
Development solutions
White paper
October 2008

Minimizing code defects to
improve software quality and
lower development costs.
IBM Rational Software Analyzer and IBM Rational
PurifyPlus software

Kari Ann Briski, product manager, Rational software,
IBM Software Group

Poonam Chitale, software engineer, Rational software,
IBM Software Group

Valerie Hamilton, marketing engineer Rational software,
IBM Software Group

Allan Pratt, principal engineer/architect, Rational software,
IBM Software Group

Brian Starr, business unit executive, Rational software,
IBM Software Group

Jim Veroulis, engineering manager, Rational software,
IBM Software Group

Bruce Villard, project manager, Rational software,
IBM Software Group

Contents

2	 Introduction

3	 Proactively improving code

quality using static and

dynamic analysis

5	 Two complementary products

that help improve overall code

quality

6	 Achieve numerous benefits

from leveraging both static and

dynamic analysis

11	 Conclusion

Minimizing code defects to improve software
quality and lower development costs.
Page 2

Introduction

Software development organizations are under more pressure than ever before.
Development costs continue to rise. There’s a growing need to get products to
the marketplace quickly, which creates accelerated development schedules.
Pressure to cut costs is leading to reduced development resources and more out-
sourcing. And software applications are more complex.

All of these factors can make it difficult to maintain code quality while man-
aging costs. Minimizing defects is one of the most effective ways to keep
development costs down, which is a priority for just about any organization.
And because the cost of fixing defects increases exponentially as software pro-
gresses through the development lifecycle, it’s critical to catch defects as early
as possible. The costs of discovering defects after release are significant: up to
30 times more than if you catch them in the design and architectural phase,
as you can see in figure 1.

Design and
architecture

1X*

*X is a normalized unit of cost and can be expressed in terms of person-hours, dollars, etc.
Source: National Institute of Standards and Technology (NIST)†

Implementation

5X

Integration
testing

10X

Customer
beta test

Postproduct
release

15X 30X

By catching defects as early as possible in the development cycle, you can significantly reduce your
development costs.

Minimizing code defects to improve software
quality and lower development costs.
Page 3

Highlights
High costs aren’t the only concern. If you release software containing bugs
or performance issues, you can potentially suffer damage to your reputation
and lose customer confidence. And loss of customer confidence can lead to a
decrease in revenue.

This paper talks about why it’s important to take a proactive approach to
improving overall code quality using static and dynamic analysis. It then shows
how IBM Rational® Software Analyzer and IBM Rational PurifyPlus™ software
can be used together to reduce the number of defects in your company’s code.

Proactively improving code quality using static and dynamic analysis

In the past, developers relied on code reviews by more senior developers to
identify defects and improve overall code quality. But these reviews just aren’t
enough. For example, with a visual inspection, it is difficult to catch quality
issues that occur when the application is running, such as memory leaks and
performance bottlenecks. Plus, it’s not necessarily cost-effective for senior devel-
opers to spend valuable time reviewing code when they could be working on
higher-value projects.

Studies have shown that a large percentage of software costs are spent on
identifying and correcting software defects. So it makes sense to invest in
technologies that can help cut these costs. Automated products can reduce
the amount of time spent on code reviews, reducing development costs while
improving time to market. These products can also easily identify issues that
might be missed during a visual inspection, increasing overall code quality

It’s important to take a proactive

approach to improving overall

code quality using static and

dynamic analysis.

A large percentage of software

development costs are spent

on identifying and correcting

defects, so it’s logical to invest

in technologies to help reduce

these costs.

Minimizing code defects to improve software
quality and lower development costs.
Page 4

Highlights
and therefore customer satisfaction. A well-rounded approach to defect detection
includes using automated products throughout the software development lifecy-
cle—during the stages when code is being developed and after it is complete—to
improve overall quality. By using both static and dynamic analysis products, devel-
opers can improve code quality throughout the software development lifecycle.

Static analysis products examine the code without executing the program. They
apply a set of rules to the code that help identify code quality issues early in the
development lifecycle. Static analysis can help you identify and eradicate flaws
before your applications are deployed—during the coding phase, which usually
results in a less costly remediation process.

Dynamic analysis products monitor programs while they’re running,
enabling you to identify run-time issues that can’t be detected by examining
the developed code.

Memory leaks vs. memory corruption: What’s the difference?

Often confused or used interchangeably, these two terms describe very
different issues.

Memory leak

A memory leak occurs when a program fails to release memory that it
no longer needs. Because that memory is unavailable, the program must
seek out additional memory to use, leading to an unnecessary increase in
memory usage. Memory leaks are caused by logic flaws in the program.

Memory corruption

Memory corruption occurs when a defect in one part of a program changes
data values in the memory that is being used by another part of the program.
When the second part uses the changed values, it can cause the program to
crash, produce incorrect results or produce other unexpected behavior.

Static analysis products examine

code without actually executing

the program.

Used to monitor programs as they

run, dynamic analysis products can

identify run-time issues that can’t

be detected by visually examining

the code.

Minimizing code defects to improve software
quality and lower development costs.
Page 5

Highlights
Two complementary products that help improve overall code quality

IBM offers two products that can help development teams apply a well-rounded
approach to improving overall code quality: Rational Software Analyzer and
Rational PurifyPlus.

Rational Software Analyzer is a comprehensive static analysis product that can
help development teams detect—and in many cases correct—coding issues
to help improve overall code quality during the coding phase of the software
development lifecycle. It offers:

A rich set of out-of-the-box programming rules•	 that enable development
teams to perform code reviews using development best practices.
An extensible framework•	 that allows development teams to create custom
rules and reports to help enforce your company’s own coding best practices.
This framework also enables you to plug in to other analysis products for
central management of third-party products.
Automated and centralized code scans•	 that incorporate code quality
analysis into existing build processes, adding an additional layer of static
analysis quality checks.

Rational PurifyPlus is a dynamic analysis product designed to help developers
write more reliable code more quickly by reporting on memory corruption errors
and other types of problems. Designed to monitor programs as they run, Rational
PurifyPlus includes four key capabilities packaged into a single product:

Memory debugging•	 identifies illegal use of memory such as reading
beyond the end of an array or reading memory that has not been initialized.
Memory leak detection•	 discovers memory blocks that are no longer needed
by the program.

Rational Software Analyzer is a com-

prehensive static analysis product

that can help development teams

detect and correct coding issues.

Rational PurifyPlus is a dynamic

analysis product that can report

on memory corruption errors and

other issues.

Minimizing code defects to improve software
quality and lower development costs.
Page 6

Highlights
Performance profiling•	 highlights application performance bottlenecks,
and helps improve application understanding by providing a graphical
representation of function calls.
Code coverage•	 identifies untested code with line-level precision.

Achieve numerous benefits from leveraging both static and dynamic analysis

By examining and testing for code quality issues using Rational Software Analyzer
during development and Rational PurifyPlus to monitor the running code during
testing, development teams can significantly improve code quality and realize
numerous benefits.

Reduced development costs

Multiple studies have shown that using static analysis products enables devel-
opment teams to quickly and easily find anywhere from 5 to 30 percent of all
code defects early in the development lifecycle, when the cost of fixing defects
is lowest. Using Rational Software Analyzer, developers can analyze code and
discover issues related to general code quality problems—such as calling
standard functions in the wrong order—as the code is being developed, before
the entire system is created. When defects are discovered at this early phase
in the development lifecycle, the number of defects in the testing and debug-
ging phase is reduced—helping to save money and time. By studying the code
analysis produced by Rational Software Analyzer, developers can learn best
practices and improve their overall coding skills. Rational Software Analyzer
can help managers implement best practices across development teams to help

Multiple studies have shown that

static analysis products can help

development teams identify from

5 to 30 percent of all code defects

early in the development lifecycle.

When defects are detected early in

the development lifecycle, it’s pos-

sible to reduce the amount of time

needed for testing and debugging.

Minimizing code defects to improve software
quality and lower development costs.
Page 7

Highlights
enforce coding standards and adherence to compliance mandates. Additionally,
IBM Rational Software Analyzer Enterprise Edition software can automate and
centralize code reviews as part of your existing software build process, adding
another layer of static analysis code quality checking.

Rational PurifyPlus helps improve error detection by pinpointing hard-to-find
memory-related bugs before the application reaches the customer, while the
cost of fixing these issues is still low. Rational PurifyPlus can identify where a
memory corruption bug is occurring in your code—down to the specific source
line—even if the observed symptom, such as a crash or incorrect output, pops
up later in the program. Rational PurifyPlus also performs memory leak detec-
tion, discovering memory blocks that your program has lost track of and can’t
release, so your developers can correct issues that might affect the application
footprint. To help ensure that all code is tested, Rational PurifyPlus highlights
the parts of code that have not been exercised by your tests and may still contain
bugs or performance issues. The software shows developers how functions
in your company’s applications are used—while they’re running—providing
insight developers can’t gain from simply examining static code. In fact,
Rational PurifyPlus graphically highlights the most expensive code path so
that programmers can drill down on the involved functions to figure out how
to reduce or eliminate the performance hit.

Rational PurifyPlus can help you

identify where a memory corruption

bug is occurring—down to the

specific source line.

To help ensure all of your code

is tested, Rational PurifyPlus

highlights the parts of code that

haven’t been exercised by your tests

and that may still contain defects.

Minimizing code defects to improve software
quality and lower development costs.
Page 8

Highlights
Assistance with compliance efforts

Rational Software Analyzer features an extensible framework that enables
development teams to create their own rules and reports, helping to align cor-
porate governance requirements with programming guidelines. Plus, Rational
Software Analyzer Enterprise Edition provides powerful centralized reporting
features that help improve visibility by giving management teams a high-level
view of software quality and compliance-related issues.

If your company needs to track its quality assurance (QA) efforts for custom-
ers and internal auditors, you can use Rational PurifyPlus to demonstrate the
absence of memory errors and the level of code coverage you’ve achieved as
part of a quality provision in a contract.

Greater control over the quality of outsourced code

It can be challenging to validate the quality of outsourced code before it is
introduced into a larger application or product. Rational Software Analyzer and
Rational PurifyPlus are particularly helpful if you are outsourcing some or all
of your code development. By using these products, code quality and code con-
struction can be validated before incorporating the code into your application,
helping to ensure that the code meets company standards.

Because it features an extensible

framework, Rational Software

Analyzer enables development

teams to create their own rules

and reports that can help align

corporate governance requirements

with programming guidelines.

Rational Software Analyzer and

Rational PurifyPlus can help you

validate that outsourced code

meets your company’s standards.

Minimizing code defects to improve software
quality and lower development costs.
Page 9

Highlights
If an application has memory corruption defects or memory leaks, it’s only a
matter of time until it crashes. Rational PurifyPlus can pinpoint these issues—
not only in your developers’ code but also in outsourced code or third-party
libraries, where there may be issues such as misuse of parameters or application
programming interfaces (APIs). And if you don’t have source code for third-party
components, it’s not a problem since Rational PurifyPlus works on binary code.

By using the two products to first scan outsourced code and then monitor the
resulting application, development teams can help ensure that outsourced
code meets company standards for code quality.

Increased speed to market

While it may seem counterintuitive to suggest that introducing two additional
steps into your development process can help you get products to market faster,
using the composite of static and dynamic analysis as a regular part of develop-
ment can actually help shorten development times.

Because it allows you to test for code quality before applications get to your
QA team, Rational Software Analyzer can relieve the burden on your testing
resources and decrease the amount of time spent identifying and fixing bugs.
Rational Software Analyzer Enterprise Edition can also automate and central-
ize code scans as part of the build process using software assembly products
such as IBM Rational Build Forge® software. By identifying and correcting
defects early in the lifecycle, you can potentially reduce your time to market
and sharpen your competitive edge.

Rational PurifyPlus works on binary

code, so you can test third-party

components even if you don’t have

source code for them.

Rational Software Analyzer can

help relieve the burden on your

testing resources by enabling your

development teams to test for code

quality issues before applications

go to your QA team.

Minimizing code defects to improve software
quality and lower development costs.
Page 10

Highlights
And by using Rational PurifyPlus, companies can significantly decrease the
amount of time programmers spend addressing performance issues, which ulti-
mately shortens the development cycle. Research has shown that the average
programmer spends around 5 percent of his or her time on the task of optimizing
performance. That amounts to 2.4 weeks per year without Rational PurifyPlus
(0.05 x 48 weeks per year = 2.4 weeks per year). When using Rational PurifyPlus
to address performance issues, there was an estimated productivity gain of a factor
of 5, which means that performance bottlenecks that previously took developers
five hours to correct could be corrected in one hour.*

Greater developer productivity

Rational Software Analyzer provides an understanding of good coding practices
and identifies areas for improvement, which helps developers build their coding
skills. By enabling development teams to identify issues as early as possible
in the development cycle, Rational Software Analyzer reduces the amount of
time and effort needed to correct these issues, which helps improve developer
productivity. Plus, because Rational Software Analyzer has an extensible frame-
work, developers can create their own custom rules and reports, simplifying the
static analysis process and further boosting productivity.

When using Rational PurifyPlus

to address performance issues,

developers who previously took

five hours to correct bottlenecks

could now do so in just one hour.

Rational Software Analyzer provides

an understanding of good coding

practices and identifies areas for

improvement, helping developers

build their coding skills.

Minimizing code defects to improve software
quality and lower development costs.
Page 11

Highlights
Rational PurifyPlus helps developers by reducing the amount of time they have
to spend debugging applications. By using Rational PurifyPlus to automati-
cally find bugs, developers can spend less time debugging existing applications
and more time writing new code. Plus, the application helps developers gain an
understanding of exactly how an application executes. It provides insight into
performance, application logic and memory considerations, helping developers
learn how to create applications that are free of serious errors.

Conclusion

By combining the Rational static and dynamic analysis products, you can
improve your code quality, regardless of the individual developer’s skill level
or whether the code was produced in-house or offsite. Together, Rational
Software Analyzer and Rational PurifyPlus can automatically help development
teams identify quality and compliance issues throughout the software devel-
opment cycle. And as a result, you can reduce the number of defects in your
applications, making them easier to maintain; decreasing development costs;
and accelerating your time to market.

For more information

To learn more about how IBM Rational Software Analyzer and IBM Rational
PurifyPlus software can help you improve code quality, contact your IBM
representative or IBM Business Partner, or visit:

ibm.com/software/awdtools/swanalyzer

and

ibm.com/software/awdtools/purifyplus

By combining Rational static and

dynamic analysis products, you can

improve code quality, regardless of

the individual developer’s skill level

or whether the code was produced

in-house or offsite.

http://www-01.ibm.com/software/awdtools/swanalyzer/
http://www-01.ibm.com/software/awdtools/purifyplus/

©	Copyright IBM Corporation 2008

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
October 2008
All Rights Reserved.

IBM, the IBM logo, ibm.com and Rational are
trademarks or registered trademarks of International
Business Machines Corporation in the United States,
other countries, or both. If these and other IBM
trademarked terms are marked on their first occur-
rence in this information with a trademark symbol
(® or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time
this information was published. Such trademarks
may also be registered or common law trademarks
in other countries. A current list of IBM trademarks is
available on the Web at “Copyright and trademark
information” at ibm.com/legal/copytrade.shtml

Other company, product, and service names may
be trademarks or registered trademarks or service
marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

The information contained in this documentation
is provided for informational purposes only. While
efforts were made to verify the completeness
and accuracy of the information contained in this
documentation, it is provided “as is” without war-
ranty of any kind, express or implied. In addition,
this information is based on IBM’s current product
plans and strategy, which are subject to change by
IBM without notice. IBM shall not be responsible for
any damages arising out of the use of, or otherwise
related to, this documentation or any other docu-
mentation. Nothing contained in this documentation
is intended to, nor shall have the effect of, creating
any warranties or representations from IBM (or its
suppliers or licensors), or altering the terms and
conditions of the applicable license agreement
governing the use of IBM software.

IBM customers are responsible for ensuring their
own compliance with legal requirements. It is the
customer’s sole responsibility to obtain advice of
competent legal counsel as to the identification and
interpretation of any relevant laws and regulatory
requirements that may affect the customer’s busi-
ness and any actions the customer may need to take
to comply with such laws.

*	IBM, How can IBM Rational PurifyPlus software
improve your bottom line?, April 2007

†	NIST, The Economic Impacts of Inadequate
Infrastructure for Software Testing, May 2002.

RAW14109-USEN-00

http://www.ibm.com/legal/copytrade.shtml

