
WebSphere® IBM WebSphere Multichannel Bank Transformation Toolkit
Version 7.1

Solution Architecture

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
35.

This edition applies to Version 7, Release 1, Modification 0, of IBM WebSphere Multichannel Bank Transformation
Toolkit (5724-H82) and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can send to the following address:

IBM China Software Development Lab
Bank Transformation Toolkit Product
Diamond Building, ZhongGuanCun Software Park, Dongbeiwang West Road No.8,
ShangDi, Haidian District, Beijing 100193 P. R. China

Include the title and order number of this book, and the page number or topic related to your comment.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1998, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Solution architecture overview 1
Introduction 1

The Value of Bank Transformation Toolkit to
Business 1

The importance of Channels to the Banks. . . 1
Multichannel transformation 3
How BTT helps 4

Architectural objectives 4
Architectural principles 5
Multichannel consideration 7

Multichannel architecture 9
Client 10

Java Desktop Client environment 11
HTML client environment 13
Web 2.0 client environment 14
Mobile client environment 17

Channel application server 18
Application presentation layer 18
Channel aware logic layer 20

Enterprise Server 20
SOA fundamentals 21

Development 23
Bank Transformation Toolkit best practices 24

Programmers' tips 24
BTT Context tree 24
Application complexity management 26
Tracing 27
Separation of infrastructure and application
code 27

Performance tips 29
Supported platforms and technical requirements . . 31

Components and platforms 31
Components and technical requirements. . . . 32

Notices 35
Trademarks 37

© Copyright IBM Corp. 1998, 2011 iii

iv IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

Solution architecture overview

This document is mainly for Solution Architects, who require an overall description
of what the IBM® WebSphere® Multichannel Bank Transformation Toolkit (Bank
Transformation Toolkit) provides and how it may be used to build a solution. This
document is also useful for IT professionals and executives who require a broad
understanding of the architecture of this product and the strategy for its
implementation.

Readers of this document are assumed to be familiar with object-oriented software
and related development techniques, and to have a general knowledge of J2EE and
related technologies, network computing, and Internet technologies.

Introduction
IBM WebSphere Multichannel Bank Transformation Toolkit is a component-based
toolkit for developing enterprise e-business applications. WebSphere Multichannel
Bank Transformation Toolkit enables the development of interfaces to the services
of a financial institution's information system so that they become ubiquitous
through all delivery channels (such as the traditional branch, call center, banking
kiosk, Internet banking, and mobile access). This minimizes the need for
developing new code and reduces the time required to make new financial services
available to all delivery channels.

The architecture and technological approach of WebSphere Multichannel Bank
Transformation Toolkit creates retail delivery solutions that preserve investment in
existing enterprise systems while accounting for the inherent instability of any
infrastructure due to innovations that appear frequently in the high-tech industry.
While providing a way to preserve existing systems, WebSphere Multichannel
Bank Transformation Toolkit is not tied to one particular platform because it is
built on Java, the programming language of choice for handling platform change.
The toolkit also takes advantage of existing platforms and technologies such as
Eclipse, Web Services, J2EE, Struts, and so on. The WebSphere Multichannel Bank
Transformation Toolkit runtime architecture is based on the J2EE architecture with
extensions, and many development tools the toolkit provides are Eclipse plug-ins.

The Value of Bank Transformation Toolkit to Business
This section lists the value of Bank Transformation Toolkit to your business:

The importance of Channels to the Banks
Financial institutions compete and excel across six common competencies:
Distribution, Manufactory, Operations, Insight, Risk and Financial Management.
The institutions are striving to deliver them faster, at lower cost, and with higher
quality than the competitors. Channel applications are the IT systems that facilitate
the Distribution.

The following diagram shows the six competencies:

© Copyright IBM Corp. 1998, 2011 1

A lack of channel integration can cause customer dissatisfaction as shown in the
following figure:

For this and other reasons, banks are investigating the channel applications. Other
reasons include the following:
v Increased domestic and foreign competition
v Increased choices and ease of switching
v Customer service is improving in other industries
v Increasing multichannel contacts are changing expectations
v Constant innovation and improvement
v The branch is the hub of most banking activities and the most visible

distribution outlet
v The online experience is essential to managing the relationship and researching

new opportunities

Bank channel applications enable nearly all the customer interactions.

2 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

The ability to quickly enhance channel applications, while keeping them integrated
and consistent can be the source of competitive advantage.

Multichannel transformation
To pave the way for effective channel application investment, IBM provides a
multichannel transformation based on a Service Oriented Architecture (SOA).

The following figure shows the multichannel transformation to SOA.

A key component of the Multichannel architecture that IBM provides is WebSphere
Multichannel Bank Transformation Toolkit (BTT).

BTT provides a common framework for building integrated and consistent channel
applications as shown in the following figure:

Solution architecture 3

How BTT helps
Bank Transformation Toolkit can help increase and ensure the benefits of IT
investments in channel applications:
v Channel applications are built on a common framework, leveraging new

capabilities across all channels:
– Home Banking
– Teller
– ATM
– Contact Center
– Mobile Banking
By leveraging investments across all channels (as opposed to requiring duplicate
investment), projects are completed with less effort and with greater benefit to
the business.

v Consistent and seamless user experience, including multiple countries with
separate core systems

v Simple, agile and predictable development process leading to:
– More predictable success in development projects
– High confidence in IT
– High level of flexibility in obtaining and reallocating resources

v Proven and stable runtime environment:
– Less risk when deploying new releases

v A smooth migration process for each release of BTT:
– Ensure that investments in IT are leveraged over time
– Existing systems can benefit from continuous new BTT features

Architectural objectives
The architectural objectives of the IBM WebSphere Multichannel Bank
Transformation Toolkit align with IT strategies that have a basis in controlling costs
over time. Following are the objectives:

4 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

v Reduce costs - A network computing architecture should exploit the network in
order to reduce costs. It allows reduction of the computing resources required on
the client and supports deployment on network computers, using the network as
a vehicle for on-demand distribution of software components. In addition, the
architecture supports deployment of reusable business components in a
managed server environment.

v Preserve investment - An important goal is to preserve the financial
institution's investment in host systems and computing infrastructure, as well as
in the toolkit-based solutions themselves and other new technologies. This
makes it important to carefully consider technology selections in order to ensure
that they are strategic and will have enduring value.

v Offer choices - Allow customers the flexibility to choose their hardware,
operating systems, networking systems, databases, communication protocols,
and third-party software products. The system must also support flexible
distribution of function and data based on the network environment and
physical topology.

v Evolve gracefully - The system must be flexible and resilient to both business
and technological changes. This helps to support rapid application development
and to increase competitiveness by improving time to market.

v Provide manageability - Once deployed and in production, the system must be
easy to manage and resilient to changes in the runtime environment.

v Allow incremental investment - The system must support the ability to
incrementally develop and deploy new business function and technology. In
addition, it must support the ability to include new toolkit-based solutions as
they become available.

v Maximize usability - The system as a whole must be well suited to the needs
of its users: not only end users but also developers and systems management
personnel.

v Maximize reusability - The system must be constructed in such a way as to
maximize reuse of components in all retail delivery solutions. In addition, it
must be able to meet the diverse needs of solutions and access channels in
financial institutions around the world.

Architectural principles
The architecture must be open, scalable, and easy to implement. These principles
are related to the architecture objectives, and are the basis for the platform
selections, programming model specifications, and overall non-functional
requirements of all the toolkit-based solutions. The major architectural principles of
open, scalable, and easy to implement, presented below, demonstrate how the IBM
approach for building robust, cost-effective enterprise systems support the
architectural objectives. Following are the principles supported by the Bank
Transformation Toolkit:
v Open

– Supports industry standards - The architecture is open because it uses open
industry and e-business standards such as TCP/IP, HTML, HTTP, J2EE (Java,
Java Server Pages, JCA, JDBC, EJB, and so on) and Web Services wherever
possible. These standards provide a solid foundation and make it easier to
use available proven components instead of building custom ones, and to
change vendors and implementations to satisfy changing business
requirements. Industry standards tend to be strategic and have longer life
spans because of the high levels of investment and commitment involved
with creating them.

Solution architecture 5

– Is extendable and customizable - The toolkit is extendable and customizable
at many different layers within the architecture. This means it can be used in
a wide range of situations and can accommodate specialized requirements
that are specific to an individual customer, country, or region.

– Provides insulation - The toolkit isolates and abstracts interactions with
other systems to insulate toolkit-based applications from the specifics of other
systems. In a global solution, this is essential to provide the flexibility to
adapt to many diverse environments, particularly different host systems and
databases. The programming model of the toolkit insulates applications from
changes in the underlying technology.

– Preserves investment - The principles listed above ensure the preservation of
customer investments. The toolkit safely preserves the investments in current
hardware, software, operating systems, network, communication
infrastructure and protocols, and back-end subsystems of the customer
environment.

v Scalable

– Supports three logical tiers - The benefits of a logical three-tier architecture
such as the network computing architecture are well known. The network
computing architecture is logical in that it specifies that the presentation layer
must be decoupled from the business logic, which must be decoupled from
the data access layer, but it does not specify how to physically deploy the
tiers. Although this approach is a form of isolation, it also provides scalability
by allowing each of these layers of the system to change independently of the
others. That is, the platform selections and design of each layer can change
without impacting the rest of the system. This architecture also requires that
the presentation layer be "thin" to realize the goals of network computing.
This means that workstations with a small amount of physical memory and
no virtual memory can download and execute the application. The main
objective of the solution architecture is to support the model of a multiple-tier
network computing application while also allowing engagement teams to
implement solutions based on other application models such as a two-tier "fat
client" application.

– Supports replaceable components - Components are packages of system
function with established interfaces and a predetermined execution
environment. As long as a component is within its required execution
environment and it interacts with other system components through its public
interfaces, it is replaceable with minimal effort. This construction enables high
levels of reuse and allows the system to evolve without causing large ripple
effects. It also allows the implementation of components and their execution
environments to vary to meet performance or scalability requirements.

– Provides enterprise topology independence - This notion extends the idea of
a logical three-tier architecture so that not only are the three tiers independent
of physical location, but system components are independent of any specific
physical topology. This makes toolkit-based solutions highly flexible for
deployment in different environments by allowing customers to configure the
system as needed to achieve the scalability desired for their environment.

v Easy to implement

– Uses visual programming - Where possible, toolkit-based solutions use
visual programming to assemble the application from parts. This technique is
particularly effective in developing application screens and rapid assembly of
graphical user interfaces.

– Separates analysis from design - Analysis should be a separate process from
design and has its own distinct work products. Solutions of this product suite
should use analysis to form an entirely logical representation of system

6 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

function that is independent of technology or implementation. This helps to
retain the value of earlier development effort even if the implementation must
change entirely.

– Provides a development methodology - This solution provides a
methodology for guiding the development process in an engagement project
to make solution implementation easier and the deployment faster.

– Is transaction-oriented - Most projects require a solution in which an
enterprise-centric back-end system executes most of the application business
logic and the front-end of the solution, running in a delivery channel, must
behave as a transaction posting engine to run the transactions in the back-end
system. The Bank Transformation Toolkit excels at this type of solution and
optimizes the processing of the transactions especially in high transaction
volume environments.

– Minimizes development effort - The toolkit highly promotes the
externalization of parameters so that business operations behave differently
depending on their specific set of parameters. This enables solutions to
delivery new functionality without requiring new code, simply by adding
new external parameters to the system. One example is the toolkit business
processes that are defined with BPEL. This enables toolkit application
developers to edit process logic using visual design and modeling tools.

Multichannel consideration
The IBM WebSphere Multichannel Bank Transformation Toolkit provides an
architecture for building applications that are deliverable on multiple channels.
Enterprises within the banking and financial services industries have successfully
deployed the toolkit in various topologies as the infrastructure for enterprise
systems with high transaction volumes. While the following topologies are specific
to the banking and financial services industries, for which the toolkit was
originally conceived, the ability of the toolkit to handle multiple business
distribution channels is generic and can apply to other industries.

See the following figure:

Bank teller
A bank teller application topology consists of a number of client
workstations with financial devices attached. The workstation downloads

Solution architecture 7

the client application on request from a Web server. The client applications,
which mainly deal with presentation and local financial device handling,
have access to the branch server (that is, the solution application server)
using the HTTP or SSL protocols.

The solution application server provides common services such as
electronic journaling and parameter tables to the client workstations, as
well as access to the transactional logic of the back-end enterprise servers.
A toolkit server application can also be deployed on the physical server for
a regional or central data center without changes to the application.

Internet banking
In an Internet banking topology, users obtain access to financial services
through a Web browser (or other device) connected to the Internet. The
user interface is normally HTML with additional technologies such as
JavaScript, DHTML, or XML. In such an environment, the solution
application server is able to process requests from Web browsers (or other
devices that issue HTTP requests), obtain the proper data from enterprise
servers, and generate the appropriate view for the client device to display,
using HTML pages for Web browsers or XML messages for those devices
that support it. The application server is usually located at the central site,
and is protected by a firewall.

Kiosks and ATMs
The toolkit can be used in kiosks or ATMs that run Internet technologies
such as a Web browser and Java. In this environment, the client usually is
a Java application (or applet). In addition to the presentation logic, the
client application manages the financial devices normally present in a kiosk
(such as MSR/E, chip card reader, receipt printer, passbook printer, bar
code readers, and touch screen displays) using the financial device services
that the toolkit provides. The kiosk connects to the application server using
the HTTP or SSL protocols. In some cases, kiosks are located in branches,
which handle them as branch workstations. Kiosks can also be connected
directly to the server through public or private lines.

Mobile terminal and PDA
Users equipped with laptops running a Web browser can connect to
corporate toolkit servers using the SSL protocol. In this scenario, the toolkit
server is usually located at the central site and is protected by a firewall. It
is also feasible to have mobile users connected to the branches to which
they belong.

The following diagram illustrates these business distribution channels:

8 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

Multichannel architecture
Figure 1 on page 10 shows the architecture of IBM WebSphere Multichannel Bank
Transformation Toolkit (BTT):

Solution architecture 9

Client
A client in the three-tier architecture contains little logic. The logic it does have is
usually presentation logic or logic required locally to do such things as accessing
financial devices or validating entered data. The code to execute the client logic is
downloaded on an on-demand basis, and therefore does not reside on the client,
but on a Web server. IBM WebSphere Multichannel Bank Transformation Toolkit
supports any kind of physical client device that uses the following technologies:
v Java Desktop Client (BTT Swing and RCP)
v HTML Client (Web 1.0 Client)
v Web 2.0 Client
v Mobile Client

WebSphere Multichannel Bank Transformation Toolkit provides implementations
for current client technologies but these concrete implementations anticipate that
significant differences might be found when realizing solutions. The toolkit is not
limited to these technologies because its design is generic and can be extended to
support other technologies.

Figure 1. Architecture of WebSphere Multichannel Bank Transformation Toolkit (BTT)

10 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

Figure 2 shows position of clients in the WebSphere Multichannel Bank
Transformation Toolkit (BTT) architecture:

Java Desktop Client environment
The Java Desktop Client is an application that runs on client desktop platform. The
Bank Transformation Toolkit recommended solution is the Rich Client Platform
(RCP) which is built on eclipse technology or IBM Lotus® Expeditor. The BTT Rich
Client Infrastructure is used for banking customer to rapidly build banking
desktop systems. BTT offers an end to end solution to develop Rich Client based
teller applications, including transaction development, transaction UI development,
transaction panel deployment, application layout management, and so on.

In the following example, the application presentation layer runs dependently on
the client side, and the application logic layer run on the WebSphere Application
Server. This example shows how the presentation layer works and uses BTT
Operation to perform the business logic:
1. The user requests a transfer request and provides the required input data:

a. The user starts up RCP based teller sample.

Figure 2. The position of clients in the WebSphere Multichannel Bank Transformation Toolkit (BTT) architecture

Solution architecture 11

b. The user clicks the navigation item named transfer in navigation view or
input corresponding launch code in quick launch bar to start this
transaction.

c. The user chooses FROM account and TO account numbers.
d. The user inputs the transfer number and presses Submit.
e. When the user clicks Submit, the client creates the transfer client operation

and creates a context for it. The client then chains it to an upper level
context.

f. The client operation collects the server required data fields and uses
formatter to format context into a String.

g. The client operation uses CS Client Service to send this formatted String
into the Server side.

2. The application presentation layer sends the customer search request to the
application logic layer.
a. In the server, the servlet acts as the request handler that receives the

transaction operation.
b. The request handler un-formats the request String into request operation

context, and chains it to the session context.
c. The request handler calls BTT Server Operation to execute server side

business logic based on the context request.
d. After business logic is processed, the server context is formatted into String

as response, and the response is sent to the client side.
3. The client side receives the server response:

a. The client operation receives the server response.
b. The client fires an operation replied event to notify other components that

this C/S communication has successfully finished.
c. UI components receive the operation replied event and refresh them. The

reply code displays in the transfer transaction panel.

The following picture is BTT RCP Demo Screen:

12 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

HTML client environment
An HTML client is generally used for a home banking application built to use the
Bank Transformation Toolkit. An HTML client can also be used in any other kind
of application, such as a bank teller application or a CRMS. The client machine
requires only a Web browser to run the application.

When the user visits the start page of the application and logs in, the browser
displays a menu or HTML desktop with a list of available processes. A detailed
sequence of the events in runtime is as follows:
1. The user requests a customer search and provides the required input data:
v The user clicks a customer search link in the HTML desktop. This user action

sends a request to the server servlet. The request parameters include the
name of the FlowProcessor that is required.

v On the server side, the requested processor is created and initialized. The
FlowProcessor, which is in its initial state because it is the first time it has
been used, moves to the next state, to which a JSP page is assigned. The JSP
page is executed, and it generates the HTML page for the reply. The reply
includes some control data, such as the current processor identifier.

v On the client side, the HTML page that is the reply displays a form with
input fields for the customer search criteria.

v The user enters the input data and clicks a Submit button. The form data will
be sent as an HTTP post request to the toolkit server servlet. The request
data contains the FlowProcessor name and process ID as hidden fields, along
with the other input data.

2. The Customer Search business operation is executed on the application server.
v On the server side, the requested processor is restored, and the request data

is validated and unformatted on top of the processor context, and the event
is passed to the current state of the processor. These actions advance the
process flow. A result can be an input event for the current state, or a trigger
for the processor to move to its next state. As the entry action for this state,
the Customer Search server operation is executed.

v As part of the execution of the server operation, a customer search
transaction request is sent to the host. When the host returns a reply, the
message is unformatted into the server operation context.

v Another step of the server operation updates the Electronic Journal with data
from the transaction. The execution of the server operation finishes.

3. The client view displays a list of customers matching the search criteria.
v The HTML FlowProcessor moves to its next state, which is a JSP page state.

The JSP page is processed, which generates an HTML page with the reply.
The reply is the list of customers who match the search criteria, which has
been updated in the context by the Customer Search operation.

v The client displays the HTML page that contains the Customer Search
results.

4. The user selects a customer and clicks a Submit button, which performs a
Customer Details operation.
v The user action on the GUI sends a new HTTP request. The request data

contains the FlowProcessor name, the process ID, and the selected customer.
v The process flow advances, and the state executes the Customer Details

server operation.
5. The client displays the details in a different panel, from which additional

actions can be executed.

Solution architecture 13

v The HTML FlowProcessor moves to its next state, which results in the
execution of another JSP page, and generates an HTML reply page. The reply
contains customer information obtained from the processor context, which
was updated with data from the host reply. The process ends when the user
accepts the information and does not perform another operation. The
FlowProcessor in the server then enters a final state, which presents the
home page to the user.

Web 2.0 client environment
The IBM WebSphere Multichannel Bank Transformation Toolkit Web 2.0 client is
used for home banking applications or web-based teller applications. Only the web
browser is required to run the application on the client machine.

The WebSphere Multichannel Bank Transformation Toolkit Web 2.0 client consists
of the Web 2.0 Workplace component and the Web 2.0 Transaction UI component.

The Web 2.0 Workplace

The Web 2.0 Workplace, which responsible for site UI layout, contains a full set of
Personalized Internet Banking Package, which is based on HTML, DHTML,
JavaScript and CSS, which illustrates fancy User Experience, Personalized Layout,
User Contribution and multiple Widget Container Templates (such as iWidget,
Google Gadget and Web 1.0 Compatible Widget and so on).

The WebSphere Multichannel Bank Transformation Toolkit Web 2.0 Workplace
presents a new User Experience about the web application through the following
features:
v User interface and user experience

1. Enable the end user to customize the internet banking workplace service and
user interface (UI), and different end users have their own internet banking
workplaces.

2. Provides a workplace that is entirely based on XML.
3. CSS Binding User Interface feature. WebSphere Multichannel Bank

Transformation Toolkit Web 2.0 Workplace Definition XML binds CSS, which
makes managing the UI easier.

4. Multiple Window Support. Users can open multiple windows by using tabs
in the same browser.

v Services
1. A subscription mechanism. End users can subscribe services that he or she is

interested in.
2. An XML-based service deployment mechanism. The new service can be

deployed to the end user. If the bank provides a new service, just edit the
Service List XML file, and the end user can subscribe to the service. It is
never-release programming model.

3. Follow the iWidget Standard, and provide widget runtime and some
predefined widgets. Developers can also extend to develop their own widget.
And WebSphere Multichannel Bank Transformation Toolkit widget
definitions can be used in IBM Lotus Mashup.

4. Enable Cross Selling through the service subscription mechanism. A
Recommend Service List for cross selling can be provided for each user.

5. In the transaction UI and Web 1.0. compatible widget implementation is
provided to execute or display traditional Web 1.0 applications.

v Security

14 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

Support HTTPS
When a user visits the start page of the internet banking and logs in, a menu
with a list of available services is displayed in the browser. The user can select
any service that he or she is interested in, and then add it to his or her internet
banking home page. The sequence of the events in runtime are as follows:
1. Besides the service list, the page layout consists of four main areas, the title

area, the tab area, the column area and the footer area. This personalized
information is kept in XML format.

2. Users can use the Tab Management to classify the content. Create the new
tag or remove the old one, such as, stocks or transactions.

3. Users can manage the column to organize the content. Add new columns in
a window, or remove old columns.

Remember: If a column is removed, all widgets contained in this column are
destroyed.

4. Users can change the UI Style conveniently with CSS Binding. The style
includes color, font color and size and so on.

5. Service Deployment and Subscription. All the services which the bank
provides to customers are displayed in the service list. Users can look up
their interested category from the service list.

6. Users can manage the service module in the page. They could minimize
maximize or close the service module.

7. Users can drag and drop modules between column areas in the page.
8. Communication between the two widgets (80 H). Widgets can communicate

with each other. If one widget wires event, another widget can capture it if
registered.

9. Describe the service by XML. WebSphere Multichannel Bank Transformation
Toolkit Server keep record of each single user's layout XML file which
records the user's unique perspective. Next time when the user login again,
the personalized home page will be restored again.

The following figure is a WebSphere Multichannel Bank Transformation Toolkit
Web 2.0 Workplace demo screen:

Solution architecture 15

The Web 2.0 Transaction UI

Web 2.0 Transaction UI is Dojo-based Web 2.0 page for form-level UI controls.

WebSphere Multichannel Bank Transformation Toolkit provides extensions of Dojo
Dijit controls, which exploit properties defined through WebSphere Multichannel
Bank Transformation Toolkit tools to provide client-side validation, AJAX
communication, event handling, and widget manipulation.

Web 2.0 Transaction UI pages and logic can be defined by using the following
features that are provided by WebSphere Multichannel Bank Transformation
Toolkit version 7.1:
v Using HTML table to manage dojo control layout
v Dojo widget support, including Label, Image, TextBox, TextArea, Button,

CheckBox, RadioButton, Anchor, ComboBox, RichTextEidtor, Form, Grid, Tree,
Error Message Widget, and so on.

v Support for Dojo-based UI screen flows and data sharing between different
pages.

v Support for form submission and AJAX submission through Dojo-based UI.
AJAX form support enables data to be sent from forms to a server
asynchronously and enables forms to be updated with response data without
requiring the entire page to be refreshed. This reduces the response time and
improves interactivity with the end-user.

v Support for both client side and server side validation and error messages.
Client-side validation, including support for optional or mandatory entries,
range-based, mask-based and minimum/maximum length entries. Whenever a
validation error is detected, immediate feedback is provided through flexible
validation messages. The error messages can be placed anywhere in the input
form or presented as a popup dialog.

v Support for client side Dojo-based NLS mechanism. Internationalization support
through components that are aware of the end-user location and the format of
user input; for example, when presenting dates or numerical amounts.

Figure 3. A WebSphere Multichannel Bank Transformation Toolkit Web 2.0 Workplace demo screen

16 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

v File upload support. Client and server side components support the sending of
files from the client workstation to the server.

v ECA rule parser to adopt zero code event handling rules. The ECA rules can be
used to define complex cross-validation behavior, such as enabling input fields
and making the input fields mandatory depending on the value of other fields.
For example, a Marital status field can be validated and a Spouse data input
section can be configured to be mandatory if a value of married has been
selected in the Marital status field.

Figure 4 shows a sample page from a checkout flow in an account opening that
was created with WebSphere Multichannel Bank Transformation Toolkit version
7.1:

Mobile client environment
The IBM WebSphere Multichannel Bank Transformation Toolkit mobile adapter is
used for building mobile bank applications. It is built on IBM J9 VM. You can use
it on clients which have software supporting IBM J9 VM installed, for example,
IBM Lotus Expeditor Client for Devices. IBM Lotus Expeditor Client for Devices is
a software program that provides a runtime environment and integrated
middleware components for extending many enterprise applications to mobile
devices running on supported operating systems. A client side that is developed
with the Lotus Expeditor for device can use the WebSphere Multichannel Bank
Transformation Toolkit mobile adapter to connect to the WebSphere Multichannel
Bank Transformation Toolkit server side easily.

Figure 4. A sample page created with WebSphere Multichannel Bank Transformation Toolkit version 7.1

Solution architecture 17

Channel application server
The channel application server includes the following layers:
v Presentation layer
v Channel aware logic layer

Figure 5 shows position of channel application server in the architecture of
WebSphere Multichannel Bank Transformation Toolkit:

Application presentation layer
The application presentation layer works in conjunction with a system application
server (such as IBM WebSphere Application Server) to provide a layered multiple
channel architecture. The application presentation layer works as a bridge that
connects the clients with the application logic layer, which performs business
transactions. Java clients and HTML clients use different application presentation
components to connect to the application logic layer.

To get connected with the application logic layer, the presentation layer defines the
following entities:

Figure 5. The position of the channel application server in the architecture of WebSphere Multichannel Bank
Transformation Toolkit.

18 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

v Java RequestHandler processes a Java client (Swing based or SWT based)
request for a particular type of requester. The toolkit registers these handlers to
determine which specific handler it needs for a specific request. For example,
there are different RequestHandlers for requests coming from a Java client in a
home banking environment, from a Java client in a branch teller environment,
and from a Java client in a call center environment. The RequestHandler is
responsible for interacting with the client side operations that controls the dialog
navigation for a specific client type and for interacting with invokers that call
application logic layer transactions.

v Java PresentationHandler processes the reply for a particular type of requester
(for example, DOJO).

v Web2.0 RequestHandler is responsible for processing a particular request from
Web 2.0 Workspace. The request handler performs the following tasks to
integrate with the application:
– Executes a generic application operation for the Web 2.0 Workspace.
– Determines the appropriate presentation handler from the handler registry to

render the results back to the client.
v Web2.0 PresentationHandler is responsible for processing the reply to the Web

2.0 Workspace.
v HTML RequestHandler is responsible for processing a particular request from

an HTML client (The HTML client represents the traditional Web1.0 application
here). The handler may need to be aware of the device type. This is managed by
the channel context. The request handler performs the following tasks to
integrate with the application:
– Establishes the session between the client and the server for the specific

device
– Executes a generic application operation for the HTML channel
– Determines the appropriate presentation handler from the handler registry to

render the results back to the client.
v HTML PresentationHandler is responsible for processing the reply to the HTML

client. The main API provided by this class is void
processReply(ChannelContext, ServerOperation). This starts the process of
dynamically creating the HTML and rendering it to the client using the servlet
JSP engine.

v AjaxRequestHandler defines how AJAX request logic is handled. The
AjaxRequestHandler has the following functions:
– AJAX request validation: when an HTTP request is made, the

AjaxRequestHandler handler determines whether the request is an HTML
channel request or an AJAX channel request.

– Initializes channel parameters and generates data that is required by the
AJAX channel to process an AJAX request.

– Concurrent request support: enables two or more requests to be executed at
the same time in a session.

– AJAX time out value: specifies how long an AJAX request will be timeout.
– Context handling: when a request is made, the AjaxRequestHandler

methodrebuilds the current context. If a request is raised in a processor, the
AjaxRequestHandler method rebuilds the processor context and chains the
request operation context to the processor context so that the operation can
access the processor context. If a request is not raised in a processor, the
AjaxRequestHandler method chains the AJAX operation context under the
current session context. When a request has been processed, the
AjaxRequestHandler method unchains the operation context from the parent

Solution architecture 19

context. If the request is the last active request and the parent is a process, it
will save the processor context in the cache as html processor done.

v AjaxHtmlPresentationHandler processes the response of Ajax request, format
the response message as JSON string. The client browser handles the string as a
JSON

To pass business process requests to the application logic layer, the application
presentation layer has the Invoker Component. The WebSphere Multichannel Bank
Transformation Toolkit Invoker Component creates invokers according to the
different protocol so that the requester can invoke the EJBs, Web services, POJO or
JMS that perform the business processes in the application logic layer.

Channel aware logic layer
The Bank Transformation Toolkit channel logic layer provides all the options to
execute BTT logic related with different channel applications in the application
server from applications running in disparate client environments.

The entry points to the application server are different based on the type of client
device and the communication protocol being used by the client application. Each
of these entry points relates to a specific request handler, which is able to manage
channel-specific considerations. To isolate the way of receiving the requests for a
specific channel from the application server logic, the toolkit defines some common
interfaces to be used by any of the request handler implementations. These
definitions are known as the multichannel architecture, and all the connectors
listed in client/server connectivity implement the multichannel support.

For specific channel application, such as Internet Banking or Teller system,
different channel application has different channel aware logic. For example, the
Account Query transaction in Internet Banking can display the final result to user,
which only contains basic account information, while the Teller System will show
full information, although the two transactions in backend system are the same.

BTT provides channel aware logic layer and associated components, such as
channel-aware Operation/Operation Step Definition, channel-aware Processor. You
can define Operation/Operation Step and Processor components in both the
channel-aware logic layer and the business layer. Note that if you define
Operation/Operation Step and Processor components in the channel-aware logic
layer, the Operation/Operation Step and Processor will only take actions that are
related to the channel logic, but not the reusable channel-independent business
logic.

Enterprise Server
Enterprise Server is separated into two parts:
v SOA fundamentals
v Back end server

The enterprise server, or the back-end server, contains the existing core business
logic of the financial institution that is accessed by the toolkit application. A
toolkit application does not require changes to such a system or changes to its
messaging interface. This is possible because the toolkit includes a rich set of
back-end system connector components and message formatters. BTT JCA SNA
and Invoker components are provided for SNA (LUA interfaces), JMS, EJB,
WebServices, and any other customer extensions.

20 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

On the other hand, if you have already built up the SOA based back-end system
such as ESB, the toolkit enables your applications to support Service Oriented
Architecture (SOA) integration.
WebSphere Multichannel Bank Transformation Toolkit interfaces with WebSphere
Process Server (which contains WebSphere ESB) for business process automation
and enterprise application integration. WebSphere Message Broker and
WebSphere Business Services Fabric can be added depending on the SOA
requirements. But typically, they do not interface with WebSphere Multichannel
Bank Transformation Toolkit directly.

Figure 6 shows the position of the enterprise server in the architecture of
WebSphere Multichannel Bank Transformation Toolkit (BTT):

SOA fundamentals
For backend integration, Bank Transformation Toolkit enables your channel
applications to support Service Oriented Architecture (SOA). BTT interfaces with
WebSphere Process Server (which contains WebSphere ESB) for business process

Figure 6. The position of the enterprise server in the architecture of WebSphere Multichannel Bank Transformation
Toolkit (BTT)

Solution architecture 21

automation and enterprise application integration. WebSphere Message Broker and
the WebSphere Business Services Fabric can be added depending on the SOA
requirements.

When a complex transaction involves backend Web services, the toolkit supports
Web Services JSR 109 standard and it allows Web service invocations from the
toolkit’s own business layer. On the other hand, the BTT business logic can be
treated as a service to be reused by the other application systems. Furthermore, the
Web service interfaces of JCA SNA LU0/LU62 connectors are in readiness for the
Web service invocation for the legacy connectivity.

The following diagram shows the relationship between BTT and SOA:

The entire banking SOA reference architecture includes the following flow and
control concepts:
v Channel Interaction Orchestration

– Screenflow: A lightweight Web/rich client tier control mechanism (usually a
finit-state-machine) that guides the user from screen to screen. States and
flows are encoded in XML.

– Channel Application Microflow: A lightweight Web/rich client tier control
mechanism that provides a structured way to organize channel application
operations such as screen flows, logging, reusable channel specific logic,
invocation of business processes, and invoking back-end services. Tooling is
specific to and integrated with the channel application platform. Flows are
visually designed and encoded in XML.

v Business Process Automation
– Macroflow: Long-running process or process involving human tasks to be

performed by multiple people. Encoded in BPEL as a linear process or
Business State Machines.

v Enterprise Application Integration

22 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

– Service Composition: The creation of a course-grained service from a number
of finer-grained services and simple flow logic. Usually created using SCA
components.

– Service Orchestration: Invocation of multiple services in the context of a
microflow or macroflow execution. A flow or state machine can be used as
the control construct to create a composite service from element services.

– Routing and Transformation: Routing of a service request to a service
provider at runtime according to pre-determined rules and the transformation
of the service name, number and type of parameters, and data structures as
needed so as to insulate service consumers from service providers.

– Dynamic Service Selection: Determination of how to resolve a service binding
at runtime.

Unified invocation architecture: IBM WebSphere Multichannel Bank
Transformation Toolkit provides a unified invocation architecture.

You can define different types of invoker in the definition XML file. WebSphere
Multichannel Bank Transformation Toolkit provides unified APIs to retrieve
invocation instance from the Invoker Factory and to execute synchronous or
asynchronous invocation. Because this framework separates the application code of
the invocation and the invocation target definition and parameter, it provides great
flexibility. If you want to change the invocation parameter, or change the
invocation type, for example, from EJB to Web service, the application code does
not need to be changed. You need to change only the invoker XML definition.

The WebSphere Multichannel Bank Transformation Toolkit invoker framework also
supports multiple XML files of invoker definition. Invoker Factory is an instance
factory. It can have many instances and copies in memory. Each Invoker Factory
represents one XML definition. You can query Invoker Instance from the factory by
the ID defined in the XML files.

This unified invocation architecture can invoke the following types of target:
v POJO
v EJB
v WSProxy
v Web Service DII
v JMS

Development
IBM WebSphere Multichannel Bank Transformation Toolkit is developed with IBM
Rational® Application Developer. WebSphere Multichannel Bank Transformation
Toolkit provides a set of tools that support end-to-end development and
deployment of e-business applications. It facilitates development tasks such as
rapid application development, creating industrial-strength Java programs, and
maintaining multiple editions of programs.

The toolkit provides a set of components built as UI pages, Java classes and
JavaBeans. The method signatures and class definition of a bean follow a pattern
that permits visual development environments to determine the properties and
behaviour of the bean.

The following development tools can be used to build a solution with WebSphere
Multichannel Bank Transformation Toolkit:

Solution architecture 23

v Formatter Simulator
v Transaction editor
v XUI editor
v Web services tooling

Bank Transformation Toolkit best practices
This section introduces the best practices, programmers' tips, and performance tips
of Bank Transformation Toolkit:

Programmers' tips
This section contains a set of recommendations and programmers' tips to be used
when developing Bank Transformation Toolkit applications.

BTT Context tree
The BTT Context tree is a central piece of the framework. A proper design of the
context tree is critical for the maintainability and robustness of the application. The
following recommendations are given in relationship with this subject.

Session context size: This section contains recommended best practices on how to
minimize the allocation of data in the BTT session context. The BTT session context
stores the data that a given user needs across several requests. It is usually the
major consumer of memory resources in the server. The average size of this data
determines how many users can be allocated in a given JVM; thus highly
impacting the application's scalability. Moreover, if session persistence is used, for
example in order to enable transparent failover, the session size becomes more
critical because it greatly impacts performance, given that all the session data will
be serialized at the end of each request.

The recommendations for minimizing the session context size are as follows:
v Session size profiling: Calculate the average session size of the application in

order to ensure that the available hardware can allocate the planned number of
users.
A profiling done with tools such as LoadRunner or Rational Application
Developer (RAD) will help determine the exact size of a given session instance.
Whereas, WAS Performance Monitoring Infrastructure (PMI) can directly report
the average HttpSession size in a server.

v Session size capacity planning: The following calculations should be performed
for each WebSphere cluster where BTT is planned to be installed:
– Determine the memory available to the application (JVM size) per server.
– Keep failover in mind. In the case where one server in the cluster is down,

the rest of the servers should still be able to allocate the extra resources. This
means that you must account for one server less than the total number of
servers available.

– Divide the total available memory by the planned number of users.
This will result in a rough estimation of the maximum session size. If, after
profiling, the average session size is close to this maximum, the application
should be modified in order to reduce its session size.

v Reducing session size: The following tips can be applied when designing or
reviewing the session context.
– Ensure that all data defined in the session context is really necessary at that

level:

24 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

- The data is user-specific, and therefore cannot be placed on a higher-level,
shared context.

- The data is required along several user interactions, and therefore cannot
be placed at a lower-level, operation context.

If any of these two requirements is not present, then the data can be placed at
a different level, reducing the total size of the session context.

– If a given data entity is required at the session level, analyze the usage
pattern of this entity:
- If the data is seldom used and the performance impact of retrieving it from

the source is not too big, consider defining it at a lower-level context.
- If the data is used throughout several steps of an interaction involving

multiple pages, implement a mechanism for creating the data structure at
the beginning of the interaction and destroying it at the end. This can be
done by defining data at the flow context level, or by adding data to the
session context (for example through a dynamic keyed collection) and
removing it at the end of the interaction.

If session persistence is enabled, the following recommendations should also be
considered in order to reduce the performance impact of the persistence process:
v Persistence performance impact is mostly caused by the serialization process. It

is therefore very beneficial to provide a custom serialization implementation for
the data being serialized. With the BTT framework, this means usually only the
DataField, KeyedCollection and IndexedCollection will need to be extended,
since all context data is stored in this kind of structures.

v Instead of serializing all session context data after every request, consider
developing an extension that marks which objects have been updated, then
design your persistence database so that each different session object is stored in
a separate field. This approach can have great performance benefits, but is
difficult to implement and may require active participation of the application
code, that is to notify whenever an object has been modified so it can be
appropriately marked for serialization.

Shared contexts: Shared contexts are those contexts above the session contexts.
These contexts are potentially accessed from multiple threads corresponding to
different user requests at the same time, so some considerations have to be taken
into account:
v Read-only data: only place the read-only data in shared contexts. There are no

concurrency problems when accessing read-only data, so this is perfectly safe.
v Read-write data: in the case where data needs to be updated during the

execution of the application, consider the following two problems:
– Concurrency: because multiple threads can access the same field in a shared

context, there are concurrency problems if the data are not accessed with
proper synchronization safeguards.

– Server clustering: when more than one server clone is used, there is a copy of
the shared context tree for each JVM where the application runs. If a user's
request requires that a data field in a shared context to be updated, its new
value will only be visible to the users whose session is located in the same
server where the original request was executed. This is probably not what is
expected, as shared values are designed to be transparently accessed by
multiple users independent of the clone they are running on. Consider for
example the case of a branch-level unique receipt counter that gets
incremented every time a receipt gets printed. That could be in principle

Solution architecture 25

located in a branch context, but then two users of the same branch whose
session runs in different clones will manipulate totally independent receipt
counter values.

Both the concurrency and clustering problem can be solved by using a safe
persistence-based mechanism to manipulate all read-write shared data. A simple,
ad-hoc approach is to use a custom database table to access these values. There is
also a more generic way supported by BTT since version 5.2: the shared data can
be set up so that they are automatically persisted by the framework. This is known
as the CHA (Context Hierarchy Area), and since version 7.0, there is a high level of
flexibility in the way that this can be configured, either through entity bean
persistence, shared memory or any other user-provided mechanism.

Application complexity management
This section contains recommendations aimed at reducing the complexity of the
application, thus increasing its manageability and maintainability.

Naming conventions: Development is basically a process of creating a big
amount of code artefacts such as Java class, JSP pages, XML files, and in the case
of BTT, XML tags with an ID attribute. For maintainability reasons, it is very
important that clear naming conventions are documented and followed throughout
the development process. Which conventions are used is not so relevant as long as
they are consistent and based on common sense.

In order to ensure that the conventions are followed, a process to verify the
naming convention rules can be added to the code quality review toolbox used in
the project.

BTT application grouping: The recommendation is actually not BTT specific, and
it can be applied to any J2EE application: avoid packaging and deploying a system
as a single WAR/EAR package. Try to break the application into smaller functional
groups based on dependencies, function set, development and maintenance
groups, etc. Apply the standard J2EE and WebSphere recommendations on this
subject, and consult an expert if required.

Breaking a big project into smaller projects renders it more maintainable, easier to
test and administer on the runtime environment, and isolates any failures in the
failing subprojects.

XML management: The size and manageability of BTT XML files has to be
controlled: if all the XML code resides in a few large XML file, there is no easy
way to allow several developers to edit the same file in parallel, since committing
the changed code to the repository will require a complex merge operation of the
changes made by each developer.

That is why it is recommended to use BTT XML mixed modularity. The operation
and process instances can be placed each in a separate XML file, and the global,
shared definitions (such as the higher-level contexts and all their data and services)
are placed in the root XML files.

Using an XML validation and review tool is also recommended: this can range
from simply using the provided BTT DTD/Schema files in the XML editor, to
applying a custom-made quality review tool that verifies naming conventions,
searches for dead unreferenced code, and checks any other project-specific rules.

26 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

Even with these rules in place, there is still a lot of XML code to be managed.
Some other recommendations are the following:
v If even with a mixed modularity approach, the size of some XML files is too big,

consider splitting these files into smaller chunks. The files can be easily merged
at server startup time, just before instructing BTT to process the XML file.

v Apply the recommendation given above: separating a project into a smaller
WAR/EAR deployment units. For example a big project with 1000 XML files is
split into four independent applications, each application will have an average
of 250 files, which is a more manageable figure.

Tracing
The following recommendations can be applied to the BTT framework and
application traces. Most of the recommendations are not BTT specific, but can be
applied to any tracing implementation:
v Consider using Aspect Oriented Programming to de-clutter the application and

infrastructure code. In some cases, around half of the code might be trace code
that complicates its understanding and therefore its maintenance. Naming
conventions are important when using AOP since they help define clear AOP
rules.

v Avoid by all means tracing to the system console through System.out or
System.err. This cannot be switched off easily and therefore it will still execute in
the production environment.

v Add a check before each trace to verify if the traces are enabled for the provided
level and component ID, only trace if the check returns true. Strictly speaking,
this is required only if the message string is generated by executing some
concatenation or rendering code, in order to avoid the useless execution of that
code. If AOP is not used, the check might be skipped when tracing simple
predefined messages, in order to reduce code clutter.

v Use the appropriate trace levels, and then review the high-severity messages. A
step of the quality review process can consist of reading the traces and ensuring
that no trace above the warning level is ever generated in otherwise correctly
working code. If a high severity trace is detected, it should be fixed through one
of the following actions:
– Either the code is really failing and needs to be fixed until no trace is

generated, or
– The trace level for that component is incorrect and needs to be lowered down.

v In the production environment, disable all the trace levels except the highest
severity ones. Tracing can degrade performance: if required, use the
pre-production environment, which should have more traces to locate problems.

v Do not mistake technical-levle tracing, which should be used exclusively by
developers to pinpoint potential problems, with business level-logging. If you
need to keep an audit trail of the execution of the business function, use a
separate system, and implement it through a BTT service.

Separation of infrastructure and application code
In the past, J2EE did not provide all the necessary components for an end-to-end
application architecture, so a framework was much needed. Frameworks such as
Struts, Spring or BTT had to be used to provide the extra functionality, mainly:
v Rich web component-based rendering
v View componentization and reuse
v Presentation flow management
v Data definition, validation, conversion, and mapping

Solution architecture 27

v Business flows / Integration flows
v Back-end connectors

The present set of J2EE standards in combination with world-class WebSphere
products now provides very standard and robust implementations for each of
these functionalities:
v Rich web component-based rendering: JSF
v View componentization and reuse: JSR 168 Portlets / IBM Portal
v Presentation flow management: JSF
v Data definition, validation, conversion, and mapping: JSF
v Business flows / integration flows: BPEL / IBM WebSphere Process Server
v Back-end connectors: JCA

However, there is still much need for a framework: the focus of its importance is
no longer in the functionality that its components provide, but in the order it
brings to the complexity of J2EE. With only J2EE and standard development tools,
an application developer needs to continuously make architectural decisions,
because there are many ways to develop a given functionality, and many possible
patterns to apply. This approach would pose a risk in the robustness and
maintainability of an application. Even if all developers of a project were highly
skilled J2EE architects, there should be a consensus on which patterns to apply,
and these should be respected all over the application, otherwise, the application
would be hard to maintain.

BTT is a framework that solves this problem by providing a well-defined
architecture for an application and a set of patterns that can be applied in a
repeatable way. However, BTT still needs to be adapted and extended to fit the
target environment. The run-time and development architecture, BTT extensions,
customized tools, and development patterns need to be carefully designed and
implemented by skilled developers, as it will be the infrastructure used in the rest
of the project. This infrastructure can then be reused in other projects and
gradually improved according to changing demands.

This infrastructure is developed in two phases:
v An initial phase where the basic patterns are laid out according to the

architecture phase, providing the necessary code and tool extensions for it. The
functionality provided should enable the development of a relatively simple but
real part of an application, which can be developed alongside the infrastructure
extensions; both infrastructure and sub-applications are used to test each other.
At the end of this phase, normal application development can begin.

v During the rest of the project, the infrastructure is enriched, driven by the
demand of developer. The infrastructure grows in parallel with the rest of the
application.

This approach divides the project team in two groups:
1. Standard developers, who make use of the infrastructure "as-is", or make

simple extensions to it if required. Most of the developers in a project fall into
this group.

2. A reduced group of architect-developers, who are continuously in contact with
the standard developers, and expand the infrastructure driven by the project
demands. The expansion points are decided under the criteria of productivity
and robustness improvements.

28 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

When a standard developer needs a feature not yet available in the infrastructure,
he or she should request it from the architect developers. If for any reason, he or
she develops the extension himself or herself, he or she should submit the code to
the architect developers for review and proper incorporation into the infrastructure
codebase.

The best way to enforce this practice is by clearly defining a narrow set of code
artefacts that the standard developers are allowed to create. Examples of such
artefacts are BTT XML files, JSP files, and maybe a small set of Java classes
extending from well-defined superclasses and with a strict code size limit.
Declarative code such as XML is easy to constrain, which ensures that the
developer is following a given set of rules. On the other hand, imperative code
such as Java is dangerously versatile. Therefore, the advantages of declarative
constrained code are the following:
v Ensure that the developer is following the rules set by the architecture team,

since each declaration must comply with a set of constraints.
v It is easier to maintain, as all its artefacts fit into a given predefined pattern. BTT

has many examples of this: Formats, Operations, Contexts, and so on.
v It is easier to manipulate through tooling, as parsing and representing its

structure in memory is easier than doing the same task with a full-fledged
imperative programming language.

v Migration is simpler, since parsing and transforming the application code is
easier as compared with an imperative programming language.

This is the model followed by many banks using BTT, which has been extended to
match the customer's particular requirements. Typical developer group sizes are 20
to 50 standard developers against 3 to 8 architect developers. The number of
people in the latter group usually diminishes as the project matures.

Performance tips
The performance tips given in this section are intended to help Bank
Transformation Toolkit solutions achieve the best performance results. A solution
architect should decide, based on the solution design, which of the following
suggestions apply.
v Object cache:

– The caching of formatters and operations is enabled or disabled in the
configuration file. However, the application must exploit this feature by
returning objects to the cache.

v Configuration file:
– The toolkit expects some configuration settings to be available in the

configuration file. If these settings are not available, internal exceptions are
thrown and trace entries are generated, thus consuming CPU cycles even
though the default values are still used. When migrating existing applications
to an environment where a new product release is installed, consider
reviewing the provided configuration file and identifying the changes. Also,
consider removing any setting not required in your solution from the
configuration file.

v Data access:

– Avoid using wildcards when using the getValueAt access method. Use
complete data element's paths instead.

v Synchronized code:

Solution architecture 29

– The application flow definitively needs to synchronize those critical code lines
when they are executed from concurrent threads (such as arranging the
context hierarchy). However, big chunks of synchronized code lines may
represent a bottleneck in the solution and reduce the overall throughput.

v Services access and pooling:
– Usually, a solution seeks to improve performance when launching business

operations after logging on. It is therefore good design to perform as many
processes as possible during the initialization of the services, during the
session establishment or user logon, so that the actual business processes
execute as quickly as possible.

– To avoid bottlenecks while accessing services that cannot be re-entered from
concurrent users/threads, use services pools. The number of services in the
pool must be sized according to the expected load rate. Correct sizing will
have a definitive impact on the overall solution throughput.

v Formatter decorators:
– When a record formatter definition includes many formatter entries followed

by the same kind of decoration (such as a fixed "#" as a delimiter), consider
extending the formatter class to include the decoration inside the format
process. This mechanism will create only one object (usually a StringBuffer)
instead of several strings.

v Exceptions that are part of the normal flow:
– Avoid exceptions that are normal during the application execution flow (such

as DSEObjectNotFound).
v Extended classes to be customized:

– Classes available in extension packages (such as com.ibm.btt.automaton.ext
and com.ibm.btt.base.types.ext) are especially provided to be further extended
in a solution. Consider extending these classes both to add your own logic
and to remove non-required logic.

v Client/Server Mechanism:
– Consider using a compression decorator in the client/server request and

response formatters to minimize the amount of data sent through the
communications network.

v JSPs.
– Use JSPTags and do not use JSPBeans.
– Consider a solution based on an XML-formatted data set being returned to

the client and processed by a template processor in the client (XSLT). The
corresponding request handler may be extended to build a faster stream
based on formatters instead of JSPs. This approach requires less network
bandwidth and is faster than building the response on the server. However, it
has other implications that need to be considered such as the XSL support in
the Web browsers.

v Deployed JARs:
– Choose only the JARs that belong to the components that are used in the

solution. Keep JAR files granular and as small as possible.
v High availability, load balancing, failover, and session persistence:

– 24x7 available solutions have a very high performance or monetary cost.
Consider using load balancing with session affinity, so that once the user
establishes a session with a server image or clone, all the requests will be
routed to that clone.

v Trace:

30 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

– Use the BTTLog.doXXX(doDebug/doInfo/doWarn/doError/doFatal) method as a
Boolean condition for tracing in the application flow, to check whether the
system will trace the entry based on the external configuration. The
application will only create the string if the returned Boolean for the doXXX
method is true.

v JDBC Table access services:
– Consider using stored procedures when requiring access to several tables in

the application flow. Cross-logic against several tables using many JDBC Table
access calls is not recommended.

v Java Profiler:
– Identifying the objects that are created most often and the classes and

methods that use more CPU time during the request process is crucial to
optimizing the solution performance. Any Java profiler may be used to get
this information, and this is a task that should be done during the whole
development cycle, without waiting until the final implementation of the
solution.

Supported platforms and technical requirements
This section describes the supported platforms and software that are required by
each component of IBM WebSphere Multichannel Bank Transformation Toolkit.
Because the toolkit is built with Java, any additional platform that provides the
corresponding Java Virtual Machine is supported by the toolkit architecture.

A new solution with additional platforms may require changes to the toolkit to
make it more generic so that the new solution can cope with the current platform
as well as the new one. These changes may involve enabling the toolkit interfaces
or components to support the new platform, and may be required for both the
hardware and software components of the solution. In cases where native
interfaces are required, a gap analysis is needed to support the new specific
modules not provided by the toolkit. The components that are actually used
depend on the specific requirements of each customer.

Components and platforms

In the following table, an X indicates that the service or component can be
installed on that particular platform. Note that an application can access a service
or component that is installed on another platform.

Table 1. Client components

Component name
Windows Server
2003/2008 Windows XP LinuxIntel

WebSphere Multichannel Bank Transformation Toolkit Core X X X

WebSphere Multichannel Bank Transformation Toolkit Rich Client X X X

Financial devices WOSA/XFS X X

J/XFS X X X

Table 2. Application server components

Component name

Windows
Server
2003/2008 Windows XP AIX® Solaris Linux

WebSphere Multichannel Bank Transformation Toolkit
Core

X X X X X

Solution architecture 31

Table 2. Application server components (continued)

Component name

Windows
Server
2003/2008 Windows XP AIX® Solaris Linux

CHA X X X X X

WebSphere Multichannel Bank Transformation Toolkit
Channels

X X X X X

WebSphere Multichannel Bank Transformation Toolkit
Business Components

X X X X X

WebSphere Multichannel Bank Transformation Toolkit
Database Services

X X X X X

WebSphere Multichannel Bank Transformation Toolkit
Invoker

X X X X X

WebSphere Multichannel
Bank Transformation
Toolkit Services

LDAP Service X X X X X

MQ Service X X X X X

Communications JCA LU0 or LU62 X X X X

Database services Database Table Mapping X X X X X

Electronic Journal X X X X X

Table 3. Tools

Component
Name Windows Vista Windows XP Windows 7 LinuxIntel

Application
Wizard

X X X X

Transaction
Editor

X X X

Deployment
Descriptor
Editor

X X X X

XUI Editor X X X

Formatter
Simulator

X X X X

WebSphere
Multichannel
Bank
Transformation
Toolkit
Migration Tool

X X X X

Components and technical requirements

The following table shows the additional technical prerequisites of the IBM
WebSphere Multichannel Bank Transformation Toolkit components. For
information version numbers, see the Software requirements topic.

Table 4. Additional technical prerequisites

Component name Technical requirements

Financial device services WOSA/XFS WOSA/XFS manager and
device-specific SPM

J/XFS J/XFS manager and specific
device service

32 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

Table 4. Additional technical prerequisites (continued)

Component name Technical requirements

LDAP Service IBM Tivoli® Directory Server

MQ Service IBM WebSphere MQ

Tools IBM Rational Application
Developer V8.0

Solution architecture 33

34 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1998, 2011 35

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM China Software Development Lab
Diamond Building, ZhongGuanCun Software Park, Dongbeiwang West Road No.8,
ShangDi, Haidian District, Beijing 100193 P. R. China

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

36 IBM WebSphere Multichannel Bank Transformation Toolkit: Solution Architecture

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at "Copyright and trademark information" at www.ibm.com/legal/
copytrade.shtml

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java is a trademark of Sun Microsystems, Inc. in the United States, other countries,
or both.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 37

www.ibm.com/legal/copytrade.shtml
www.ibm.com/legal/copytrade.shtml

	Contents
	Solution architecture overview
	Introduction
	The Value of Bank Transformation Toolkit to Business
	The importance of Channels to the Banks
	Multichannel transformation
	How BTT helps

	Architectural objectives
	Architectural principles
	Multichannel consideration

	Multichannel architecture
	Client
	Java Desktop Client environment
	HTML client environment
	Web 2.0 client environment
	Mobile client environment

	Channel application server
	Application presentation layer
	Channel aware logic layer

	Enterprise Server
	SOA fundamentals
	Unified invocation architecture

	Development
	Bank Transformation Toolkit best practices
	Programmers' tips
	BTT Context tree
	Session context size
	Shared contexts

	Application complexity management
	Naming conventions
	BTT application grouping
	XML management

	Tracing
	Separation of infrastructure and application code

	Performance tips

	Supported platforms and technical requirements
	Components and platforms
	Components and technical requirements

	Notices
	Trademarks

