
IBM Software

Thought Leadership White Paper

July 2012

Lessons from testing service-oriented
architectures
Eight issues to consider when testing service-oriented architectures

2 Lessons from testing service-oriented architectures

Executive summary
Leading companies now have over a decade of experience in
testing complex service-oriented architectures and other distrib-
uted systems. Eight key lessons have emerged about how to
avoid some of the most common testing pitfalls and provide
recommendations on how to mitigate certain pervasive issues.

Distributed computing is not new and, as time has gone by, suc-
cessful design patterns have emerged. The principle of consider-
ing an organization’s systems as a collection of business services
provides a useful platform on which to build new applications.
These new applications are not dependent on any single under-
lying application, implementation or structure, thus protecting
this new development from future changes. Examples of useful
business services include “stock query,” “place order,” or “get
account balance.”

As each service may be used by many applications, it makes sense
to test the service itself. However, this creates new challenges for
the test team as these services do not naturally have an interface
that can be operated by a human being. Instead, these services
have been designed for invocation by other systems. Until
recently, such invocation methods typically would be considered
proprietary to an individual organization.

In the past, developers typically created test programs to demon-
strate that their components worked. Test teams typically would
be limited to reviewing these test programs and, in many cases,
would be unable to test a new version of the component until
the developer also created a new version of the test program.
The validity of such tests could also be questioned, as often the
developers would prove to themselves that their components
interfaced correctly, with no guarantee of how well they might
interoperate with the real system.

However, the popularity of open standards makes it more likely
that technologies such as Extensible Markup Language (XML),
Simple Object Access Protocol (SOAP), REpresentational State
Transfer (REST), Hypertext Transfer Protocol (HTTP), web
services and Java Message Service (JMS) will be employed to
invoke services and provide responses.

The use of these open standards now makes it possible for test
teams to learn core technical skills that can be applied to many
different projects. As service-oriented architecture (SOA)
becomes more widely used, test teams are able to add more
value. This value comes not just from the fact that the testing of
services is no longer a burden on development teams alone,
because quality is everyone’s responsibility. Testers can also
ensure that the services created are reusable by others. After all,
SOA is only worth implementing if reuse is not only expected
but actively encouraged and made as easy as possible. For this
reason, it is essential that service interfaces be verified indepen-
dently to achieve the return on investment promised by SOA.

While SOA applications have been prevalent for quite some
time, effective testing of these types of applications has remained
elusive. Given that this area of testing is in its infancy, we have
gathered together lessons from our customers and our consul-
tants. The lessons contained herein apply not only to testing and
quality professionals, but should also be read by project manag-
ers, developers and architects. Quality needs to be designed in
and built in to a project. If it is simply added on at the end, the
results will be much poorer.

3IBM Software

Lesson 1 – Schema mismatches mean no
communication and no integration
Schemas aid interoperability between services and their clients.
They describe the interface that the service expects to be
adhered to by the client. Schemas are generally designed up
front, and documented, often by architects. The documentation
of the schema is passed to the people on either side of the inter-
face and this is used for both the client of the service and the
implementer of the service. The seeds of disaster can be sown
here. Although the architect has carefully documented the
schema, this is not enough. The document can be misinter-
preted. These misinterpretations can lead to massive project
delays. Our experience is that projects might spend as much time
in “integration” as they did in “unit development,” primarily as a
result of mismatches in schemas (see lesson #2).

The success of any kind of integration project, including SOA
projects, depends on the clear and successful communication of
schemas. The output of the design process must be a schema
that can be used, without alteration, by the parties on either side
of the interface. Luckily, the open standards employed in SOA
projects, such as XML, XML Schema Definition (XSD), SOAP
and Web Services Description Language (WSDL), make it more
likely that a useable run-time deliverable can be output from a
design-time tool. If you have the luxury of choosing your
Unified Modeling Language (UML) design tools, include open
standards on your list of requirements. It is still common for
services to be built over legacy integration approaches such as
fixed-width data structures, and these are particularly susceptible
to these types of problems.

Lesson 2 – Schema changes restart
project tasks
Changing a schema can have a disastrous impact on a deliver-
able. While it may look simple from the perspective of a
designer remember that these mismatches are not only present
in the interface, but permeate the component’s data structures,
program structure and code. Altering them once development
has begun may have far-reaching consequences. Please note that
if components have been designed properly, they can be immune
to expected schema changes such as the addition of fields. This
is one of the major benefits of XML. Unexpected fields are often
ignored. Schema changes are considered to be changes to struc-
ture and field types. So how can you minimize the possibility of
schema changes? Lesson 3 has a few examples.

Be aware that there are a great number of situations where a
system appears to understand XML, and yet it does not. Instead,
in early attempts to XML-enable legacy systems, parsers were
written which only understood XML formatted in a specific way.
Even when you are told a system understands XML, it is worth
clarifying exactly how whitespace, element and attribute ordering
are going to be handled.

4 Lessons from testing service-oriented architectures

Lesson 3 – Create examples early
As outlined in lesson 2, we want to avoid schema changes as they
can cause task rework. A common cause of early schema changes
in a project is a schema’s lack of suitability for its intended
purpose. How was this discovered? By trying to use it. It makes
sense, therefore, to use a schema as early as possible in the
process.

Ideally, examples of service invocations and corresponding
responses, at least one for every situation in which the schema
is likely to be used, should be created as soon as the schema is
drafted. In this way, any design issues can be resolved before
development begins. The example invocations and responses can
also form the basis of the first test cases. Together, these requests
and responses start to make up a physical implementation of a
message (invocation) catalog, a key asset for encouraging service
re-use as it shows examples of the service being used.

Lesson 4 – Components will be delivered
late—test virtualization can help
SOA projects automatically involve dependence. Some of these
dependencies will be owned or delivered by teams with their
own projects and pressures. Even if a component is being devel-
oped as part of this project, you may need to test components
that depend on it in isolation, or even before the new compo-
nent has been completed. Emulating missing dependencies for
the purposes of testing has been called service virtualization by
some industry analysts, but in acknowledgment of the fact these
emulations can use non-service based approaches, we prefer the
term test virtualization.

In test virtualization, a real component is replaced by a virtual
component, sometimes called a stub. Virtual components should
be made available for key components to allow various scenarios
to be simulated and tested more easily. If a tool is being used, the
test team may well be able to create and manage these virtual
components themselves. If key components are delivered late,
the availability of virtual components ensures that problems in
dependent components can still be detected, allowing the project
to “f low around” blockages that have traditionally halted
projects.

Although virtual components could be programmatically cre-
ated, there are several reasons why this should be discouraged.

●● First, it can encourage systematic errors.
●● Second, it can be time consuming to use resources that could

be better deployed solving the actual business problem.
●● Finally, maintaining these virtual components can become a

job in itself.

Tools specifically designed to provide virtual components help
eliminate these issues and provide the same benefits with a
minimum amount of effort. Additionally, a purpose-designed
tool allows the test team to maintain these components. These
tools often allow virtual components to be developed from a
specification (for example, a WSDL or a COBOL copybook) or
recorded from existing system behavior.

5IBM Software

Lesson 5 – Measure performance early
and often

Example – Mobile telecommunications company
Telecommunications projects can involve coordination
between many interconnected systems, and this project was
no exception. On one specific project, a large team was
assembled, an impressive architecture was designed, and the
implementation begun. Deadlines were set and commitments
were made to internal stakeholders far into the future. As they
drew near, and deliverables slipped, shortcuts were taken. Due
to the complexity of the overall solution, the system was not
performance tested until it went into production with real
users and real customers. Instead of enabling the sign-up of
dozens of customers per minute, the system could only handle
two per minute and order fulfillment was delayed at times by
more than 24 hours. Sometimes orders did not occur at all,
forcing the support staff to complete orders manually. There
was no easy fix to the problem as the architecture was
fundamentally flawed from the beginning.

Integration projects are often carried out with promises of faster
transaction processing and greater throughput. These promises
need to percolate into the architecture of the system and, from
there, to individual components. These performance require-
ments need not be onerous—some systems are over-specified
and over-tested in these areas. Unfortunately, the simple
measure of requests per second is not enough to guarantee well-
defined results. Instead, performance needs to be analyzed for
several characteristics. First, what is the target time to receive a
reply to a request, that is, what is the component’s response
time? Second, if two requests are received “at the same time”1,
when are the responses received? Third, can this performance be
maintained over a prolonged period, and with higher levels of
simultaneous requests?

The idea of performance testing at this early stage identifies cat-
astrophic design errors. Clearly, the exact run-time environment
and load may not be available. However, if problems are already
apparent in isolation, they can be fixed now, earlier, rather than
in a few weeks or months when full system performance testing
can be carried out. In extreme cases, fundamental design faults
have been carried into many hundreds of implementations,
making a timely recovery impossible. Ideally, performance mea-
surements should be undertaken at the same time as functional
testing, and the component load tested before it is accepted.

Preventing a problem is always a better
strategy than fixing a problem.

Given that the actual performance of the component will
ultimately be affected by its design, the required performance
should be part of the design process. We are not advocating
over-engineering, but a design fit for the purpose.

Here is an example. A severe performance problem in a compo-
nent communicating trades in real time to an exchange was
seriously degrading performance. The team could not under-
stand why it was only able to process ten transactions per sec-
ond. It had been specified and tested to several hundred trades
per second. Detailed examination of the log and comparison
with the code showed that even short sections of the program
were taking as much as eleven milliseconds to execute.

Perhaps less well-equipped teams would have commenced on an
immediate redesign of the problem areas. However, knowing the
component already met the required performance criteria made
it easier to look for other problems. Ultimately, it was discovered
that the process f lushed its log file after every line, and someone
had moved its logging area to a network-mounted file system.
Moving the logging back to a local file system restored the
component performance to normal.

6 Lessons from testing service-oriented architectures

In conclusion, target performance criteria should be generated
for the unit and development should not stop until the unit
meets or exceeds them. Performance criteria can substantially
affect the design of a unit and must therefore be specified during
requirements gathering to avoid impacting the deliverable.

Lesson 6 – Test interleaving, concurrency
and state-related behavior

Example
A junior developer, who had been working with real-time
systems for a number of years, was asked to develop a new
component. He was always thorough and tested it for a few
weeks before it was deployed. Almost immediately, problems
became apparent. Updates destined for a particular customer
were actually changing the accounts of different customers
on certain occasions.

In the previous example, examination of the code showed that
the essence of real-time programming had been ignored and
simple global variables were being used to store information. In
other routines, information was being read from these global
variables rather than the incoming message. The developer’s
testing had only used a single transaction followed through to
completion, and then tested with a different set of data through
to completion. The transactions had never been interleaved—a
test that would have revealed the problem immediately.

It is important to establish these testing
exceptions during test planning.

Some components in a system will not require this level of
extensive testing. They may be simple transformation and
translation components, simply passing data in and out of
another system. Examples would be one customer’s information
being updated into another customer’s account.

An early code review by an experienced team member might
catch this type of mistake, depending on the size of the program.
Standardizing on variable naming conventions can also help
avoid this type of problem.

Lesson 7 – Automate for agility

Example 1
A leading financial institution’s systems must be updated
constantly to keep pace with changes in the financial markets.
To support this requirement, releases need to occur every two
weeks. The testing team would be unable to cope with this
rate of change without test automation. Through integration
with a test management tool such as IBM® Rational®
Quality Manager, or a build tool such as IBM Rational Team
Concert™, Maven or Hudson, IBM Rational Test Workbench
provides a quick and convenient method of deciding whether
or not to deploy.

Example 2
One of the world’s foremost energy companies has an
automatic build-and-test system. An agent watches the
configuration management repository for new versions of
system components. When a certain amount of time has
passed without new check-ins, the agent checks-out the
latest set of code and attempts to compile it. If the code
compiles, the agent uses Rational Test Workbench to auto-
matically test it. The results are emailed to the project team.

7IBM Software

A tool that helps you create, maintain and
execute automated tests needs to be able to
cope with complex scenarios.

Services will inevitably change during their lifetime. While test
automation of graphical user interfaces (GUIs) can be laborious
and changes time consuming to implement, test automation for
services is different. In fact, the automation often fits neatly with
a common goal of changes namely, backward compatibility. An
existing automated test can simply be duplicated, and the copy
modified to test the new version, leaving the original to test for
backward compatibility.

This is particularly convenient, as visual inspection of some
service test execution results may not detect subtle problems.
Automating the tests is not simply a case of comparing a
previous result with another as some parts of the message may
be different on each test execution, such as a timestamp or
sequence number.

Another benefit of testing at the service layer is that it minimizes
problems such as channel explosion which currently aff lict the
GUI approach. Tests can also be run earlier in the lifecycle,
catching problems when they are less costly to resolve.

Lesson 8 – Buy, do not build
As a software vendor, you may feel we are bound to say this. But
consider some of the arguments: rich features, ease of use, no
maintenance and the ability to start testing immediately. Some
organizations have started to build their own systems, but they
rarely meet today’s business requirements and lack the f lexibility
to incorporate future requirements found in an off-the-shelf sys-
tem. A commercial system will be stable, powerful, proven and
available now. The developers at your company are better off
building systems for your business, not developing software to
help them develop software.

Finally, some mention should be made of open source testing
software. Although there is no charge for the software, it is not
free. Often the productivity of people using these tools is far
lower than those using commercial tools. Therefore, the real
cost of adopting an open source solution is mostly hidden.
Adopting open source may seem attractive, as often testers are
familiar with the tools, but off-the-shelf commercial software
users typically find that principles transfer easily, with open
source tools having taken some of the simpler and easier-to-
implement ideas from commercial offerings.

	

	

	

	

	

	

Conclusion
As distributed computing systems have grown more complex,
designing test plans that test the entire system—quickly,
efficiently and thoroughly—are crucial to a successful project.
Automated testing tools and virtual components are key parts
of the testing process.

For more information
To learn more about Rational test automation solutions,
please contact your IBM representative or IBM Business
Partner, or visit the following website:
ibm.com/software/rational/offerings/quality

See also:
●● IBM Rational Test Workbench

ibm.com/software/rational/products/rtw
●● IBM Rational Performance Test Server

ibm.com/software/rational/products/rpts
●● IBM Rational Test Virtualization Server

ibm.com/software/rational/products/rtvs

Additionally, IBM Global Financing can help you acquire the
software capabilities that your business needs in the most
cost-effective and strategic way possible. We’ll partner with
credit-qualified clients to customize a financing solution to suit
your business and development goals, enable effective cash
management, and improve your total cost of ownership. Fund
your critical IT investment and propel your business forward
with IBM Global Financing. For more information, visit:
ibm.com/financing

Please Recycle

© Copyright IBM Corporation 2012

Software Group
Route 100
Somers, NY 10589 USA

Produced in the United States of America
July 2012

IBM, the IBM logo, ibm.com, Rational Team Concert, and Rational are
trademarks of International Business Machines Corporation in the United
States, other countries or both. If these and other IBM trademarked terms
are marked on their first occurrence in this information with a trademark
symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published.
Such trademarks may also be registered or common law trademarks in
other countries. Other product, company or service names may be
trademarks or service marks of others. A current list of IBM trademarks
is available on the web at “Copyright and trademark information” at
ibm.com/legal/copytrade.shtml

This document is current as of the initial date of publication and may be
changed by IBM at any time. Not all offerings are available in every country
in which IBM operates.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED
“AS IS” WITHOUT ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING WITHOUT ANY WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND ANY WARRANTY OR CONDITION OF
NON-INFRINGEMENT. IBM products are warranted according to the
terms and conditions of the agreements under which they are provided.

1 When referring to coincidence and simultaneousness, care needs to be taken
about what can really be achieved physically. For example, consider the
testing of a remote service across a LAN. Requests sent “at the same time”
can only ever be received one after the other in all but extreme hardware
configurations. Such factors are often considered “small” effects in this type
of testing. Other effects are not so easily ignored, such as the batching
mechanisms employed by various middleware implementations. However,
while these effects cannot be ignored and may not produce consistent
timing measurements, they do indicate the real performance experienced
by real applications and, therefore, are relevant.

RAW14305-USEN-00

http://www.ibm.com/software/rational/offerings/quality
http://www.ibm.com/software/rational/products/rtw
http://www.ibm.com/software/rational/products/rpts
http://www.ibm.com/software/rational/products/rtvs
http://www.ibm.com/financing

	Untitled
	IBM SoftwareThought Leadership White Pap
	July 2012
	Lessons from testing service-oriented ar
	Eight issues to consider when testing se
	Executive summary
	Lesson 1 – Schema mismatches mean no com
	Lesson 2 – Schema changes restart proje
	Lesson 3 – Create examples early
	Lesson 4 – Components will be delivered
	Lesson 5 – Measure performance early and
	Preventing a problem is always a better
	Lesson 6 – Test interleaving, concurrenc
	It is important to establish these testi
	Lesson 7 – Automate for agility
	A tool that helps you create, maintain a
	Lesson 8 – Buy, do not build
	Conclusion
	For more information

