Business Agility: Enabled Through IT Infrastructure

Bob Hayward March 2005

Why Agility? So Many Forces, Choices and Constituencies to Contend With

There is no singular "agile organization" design. Each organization must design itself to be appropriately agile in response to a unique set of external and internal forces.

Economic Forces	Business Forces	Organizational Forces	IT Forces	Work Forces
Globalizatio	n Cost	Sourcing Options	Enterprise	Distance
Emerging	Reduction	Funding Models	Architecture	Collaboration
Markets	Shared	Changing	Real-Time	Virtual
Talent	Processes	Competencies	Infrastructure	Teaming
Search	Distributed	Leadership	Priority	Global
	Buyers	Distributed	Projects	Diversity
	Compliance	Decision Making		

Agility is of increasing importance for many enterprises

Area	Requirements	Infrastructure Implications	
Demand volume agility	The ability to cost-effectively serve peaky customer demand, and scale to meet changes in demand	Need to make infrastructure scalable, and variable cost	
Product / Process agility	The ability to rapidly change product offerings and processes	Need to create a platform that facilitates rapid development and deployment	
Structural agility	The ability to handle organizational change, e.g. centralization, M&A	Need to create a flexible, scalable platform to support business model variations	

Key Trend: The Technology Underpinnings Of Agility Are Emerging

Computing Architecture: Building for Agility

Service-Oriented Architecture: The Architecture of Interactive Interfaces

Service

Business-oriented interactive software component, designed to be invoked by name across applications or across organizations via a documented programmatic interface

Service-Oriented Architecture

Application software topology consisting of any number of services and service consumers (clients) in interactive one-onone relationships

Web Services: Foundation For SOA Built On Growing Stack Of Standards

Service Implementation: What Happens Behind the Interface

Multichannel Applications: A Perfect Fit With Services

Application Platform Suite: The End-to-End Platform for SOA

SOA: SODA, SOBA, ISE, APS

The 'Era of Events' Will Follow the 'Era of Services'

Event-Driven Business Processes Differ From Internally Driven Business Processes

Conventional: Build-to-stock Event-driven: Build-to-order

Conventional: Static pricing Event-driven: Yield management through dynamic pricing

Conventional: Periodic reports and ad hoc inquiry Event-driven: Supply chain monitoring

Business Events Are Implemented Four Ways

Adoption of Event-Driven Architecture

Services and Events Will Form Business Component Architecture

- Decoupled
- Notification/subscription
- Autonomous
- Open-ended

LUW – Logical Unit of Work EBP – Enterprise Business Process Gartner

The Next Generation of Integration Suites Will Use an ESB for Communication

Developer Percentages: Raising the Level of Abstraction

IT Infrastructure Matters!

Fact: A survey of nearly 1,000 CIOs shows that developing and managing a flexible and efficient infrastructure are their top technology priorities

Fact: More than 70% of IT budgets are spent on infrastructure

Fact: IT reacts slowly to business requirements, has unpredictable reliability, with expenses that don't correlate to business priorities *Fact:* Average utilization rates for Intel servers globally are only between 15-20% pa

What Is Real-Time Infrastructure (RTI)?

Today's Reality

- IT reacts slowly to business requirements, has unpredictable reliability, with large expenses that don't correlate to business
- IT is cost center
- IT organization owns IT strategy

Tomorrow's Vision

- IT detects/reacts in real time to business, reliably, with costs correlated to business priorities
- IT is profit center, providing valuebased IT services that drive business
- IT strategy is tied to business strategy

Business Requirements IT is a "black box" that self-manages and responds dynamically to

changing business policies

Services

A Real-Time Infrastructure is:

- Shared across customers, business units, applications
- Dynamically driven by business policies, service-level requirements
- Automatically configured and optimized
- Lower cost, agile, high-quality IT services

Real Time Infrastructure: The seventh stage of IT Infrastructure maturity

Basic	Centralized	Standardized	Rationalized	Virtualized	Service-based	Policy-based
Resources in multiple silos	Physical collocation, Centralized management	Standard configurations and processes	Fewer resources, some sharing	Pooled resources	Resources managed as services	Resources optimized based on business priorities

Real-Time Infrastructure: Efficient, Flexible

Policies

- IT service definitions
- Service agreements
- Business priorities

Self-discover, install and integrate

Different benefits are harvested along the RTI journey

The RTI Operating System: The Need to 'Virtualize'

IT virtualization is the pooling of IT resources in a way that masks the physical nature and boundaries of those resources from resource users.

An **operating system** is a virtualization layer between applications and hardware

An **operating system** performs scheduling, loading, initiating and supervising applications; processor, memory, I/O allocation; error handling A meta operating system is a virtualization layer between applications and distributed IT resources

A meta operating system utilizes distributed IT resources to perform scheduling, loading, initiating and supervising applications; error handling Gartner

Infrastructure Automation: Service-Oriented, Policy-Based, Self-Management

A service governor automates a real-time infrastructure in three specific ways:

Automated administration and event reaction are policy-based

Policies are service-oriented, and resources are managed as endto-end services

Automation requires active management capability across all elements of the infrastructure — requiring instrumentation, controls, knowledge capture

Popular Open-Source Myths

- Open-source software is free.
- It is just a passing fad. It's against human nature to work for nothing.
- Nobody controls development. Anybody can change the software, which eventually becomes unstable and insecure.
- No one supports open-source software.
- When the lead developer leaves, the project dies.
- Open-source projects eventually splinter, similar to Unix.

Open-Source Project Radar Screen

SOA + EDA + Systems Management Herald Adaptive Applications = Business Agility

Business Agility: Enabled Through IT Infrastructure

Bob Hayward March 2005

