 6-5 on page 159 into the
AugmentAndRebuild compute node.
158 Leveraging CICS Events with an ESB

Example 6-5 AugmentAndRebuild compute node ESQL

CREATE COMPUTE MODULE CICSItemOrder_AugmentAndRebuild

CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

DECLARE item_price DECIMAL;
 DECLARE order_quantity DECIMAL;
 DECLARE total_cost DECIMAL;

 Create LASTCHILD of OutputRoot.XMLNSC NAMESPACE ns13 NAME
'connector' VALUE NULL;

 Set OutputRoot.XMLNSC.ns13:connector.(XMLNSC.Attribute)name='CICS
Catalog Orders';

Set
OutputRoot.XMLNSC.ns13:connector.(XMLNSC.Attribute)version='6.2';

Create LASTCHILD of OutputRoot.XMLNSC.ns13:connector NAMESPACE ns13
NAME 'connector-bundle' VALUE NULL;

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".(XMLNSC.Attrib
ute)name='Event_ItemOrder-esb';

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".(XMLNSC.Attrib
ute)type='Event';

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Context.ns13:"Binding-user-tag"=

Environment.Variables.Input.XMLNSC.cbe:CommonBaseEvent.cics:event.cics:
"context-info".cics:bindingname;

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Context.ns13:"Binding-user-tag".(XMLNSC.Attribute)type='String';

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Context.ns13:"Network-UOWID"=

Environment.Variables.Input.XMLNSC.cbe:CommonBaseEvent.cics:event.cics:
"context-info".cics:UOWid;
 Chapter 6. WebSphere Message Broker business scenario 159

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Context.ns13:"Network-UOWID".(XMLNSC.Attribute)type='String';

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Context.ns13:businessevent=

Environment.Variables.Input.XMLNSC.cbe:CommonBaseEvent.cics:event.cics:
"context-info".cics:eventname;

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Context.ns13:businessevent.(XMLNSC.Attribute)type='String';

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Context.ns13:"Capture-Spec-Name"=

Environment.Variables.Input.XMLNSC.cbe:CommonBaseEvent.cics:event.cics:
"context-info".cics:capturespecname;

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Context.ns13:"Capture-Spec-Name".(XMLNSC.Attribute)type='String';

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Data.ns13:userid=

Environment.Variables.Input.XMLNSC.cbe:CommonBaseEvent.cics:event.cics:
"payload-data".ns2:payload.ns2:userid;

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Data.(XMLNSC.Attribute)type='String';
 Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Data.ns13:"charge_dept"=

Environment.Variables.Input.XMLNSC.cbe:CommonBaseEvent.cics:event.cics:
"payload-data".ns2:payload.ns2:charge_dept;

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Data.ns13:"charge_dept".(XMLNSC.Attribute)type='String';

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Data.ns13:"item_ref_number"=

Environment.Variables.Input.XMLNSC.cbe:CommonBaseEvent.cics:event.cics:
"payload-data".ns2:payload.ns2:item_ref_number;
160 Leveraging CICS Events with an ESB

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Data.ns13:"item_ref_number".(XMLNSC.Attribute)type='Real';

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Data.ns13:"quantity_req"=

Environment.Variables.Input.XMLNSC.cbe:CommonBaseEvent.cics:event.cics:
"payload-data".ns2:payload.ns2:quantity_req;

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Data.ns13:"quantity_req".(XMLNSC.Attribute)type='Real';

 Set order_quantity =
cast(Environment.Variables.Input.XMLNSC.cbe:CommonBaseEvent.cics:event.
cics:"payload-data".ns2:payload.ns2:quantity_req AS DECIMAL);
 Set item_price =
cast(InputRoot.XMLNSC.ns37:DFH0XCMNOperationResponse.ns37:ca_inquire_si
ngle.ns37:ca_single_item.ns37:ca_sngl_cost AS DECIMAL);
 Set total_cost = order_quantity*item_price;
 Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Data.ns13:"order_cost"=total_cost;

Set
OutputRoot.XMLNSC.ns13:connector.ns13:"connector-bundle".ns13:ItemOrder
_Data.ns13:"order_cost".(XMLNSC.Attribute)type='Real';

RETURN TRUE;
END;

END MODULE;

We change the following node properties from their default settings (Figure 6-26
on page 162).
 Chapter 6. WebSphere Message Broker business scenario 161

Figure 6-26 Additional node property changes

We leave the WBEEventOutputNode setting defaults, because we use
WebSphere Business Events on the same Microsoft Windows server as the
WebSphere Message Broker installation, and we verify the WebSphere
Application Server bootstrap port as the default port of 2809 (Figure 6-27).

Figure 6-27 WebSphere Business Events Event Output node properties

Deploying the solution
Now that flow has been properly configured, a broker archive (BAR) file
containing the newly created artifacts has been created and saved. This file was
then deployed to the TESTWBE execution group running under broker
QM70BRK. We verify that the deployment was successful by checking for any
errors during the time of the deployment and by querying the broker run time
using the mqsilist QM70BRK -e TESTWBE command to verify that the new flow and
message sets are now running (Example 6-6 on page 163).
162 Leveraging CICS Events with an ESB

Example 6-6 MQSILIST command output

BIP8071I: Successful command completion.

C:\Program Files\IBM\MQSI\7.0>mqsilist QM70BRK -e TESTWBE
BIP1288I: Message flow 'CICSItemOrder' on execution group 'TESTWBE' is
running.

BIP1290I: File 'cbeMsgSet.xsdzip' is deployed to execution group
'TESTWBE'.
BIP1290I: File 'inquireSingleMsgSet.xsdzip' is deployed to execution
group 'TESTWBE'.
BIP8071I: Successful command completion.

Verifying the solution with the debugger
Now that the message flow is running, we can test it by putting a CICS ItemOrder
event to the message flow input queue and tracking its progress using the
message flow debugger. We place breakpoints between all nodes to intercept the
message at each step and to examine its contents.
 Chapter 6. WebSphere Message Broker business scenario 163

Figure 6-28 shows the message just after it is received.

Figure 6-28 CICS ItemOrder input message
164 Leveraging CICS Events with an ESB

Figure 6-29 shows the message after the PrepareRequest compute node and
just prior to entering the webservice request subflow.

Figure 6-29 Message after PrepareRequest compute node
 Chapter 6. WebSphere Message Broker business scenario 165

Figure 6-30 shows the message returned from the webservice, which contains
the ca_sngl_cost element that allows us to calculate the total order cost.

Figure 6-30 Message with webservice response
166 Leveraging CICS Events with an ESB

Figure 6-31 shows the enriched message in WBE format just prior to entering the
WebSphere Business Events Event Out node.

Figure 6-31 Enriched message in WBE format

The final verification is WebSphere Business Events successfully receiving and
consuming the CICS ItemOrder events.

6.4 Scenario 2

The implementation of scenario 2 does not require any additional ESB function.
 Chapter 6. WebSphere Message Broker business scenario 167

6.5 Scenario 3

Next, we describe scenario 3.

6.5.1 Scenario 3 overview

This scenario is somewhat similar to scenario 1 in that a CICS InsufficientStock
event is received by WebSphere Message Broker. WebSphere Message Broker
forwards the message unchanged to a local queue, which serves as an archive
log, and to WebSphere Business Monitor, which consumes this message and
other InsufficientStock messages. Additionally, WebSphere Message Broker
performs a webservice call to initiate a reorder action. After this call completes,
WebSphere Message Broker converts the original event message to the format
required by WebSphere Business Events and sends it using the
WBEEventOutput node. Figure 6-32 shows the high-level flow design needed to
accomplish this task.

Figure 6-32 Insufficient stock high-level flow design

Setting up the message sets
We begin this setup as we did for the first scenario. We define a File New
Message Set and specify cbe2MSP as the message set project name and
cbe2MsgSet as the actual message set name. In this scenario, we work with a
FailedOrder CICS event message, which has a similar structure to the ItemOrder
event message described previously. However, the FailedOrder CICS event
message uses a separate schema to define the dynamic payload portion of the
message. The CICS event message that is being received is defined by the
following three schema descriptions:

� Common base event
� Static CICS event
� Dynamic FailedOrder event

Differences: Given the similarity of the setup for this scenario compared to
the setup for scenario 1, we describe only those details specific to this
scenario. Refer to scenario 1 details or the IBM WebSphere Message Broker,
Version 7.0, Information Center for additional assistance.

Receive
CICS

reorder
event

message

Send
message
to Log

and WBM

Prepare
message
for WBE

Send
reorder
event to

WBE

Prepare
web

service
call

Call web
service/
receive

response
168 Leveraging CICS Events with an ESB

Next, we launch the New Message Definition File wizard to create three message
definition files using the three schemas as input to this process. After the three
messages have been added to the message set, we must import the message
definition files from cics_cbe_static.mxsd and failedorder.mxsd into the
message schema definition for the cbe101.mxsd file. Finally, we save the updated
cbe101.mxsd file, and we are ready to describe the WSDL. Figure 7-33 shows
the results of the Add Imports.

Figure 6-33 Results of Add Imports

Creating a message set from the WSDL
We provide a new WSDL that defines the new web service that is used to drive a
Reorder Request. After first creating the new message set project,
reorderStockMSP, we add the WSDL to the reorderStockMsgSet message set by
using File New Message Definition File using WSDL. Adding the WSDL
resulted in a deployable WSDL being created in the message set. Also, adding
the WSDL creates several message definitions that are needed to handle the
inbound and outbound messages and the soap header that is used by the soap
Request node when processing the web service call. Figure 6-34 on page 170
shows the contents of the reorderStockMSP project.
 Chapter 6. WebSphere Message Broker business scenario 169

Figure 6-34 reorderStockMsgSet contents

Creating the message flow
We now construct our message flow and configure it to perform the required
tasks. To begin, we populate a blank canvas with the nodes needed for input,
output, and transformation. Then, we label them to describe their functionality.
After we complete the labels, we drop the WSDL onto the canvas and create the
new web service subflow, specifying “Invoke web service from message flow” to
create the proper subflow nodes. Figure 6-35 on page 171 shows the wired
CICSInsufficientStockReOrder flow that is used for this scenario.
170 Leveraging CICS Events with an ESB

Figure 6-35 Wired CICSInsufficientStock message flow

We code the compute node’s ESQL to perform the following actions.

We use the PrepareReorderRequest compute node for these functions:

� Passing the original CICS event message to MQ queue serving as an archive
log

� Passing the original CICS event message to WebSphere Business Monitor for
dashboard display

� Saving a copy of the original message in an environment variable for later use

� Preparing the message for a webservice call

We code the ESQL that is shown in Example 6-7 into the compute node named
PrepareReorderRequest.

Example 6-7 PrepareReorderRequest compute node ESQL

DECLARE ns14 NAMESPACE
'http://wbe.ibm.com/6.2/Event/Event_FailedOrder-esb';
 DECLARE ns6 NAMESPACE 'http://www.CATREODR.CATREO01.Request.com';
 DECLARE tns NAMESPACE
'http://www.ibm.com/prod/cics/v1/FailedOrder';

 Chapter 6. WebSphere Message Broker business scenario 171

 CREATE COMPUTE MODULE
CICSInsufficientStockReOrder_PrepareReorderRequest

 DECLARE cbe NAMESPACE 'http://www.ibm.com/AC/commonbaseevent1_0_1';
 DECLARE cics NAMESPACE
'http://www.ibm.com/xmlns/prod/cics/events/CBE';

CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

 -- Save off a copy of the original msg for later use..
 CREATE LASTCHILD Of Environment.Variables.Input DOMAIN('XMLNSC');
 Set Environment.Variables.Input.XMLNSC=InputRoot.XMLNSC;

 -- Send a copy of original mesage to the log queue.
 Set OutputRoot=InputRoot;
 PROPAGATE TO TERMINAL 'out1';

 -- Send a copy of original mesage to WBM.
 Set OutputRoot=InputRoot;
 PROPAGATE TO TERMINAL 'out2';

 -- Send a copy of original mesage to WBE.
 Set OutputRoot=InputRoot;
 PROPAGATE TO TERMINAL 'out3';

 -- Prepare a webservice reorder call message..
 Set
OutputRoot.XMLNSC.ns6:CATREODROperation.ns6:reorderRequest.ns6:reorderI
tem=

InputRoot.XMLNSC.cbe:CommonBaseEvent.cics:event.cics:"payload-data".tns
:payload.tns:item_ref_number;

RETURN TRUE;
END;

END MODULE;

We use the AugmentAndRebuild compute node to transform the original CBE
format message to the format that WebSphere Business Events requires.
172 Leveraging CICS Events with an ESB

We code the ESQL that is shown in Example 6-8 into the AugmentAndRebuild
compute node.

Example 6-8 ESQL for the AugmentAndRebuild compute node

CREATE COMPUTE MODULE CICSInsufficientStockReOrder_AugmentAndRebuild

 DECLARE cbe NAMESPACE 'http://www.ibm.com/AC/commonbaseevent1_0_1';
 DECLARE cics NAMESPACE
'http://www.ibm.com/xmlns/prod/cics/events/CBE';

CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

 Set OutputRoot.MQMD.Format=MQFMT_STRING;
 Create LASTCHILD of OutputRoot.XMLNSC NAMESPACE ns14 NAME
'connector' VALUE NULL;

 Set
OutputRoot.XMLNSC.ns14:connector.(XMLNSC.Attribute)xmlns='http://wbe.ib
m.com/6.2/Event/Event_FailedOrder-esb';
 Set OutputRoot.XMLNSC.ns14:connector.(XMLNSC.Attribute)name='CICS
Catalog ReOrder';

Set
OutputRoot.XMLNSC.ns14:connector.(XMLNSC.Attribute)version='6.2';

Create LASTCHILD of OutputRoot.XMLNSC.ns14:connector NAMESPACE ns14
NAME 'connector-bundle' VALUE NULL;

Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".(XMLNSC.Attrib
ute)type='Event';

Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".(XMLNSC.Attrib
ute)name='Event_FailedOrder-esb';

Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".ns14:FailedOrd
er_Context.ns14:"Binding-user-tag"=Environment.Variables.Input.XMLNSC.c
be:CommonBaseEvent.cics:event.cics:"context-info".cics:bindingname;

Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".ns14:FailedOrd
er_Context.ns14:"Binding-user-tag".(XMLNSC.Attribute)type='String';

Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".ns14:FailedOrd
 Chapter 6. WebSphere Message Broker business scenario 173

er_Context.ns14:"Network-UOWID"=Environment.Variables.Input.XMLNSC.cbe:
CommonBaseEvent.cics:event.cics:"context-info".cics:UOWid;

Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".ns14:FailedOrd
er_Context.ns14:"Network-UOWID".(XMLNSC.Attribute)type='String';

Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".ns14:FailedOrd
er_Context.ns14:businessevent=Environment.Variables.Input.XMLNSC.cbe:Co
mmonBaseEvent.cics:event.cics:"context-info".cics:eventname;

Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".ns14:FailedOrd
er_Context.ns14:businessevent.(XMLNSC.Attribute)type='String';

Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".ns14:FailedOrd
er_Context.ns14:"Capture-Spec-Name"=Environment.Variables.Input.XMLNSC.
cbe:CommonBaseEvent.cics:event.cics:"context-info".cics:capturespecname
;

Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".ns14:FailedOrd
er_Context.ns14:"Capture-Spec-Name".(XMLNSC.Attribute)type='String';

Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".ns14:FailedOrd
er_Data.ns14:userid=Environment.Variables.Input.XMLNSC.cbe:CommonBaseEv
ent.cics:event.cics:"payload-data".tns:payload.tns:userid;

Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".ns14:FailedOrd
er_Data.ns14:userid.(XMLNSC.Attribute)type='String';
 Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".ns14:FailedOrd
er_Data.ns14:"charge_dept"=Environment.Variables.Input.XMLNSC.cbe:Commo
nBaseEvent.cics:event.cics:"payload-data".tns:payload.tns:charge_dept;

Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".ns14:FailedOrd
er_Data.ns14:"charge_dept".(XMLNSC.Attribute)type='String';

Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".ns14:FailedOrd
er_Data.ns14:"item_ref_number"=Environment.Variables.Input.XMLNSC.cbe:C
ommonBaseEvent.cics:event.cics:"payload-data".tns:payload.tns:item_ref_
number;

Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".ns14:FailedOrd
er_Data.ns14:"item_ref_number".(XMLNSC.Attribute)type='Real';

Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".ns14:FailedOrd
174 Leveraging CICS Events with an ESB

er_Data.ns14:"quantity_req"=Environment.Variables.Input.XMLNSC.cbe:Comm
onBaseEvent.cics:event.cics:"payload-data".tns:payload.tns:quantity_req
;

Set
OutputRoot.XMLNSC.ns14:connector.ns14:"connector-bundle".ns14:FailedOrd
er_Data.ns14:"quantity_req".(XMLNSC.Attribute)type='Real';

RETURN TRUE;
END;

 END MODULE;

We change the node properties that are shown in Figure 6-36 from their default
property settings.

Figure 6-36 Node property changes
 Chapter 6. WebSphere Message Broker business scenario 175

Figure 6-37 shows the completed msgflow.

Figure 6-37 Completed msgflow

Deploying the solution
Configuring the flow created a bar file containing the newly created artifacts,
which was then deployed to the TESTWBE execution group running under the
QM70BRK broker. We verify the success of the deployment by checking for any
deployment time errors and by querying the broker run time using the mqsilist
QM70BRK -e TESTWBE command to verify that the new flow and message sets are
running (Example 6-9).

Example 6-9 MQSILIST command output

C:\Program Files\IBM\MQSI\7.0>mqsilist QM70BRK -e TESTWBE
BIP1288I: Message flow 'CICSItemOrder' on execution group 'TESTWBE' is
running.
BIP1288I: Message flow 'CICSInsufficientStockReOrder' on execution
group 'TESTWBE' is running.
BIP1290I: File 'cbe2MsgSet.xsdzip' is deployed to execution group
'TESTWBE'.
BIP1290I: File 'cbeMsgSet.xsdzip' is deployed to execution group
'TESTWBE'.
BIP1290I: File 'inquireSingleMsgSet.xsdzip' is deployed to execution
group 'TESTWBE'.
176 Leveraging CICS Events with an ESB

BIP1290I: File 'reorderStockMsgSet.xsdzip' is deployed to execution
group 'TESTWBE'.
BIP8071I: Successful command completion.

Verifying the solution with the debugger
Now that the message flow is running, we test it by sending a CICSFailedOrder
event to the message flow input queue and tracking its progress using the
message flow debugger. We placed breakpoints among all nodes to intercept the
message at each step to examine its contents.
 Chapter 6. WebSphere Message Broker business scenario 177

Figure 6-38 shows the message after it was received.

Figure 6-38 Failed order message
178 Leveraging CICS Events with an ESB

Figure 6-39 shows the message after the AugmentAndPrepare compute node
and prior to entering the WebSphere Business Events Event Output node.

Figure 6-39 Message in WBE format
 Chapter 6. WebSphere Message Broker business scenario 179

Figure 6-40 shows the message after the PrepareReorderRequest compute
node and prior to entering the webservice request subflow.

Figure 6-40 Web service reorder request
180 Leveraging CICS Events with an ESB

Figure 7-40 shows the webservice successful web service response.

Figure 6-41 Web service successful reorder response

The final verification is WebSphere Business Events successfully receiving and
consuming the CICS FailedOrder events.

6.6 Scenario 4 test

The implementation of scenario 4 does not require any additional ESB function.
 Chapter 6. WebSphere Message Broker business scenario 181

6.7 Problems encountered, hints, and tips

Overview
During the course of constructing and testing any message flow, problems occur
that require you to perform problem determination, corrective action, and retest,
especially in cases where complex messages are processed by the message
flow. WebSphere Message Broker provides useful debugging tools to help isolate
the issue.

Debugger
The WebSphere Message Broker Toolkit provides a Java-based bebugger that
enables developers to quickly and easily monitor the activity within the message
flow to determine if flow logic is correct. You can set breakpoints in a flow and
then step through the flow. While you are stepping through the flow, you can
examine and change the message variables and the variables that are used by
ESQL code, Java code, and mappings. You can debug a wide variety of error
conditions in flows, such as these error conditions:

� Nodes that are wired incorrectly
� Incorrect conditional branching in transition conditions
� Unintended infinite loops in the flow

We used the debugger successfully during both scenarios to locate ESQL coding
issues. Using the debugger resulted in significant time savings compared to code
inspections alone or capturing and reviewing user traces for each discrepancy
that was encountered.

Tracing
In certain cases, collecting a user trace provides helpful information that can be
used to isolate environment setup issues, for example, if you experience issues
when attempting to deploy a message flow containing a user-defined node.

For detailed information about using the debugger and collecting message flow
user traces, refer to the WebSphere Message Broker V7.0 Information Center at
this website:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v7r0m0/index.jsp

6.8 Summary

In this chapter, we demonstrated two simple scenarios using WebSphere
Message Broker to route, transform, and enrich CICS event messages prior to
delivering the messages to downstream consumers. We showed how to
182 Leveraging CICS Events with an ESB

http://publib.boulder.ibm.com/infocenter/wmbhelp/v7r0m0/index.jsp

configure WebSphere Message Broker to work with event messages originating
in CICS that used multiple schemas and how to use WebSphere Message
Broker to transform those event messages into a WebSphere Business Events
specified format.

The security setup and implementation considerations were outside the scope of
this book and were not included in either test scenario.

We provide specific details of the scenario implementations in the form of a
project interchange file, which is available with the source materials for this IBM
Redbooks publication in Appendix A, “Additional material” on page 401.
 Chapter 6. WebSphere Message Broker business scenario 183

184 Leveraging CICS Events with an ESB

Chapter 7. DataPower business
scenario

In this chapter, we describe the following topics:

� Overview of the environment
� Setup of the environment:

– Customer Information Control System (CICS) setup
– DataPower setup
– WebSphere Business Events setup
– WebSphere Business Monitor setup
– WebSphere Process Server setup

We show how each scenario works and how each product in our environment
handles the event.

7

© Copyright IBM Corp. 2010. All rights reserved. 185

7.1 Environment overview

The DataPower SOA Appliance is a purpose-built IT device that is used to
simplify the development and deployment of applications in a networked
environment. The DataPower device® family (several devices in the family are
shown in Figure 7-1) has a number of members that provide a broad collection of
processing services and data handling capabilities. This book does not
concentrate on describing all the various models and features available, but
instead, it focuses on the integration capabilities of the model XI50. In particular,
this book highlights the use of these capabilities to implement the enterprise
service bus (ESB) architectural pattern.

For complete information about IBM WebSphere DataPower SOA Appliances, go
to this website:

http://www.ibm.com/software/integration/datapower

Figure 7-1 DataPower Appliances

The XI50 provides many of the primitives that are needed by an ESB, including
transformation, mediation, dynamic routing, and protocol conversion. To best
illustrate the use of DataPower as an ESB in our scenario, we chose the
Multi-Protocol Gateway service, because it offers the largest range of capabilities
that do not involve the presentation of Web services (note that the Web Service
Proxy service is provided for virtualizing Web services). We describe the details
of the device configuration in the following sections.
186 Leveraging CICS Events with an ESB

http://www.ibm.com/software/integration/datapower

7.2 Environment configuration

Figure 7-2 shows the topology of our environment.

Figure 7-2 Environment topology

7.2.1 CICS configuration

Next, we describe the CICS configuration.

Creating the bundle project
To configure CICS to emit events, we first create a new bundle project in CICS
Explorer. The bundle project contains the evbind files and other metadata that
will be deployed into CICS.

We perform these steps to create a new bundle project in the CICS Explorer
(Figure 7-3 on page 188):

1. Click Explorer on the menu bar.
2. Mouse over New Wizards.
3. Click CICS Bundle Project.

CICS

WebSphere
Business
Events

WebSphere
Business
Monitor

WebSphere
Process
Server

DataPower
 Chapter 7. DataPower business scenario 187

Figure 7-3 Creating the CICS bundle project

After clicking CICS Bundle Project, we are prompted to name the project. We
name our project CatalogManager. After the project is named, it shows under the
Project Explorer.

Creating the event binding file
After the project has been created, you can create the event binding file. The
event binding is an XML definition that defines one or more business events to
CICS. It consists of the event specifications, capture specifications, and event
processing (EP) adapter and dispatcher information. Follow these steps to create
the event binding file (Figure 7-4 on page 189):

1. Right-click the bundle project name.
2. Mouse over New.
3. Click Event Binding.
188 Leveraging CICS Events with an ESB

Figure 7-4 Create Event Binding

You are prompted to enter a name for the event binding file.

In our scenario, we named our first event binding file SuccessfulOrder and the
second event binding file InsufficientStock. We chose these names because
we capture two events in CICS, and we want the event binding file names to
represent the events.

Creating the event specification
After creating the event binding file, the event binding tab editor is displayed. On
this window, you can add the event specifications. An event specification
describes an event and its processing. In the Event Binding tab, click Add to
create an event specification (Figure 7-5 on page 190).
 Chapter 7. DataPower business scenario 189

Figure 7-5 Creating an event specification

For our successfulOrder event, we create a specification called ItemOrder.

After creating the specification, we select it in the table and click Edit Details. This
option opens the specification tab.

Data to be emitted
We start by defining the information that we want CICS to emit when the event is
triggered. For our scenario, we emit four pieces of data when the event is
triggered. The fields that we emit are described in the copybook DFH0XCP1.
See Example 7-1 on page 194 for the copybook layout. We add the following
fields to the emitted event:

� userid (text field)
� charge_dept (text field)
� item_ref_number (numeric field)
� quantity_req (numeric field)

At this time, we do not need to specify a length or a precision value. Figure 7-6
shows the emitted business information section.

Figure 7-6 Emitted Business Information
190 Leveraging CICS Events with an ESB

Adding a capture specification
Now that you have defined what to emit, you need to set up when to trigger the
event. You can define when to trigger the event by adding a capture specification
to the event binding.

For this scenario, we name our capture specification OrderSuccess, because
when an item is ordered successfully, we want to trigger an event.

You can add a capture specification by clicking Add a Capture Specification
(Figure 7-7).

Figure 7-7 Creating a capture specification

When the capture specification is selected, you see three additional tabs at the
top of the editor window, when you have the Specification editor tab open. Using
these three additional tabs at the top, you can configure the conditions under
which to trigger the event (Figure 7-8 on page 192).
 Chapter 7. DataPower business scenario 191

Figure 7-8 Tab layout

When to trigger the event
After creating the capture specification, consider when to trigger the event. You
can use the EXEC CICS command as the capture point, which can be selected
by clicking the drop-down menu next to Capture Point. In our scenario, we trigger
the event on the EXEC CICS LINK PROGRAM command.

Creating event filters
After selecting a capture point, go to the second tab to set up filters.

Capture after: We use the “Capture after” option, which allows us to filter on
the return code.
192 Leveraging CICS Events with an ESB

In our scenario, we set the Operator for the response code to Equals. We also
set up an event to be triggered only when the link is to DFH0XVDS. We need to
define predicates for application data, because we want to capture only
successful orders. Breaking down the COMMAREA, we know that the order is
successful when the first six bytes are 01ORDR and the next two bytes are 00. We
use this application data as a filter. We click Add. A new window titled Application
Data Predicate opens. We fill in the operator and value fields, as shown in
Figure 7-9, and we click “Select from imported language structure”.

Figure 7-9 Application Data Predicate

We export a COBOL copybook named DFH0XCP1 from the enterprise server to our
desktop. We use the copybook as input to the CICS Explorer Event Binding
 Chapter 7. DataPower business scenario 193

editor so that we can map the COMMAREA accurately. Example 7-1 shows the
copybook that we imported.

Example 7-1 Portion of DFH0XCP1

 03 CA-REQUEST-ID PIC X(6).
 03 CA-RETURN-CODE PIC 9(2).
 03 CA-RESPONSE-MESSAGE PIC X(79).
 03 CA-ORDER-REQUEST.
 05 CA-USERID PIC X(8).
 05 CA-CHARGE-DEPT PIC X(8).
 05 CA-ITEM-REF-NUMBER PIC 9(4).
 05 CA-QUANTITY-REQ PIC 9(3).
 05 FILLER PIC X(888).

After the CICS Explorer parses the copybook, we are presented with a window
(Figure 7-10). The ca_request_id field must have 01ORDR to signify an order. We
select the row for ca_request_id, and we click OK, which returns us to the
Application Data Predicate window. Notice that the type, offset, and length fields
are updated by the CICS Explorer based on the values in the copybook.

Figure 7-10 Language Structure input
194 Leveraging CICS Events with an ESB

After creating a filter on 01ORDER, we create an additional filter on the
ca_return_code field in our copybook. We take the same steps as described
previously and create a filter for 00. When these two conditions are met, we know
that we have a successful order and that an event is emitted. Figure 7-11 shows
the Filtering tab.

Figure 7-11 Completed Filtering view

Now that the filters are set up, in the Specification tab, we define from where the
emitted business information is obtained. Under the Information Sources tab, we
see the four fields that we defined earlier. We can use the copybook that we
exported earlier to specify where these fields are located in the COMMAREA.
We select userid, and we click Edit, which opens a window titled “Information
Source for userid”. Because the emitted information is application data, we select
COMMAREA under the application data tree.

On the right panel, we click “Select from imported language structure”. We
perform the same steps as before when setting a filter on ca_request_id, only
this time, selecting the fields that we want emitted during the event. Figure 7-12
on page 196 shows the completed information sources.
 Chapter 7. DataPower business scenario 195

Figure 7-12 Information Sources tab

Event adapter
The last step in creating the evbind file is to choose the EP adapter through
which to emit the events. For our scenario, we use a WebSphere MQ Queue
adapter that allows the events to be emitted to a queue that is used as input into
DataPower. In the editor, we select WMQ Queue as the adapter. For the queue
name, we specify DP.CICS.CBE.ORDER. For our scenario, we set the data format to
Common Base Event (CBE) (XML).

Exporting schemas
Now that the event binding file is configured to capture the successful order
event, we click Export Event Specifications. This option creates an xsd schema
file that describes the format of the payload of the event that will be emitted by
CICS. During the DataPower configuration, you import this schema into the
tooling. Because we are using a CBE-formatted event, there are two additional
schemas that are needed to describe the entire message. The schema
generated by the explorer is considered the payload or the dynamic portion of the
event. The other portion of the event is the static portion. The static XML schema
ships with CICS at
/usr/lpp/cicsts/cicsts41/schemas/eventprocessing/cics_cbe_static.xsd.
The last schema needed describes the entire CBE envelope within which the
event will be included.
196 Leveraging CICS Events with an ESB

You can obtain this schema at this website:

http://www.eclipse.org/tptp/platform/documents/resources/cbe101spec/Com
monBaseEvent_SituationData_V1.0.1.pdf

We use these three schema definitions later as input to the DataPower tools.

Insufficient stock event
The only differences between the successful order event and the insufficient
stock event are the return code and the queue to which the event is written.
Everything else remains the same, so we take the same steps that were
described previously to create a second event. We need to make two changes:

� When setting up the filter predicates, filter on a 97 for ca_return_code.
� Define a separate queue for the event. We named our queue

DP.CICS.CBE.INSUF.STOCK.

Deploying the events to CICS
Now that the event binding files have been created, the next step is to deploy
these artifacts to CICS. As long as you have connected the CICS Explorer to a
host system, you can perform this step in the CICS Explorer.

In the left pane, under the Project Explorer, we right-click the project name. We
select “Export to system z HFS” and fill in the destination system detail
credentials, as necessary. We determine the location on zFS to which to export
the bundle. We organize zFS in a way that works for our environment, for
example, production versus test, or by region. We do not use our home
/u/userid directory. For this scenario, we use the
/cicslab/cics/epred2/bundles/events/ directory. The CICS Explorer appends
the name of the project to the directory. In our case, the directory is
/cicslab/cics/epred2/bundles/events/CatalogManager.

When you browse that directory, you see the META-INF directory and the two
event binding files.

Defining the bundle resource
Now that we have exported the event binding files into the hierarchical file system
(HFS), we need to create a bundle definition. If you have a CICS management
client interface (CMCI) connection, you can create a bundle definition directly
through the explorer. We switch to the CICS Systems Management perspective
(which is part of CICS Explorer), select the CICS region in which to install the
bundle, and click Administration Bundle Definitions. When we define our
bundle definition, we need to specify the bundle directory. In our scenario, the
bundle directory is the /cicslab/cics/epred2/bundles/events/CatalogManager
 Chapter 7. DataPower business scenario 197

http://www.eclipse.org/tptp/platform/documents/resources/cbe101spec/CommonBaseEvent_SituationData_V1.0.1.pdf

directory. Figure 7-13 shows the attributes for the newly created bundle
definition.

Figure 7-13 Bundle Attributes

After defining the bundle definition, we install it. The events portion of the CICS
configuration is complete.

7.2.2 DataPower configuration

Next, we configure DataPower.

Multi-Protocol Gateway service configuration
We use the Multi-Protocol Gateway service to provide our ESB functionality. The
implementation actually employs two gateways: one gateway for general orders
and another gateway to handle the special processing of failed orders
(Figure 7-14 on page 199). There is a lot of flexibility allowed. Decisions
regarding the number of device services to use and the details of their
configurations are based on many requirements.
198 Leveraging CICS Events with an ESB

Figure 7-14 Multi-Protocol Gateways used in the example scenario

We configure the Multi-Protocol Gateways and related support objects that are
used in our scenario by using the WebGUI browser interface. Figure 7-15 shows
the major Multi-Protocol Gateway configuration page for the order service.

Figure 7-15 Configuration page for the order service

Before we proceed with the service definitions for catalog orders and failed
orders, we define several configuration objects that will be used by both of the
services.
 Chapter 7. DataPower business scenario 199

Multi-Protocol Gateway front side handler configuration
The Multi-Protocol Gateway service accepts incoming requests in a number of
communication protocols. Our example uses the WebSphere MQ protocol
exclusively and thus requires the definition of an MQ Front Side Handler (FSH)
and an MQ Queue Manager (QM). Combined, these objects allow the service to
communicate with both client-side and back-end resources.

Defining the MQ Queue Manager
An MQ FSH requires an MQ Queue Manager object to provide the location of the
Queue Manager host machine. To define the MQ Queue Manager using the
WebGUI, we navigate to the Objects Network Settings MQ Queue
Manager page. We see a list of the objects that are presently defined, if any. We
click Add to display a page of options for the new MQ Queue Manager. Although
there are many simple and advanced configuration settings presented, the only
required field is the Host Name value. Because our scenario employs the use of
a Queue Manager other than the default Queue Manager, we provide a value in
the Queue Manager Name field, as well. Figure 7-16 shows the relevant fields.

Figure 7-16 MQ Queue Manager settings
200 Leveraging CICS Events with an ESB

Defining the MQ Front Side Handler
The MQ FSH contains a reference to the MQ Queue Manager and provides the
names of the various queues that are used to pass messages to the service. To
create a new MQ FSH, we select Objects Protocol Handlers MQ Front Side
Handler. We click Add to create a new definition. We can configure a number of
options and settings. Because our scenario does not provide response
messages, we only define a value for the Get Queue field. We must also specify
the MQ Queue Manager that was defined in the previous step, because it
provides the network connectivity to the host computer. Figure 7-17 shows the
relevant field values.

Figure 7-17 MQ Front Side Handler settings

WebSphere Java Message Service configuration
We use the network and protocol configuration objects that have been discussed
up to this point for getting event messages into the Multi-Protocol Gateway
service through the MQ FSH.

There are two options for communicating with the WebSphere Business Events
runtime at the back end. We can use the WebSphere Business Events
Connectors, which provide a predefined communication capability for the
 Chapter 7. DataPower business scenario 201

WebSphere Business Events runtime. However, having the DataPower device
functioning as an ESB gives us another option for communicating with
WebSphere Business Events. We can create a WebSphere Java Message
Service (JMS) messaging object, which allows us to publish events directly to the
WebSphere Business Events runtime event topic. This approach simplifies both
the configuration of the WebSphere Business Events runtime environment and
the deployed topology of the overall system.

Defining the WebSphere Java Message Service
We select Objects Network Settings WebSphere JMS and click Add to
create a new definition. On the Main tab, the only non-default required field is the
value for WebSphere JMS Messaging Bus. The default value for a typical
WebSphere Business Events installation is WbeBus, as shown in Figure 7-18.

Figure 7-18 WebSphere JMS settings

The WebSphere JMS Endpoint tab is where we enter the configuration
information pertaining to the JMS host. The values of the three fields shown,
host, port, and protocol, are largely self-explanatory, but note that you can
identify the target port by inspecting the symbolic name SIB_ENDPOINT_ADDRESS
or SIB_ENDPOINT_SECURE_ADDRESS in the WebSphere Application Server
Administration Console. Figure 7-19 shows the advanced settings.

Figure 7-19 WebSphere JMS settings
202 Leveraging CICS Events with an ESB

Copying file artifacts to the device
The final step before we start the configuration of the Multi-Protocol Gateway
service and begin constructing the document processing policy is to copy several
support files to the device. We use these files by the various actions in the
document processing policy to perform the validation of incoming events, the
transformation from the source event format to the target event format, and for
the invocation of supporting Web services. The files were created off of the
device using a text editor or were emitted by the CICS tooling, as described in
7.2.1, “CICS configuration” on page 187. Table 7-1 lists the files.

Table 7-1 Files used by the Multi-Protocol Gateway services

File name Device location Purpose

cbe101.xsd local://CICS/XSD Common Base Event
schema used to validate
incoming Common Event
Infrastructure (CEI) events

cics_cbe_static.xsd local://CICS/XSD CICS static event schema
used to validate an
extracted CICS event

FailedOrder.xsd local://CICS/XSD Failed order event schema
used to validate extracted
event payload

ItemOrder.xsd local://CICS/XSD Order event schema used
to validate extracted event
payload

ItemRestock.xsl local://CICS/XSL Stylesheet used to invoke
the Restock Item web
service

queryItem.xsl local://CICS/XSL Stylesheet used to invoke
the Query Item web
service

wbeEvent.xsl local://CICS/XSL Stylesheet used to create
the WebSphere Business
Events order event

wbeFailedOrderEvent.xsl local://CICS/XSL Stylesheet used to created
the WebSphere Business
Events failed order event
 Chapter 7. DataPower business scenario 203

We can copy the files to the device using the WebGUI File Management interface
that is shown in Figure 7-20. The source files generally reside on the host
computer where the WebGUI is running. To upload the files, we select Control
Panel File Management and expand the local: folder (Figure 7-20).

Figure 7-20 The WebGUI File Management interface

Clicking Actions for the local: folder opens the Directory Actions menu, where
we can create a new subfolder and copy the necessary files.

7.2.3 Scenario 1

Next, we describe scenario 1.

Configuring the Multi-Protocol Gateway order service
With the supporting network and protocol objects defined and the file artifacts
instanced on the device, we can now proceed to the creation of the actual order
service gateway. To create a new Multi-Protocol Gateway service, we select
Control Panel Multi-Protocol Gateway and click Add.
204 Leveraging CICS Events with an ESB

General settings
We access all the configuration options that we will change from the General
Settings tab of the Configure Multi-Protocol Gateway page (shown in Figure 7-15
on page 199). The input to the Multi-Protocol Gateway is a function of the Front
Side Handlers that are configured for the service. Although a gateway service
can have a number of Front Side Handlers spanning all the available
communication protocols, for our scenario, we only need to take event messages
from WebSphere MQ. We add the MQ FSH that we defined earlier. To establish a
Front Side Handler, we select it from the Front Side Protocol drop-down list in the
Front side settings section and click Add. The FSH is added to the list of
configured handlers, as shown in Figure 7-21.

Figure 7-21 Completed Front Side Handler configuration

There are many options available in the Multi-Protocol Gateway for
communicating with back-end destinations. We ultimately will send messages to
a number of destinations, but the primary consumer of event messages
produced by the ESB is WebSphere Business Events. To establish that
connection, we designate the back-end type of this gateway as static-back end
and establish a Backend URL to specify both the protocol and network location of
the WebSphere Business Events runtime. Figure 7-22 on page 206 shows the
designation of Type and Backend URL.
 Chapter 7. DataPower business scenario 205

Figure 7-22 Multi-Protocol Gateway back-end Type and URL designations

Although the back-end value employs a URL syntax, the format of many URLs
that are used in device service configurations is specific to DataPower. The
Extension Elements and Functions Catalog describes all of the available formats
in great detail, but we discuss the specifics of our chosen setting. Recall that we
plan to publish our event messages directly to the JMS event topic of the
WebSphere Business Events runtime rather than use the WebSphere Business
Events JMS Connector. The following form is the general form of the DataPower
URL that is used to publish our event messages directly to the JMS event topic of
the WebSphere Business Events runtime:

dpwasjms://server-object/?RequestQueue=queue;RequestTopicSpace=topic-space

The protocol scheme dpwasjms identifies this type of URL as a JMS URL. The
value of the server-object is the name of the WebSphere JMS network object that
we defined earlier. The parameter values for RequestQueue and
RequestTopicSpace must match the values that are configured on the
messaging bus of the WebSphere Application Server, which is running
WebSphere Business Events. By default, the WebSphere Business Events event
topic name is eventTopic and the topic space is WbeTopicSpace. The value of
RequestQueue must be qualified with the identifier topic: when the value
represents a JMS topic. The following example is the exact URL setting:

dpwasjms://CICS-JMS/?RequestQueue=topic:eventTopic;RequestTopicSpace=WbeTopicSp
ace
206 Leveraging CICS Events with an ESB

Document processing policy definition
With the basic Multi-Protocol Gateway service level details, including input and
output, established, we now focus on the heart of the service, the document
processing policy. This part of message handling is also known as multistep
processing. The general pattern is for the device to perform any required
front-side processing (flow control, XML threat protection, XML parsing, and so
on) and, then, for the device to begin multistep processing. After all the multistep
processing actions have completed, the result is routed to the back end. We
describe this message flow through the device in a general manner. We omit
many details and options, especially in the area of error handling, because those
details are not specifically relevant to our scenario. To create a new document
processing policy, we click the plus symbol (+) next to the Multi-Protocol Gateway
Policy drop-down list, as shown in Figure 7-23.

Figure 7-23 Document processing policy

Document processing policy rule editor
A DataPower document processing policy consists of a number of discrete rules
that apply to message traffic flowing through a service. Rules can apply in a
unidirectional fashion, pertaining either to client-to-server or server-to-client
traffic, or bidirectional, applying to both client requests and server responses.
The rules themselves must at a minimum have a match action, which defines the
criteria that are used to select the rule for execution. Beyond the match action,
rules have a variable number of processing actions, which execute against the
message.

The DataPower Multi-Protocol Gateway Developers Guide, which ships with the
product, contains extensive information about document processing policies,
including the use of the rule editor. It does not offer information about what is
possible in multistep rules. Figure 7-24 on page 208 shows our document
processing policy for order events.
 Chapter 7. DataPower business scenario 207

Figure 7-24 Document processing policy rule editor

Document processing policy actions
Central to the flow of data through the actions in a rule is the concept of a
context. A context is a short-lived region of storage, which is identified by a name
that contains transient data. Processing actions typically act on the data
presented to them in a context and can, if necessary, create a new output context
for subsequent processing actions to consume. Although this superficial
overview of contexts omits many important aspects, we hope that it suffices to
help you understand how the actions in this policy interact with each other.
Table 7-2 on page 209 describes the actions that are used in this processing
policy and details the contexts that they use.
208 Leveraging CICS Events with an ESB

Table 7-2 Order Multi-Protocol Gateway document processing policy actions

Next, we describe the configuration settings of these actions in detail.

Action Contexts Purpose

Match N/A Select this rule for
execution

Log Input: INPUT
Output: NULL

Log the incoming event

Validate Input: INPUT
Output: NULL

Validate the incoming CEI
event from CICS against
the CBE schema

Extract Input: INPUT
Output: event-context

Using XPATH, extract the
CICS event from the CBE

Validate Input: event-context
Output: NULL

Validate the CICS event
against the CICS static
schema

Extract Input: event-context
Output: payload-context

Using XPATH, extract the
event payload from the
CICS event

Validate Input: payload-context
Output: NULL

Validate the event payload
against the CICS payload
schema

Transform Input: payload-context
Output: NULL

Invoke the Query Item web
service to enrich the event

Transform Input: event-context
Output: wbe-event

Convert the CICS event to
the WebSphere Business
Events event format

Results Input: wbe-event
Output: NULL

Send the WebSphere
Business Events event to
the statically defined
service back end

Results Input: INPUT
Output: NULL

Send the original input
event to MQ for
WebSphere Business
Monitor
 Chapter 7. DataPower business scenario 209

Match action
The match action, which is also known as a match rule, determines whether the
document processing policy rule, in which it appears, actually executes. Match
rules have a number of types and options for each of those types. You can use a
single match action object in multiple processing policy rules, even rules
spanning services within the same application domain. We use the URL match
rule type of matching rule in our scenario. This type of match checks the value of
the incoming URL against a simple pattern. If a match is made, the rule executes.
Figure 7-25 shows the match rule.

Figure 7-25 Order processing policy match rule

The URL Match pattern of an asterisk character (*) selects all traffic for
processing. If we want to be more restrictive, we can use a match pattern of
dpmq://*, which only matches traffic coming over WebSphere MQ. Still another
option is to define an XPATH match rule to examine the incoming message itself.
If the XPATH expression evaluated to true, the rule executes.

Log action
The first policy action in our rule is to log the incoming event message. There are
several reasons to require this policy action, such as audit and debugging.
Because our logging destination is a WebSphere MQ queue, we select the URL
protocol scheme from the list of available logging protocols. We enter an
appropriate URL value and set the Destination settings. The other options allow
for flexibility in the additional metadata values that are associated with the log
message. The Log Level and a user-defined Log Type can have semantic
meanings at the log destination.
210 Leveraging CICS Events with an ESB

Figure 7-26 shows the settings for our log action. Note that the log action uses
the INPUT context, which means that it sends the content of the original source
event to the log destination. Because the log action does not modify the source
message in any way, for efficiency, you can set the output context explicitly to
NULL, or leave it blank.

Figure 7-26 Log action settings

Validate action on the incoming event
Because we characterized our incoming traffic as XML, one of the first actions
taken by the Multi-Protocol Gateway service is to parse the message before
invoking multistep processing. If the message fails to parse, it is rejected without
any further action taken. Thus, within our document processing policy, we know
then that we have a well-formed XML message.

But, before we take any further action, we want to know that the message
containing the base event is valid in accordance with the Common Base Event
(CBE) schema. Therefore, we use Validate Action. The schema, which will be
used to perform the validation, was copied to the device during our initial setup
phase. There are many Schema Validation Method options from which to
 Chapter 7. DataPower business scenario 211

choose, but having the schema housed on the device suffices for our scenario.
Figure 7-27 shows the settings for this validate action.

Figure 7-27 CBE Validate Action settings

Note that we have chosen to create a new Output context at this point called
cbe-context. Other than the name, it is identical to the INPUT context, because
the validate action acts primarily as a filter. We use this new context in
subsequent steps. Having a meaningful name helps to clarify exactly what data is
being processed.

Extract action to obtain the CICS static event
After passing the first validation action, we know we have a valid CBE. The CICS
tooling produces a pair of schemas, which can be used to validate the static
portion of an event and the dynamic payload of the event. We intend for the next
few actions in the document processing policy to isolate and validate these
entities. The Extract Using XPath Action allows us to select the portion of the
incoming CBE that represents the CICS event. Figure 7-28 on page 213 shows
the settings.
212 Leveraging CICS Events with an ESB

Figure 7-28 Extract CICS event from the CBE

The Input context to this action is the Output context of the last validate action,
the cbe-context. The current action’s Output will be another new context with the
descriptive name event-context. Note that the data in this new context is a
subset of the original Input context. The data itself is extracted using an XPATH
expression intended to obtain the CICS event from the original CBE. We
construct the following XPATH expression using the XPath tool:

/*[namespace-uri()='http://www.ibm.com/AC/commonbaseevent1_0_1' and
local-name()='CommonBaseEvent']/*[namespace-uri()='http://www.ibm.com/x
mlns/prod/cics/events/CBE' and local-name()='event']

The tool can build an XPATH expression from any valid sample XML document
that represents the structure of an expected message.

Validating the CICS static event body
We want to validate the CICS static event against the schema emitted from the
CICS tooling. We use the Validate Action option. The schema is contained in the
cics_cbe_static.xsd file, which was uploaded to the device in a previous step.
 Chapter 7. DataPower business scenario 213

The Input context is event-context from the previous extract action. Because
there is no Output context, we specify it as NULL or leave it blank.

Extracting the event payload from the CICS static event body
This action utilizes an XPATH expression to select the portion of the CICS static
event containing the payload. The Input context is event-context. The XPATH
expression, which was built using the XPath tool, identifies the part of the CICS
static event containing the payload:

/*[namespace-uri()='http://www.ibm.com/xmlns/prod/cics/events/CBE' and
local-name()='event']/*[namespace-uri()='http://www.ibm.com/xmlns/prod/
cics/events/CBE' and
local-name()='payload-data']/*[namespace-uri()='http://www.ibm.com/prod
/cics/v1/ItemOrder' and local-name()='payload']

The Output context, which is named payload-context, holds the result.

Validating the event payload
The second schema that is produced by the CICS tooling is specific to the event
payload that is carried in the CICS static event. For the Order Processing service,
this schema is ItemOrder.xsd. We apply a validate action to insure that the final
event payload conforms to the schema. The Input context is payload-context
from the most recent extract action, and the Output is NULL.

Transform action: Enriching the input event
Up to this point, our processing policy has validated and extracted various parts
of the input message. At the completion of these processing actions, we have
isolated the incoming event payload in its own context named payload-context.
Before transforming the CICS payload to a format that is suitable for WebSphere
Business Events, we perform an enrichment step. The incoming event contains
an item number and a quantity ordered. From this information, we compute the
total cost of the order. However, we need to find the price for the item and then
calculate the total based on the quantity of items requested. We use the
transform action to execute an Extensible Stylesheet Language (XSL) stylesheet,
which performs the necessary steps to enrich the event. Figure 7-29 on
page 215 shows the details of the transform action configuration.
214 Leveraging CICS Events with an ESB

Figure 7-29 Transform Action for query item

Example 7-2 shows the stylesheet.

Example 7-2 Enrichment stylesheet for queryItem.xsl

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:dp="http://www.datapower.com/extensions"
 xmlns:dpquery="http://www.datapower.com/param/query"
 extension-element-prefixes="dp"
 exclude-result-prefixes="dp">

 <xsl:template match="/">

 <xsl:variable name="itemNumber"
select="/*[namespace-uri()='http://www.ibm.com/prod/cics/v1/ItemOrder'
and
local-name()='payload']/*[namespace-uri()='http://www.ibm.com/prod/cics
/v1/ItemOrder' and local-name()='item_ref_number']"/>
 Chapter 7. DataPower business scenario 215

 <dp:set-variable name="'var://context/enrichment/itemNumber'"
value="$itemNumber"/>

 <xsl:variable name="soap-request">

<soapenv:Envelope
 xmlns:q0="http://www.DFH0XCMN.DFH0XCP4.Request.com"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <q0:DFH0XCMNOperation>
 <q0:ca_request_id>01INQS</q0:ca_request_id>
 <q0:ca_return_code>0</q0:ca_return_code>
 <q0:ca_response_message/>
 <q0:ca_inquire_single>

<q0:ca_item_ref_req>
 <xsl:value-of select="$itemNumber"/>
 </q0:ca_item_ref_req>

<q0:filler1/>
<q0:filler2/>
<q0:ca_single_item>
 <q0:ca_sngl_item_ref>0</q0:ca_sngl_item_ref>
 <q0:ca_sngl_description/>
 <q0:ca_sngl_department>0</q0:ca_sngl_department>
 <q0:ca_sngl_cost/>
 <q0:in_sngl_stock>0</q0:in_sngl_stock>
 <q0:on_sngl_order>0</q0:on_sngl_order>
</q0:ca_single_item>

 </q0:ca_inquire_single>
 </q0:DFH0XCMNOperation>
 </soapenv:Body>
</soapenv:Envelope>

 </xsl:variable>

 <xsl:variable name="soap-response"

select="dp:soap-call('http://9.12.4.75:03702/exampleApp/inquireSingle',
$soap-request)"/>
 <xsl:copy-of select="$soap-response"/>

 <xsl:variable name="itemCost"
select="$soap-response/*[namespace-uri()='http://schemas.xmlsoap.org/so
ap/envelope/' and
local-name()='Envelope']/*[namespace-uri()='http://schemas.xmlsoap.org/
soap/envelope/' and
216 Leveraging CICS Events with an ESB

local-name()='Body']/*[namespace-uri()='http://www.DFH0XCMN.DFH0XCP4.Re
sponse.com' and
local-name()='DFH0XCMNOperationResponse']/*[namespace-uri()='http://www
.DFH0XCMN.DFH0XCP4.Response.com' and
local-name()='ca_inquire_single']/*[namespace-uri()='http://www.DFH0XCM
N.DFH0XCP4.Response.com' and
local-name()='ca_single_item']/*[namespace-uri()='http://www.DFH0XCMN.D
FH0XCP4.Response.com' and local-name()='ca_sngl_cost']"/>
 <dp:set-variable name="'var://context/enrichment/itemCost'"
value="$itemCost"/>
 <xsl:variable name="itemCostVal">
 <xsl:value-of select="$itemCost"/>
 </xsl:variable>

<xsl:message dp:priority="debug">
**** itemCostVal: <xsl:value-of select="$itemCostVal"/>
</xsl:message>

 <xsl:variable name="itemQuantity"
select="/*[namespace-uri()='http://www.ibm.com/prod/cics/v1/ItemOrder'
and
local-name()='payload']/*[namespace-uri()='http://www.ibm.com/prod/cics
/v1/ItemOrder' and local-name()='quantity_req']"/>
 <dp:set-variable name="'var://context/enrichment/itemQuantity'"
value="$itemQuantity"/>
 <xsl:variable name="itemQuantityVal">
 <xsl:value-of select="substring-after($itemQuantity, '+')"/>
 </xsl:variable>

<xsl:message dp:priority="debug">
**** itemQuantityVal: <xsl:value-of select="$itemQuantityVal"/>
</xsl:message>

 <xsl:variable name="orderTotal" select="($itemQuantityVal *
$itemCostVal)"/>
 <dp:set-variable name="'var://context/enrichment/orderTotal'"
value="$orderTotal"/>
 <xsl:message dp:priority="debug">
 <xsl:value-of select="concat('**** orderTotal: ',
$orderTotal)"/>
 </xsl:message>

 </xsl:template>

</xsl:stylesheet>
 Chapter 7. DataPower business scenario 217

The code that is shown in Example 7-2 on page 215 performs these steps:

� Extracts the item number from the incoming event context using XPATH
� Constructs a suitable SOAP request for invoking the Query Item web service
� Calls the Query Item web service using the dp:soap-call() extension function
� Retrieves the item cost from the SOAP response
� Extracts the quantity from the incoming event context
� Computes the order total
� Saves the total in the DataPower context variable that is named

var://context/enrichment/orderTotal

The primary output of this action is the context variable, which contains the value
of the order total.

Transform action: Constructing the WebSphere Business Events
event

The final step in data handling is to transform the incoming CICS event to the
WebSphere Business Events event format and to enrich it with the value that was
computed in the prior action. All the required inputs to construct the target
WebSphere Business Events event are available in the event-context and the
DataPower context variables. The schema that is produced by the WebSphere
Business Events Design Data tool defines the exact format of the WebSphere
Business Events event. Because this step is performed using a stylesheet, we
use the transform action. Figure 7-30 on page 219 shows the configuration of
this transform action.
218 Leveraging CICS Events with an ESB

Figure 7-30 Transform action to create the WebSphere Business Events event

Example 7-3 shows the wbeEvent.xsl stylesheet that is configured in the action.

Example 7-3 Event generation stylesheet wbeEvent.xsl

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:dp="http://www.datapower.com/extensions"
 xmlns:dpquery="http://www.datapower.com/param/query"
 extension-element-prefixes="dp"
 exclude-result-prefixes="dp">

 <xsl:template match="/">

 <xsl:variable name="binding-user-tag"
select="/*[namespace-uri()='http://www.ibm.com/xmlns/prod/cics/events/C
BE' and
local-name()='event']/*[namespace-uri()='http://www.ibm.com/xmlns/prod/
cics/events/CBE' and
 Chapter 7. DataPower business scenario 219

local-name()='context-info']/*[namespace-uri()='http://www.ibm.com/xmln
s/prod/cics/events/CBE' and local-name()='bindingname']"/>
 <xsl:variable name="network-uowid"
select="/*[namespace-uri()='http://www.ibm.com/xmlns/prod/cics/events/C
BE' and
local-name()='event']/*[namespace-uri()='http://www.ibm.com/xmlns/prod/
cics/events/CBE' and
local-name()='context-info']/*[namespace-uri()='http://www.ibm.com/xmln
s/prod/cics/events/CBE' and local-name()='UOWid']"/>
 <xsl:variable name="businessevent"
select="/*[namespace-uri()='http://www.ibm.com/xmlns/prod/cics/events/C
BE' and
local-name()='event']/*[namespace-uri()='http://www.ibm.com/xmlns/prod/
cics/events/CBE' and
local-name()='context-info']/*[namespace-uri()='http://www.ibm.com/xmln
s/prod/cics/events/CBE' and local-name()='eventname']"/>
 <xsl:variable name="capture-spec-name"
select="/*[namespace-uri()='http://www.ibm.com/xmlns/prod/cics/events/C
BE' and
local-name()='event']/*[namespace-uri()='http://www.ibm.com/xmlns/prod/
cics/events/CBE' and
local-name()='context-info']/*[namespace-uri()='http://www.ibm.com/xmln
s/prod/cics/events/CBE' and local-name()='capturespecname']"/>

 <xsl:variable name="userid"
select="/*[namespace-uri()='http://www.ibm.com/xmlns/prod/cics/events/C
BE' and
local-name()='event']/*[namespace-uri()='http://www.ibm.com/xmlns/prod/
cics/events/CBE' and
local-name()='payload-data']/*[namespace-uri()='http://www.ibm.com/prod
/cics/v1/ItemOrder' and
local-name()='payload']/*[namespace-uri()='http://www.ibm.com/prod/cics
/v1/ItemOrder' and local-name()='userid']"/>
 <xsl:variable name="charge_dept"
select="/*[namespace-uri()='http://www.ibm.com/xmlns/prod/cics/events/C
BE' and
local-name()='event']/*[namespace-uri()='http://www.ibm.com/xmlns/prod/
cics/events/CBE' and
local-name()='payload-data']/*[namespace-uri()='http://www.ibm.com/prod
/cics/v1/ItemOrder' and
local-name()='payload']/*[namespace-uri()='http://www.ibm.com/prod/cics
/v1/ItemOrder' and local-name()='charge_dept']"/>
 <xsl:variable name="item_ref_number"
select="/*[namespace-uri()='http://www.ibm.com/xmlns/prod/cics/events/C
BE' and
220 Leveraging CICS Events with an ESB

local-name()='event']/*[namespace-uri()='http://www.ibm.com/xmlns/prod/
cics/events/CBE' and
local-name()='payload-data']/*[namespace-uri()='http://www.ibm.com/prod
/cics/v1/ItemOrder' and
local-name()='payload']/*[namespace-uri()='http://www.ibm.com/prod/cics
/v1/ItemOrder' and local-name()='item_ref_number']"/>
 <xsl:variable name="quantity_req"
select="/*[namespace-uri()='http://www.ibm.com/xmlns/prod/cics/events/C
BE' and
local-name()='event']/*[namespace-uri()='http://www.ibm.com/xmlns/prod/
cics/events/CBE' and
local-name()='payload-data']/*[namespace-uri()='http://www.ibm.com/prod
/cics/v1/ItemOrder' and
local-name()='payload']/*[namespace-uri()='http://www.ibm.com/prod/cics
/v1/ItemOrder' and local-name()='quantity_req']"/>
 <xsl:variable name="order_cost"
select="dp:variable('var://context/enrichment/orderTotal')"/>

<connector name="CICS Catalog Orders" version="6.2">
 <connector-bundle name="Event_ItemOrder-esb" type="Event">
 <ItemOrder_Context>
 <Binding-user-tag type="String">

 <xsl:value-of select="$binding-user-tag"/>
 </Binding-user-tag>
 <Network-UOWID type="String">

 <xsl:value-of select="$network-uowid"/>
 </Network-UOWID>
 <businessevent type="String">

 <xsl:value-of select="$businessevent"/>
 </businessevent>
 <Capture-Spec-Name type="String">

 <xsl:value-of select="$capture-spec-name"/>
 </Capture-Spec-Name>
 </ItemOrder_Context>
 <ItemOrder_Data>
 <userid type="String">

 <xsl:value-of select="normalize-space($userid)"/>
 </userid>
 <charge_dept type="String">

 <xsl:value-of select="normalize-space($charge_dept)"/>
 </charge_dept>
 <item_ref_number type="Real">

 <xsl:value-of select="substring-after($item_ref_number, '+')"/>
 </item_ref_number>
 <quantity_req type="Real">
 Chapter 7. DataPower business scenario 221

 <xsl:value-of select="substring-after($quantity_req, '+')"/>
 </quantity_req>
 <order_cost type="Real">

 <xsl:value-of select="$order_cost"/>
 </order_cost>
 </ItemOrder_Data>
 </connector-bundle>
</connector>

 </xsl:template>

</xsl:stylesheet>

The WebSphere Business Events event generation stylesheet performs the
following tasks:

� Extracts the payload item values that are needed from the Input context

� Generates the WebSphere Business Events event using the proper values
from the Input context and the DataPower context variables

The output of this action is a new context named wbe-event. This context
represents the event packet that will be sent to WebSphere Business Events.

Results action: Sending the WebSphere Business Events event to
the configured back end

Now that all validation, enrichment, and transformation steps are complete, we
send the new event packet onto WebSphere Business Events for additional
complex event processing. Figure 7-31 on page 223 shows the results action that
is used.
222 Leveraging CICS Events with an ESB

Figure 7-31 Results Action used to send an event to WebSphere Business Events

Recall that the Order Multi-Protocol Gateway service is configured to send output
to the WebSphere Business Events runtime by publishing directly to its event
topic. Therefore, this results action only needs to take the Input context of
wbe-event. The implicit target of this action is the statically configured back end
of the service. Example 7-4 shows the event that is sent to WebSphere Business
Events.

Example 7-4 WebSphere Business Events event packet from DataPower

<connector name="CICS Catalog Orders" version="6.2">
<connector-bundle name="Event_ItemOrder-esb" type="Event">
<ItemOrder_Context>
<Binding-user-tag type="String">SuccessfulOrder</Binding-user-tag>
<Network-UOWID
type="String">170EE4E2C9C2D4E2C34BC5D7D9C5C4F2AE9FE09887EC0001000000</N
etwork-UOWID>
<businessevent type="String">ItemOrder</businessevent>
<Capture-Spec-Name type="String">OrderSuccess</Capture-Spec-Name>
</ItemOrder_Context>
 Chapter 7. DataPower business scenario 223

<ItemOrder_Data>
<userid type="String">Person12</userid>
<charge_dept type="String">Dept0002</charge_dept>
<item_ref_number type="Real">30</item_ref_number>
<quantity_req type="Real">2</quantity_req>
<order_cost type="Real">5.8</order_cost>
</ItemOrder_Data>
</connector-bundle>
</connector>

Results action: Sending the CICS event to WebSphere Business
Monitor

The final action in our document processing policy sends the original CBE CICS
event to WebSphere Business Monitor. Because this message is the original
message that was sent to the service, the Input context is INPUT. Figure 7-32
shows the settings for this action.

Figure 7-32 Results action: Send to WebSphere Business Monitor
224 Leveraging CICS Events with an ESB

The destination in this case is a queue on the MQ server, which WebSphere
Business Monitor scans for new messages. Setting the Destination type of URL
to dpmq:// and value to CICS-QM/?RequestQueue=DP.DP.CBE.ORDER insures that
the message is sent to the target queue that is hosted by the MQ Queue
Manager.

7.2.4 Scenario 3

Next, we describe scenario 3.

Configuring the Multi-Protocol Gateway failed order service
In addition to the Multi-Protocol Gateway service for order processing, we
implement a separate service to handle failed orders. The configuration details of
this service are similar to the order processing gateway. An alternative to the
creation of separate services is to create separate rules within a single service.
The match action criteria determine the execution of the various rules. The
ultimate decision about how to implement a given solution depends on many
factors. Figure 7-33 on page 226 shows the document processing policy that is
used for the failed order Multi-Protocol Gateway.
 Chapter 7. DataPower business scenario 225

Figure 7-33 Document processing policy for the failed order Multi-Protocol Gateway

Table 7-3 on page 227 lists the descriptions of the various actions.
226 Leveraging CICS Events with an ESB

Table 7-3 Failed order Multi-Protocol Gateway document processing policy action

The primary difference between the order gateway and the failed order service
are the two transform actions, which we describe next.

Action Contexts Purpose

Match N/A Select this rule for
execution

Log Input: INPUT
Output: NULL

Log the incoming event

Validate Input: INPUT
Output: NULL

Validate the incoming CEI
event from CICS against
the CBE schema

Extract Input: INPUT
Output: event-context

Using XPATH, extract the
CICS event from the CBE

Validate Input: event-context
Output: NULL

Validate the CICS event
against the CICS static
schema

Extract Input: event-context
Output: payload-context

Using XPATH, extract the
event payload from the
CICS event

Validate Input: payload-context
Output: NULL

Validate the event payload
against the CICS payload
schema

Transform Input: payload-context
Output: NULL

Invoke the Restock Item
web service

Transform Input: event-context
Output: wbe-event

Convert the CICS event to
the WebSphere Business
Events event format

Results Input: wbe-event
Output: NULL

Send the WebSphere
Business Events event to
the statically defined
service back end

Results Input: INPUT
Output: NULL

Send the original input
event to MQ for
WebSphere Business
Monitor
 Chapter 7. DataPower business scenario 227

Transform action: Invoke the Restock Item web service
For a failed order, we call a web service to restock the item that was unavailable.
We use the extension function dp:soap-call(). Example 7-5 shows the stylesheet.

Example 7-5 Restock item stylesheet

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:dp="http://www.datapower.com/extensions"
 xmlns:dpquery="http://www.datapower.com/param/query"
 extension-element-prefixes="dp"
 exclude-result-prefixes="dp">

 <xsl:template match="/">

 <xsl:variable name="itemNumber"
select="/*[namespace-uri()='http://www.ibm.com/prod/cics/v1/FailedOrder
' and
local-name()='payload']/*[namespace-uri()='http://www.ibm.com/prod/cics
/v1/FailedOrder' and local-name()='item_ref_number']"/>
 <dp:set-variable name="'var://context/enrichment/itemNumber'"
value="$itemNumber"/>

 <xsl:variable name="soap-request">

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:q0="http://www.CATREODR.CATREO01.Request.com"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>
 <q0:CATREODROperation>
 <q0:reorderRequest>

<q0:reorderItem>
 <xsl:value-of select="$itemNumber"/>
</q0:reorderItem>

 </q0:reorderRequest>
 </q0:CATREODROperation>
 </soapenv:Body>
</soapenv:Envelope>

 </xsl:variable>

 <xsl:variable name="soap-response"
228 Leveraging CICS Events with an ESB

select="dp:soap-call('http://9.12.4.75:3702/exampleApp/restockItem',$so
ap-request)"/>
 <xsl:copy-of select="$soap-response"/>

 </xsl:template>

</xsl:stylesheet>

This stylesheet obtains the item number from the Input context and builds a
SOAP message to call the Restock Item web service. The call is then executed
by invoking dp:soap-call().

Transform action: Constructing the WebSphere Business Events
failed order event

The failed order service sends an event to WebSphere Business Events that
differs from the event that the order gateway sends. The event schema produced
by WebSphere Business Events dictates the format of this event.

We use a stylesheet that is called wbeFailedOrderEvent.xsl, which is shown in
Example 7-6, to create the WebSphere Business Events event from the CICS
payload.

Example 7-6 Event generation stylesheet wbeFailedOrder.Event.xsl

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:dp="http://www.datapower.com/extensions"
 xmlns:dpquery="http://www.datapower.com/param/query"
 extension-element-prefixes="dp"
 exclude-result-prefixes="dp">

 <xsl:template match="/">

 <xsl:variable name="binding-user-tag"
select="/*[namespace-uri()='http://www.ibm.com/xmlns/prod/cics/events/C
BE' and
local-name()='event']/*[namespace-uri()='http://www.ibm.com/xmlns/prod/
cics/events/CBE' and
local-name()='context-info']/*[namespace-uri()='http://www.ibm.com/xmln
s/prod/cics/events/CBE' and local-name()='bindingname']"/>
 <xsl:variable name="network-uowid"
select="/*[namespace-uri()='http://www.ibm.com/xmlns/prod/cics/events/C
BE' and
 Chapter 7. DataPower business scenario 229

local-name()='event']/*[namespace-uri()='http://www.ibm.com/xmlns/prod/
cics/events/CBE' and
local-name()='context-info']/*[namespace-uri()='http://www.ibm.com/xmln
s/prod/cics/events/CBE' and local-name()='UOWid']"/>
 <xsl:variable name="businessevent"
select="/*[namespace-uri()='http://www.ibm.com/xmlns/prod/cics/events/C
BE' and
local-name()='event']/*[namespace-uri()='http://www.ibm.com/xmlns/prod/
cics/events/CBE' and
local-name()='context-info']/*[namespace-uri()='http://www.ibm.com/xmln
s/prod/cics/events/CBE' and local-name()='eventname']"/>
 <xsl:variable name="capture-spec-name"
select="/*[namespace-uri()='http://www.ibm.com/xmlns/prod/cics/events/C
BE' and
local-name()='event']/*[namespace-uri()='http://www.ibm.com/xmlns/prod/
cics/events/CBE' and
local-name()='context-info']/*[namespace-uri()='http://www.ibm.com/xmln
s/prod/cics/events/CBE' and local-name()='capturespecname']"/>

 <xsl:variable name="userid"
select="/*[namespace-uri()='http://www.ibm.com/xmlns/prod/cics/events/C
BE' and
local-name()='event']/*[namespace-uri()='http://www.ibm.com/xmlns/prod/
cics/events/CBE' and
local-name()='payload-data']/*[namespace-uri()='http://www.ibm.com/prod
/cics/v1/FailedOrder' and
local-name()='payload']/*[namespace-uri()='http://www.ibm.com/prod/cics
/v1/FailedOrder' and local-name()='userid']"/>
 <xsl:variable name="charge_dept"
select="/*[namespace-uri()='http://www.ibm.com/xmlns/prod/cics/events/C
BE' and
local-name()='event']/*[namespace-uri()='http://www.ibm.com/xmlns/prod/
cics/events/CBE' and
local-name()='payload-data']/*[namespace-uri()='http://www.ibm.com/prod
/cics/v1/FailedOrder' and
local-name()='payload']/*[namespace-uri()='http://www.ibm.com/prod/cics
/v1/FailedOrder' and local-name()='charge_dept']"/>
 <xsl:variable name="item_ref_number"
select="/*[namespace-uri()='http://www.ibm.com/xmlns/prod/cics/events/C
BE' and
local-name()='event']/*[namespace-uri()='http://www.ibm.com/xmlns/prod/
cics/events/CBE' and
local-name()='payload-data']/*[namespace-uri()='http://www.ibm.com/prod
/cics/v1/FailedOrder' and
230 Leveraging CICS Events with an ESB

local-name()='payload']/*[namespace-uri()='http://www.ibm.com/prod/cics
/v1/FailedOrder' and local-name()='item_ref_number']"/>
 <xsl:variable name="quantity_req"
select="/*[namespace-uri()='http://www.ibm.com/xmlns/prod/cics/events/C
BE' and
local-name()='event']/*[namespace-uri()='http://www.ibm.com/xmlns/prod/
cics/events/CBE' and
local-name()='payload-data']/*[namespace-uri()='http://www.ibm.com/prod
/cics/v1/FailedOrder' and
local-name()='payload']/*[namespace-uri()='http://www.ibm.com/prod/cics
/v1/FailedOrder' and local-name()='quantity_req']"/>

<connector name="CICS Catalog Orders" version="6.2">
 <connector-bundle name="Event_FailedOrder-esb" type="Event">
 <FailedOrder_Context>
 <Binding-user-tag type="String">

 <xsl:value-of select="$binding-user-tag"/>
 </Binding-user-tag>
 <Network-UOWID type="String">

 <xsl:value-of select="$network-uowid"/>
 </Network-UOWID>
 <businessevent type="String">

 <xsl:value-of select="$businessevent"/>
 </businessevent>
 <Capture-Spec-Name type="String">

 <xsl:value-of select="$capture-spec-name"/>
 </Capture-Spec-Name>
 </FailedOrder_Context>
 <FailedOrder_Data>
 <userid type="String">

 <xsl:value-of select="normalize-space($userid)"/>
 </userid>
 <charge_dept type="String">

 <xsl:value-of select="normalize-space($charge_dept)"/>
 </charge_dept>
 <item_ref_number type="Real">

 <xsl:value-of select="substring-after($item_ref_number, '+')"/>
 </item_ref_number>
 <quantity_req type="Real">

 <xsl:value-of select="substring-after($quantity_req, '+')"/>
 </quantity_req>
 </FailedOrder_Data>
 </connector-bundle>
</connector>
 Chapter 7. DataPower business scenario 231

 </xsl:template>

</xsl:stylesheet>

Results action: Send to WebSphere Business Events and
WebSphere Business Monitor

Similar to the order service, the failed order Multi-Protocol Gateway sends the
data in the wbe-context to WebSphere Business Events by executing a results
action. Because the service specifies a static back end, and that location is the
JMS event topic of the WebSphere Business Events runtime, no explicit
Destination value is required in the first results action. The second results action
contains a dpmq:// URL identifying the Queue Manager and target queue for the
event.

7.3 Hints and tips

Useful tools exist to help you.

7.3.1 Probe for debug

Besides examining the device processing logs, another powerful tool used to
debug the flow of data through the device is the multistep Probe. Excellent
documentation is available in the DataPower Problem Determination Guide, but
one feature of the Probe that is often overlooked is the ability to configure triggers
rather than capture all transactions. This feature can have a dramatic effect on
the temporary space that is required by the Probe data, as well as allowing for a
more selective view of the messages that are generated by the application.

7.3.2 External tools to help create stylesheets

Many tools are available to create stylesheets, ranging from a simple text editor
to more sophisticated Integrated Development Environments (IDEs). We used
IBM Rational Application Developer (RAD) for the creation of our example
stylesheets. This tool contains an XPATH expression builder, as well as an
intelligent editor that understands the syntax of XSL Transformation (XSLT). The
free Eclipse platform upon which RAD is built also provides these same
capabilities.
232 Leveraging CICS Events with an ESB

7.4 Summary

In this chapter, we have illustrated the use of the DataPower Multi-Protocol
Gateway service to implement the ESB architectural pattern. The two scenarios
that handle order processing and failed order processing are separate
Multi-Protocol Gateways. Each Multi-Protocol Gateway contains connectivity
configuration and document processing policies for its use case.
 Chapter 7. DataPower business scenario 233

234 Leveraging CICS Events with an ESB

Chapter 8. Scenario flow

In this chapter, we show sample output for each of our four scenarios as the
message event flows from Customer Information Control System (CICS), through
the enterprise service buses (ESBs), to WebSphere Business Events,
WebSphere Business Monitor, and WebSphere Process Server. We describe
four scenarios:

� Successful order
� Multiple high value orders
� Failed order: Insufficient stock
� Multiple insufficient stock failures

8

© Copyright IBM Corp. 2010. All rights reserved. 235

8.1 Scenario 1

Our first scenario is the successful order event. Whenever a product order is
placed successfully, CICS emits an event on the WebSphere MQ event
processing (EP) adapter in Common Base Event (CBE) format. The ESB then
performs enrichment, transformation, and routing. See Figure 8-1 for the
successful order event diagram.

Figure 8-1 Scenario 1: Successful order event diagram

Scenario 1 consists of these steps:

1. CICS emits an event in CBE format (Example 8-1), using the WebSphere MQ
(WMQ) EP adapter, to a queue that is received by the ESB, which is identified
as Q1 in the diagram (Figure 8-1).

Example 8-1 CBE format emitted from CICS for ItemOrder event

<?xml version="1.0"?>
<cbe:CommonBaseEvent xmlns:cbe="http://www.ibm.com/AC/commonbaseevent1_0_1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0.1"
 creationTime="2010-02-19T20:02:21.389+00:00">
 <cbe:sourceComponentId component="IBM CICS TS#4.1.0" componentIdType="ProductName"
 executionEnvironment="IBM z/OS"
 instanceId="USIBMSC.EPRED3" location="SC66" locationType="Hostname"
 subComponent="CICS EP"
 componentType="http://www.ibm.com/xmlns/prod/cics/eventprocessing"/>
 <cbe:situation categoryName="OtherSituation">

Scenario 1 Successful Order EVENT

CICS

WBE WBM

ESB

JMS3 Q5 Q6

WS2 Q1

LOG

Price Enrichment

WPSP/S Q4

orders > $700
236 Leveraging CICS Events with an ESB

 <cbe:situationType xsi:type="cbe:OtherSituation" reasoningScope="EXTERNAL">
 <CICSApplicationEvent/>
 </cbe:situationType>
 </cbe:situation>
 <cics:event xmlns:cics="http://www.ibm.com/xmlns/prod/cics/events/CBE">
 <cics:context-info>
 <cics:eventname>ItemOrder</cics:eventname>
 <cics:usertag>v1</cics:usertag>
 <cics:networkapplid>USIBMSC.EPRED3</cics:networkapplid>
 <cics:timestamp>2010-02-19T20:02:21.389+00:00</cics:timestamp>
 <cics:bindingname>SuccessfulOrder</cics:bindingname>
 <cics:capturespecname>OrderSuccess</cics:capturespecname>
 <cics:UOWid>1910E4E2C9C2D4E2C34BE3C3D7F6F6F0F1F4909D870F8CC5000100</cics:UOWid>
 </cics:context-info>
 <cics:payload-data>
 <data:payload xmlns:data="http://www.ibm.com/prod/cics/v1/ItemOrder">
 <data:userid>Person03</data:userid>
 <data:charge_dept>Dept0001</data:charge_dept>
 <data:item_ref_number>+20</data:item_ref_number>
 <data:quantity_req>+66</data:quantity_req>
 </data:payload>
 </cics:payload-data>
 </cics:event>
</cbe:CommonBaseEvent>

2. The ESB receives the CBE event and then makes a web service call,
inquireSingle, which is located in box WS2, to enrich the payload with the
product item price. The price is in the VSAM inventory file that is available to
CICS.

3. The ESB transforms the input event, changing the format from a CBE format
to a WebSphere Business Events (WBE) format, and sends the enriched
event to WebSphere Business Events runtime through a JMS topic, JMS3
(Example 8-2 on page 238).

Authorized program analysis report (APAR) PM03045 program
temporary fix (PTF) UK54723: In both Example 8-1 and Example 8-4, the
CBE format event has plus signs (+) in front of the data for item_ref_number
and quantity_req. With this fix, these + signs no longer appear, so the length
of item_ref_number appears as 20 (because the format length that is specified
in the event spec is zero, there is no padding of the numbers; otherwise, the
numbers have leading zeros added to the format length). This change
occurred, because certain consumers that tried to parse the XML were unable
to handle the + signs.
 Chapter 8. Scenario flow 237

Example 8-2 WBE format sent from ESB to WebSphere Business Events

<?xml version="1.0" encoding="UTF-8"?>
<connector xsi:type="wbe:connector"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wbe="http://wbe.ibm.com/6.2/Event/ItemOrder-wbe" name="CICS Catalog Orders"
 version="6.2">
 <wbe:connector-bundle name="Event_ItemOrder-esb" type="Event">
 <wbe:ItemOrder_Context>
 <wbe:Binding-user-tag type="String">SuccessfulOrder</wbe:Binding-user-tag>
 <wbe:Network-UOWID
type="String">1910E4E2C9C2D4E2C34BE3C3D7F6F6F0F1F4909D870F8CC5000100</wbe:Network-UOW
ID>
 <wbe:businessevent type="String">ItemOrder</wbe:businessevent>
 <wbe:Capture-Spec-Name type="String">OrderSuccess</wbe:Capture-Spec-Name>
 </wbe:ItemOrder_Context>
 <wbe:ItemOrder_Data>
 <wbe:userid type="String">Person03</wbe:userid>
 <wbe:charge_dept type="String">Dept0001</wbe:charge_dept>
 <wbe:item_ref_number type="Real">20.0</wbe:item_ref_number>
 <wbe:quantity_req type="Real">66.0</wbe:quantity_req>
 <wbe:order_cost type="Real">191.4</wbe:order_cost>
 </wbe:ItemOrder_Data>
 </wbe:connector-bundle>
</connector>

4. WebSphere Business Events receives the event, evaluates it, and if it
represents an order over USD700, the information is placed on a Pub/Sub
queue for interested parties through Q4.

5. The ESB transfers the original CBE-formatted event to Q5 for consumption by
WebSphere Business Monitor. Figure 8-2 on page 239 shows the number of
successful orders grouped by department.
238 Leveraging CICS Events with an ESB

Figure 8-2 WebSphere Business Monitor successful orders by department

6. Finally, the ESB logs the event by placing the original CBE-formatted event on
Q6.

8.2 Scenario 2

Our second scenario is the multiple high value order event. WebSphere Business
Events reviews each CICS event from scenario 1 and matches orders that are
placed by the same customer over a predefined period of time. If a customer’s
total value exceeds a trigger value, this action indicates a high value customer.
See Figure 8-3 on page 240 for the multiple high value orders event diagram.
 Chapter 8. Scenario flow 239

Figure 8-3 Scenario 2: Multiple high value orders event diagram

Most of the processing is the same as 8.1, “Scenario 1” on page 236, so we only
show in detail the steps that differ:

1. CICS emits an event in CBE format using the WebSphere MQ (WMQ) EP
adapter to a queue that is received by the ESB, identified as Q1 in the
diagram (Figure 8-3).

2. The ESB receives the CBE event and then makes a web service call,
inquireSingle, which is located in box WS2, to enrich the payload with the
product item price. The price is in the VSAM inventory file that is available to
CICS.

3. The ESB transforms the input event, changing the format from a CBE format
to a WBE format, and sends the enriched event to WebSphere Business
Events runtime through a JMS topic, JMS3.

4. WebSphere Business Events receives the event, evaluates it, and if it
represents an order over USD700, the information is placed on a
publish/subscribe (Pub/Sub) queue for interested parties through Q4.
Example 8-3 on page 241 shows the HighValueNotify action event from the
WebSphere Business Events application log when the action event fires.

CICS

WBE WBM

ESB

Scenario 2 Multi High Value Orders in 3 days EVENT

JMS3 Q5 Q6

EMAIL
COUPON

3 orders > $3003 orders > $300

LOG

Price Enrichment

WS2 Q1

P/S Q4

orders > $700orders > $700

WPS
240 Leveraging CICS Events with an ESB

Example 8-3 WebSphere Business Events HighValueNotify action event firing from the WebSphere
Business Events application log

<item time='2010-03-19T12:59:16.125-0400' level='DEBUG'
 thread='java.lang.ThreadGroup[name=DefaultWorkManager: wberuntimeear,maxpri=10]'>
 <source>event.com.ibm.wbe.server.action.jmsactionwriter</source>
 <event id='50E8D5C04BA800337811DF186D5B0805' name='Event_ItemOrder-esb'></event>
 <message>
 <![CDATA[
 Sending Action packet:
 <?xml version="1.0" encoding="UTF-8"?>
 <connector name="WBE" version="6.2"
 xmlns="http://wbe.ibm.com/6.2/Action/HighValueNotify">
 <connector-bundle id="5468D5C0639CD0337811DF186D5B0805"
 name="HighValueNotify" stream="DEPT0001PERSON03" type="Action"
 workflow="FACE">
 <HighValueNotify>
 <item_ref_number type="Real">110</item_ref_number>
 <Dept_UID type="String">DEPT0001PERSON03</Dept_UID>
 <quantity_req type="Real">5</quantity_req>
 <order_cost type="Real">847.8</order_cost>
 </HighValueNotify>
 </connector-bundle>
 <system>kcgl6hk</system>
 <timestamp>2010-03-19T12:59:16.125-04:00</timestamp>
 <loginfo>This is an event from IBM WebSphere Business Events</loginfo>
 </connector>
]]>
 </message>
</item>

5. WebSphere Business Events reviews the order, comparing it with previous
orders by the same customer, and checking to see if the total value exceeds a
trigger value during a specified time window. If true, a complex scenario has
occurred, and WebSphere Business Events generates an event that results in
sending the customer a coupon through email. Example 8-4 on page 242
shows the OfferDiscount action event from the WebSphere Business Events
application log when the action event fires.
 Chapter 8. Scenario flow 241

Example 8-4 WebSphere Business Events OfferDiscount action event firing from the WebSphere Business
Events application log

<item time='2010-03-19T13:13:38.125-0400' level='DEBUG'
 thread='java.lang.ThreadGroup[name=DefaultWorkManager: wberuntimeear,maxpri=10]'>
 <source>event.com.ibm.wbe.server.action.jmsactionwriter</source>
 <event id='8278E8C22007F0337A11DF186D5B0805' name='Event_ItemOrder-esb'></event>
 <message>
 <![CDATA[
 Sending Action packet:
 <?xml version="1.0" encoding="UTF-8"?>
 <connector name="WBE" version="6.2"
 xmlns="http://wbe.ibm.com/6.2/Action/Offer-Discount">
 <connector-bundle id="8468E8C22BEED0337A11DF186D5B0805"
 name="Offer Discount" stream="DEPT0001PERSON03" type="Action"
 workflow="FACE">
 <Offer-Discount>
 <Dept_UID type="String">DEPT0001PERSON03</Dept_UID>
 <CumTotal type="Real">3052.08</CumTotal>
 <Count type="Integer">3</Count>
 </Offer-Discount>
 </connector-bundle>
 <system>kcgl6hk</system>
 <timestamp>2010-03-19T13:13:38.109-04:00</timestamp>
 <loginfo>This is an event from IBM WebSphere Business Events</loginfo>
 </connector>
]]>
 </message>
</item>

6. The ESB transfers the original CBE-formatted event to Q5 for consumption by
WebSphere Business Monitor.

7. Finally, the ESB logs the event by placing the original CBE-formatted event on
Q6.

8.3 Scenario 3

Our third scenario is the failed order, or insufficient stock, event. If an order is
placed and there is insufficient stock to fill the order, the Catalog Manager
Example Application causes the order to fail and CICS emits an event on the
WebSphere MQ (WMQ) EP adapter in CBE format. The ESB then performs
enrichment, transformation, and routing. See Figure 8-4 on page 243 for the
failed order - insufficient stock event diagram.
242 Leveraging CICS Events with an ESB

Figure 8-4 Scenario 3: Failed order - insufficient stock event diagram

This scenario consists of these steps:

1. CICS emits an event in CBE format (Example 8-5) using the WebSphere MQ
(WMQ) EP adapter to a queue that is received by the ESB, identified as Q1 in
the diagram (Figure 8-4).

Example 8-5 CBE format emitted from CICS for FailedOrder event

<?xml version="1.0"?>
<cbe:CommonBaseEvent xmlns:cbe="http://www.ibm.com/AC/commonbaseevent1_0_1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0.1"
 creationTime="2010-02-23T20:57:44.843+00:00">
 <cbe:sourceComponentId component="IBM CICS TS#4.1.0" componentIdType="ProductName"
 executionEnvironment="IBM z/OS"
 instanceId="USIBMSC.EPRED3" location="SC66" locationType="Hostname"
 subComponent="CICS EP"
 componentType="http://www.ibm.com/xmlns/prod/cics/eventprocessing"/>
 <cbe:situation categoryName="OtherSituation">
 <cbe:situationType xsi:type="cbe:OtherSituation" reasoningScope="EXTERNAL">
 <CICSApplicationEvent/>
 </cbe:situationType>
 </cbe:situation>
 <cics:event xmlns:cics="http://www.ibm.com/xmlns/prod/cics/events/CBE">
 <cics:context-info>
 <cics:eventname>FailedOrder</cics:eventname>
 <cics:usertag>v1</cics:usertag>

CICS

WBE WBM

ESB

Scenario 3 Failed Order - Insufficient Stock EVENT

JMS3 Q4 Q5

WS2Q1

LOG

ReStock Order

WPS
 Chapter 8. Scenario flow 243

 <cics:networkapplid>USIBMSC.EPRED3</cics:networkapplid>
 <cics:timestamp>2010-02-23T20:57:44.843+00:00</cics:timestamp>
 <cics:bindingname>InsufficientStock</cics:bindingname>
 <cics:capturespecname>InsufficientStock</cics:capturespecname>
 <cics:UOWid>1910E4E2C9C2D4E2C34BE3C3D7F6F6F0F1F495B15E65E7D3000100</cics:UOWid>
 </cics:context-info>
 <cics:payload-data>
 <data:payload xmlns:data="http://www.ibm.com/prod/cics/v1/FailedOrder">
 <data:userid>Person01</data:userid>
 <data:charge_dept>Dept0005</data:charge_dept>
 <data:item_ref_number>+110</data:item_ref_number>
 <data:quantity_req>+15</data:quantity_req>
 </data:payload>
 </cics:payload-data>
 </cics:event>
</cbe:CommonBaseEvent>

2. The ESB receives the CBE event and then makes a web service call,
restockItem, which is located in box WS2, to generate a reorder of the stock
to meet future orders. Our simple application performs a stock order. There is
no intelligence built into the application to calculate how much to order. We
always order a predefined amount, such as 50 units.

3. The ESB transforms the input event, changing the format from a CBE format
to a WBE format, and sends the enriched event to WebSphere Business
Events runtime through a JMS topic, JMS3, as shown in Example 8-6.

Example 8-6 WBE format sent from ESB to WebSphere Business Events

<?xml version="1.0" encoding="UTF-8"?>
<connector xsi:type="wbe:connector"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wbe="http://wbe.ibm.com/6.2/Event/FailedOrder-wbe" name="CICS Catalog Orders"
 version="6.2">
 <wbe:connector-bundle name="Event_FailedOrder-esb" type="Event">
 <wbe:FailedOrder_Context>
 <wbe:Binding-user-tag type="String">InsufficientStock</wbe:Binding-user-tag>
 <wbe:Network-UOWID
type="String">1910E4E2C9C2D4E2C34BE3C3D7F6F6F0F1F495B15E65E7D3000100</wbe:Network-UOW
ID>
 <wbe:businessevent type="String">FailedOrder</wbe:businessevent>
 <wbe:Capture-Spec-Name type="String">InsufficientStock</wbe:Capture-Spec-Name>
 </wbe:FailedOrder_Context>
 <wbe:FailedOrder_Data>
 <wbe:userid type="String">Person01</wbe:userid>
 <wbe:charge_dept type="String">Dept0005</wbe:charge_dept>
244 Leveraging CICS Events with an ESB

 <wbe:item_ref_number type="Real">110.0</wbe:item_ref_number>
 <wbe:quantity_req type="Real">15.0</wbe:quantity_req>
 </wbe:FailedOrder_Data>
 </wbe:connector-bundle>
</connector>

4. The ESB transfers the original CBE-formatted event to Q4 for consumption by
WebSphere Business Monitor. Figure 8-5 shows the number of failed orders
grouped by department.

Figure 8-5 WebSphere Business Monitor failed orders by department

5. Finally, the ESB logs the event by placing the original CBE-formatted event on
Q5.

8.4 Scenario 4

Our fourth scenario is the multiple insufficient stock failures event. WebSphere
Business Events reviews each CICS event from scenario 3 and matches orders
for the same product item number over a predefined period of time. This process
indicates that there is a problem with the restock process and that we need
human intervention to determine why orders continue to fail. In our example, the
fix might be to increase the restock amount to avoid running out of inventory. See
Figure 8-6 on page 246 for the multiple insufficient stock failures event diagram.
 Chapter 8. Scenario flow 245

Figure 8-6 Scenario 4: Multiple insufficient stock failures event diagram

Most of the processing is the same as 8.3, “Scenario 3” on page 242, so we only
show in detail the steps that differ:

1. CICS emits an event in CBE format using the WebSphere MQ (WMQ) EP
adapter to a queue that is received by the ESB, which is identified as Q1 in the
diagram (Figure 8-6).

2. The ESB receives the CBE event and then makes a web service call,
restockItem, which is located in box WS2, to generate an order and replenish
the on-hand inventory for the item that received a failed order.

3. The ESB transforms the input event, changing the format from a CBE format
to a WBE format, and sends the enriched event to WebSphere Business
Events runtime through a JMS topic, JMS3.

4. WebSphere Business Events reviews the failed order, comparing it with
previous failed orders by the same product item number, checking to see if
the number of failures exceeds a trigger value during a specified time window.
If true, a complex scenario has occurred and WebSphere Business Events
sends a request to WebSphere Process Server through a web service call,
which is located in box WS4. Example 8-7 on page 247 shows the
FailedOrdersAlertNotify action event from the WebSphere Business Events
application log when the action event fires.

WBM WPS

CICS

ESB

Scenario 4 Multi Insufficient Stock Failures EVENT

JMS3 Q6 Q7

WS2Q1

LOG

ReStock Order

Order Cost > $$$
Call a Manager

Human ActionWS4

WS5

3 ReStock Fails 3 ReStock Fails

WBE

Price Enrichment
246 Leveraging CICS Events with an ESB

Example 8-7 WebSphere Business Events FailedOrdersAlertNotify action event firing from the WebSphere
Business Events application log

<item time='2010-03-19T13:25:00.750-0400' level='DEBUG'
 thread='java.lang.ThreadGroup[name=DefaultWorkManager: wberuntimeear,maxpri=10]'>
 <source>event.com.ibm.wbe.server.action.jmsactionwriter</source>
 <event id='44591458FB9C10337C11DF186D5B0805' name='Event_FailedOrder-esb'></event>
 <message>
 <![CDATA[
 Sending Action packet:
 <?xml version="1.0" encoding="UTF-8"?>
 <connector name="WBE" version="6.2"
 xmlns="http://wbe.ibm.com/6.2/Action/Failed-Orders-Alert-Notify">
 <connector-bundle id="476914590EAEE0337C11DF186D5B0805"
 name="Failed Orders Alert Notify" stream="110" type="Action"
 workflow="FACE">
 <Failed-Orders-Alert-Notify>
 <item_ref_number type="Real">110</item_ref_number>
 <quantity_req type="Real">15</quantity_req>
 </Failed-Orders-Alert-Notify>
 </connector-bundle>
 <system>kcgl6hk</system>
 <timestamp>2010-03-19T13:25:00.750-04:00</timestamp>
 <loginfo>This is an event from IBM WebSphere Business Events</loginfo>
 </connector>
]]>
 </message>
</item>

5. WebSphere Process Server makes a request that a human being get involved
to review the reorder process and to make the necessary adjustments to
prevent future failed orders.

Additionally, if the failed orders are over a specific value, WebSphere Process
Server also makes a request to get a manager involved.

6. The ESB transfers the original CBE-formatted event to Q6 for consumption by
WebSphere Business Monitor.

7. Finally, the ESB logs the event by placing the original CBE-formatted event on
Q7.
 Chapter 8. Scenario flow 247

248 Leveraging CICS Events with an ESB

Chapter 9. WebSphere Business
Events scenario

In this chapter, we explain the flow of the scenario that is described in Chapter 4,
“Overview of the application and business scenarios” on page 57 and show the
definitions in WebSphere Business Events.

9

© Copyright IBM Corp. 2010. All rights reserved. 249

9.1 Development setup and WebSphere Business
Events tooling

In this section, we give an overview of our scenario, look at the tooling available,
and explain the parts of the scenario that are specific to WebSphere Business
Events.

9.1.1 WebSphere Business Events

IBM WebSphere Business Events is a comprehensive business event processing
system. IBM WebSphere Business Events software helps businesses detect,
evaluate, and respond to the effect of business events based on the discovery of
actionable event patterns. WebSphere Business Events offers these functions
and features:

� Improves line-of-business insight and awareness around event-driven
business conditions

� Enables business users to define and manage business events that facilitate
taking timely, proactive actions

� Reduces total cost of ownership (TCO) through codeless implementations,
enacted by business users, often without incurring IT development or
implementation costs

� Provides the ability to detect, decide, and dynamically react to simple and
complex relationships between people, events, and information

� Increases business agility by enabling faster responsiveness to customers,
suppliers, and changing market needs

� Reduces TCO for composite applications requiring the combination of event
pattern detection, traditional workflow, and activity monitoring functionality

� Enhances existing business process management (BPM) and
service-oriented architecture (SOA) infrastructures

9.1.2 WebSphere Business Events development tooling

WebSphere Business Events tooling was designed for two classes of users: the
IT developer and the business user.

IT developers use the Design Data tool to create events, actions, intermediate
objects, and data source definitions. The required skills are primarily technical,
and these tasks require that you understand the protocols and the formats of the
data. After you create these objects, you load them into a common repository.
250 Leveraging CICS Events with an ESB

The WebSphere Business Events Repository is part of the runtime database that
is used by WebSphere Business Events.

Business users, through the design tool, retrieve objects from the repository to
define the business conditions that link the events and actions. For example, if
event A and event B happen within three days and this filter evaluates to true,
start this specific action.

Both Design Data and Design have the option to store projects as local files, or in
the hosted project store. When the project artifacts are ready to be shared
among other users and made available to the WebSphere Business Events
runtime, they are checked into the WebSphere Business Events repository
through Design Data, or published in their entirety using Design.

9.1.3 WebSphere Business Events scenario description

We describe the business scenario that will generate the events for WebSphere
Business Events in Chapter 4, “Overview of the application and business
scenarios” on page 57. We divide the business scenario into four parts from the
WebSphere Business Events perspective: successful order, multiple high value
orders within a fixed period of time, failed order for insufficient stock, and, finally,
multiple failed orders for insufficient stock. The catalog application generates two
types of events to be consumed by WebSphere Business Events. The first event
is the order event, and the second event is the failed order event.

9.1.4 Building the WebSphere Business Events project

First, we build the WebSphere Business Events project.

Project discussion overview
Because the primary focus of this book is to show the use of Customer
Information Control System (CICS) events and the enterprise service buses
(ESBs), we do not describe certain small aspects of the WebSphere Business
Events project in great depth. If you are interested in learning more about
WebSphere Business Events in general, refer to this website:

http://www.ibm.com/software/integration/wbe

A more detailed source of information about event processing with CICS and
WebSphere Business Events is Implementing Event Processing with CICS,
SG24-7792.
 Chapter 9. WebSphere Business Events scenario 251

http://www.ibm.com/software/integration/wbe

Creating touchpoints and event definitions with Design Data
As discussed in 9.1.2, “WebSphere Business Events development tooling” on
page 250, an IT specialist uses the Design Data tool to define the artifacts, which
are, in turn, used by the business user to describe an event flow. To handle the
two events expected in our scenario, we add a new touchpoint and create events
in it from the schemas that were exported from CICS. We define a new
touchpoint by selecting Insert Touchpoint from the Design Data menu bar. We
create a touchpoint named CICS Catalog Orders. We import the two CICS
schema files, ItemOrder-wbe.xsd and FailedOrder-wbe.xsd, by selecting
Insert Event Like Schema From File from the menu bar. Figure 9-1
shows the new touchpoint and events.

Figure 9-1 New touchpoint containing events imported from CICS

Notice that both the event and the event objects were created during the import.
Example 9-1 on page 253 shows the schema emitted by CICS and imported by
WebSphere Business Events for the Item Order event.
252 Leveraging CICS Events with an ESB

Example 9-1 ItemOrder-wbe.xsd schema

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="qualified"
 targetNamespace="http://cics.ibm.com/ItemOrder"
xmlns:tns="http://wbe.ibm.com/6.2/Event/ItemOrder">
 <xsd:element name="ItemOrder">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="ItemOrder_Context">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="0" maxOccurs="1" name="Binding
user tag" type="xsd:string" />
 <xsd:element minOccurs="0" maxOccurs="1" name="Network
UOWID" type="xsd:string" />
 <xsd:element minOccurs="0" maxOccurs="1"
name="businessevent" type="xsd:string" />
 <xsd:element minOccurs="0" maxOccurs="1" name="Capture
Spec Name" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="ItemOrder_Data">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="0" maxOccurs="1" name="userid"
type="xsd:string" />
 <xsd:element minOccurs="0" maxOccurs="1"
name="charge_dept" type="xsd:string" />
 <xsd:element minOccurs="0" maxOccurs="1"
name="item_ref_number" type="xsd:decimal" />
 <xsd:element minOccurs="0" maxOccurs="1"
name="quantity_req" type="xsd:decimal" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>
 Chapter 9. WebSphere Business Events scenario 253

We now look at the event object fields that are defined in the ItemOrder_Data
event object. The CICS schema defines four fields: userid, charge_dept,
item_ref_number, and quantity_req. Because we want our ESB to enrich the
input event with a new field, order_cost, we need to add that new field to the
event object. Right-clicking ItemOrder_Data and selecting Insert Event Object
Field open the Insert Field window. We name the new field order_cost and select
a data type of Real. Figure 9-2 shows the Insert Field window.

Figure 9-2 Insert the new field order_item

We select OK. Figure 9-3 on page 255 shows the updated field definitions.
254 Leveraging CICS Events with an ESB

Figure 9-3 Updated field definitions for ItemOrder_Data

The final step of the event definition process is to export the schema for the two
event types: ItemOrder-wbe and FailedOrder-wbe. The ESB uses these exports
to transform the Common Base Event (CBE) emitted by CICS to the format that
is expected by the WebSphere Business Events runtime. We export the schema
by right-clicking the event and selecting Event Properties from the context menu.
On the Properties page, we select the Event tab, as shown in Figure 9-4 on
page 256.
 Chapter 9. WebSphere Business Events scenario 255

Figure 9-4 Event properties page

We then click Export examples and schemas WBE Packet Schema v6.2
Format, which opens a window containing the schema. Example 9-2 shows the
schema for the item order event.

Example 9-2 Event_ItemOrder-esb.xsd schema

<schema xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="http://wbe.ibm.com/6.2/Event/Event_ItemOrder-esb"
xmlns:tns="http://wbe.ibm.com/6.2/Event/Event_ItemOrder-esb">
 <annotation>
 <documentation>Changes risk being lost. Autogenerated by WebSphere
Business Events:Design Data 7.0.0 (20091124_1108) .</documentation>
 </annotation>
 <element name="connector">
 <complexType>
 <sequence>
256 Leveraging CICS Events with an ESB

 <element name="connector-bundle">
 <annotation>
 <documentation>Changes risk being lost. Autogenerated by
WebSphere Business Events:Design Data 7.0.0 (20091124_1108)
.</documentation>
 </annotation>
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0"
name="ItemOrder_Context">
 <complexType>
 <sequence>
 <element maxOccurs="1" minOccurs="0"
name="Binding-user-tag">
 <annotation>
 <documentation>(xsd:string)</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute fixed="String" name="type"
type="string" use="optional"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="0"
name="Network-UOWID">
 <annotation>
 <documentation>(xsd:string)</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute fixed="String" name="type"
type="string" use="optional"/>
 </extension>
 Chapter 9. WebSphere Business Events scenario 257

 </simpleContent>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="0"
name="businessevent">
 <annotation>
 <documentation>(xsd:string)</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute fixed="String" name="type"
type="string" use="optional"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="0"
name="Capture-Spec-Name">
 <annotation>
 <documentation>(xsd:string)</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute fixed="String" name="type"
type="string" use="optional"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element maxOccurs="unbounded" minOccurs="0"
name="ItemOrder_Data">
 <complexType>
258 Leveraging CICS Events with an ESB

 <sequence>
 <element maxOccurs="1" minOccurs="0" name="userid">
 <annotation>
 <documentation>(xsd:string)</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute fixed="String" name="type"
type="string" use="optional"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="0"
name="charge_dept">
 <annotation>
 <documentation>(xsd:string)</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute fixed="String" name="type"
type="string" use="optional"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="0"
name="item_ref_number">
 <annotation>
 <documentation>(xsd:decimal)</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="double">
 <attribute fixed="Real" name="type"
 Chapter 9. WebSphere Business Events scenario 259

type="string" use="optional"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="0"
name="quantity_req">
 <annotation>
 <documentation>(xsd:decimal)</documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="double">
 <attribute fixed="Real" name="type"
type="string" use="optional"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="0"
name="order_cost">
 <annotation>

<documentation>/connector/connector-bundle/ItemOrder_Data[]/order_cost<
/documentation>
 </annotation>
 <complexType>
 <simpleContent>
 <extension base="double">
 <attribute fixed="Real" name="type"
type="string" use="optional"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </complexType>
260 Leveraging CICS Events with an ESB

 </element>
 </sequence>
 <attribute fixed="Event_ItemOrder-esb" name="name"
type="string" use="required"/>
 <attribute fixed="Event" name="type" type="string"
use="required"/>
 <attribute name="id" type="string" use="optional"/>
 <attribute name="stream" type="string" use="optional"/>
 <attribute name="workflow" type="string" use="optional"/>
 </complexType>
 </element>
 <element minOccurs="0" name="system" type="string"/>
 <element minOccurs="0" name="timestamp" type="dateTime"/>
 <element minOccurs="0" name="loginfo" type="string"/>
 </sequence>
 <attribute name="name" type="string" use="optional"/>
 <attribute name="touchpoint" type="string" use="optional"/>
 <attribute fixed="6.2" name="version" type="string"
use="required"/>
 </complexType>
 </element>
</schema>

At the completion of the export process, we have the schemas for both of the
WebSphere Business Events events, Event_ItemOrder-esb.xsd and
Event_FailedOrder-esb.xsd, for the ESB implementation.

Developing business logic with the Design Data tool
After we have defined all the data models using Design Data, the next step is to
define the business logic for the various parts of our scenario. As we mentioned
in 9.1.2, “WebSphere Business Events development tooling” on page 250, we
use the tool called Design to define the business logic for the various parts of our
scenario. Starting with WebSphere Business Events Version 7.0, the Design tool
is now implemented as a Business Space widget. If you have experience using
Version 6.2.1 of the Design tool, you can obtain a description of the Design tool’s
changes at this website:

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.
wbe.appdev.doc/doc/Designmigration.html
 Chapter 9. WebSphere Business Events scenario 261

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.wbe.appdev.doc/doc/Designmigration.html
http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.wbe.appdev.doc/doc/Designmigration.html

Interaction sets and filters
For both successful and failed orders, we want to send a log notification
indicating the occurrence of the event; therefore, we use the interaction sets that
are shown in Figure 9-5.

Figure 9-5 Event logging interaction sets

Each interaction block responds to an incoming event of the defined type by
unconditionally firing the appropriate log action. There are no filters for these
interaction blocks.

For scenario two, when the number of customer orders exceeds a certain
threshold and the value of those orders is higher than a predefined amount, we
want to offer that customer a discount. Figure 9-6 on page 263 shows this
interaction set.
262 Leveraging CICS Events with an ESB

Figure 9-6 Frequent Buyer interaction set

Because this interaction set is related by the unique identifier that consists of the
user ID and the department, WebSphere Business Events keeps track of the
number of times that this event has been seen. The IT specialist who created
assets in Design Data also provides a mechanism to keep the cumulative total of
all orders for this user. The filter logic uses these two pieces of data to determine
if the Frequent Buyer criteria are met. Figure 9-7 shows the filters.

Figure 9-7 Frequent buyer filters

The threshold values are defined as named constants to make their meaning
more obvious and to allow them to be more easily changed if necessary. When
the number of occurrences of this event for this customer exceeds the frequency
threshold, and the cumulative value of the orders that this customer has placed is
higher than a predefined amount, the Offer Discount action fires. This action
might be configured to send an email to the customer by using the WebSphere
Business Events connector, or the action can be forwarded onto another
component of the system (for example, back to the ESB) where the appropriate
steps to fulfil the action are executed. The final step in the action processing
chain is to perform pruning of the total order data being tracked for this customer.
The Offer Discount action is configured to emit a result event when fired. When
this result event is processed by WebSphere Business Events, logic contained in
 Chapter 9. WebSphere Business Events scenario 263

the asset definitions for the total order value intermediate object will run and reset
the total.

The fourth and final component of the scenario tracks the number of failed
orders. When this number exceeds a given threshold, a Failed Orders Alert
Notify action is fired by WebSphere Business Events. The purpose of this alert is
to notify someone that the inventory for a particular item is being depleted too
frequently and that there must be an increase in the size of the restock request.
Figure 9-8 shows the interaction set, and Figure 9-9 shows the filter.

Figure 9-8 Failed Orders Notify interaction set

Figure 9-9 Failed Orders Filter

9.1.5 Configuring and testing WebSphere Business Events

Now, we configure and test WebSphere Business Events.

Connecting WebSphere Business Events and WebSphere
Process Server
WebSphere Process Server processes the Failed Order event. In order to allow
the WebSphere Business Events runtime to communicate directly with
WebSphere Process Server, you must establish a connection between the two
environments.
264 Leveraging CICS Events with an ESB

Read about the method to establish a connection between the two environments
at this website:

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.
wbe.integrating.doc/doc/sibx.html

Essentially, you need to connect the service integration bus (SIBus) messaging
engines in the WebSphere Application Server cells hosting WebSphere Business
Events and WebSphere Process Server. The exact configuration details vary for
each installation, but WebSphere Business Events provides a pair of example
scripts to illustrate the required steps:

� configure_WBE_SIB_JMS.messaging.py

Run this script against the WebSphere Business Events installation to
configure the messaging engine that is embedded in the instance of
WebSphere Application Server to which the WebSphere Business Events
application (wberuntimeear) is deployed. The script performs the following
tasks:

– Creates an SIB foreign bus and a SIB link, which together with the
equivalents on the WebSphere Process Server or WebSphere ESB run
time, facilitate communication between the Service Component
Architecture (SCA) application bus and the WebSphere Business Events
SIB messaging.

– Maps the WbeTopicSpace defined on WebSphere Process Server or
WebSphere ESB to the WbeTopicSpace defined on WebSphere Business
Events.

� configure_WESB_SIB_JMS.messaging.py

Run this script against WebSphere Process Server or WebSphere ESB to
configure the messaging engine that is part of the WebSphere Process
Server or WebSphere ESB run time. The script performs the following tasks:

– Creates a SIB foreign bus and a SIB link, which together with the
equivalents on WebSphere Business Events runtime, facilitate
communication between WebSphere Business Events and the SCA
application bus.

– Maps the WbeTopicSpace defined on WebSphere Process Server or
WebSphere ESB to the WbeTopicSpace defined on WebSphere Business
Events.

– Creates the SIB Java Message Service (JMS) topics for events, durable
events, actions, and durable actions that can be used by WebSphere ESB
flows to publish events into and receive actions from WebSphere Business
Events.
 Chapter 9. WebSphere Business Events scenario 265

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.wbe.integrating.doc/doc/sibx.html

– Creates SIB JMS activation specs for the durable and non-durable actions
and a SIB JMS topic connection factory. These JMS resources are not
strictly required for the integration, and you can define your own
resources. However, having defined them here, it is convenient for you to
have mediation flows with WebSphere Business Events interaction
running without any configuration.

After the environments are connected in this fashion, actions fired by WebSphere
Business Events are directly available to WebSphere Process Server without the
need for the WebSphere Business Events connectors.

Using the WebSphere Business Events Business Events
Tester
With Version 7 of WebSphere Business Events, you can simulate the occurrence
of events and monitor the flow of actions that results from them by using the
Business Events Tester.

For example, if we want to simulate the Failed Order scenario, we use the tester
to generate three Event_FailedOrder-esb events that cause the Failed Orders
Filter in the Failed Orders Notify interaction set to evaluate to true. The resulting
notifyRepeatedFailedOrders action then fires. If WebSphere Business Events is
connected to WebSphere Process Server, the action packet is delivered and
processed in accordance with the flow defined by WebSphere Process Server.
Figure 9-10 on page 267 shows the event selection dialog.
266 Leveraging CICS Events with an ESB

Figure 9-10 Event selection dialog

Event data is entered for the chosen event, as shown in Figure 9-11 on
page 268. Selecting Send Event causes the event to be fired by the system.
 Chapter 9. WebSphere Business Events scenario 267

Figure 9-11 Sample event data

Figure 9-12 shows the sample events that were fired.

Figure 9-12 Sample events

And finally, Figure 9-13 on page 269 shows the resulting action containing the
information about the three failed orders.
268 Leveraging CICS Events with an ESB

Figure 9-13 Three failed order actions

Pruning the WebSphere Business Events context table
In all these scenarios, we rely on WebSphere Business Events to remove context
information over time. The system has a global policy for removing older context
data, which is described at this website:

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.
wbe.admin.doc/doc/pruningthestepstable.html

An alternate method is to keep track of more context-scoped state information
and to use it in conjunction with synthetic events to maintain the desired level of
data.

9.1.6 Tips and hints for developing with WebSphere Business Events

Version 7 of WebSphere Business Events has added a number of testing and
debugging aids to the product to improve the application development process.
You can access both the Business Events Tester and the Event Capture and
Replay facilities through Business Space widgets. You can obtain a description of
the Business Events Tester widget at this website:

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.
wbe.appdev.doc/doc/testingeventlogic.html
 Chapter 9. WebSphere Business Events scenario 269

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.wbe.admin.doc/doc/pruningthestepstable.html
http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.wbe.appdev.doc/doc/testingeventlogic.html

You can obtain a description of the Event Capture and Replay widget at this
website:

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.
wbe.appdev.doc/doc/eventcapturereplay.html

In addition to these GUI-based tools, you can obtain information about the
enhanced application logging and WebSphere Application Server trace at this
website:

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.
wbe.admin.doc/doc/wbelogs.html
270 Leveraging CICS Events with an ESB

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.wbe.appdev.doc/doc/eventcapturereplay.html
http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.wbe.admin.doc/doc/wbelogs.html

Chapter 10. WebSphere Business
Monitor

In this chapter, we describe the inclusion of WebSphere Business Monitor in our
system. With our Catalog application newly “fitted” with event bindings, and our
various enterprise service buses (ESBs) consuming them and routing them to a
WebSphere MQ queue on z/OS for consumption by WebSphere Business
Monitor, we are ready to examine the following topics:

� WebSphere Business Monitor configuration
� Designing the monitor model
� Testing the monitor model
� Creating the Business Space dashboard
� Viewing the Customer Information Control System (CICS) common base

event (CBE) dashboard

10
© Copyright IBM Corp. 2010. All rights reserved. 271

10.1 Configuring WebSphere Business Monitor

In this section, we describe the configuration tasks that we performed to enable
WebSphere Business Monitor to receive events from the various ESBs in
Common Base Event (CBE) format. We deployed WebSphere Business Monitor
V7.0.0.0 into a stand-alone WebSphere Application Server Network Deployment
(ND) V7.0.0.7 environment on a Microsoft Windows XP platform. We consumed
events from the ESB using an MQ link between the Common Event Infrastructure
(CEI) service integration bus (SIBus) and WebSphere MQ V7.01 on z/OS. The
standard WebSphere Business Monitor environment is already enabled with CEI
and Business Space. We really only need to perform three tasks for our
configuration:

� Configure the destination on the CEI SIBus
� Configure the WebSphere MQ to CEI link
� Configure the WebSphere MQ channels and queues

We obtained helpful information at the following link to the WebSphere Business
Monitor Information Center:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/index.jsp?topi
c=/com.ibm.btools.help.monitor.admin.doc/admin/admin_access_cei_factori
es.html

10.1.1 Defining a CEI bus destination in WebSphere Business
Monitor

We do not actually define the destination at this time, because we run a script in
the next step that defines the destination for us. However, we need to install an
EAR file now, which is a Mediation Handler for our destination. The Mediation
Handler makes minor formatting changes to allow the event to be consumed by
CEI. The EAR file is named MQtoCEIMediation.ear and is located in
<server_home>\scripts.wbm\CEIMQ\.

Using the Integrated Solutions Console, we install and start the application, as
shown in Figure 10-1.

Figure 10-1 Mediation Handler application started
272 Leveraging CICS Events with an ESB

http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/index.jsp?topic=/com.ibm.btools.help.monitor.admin.doc/admin/admin_access_cei_factories.html

After the next step, we will have a new destination on the CEI SI Bus named
CEIQueueAliasForMQ. It will have a Mediation Handler assigned, as shown in
Figure 10-2.

Figure 10-2 Mediation Handler assigned to a bus destination

Also important, the script will set a forward routing path on this destination to the
queue defined in the CEI service as event input, typically, with this name:

CEI.<cell>.BUS:<node>.<server>.CommonEventInfrastructureQueueDestina
tion

10.1.2 Establishing the MQ to CEI link

In WebSphere Business Monitor, the CEI component provides the services for
event management, including the generation, propagation, persistence, and
consumption of events. CEI is configured to use a service integration bus (SIBus)
for its Java Message Service (JMS) services. This task defines a link between
the CEI SIBus and our MQCR WebSphere MQ Queue Manager running on
z/OS. We use a script to automate this portion of our work. Its name and location
are <server_home>\scripts.wbm\CEIMQ\configCEIForMQClients.bat.

The script can also define the WebSphere MQ required resources when it runs,
but we leave that task for the next step.

10.1.3 Defining the MQ channels and queues

We chose to create the following definitions on the z/OS Queue Manager using
the WebSphere MQ Explorer V7. The Explorer simplifies the administration of
the WebSphere MQ components.
 Chapter 10. WebSphere Business Monitor 273

We create the following resource definitions:

� Receiver channel definition
� Sender channel definition
� Remote queue definition
� Transmission queue definition

Figure 10-3 shows the channel definition that we use for the sending channel.

Figure 10-3 Sender channel definition

Figure 10-4 on page 275 shows the definition for the remote queue. Notice the
names of the Remote Queue Manager and the remote queue.
274 Leveraging CICS Events with an ESB

Figure 10-4 Remote queue definition

The final definition is the transmission queue, as shown in Figure 10-5 on
page 276. The triggering on the queue is set to Every, which is a good choice for
the trigger, ensuring that each time that an event arrives, the trigger is activated
to forward the message.
 Chapter 10. WebSphere Business Monitor 275

Figure 10-5 Transmission queue definition

10.2 Designing the monitor model

We chose to use WebSphere Integration Developer V7 for our development
environment, which includes the toolkit for WebSphere Business Monitor
development to create, test, and implement the monitor model. You can also use
Rational Application Developer; however, you must install the toolkit into the
environment. We do not intend to discuss all the details of developing monitor
models in this section; however, for our scenarios, we point out a few helpful tips.
The following sections describe the activities that we performed to design and
implement our monitor model.
276 Leveraging CICS Events with an ESB

10.2.1 Creating the monitor project and model

We create a new monitor project named RedbooksMM and, within that project, a
new monitor model, which we also name RedbooksMM. When we complete our
development, we use the pop-up menu item to Generate Monitor JEE Projects
and deploy the resulting application to our WebSphere Business Monitor server.

10.2.2 Importing CBE schema

The CICS event message consists of three separate schemas: one schema for
the common base event structure, a static event structure, and a dynamic
payload, which depends on which type of event is being emitted. We import the
XML Schema Definition (XSD) files associated with these definitions into our
monitor model, which results in the following namespace prefix mappings being
defined to our model. See Figure 10-6.

Figure 10-6 Required namespaces and prefixes for CICS CBE

10.2.3 Defining the monitor details model

Figure 10-7 on page 278 shows our details model. We describe its contents
briefly, particularly those elements that might be more challenging to define.
 Chapter 10. WebSphere Business Monitor 277

Figure 10-7 Monitor Details Model window

We start by defining a monitor context, which requires us to define a key. In our
scenarios, we use the Department Number in the dynamic portion of the CBE as
the key. We then define our inbound events, which are a FailedOrder event and
an OrderItem event. We then add metrics, counters, a trigger, and a stopwatch.

Defining a key
We need to define two expressions for our key, as shown in Figure 10-8, because
our key is found in one of two locations, depending on which event is received.

Figure 10-8 Key Value Expressions window
278 Leveraging CICS Events with an ESB

Defining inbound events
We have two inbound events. Our model must be aware of these events. In the
case of a FailedOrder event, we define two event parts and a filter condition, as
shown in Figure 10-9.

Figure 10-9 FailedOrder event definition

For our ItemOrder event, we define the following details. Notice the slight
differences in the definition of the event parts and the filter condition. See
Figure 10-10.

Figure 10-10 Order event definition

Defining metrics, counters, and triggers
The remaining elements of the detail model are fairly apparent. They rely, of
course, on the inbound event definitions that we just created. We define counters
for each event type, because we use these counters in our key performance
 Chapter 10. WebSphere Business Monitor 279

indicator (KPI) definitions and want to see them in our dashboard. We create an
OrderTimer metric, which relies on the AnyCICS_Trigger. This trigger fires when
we get either kind of event from CICS. When the trigger fires, we store the
current DateTime. We also create a Stopwatch, which we define to start when an
Order event arrives and to reset when we receive a FailedOrderEvent. Taking the
average of these durations allows us to define a Meantime Between
FailedOrders (MTBF) KPI.

10.2.4 Defining the KPI model

We define four KPIs, which will be rendered in our dashboard. Figure 10-11
shows the four KPIs.

Figure 10-11 KPI model definition

We easily define the Order Count and Fail Count KPIs by using the associated
metrics. We use the sum aggregation function. We add a range definition to color
the KPI rendering in Business Space. The OrderRate KPI relies on the Order
Count and OrderTimer metrics that we defined in the details model. Here, we
simply define a 1-minute rolling interval over which to evaluate the KPI, and so,
we can monitor the successful order throughput of our catalog system. We add
280 Leveraging CICS Events with an ESB

low, medium, and high ranges to the KPI to allow the widget to use colors as
visual indicators. The meantime between failed orders (MTBF) KPI uses the
stopwatch that we defined and the average aggregation function.

We complete the development of the monitor model. We have exported a project
interchange containing the model, which you can download and use. It is part of
Appendix A, “Additional material” on page 401.

10.3 Creating the Business Space dashboard

After creating the monitor model and deploying it to the WebSphere Business
Monitor server, you can customize the appearance of the Business Space
dashboard, as shown in Figure 10-12. We use the Instances widget from the
palette and drag it onto our new page in our Business Space.

Figure 10-12 Business Space with the widget palette

After it is on the page, we can configure the widget based on the elements
available in our model, as shown in Figure 10-13 on page 282. We define a page
for Orders and a separate page for Failed Orders, and each page has its own
Instances widget.
 Chapter 10. WebSphere Business Monitor 281

Figure 10-13 Configuring the Instances widget

In a similar manner, we use the KPI widget to build the two KPI pages in our
dashboard. Configuring the KPI widget is as easy as selecting the KPI of interest,
as shown in Figure 10-14.

Figure 10-14 Configuring the KPI widget

We complete our tailoring of the Business Space. We have exported the
Business Space definition, which is available for download in Appendix A,
“Additional material” on page 401.
282 Leveraging CICS Events with an ESB

10.4 Viewing the CICS CBE monitor dashboard

Now that our monitor model is deployed and our Business Space is tailored, our
last step is to drive the load on our catalog system. WebSphere Business Monitor
Toolkit includes a stand-alone test capability called the Integrated Test Client,
which can be used to simulate sending events to the monitor model. The
Integrated Test Client is a useful facility for developing and testing monitor
models in parallel to the development of the monitored application. We
demonstrate how to use the Integrated Test Client, which can be used as an
alternative source for populating the Business Space dashboard. We look at our
dashboard in the following sections, showing a business view of all the new
function that our scenarios have added to our original application.

10.4.1 Sending test events with the Integrated Test Client

If you have a WebSphere Integration Developer Version 7 environment that
includes the unit test environment for WebSphere Business Monitor, you can
send test events to your monitor model using the Integrated Test Client. You must
have already deployed the generated enterprise application to the unit test
server. Then, we right-click the monitor model to start the Integrated Test Client
by selecting “Launch Integrated Test Client” against the monitor model, as shown
in Figure 10-15 on page 284.
 Chapter 10. WebSphere Business Monitor 283

Figure 10-15 Launching Integrated Test Client

The Integrated Test Client editor opens for this model (Figure 10-16 on
page 285). You can build a test script by specifying event details and adding
them to the script. We have provided a sample script named Monitor Test
Events.xml in Appendix A, “Additional material” on page 401.
284 Leveraging CICS Events with an ESB

Figure 10-16 Setting predefined data elements

First, we specify a successful order event, so we chose the OrderEvent event
definition. There are predefined data elements that must be present in every
CBE event. We add two attributes, creationTime and globalInstanceId, to the
default attributes, as in Figure 10-16. For creationTime, a calendar widget allows
us to choose a date and time. The attribute globalInstanceId must be unique for
every event, so we copy the localInstanceId contents and adjust it each time.

The Event part details section contains the real business data for the event,
along with the event identifier (our monitor model specifies an event filter so that
it recognizes which events to consume based on this event identifier).
Figure 10-17 on page 286 shows how we set this event identifier.

 Chapter 10. WebSphere Business Monitor 285

Figure 10-17 Event name for an order

The eventPayload event part contains the relevant business data that is passed
with each order, in this case, a charging department, as shown in Figure 10-18
on page 287. After we have set the event details, we can add the event to the
script by using “Add to Test Script”.
286 Leveraging CICS Events with an ESB

Figure 10-18 Event payload for an order

The test script now has the event added to it (Figure 10-19 on page 288). We can
run the script now, if we choose.

More often, though, you build a scenario of a number of events in your test script
before running the script and submitting those events against your monitor
model.
 Chapter 10. WebSphere Business Monitor 287

Figure 10-19 Script with event added

The monitor model also listens for failed orders, so to emulate that situation, we
add a FailedOrderEvent to the script. We set the predefined data elements in a
similar way as the previous event and set the event name to FailedOrder, as
shown in Figure 10-20 on page 289.
288 Leveraging CICS Events with an ESB

Figure 10-20 Event name for a failed order

We set the business data for the event, as shown in Figure 10-21 on page 290,
and the event is added to the test script.
 Chapter 10. WebSphere Business Monitor 289

Figure 10-21 Event payload for a failed order

You can open the example script that is provided and examine its contents, as
shown in Figure 10-22 on page 291.
290 Leveraging CICS Events with an ESB

Figure 10-22 Example script file contents

Using the Integrated Test Client, you can build representative scenarios and load
your monitor model with test cases that can then be examined in the Business
Space dashboard. In the following sections, we show examples of the various
monitoring widgets within the dashboard.

10.4.2 Successful order instances

The events generated in scenario 1 are emitted from the CICS catalog order
application and are then routed to WebSphere Business Monitor without
enrichment from the ESB. We show the results of scenario 1 in the Business
Space Order Detail page, which is shown in Figure 10-23 on page 292.
 Chapter 10. WebSphere Business Monitor 291

Figure 10-23 Order instances

10.4.3 Insufficient stock instances

In scenario 3, the events are emitted from CICS, flow to the ESB, and are
transmitted to WebSphere Business Monitor before the event is enriched.
Figure 10-24 shows the Failed Count for each department in the Business Space
Fail Detail page. The failed events are the results of insufficient stock on hand for
the ordering department.

Figure 10-24 Failed order instances
292 Leveraging CICS Events with an ESB

10.4.4 Total successful and failed orders

When we place a small load on the catalog system, both successful and failed
order events start to occur. The counts of those events display on the KPI page of
the Business Space, as shown in Figure 10-25.

Figure 10-25 Order Count and Failed Count KPIs

10.4.5 Event rate and average meantime between failure orders

Also, under load, we can see the average meantime between failed orders
(MTBF) and the overall successful order throughput (OrderRate), as shown on
the KPI Rate page of the Business Space, which is shown in Figure 10-26 on
page 294.
 Chapter 10. WebSphere Business Monitor 293

Figure 10-26 Average meantime between failed orders (MTBF) and Order Rate KPIs

10.5 Summary

In this chapter, we have illustrated how easily the events emitted by our CICS
applications can be exposed to business users in a meaningful business-relevant
way. We have discussed the configuration tasks that we performed for our
WebSphere Business Monitor server to consume the events that CICS emitted.
These events were routed and written to a WebSphere MQ queue on z/OS by
our ESB. We then discussed the design and development of the monitor model,
including the inbound event definitions, details and KPI models. After we
deployed our monitor model to the WebSphere Business Monitor server, we
configured the instances and KPI widgets in Business Space, and finally began
to drive a load through our catalog system. The resulting events were depicted as
KPI s on our dashboard, and so, we had new business insight into our catalog
application.
294 Leveraging CICS Events with an ESB

Chapter 11. WebSphere Process Server

We described the multiple insufficient stock failures event in 8.4, “Scenario 4” on
page 245. In this chapter, we describe using WebSphere Integration Developer
to create the process that is triggered by the web service call from WebSphere
Business Events when a multiple insufficient stock failures event is detected.

11
© Copyright IBM Corp. 2010. All rights reserved. 295

11.1 Process

To develop and test our process, we used WebSphere Integration Developer V7.
If you are new to developing processes in WebSphere Integration Developer V7,
it can seem daunting at first. The WebSphere Integration Developer V7
Information Center provides a good “HelloWorld” sample, which is relatively easy
to understand and duplicate for yourself, but to then move from that to a process
that actually does something useful is quite a step. There are many examples in
the WebSphere Integration Developer V7 Information Center and elsewhere, but
even with these examples, there is still quite a learning curve involved.

Hopefully, the description in this chapter of how we built our process helps with
your understanding of how to use WebSphere Integration Developer V7 to build a
process.

11.1.1 Designing the process flow

Before beginning to create the process flow in WebSphere Integration Developer
V7, it is a good idea to sketch out how you want your process to work.
Figure 11-1 on page 297 shows our outline of how we wanted our process to
work.
296 Leveraging CICS Events with an ESB

Figure 11-1 Proposed process flow

WebSphere Business Events invokes our process when WebSphere Business
Events detects that there have been three failed orders for the same product item
number over a defined period of time. WebSphere Business Events passes to
our process the details of each of the three failed orders. In our process design
that is shown in Figure 11-1, we perform a Web Service call for each item in the
failed orders. This approach is a bit redundant because each failed order is for
the same item; therefore, we can set up the process to call the Web Service only
one time.

However, we set up the process to call a Web Service for each item for two
reasons:

� We might want to cater for a situation where WebSphere Business Events is
set up to detect three failed orders for any type of item but for a particular
customer over a certain period of days. In which case, we can use this same
process.

� We add this extra complexity to the process, even though it is not strictly
needed, to provide a good opportunity to show how relatively easy it is to set
up a process to handle a relatively complex flow.

Start

Count > 3 ?

WebService
call to
retrieve Item
details

Calculate
cost of failed
stock order

Add cost to
total cost of
all failed
orders

Count + 1

Total cost of
failed orders
> Limit ?

Alert the
Order Clerk

Alert the
Manager of
the Order
Clerk

No

yes
 Chapter 11. WebSphere Process Server 297

11.2 Building the process

Next, we describe in detail how we built our process.

11.2.1 Products we used

We installed WebSphere Integration Developer V7.0.0 onto a Microsoft Windows
XP machine. We then applied the following products:

� Service Component Architecture (SCA) Feature Pack Version 1.0.1.1

� IBM WebSphere Application Server Network Deployment (ND) Version
7.0.0.7

� XML Feature Pack Version 1.0.0.1

� IBM WebSphere Process Server Version 7.0.0.1

11.2.2 CICS Web Services Description Language

The information about the failed item orders passed from WebSphere Business
Events to our process did not contain the item cost. Therefore, our process
needs to obtain this information from somewhere. We decided to use a Web
Service call directly to CICS to perform this task.

In an Enterprise Service Bus implementation (because our IBM Redbooks
publication is focused on how to use an Enterprise Service Bus as the
intermediary between separate components), this Web Service call goes to the
ESB, which then routes it to the service provider. However, we did not follow this
approach due to time constraints. Note, though, that it is a fairly simple matter to
replace the direct Web Service call to CICS with a Web Service call to an ESB, if
required.

For our process to be able to perform the WebService call to CICS, we need the
Web Services Description Language (wsdl) file. We obtained this file and stored
it locally in a folder on our Microsoft Windows personal computer. Later in this
chapter, we show how we imported this wsdl into WebSphere Integration
Developer V7.

The Web Services Description Language (WSDL) that we used was generated
by a CICS-provided tooling process. The default values set in the XML file were
created by this process. You can change these values to provide more
meaningful names, as required.
298 Leveraging CICS Events with an ESB

For example, the initial wsdl had the following lines:

<xsd:element name="DFH0XCMNOperation" nillable="false"
type="tns:ProgramInterface"/>
<xsd:element name="DFH0XCMNOperationResponse" nillable="false"
type="tns:ProgramInterface"/>

Importing this initial wsdl into WebSphere Integration Developer V7 resulted in
two interfaces appearing with the same name. Two interfaces with the same
name subsequently leads to confusion about which interface to use when
creating the process.

It is important that users performing this sort of activity for real applications give
careful consideration to the names that are set in the wsdl file that is generated
by CICS tooling.

11.2.3 Starting WebSphere Integration Developer V7

To create a process in WebSphere Integration Developer V7, we start the
product by selecting Start IBM WebSphere Integration Developer IBM
WebSphere Integration Developer V7.0 WebSphere Integration Developer
V7.0.

11.2.4 Creating a business integration project

To use WebSphere Integration Developer V7 to create our process, we first need
to create a project that will store all the various components. In the initial
WebSphere Integration Developer V7 window, we click the New link in the
Projects area, select the Module type, as shown in Figure 11-2 on page 300,
and, then, click Next.
 Chapter 11. WebSphere Process Server 299

Figure 11-2 Creating a new business integration project

In the next window that opens, we enter the name of our module,
multiLowStockEvent, as shown in Figure 11-3.

Figure 11-3 Entering the name of the new project
300 Leveraging CICS Events with an ESB

We click Finish. WebSphere Integration Developer V7 creates the initial project
framework.

11.2.5 Defining business objects

We knew we were receiving an event from WebSphere Business Events that
contained the details of three failed stock orders. Furthermore, we decided that
WebSphere Business Events will send a web service call to WebSphere Process
Server to initiate a process to handle the event.

Therefore, WebSphere Business Events needs a wsdl file describing the web
service call to be able to perform the call. We decided to use WebSphere
Integration Developer V7 to define and generate the wsdl that will be used by
WebSphere Business Events.

We first needed to define business objects that map the expected data.

Defining the business object for one failed order
First, we define a business object to describe a single failed order. We select
Data Types New Business Object, as shown in Figure 11-4.

Figure 11-4 Starting process to define a new business object

In the window that opens, we set the name of the new business object to
lowStockRequest, as shown in Figure 11-5 on page 302.
 Chapter 11. WebSphere Process Server 301

Figure 11-5 Naming the new business object

We click Finish, and WebSphere Integration Developer V7 displays the initial
definition of the object.

Next, we add as many fields as needed to the object. We need to add the
following fields:

� Item number
� Quantity
� User name
� Charge department

To add a field to the business object, we click the icon with an F in a blue circle,
which adds a field to a business object. Figure 11-6 on page 303 shows that we
clicked this symbol four times to add four fields to the business object.
302 Leveraging CICS Events with an ESB

Figure 11-6 Adding fields to the business object

If you click a property, the Properties tab shows various attributes that you can
set for that property, such as the type of field and the initial value, as shown in
Figure 11-7 on page 304.

We did not set any properties for these fields.
 Chapter 11. WebSphere Process Server 303

Figure 11-7 Setting properties for a field

We then close the lowStockRequest tab and click Yes to the prompt to save the
changes that we had made.

Defining a business object for an array of failed orders
We then define a new business object, which is an array type object containing
three individual failed business objects.

We create a new business object called listLowStockRequestEvent. In this new
business object, we add one field of type lowStockRequest. Figure 11-8 on
page 305 shows the business object that we created.
304 Leveraging CICS Events with an ESB

Figure 11-8 Adding a field of type lowStockRequest

We call the new field sr_event, as shown in Figure 11-8. In the properties for this
field, we set the minimum and maximum occurrences to 3, because we know that
WebSphere Business Events will send information about three failed events. We
then close the tab for listLowStockRequestEvent and click Yes to save the
changes (Figure 11-9 on page 306).
 Chapter 11. WebSphere Process Server 305

Figure 11-9 Defined business object

11.2.6 Creating a new business process

The next step is to create a new business process. WebSphere Integration
Developer V7 supports top-down, bottom-up, and meet-in-the-middle
approaches to creating a process. Using the top-down approach in WebSphere
Integration Developer V7 simplifies the creation of the overall process and is the
approach that we use. To define our process, we select the Process object from
the Palette menu and drag and drop it onto the assembly diagram canvas. We
then overtype the default name with the value actionMultiLowStockEvent, as
shown in Figure 11-10 on page 307.
306 Leveraging CICS Events with an ESB

Figure 11-10 Creating a new business project

We save the assembly diagram by clicking the save icon that is located near the
upper-left corner of the WebSphere Integration Developer V7 window.

When you click the save icon, you receive this warning message:

CWSCA8004W: The actionMultiLowStockEvent component has no
implementation

This message means that, at this stage, there is no Business Process Execution
Language (BPEL) for this process. We will generate the BPEL for this process
soon.

Creating the interface to the process
Our process needs an interface to allow it to be invoked. To add an interface, we
select the actionMultiLowStockEvent object. When we select it, three small icons
appear over the object. If you hover the mouse on the first icon on the left,
WebSphere Integration Developer V7 shows you that this icon is the Add
Interface icon. We click the Add Interface icon, and then, we click New in the
window that is shown in Figure 11-11 on page 308.
 Chapter 11. WebSphere Process Server 307

Figure 11-11 Adding an interface to the process

In the window that opens, we enter the name of the new interface,
ActionMultiLowStockEvent, as shown in Figure 11-12, and click Finish.

Figure 11-12 Setting the name of new interface

WebSphere Integration Developer V7 then creates the interface and opens a tab
to allow us to modify the newly created interface, as shown in Figure 11-13 on
page 309.
308 Leveraging CICS Events with an ESB

Figure 11-13 Default values in process interface

Adding a request response operation
We click the Add Request Response Operation icon, which added a default
operation called operation1 with default input and output entries. We can either
overtype operation1 with a new value, or in the Properties tab, enter the new
name there. We set the new name to actionMultiLowStockEvent.

Changing the input
We then click the default input name of input1 and changed this name to
lowStock_event. Then, in the type for the input field, we select string, which
brought up a selection box, from which we select listLowStockRequestEvent.

Changing the output
We change the name of the output field to lowStock_event_replyMsg and leave
the type as string.

Then, we close the tab to save the changes.

Generating the process web service interface
Next, we generate web service bindings for our process by right-clicking the
process and selecting Generate Export Web Service Binding, as shown in
Figure 11-14 on page 310.
 Chapter 11. WebSphere Process Server 309

Figure 11-14 Start of process to generate Web Service binding for our process

WebSphere Integration Developer V7 opens a window in which you can select
the type of transport protocol to use for the web service. In our case, we select
SOAP1.1/HTTP and click Finish. After WebSphere Integration Developer V7
completes this generation process, there is a new item under the Web Service
Ports part of the project. Also, an Export activity is added to our assembly. The
assembly, at this point, looks similar to Figure 11-15.

Figure 11-15 Assembly diagram after generating Web Service binding

Generating the process implementation
The next step is to generate the implementation of what we have so far designed
in the Assembly Diagram view. We select the actionMultiLowStockEvent object,
then right-click it, and select Generate Implementation, as shown in Figure 11-16
on page 311.
310 Leveraging CICS Events with an ESB

Figure 11-16 Generating the implementation of the process

This selection opens a window that is similar to Figure 11-17.

Figure 11-17 Setting location where process implementation will be created

We click OK, and WebSphere Integration Developer V7 generates the
implementation of the process. Figure 11-18 on page 312 shows parts of the
WebSphere Integration Developer V7 window after this action completes. The
new process is listed under Integration Logic Processes, and the initial
implementation of the flow is shown in a new tab.
 Chapter 11. WebSphere Process Server 311

Figure 11-18 The created process implementation

We save the updated assembly diagram. There is no warning message now,
because an implementation of the process exists.

11.2.7 Variables

When it generates the process implementation, WebSphere Integration
Developer V7 automatically creates two variables called lowStock_event of type
listLowStockRequestEvent and lowStockEvent_event_replyMsg of type string.
We can see these variables under the Variables subtab on the right side of the
actionMultiLowStockEvent process tab.

WebSphere Integration Developer V7 uses the input and output names that were
set in the interface to the process that we created in “Creating the interface to the
process” on page 307 to create these variables.

These variables are called global variables, because any activity that is in the
process can reference these variables. You can also define local variables,
which can only be accessed by a subpart of a process. Later in this chapter, you
will see how we define and use local variables.
312 Leveraging CICS Events with an ESB

When the process runs, WebSphere Process Server takes the data that is
received on the Web Service call and stores it in the global variable called
lowStock_event. The Receive activity performs this action, which you can see by
selecting the Receive property and looking in the Details information that is
displayed in the Properties tab, as shown in Figure 11-19.

Figure 11-19 Details of the Receive activity

Similarly, in the Reply activity, we can see that the value that the Reply activity
returns to the caller of the process is read from the contents of the
lowStock_event_replyMsg global variable.

Adding and deleting global variables
To remove a global variable, if necessary, click it to select it, and then click the
cross, which shows as red, to delete it.

There is already a global variable called lowStock_event. If there was not already
a global variable called lowStock_event and you wanted to add a global variable
called lowStock_event of type listLowStockRequestEvent, you click the green
plus symbol, setting the name and selecting the type, as shown in Figure 11-20
on page 314.

Receive activity: This is a key part of understanding how a process receives
data from whatever method invokes the process. The Receive activity does
not know anything about how the process was invoked. The process might
have been invoked by a web service or a Java Message Service (JMS)
message. The purpose of the Receive activity is to automatically copy the data
that is received by the interface to global variables. Activities in the process
can then access the data stored in the global variables.
 Chapter 11. WebSphere Process Server 313

Figure 11-20 Adding a new global variable to the process

11.2.8 Adding a snippet

When developing a new process, especially if you are new to this type of task,
typically, you develop it in stages and try to test it as you go along. Adding a
snippet to the process, especially during the development stages, is a useful way
of adding trace messages for debug purposes.

We add a snippet by clicking the snippet activity under Basic Actions and
dragging it between the Receive and Reply activities, as shown in Figure 11-21
on page 315.
314 Leveraging CICS Events with an ESB

Figure 11-21 Adding a snippet to the process

You can configure a snippet visually or by adding Java code, which is the method
that we use in this case. To add Java code, we select the snippet activity and,
then, in the Properties tab, select Java. WebSphere Integration Developer V7
opens a window with a warning message and a question about the switch, as
shown in Figure 11-22, to which we answered Yes.

Figure 11-22 Changing to Java coding mode in a snippet

We add the Java code that is shown in Example 11-1 to our snippet.

Example 11-1 Java snippet code to display data received by the process

Date now = new Date();
System.out.println("Process to handle multiple low stock event started
at: " + now);

// Create a Business Object Factory
 Chapter 11. WebSphere Process Server 315

BOFactory bofactory =
 (BOFactory)
ServiceManager.INSTANCE.locateService("com/ibm/websphere/bo/BOFactory")
;

// Create an object for a low stock item

DataObject isr = bofactory.create("http://multiLowStockEvent",
"lowStockRequest");

// Retrieve all the low stock events received by the process

List stockRequestsList = lowStock_event.getList(0);

System.out.println("stockRequestList: " + stockRequestsList);

// Get the number of low stock items retrieved

int numberOfItems = stockRequestsList.size();

System.out.println("Number of isr = " + numberOfItems);

String sr_UserName = null, sr_ItemNumber = null, sr_Quantity = null;

// Print out info from each low stock event

for (int ii=0; ii < numberOfItems ; ii++) {

 // Get a low stock event

 isr = (DataObject) stockRequestsList.get(ii);

 // Get fields from the object

 sr_UserName = isr.getString("sr_UserName");
 sr_ItemNumber = isr.getString("sr_ItemNumber");
 sr_Quantity = isr.getString("sr_Quantity");

 System.out.println(ii + " sr_userid: " + sr_UserName +
" sr_ItemNumber: " + sr_ItemNumber +
" sr_Quantity: " + sr_Quantity);

}

316 Leveraging CICS Events with an ESB

When we save these changes, WebSphere Integration Developer V7 displays a
number of compile errors in our Java code, because our Java code uses classes
that the process does not know about. To resolve this problem, we need to add
import statements to the process. We can click anywhere in the Process tab,
then click the Properties tab, and there is a tab called Java Imports. In this area,
we add the Java imports that are needed for the process. Example 11-2 shows
all the Java imports that we added to our process.

Example 11-2 Java imports needed for the process

import com.ibm.websphere.bo.BOFactory;
import com.ibm.websphere.sca.ServiceManager;
import commonj.sdo.DataObject;
import java.util.List;
import java.util.ArrayList;
import java.util.Date;

Figure 11-23 shows adding the Java imports to the process.

Figure 11-23 Adding Java imports to the process

Saving these changes resolves the errors in the Java snippet.
 Chapter 11. WebSphere Process Server 317

Understanding the use of the Business Object factory
These lines are in the Java code:

BOFactory bofactory =
 (BOFactory)
ServiceManager.INSTANCE.locateService("com/ibm/websphere/bo/BOFactory")
;
DataObject isr = bofactory.create("http://multiLowStockEvent",
"lowStockRequest");

The first line creates a Business Object factory, which is then used to create a
data object of a specific type. The values that are used in the second line are
obtained from the defined business object. You can find these values in the
Description tab of the Properties tab of the data type, as shown in Figure 11-24.

Figure 11-24 Where to find values to use when using a Business Object factory

11.2.9 Time for a first test run

After we complete setting up the assembly diagram, we can test it. We first start
the WebSphere Process Server in WebSphere Integration Developer V7 by
selecting the Servers tab, right-clicking the WebSphere Process Server server,
and selecting Start. After WebSphere Process Server in WebSphere Integration
Developer V7 starts, we need to add our project to the server. We right-click the
server and select Add and Remove Projects. In the window, we select the
project, click Add, and then, click Finish, as shown in Figure 11-25 on page 319.
318 Leveraging CICS Events with an ESB

Figure 11-25 Adding the project to the server

WebSphere Integration Developer V7 provides a number of ways to test our
process. We can use the built-in Business Process Choreographer Explorer or
the built-in Web Services Explorer tool. Or, we can test the process from the
Assembly Diagram view by using the Integrated Test Client.

Testing with Business Process Choreographer Explorer
We right-click the server, select Launch Business Process Choreographer
Explorer, and enter our user ID and password that we set when we installed
WebSphere Integration Developer V7. In the window under the Process
Templates heading, we click Currently Valid and our process is displayed, as
shown in Figure 11-26 on page 320.
 Chapter 11. WebSphere Process Server 319

Figure 11-26 Our process displayed in Business Process Choreographer Explorer

We select the process and click Start Instance, and WebSphere Integration
Developer V7 opens a window called Process Input Message. This window
shows the input fields that are passed to the process. We fill in the fields with
random values, click Add, and then, click Submit to invoke the process. The initial
window opens.

During this time, our process runs. We verify that our process ran by looking for
the messages that the snippet Java code has written to the server SystemOut
log. We locate this file on our Microsoft Windows server at this location:

C:\zProducts\IBM\WID7_WTE\runtimes\bi_v7\profiles\qwps\logs\server1\Sys
temOut.log

In the log, we see the following output, which confirmed that our process was
called correctly:

[19/03/10 12:24:49:156 EST] 000000bc SystemOut O Process to handle
multiple low stock event started at: Fri Mar 19 12:24:49 EST 2010
[19/03/10 12:24:49:156 EST] 000000bc SystemOut O stockRequestList:
[BusinessObject: lowStockRequest@6c0c6c0c (sr_ItemNumber=1,
sr_Quantity=10, sr_UserName=first, sr_ChargeDept=alpha),
BusinessObject: lowStockRequest@6c196c19 (sr_ItemNumber=2,
sr_Quantity=21, sr_UserName=second, sr_ChargeDept=beta),
BusinessObject: lowStockRequest@6c266c26 (sr_ItemNumber=3,
sr_Quantity=23, sr_UserName=third, sr_ChargeDept=gamma)]
[19/03/10 12:24:49:156 EST] 000000bc SystemOut O Number of isr = 3
[19/03/10 12:24:49:156 EST] 000000bc SystemOut O 0 sr_userid: first
sr_ItemNumber : 1 sr_Quantity : 10
[19/03/10 12:24:49:156 EST] 000000bc SystemOut O 1 sr_userid:
second sr_ItemNumber : 2 sr_Quantity : 21
320 Leveraging CICS Events with an ESB

[19/03/10 12:24:49:156 EST] 000000bc SystemOut O 2 sr_userid: third
sr_ItemNumber: 3 sr_Quantity: 23

Testing with Web Services Explorer
Because we set up our process to be invoked by a Web Service call, we can use
the Web Services Explorer tool in WebSphere Integration Developer V7 to invoke
our process through this method. Under Web Service Ports, we right-click
ActionMultiLowStockEventExport1_ActionMultiLowStockEventHttpPort and
select Web Services Test with Web Services Explorer, as shown in
Figure 11-27.

Figure 11-27 Starting the Web Services Explorer tool

Figure 11-28 on page 322 shows the initial view of the Web Services Explorer
tool displayed by WebSphere Integration Developer V7.
 Chapter 11. WebSphere Process Server 321

Figure 11-28 Initial Web Services Explorer view

In our case, because we defined a second process server within our WebSphere
Integration Developer V7 environment, we need to add the second endpoint
shown (Figure 11-28). We click Add, which repeated the first endpoint, and we
then change the port from 9080 to 9082 and click Go to update the endpoint list.
To prepare for the Web Service call, we click actionMultiLowStockEvent on the
left side.

WebSphere Integration Developer V7 then displays a view that allows us to set
up values to pass on the Web Service call. To set up the Web Service call, we
click Add beside sr_Event three times and, then, for each variable, click Add and
enter a value. The complete window is too large to show, but Figure 11-29 on
page 323 shows a part of it.
322 Leveraging CICS Events with an ESB

Figure 11-29 Setting values for a Web Service Call

In Figure 11-29, after we have entered values in all fields, we click Go, which is
located at the bottom of the window to invoke the process through a Web Service
call. There is another panel labelled Status, which shows the result of the Web
Service call. If the Web Service call works successfully, nothing is returned at this
stage, because the process does not yet return any value. We can check the
SystemOut.log file of the server to find the output that was produced by the Java
code of the Snippet activity, which is similar to the output of testing the process
using Business Process Choreographer Explorer.
 Chapter 11. WebSphere Process Server 323

Testing with Integrated Test Client
We can test the processes on the Assembly Diagram view by using the
Integrated Test Client. We start by selecting the process in the assembly
diagram, right-click it, and select the option called Test Component, as shown in
Figure 11-30.

Figure 11-30 Starting Integrated Test Client

We show how to use Integrated Test Client in detail in 11.2.26, “Testing using the
Integrated Test Client” on page 366 to test the completed process.

11.2.10 Adding a web service call to get item details

In our process design, we want our process to be able to perform a web service
call to obtain details about the low stocked item, such as its cost and description.
In this case, our process performs a web service call to CICS. We right-click Web
Service Ports and select Import. In the window that opens, we select the Web
Services Description Language (WSDL) and XML Schema Definition (XSD)
source, as shown in Figure 11-31 on page 325.
324 Leveraging CICS Events with an ESB

Figure 11-31 Start of process to import wsdl

We click Next. In the next window that opens, we select the option to import from
the local WSDL or XSD file and click Next. We click Browse in the next window to
locate the source directory folder containing the wsdl file supplied. When we
select the folder, WebSphere Integration Developer V7 displays all the wsdl files
available, as shown in Figure 11-32.

Figure 11-32 Import the wsdl that is used to call the web service to get the item details
 Chapter 11. WebSphere Process Server 325

We select inquireSingle.wsdl and click Finish. After WebSphere Integration
Developer V7 completes the import of the wsdl, there is a new entry called
DFH0XCMNPort under Web Services Port, a new interface called
InquireSinglePort under Interfaces, and two new Business Objects under Data
Types called InquireSingleInput and InquireSingleOutput.

Testing the web service
Because our process calls this web service, we need to determine what data
needs to be passed when making the web service call and what data needs to be
received in return. The best way to determine the data to pass and receive is to
invoke the web service by using WebSphere Integration Developer V7. We
right-click DFH0XCMNPort and select Web Services Test with Web Services
Explorer.

We invoke the web service and note which input fields must be filled in and which
output fields in the reply contain the information about the item that we need.

Figure 11-33 shows testing the web service. Notice the red asterisk (*) beside
the field ca_return_code. This red asterisk indicates that this field requires an
initial value.

Figure 11-33 Testing the web service
326 Leveraging CICS Events with an ESB

When we test the web service, we enter the values that are shown in Table 11-1
in the input fields.

Table 11-1 Testing values

Figure 11-34 on page 328 shows the data that was returned as a result of the
web service call to CICS.

Field Value

ca_request_id 01INQS

ca_return_code 0

ca_item_ref_req 30

ca_sngl_item_ref 30

ca_sngl_department 100

in_sngl_stock 0

on_sngl_order 0
 Chapter 11. WebSphere Process Server 327

Figure 11-34 Data returned from web service call to CICS

The WSDL contains the TCP/IP address and the port of the CICS region that
handles this Web Service call. We can see the TCP/IP address and the port by
double-clicking DFH0XCMNPort, selecting the DFH0XCMNService icon in the
wsdl display, selecting the DFH0XCMNPort within that display, and then selecting
the Properties tab. The Address field shows the TCP/IP address and the port of
the target CICS region, as shown in Figure 11-35 on page 329. We can change
the TCP/IP address and port here, if necessary.
328 Leveraging CICS Events with an ESB

Figure 11-35 CICS WSDL address

11.2.11 Adding the ForEach activity

As part of our process design, we want to call the web service to get details
about each low stocked item. The event that is passed by WebSphere Business
Events has three low stock item events, and we use a ForEach activity to process
each low stock item event.

In the Assembly Diagram view, we click the ForEach activity under Structures
and drag it between the snippet and reply activity. We select the ForEach activity,
click the Properties tab, click Description, and change the Display Name to
calcCostLowStockEvent. We click Details and click Type. In the small window, we
select sr_event, as shown in Figure 11-36 on page 330.
 Chapter 11. WebSphere Process Server 329

Figure 11-36 Setting bounds for the ForEach activity

The process then looks similar to Figure 11-37 on page 331.
330 Leveraging CICS Events with an ESB

Figure 11-37 Process with ForEach activity added

11.2.12 Defining new Business Objects

Our process design shows that we want the process to invoke a human task.
When the process creates the human task, we want to pass the following data:

� Data that the process received
� Details, such as cost and description, about each low stock item
� Total cost of the low stock event

In the ForEach activity, after each web service call to get item details, we need to
store these details somewhere. We create new business objects to store this
data.

itemDetails
We right-click Data Types, select New Business Object, and then, set the
Name to itemDetails.
 Chapter 11. WebSphere Process Server 331

Using the approach that is described in 11.2.5, “Defining business objects” on
page 301, we add the following fields (all string type):

� item_refNumber
� item_desc
� item_cost
� item_dept
� item_stock

itemDetailsArray
We define a new Business Object called itemDetailsArray and a field called
items of type itemDetails. In the properties for this field, we set the minimum
and maximum occurrences to 3.

11.2.13 Adding a global variable to hold the total cost

The purpose of the ForEach activity is to calculate the total cost of the three low
stock events. This value is needed by other activities that we will add after adding
the ForEach activity, so we need a new global variable to hold this value.

As described in “Adding and deleting global variables” on page 313, we add a
new global variable called totalCostLowStockEvent. We set the type to float and
the initial value of this variable to 0 (zero), as shown in Figure 11-38 on
page 333.

Important: If you do not set the minimum and maximum occurrences for this
field, you get an exception in the Java code that is added, as shown in 11.2.19,
“Adding the snippet to calculate the cost” on page 351.
332 Leveraging CICS Events with an ESB

Figure 11-38 Setting the variable’s initial value to zero

11.2.14 Adding the Assign activity

We next add an Assign activity to the ForEach activity. We use the Assign activity
to extract fields from the data passed into the process into variables in the
process.

Defining three local variables
We click the box inside the ForEach activity to set the scope in which the local
variables will be created. To add a local variable, click the small symbol to the left
of the green plus symbol (+) in the Variables area, as shown in Figure 11-39 on
page 334. We define three local variables of type string called lowItemNumber,
lowItemQuantity, and lowItemDept.
 Chapter 11. WebSphere Process Server 333

Figure 11-39 Adding local variables

Adding the Assign activity
In the assembly diagram, we click the Assign activity under Basic Actions and
drag and drop it onto the box inside the ForEach activity. We select the Assign
activity, click the Properties tab, click Description, and change the Display Name
to getLowStockInfo.

Mapping input data to the local variables
In the Properties tab for the Assign activity, we select Details so we can specify
that we want to copy data from one location to another location. We click Select
From and select XPath Expression, which opens a window called XPath
Expression Builder, as shown in Figure 11-40.

Figure 11-40 Setting up the Assign activity

We click Insert Simple XPath, which opens a window in which we can build the
expression.
334 Leveraging CICS Events with an ESB

Creating the expression is not simple. Figure 11-41 shows the window with our
completed XPath expression:

$lowStock_event/sr_event[position() = $Index]/sr_ItemNumber

We use this sequence to create this expression:

1. Expand the entries under $lowStock_event.

2. Click sr_event, which results in the expression having a value of
$lowStock_event/sr_event.

3. In the “Add an optional filter” area under the Where column, click the
drop-down symbol and select position(). Then, enter the value $Index in the
Value column, click anywhere in the window, and the expression will then
have a value of $lowStock_event/sr_event[position() = $Index].

4. Click sr_ItemNumber to add that component to the expression.

After completing this process, the Expression Builder window looks similar to
Figure 11-41.

Figure 11-41 Building the XPath expression
 Chapter 11. WebSphere Process Server 335

We click Ok until we return to the Assign Properties tab. Under the Assign To
column, we click Select To and select the local variable lowItemNumber.

We click Add to add another entry and repeat the previously described process,
this time, selecting sr_Quantity in the Expression Builder window and assigning it
to the local variable lowItemQuantity. Then, we repeat the process again to
assign sr_ChargeDept to the local variable lowItemDept.

Figure 11-42 shows the end result.

Figure 11-42 Final setup of the Assign activity

11.2.15 Adding an intermediary interface

In our process, after copying the item data to local variables, we now want to
invoke a web service to get details about the item. In a process, you do not call
the web service directly. Instead, you call what is called a reference partner using
an invoke activity.

The reference partner in the business process represents an external service
with which you want the process to interact. In the assembly diagram, you
connect the reference partner to the web service that you want to call.

We also might add the interface of the web service that we want to invoke as a
reference partner; however, this approach is not considered a best practice for a
few reasons.

First, using the web service interface directly ties the process to the structure of
the web service. The purpose of the process is to get information about the item,
and ideally, the way that the process gets this information needs to be as abstract
as possible. If the process uses the web service interface directly, if at a later
time, you decide to use a separate web service that requires a separate input,
you must change the invoke activity in the process.

Important: The reference partner is another key point in understanding how
processes are created.
336 Leveraging CICS Events with an ESB

Also, to use this approach, we must set up a Java snippet to set up the input that
is required by the web service, because many fields on the web service need to
be initialized.

Using an intermediary interface avoids these issues. It provides an interface that
requires only key pieces of data and gets back a business object with the
required details. Using an intermediary interface does not require any Java
snippet code to set up the input that is needed by the interface. Later in 11.2.17,
“Updating the mediation flow” on page 344, we see how to use a mediation flow
in the assembly diagram to set up the input that the web service requires, using
the data that is passed to our intermediary interface.

The bottom-up approach in WebSphere Integration Developer V7 creates the
required interface by right-clicking Interfaces in the Project view and selecting
New Interface.

Using the top-down approach though takes fewer steps. We describe the
top-down approach. In the Assembly Diagram view, we select the
actionMultiLowStockEvent and, then, click the Add Reference icon, as shown in
Figure 11-43.

Figure 11-43 Adding a reference partner

WebSphere Integration Developer V7 opens a window titled Add Reference. We
click New, which results in WebSphere Integration Developer V7 displaying a
new window. We type getItemDetails in the name field, as shown in Figure 11-44
on page 338, and then, click Finish.
 Chapter 11. WebSphere Process Server 337

Figure 11-44 Adding an intermediary interface

The Add Reference window looks similar to the window that is shown in
Figure 11-45 on page 339.
338 Leveraging CICS Events with an ESB

Figure 11-45 After creating a new interface

We click OK, and WebSphere Integration Developer V7 then opens a tab where
we can modify the interface. We click the Add Request Response Operation icon,
and we set the operation name to obtainItemDetails. Then, we click the Add Input
icon to add a second input field. We rename the input fields to itemNumber and
itemDept. We rename the output field to itemInformation, and we set the type to
itemDetails. The interface looks similar to the interface that is shown in
Figure 11-46 on page 340. We close the tab to save the new interface.
 Chapter 11. WebSphere Process Server 339

Figure 11-46 Setting input and output parameters on the new interface

In the Assembly Diagram view, if we hover our mouse over the right side of the
actionMultiLowStockEvent process, a small box is displayed showing the details
about the reference partner that we have just defined.

We click the save icon to save this change and notice that a small red cross now
appears, which indicates that the underlying process does not know about the
reference partner that we have added in the assembly diagram. To correct this
condition, we right-click the actionMultiLowStockEvent process and select
Synchronize Interfaces and References to Implementation, as shown in
Figure 11-47 on page 341.
340 Leveraging CICS Events with an ESB

Figure 11-47 Synchronizing to the process implementation

We click Yes in the confirmation box that WebSphere Integration Developer V7
displays. WebSphere Integration Developer V7 updates the process and brings
that view into focus. We then see that the getItemDetails interface has been
added under Reference Partners.

In the assembly diagram, there is a warning to inform us that, at this stage, the
interface that we have added is not connected to anything. We connect the
interface next.

11.2.16 Connecting the process to the Web Service

We have defined a reference partner that the process invokes. We now need to
connect that reference partner to something that will actually process the call.

We select the interface to the web service called InquireSinglePort and drag and
drop it onto the assembly diagram. WebSphere Integration Developer V7 then
opens the window that is shown in Figure 11-48 on page 342.
 Chapter 11. WebSphere Process Server 341

Figure 11-48 Selecting binding type when adding web service interface to assembly

We select “Import with Web Service Binding” and click OK. WebSphere
Integration Developer V7 then opens the window that is shown in Figure 11-49.
We click Browse, and, in the window that opens, we select DFH0XCMNPort and
click OK.

Figure 11-49 Setting up the assembly to call the web service

WebSphere Integration Developer V7 then opens a window asking what
transport protocol to use, so we select the default of SOAP1.1/HTTP and click
Finish. Then, we click OK to complete the action, which results in adding an
Import icon called InquireSinglePortImport1 to the assembly diagram.
342 Leveraging CICS Events with an ESB

Then, we connect the actionMultiLowStockEvent icon to the interface on the
Import icon, as shown in Figure 11-50.

Figure 11-50 Connecting the process to the web service

WebSphere Integration Developer V7 then detects that the interfaces on the
objects that you have connected do not match and opens the window that is
shown in Figure 11-51.

Figure 11-51 WebSphere Integration Developer V7 prompt on action to take due to
mismatched interfaces
 Chapter 11. WebSphere Process Server 343

We accept the default option of “Create a mediation flow between the source and
target” and click OK. WebSphere Integration Developer V7 then creates the
mediation flow, which shows as an object between the process and the web
service in the assembly diagram, as shown in Figure 11-52.

Figure 11-52 Assembly diagram updated with mediation flow

We save the changes to the assembly diagram. Now, we no longer get a warning
message that the reference partner on the process does not connect to anything.

11.2.17 Updating the mediation flow

The actual web service that provides the item details requires its input in a
certain structure and returns the details in a certain structure. The reason that we
set up the getItemDetails interface is that we did not want the process to be tied
to the input parameter structure and the output parameter structure of the actual
web service. The purpose of the mediation flow is to map the inputs and outputs
of our intermediary interface with the inputs and outputs of the web service.

We double-click the mediation flow in the assembly diagram to open it.
Figure 11-53 on page 345 shows a slightly edited view of the initial view of the
mediation flow.
344 Leveraging CICS Events with an ESB

Figure 11-53 Initial display after we have defined the mediation flow

We click obtainItemDetails and select Operation Map from the list of options
displayed. WebSphere Integration Developer V7 then opens a window called
Select Reference Operation, and we select DFH0XCMNOperation, which, in this
case, is the only available operation. DFH0XCMNOperation performs the web
service call to CICS.

WebSphere Integration Developer V7 then opens a window similar to
Figure 11-54.

Figure 11-54 Start of process to set up the mapping of the data between interfaces

There is a Request tab with an input_map icon, which maps how data from the
getItemDetails interface is passed to the Partner1 interface. There is also a
Response tab with an output_map icon, which maps how data flows from the
Partner1 interface to the getItemDetails interface.
 Chapter 11. WebSphere Process Server 345

We double-click the input_map icon, and a window called New XML Map opens.
We accept the default name and click Finish.

Figure 11-55 shows the initial state of the input map.

Figure 11-55 Initial state of the input map

Now, we need to connect the fields in the box on the left to the appropriate fields
on the right. Also, a number of fields in the box on the right need to be filled in
with an initial value. However, the interface that is called by the process does not
provide these values. This situation demonstrates the value of using an
intermediary interface. Because we use an intermediary interface, we remove the
task of setting numerous fields that the web service requires from the actual
process. If, in the future, we replace this web service with a separate web service
that has other fields, we will merely need to change this input map. We will not
need to change the actual process.

To connect a field in the box on the left with a field in the box on the right, we
move the mouse over a field on the left so that the field is highlighted, and then,
346 Leveraging CICS Events with an ESB

we drag the small circle to the field on the right, which also becomes highlighted.
As we drag the small circle, WebSphere Integration Developer V7 displays a line
showing the connection that we make. When we release the mouse, the
connection becomes permanent. There is a box in the middle of the connection
that is labelled Move with a drop-down arrow beside it. The drop-down arrow,
when selected, shows various operations that can be performed on the transfer
of the data.

We connect itemNumber on the left with ca_item_ref_req and ca_sngl_item_ref
on the right, and we connect itemDept on the left with ca_sngl_department on
the right.

We right-click the field called ca_request_id, select the Create Assign option, and
then, in the Properties tab, we set the value to 01INQS. We use this same
process to assign a value of 0 (zero) to all other fields in the box on the right. We
then close the tab.

Next, we click the Response tab and double-click the output map icon. We
expand all the fields in the boxes and connect the following fields:

� ca_sngl_item_ref to item_refNumber
� ca_sngl_description to item_desc
� ca_sngl_department to item_dept
� ca_sngl_cost to item_cost
� ca_sngl_stock to item_stock

On the connections from ca_sngl_item_ref, ca_sngl_department, and
ca_sngl_stock, we use the Convert option to convert the data from
unsignedShort to string. Figure 11-56 on page 348 shows the completed map.
 Chapter 11. WebSphere Process Server 347

Figure 11-56 Connected output map

We close the tabs to save the mediation flow. Then, we save these changes.

11.2.18 Adding the invoke activity

In the For Each activity, we need to obtain the details about the item from the
failed order. We use an invoke activity.

The invoke activity requires a local variable to store the item details that are
returned by the activity. We select the box inside the ForEach activity and define

Important: It is important to understand that the diagram that is shown in the
assembly diagram does not depict a flow of execution. Instead, it shows how
the process is invoked by external parties that want to invoke the process and
how the process invokes external services, in this case, the web service call to
CICS.
348 Leveraging CICS Events with an ESB

a local variable called itemDetails of type itemDetails. We define a global variable
called itemDetailsList of type itemDetailsArray, which will be used to store the
itemDetails Business Object that is returned from each web service call.

Next, we add an invoke activity after the Assign activity in the ForEach activity.
We name it invokeItemDetailsService.

In the Properties tab, we click Details, click Browse, and select
getItemDetailsPartner as the partner reference to invoke, as shown in
Figure 11-57.

Figure 11-57 Setting the partner reference for the invoke activity to call

Using the drop-down box on the Operation field, we select obtainItemDetails.

Next, we map the variables that are read by the invoke activity for input, and we
map the variable in which the invoke stores the result upon return, as shown in
Figure 11-58 on page 350.
 Chapter 11. WebSphere Process Server 349

Figure 11-58 Setup of the invoke activity

Figure 11-59 shows our business process after adding this invoke activity.

Figure 11-59 State of business process after adding invoke activity
350 Leveraging CICS Events with an ESB

11.2.19 Adding the snippet to calculate the cost

Having obtained information about the item, in particular the cost of the item, we
next need to calculate the cost of the failed item order each time through the
loop, plus calculate the total cost of the three failed orders. We use a Java
snippet to perform these tasks.

We select the snippet activity and drag it into the process flow after the invoke
activity and call it sumCostAndSaveInfo.

We add a new local variable called itemCost of type float. We add the Java code
that is shown in Example 11-3.

Example 11-3 Java code to calculate total cost of low stock event

System.out.println(" ");
System.out.println("-------------------- start post-invoke ");
System.out.println(" ");
System.out.println("Item details returned from webService call: " +
itemDetails);

itemCost = new Float(itemDetails.getString("item_cost"));

System.out.println("itemCost: " + itemCost);
System.out.println("itemQuantity: " + lowItemQuantity);

totalCostLowStockEvent = totalCostLowStockEvent + (itemCost *
Integer.parseInt(lowItemQuantity));

System.out.println("total cost order missed now: " +
totalCostLowStockEvent);

System.out.println("Index.intValue(): " + Index.intValue());
System.out.println("itemDetailsList: " + itemDetailsList);

List theLowStockItemList = new ArrayList ();

BOFactory bofactory =
 (BOFactory)
ServiceManager.INSTANCE.locateService("com/ibm/websphere/bo/BOFactory")
;
if (itemDetailsList == null) {
 itemDetailsList = bofactory.create("http://multiLowStockEvent",
"itemDetailsArray");
} else {
 theLowStockItemList = itemDetailsList.getList(0);
 Chapter 11. WebSphere Process Server 351

 System.out.println("in else - existing: theLowStockItemList: "
+ theLowStockItemList);
}

System.out.println("after if - current: itemDetailsList: " +
itemDetailsList);
theLowStockItemList.add(itemDetails);

System.out.println("after adding itemDetails to: theLowStockItemList: "
+ theLowStockItemList);

itemDetailsList = bofactory.create("http://multiLowStockEvent",
"itemDetailsArray");
itemDetailsList.setList(0,theLowStockItemList);
System.out.println("after setList on: itemDetailsList: " +
itemDetailsList);
System.out.println(" ");
System.out.println("-------------------- end post-invoke ");
System.out.println(" ");

11.2.20 Testing the process

We then test our process to verify that the process can successfully invoke the
web service by using the process that is described in 11.2.9, “Time for a first test
run” on page 318. Example 11-4 shows part of the output from the Java snippet
in the ForEach loop.

Example 11-4 Part of the process output

Item details returned from webService call: BusinessObject:
itemDetails@6aa16aa1 (item_desc=Green Laser Paper 20lb 500/ream
, item_cost=005.35, item_dept=10, item_stock=0)
itemCost: 5.35
itemQuantity: 4
total cost order missed now: 38.870003
Index.intValue(): 3

itemDetailsList: BusinessObject: itemDetailsArray@5d155d15
(items=[BusinessObject: itemDetails@635d635d (item_desc=Ball Pens Blue
24pk , item_cost=002.90, item_dept=10,
item_stock=0), BusinessObject: itemDetails@1b911b91
(item_desc=Highlighters Assorted 5pk , item_cost=003.89,
item_dept=10, item_stock=0)])
352 Leveraging CICS Events with an ESB

in else - existing: theLowStockItemList: [BusinessObject:
itemDetails@635d635d (item_desc=Ball Pens Blue 24pk
, item_cost=002.90, item_dept=10, item_stock=0), BusinessObject:
itemDetails@1b911b91 (item_desc=Highlighters Assorted 5pk
, item_cost=003.89, item_dept=10, item_stock=0)]

after if - current: itemDetailsList: BusinessObject:
itemDetailsArray@5d155d15 (items=[BusinessObject: itemDetails@635d635d
(item_desc=Ball Pens Blue 24pk , item_cost=002.90,
item_dept=10, item_stock=0), BusinessObject: itemDetails@1b911b91
(item_desc=Highlighters Assorted 5pk , item_cost=003.89,
item_dept=10, item_stock=0)])
after adding itemDetails to: theLowStockItemList: [BusinessObject:
itemDetails@635d635d (item_desc=Ball Pens Blue 24pk
, item_cost=002.90, item_dept=10, item_stock=0), BusinessObject:
itemDetails@1b911b91 (item_desc=Highlighters Assorted 5pk
, item_cost=003.89, item_dept=10, item_stock=0), BusinessObject:
itemDetails@6aa16aa1 (item_desc=Green Laser Paper 20lb 500/ream
, item_cost=005.35, item_dept=10, item_stock=0)]
after setList on: itemDetailsList: BusinessObject:
itemDetailsArray@4cb24cb2 (items=[BusinessObject: itemDetails@635d635d
(item_desc=Ball Pens Blue 24pk , item_cost=002.90,
item_dept=10, item_stock=0), BusinessObject: itemDetails@1b911b91
(item_desc=Highlighters Assorted 5pk , item_cost=003.89,
item_dept=10, item_stock=0), BusinessObject: itemDetails@6aa16aa1
(item_desc=Green Laser Paper 20lb 500/ream , item_cost=005.35,
item_dept=10, item_stock=0)])

The output shows that the process has successfully called the web service,
which in turn obtained the item information from CICS. Also, the output shows
the total cost of the three low stock events that were passed to the process when
it was invoked.

11.2.21 Adding the choice activity

Now that our process can determine the total cost of the low stock event,
according to our initial process design, we want to test this cost against a limit to
then decide which person (manager or clerk) to contact. We add a choice activity
to the process. We select the choice activity listed under Structures and drop it
into the process in between the ForEach activity and the Reply activity. We name
this activity lowStockCostLimitCheck (Figure 11-60 on page 354).
 Chapter 11. WebSphere Process Server 353

Figure 11-60 Adding the choice activity to the process

We select the choice activity in the process flow. When we hover the mouse over
the choice activity, there is an icon that displays the value “Add an Otherwise
Element”. We click this value to add an Otherwise activity to the choice activity.
We name the choice activity alertManager. We are not allowed to rename the
Otherwise activity that we will use to alert the clerk.

Constructing a test condition
We now need to create the logical test to determine whether the total cost of the
low stock event is greater than a certain amount. We click the alertManager
activity and then select the Properties tab. In the Details area, we select the
drop-down arrow beside Expression Language and select Java. Figure 11-61 on
page 355 shows how this window looks initially.
354 Leveraging CICS Events with an ESB

Figure 11-61 Initial state of case expression

We select the true box and delete it. Then, we select the x+y Expression icon and
drag and drop it onto the visual area. We click this new icon and click inside it and
a drop-down box appears. We select the variable totalCostLowStockEvent, select
the greater than (>) symbol, click Number, and enter 100, as shown in
Figure 11-62.

Figure 11-62 Building the conditional expression

Then, we connect the expression to the return icon and save the change.
Figure 11-63 on page 356 shows the completed expression.
 Chapter 11. WebSphere Process Server 355

Figure 11-63 Completed conditional expression

Note that we have hard-coded the amount to test against. Alternatively, we can
use a variable that had the value set by any means. We see small red crosses in
the alertManager and Otherwise icons, because, at this stage, no activity has
been added after these parts of the flow. We add this activity next.

Adding Java snippets
We add a snippet after both the alertManager activity and the Otherwise activity.
We name one snippet logManagerAlert, and we name the other snippet
logClerkAlert. We use each of these snippets to set a reply message to send
back to the person who called the process. In the logManagerAlert snippet, we
add the Java code that is shown in Example 11-5.

Example 11-5 Java code for alert manager snippet

Date now = new Date();
System.out.println("Cost of multiple low stock event: " +
totalCostLowStockEvent);

lowStock_event_replyMsg = "Task assigned to manager for action at: " +
now;
System.out.println(lowStock_event_replyMsg);

In the logClerkAlert snippet, we add the Java code that is shown in Example 11-6
on page 357.
356 Leveraging CICS Events with an ESB

Example 11-6 Java code for alert clerk snippet

Date now = new Date();
System.out.println("Cost of multiple low stock event: " +
totalCostLowStockEvent);
lowStock_event_replyMsg = "Task assigned to clerk for action at: " +
now;
System.out.println(lowStock_event_replyMsg);

11.2.22 Adding a reply activity

Next, we move the reply activity inside the choice activity after the snippet activity
called logManagerAlert, and we rename it to replyManagerAlerted. Then, we
select the reply activity, right-click it, and select Copy. Then, we select elsewhere
in the Choice activity and click paste. Then, we move it under the snippet called
Otherwise activity and rename it to replyClerkAlerted.

Figure 11-64 shows how the choice activity looks at this stage.

Figure 11-64 Setup of the choice activity

The presence of these reply activities results in a reply being sent to the person
who called this process when this stage of the process is reached. The process
flow still continues after it performs the reply activity.
 Chapter 11. WebSphere Process Server 357

11.2.23 Adding a human to-do task

Following our design, we want to alert either a clerk or a manager. Therefore, we
add human to-do tasks to the process.

When a human task activity is added to a process, we must specify an interface
to interact with the human task. This interface specifies the inputs and outputs to
the human task.

Adding an interface
We right-click Interfaces and select New Interface. In the window that opens,
we set the name field to alertHuman and click Finish. We click the Add Request
Response Operation and set the name of the operation to getLowStockActioned.
We set up three input variables:

� lowStockEvents of type listLowStockRequestEvent
� lowStockDetails of type listDetailsArray
� lowStockTotalCost of type float

We set up an output variable called humanActionTaken of type string. The
interface then looks similar to the window that is shown in Figure 11-65 on
page 359.

Important: We have set up our process to be invoked through a Web Service,
which means that the caller is expecting a reply from our process. If the
process flow does not have the reply activity at this point, but it merely
continues with the human task, the caller of our process does not receive a
timely reply. Using the reply activity at this point in the flow means that the
caller receives a reply in a timely fashion, while the process can continue on
with the human task part.
358 Leveraging CICS Events with an ESB

Figure 11-65 Setup of interface to the human task

We close the tab to save the changes.

Adding a global variable
We define a new global variable called humanActionReplyMsg of type string to
store the message that is sent back from the human task.

Adding a human task activity
We click the Human Task activity under Human Workflow and drag it under the
replyManagerAlerted icon, as shown in Figure 11-66 on page 360.
 Chapter 11. WebSphere Process Server 359

Figure 11-66 Adding a human task to the process

On the window that opens next, we set the name to assignToManagerForAction,
select the alertHuman interface, as shown in Figure 11-67, and click OK.

Figure 11-67 Selecting interface to use for human task

A new tab opens for the to-do task where we can perform further customization.
We do not need to change anything, so we close this tab. Next, we select the
human task activity just added, set its name to assignToManagerForAction, click
360 Leveraging CICS Events with an ESB

the Properties tab, and click Details. We set the names of the process variables
that are used as input and output for the interface:

� Inputs:

– For type listLowStockRequestEvent, use the variable lowStockEvent.

– For type itemDetailsArray, use the variable itemDetailsList.

– For type float, use the variable totalLowCostStockEvent.

� Output:

– For type string, use the variable humanActionReplyMsg.

The end result is similar to Figure 11-68.

Figure 11-68 Setting the variables that are used with the human task interface

We repeat this process to add a second human task with a name of
assignToClerkForAction after the replyClerkAlerted activity.

Additional tasks
For a more complete example, ideally, we define several users that are classified
as managers and several users that are classified as clerks, and then, we assign
the various human tasks to specific groups of users. In an actual environment,
you must perform this additional setup work.

Adding a Java snippet
We add a snippet activity after the choice activity with a name of
logHumanActionTaken. We add the Java code that is shown in Example 11-7 on
page 362.
 Chapter 11. WebSphere Process Server 361

Example 11-7 Display action taken by a human being

Date now = new Date();
System.out.println("At: " + now + " Action taken: " +
humanActionReplyMsg);

An alternative approach
We have used a simplistic implementation approach. An alternative approach,
which uses the dynamic capabilities of WebSphere Process Server, is to use a
dynamic resolution approach. In a dynamic resolution approach, a snippet
activity can set a variable that is based on the total lost opportunity, which
dynamically sets the appropriate staff member to be assigned to the human task.
The end result is a simpler process flow.

11.2.24 Completed process

Figure 11-69 on page 363 shows the completed process design.
362 Leveraging CICS Events with an ESB

Figure 11-69 Completed process design
 Chapter 11. WebSphere Process Server 363

11.2.25 Testing the completed process

We then test our process to verify that the process worked as expected. Using
the process that is described in 11.2.9, “Time for a first test run” on page 318, we
start the Business Process Choreographer Explorer and start an instance of our
process. We then enter data in the input fields and submit it.

We then click My To-dos under the Task Instances view and see that a human
task called assignToManagerForAction has been created, as shown in
Figure 11-70.

Figure 11-70 To-do human task created after running process

We select this task, click Work on, and see the window that is shown in
Figure 11-71 on page 365.
364 Leveraging CICS Events with an ESB

Figure 11-71 The created to-do human task

In Figure 11-71, we can see lowStockEvents, which contains the data that was
originally sent to invoke the process, lowStockDetails showing (for each item) the
information that was retrieved from the web service call to CICS, and
lowStockTotalCost showing the total cost of the three low stock events. We then
enter a message into the humanActionTaken area and click Complete.

In the SystemOut.log file of the server, we see the output that is shown in
Example 11-8.

Example 11-8 Messages from the process

Task assigned to manager for action at: Tue Mar 23 14:08:35 EST 2010
At: Tue Mar 23 14:17:22 EST 2010 Action taken: Getting a new supplier
 Chapter 11. WebSphere Process Server 365

These messages show that our process created the correct human task and that
a human being acted.

11.2.26 Testing using the Integrated Test Client

As mentioned in “Testing with Integrated Test Client” on page 324, we explain
how to use the Integrated Test Client to test our completed process.

We start the Integrated Test Client, as described in “Testing with Integrated Test
Client” on page 324. WebSphere Integration Developer V7 opens a window
similar to the window that is shown in Figure 11-72 on page 367.
366 Leveraging CICS Events with an ESB

Figure 11-72 Initial view of Integrated Test Client

In the area under the “Initial request parameters” heading, we enter values for the
fields that are passed to the process, as shown in Figure 11-73 on page 368.
 Chapter 11. WebSphere Process Server 367

Figure 11-73 Setting values to pass to the process

A large green triangle shows in the upper-left corner of the window (as shown in
Figure 11-72 on page 367). When we hover the mouse over this arrow,
WebSphere Integration Developer V7 shows us a small box with the word
“Continue”. We invoke the process by clicking this box. WebSphere Integration
Developer V7 opens the window that is shown in Figure 11-74 on page 369.
368 Leveraging CICS Events with an ESB

Figure 11-74 Selecting the server on which to run the test

In Figure 11-74, we select WebSphere Process Server v7.0 at localhost and click
Finish. WebSphere Integration Developer V7 then prompts for a user ID and
password to allow access to the Integrated Test Client, as shown in Figure 11-75
on page 370.
 Chapter 11. WebSphere Process Server 369

Figure 11-75 Supplying user ID and password details

WebSphere Integration Developer V7 then opens a progress window while it
prepares the Integrated Test Client, as shown in Figure 11-76. Note that this task
takes time.

Figure 11-76 WebSphere Integration Developer V7 starting the Integrated Test Client

After the Integrated Test Client completes the test, WebSphere Integration
Developer V7 shows us a trace of the activities that took place during the
execution of the process (Figure 11-77 on page 371).
370 Leveraging CICS Events with an ESB

Figure 11-77 Trace of the execution of the process

You can select various entries in the trace, and if applicable, WebSphere
Integration Developer displays the data that is associated with that part of the
flow. For example, you can see what data was passed back from the Web
Service call to CICS.

This test capability in WebSphere Integration Developer provides a useful way to
debug your process flows.

11.2.27 Exporting the process wsdl

Having completed the testing of the process, we can export a wsdl file, which
provides details about how to invoke this process as a Web Service. The wsdl file
can be given to other individuals, who want to call this process, to incorporate
into their applications.
 Chapter 11. WebSphere Process Server 371

To export the wsdl file, we select under Web Service Ports, right-click
ActionMultiLowStockEventExport1_ActionMultiLowStockEventHttpPort, and
select Export. In the window that opens, under Business Integration, we select
WSDL and XSD and click Next.

In the Export window that opens next, we select
multiLowStockEvent_ActionMultiLowStockEventExport1.wsdl. Under Export
dependent resources, we first select “Merge dependent WSDL resources into
the parent WSDL file”, and then, we select “Merge dependent XSD resources
into the parent WSDL file”, as shown in Figure 11-78.

If you select the check boxes in the reverse sequence, WebSphere Integration
Developer displays an error message and will not publish the wsdl file.

Figure 11-78 Start of process to export wsdl file

In Figure 11-78, we use Browse to select the destination directory on the
Microsoft Windows personal computer and then click Finish to save the file. In
372 Leveraging CICS Events with an ESB

the directory, we see a single file called the
multiLowStockEvent_ActionMultiLowStockEventExport1.wsdl file.

11.2.28 Exporting the ear file

To deploy this process into WebSphere Process Server, we select the
multiLowStockEvent module, right-click, and select Export. Then, under Java
Enterprise Edition (EE), we select EAR file and click Next. We enter a destination
folder in which to save the ear file and click Finish. Then, we deploy the ear file
using the standard WebSphere application deployment approach.

When you deploy the ear file to a WebSphere Process Server, you need to verify
that it shows as started in two places under Applications:

� Under WebSphere enterprise applications
MultiInsufficientStockFailuresEventApp

� Under SCA Modules as multiLowStockEvent

11.2.29 Application to test the process

We also developed an application to enable us to test the process that we had
built. We developed an application, because we wanted to test running the test
application and process in separate servers. We included this test application
with the additional materials of this IBM Redbooks publication in Appendix A,
“Additional material” on page 401.

To run this test application, deploy the ear file to a WebSphere server and enter a
URL of the form:

http://<hostIpAddress>:><port>/callLowStockEventProcessWeb/CallLowStock
EventProcess

There are input fields where you can specify the TCP/IP host and port values of
the WebSphere Process Server where the process is deployed. You can use the
default values and then click Invoke process.

11.2.30 WebSphere Business Events to process the mediation flow

Our original intent had been for WebSphere Business Events to use a Web
Service to invoke our process directly. When we tried to test using WebSphere
Business Events using a Web Service to invoke our process directly, we found
that, at that time, WebSphere Business Events was unable to handle the array
structure of the process Web Service. We did find though that WebSphere
Business Events was able to write a JMS message with the array of data.
 Chapter 11. WebSphere Process Server 373

http://<hostIpAddress>:><port>/callLowStockEventProcessWeb/CallLowStockEventProcess

Rather than change the process to be invoked by a JMS message, we decided to
create a mediation flow to run in the ESB. The mediation flow is invoked by the
JMS message, the supplied data is extracted from the message, and the Web
Service is invoked to initiate the process.

Using WebSphere Integration Developer, we created a mediation flow to achieve
this conversion. Figure 11-79 shows the complete assembly diagram of the flow.

Figure 11-79 WebSphere Business Events to process mediation flow

Appendix A, “Additional material” on page 401 contains the ear file containing
this mediation and the project interchange file.

11.2.31 Supplied files

We supply the following files that are associated with this chapter as part of the
additional materials for this IBM Redbooks publication in Appendix A, “Additional
material” on page 401:

� The multiLowStockEventApp.ear file contains the process application.

� The scenario-4-wid-process.zip project interchange file contains the project
for the process.

� The callLowStockEventProcess.ear file contains the application that can be
used to test the process through a web service call.

� The appToTestScenario-4-process.zip project interchange file contains the
project for the test application.
374 Leveraging CICS Events with an ESB

� The handleOrderFailureApp.ear file contains the WebSphere Business
Events to process the mediation flow.

� The wbe-to-process-mediation-flow.zip project interchange file contains
the project for WebSphere Business Events to process the mediation flow.

11.2.32 Summary

In this chapter, we have described in detail how to design and create a process in
WebSphere Integration Developer. Our process was logically fairly simple, but it
still has taken quite a bit of explanation to describe how to build and test the
process. If you are new to using WebSphere Integration Developer to create
processes, we hope that this chapter has given you a better understanding of
how to build a process with a certain degree of complexity. Becoming proficient in
the use of WebSphere Integration Developer requires learning how to
understand the mechanism around building a process. After you have a grasp of
the fundamental way to use WebSphere Integration Developer to create a
process, the principles that you have learned will enable you to build more
complex processes and to extend your knowledge of WebSphere Integration
Developer.
 Chapter 11. WebSphere Process Server 375

376 Leveraging CICS Events with an ESB

Part 4 Best practices

In this part of the book, we look at successful practices, including governance,
security, and performance.

Part 4
© Copyright IBM Corp. 2010. All rights reserved. 377

378 Leveraging CICS Events with an ESB

Chapter 12. Best practices

In this chapter, we explain how to plan and organize your Customer Information
Control System Transaction Server for z/OS (CICS TS) V4.1 event strategy. We
describe governance, how CICS events can help maintain your information
technology (IT) governance, and additional considerations for governing CICS
events. We then discuss security for CICS events and conclude with guidance for
troubleshooting, including a few points of confusion that we ran into with our
environment.

12
© Copyright IBM Corp. 2010. All rights reserved. 379

12.1 Plan and organize

Perhaps the most important step in deploying events is to plan and organize all
aspects of your business event strategy. Mapping out a clear understanding of
who will create the event specifications, what the names will be, where they will
be stored, and how they will be maintained are key areas to address.

Defining what products you will use in your implementation and how the products
will communicate with each other is also an extremely important step. Depending
on the scope of your implementation, for example, if you are designing an entire
business events process involving multiple products, we recommend that you
have a project leader that is responsible for overall management of the project. It
is also vital to have representation and a leader for each of the products involved
in your solution.

Frequent meetings during the planning stage to solidify your design will save time
later. For example, during the design stage of this IBM Redbooks publication
project, we had input from each of the product areas, which led to a graphical
representation of our environment that detailed how each product will interact.
After we agreed on our scenarios, we decided how to build our environment to
accomplish our goals. We agreed on our naming conventions, transport
mechanisms, communication formats, events emitted by CICS, processing of the
events by the enterprise service bus (ESB), and how the events will be
consumed.

We use three ESBs in our scenarios: WebSphere Enterprise Service Bus,
WebSphere DataPower, and WebSphere Message Broker. Other products in our
environment include WebSphere Business Events, WebSphere Business
Monitor, and WebSphere Process Server. See Chapter 4, “Overview of the
application and business scenarios” on page 57 for a complete overview of our
environment.

12.1.1 Naming conventions

Document your naming conventions in the planning phase so that other people
on the project know the agreed upon names for their products. In our case, we
agreed on a naming convention for our WebSphere MQ queue names and field
names for the payload data. The latter was not necessary from a processing
design perspective, but it made it easier to discuss our scenarios during our
planning and implementation meetings. We also decided on our Web service
names, defined the input and output of each Web service, and shared the Web
Services Description Language (WSDL) with the requesters of each service.
380 Leveraging CICS Events with an ESB

For example, our MQ queue naming uses this convention:

ESB-Product.Source.Format.Name

So our MQ queue WMB.CICS.CBE.ORDER indicates that WebSphere Message
Broker is the ESB being used, CICS is the source of the information (CICS put
the information onto the queue), the message is in CBE format, and the logical
name of ORDER indicates this name is for an order event.

12.1.2 Transport

CICS offers several event processing (EP) adapters. In our scenario, we use the
WebSphere MQ (WMQ) EP adapter to put the event message on an MQ queue.

See the CICS Transaction Server for z/OS V4.1 Information Center for details
about the event processing adapters:

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

12.1.3 Communication formats

Because only certain combinations of format and transport are valid, or
supported, with the EP adapters supplied by CICS, you select the EP adapter for
the required transport and then select the format. In our case, we use MQ as the
transport and have three choices for format: CICS flattened event (CFE),
Common Base Event (CBE), or WebSphere business event (WBE). We emit the
CICS event in CBE format and the ESB passes the message onto WebSphere
Business Monitor in CBE format. The ESB transforms the CBE format to WBE
format and passes the message onto the WebSphere Business Events product.

Base the format that you choose on the products that are the predominant
consumers for the events. If the event is to be passed along through the ESB to a
final event consumer that requires another event format, you can have the ESB
transform the event into the new format. Alternatively, the event format emitted
from CICS can be the format that the final event consumer expects, assuming
the ESB can process the same format.

12.2 Governance

Service-oriented architecture (SOA) is a compelling technique for developing
software applications that best align with business models. However, SOA
increases the cooperation and coordination that are required between business
and IT, as well as among IT departments and teams. The cooperation and
 Chapter 12. Best practices 381

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

coordination are provided by SOA governance, which covers the tasks and
processes for specifying and managing how services and SOA applications are
supported. Events are a form of more loosely coupled (or decoupled) SOA.

Governance is the means of establishing and enforcing how a group agrees to
work together. Specifically, there are two aspects to governance:

� Establishing chains of responsibility, authority, and communication to
empower people by determining who has the rights to make what decisions

� Establishing measurement, policy, and control mechanisms to enable people
to carry out their roles and responsibilities

Governance determines who has the authority and responsibility for making the
decisions. Management is the process of making and implementing the
decisions. Governance says what must be done. Management makes sure that it
gets done.

IT governance is about who is responsible for what in an IT department and how
the department knows that the responsibilities are being performed. Specifically,
IT governance establishes the following areas:

� Decision making rights that are associated with IT

� Mechanisms and policies that are used to measure and control the way that
IT decisions are made and carried out

SOA adds the following unique aspects to governance:

� Acts as an extension of IT governance that focuses on the life cycle of
services to ensure the business value of SOA

� Determines who will monitor, define, and authorize changes to existing
services within an enterprise
382 Leveraging CICS Events with an ESB

SOA governance is the intersection of business and IT governance. It focuses on
the life cycle of services to ensure the business value of SOA. SOA governance
is the effective management of this life cycle, which is the key goal to SOA
governance. Figure 12-1 illustrates this concept.

Figure 12-1 SOA governance in relation to business and IT governance

Governance becomes more important in SOA than in general IT. In an SOA,
separate departments can develop, run, and manage consumer and provider
services. Working together successfully requires complex coordination. For SOA
to succeed, multiple applications need to share common services, which means
that the departments need to coordinate making those services common and
reusable. Governance issues are more complex than in the days of monolithic
applications or even in the days of reusable code and components.

As companies use SOA to better align IT with the business, they can also ideally
improve overall IT governance. Employing SOA governance is key for companies
to realize the benefits of SOA. For SOA to be successful, SOA business and
technical governance is not optional, it is essential.

Automation is critical for successful governance. No matter what level of
regulation the enterprise decides to have, automation will make it easier to
deliver high-quality services on time and on budget. Those individuals who are
subject to governance will welcome a governance process that gives near
real-time feedback about what must change. A governance process saves time
and effort and helps build in quality.

Getting to an acceptable governance maturity level does not happen by accident.
An effective and evolving governance framework must be intentional and
 Chapter 12. Best practices 383

focused. It requires leadership. It must define clear roles and responsibilities. It
must enable well-thought-out and consistently implemented policies and
procedures.

12.2.1 CICS events and governance

Events allow businesses to be more responsive and flexible, and to address
governance and compliance concerns.

The mainstream adoption of service-oriented architecture (SOA) has opened
new opportunities for highly responsive business solutions. SOA brings greater
flexibility to business processes, and it helps bring business and IT in line with
each other. Enterprises are challenged by seeking to maximize SOA solution
advantages (such as speed to market), at the same time complying with
business controls, industry standards, and government legislation.

Business governance and compliance are increasingly important in many
industries. These terms cover a crucial range of issues, including financial
transparency, information privacy, and process control. The Sarbanes-Oxley Act,
the Health Insurance Portability and Accountability Act (HIPAA), or Basel II and
their associated information requirements are a few of the standards that are
required for business compliance and governance.

Governance describes a formalization of the decision-making processes within
an organization. It can cover many aspects of business and depends on
accurately maintaining and auditing which decisions can be freely made and
which decisions need specific approvals, and it determines who can make them.

Compliance is about ensuring adherence to mandated standards and
governance policy. This adherence includes the definition of information about
which governance decisions are based and maintaining accurate operational
control to ensure that business application execution meets the required
enterprise, industry, and government standards.

Using CICS events can help maintain the IT governance of your business
applications by capturing events without the need to change the business
application. Events can be created to monitor business processing, to capture
data of interest, or to perform seasonal processing, all without changing the
application.

Products: In this IBM Redbooks publication, we do not describe specific
products that can be used for governance. We leave the discussion and
choice of software configuration management (SCM) tools to other
publications.
384 Leveraging CICS Events with an ESB

CICS events add new aspects to IT governance that you need to consider:

� Determine who will define, monitor, and authorize changes to existing
business events within an enterprise

� Ensure that any application program changes are communicated to the
business events area of the enterprise

Due to the decoupled nature of event processing, you need to consider the
interaction between application programs and event specifications when making
changes. This area is similar in nature to an application program accessing a file.
If the file record layout is changed, you must review the application program and
possibly alter it to adjust to the new file record layout. Likewise, any application
program change must be reviewed to understand how a change might affect the
event specifications for the business process. If you make your event capture
specification as specific as possible, this specification can help determine if
program changes will affect your event. For example, if you know the event is
only emitted from a particular program, you can include a filter on the current
program name to ensure that you capture the required event. Creating a filter for
a specific program also raises the awareness that any change to the application
program must be reviewed to see if it affects the event capture specification; you
will need to register this interaction with your IT governance product or process.

If you decide not to use the noninvasive capture points and instead to use the
EXEC CICS API call SIGNAL EVENT within a program, the governance of the
event is somewhat simplified. That is, any changes to the program and event
capture points can be managed within the program. Typically, you will want to use
noninvasive capture points, but SIGNAL EVENT might simplify portions of IT
governance in certain environments. However, you still have governance of the
capture specification, because the capture specification is separate from the
program code.

12.2.2 Artifacts

Include the artifacts for your business events as part of your governance policy.
We do not discuss specific products that can be used for governance in this IBM
Redbooks publication. We leave the discussion and choice of software
configuration management (SCM) tools to other publications.

CICS event artifacts
The artifacts for CICS events can consist of the following components:

� Schema definitions (.xsd) if using CBE or WBE formats
� COBOL copybooks
� CICS event bundle
 Chapter 12. Best practices 385

Schema definitions or COBOL copybooks
You can export the event specification from the Adapter tab of the CICS Explorer.
If you use the WebSphere MQ (WMQ) EP adapter, you can specify a data format
of CICS Flattened Event (CFE), common base event (CBE), or WebSphere
Business Events (WBE). The event specification will be a COBOL copybook for
the CFE format, and an XSD for either the CBE or WBE format. In addition to the
COBOL copybooks exported from the Event Binding Editor, you might have
copybooks that are imported into the editor that define interfaces (such as
COMMAREA layouts) that are used in capture specifications.

CICS event bundle
You create an event binding in a CICS bundle project using the CICS Event
Binding editor within the CICS Explorer. The bundle can be exported directly to
the z/OS UNIX file system (zFS) or to your local file system. In either case, you
can use your software configuration management (SCM) tool of choice to
manage the governance of the CICS bundle.

There are two ways to replace a deployed bundle resource in CICS after the
bundle resource is installed, if necessary:

� Disable, discard, and then, install the changed version of a bundle with the
same name. No events will be emitted from the moment that the bundle is
disabled until the moment that the installation completes successfully.

� You can replace a bundle without disabling the event binding by creating a
new bundle. The new bundle name must differ from the original bundle’s
name, and the new bundle must contain the event binding with the same
name. Events will continue to be emitted until the bundle installation
completes successfully, at which point, the new binding will replace the
previous version.

By using the second method, you can make the change and continue to capture
events automatically. This mechanism also allows you to back out the change by
putting the old definition back into effect; simply disable the new bundle resource
and enable the old bundle resource again.

Other artifacts used in this Redbooks publication
In our Redbooks project, we also have schema (.xsd) from WebSphere Business
Events that the ESBs use to transform the CBE format message to WBE format.
We also have WSDL to describe our Web services. These artifacts need to be
part of your governance policy so that they are stored and managed by the policy
for your enterprise.
386 Leveraging CICS Events with an ESB

IBM WebSphere Service Registry and Repository
The CICS TS V4.1 Web Services assistant includes interoperability support for
the IBM WebSphere Service Registry and Repository. IBM WebSphere Service
Registry and Repository can help you manage and govern your services and
processes. You can use IBM WebSphere Service Registry and Repository to find
the Web services that you are requesting more quickly and to enforce version
control of the Web services that you provide.

IBM WebSphere Service Registry and Repository is also a good place to store
the schemas for CBE or WBE events, because they define a kind of interface
between the event producer and the event consumer.

Both DFHLS2WS and DFHWS2LS include parameters to interoperate with IBM
WebSphere Service Registry and Repository. DFHLS2WS also includes an
optional parameter so that you can add your own customized metadata to the
WSDL document in IBM WebSphere Service Registry and Repository.

If you want the Web services assistant to communicate securely with IBM
WebSphere Service Registry and Repository, you can use Secure Sockets Layer
(SSL) encryption. Both DFHLS2WS and DFHWS2LS include parameters for
using SSL encryption. See the CICS Transaction Server for z/OS V4.1
Information Center for additional details:

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

12.2.3 Audit and change control

CICS monitoring and statistics can be useful for gathering and analyzing
information about CICS events. There are also other options (depending on the
EP adapter) that allow you to specify the transaction ID that runs when the event
is triggered or to specify a user ID under which the EP adapter transactions will
run (12.3.4, “Runtime security” on page 395). We describe several of the major
points for monitoring and statistics, but for more information, refer to these
websites:

� The CICS Transaction Server for z/OS V4.1 Information Center:

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

� Problem determination in the Troubleshooting chapter of Implementing Event
Processing with CICS, SG24-7792:

http://www.redbooks.ibm.com/abstracts/sg247792.html?Open&pdfbookmark
 Chapter 12. Best practices 387

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
http://www.redbooks.ibm.com/abstracts/sg247792.html?Open&pdfbookmark
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

Monitoring
CICS monitoring collects data about the performance of all user and CICS
transactions during online processing, for later offline analysis. The records that
are produced by CICS monitoring are MVS™ System Management Facility
(SMF) type 110, and they are written to an SMF data set. Various methods can
start the monitoring:

� CICS system initialization parameter MN
� CICS master terminal transaction CEMT SET MONITOR ON
� Transaction CEMN
� CICS System Programmer Interface (SPI) command EXEC CICS SET

MONITOR

CICS TS 4.1 adds the following new performance class data fields, containing
event processing information to the DFHCICS group:

� EICTOTCT
The total number of EXEC CICS commands that are issued by the user task

� ECSIGECT
The number of EXEC CICS SIGNAL EVENT commands that are issued by
the user task

� ECEFOPCT
The number of event filter operations that are performed by the user task

� ECEVNTCT
The number of events that are captured by the user task

You can use the CICS Explorer, with the CICS Performance Analyzer for z/OS
plug-in, to view the event processing monitor data. The CICS Performance
Analyzer for z/OS plug-in interfaces with the CICS Performance Analyzer tool, so
you need to have CICS Performance Analyzer for z/OS installed on your z/OS
system.

Statistics
CICS gathers statistical data about the system resource usage and the
performance of the CICS system during online processing. The CICS statistics
domain creates MVS System Management Facility (SMF) type 110, sub-type 2
records, which are written to an SMF data set. Statistical data is useful both for
performance tuning and for capacity planning.

You can start recording statistics by using the following methods:

� The CICS system initialization parameter STARTRCD=YES, which causes
interval statistics to be recorded every three hours, by default

� CICS Master terminal transaction CEMT SET STATISTICS(ON)
388 Leveraging CICS Events with an ESB

� SPI command EXEC CICS SET STATISTICS RECORDING(ON)

You can use the sample statistics utility program (DFH0STAT) to generate reports
about the event processing statistics. You can request global statistics for
EVENTPROCESSING, and you can request global and resource statistics for
EVENTBINDINGs and CAPTURESPECs.

Install the resource group DFH$STAT in your CICS region and run the STAT
transaction. When you are in the STAT application, press PF4 Reports and scroll
to the page containing the event processing, EVENTBINDINGs, and
CAPTURESPECs reports. You can also select the BUNDLES report, which
provides details of all the currently installed bundles.

12.3 Security considerations for CICS events

Event binding files define when CICS is to emit an event. You create these event
binding files using a workstation-based Event Binding Editor. The event binding
file and associated artifacts are copied to a directory on the zFS and installed in
CICS using a BUNDLE resource.

The person creating the event binding uses the Event Binding Editor, which is
supplied with both the CICS Explorer and Rational Developer for System z
(RDz). Although a Business Analyst describes the need for the event and might
be involved in the initial creation and description of the event binding, the event
binding is often created by a CICS application programmer who is familiar with
the application or an application analyst or developer who specializes in creating
CICS event bindings. To perform its function, an Event Developer performs these
tasks:

1. Be informed of what events CICS needs to emit

2. Find the appropriate place in the application program where events must be
emitted

3. Download appropriate copybooks that describe the data being used for filters
and enrichment

4. Create an event binding in an event binding project

5. Export the event binding to zFS

6. Create a BUNDLE resource in CICS

7. Install the BUNDLE resource in CICS

Security can be applied to each of these steps.
 Chapter 12. Best practices 389

Depending on the sensitivity of the data in the event, you might want to secure
access to the location where events are placed by CICS or other products that
emit events (for example, ensure that CICS is allowed to place messages on a
given WebSphere MQ queue). If events are directed to an Event Bus
(WebSphere Message Broker, WebSphere Enterprise Services Bus, or
WebSphere DataPower), sensitive messages can be encrypted as they flow
between buses or queue managers. In addition to securing the individuals who
can place events on the Event Bus and how events are transferred between
entities within or between buses, you might also need to secure the individuals
who are allowed to access or remove events from the Event Bus.

From a security perspective, note that CICS’s event capture mechanism does not
change any application information. CICS monitors whether the conditions are
correct for an event to be emitted and then emits the event.

In addition to placing an event on an Event Bus, CICS can start a CICS
transaction and provide the event data to that transaction, or CICS can invoke a
user-written event processing adapter to process the event data. Your production
turnover procedures need to ensure that a rogue programmer does not trigger a
transaction, or event processing adapter that the rouge programmer writes, that
might alter corporate data in a malicious way.

You can secure all the items that were discussed in the previous paragraphs, but
for the purposes of this chapter, we only discuss the following items:

� Development security:

– Determining the individuals that can create event definitions

– Creating event bindings can be done by anyone who is given access to the
CICS Explorer

– Exporting the bundle to zFS is under Time Sharing Option (TSO) user ID
and password control

� Resource security

� Deployment security:

– Securing the deployment of events to zFS

– Securing installation of events into CICS (normal CICS security)

– Securing who can see the events that are installed

� Runtime security:

– Securing emission of events to consumers

If your event data is sensitive, you also need to control access and authority for
events being added and removed from your enterprise service bus (ESB), the
Event Bus, as well as privacy and non-repudiation of event contents. A
390 Leveraging CICS Events with an ESB

discussion of the protection of emitted events containing sensitive data is beyond
the scope of this book. Consult the documentation about your ESB or event
transport for discussions about how to protect and secure data.

12.3.1 Development security

CICS allows you to specify that events must be emitted in a non-invasive or
invasive manner. Non-invasive means that no application changes are required.
From a logical perspective, when an application runs, CICS detects whether
certain conditions are met and emits an event. The information that CICS needs
to monitor the application and determine whether an event must be emitted is
stored in an event binding file.

You can create event binding files using the Event Binding editor that is supplied
with both the CICS Explorer and IBM Rational Developer for System z. You can
download the CICS Explorer from the CICS Explorer website and install it by
expanding a compressed file.

When creating an event binding file, you will likely want to filter information (for
example, to test if the “in stock” amount is less than a specified reorder point).
The location where the in stock amount resides within a record or data structure
is part of a data layout. Although you can manually provide the displacement,
size, and type of the field, you can also have the Event Binding editor reference a
copybook (data layout) so that the Event Binding editor can simply insert the
appropriate displacement, size, and field type of the data element.

When using the copybook approach, you will likely need to access a copybook
that currently resides on z/OS. The copybooks might be accessible on a
partitioned data set (PDS), or they might possibly reside in a source control
system, such as Software Configuration and Library Management (SCLM)
productivity tools. You will need a local copy of the data layout, but you can use
normal z/OS or source control system security to protect the access to the data
layouts (copybooks).

After you have completed the development of the event binding, you will have a
project containing artifacts that need to be transferred to a z/OS zFS file system.
The event binding project is a directory with one or more event binding files along
with a META-INF directory containing a manifest file (named cics.xml). You need
to transfer the entire event binding directory (the project) and its contents to the
z/OS zFS file system. There are several ways to transfer the project to your zFS
directory, including these methods:

� The “Export to System z HFS” function in the CICS Explorer, which uses File
Transfer Protocol (FTP)
 Chapter 12. Best practices 391

� IBM Rational Developer for System z, as part of the event binding
development process

� FTP

� IND$FILE

Securing the transfer of the event-related artifacts to the z/OS zFS file system is
performed using the normal security procedures that are associated with the type
of file transfer being used. All these transfer techniques use normal user
ID-based access security on z/OS.

If desired, you can configure IBM Rational Developer for System z with an SSL
connection to the IBM Rational Developer for System z z/OS components to
encrypt data as it is transferred to and from z/OS. You can configure the CICS
Explorer to use SSL to CICS for resource display, definition, and administration.

12.3.2 Resource security

To see if event processing is enabled in CICS, you can inquire on the
EVENTPROCESS resource. If event processing is enabled, the
EVENTPROCESS resource shows a status of Started. Using CEMT, you can
only see the status; however, if using the CICS Explorer, additional information is
available (Figure 12-2).

Figure 12-2 Event processing status

CICS is informed about event binding files and the CICS manifest file by using a
BUNDLE resource. The BUNDLE resource references the directory containing
the CICS manifest and the event binding files. After the BUNDLE containing the
event binding file is installed, you can display BUNDLEs and see your BUNDLE
in an Enabled status (Figure 12-3 on page 393).

Alternative: You can export the bundle from the Event Binding editor and
store it in a software configuration management (SCM) system, and someone
other than a developer can deploy it to zFS.
392 Leveraging CICS Events with an ESB

Figure 12-3 Bundle display

A detailed display of your BUNDLE shows the number of BUNDLE parts. When
using BUNDLEs for events, the part count reflects the number of event bindings
in the BUNDLE (assuming the bundle is being used exclusively for events and
nothing else). When using the CICS Explorer, you can see the individual
BUNDLE parts (Figure 12-4). CEMT does not provide a way to display BUNDLE
parts; however, you can use the CICS System Programmer Interface (CICS SPI)
command to browse through the BUNDLE parts.

Figure 12-4 Bundle parts

For each event specification in the BUNDLE, you see an EVENTBINDING
resource. A display of the EVENTBINDING shows its associated BUNDLE
(Figure 12-5).

Figure 12-5 Event binding

For each capture specification in an event specification, there is a
CAPTURESPEC resource. When using the CICS Explorer, you can display
capture specifications (Figure 12-6 on page 394). CEMT does not provide a way
to display capture specifications; however, you can use SPI to browse through
the capture specifications in an event binding and to display the details of a
capture specification (similar to the details that you can display with the CICS
Explorer).
 Chapter 12. Best practices 393

Figure 12-6 Capture specifications

CICS event processing-related transactions
The CEPD transaction is the event processing dispatcher task. The CEPD
transaction is a category 1 transaction that is implemented by the DFHEPDS
program. The CEPM transaction handles the captured event queue. It distributes
events to be formatted and emitted. The CEPM transaction is a category 1
transaction that is implemented by program DFHEPSY. Both CEPD and CEPM
are defined internally by the event processing domain. The CRLR transaction is a
category 1 transaction and is used for bundle resource resolution. See the CICS
Transaction Server V4.1 Information Center for details about how to protect
category 1 transactions:

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

Resource security
Resource security for EVENTBINDING resources uses access resource profiles
in the RCICSRES class or the WCICSRES grouping class, or equivalent
customer-defined classes specified in the XRES system initialization parameter.
You must supply a prefix of EVENTBINDING to the name of the EVENTBINDING
resource definition. When you start to browse for CAPTURESPEC, CICS checks
whether you have authority to access the EVENTBINDING that contains the
CAPTURESPEC.

Command security
Command security for CAPTURESPEC resources uses the CAPTURESPEC
resource in the CCICSCMD class or the VCICSCMD grouping class. Command
security for EVENTBINDING resources uses the EVENTBINDING resource in
the CCICSCMD class or the VCICSCMD grouping class. Command security for
EVENTPROCESS resources uses the EVENTPROCESS resource in the
CCICSCMD class or the VCICSCMD grouping class.

Security using the XRES resource security parameter
You use the XRES system initialization parameter to perform a security check on
the following CICS resources: ATOMSERVICE, BUNDLE, DOCTEMPLATE,
EVENTBINDING, JVMSERVER, and XMLTRANSFORM. The BUNDLE and
EVENTBINDING resources relate to event processing.
394 Leveraging CICS Events with an ESB

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

12.3.3 Deployment security

The BUNDLE resource that references the directory containing the event binding
files and CICS manifest file is the unit of deployment for CICS events. The
application programmer can be denied access to creating BUNDLE resources or
denied access to create BUNDLE resources outside the development
environment. You can define the BUNDLE resource to CICS using the CICS
Explorer, CICSPlex® SM (CPSM), the CEDA transaction, and Configuration
Manager for z/OS.

When a BUNDLE resource is installed that includes an event binding for which a
user ID was specified in the Adapter tab of the CICS Event Binding Editor, CICS
checks that the user ID performing the installation operation is authorized as a
surrogate user of the user ID specified in the CICS Event Binding Editor. This
check also applies to the CICS region user ID during group list installation on a
CICS cold or initial start.

CICS Transaction Server for z/OS V4.1 introduces surrogate user security for
event binding, userid.DFHINSTL.

For more information about user IDs, see the next few paragraphs about runtime
security.

12.3.4 Runtime security

Next, we describe runtime security.

User ID associated with event processing adapter
You need to ensure that the user ID that is used to run the EP adapter has
sufficient authority to place the event data on the desired destination (such as the
Event Bus). By default, the EP adapter runs under the CICS region user ID. If you
specify a user ID in the Event Binding Editor, this user ID is used for EP adapter
processing. If you select “Use Context User ID” in the Event Binding Editor, the
EP adapter will run with the user ID under which the event was captured. You
select the “Use Context User ID” option in either the Adapter section or the
Advanced Options section of the Adapter tab in the Event Binding Editor,
depending on the type of adapter that is chosen.

Note that there is overhead associated with specifying a user ID or transaction ID
other than the default, because then the EP adapter runs under a separately
attached task.
 Chapter 12. Best practices 395

Transaction ID associated with EP adapter processing
There are three types of EP adapters supplied with CICS: the WebSphere MQ
adapter, the Temporary Storage (TS) Queue adapter, and the transaction start
EP adapter. You can also write a custom EP adapter. Although similar,
establishing transaction IDs for the adapters varies slightly.

WebSphere MQ Queue EP adapter or the TS EP adapter
If you specify a user ID, but you do not specify a transaction ID, the EP adapter
runs under the default transaction for the EP adapter type:

� The WebSphere MQ Queue EP adapter runs under the CEPQ transaction.

� The transaction start (TS) EP adapter runs under the CEPT transaction.

If you specify a user ID and you want the EP adapter processing to run under a
transaction other than CEPQ or CEPT (depending on whether you are using the
WebSphere MQ Queue EP adapter or the TS Queue EP adapter), you need to
make a copy of the CICS-supplied adapter transaction ID and name the
transaction under which you intend the EP adapter to run. Additionally, you need
to specify the name of the transaction ID as the Transaction ID in the advanced
Options section of the Adapter tab in the Event Processing editor.

When using the WebSphere MQ Queue EP or the TS Queue EP adapter, if you
specify neither a user ID nor a transaction ID in the Advanced Options section of
the Adapter tab in the Event Binding Editor, the adapter is linked to under the
dispatcher transaction CEPD.

The Custom EP adapter
When using the Custom EP adapter, you can optionally specify a transaction ID
in the Adapter section of the Adapter tab of the Event Binding Editor. You can
optionally specify the user ID in the Advanced Options section of the Adapter tab
of the Event Binding Editor. If neither a user ID or a transaction ID is specified,
the Custom adapter is linked to under the dispatcher transaction CEPD.

The transaction start EP adapter
When using the transaction start (TS) EP adapter, the transaction ID, which is
specified in the Adapter section of the Adapter tab in the Event Binding Editor, is
required. The transaction start EP adapter always runs under the dispatcher task
with the default transaction ID and user ID, because its only action is to start the
transaction that will consume the event.

HTTP EP adapter: The HTTP EP adapter has been added to the EP adapters
supplied with CICS, but it was not available at the time that we wrote this book.
396 Leveraging CICS Events with an ESB

12.4 Troubleshooting

In this section, we describe several of the problems that you might encounter
when using CICS events and how to diagnose these problems. For detailed
troubleshooting and problem determination information, see these resources:

� Event processing problem determination in the CICS Transaction Server for
z/OS V4.1 Information Center:

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

� Problem determination in the Troubleshooting chapter of Implementing Event
Processing with CICS, SG24-7792:

http://www.redbooks.ibm.com/abstracts/sg247792.html?Open&pdfbookmark

12.4.1 Problems we encountered

There are a few problems, or potential points of confusion, that we ran into when
configuring our events in CICS. You can address them easily when you know
what the messages are trying to describe. Development might improve the
messages in the future, but we document them for reference.

Copybook filename too long
When selecting fields from a copybook, if the filename on your personal
computer is longer than eight characters, the operation fails with a DFHPI9506E
message stating that the PDSMEM is greater than 8 (Figure 12-7). The term
PDSMEM refers to the filename, which might not be obvious at first. The Event
Binding editor uses an embedded DFHLS2WS, and the term PDSMEM makes
sense on a z/OS platform. The solution is to shorten the filename that contains
your copybook to eight or fewer characters.

Figure 12-7 DFHPI9506E
 Chapter 12. Best practices 397

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
http://www.redbooks.ibm.com/abstracts/sg247792.html?Open&pdfbookmark
http://www.redbooks.ibm.com/abstracts/sg247792.html?Open&pdfbookmark

Alignment of levels in COBOL copybook
If you cut and paste a copybook (or a portion of a copybook) into a file, the levels
must start in the correct COBOL columns. If the alignment is incorrect, the import
might fail with the DFHPI9552E message (Figure 12-8), because the embedded
version of DFHLS2WS in the Event Binding editor finds text where it needs to
find an integer.

Figure 12-8 DFHPI9552E

Browse appears inactive on export of bundle to HFS
If you have an incorrect FTP port number specified and click Browse to navigate
to your hierarchical file system (HFS) directory to export the bundle, selecting
Browse does not appear to do anything and no errors are returned. However, if
you specify the HFS path to which you want to export and click Finish, an error
message appears (Figure 12-9 on page 399) as expected due to the incorrect
FTP port number. Specify the correct port number for FTP; typically, the FTP port
number is 21.
398 Leveraging CICS Events with an ESB

Figure 12-9 Incorrect FTP port number specified
 Chapter 12. Best practices 399

400 Leveraging CICS Events with an ESB

Appendix A. Additional material

This book refers to additional material that you can download from the Internet as
described in the following sections.

Locating the web material

The web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks web server. Point your web browser at this site:

ftp://www.redbooks.ibm.com/redbooks/CICCATLOGORDERS.zip

Alternatively, you can go to the IBM Redbooks web site:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the
IBM Redbooks form number, which is CICSCATALOGORDERS.zip.

A

© Copyright IBM Corp. 2010. All rights reserved. 401

ftp://www.redbooks.ibm.com/redbooks/CICCATLOGORDERS.zip
ftp://www.redbooks.ibm.com/redbooks/CICCATLOGORDERS.zip
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the web material

The additional web material that accompanies this book includes the following
file:

File name Description
CICSCATALOGORDERS.zip CICS catalog orders

We supply the following files that are associated with Chapter 11, “WebSphere
Process Server” on page 295 as part of the additional materials for this IBM
Redbooks publication:

� The multiLowStockEventApp.ear file contains the process application.

� The scenario-4-wid-process.zip project interchange file contains the project
for the process.

� The callLowStockEventProcess.ear file contains the application that can be
used to test the process through a web service call.

� The appToTestScenario-4-process.zip project interchange file contains the
project for the test application.

� The handleOrderFailureApp.ear file contains the WebSphere Business
Events to process the mediation flow.

� The wbe-to-process-mediation-flow.zip project interchange file contains
the project for WebSphere Business Events to process the mediation flow.

System requirements for downloading the web material

Follow these instructions.

How to use the web material

Create a subdirectory (folder) on your workstation, and unzip the contents of the
web material zip file into this folder.
402 Leveraging CICS Events with an ESB

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks publications

For information about ordering these publications, see “How to get IBM
Redbooks publications” on page 404. Note that the documents referenced here
might be available in softcopy only.

� Implementing Event Processing with CICS, SG24-7792

� CICS Explorer, SG24-7778

Other publications

This publication is also relevant as a further information source:

� IBM Tivoli OMEGAMON XE for CICS Transaction Gateway on z/OS: User’s
Guide, SC23-5963

Online resources

These web sites are also relevant as further information sources:

� CICS Transaction Server for z/OS, Version 4 Release 1:

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

� WebSphere Business Events:

http://publib.boulder.ibm.com/infocenter/wbevents/v6r2m1/index.jsp

� WebSphere Business Monitor:

http://www-01.ibm.com/software/integration/wbimonitor/

� WebSphere Enterprise Service Bus:

http://www-01.ibm.com/software/integration/wsesb/
© Copyright IBM Corp. 2010. All rights reserved. 403

http://www-01.ibm.com/software/integration/wbimonitor/
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
http://www-01.ibm.com/software/integration/wbimonitor/
http://www-01.ibm.com/software/integration/wsesb/
http://www-01.ibm.com/software/integration/wsesb/
http://www-01.ibm.com/software/integration/wbimonitor/
http://publib.boulder.ibm.com/infocenter/wbevents/v6r2m1/index.jsp

� WebSphere Message Broker:

http://www-01.ibm.com/software/integration/wbimessagebroker/

� CICS Explorer:

http://www-01.ibm.com/software/htp/cics/explorer/

� WebSphere Business Events Design tool:

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.i
bm.wbe.appdev.doc/doc/Designmigration.html

� WebSphere Business Events runtime and WebSphere Process Server
connection:

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.i
bm.wbe.integrating.doc/doc/sibx.html

� WebSphere Business Events Business Events Tester widget:

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.i
bm.wbe.appdev.doc/doc/testingeventlogic.html

� WebSphere Business Events Event Capture and Replay widget:

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.i
bm.wbe.appdev.doc/doc/eventcapturereplay.html

� WebSphere Business Events enhanced application logging and WebSphere
Application Server trace:

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.i
bm.wbe.admin.doc/doc/wbelogs.html

How to get IBM Redbooks publications

You can search for, view, or download IBM Redbooks publications, Redpapers,
Web docs, draft publications and Additional materials, as well as order hardcopy
IBM Redbooks publications, at this web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support
404 Leveraging CICS Events with an ESB

http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.wbe.appdev.doc/doc/Designmigration.html
http://www-01.ibm.com/software/htp/cics/explorer/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.wbe.admin.doc/doc/wbelogs.html
http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.wbe.admin.doc/doc/wbelogs.html
http://www-01.ibm.com/software/integration/wbimessagebroker/
http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.wbe.integrating.doc/doc/sibx.html
http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.wbe.integrating.doc/doc/sibx.html
http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.wbe.appdev.doc/doc/testingeventlogic.html
http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.wbe.integrating.doc/doc/sibx.html
http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.wbe.integrating.doc/doc/sibx.html
http://publib.boulder.ibm.com/infocenter/wbevents/v7r0m0/topic/com.ibm.wbe.appdev.doc/doc/eventcapturereplay.html

IBM Global Services

ibm.com/services
 Related publications 405

http://www.ibm.com/services/
http://www.ibm.com/services/

406 Leveraging CICS Events with an ESB

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Leveraging CICS Events w
ith an ESB

®

SG24-7863-00 ISBN 0738434523

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

Leveraging CICS Events
with an ESB

Exploit CICS events
using your enterprise
service bus

Learn about CICS
events and
governance in depth

Transform and
enrich CICS events
with an ESB

There are many reasons to use an enterprise service bus (ESB) as
the Event Bus:

� Transformation: Function that transforms the incoming event by
translating or splitting it

� Enrichment: Function that enriches the content of events with
reference data from multiple possible sources

� Validation: Function to provide validation against required
criteria

� Pattern detection: Function that recognizes actual and
retrospective patterns; a combination from possibly multiple
events, characterizing a significant business situation

� Filtering: Stateless function that filters events based on their
content, that is, the information that is carried by the message
generated when the event happened

� Aggregation: Function that can group events as necessary
� Routing: Function that routes events to the destination based on

various possible routing patterns, such as pre-established
itinerary, calendar-based, or subscription or “intelligent”
routing decisions

In this IBM Redbooks publication, we show examples of using an
ESB to transform and enrich an event received from Customer
Information Control System (CICS) Transaction Server. We also show
an example of enriching an event.

This book is intended for anyone planning to use CICS events with
an ESB.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Part 1 Introduction
	Chapter 1. Introduction to event processing
	1.1 Events
	1.2 Event processing
	1.2.1 Simple events
	1.2.2 Complex events

	1.3 Why you need events
	1.4 Business application events and system events
	1.5 IBM solutions for business event processing
	1.5.1 CICS Transaction Server
	1.5.2 CICS Explorer
	1.5.3 WebSphere Business Events
	1.5.4 WebSphere Business Monitor
	1.5.5 WebSphere Enterprise Service Bus
	1.5.6 WebSphere Message Broker

	1.6 DataPower
	1.7 WebSphere Process Server
	1.8 IBM solution for system events
	1.8.1 Tivoli OMEGAMON XE for CICS on z/OS

	1.9 Solutions reviewed

	Chapter 2. CICS event processing
	2.1 Why emit events from CICS applications
	2.2 How CICS event processing works
	2.3 CICS Event Binding editor
	2.4 Event specification
	2.5 Capture specification
	2.5.1 Capture point
	2.5.2 Filter and predicates
	2.5.3 Information sources

	2.6 Event binding
	2.7 Non-invasive events or SIGNAL EVENT
	2.7.1 Automatic capture specification for SIGNAL EVENT

	2.8 Event processing adapters
	2.8.1 Temporary storage queue EP adapter
	2.8.2 Transaction start EP adapter
	2.8.3 WebSphere MQ (WMQ)
	2.8.4 Custom (user-written) EP adapter

	2.9 Exporting event schema or copybook
	2.10 EP adapter advanced options
	2.10.1 Dispatch priority
	2.10.2 Transaction ID
	2.10.3 User ID
	2.10.4 System ID
	2.10.5 Transactional events

	2.11 Bundles
	2.12 Deploy a bundle to zFS

	Chapter 3. Integrating event processing and enterprise service bus
	3.1 Conceptual architecture
	3.2 Why use an enterprise service bus as the Event Bus

	Part 2 Environment
	Chapter 4. Overview of the application and business scenarios
	4.1 Objectives
	4.2 Overall architecture
	4.3 The catalog manager example application
	4.4 ESB structure
	4.5 Using WebSphere Enterprise Service Bus as the ESB
	4.6 Using DataPower as the ESB
	4.7 Using WebSphere Message Broker as the ESB
	4.8 Event scenarios used by our team
	4.8.1 Successful events
	4.8.2 Failure events
	4.8.3 Scenario 1: Successful order event
	4.8.4 Scenario 2: Multiple high value orders in three days event
	4.8.5 Scenario 3: Failed order due to insufficient stock event
	4.8.6 Scenario 4: Multiple insufficient stock failures event

	4.9 Testing each scenario

	Part 3 Scenarios
	Chapter 5. WebSphere Enterprise Service Bus business scenario
	5.1 Environment overview
	5.2 Environment configuration
	5.2.1 CICS configuration
	5.2.2 WebSphere Business Events configuration
	5.2.3 WebSphere Business Monitor configuration
	5.2.4 WebSphere Process Server configuration
	5.2.5 WebSphere Enterprise Service Bus configuration

	5.3 Scenario 1
	5.3.1 ESB transformation
	5.3.2 Test results

	5.4 Scenario 2
	5.5 Scenario 3
	5.5.1 ESB transformation
	5.5.2 Test results

	5.6 Scenario 4
	5.7 Problems encountered, hints, and tips
	5.7.1 Cross-cell Pub/Sub in WebSphere Application Server V7
	5.7.2 WebSphere Business Events plug-in for WebSphere Integration Developer
	5.7.3 Modifications to WebSphere Business Events event schema
	5.7.4 When WebSphere Business Monitor and WebSphere Enterprise Service Bus are in the same cell
	5.7.5 CBE details in the WebSphere Application Server run time
	5.7.6 Deploying to the next test stage

	5.8 Summary

	Chapter 6. WebSphere Message Broker business scenario
	6.1 Environment overview
	6.2 Configuring the environment
	6.2.1 Configuring CICS
	6.2.2 WebSphere Message Broker configuration
	6.2.3 WebSphere Business Events configuration
	6.2.4 WebSphere Business Monitor configuration
	6.2.5 WebSphere Process Server configuration

	6.3 Scenario 1
	6.3.1 WebSphere Message Broker transformation

	6.4 Scenario 2
	6.5 Scenario 3
	6.5.1 Scenario 3 overview

	6.6 Scenario 4 test
	6.7 Problems encountered, hints, and tips
	6.8 Summary

	Chapter 7. DataPower business scenario
	7.1 Environment overview
	7.2 Environment configuration
	7.2.1 CICS configuration
	7.2.2 DataPower configuration
	7.2.3 Scenario 1
	7.2.4 Scenario 3

	7.3 Hints and tips
	7.3.1 Probe for debug
	7.3.2 External tools to help create stylesheets

	7.4 Summary

	Chapter 8. Scenario flow
	8.1 Scenario 1
	8.2 Scenario 2
	8.3 Scenario 3
	8.4 Scenario 4

	Chapter 9. WebSphere Business Events scenario
	9.1 Development setup and WebSphere Business Events tooling
	9.1.1 WebSphere Business Events
	9.1.2 WebSphere Business Events development tooling
	9.1.3 WebSphere Business Events scenario description
	9.1.4 Building the WebSphere Business Events project
	9.1.5 Configuring and testing WebSphere Business Events
	9.1.6 Tips and hints for developing with WebSphere Business Events

	Chapter 10. WebSphere Business Monitor
	10.1 Configuring WebSphere Business Monitor
	10.1.1 Defining a CEI bus destination in WebSphere Business Monitor
	10.1.2 Establishing the MQ to CEI link
	10.1.3 Defining the MQ channels and queues

	10.2 Designing the monitor model
	10.2.1 Creating the monitor project and model
	10.2.2 Importing CBE schema
	10.2.3 Defining the monitor details model
	10.2.4 Defining the KPI model

	10.3 Creating the Business Space dashboard
	10.4 Viewing the CICS CBE monitor dashboard
	10.4.1 Sending test events with the Integrated Test Client
	10.4.2 Successful order instances
	10.4.3 Insufficient stock instances
	10.4.4 Total successful and failed orders
	10.4.5 Event rate and average meantime between failure orders

	10.5 Summary

	Chapter 11. WebSphere Process Server
	11.1 Process
	11.1.1 Designing the process flow

	11.2 Building the process
	11.2.1 Products we used
	11.2.2 CICS Web Services Description Language
	11.2.3 Starting WebSphere Integration Developer V7
	11.2.4 Creating a business integration project
	11.2.5 Defining business objects
	11.2.6 Creating a new business process
	11.2.7 Variables
	11.2.8 Adding a snippet
	11.2.9 Time for a first test run
	11.2.10 Adding a web service call to get item details
	11.2.11 Adding the ForEach activity
	11.2.12 Defining new Business Objects
	11.2.13 Adding a global variable to hold the total cost
	11.2.14 Adding the Assign activity
	11.2.15 Adding an intermediary interface
	11.2.16 Connecting the process to the Web Service
	11.2.17 Updating the mediation flow
	11.2.18 Adding the invoke activity
	11.2.19 Adding the snippet to calculate the cost
	11.2.20 Testing the process
	11.2.21 Adding the choice activity
	11.2.22 Adding a reply activity
	11.2.23 Adding a human to-do task
	11.2.24 Completed process
	11.2.25 Testing the completed process
	11.2.26 Testing using the Integrated Test Client
	11.2.27 Exporting the process wsdl
	11.2.28 Exporting the ear file
	11.2.29 Application to test the process
	11.2.30 WebSphere Business Events to process the mediation flow
	11.2.31 Supplied files
	11.2.32 Summary

	Part 4 Best practices
	Chapter 12. Best practices
	12.1 Plan and organize
	12.1.1 Naming conventions
	12.1.2 Transport
	12.1.3 Communication formats

	12.2 Governance
	12.2.1 CICS events and governance
	12.2.2 Artifacts
	12.2.3 Audit and change control

	12.3 Security considerations for CICS events
	12.3.1 Development security
	12.3.2 Resource security
	12.3.3 Deployment security
	12.3.4 Runtime security

	12.4 Troubleshooting
	12.4.1 Problems we encountered

	Appendix A. Additional material
	Locating the web material
	Using the web material
	System requirements for downloading the web material
	How to use the web material

	Related publications
	IBM Redbooks publications
	Other publications
	Online resources
	How to get IBM Redbooks publications
	Help from IBM

	Back cover

