
IBM

IBM Asset Transformation Workbench
v1.1
Creating Components

SC31-6876-00

12

1

2

IBM

IBM Asset Transformation Workbench
v1.1
Creating Components

SC31-6876-00

Note:

Before using this information and the product it supports, read the information in “Notices.”
1

1

First Edition (February 2005)

This edition applies to IBM Asset Transformation Workbench (product number 5724-L54) and to all subsequent releases and
modifications until otherwise indicated in new editions.

For the latest information about this product, please refer to the Release Notes.

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose,
without the express written permission of IBM. Information in this document is subject to change without notice and is not guaranteed
to be error-free.

You can order publications through your IBM representative or the IBM branch office serving your locality. When you send information
to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring
any obligation to you.

Licensed Materials - Property of IBM.

Product Reference: IBM Asset Transformation Workbench v1.1

Document Reference: REL7.3.07.DOC06.A

© 2005 Copyright International Business Machines Corporation. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

© 2004, 2005 Relativity Technologies, Inc. All rights reserved.
RescueWare is a registered trademark of Relativity Technologies, Inc. All other brands mentioned in this document are trademarks or
registered trademarks of their respective holders.

v

Contents
Preface

Audience . ix
Organization . x
Conventions . xi
Related Manuals . xi
Online Help .xii

1 Introducing Component Maker

Componentization Methods .1-2
Structure-Based Componentization (Cobol Only) 1-2
Computation-Based Componentization (Cobol, Natural Only). . . .1-3
Domain-Based Componentization (Cobol, PL/I Only)1-3
Event Injection (Cobol Only) .1-4
Dead Code Elimination (DCE) .1-4
Entry Point Isolation (Cobol Only) .1-4

Componentization Outputs .1-5
Starting Component Maker .1-6
Component Maker Basics. .1-7

Getting Started in the Components Pane 1-7
Working in the Components Pane .1-10
Working with HyperView Lists .1-12

Contentsvi
Generating Audit Reports (Cobol Only) .1-13
Generating Coverage Reports (Cobol Only) 1-14
Exporting Logical Components .1-15
Generating CICS Components (Cobol Only)1-15

What’s Next?. .1-15

2 Setting Extraction Options

Opening the Extraction Options Windows .2-2
Setting Cobol Extraction Options .2-2

General Options .2-2
Interface Options .2-3
Optimize Options .2-4
Document Options .2-7
Component Type Specific Options. .2-8
Component Conversion Options .2-12

Setting PL/I Extraction Options .2-13
General Options .2-13
Component Type-Specific Options .2-14
Component Conversion Options .2-15

Setting Natural Extraction Options .2-15
General Options .2-15
Optimize Options .2-15
Component Type-Specific Options .2-16
Component Conversion Options .2-17

What’s Next?. .2-17

3 Extracting Structure-Based Components

Understanding Ranges .3-1
Understanding Parameterized Slices .3-3
Extracting Structure-Based Cobol Components3-6
Extracting Structure-Based PL/I Components (Future Release) 3-11
Extracting Structure-Based Natural Components
(Future Release) .3-14
Extracting External Subroutines from Natural Programs
(Future Release) .3-17
What’s Next?. .3-18

Contents vii
4 Extracting Computation-Based Components

Understanding Variable-Based Extraction .4-2
Understanding Blocking .4-2
Extracting Computation-Based Cobol Components4-3
Extracting Computation-Based Natural Components4-7
What’s Next?. .4-10

5 Extracting Domain-Based Components

Understanding Program Specialization in Simplified Mode 5-2
Understanding Program Specialization in Advanced Mode5-5
Understanding Program Specialization “Lite” .5-6
Extracting Domain-Based Cobol Components5-7
Extracting Domain-Based PL/I Components 5-14
What’s Next?. .5-17

6 Injecting Events

Understanding Event Injection .6-2
Extracting Event-Injected Cobol Components 6-4
What’s Next?. .6-9

7 Eliminating Dead Code

Generating Dead Code Statistics .7-2
Understanding Dead Code Elimination. .7-2
Understanding Refactoring (Future Release) .7-3
Extracting Optimized Cobol Components .7-6
Extracting Optimized Natural Components. .7-9
What’s Next?. .7-12

8 Performing Entry Point Isolation

Extracting a Cobol Component with Entry Point Isolation.8-1
What’s Next?. .8-6

Contentsviii
A Technical Details

Verification Options. A-1
Use Special IMS Calling Conventions . A-1
Override CICS Program Termination . A-2
Support CICS HANDLE Statements . A-2
Perform Unisys TIP and DPS Calls Analysis A-2
Perform Unisys Common-Storage Analysis. A-3
Relaxed Parsing (Cobol and Natural Only) A-4
PERFORM Behavior for MicroFocus Cobol. A-5

Keep Legacy Copybooks Extraction Option . A-6
How Parameterized Slices Are Generated for Cobol Programs A-8
Setting a Specialization Variable to Multiple Values A-10
Arithmetic Exception Handling (COBOL Only) A-12

Glossary

Bibliography

Notices

Index

ix
Preface
he IBM Asset Transformation Workbench (ATW) is a suite of
PC-based software products for analyzing, re-architecting, and
transforming legacy applications. The products are deployed in

an integrated environment with access to a common repository of pro-
gram objects. Repository models serve as the basis for a rich set of dia-
grams, reports, and other documentation.

The ATW suite consists of customizable modules that together address
the needs of organizations at every stage of legacy application evolution
— maintenance/enhancement, renovation, and modernization.

Audience

This guide assumes that you are a corporate Information Technology
(IT) professional with a working knowledge of the legacy platforms you
are using the product to analyze. If you are transforming a legacy appli-
cation, you should also have a working knowledge of the target platform.

T

Prefacex
Organization

This guide contains the following chapters:

• Chapter 1, “Introducing Component Maker,” provides an overview
of component extraction methods and the Component Maker tool.

• Chapter 2, “Setting Extraction Options,” describes how you set
Component Maker options for each of the component extraction
methods and supported object types.

• Chapter 3, “Extracting Structure-Based Components,” describes
how to extract a component based on a range of inline code.

• Chapter 4, “Extracting Computation-Based Components,” describes
how to extract a component that contains all the code necessary to
calculate the value of a variable at a particular point in a program.

• Chapter 5, “Extracting Domain-Based Components,” describes how
to extract a component “specialized” on the values of one or more
variables.

• Chapter 6, “Injecting Events,” describes how to adapt a legacy pro-
gram to asynchronous, event-based programming models like MQ
Series.

• Chapter 7, “Eliminating Dead Code,” describes how to extract a
component from which unreferenced data items or unreachable
procedural statements have been removed.

• Chapter 8, “Performing Entry Point Isolation,” describes how to ex-
tract a component based on one of multiple entry points in a legacy
program.

• Appendix A, “Technical Details,” gives technical details of Compo-
nent Maker behavior for a handful of narrowly focused verification
and extraction options; for Cobol parameterized slice generation; for
domain-based extraction when the specialization variable is set to
multiple values; and for Cobol arithmetic exception handling.

• The Glossary defines the names, acronyms, and special terminology
used in this guide.

Preface xi
Conventions

This guide uses the following typographic conventions:

• Bold type — Indicates a specific area within the graphical user in-
terface, such as a button on a screen, a window name, or a command
or function.

• Italic type — Indicates a new term. Also indicates a document title.
Occasionally, italic type is used for emphasis.

• Monospace type — Indicates computer programming code.

• Bold monospace type — Indicates input you type on the com-
puter keyboard.

• 1A/1B, 2A/2B — In task descriptions, indicates mutually exclusive
steps: perform step A or step B, but not both.

Related Manuals

This document is part of a complete set of ATW manuals. Together they
provide all the information you need to get the most out of the system.

• Getting Started introduces ATW. This guide provides an overview
of the workbench tools and discusses basic concepts. It describes
how to install the product and how to manage licenses. It also de-
scribes how to use common product features.

• Preparing Projects describes how to set up ATW projects. This
guide describes how to load applications in the repository and how
to use reports and other tools to ensure that the entire application is
available for analysis.

• Analyzing Projects describes how to analyze applications at the
project level. This guide describes how to create diagrams of appli-
cations and how to perform impact analysis across applications. It
also describes how to estimate project complexity and effort, and
how to create a project dictionary.

• Analyzing Programs describes how to analyze applications at the
program level. This guide describes how to use HyperView tools to

Prefacexii
view programs interactively and perform program analysis in stages.
It also describes how to analyze procedure and data flows, search the
repository, and extract business rules with HyperView.

• Profiling Projects describes how to create and browse web-generat-
ed views of the repositories in your organization.

• Parser Reference Manual describes legacy constructions supported
by Application Analyzer in reference format.

• Architecture Reference Manual describes legacy constructions sup-
ported by Application Architect in reference format.

Online Help

In addition to the manuals provided with the system, you can learn about
the product using the integrated online help. All GUI-based tools include
a standard Windows Help menu.

You can display:

• The entire help system, with table of contents, index, and search
tool, by selecting Help:Help Topics.

• Help about a particular ATW window by clicking the window and
pressing the F1 key.

Many ATW tools have guides that you can use to get started quickly in
the tool. The guides are help-like systems with hyperlinks that you can
use to access functions otherwise available only in menus and other pro-
gram controls.

To open the guide for a tool, choose Guide from the View menu. Use the
table of contents in the Page drop-down to navigate quickly to a topic.

1-1
1
Introducing Component
Maker
component is a self-contained program that can be reused
with other programs in modular fashion. The ATW Compo-
nent Maker tool lets you “slice out” components from legacy

applications — not only component executables but associated Cobol
copybooks, PL/I includes, and Natural data areas as well.

You can export component files to your production environment, trans-
form them into modern applications, or use them simply for documenta-
tion and analysis. All this without compromising the integrity of the
original application.

Why use Component Maker? One reason is that legacy applications tend
to be relatively unstructured. Modular programs are easier to understand,
document, and maintain. Another is that structured applications are bet-
ter suited for transformation into modern object-oriented programming
languages.

A

Introducing Component Maker
Componentization Methods

1-2
Componentization Methods
ATW offers a variety of methods for extracting components. Two of the
methods described below — Dead Code Elimination and Entry Point
Isolation — are optimization tools built into the main methods and of-
fered separately in case you want to use them on a standalone basis. Each
of the methods operates on program objects.

Note: Component Maker does not follow CALL statements into
other programs to determine whether passed data items are
actually modified by those programs. It makes the conserva-
tive assumption that all passed data items are modified. That
guarantees that no dependencies are lost.

Structure-Based Componentization (Cobol Only)

Structure-Based Componentization lets you build a component from a
range of inline code — Cobol paragraphs, for example. Use traditional
Structure-Based Componentization to generate a new component and its
complement. A complement is a second component consisting of the or-
iginal program minus the code extracted in the slice. Component Maker
automatically places a call to the new component in the complement,
passing it data items as necessary.

Alternatively, you can generate parameterized slices, in which the input
and output variables required by the component are organized in group-
level structures. These standard object-oriented data interfaces make it
easier to deploy the transformed component in modern service-oriented
architectures.

Specifying Multiple Ranges in a Cobol Extraction

You typically repeat Structure-Based Componentization in incremen-
tal fashion until all of the modules you are interested in have been
created. For Cobol programs, you can avoid doing this manually by
specifying multiple ranges in the same extraction. Component Maker
automatically processes each range in the appropriate order.

Introducing Component Maker
Componentization Methods

1-3
Computation-Based Componentization (Cobol and Natural Only)

Computation-Based Componentization lets you build a component that
contains all the code necessary to calculate the value of a variable at a
particular point in a program — the value of a DayOfTheWeek variable,
for example, where it is used to populate a report attribute or screen. As
with structure-based componentization, you can generate parameterized
slices that make it easy to deploy the transformed component in distrib-
uted architectures.

For Cobol programs, you can use a technique called blocking to produce
smaller, better-defined parameterized components. Component Maker
will not include in the slice any part of the calculation that appears before
the blocked statement. Fields from blocked input statements are treated
as input parameters of the component.

Domain-Based Componentization (Cobol and PL/I Only)

Domain-Based Componentization lets you “specialize” a program based
on the values of one or more variables. The specialized program is typi-
cally intended for reuse “in place” — in the original application but un-
der new external circumstances.

After a change in your business practices, for example, a program that
invokes processing for a “payment type” variable could be specialized
on the value PAYMENT-TYPE = "CHECK". Component Maker isolates
every process dependent on the CHECK value to create a functionally
complete program that processes check payments only.

Two modes of domain-based componentization are offered:

• The simplified mode treats the variable as a constant throughout the
execution of the program — the variable’s value is “frozen in mem-
ory.” Operations that could change the value are ignored.

• The advanced mode sets the value of the variable only at a specified
data port — subsequent operations can change the value, following
the data and control flow of the program.

Use the simplified mode when you are interested only in the final value
of a variable. Use the advanced mode when you need to account for data
coming into a variable.

Introducing Component Maker
Componentization Methods

1-4
Event Injection (Cobol Only)

Event Injection lets you adapt a legacy program to asynchronous, event-
based programming models like MQ Series. You specify candidate loca-
tions for event calls (reads/writes, screen transactions, or subprogram
calls, for example), the type of operation the event call performs (put or
get), and the text of the message. For a put operation, for example, Com-
ponent Maker builds a component that sends the message and any asso-
ciated variable values to a queue, where the message can be retrieved by
monitoring applications.

Dead Code Elimination (DCE)

Dead Code Elimination is an option in each of the main component ex-
traction methods, but you can also perform it on a standalone basis. For
each program analyzed for dead code, standalone DCE generates a com-
ponent that consists of the original source code minus any unreferenced
data items or unreachable procedural statements.

Note: You can perform Dead Code Elimination in batch mode, after
batch registration and verification. For details, see Preparing
Projects in the ATW documentation set.

Entry Point Isolation (Cobol Only)

Entry Point Isolation lets you build a component based on one of multi-
ple entry points in a legacy program — an inner entry point in a Cobol
program, for example. Component Maker extracts only the functionality
and data definitions required for invocation from the selected point.

Entry Point Isolation is built into the main methods as an optional opti-
mization tool. It’s offered separately in case you want to use it on a stand-
alone basis.

Refactoring Cobol Programs (Future Release)

For Cobol programs, you can use an optimization method called
refactoring to translate the program into a component with the same
functionality and control flow but a simpler syntax structure. The
component is said to be defragmented.

Introducing Component Maker
Componentization Outputs

1-5
Componentization Outputs

The first step in the componentization process, called extraction, creates
the source files that comprise the component. It also creates an abstract
repository object, or logical component, that gives you access to the
source files in the workbench. The second step, called conversion, reg-
isters the source files in your repository, creating repository objects for
the generated components and their corresponding copybooks.

Component Maker lets you execute the extraction and conversion steps
independently or in combination, depending on your needs:

• If you want to analyze the components further, transform them, or
even generate components from them, you will want to register the
component source files in your repository and verify them, just as
you would register and verify a source file from the original legacy
application.

• On the other hand, if you are interested only in deploying the com-
ponents in your production environment, you can skip the conver-
sion step and avoid cluttering your repository. For information on
how you export component source files to your file system, see “Ex-
porting Logical Components” on page 1-15.

Figure 1-1 shows how the componentization outputs are represented in
the Repository Browser after conversion and verification of a structure-
based Cobol component called DaysInYearCalc. PRODUPD is the pro-
gram the component was extracted from.

Figure 1-1 Componentization Objects After Conversion and Verification

component
copybook

logical component

complement

component

Introducing Component Maker
Starting Component Maker

1-6
Starting Component Maker

Component Maker is a HyperView-based tool that you can invoke on a
standalone basis or from within HyperView itself:

• Start the tool in HyperView by selecting the program you want to
slice in the ATW Repository Browser and choosing Interactive
Analysis in the workbench Analyze menu. In the HyperView win-
dow, choose Component Maker in the View menu.

• Start the standalone tool by selecting the project that contains the
programs you want to slice in the Repository Browser and choosing
Logical Components in the workbench Architect menu. In the Hy-
perView window, select the program you want to slice in the Clipper
pane.

Figure 1-2 shows a typical configuration of the Component Maker win-
dow. For HyperView usage, see Analyzing Programs in the ATW docu-
ment set.

Figure 1-2 Component Maker Window — Typical Configuration

click to select
program to slice

Introducing Component Maker
Component Maker Basics

1-7
Component Maker Basics

The Component Maker window consists of a Source pane, Context pane,
Clipper pane, Callie pane, Components pane, and Activity Log. You can
hide a pane by clicking the close box in the upper righthand corner. Se-
lect the appropriate choice in the View menu to show the pane again.

Getting Started in the Components Pane

You do most of your work in Component Maker in the Components
pane. To illustrate how you extract a logical component in the Compo-
nents pane, let’s look at the simplest task you can perform in Component
Maker — Dead Code Elimination (DCE).

Note: The following exercise deliberately avoids describing the
properties and options you can set for DCE. For detailed in-
formation on these features, see Chapter 7, “Eliminating Dead
Code.”

To extract a DCE-based logical component:

1 Start Component Maker as described in “Starting Component Mak-
er” on page 1-6. The Component Maker window opens. In the Com-
ponents pane (Figure 1-3), double-click Dead Code Elimination.

Figure 1-3 Components Pane

2 The view shown in Figure 1-4 on page 1-8 opens. This view shows
the DCE logical components created for the programs in the current

double-click

Introducing Component Maker
Component Maker Basics

1-8
project. Click the button on the tool bar to restrict the display to
logical components created for the selected program.

Figure 1-4 Components Pane — Dead Code Elimination View

3A To create a new logical component, click the button. A dialog
opens where you can enter the name of the new component in the
text field. Click OK.

3B To edit an existing logical component — to extract it with different
properties or options — double-click it.

4 The view shown in Figure 1-5 opens. This view shows the properties
you can set for the logical component. The defaults are acceptable.
Click the button to start extracting the logical component. You
are prompted to confirm that you want to continue. Click OK.

Figure 1-5 Components Pane — Properties Tab

click to create
new component

double-click to edit

click to extract
component

Introducing Component Maker
Component Maker Basics

1-9
5 The dialog shown in Figure 1-6 opens. This dialog displays a series
of panes that let you set extraction options for DCE. The defaults are
acceptable. Click Next until you reach the last pane, then click Fin-
ish.

Figure 1-6 Components Pane — Extraction Options Dialog

Note: You may be warned that the extraction executed with errors or
warnings. Click Yes to view the errors or warnings in the Ac-
tivity Log.

6 Assuming the extraction executed without errors, the view shown in
Figure 1-7 on page 1-10 opens. This view shows a list of the compo-
nent source files that were generated for the logical component and
an audit report (see “Generating Audit Reports (Cobol Only)” on
page 1-13). Click an item in the list to view the read-only text for the
item.

Introducing Component Maker
Component Maker Basics

1-10
Figure 1-7 Components Pane — Components Tab

Working in the Components Pane

The Components pane consists of a hierarchy of views that let you spec-
ify the logical components you want to manipulate:

• The Types view lists the types of logical components you can create
— structure-based, computation-based, domain-based, and so on.

• The List view displays logical components of the selected type.

• The Details view displays the details for the selected logical compo-
nent in two tabs, Properties and Components. The Properties tab
displays extraction properties for the logical component. The
Components tab lists the files generated for the logical component.

Double-click an item in a view to access the next-level view in the hier-
archy. Click the button on the tool bar to navigate to the parent of
the current view.

Sorting Entries Click a column heading in a view to sort the view en-
tries by that column.

Sizing Columns Grab-and-drag the border of a column heading to in-
crease or decrease the width of the column.

Creating a Component In the Clipper pane, select the program you
want to slice. In the Types view, select the type of logical component you

click to view
read-only text

Introducing Component Maker
Component Maker Basics

1-11
want to create and click the button on the tool bar. (You can also
click the button in the List or Details view.) A dialog opens where
you can enter the name of the new component in the text field. Click OK.

Setting Component Properties In the Properties tab, click the Compo-
nent of program property to navigate to the program in the Source pane.
Usage of other properties varies by extraction method. For more infor-
mation, see the chapter describing the method later in the manual.

Extracting Components To extract a single logical component, select
the component you want to extract in the List view and click the but-
ton on the tool bar. To extract multiple logical components, select the
type of the components you want to extract in the Types view and click
the button. You are prompted to confirm that you want to continue.
Click OK.

Note: Logical components are converted as well as extracted (see
“Componentization Outputs” on page 1-5) if the Convert Re-
sulting Components to Legacy Objects is set in the Compo-
nent Conversion Options pane. For more information, see
“Component Conversion Options” on page 2-12.

Viewing the Generated Files for a Component In the Components tab,
click an item in the list of generated files for the logical component to
view the read-only text for the item.

Tip: You can also view the text for a generated file in the ATW
main window. In the Repository Browser Logical Component
folder, click the component whose generated files you want to
view.

Converting Components To convert a single logical component, select
the component you want to convert in the List view and click the
button on the tool bar. To convert multiple logical components, select the
type of the components you want to convert in the Types view and click
the button. You are prompted to confirm that you want to continue.
Click OK.

Note: Files are generated at extraction, not conversion.

Introducing Component Maker
Component Maker Basics

1-12
Restricting the Display to Program-Related Components Click the
 button on the tool bar to restrict the display to logical components

of the selected program. The button is a toggle. Click it again to revert to
the generic display.

Deleting a Component Select a logical component in the List view and
click the button on the tool bar to delete the component.

Note: Deleting a logical component does not delete the component
and copybook repository objects. You must delete these ob-
jects manually in the Repository Browser.

Working with HyperView Lists

When you extract a logical component, Component Maker generates
a list of constructs in the source program that have been included in the
component. The list has the same name as the component.

To open the list, select the source program in the Clipper pane and click
the button next to the button on the HyperView tool bar. Choose
the list you want to open from the drop-down menu of available lists.
The list opens in the HyperView List Browser (Figure 1-8). Click on a
construct in the list to navigate to it in the source program.

Tip: To place a check mark in the Source pane for each item in the
list, click the button on the List Browser tool bar.

Figure 1-8 HyperView List Browser

click to navigate to
construct in source

Introducing Component Maker
Component Maker Basics

1-13
Generating Audit Reports (Cobol Only)

An audit report (Figure 1-9) contains a list of changed and deleted lines
in the source files (including copybooks) from which a logical compo-
nent was extracted. The report has a name of the form component.au-
dit.txt. Click the report in the Components tab to view its read-only text.

An audit report optionally includes reason codes explaining why a line
was changed or deleted. A reason code is a number keyed to the expla-
nation for a change — for example, reason code 12 for computation-
based componentization is RemoveUnusedVALUEs.

Note: For information on how you can set the audit report and rea-
son code options, see “Optimize Options” on page 2-4.

Figure 1-9 Audit Report for MQOrdrent1

audit text showing
changed lines

Introducing Component Maker
Component Maker Basics

1-14
Generating Coverage Reports (Cobol Only)

A coverage report (Figure 1-10) shows the extent to which a source pro-
gram has been “componentized”:

• The top-left pane lists each component of a given type (structure-
based, computation-based, and so on) extracted from the program.

• The bottom-left pane lists the paragraphs in the program. Click on a
paragraph to navigate to it in the righthand pane.

• The righthand pane displays the text of the program with extracted
code shaded in pink. The numbers to the left of the extracted code
identify the component to which it was extracted.

To generate coverage reports, click the button on the Component
Maker tool bar. The reports are listed in the Generated Document folder
in the Repository Browser. Report names are of the form program-type-
Coverage. Double-click a report to view it in your Web browser.

Note: Reports are created for each program in the current project.

Figure 1-10 Coverage Report for PRODUPD Structure-Based Components

Introducing Component Maker
What’s Next?

1-15
Exporting Logical Components

Exporting a logical component moves or copies the source files associ-
ated with it (including any complement or copybooks) from the ATW
area to a specified location on your file system.

In the Repository Browser Logical Component folder, click the logical
component whose source files you want to export, then choose Export
in the Architect menu. A standard dialog appears where you can specify
the destination for the source files. Place a check mark next to Move files
if you want to move the files rather than copy them.

Generating CICS Components (Cobol Only)

Component Maker let you generate structure- and computation-based
Cobol components as CICS programs, with COMMAREAS for param-
eter exchange. That means the component can be called through a CICS
LINK or by some other middleware such as IBM’s ECI.

A CICS component can be run directly on mainframes:

• The component’s parameters — whether original (from USING)
or created by Component Extraction — are packaged under the
CICS variable DFHCOMMAREA. There is no PROCEDURE
DIVISION USING phrase in the component.

• At all program points where the original program could exit, the
component exits through a CICS RETURN statement — any
STOP RUN is replaced by CICS RETURN.

To generate CICS components, choose Create CICS Program in step 3
on page 2-3.

What’s Next?

That completes your introduction to Component Maker. Now let’s look
at how you set Component Maker options for each of the componentiza-
tion methods and supported object types.

Introducing Component Maker
What’s Next?

1-16

2-1
2
Setting Extraction Options
t’s a good idea to become familiar with the component extraction
options before beginning your work in Component Maker. Each ex-
traction method has a different set of options, and each set differs

for the supported object types (Cobol, PL/I, and Natural). Extraction op-
tions are project-based — they apply to every program in the current
ATW project.

Set Cobol Verification Options!

For computation- and domain-based componentization of Cobol
programs, and for structure-based componentization with parameter-
ized slices, you must turn on the Perform Program Analysis option
in the Verification tab of the Project Options window before verifying
the program you want to slice. For more information, see Appendix
A, “Technical Details,” and Preparing Projects in the ATW docu-
ment set.

I

Setting Extraction Options
Opening the Extraction Options Windows

2-2
Opening the Extraction Options Windows

You can set Component Maker extraction options in the standard Project
Options window or in the extraction options dialog:

• To open the standard Project Options window, choose Project Op-
tions in the View menu. In the Project Options window, click the
Component Maker tab.

• To open the extraction options dialog (Figure 2-1 on page 2-4), fol-
low steps 1-5 on pages 1-7 through 1-9.

This manual describes the dialog version. Usage is identical for the stan-
dard Project Options window.

Setting Cobol Extraction Options

This section describes generic and method-specific component extrac-
tion options for Cobol programs.

General Options

General component extraction options determine how components are
named, whether inner entry points are renamed, and whether Component
Maker generates modified copybooks.

To set General component extraction options:

1 In the extraction options dialog, click General in the lefthand pane.

2 Select Add Program Name as Prefix if you want Component Mak-
er to prepend the name of the sliced program to the component name

Restoring Option Defaults

You can restore the default extraction option settings in either type
of window by clicking the Option Type Defaults button, then choos-
ing Restore Defaults in the drop-down menu. Choose Save To in the
drop-down menu to save the option settings to a file. Choose Load
From in the menu to restore the option settings from a file.

Setting Extraction Options
Setting Cobol Extraction Options

2-3
you specified when you created the component (step 3A on page
1-8), in the form program$component.

3 Select Rename Program Entries if you want Component Maker to
prepend the name of the component to inner entry points, in the form
component-entrypoint. This ensures that entry point names are
unique and that the ATW parser can verify the component success-
fully. Unset this option if you need to preserve the original names of
the inner entry points.

4 Select Keep Legacy Copybooks if you want Component Maker not
to generate modified copybooks for the component. Modified copy-
books have names of the form copybook-component-n, where n is a
number ensuring the uniqueness of the copybook name when multi-
ple instances of a copybook are generated for the same component.

Note: Component Maker issues a warning if including the original
copybooks in the component would result in an error. For
technical examples, see page A-6.

Interface Options

Interface component extraction options determine whether structure-
and computation-based components are generated as parameterized
slices and/or CICS programs.

To set Interface component extraction options:

1 In the extraction options dialog for a structure- or computation-
based extraction, click Interface in the lefthand pane.

2 Select Generate Parameterized Components if you want Compo-
nent Maker to extract parameterized slices. For background, see
“Understanding Parameterized Slices” on page 3-3.

Important: If you select Generate Parameterized Components for a struc-
ture-based extraction, you must set the Range Only option in the
Component Type Specific pane. See step 6 on page 2-9.

3 Select Create CICS Program if you want Component Maker to
create COMMAREAS for parameter exchange in generated slices.

Setting Extraction Options
Setting Cobol Extraction Options

2-4
For background, see “Generating CICS Components (Cobol Only)”
on page 1-15.

4 If you are performing a parameterized computation-based extraction
and want to use blocking, click the More button. A dialog opens,
where you can select the blocking option and the types of statements
you want to block (Figure 2-1). For background, see “Understanding
Variable-Based Extraction” on page 4-2.

Figure 2-1 Blocking Dialog

Optimize Options

Optimize component extraction options determine how Component
Maker performs Dead Code Elimination and Cobol refactoring. For
more information, see Chapter 7, “Eliminating Dead Code.”

To set Optimize component extraction options:

1 In the extraction options dialog, click Optimize in the lefthand pane.

2 Select Optimize Code to enable the code optimization options:

• Select Remove Unreachable Code if you want Component
Maker to remove unreachable procedural statements.

• Select Preserve Original Paragraphs if you want Component
Maker to generate paragraph labels even for paragraphs that are

block state-
ments in list

block CALL
statements

Setting Extraction Options
Setting Cobol Extraction Options

2-5
not actually used in the source code — in particular, empty para-
graphs for which there are no PERFORMs.

Note: This option also affects refactoring. When the option is set,
paragraphs in the same “basic block” are defragmented sepa-
rately. Otherwise, they are defragmented as a unit. For more
information, see “Understanding Refactoring (Future Re-
lease)” on page 7-3.

3 In the Refactoring pane:

• Select Roll-Up Nested IFs if you want Component Maker to roll
up embedded IF statements in the top-level IF statement, such
that:

IF A=1

 IF B=2

is generated as:
IF (A=1) AND (B=2)

• Select Remove Redundant NEXT SENTENCE if you want
Component Maker to remove NEXT SENTENCE clauses by
changing the bodies of corresponding IF statements, such that:

IF A=1

 NEXT SENTENCE

ELSE

 ...

END-IF.

is generated as:
IF NOT (A=1)

 ...

END-IF.

• Select Replace Section PERFORMs by Paragraph PER-
FORMs if you want Component Maker to replace PERFORM
section statements by equivalent PERFORM paragraph state-
ments.

Setting Extraction Options
Setting Cobol Extraction Options

2-6
• In the Defragment drop-down, select:
– None if you do not want Component Maker to perform con-

trol flow defragmentation.
– Whole Program if you want Component Maker to perform

control flow defragmentation for the entire program.
– Automatically Chosen Paragraphs if you want Component

Maker to evaluate the degree of control flow fragmentation of
every paragraph and choose which paragraphs to defragment.

– Paragraphs in Component Definitions if you want Compo-
nent Maker to perform control flow defragmentation for the
paragraphs in the list specified in the Properties tab. For more
information, see step 6 on page 7-7.

4 In the Handle Unused Data Items pane, select:

• No changes if you want Component Maker not to remove unused
data items from the component.

• Remove Unused Level-1 Structures if you want Component
Maker to remove only unused level-1 structures, and then only
if all their members are unused. If, in the following example, only
B is used, only G is regarded as dead:

DEFINE DATA LOCAL

1 #A

2 #B

3 #C

2 #D

3 #E

3 #F

1 #G

• Remove Unused Any-Level Structures if you want Component
Maker to remove unused structures at any data level, if all their
members are unused. For the example above, D, E, F, and G are
regarded as dead.

• Remove/Replace Unused Fields with FILLERs if you want
Component Maker to remove unused any-level structures and

Setting Extraction Options
Setting Cobol Extraction Options

2-7
replace unused fields in a used structure with FILLERs. Set this
option if removing a field completely from a structure would ad-
versely affect memory distribution.

Note: If you select Keep Legacy Copybooks in step 4 on page 2-3,
Component Maker removes or replaces with FILLERs only
unused inline data items.

Document Options

Document component extraction options determine how Component
Maker documents its work — whether it generates an audit report, in-
cludes option settings in the component header, and the like. Generated
document files are listed in the Components tab, as described in “View-
ing the Generated Files for a Component” on page 1-11.

To set Document component extraction options:

1 In the extraction options dialog, click Document in the lefthand
pane.

2 Select Generate Audit Report if you want Component Maker
to generate an audit report. Select Include Reason Codes if you
want the report to contain reason codes explaining why a line was
changed or deleted. For more information, see “Generating Audit
Reports (Cobol Only)” on page 1-13.

Note: Generating reason codes is very memory-intensive and may
cause crashes for extractions from large programs.

3 Select List Options in Component Header and in Separate Doc-
ument if you want Component Maker to include a list of extraction
option settings in the component header and in a separate text file.
The text file has a name of the form component.BRE.options.txt.

4 Select Generate Support Comments if you want Component Mak-
er to include comments in the component source that identify the
component properties you specified, such as the starting and ending
paragraphs for a structure-based Cobol component.

Setting Extraction Options
Setting Cobol Extraction Options

2-8
5 Select Emphasize Component/Include in Coverage Report if you
want Component Maker to generate a list of constructs extracted
from the source program (see “Working with HyperView Lists” on
page 1-12) and highlight extracted code in the Coverage Report (see
“Generating Coverage Reports (Cobol Only)” on page 1-14).

6 In the Annotate Legacy Code pane, select:

• Comment-out Sliced-off Legacy Code if you want Component
Maker to retain but comment out unused code in the component
source. In the Comment Prefix field, enter text (up to six char-
acters) that you want to appear to the left of the commented-out
lines.

• Mark Modified Legacy Code if you want Component Maker to
mark modified code in the component source. In the Comment
Prefix field, enter text (up to six characters) that you want to ap-
pear to the left of the modified lines.

Component Type Specific Options

Component type-specific extraction options determine how Component
Maker performs tasks specific to each componentization method.

Structure Based Type-Specific Options

Structure-based type-specific extraction options determine whether
Component Maker performs “relaxed” extraction, generates a comple-
ment, and the like.

To set structure-based type-specific extraction options:

1 In the extraction options dialog for a structure-based extraction,
click Component Type Specific in the lefthand pane.

2 Select Restrict User Ranges to PERFORMed Ones if you want
Component Maker not to extract paragraphs that do not have a cor-
responding PERFORM statement.This option is useful if you want
to limit components created with the Paragraph Pair or Section
methods to PERFORMed paragraphs. For background, see “Under-
standing Ranges” on page 3-1.

Setting Extraction Options
Setting Cobol Extraction Options

2-9
3 Select Ensure Consistent Access to External Resources if you
want Component Maker to monitor the integrity of data flow in the
ranges you are extracting. If you select this option, for example, an
extraction will fail if an SQL cursor used in the component is open
in the complement.

4 Select Dynamic Call if you want Component Maker to generate in
the complement a dynamic call to the component. The complement
will call a string variable that must later be set outside the comple-
ment to the name of the component.

5 Select Suppress Errors if you want Component Maker to perform
a “relaxed extraction,” in which errors that would ordinarily cause
the extraction to fail are ignored, and comments describing the errors
are added to the component source. This option is useful when you
want to review extraction errors in component source.

6 Select Range Only if you want Component Maker not to generate a
complement. You must set this option to generate parameterized
slices. See step 2 on page 2-3.

Computation-Based Type-Specific Options

Computation-based type-specific extraction options determine whether
Component Maker performs variable-based component extraction and
generates an HTML extraction trace.

To set computation-based type-specific extraction options:

1 In the extraction options dialog for computation-based extraction,
click Component Type Specific in the lefthand pane.

2 In the Variable/Statement Based pane, select Variable if you want
Component Maker to perform variable-based component extraction.
Select Statement if you want Component Maker to perform state-
ment-based component extraction. For background, see “Under-
standing Variable-Based Extraction” on page 4-2.

Note: Even if you select variable-based extraction, Component
Maker performs statement-based extraction if the variable
you slice on is not an input variable for its parent statement —
if the statement writes to rather than reads from the variable.

Setting Extraction Options
Setting Cobol Extraction Options

2-10
3 Select Generate HTML Trace to generate an HTML file with an
extraction trace. The trace has a name of the form component.trace.
To view the trace, click the logical component for the extraction in
the Repository Browser Logical Component folder. Double-click
the trace file to view it in your Web browser.

Domain-Based Type-Specific Options

Domain-based component extraction options determine whether Com-
ponent Maker removes unused assignments, replaces variables with
their values, and evaluates conditional logic in one or multiple passes.

To set domain-based type-specific extraction options:

1 In the extraction options dialog for a domain-based extraction, click
Component Type Specific in the lefthand pane.

2 Select VALUEs Initialize Data Items if you want Component Mak-
er to set variables declared with VALUE clauses to their initial val-
ues. Otherwise, VALUE clauses are ignored.

3 Select Remove Unused Assignments if you want Component Mak-
er to exclude from the component assignments that cannot affect the
computation — typically, an assignment after which the variable is
not used until the next assignment or port.

4 Select Replace Variables by Their Calculated Values if you want
Component Maker to substitute the calculated values of variables for
the variables themselves.

Tip: Notice how the options in steps 3 and 4 can interact. If both
options are set, then the first assignment in the following frag-
ment will be removed:

MOVE 1 TO X.

DISPLAY X.

MOVE 2 TO X.

5 In the Iterative Processing pane, select Single Pass if you want Com-
ponent Maker to evaluate conditional logic in one pass. Select Mul-
tiple Pass if you want Component Maker to evaluate conditional
logic again after detecting dead branches. Because the ELSE branch

Setting Extraction Options
Setting Cobol Extraction Options

2-11
of the first IF below is dead, for example, the second IF statement
can be resolved in a subsequent pass:

MOVE 0 TO X.

IF X EQUAL 0 THEN

MOVE 1 TO Y

ELSE

MOVE 2 TO Y.

IF Y EQUAL 2 THEN... ELSE...

Note: Multi-pass processing is very resource-intensive, and not
recommended for extractions from large programs.

6 In the Maximum Number of Variable’s Values field, enter the
maximum number of values to be calculated for each variable.
Limit is 100. In the Maximum Size of Variable to Be Calculated
field, enter the maximum size in bytes for each variable value to be
calculated. The lower the maximums, the better performance and
memory usage you can expect. For each setting, you are warned
about variables for which the specified maximum is exceeded.

Event Injection Type-Specific Options

Event injection component extraction options determine the middleware
template you want to use for event injection and the type of statement to
execute in case of an error connecting to middleware.

To set event injection type-specific extraction options:

1 In the extraction options dialog for event injection, click Component
Type Specific in the lefthand pane.

2 In the Use Middleware drop-down, select:

• MQ if you want Component Maker to use an IBM MQ Series
template for event injection.
– In the Queue Manager field, enter the name of the MQ

Series queue manager.
– In the Target Queue Name field, enter the name of the target

queue.

Setting Extraction Options
Setting Cobol Extraction Options

2-12
– In the Use MQPUT/MQPUT1 pane, select MQPUT to use
the MQPUT method. Select MQPUT1 to use the MQPUT1
method.

• User Defined if you want Component Maker to use a user-de-
fined template for event injection. In the User Specified Event
field, enter the name of the event to inject at the specified injec-
tion points.

3 In the Error Handling drop-down, select the type of statement to
execute in case of an error connecting to middleware.

Component Conversion Options

Component conversion extraction options determine whether compo-
nents are converted as well as extracted and, if so, whether existing re-
pository objects for the component are preserved or replaced.

To set Component Conversion extraction options:

1 In the extraction options dialog, click Component Conversion in the
lefthand pane.

2 Select Convert Resulting Components to Legacy Objects if you
want Component Maker to convert as well as extract the logical
component (see “Componentization Outputs” on page 1-5). In the
Component Convertor Conflicts pane, choose either:

• Keep Old Legacy Objects if you want Component Maker to
preserve existing repository objects for the component — copy-
books, for example. If you select this option, delete the repository
object for the component itself before performing the extraction,
or the new component object will not be created.

• Replace Old Legacy Objects if you want Component Maker to
replace existing repository objects for the component.

Note: This option controls conversion behavior even when you
perform the conversion independently from the extraction. If
you are converting a component independently and want to

Setting Extraction Options
Setting PL/I Extraction Options

2-13
change this setting, select Convert Resulting Components
to Legacy Objects, specify the behavior you want, and then
deselect Convert Resulting Components to Legacy Object.

Setting PL/I Extraction Options

This section describes generic and method-specific component extrac-
tion options for PL/I programs.

General Options

General component extraction options determine whether the layout of
the sliced program is preserved, whether to expand include files, and
how the component is named.

To set General component extraction options:

1 In the extraction options dialog, click General in the lefthand pane.

2 In the Generation Style pane, select:

• Plain Generation if you want Component Maker to ignore the
layout of the sliced program. Macros and include files are ex-
panded in the component.

• Preserve Legacy Layout if you want Component Maker to pre-
serve the layout and commentary of the sliced program. Macros
and include files are expanded in the component.

• Preserve Legacy Includes if you want Component Maker not
to generate modified program include files for the component.
Macros are expanded, and the layout and commentary of the
sliced program is preserved.

3 Select Add Program Name as Prefix if you want Component Mak-
er to prepend the name of the sliced program to the component name
you specified when you created the component (step 3A on page
1-8), in the form program$component.

Setting Extraction Options
Setting PL/I Extraction Options

2-14
Component Type-Specific Options

Component type-specific extraction options determine how Component
Maker performs tasks specific to each componentization method.

Structure Based Type-Specific Options (Future Release)

Structure-based type-specific extraction options determine whether
Component Maker generates a parameterized slice.

To set structure-based type-specific extraction options:

1 In the extraction options dialog, click Component Type Specific in
the lefthand pane.

2 Select Generate Parameterized Components if you want Compo-
nent Maker to generate a parameterized slice. Enter the name of the
input, output, and input/output structures to be generated in the ap-
propriate fields. For background, see “Understanding Parameterized
Slices” on page 3-3.

Dead Code Elimination Type-Specific Options

Dead Code Elimination type-specific extraction options determine
whether Component Maker removes unreachable top-level procedures
and/or performs DCE against the entire project to which the selected pro-
gram belongs.

To set DCE type-specific extraction options:

1 In the extraction options dialog, click Component Type Specific in
the lefthand pane.

2 Select Library Mode if you want Component Maker to include in
the component external procedures that are not reachable from the
main procedures in the project.

3 Select Componentize Whole Project if you want Component Mak-
er to perform Dead Code Elimination against the entire project to
which the selected program belongs.

Note: This option is always selected if you choose not to use the
library mode option described in step 2 on page 2-14.

Setting Extraction Options
Setting Natural Extraction Options

2-15
Component Conversion Options

Component conversion extraction options determine whether compo-
nents are converted as well as extracted and, if so, whether existing re-
pository objects for the component are preserved or replaced. For details,
see the description of the identical options for Cobol programs in “Com-
ponent Conversion Options” on page 2-12.

Setting Natural Extraction Options

This section describes generic and method-specific component extrac-
tion options for Natural programs.

General Options

General component extraction options determine whether to use
program include files rather than generate data structures inline.

To set General component extraction options:

1 In the extraction options dialog, click General in the lefthand pane.

2 Select Preserve Legacy Includes if you want Component Maker
not to generate modified program include files for the component.

Optimize Options

Optimize component extraction options determine how Component
Maker performs Dead Code Elimination (DCE). For more information,
see Chapter 7, “Eliminating Dead Code.”

To set Optimize extraction options:

1 In the extraction options dialog, click Optimize in the lefthand pane.

2 In the Handle Unused Data Items pane, select:

• No changes if you want Component Maker not to remove unused
data items.

• Remove Unused Level-1 Structures if you want Component
Maker to remove only unused level-1 structures, and then only

Setting Extraction Options
Setting Natural Extraction Options

2-16
if all of their members are unused. If, in the following example,
only B is used, only G is regarded as dead:

DEFINE DATA LOCAL

1 #A

2 #B

3 #C

2 #D

3 #E

3 #F

1 #G

• Remove Unused Any-Level Structures if you want Component
Maker to remove unused structures at any data level, if all of their
members are unused. For the example above, D, E, F, and G are
regarded as dead.

Notes: Remove Unused Any-Level Structures is not available if
you choose to comment out rather than remove dead code
in step 2 on page 2-17.

If you select Preserve Legacy Includes in step 2 on page
2-15, Component Maker removes only unused inline data
items.

Component Type-Specific Options

Component type-specific extraction options determine how Component
Maker performs tasks specific to each componentization method.

Structure-Based Type-Specific Options (Future Release)

Structure-based type-specific extraction options determine whether to
use program data areas rather than generate data structures inline, and
whether to generate MAP files for a component.

To set structure-based type-specific extraction options:

1 In the extraction options dialog, click Component Type Specific in
the lefthand pane.

Setting Extraction Options
What’s Next?

2-17
2 Select Use DA if you want Component Maker to use program data
areas rather than generate data structures inline.

3 Select Generate Map File if you want Component Maker to general
a MAP file for the component.

Dead Code Elimination Type-Specific Options

Dead Code Elimination type-specific extraction options determine
whether Component Maker comments out or removes dead code.

To set DCE type-specific extraction options:

1 In the extraction options dialog, click Component Type Specific in
the lefthand pane.

2 Select Comment if you want Component Maker to comment out
dead code in the component. Select Remove if you want Component
Maker to remove dead code from the component.

Component Conversion Options

Component conversion extraction options determine whether compo-
nents are converted as well as extracted and, if so, whether existing re-
pository objects for the component are preserved or replaced. For details,
see the description of the identical options for Cobol programs in “Com-
ponent Conversion Options” on page 2-12.

What’s Next?

That completes our survey of Component Maker options. Now let’s look
at how you use Component Maker to perform each of the componenti-
zation methods.

Setting Extraction Options
What’s Next?

2-18

3-1
3
Extracting Structure-Based
Components
tructure-Based Componentization lets you build a component
from a range of inline code — Cobol paragraphs, for example.
Use traditional structure-based componentization to generate a

new component and its complement. A complement is a second compo-
nent consisting of the original program minus the code extracted in the
slice. Component Maker automatically places a call to the new compo-
nent in the complement, passing it data items as necessary.

Alternatively, you can generate parameterized slices, in which the input
and output variables required by the component are organized in group-
level structures. These standard object-oriented data interfaces make it
easier to deploy the transformed component in modern service-oriented
architectures.

Understanding Ranges

When you extract a structure-based component from a program, you
specify the range of code you want to include in the component — for

S

Extracting Structure-Based Components
Understanding Ranges

3-2
Cobol programs, a range of paragraphs; for PL/I programs, a procedure;
for Natural programs, a range of subroutines.

Specifying Ranges for Cobol Programs

For Cobol programs, you specify the paragraphs in the range in one of
three ways:

• Select a Paragraph Perform statement to set the range to the per-
formed paragraph or paragraphs. For COBOL, this set includes each
paragraph in the execution path between the first and last paragraphs
in the range, except when control is transferred by a PERFORM
statement or by an implicit RETURN-from-PERFORM statement.

• Select a Pair of Paragraphs to set the range to the selected para-
graphs. You are responsible for ensuring a continuous flow of con-
trol from the first to the last paragraph in the range.

• Select a Section to set the range to the paragraphs in the section.

Specifying Multiple Ranges in a Cobol Extraction

You typically repeat Structure-Based Componentization in incremen-
tal fashion until all of the modules you are interested in have been
created. For Cobol programs, you can avoid doing this manually by
specifying multiple ranges in the same extraction. Component Maker
automatically processes each range in the appropriate order. No com-
plements are generated.

About the GOTO Statement in a Cobol Complement

For traditional structure-based COBOL components, Component
Maker inserts in the complement the labels of the first and last para-
graphs in the range. The first paragraph is replaced in the complement
with a CALL statement followed by a GOTO statement. The last
paragraph is always empty.

The GOTO statement transfers control to the last paragraph. If the
GOTO statement and its target paragraph are not required to ensure
correct call flow, they are omitted.

Extracting Structure-Based Components
Understanding Parameterized Slices

3-3
Specifying Ranges for PL/I Programs (Future Release)

For PL/I programs, you specify an internal procedure that Component
Maker extracts as an external procedure. The slice contains the required
parameters for global variables.

Specifying Ranges for Natural Programs (Future Release)

For Natural programs, you specify a range of internal subroutines. You
are responsible for ensuring a continuous flow of control from the first
to the last subroutine in the range.

Use a separate method called External Subroutine Componentization to
extract a single internal subroutine as an external subroutine. For more
information, see “Extracting External Subroutines from Natural Pro-
grams (Future Release)” on page 3-17.

Understanding Parameterized Slices

For Cobol and PL/I programs, you can generate parameterized slices, in
which the input and output variables required by the component are or-
ganized in group-level structures. The component contains all the code
required for input/output operations.

Cobol Naming Conventions

• Component input structures have names of the form BRE-INP-
STRUCT-NAME. Input fields have names of the form BRE-I-
FIELD-NAME.

• Component Output structures have names of the form BRE-OUT-
STRUCT-NAME. Output fields have names of the form BRE-O-
FIELD-NAME.

How to Extract a Parameterized Slice

Select the Generate Parameterized Components option in the ex-
traction options dialog to extract a parameterized slice (for Cobol, see
step 2 on page 2-3; for PL/I, see step 2 on page 2-14). Note that you
cannot generate a complement for a parameterized Cobol slice

Extracting Structure-Based Components
Understanding Parameterized Slices

3-4
PL/I Naming Conventions (Future Release)

For PL/I, component structures can have any name you want. Field
names are retained. An input/output structure may also be generated.

Example

Consider a COBOL program that contains the following structures:

WORKING-STORAGE SECTION.

 01 A

 03 A1

 03 A2

 01 B

 03 B1

 03 B2

 03 B4

Suppose that only A1 has been determined by Component Maker to
be an input parameter, and only B1 and B2 to be output parameters. Sup-
pose further that the component is extracted with input and output data
structures that use the default names, BRE-INP-INPUT-STRUCTURE
and BRE-OUT-OUTPUT-STRUCTURE, respectively, and the default
Optimization options.

The component contains the following code:

WORKING-STORAGE SECTION.

 01 A

 03 A1

 03 A2

 01 B

 03 B1

 03 B2

 03 B4

LINKAGE SECTION.

 01 BRE-INP-INPUT-STRUCTURE

 03 BRE-I-A

 06 BRE-I-A1

Extracting Structure-Based Components
Understanding Parameterized Slices

3-5
01 BRE-OUT-OUTPUT-STRUCTURE

 03 BRE-O-B

 06 BRE-O-B1

 06 BRE-O-B2

PROCEDURE DIVISION

 USING BRE-INP-INPUT-STRUCTURE BRE-OUT-OUTPUT-
STRUCTURE.

BRE-INIT-SECTION SECTION.

 PERFORM BRE-COPY-INPUT-DATA.

 (Business Logic)....

 *ATW added statement

 GO TO BRE-EXIT-PROGRAM.

BRE-EXIT-PROGRAM-SECTION SECTION.

 BRE-EXIT-PROGRAM.

 PERFORM BRE-COPY-OUTPUT-DATA.

 GOBACK.

BRE-COPY-INPUT-DATA.

 MOVE BRE-I-A TO A.

BRE-COPY-OUTPUT-DATA.

 MOVE B TO BRE-O-B.

Set Cobol Verification Options!

For parameterized structure- and computation-based componentiza-
tion of Cobol programs, you must turn on not only the Perform Pro-
gram Analysis option in the Verification tab of the Project Options
window, but also the Enable Parameterization of Components op-
tion in the same dialog. For information on how to set verification
options, see Preparing Projects in the ATW document set.

Extracting Structure-Based Components
Extracting Structure-Based Cobol Components

3-6
Extracting Structure-Based Cobol Components

This section describes how to perform Structure-Based Componentiza-
tion for Cobol programs.

To extract a structure-based Cobol component:

1 Start Component Maker as described in “Starting Component Mak-
er” on page 1-6. The Component Maker window opens. In the Com-
ponents pane (Figure 3-1), double-click Structure-Based.

Figure 3-1 Components Pane

2 The view shown in Figure 3-2 on page 3-7 opens. This view shows
the structure-based logical components created for the programs in
the current project.

Tip: Click the button on the tool bar to restrict the display to
logical components created for the selected program.

double-click

Extracting Structure-Based Components
Extracting Structure-Based Cobol Components

3-7
Figure 3-2 Components Pane — Structure-Based View

3A To create a new logical component, select the program you want to
slice in the Clipper pane and click the button. A dialog opens
where you can enter the name of the new component in the text field.
Click OK.

3B To edit an existing logical component — to extract it with different
properties or options — double-click it.

4 The view shown in Figure 3-3 opens. This view shows the properties
you can set for the logical component. The Component of program
field contains the name of the program you selected in step 3A.

Figure 3-3 Components Pane — Properties Tab (Cobol)

click to create
new component

double-click to edit

click to extract
component

Extracting Structure-Based Components
Extracting Structure-Based Cobol Components

3-8
5 In the Paragraphs field, click the here link. Choose one of the fol-
lowing methods in the pop-up menu. For background on the meth-
ods, see “Understanding Ranges” on page 3-1.

• Paragraph Perform to set the range to the paragraph or para-
graphs performed by the selected PERFORM statement. Select
the PERFORM statement in the Source pane, then click the link
for the current selection and choose Set in the pop-up menu.

• Pair of Paragraphs to set the range to the selected paragraphs.
Select the first paragraph in the pair in the Source pane, then click
the link for the current selection in the From field and choose Set
in the drop-down menu. Select the second paragraph in the pair,
then click the link for the current selection in the To field and
choose Set in the pop-up menu.

Tip: You can set the From and To fields to the same paragraph.

• Section to set the range to the paragraphs in the section. Select
the section in the Source pane, then click the link for the current
selection and choose Set in the pop-up menu.

Note: To delete a range, select the link for the numeral that identifies
the range and choose Delete in the pop-up menu. To unset a
PERFORM, paragraph, or section, click it and choose Unset
in the pop-up menu. To navigate quickly to a PERFORM,
paragraph, or section in the source, click it and choose Locate
in the pop-up menu.

6 Repeat step 5 for each range you want to extract. You can use any
combination of methods. For background, see “Specifying Multiple
Ranges in a Cobol Extraction” on page 3-2. Figure 3-4 on page 3-9
shows how the properties tab might look for a multi-range extrac-
tion.

Note: The component for each range in a multi-range extraction has
a name of the form component$n, where n represents the or-
der in which the component was generated.

Extracting Structure-Based Components
Extracting Structure-Based Cobol Components

3-9
Figure 3-4 Properties Tab — Multi-Range Cobol Extraction

7 In the Entry Point to use field, click the link for the current selec-
tion and choose the entry point you want to use in the pop-up menu.
For background, see Chapter 8, “Performing Entry Point Isolation.”
To unset an entry point, click it and choose Unset in the pop-up
menu.

8 In the Defragment paragraphs field, click the link for the current
selection and choose the list of paragraphs to defragment in the pop-
up menu. For background, see “Understanding Refactoring (Future
Release)” on page 7-3.

Note: To create a new list of paragraphs to defragment, choose New
in the pop-up menu. The List Browser opens, where you can
create the list. Choose Show to display the current list in the
List Browser. Choose None to unset the list. For List Browser
usage, see Analyzing Programs in the ATW document set.

9 In the Description field, click the here link to open a text editor
where you can enter a description of the component. The description
appears in the box below the Description field in the Properties tab

Extracting Structure-Based Components
Extracting Structure-Based Cobol Components

3-10
and in the Description property for the logical component repository
object.

10 Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

11 The dialog shown in Figure 3-5 opens. This dialog displays a series
of panes that let you set extraction options for Structure-Based Com-
ponentization. For usage information, see “Setting Cobol Extraction
Options” on page 2-2. When you are satisfied with your choices,
click Finish.

Figure 3-5 Components Pane — Extraction Options Dialog (Cobol)

12 Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with er-
rors or warnings, click Yes to view the errors or warnings in the Ac-
tivity Log. Otherwise, click No.

Extracting Structure-Based Components
Extracting Structure-Based PL/I Components (Future

3-11
13 Assuming the extraction executed without errors, the view shown in
Figure 3-6 opens. This view shows a list of the component source
files that were generated for the logical component and an audit re-
port if you requested one (see “Generating Audit Reports (Cobol
Only)” on page 1-13). Click an item in the list to view the read-only
text for the item.

Figure 3-6 Components Pane — Components Tab

Extracting Structure-Based PL/I Components (Future Release)

This section describes how to perform Structure-Based Componentiza-
tion for PL/I programs.

To extract a structure-based PL/I component:

1 Start Component Maker as described in “Starting Component Mak-
er” on page 1-6. The Component Maker window opens. In the Com-
ponents pane (Figure 3-1 on page 3-6), double-click Structure-
Based.

2 The view shown in Figure 3-2 on page 3-7 opens. This view shows
the structure-based logical components created for the programs in
the current project.

click to view
read-only text

Extracting Structure-Based Components
Extracting Structure-Based PL/I Components (Future Release)

3-12
Tip: Click the button on the tool bar to restrict the display to
logical components created for the selected program.

3A To create a new logical component, select the program you want to
slice in the Clipper pane and click the button. A dialog opens
where you can enter the name of the new component in the text field.
Click OK.

3B To edit an existing logical component — to extract it with different
properties or options — double-click it.

4 The view shown in Figure 3-7 opens. This view shows the properties
you can set for the logical component. The Component of program
field contains the name of the program you selected in step 3A.

Figure 3-7 Components Pane — Properties Tab (PL/I)

5 Select the program entry point in the Source pane. In the Entry field,
click the link for the current selection and choose Set in the pop-up
menu.

Note: To unset an entry point, click it and choose Unset in the pop-
up menu. To navigate quickly to an entry point in the source,
click it and choose Locate in the pop-up menu.

6 In the Description field, click the here link to open a text editor
where you can enter a description of the component. The description
appears in the box below the Description field in the Properties tab

click to extract
component

Extracting Structure-Based Components
Extracting Structure-Based PL/I Components (Future

3-13
and in the Description property for the logical component repository
object.

7 Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

8 The dialog shown in Figure 3-8 opens. This dialog displays a series
of panes that let you set extraction options for Structure-Based Com-
ponentization. For usage information, see “Setting PL/I Extraction
Options” on page 2-13. When you are satisfied with your choices,
click Finish.

Figure 3-8 Components Pane — Extraction Options Dialog (PL/I)

9 Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with er-
rors or warnings, click Yes to view the errors or warnings in the Ac-
tivity Log. Otherwise, click No.

Extracting Structure-Based Components
Extracting Structure-Based Natural Components (Future Release)

3-14
10 Assuming the extraction executed without errors, the view shown in
Figure 3-6 on page 3-11 opens. This view shows a list of the compo-
nent source files that were generated for the logical component.
Click an item in the list to view the read-only text for the item.

Extracting Structure-Based Natural Components
(Future Release)

This section describes how to perform Structure-Based Componentiza-
tion for Natural programs.

To extract a structure-based Natural component:

1 Start Component Maker as described in “Starting Component Mak-
er” on page 1-6. The Component Maker window opens. In the Com-
ponents pane (Figure 3-1 on page 3-6), double-click Structure-
Based.

2 The view shown in Figure 3-2 on page 3-7 opens. This view shows
the structure-based logical components created for the programs in
the current project.

Tip: Click the button on the tool bar to restrict the display to
logical components created for the selected program.

3A To create a new logical component, select the program you want to
slice in the Clipper pane and click the button. A dialog opens
where you can enter the name of the new component in the text field.
Click OK.

3B To edit an existing logical component — to extract it with different
properties or options — double-click it.

4 The view shown in Figure 3-9 on page 3-15 opens. This view shows
the properties you can set for the logical component. The Compo-
nent of program field contains the name of the program you select-
ed in step 3A.

Extracting Structure-Based Components
Extracting Structure-Based Natural Components (Future

3-15
Figure 3-9 Components Pane — Properties Tab (Natural)

5 Select the first subroutine in the range in the Source pane, then click
the link for the current selection in the From field and choose Set in
the drop-down menu. Select the second subroutine in the pair, then
click the link for the current selection in the To field and choose Set
in the pop-up menu. For background, see “Understanding Ranges”
on page 3-1.

Note: To unset a subroutine, click it and choose Unset in the pop-up
menu. To navigate quickly to a subroutine in the source, click
it and choose Locate in the pop-up menu.

6 In the Description field, click the here link to open a text editor
where you can enter a description of the component. The description
appears in the box below the Description field in the Properties tab
and in the Description property for the logical component repository
object.

7 Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

8 The dialog shown in Figure 3-10 on page 3-16 opens. This dialog
displays a series of panes that let you set extraction options for Struc-
ture-Based Componentization. For usage information, see “Setting

click to extract
component

Extracting Structure-Based Components
Extracting Structure-Based Natural Components (Future Release)

3-16
Natural Extraction Options” on page 2-15. When you are satisfied
with your choices, click Finish.

Figure 3-10 Components Pane — Extraction Options Dialog (Natural)

9 Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with er-
rors or warnings, click Yes to view the errors or warnings in the Ac-
tivity Log. Otherwise, click No.

10 Assuming the extraction executed without errors, the view shown in
Figure 3-6 on page 3-11 opens. This view shows a list of the compo-
nent source files that were generated for the logical component.
Click an item in the list to view the read-only text for the item.

Extracting Structure-Based Components
Extracting External Subroutines from Natural Programs

3-17
Extracting External Subroutines from Natural Programs
(Future Release)

For Natural programs, you can use a separate method called External
Subroutine Componentization to extract a single internal subroutine as
an external subroutine.

To extract an external subroutine:

1 Start Component Maker as described in “Starting Component Mak-
er” on page 1-6. The Component Maker window opens. In the Com-
ponents pane (Figure 3-1 on page 3-6), double-click External
Subroutine.

2 The view shown in Figure 3-2 on page 3-7 opens. This view shows
the external subroutine logical components created for the programs
in the current project.

Tip: Click the button on the tool bar to restrict the display to
logical components created for the selected program.

3A To create a new logical component, select the program you want to
slice in the Clipper pane and click the button. A dialog opens
where you can enter the name of the new component in the text field.
Click OK.

3B To edit an existing logical component — to extract it with different
properties or options — double-click it.

4 The view shown in Figure 3-11 on page 3-18 opens. This view
shows the properties you can set for the logical component. The
Component of program field contains the name of the program you
selected in step 3A.

5 Select the internal subroutine in the Source pane. In the Subroutine
field, click the link for the current selection and choose Set in the
pop-up menu.

Note: To unset a subroutine, click it and choose Unset in the pop-up
menu. To navigate quickly to a subroutine in the source, click
it and choose Locate in the pop-up menu.

Extracting Structure-Based Components
What’s Next?

3-18
6 Follow steps 6-10 on pages 3-15-3-16 to complete the extraction.

Figure 3-11 Components Pane — Properties Tab (External Subroutine)

What’s Next?

Now that you know how to extract a component based on a range of in-
line code, let’s look at how you use Component Maker to perform more
complex extractions, starting with Computation-Based Componentiza-
tion.

click to extract
component

4-1
4
Extracting Computation-
Based Components
omputation-Based Componentization lets you build a compo-
nent that contains all the code necessary to calculate the value
of a variable at a particular point in a program — the value of

a DayOfTheWeek variable, for example, where it is used to populate a
report attribute or screen. As with structure-based slices, you can gener-
ate parameterized computation-based slices that make it easy to deploy
the transformed component in distributed architectures. For background,
see “Understanding Parameterized Slices” on page 3-3.

Set Cobol Verification Options!

For computation-based componentization of Cobol programs, you
must turn on not only the Perform Program Analysis option in the
Verification tab of the Project Options window, but also the Enable
Extraction of Computation-Based Components option in the same
dialog. For information on how to set verification options, see Pre-
paring Projects in the ATW document set.

C

Extracting Computation-Based Components
Understanding Variable-Based Extraction

4-2
Understanding Variable-Based Extraction

When you perform a computation-based extraction, you can slice by
statement or by variable. What’s the difference? Suppose you are inter-
ested in calculations involving the variable X in the example below:

MOVE 1 TO X

MOVE 1 TO Y

DISPLAY X Y.

If you perform statement-based extraction — if you slice on the state-
ment DISPLAY X Y — all three statements will be included in the com-
ponent. If you perform variable-based extraction — if you slice on the
variable X — only the first and third statements will be included. In vari-
able-based extraction, that is, Component Maker tracks the dependency
between X and Y, and having determined that the variables are indepen-
dent, excludes the MOVE 1 to Y statement.

Note: If you slice on a variable for a Cobol component, you must
select Variable in the Component Type Specific options for
computation-based extraction. For more information, see
step 2 on page 2-9.

Understanding Blocking

For Cobol programs, you can use a technique called blocking to produce
smaller, better-defined parameterized components. Component Maker
will not include in the slice any part of the calculation that appears before
the blocked statement. Fields from blocked input statements are treated
as input parameters of the component.

Consider the following fragment:

INP1.

DISPLAY “INPUT YEAR (1600-2099)”.

ACCEPT YEAR.

Extracting Computation-Based Components
Extracting Computation-Based Cobol Components

4-3
CALL ‘PROG’ USING YEAR.

IF YEAR > 2099 OR YEAR < 1600 THEN

DISPLAY “WRONG YEAR”.

If the CALL statement is selected as a block, then both the CALL and
ACCEPT statements from the fragment are not included in the compo-
nent, and YEAR is passed as a parameter to the component.

Extracting Computation-Based Cobol Components

This section describes how to perform Computation-Based Componen-
tization for Cobol programs.

1 Start Component Maker as described in “Starting Component Mak-
er” on page 1-6. The Component Maker window opens. In the Com-
ponents pane (Figure 4-1), double-click Computation-Based.

Figure 4-1 Components Pane

2 The view shown in Figure 4-2 on page 4-4 opens. This view shows
the computation-based logical components created for the programs
in the current project.

How to Specify Blocking

Specify blocking in the blocking dialog (Figure 2-1 on page 2-4),
accessed from the Interface options pane. For information on how
to specify blocking, see step 4 on page 2-4.

double-click

Extracting Computation-Based Components
Extracting Computation-Based Cobol Components

4-4
Tip: Click the button on the tool bar to restrict the display to
logical components created for the selected program.

Figure 4-2 Components Pane — Computation-Based View

3A To create a new logical component, select the program you want to
slice in the Clipper pane and click the button. A dialog opens
where you can enter the name of the new component in the text field.
Click OK.

3B To edit an existing logical component — to extract it with different
properties or options — double-click it.

4 The view shown in Figure 4-3 on page 4-5 opens. This view shows
the properties you can set for the logical component. The Compo-
nent of program field contains the name of the program you select-
ed in step 3A.

click to create
new component

double-click to edit

Extracting Computation-Based Components
Extracting Computation-Based Cobol Components

4-5
Figure 4-3 Components Pane — Properties Tab (Cobol)

5 Select the variable or statement you want to slice on in the Source
pane. In the Point field, click the link for the current selection and
choose Set in the pop-up menu. To unset a variable or statement,
click it and choose Unset in the pop-up menu. To navigate quickly
to a variable or statement in the source, click it and choose Locate
in the pop-up menu.

Note: If you slice on a variable, you must select Variable in the
Component Type Specific options for computation-based
extraction. For more information, see step 2 on page 2-9.

6 In the Entry Point to use field, click the link for the current selec-
tion and choose the entry point you want to use in the pop-up menu.
For background, see Chapter 8, “Performing Entry Point Isolation.”
To unset an entry point, click it and choose Unset in the pop-up
menu.

7 In the Defragment paragraphs field, click the link for the current
selection and choose the list of paragraphs to defragment in the pop-
up menu. For background, see “Understanding Refactoring (Future
Release)” on page 7-3.

Note: To create a new list of paragraphs to defragment, choose New
in the pop-up menu. The List Browser opens, where you can

click to extract
component

Extracting Computation-Based Components
Extracting Computation-Based Cobol Components

4-6
create the list. Choose Show to display the current list in the
List Browser. Choose None to unset the list. For List Browser
usage, see Analyzing Programs in the ATW document set.

8 In the Description field, click the here link to open a text editor
where you can enter a description of the component. The description
appears in the box below the Description field in the Properties tab
and in the Description property for the logical component repository
object.

9 Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

10 The dialog shown in Figure 4-4 opens. This dialog displays a series
of panes that let you set extraction options for Computation-Based
Componentization. For usage information, see “Setting Cobol Ex-
traction Options” on page 2-2. When you are satisfied with your
choices, click Finish.

Figure 4-4 Components Pane — Extraction Options Dialog (Cobol)

Extracting Computation-Based Components
Extracting Computation-Based Natural Components

4-7
11 Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with er-
rors or warnings, click Yes to view the errors or warnings in the Ac-
tivity Log. Otherwise, click No.

12 Assuming the extraction executed without errors, the view shown in
Figure 4-5 opens. This view shows a list of the component source
files that were generated for the logical component and an audit re-
port if you requested one (see “Generating Audit Reports (Cobol
Only)” on page 1-13). Click an item in the list to view the read-only
text for the item.

Figure 4-5 Components Pane — Components Tab

Extracting Computation-Based Natural Components

This section describes how to perform Computation-Based Componen-
tization for Natural programs.

To extract a computation-based Natural component:

1 Start Component Maker as described in “Starting Component Mak-
er” on page 1-6. The Component Maker window opens. In the Com-
ponents pane (Figure 4-1 on page 4-3), double-click Computation-
Based.

click to view
read-only text

Extracting Computation-Based Components
Extracting Computation-Based Natural Components

4-8
2 The view shown in Figure 4-2 on page 4-4 opens. This view shows
the computation-based logical components created for the programs
in the current project.

Tip: Click the button on the tool bar to restrict the display to
logical components created for the selected program.

3A To create a new logical component, select the program you want to
slice in the Clipper pane and click the button. A dialog opens
where you can enter the name of the new component in the text field.
Click OK.

3B To edit an existing logical component — to extract it with different
properties or options — double-click it.

4 The view shown in Figure 4-6 opens. This view shows the properties
you can set for the logical component. The Component of program
field contains the name of the program you selected in step 3A.

Figure 4-6 Components Pane — Properties Tab (Natural)

5 Select the variable or statement you want to slice on in the Source
pane. In the Point field, click the link for the current selection and
choose Set in the pop-up menu. To unset a variable or statement,
click it and choose Unset in the pop-up menu. To navigate quickly
to a variable or statement in the source, click it and choose Locate
in the pop-up menu.

click to extract
component

Extracting Computation-Based Components
Extracting Computation-Based Natural Components

4-9
6 In the Description field, click the here link to open a text editor
where you can enter a description of the component. The description
appears in the box below the Description field in the Properties tab
and in the Description property for the logical component repository
object.

7 Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

8 The dialog shown in Figure 4-7 opens. This dialog displays a series
of panes that let you set extraction options for Computation-Based
Componentization. For usage information, see “Setting Natural Ex-
traction Options” on page 2-15. When you are satisfied with your
choices, click Finish.

Figure 4-7 Components Pane — Extraction Options Dialog (Natural)

Extracting Computation-Based Components
What’s Next?

4-10
9 Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with er-
rors or warnings, click Yes to view the errors or warnings in the Ac-
tivity Log. Otherwise, click No.

10 Assuming the extraction executed without errors, the view shown in
Figure 4-5 on page 4-7 opens. This view shows a list of the compo-
nent source files that were generated for the logical component.
Click an item in the list to view the read-only text for the item.

What’s Next?

That completes our survey of Computation-Based Componentization.
Now let’s look at how you use Component Maker to perform Domain-
Based Componentization. That’s the subject of the next chapter.

5-1
5
Extracting Domain-Based
Components
omain-Based Componentization lets you “specialize” a pro-
gram based on the values of one or more variables. The spe-
cialized program is typically intended for reuse “in place” —

in the original application but under new external circumstances.

After a change in your business practices, for example, a program that
invokes processing for a “payment type” variable could be specialized
on the value PAYMENT-TYPE = "CHECK". Component Maker isolates
every process dependent on the CHECK value to create a functionally
complete program that processes check payments only.

Two modes of domain-based componentization are offered:

• The simplified mode treats the variable as a constant throughout the
execution of the program — the value of the variable is “frozen in
memory.” Operations that could change the value are ignored.

• The advanced mode sets the value of the variable only at a specified
data port — subsequent operations can change the value, following
the data and control flow of the program.

D

Extracting Domain-Based Components
Understanding Program Specialization in Simplified Mode

5-2
Use the simplified mode when you are interested only in the final value
of a variable, or when a variable never receives a value from outside the
program. Use the advanced mode when you need to account for data
coming into a variable — when the variable’s value is repeatedly reset,
for example. The next two sections describe these modes in detail.

Understanding Program Specialization in Simplified Mode

The simplified mode of program specialization treats the specialization
variable as a constant throughout the execution of the program. Opera-
tions that could change the value are ignored.

Table 5-1 shows the result of using the simplified mode to specialize on
the values CURYEAR = 1999, MONTH = 1, CURMONTH = 12, DAY1
= 4, and CURDAY = 7.

Setting a Specialization Variable to Multiple Values

Component Maker lets you set the specialization variable to a range
of values — between 1 and 10 inclusive, for example — or to multiple
values — not only CHECK but CREDIT-CARD, for example. You
can also set the variable to all values not in the range or set of possible
values —every value but CHECK and CREDIT-CARD, for example.

Table 5-1 Example of Program Specialization in Simplified Mode

Source Program Specialized Program Comment

INP3.
DISPLAY “INPUT DAY”.
ACCEPT DAY1.

 MOVE YEAR TO tmp1.
 PERFORM ISV.

 IF DAY1 > tt of MONTHS
 (MONTH) OR DAY1 < 1
 THEN
 DISPLAY “WRONG DAY”.

INP3.
 DISPLAY “INPUT DAY”.

 MOVE YEAR TO tmp1.
PERFORM ISV.

 IF 0004 > TT OF
 MONTHS(MONTH) THEN
 DISPLAY “WRONG DAY”
 END-IF.

ACCEPT removed.

No changes in these
statements (YEAR is a
“free” variable).

Value for DAY1 sub-
stituted. The 2nd con-
dition for DAY1 is
removed as always
false. END-IF added.

Extracting Domain-Based Components
Understanding Program Specialization in Simplified Mode

5-3
MAINCALC.
 IF YEAR > CURYEAR

THEN
MOVE YEAR TO

 INT0001
MOVE CURYEAR TO

 INT0002
MOVE 1 TO direction

 ELSE
 MOVE YEAR TO
 INT0002
 MOVE 2 TO direction
 MOVE CURYEAR TO
 INT0001.

MAINCALC.
IF YEAR > 1999
THEN

 MOVE YEAR TO INT0001
 MOVE 1999 TO
 INT0002
 MOVE 1 TO direction
 ELSE
 MOVE YEAR TO INT0002
 MOVE 2 TO direction
 MOVE 1999 TO
 INT0001.

Value for CURYEAR
substituted.

MOVE int0001 TO
 tmp3.

MOVE int0002 TO
 tmp4.

IF YEAR NOT EQUAL
 CURYEAR THEN

PERFORM YEARS.

 MOVE int0002 TO tmp4.
 IF YEAR NOT = 1999 THEN
 PERFORM YEARS.

Component Maker
removes the first line
for tmp3, because this
variable is never used
again. Value for CUR-
YEAR substituted.

IF MONTH > CURMONTH
 THEN

MOVE MONTH TO
 INT0001

MOVE CURMONTH TO
 INT0002

MOVE 1 TO direction

Value for MONTH
substituted, making
the condition (1>12)
false, so Component
Maker removes the IF
branch and then the
whole conditional
statement as such.

ELSE
MOVE MONTH TO

 INT0002
MOVE 2 TO direction

 MOVE CURMONTH TO
 INT0001.

MOVE 0001 TO
 INT0002

MOVE 2 TO direction
 MOVE 0012 TO
 INT0001.

The three uncondi-
tional statements
remain from the
former ELSE branch.
Value for CUR-
MONTH substituted.

Table 5-1 Example of Program Specialization in Simplified Mode (continued)

Source Program Specialized Program Comment

Extracting Domain-Based Components
Understanding Program Specialization in Simplified Mode

5-4
IF MONTH NOT EQUAL
 CURMONTH THEN

PERFORM MONTHS. PERFORM MONTHS.

The condition is true,
so the statement is
made unconditional.

IF DAY1 > CURDAY THEN
MOVE DAY1 TO

 INT0001
MOVE CURDAY TO

 INT0002
MOVE 1 TO direction

This condition (4>7)
is false, so Component
Maker removes the IF
branch and then the
whole conditional
statement as such.

ELSE
MOVE DAY1 TO

 INT0002
MOVE 2 TO direction

 MOVE CURDAY TO
 INT0001.

MOVE 4 TO INT0002
 MOVE 2 TO direction
 MOVE 0007 TO
 INT0001.

The three uncondi-
tional statements
remain from the
former ELSE branch.
Values for DAY1 and
CURDAY substituted.

IF day1 NOT EQUAL
 CURDAY THEN

PERFORM DAYS. PERFORM DAYS.

The condition is true,
so the statement is
made unconditional.

Table 5-1 Example of Program Specialization in Simplified Mode (continued)

Source Program Specialized Program Comment

Extracting Domain-Based Components
Understanding Program Specialization in Advanced Mode

5-5
Understanding Program Specialization in Advanced Mode

The advanced mode of program specialization sets the value of the
specialization variable only at a specified data port — at any statement
that allows the program to receive the variable’s value from a keyboard,
database, screen, or other input source. Subsequent operations can
change the value, following the data and control flow of the program.

Table 5-2 on page 5-5 shows the result of using the advanced mode to
specialize on the values MONTH = 1 and DAY1 = 4.

Table 5-2 Example of Program Specialization in Advanced Mode

Source Program Specialized Program Comment

INP1.
DISPLAY “INPUT YEAR

 (1600-2099)”.
ACCEPT YEAR.
IF YEAR > 2099 OR YEAR

 < 1600 THEN
 DISPLAY “WRONG YEAR”.

INP1.
DISPLAY “INPUT YEAR

 (1600-2099)”.
ACCEPT YEAR.
IF YEAR > 2099 OR YEAR

 < 1600 THEN
 DISPLAY “WRONG YEAR”.

No changes in these
statements (YEAR is a
“free” variable).

INP2.
DISPLAY “INPUT

 MONTH”.
ACCEPT MONTH.

IF MONTH > 12 OR MONTH
 < 1 THEN
 DISPLAY “WRONG MONTH”.

INP2.
DISPLAY “INPUT MONTH”.
 MOVE 0001 TO MONTH.

ACCEPT is replaced
by MOVE with the set
value for MONTH.

With the set value,
this IF statement can
never be reached, so
Component Maker
removes it.

Extracting Domain-Based Components
Understanding Program Specialization “Lite”

5-6
Understanding Program Specialization “Lite”

Ordinarily, you must turn on the Perform Program Analysis option in
the Verification tab of the Project Options window before verifying the
Cobol program you want to specialize. If your application is very large,
however, and you know that the specialization variable is never reset,
you can save time by skipping program analysis during verification and
using the simplified mode to specialize the program — so-called “pro-
gram specialization lite.”

Component Maker gives you the same result for a lite extraction as it
would for an ordinary domain extraction in simplified mode, with one
important exception. Domain extraction lite cannot calculate the value of
a variable that depends on the value of the specialization variable. Con-
sider the following example:

01 X Pic 99.

01 Y Pic 99.

...

MOVE X To Y.

IF X = 1

THEN ...

ELSE ...

INP3.
DISPLAY “INPUT DAY”.
ACCEPT DAY1.

 MOVE YEAR TO tmp1.
 PERFORM ISV.

 IF DAY1 > tt of MONTHS
 (MONTH) OR DAY1 < 1
 THEN
 DISPLAY “WRONG DAY”.

INP3.
 DISPLAY “INPUT DAY”.
 MOVE 0004 TO DAY1.

 MOVE YEAR TO tmp1.
 PERFORM ISV.

 IF 0004 > TT OF
 MONTHS(MONTH) THEN
 DISPLAY “WRONG DAY”
 END-IF.

ACCEPT is replaced
by MOVE with the set
value for DAY1.

No changes in these
statements (YEAR is a
“free” variable).

The 2nd condition for
DAY1 is removed as
always false. END-IF
added.

Table 5-2 Example of Program Specialization in Advanced Mode

Source Program Specialized Program Comment

Extracting Domain-Based Components
Extracting Domain-Based Cobol Components

5-7
END-IF.

...

IF Y = 1

THEN ...

ELSE ...

END-IF.

If you set X to 1, both simplified mode and domain extraction lite resolve
the IF X = 1 condition correctly. Only simplified mode, however, re-
solves the IF Y = 1 condition.

Extracting Domain-Based Cobol Components

This section describes how to perform Domain-Based Componentiza-
tion for Cobol programs.

To extract a domain-based Cobol component:

1 Start Component Maker as described in “Starting Component Mak-
er” on page 1-6. The Component Maker window opens. In the Com-
ponents pane (Figure 5-1), double-click Domain-Based.

Figure 5-1 Components Pane

2 The view shown in Figure 5-2 on page 5-8 opens. This view shows
the domain-based logical components created for the programs in
the current project.

double-click

Extracting Domain-Based Components
Extracting Domain-Based Cobol Components

5-8
Tip: Click the button on the tool bar to restrict the display to
logical components created for the selected program.

Figure 5-2 Components Pane — Domain-Based View

3A To create a new logical component, select the program you want to
slice in the Clipper pane and click the button. A dialog opens
where you can enter the name of the new component in the text field.
Click OK.

3B To edit an existing logical component — to extract it with different
properties or options — double-click it.

4 The view shown in Figure 5-3 on page 5-9 opens. This view shows
the properties you can set for the logical component. The Compo-
nent of program field contains the name of the program you select-
ed in step 3A.

click to create
new component

double-click to edit

Extracting Domain-Based Components
Extracting Domain-Based Cobol Components

5-9
Figure 5-3 Components Pane — Properties Tab (Cobol)

5 In the Data Item Value field, click the here link. Choose one of the
following methods in the pop-up menu.

• HyperCode List to set the specialization variable to the constant
values in the list of constants specified in step 8A on page 5-10.

• User Specified Value(s) to set the specialization variable to the
value or values specified in step 8B on page 5-10.

6A To use the simplified mode of program specialization (see “Under-
standing Program Specialization in Simplified Mode” on page 5-2),
select the declaration for the specialization variable in the Source
pane, then click the link for the current selection in the Data Item
field and choose Set in the drop-down menu.

6B To use the advanced mode of program specialization (see “Under-
standing Program Specialization in Advanced Mode” on page 5-5),
select the data port of interest for the specialization variable in the
Source pane, then click the link for the current selection in the Data
Item field and choose Set in the drop-down menu.

Note: To delete a declaration or data port, select the link for the nu-
meral that identifies it and choose Delete in the pop-up menu.
To unset a declaration or data port, click it and choose Unset

click to extract
component

Extracting Domain-Based Components
Extracting Domain-Based Cobol Components

5-10
in the pop-up menu. To navigate quickly to a declaration or
data port in the source, click it and choose Locate in the pop-
up menu.

7 In the Comparison field, click the link for the current comparison
operator and choose:

• equals to set the specialization variable to the values specified in
step 8A or step 8B.

• not equals to set the specialization variable to every value but the
values specified in step 8A or step 8B.

8A If you chose HyperCode List in step 5 on page 5-9, click the link
for the current selection in the List Name field and choose the list of
constants to use in the pop-up menu.

Note: To create a new list of constants, choose New in the pop-up
menu. The List Browser opens, where you can create the list.
Choose Show to display the current list in the List Browser.
Choose None to unset the list. For List Browser usage, see
Analyzing Programs in the ATW document set.

8B If you chose User Specified Value(s) in step 5 on page 5-9, click the
here link in the Values field. Choose one of the following methods
in the pop-up menu. For background on the methods, see“Setting a
Specialization Variable to Multiple Values” on page 5-2.

• Value to set the specialization variable to one or more values. In
the Value field, click the link for the current selection. A dialog
opens where you can enter a value in the text field. Click OK.

• Value Range to set the specialization variable to a range of val-
ues. In the Lower field, click the link for the current selection. A
dialog opens where you can enter a value for the lower range end
in the text field. Click OK. Follow the same procedure for the
Upper field.

Note: Put double quotation marks around a string constant with
blank spaces at the beginning or end.

Extracting Domain-Based Components
Extracting Domain-Based Cobol Components

5-11
9 Repeat step 8A or step 8B for each list, value, or range of values you
want to set. For a given specialization variable, you can specify the
methods in any combination. To delete a list, value, or range, select
the link for the numeral that identifies it and choose Delete in the
pop-up menu.

10 Repeat steps 5-9 for each variable you want to specialize on. For
a given extraction, you can specify simplified and advanced modes
in any combination. Figure 5-4 shows how the properties tab might
look for a multi-variable extraction.

Figure 5-4 Properties Tab — Multi-Variable Cobol Extraction

11 In the Entry Point to use field, click the link for the current selec-
tion and choose the entry point you want to use in the pop-up menu.
For background, see Chapter 8, “Performing Entry Point Isolation.”
To unset an entry point, click it and choose Unset in the pop-up
menu.

12 In the Defragment paragraphs field, click the link for the current
selection and choose the list of paragraphs to defragment in the pop-

Extracting Domain-Based Components
Extracting Domain-Based Cobol Components

5-12
up menu. For background, see “Understanding Refactoring (Future
Release)” on page 7-3.

Note: To create a new list of paragraphs to defragment, choose New
in the pop-up menu. The List Browser opens, where you can
create the list. Choose Show to display the current list in the
List Browser. Choose None to unset the list. For List Browser
usage, see Analyzing Programs in the ATW document set.

13 In the Description field, click the here link to open a text editor
where you can enter a description of the component. The description
appears in the box below the Description field in the Properties tab
and in the Description property for the logical component repository
object.

14 Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

15 The dialog shown in Figure 5-5 on page 5-13 opens. This dialog dis-
plays a series of panes that let you set extraction options for Domain-
Based Componentization. For usage information, see “Setting Cobol
Extraction Options” on page 2-2. When you are satisfied with your
choices, click Finish.

16 Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with er-
rors or warnings, click Yes to view the errors or warnings in the Ac-
tivity Log. Otherwise, click No.

Extracting Domain-Based Components
Extracting Domain-Based Cobol Components

5-13
Figure 5-5 Components Pane — Extraction Options Dialog (Cobol)

17 Assuming the extraction executed without errors, the view shown in
Figure 5-6 opens. This view shows a list of the component source
files that were generated for the logical component and an audit re-
port if you requested one (see “Generating Audit Reports (Cobol
Only)” on page 1-13). Click an item in the list to view the read-only
text for the item.

Figure 5-6 Components Pane — Components Tab

click to view
read-only text

Extracting Domain-Based Components
Extracting Domain-Based PL/I Components

5-14
Extracting Domain-Based PL/I Components

This section describes how to perform Domain-Based Componentiza-
tion for PL/I programs.

Note: Not-equals comparisons and value ranges are not supported in
PL/I.

To extract a domain-based PL/I component:

1 Start Component Maker as described in “Starting Component Mak-
er” on page 1-6. The Component Maker window opens. In the Com-
ponents pane (Figure 5-1 on page 5-7), double-click Domain-Based.

2 The view shown in Figure 5-2 on page 5-8 opens. This view shows
the domain-based logical components created for the programs in
the current project.

Tip: Click the button on the tool bar to restrict the display to
logical components created for the selected program.

3A To create a new logical component, select the program you want to
slice in the Clipper pane and click the button. A dialog opens
where you can enter the name of the new component in the text field.
Click OK.

3B To edit an existing logical component — to extract it with different
properties or options — double-click it.

4 The view shown in Figure 5-7 on page 5-15 opens. This view shows
the properties you can set for the logical component. The Compo-
nent of program field contains the name of the program you select-
ed in step 3A.

Extracting Domain-Based Components
Extracting Domain-Based PL/I Components

5-15
Figure 5-7 Components Pane — Properties Tab (PL/I)

5 In the Data Item Value field, click the here link. Choose one of the
following methods in the pop-up menu.

• HyperCode List to set the specialization variable to the constant
values in the list of constants specified in step 7 on page 5-16.

• User Specified Value(s) to set the specialization variable to the
value or values specified in step 8 on page 5-16.

6A To use the simplified mode of program specialization (see “Under-
standing Program Specialization in Simplified Mode” on page 5-2),
select the declaration for the specialization variable in the Source
pane, then click the link for the current selection in the Data Item
field and choose Set in the drop-down menu.

6B To use the advanced mode of program specialization (see “Under-
standing Program Specialization in Advanced Mode” on page 5-5),
select the data port of interest for the specialization variable in the
Source pane, then click the link for the current selection in the Data
Item field and choose Set in the drop-down menu.

Note: To delete a declaration or data port, select the link for the nu-
meral that identifies it and choose Delete in the pop-up menu.
To unset a declaration or data port, click it and choose Unset
in the pop-up menu. To navigate quickly to a declaration or
data port in the source, click it and choose Locate in the pop-
up menu.

click to extract
component

Extracting Domain-Based Components
Extracting Domain-Based PL/I Components

5-16
7 If you chose HyperCode List in step 5 on page 5-15, click the link
for the current selection in the List Name field and choose the list of
constants to use in the pop-up menu.

Note: To create a new list of constants, choose New in the pop-up
menu. The List Browser opens, where you can create the list.
Choose Show to display the current list in the List Browser.
Choose None to unset the list. For List Browser usage, see
Analyzing Programs in the ATW document set.

8 If you chose User Specified Value(s) in step 5 on page 5-15, click
the here link in the Values field. In the Value field, click the link for
the current selection. A dialog opens where you can enter a value in
the text field. Click OK.

Note: Put double quotation marks around a string constant with
blank spaces at the beginning or end.

9 Repeat step 7 or step 8 for each list or value you want to set. For a
given specialization variable, you can specify the methods in any
combination. To delete a list or value, select the link for the numeral
that identifies it and choose Delete in the pop-up menu.

10 Repeat steps 5-9 for each variable you want to specialize on. For
a given extraction, you can specify simplified and advanced modes
in any combination.

11 In the Description field, click the here link to open a text editor
where you can enter a description of the component. The description
appears in the box below the Description field in the Properties tab
and in the Description property for the logical component repository
object.

12 Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

13 The dialog shown in Figure 5-8 on page 5-17 opens. This dialog dis-
plays a series of panes that let you set extraction options for Domain-
Based Componentization. For usage information, see “Setting PL/I

Extracting Domain-Based Components
What’s Next?

5-17
Extraction Options” on page 2-13. When you are satisfied with your
choices, click Finish.

Figure 5-8 Components Pane — Extraction Options Dialog (PL/I)

14 Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with er-
rors or warnings, click Yes to view the errors or warnings in the Ac-
tivity Log. Otherwise, click No.

15 Assuming the extraction executed without errors, the view shown in
Figure 5-6 on page 5-13 opens. This view shows a list of the compo-
nent source files that were generated for the logical component.
Click an item in the list to view the read-only text for the item.

What’s Next?

Now that you know how to perform the basic componentization meth-
ods, let’s look at how you use Component Maker to perform more spe-
cialized tasks. The next chapter looks at Event Injection.

Extracting Domain-Based Components
What’s Next?

5-18

6-1
6
Injecting Events
vent Injection lets you adapt a legacy program to asynchronous,
event-based programming models like MQ Series. You specify
candidate locations for event calls — reads/writes, screen trans-

actions, or subprogram calls, for example; the type of operation the event
call performs — put or get; and the text of the message. For a put oper-
ation, for example, Component Maker builds a component that sends the
message and any associated variable values to a queue, where the mes-
sage can be retrieved by monitoring applications.

Creating Candidate Lists in Clipper

The HyperView Clipper pane lets you create lists of candidate loca-
tions for event injection. Use the predefined searches for file ports,
screen ports, and subprogram calls, or define your own searches. For
Clipper pane usage, see Analyzing Programs in the ATW document
set.

E

Injecting Events
Understanding Event Injection

6-2
Understanding Event Injection

Suppose that you have a piece of code that checks whether the variables
YEAR and MONTH belong to admissible ranges:

IF YEAR > 2099 OR YEAR < 1600 THEN

MOVE “WRONG YEAR” TO DOW1

ELSE

IF MONTH > 12 OR MONTH < 1 THEN

MOVE “WRONG MONTH” TO DOW1

ELSE

MOVE YEAR TO tmp1

PERFORM ISV

Suppose further that you want to send a message to your MQ Series
middleware each time valid dates are entered in these fields, along with
the value that was entered for YEAR. Here, in schematic form, is the se-
ries of steps you would perform in Component Maker to accomplish
these tasks.

1 In HyperView, create a list that contains the MOVE YEAR TO tmp1
statement in the List Browser.

2 In Component Maker, create a logical component with the following
properties:

• Component of program — select the program that contains the
fragment.

• List — select the list you created in step 1.
• Insert — specify where you want event-handling code to be

injected, before or after the injection point. We’ll inject event-
handling code after the MOVE statement.

• Operation — select the type of operation you want the event-
handling code to perform, put or get. Since we want to send a
message to middleware, we choose put.

• Include Values — specify whether you want the values of vari-
ables at the injection point to be included with the generated mes-

Injecting Events
Understanding Event Injection

6-3
sage. Since we want to send the value of YEAR with the
message, we choose true.

• Message — specify the text of the message you want to send. In
our case, the text is “Valid dates entered”.

3 In Component Maker, extract the logical component, making sure to
set the Use Middleware drop-down in the Component Type Specif-
ic options for the extraction to MQ.

The result of the extraction appears below. Notice that Component Mak-
er has arranged to inserted the text of the message and the value of the
YEAR variable into the buffer, and inserted the appropriate PERFORM
PUTQ statements into the code.

IF YEAR > 2099 OR YEAR < 1600 THEN

MOVE “WRONG YEAR” TO DOW1

ELSE

IF MONTH > 12 OR MONTH < 1 THEN

MOVE “WRONG MONTH” TO DOW1

ELSE

MOVE '<TEXT Value= “Valid dates

entered”></TEXT>' TO BUFFER

PERFORM PUTQ

STRING '<VAR Name= “YEAR” Value=
“' YEAR '”></VAR>'

'<VAR Name= “TMP1” Value= “' TMP1 '”></VAR>'

DELIMITED BY SIZE

INTO BUFFER END-STRING

PERFORM PUTQ

MOVE YEAR TO tmp1

PERFORM ISV

Injecting Events
Extracting Event-Injected Cobol Components

6-4
Extracting Event-Injected Cobol Components

This section describes how to perform Event Injection for Cobol
programs.

To extract an event-injected Cobol component:

1 Start Component Maker as described in “Starting Component Mak-
er” on page 1-6. The Component Maker window opens. In the Com-
ponents pane (Figure 6-1), double-click Event Injection.

Figure 6-1 Components Pane

2 The view shown in Figure 6-2 on page 6-5 opens. This view shows
the event-injected logical components created for the programs in
the current project.

Tip: Click the button on the tool bar to restrict the display to
logical components created for the selected program.

double-click

Injecting Events
Extracting Event-Injected Cobol Components

6-5
Figure 6-2 Components Pane — Event Injection View

3A To create a new logical component, select the program you want to
inject in the Clipper pane and click the button. A dialog opens
where you can enter the name of the new component in the text field.
Click OK.

3B To edit an existing logical component — to extract it with different
properties or options — double-click it.

4 The view shown in Figure 6-3 opens. This view shows the properties
you can set for the logical component. The Component of program
field contains the name of the program you selected in step 3A.

Figure 6-3 Components Pane — Properties Tab (Cobol)

click to create
new component

double-click to edit

click to extract
component

Injecting Events
Extracting Event-Injected Cobol Components

6-6
5 In the Insertion Points field, click the here link. In the List field,
click the link for the current selection and choose the list of injection
points in the pop-up menu. For background, see “Understanding
Event Injection” on page 6-2.

Note: To delete a list, select the link for the numeral that identifies
the list and choose Delete in the pop-up menu.

To create a new list of injection points, choose New in the
pop-up menu. The List Browser opens, where you can create
the list. Choose Show to display the current list in the List
Browser. Choose None to unset the list. For List Browser us-
age, see Analyzing Programs in the ATW document set. See
also “Creating Candidate Lists in Clipper” on page 6-1.

6 In the Insert field, click the link for the current selection and choose
after to inject event-handling code after the selected injection point,
before to inject event-handling code before the selected injection
point.

7 In the Operation field, click the link for the current selection and
choose put if you want event-handling code to send a message to
middleware, get if you want event-handling code to receive a mes-
sage from middleware.

8 In the Include Values field, click the link for the current selection
and choose true if you want the values of variables at the injection
point to be included with the generated message, false otherwise.

9 In the Message field, click the link for the current message. A dialog
opens where you can enter the text for the event message in the text
field. Click OK.

10 Repeat steps 5-9 for each list of candidate injection points. For
a given extraction, you can specify the properties for the selected
lists in any combination. Figure 6-4 shows how the properties tab
might look for an extraction with multiple lists.

Injecting Events
Extracting Event-Injected Cobol Components

6-7
Figure 6-4 Properties Tab — Multiple-List Cobol Extraction

11 In the Entry Point to use field, click the link for the current selec-
tion and choose the entry point you want to use in the pop-up menu.
For background, see Chapter 8, “Performing Entry Point Isolation.”
To unset an entry point, click it and choose Unset in the pop-up
menu.

12 In the Defragment paragraphs field, click the link for the current
selection and choose the list of paragraphs to defragment in the pop-
up menu. For background, see “Understanding Refactoring (Future
Release)” on page 7-3.

Note: To create a new list of paragraphs to defragment, choose New
in the pop-up menu. The List Browser opens, where you can
create the list. Choose Show to display the current list in the
List Browser. Choose None to unset the list. For List Browser
usage, see Analyzing Programs in the ATW document set.

13 In the Description field, click the here link to open a text editor
where you can enter a description of the component. The description
appears in the box below the Description field in the Properties tab

Injecting Events
Extracting Event-Injected Cobol Components

6-8
and in the Description property for the logical component repository
object.

14 Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

15 The dialog shown in Figure 6-5 opens. This dialog displays a series
of panes that let you set extraction options for Event Injection. For
usage information, see “Setting Cobol Extraction Options” on
page 2-2. When you are satisfied with your choices, click Finish.

Figure 6-5 Components Pane — Extraction Options Dialog (Cobol)

16 Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with er-
rors or warnings, click Yes to view the errors or warnings in the Ac-
tivity Log. Otherwise, click No.

17 Assuming the extraction executed without errors, the view shown in
Figure 6-6 opens. This view shows a list of the component source

Injecting Events
What’s Next?

6-9
files that were generated for the logical component and an audit re-
port if you requested one (see “Generating Audit Reports (Cobol
Only)” on page 1-13). Click an item in the list to view the read-only
text for the item.

Figure 6-6 Components Pane — Components Tab

What’s Next?

That completes our look at Event Injection. Now let’s see how you use
Component Maker to optimize programs.

click to view
read-only text

Injecting Events
What’s Next?

6-10

7-1
7
Eliminating Dead Code
ead Code Elimination (DCE) is an option in each of the main
component extraction methods, but you can also perform it on
a standalone basis. For each program analyzed for dead code,

standalone DCE generates a component that consists of the original
source code minus any unreferenced data items or unreachable proce-
dural statements. For Cobol and Natural applications, set the options
described in Chapter 2 if you prefer to comment out dead code rather
than remove it.

Note: You can perform Dead Code Elimination in batch mode, after
batch registration and verification. For details, see Preparing
Projects in the ATW document set.

Refactoring Cobol Programs (Future Release)

For Cobol programs, you can use an optimization method called
refactoring to translate the program into a component with the same
functionality and control flow but a simpler syntax structure. The
component is said to be defragmented. For more information, see
“Understanding Refactoring (Future Release)” on page 7-3.

D

Eliminating Dead Code
Generating Dead Code Statistics

7-2
Generating Dead Code Statistics

Set the Perform Dead Code Analysis option in the Verification tab of
the Project Options window if you want the parser to collect statistics on
the number of unreachable statements and dead data items in a program,
and mark the constructs as dead in HyperView. You can view the statis-
tics in the Legacy Estimation tool, as described in Analyzing Projects in
the ATW document set.

Note: You do not need to set this option to perform dead code elim-
ination in Component Maker.

Understanding Dead Code Elimination

Let’s look at a simple before-and-after example to see what you can ex-
pect from Dead Code Elimination.

Before:

WORKING-STORAGE SECTION.

01 USED-VARS.

05 USED1 PIC 9.

01 DEAD-VARS.

05 DEAD1 PIC 9.

05 DEAD2 PIC X.

PROCEDURE DIVISION.

FIRST-USED-PARA.

Identifying Dead Code in Cobol Programs

For Cobol programs, you can use a DCE coverage report to identify
dead code in a source program. The report displays the text of the
source program with its “live,” or extracted, code shaded in pink. For
usage details, see “Generating Coverage Reports (Cobol Only)” on
page 1-14.

Eliminating Dead Code
Understanding Refactoring (Future Release)

7-3
MOVE 1 TO USED1.

GO TO SECOND-USED-PARA.

MOVE 2 TO USED1.

DEAD-PARA1.

MOVE 0 TO DEAD2.

SECOND-USED PARA.

MOVE 3 TO USED1.

STOP RUN.

After:

WORKING-STORAGE SECTION.

01 USED-VARS.

05 USED1 PIC 9.

PROCEDURE DIVISION.

FIRST-USED-PARA.

MOVE 1 TO USED1.

GO TO SECOND-USED-PARA.

MOVE 2 TO USED1.

SECOND-USED PARA.

MOVE 3 TO USED1.

STOP RUN.

Understanding Refactoring (Future Release)

Refactoring lets you translate a Cobol program into a component with
the same functionality and control flow but a simpler syntax structure.
The component is said to be defragmented:

• It has fewer control transfers (GO TO and PERFORM statements).

• It has fewer linear sequences of operators. Sequentially executed
statements are placed next to each other, so the program is less
fragmented.

Eliminating Dead Code
Understanding Refactoring (Future Release)

7-4
Refactoring is an iterative process that identifies “basic blocks” in a pro-
gram — sets of statements or paragraphs that have a continuous flow of
control. It then unites the elements in each set and repeats the process un-
til all possible blocks have been identified.

Before:

PROCEDURE DIVISION.

WBY21P00-MAIN SECTION.

PERFORM WBY21P10-INIT.

move 2 to i.

GO TO EZECONDLBL-00001.

EZECONDLBL-00001.

IF EZEAPP = “ “

move 3 to i

GO TO EZECONDLBL-00002

END-IF

GO TO EZECONDLBL-00003

CONTINUE.

EZECONDLBL-00002.

move 4 to i

IF M1-FMAT-INFO OF WBY21W NOT = “ “

move 5 to i

GO TO EZECONDLBL-00004

END-IF

GO TO EZECONDLBL-00005

CONTINUE.

EZECONDLBL-00004.

Defragment Options

Defragment options let you choose whether you want to defragment
the whole program, only Component Maker-selected paragraphs, or
only the paragraphs you have included in the “defragment list” spec-
ified in the Properties tab (see step 6 on page 7-7). For more informa-
tion on the defragment options, see“Optimize Options” on page 2-4.

Eliminating Dead Code
Understanding Refactoring (Future Release)

7-5
PERFORM WBY21P11-FORMAT-M1.

CONTINUE.

EZECONDLBL-00005.

PERFORM WBY21P12-CONV-M1.

PERFORM WBY21P13-RESP-M1.

CONTINUE.

EZECONDLBL-00003.

PERFORM WBY21P19-TERM.

CONTINUE.

EZE-WBY21P00-MAIN-X.

GOBACK.

WBY21P10-INIT.

move 1 to i.

WBY21P11-FORMAT-M1.

WBY21P12-CONV-M1.

WBY21P13-RESP-M1.

WBY21P19-TERM.

After:

PROCEDURE DIVISION.

WBY21P00-MAIN SECTION.

move 1 to i

move 2 to i

IF EZEAPP = “ ”

move 3 to i

move 4 to i

IF M1-FMAT-INFO OF WBY21W NOT = “ ”

move 5 to i

END-IF

END-IF.

Note: Refactoring is not available for cases in which a GO TO or
PERFORM occurs at the end of an IF or EVALUATE branch.

Eliminating Dead Code
Extracting Optimized Cobol Components

7-6
Extracting Optimized Cobol Components

This section describes how to perform Dead Code Elimination and refac-
toring for Cobol programs.

To extract an optimized Cobol component:

1 Start Component Maker as described in “Starting Component Mak-
er” on page 1-6. The Component Maker window opens. In the Com-
ponents pane (Figure 7-1), double-click Dead Code Elimination.

Figure 7-1 Components Pane

2 The view shown in Figure 7-2 opens. This view shows the DCE-
based logical components created for the programs in the current
project.

Tip: Click the button on the tool bar to restrict the display to
logical components created for the selected program.

Figure 7-2 Components Pane — Dead Code Elimination View

double-click

click to create
new component

double-click to edit

Eliminating Dead Code
Extracting Optimized Cobol Components

7-7
3A To create a new logical component, select the program you want to
analyze for dead code in the Clipper pane and click the button.
A dialog opens where you can enter the name of the new component
in the text field. Click OK.

3B To edit an existing logical component — to extract it with different
properties or options — double-click it.

4 The view shown in Figure 7-3 opens. This view shows the properties
you can set for the logical component. The Component of program
field contains the name of the program you selected in step 3A on
page 7-7.

Figure 7-3 Components Pane — Properties Tab (Cobol)

5 In the Entry Point to use field, click the link for the current selec-
tion and choose the entry point you want to use in the pop-up menu.
For background, see Chapter 8, “Performing Entry Point Isolation.”.
To unset an entry point, click it and choose Unset in the pop-up
menu.

6 In the Defragment paragraphs field, click the link for the current
selection and choose the list of paragraphs to defragment in the pop-
up menu. For background, see “Understanding Refactoring (Future
Release)” on page 7-3.

Note: To create a new list of paragraphs to defragment, choose New
in the pop-up menu. The List Browser opens, where you can

click to extract
component

Eliminating Dead Code
Extracting Optimized Cobol Components

7-8
create the list. Choose Show to display the current list in the
List Browser. Choose None to unset the list. For List Browser
usage, see Analyzing Programs in the ATW document set.

7 In the Description field, click the here link to open a text editor
where you can enter a description of the component. The description
appears in the box below the Description field in the Properties tab
and in the Description property for the logical component repository
object.

8 Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

9 The dialog shown in Figure 7-4 opens. This dialog displays a series
of panes that let you set extraction options for Dead Code Elimina-
tion For usage information, see “Setting Cobol Extraction Options”
on page 2-2. When you are satisfied with your choices, click Finish.

Figure 7-4 Components Pane — Extraction Options Dialog (Cobol)

Eliminating Dead Code
Extracting Optimized Natural Components

7-9
10 Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with er-
rors or warnings, click Yes to view the errors or warnings in the Ac-
tivity Log. Otherwise, click No.

11 Assuming the extraction executed without errors, the view shown in
Figure 7-5 opens. This view shows a list of the component source
files that were generated for the logical component and an audit re-
port if you requested one (see “Generating Audit Reports (Cobol
Only)” on page 1-13). Click an item in the list to view the read-only
text for the item.

Figure 7-5 Components Pane — Components Tab

Extracting Optimized Natural Components

This section describes how to perform Dead Code Elimination for Nat-
ural programs.

To extract an optimized Natural component:

1 Start Component Maker as described in “Starting Component Mak-
er” on page 1-6. The Component Maker window opens. In the Com-
ponents pane (Figure 7-1 on page 7-6), double-click Dead Code
Elimination.

click to view
read-only text

Eliminating Dead Code
Extracting Optimized Natural Components

7-10
2 The view shown in Figure 7-2 on page 7-6 opens. This view shows
the DCE-based logical components created for the programs in the
current project.

Tip: Click the button on the tool bar to restrict the display to
logical components created for the selected program.

3A To create a new logical component, select the program you want to
analyze for dead code in the Clipper pane and click the button.
A dialog opens where you can enter the name of the new component
in the text field. Click OK.

3B To edit an existing logical component — to extract it with different
properties or options — double-click it.

4 The view shown in Figure 7-6 opens. This view shows the properties
you can set for the logical component. The Component of program
field contains the name of the program you selected in step 3A.

Figure 7-6 Components Pane — Properties Tab (Natural)

5 In the Description field, click the here link to open a text editor
where you can enter a description of the component. The description
appears in the box below the Description field in the Properties tab
and in the Description property for the logical component repository
object.

click to extract
component

Eliminating Dead Code
Extracting Optimized Natural Components

7-11
6 Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

7 The dialog shown in Figure 7-7 opens. This dialog displays a series
of panes that let you set extraction options for Dead Code Elimina-
tion. For usage information, see “Setting Natural Extraction Op-
tions” on page 2-15. When you are satisfied with your choices, click
Finish.

Figure 7-7 Components Pane — Extraction Options Dialog (Natural)

8 Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with er-
rors or warnings, click Yes to view the errors or warnings in the Ac-
tivity Log. Otherwise, click No.

9 Assuming the extraction executed without errors, the view shown in
Figure 7-5 on page 7-9 opens. This view shows a list of the compo-
nent source files that were generated for the logical component.
Click an item in the list to view the read-only text for the item.

Eliminating Dead Code
What’s Next?

7-12
What’s Next?

That’s all you need to know to perform Dead Code Elimination. Now
let’s look at how you use Component Maker to perform Entry Point
Isolation. That’s the subject of the next chapter.

8-1
8
Performing Entry Point
Isolation
ntry Point Isolation lets you build a component based on one
of multiple entry points in a legacy program — an inner entry
point in a Cobol program, for example, rather than the start of

the Procedure Division. Component Maker extracts only the functional-
ity and data definitions required for invocation from the selected point.

Entry Point Isolation is built into the main methods as an optional opti-
mization tool. It’s offered separately in case you want to use it on a stand-
alone basis.

Note: Entry Point Isolation is not available for PL/I and Natural Pro-
grams.

Extracting a Cobol Component with Entry Point Isolation

This section describes how to perform Entry Point Isolation for Cobol
programs.

E

Performing Entry Point Isolation
Extracting a Cobol Component with Entry Point Isolation

8-2
To extract a Cobol component with Entry Point Isolation:

1 Start Component Maker as described in “Starting Component Mak-
er” on page 1-6. The Component Maker window opens. In the Com-
ponents pane (Figure 8-1), double-click Entry Point Isolation.

Figure 8-1 Components Pane

2 The view shown in Figure 8-2 opens. This view shows the entry
point isolation-based logical components created for the programs
in the current project.

Tip: Click the button on the tool bar to restrict the display to
logical components created for the selected program.

Figure 8-2 Components Pane — Entry Point Isolation View

3A To create a new logical component, select the program you want to
slice in the Clipper pane and click the button. A dialog opens

double-click

click to create
new component

double-click to edit

Performing Entry Point Isolation
Extracting a Cobol Component with Entry Point Isolation

8-3
where you can enter the name of the new component in the text field.
Click OK.

3B To edit an existing logical component — to extract it with different
properties or options — double-click it.

4 The view shown in Figure 8-3 opens. This view shows the properties
you can set for the logical component. The Component of program
field contains the name of the program you selected in step 3A on
page 8-2.

Figure 8-3 Components Pane — Properties Tab (Cobol)

5 In the Entry Point to use field, click the link for the current selec-
tion and choose the entry point you want to use in the pop-up menu.
To unset an entry point, click it and choose Unset in the pop-up
menu.

6 In the Defragment paragraphs field, click the link for the current
selection and choose the list of paragraphs to defragment in the pop-
up menu. For background, see “Understanding Refactoring (Future
Release)” on page 7-3.

click to extract
component

Performing Entry Point Isolation
Extracting a Cobol Component with Entry Point Isolation

8-4
Note: To create a new list of paragraphs to defragment, choose New
in the pop-up menu. The List Browser opens, where you can
create the list. Choose Show to display the current list in the
List Browser. Choose None to unset the list. For List Browser
usage, see Analyzing Programs in the ATW document set.

7 In the Description field, click the here link to open a text editor
where you can enter a description of the component. The description
appears in the box below the Description field in the Properties tab
and in the Description property for the logical component repository
object.

8 Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

9 The dialog shown in Figure 8-4 opens. This dialog displays a series
of panes that let you set extraction options for Structure-Based Com-
ponentization. For usage information, see “Setting Cobol Extraction
Options” on page 2-2. When you are satisfied with your choices,
click Finish.

Performing Entry Point Isolation
Extracting a Cobol Component with Entry Point Isolation

8-5
Figure 8-4 Components Pane — Extraction Options Dialog (Cobol)

10 Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with er-
rors or warnings, click Yes to view the errors or warnings in the Ac-
tivity Log. Otherwise, click No.

11 Assuming the extraction executed without errors, the view shown in
Figure 8-5 opens. This view shows a list of the component source
files that were generated for the logical component and an audit re-
port if you requested one (see “Generating Audit Reports (Cobol
Only)” on page 1-13). Click an item in the list to view the read-only
text for the item.

Performing Entry Point Isolation
What’s Next?

8-6
Figure 8-5 Components Pane — Components Tab

What’s Next?

That completes your tour of Component Maker! Now you’re ready to
begin using the Transformation Workbench to re-architect legacy appli-
cations.

click to view
read-only text

A-1
A
Technical Details
his appendix gives technical details of Component Maker
behavior for a handful of narrowly focused verification and
extraction options; for Cobol parameterized slice generation;

for domain-based extraction when the specialization variable is set to
multiple values; and for Cobol arithmetic exception handling.

Verification Options

This section describes how a number of verification options may affect
component extraction. For more information on the verification options,
see Preparing Projects in the ATW document set.

Use Special IMS Calling Conventions

Select Use Special IMS Calling Conventions in the Verification tab of
the Project Options window if you want to show dependencies and ana-
lyze CALL ‘CBLTDLI’ statements for the CHNG value of their first pa-
rameter, and if the value of the third parameter is known, then generate
Calls relationship in the repository.

T

Technical Details
Verification Options

A-2
For example:

MOVE ’CHNG’ TO WS-IMS-FUNC-CODE

MOVE ’MGRW280’ TO WS-IMS-TRANSACTION

CALL ’CBLTDLI’ USING WS-IMS-FUNC-CODE

LS03-ALT-MOD-PCB

WS-IMS-TRANSACTION

When both WS-IMS-FUNC-CODE = ‘CHNG’ and WS-IMS-TRANS-
ACTION have known values, the repository is populated with the CALL
relationship between the current program and the WS-IMS-TRANSAC-
TION <value> program — in the example, ‘MGRW280’.

Override CICS Program Termination

Select Override CICS Program Terminations in the Verification tab
of the Project Options window if you want the parser to interpret CICS
RETURN, XCTL, and ABEND commands in Cobol files as not
terminating program execution.

If the source program contains CICS HANDLE CONDITION handlers,
for example, some exceptions can arise only on execution of CICS RE-
TURN. For this reason, if you want to see the code of the corresponding
handler in the component, you need to check the override box. Other-
wise, the call of the handler and hence the handler’s code are unreach-
able.

Support CICS HANDLE Statements

Select Support CICS HANDLE statements in the Verification tab of
the Project Options window if you want the parser to recognize CICS
HANDLE statements in Cobol files. EXEC CICS HANDLE statements
require processing to detect all dependencies with error-handling state-
ments. That may result in adding extra paragraphs to a component.

Perform Unisys TIP and DPS Calls Analysis

Select Perform Unisys TIP and DPS Calls Analysis in the Verification
tab of the Project Options window if you are working on a project con-

Technical Details
Verification Options

A-3
taining Unisys 2200 Cobol files and need to perform TIP and DPS calls
analysis.

This analysis tries to determine the name (value of the data item of size
8 and offset 20 from the beginning of form-header) of the screen form
used in input/output operation (at CALL ‘D$READ’, ‘D$SEND’,
‘D$SENDF’, ‘D$SENDF1’) and establish the repository relationships
ProgramSendsMap and ProgramReadsMap between the program being
analyzed and the detected screen.

For example:

01 SCREEN-946.

02 SCREEN-946-HEADER.

05 FILLER PIC X(2)VALUE SPACES.

05 FILLER PIC 9(5)COMP VALUE ZERO.

05 FILLER PIC X(4)VALUE SPACES.

05 S946-FILLER PIC X(8) VALUE ‘DPSSWS’

05 S946-NUMBER PIC 9(4) VALUE 946.

05 S946-NAME PIC X(8) VALUE ‘SCRN946’.

CALL ‘D$READ USING DPS-STATUS, SCREEN-946.

Relationship ProgramSendsMap is established between program and
Screen ‘SCRN946’.

Note: Select DPS routines may end with error if you want to
perform call analysis of DPS routines that end in an error.

Perform Unisys Common-Storage Analysis

Select Perform Unisys Common-Storage Analysis in the Verification
tab of the Project Options window if you want the system to include in
the analysis for Unisys Cobol files variables that are not explicitly de-
clared in CALL statements. This analysis adds implicit use of variables
declared in the Common Storage Section to every CALL statement of
the program being analyzed, as well as for its PROCEDURE DIVISION
USING phrase. That could lead to superfluous data dependencies be-
tween the caller and called programs in case the called program does not
use data from Common Storage.

Technical Details
Verification Options

A-4
Relaxed Parsing (Cobol and Natural Only)

The Relaxed Parsing option in the Verification tab of the Workspace
Options window lets you verify a source file despite errors. Ordinarily,
the parser stops at a statement when it encounters an error. Relaxed pars-
ing tells the parser to continue to the next statement.

For code verified with relaxed parsing, Component Maker behaves as
follows:

• Statements included in a component that contain errors are treated as
CONTINUE statements and appear in component text as comments.

• Dummy declarations for undeclared identifiers appear in component
text as comments.

• Declarations that are in error appear in component text as they were
in the original program. Corrected declarations appear in component
text as comments.

• Commented-out code is identified by an extra comment line: “ATW
assumption:”.

• For Domain-Based Componentization:

– Data items with errors in declarations are treated as data items
with unknown values.

– Statements with errors are treated as statements that do not
change values.

– Whenever a calculation error occurs, the comment “Calcula-
tion has not been completed successfully by ATW” is gener-
ated in the component before the erroneous operator, along
with an error message.

– Component Maker ignores user values for duplicated identifi-
ers (which may have an association with a wrong DECL);
structures with fields marked with errors; and undeclared
identifiers are ignored. A list of ignored values appears at the
top of the component.

– Users cannot specify values for VARs with attribute errors
(duplicated identifiers); VARs without DECLs (undeclared
identifiers); and DECLs with attribute errors.

Technical Details
Verification Options

A-5
PERFORM Behavior for MicroFocus Cobol

For MicroFocus Cobol applications, use the PERFORM Behavior op-
tion in the Verification tab of the Workspace Options window to specify
the type of PERFORM behavior the application was compiled with. You
can select:

• MicroFocus if the application was compiled by the Microfocus
compiler with the default Microfocus-style option set. This option
requires that applications that use nested PERFORM statements
complete the innermost nested PERFORM before returning control
to the previous PERFORM.

• IBM family if applications that use nested PERFORM statements
do not need to complete the innermost nested PERFORM before
returning control to the previous PERFORM.

For IBM-family PERFORM behavior, a COBOL program can contain
PERFORM mines. In informal terms, a PERFORM mine is a place in a
program that can contain an exit point of some active but not current
PERFORM during program execution.

The program below, for example, contains a mine at the end of paragraph
C. When the end of paragraph C is reached during PERFORM C THRU
D execution, the mine “snaps” into action — control is transferred to the
STOP RUN statement of paragraph A.

A.

PERFORM B THRU C.

STOP RUN.

B.

PERFORM C THRU D.

C.

DISPLAY 'C'.

* mine

D.

DISPLAY 'D'.

Setting this option to IBM-family PERFORM behavior where appropri-
ate allows the ATW parser to detect possible mines and determine their

Technical Details
Keep Legacy Copybooks Extraction Option

A-6
properties. That, in turn, lets Component Maker analyze control flow
and eliminate dead code with greater precision.

To return to our example, the mine placed at the end of paragraph C
snaps each time it is reached — such a mine is called stable. Control nev-
er falls through a stable mine. Here it means that the code in paragraph
D is unreachable.

Keep Legacy Copybooks Extraction Option

Place a check mark next to Keep Legacy Copybooks in the General
extraction options for Cobol if you want Component Maker not to gen-
erate modified copybooks for the component. Component Maker issues
a warning if including the original copybooks in the component would
result in an error.

Example 1

[COBOL]

01 A PIC X.

PROCEDURE DIVISION.

COPY CP.

[END-COBOL]

[COPYBOOK CP.CPY]

STOP RUN.

DISPLAY A.

[END-COPYBOOK CP.CPY]

Comment Component Maker issues a warning for an undeclared iden-
tifier after Dead Code Elimination.

Example 2

[COBOL]

PROCEDURE DIVISION.

COPY CP.

Technical Details
Keep Legacy Copybooks Extraction Option

A-7
STOP RUN.

P.

[END-COBOL]

[COPYBOOK CP.CPY]

DISPLAY “QA is out there”

STOP RUN.

PERFORM P.

[END-COPYBOOK CP.CPY]

Comment Component Maker issues a warning for an undeclared para-
graph after Dead Code Elimination.

Example 3

[COBOL]

working-storage section.

copy file.

PROCEDURE DIVISION.

p1.

 move 1 to a.

p2.

 display b.

 display a.

p3.

 stop run.

[END-COBOL]

[COPYBOOK file.cpy]

01 a pic 9.

01 b pic 9.

[END-COPYBOOK file.cpy]

Technical Details
How Parameterized Slices Are Generated for Cobol Programs

A-8
Comment When the option is turned on, the range component on para-
graph p2 looks like this:

[COBOL]

WORKING-STORAGE SECTION.

 COPY FILE1.

 LINKAGE SECTION.

 PROCEDURE DIVISION USING A.

[END-COBOL]

while, with the option turned off, it looks like this:

[COBOL]

WORKING-STORAGE SECTION.

 COPY FILE1-A$RULE-0.

 LINKAGE SECTION.

 COPY FILE1-A$RULE-1.

[END-COBOL]

That is, turning the option on overrides the splitting of the copybook file
into two files. Component Maker issues a warning if that could result in
an error.

How Parameterized Slices Are Generated for Cobol Programs

The specifications of input and output parameters are:

• Input

A variable of an arbitrary level from LINKAGE section or PROCE-
DURE DIVISION USING is classified as an input parameter if one
or more of its bits are used for reading before writing.

A system variable (field of DFHEIB/DFHEIBLK structures) is clas-
sified as input parameter if the Create CICS Program option is
turned off and the variable is used for writing before reading.

• Output

A variable of an arbitrary level from LINKAGE section or PROCE-

Technical Details
How Parameterized Slices Are Generated for Cobol

A-9
DURE DIVISION USING is classified as output parameter if it is
modified during the component execution.

A system variable (field of DFHEIB/DFHEIBLK structures) is clas-
sified as output parameter if the Create CICS Program option is
turned off and the variable is modified during the component execu-
tion.

• For each input parameter, the algorithm finds its first usage (it does
not have to be unique, the algorithm processes all of them) and, if the
variable (parameter from the LINKAGE section) is used for reading,
a code to copy its value from the corresponding field of BRE-IN-
PUT-STRUCTURE is inserted as close to this usage as possible.

• The algorithm takes into account all partial or conditional assign-
ments for this variable before its first usage and places PERFORM
statements before these assignments.

If a PERFORM statement can be executed more than once (as in the
case of a loop), then a flag variable (named BRE-INIT-COPY-
FLAG-[Number] of the type PIC 9 VALUE 0 is created in the
WORKING-STORAGE section, and the parameter is copied into
the corresponding variable only the first time this PERFORM state-
ment is executed.

• For all component exit points, the algorithm inserts a code to copy
all output parameters from working-storage variables to the corre-
sponding fields of BRE-OUTPUT-STRUCTURE.

Variables of any levels (rather than only 01-level structures together
with all their fields) can act as parameters. This enables to exclude
unnecessary parameters and make the resulting programs more com-
pact and clear.

For each operator, for which a parameter list is generated, the fol-
lowing transformations are applied to that entire list:

• All FD entries are replaced with their data descriptions.
• All array fields are replaced with the corresponding array decla-

rations.

Technical Details
Setting a Specialization Variable to Multiple Values

A-10
• All upper-level RENAMES clauses are replaced with the re-
named declarations.

• All upper-level REDEFINES clauses with an object (including
the object itself, if it is present in the parameter list) are replaced
with a clause of a greater size.

• All REDEFINES and RENAMES entries of any level are re-
moved from the list.

• All variable-length arrays are converted into fixed-length of the
corresponding maximal size.

• All keys and indices are removed from array declarations.
• All VALUE clauses are removed from all declarations.
• All conditional names are replaced with the corresponding data

items.

Setting a Specialization Variable to Multiple Values

For Domain-Based Componentization, Component Maker lets you set
the specialization variable to a range of values — between 1 and 10 in-
clusive, for example — or to multiple values — not only CHECK but
CREDIT-CARD, for example. You can also set the variable to all values
not in the range or set of possible values — every value but CHECK and
CREDIT-CARD, for example.

Component Maker uses multiple values to predict conditional branches
intelligently. In the following code fragment, for example, the second IF
statement cannot be resolved with a single value, because of the two con-
flicting values of Z coming down from the different code paths of the
first IF. With multiple values, however, Component Maker correctly
resolves the second IF, because all the possible values of the variable
at the point of the IF are known:

IF X EQUAL Y

 MOVE 1 TO Z

ELSE

 MOVE 2 TO Z

DISPLAY Z.

Technical Details
Setting a Specialization Variable to Multiple Values

A-11
IF Z EQUAL 3

 DISPLAY “Z=3”

ELSE

 DISPLAY “Z<>3”

Keep in mind that only the following COBOL statements are interpreted
with multiple values:

• COMPUTE

• MOVE

• ADD

• SUBTRACT

• MULTIPLY

• DIVIDE

That is, if the input of such a statement is defined, then, after interpreta-
tion, its output can be defined as well.

Example — Single-Value Case

MOVE 1 TO Y.

MOVE 1 TO X.

ADD X TO Y.

DISPLAY Y.

IF Y EQUAL 2 THEN...

In this fragment of code, the value of Y in the IF statement (as well as in
DISPLAY) is known, and so the THEN branch can be predicted.

Example — Multiple-Value case

IF X EQUAL 0

 MOVE 1 TO Y

ELSE

 MOVE 2 TO Y.

ADD 1 TO Y.

IF Y = 10 THEN... ELSE...

Technical Details
Arithmetic Exception Handling (COBOL Only)

A-12
In this case, Component Maker determines that Y in the second IF state-
ment can equal only 2 or 3, so the statement can be resolved to the ELSE
branch.

Note: The statement interpretation capability is available only when
you define the specialization variable “positively” — as equal-
ling a range or set of values — not when you define the vari-
able “negatively”— as not equalling a range or set of values.

Arithmetic Exception Handling (COBOL Only)

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT state-
ments can have ON SIZE ERROR and NOT ON SIZE ERROR phrases.
The phrase ON SIZE ERROR contains an arithmetic exception handler.
Statements in the ON SIZE ERROR phrase are executed when one of the
arithmetic exception conditions take place:

• The value of an arithmetic operation result is larger than the result-
ant-identifier picture size.

• Division by zero.

• Violation of the rules for the evaluation of exponentiation.

For MULTIPLY arithmetic statements, if any of the individual opera-
tions produces a size error condition, the statements in the ON SIZE ER-
ROR phrase is not executed until all of the individual operations are
completed.

Control is transferred to the statements defined in the phrase NOT ON
SIZE ERROR when a NOT ON SIZE ERROR phrase is specified and
no exceptions occurred. In that case, the ON SIZE ERROR is ignored.

Specializer processes an arithmetic statement with exception handlers in
the following way:

• If a (NOT) ON SIZE ERROR condition occurred in some interpret-
ing pass, then the arithmetic statement is replaced by the statements
in the corresponding phrase.

• Those statements will be interpreted at the next pass.

GL-1
Glossary
Activity Log

The Activity Log is a chronological record of your activities in the
current Asset Transformation Workbench (ATW) session.

ADABAS

ADABAS is a Software AG relational DBMS for large, mission-crit-
ical applications.

Animator

Animator lets you step through the code displayed in a HyperView
pane. You can choose program branches yourself, or have the anima-
tor choose them randomly.

API

API stands for application programming interface, a set of routines,
protocols, and tools for building software applications.

applet

See Java applet.

Application Analyzer

Application Analyzer is a set of non-invasive interactive tools used to
analyze and document legacy systems.

GlossaryGL-2
Application Architect

Application Architect uses advanced algorithms to partition code into
new components and perform Dead Code Elimination.

Application Namespace tool

The Application Namespace tool creates a conveniently organized
dictionary that helps you navigate through your system’s terminology
and modify it as necessary.

Application Partitioner

Application Partitioner identifies legacy subsystems and partitions
them into self-contained projects based on an analysis of repository
contents.

Application Profiler

Application Profiler, consisting of WebGen and Profiler, generates a
set of HTML views of a legacy application based on the object model
created in a previous analysis.

AS/400

The AS/400 is a midrange server designed for small businesses and
departments in large enterprises.

Asset Transformation Workbench (ATW)

Asset Transformation Workbench (ATW) is a suite of PC-based soft-
ware products for analyzing, re-architecting, and transforming legacy
applications.

Batch Application Viewer

Batch Application Viewer performs low-level analysis of batch pro-
cesses.

batch refresh

The batch refresh feature lets you register and verify source files in
batch mode. Other utilities packaged with the feature let you analyze
application complexity, run WebGen, and, if you are licensed to use
the Application Architect product, perform Dead Code Elimination.

Bird’s Eye pane

The Bird’s Eye pane works with the HyperView Source pane to let
you quickly identify the location of a code construct relative to the
entire program.

Glossary GL-3
BMS

BMS stands for Basic Mapping Support, an interface between appli-
cation formats and CICS that formats input and output display data.

BSTR

BSTR is a Microsoft format for transferring binary strings.

business rule

A business rule is a named container that identifies and documents
code segments according to their business function. Business rules en-
capsulate an application’s business logic, making the application eas-
ier to understand, document, maintain, and test.

Business Rule Manager

Business Rule Manager lets you generate business rules from code
segments extracted manually from source or autodetected.

Callie pane

The HyperView Callie pane displays a diagram that shows the flow of
control between paragraphs or procedures in a program.

CDML

CDML stands for Cobol Data Manipulation Language, an extension
of the Cobol programming language that enables applications pro-
grammers to code special instructions to manipulate data in a DMS
database and to compile those instructions for execution.

Change Analyzer

Change Analyzer identifies the class of data items used to perform a
business function in a legacy application. Among other uses, it lets
you answer the kinds of “What if?” questions posed in the recent past
by the industry-wide changes for Y2K, Zip+4, and the Euro dollar:
“What if I change the type of this variable, or the length of this field
— what other fields will I also have to change?”

CICS

CICS stands for Customer Information Control System, a program
that allows concurrent processing of transactions from multiple termi-
nals.

GlossaryGL-4
Clipper

The HyperView Clipper tool lets you create lists of candidates for
business rule extraction, event injection, and other tasks. Each list
captures the results of a different stage of your analysis and serves as
input for subsequent tasks.

Cobol

Cobol stands for Common Business-Oriented Language, a high-level
programming language used for business applications.

COM

COM stands for Component Object Model, a software architecture
developed by Microsoft to build component-based applications. COM
objects are discrete components, each with a unique identity, which
expose interfaces that allow applications and other components to ac-
cess their features.

complexity

A project’s complexity is an estimate of how difficult it is to maintain,
analyze, transform, and so forth.

component

A component is a self-contained program that can be reused with
other programs in modular fashion.

Component Maker

The HyperView Component Maker tool lets you “slice out” compo-
nents from legacy applications — not only component executables but
associated Cobol copybooks, PL/I includes, and Natural data areas as
well.

computation-based component extraction

Computation-based component extraction lets you build a component
that contains all the code necessary to calculate the value of a variable
at a particular point in a program — the value of a DayOfTheWeek
variable, for example, where it is used to populate a report attribute or
screen.

Configuration Manager

Configuration Manager is a tool used to enable Asset Transformation
Workbench (ATW) products and configure your workbench for the

Glossary GL-5
tools, programming languages, legacy dialects, and character sets in
use at your site.

construct

A construct is an item in the parse tree for a source file — a section,
statement, condition, variable, or the like. A variable, for example, can
be related in the parse tree to any of three other constructs — a decla-
ration, a dataport, or a condition. You view the parse tree for a source
file in the HyperView Context pane.

Context pane

The HyperView Context pane displays the parse tree for the selected
source file. The parse tree displays source code constructs — sections,
paragraphs, statements, conditions, variables and so forth — in hier-
archical form, making it easy to locate code constructs quickly.

copybook

A copybook is a common piece of source code to be copied into many
Cobol source programs. Copybooks are functionally equivalent to C
and C++ include files.

CORBA

CORBA stands for Common Object Request Broker Architecture, an
architecture that enables distributed objects to communicate with one
another regardless of the programming language they were written in
or the operating system they are running on.

CSD file

CSD stands for CICS System Definition. A CSD file is a VSAM data
set containing a resource definition record for every resource defined
to CICS.

database schema

A database schema is the structure of a database system, described in
a formal language supported by the DBMS. In a relational database,
the schema defines the tables, the fields in each table, and the relation-
ships between fields and tables.

dataport

A dataport is an input/output statement or a call to or from another
program.

GlossaryGL-6
DB/2

DB/2 stands for Database 2, an IBM system for managing relational
databases.

DBCS

DBCS stands for double-byte character string, a character set that uses
two-byte (16-bit) characters rather than one-byte (8-bit) characters.

DBMS

DBMS stands for database management system, a collection of pro-
grams that enable you to store, modify, and extract information from
a database.

DDL

DDL stands for Data Description Language (DDL), a language that
describes the structure of data in a database.

Dead Code Elimination

Dead code elimination is a type of component extraction that removes
unused (“dead”) code from a legacy application.

decision resolution

Decision resolution lets you identify and resolve dynamic calls and
other relationships that the parser cannot resolve from static sources.

Diagrammer

Diagrammer lets you view the relationships between the objects in a
project interactively — programs, files, DDL, Java, screen maps, and
more. These relationships describe the ways in which application
objects interact. Compare Quick Diagrammer.

DMS

DMS stands for Data Management System, a Unisys database man-
agement software product that conforms to the CODASYL (network)
data model and enables data definition, manipulation, and mainte-
nance in mass storage database files.

domain-based component extraction

Domain-based component extraction “specializes” a program based
on the values of one or more variables. The specialized program is
typically intended for reuse “in place” — in the original application
but under new external circumstances.

Glossary GL-7
DPS

DPS stands for Display Processing System, a Unisys product that
enables users to define forms on a terminal.

ECL

ECL stands for Executive Control Language, the operating system
language for Unisys OS 2200 systems.

effort

Effort is an estimate of the time it will take to complete a task related
to a project, based on weighted values for selected complexity met-
rics.

EJB

EJB stands for Enterprise JavaBeans, a Java API developed by Sun
Microsystems that defines a component architecture for multi-tier
client/server systems.

EMF

EMF stands for Enhanced MetaFile, a Windows format for graphic
images.

entity

An entity is an object in the repository model for a legacy application.
The relationships between entities describe the ways in which the el-
ements of the application interact.

entry point isolation

Entry point isolation extracts a component that contains only the func-
tionality and data definitions required for invocation from the selected
entry point.

event injection

Event injection is a type of component extraction that adapts a legacy
program to asynchronous, event-based programming models.

Execution Path pane

The HyperView Execution Path pane displays a hierarchical view and
diagram of the conditions that determine the flow of control in a pro-
gram.

GlossaryGL-8
external subroutine extraction

External subroutine extraction is a type of structure-based component
extraction that replaces a single internal subroutine in a Natural pro-
gram with an external subroutine.

FCT

FCT stands for File Control Table (FCT), a CICS table that contains
processing requirements for output data streams received via a remote
job entry session from a host system. Compare PCT.

Flowchart pane

The HyperView Flowchart pane displays a diagram of the flow of
control between statements in a paragraph or procedure.

Global Data Flow tool

The HyperView Global Data Flow tool performs low-level analysis of
program data flows.

HTML

HTML stands for HyperText Markup Language, the authoring lan-
guage used to create documents on the World Wide Web.

HyperView

HyperView is a set of program analysis tools that let you analyze leg-
acy programs interactively, by examining synchronized, complemen-
tary views of the same information — source, context, impacts, and so
forth.

IDL

IDL stands for Interface Definition Language (IDL), a generic term
for a language that lets a program or object written in one language
communicate with another program written in an unknown language.

IDMS

IDMS stands for Integrated Database Management System, a Com-
puter Associates database management system for the IBM main-
frame and compatible environments.

Impact pane

The HyperView Impact pane displays a hierarchical view and diagram
of the impact trace for a program variable. An impact trace describes

Glossary GL-9
how data items interact with each other in a program — exchange val-
ues, use each other in computations, and so forth.

Impact Report pane

The HyperView Impact Report pane shows the flow of data from a
startup item to every data item that would be affected by its modifica-
tion. The report is organized in hierarchical form according to the
depth of the affected item.

IMS

IMS stands for Information Management System, an IBM program
product that provides transaction management and database manage-
ment functions for large commercial application systems.

Java

Java is a high-level object-oriented programming language developed
by Sun Microsystems.

Java applet

A Java applet is a program that can be sent with a Web page. Java ap-
plets perform interactive animations, immediate calculations, and oth-
er simple tasks without having to send a user request back to the
server.

JavaBeans

JavaBeans is a specification developed by Sun Microsystems that de-
fines how Java objects interact. An object that conforms to this spec-
ification is called a JavaBean.

JCL

JCL stands for Job Control Language, a language for identifying a job
to OS/390 and for describing the job’s requirements.

JDBC

JDBC stands for Java Database Connectivity, a standard for accessing
diverse database systems using the Java programming language.

job

A job is the unit of work that a computer operator or a program called
a job scheduler gives to the operating system. In IBM mainframe op-
erating systems, a job is described with job control language (JCL).

GlossaryGL-10
job dependencies

Batch Application Viewer treats jobs as dependent if one writes to a
dataset and the other reads from the same dataset. Occasionally, you
may want to define dependencies between jobs based on other criteria
— administrative needs such as scheduling, for example.

logical component

A logical component is an abstract repository object that gives you ac-
cess to the source files that comprise a component.

MFS

MFS stands for Message Format Service, a method of processing IMS
input and output messages.

Missing Copybooks Resolution tool

The Missing Copybooks Resolution tool resolves undefined variables
in missing copybooks for Cobol programs verified with the relaxed
parsing option.

Model Reference pane

The HyperView Model Reference pane displays the parse tree meta-
model in text and diagram form.

name-based partitioning

Name-based partitioning is a partitioning algorithm that assigns
source files to projects based on text matching of source file names
with specified patterns.

Natural

Natural is a programming language developed and marketed by Soft-
ware AG for the enterprise environment.

object model

An object model is a representation of an application and its encapsu-
lated data.

object-oriented programming

Object-oriented programming organizes programs in terms of objects
rather than actions, and data rather than logic.

Glossary GL-11
ODBC

ODBC stands for Open Database Connectivity, a standard for access-
ing diverse database systems.

orphan

An orphan is an object that does not exist in the reference tree for any
startup object. Orphans can be removed from a system without alter-
ing its behavior.

Orphan Analysis tool

The Orphan Analysis tool lets you analyze and resolve orphans.

parser

The Asset Transformation Workbench (ATW) parser defines the ob-
ject model and parse tree for a legacy application.

parse tree

A parse tree defines the relationships among the constructs that com-
prise a source file — its sections, paragraphs, statements, conditions,
variables, and so forth.

PCT

PCT stands for Program Control Table, a CICS table that defines the
transactions that the CICS system can process. Compare FCT.

PL/I

PL/I stands for Programming Language One, a third-generation pro-
gramming language developed in the early 1960s as an alternative to
assembler language, Cobol, and FORTRAN.

PL/I Call Diagrammer

PL/I Call Diagrammer performs low-level analysis of PL/I programs.
Use it to examine call flows for internal procedures that the
Diagrammer is unable to model.

profile

Profiles are HTML views into a repository that show all of the analy-
sis you have done on an application. Profiles are convenient ways to
share information about legacy applications across your organization.

GlossaryGL-12
Profiler

Profiler is a Web server-based tool that offers company-wide access to
profiles of any repository in your organization. It gives managers,
business analysts, testers, and customer support personnel convenient,
browser-based access to analyzed legacy code.

project

A project is a logical subdivision of a workspace. You might have a
project for the batch portion of your application and another project
for the online portion, for example. You can also use a project to col-
lect items for discrete tasks — all the source files affected by a change
request, for example.

QSAM

QSAM stands for Queued Sequential Access Method, a type of
processing that uses a queue of data records—either input records
awaiting processing or output records that have been processed and
are ready for transfer to storage or an output device.

Quick Diagrammer

The Quick Diagrammer tool lets you view relationships for selected
objects only, rather than an entire project. Compare Diagrammer.

refactoring

Refactoring translates a program into a component with the same
functionality and control flow, but a simpler syntax structure.

reference reports

Asset Transformation Workbench (ATW) offers three related reports
that you can use to identify missing or unneeded program elements in
application source: an unresolved report, an unreferred report, and a
cross-reference report.

relationship

The relationships between entities in the repository model for a legacy
application describe the ways in which the elements of the application
interact.

relationship-based partitioning

Relationship-based partitioning is a partitioning algorithm that as-
signs source files to projects based on the extent to which the source

Glossary GL-13
files are related. If two source files reference the same copybook, for
example, they can be regarded as “tightly related,” at least as com-
pared with source files that do not reference the same copybook.

relationship weight

A relationship weight determines the importance of that relationship
in calculating the connection between source files in relationship-
based partitioning.

relaxed parsing

Relaxed parsing lets you verify a source file despite errors. Ordinarily,
the parser stops at a statement when it encounters an error. Relaxed
parsing tells the parser to continue to the next statement.

repository

A repository is a database of program objects that comprise the model
for a workspace.

Repository Browser

The Asset Transformation Workbench (ATW) Repository Browser
displays the contents of the current workspace.

Resource Retriever

The Resource Retriever tool lets you identify and restore missing
CICS file connectors and transactions in file control tables (FCT) and
program control tables (PCT) for Cobol and PL/I programs.

Rules pane

The HyperView Rules pane lets you create business rules from code
segments extracted manually from source or autodetected. You can
also create business rules from candidates listed in Clipper.

schema

See database schema.

scope

The scope of a diagram determines the objects and relationships it dis-
plays. See Diagrammer.

seed field

A seed field is the object of a Change Analyzer search for the class of
data items that need to be changed.

GlossaryGL-14
Source pane

The HyperView Source pane displays view-only source code for the
selected file and included files.

SQL

SQL stands for Structured Query Language, a standard language for
relational database operations

structure-based component extraction

Structure-based component extraction is a type of component extrac-
tion that builds a component from a range of inline code — Cobol
paragraphs, for example.

synonym

A synonym is a data field whose value is related to the value of the
matched seed field — a field whose value is assigned by a MOVE or
REDEFINE statement, for example.

system program

A system program is a generic program — a mainframe sort utility, for
example — provided by the underlying system and used in unmodi-
fied form in the legacy application.

TIP

TIP stands for Transaction Processing, the Unisys real-time system
for processing transactions under Exec control.

token

In the Application Namespace tool, a token is an element in a program
identifier delimited by a hyphen (-) or underscore (_). In the identifier
WS01-CUST-FIELD, for example, there are three tokens: WS01,
CUST, and FIELD.

transaction

A transaction is a sequence of information exchange and related work
(such as database updating) that is treated as a unit for the purposes of
satisfying a request and for ensuring database integrity.

Unknown Statements Resolution tool

The Unknown Statements Resolution tool resolves incorrect or unsup-
ported statements in Cobol programs verified with the relaxed parsing
option.

Glossary GL-15
User Interface tool

The User Interface tool lets you analyze the interaction between lega-
cy screens and program logic, and generate an HTML or Java GUI
based on the interaction.

VALTAB

VALTAB stands for Validation Table, which contains the information
the system needs to locate, load, and execute transaction programs.
See also TIP.

VSAM

VSAM stands for Virtual Storage Access Method, an IBM program
that controls communication and the flow of data in a Systems Net-
work Architecture network.

WebGen

WebGen generates HTML views of the repositories on your worksta-
tion. You can publish the views to Profiler, where they can be accessed
by any member of your organization with a browser.

workspace

A workspace is a named container for an application or a portion of an
application. Workspaces can be divided into projects.

XML

XML stands for Extensible Markup Language, a specification for cre-
ating common information formats.

GlossaryGL-16

Bibliography
• IBM Asset Transformation Workbench v1.1 Getting Started (SC31-6877-00)

• IBM Asset Transformation Workbench v1.1 Preparing Projects (SC31-6879-00)

• IBM Asset Transformation Workbench v1.1 Analyzing Projects (SC31-6880-00)

• IBM Asset Transformation Workbench v1.1 Analyzing Programs (SC31-6878-00)

• IBM Asset Transformation Workbench v1.1 Profiling Projects (SC31-6881-00)

• IBM Asset Transformation Workbench v1.1 Creating Components (SC31-6876-00)

• IBM Asset Transformation Workbench v1.1 Parser Reference (SC31-6882-00)

• IBM Asset Transformation Workbench v1.1 Architecture Reference (SC31-6898-00)
© Copyright IBM Corp. 2004 1

 2 IBM Asset Transformation Workbench v1.1: Creating Components

Notices
This information was developed for products and services offered in the U.S.A. IBM® may not
offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available
in your area. Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual property
right may be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You
can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION •AS IS• WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express
or implied warranties in certain transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions
of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at those
Web sites are not part of the materials for this IBM product and use of those Web sites is at
your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you. Licensees of this program who wish to have
information about it for the purpose of enabling: (i) the exchange of information between
independently created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:
© Copyright IBM Corp. 2004 1

IBM Corporation

P.O. Box 12195, Dept. TL3B/B503/B313

3039 Cornwallis Rd.

Research Triangle Park, NC 27709-2195

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly. Some
measurements may have been made on development-level systems and there is no guarantee
that these measurements will be the same on generally available systems. Furthermore, some
measurement may have been estimated through extrapolation. Actual results may vary. Users
of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only. This information contains examples of
data and reports used in daily business operations. To illustrate them as completely as possible,
the examples include the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.
 2 IBM Asset Transformation Workbench v1.1: Creating Components

Trademarks

The following terms are trademarks of the IBM Corporation or its subsidiaries in the United
States or other countries or both:

The following terms are trademarks of other companies:

Java and JavaScript are registered trademarks and Sun Solaris and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product and service names may be trademarks or service marks of others.

Table 1. Trademarks

IBM MVS

AS400 CICS

IMS DB/2

Database 2 OS/390

 S/390 z/OS
 Notices 3

 4 IBM Asset Transformation Workbench v1.1: Creating Components

Index-1
Index
A
arithmetic exception handling A-12
audit reports 1-13, 2-7

B
Batch Dead Code Elimination 7-1
blocking 2-4, 4-2

C
CICS components 1-15, 2-3
Cobol extraction options 2-2
commenting out unused code 2-8, 2-17,

7-1
complement 3-1, 3-2
Component Maker

general usage 1-10
options 2-1
outputs 1-5
overview 1-1, 1-2
sample usage 1-7
starting 1-6

Computation-Based Componentization
blocking 2-4, 4-2
Cobol 4-3
Natural 4-7
overview 4-1
parameterized slices 3-3
required verification options 3-5, 4-1
type-specific options 2-9
variable- versus statement-based 2-9,

4-2
conversion options 2-12, 2-15, 2-17
converting components 1-5, 2-12
copybooks, preserving versus modifying

2-3, 2-7, A-6
coverage reports 1-14

Index-2
D
data areas 2-17
Dead Code Elimination

batch 7-1
Cobol 7-6
generating statistics 7-2
Natural 7-9
overview 7-1
type-specific options 2-4, 2-14, 2-15,

2-17
usage example 7-2

defragmenting programs 7-3
document extraction options 2-7
Domain-Based Componentization

advanced mode 5-5
Cobol 5-7
lite mode 5-6
overview 5-1
PL/I 5-14
simplified mode 5-2
type-specific options 2-10

dynamic call 2-9

E
Entry Point Isolation

overview 8-1
performing 8-2
renaming entry points 2-3

Event Injection
overview 6-1, 8-1
performing 6-4
sample usage 6-2
type-specific options 2-11
use with Clipper 6-1

exporting components 1-15
External Subroutine Componentization

3-17

F
FILLERs 2-6

G
general extraction options 2-2, 2-13, 2-15

H
HTML extraction trace 2-10
HyperView lists 1-12

I
IMS calling conventions A-1
include files, preserving versus modifying

2-15
interface extraction options 2-3

L
logical component

computation-based 4-1
domain-based 5-1
eliminating dead code 7-1
event-injected 6-1, 8-1
exporting 1-15
isolating entry points 8-1
overview 1-5

M
MAP file 2-17
marking modified code 2-8
MicroFocus Cobol PERFORM behavior

A-5
MQ Series 2-11, 6-1

N
nested IFs 2-5

Index-3
O
optimization

extraction options 2-4, 2-15
overview 7-1

options
Cobol 2-2
Natural 2-15
overview 2-1
PL/I 2-13
verification 2-1

P
parameterized slices

extracting 2-3, 2-14
overview 3-1, 3-3
technical details A-8

PL/I extraction options 2-13
program specialization 5-1

R
ranges 3-1, 3-8
reason codes 1-13, 2-7
refactoring

options 2-5
overview 7-3
performing 7-6

registration 1-5
relaxed extraction 2-9
relaxed parsing option A-4

S
specializing programs 5-1
Structure-Based Componentization

Cobol 3-6
Natural 3-14, 3-17
parameterized slices 3-3
PL/I 3-11

ranges 3-1
type-specific options 2-8, 2-14, 2-16

subroutine 3-17
support comments 2-7

U
Unisys common-storage analysis A-3
Unisys TIP and DPS calls analysis A-2
unreachable code, removing 2-4, 2-14
unused data items, removing 2-6, 2-15

V
verification 1-5
verification options 2-1, 3-5, 4-1, A-1

Index-4

IBM@
Product Number: 5724-L54
SC31-6876-00

07SC31687600
(1
P

)
P

/N
:5

72
4-

L5
4

*5
72

4-
L5

4*

	Contents
	Preface
	Introducing Component Maker
	Componentization Methods
	Structure-Based Componentization (Cobol Only)
	Computation-Based Componentization (Cobol and Natural Only)
	Domain-Based Componentization (Cobol and PL/I Only)
	Event Injection (Cobol Only)
	Dead Code Elimination (DCE)
	Entry Point Isolation (Cobol Only)

	Componentization Outputs
	Starting Component Maker
	Component Maker Basics
	Getting Started in the Components Pane
	Working in the Components Pane
	Working with HyperView Lists
	Generating Audit Reports (Cobol Only)
	Generating Coverage Reports (Cobol Only)
	Exporting Logical Components
	Generating CICS Components (Cobol Only)

	What’s Next?

	Setting Extraction Options
	Opening the Extraction Options Windows
	Setting Cobol Extraction Options
	General Options
	Interface Options
	Optimize Options
	Document Options
	Component Type Specific Options
	Structure Based Type-Specific Options
	Computation-Based Type-Specific Options
	Domain-Based Type-Specific Options
	Event Injection Type-Specific Options

	Component Conversion Options

	Setting PL/I Extraction Options
	General Options
	Component Type-Specific Options
	Structure Based Type-Specific Options (Future Release)
	Dead Code Elimination Type-Specific Options

	Component Conversion Options

	Setting Natural Extraction Options
	General Options
	Optimize Options
	Component Type-Specific Options
	Structure-Based Type-Specific Options (Future Release)
	Dead Code Elimination Type-Specific Options

	Component Conversion Options

	What’s Next?

	Extracting Structure-Based Components
	Understanding Ranges
	Specifying Ranges for Cobol Programs
	Specifying Ranges for PL/I Programs (Future Release)
	Specifying Ranges for Natural Programs (Future Release)

	Understanding Parameterized Slices
	Example

	Extracting Structure-Based Cobol Components
	Extracting Structure-Based PL/I Components (Future Release)
	Extracting Structure-Based Natural Components (Future Release)
	Extracting External Subroutines from Natural Programs (Future Release)
	What’s Next?

	Extracting Computation- Based Components
	Understanding Variable-Based Extraction
	Understanding Blocking
	Extracting Computation-Based Cobol Components
	Extracting Computation-Based Natural Components
	What’s Next?

	Extracting Domain-Based Components
	Understanding Program Specialization in Simplified Mode
	Understanding Program Specialization in Advanced Mode
	Understanding Program Specialization “Lite”
	Extracting Domain-Based Cobol Components
	Extracting Domain-Based PL/I Components
	What’s Next?

	Injecting Events
	Understanding Event Injection
	Extracting Event-Injected Cobol Components
	What’s Next?

	Eliminating Dead Code
	Generating Dead Code Statistics
	Understanding Dead Code Elimination
	Understanding Refactoring (Future Release)
	Extracting Optimized Cobol Components
	Extracting Optimized Natural Components
	What’s Next?

	Performing Entry Point Isolation
	Extracting a Cobol Component with Entry Point Isolation
	What’s Next?

	Technical Details
	Verification Options
	Use Special IMS Calling Conventions
	Override CICS Program Termination
	Support CICS HANDLE Statements
	Perform Unisys TIP and DPS Calls Analysis
	Perform Unisys Common-Storage Analysis
	Relaxed Parsing (Cobol and Natural Only)
	PERFORM Behavior for MicroFocus Cobol

	Keep Legacy Copybooks Extraction Option
	How Parameterized Slices Are Generated for Cobol Programs
	Setting a Specialization Variable to Multiple Values
	Arithmetic Exception Handling (COBOL Only)

	Glossary
	Bibliography
	Notices
	Index

