
Dynamic e-Business with DB2® and Web Services

IBM Data Management

The Internet infrastructure is ready to support a new generation of e-business applications, called Web
services. Web services represent the next level of function and efficiency in e-business. Specifically, Web
services are enhanced e-business applications that are easier to advertise and easier to discover — by other
 businesses — because they are described in a more uniform way on the Internet. These new
enhancements allow e-business applications to be connected more easily both inside and outside the
enterprise.

The Web services infrastructure is based on the eXtensible Markup Language (XML). Messages and data
flow between a service requester and a service provider using XML. This paper briefly describes Web
services and then describes how DB2 data can be dynamically transformed to XML and the important role
that DB2 plays in a Web services world.

Trademarks: The following terms are trademarks of the International Business Machines Corporation in the
United States and/or other countries:

DB2
DB2 Universal Database
IBM
MQSeries
WebSphere

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States and/or other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

©Copyright International Business Machines Corporation 2001. All rights reserved.

Dynamic e-Business with DB2® and Web Services

Web Services: The Next Generation of Application Integration

The Web’s audience expands to include programs as well as humans.

It is a bold goal: Create an architecture that makes it possible for software to do what humans do with the
Web—access documents and run applications in a general way without requiring application specific
knowledge and client software. An architecture that supports Web services provides the groundwork to
realize that goal.

Before describing the architecture, let’s first understand what is meant in this paper by “Web service”. A
Web service is a set of application functions that perform some useful service on the behalf of a requester
such as informational or transactional functions. A Web service can be described and published to the
network for use by other programs across the network. Examples of publicly available Web services today
include a stock quote service, a service to retrieve news from Web news sources, a service to return maps
of historic weather events by zip code, currency conversion services, and a service to return highway
conditions in California. Because Web services are modular, related Web services can be aggregated into a
larger Web service. For example, one can envision a wireless application composed of separate Web
services that do such things as obtaining stock quotes, subscribing to news services, converting currency,
and managing calendars.

One particularly nice aspect of Web services is that the level of abstraction they provide makes it relatively
simple to wrap an existing enterprise application and turn it into a Web service. Web services are based on
the XML standard data format and data exchange mechanisms, which provide both flexibility and platform
independence. With Web services, requesters typically do not know or care about the underlying
implementation of Web services, making it easy to integrate heterogeneous business processes. And Web
services provide you with a way to make your key business processes accessible to your customers,
partners, and suppliers. For example, an airline could provide its airline reservation systems as a Web
service to make it easier for its large corporate customers to integrate the service into their travel planning
applications. A supplier can make its inventory levels and pricing accessible to its key buyers.

In one possible example, a buyer matches up incoming purchase orders with transportation services.

DB2
data

Supplier 1

DB2
data

Intranet

DB2
data

Supplier 2firewall

 1
review POs

 2
Select PO
for action

 3
Select
suppliers
from list
and
request
quotes

invoke Web Service to return quotes

invoke Web Service to return quotes

 4
Select
suppliers
and update
PO with
supplier
data

WebSphere
Application
Server

private
UDDI

(registry)

WSDL
binding

informaiton

non-IBM
data

Supplier 3

invoke Web Service to return quotes

1) The buyer access the local database to
select a list of purchase orders. 2) While
viewing the detail for a particular purchase
order, the buyer selects a transportation
service provider from an approved list, a list
that is kept in a private registry. 3) For each
provider, the buyer receives quotes
dynamically using Web services capabilities.
Each request is bound and sent to the location
specified in the registry and processed by the
supplier’s Web service. The supplier’s Web
service takes input about the request,
accesses its database and returns the quote
to the requester. 4) The buyer then chooses
one service provider based on the prices
quoted and the selection is then added back
to the purchase order page to reflect the
selection of a shipping service provider.

1

Web services are likely to become ubiquitous where existing technologies have not. Web services leverage
XML for data representation and exchange and do not require complex language-dependent mappings and
compile time bindings. Web services offer both ease of development and ease of modification. Further, Web
services do not mandate tight synchronous relationships between requesters and service providers. This
further simplifies the implementation of Web services in an Internet environment where it is impossible to
tightly control network behavior. The reliance on XML for data exchange, and the abundance of existing and
emerging tools for Web service technology, make it relatively easy to get up and running with your first Web
service.

Web Services Fundamentals

Service provider

Service
requester Service registry

Bin
d

Find

Publish

Service-oriented architecture

The nature of Web services make them natural
components in a service-oriented architecture. In a
typical service-oriented architecture, service
providers host a network accessible software module
(for the purposes of this paper, a Web service). A
service provider defines a service description for a
Web service and publishes it to a service registry. A
service requester uses a find operation to retrieve the
service description from the registry and uses the
service description to bind with the service provider
and invoke or interact with the Web service
implementation. Let’s see how this model is realized
using Web services.

In simple terms, a Web service is created by wrapping an application in such a way that it can be accessed
using standard XML messages which are themselves wrapped in such a way that masks the underlying
transport protocol. The service can be publicized by being registered in a standard-format registry. This
registry makes it possible for other people or applications to find and use the service.

The pieces of the Web services architecture include:
� A Web service (a general term used to describe software that can be invoked over the Web)

� Application-specific messages that are sent in standard XML document formats conforming to the
corresponding service description.

�

 A SOAP request consists of the envelope itself, which contains the namespaces used by the rest of
the SOAP message, an optional header, and the body, which may be a remote procedure call (RPC) or
an XML document.

SOAP builds on existing Internet standards such as HTTP and XML, but can be used with any network
protocol, programming language, or data encoding model. For example, it is possible to send SOAP
messages over IBM MQSeries®, FTP or even as mail messages.

� The logical interface and the service implementation are described by the Web Services Description
Language (WSDL). WSDL is an XML vocabulary used to automate the details involved in
communicating between Web services applications. There are three pieces to WSDL: a data type
description (XML Schema), an interface description, and binding information. The interface description is
typically used at development time and the binding information may be used at either development or
execution time to actually invoke a particular service at the specified location. The service description is
key to making the Web services architecture loosely coupled and reducing the amount of required
shared understanding and custom programming between service providers and service requesters.

� To enable service requesters to find your Web service, you can publish descriptive information, such as
taxonomy, ownership, business name, business type and so on, via a registry that adheres to the
Uniform Description, Discovery and Integration (UDDI) specification or into some other XML registry. The
UDDI information can include a pointer to WSDL interfaces, the binding information, as well as the
actual business name (the name that makes the purpose of the Web service understandable to
humans). A UDDI registry is searchable by programs, enabling a service requester to bind to a UDDI
provider to find out more information about a service before actually using it.

� The ability to compose Web services together is provided by Web Services Flow Language (WSFL),
another specification for which IBM is taking the lead. WSFL can be used to describe a business
process (that is, an execution flow from beginning to end), or a description of overall interactions
between varying Web services with no specified sequence.

If we look at how all of these specifications work together, a Web service can be defined as a modular
application that can be:
� Described using WSDL
� Published using UDDI
� Found using UDDI
� Bound using SOAP (or HTTP GET /POST)
� Invoked using SOAP (or HTTP GET/POST)
� Composed with other services into new services using WSFL

You can restrict access to Web services much as you would restrict access to Web sites that are not
available to everyone. WebSphere® provides many options for controlling access and for authentication. The
standards for this are still emerging. Microsoft and IBM have proposed a SOAP security extension to the
W3C as the mechanism for XML digital signatures. The SOAP security extension included with WebSphere
Application Server 4.0 is intended to be a security architecture based on the SOAP Security specification,
and on widely-accepted security technologies such as secure socket layer (SSL). When using HTTP as the
transport mechanism, there are different ways to combine HTTP basic authentication, SSL, and SOAP
signatures to handle varying needs of security and authentication.

3

Accessing DB2 Data through Web Services

IBM is enabling its key programming models and application servers with Web services and is providing and
developing tools to automatically generate Web services from existing artifacts such as Java Beans, EJBs,
and stored procedures. This paper describes another way that you can use to submit SQL statements and,
if you choose, control the format of the returned data. This support is known as the Web services Object
Runtime Framework (WORF), and it is available in beta from the DB2 XML Extenders web site at
http://www.ibm.com/software/data/db2/extenders/xmlext/ . The following types of Web service operations
are supported:
� XML-based query or storage. In other words, an XML document is stored in DB2 relational tables and

composed again on retrieval. This method of operation requires the presence of DB2 XML Extender.
� SQL-based operations, such as calling stored procedures, or inserting, updating, deleting DB2 data.

XML-based query: XML-based query allows you to compose XML documents from relational data. You
can also break an XML document down into its component parts and store it into relational tables. Part of
the underlying support for this functionality is provided by DB2 XML Extender. The store and retrieve
operations are handled by special stored procedures that are shipped with DB2 XML Extender.

DB2

User-defined XML document

XML document composed from DB2 data

X
M

L E
xtender D

A
D

 <?xml version="1.0"?>
<Order key="1">
 <Customer>
 <Name>American Motors</Name>
 <Email>parts@am.com</Email>
 </Customer>
 <Part color="black ">
 <key>68</key>
 <Quantity>36</Quantity>
 <ExtendedPrice>34850.16</ExtendedPrice>
 <Tax>6.000000e-02</Tax>
 <Shipment>
 <ShipDate>1998-08-19</ShipDate>
 <ShipMode>BOAT </ShipMode>
 </Shipment>
 <Shipment>
 <ShipDate>1998-08-19</ShipDate>
 <ShipMode>AIR </ShipMode>
 </Shipment>
 </Part>
 ...
</Order>

One of the inputs into both storage and
retrieval is the user-specified mapping file
that creates the association between
relational data and XML document
structure. This mapping file is called a
document access definition (DAD) and
provides a way that you can create an XML
document with the XML elements and
attributes named as you please and with
the shape that you want. The focus of this
approach is in moving and manipulating
XML documents.

SQL-based query: SQL-based querying is simply the ability to send SQL statements, including stored
procedure calls, to DB2 and to return results with a default tagging.

DB2
XML document with default tagging

Rows and columns returned with default XML tagging

<simpleQueryRow>
<ORDER_KEY>1</ORDER_KEY>
<CUSTOMER_NAME>American Motors</CUSTOMER_NAME>
<CUSTOMER_EMAIL>parts@am.com</CUSTOMER_EMAIL>
<CUSTOMER_PHONE>800-AM-PARTS</CUSTOMER_PHONE>
</simpleQueryRow>
 .
 .
 .

The focus of this approach is actually
the data in and out of the database, not
on shaping the results in a particular
way.

SQL-based query does not require the
use of DB2 XML Extender because
there is no user-defined mapping of
SQL data to XML elements and
attributes. Instead, the data is returned
using only a simple mapping of SQL
data types, using column names as
elements.

4

However, if you are using DB2 XML Extender to store XML documents within a single column of a table, you
can use SQL-based query to retrieve those documents intact as a character large object (CLOB), or to
invoke the user-defined functions that extract parts of the document. Another feature of DB2 XML Extender
is the ability to store frequently-accessed data in side tables, thereby enabling speedy searches on XML
documents that are stored in columns.

Another useful thing you can do with SQL-based query is to invoke DB2 stored procedures. Stored
procedures are natural for conversion to Web services since they are themselves an encapsulation of
programming logic and database access. A Web service invocation of a stored procedure makes it possible
to dynamically provide input parameters and to retrieve results.

Making it Work

DADX

<?xml version="1.0"?>
<DADX xmlns="urn:ibm:.com:dadx"....>
.
 <SQL_call>CALL Myproc(:query1, :query2,
:query3)</SQL_call>

 <SQL_query>select * from order_tab
...
 </SQL_query>

 <SQL_update>insert into order_tab
...
 </SQL_update>

<retrieveXML>
 <DAD_ref>getstart_xcollection.dad</DAD_ref>
 <SQL_override>
 select o.order_key, customer_name,
customer_email...

 </SQL_override>
 </retrieveXML>

Both the XML-based and SQL-based forms
of querying are controlled by a file called a
document access definition extension
(DADX). The DADX defines the operations
that can be performed by the Web service.
For example, you might have a DADX that
specifies the operations to find all orders
for parts, find all orders for parts with a
particular color, and orders for parts that
are above a certain specified price. (The
color or price can be specified at runtime
as input parameters by using host-variable
style notation in the query.)

There can be multiple DADX files for a
single database.

Tools are planned to be available to include support for creating DAD files, DADX files, and to also include
wizards for client proxy generation and for configuring database connections. This tool support is planned to
be included with the beta of WebSphere Studio Application Developer (planned to be available with
VisualAge for Java 4.0 EE).

You can also write DADX files using any text editor. After you create a DADX file, the DB2 Web services
download provides support to automatically generate WSDL files, including support for UDDI Best Practices.
In addition, support is provided to generate the deployment descriptor needed to deploy the Web service into
WebSphere, and to generate a documentation and test page, which you can use for testing and as a basis
for building the client part of your Web application.

5

DB2
data

stored
procedure

(application
logic)

WebSphere
Application

Server

SOAP
client

HTTP/SOAP

SOAP
client

Web
browser

HTTP/SOAP

HTTP/GET

 DADX

 XML
Extender

DAD

 UDDIWSDL

SQL-based

XML-based

Web Services Architecture

IBM Video Central for e-Business Scenario

A common need among our three fictional video rental chains, MegaVideo, SuperVideo, and
IndependentVideo, is the need to ensure that the customers they rent to have a good credit history.
Solutions that are bounded by a particular video chain lose any benefit of understanding a customer’s
history with other chains. And this, unfortunately, has been the way our video chains have been forced to
operate.

One of the companies, SuperVideo, has already developed a tightly-coupled intranet application that
accesses DB2 data directly. SuperVideo does not have any information about a particular customer’s record
at other chains. MegaVideo contracted a third-party vendor to develop a centralized customer infraction
repository. This allowed other companies to register and query customer credentials. However, the solution
used a proprietary interface and it was difficult to integrate with existing applications, meaning that the
solution had few registrants. Small chains, like IndependentVideo, cannot afford to create a solution of their
own or to do the work to integrate the proprietary registry into their operations.

Thus, IBM Video Central was conceived. IBM Video Central is a hypothetical Web service provider for video
rental applications. The purpose of this service provider is to provide a central data repository that can be
accessed by registered Web-based applications. The IBM Video Central application provides a suite of Web
services to address the business needs of the client in two areas: business services, serving the
administrative needs of the client, and customer services, that enable the client both to serve and to manage

6

their customer base.

IBM Video Central Web Services

DB2

SuperVideo
Chain

(1200 retail stores)

SuperVideo
WebSphere
Application

Server

MegaVideo
Chain

(2000 retail stores)

MegaVideo
WebSphere
Application

Server

SuperVideo
employees can easily

check Joe's
credentials via IBM
Video Central Web

Services

IBM Video Central
Web Services

WebSphere
Application Server

Dynamic XML
transformation

MegaVideo
Chain

(2000 retail stores)
Independent Video

(2 retail stores)

Joe has a bad credit
history at MegaVideo

Joe attempts to rent
equipment from
SuperVideo

IBM Video Central reduces business risk and operational costs for our three video chains, because its
service for validating customer credential is universally accessible. By adding additional consumer-based
services, such as rental history, wish-list registry, and a recommended video list, it is possible for our IBM
Video Central businesses to increase their revenue per customer.

IBM Video Central is a sample that currently implemented using Java Beans and is available for you to
download at http://www.ibm.com/software/data/developer/samples/video/index.html. A future version of IBM
Video Central is planned to be implemented using the DADX method described in this paper.

Information Integration using Web Services

IBM recognizes that Web services provides not just an architecture for integrating applications, but also for
integrating data. And DB2 provides the capability to both manage data and provide intelligent, optimized
access to data. This initial support of Web services support for DB2 is only the first step toward deeper
integration of Web services in DB2. In the near future, it may be possible to invoke Web services directly
from DB2 itself, through a stored procedure or user-defined function. And the federated database capabilities
in DB2 would enable quick and easy integration of diverse back-end data using Web services as a near
real-time data source.

Relevant Resources

Information about Web services and data management can be found at:
http://www.ibm.com/software/data/webservices

General information about Web services can be found at http://www.ibm.com/software/webservices and at
http://www.ibm.com/developerworks/webservices

Information about XML Protocol can be found at http://www.w3.org/2000/xp/

7

Information about DB2 XML Extender can be found at
http://www.ibm.com/software/data/db2/extenders/xmlext/index.html

Brown, Allen, Barbara Fox, Hada Satoshi, Brian LaMacchia, and Hiroshi Maruyama. SOAP Security
Extensions: Digital Signature. W3C Note. IBM Corporation and Microsoft, 2001.
http://www.w3.org/TR/SOAP-dsig/

Christensen, Erik, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana. Web Services Description
Language (WSDL) 1.1. W3C Note. Ariba, IBM Corporation, and Microsoft, 2001.
http://www.w3.org/TR/wsdl

Ferguson, Donald F. Web Services Architecture: Direction and Position Paper. IBM Corporation. Paper for
W3C Web Services Workshop, April 11-12, 2001. http://www.w3.org/2001/03/WSWS-popa/paper44

8

