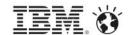
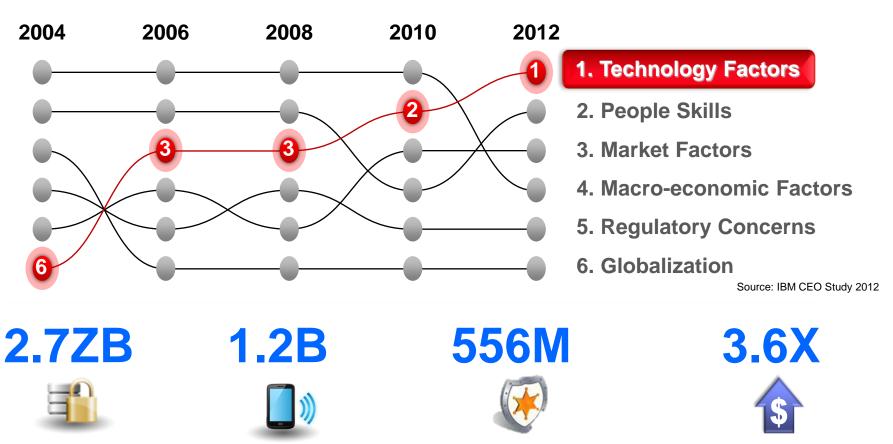
IBM SolutionsConnect 2013

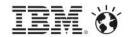
Turning Opportunity into Outcomes.


The Next BIG Thing - BLU Eric Thijs


Agenda

- 1) The Next BIG Thing BLU acceleration by Eric Thijs, IBM
 - 1) General
 - 2) DB2 Doing More ... with Less ...
 - 1) Performance
 - 2) Availability
 - 3) Modern Technology
 - 4) SW costs
 - 5) HW investments
 - 6) Operational effort
 - 7) Migration, Support and Education
 - 8) Question Round
- 2) Customer Story by Mr Reinoud Reynders, IT-Manager Infrastructure & Operations @
 - 1) UZ Leuven Migration from Sybase to DB2
 - 1) Goals & Challenges
 - 2) Results
 - 3) Lessons Learned
 - 4) Question Round

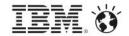
Factors Impacting Organisations

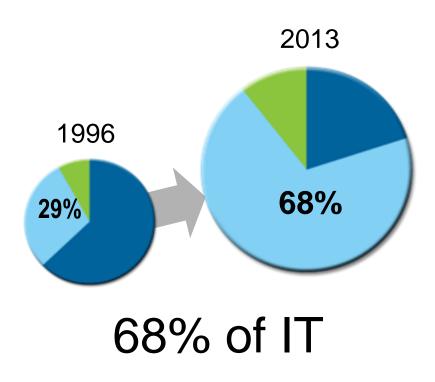


Digital content

Mobile employees

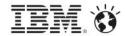
Cybercrime victims


Competing on analytics


IT Architecture Complexities Stifle Insight and Action

Big Data

IT Infrastructure under tremendous pressure


operating costs in 2013 will be for management and administration

organizations allocate more than 50% of IT budget to new projects

* 2012 IBM Global Data Center Study

^{*} IDC; Converged Systems: End-User Survey Results presentation; September 2012; Doc #236966

IBM Database overview

- 1. DB2 Hybrid DB
 - 1. SAP certified
 - 2. Non-SAP

- 2. Informix Extreme stability and massive data congestion
 - Time series Smart meters & Sensor Data
 - 2. Flexible GRID Localisation
 - 3. Real time analytics with IWA (Informix Warehouse Accelerator)

- 3. SolidDB In-Memory database for millisecond response
 - 1. Telecom & Banking
 - 2. SolidDB mobile

"Doing More with Less"

Doing MORE ...

- Performance
 - Hybrid DB (OLTP & OLAP)
 - Lesser I/O and better HW utilization
 - DPF, MDC, NLS, ...
- Availability
 - No more planned downtime
 - Stability (lesser patches, 10 x)
 - Reduced Backup / Restore time
- Modern Technology
 - SAP partnership
 - Joint roadmap
 - Shortest certification track
 - BLU acceleration
- Integration SAP

... With LESS

- Software Cost
 - Lower License and Maintenance
 - HADR, DPF, pureScale, BLU, ...
- Hardware Investments
 - Storage
 - Disks and tapes
 - Memory
 - Servers
- Operational effort, staff efficiency
 - Automation
 - > ASM, STMM, WLM, ...
 - Tooling
 - Workload Manager, DBA cockpit

DB2

More Performance

- Present DB2 10.1
 - OLTP minimal 20% performance gain
 - OLAP minimal 40% performance gain x
- New DB2 10.5 OLAP
 - Columnar Stored (5) Slide 10
 - Optimal Memory caching (6) Slide 11
 - Data Skipping (7) Slide 12

Customer	Speedup over DB2 10.1
Large Financial	
Services Company	46.8x
Global ISV Mart Workload	37.4x
Analytics Reporting Vendor	13.0x
Global Retailer	6.1x
Large European Bank	5.6x

10x-25x improvement

is common

More Availability

- Present DB2 10.1
 - Robust and stable technology
 - Patch level
 - Support
 - HADR High Availability and Disaster Recovery
 - Primary & up to 3 auxiliary sites
 - Rolling fixpack upgrades no more planned downtime
 - pureScale Continuous Availability and Unlimited Scalability
- New DB2 10.5
 - Next Fixpack/Release
 - HADR & pureScale
 - More than AIX / Power HW

More Modern Technology

Present DB2 10.1

2008 2012

- New DB2 10.5 2013
 - BLU (Blink Update) acceleration
 - 7 BIG ideas
 - Create & Load (1) convert or create
 - Compression (2)
 - SIMD (3)
 - Core Friendly Parallelism (4)
 - Columnar stored (5)
 - Scan Friendly Memory Caching (6)
 - Data Skipping (7)

Lesser software costs

- Present DB2 10.1
 - SAP model
 - 8% of the SAV (Hardware independent model)
 - ESE + SOF + DPF + HADR + BLU
 - Non-SAP
 - lesser PVU's
 - Flexible licensing models
- New DB2 10.5
 - SAP model
 - Included in the 8% of the SAV
 - Non-SAP
 - Developed to run on existing HW
 - Simplified Licencing model x

DB2

Lesser hardware investments

DB₂

- Present DB2 10.1
 - SOF (storage Optimization Feature Adaptive Compression)
 - Lesser CPU, RAM and Storage
 - Less I/O

V8.1 Value

V8.1.4 Back-up

V9.1

•	New DB2 10.5 – BLU ac
	 Higher compre

SIMD – Single

Core Friendly F

Columnar Store

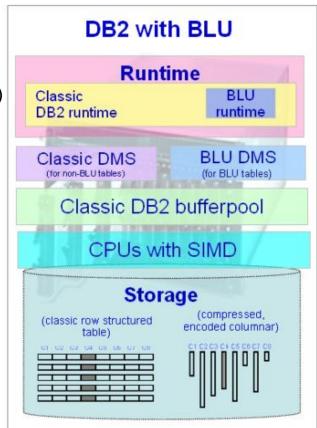

Scan friendly n
 Slide 11

Table Courtesy of Triton, Iqbal Goralwalla	Size (GB)	Storage Savings
T1 Row organized	185	N/A
T2 – T1 Adaptive C	57,4	69% or 3,23x
T3 – Convert T1 to column with db2convert	12	93,5% or 15,4x versus T1 79,1 or 4,78xversus T2
T4 – Create new column organized table like T1 and load data	12	Same as T3

Lesser operational effort

- Present DB2 10.1
 - Automations
 - STMM, ASM, ...
 - Between 20% and 25% lesser effort to maintain
 - Integrated tooling
 - SAP DBA cockpit
 - Non-SAP Optim Performance Manager (AESE)
- New DB2 10.5
 - Simplification "Create & Load" (1) Slide 24
 - Built seamless into the DB2 kernel
 - Integration and
 - Same SQL,
 - Language interfaces &
 - Administration
 - Coexistence Column-organized tables can coexist with existing traditional tables
 - Same schema,
 - Storage &
 - Memory
 - Compression (2) see also HW investments Slide 20

Migrations, Support and Education

- SAP
- FIXED Migration Offer Migration Sizing Questionnaire
 - T-shirt size based on 1 landscape with 3 instances
 - Small Production Database > 500 GB € 15K
 - Medium Production Database < 500 GB > 1 TB € 20K
 - Large- Production Database < 1 TB € 25K
- 100% success ratio @ 1.000 customer and 10.000 instances
 - Certified Tooling, People and processes
- Non-SAP
 - Oracle compatibility 98%
 - FREE assessment and estimated conversion report
- Support
 - Workshops Deep Dives
 - One Day Migration planning
- Education
 - Courses
 - Classroom
 - Webcasts

DB2Question round

IBM. Ö

Eric Thijs

Information Management | SWG

Core DB | Infosphere Guardium | PureData for Transactions Leader BeLux

+32 478 630 473

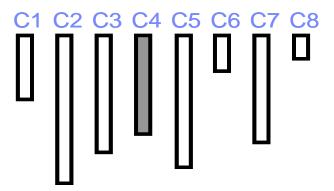
eric.thijs@be.ibm.com

DB2
More Performance – Performance results 9.7 & 10.1

Customer	Application	DB version	Source (H:min:sec)	DB2 after	Reduction	Faster %	DB2
Swiss P&A	40 SAP Jobs	11.2	23:58:48	13:33:27	10:25:21	43,46%	
	6 Batch		20:56:48	10:43:27	10:13:21	48,80%	
Audi	ERP	10.2	14:43:44	5:03:27	9:40:17	65,66%	40,60%
	BW		3:36:44	3:18:27	0:18:17	8,44%	
	eRecruiting		0:13:20	0:08:27	0:04:53	36,63%	
Belgian comp	OLTP	10.2	3:12:12	1:04:36	2:07:36	66,39%	
	OLTP		1:20:44	0:58:27	0:22:17	27,60%	
	Batch		0:00:40	0:00:27	0:00:13	32,50%	
ABB	Online perf.		0:48:40	0:10:42	0:37:58	78,01%	
	Batch perf.		1:18:00	0:39:27	0:38:33	49,42%	54,97%
	Online perf.	11.2	0:34:04	0:10:42	0:23:22	68,59%	
	Batch perf.		2:43:48	0:39:27	2:04:21	75,92%	
Swiss P&A	40 SAP Jobs		23:58:48	12:59:27	10:59:21	45,83%	
	6 Batch		20:56:48	10:22:27	10:34:21	50,47%	

More Performance – Performance results BLU by Triton

Table Courtesy of Triton, Iqbal Goralwalla	Sample Workload Total response time (Sec)	Sample Workload Response time speedup
T1 – Row organized	1.385	N/A
Т3	31	45x
T4	31	Same as T3

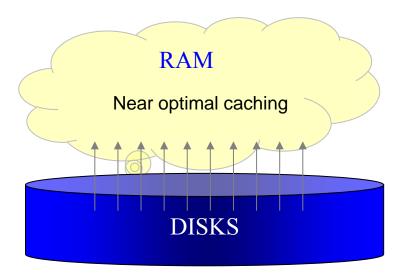


"The BLU Acceleration technology has some obvious benefits: It makes our analytical queries run 4-15x faster and decreases the size of our tables by a factor of 10x. But it's when I think about all the things I don't have to do with BLU, it made me appreciate the technology even more: no tuning, no partitioning, no indexes, no aggregates."

-Andrew Juarez, Lead SAP Basis and DBA

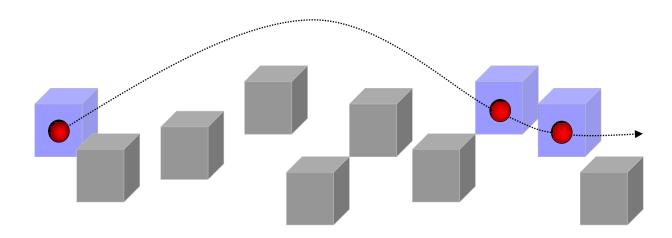
More Performance – Columnar Store (5)

- Minimal I/O
 - Only perform I/O on the columns and values that match query
 - As queries progresses through a pipeline the working set of pages is reduced
- Work performed directly on columns
 - Predicates, joins, scans, etc. all work on individual columns
 - Rows are not materialized until absolutely necessary to build result set
- Improved memory density
 - Columnar data kept compressed in memory
- Extreme compression
 - Packing more data values into very small amount of memory or disk
- Cache efficiency
 - Data packed into cache friendly structures x



DB2

More Performance – Optimal Memory Caching (6)


- New algorithms cache in RAM effectively
- High percent of interesting data fits in memory
 - We leave the interesting data in memory with the new algorithms
- Data can be larger than RAM
 - No need to ensure all data fits in memory
 - Optimization for in memory and I/O efficiency x

More Performance – Data Skipping (7)

- DB2
- Automatic detection of large sections that do not qualify for a query and can be ignored
- Order of magnitude savings in all of I/O, RAM, and CPU
- No DBA action to define or use truly invisible
 - Persistent storage of min and max values for sections of data values x

Lesser software costs – Simplified Licence model

Departmental Market

DB2 Advanced Workgroup Server Edition

Advanced function

- For small OLTP and analytic deployments
- Primarily used in department environments within large enterprises or SMB/MM deployments
- Limited by TB, memory, sockets, and cores.
- Supports BLU, pureScale and DPF deployment models

Core function

DB2 Workgroup Server Edition

- · Entry level offering
- Single server for less intense workloads
- Limited by TB, memory, sockets, and cores
- No support for BLU, pureScale or DPF deployment models

Enterprise Market

DB2 Advanced Enterprise Server Edition

- For enterprise class OLTP and/or analytic deployments.
- Targeting full enterprise/full data centre requirements
- No TB, memory, socket, or core limit
- Supports BLU, pureScale and DPF deployment models

DB2 Enterprise Server Edition

- Entry level offering.
- Single server for enterprise/more intense workloads
- · No TB, memory, socket, or core limit
- No support for BLU, pureScale or DPF deployment models

Limited capacity

DB2 Developer Edition

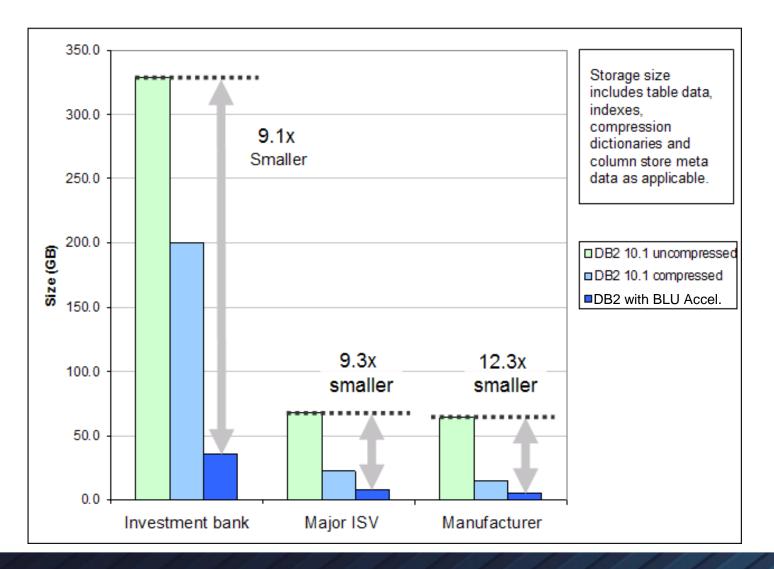
DB2 Express and DB2 Express-C

Full capacity

DB2 CEO

DB2 Advanced CEO

DB2Lesser hardware investments – Compression results 9.7 & 10.1


SAP System	Other DB in GB	DB2 9.7 and 10.1 in GB	Compression in %
SAP ERP	1.145,361	329,633	71.22%
SAP ERP	16.965,628	3.767,178	77.80%
SAP BW	6.460,350	1.990,323	69.19%
SAP ERP	1.922,977	452,041	76.49%
SAP ERP	1,797820	462,560	74.27%
R/3 4.7 Enterprise *	630,880	229,040	63.70%
SAP ERP	598,229	151,112	74.74%
SAP ERP	425,098	119,102	71.98%
SAP ERP	643,860	160,140	75.13%
R/3 4.7 Enterprise *	60,416	20,480	66.10%
SAP ERP	557,990	153,770	72.44%
SAP BW	4.527,104	1.363,968	69.87%
SAP ERP	3.474,432	911,360	73.77%
TOTAL	39.210,145	10.110,707	74.21%

^{*} With DB2 9.7

DB2Lesser hardware investments – Compression results BLU

Lesser hardware investments – Compute Friendly & Compression

DB2

- Massive compression with approximate Huffman encoding
 - More frequent the value, the fewer bits it takes
- Register-friendly encoding dramatically improves efficiency
 - Encoded values packed into bits matching the register width of the CPU
 - Fewer I/O's, better memory utilization, fewer CPU cycles to process

Johnson Smith Smith Smith Smith Smith Smith Smith Gilligan Sampson Smith Smith Sampson Smith

DB2

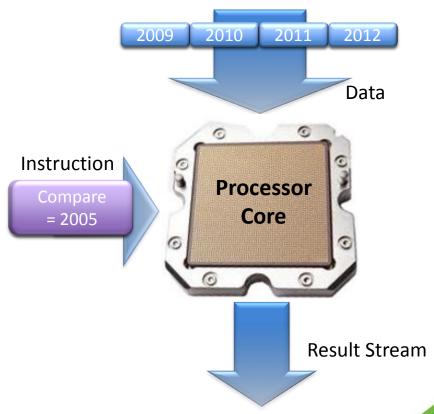
IBM. Ö

Lesser hardware investments – Data remains compressed

- Encoded values do not need to be decompressed during evaluation
 - Predicates (=, <, >, >=, <=, Between, etc), joins, aggregations and more work directly on encoded values

SELECT COUNT(*) FROM T1 WHERE LAST_NAME = 'Johnson'

LAST_NAME	Encoding	Encode
Brown		Endodo
Johnson		
Brown		
Johnson		
Gilligan		
Wong		
Johnson		


Lesser hardware investments – SIMD (3)

- Performance increase with Single Instruction Multiple Data (SIMD)
- Using hardware instructions, DB2 with BLU Acceleration can apply a single instruction to many data elements simultaneously
 - Predicate evaluation, joins, grouping, arithmetic

"Intel is excited to see a 25x improvement in query processing performance using DB2 10.5 with BLU acceleration over DB2 10.1. To achieve these amazing gains, IBM has taken advantage of the Advanced Vector Extensions (AVX) instruction set on Intel® Xeon® processor E5-based systems."

- Pauline Nist, GM, Enterprise Software Alliances, Datacenter & Connected Systems Group

Lesser hardware investments – Core Friendly Parallelism (4)

- Careful attention to physical attributes of the server
 - Queries on BLU Acceleration tables automatically parallelized
- Maximizes CPU cache, cacheline efficiency

"During our testing, we couldn't help but notice that DB2 10.5 with BLU Acceleration is excellent at utilizing our hardware resources. The corefriendly parallelism that IBM talks about was clearly evident and I didn't even have to partition the data across multiple servers."

- Kent Collins, Database Solutions Architect, BNSF Railway

Lesser operational effort - Create & Load

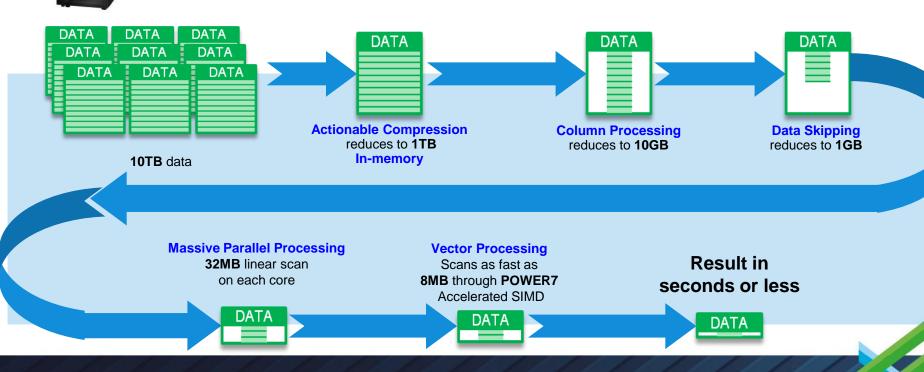
DATABASÉ

HICROSOFT SYBASE TERADATA ORACLE

Database Design and Tuning

- Decide on partition strategies
- · Select Compression Strategy
- · Create Table
- · Load data
- · Create Auxiliary Performance Structures
 - Materialized views
 - Create indexes
 - B+ indexes
 - · Bitmap indexes
- · Tune memory
- · Tune I/O
- · Add Optimizer hints
- · Statistics collection

Repeat


DB2General Concept

32 cores 1TB memory 10TB table 100 columns 10 years data

SELECT COUNT(*) from MYTABLE where YEAR = '2010'

