
WebSphere® Partner Agreement Manager

Adapter Developer’s Guide
Version 2 Release 1
BIAAAD00

Note: Before using this information and the product it supports, read the information in Notices on page 293.
Second Edition (April 2001)

This edition applies to version 2, release 1 of WebSphere Partner Agreement Manager (product number 5724-
A85) and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can make comments on this information via e-mail at
idrcf@hursley.ibm.com.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000-2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

c o n t e n t s�
Contents
Welcome to the Adapter Developer’s Guide xi

Who should use this information xii

Related information xii

Summary of changes xv

Chapter 1 Introducing adapters 1

Adapter architecture 4

About the Adapter Development Environment 7

About MQSeries adapters 8

Chapter 2 Using an integration wizard 9

About configuring integration wizards 10

Configuring an integration wizard 10

Managing integration wizards 13

About the Flat File Integration Wizard 13

Using the Flat File Integration Wizard 14
Contents � iii

Chapter 3 Designing Adapters 23

About developing adapters 24

Designing the adapter 25

Defining the adapter type 26

Creating an adapter implementation 27

Coding your adapter 29

Creating an adapter instance 29

Debugging and testing your adapter 30

Planning an adapter—questions to consider 31

About adapter type information 33

About business objects and variants 34

About operations 35

About events 38

About properties 39

Chapter 4 Creating an adapter type 41

About adapter types 42

Starting the Adapter Designer 42

About the Adapter Designer 43

Defining a new adapter type 44

About operations 45

Adding operations 46

Adding events 51

Adding properties 54

Editing an adapter type 57

Exporting an adapter type or implementation declaration 57

Importing an adapter type or implementation declaration 58

Chapter 5 Creating Adapter Implementations 61

About creating adapter implementations 62

Generating code for an adapter implementation 63

Adding Java code 66

Compiling and debugging 67
iv � Adapter Developer’s Guide

Chapter 6 Using the JDBC Integration Wizard 69

Before you start 70

Creating a JDBC Adapter 70

Starting the JDBC Integration Wizard 70

Building a JDBC adapter 70

Executing the schemas 79

Running the JDBC adapter 80

Troubleshooting tips 80

Chapter 7 Using utility adapters 83

About utility adapters 84

Utility adapter reference 85

Email Adapter type 86

Encode Adapter type 88

Exec Adapter type 90

File Adapter type 90

FTP Adapter type 94

Zip Adapter type 96

Utility business object (BO) reference 97

Copy_File_Operation BO 97

Encode_Operation BO 97

Exec_Operation BO 97

Exec_Output BO 98

File_Attributes BO 98

File_Contents BO 98

File_Location BO 98

File_Location_List BO 99

FTP_Operation BO 99

Mail_Attachment BO 99

Mail_Contents BO 99

Move_File_Operation BO 100

Operation_Status BO 100

Rename_File_Operation BO 100

Uuencode_Operation BO 100

Uudecode_Operation BO 101

Zip_Operation BO 101
Contents � v

Chapter 8 Using adapter API methods 103

About the adapter API methods 104

Adapter methods 104

AdapterContext methods 107

EventContext methods 108

ExecutionID methods 109

OperationContext methods 110

TransactionContext methods 112

About Exceptions 112

ISException 113

Executing operations 114

Adapter class 116

checkForEvents method 116

createTransactionContext method 120

execute method 122

reExecute method 125

shutdown method 127

startup method 129

AdapterContext interface 131

getBoundProperties method 132

getDataType method 133

getProperties method 134

getPropertyAsBoolean method 135

getPropertyAsInt method 136

getPropertyAsString method 138

isPropertyBound method 140

isPropertyDeclared method 141

EventContext interface 142

addBOElementEvent method 143

addVariantEvent method 145

getTransactionContext method 147

removeEvent method 148

ExecutionID interface 149

getDisplayName method 150

getID method 151

getPrivateProcessID method 152
vi � Adapter Developer’s Guide

OperationContext interface 153

createOutputBOElement method 154

createStatusBOElement method 155

getExecutionID method 156

getExecutionMode method 157

getInput method 158

getInputBOElement method 160

getInputNames method 161

getInputVariant method 162

getOperationID method 164

getOperationTypeID method 165

getOutputBOElement method 166

getOutputVariant method 167

getStatusBOElement method 168

getTransactionContext method 169

isFirstExecution method 170

isReexecuted method 172

isStateful method 173

log method 174

operationCompleted method 175

requestRetry method 177

requestWaitForCallback method 179

setOutputVariant method 180

unsetOutput method 181

unsetOutputBO method 183

unsetStatusBO method 185

TransactionContext interface 187

begin method 188

commit method 189

rollback method 190
Contents � vii

Chapter 9 Using Business Object API methods 191

About the Business Object API 192

Group vs. field elements 192

Data 192

Copying 192

Tag path strings 193

BusinessObject methods 194

Element methods 195

ElementSequence methods 196

BusinessObject interface 197

deepClone method 198

fromStream method 199

fromXMLString method 200

getDocument method 201

getRootElement method 202

getType ID method 203

getTypeURI method 204

readStream method 205

toStream method 206

toXMLString method 207

writeStream method 208

validate method 209

Element interface 210

clearAll method 211

clearData method 212

copyIn method 213

getAttr method 215

getAttrDefault method 216

getBusinessObject method 217

getData method 218

getDataType method 220

getElement method 221

getElementSequence method 222

getTagName method 223

hasData method 224

isField method 225
viii � Adapter Developer’s Guide

isValid method 226

removeAttr method 228

removeAttrs method 229

removeElement method 230

setAttr method 231

setData method 232

toString method 234

ElementSequence interface 235

getElementAt method 236

hasData method 237

length method 238

newElement method 239

newElementAt method 240

removeAll method 241

removeElementAt method 242

Exceptions 243

ElementTypeException 243

InvalidQueryException 243

IndexoutOfBoundsException 244

Chapter 10 Adding custom code to adapters 245

About adding custom code 246

Using helpers 246

Using life cycle methods 248

Startup validation 248

String properties 248

Integer properties 249

Exception handling 249

Using execution methods 249

Exception handling 250

Long-running operations 251

Using event production methods 252

Exception handling 252

Developing adapter class libraries 252

About compiling, testing, and debugging adapters 253

Testing adapters 253

Implementing exception handling 253
Contents � ix

Appendix a Java implementation example 255

About the Java implementation example 256

The Example Inventory Adapter type 256

Generated adapter implementation 258

Testing inventory adapter implementation 264

Inventory adapter implementation 273

Inventory adapter helper class 279

Appendix b Notices 293

Trademarks 296

Glossary 297

Index 305
x � Adapter Developer’s Guide

�

Welcome to the Adapter

Developer’s Guide
This document describes WebSphere® Partner Agreement Manager 2.1 and
explains how to use Partner Agreement Manager’s adapter technology as a
bridge between Partner Agreement Manager processes and specific business
applications interfaces.

To use adapters with your applications:

� Read Introducing adapters on page 1 for an overview of Partner Agreement
Manager adapter technology and the Partner Agreement Manager adapter
development environment.

� See Using an integration wizard on page 9 for information on configuring
integration wizards and a tutorial on how to use an integration wizard to
create an adapter for a flat file.

� See Designing Adapters on page 23 for information about designing
custom adapters.

� See Creating an adapter type on page 41 for information about creating
adapter types and importing and exporting adapter types and
implementations.

� See Creating Adapter Implementations on page 61 for information about
creating adapter implementations in the Adapter Designer.

� See Using the JDBC Integration Wizard on page 69 for information about
using the JDBC integration wizard to create an adapter for Oracle or SQL
Server.
Welcome to the Adapter Developer’s Guide � xi

� See Using utility adapters on page 83 for descriptions of the Partner
Agreement Manager utility adapters and the business objects they use.

� See Using adapter API methods on page 103 for reference information on
the Adapter API methods that you can use in adapter code.

� See Using Business Object API methods on page 191 for information on
using the business object API methods that you can use in your adapter
code.

� See Adding custom code to adapters on page 245 for information about
adding custom code to adapter implementations.

� See Java implementation example on page 255 for a description of the
sample Inventory adapter that is included in the Adapter Development
Environment.

Who should use this information

This information is for those who need to develop adapters. Adapters give
private processes a uniform way to access the capabilities of a variety of
external applications.

Related information

For additional information see the following:

� The readme.txt file. This file may contain information that became
available after this book was published. Before installation, the readme.txt
file is located in the root directory of the product CD-ROM. After
installation, the readme.txt file is located in the root directory of the
Partner Agreement Manager installation.

� The index.html file. This file contains links to the Partner Agreement
Manager readme.txt file and the Partner Agreement Manager Installation
Guide. Before installation, the index.html file is located in the root
directory of the product CD-ROM. After installation, the index.html file is
located in the root directory of the Partner Agreement Manager
installation.

� The Partner Agreement Manager Installation Guide, form number
GC34-5964-00, which describes how to install Partner Agreement
Manager.
xii � Adapter Developer’s Guide

� The Partner Agreement Manager Administrator’s Guide, form number
BIAAAB00, which describes how to set up, configure, and administer
Partner Agreement Manager after you install it.

� The Partner Agreement Manager User’s Guide, form number BIAAAC00,
which describes how to start a Partner Agreement Manager session, design
public and private processes, define element definition sets, create
business objects, and manage process distribution.

� The Partner Agreement Manager Adapter Developer’s Guide, form number
BIAAAD00, which describes how to develop and administer adapters
using the Partner Agreement Manager Adapter Development
Environment.

� The Partner Agreement Manager Script Developer’s Guide, form number
BIAAAE00, which describes how to write scripts used in Partner
Agreement Manager private processes and elsewhere.

� The Partner Agreement Manager API Guide, form number BIAAAF00,
which describes principles behind the Partner Agreement Manager
External API. See also, the Javadocs for the External API, which you can
access from the Partner Agreement Manager API Guide.

� The Partner Agreement Manager Adapters for MQSeries User’s Guide, form
number BIAAAG00, which describes how to install, configure, and run
the Partner Agreement Manager Adapters for MQSeries.

� The Partner Agreement View User’s Guide, form number GC34-5965-00,
which describes how to install, configure, and use Partner Agreement
View.
Welcome to the Adapter Developer’s Guide � xiii

xiv � Adapter Developer’s Guide

�

Summary of changes
This edition includes these changes since the previous, first, edition:

� External APIs. Partner Agreement Manager 2.1 provides added flexibility
to external applications through additional APIs. These APIs allow third-
party applications to take advantage of the Partner Agreement Manager
partner management and process engine through programmatic access.
The API is distributed as a set of Java classes that the external application
can import. Communication between the API classes and the Process
Server is through RMI, but in the future can be swapped out for HTTP or
SOAP. Specifically, APIs have been added to the following functional
areas:

� Session Service API

� Admin Service API

� Document Service API

� Partner Service API

� Adapter Service API

� Process Service API
Summary of changes � xv

� LDAP Support. Partner Agreement Manager 2.1 provides centralized user
authentication and administration through an LDAP directory. Partner
Agreement Manager can retrieve user information—such as name, e-mail
address, phone, and fax—stored in an LDAP directory. Updating this
information is done in a single place, through the LDAP management
tool. Users are authenticated through the same directory, giving them
single-sign-on capabilities across enterprise applications.

� Double-byte character sets (DBCS) and National Language Support (NLS).
Double-byte character sets are now supported in Partner Agreement
Manager 2.1. Double-byte and multibyte data can be transferred and
operated on in business objects and adapters. NLS lets Partner Agreement
Manager display user interface text in other languages.

� Improved XML Support. The Partner Agreement Manager 2.1 engine
fundamentally changes the way it interacts with business objects by
replacing proprietary parsers with a third-party parser. This simplifies
support of DTD 1.0 and the support of XML schemas when the standard
is finalized.

The Business Object and Script API have been extended with new classes
and methods. The new classes and methods let you work with business
objects as W3C Documents.

� Adapter Asynchronous Callback. An additional Adapter API allows
adapters to be more efficient with long-running adapter operations. The
Asynchronous Callback method tells the Adapter Server that an operation
will be long-running, that system resources should be freed while the
adapter waits for a response from the end system, and that another
method will be called when the response arrives. The Asynchronous
Callback method frees the adapter developer from using the request-retry
method that makes the Adapter Server responsible for polling the end
system for the response.

� Script API Changes. The script API now provides access to the
PartnerGroupContext and the Public and Private Process Contexts.
Through these contexts, you can get information such as partner group
binding, a reference to the process, inputs to the process (which contain a
reference to the sender, the ID of the sending node, and the variable
name), and unique node and loop IDs.
xvi � Adapter Developer’s Guide

� Certificate Support. Partner Agreement Manager 2.1 is able to request and
import certificates from certificate authorities like VeriSign. This lets
organizations use their existing certificate, or request a new one if their
partners do not accept self-signed certificates. Partner Agreement
Manager 1.1 supported only self-signed certificates.

� Outbound Proxy Support. Partner Agreement Manager 2.1 channels that
use HTTP communication can work with outbound proxies that use
authentication. Outbound proxy authentication is used within internal
networks to ensure that only people and applications that are
authenticated may communicate with an external network.
Authentication in the outbound proxy is done with a standard user name
and password combination. You can turn on the outbound proxy feature
after installation. Thereafter, all outbound HTTP communication uses the
same user name and password combination for the proxy.

Note: Note that this feature is only used by channels using HTTP
communication; it does not apply to channels that use the built-in Partner
Agreement Manager proxy.
Summary of changes � xvii

xviii � Adapter Developer’s Guide

c h a p t e r�
1

Introducing adapters
Read this chapter for an overview of WebSphere® Partner Agreement
Manager adapter technology and the environment that provides
Partner Agreement Manager for developing adapters.

This chapter includes these sections:

� Adapter architecture on page 4.

� About the Adapter Development Environment on page 7.

� About MQSeries adapters on page 8.

Note: We assume that you have read the Partner Agreement Manager User’s
Guide, the Partner Agreement Manager Administrator’s Guide, and the
Partner Agreement Manager Installation Guide. Online versions of these
documents are available in your WebSphere/PAM/Docs directory. These
documents help you understand Partner Agreement Manager Extension
actions, events, and business objects, which are essential to understanding
adapters. We also assume that you have experience in Java™ development.
Introducing adapters � 1

Within an organization, legacy and other enterprise systems play a key role
in the company’s ability to function and compete. Therefore, an effective
business-to-business integration solution must integrate seamlessly with
each partner’s existing enterprise systems and provide extensibility to new
and emerging technologies. Partner Agreement Manager provides these
capabilities to enable end-to-end process execution using the heterogeneous
systems of each partner.

Partner Agreement Manager’s unique adapter technology serves as the
bridge between Partner Agreement Manager processes and specific business
applications interfaces. Adapters mask the complexity and diversity of
interface technologies by wrapping each application interface in a common
abstraction. This gives private process authors a uniform way to access the
capabilities of a variety of external applications. Adapters also provide a
uniform means of propagating events out of business applications so these
events can be used to trigger Partner Agreement Manager processes.

Within the Partner Agreement Manager installation, the Adapter Server and
adapters work together to manage interactions between other Partner
Agreement Manager components and your business applications.

Adapters handle interactions between the external business applications and
the Adapter Server. The Adapter Server, in turn, manages the adapters and
serves as a conduit for configuration and other information about external
business applications. The Adapter Server also ensures consistent handling of
state management and audit capture within a process.

Adapters handle
interactions between the
business applications and
the Adapter Server.

The Adapter Server manages the
adapters and passes information
about business applications to
other Partner Agreement
Manager components.

Application A

Application B

Application C

Internet

Adapter

Adapter

Adapter

Adapter

The Process Server handles
process execution.

Server
Process
Server
2 � Adapter Developer’s Guide

Interactions between adapters and Partner Agreement Manager processes are
controlled by:

� private process Extension actions, which allow process designers to embed
an unlimited number of external business application interactions into a
private process definition, and

� events, which let Partner Agreement Manager users start public processes
when an event is received.

Extension action properties determine the target business application, the
type of interaction, and the type of information that is passed between the
process and the business application.

Adapters perform two main functions within Partner Agreement Manager.
They allow:

� Partner Agreement Manager private processes to interact with external
business applications while a process is running. This interaction can take
the form of obtaining information from a particular business application
or passing information to it.

� Partner Agreement Manager to start public processes automatically based
on events that occur in external business applications.

An Extension action in
the private process...

...controls the interaction with an adapter.
Introducing adapters � 3

Adapter architecture

On an architectural level, an adapter is made of an adapter type, an adapter
implementation declaration, and an adapter instance. A single adapter type
can have several implementations, and each implementation can have several
instances. For example, you might have separate implementations that use
different persistence mechanisms, such as a file-based or database
implementation, or that use different tax calculation methods, such as one
from a library or one that does the calculations in the adapter code.

Another way to use implementations is for different versions—every time
you make a major functional change, you can add another implementation,
so you can always go back to the previous implementation.

Different instances of the same implementation are also useful. A common
approach is to use different adapter instances for test and production. In the
implementation, you can define properties such as database name, logon and
password. In the test instance, you can point these to the test database, and
debug without altering any of the production data. In the production
instance, the properties point to the production database.

Adapter Type

Implementation 1

Implementation 2

Instance 1

Instance 3

Instance 2

Business
Application 1

Business
Application 3

Business
Application 2
4 � Adapter Developer’s Guide

The adapter type, which is stored in XML format for import and export,
contains adapter information, including what operations, events, and
properties the adapter has. You specify this information in the Create
Adapter Type dialog box in the Adapter Designer. For example, these are the
properties defined in the adapter type for the example purchasing adapter.

This is an adapter type for a
purchasing adapter.

These are the
properties defined for
this adapter type.
Introducing adapters � 5

The adapter implementation declaration contains the Java source file name,
class name, package, and directory path. The Java source file contains the
application logic to communicate with a specific business application
through that application’s interface. The implementation declaration is
imported and exported in XML. For example, following is an
implementation declaration for the example purchasing adapter,
subordinate to the adapter type. You specify this information in the Create
Java Adapter Implementation dialog box in the Adapter Designer.

This is a description of an implementation
declaration for the purchasing adapter.

This is an implementation
declaration of the
purchasing adapter.
6 � Adapter Developer’s Guide

The adapter instance provides specific values for the properties declared in
the implementation. For example, the following are the property values for
an instance of the example purchasing adapter.

The adapter instance is also:

� where you set how often the adapter should poll for events.

� the name that private process designers specify when they use the adapter.

� the set of property values for the instance.

� the environment settings for the adapter instance at run time.

About the Adapter Development Environment

Partner Agreement Manager provides a comprehensive Adapter
Development Environment (ADE) that gives you an intuitive framework for
configuring, customizing, and developing adapters.

These are the property values for this
instance of the purchasing adapter.

This is an instance of the
purchasing adapter. Private
process designers see this name.
Introducing adapters � 7

The ADE includes these components:

� The Adapter Designer, a graphical user interface for building custom
adapters. See About the Adapter Designer on page 43.

� The Integration Wizard Framework. This framework is part of the
Adapter Designer and provides services for integration wizards. It helps
you create adapters with minimal effort. Using a graphical interface, a
wizard lets you specify the details about the external system and the
business objects you want generate. The wizard generates the business
objects and the adapter. Depending on your system and requirements, the
adapter might require some coding. Even for those systems that do require
additional coding, an integration wizard can greatly reduce the amount of
time it takes to develop an adapter. See Using an integration wizard on
page 9 for a walk-through of the Flat File Integration Wizard.

� A set of example and utility adapters.

Example adapters are fully annotated and functional adapters that
demonstrate elements commonly found in an adapter. You can use
example adapters as the basis for any custom adapters you want to build.
The example adapters included in the Partner Agreement Manager ADE
are used as illustrations throughout this guide.

Utility adapters are pre-built adapters that handle connections to generic
systems such as an FTP server, a mail server, or a file server. Process
designers can select utility adapters for enterprise actions the same way
they would select any other adapter. See Using utility adapters on page 83.

About MQSeries adapters

WebSphere Partner Agreement Manager Adapters for MQSeries are a set of
adapters designed to help you rapidly integrate with MQSeries applications.
For more information about other adapters, see the documentation that
accompanies them.
8 � Adapter Developer’s Guide

c h a p t e r�
2

Using an integration

wizard
Read this chapter for information on configuring an integration
wizard and a short tutorial on how to use the Flat File Integration
Wizard to create an adapter for a flat file.

This chapter includes these sections:

� About configuring integration wizards on page 10.

� Configuring an integration wizard on page 10.

� Managing integration wizards on page 13.

� About the Flat File Integration Wizard on page 13.

� Using the Flat File Integration Wizard on page 14.
Using an integration wizard � 9

About configuring integration wizards

Each integration wizard has server-side and client-side properties that
provide information that the integration wizard uses when it creates
adapters.

The server-side properties identify the integration wizard and show the
location of the archive in which it is packaged. The only server-side property
that you can set is the CLASSPATH, which specifies the path to the directory
where adapter instances created by the integration wizard must look for any
external classes that they require. If the integration wizard does not require
external classes, the CLASSPATH can be blank. All other server-side
properties are set by the installer.

The client-side properties are used by the integration wizard to connect to
the target end system when generating adapters.

� Class name specifies the class that the integration wizard uses as its starting
point. The name of the class is set by the installer and cannot be edited.

� CLASSPATH specifies the path to the directory on the client-side
computer where the integration wizard needs to look for any external
classes that it requires. If the integration wizard does not require external
classes, the CLASSPATH can be blank.

Configuring an integration wizard

You configure an integration wizard by setting its CLASSPATH properties.

To configure an integration wizard:

1 In the Adapter Designer, choose Integration Wizard Manager from the Tools
menu.
10 � Adapter Developer’s Guide

The Integration Wizard Manager appears, displaying any integration wizards
that have been installed.

2 Double-click an integration wizard to edit its properties.

The Edit Integration Wizard dialog box appears. Most of the server-side
properties are already set, but you might be required to supply a
CLASSPATH if adapters generated by the integration wizard depend on
external classes.

3 Click the Client-side properties tab to Set the client-side CLASSPATH.

Any integration wizards
that have been installed
appear here.

Type a CLASSPATH here.
Shows the name of the integration wizard.

Shows the location of the
Java archive where the
integration wizard package is.

Shows a description for the
integration wizard.
Using an integration wizard � 11

The Class name is already set, but you might be required to supply a
CLASSPATH if the integration wizard requires external class files to allow it
connect to adapter’s the end system.

4 Type a CLASSPATH, or click the Edit button to compose the CLASSPATH.

The Edit Integration Wizard CLASSPATH dialog box appears. You can use
it to build a CLASSPATH by browsing the file system on the client-side
computer and selecting directories or archives. You can also type a
CLASSPATH.

Type a CLASSPATH or click Edit to browse
the file system for a CLASSPATH.

Shows the class that is the starting point for
the integration wizard. The name of the class
is set by the installer and cannot be edited.

Click to select a directory to add.

Click to select an archive to add.

Use these arrows to
change the order of items
in the list.
12 � Adapter Developer’s Guide

5 Click OK in the Edit Integration Wizard CLASSPATH dialog box and in the
Edit Integration Wizard dialog box.

Managing integration wizards

You can use the Integration Wizard Manager to run or delete an integration
wizard.

� To run an integration wizard, select the wizard in the list and click the Run
button.

� To delete an integration wizard, select the wizard in the list and click the
Delete button.

About the Flat File Integration Wizard

The end product of the Flat File Integration Wizard is a working adapter that
can perform these basic functions with a flat data file:

� Read a data file and populate a business object.

� Write the business object data to a flat file.

Click to run the selected
integration wizard.

Click to delete the
selected integration
wizard.
Using an integration wizard � 13

A flat file adapter reads data from a flat file and uses that data to populate a
business object. That business object can then be used by another adapter, or
by Partner Agreement Manager processes just like any other business object.
A flat file written out by a flat file adapter can be used as input for another
business system or for archival purposes.

This tutorial takes you through the process of defining and creating an
adapter for flat files.

The steps you’ll go through to create a working flat file adapter are:

Step 1 On the machine running the Adapter Server, open the Process Manager
window. Start the Flat File Integration Wizard.

Step 2 Choose the operations you want this adapter to perform.

Step 3 Define the input file format and fields.

Step 4 Specify the name and choose options for the business object.

Step 5 Specify the name for the adapter type, implementation, and instance.

Step 6 The Flat File Integration Wizard generates the business object, adapter type,
adapter implementation, and adapter instance.

Before you begin, make sure you have installed the Process Manager, the
Process Server, and the Adapter Server on the computer you’ll be using.

Using the Flat File Integration Wizard

The Flat File Integration Wizard walks you through the process of making an
adapter for flat files.

To make a flat file adapter:

1 In the Adapter Designer, choose Create Adapter Using Wizard from the File
menu. Then choose Flat File Integration Wizard.

This starts the Flat File Integration Wizard. The Welcome window appears.

2 Click Next to start building your adapter for flat files.
14 � Adapter Developer’s Guide

The Select Adapter Operations window appears.

3 Set the operations you want the adapter to perform. Click Next to continue.

By default, all the operations are checked. The available options are:

Uncheck any
operations you do not
want the adapter to
be able to perform.

Check this option To

Read All Read all the data from the input file and populate the
business object.

Read Rows Read rows from the input file and populate the
business object.

Read Filtered From the input file, read rows that satisfy the filter
criteria. Specify the filter criteria in a Flat_File_Filter
business object that you instantiate and populate in
a script action before calling the adapter.

Append Append all the data in the business object to the
output file.

Append Filtered Append all the data that satisfies the filter criteria to
the output file. Specify the filter criteria in a
Flat_File_Filter business object that you instantiate
and populate in a script action before calling the
adapter.

Write Write all the data in the business object to the output
file you specify. If the file doesn’t exist, a new file with
that name is created. If a file already exists with that
name, it is overwritten.
Using an integration wizard � 15

The Specify Data File Format Method window appears.

4 Choose Prompt me for the data format. Click Next.

Because you’re specifying the data format for this input file for the first time,
select Prompt me for the file format. When you’ve specified the file format,
you can save the specification and import it the next time you want to create
an adapter for this data file format.

Write Filtered Write data from the business object to the output file
you specify. Only data that satisfies the filter criteria
will be written. Specify the filter criteria in a
Flat_File_Filter business object that you instantiate
and populate in a script action before calling the
adapter.

If the file doesn’t exist, a new file with that name is
created. If a file already exists with that name, it is
overwritten.

Delete Delete the input file.

Delete Rows Delete rows from the input file.

Delete Filtered Delete rows from the input file. Only data that
satisfies the filter criteria will be deleted. Specify the
filter criteria in a Flat_File_Filter business object that
you instantiate and populate in a script action before
calling the adapter.

Update Read rows from the input file that satisfy the filter
criteria. Update the values in those rows with data
from the Flat_File_Update business object. Specify
the filter criteria and update values in a
Flat_File_Update business object that you
instantiated and populated in a script action before
calling the adapter.

Get Count Return the number of rows in the input file that
satisfy the filter criteria. Specify the filter criteria in a
Flat_File_Filter business object that you instantiate
and populate in a script action before calling the
adapter.

Check this option To

Because you’re specifying
this data format for the first
time, select this setting.
16 � Adapter Developer’s Guide

The Specify Data Format window appears.

5 Choose Fixed Length Format. Click Next to continue.

Each input data file has information for exactly one business object. This file
can be either fixed length or delimited by some character, usually a comma.
A fixed format file always has the same field beginning in the same place on
each line. Delimited text fields are run one after the other, with no spaces
padding out the field length. The end of each field is indicated by a delimiter
such as a comma.

If your data consisted of an ID and a name, a fixed length format would look
like this:

17 Al Frahm

A delimited format would look like this:

17, Al Frahm

This example uses a fixed length format. The screens for a delimited format
are slightly different.

The Specify Comment Delimiter window appears.

6 Specify the comment delimiters. Enter a description if you want, and click
Next to continue.
Using an integration wizard � 17

Input data files frequently have comment lines that describe the file. Indicate
the comment delimiters so the adapter does not process these comment lines
as data. You can also add some description of the file format for your
organization’s internal documentation.

The Specify Field Details window appears.

7 Click Add to add information about the first field in the data file.

The Specify Field Information window appears.

8 Enter the details about the first field in the row. Click OK.

If your input file had just 2 fields: an ID field and a name field, the first field
would be named ID, be of type String, and have a length of 2.

Click Add to add fields to the
specification.

Give the field a descriptive
name.

Choose one of the available
data types for this field.

Use the roller arrows to set the
length of this field.
18 � Adapter Developer’s Guide

9 Click Add again in the Specify Field Details window to enter the details of the
next data field.

Using the same example, your second field would be named Name, be of type
String and have a length of 20. Type this and click OK to continue.

Your field information looks like this:

10 Click Next when you finish adding the field information.

The Save Format Data window appears.

11 Turn the Save the Format Data setting on to save the format specification you
just made. Click Next to continue.

Note that the start position is
already calculated for you.

You can change field order
by dragging a field to a
different position in the list.

Turn this setting on to save
the format you specified.
Using an integration wizard � 19

The Specify Options for Business Object window appears.

12 Set options for the business object. Click Next to continue.

� Enter a name for the business object definition.

� Enter the name of the top level business object sequence.

� If you want to save this business object definition, turn on the Save the
Document Type Definition setting and specify a file name.

The Specify Audit Options For Business Object window appears.

13 Specify whether to freeze the business object and whether to turn auditing
on. If you need one, set a key field for the business object. Click Next to
continue.

Give the business object a
descriptive name.

Check this box and enter a
file name to save this
business object
specification to a file.
20 � Adapter Developer’s Guide

The Specify Adapter Options window appears.

14 Specify the adapter options. Click Finish to generate the adapter.

� Type the name of the adapter type. This appears in the adapter types lists
in both the Adapter Designer and the Adapter Manager.

� Type the implementation name. This appears in the Adapter Manager
when you add an adapter instance.

� Type the instance name. This appears in the Adapter Manager.

When you click Finish, the integration wizard generates the adapter type,
implementation, instance, and business objects.

15 When the process is complete, click OK.

If you go to the Adapter Manager, you see a running instance of this adapter.
Using an integration wizard � 21

22 � Adapter Developer’s Guide

c h a p t e r�
3

Designing Adapters
Read this chapter for information about designing custom adapters.

This chapter includes these sections:

� About developing adapters on page 24.

� Planning an adapter—questions to consider on page 31.

� About adapter type information on page 33.
Designing Adapters � 23

About developing adapters

An adapter enables interaction between the Partner Agreement Manager
process and a business system. This business system can be anything from a
simple spreadsheet application to a database to a sophisticated business
application such as an enterprise resource planning system.

These are the types of adapters you can use:

� Pre-built adapters that are distributed with Partner Agreement Manager.
The utility adapters are a good example of pre-built adapters. They require
no coding whatsoever on your part. To make these adapters available to
process designers, you need only add adapter instances. For more on the
utility adapters, see Using utility adapters on page 83. Adding adapter
instances is described in the Partner Agreement Manager Administrator’s
Guide.

� Adapters built with an integration wizard. Integration wizards guide you
through the process of building an adapter for a particular end system or
application. The wizard walks you through the options and builds the
adapter for you. At the end of the process, you have a running adapter. No
coding is necessary. A good example of a wizard is the Flat File Integration
Wizard, described in Using an integration wizard on page 9.

� Custom adapters. This last type of adapter is one that you code to meet the
needs of your particular end system and business requirements. It is this
type of adapter that requires design and coding.

The steps of designing an application are the same no matter what the
business system is. However, the success of a given adapter depends on the
adapter developer’s in-depth knowledge of the business system’s
functionality, structure, and technical workings. You can’t develop a good
adapter without knowing a great deal about the business system you’re
writing the adapter for. This is especially true of custom adapters.

Developing an adapter is a multi-step process. The steps are:

� Designing the adapter

� Defining the adapter type

� Creating an adapter implementation

� Adding any additional code

� Creating an adapter instance

� Debugging and testing
24 � Adapter Developer’s Guide

Designing the adapter

The first step in any software design is to have a clear idea of what you need
the software to do. You need to negotiate with the process designer to
determine what information the adapter receives and what it is expected to
be returned.

In general, it’s a good idea to restrict the adapter’s functionality to connecting
with the business system, writing data to it and reading data from it. Other
tasks such as data mapping are best handled outside the adapter, in the
private process. This compartmentalization of functionality not only makes
the adapter easier to write and debug, but it also vastly increases the
possibility for reusable code.

An adapter that has been designed and written with reusability in mind can
be used with many different private processes. You can have several instances
of such an adapter, setting the properties that distinguish each instance at
deployment time. This is good design. For example, you write an adapter to
connect to a database and to read data from it. You can use one property to
point to the correct database, another to hold the user name to log in and yet
another to hold the password.

Error handling

As you design the methods of the adapter, you need to also correctly and
robustly handle any error conditions that might arise. Where possible, the
adapter must do at least a first-level error handling and recovery. Second
level recovery can be handled by the Adapter Server. Returning to the
database example, you have written code in the adapter’s startup() method
to try to connect to the database. If this connection attempt fails, the adapter
must try to recover, in case the failure was due to a dropped network packet
or some other momentary problem. You can do this by throwing an
EndSystemNotAvailableException when the connection attempt fails. This
exception will be caught by the Adapter Server, which then suspends the
adapter and attempt to restart it. When you generate and install the adapter
instance, you can set the properties that determine how the Adapter Server
handles recovery when the end system is not available. See the Partner
Agreement Manager Administrator’s Guide for more on setting these
properties.
Designing Adapters � 25

You need to account for other errors as well by using either of the following
options:

� Throw an ISException or let a run-time error propagate back to the
Adapter Server. This results in a Private Action Error, which causes an
error in the process.

� Catch all exceptions and use a StatusBO to give the private process a
chance to handle the error at the private process level.

Clearly, catching exceptions where possible is the best option. However, you
need to be careful to catch only the exceptions you know how to handle.
Once you’ve caught the exception and passed the information on to the
private process via a StatusBO, the private process must do everything
possible to robustly handle the error. If the private process fails and escalates
the error to the public process and the public process therefore fails, your
partner(s) are notified. Doing this for a software or systems error that you
can fix is like notifying the executive staff every time your workstation
crashes.

Defining the adapter type

An adapter type serves as the blueprint for the implemented adapter: it
defines the operations the adapter performs, the events the adapter passes
from the business system to the Process Server, and the properties the
adapter uses. It has a unique name to help you identify adapters that use
the type.
26 � Adapter Developer’s Guide

You use the Partner Agreement Manager Adapter Designer to create the
adapter type. Each part of the adapter type has its own set of required
information that defines it.

Developing an adapter type is likely to be an iterative process as you refine
the definitions for operations and events, add or remove them, or revise the
definitions for properties. As you work, you can revise an existing adapter
type, or use it as the basis for creating a new adapter type. To revise an
existing adapter type, first make sure that all instances using the type are
stopped. For more information, see Defining a new adapter type on page 44.

Creating an adapter implementation

When you’re satisfied that the adapter type is complete, the next step is to
create an implementation of the adapter type. An adapter implementation is
a Java source file that is generated by the Adapter Designer. It contains Java
code that provides the run-time implementation of the operations, events,
and properties specified in the adapter type.

First, you create an implementation declaration in the Adapter Designer: you
specify the Java source file name, class, and package names; a description; and
a location for the generated files. After the Adapter Designer creates a Java file
based on the information in the implementation declaration and the adapter
type, you can edit it as needed and compile it.

Types
Inputs
Outputs

Data types
Timeouts

Data types
Constraints
Mandatory
Encrypted

Adapter Type
Metadata in XML formatEvents

Operations

Properties

Adapter
Designer Events

Operations

Properties
Designing Adapters � 27

The generated code contains placeholders for operations and event
generation, and definitions for properties you specified. You must add your
own Java code to fill in the placeholders with functionality that is specific to
your external business system. The generated code also contains a method
that loads the property values at run time.

For example, an implementation of an inventory adapter type might be one
that contains code to get and post inventory data.

A single adapter type can have more than one implementation. For example,
you might want to create one implementation for an in-memory test adapter,
and another implementation—the real production version—that accesses a
database. Or, you might want to create different implementations for
different versions of the production adapter.

For more information on using the Adapter Designer to specify
implementation information and to generate the code, see Generating code
for an adapter implementation on page 63.

Note: Moving from adapter type to implementation is a one-way process. If
you revise the adapter type definition after you generate an
implementation, you must generate a new implementation to include
those changes. Then merge in your custom code. The easiest way to do this
is to create a helper class so that the effort of merging code is minimal.

GeneratedAdapter Type
 Implementation CodeMetadata in XML

Events

Operations

Properties

Events

Operations

Properties

Adapter
Designer

Code
Generator

Implementation
Declaration
28 � Adapter Developer’s Guide

Coding your adapter

The next step in the evolution of an adapter takes place in the integrated
development environment (IDE) of your choice—for example, VisualAge®
for Java—or a text editor. Here, you add Java code to the generated code for
any application logic that is needed.

For example, your implementation can use function call APIs, document/
messaging APIs, and object APIs, as well as other interfaces. It can also
emulate user sessions.

After you add code, you continue to work in your IDE of choice to compile
the adapter. For more information, see Using adapter API methods on
page 103, Using Business Object API methods on page 191, and Adding custom
code to adapters on page 245. As part of the testing process, you use the
Adapter Manager to create adapter instances that can be used in private
process Extension actions, as described next.

Creating an adapter instance

An adapter instance is a run-able implementation that has been added in the
Adapter Manager and has values for the mandatory properties defined in the
adapter type. Partner Agreement Manager process developers use adapter
instances when they include Extension actions in private processes. In
addition, Partner Agreement Manager users can associate events created by
an adapter with a public process, so when the event is received it starts the
associated public process.

Generated
 implementation code

Events

Operations

Properties

IDE

Full
 implementation

Events

Operations

Properties

Components

Custom

Libraries

Business
 Application

(stubbed methods) (code added to stubbed methods)

Java code
Designing Adapters � 29

An example of an inventory adapter instance is one that connects with a
specific database using the appropriate user name and password. You can
create as many instances for an adapter as you need. For example, if you have
more than one production inventory database, you can create an adapter
instance for each.

For more information, see the Partner Agreement Manager Administrator’s
Guide.

Debugging and testing your adapter

After you’ve compiled your adapter and created an instance, you debug it.
You must have an adapter instance to debug and test the adapter.

Adapter

Server

Production
 System

Prod User

Prod

Adapter
 instance

Test User

Test

Adapter
 instance

Each adapter instance has
different values for its
properties. Test

 System

Password

Password
30 � Adapter Developer’s Guide

Planning an adapter—questions to consider

When you design an adapter, you develop a plan that identifies the business
functions the adapter must perform and lays out a strategy for development.
As you plan the adapter, here are some design questions to consider. The
answers help you to construct an adapter that remains useful throughout the
entire life cycle of the Partner Agreement Manager implementation.

What functions does the adapter perform?

The first step in planning an adapter is to determine what business
requirements the adapter must fulfill and what functions it must perform.
What system does it connect to? What types of interactions are required?
What business objects are required?

Once you’ve established these basics, you can look at the integration problem
to be solved and determine if it decomposes into technical and functional
components. If so, you might want to divide the two tasks into different
components.

The technical components can handle direct interaction with an external
application. This might entail wrapping with Java some system interface in
another programming language. There might be nothing related to Partner
Agreement Manager in this part of the adapter.

The functional—business—components can then handle the semantic
mapping between application data and Partner Agreement Manager data in
the form of business objects and events. This part of the adapter can take care
of reading inputs, using the right technical components, and then writing the
outputs.

What is the starting point?

Once you’ve identified the functions to be performed, you can decide on a
starting point. Choices include reusing an existing adapter—for example, an
example adapter—or creating an entirely custom adapter. In addition, a
utility adapter might provide all of the functions you need.
Designing Adapters � 31

If an adapter module that connects to your business system is available, it
becomes the most promising starting point. Adapter modules are designed to
provide basic connectivity and a sample set of interactions with the target
system. Using an adapter module makes it unnecessary for you to become an
expert with the target system vendor’s interface model. Instead, you can
focus on implementing business interactions and leave the connectivity
issues to the adapter module.

How much code is reusable?

Before you begin developing the adapter, it’s a good idea to determine if there
is integration work that would be reusable in other adapters to this enterprise
system. Are there generic technical interfaces that all functional modules
access? For a given adapter solution, can you see anyone reusing your
underlying technical components without using the rest of the adapter? can
other adapters reuse debugging or exception handling methods? can other
adapters for the same system reuse your underlying code for establishing a
connection, reading from the data dictionary, and so forth? If so, you might
want to consider structuring the adapter in a way that provides the most
reusability for your code.

The two levels of adapter code reuse are:

� reuse of a complete adapter in a different process.

� reuse of part of an adapter in another adapter.

The reuse of a complete adapter is ideal, necessitating no additional coding.
Designing adapters to do the minimum necessary work maximizes this sort
of reuse. Generally putting information into and getting information from
the business system is all most adapters need to do. The manipulation of data
and business objects can be done outside the adapter with scripts and
mapping. For example, you might not want to post or get a partner business
object directly into or from your enterprise systems. Instead, you can
construct a business object that reflects your enterprise system and map that
to the shared business object in the private process. This facilitates the reuse
of this adapter for another process, perhaps with another partner.

If reusing the entire adapter isn’t possible, you might find that a multi-level
adapter design is best. This allows you to reuse portions of an existing
adapter. In this scenario, to reuse code you might have to write several
adapters for different interface points of the business system.
32 � Adapter Developer’s Guide

If, on the other hand, reusability is not an issue, you might find that creating
a single-level adapter simplifies the task when you are building a custom
adapter.

How much abstraction is possible?

In designing an adapter, you want to achieve as much abstraction as possible.
A level of abstraction serves to insulate the private process from the system
interface, so that changes in the system interface don’t impact adapter
operations.

To achieve this goal, consider whether the underlying technical components
isolate the functional components of the adapter from changes in the
business application. For example, in a database integration problem, can
you change the table structure or a column format without changing the
adapter?

About adapter type information

Before you design an adapter, it’s important to understand how the different
components of an adapter work together.

These components are:

� business objects or variants used to receive information from and pass
information to Partner Agreement Manager

� operations the adapter performs

� events the adapter generates

� properties that can be set for each instance of the adapter
Designing Adapters � 33

About business objects and variants

Partner Agreement Manager manages information in the form of business
objects (BOs) or variants. An interchange between Partner Agreement
Manager and another application usually has a business object component.
However, depending on the type of operations the adapter performs, you
might also use variants. Business objects are better for structure information,
while variants are better for scalar values.

The business objects must be defined in Partner Agreement Manager before
you create an adapter type that uses them. See the Partner Agreement
Manager User’s Guide for more information about defining business objects.

Tip: You can also use a status business object to return status about each
operation an adapter performs. Partner Agreement Manager contains a
predefined business object—Extricity.3.Operation_Status.1 BO—that
you can use to report operation status (and to allow process designers to
handle application error or warning conditions in the private process).

DataAdapter

Business

In this example, the
private process receives
updated inventory
information, stores it in
a business object, and
posts it to the business
application.

If you plan to use a business object in an
adapter or an event, the business object
definition must exist before you create
the adapter type.

Application

Adapter
Server

BO

Variant
BO

Variant

PAM
Private Process
34 � Adapter Developer’s Guide

If you do not already have a set of result codes defined, you can use these:

About operations

An operation is a task that the adapter performs for a private process. Partner
Agreement Manager adapters can perform two basic types of operations: Get
and Post. A third operation, Advanced, can be a combination of gets and
posts, or it can be simpler than a Get or Post.

In deciding what type of operation to use, the first step is to determine the
objective of the operation:

� Use a Get operation to extract, query, or download information from a
business system. A Get operation returns a single business object output,
along with an optional status business object.

Return this
Operation_Status.result If the operation

success Completed successfully.

failure Failed. The Operation_Status.reason field must
contain the reason the operation failed.

warning Completed successfully, but there are problems
someone might need to know about. The
Operation_Status.reason field must contain
warning messages.
Designing Adapters � 35

� Use a Post operation to create, insert, change, update, or delete data in the
business system. A Post operation has a single business object input, along
with an optional output and status business object.

� Use an Advanced operation to span several Get/Post actions with a single
operation. An Advanced operation can have several business object and
variant inputs and outputs.

Post operations are stateful, and Get operations are usually stateless. For
example, a Get operation extracts information from the target system
without modifying the target system’s data. A database query is an example
of a Get operation. In contrast, a Post operation updates the target system.
For example, a Post operation can create a new sales order in a purchasing
system.

In some cases a Get operation can modify a system’s state. For example, a Get
operation might file a request on the target system for information that will
be fulfilled concurrently. Although this request is logged by the target system,
the operation must still be a Get as long as no business information has
changed.

Adapter

BO

Business

Private Process

This operation extracts
information from the target
system without changing data in
the target system.

Application

Adapter
Server

get

post

This operation updates the target
system with information from
Partner Agreement Manager.

Variant

BO

Variant
36 � Adapter Developer’s Guide

Alternately, a query operation can require the services of an intermediary (for
example, a middleware product) to contact the target system. From the
perspective of the intermediary, a great deal might have happened (it
received and fulfilled a request). However, this operation must still be a Get
if the end system is in the same state.

If a process is interrupted (for example, the Process Server is restarted while
a process is running), the Process Server restarts the process from the top of
the current step in the private process. Although it doesn’t redo any of the
posts, it does redo the gets and stateless Advanced operations. (It calls the
reExecute method for all operations.) Remember this when you decide if an
operation must be a Get or Post: determine whether it is all right to rerun it.

About immediate and long-running operations

Partner Agreement Manager lets you write long-running operations by
calling the requestRetry method of com.extricity.adapter.api.OperationContext
interface, which you add to the code yourself.

An immediate operation is one that takes place and completes immediately.
A long-running action is one that blocks the private process for a period of
time. You can use immediate or long-running operations with gets, posts,
and Advanced operations. For example, an immediate Get operation returns
immediately if a purchase order is not present in an enterprise system. A
long-running Get operation would block until the purchase order appears in
the system.

Tip: It’s a good idea to use operation names and descriptions that clearly
reflect whether the operation will be performed immediately or might
block for a time period.

One style of interaction might generally be more applicable for a given
business object. For example, you would likely want to get a purchase order
immediately, but create a long-running Get for an operation that waits for
purchase order approval. You might want to implement both immediate and
long-running operations if both are likely to be useful for process designers.
Designing Adapters � 37

The way in which you combine long-running and immediate gets and posts
depends on the tasks that the adapter will perform. For example, if you have
stateful interactions that don’t complete immediately, you can create an
adapter that contains a long-running Post or an immediate Post and a long-
running Get. Whether you use a long-running or immediate Post depends on
whether everything must be completed in a single transaction.

� One action plan: one long-running Post that starts the work and waits
until it is done.

Use this plan if everything must be completed as one transaction. Also, if
the appropriate context information is difficult to pass back to the private
process for a subsequent long-running Get, do all the work as one action.

� Two action plan: immediate Post that starts the work, followed by a long-
running Get that waits for the work to be done. This requires the first Post
to pass enough context information back to the private process for the
second Get to know what operation to check for completion.

Use this more modular plan to give process designers the opportunity to
do other useful work before the task of the original Post completes. In
addition, the first Post can be used by itself if the process designer does not
care when the operation finishes. The second Get can be used by itself if
the process designer wanted to wait for a business object created by an
external entity.

About events

Events are occurrences that take place in the business system, such as the
arrival of a purchase order, or falling below a predetermined inventory level.
Process designers might use events as triggers to initiate Partner Agreement
Manager processes. Events in adapters provide a mechanism for the event to
pass from the business system to the Process Server. The Process Server can
accept event information in the form of business objects or variants.

Although you can achieve the same basic results by creating an event with
business object input or by using a Get at the beginning of a process, there are
some cases when you need to have a business object input (for example,
when an event in a business system can only be captured in a single
transaction). Most of the time, however, it’s a better idea to start a process
with an identifying variant and have the first private action get the business
object using that variant.
38 � Adapter Developer’s Guide

The advantages to this approach are:

� It makes process testing easier (it’s easier to enter a variant manually than
a business object).

� You might be able to reuse the Get functionality in another process.

� The private process can handle errors much better than in event
generation. So, you want to do as little as possible when generating an
event.

� It makes better use of memory. Event inputs are kept in memory for the
entire life of the public process. Private process business objects are kept
in memory only while the private process is running.

About properties

Properties have values that can be different for separate instances. Instances
behave differently depending on these values.

For example, you might have an adapter type that interacts with a database.
The adapter type would contain properties that identify the database, the
database user, and the user’s password. If you wanted to connect to several
databases, you can create a different instance of the adapter for each database
you connect to. Each instance would use the appropriate database name, user
name, and password. The adapter type specifies that database name, user
name, and password are properties; it is in the adapter instance that you
specify exactly what the database name, user name, and password values are.

When you add properties to an adapter, you can specify that the property is:

� mandatory or optional

� encrypted (for security purposes)

� constrained to a predefined list of values

� a particular data type (boolean, integer, or string)

� set to a default value
Designing Adapters � 39

40 � Adapter Developer’s Guide

c h a p t e r�
4

Creating an adapter type
Read this chapter for information about creating adapter types,
importing and exporting adapter types and implementations.

This chapter includes these sections:

� About adapter types on page 42.

� Starting the Adapter Designer on page 42.

� Defining a new adapter type on page 44.

� Editing an adapter type on page 57.

� Exporting an adapter type or implementation declaration on page 57.

� Importing an adapter type or implementation declaration on page 58.
Creating an adapter type � 41

About adapter types

An adapter type serves as the blueprint for the implemented adapter. The
adapter type defines the operations the adapter performs, the events it
conveys from the business system, and the properties it uses. Each type of
element has its own set of required information that defines it.

Starting the Adapter Designer

You can start the Adapter Designer from the Adapter Server window or the
Adapter Manager:

To start the Adapter Designer:

� In the Adapter Server window or the Adapter Manager window, choose
Adapter Designer from the Tools menu.

The Adapter Designer appears.

Adapter Manager

Adapter Server

Server
Adapter

Adapter Designer

window Adapter Designer
42 � Adapter Developer’s Guide

About the Adapter Designer

You use the Adapter Designer to create or modify adapter types, create
adapter implementations, or import or export adapter types or
implementations. The first time you start it, the Adapter Designer window
shows the Example and Utility adapter types. Thereafter, it also displays the
adapter types and implementations that you created.

The Command toolbar at the top of the Adapter Designer lets you do the
following:

Toolbar buttons give you quick
access to important Adapter
Designer commands.

The status bar shows that you
are connected to the database
that Partner Agreement
Manager uses to manage
transactions and data.

This area displays adapter
types and implementations.

Create a new adapter
implementation

Display adapter information

Generate code

Import an adapter

Export an adapter

Create a new
adapter type

Delete an adapter
Creating an adapter type � 43

Defining a new adapter type

When you define a new adapter type, you begin by supplying a name and
description. Process designers see the description when they select an adapter
as part of a private process action. In addition, the description you provide
becomes Javadoc documentation for the compiled adapter class.

Next, you add the operations that the adapter will perform. For each
operation you add, specify a name, a description, inputs, and outputs. See
Adding operations on page 46 for more information.

After you add operations, define the events the adapter uses. For each event,
you specify a name, a data type, and a time-out value. See Adding events on
page 51 for more information.

Finally, you define the adapter’s properties. For each property, you specify a
name and description, define the type, default value, and constraints, and
determine whether properties are mandatory or encrypted. See Adding
properties on page 54 for more information.

For this adapter type...

...private process designers see this when they select an
adapter for an Extension action.
44 � Adapter Developer’s Guide

Creating an adapter type � 45

To define a new adapter type:

1 In the Adapter Designer, choose Create Adapter Type from the File menu or
click the Create Adapter Type button in the Command toolbar.

The Create Adapter Type dialog box appears.

2 Type a name for the adapter and enter a description.

See Adding operations on page 46 to continue defining the adapter type.

About operations

There are three types of operations: Get, Post and Advanced.

A Get operation retrieves information from the end system. Every Get
operation has the following characteristics:

� It doesn’t change the end system.

� It has a single output business object.

� It can have unlimited input business objects and/or variants.

� It can have an optional output status business object.

A Post operation puts information into the end system. Every Post operation
has the following characteristics:

� It changes the end system.

� It has a single input business object.

� It has an optional output business object.

� It has an optional output status business object.

An Advanced operation is an operation that is a combination of gets and
posts or anything else that is not either a Get or a Post.

The description becomes
Javadoc documentation for
the adapter
implementation.

Adding operations

For each operation you add, you provide an operation name and description.
When process designers use this adapter, they select which operations to use
based on the operation name and description.

For this adapter type...

...this is what private process designers
see when they select an adapter
operation.
46 � Adapter Developer’s Guide

Each adapter operation also has its own set of inputs and outputs that you
specify. Depending on the type of operation you add, inputs are either
business objects or variants that hold values that the adapter needs to start the
operation. Outputs are business objects or variants that receive the results
and status for the operation. Private process designers supply context
variables that hold the inputs and outputs you specify in the adapter type.

To add operations:

1 In the Create New Adapter Type dialog box, click the Operations tab.

The Operations panel appears. It lists the three types of operations you can
add: Advanced, Get, and Post.

For this adapter type...

...private process designers see this
when they specify inputs or outputs.

Select an operation type.
Creating an adapter type � 47

2 Select an operation type and click Add.

The Add Operation dialog box appears.

3 Type a name and description for the operation.

It’s a good idea to use operation names that reflect whether the operation will
be performed immediately or might block for a period of time. For example,
you might want to call an immediate Get operation “Get purchase order,”
and call a similar long-running Get operation “Wait for purchase order.”
You must also use the operation description to clarify how long the operation
takes so that process designers are aware of these timing issues.

4 For an Advanced operation, specify whether the operation modifies the
business system.

When you create implementations of this adapter type, the code generator
supplies different re-execution code depending on whether the operation
modifies the business system.

For Get and Post
operations, this option
is preset.

For Advanced operations,
you can specify whether
the operation updates the
business system.
48 � Adapter Developer’s Guide

5 Click the Inputs tab to specify the input variable or business object for the
operation.

The Inputs panel appears. For Post operations, you specify the input business
object that contains the information that will be used to update the business
system. For Get and Advanced operations, you can specify variables that will
hold information for the business system.

6 Specify the input for the operation.

� For Post operations, select a business object from the Input BO list.

� For Get or Advanced operations, click Add.

The Add Input/Output dialog box appears.

For Post operations, specify
the business object to be
used for input into the
operation.

For Get and Advanced
operations, click Add to
specify a variable to be
used to hold the input for
the operation.

Type a name for the input. Process
designers will bind a variable to the input.

Select the type of variable.

If you specify a business object variable,
select the business object.

If the input is not required, turn on the
Optional setting.
Type a description for the input. The description
becomes the Javadoc description of the input or
output in the Java implementation.
Creating an adapter type � 49

Note: You can add more than one input variable (of either the business
object or variant type) to a Get or Advanced operation.

7 Click the Outputs tab to specify the output variable or business object for the
operation.

The Outputs panel appears. For Get and Post operations, you can specify one
business object that contains the information from the business system, and
a second business object that contains operation status. An output business
object is required for Get operations, but is optional for posts. Although
status business objects are optional for both Get and Post operations, they
can be very useful to private process designers.

For Advanced operations, you can specify one or more variables that will
hold the results of the operation.

For Get and Post
operations, specify the
business objects to be
used for the results and
status of the operation.

For Advanced operations, click
Add to specify a variable to
hold the results of the
operation.
50 � Adapter Developer’s Guide

8 Specify the outputs for the operation.

� For Get and Post operations, select a business object from the Output
Business Object and Status Business Object lists.

� For Advanced operations, click Add and use the Add Input/Output dialog
box to specify one or more variables.

See Adding events, next, to continue defining the adapter type.

Adding events

Events represent functional occurrences that take place in the business
system, such as the arrival of a purchase order or falling below a
predetermined inventory level. The function of events in adapters is to
provide a mechanism for the occurrence to pass from the business system to
the Process Server. Once an event arrives at the Process Server, process
designers can use it as a trigger to start a PAM process. The Process Server can
accept event information in the form of business objects or variant variables.

Important: If your event contains a business object, it’s a good idea to use a
business object that you, and not a partner, own. You don’t want your
adapter operations to be impacted by your partner’s decisions about
business object design.

The events that you define in the adapter type appear in the Process Manager
window and are available to process designers.

For this adapter type, the events
listed here...

...are available to process designers,
who can register processes against
an event.
Creating an adapter type � 51

When you add events, you specify a name for the event, a variable that stores
event information, and a time-out that determines how long the event is
available to trigger process instances.

To add events:

1 In the Create New Adapter Type dialog box, click the Events tab.

The Events panel appears.

2 Click Add to add a new event.

The Add New Event dialog box appears.

3 Type a name for the event and select the type of variable to be used for the
event data. If you select a business object variable, select the business object
to be used.

4 Click the Timeout tab to set timing properties for the event.

Click Add to add an event.

Type a name for the event.

Select the type of variable to be used for
event data.
If you specify a business object variable,
select the business object.
52 � Adapter Developer’s Guide

The Timeout panel appears.

The time-out specifies how long an event remains valid. In other words, the
Process Manager has that amount of time to start a public process. Realize
that if a public process is suspended, the Process Manager will not start this
public process until it is resumed; so if the process is resumed before the
event time-out, the Process Manager can start the process.

5 Click OK in the Add Event dialog box, and continue to add events as needed.

See Adding properties, next, to continue defining the adapter type.

Select how long the event
remains available.
Creating an adapter type � 53

Adding properties

Properties are values you can use to distinguish between different instances
of an adapter. For example, you might have one adapter that can be used to
connect to different resources. In the Adapter Manager, you can install the
adapter several times, creating several instances of the adapter—once for
each resource you connect to. And each time you install the adapter and
create an instance, you would specify a different set of properties for the
resource you’re connecting to.

When you add properties to an adapter, you specify a name and description,
and whether they are mandatory or optional. You can also specify a data type,
provide a default value, constrain a property to a predefined list of values, or
designate it as encrypted.

The properties for this
adapter type...

...determine the properties
when you add an instance
of this adapter in the
Adapter Manager.

The adapter properties also
determine the nature of the
values you can enter.
54 � Adapter Developer’s Guide

To add properties:

1 In the Create New Adapter Type dialog box, click the Properties tab.

The Properties panel appears.

2 Click Add to add a new property.

The Property Editor dialog box appears.

3 Type a name and a description for the property.

The description becomes the Javadoc documentation for the property in the
Java implementation.

4 Click the Type tab to specify data type.

The Type panel appears.

Click Add to add a property.

Type a name for the property.

Type a description for the
property.

Select a data type.

Enter a default value if you want.

Specify whether users need to select from
a predefined list of values or be able to
type any value they want.
Creating an adapter type � 55

5 Select a data type (string, integer, or boolean) and enter a default value if you
want.

The default value appears whenever users install an instance of this adapter.

6 Specify whether you want users to select from a predefined list of values or be
able to type any value they choose.

If you select Pre-defined List Of Allowable Values, the Allowable Values
panel appears.

7 Click Add to add a value to the list, type a value in the Add Constraint dialog
box, and click OK.

After you define allowable values, you can select one value and click Set As
Default to make it the default that appears when users install the adapter.

Tip: Using a constrained list makes it easier for users to enter the correct
property values.

8 Click the Options tab to designate the property as mandatory or encrypted.

The Options panel appears. If a property is mandatory, you must implement
it in the adapter instance. A mandatory property is required for each adapter
instance. An encrypted property, typically a password, is masked when the
user enters it.

Click Add to add a value to the
list of allowable values.

After you define allowable values, you can
select one value and make it the default
that appears when users install the
adapter.

A mandatory property is always required.
56 � Adapter Developer’s Guide

Tip: Do not mark a property as mandatory if it doesn’t need to be set for
proper adapter operation.

9 Click OK to finish defining the adapter type.

Editing an adapter type

You can revise an existing adapter type, even after you create
implementations and instances for it.

To edit an adapter type:

� In the Adapter Designer, double-click an adapter type.

The Edit Adapter Type dialog box appears. The Adapter Type Name is not
editable, but all other characteristics are, including operations, events, and
properties.

Exporting an adapter type or implementation

declaration

To make it easier to work in several locations, Partner Agreement Manager
lets you export adapters from one computer and import them elsewhere. You
might, for example, develop adapters on a workstation for eventual
installation on the computer that runs the Adapter Server. Likewise, you can
start developing an adapter on a desktop computer, export it, and continue
development on any other computer on which the Adapter Designer is
installed.

You can export adapter types or implementation declarations. In either case,
Partner Agreement Manager creates an XML file.

To export an adapter type or implementation declaration:

1 In the Adapter Designer, select the adapter type or implementation that you
want to export.

2 Click the Export icon in the Command toolbar or choose Export from the
File menu.

The Export Adapter dialog box appears. The default name is that of the
adapter type or implementation declaration.

3 Type a name for the exported adapter and select a location for it. Click OK.
Creating an adapter type � 57

Partner Agreement Manager writes an XML file for the adapter type or
implementation declaration you selected.

Tip: Use file names for exported types and implementations that make it easy
to distinguish between them when you import them later. For example,
you might name an adapter type PurchasingAdapterType and its
implementations GeneratedPurchasingAdapterImp and FinalPurchasingImp.

If you are running as a client, the export file is placed on your local computer.

Importing an adapter type or implementation

declaration

After you export an adapter developed on a computer other than the one that
runs the Adapter Server, Partner Agreement Manager makes it easy to import
the adapter to the location you want. You can import adapter types or
implementation declarations. However, you must import an adapter type
before you can import any of its implementation declarations. In addition, in
the Adapter Manager, you can import adapter instances that were exported.

If you are importing adapters to a different Partner Agreement Manager
instance (for example, if you’re importing an adapter created by a third
party), make sure that the business objects used by the adapter are available.
If the underlying Process Server is the same, the business objects will already
be available. However, events are created on import.

To import an adapter:

1 In the Adapter Designer, click the Import icon in the Command toolbar or
choose Import from the File menu.

The Select Import Type dialog box appears.

Select the kind of item you want to
import. Partner Agreement Manager
checks to make sure that the file
you select is of the same kind.
58 � Adapter Developer’s Guide

2 Select Adapter Type or Adapter Implementation from the Import Types list.
Click OK.

The Import dialog box appears.

3 Select the file to be imported. Click Open.

The imported adapter type or implementation appears in the Adapter
Designer.

Tip: If you’re running as a client, the import file must be on your local
computer.
Creating an adapter type � 59

60 � Adapter Developer’s Guide

c h a p t e r�
5

Creating Adapter

Implementations
Read this chapter for information about creating adapter
implementations in the Adapter Designer.

This chapter includes these sections:

� About creating adapter implementations on page 62.

� Generating code for an adapter implementation on page 63.

� Adding Java code on page 66.

� Compiling and debugging on page 67.

For information on adding custom code to adapter implementations, see
Using adapter API methods on page 103, Using Business Object API methods
on page 191, and Adding custom code to adapters on page 245.
Creating Adapter Implementations � 61

About creating adapter implementations

An adapter implementation is a Java source file that is generated by the
Adapter Designer based on the information specified in the adapter type and
implementation declaration. It contains Java code with empty methods for
the operation and event checking functionality you want to implement and
code that loads properties. For example, you create an implementation of an
inventory adapter type. The implementation contains empty methods that
are placeholders for the code that you’ll write to allow it to get and post
inventory data.

Creating an adapter implementation is a multi-step process:

Step 1 Generate the code from the adapter type. The Adapter Designer generates a
Java file with empty methods.

Step 2 Add Java code for any necessary application logic.

Step 3 Compile the adapter implementation.

Step 4 Create an instance of this adapter.

Step 5 Test and debug the implementation.

The code generated by the Adapter Designer contains placeholders for the
operations and events, and definitions for properties you specify. It also
contains a method that loads the property values at run time.

A single adapter type can have more than one implementation. For example,
you might want to create one implementation for an in-memory test adapter,
and another implementation—the real production version—that accesses a
database.

Note: Moving from adapter type to implementation is a one-way process. If
you revise the adapter type definition after you generate an
implementation, you must generate a new implementation to include
those changes.
62 � Adapter Developer’s Guide

Generating code for an adapter implementation

The starting point for creating an adapter implementation is an adapter type.
It can be one that you create using the Adapter Designer, or it can be one of
the example adapter types that are included in the Partner Agreement
Manager Adapter Development Environment (ADE).

Note: The example adapters appear in the Adapter Designer. To use one of
the example adapters, you need to create your own instance.

You can create as many implementations as you want for a single adapter
type. For example, you can develop different implementations of a single
adapter type to include varying levels of realism in your testing. Your first
adapter implementation can return the same data all the time. A second
adapter implementation might preserve data in memory or read and write
from flat files.

As you create adapter implementations, you supply class and package names
for the implementation that will appear in the generated code. Before you
create an implementation, you might want to consider developing a file
naming scheme to help you identify the various components for different
implementations of the same adapter type.

Here’s an example:

Use this file name Under these circumstances

YourAdapterType.xml This is your exported adapter type information.

YourAdapterJavaImp.xml This contains the Java implementation
declaration, including Java source file name,
class name, package, and directory, for your
adapter implementation.

YourAdapter.java This is the file generated by the Adapter
Designer code generator.

YourAdapterHelper.java
(or YourAdapterCore.java)

This file has all the entry points from the
generated adapter implementation into your
business logic. (See Using helpers on page 246).

SystemLibrary.java This can be a library for a business system, a
technical interface, or an industry-standard
protocol.
Creating Adapter Implementations � 63

To generate code for an adapter implementation:

1 Launch the Adapter Designer (if it isn’t already running) and select the
adapter type for which you want to create the implementation.

2 Choose Create Adapter Implementation from the File menu or click the
Create Adapter Implementation button in the Command toolbar.

The Create Java Adapter Implementation dialog box appears.

3 Type a name for the adapter implementation, a class name, and a package
name. Add a description if you want.

The class name becomes the name of the Java class file. The package name
tells the Process Server where the implementation class file belongs.

Any description you add becomes internal documentation (Javadoc) for the
adapter implementation.

4 Click Generate Code.

The Generate Java Source Code dialog box appears.

5 Type the location where you want the generated code files to be created.

The location you enter is relative to the partner directory in your
WebSphere\Partners\Partnernnn. Remember that if you have a package
name, your directory structure must correspond to it for Java to be able to
find the files; for example, for com.mycompany, use the directory structure
com\mycompany\.

Type a class name for the Java
implementation of the adapter.

The description becomes the Javadoc
documentation for the adapter
implementation.

Type the location where you want the
implementation class files stored.
64 � Adapter Developer’s Guide

Important: We recommend that you put all adapter files (such as code,
XML, and so on) under your partner directory. If you do, during
upgrades, Partner Agreement Manager can preserve your files that exist
there. In addition, the partner directory is in the Java classpath, so your
Java package structure needs to start there.

6 Click the Advanced tab to override default implementation methods.

The Advanced panel appears.

7 Select settings in the Advanced panel as needed.

For any options you select, the Adapter Server generates stubbed code as a
placeholder for your custom code, rather than including the default
implementation code.

Click a check box to override
the default adapter methods.

Click this setting to override the
default transaction context.

Turn this setting off if you plan
to synchronize threads yourself.

Turn this setting on To override

shutdown method The default implementation of the shutdown
method in the adapter base class. This method is
called when the adapter is stopped. Use this setting
to clean up all resources allocated such as database
connections. Failure to release resources can result
in memory leaks.
Creating Adapter Implementations � 65

8 If you plan to provide your own multi-threaded synchronization, turn off the
Synchronize Operation Execution Methods setting.

Important: If you turn this setting off, the generated implementation is not
multi-thread safe unless you explicitly handle it yourself. We recommend
that you leave this setting turned on in most cases.

9 Click OK.

The Adapter Server generates the code in the directory you specified. You are
now ready to add custom code to your implementation, as needed. See Using
adapter API methods on page 103, Using Business Object API methods on
page 191, and Adding custom code to adapters on page 245.

Adding Java code

When you generate code for an adapter, the Adapter Server provides stubbed
code for the operations you specify. The generated code contains “To Do”
sections that identify the areas of the code that you need to implement.

The next step is to open the generated Java file in a text editor or the
integrated development environment (IDE) of your choice and add the
required code. The code you add depends on the operations your adapter
performs and the interfaces it connects to. Put all initialization, such as
attempts to connect to end systems, in the startup method.

reExecute method The default implementation of the reExecute
method in the adapter base class. This method is
called when execution results are inconclusive due
to process or computer failure. Use this setting if you
plan to implement special logic for handling
reexecution of stateful operations.

Create transaction
context

The default behavior of the transaction context. Use
this setting when you want to implement your own
transaction processing monitor (TP Monitor).

Turn this setting on To override
66 � Adapter Developer’s Guide

Pay special attention to error handling. In the startup method, throw an
EndSystemNotAvailableException to indicate that an attempt to connect to
a business system failed. This will be caught by the Adapter Server. If error
handling was set for the adapter instance, the Adapter Server suspends the
adapter and attempts to restart it. For more information on setting error
handling and recovery behavior, see the Partner Agreement Manager
Administrator’s Guide.

For more information on writing code for adapters, see Adding custom code
to adapters on page 245.

Compiling and debugging

You need to create an instance of your adapter to test and debug it. See the
Partner Agreement Manager Administrator’s Guide.
Creating Adapter Implementations � 67

68 � Adapter Developer’s Guide

c h a p t e r�
6

Using the JDBC Integration

Wizard
Read this chapter for information about using the JDBC Integration
Wizard to create an adapter for a supported database.

This chapter includes these sections:

� Before you start on page 70.

� Creating a JDBC Adapter on page 70.

� Executing the schemas on page 79.

� Running the JDBC adapter on page 80.
Using the JDBC Integration Wizard � 69

Before you start

You must know what operations, events, and SQL statements you want to
include in your adapter before you start using the JDBC Integration Wizard.
For each operation you want to include, specify a separate SQL statement.
You can build an adapter by entering the SQL statements yourself or
specifying stored procedures.

Creating a JDBC Adapter

After you install the JDBC Integration Wizard, make sure that the Process
Server and the Adapter Server are running.

Starting the JDBC Integration Wizard

To start the JDBC Integration Wizard:

1 In the Adapter Server, choose Adapter Designer from the Tools menu.

2 In the Adapter Designer, choose Create Adapter Using Wizard from the File
menu, and then choose JDBC Integration Wizard from the submenu.

The JDBC Integration Wizard Welcome window appears.

Building a JDBC adapter

To build a JDBC adapter:

1 In the JDBC Integration Wizard Welcome window, click Next to continue.
70 � Adapter Developer’s Guide

The Database Connectivity Information window appears.

2 Enter your connection information.

Type the database name, database server, user name, and password. If you
don’t know this information, ask your database administrator.

For database profile, you can select an option from the drop-down list
(Oracle—Thin Client is the default profile) or create a new profile. To specify
a new profile, see step 4.

3 Click Test Connectivity to verify that you’re connected to your database.

The Information window appears. If you get a connection error, recheck
your connection information.

4 You can view or add a profile, if you want.

� Click View to view the selected profile.

The Database Profile window appears.

Adapter

Check your connection to
Oracle or SQL Server.

Click to delete the selected
profile.
Using the JDBC Integration Wizard � 71

� Click Add to create a new profile in the Database Profile window. Enter
information for each option.

The following screen shows example settings for adding a SQL Server
profile.

You might want to create a new profile for different databases or servers.
The Database Profile options are described in the following table.

Note: The Database Profile options are case-sensitive.

For this option Supply this information

Profile Name A unique name for the new profile.

Database Type ORACLE if you’re using Oracle.
SQL SERVER if you’re using Microsoft SQL Server.

Database
Driver

The database driver (for example,
oracle.jdbc.driver.OracleDriver).

Database Port The database port number.

Database URL A generic or specific URL. A generic URL contains
placeholders like <db_name> and <db_port> and can
be reused for different databases or servers. The JDBC
Integration Wizard populates the URL with specific
information for the placeholder tags.
For example, if you enter this generic URL for Oracle:
jdbc:oracle-thin:@<db_name>:<db_port>:<db_server>
or this generic URL for SQL Server:
jdbc:weblogic:mssqlserver4:<db_name>@<db_server>:<db_port>
The JDBC Integration Wizard provides a specific
database name, server, and port. For example:
jdbc:oracle-thin:@DELIA:1585:CASSIDY
or
jdbc:weblogic:mssqlserver4:west@august:1420
72 � Adapter Developer’s Guide

5 When you finish, click OK to return to the Database Connectivity
Information window, and then click Next.

The Specify Operations Information window appears, where you define
operations for the adapter. Although you can define as many operations as
you want, you must define at least one operation before you can build the
adapter.

The following table describes the options in the Specify Operations
Information window.

6 Click Add to add an operation.

Adapter

Click to add an
operation.

Click to add several
operations from an
imported file of SQL
statements.

Click To

Add Add an operation.

Delete Delete a selected operation from the list.

Edit Edit a selected operation in the list.

Read from File Import a text file containing SQL statements. This
file must contain only SQL statements without
comments. Separate statements with a semicolon (;)
if you’re building an adapter for Oracle. Separate
statements with the “go” keyword on a separate line
if you’re building an adapter for SQL Server.
Using the JDBC Integration Wizard � 73

The Define SQL for Operation window appears with the information in the
General panel displayed.

7 In the General panel, type a name for the operation and an optional
description. Click the SQL Information tab.

The SQL Information panel appears. You can choose whether to use a stored
procedure or type your own SQL statement.

� Click Use Stored Procedure to specify a stored procedure for the
operation.

You can type the name of the stored SQL procedure or filter it using the
SQL wildcard character (%). For example, to find tables starting with the
string “adapter,” type adapter% and click Filter. If you want to find tables
that include the string “adapter” embedded in their name, type
%adapter%.

You can then choose from the filtered options in the dropdown list.

Note: Include some criterion along with the wildcard character (%) in your
filter. If you use only the %, the filter might take a while to return results,
and the list might be too extensive to be useful. Make your search as
specific as possible for best results.

Note: For Oracle databases, table names must be specified in upper case
characters.

Click to search for stored
procedures that meet the
specified criteria.
74 � Adapter Developer’s Guide

� Click Use Generic SQL Statement to type a SQL statement for the
operation. You can enter one Select, Update, Insert, or Delete statement.

If you want to include a variable in your SQL statement and you’re
building the adapter for SQL Server, precede the variable with @ (for
example, Select * from employee where empid =

@user_defined_id). If you’re building the adapter for Oracle, precede
the variable with & (for example, Select * from employee where
empid = &user_defined_id). End your statement with the “go”
keyword if you’re using SQL Server or with a semicolon (;) if you’re using
Oracle.

Note: For Oracle databases, table names must be specified in upper case
characters.

Note: Keep in mind that the JDBC Integration Wizard doesn’t validate your
SQL statements.

8 Click the Business Object tab to set business object options for the operation.

The Business Object panel appears. You can set options to freeze or audit the
business object. The default setting for each option is Yes.
Using the JDBC Integration Wizard � 75

9 When you finish, click OK to return to the Specify Operations Information
window, where you can see the operations. Click Next to continue.

The Specify Event Information window appears, where you can choose to
add events for the adapter.

The operations you add
are listed by name and
type.

Adapter

Click to add an event.

Click to delete the
selected event.
76 � Adapter Developer’s Guide

You set up events to be triggered by a specified action (like an Insert, Update,
or Delete) on a table in your database. The JDBC Integration Wizard creates
the schema for a “shadow table” for the event, with these columns:

� <Pkeys>, the primary key, which might contain one or several columns.

� date_processed, which indicates when a row in the shadow table has been
processed by the adapter event.

� processed, which indicates whether a row in the shadow table has been
processed by the adapter event.

� trigger_type, explained in the following table.

When the event is triggered, the JDBC Integration Wizard uses the table’s
primary key to populate the shadow table and returns the unprocessed rows
of the shadow table.

Note: When you add events to your adapter, you must execute the schema
on the Oracle or SQL Server database server to create the shadow table and
event trigger before you can run the adapter instance. For more
information, see Executing the schemas on page 79.

10 Click Add to add an event.

You can specify events, tables, how the events will be triggered, and the file
name where the SQL schemas are saved.

The following table describes the options in the Specify Event Information
window.

For this database This action to the table Returns this trigger type

SQL Server Insert or Update 4

Delete 3

Oracle Insert 1

Update 2

Delete 3

Click To

Add Add an event.

Delete Delete the selected event.

Edit Edit the selected event.
Using the JDBC Integration Wizard � 77

The Events window appears.

Note: For Oracle databases, table names must be specified in upper case
characters.

11 Specify Events options, and then click OK to return to the Specify Event
Information window. Click Next.

Type any name for the event, select a table to use, and set one or more trigger
options (trigger on insert, update, or delete).

Also specify a file name for the SQL schemas that the JDBC Integration
Wizard creates. The SQL schema for creating the shadow table and the
database trigger to populate the shadow table are saved in the file you specify.

Note: If you enable event polling, you (or the database administrator) must
execute the schemas after the JDBC Integration Wizard creates the adapter
and before the adapter instance is started. For more information, see
Executing the schemas on page 79.

If the specified table doesn't contain a primary key, another window appears
when you click OK. You must specify one or more columns for the JDBC
Integration Wizard to use as a primary key.

Select a table for the event.

Click to search for tables
that meet the specified
criteria.

Select one or more trigger
options.
78 � Adapter Developer’s Guide

The Adapter Information window appears.

12 Enter a name for the adapter, change the defaults for implementation and
instance names as needed, add a description, and then click Finish.

A Progress dialog box appears. The JDBC Integration Wizard creates the
adapter type, implementation, and instance for you, as well as any business
objects associated with the SQL Select statements you specified.

It’s not necessary to generate code or build your implementation. You can go
ahead and add and run the adapter from your private process.

Executing the schemas

If you include events in your JDBC adapter, you must execute schemas in
your Oracle or SQL Server database after you generate the adapter and before
you start the adapter instance. Only users with the proper permissions (for
example, the database administrator) can execute the schemas for events.
The schemas must be executed before the adapter instance is started, in this
order (see the comments section):

� Execute the CREATE TABLE schema first.

� After the create table schema is executed, execute the CREATE TRIGGER
schema.

� Leave the comments in the schema files as is.

Name your adapter.

After you name your
adapter and press the
Tab key, these fields
are filled in for you.
Using the JDBC Integration Wizard � 79

Running the JDBC adapter

After you build the adapter, the JDBC Integration Wizard generates and
freezes business objects (if you specified the freeze option), and then creates
an adapter type, implementation, and instance. Add the adapter instance and
business objects to your private process.

The user who designs the private process is responsible for populating the
input business object and inspecting the output business object to check the
results of the operation.

Creating an event for your adapter adds a new property to the adapter. Be
sure to enable event polling in the Adapter Manager.

It’s best to set up test and production instances of your adapter
implementation. You can run the private process with the test adapter
instance and check the status of the returned business object. For more
information on working with adapters, see the Partner Agreement Manager
User’s Guide.

Troubleshooting tips

Refer to the following list of tips if you encounter problems with the JDBC
Integration Wizard.

Building adapters with different drivers

If you use the JDBC Integration Wizard to build more than one adapter using
different drivers (for example, if you create your first adapter using the
Oracle-Thin Client driver and then make another adapter using a different
Oracle driver), you must update the server-side classpath in the Integration
Wizard Manager.

Column aliases

You might get unexpected results in your business object fields if you don’t
specify aliases for columns in the SQL select statement. Non-supported
characters (most non-alphanumeric characters) are either stripped out or
replaced.
80 � Adapter Developer’s Guide

Data types

� Stored procedures can’t return REF CURSOR data types.

� Other data types—like BLOB, CLOB, and ARRAY—aren’t supported for
inserts, updates, deletes, or stored procedures.

� SQL Server doesn’t support these data types as part of trigger elements:
ntext, text, and image. Any columns with these data types won’t appear in
the list of choices for primary key.

� JDBC expects these formats for the following data types:

� Timestamp: yyyy-mm-dd hh:mm:ss:ffffff...

� Date: yyyy-mm-dd

� Time: hh:mm:ss

Exporting adapters

If you decide to export and re-import an adapter you created, you will get a
password error.

To reset the password:

1 In the Adapter Manager, select the adapter instance to open the Add Adapter
Instance window, and then click the Properties tab.

2 Enter a value for the password property, click Set, and then click OK to certify
the adapter instance as valid.
Using the JDBC Integration Wizard � 81

82 � Adapter Developer’s Guide

c h a p t e r�
7

Using utility adapters
Read this chapter for descriptions of the Partner Agreement Manager
utility adapters and the business objects they use.

This chapter includes these sections:

� About utility adapters on page 84.

� Utility adapter reference on page 85.

� Utility business object (BO) reference on page 97.
Using utility adapters � 83

About utility adapters

Utility adapters are a group of pre-built adapters designed to perform
standard file operations such as reading, writing, and renaming files, file
transfers, file encoding or decoding, and file compression. Utility adapters
also perform standard e-mail operations and execute commands.

Partner Agreement Manager provides the following utility adapter types:

The utility adapters are designed to be used as is, which means that all you
need to do is add adapter instances. You cannot change implementations of
utility adapters. The types and implementations appear in the Adapter
Designer.

For more about creating adapter instances, see Using the JDBC Integration
Wizard on page 69.

This utility adapter Does this

Email adapter Performs standard e-mail operations such as receiving
messages via a POP3 e-mail server and sending e-mail
via SMTP.

Encode adapter Performs standard encoding and decoding operations
such as Base64 encoding or decoding, Uuencoding or
Uudecoding, and mailing files as MIME attachments.

Exec adapter Executes the specified command line.

File adapter Performs standard file manipulation operations such as
reading, writing, renaming, moving, and deleting files.
It also obtains file attributes, compares two files, and
waits for a file to appear in a specific location.

FTP adapter Performs standard file transfer operations such as
downloading a file to a business object or file system or
uploading a file from a business object or file system. It
also renames or deletes a remote file.

Zip adapter Deflates or inflates files.
84 � Adapter Developer’s Guide

Utility adapter reference

The definitions of the utility adapters contain all the standard elements:
properties that can be set for specific instances, operations that can be
performed, and events that can be produced.

Depending on its purpose, each utility adapter contains a combination of
Get, Post, and Advanced operations. For each operation, the adapters also
have business objects specified for inputs, outputs, and status.

The sections that follow describe each of the utility adapters, the properties
that can be set, the operations it can perform, and the events it can generate.

Adapter

Input BO

Business

In a Get operation, an input business
object specifies which information to
get and an output business object
receives the data. A Get operation can
write to status business objects.

ApplicationAdapter
Server

In a Post operation, an input business
object supplies the information to be
used for updating. A Post operation can
also write to a status business object.

Status BO

Status BO

Input BO

Output BO
GET

POST
Using utility adapters � 85

Email Adapter type

Class name com.extricity.adapters.utility.email.EmailAdapter

Description Performs standard e-mail functions such as receiving, sending, and
deleting e-mail messages. This adapter supports the Post Office
Protocol 3 (POP3 protocol) for receiving messages and the Simple
Mail Transfer Protocol (SMTP) for sending messages. It also
obtains the number of e-mail messages on the server. Note that
POP3 does not support communication through firewalls.
This adapter lets you do e-mail notifications that are more flexible
than those provided by a notification node in a process. For
example, this adapter allows a process to send a notification when
the address of the recipient is data-driven. The contents of the
Mail_Contents BO can be filled in on-the-fly for maximum
flexibility.

The events defined in this adapter are used by the checkForEvents
method, which moves new mail files to the directory specified by
the processed_directory property.

Properties recr_protocol (required)—The protocol used to retrieve mail. The
only supported value is POP3.
sender_protocol (required)—The protocol used to send mail. The
only supported value is SMTP.

recr_host (required)—The server name used to retrieve incoming
e-mail messages.
recr_port (required)—The port used to connect to fetch incoming
e-mails (default: 110, the default for POP3).
sender_host (required)—The server host name of the SMTP server
used for sending e-mail.
sender_port (required)—The port number used by the SMTP
server (default:25).
processed_directory (required)—the directory used to save
retrieved e-mail. You must have permission to create new files in
this directory.
user (optional)—The user name for login. If no user name is given,
the default login is used.
password (optional)—The password for login. If no password is
given, the default password is used.
event_type (required)—The type of event sent to the Adapter
Server. The default is “New mail.”
debug_message—The verbosity level for error messages: none,
terse or verbose. The default is none.
86 � Adapter Developer’s Guide

Operations POST: Send message
Description: Send a message or send a message with 1 or more
attachments.
Input: Mail_Contents BO
Output: <none>
Status: Operation_Status BO

ADVANCED: Get number of messages
Description: Get the number of messages from the e-mail server for
a specified user.
Input: <none>
Output: Number of messages (data type: variant)
Status: Operation_Status BO

ADVANCED: Read message
Description: Reads the first message in the mailbox, saves the e-
mail (and attachments) on the local disk and deletes the e-mail
from the e-mail server. Attachments are saved in the same directory
as the e-mail messages. If two attachments have the same name, the
second one overwrites the first.
Input: <none>
Output: Mail_Contents BO

Status: Operation_Status BO

Events The Email adapter periodically looks for new mail on the server
indicated by the recr_host property. If it finds new mail, the
adapter moves it from the server to the directory indicated by the
processed_directory property. Then the adapter generates a New
mail event for each piece of new mail. The Email adapter deletes the
new mail from the server once the new mail is saved in the
processed_directory.

EVENT: New mail
Description: When the Email adapter finds new mail on the e-mail
server, it saves the new mail to the processed_directory and
generates a New mail event. The New mail event contains a
File_Location BO for each new e-mail message indicating where
the new mail is saved.
File_Location BO

EVENT: New mail contents
Description: When the Email adapter retrieves new mail from the
server, it generates a Mail_Contents BO for each new e-mail
received, containing the contents of the message.
Mail_Contents BO
Using utility adapters � 87

Encode Adapter type

Class name com.extricity.adapters.utility.encode.EncodeAdapter

Description Performs standard encoding and decoding functions such as
Base64 encoding or decoding, Uuencoding or Uudecoding, and
mailing files as MIME attachments.

Properties smtp_host (only for “Mail file as MIME attachment”)
smtp_from (only for “Mail file as MIME attachment”)
uu_permission (optional, only for uuencode) — the UNIX file
mode to write on the header (default: 600)

Operations POST: Base64 encode file
Description: Encodes an input file in the base64 format.
Input: Encode_Operation BO
Output: <none>
Status: Operation_Status BO

POST: Base64 decode file
Description: Decodes the specified input file in base64 format.

Input: Encode_Operation BO
Output: <none>
Status: Operation_Status BO

GET: Read, deflate, and base64 encode file
Description: Reads an input file, deflates it, and encodes it in the
base64 format.
Input: File_Location BO
Output: File_Contents BO
Status: Operation_Status BO

POST: Base64 decode, inflate, and write file
Description: Decodes the string specified in the “contents” part of
the input BO in base64 format, inflates it, and writes it out to the
specified file.

Input: File_Contents BO
Output: <none>
Status: Operation_Status BO

POST: Uuencode file
Description: Encodes the named input file. If you specify a
substitute file name for the uuencoded header, the decoded file uses
the substitute name. The default is the input file name.
Input: Uuencode_Operation BO

Output: <none>
Status: Operation_Status BO
88 � Adapter Developer’s Guide

POST: Uudecode file
Description: Decodes the named input file and returns the name
and location of the decoded file.
Input: Uudecode_Operation BO
Output: File_Location BO
Status: Operation_Status BO

POST: Mail file as MIME attachment
Description: Sends the named input file as an e-mail attachment to
the recipient with the specified subject line using the Simple Mail
Transfer Protocol (SMTP).
Input: Mail_Attachment BO
Output: <none>
Status: Operation_Status BO
Using utility adapters � 89

Exec Adapter type

File Adapter type

Class name com.extricity.adapters.utility.exec.ExecAdapter

Description Executes the specified command line.

Properties <none>

Operations POST: Exec
Description: Supports the execution of external processes.
Input: Exec_Operation BO
Output: <none>
Status: Operation_Status BO

POST: Blocking Exec
Description: Executes an external process, blocks until the process
completes, returns stdout and stderr (if it exists).
Input: Exec_Operation BO
Output: Exec_Output BO
Status: Operation_Status BO

Class name com.extricity.adapters.utility.file.FileAdapter

Description Performs standard file manipulation tasks such as reading, writing,
renaming, moving, and deleting files. It also obtains file attributes,
compares two files, and waits for a file to appear in a specific
location.

The events defined in this adapter are used by the checkForEvents
method, which moves every file/directory in the directory specified
by the listen_directory property to the directory specified by the
processed_directory property.

Properties listen_directory (for events)
processed_directory (for events)
callback_polling_period_in_seconds (for the Wait for File
operation)
event_type (for events)
90 � Adapter Developer’s Guide

Operations GET: Read file
Description: Reads the file specified by the input BO, and stores its
contents in the output BO as a string. If the directory is null or
empty, Partner Agreement Manager uses the current partner
directory.
Input: File_Location BO
Output: File_Contents BO

Status: Operation_Status BO

POST: Write file
Description: Writes the contents of the input BO into the location
specified by the input BO. If the file does not exist, Partner
Agreement Manager creates the file. If the file already exists,
Partner Agreement Manager overwrites the file. If the name of the
file is not specified, Partner Agreement Manager will not write the
file. If a directory is not specified, but the file name is, Partner
Agreement Manager creates the file in the current partner
directory.
Input: File_Contents BO

Output: <none>
Status: Operation_Status BO

POST: Delete file
Description: Deletes the file specified in the input BO. If the
directory in the input BO is null or empty, Partner Agreement
Manager uses the current partner directory.
Input: File_Location BO
Output: <none>

Status: Operation_Status BO

GET: Get file attributes
Description: Gets the specified file’s attributes: directory, file name,
file size in bytes, last modification date, readable or not, and
writable or not. If the directory in the input BO is null or empty,
Partner Agreement Manager uses the current partner directory.
Input: File_Location BO
Output: File_Attributes BO
Status: Operation_Status BO

ADVANCED: Are files different?
Description: Compares two files. If file1 and file2 are different,
Partner Agreement Manager sets a difference_flag to “true.” If the
files are the same, Partner Agreement Manager sets a
difference_flag to “false.”
Input: file_name_1, file_name_2
Output: difference_flag (true or false)
Using utility adapters � 91

GET: Wait for file (implemented with requestReply)
Description: If the file exists, this operation is the same as a Get:
Read file. If the file does not exist, Partner Agreement Manager
waits for the number of seconds specified in the
callback_polling_period_in_seconds property, and then checks
for the file again. If the file exists now, Partner Agreement Manager
reads the file. Otherwise, Partner Agreement Manager waits for the
specified number of seconds and checks the file's existence again.
The property callback_polling_period_in_seconds must not be
shorter than the Adapter Server’s retry_check_interval.

Input: File_Location BO
Output: File_Contents BO
Status: Operation_Status BO

POST: Rename file
Description: Renames a file to a different directory, to a different
file name, or to both. The old file name will no longer make sense
after this operation succeeds. If the from_directory/to_directory
are null or empty, Partner Agreement Manager uses current
partner directory. Both to and from file names must exist.
Input: Rename_File_Operation BO
Output: <none>
Status: Operation_Status BO

POST: Move file
Description: Moves a file from one location to another. It can be to
a different directory, or to a different file name, or both. The old file
location will no longer make sense after this operation succeeds. If
the from_directory/to_directory are null or empty, Partner
Agreement Manager uses the current partner directory. Both to
and from file names must exist.

Input: Move_File_Operation BO
Output: <none>
Status: Operation_Status BO

POST: Copy file
Description: Copies the existing file to a new file. The new file can
be in a different directory, can have a different file name, or both.
The original file still exists after this operation succeeds. If the
from_directory/to_directory are null or empty, Partner
Agreement Manager uses the current partner directory. Both to
and from file names must exist.
Input: Copy_File_Operation BO

Output: <none>
Status: Operation_Status BO
92 � Adapter Developer’s Guide

POST: Append file
Description: Appends the contents in the input BO to the end of
the file specified in the input BO. The file specified cannot be read-
only.

Input: File_Contents BO
Output: <none>
Status: Operation_Status BO

Events The File adapter looks for new files on the listen_directory
property. If it finds a file, that file is moved to the
processed_directory property. Then, depending on the setting of
the event_type property, either the New local file event or the New
Local File Contents event is generated.

EVENT: New local file
Description: When the event_type property is set to New local file,
checkForEvents creates a File_Location BO for each file/directory’s
new location.
File_Location BO

EVENT: New local file contents
Description: When the event_type property is set to New local file
contents, checkForEvents creates a File_Contents BO for each file/
directory’s new location and contents.

File_Contents BO
Using utility adapters � 93

FTP Adapter type

Class name com.extricity.adapters.utility.ftp.FTPAdapter

Description Performs standard file transfer operations such as downloading a
file to a business object or file system or uploading a file from a
business object or file system. It also renames or deletes remote
files.
This FTP adapter also supports FTP passive mode. Passive mode is
a state in which the server “listens” on a port that is not its default
data port, waiting for a client connection.

Properties server_host—the FTP server
user_name—a user that can log into FTP server
password

listen_directory (for events)
processed_directory (for events)
local_directory (for events)—directory on the Adapter Server
where downloaded files are placed
reconnect_flag—indicates whether the adapter must connect or
disconnect for each operation

transfer_mode—indicates the mode for FTP transfer. The allowed
values are ASCII and BINARY. (Default is BINARY)
event_type (for events)—indicates which event to generate

Operations GET: Download file to BO
Description: Downloads the contents of the specified remote file
into the process context as a part of a BO.
Input: File_Location BO
Output: File_Contents BO

Status: Operation_Status BO

POST: Upload file from BO
Description: Uploads a string specified by the contents field of the
input BO to the specified remote file defined by the directory and
file_name fields of the input BO.
Input: File_Contents BO
Output: <none>
Status: Operation_Status BO

GET: Download file to file system
Description: Downloads the specified remote file to the local file
system. This is analogous to the FTP command Get.
Input: FTP_Operation BO
Output: File_Location BO

Status: Operation_Status BO
94 � Adapter Developer’s Guide

GET: Download files to file system
Description: Downloads the specified remote file(s) to the local file
system. This is analogous to the FTP command mget.
Input: FTP_Operation BO
Output: File_Location_List BO
Status: Operation_Status BO

POST: Upload file from file system
Description: Uploads a local file to a remote location. This is
analogous to the FTP command put.
Input: FTP_Operation BO
Output: <none>
Status: Operation_Status BO

POST: Upload files from file system
Description: Uploads one or more local files to a remote location.
This is analogous to the FTP command mput.
Input: FTP_Operation BO
Output: <none>

Status: Operation_Status BO

POST: Delete remote file
Description: Deletes the specified remote file. This is analogous to
the FTP command delete.
Input: File_Location BO

Output: <none>
Status: Operation_Status BO

POST: Delete remote files
Description: Deletes the specified remote files. This is analogous to
the FTP command mdelete.

Input: File_Location BO
Output: <none>
Status: Operation_Status BO

POST: Rename remote file
Description: Renames the specified remote file.
Input: Rename_File_Operation BO
Output: <none>
Status: Operation_Status BO

Events EVENT: New FTP file
Moves the new file from the listen_directory to the
processed_directory and returns its location on the remote
computer.
File_Location BO
Using utility adapters � 95

Zip Adapter type

EVENT: New FTP file contents
Downloads the remote file contents into a business object and
returns the business object.
File_Contents BO

Event: New downloaded FTP file
Downloads the remote file to the local file system and returns the
location of the file on the local file system.
File_Location BO

Class name com.extricity.adapters.utility.zip.ZipAdapter

Description Deflates or inflates files.

Properties <none>

Operations POST: Deflate file
Description: Deflates (compresses) the named input file and writes
it to the named output file.
Input: Zip_Operation BO
Output: <none>
Status: Operation_Status BO

POST: Inflate file
Description: Inflates (decompresses) the named input file and
writes it to the named output file.
Input: Zip_Operation BO
Output: <none>

Status: Operation_Status BO
96 � Adapter Developer’s Guide

Utility business object (BO) reference

These are the business objects used by the utility adapters to transport
information between Partner Agreement Manager and the target systems.

Copy_File_Operation BO

Encode_Operation BO

Exec_Operation BO

Description Used by the File adapter to specify the existing name and location of
a file, as well as the new name and location.

Fields from_directory (optional)

from_file_name (required)

to_directory (optional)

to_file_name (optional)

Description Used by the Encode adapter to specify the name and location of a file
to be encoded or decoded, as well as the location to store the results.

Fields input_directory (optional)

input_file_name (required)

output_directory (optional)

output_file_name (required)

Description Used by the Exec adapter to specify the command to execute.

Fields command_line (required)
Using utility adapters � 97

Exec_Output BO

File_Attributes BO

File_Contents BO

File_Location BO

Description Used by the Exec adapter to report the results of an executed
command.

Fields stdout (optional)

stderr (optional)

Description Used by the File adapter to report the name, location, size, and other
attributes of a file.

Fields directory (optional)

file_name (required)

file_size (required)

last_modified_date
read_flag (true or false)

write_flag (true or false)

Description Used by the File, FTP, and Encode, adapters to report the name,
location, and contents of a file.

Fields directory (optional)

file_name (required)

file_contents (required)

Description Used by the File, FTP, and Encode, adapters to specify the name and
location of a file.

Fields directory (optional)

file_name (required)
98 � Adapter Developer’s Guide

File_Location_List BO

FTP_Operation BO

Mail_Attachment BO

Mail_Contents BO

Description Used by the FTP adapter to specify the name and location of a group
of files.

Fields directory (optional)

file_name (required) (repeatable)

Description Used by the FTP adapter to specify the name and location of a file, as
well as its destination name and location.

Fields local_directory (optional)

local_file_name (required)

remote_directory (optional)

remote_file_name (required)

Description Used by the Encode adapter to specify the file to be attached to an e-
mail message, as well as the recipient and subject of the e-mail.

Fields smtp_to (required)

smtp_subject (required)

file_name (required)

Description Used by the Email adapter to specify the contents and some header
information of an e-mail message.

Fields from (optional. The default is the user name that logs into the e-mail
server.) Who the mail is from.

to (required, repeatable) The destination addresses the mail is sent
to.

cc (optional, repeatable) The carbon copy addresses.

subject (optional) The subject of the e-mail.

contents (optional) The main message body of the e-mail.

attached_file_name (optional, repeatable) The file names for each
of the attachments. This file name is specified by the full path.
Using utility adapters � 99

Move_File_Operation BO

Operation_Status BO

Rename_File_Operation BO

Uuencode_Operation BO

Description Used by the File adapter to specify the existing name and location of
a file, as well as the new name and location.

Fields from_directory (optional)

from_file_name (required)

to_directory (optional)

to_file_name (optional)

Description Used by each of the adapters to return a status message.

Fields result (required, “success” or “failure”)

reason (optional)

Description Used by the File and FTP adapters to specify the existing name and
location of a file, as well as the new name and location.

Fields from_directory (optional)

from_file_name (required)

to_directory (optional)

to_file_name (required)

Description Used by the Encode adapter to specify the name and location of a file
to be encoded, as well as the location to store the results.

Fields input_directory (optional)

input_file_name (required)

substitute_header_file_name (optional)

output_directory (optional)

output_file_name (required)
100 � Adapter Developer’s Guide

Uudecode_Operation BO

Zip_Operation BO

Description Used by the Encode adapter to specify the name and location of a file
to be decoded, as well as the location to store the results.

Fields input_directory (optional)

input_file_name (required)

output_directory (required)

Description Used by the Zip adapter to specify the name and location of files to
be zipped or unzipped, as well as the location to store the results.

Fields input_directory (optional)

input_file_name (required)

output_directory (optional)

output_file_name (required)
Using utility adapters � 101

102 � Adapter Developer’s Guide

c h a p t e r�
8

Using adapter API methods
Read this chapter for reference information on the Adapter API
methods that you can use in adapter code. If you are a Java
programmer, this chapter gives you the information you need to
expand on the Java implementation created by the Adapter Designer.

For information about the Business Object API, see About the Business
Object API on page 192.

This chapter includes these sections:

� About the adapter API methods on page 104.

� About Exceptions on page 112.

� Executing operations on page 114.

� Adapter class on page 116.

� AdapterContext interface on page 131.

� EventContext interface on page 142.

� ExecutionID interface on page 149.

� OperationContext interface on page 153.

� TransactionContext interface on page 187.
Using adapter API methods � 103

About the adapter API methods

Adapters interact with the Process Server and the Adapter Server through the
methods in the Adapter API. These are in the com.extricity.adapter.api
package. Methods for manipulating business objects (BOs) are in
com.extricity.document.api. You can use these packages in your adapter
source code. The Adapter Designer adds some methods to an
implementation for you, and some you can add yourself.

The adapter works through the Adapter API. To use Adapter API methods in
adapter source code:

� Use the Adapter Designer to specify implementation information. The
Adapter Designer adds the appropriate Adapter API methods to the
adapter’s Java source file when it generates the implementation.

� Add methods to Java code produced by the Adapter Designer.

The adapter modules and sample and utility adapters contain Adapter API
methods and custom Java code.

Note: In this chapter, an “empty” business object means that no field values
are set. The business object has been created, but the field values are null.
You can use the Business Object API to set values. Remember that an
empty business object is invalid until its mandatory fields are set.

Adapter methods

An adapter is a subclass of the Adapter class. The following table is a
summary of the methods in the Adapter interface. These methods are added
to your adapter’s Java source file based on the implementation information
you entered in the Adapter Designer.

Important: If you need to create a new implementation using the Adapter
Designer, and you added code to your existing implementation, save a
backup copy of your current implementation file. The Adapter Designer
doesn’t preserve code you added to an existing implementation when it
generates a new implementation. A good way to preserve your code is to
use helper files for your adapter. See “Using helpers” on page 246.
104 � Adapter Developer’s Guide

The adapter type, implementation declaration, and Java source code must
always be kept in sync. So, you need to let the Adapter Designer add the
methods in the Adapter class for you, rather than adding them to the
implementation yourself, unless you are absolutely sure that you can make
changes that correspond to the information in the adapter type and
implementation declaration—as the Adapter Designer would have generated
the code. The adapter type and implementation declaration ensure that
pertinent adapter information is available in Partner Agreement Manager
windows and dialog boxes for the users that need it.

Use this method To do this

checkForEvents Create events that can start Partner Agreement Manager
public processes. The Adapter Server calls this method to
check for new events it needs to pass to Partner Agreement
Manager. You set the polling frequency in the Adapter
Manager separately for each adapter instance. To generate an
event, you must write code in the body of the checkForEvents
method to check for a condition in the business application,
and add an event (and an associated variant or business
object) to the event context by using the addVariantEvent or
addBOElementEvent methods. The context is provided
through the EventContext class.
If you detect a lost connection during checkForEvents, you
can throw an EndSystemNotAvailableException.

createTransaction
Context

Provide a new TransactionContext instance. The default
implementation returns null. Your adapter must override
this method to return a TransactionContext implementation
that contains calls to real TP Monitor functionality.

execute Execute a specific operation. This method must be
overridden by all adapters. In the body of this method, the
Adapter Designer places calls to “dispatch” methods, where
you can place code to implement the operations defined for
this adapter. The execute method can be called by more than
one thread in the Adapter Server. If the adapter supports
transactions, the Adapter Server manages the transaction,
committing after this method returns or rolling back if an
exception is thrown. If the adapter does not support
transactions, it must either commit or rollback all stateful
actions performed during execution of this method. The
context is provided through the OperationContext class.
If you detect a lost connection during execute, you can throw
an EndSystemNotAvailableException.
Using adapter API methods � 105

reExecute Handle the case where execute has already been called on this
operation, but execution results were inconclusive due to
process or computer failure. Adapters that can safely handle
reexecution of stateful operations can override this method.
The default implementation calls execute for stateless
operations and throws an exception for stateful operations.
The reExecute method can be called by more than one thread
in the Adapter Server. The context is provided through the
OperationContext class.

If you detect a lost connection during reExecute, you can
throw an EndSystemNotAvailableException.

shutdown Perform any necessary cleanup before shutting down the
adapter. In the body of this method, you can write code to
perform any cleanup, such as disconnecting from a remote
computer or closing database connections. You must clean
up all resources allocated by the adapter before shutting
down. Failure to do so can cause memory leaks or errors in
any end system that you do not properly close connections
to. If this method is not in your adapter code, your adapter
cannot perform adapter-specific tasks at shutdown. Do not
throw any exceptions in the shutdown method.

startup Initialize the adapter (including loading properties) when
you start the adapter instance in the Adapter Manager. The
startup method is also called when the Adapter Server starts,
if you configured the adapter instance to be started at
Adapter Server startup.
This method lets you perform adapter-specific tasks at
startup. In the body of this method, you must include code to
perform any initialization, such as connecting to an end
system such as a business application, database, or object
request broker (ORB). All connections to end systems must
be made in the startup method.

If the adapter cannot connect successfully to the end system,
the adapter needs to throw an
EndSystemNotAvailableException. This exception is caught
by the Adapter Server. If this adapter instance uses the auto-
recovery feature, the Adapter Server will suspend the adapter
and attempt to recover it. The Adapter Server attempts this
recovery by retrying the call to the adapter’s startup method
until the adapter no longer throws an exception in startup.
The auto-recovery properties that the Adapter Server uses are
max recoveries and recovery interval. They are set in the
error handling tab when you create the adapter instance. For
information on setting error handling in the Adapter
Manager, see the Partner Agreement Manager Administrator’s
Guide.

Use this method To do this
106 � Adapter Developer’s Guide

In addition, if you specify properties, the Adapter Designer adds the private
loadAdapterProperties method to the startup call for you. As the name
implies, this method loads the property values into your adapter. After the
properties are loaded, you can access the object member variables directly;
for example, this.user_name or this.password.

AdapterContext methods

The methods in the AdapterContext interface let you work with adapter
properties. They are useful at startup and shutdown for working with
property values set in the Adapter Manager. An adapter is not required to
have properties.

You add properties from the Adapter Designer in the Properties panel of the
Create Adapter Type dialog box. A property can be of the type string, integer,
or boolean, be optional or mandatory (non-null), and can be encrypted
(useful for passwords). In the Adapter Designer, you can restrict a property
to a set of allowable values and set default values.

You set property values in the Adapter Manager, individually for each
adapter instance. Each adapter instance can have unique property values that
can distinguish it from other adapter instances of the same adapter type,
implementation declaration, and implementation. You cannot set values
while the adapter is started; it must be stopped.

Note: An empty string ("") as a data value is equivalent to null. A string
containing one or more spaces (" ") is not null, and is considered to be
data.

The following table is a summary of the AdapterContext interface methods.
Unless otherwise noted, the Adapter Designer doesn’t add the
AdapterContext method to your adapter for you.

Use this method To do this

getBoundProperties Get the names of all properties that have values.

getDataType Identify the type of data contained in a property that has
a value. Returns one of the constants STRING,
INTEGER, or BOOLEAN.

getProperties Get the names of all properties declared in the adapter
definition, whether or not they have a value.
Using adapter API methods � 107

EventContext methods

A checkForEvents call can contain code to generate events based on a
condition in the business application; these events are passed to Partner
Agreement Manager to start public processes. The following table is a
summary of the methods in the EventContext interface, which you can use
within the body of a checkForEvents call. The Adapter Designer doesn’t add
these methods to an implementation for you.

getPropertyAsBoolean Get the value of a property as a boolean. This method is
added by the Adapter Designer for each boolean
property you specified for an adapter.

getPropertyAsInt Get the value of a property as an integer. This method is
added by the Adapter Designer for each integer property
you specified for an adapter.

getPropertyAsString Get the value of a property as a string. Depending on the
data type, this method will do the following:

integer: Returns the result of String.valueOf(int)
string: Returns the string property value
boolean: Returns the result of String.valueOf(boolean)
This method is added by the Adapter Designer for each
string property you specified for an adapter.

isPropertyBound Determine if a property has a value.

isPropertyDeclared Determine if there is a declared property with the
specified name.

Use this method To do this

addBOElementEvent Add an event and a business object to the EventContext
object associated with the checkForEvents call. The
empty business object is passed back to the adapter to get
values.

addVariantEvent Add an event and string data to the EventContext object
associated with the checkForEvents call.

Use this method To do this
108 � Adapter Developer’s Guide

ExecutionID methods

The following table is a summary of the ExecutionID interface methods. You
can use execution, private process, and operation IDs to keep track of
different tasks your adapter is performing, both in code and as a record in a
database. (You can get operation IDs through the OperationContext
interface.) The Adapter Designer doesn’t add these methods to an
implementation for you.

getTransactionContext Get the transaction context for this execution. You use
this method if you need to make your checkForEvents
call transactional.

removeEvent Remove an event from the context. This method is useful
for error handling when you are working with complex
business objects, for example. When the adapter
encounters an error condition while populating a
business object, you can roll back the event.

Use this method To do this

getDisplayName Get a human-readable description of the execution ID.

getID Get a globally unique execution ID string for an
operation execution. It is never null.

getPrivateProcessID Get the private process ID of the private process that
executed this operation.

Use this method To do this
Using adapter API methods � 109

OperationContext methods

You can use the methods in the OperationContext interface to work with
operations. The methods can appear in the body of the execute methods
generated for a specific operation, and in the reExecute method. The
following table is a summary of the OperationContext interface methods.
Unless otherwise noted, the Adapter Designer doesn’t add these methods for
you.

Use this method To do this

createOutputBOElement Create an empty output business object of the correct
type for a particular Get or Post operation. This method
returns the object, so any changes to the business object
are in the context. The Adapter Designer adds this to
adapter code if you specified an output business object
for an operation.

createStatusBOElement Create an empty status business object of the correct
type for a Get or Post operation. This method returns
the object, so any changes are persisted in the context.
The Adapter Designer adds this to adapter code if you
specified an output status business object for an
operation.

getExecutionID Get the unique execution ID for this operation
execution. This ID can be used by adapters to match
reexecute and undo calls to the original execution. The
method returns an ExecutionID instance.

getExecutionMode Get the mode of execution for this operation: TEST or
PRODUCTION. This mode corresponds to the mode of
the public process initiating the operation. Adapters
that support distinct test and production behavior can
check this mode and act accordingly.

getInput Get the Object value for a specific input context variable.
The input is either a business object or a string,
depending on whether the input type is business object
or variant. You can use this method as a generic way to
get input values, if you don’t know the type of input.

getInputBOElement Get the business object values for a Post operation or for
another business object you specified. The Adapter
Designer adds this method for each input business
object you specified.

getInputNames Get the names of all input context variables for a
particular operation, as defined in the Adapter
Designer. It returns an enumeration of input name
strings. Remember that an input might not have a value
if it’s optional.
110 � Adapter Developer’s Guide

getInputVariant Get the value of a variant input to an operation. It
returns a string. The Adapter Designer adds this method
for each input variant you specified.

getOperationID Get a string that identifies which adapter operation is
being executed. The ID is unique for all operations of
the same type, for example, “Get purchase order.” The
Adapter Designer adds this method to an
implementation for you.

getOperationTypeID Get a constant that identifies the operation type: GET,
POST, or ADVANCED. The Adapter Designer adds this
method to an implementation for you.

getOutputBOElement Get an output business object of an operation.

getOutputVariant Get the value of an output variant of an operation. It
returns a string.

getStatusBOElement Get the status business object of a Get or Post operation.

getTransactionContext Get the transaction context for this execution. This will
be a context instance generated by the
createTransactionContext method of the adapter. You
use this method in your transactional call to the business
application. The Adapter Server uses the transaction
context: if the adapter supports transactions, the
Adapter Server manages the transaction, committing
after this method returns or rolling back if an exception
is thrown.

isFirstExecution Determine if this is the first time this operation has been
executed. This method is useful if you are using the
requestRetry method, for example, because you might
want to do some tasks during the initial operation
execution request.

isReexecuted Determine if the operation is being reexecuted (through
the reExecute method). For example, you might want to
code different behavior if an operation is reexecuted.

isStateful Determine if this operation has been designated by the
Adapter Designer as stateless (it does not modify the
state of external applications). If an operation is stateful,
you might need to code a rollback or other
compensatory functionality into your error handling.

log Log a message that will be inserted into the Partner
Agreement Manager audit log for the process executing
this operation.

Use this method To do this
Using adapter API methods � 111

TransactionContext methods

The following table is a summary of the methods in the TransactionContext
interface, which you use in conjunction with the createTransactionContext
call to implement transactional operations:

About Exceptions

There are two exceptions the Adapter API methods throw:

� ISException — a generic exception.

� EndSystemNotAvailableException — indicates your adapter cannot
successfully connect to a business system. This is sub-class of ISException.

requestRetry Specify that the operation cannot be completed on this
call and needs to be attempted again. The same
OperationContext will be passed into the execution
method on the retry (any outputs set during previous
execution(s) will be preserved).

setOutputVariant Set the value of an output variant for an operation. The
value is a string. If there is an existing value, it is
overwritten.

unsetOutput Unset the value of a variant or business object output of
an operation.

unsetOutputBO Unset the values of the output business object of a Get
or Post operation. An Advanced operation can have
more than one output, so you cannot use this method
with an Advanced operation.

unsetStatusBO Unset the values of a status business object for a Get or
Post operation. An Advanced operation has no explicit
status business object, so you cannot use this method
with it.

Use this method To do this

begin Start a new transaction.

commit Commit a transaction.

rollback Roll back a transaction.

Use this method To do this
112 � Adapter Developer’s Guide

ISException

ISException is a generic exception that you can use to signal failures within
the Adapter Server. For example, the Adapter Designer adds the following
code to an adapter, which you can add to:

/**

* Called when the adapter is started for the first time.

* @param context Holds Adapter specific properties, may be

* empty.

* @exception ISException Thrown if there is a problem starting
the Adapter.

*/

public void startup(AdapterContext context)

throws ISException {

// load the properties from the adapter

loadAdapterProperties(context);

// add startup code here

}

For a more detailed explanation of why a call failed, examine the exception
string message. Nested exception reporting is supported (when several
exceptions occur, an ISException can contain an exception). Localized
messages, in the end-user’s language (like Spanish or Italian), are also
supported.

Here are the declarations:

public ISException(String localized_message,
Throwable nested-exception)

public ISException()

public ISException(String message)

public ISException(Throwable nested-exception)

See Implementing exception handling on page 253 for more information.
Using adapter API methods � 113

Following is an example of what you can put after “add startup code here:”

try {

//some operation in business application

} catch(Exception e) {

throw new ISException("Error in business application", e);

}

e is a nested exception.

If you don’t handle an exception, the process aborts.

EndSystemNotAvailableException

When the startup method of your adapter fails to connect to an end system
such as a database or business application, throw the specific exception
EndSystemNotAvailableException, rather than a generic ISException. It is
good coding practice to use specific exceptions when they are available as
they allow you to handle each exception appropriately.
EndSystemNotAvailableException is caught by the Adapter Server. If the
adapter instance uses the auto-recovery feature, the Adapter Server suspends
the adapter and retries it by calling its startup method until the adapter no
longer throws an exception in startup. For more on setting error handling in
an adapter instance, see the Partner Agreement Manager Administrator’s
Guide.

Executing operations

When a private process runs and reaches an Extension action, the Adapter
Server calls the execute method of an adapter. The adapter then performs the
specific operation that the private process needs.

The Adapter Designer gets you started by helping you define the inputs,
outputs, and method names for each operation, which appear as Java code in
the implementation file.
114 � Adapter Developer’s Guide

You can perform the following operations by using an adapter:

� Get information from a business application—without changing the state
of the business application (a stateless operation). The Get operation must
have an output business object and optionally an additional status
business object. It can have zero or more input context variables (business
objects, variants, or both); each input can be mandatory or optional (null
at run time). The output business object type tells the business application
what information to return.

� Post data to the business application (insert, update, or delete), and return
output and status data to Partner Agreement Manager. The state of the
business application changes: it is a stateful operation. The Post operation
must have one populated input business object, and optionally return an
output business object, status business object, or both. The output can
provide information about the state of the business application through a
transaction ID, for example.

� Perform a complex operation (called an Advanced operation) that cannot
be implemented with one Get or Post. It can be stateful or stateless. It can
have zero or more input context variables, and zero or more output
context variables (business objects, variants, or both). Each input and
output can be optional or mandatory.

To handle the reexecution of operations that didn’t complete due to process
or computer failure, you can implement the reExecute method in your
adapter.

The OperationContext interface holds the context for the execute or
reExecute call, and provides methods relevant to operations, such as getting
input values and setting output values. The methods can appear in the body
of the execute methods generated for a specific operation, and in the
reExecute method.
Using adapter API methods � 115

Adapter class

An adapter is a subclass of the Adapter class. These methods are added to
your adapter’s Java source file based on the implementation information you
entered in the Adapter Designer.

If you need to initialize your adapter on startup, you can add code to the body
of the startup method. If you need to perform any cleanup on adapter
shutdown, you can specify in the Adapter Designer that you want a shutdown
method in your adapter implementation. Typically an adapter connects with
an business application. The startup method is the place to put the code to
create this connection. Likewise, the shutdown method is where you must
close that connection and free all resources allocated by your adapter. Failure
to free allocated resources can result in memory leaks.

checkForEvents method

The Adapter Server calls this method to check for new events it needs to pass
to Partner Agreement Manager. (You set the polling frequency when you add
the adapter instance in the Adapter Manager.) The adapter must override
this method to implement event generation functionality. To generate an
event, you must write code in the body of the checkForEvents method to:

� check for a condition in the business application

� add a variant or business object to the event context by using the
addVariantEvent or addBOElementEvent methods

You might use a variant if you need to pass a scalar variable to a public
process. You might use a business object when you need structured
information.

If you specify one or more event types in the Events panel of the Create
Adapter Type dialog box, the Adapter Designer adds an empty
checkForEvents method to the implementation, which you can then
complete. It also creates a constant for each event type, based on the name it
had in the Adapter Designer. You use the constant when you write code in
the body of the checkForEvents method to generate the event based on some
condition in the business application. Typically, your code reads information
from the business application to determine if an event needs to be generated.
116 � Adapter Developer’s Guide

Let the Adapter Designer add the checkForEvents method, rather than
adding it to the implementation yourself, to keep the adapter type,
implementation declaration, and implementation in sync. The adapter type
and implementation declaration ensure that events are visible in Partner
Agreement Manager windows and dialog boxes for the users that need it. The
events appear in the Process Manager window (under Partner > Processes >
Events), where process designers can associate a public process with an event
so when Partner Agreement Manager receives the event, it starts that process.

Important: If you need to create a new implementation using the Adapter
Designer, and you added code to your existing implementation, save a
backup copy of your current implementation file. The Adapter Designer
doesn’t preserve code you added to an existing implementation when it
generates a new implementation. A good way to preserve your code is to
use helper files for your adapter. See “Using helpers” on page 246.

The checkForEvents method can perform stateful operations against the
business application. In that case, you’d use the transaction context for your
stateful method call.

Declaration

public void checkForEvents(EventContext context) throws ISException

Parameters

context functions as a container for produced events.

Return value

none

Exceptions

Thrown if there is an error checking for the event.

You can also throw EndSystemNotAvailableException if you detect a lost
connection during the checkForEvents.
Using adapter API methods � 117

Examples

In the following example, the Adapter Designer added the checkForEvents
call, and the programmer added the code in bold to the implementation. A
user specified an “Example inventory item below reorder quantity” event
type in the Adapter Designer, so the Adapter designer also added a constant
for this event type. This constant is used in the code the programmer wrote
for generating an event of this type. The code determines if a single item is
below reorder quantity, which can generate one event per checkForEvents
call. The checkForEvents call returns a variant event. See Java implementation
example on page 255 for more information.

//---

// Constants - Protected - Adapter Events

//---

protected static final String

EVENT_EXAMPLE_INVENTORY_ITEM_BELOW_REORDER_QUANTITY =

"Example inventory item below reorder quantity";

...

public final void checkForEvents(EventContext context)

throws ISException {

// add event production code here

// XXX added for TestingInventoryAdapter - begin

// trap for case when no item has been created yet

if (this.item_number != Integer.MIN_VALUE

&& this.quantity_on_hand < this.reorder_quantity) {

context.addVariantEvent(

EVENT_EXAMPLE_INVENTORY_ITEM_BELOW_REORDER_QUANTITY,

Integer.toString(this.item_number),

null);

}

// XXX added for TestingInventoryAdapter - end

}

118 � Adapter Developer’s Guide

Next is alternate code where checkForEvents returns a business object event
instead of a variant event. The only changes are a new local variable and the
contents within the if construct. However, remember that the adapter type
must reflect the change in the event type.

public final void checkForEvents(EventContext context)

throws ISException {

Element event_bo; // XXX added for TestingInventoryAdapter

// add event production code here

// XXX added for TestingInventoryAdapter - begin

// trap for case when no item has been created yet

if (this.item_number != Integer.MIN_VALUE

&& this.quantity_on_hand < this.reorder_quantity) {

event_bo = context.addBOElementEvent(

EVENT_EXAMPLE_INVENTORY_ITEM_BELOW_REORDER_QUANTITY,

null);

event_bo.setData("item_number",

Integer.toString(this.item_number));

event_bo.setData("description", this.description);

event_bo.setData("quantity_on_hand",

Integer.toString(this.quantity_on_hand));

event_bo.setData("warehouse_id", this.warehouse_id);

}

// XXX added for TestingInventoryAdapter - end

}

See also

addBOElementEvent, addVariantEvent, checkForEvents,
createTransactionContext, execute, getTransactionContext, removeEvent,
reExecute, shutdown, startup
Using adapter API methods � 119

createTransactionContext method

This method is a callback to provide a new TransactionContext instance. The
default implementation returns null. Your adapter must override this
method to return a TransactionContext implementation that contains calls
to real TP Monitor functionality. So you would have another Java class that
calls the TP Monitor functionality.

If you select Create Transaction Context in the Advanced panel of the
Generate Java Source Code dialog box, the Adapter Designer adds an empty
createTransactionContext method to the implementation, which you can
then complete.

Declaration

public TransactionContext createTransactionContext()
throws ISException

Parameters

none

Return value

TransactionContext instance

Exceptions

Thrown if unable to create a TransactionContext, for example, due to some
exception in the class that implements the commercial TP Monitor
functionality.

Example

Before operation execution, you need to implement a class that wraps calls to
a commercial TP Monitor:

public class MyTC extends TransactionContext {

private TPMonitor tp_monitor

public MyTC() {

tp_monitor = new TPMonitor();

}

120 � Adapter Developer’s Guide

public void begin() {

// do database BEGIN TRANSACTION

// tp_monitor.begin_trans();

}

public void commit() {

// add commit code

// tp_monitor.rollback_trans();

}

public void rollback() {

// add rollback code

}

TransactionContext createTransactionContext() throws
ISException {

MyTC tc = new MyTC();

return((TransactionContext) tc);

}

}

See also

begin, checkForEvents, commit, execute, reExecute, rollback, shutdown,
startup
Using adapter API methods � 121

execute method

The Adapter Server calls this method to execute a specific operation, in
response to the Extension action in a private process that is running. All
adapters must override this method, even if the adapter does not handle
operations, because it’s an abstract method.

Important: If you need to create a new implementation using the Adapter
Designer, and you added code to your existing implementation, save a
backup copy of your current implementation file. The Adapter Designer
doesn’t preserve code you added to an existing implementation when it
generates a new implementation.

If you specify operations in the Operations panel of the Create Adapter Type
dialog box, the Adapter Designer adds an execute method to the
implementation, as well as methods based on the operation names you
specified in the Adapter Designer, and generates the dispatch code of the
execute method. You can then complete the empty methods for the
operations you want the adapter to perform. Let the Adapter Designer add
the execute method for you, unless you are absolutely sure that you can make
changes that keep the adapter type, implementation declaration, and
implementation in sync. The adapter type and implementation declaration
ensure that pertinent adapter information is available in Process Manager
windows and dialog boxes for the users that need it.

You can use asynchronous callbacks with the execute method. If you use an
asynchronous callback, you must use the requestWaitForCallback method. If
you do this and execute throws an ISException or
EndSystemNotAvailableException, execute is treated as synchronous.

The execute method can be called by several threads in the Adapter Server. If
your adapter is not thread-safe, select the Synchronize Operation Execute
Methods option in the Advanced panel of the Generate Java Source Code
dialog box of the Adapter Designer (it’s selected by default). This makes the
execute methods for specific operations thread-safe, because no more than
one thread can operate at a time; however, it’s slower than allowing several
threads to call several methods at the same time. Here is an example of a
thread-safe execute method (as indicated by the synchronized keyword) for
an operation:

protected synchronized void
executeGetForecastForAYear(OperationContext context)
122 � Adapter Developer’s Guide

If the adapter supports transactions, the Adapter Server manages the
transaction, committing after this method returns or rolling back if an
exception is thrown. If the adapter doesn’t support transactions, it must
either commit or roll back all stateful actions performed during execution of
this method.

Warning: If you don’t implement transactions and a computer executing
an operation fails, such as from a loss of power, your business application
can be left in an indeterminate state.

Declaration

public abstract void execute(OperationContext context)
throws ISException

Parameters

context is the run-time context for the operation. It is a container for
operation inputs and outputs (output values must be added by the adapter
implementation).

Return value

none

Exceptions

Thrown if there is an error during execution, such as an error condition in
the business application, network problem, out of memory error, invalid
business object, no read permission on a file, and so on. If you are interacting
with another business application, you can use ISException to return an
appropriate error message. You can also throw
EndSystemNotAvailableException if you detect a lost connection during
execution.

Example

The following example is from the sample code in Java implementation
example on page 255. The Adapter Designer adds all of the following code,
based on the operations specified in the Adapter Designer:

� One Get: Get Inventory Information

� Two posts: Create Inventory Item and Update Item Quantity

� No Advanced operations
Using adapter API methods � 123

public void execute(OperationContext context)

throws ISException {

int operation_type_id;

String operation_id;

operation_type_id = context.getOperationTypeID();

operation_id = context.getOperationID();

switch (operation_type_id) {

case OperationContext.GET:

if (operation_id.equals(GET_INVENTORY_INFORMATION)) {

executeGetInventoryInformation(context);

}else {

throw new ISException(UNKNOWN_OPERATION_ID + ": " +

operation_id);

}

break;

case OperationContext.POST:

if (operation_id.equals(CREATE_INVENTORY_ITEM)) {

executeCreateInventoryItem(context);

}else if
(operation_id.equals(UPDATE_ITEM_QUANTITY)) {

executeUpdateItemQuantity(context);

}else {

throw new ISException(UNKNOWN_OPERATION_ID + ": " +

operation_id);

}

break;

case OperationContext.ADVANCED:

break;

default:

throw new ISException(UNKNOWN_OPERATION_TYPE_ID +
": " +

operation_type_id);

}

}

See also

checkForEvents, createTransactionContext, reExecute, shutdown, startup
124 � Adapter Developer’s Guide

reExecute method

The Adapter Server calls this method when execute has already been called
on this operation, but execution results were inconclusive due to process or
computer failure. If you are coding your adapter to handle the reexecution of
stateful operations, you need to override this method. As with the execute
method, this method can be called by several threads in the Adapter Server,
so you need to make your code thread-safe.

If you select ReExecute in the Advanced panel of the Generate Java Source
Code dialog box, the Adapter Designer adds an empty reExecute method to
the implementation, which you can then complete.

The default implementation of the reExecute() method depends on if the
operation is stateful or stateless. If the operation is stateless, the default
implementation will just call execute(). If the operation is stateful, the default
implementation will throw an ISException, which will result in erroring the
extension action in the private process. The default implementation is given
as an example.

Declaration

public abstract void reExecute(OperationContext context) throws
ISException

Parameters

context is the run-time context for the operation. It is the container for
operation inputs and outputs (output values must be added by the adapter
implementation).

Return value

none

Exceptions

Thrown if there is an error reexecuting the operation.

You can also throw EndSystemNotAvailableException if you detect a lost
connection during reexecution.
Using adapter API methods � 125

Example

public void reExecute(OperationContext context)

throws ISException {

if (!context.isStateful()) {

execute(context);

} else {

throw new ISException("Re-execution isn’t supported for" +

" stateful operations.");

}

}

See also

checkForEvents, createTransactionContext, execute, shutdown, startup
126 � Adapter Developer’s Guide

shutdown method

When you stop an adapter instance in the Adapter Manager, the Adapter
Server calls the shutdown method. In the body of this method, you need to
write code to perform any necessary cleanup, such as releasing resources,
disconnecting from a remote computer, or closing database connections
before the adapter terminates. Failure to release allocated resources before
adapter termination can result in memory leaks. If this method isn’t in your
adapter code, your adapter cannot perform adapter-specific tasks at
shutdown.

If you select Shutdown in the Advanced panel of the Generate Java Source
Code dialog box, the Adapter Designer adds an empty shutdown method to
the implementation, which you can then complete.

Important: If you need to create a new implementation using the Adapter
Designer, and you added code to your existing implementation, save a
backup copy of your current implementation file. The Adapter Designer
doesn’t preserve code you added to an existing implementation when it
generates a new implementation. A good way to preserve your code is to
use helper files for your adapter. See “Using helpers” on page 246.

Declaration

public void shutdown(AdapterContext context) throws ISException

Parameters

context holds adapter-specific properties, if any.

Return value

none

Exceptions

Do not throw an exception.
Using adapter API methods � 127

Example

In the following example, the Adapter Designer added the shutdown method
and the programmer added the line in bold, which calls shutdown on the
helper class. See Java implementation example on page 255 for more
information.

public void shutdown(AdapterContext context)

throws ISException {

// add shutdown code here

// XXX added for InventoryAdapter

this.helper.shutdown();

}

PAM API

Adapter API, Adapter abstract class

See also

checkForEvents, createTransactionContext, execute, getBoundProperties,
getDataType, getProperties, getPropertyAsBoolean, getPropertyAsInt,
getPropertyAsString, isPropertyBound, isPropertyDeclared, reExecute,
startup
128 � Adapter Developer’s Guide

startup method

When you start an adapter instance in the Adapter Manager, the Adapter
Server calls the startup method. The startup method is also called when the
Adapter Server starts, if you configured the adapter instance to be started at
Adapter Server startup. In the body of this method, you can write code to
perform any initialization, such as connecting to a business application,
database, or object request broker (ORB). If the connection to the business
application fails, throw EndSystemNotAvailableException. If you set error
handling in the adapter instance, this exception causes the Adapter Server to
suspend the adapter and attempt to restart it in case the error connecting to
the business system was momentary. You can use the AdapterContext to get
property values for use by the adapter instance during startup and shutdown.

The Adapter Designer always adds an empty startup method to the
implementation, which you can then complete. If you do not add code to this
method, your adapter doesn’t perform adapter-specific tasks at startup.

In addition, if you specify properties, the Adapter Designer adds the private
loadAdapterProperties method to the startup call for you. As the name
implies, this method loads the properties and values into your adapter.

Important: If you need to create a new implementation using the Adapter
Designer, and you added code to your existing implementation, save a
backup copy of your current implementation file. The Adapter Designer
doesn’t preserve code you added to an existing implementation when it
generates a new implementation. A good way to preserve your code is to
use helper files for your adapter. See “Using helpers” on page 246.

Declaration

public void startup(AdapterContext context) throws ISException

Parameters

context holds adapter-specific properties, if any.

Return value

none

Exceptions

Thrown if there is a problem starting the adapter.
Using adapter API methods � 129

EndSystemNotAvailableException is available for use when the attempt to
connect to the business system fails. This exception can be caught by the
Adapter Server, resulting in the temporary suspension of the adapter. The
Adapter Server then attempts to restart the adapter. For more on setting error
handling for an adapter instance, see the Partner Agreement Manager
Administrator’s Guide.

Example

In the following example, the Adapter Designer added the startup method
and the loadAdapterProperties method, and a programmer added the line in
bold, which does JDBC-specific adapter initialization to connect to a
database. See Java implementation example on page 255 for more
information.

public void startup(AdapterContext context)

throws ISException {

// load the properties from the adapter

loadAdapterProperties(context);

// add startup code here

// XXX added for InventoryAdapter

this.helper.startup(this.jdbc_driver, this.database_url,

this.user, this.password, this.reorder_quantity);

}

See also

checkForEvents, createTransactionContext, execute, getBoundProperties,
getDataType, getProperties, getPropertyAsBoolean, getPropertyAsInt,
getPropertyAsString, isPropertyBound, isPropertyDeclared, reExecute,
shutdown
130 � Adapter Developer’s Guide

AdapterContext interface

The methods in the AdapterContext interface let you work with adapter
properties. They are useful at startup and shutdown for working with
property values set in the Adapter Manager.

You set property values in the Adapter Manager, individually for each
adapter instance. Each adapter instance can have unique property values that
distinguish it from other adapter instances of the same adapter type,
implementation declaration, and implementation. You cannot set values
while the adapter is started; the adapter must be stopped.

You set property values in the Adapter Manager, individually for each
adapter instance. The instance must be in a stopped state before you can
specify property values.
Using adapter API methods � 131

getBoundProperties method

This method gets the names of all properties that have values. The Adapter
Designer does not add this method to an implementation for you.

Note: An empty string ("") as a data value is equivalent to null. A string
containing one or more spaces (" ") is not null, and is considered to be
data.

Declaration

public abstract Enumeration getBoundProperties()

Parameters

none

Return value

Enumeration of string property names, if any.

Exceptions

none

Example

The following example gets the names of all properties that have been set.
Optional properties might not have values.

Enumeration enum = adapter_context.getBoundProperties();

while (enum.hasMoreElements()) {

System.out.println("Property " + (String) enum.nextElement()+

" is set.");

}

See also

getDataType, getProperties, getPropertyAsBoolean, getPropertyAsInt,
getPropertyAsString, isPropertyBound, isPropertyDeclared, shutdown,
startup
132 � Adapter Developer’s Guide

getDataType method

This method identifies the type of data contained in a property that has a
value. The Adapter Designer does not add this method to an implementation
for you.

Declaration

int getDataType(String name) throws ISException

Parameters

name is the property name, which cannot be null.

Return value

One of the constants STRING, INTEGER, or BOOLEAN

Exceptions

Thrown if the specified name is null or if there is no bound property with that
name.

Example

The following example shows how to use getDataType.

int type = adapter_context.getDataType("jdbc_url");

switch (type) {

case AdapterContext.STRING:

String val = adapter_context.getPropertyAsString();

break;

case AdapterContext.BOOLEAN:

boolean val = adapter_context.getPropertyAsBoolean();

break;

case AdapterContext.INTEGER:

int val = adapter_context.getPropertyAsInt();

break;

default:

throw new ISException("Unknown type: " + type);

}

See also

getBoundProperties, getProperties, getPropertyAsBoolean,
getPropertyAsInt, getPropertyAsString, isPropertyBound,
isPropertyDeclared, shutdown, startup
Using adapter API methods � 133

getProperties method

This method gets the names of all properties declared in the adapter
definition, whether or not they have a value. The Adapter Designer does not
add this method to an implementation for you.

Declaration

public abstract Enumeration getProperties()

Parameters

none

Return value

Enumeration of string property names, if any.

Exceptions

none

Example

The following example gets the names of all properties whether they have
been set or not.

Enumeration enum = adapter_context.getProperties();

while (enum.hasMoreElements()) {

System.out.println("Property " + (String) enum.nextElement() +

" is defined.");

}

See also

getBoundProperties, getDataType, getPropertyAsBoolean,
getPropertyAsInt, getPropertyAsString, isPropertyBound,
isPropertyDeclared, shutdown, startup
134 � Adapter Developer’s Guide

getPropertyAsBoolean method

This method is an accessor for boolean properties. It is added by the Adapter
Designer for each boolean property you specified for an adapter.

Declaration

public abstract boolean getPropertyAsBoolean(String name)
throws ISException

Parameters

name is the name of the property. It cannot be null.

Return value

Property value as a boolean.

Exceptions

Thrown if the specified name is null, if the specified property is not of type
boolean, or if there is no bound property with the specified name.

Example

The following example shows how to use getPropertyAsBoolean.

int type = adapter_context.getDataType("jdbc_url");

switch (type) {

case AdapterContext.STRING:

String val =
adapter_context.getPropertyAsString("jdbc_url");

break;

case AdapterContext.BOOLEAN:

boolean val =
adapter_context.getPropertyAsBoolean("jdbc_url");

break;

case AdapterContext.INTEGER:

int val = adapter_context.getPropertyAsInt("jdbc_url");

break;

default:

throw new ISException("Unknown type: " + type);

}

See also

getBoundProperties, getDataType, getProperties, getPropertyAsInt,
getPropertyAsString, isPropertyBound, isPropertyDeclared, shutdown,
startup
Using adapter API methods � 135

getPropertyAsInt method

This method is an accessor for integer properties. It is added by the Adapter
Designer for each integer property you specified for an adapter.

Declaration

public abstract int getPropertyAsInt(String name) throws ISException

Parameters

name is the name of the property. It cannot be null.

Return value

Property value as an integer.

Exceptions

Thrown if the specified name is null, if the specified property is not of type
integer, or if there is no bound property with the specified name.

Example

In the following code, if the property identified by the constant
PROP_REORDER_QUANTITY has a value, then the value is assigned to the variable
reorder_quantity. (The Adapter Designer creates constants based on the
properties you specified.) See Java implementation example on page 255 for
the complete example adapter.

if (context.isPropertyBound(PROP_REORDER_QUANTITY)) {

reorder_quantity =
context.getPropertyAsInt(PROP_REORDER_QUANTITY);

}

136 � Adapter Developer’s Guide

Another example showing how to use getPropertyAsInt.

int type = adapter_context.getDataType("jdbc_url");

switch (type) {

case AdapterContext.STRING:

String val =
adapter_context.getPropertyAsString("jdbc_url");

break;

case AdapterContext.BOOLEAN:

boolean val =
adapter_context.getPropertyAsBoolean("jdbc_url");

break;

case AdapterContext.INTEGER:

int val = adapter_context.getPropertyAsInt("jdbc_url");

break;

default:

throw new ISException("Unknown type: " + type);

}

See also

getBoundProperties, getDataType, getProperties, getPropertyAsBoolean,
getPropertyAsString, isPropertyBound, isPropertyDeclared, shutdown,
startup
Using adapter API methods � 137

getPropertyAsString method

This method gets the value of a property as a string. It is added by the Adapter
Designer for each string property you specified for an adapter.

Declaration

public abstract int getPropertyAsIString(String name) throws ISException

Parameters

name is the name of the property. It cannot be null.

Return value

Property value as a string. Depending on the data type of a property, this
method will do one of the following:

� integer: Returns the result of String.valueOf(int)

� string: Returns the string property value

� boolean: Returns the result of String.valueOf(boolean)

Exceptions

Thrown if the specified name is null, if there is no property with the specified
name, or if the property value is null.

Example

The following example gets the value of a user name property. See Java
implementation example on page 255 for the complete example adapter.

user = context.getPropertyAsString(PROP_USER);

Another example:

int type = adapter_context.getDataType("jdbc_url");

switch (type) {

case AdapterContext.STRING:

String val =
adapter_context.getPropertyAsString("jdbc_url");

break;

case AdapterContext.BOOLEAN:

boolean val =
adapter_context.getPropertyAsBoolean("jdbc_url");

break;
138 � Adapter Developer’s Guide

case AdapterContext.INTEGER:

int val = adapter_context.getPropertyAsInt("jdbc_url");

break;

default:

throw new ISException("Unknown type: " + type);

}

See also

getBoundProperties, getDataType, getProperties, getPropertyAsBoolean,
getPropertyAsInt, isPropertyBound, isPropertyDeclared, shutdown, startup
Using adapter API methods � 139

isPropertyBound method

This method determines if a property has a value. The Adapter Designer does
not add this method to an implementation for you.

Declaration

public abstract boolean isPropertyBound(String name)

Parameters

name is the name of the property. If the name is null, the method returns
false.

Return value

Boolean true if the property has a value; boolean false if no property exists
with the specified name, if the property has no value, or if the specified name
is null.

Exceptions

none

Example

In the following code, if the optional property named PROP_REORDER_QUANTITY
has a value, then the value is assigned to the variable reorder_quantity. See
Java implementation example on page 255 for the complete example adapter.

if (context.isPropertyBound(PROP_REORDER_QUANTITY)) {

reorder_quantity =
context.getPropertyAsInt(PROP_REORDER_QUANTITY);

}

See also

getBoundProperties, getDataType, getProperties, getPropertyAsBoolean,
getPropertyAsInt, getPropertyAsString, isPropertyDeclared, shutdown,
startup
140 � Adapter Developer’s Guide

isPropertyDeclared method

This method determines if there is a declared property with the specified
name. The Adapter Designer does not add this method to an implementation
for you.

Declaration

public abstract boolean isPropertyDeclared(String name)

Parameters

name is the name of the property. If it is null, the method returns boolean
false.

Return value

Boolean true if there is a declared property; boolean false if there is no
declared property with the specified name or if the specified name is null.

Example

The following example tests if a property named “jdbc_driver” is declared.

if (adapter_context.isPropertyDeclared("jdbc_driver")) {

System.out.println("Property jdbc_driver is declared for
this adapter");

}

See also

getBoundProperties, getDataType, getProperties, getPropertyAsBoolean,
getPropertyAsInt, getPropertyAsString, isPropertyBound, shutdown,
startup
Using adapter API methods � 141

EventContext interface

A checkForEvents call can contain code to generate events based on a
condition in the business application; these events are passed to Partner
Agreement Manager to start public processes. You can use the methods in the
EventContext interface within the body of a checkForEvents call. The
Adapter Designer does not add these methods to an implementation for you.
142 � Adapter Developer’s Guide

addBOElementEvent method

This method adds an event and a business object to the EventContext object
associated with the checkForEvents call. The empty business object is passed
back to the adapter to get values. The Adapter Designer does not add this
method to an implementation for you.

Declaration

public abstract Element addBOElementEvent(String type, int mode,
String desc) throws ISException

public abstract Element addBOElementEvent(String type, String desc)
throws ISException

Parameters

type is the event type name, which is a constant generated by the Adapter
Designer based on the event type name as it appeared in the Adapter
Designer. It cannot be null.

mode (optional) is one of the constants TEST, PRODUCTION, or UNSPECIFIED. If no
mode is specified, it defaults to the constant UNSPECIFIED. If you specify TEST,
only test versions of a public process are started with this event; if you specify
PRODUCTION, only production versions are started; if you use UNSPECIFIED, both
test and production versions can be started. (Remember that you specify
whether a process is test or production in the Process Manager.)

desc is a description of the event source, for example, “SAP R3.” It can be null.
You can use the description to help with logging and auditing.

Return value

Empty Element business object for the event. You can pass it to the
removeEvent method to eliminate this event from the context, if needed.

Exceptions

Thrown if there is an error adding the event, such as a null, empty, or invalid
type.
Using adapter API methods � 143

Example

In the following example, an event and business object are generated, then
data is added to the business object:

public final void checkForEvents(EventContext context)

throws ISException {

Element event_bo; // XXX added for TestingInventoryAdapter

// add event production code here

// XXX added for TestingInventoryAdapter - begin

// trap for case when no item has been created yet

if (this.item_number != Integer.MIN_VALUE

&& this.quantity_on_hand < this.reorder_quantity) {

event_bo = context.addBOElementEvent(

EVENT_EXAMPLE_INVENTORY_ITEM_BELOW_REORDER_QUANTITY,

null);

event_bo.setData("item_number",

Integer.toString(this.item_number));

event_bo.setData("description", this.description);

event_bo.setData("quantity_on_hand",

Integer.toString(this.quantity_on_hand));

event_bo.setData("warehouse_id", this.warehouse_id);

}

// XXX added for TestingInventoryAdapter - end

}

See also

addVariantEvent, checkForEvents, getTransactionContext, removeEvent
144 � Adapter Developer’s Guide

addVariantEvent method

This method adds an event and string data to the EventContext object
associated with the checkForEvents call. The Adapter Designer does not add
this method to an implementation for you.

Declaration

public abstract Object addVariantEvent(String type, String data,
int mode, String desc) throws ISException

public abstract Object addVariantEvent(String type, String data,
String desc) throws ISException

Parameters

type is the event type name, which is a constant generated by the Adapter
Designer based on the event type name as it appeared in the Adapter
Designer. It cannot be null or empty ("").

data is the string data associated with the event. It is null for an event with no
data.

mode (optional) is one of the constants TEST, PRODUCTION, or UNSPECIFIED. If no
mode is specified, it defaults to the constant UNSPECIFIED. If you specify TEST,
only test versions of a public process are started with this event; if you specify
PRODUCTION, only production versions are started; if you use UNSPECIFIED, both
test and production versions can be started. (Remember that you specify
whether a process is test or production in the Process Manager.)

desc is a description of the event source, for example, “SAP R3.” It can be null.
You can use the description to help with logging and auditing.

Return value

Handle to the event, which you can pass into the removeEvent method to
eliminate this event from the context, if needed.

Exceptions

Thrown if there is an error adding the event, such as an invalid type.
Using adapter API methods � 145

Example

In the following example, the checkForEvents call returns an event and string
data. See Java implementation example on page 255 for the complete example
adapter.

public final void checkForEvents(EventContext context)

throws ISException {

// add event production code here

// XXX added for TestingInventoryAdapter - begin

// trap for case when no item has been created yet

if (this.item_number != Integer.MIN_VALUE

&& this.quantity_on_hand < this.reorder_quantity) {

context.addVariantEvent(

EVENT_EXAMPLE_INVENTORY_ITEM_BELOW_REORDER_QUANTITY,

Integer.toString(this.item_number),

null);

}

// XXX added for TestingInventoryAdapter - end

}

See also

addBOElementEvent, checkForEvents, getTransactionContext,
removeEvent
146 � Adapter Developer’s Guide

getTransactionContext method

This method gets the transaction context for this execution. Use this method
if you need to make your checkForEvents call transactional. The Adapter
Designer does not add this method to an implementation for you.

Declaration

public abstract TransactionContext getTransactionContext()

Parameters

none

Return value

Instance of TransactionContext.

Exceptions

none

Example

The following example gets the generic transaction context and casts it to a
known subclass.

MyTransactionContext tc = (MyTransactionContext)
context.getTransactionContext();

See also

addBOElementEvent, addVariantEvent, checkForEvents,
createTransactionContext, removeEvent
Using adapter API methods � 147

removeEvent method

This method removes an event from the context. It is useful for error
handling when you are working with complex business objects, for example.
The Adapter Designer does not add this method to an implementation for
you.

Declaration

public abstract boolean removeEvent(Object o)

Parameters

o is the Event handle— an Object that was returned by the addVariantEvent
method, or an Element business object that was returned by the
addBOElementEvent method.

Return value

Boolean true if the event was successfully removed; boolean false if there was
no event with that handle.

Exceptions

none

Example

The following example shows how to use removeEvent.

Element elem = event_context.addBOElementEvent(bo);

//If we can't set the BO's data properly, then remove

//the event from the context...

if (!setBOData(bo)) {

event_context.removeEvent(elem);

}

See also

addBOElementEvent, addVariantEvent, checkForEvents,
getTransactionContext
148 � Adapter Developer’s Guide

ExecutionID interface

You can use execution, private process, and operation IDs to keep track of
different tasks your adapter is performing, both in code and as a record in a
database. For example, in a reExecute method, you can use a switch
statement to identify an operation by execution ID, operation ID, or both.
The Adapter Designer does not add these methods to an implementation for
you.

An execution ID is unique to a private process and an operation.

A private process ID is unique to a run of a private process that started an
operation.

An operation ID is the name of an operation in the Adapter Designer and is
unique to an operation type in an implementation; if the same operation
runs more than once, they have the same ID. The operation type ID specifies
whether the operation is Get, Post, or Advanced. See Java implementation
example on page 255 for more information on getting these IDs.
Using adapter API methods � 149

getDisplayName method

This method gets a human-readable description of the execution ID. The
Adapter Designer does not add this method to an implementation for you.

Declaration

public abstract String getDisplayName()

Parameters

none

Return value

Description string of execution ID you can display.

Exceptions

none

Example

The following example prints out a human readable form of the execution
ID.

System.out.println("Execution ID: " +
exec_id.getDisplayName());

See also

getExecutionID, getID, getPrivateProcessID
150 � Adapter Developer’s Guide

getID method

This method gets a globally unique execution ID string for an operation
execution. It is never null. The Adapter Designer does not add this method
to an implementation for you.

Declaration

public abstract String getID()

Parameters

none

Return value

Execution ID string (not human-readable)

Exceptions

none

Example

The following example stores the ID in a database.

helper.persistID(context.getExecutionID().getID());

See also

getDisplayName, getExecutionID, getPrivateProcessID
Using adapter API methods � 151

getPrivateProcessID method

This method gets the private process ID of the private process that executed
this operation. The Adapter Designer does not add this method to an
implementation for you.

Declaration

public abstract String getPrivateProcessID()

Parameters

none

Return value

Private process ID string, which is never null.

Exceptions

none

Example

The following example stores the private process in a database.

helper.persistPrivProcID(context.getExecutionID().getPrivatePro
cessID());

See also

getDisplayName, getExecutionID, getID
152 � Adapter Developer’s Guide

OperationContext interface

You can use the methods in the OperationContext interface to work with
operations. The methods can appear in the body of the execute methods
generated for a specific operation, and in the reExecute method. Unless
otherwise noted, the Adapter Designer does not add these methods for you.
Using adapter API methods � 153

createOutputBOElement method

This method returns an empty output business object of the correct type for
a specific Get or Post operation. The Adapter Designer adds this to adapter
code if you specified an output business object for an operation.

Declaration

public abstract Element createOutputBOElement(String output)
throws ISException

public abstract Element createOutputBOElement() throws ISException

Parameters

output (optional) is the output name. It cannot be null.

Return value

Empty Element business object instance that you can work with.

Exceptions

Thrown if there is an error creating the business object, if the specified output
was not defined in the adapter type, or if the specified output name is null.

Example

In the following example, the output and status business objects are created
from the operation context. The programmer can now use the Business
Object API with these business objects through the output_bo and status_bo
variables. See Using Business Object API methods on page 191 for information
on the BusinessObject API. Also, see Java implementation example on
page 255 for the complete example adapter.

// create the output Business Objects

output_bo = context.createOutputBOElement();

status_bo = context.createStatusBOElement();

See also

createStatusBOElement, execute, getExecutionID, getExecutionMode,
getInput, getInputBOElement, getInputNames, getInputVariant,
getOperationID, getOperationTypeID, getOutputBOElement,
getOutputVariant, getStatusBOElement, getTransactionContext,
isFirstExecution, isReexecuted, isStateful, log, reExecute, requestRetry,
setOutputVariant, unsetOutput, unsetOutputBO, unsetStatusBO
154 � Adapter Developer’s Guide

createStatusBOElement method

This method returns an empty status business object of the correct type for a
specific Get or Post operation. The Adapter Designer adds this to adapter
code if you specified an output status business object for an operation.

Declaration

public abstract Element createStatusBOElement() throws ISException

Parameters

none

Return value

Empty Element business object instance.

Exceptions

Thrown if there is an error creating the business object or if this operation is
not of type Get or Post.

Example

In the following example, the output and status business objects are created
from the operation context. The programmer can now use the Business
Object API with these business objects through the output_bo and status_bo
variables. See Java implementation example on page 255 for the complete
example adapter.

// create the output Business Objects

output_bo = context.createOutputBOElement();

status_bo = context.createStatusBOElement();

See also

createOutputBOElement, execute, getExecutionID, getExecutionMode,
getInput, getInputBOElement, getInputNames, getInputVariant,
getOperationID, getOperationTypeID, getOutputBOElement,
getOutputVariant, getStatusBOElement, getTransactionContext,
isFirstExecution, isReexecuted, isStateful, log, reExecute, requestRetry,
setOutputVariant, unsetOutput, unsetOutputBO, unsetStatusBO
Using adapter API methods � 155

getExecutionID method

This method gets the unique execution ID for this operation execution. This
ID can be used by adapters to match reexecute and undo calls to the original
execution. The method returns an ExecutionID instance. The Adapter
Designer does not add this method to an implementation for you.

Declaration

public abstract ExecutionID getExecutionID()

Parameters

none

Return value

An object implementing the ExecutionID interface, which is never null.

Exceptions

none

Example

The following example retrieves the execution ID from the context, then uses
it to log the ID into a database:

try {

ExecutionID id = context.getExecutionID();

logTransaction(id); //logs this execution ID to a database

} catch(SQLException e) {

throw new ISException("Unable to log transaction", e);

}

See also

createOutputBOElement, createStatusBOElement, execute,
getExecutionMode, getInput, getInputBOElement, getInputNames,
getInputVariant, getOperationID, getOperationTypeID,
getOutputBOElement, getOutputVariant, getStatusBOElement,
getTransactionContext, isFirstExecution, isReexecuted, isStateful, log,
reExecute, requestRetry, setOutputVariant, unsetOutput, unsetOutputBO,
unsetStatusBO
156 � Adapter Developer’s Guide

getExecutionMode method

This method gets the mode of execution for this operation: TEST or
PRODUCTION. This mode corresponds to the mode of the public process that
initiated the operation. Adapters can check the mode if they need to act
differently based on test or production versions. The Adapter Designer does
not add this method to an implementation for you.

Declaration

public abstract int getExecutionMode()

Return value

One of the constants TEST or PRODUCTION.

Example

For example, you can have the following code in the execute method so you
connect to the test or production system as appropriate:

try {

int mode = context.getExecutionMode();

if(mode==OperationContext.TEST) {

//run operation against the test system

executeTransaction("TEST");

} elseif(mode==OperationContext.PRODUCTION) {

//run operation against the production system

executeTransaction("PRODUCTION");

}

}

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getInput, getInputBOElement, getInputNames, getInputVariant,
getOperationID, getOperationTypeID, getOutputBOElement,
getOutputVariant, getStatusBOElement, getTransactionContext,
isFirstExecution, isReexecuted, isStateful, log, reExecute, requestRetry,
setOutputVariant, unsetOutput, unsetOutputBO, unsetStatusBO
Using adapter API methods � 157

getInput method

This method gets the Object value for a specific input context variable, either
a business object or variant. You can use this method as a generic way to get
input values, if you don’t know the type of input. The Adapter Designer does
not add this method to an implementation for you.

Declaration

public abstract Object getInput(String input) throws ISException

Parameters

input is a constant created by the Adapter Designer for the input context
variable name you specified in the Adapter Designer.

Return value

Input value. Null if the input has not been bound.

Exceptions

Thrown if the specified input does not exist or if the specified input name is
null.

Example

The following example tests whether the context_var1 input is a business
object or variant.

Object input = getInput("context_var1");

if (input instanceof Element) {

//It's a business object

Element tmp = (Object) input;

String f1 = tmp.getData("field1");

} else if (input instanceof String) {

//It's a variant

String var1 = (String) input;

} else {

// Error case

throw new ISException("Unsupported input type: " +
input.getClass());

}

158 � Adapter Developer’s Guide

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInputBOElement, getInputNames, getInputVariant,
getOperationID, getOperationTypeID, getOutputBOElement,
getOutputVariant, getStatusBOElement, getTransactionContext,
isFirstExecution, isReexecuted, isStateful, log, reExecute, requestRetry,
setOutputVariant, unsetOutput, unsetOutputBO, unsetStatusBO
Using adapter API methods � 159

getInputBOElement method

This method gets the business object values for a Post operation or for
another business object you specified. The Adapter Designer does not add
this method to an implementation for you.

Declaration

public abstract Element getInputBOElement() throws ISException

public abstract Element getInputBOElement(String input)
throws ISException

Parameters

input (optional) is the input business object name, identified by a constant
that the Adapter Designer created in your Java file. If it is null, the method
returns null. If you do not specify an input, the method gets the input of a
Post operation.

Return value

The Element business object.

Exceptions

Thrown if this operation is not of type Post. If you specified an input, an
exception is thrown if the specified input does not exist, if the input data is
not an Element business object, or if the specified input name is null.

Example

In the following example, the method gets the value of the business object
that was input to a Post operation (the input is stored in the context). See
Java implementation example on page 255 for the complete example adapter.

// load the inputs from the OperationContext

Element input_bo = context.getInputBOElement();

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputNames, getInputVariant,
getOperationID, getOperationTypeID, getOutputBOElement,
getOutputVariant, getStatusBOElement, getTransactionContext,
isFirstExecution, isReexecuted, isStateful, log, reExecute, requestRetry,
setOutputVariant, unsetOutput, unsetOutputBO, unsetStatusBO
160 � Adapter Developer’s Guide

getInputNames method

This method gets the names of all input context variables you defined in the
Adapter Designer for a particular operation. Although not often needed, this
method is useful if you need metadata information about the operation.
Remember that an optional input might not have values. The Adapter
Designer does not add this method to an implementation for you.

Declaration

public abstract Enumeration getInputNames()

Parameters

none

Return value

Enumeration of input name strings, specified as constants generated by the
Adapter Designer based on the names you entered there. Empty if there are
no inputs.

Exceptions

none

Example

The following example prints out the names of all the inputs that have been
set.

Enumeration names = context.getInputNames();

while (name.hasMoreElements()) {

String input = (String) names.nextElement();

System.out.println("Input: " + input);

}

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputBOElement, getInputVariant,
getOperationID, getOperationTypeID, getOutputBOElement,
getOutputVariant, getStatusBOElement, getTransactionContext,
isFirstExecution, isReexecuted, isStateful, log, reExecute, requestRetry,
setOutputVariant, unsetOutput, unsetOutputBO, unsetStatusBO
Using adapter API methods � 161

getInputVariant method

This method gets the value of a variant input to an operation. The Adapter
Designer does not add this method to an implementation for you.

Declaration

public abstract String getInputVariant(String input)
throws ISException

Parameters

input is a constant created by the Adapter Designer for the input variant you
specified in the Adapter Designer. For example, if the operation was called
“my Post operation” and the input variant was called “my_variant”, the
constant the Adapter Designer adds would be
MY_POST_OPERATION_INPUT_MY_VARIANT. If the input is null, the method returns
null.

Return value

The variant value, as a string. Returns null if the variant has no value.

Exceptions

Thrown if the specified variant does not exist, if the variant value is not a
string, or if the specified variant name is null.

Example

In the following example, the method gets the value of the item_number
input to a “Get inventory information” operation, represented by the
constant GET_INVENTORY_INFORMATION_INPUT_ITEM_NUMBER (created by the
Adapter Designer). See Java implementation example on page 255 for the
complete example adapter.

// load the inputs from the OperationContext

String item_number =

context.getInputVariant(GET_INVENTORY_INFORMATION_INPUT_ITEM_NU
MBER);
162 � Adapter Developer’s Guide

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputBOElement, getInputNames,
getOperationID, getOperationTypeID, getOutputBOElement,
getOutputVariant, getStatusBOElement, getTransactionContext,
isFirstExecution, isReexecuted, isStateful, log, reExecute, requestRetry,
setOutputVariant, unsetOutput, unsetOutputBO, unsetStatusBO
Using adapter API methods � 163

getOperationID method

This method gets a string that identifies which adapter operation is being
executed. The ID is unique for all operations of the same type, for example,
“my Post Operation.” The Adapter Designer adds this method to an
implementation for you.

Declaration

public abstract String getOperationID()

Return value

An operation ID string, which is never null.

Example

The following example contains code the Adapter Designer generates for
you. See Java implementation example on page 255 for the complete example
adapter.

public void execute(OperationContext context)

throws ISException {

int operation_type_id;

String operation_id;

operation_type_id = context.getOperationTypeID();

operation_id = context.getOperationID();

...

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputBOElement, getInputNames,
getInputVariant, getOperationTypeID, getOutputBOElement,
getOutputVariant, getStatusBOElement, getTransactionContext,
isFirstExecution, isReexecuted, isStateful, log, reExecute, requestRetry,
setOutputVariant, unsetOutput, unsetOutputBO, unsetStatusBO
164 � Adapter Developer’s Guide

getOperationTypeID method

This method gets a constant that identifies the operation type: GET, POST,
or ADVANCED. The Adapter Designer adds this method to an
implementation for you.

Declaration

public abstract int getOperationTypeID()

Return value

One of the constants GET, POST, or ADVANCED.

Example

The following example contains code that the Adapter Designer generates for
you. See Java implementation example on page 255 for the complete example
adapter.

public void execute(OperationContext context)

throws ISException {

int operation_type_id;

String operation_id;

operation_type_id = context.getOperationTypeID();

operation_id = context.getOperationID();

...

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputBOElement, getInputNames,
getInputVariant, getOperationID, getOutputBOElement, getOutputVariant,
getStatusBOElement, getTransactionContext, isFirstExecution,
isReexecuted, isStateful, log, reExecute, requestRetry, setOutputVariant,
unsetOutput, unsetOutputBO, unsetStatusBO
Using adapter API methods � 165

getOutputBOElement method

This method gets the output Element business object of an operation. The
Adapter Designer does not add this method to an implementation for you.

Declaration

public abstract Element getOutputBOElement()

public abstract Element getOutputBOElement(String output)

Parameters

output (optional) is the output name, which is a constant created by the
Adapter Designer based on the name you entered there. If it is null, the
method returns null. You specify an output if you know you might have
more than one output (as can be the case for an Advanced operation).

Return value

Output of the operation. It is null if the output hasn’t been set, the operation
isn’t of type Get or Post, the output doesn’t have an Element business object
value, the specified output doesn’t exist for this operation, or if the specified
output name is null.

Example

Code like the following is frequently used to set output business object data
within adapter implementations:

Element output_bo = context.getOutputBOElement();

output_bo.setData(FIELD1, "your value");

output_bo.setData(FIELD2, "your value");

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputBOElement, getInputNames,
getInputVariant, getOperationID, getOperationTypeID, getOutputVariant,
getStatusBOElement, getTransactionContext, isFirstExecution,
isReexecuted, isStateful, log, reExecute, requestRetry, setOutputVariant,
unsetOutput, unsetOutputBO, unsetStatusBO
166 � Adapter Developer’s Guide

getOutputVariant method

This method gets the value of an output variant of an operation. It returns a
string. The Adapter Designer does not add this method to an
implementation for you.

Declaration

public abstract String getOutputVariant(String output)

Parameters

output is the output name, which is a constant created by the Adapter
Designer based on the name you entered there. If it is null, the method
returns null.

Return value

Output value. Null if the output is either not set or doesn’t have a String
value.

Example

The following example prints out the value of an output variant.

String val = context.getOutputVariant("return_code");

System.out.println("Return code = " + return_code);

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputBOElement, getInputNames,
getInputVariant, getOperationID, getOperationTypeID,
getOutputBOElement, getStatusBOElement, getTransactionContext,
isFirstExecution, isReexecuted, isStateful, log, reExecute, requestRetry,
setOutputVariant, unsetOutput, unsetOutputBO, unsetStatusBO
Using adapter API methods � 167

getStatusBOElement method

This method gets the status business object of a Get or Post operation.
(Advanced operations don’t explicitly have status business objects, although
you can add them.) The Adapter Designer does not add this method to an
implementation for you.

Declaration

public abstract Element getStatusBOElement()

Parameters

none

Return value

Status Element business object of the operation. Null if the status hasn’t been
set or if the operation is not of type Get or Post.

Example

The following example prints out the value of the StatusBO.

Element elem = context.getStatusBOElement();

System.out.println("StatusBO.result: " +
elem.getData("result");

System.out.println("StatusBO.resason: " +
elem.getData("reason");

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputBOElement, getInputNames,
getInputVariant, getOperationID, getOperationTypeID,
getOutputBOElement, getOutputVariant, getTransactionContext,
isFirstExecution, isReexecuted, isStateful, log, reExecute, requestRetry,
setOutputVariant, unsetOutput, unsetOutputBO, unsetStatusBO
168 � Adapter Developer’s Guide

getTransactionContext method

This method gets the transaction context for this execution. This will be a
context instance generated by the createTransactionContext method of the
adapter. If you select the Create Transaction Context option in the Advanced
panel of the Create Java Source Code dialog box, the Adapter Designer adds
this method to an implementation for you.

Declaration

public abstract TransactionContext getTransactionContext()

Return value

Instance of TransactionContext, or null if the adapter doesn’t support
transactions.

Example

The following example gets the generic transaction context and casts it to a
known subclass.

MyTransactionContext tc = (MyTransactionContext)
context.getTransactionContext();

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputBOElement, getInputNames,
getInputVariant, getOperationID, getOperationTypeID,
getOutputBOElement, getOutputVariant, getStatusBOElement,
isFirstExecution, isReexecuted, isStateful, log, reExecute, requestRetry,
setOutputVariant, unsetOutput, unsetOutputBO, unsetStatusBO
Using adapter API methods � 169

isFirstExecution method

This method determines if this is the first time this operation has been
executed. This method is useful if the requestRetry method is being used
(your code might depend on whether it is a first execution). The Adapter
Designer does not add this method to an implementation for you.

Declaration

public abstract boolean isFirstExecution()

Return value

Boolean true if this is the first execution; boolean false if this is a retry.

Example

The following example is the requestRetry() execute method
implementation

protected void executeInterfaceTable(OperationContext context)

throws ISException {

Element input_bo;

Element output_bo;

Element status_bo;

// load the inputs from the OperationContext

input_bo = context.getInputBOElement();

// create the output Business Objects

output_bo = context.createOutputBOElement();

status_bo = context.createStatusBOElement();

//Test if it's the first time execute() has been called; if

//so, then perform a database INSERT. For subsequent times,

//check if the end system has updated the database table's

//status from PENDING to COMPLETE.

if (context.isFirstExecution()) {

//Perform an INSERT into the interface table

String id = helper.insertIntoInterfaceTable();

//Store the id in the output BO

output_bo.setData("id", id);

} else {
170 � Adapter Developer’s Guide

//Check if the batch program has run

if (helper.checkBatchStatus(output_bo.getData("id")) ==
COMPLETE) {

output_bo.setData("status", "COMPLETE");

} else {

//Tell the AS to retry every 10 minutes since we aren't
// yet done

context.requestRetry(600);

}

}

}

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputBOElement, getInputNames,
getInputVariant, getOperationID, getOperationTypeID,
getOutputBOElement, getOutputVariant, getStatusBOElement,
getTransactionContext, isReexecuted, isStateful, log, reExecute,
requestRetry, setOutputVariant, unsetOutput, unsetOutputBO,
unsetStatusBO
Using adapter API methods � 171

isReexecuted method

This method determines if the operation is being reexecuted (through the
reExecute method). The Adapter Designer does not add this method to an
implementation for you.

Declaration

public abstract boolean isReexecuted()

Return value

Boolean true if the operation is being reexecuted; boolean false otherwise.

Example

The following example checks the state of an operation.

if (context.isReexecuted()) {

//Check state of this operation

if (checkOperationState(context.getExecutionID()) ==
COMPLETED) {

status_bo.setData("result", "success");

status_bo.setData("reason", "Previous execution was
successful");

} else {

// Previous execution was unsuccessful; go do it

executeMyMethod(status_bo);

}

}

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputBOElement, getInputNames,
getInputVariant, getOperationID, getOperationTypeID,
getOutputBOElement, getOutputVariant, getStatusBOElement,
getTransactionContext, isFirstExecution, isStateful, log, reExecute,
requestRetry, setOutputVariant, unsetOutput, unsetOutputBO,
unsetStatusBO
172 � Adapter Developer’s Guide

isStateful method

This method determines if this operation has been designated by the Adapter
Designer as stateless (it doesn’t modify the state of external applications). If
an operation is stateful, you might need to code a rollback or other
compensatory functionality into your error handling. This call is useful in a
reExecute method. The Adapter Designer does not add this method to an
implementation for you.

Declaration

public abstract boolean isStateful()

Return value

Boolean true if the operation is stateful; boolean false otherwise.

Example

The following example shows how to use isStateful.

public void reExecute(OperationContext context)

throws ISException {

if (!context.isStateful()) {

execute(context);

} else {

throw new ISException("Re-execution isn’t supported for" +

" stateful operations.");

}

}

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputBOElement, getInputNames,
getInputVariant, getOperationID, getOperationTypeID,
getOutputBOElement, getOutputVariant, getStatusBOElement,
getTransactionContext, isFirstExecution, isReexecuted, log, reExecute,
requestRetry, setOutputVariant, unsetOutput, unsetOutputBO,
unsetStatusBO
Using adapter API methods � 173

log method

This method logs a message that will be inserted into the Partner Agreement
Manager audit log for the process executing this operation. The Adapter
Designer does not add this method to an implementation for you.

Declaration

public abstract boolean log(int severity, String message)

public abstract boolean log(int severity, String message,
Throwable t)

Parameters

severity is one of the constants ERROR, WARNING, or INFO.

message is a string description of the error. If null, no log will be added.

t (optional) is the throwable object associated with the error, which can be
null. If supplied, the exception and its stack trace is written to the audit log.

Return value

True if the log was successfully added.

Example

The following example logs the attempt to connect to MQSeries.

context.log(OperationContext.INFO, "Initiating connection to
MQSeries...");

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputBOElement, getInputNames,
getInputVariant, getOperationID, getOperationTypeID,
getOutputBOElement, getOutputVariant, getStatusBOElement,
getTransactionContext, isFirstExecution, isReexecuted, isStateful,
reExecute, requestRetry, setOutputVariant, unsetOutput, unsetOutputBO,
unsetStatusBO
174 � Adapter Developer’s Guide

operationCompleted method

This method finishes an asynchronous operation, including error-handling.
The Adapter Designer does not add this method to an implementation for
you.

Note: The start to an asynchronous call is in the execute method.

A call to operationCompleted will result in an error if the asynchronous call
returns before requestWaitForCallback has finished. In this case, the call is
regarded as synchronous.

Declaration

public void operationCompleted(ISException t) throws ISException

Parameters

t is the throwable object associated with an error as a result of this operation.
which can be null. When t is null, it means that the asynchronous operation
finished without error.

Exceptions

Exceptions are thrown is the asynchronous call cannot be completed. Since
the asynchronous call cannot throw an exception in the same way as a
synchronous operation, a parameter is used.

ISException is thrown if more than one callback is made for an operation.
The first callback will be processed. All subsequent ones will be ignored and
operationCompleted will throw an ISException.

ISException is also thrown if the callback happens after the operation times
out.
Using adapter API methods � 175

If either the asynchronous operation or the asynchronous callback fails
because of an EndSystemNotAvailableException, both the operation and the
adapter instance are suspended. If the Adapter Server is configured to do so,
it attempts to restart the adapter. If that is successful, it will rerun the
operation. If you use this functionality, you must roll back all unfinished
work before throwing EndSystemNotAvailableException. Otherwise, the
results of the operation will be indeterminate. If the Adapter Server is not
configured to restart the adapter, an EndSystemNotAvailableException is
treated as an ISException. Timeout values are not reset for adapter restarts
and operation retries.

Example

The following example completes an asynchronous operation.

context.operationCompleted(t);

See also

requestWaitForCallback
176 � Adapter Developer’s Guide

requestRetry method

This method specifies that the operation cannot be completed on this call
and needs to be attempted again. The same OperationContext will be passed
into the execution method on the retry (any outputs set during previous
execution(s) will be preserved). You use this method to implement long-
running operations. The Adapter Designer does not add this method to an
implementation for you.

Declaration

public abstract void requestRetry(int seconds)

Parameters

seconds is the number of seconds that the Adapter Server waits to call execute
on the adapter again for this operation to find out if it has completed. The
value must be between 1 and 2419200 (four weeks).

Example

protected void executeInterfaceTable(OperationContext context)

throws ISException {

Element input_bo;

Element output_bo;

Element status_bo;

// load the inputs from the OperationContext

input_bo = context.getInputBOElement();

// create the output Business Objects

output_bo = context.createOutputBOElement();

status_bo = context.createStatusBOElement();

//Test if it's the first time execute() has been called; if

//so, then perform a database INSERT. For subsequent times,

//check if the end system has updated the database table's

//status from PENDING to COMPLETE.

if (context.isFirstExecution()) {

//Perform an INSERT into the interface table

String id = helper.insertIntoInterfaceTable();

//Store the id in the output BO

output_bo.setData("id", id);
Using adapter API methods � 177

} else {

//Check if the batch program has run

if (helper.checkBatchStatus(output_bo.getData("id")) ==
COMPLETE) {

output_bo.setData("status", "COMPLETE");

} else {

//Tell the IS to retry every 10 minutes since we aren't

//yet done

context.requestRetry(600);

}

}

}

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputBOElement, getInputNames,
getInputVariant, getOperationID, getOperationTypeID,
getOutputBOElement, getOutputVariant, getStatusBOElement,
getTransactionContext, isFirstExecution, isReexecuted, isStateful, log,
reExecute, setOutputVariant, unsetOutput, unsetOutputBO,
unsetStatusBO, operationCompleted, requestWaitForCallback
178 � Adapter Developer’s Guide

requestWaitForCallback method

This method registers this operation for asynchronous handling. The
Adapter Designer does not add this method to an implementation for you.

Note: The start to an asynchronous call is in the execute method.

If the asynchronous call returns before requestWaitForCallback has finished,
the call to operationCompleted will result in an error. In this case, the call is
regarded as synchronous.

Declaration

public void requestWaitForCallback() throws ISException

Exceptions

Thrown if the call was not properly processed by the Adapter Server.

Example

The following example registers this operation for asynchronous handling.

context.requestWaitForCallback();

See also

operationCompleted
Using adapter API methods � 179

setOutputVariant method

This method sets the value of an output variant for an operation. The value
is a string. If there is an existing value, it is overwritten. The Adapter Designer
does not add this method to an implementation for you.

Declaration

public abstract void setOutputVariant(String output, String value)
throws ISException

Parameters

output is the name of the output argument, which is a constant generated by
the Adapter Designer based on the name you entered there. It cannot be null.

value is the string value; use null to unset.

Exceptions

Thrown if the specified output variant doesn’t exist, if the specified output is
not of type variant, or if the specified output name is null.

Example

The following example sets a variant called “transaction_id” in the private
process context to the value of tid.

context.setOutputVariant("transaction_id", tid);

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputBOElement, getInputNames,
getInputVariant, getOperationID, getOperationTypeID,
getOutputBOElement, getOutputVariant, getStatusBOElement,
getTransactionContext, isFirstExecution, isReexecuted, isStateful, log,
reExecute, requestRetry, setOutputVariant, unsetOutput, unsetOutputBO,
unsetStatusBO
180 � Adapter Developer’s Guide

unsetOutput method

This method unsets the value of a variant or business object output of an
operation. The Adapter Designer does not add this method to an
implementation for you.

Declaration

public abstract void unsetOutput(String output) throws ISException

Parameters

output is the name of the output argument, which is a constant generated by
the Adapter Designer from the name you entered there. It cannot be null.

Exceptions

Thrown if the specified output doesn’t exist, or if the specified output name
is null.

Example

This method is useful when some error condition is reached.

try {

//Call the end system and get the transaction id

String tid = middleware_handle.send(msg);

//Set the transaction id into the context variant

context.setOutputVariant("transaction_id", tid);

//Set the transaction id into the Output BO

output_bo.setData("trx_id", tid);

//Set the Status BO

status_bo.setData("result", "success");

status_bo.setData("reason", "failure");

//Try to send an ack back to the middleware system

middleware_handle.sendAck(tid);

} catch (IOException e) {

//Since the ack failed, we need to unset the variant and

//the two BOs we set in the try block above.

context.unsetOutput("transaction_id");

context.unsetOutputBO();

context.unsetStatusBO();

}

Using adapter API methods � 181

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputBOElement, getInputNames,
getInputVariant, getOperationID, getOperationTypeID,
getOutputBOElement, getOutputVariant, getStatusBOElement,
getTransactionContext, isFirstExecution, isReexecuted, isStateful, log,
reExecute, requestRetry, setOutputVariant, unsetOutputBO, unsetStatusBO
182 � Adapter Developer’s Guide

unsetOutputBO method

This method unsets the values of the output business object of a Get or Post
operation. The Adapter Designer does not add this method to an
implementation for you.

Declaration

public abstract void unsetOutputBO() throws ISException

Exceptions

Thrown if this operation is not of type Get or Post.

Example

This method is useful when some error condition is reached.

try {

//Call the end system and get the transaction id

String tid = middleware_handle.send(msg);

//Set the transaction id into the context variant

context.setOutputVariant("transaction_id", tid);

//Set the transaction id into the Output BO

output_bo.setData("trx_id", tid);

//Set the Status BO

status_bo.setData("result", "success");

status_bo.setData("reason", "failure");

//Try to send an ack back to the middleware system

middleware_handle.sendAck(tid);

} catch (IOException e) {

//Since the ack failed, we need to unset the variant and

//the two BOs we set in the try block above.

context.unsetOutput("transaction_id");

context.unsetOutputBO();

context.unsetStatusBO();

}

Using adapter API methods � 183

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputBOElement, getInputNames,
getInputVariant, getOperationID, getOperationTypeID,
getOutputBOElement, getOutputVariant, getStatusBOElement,
getTransactionContext, isFirstExecution, isReexecuted, isStateful, log,
reExecute, requestRetry, setOutputVariant, unsetOutput, unsetStatusBO
184 � Adapter Developer’s Guide

unsetStatusBO method

This method unsets the values of a status business object for a Get or Post
operation. The Adapter Designer doesn’t add this method to an
implementation for you.

Declaration

public abstract void unsetStatusBO() throws ISException

Exceptions

Thrown if this operation is not of type Get or Post.

Example

This method is useful when some error condition is reached.

try {

//Call the end system and get the transaction id

String tid = middleware_handle.send(msg);

//Set the transaction id into the context variant

context.setOutputVariant("transaction_id", tid);

//Set the transaction id into the Output BO

output_bo.setData("trx_id", tid);

//Set the Status BO

status_bo.setData("result", "success");

status_bo.setData("reason", "failure");

//Try to send an ack back to the middleware system

middleware_handle.sendAck(tid);

} catch (IOException e) {

//Since the ack failed, we need to unset the variant and

//the two BOs we set in the try block above.

context.unsetOutput("transaction_id");

context.unsetOutputBO();

context.unsetStatusBO();

}

Using adapter API methods � 185

See also

createOutputBOElement, createStatusBOElement, execute, getExecutionID,
getExecutionMode, getInput, getInputBOElement, getInputNames,
getInputVariant, getOperationID, getOperationTypeID,
getOutputBOElement, getOutputVariant, getStatusBOElement,
getTransactionContext, isFirstExecution, isReexecuted, isStateful, log,
reExecute, requestRetry, setOutputVariant, unsetOutput, unsetOutputBO
186 � Adapter Developer’s Guide

TransactionContext interface

You might need to make operations fail-safe against data corruption from
power failures and so on. In this case, you can incorporate Transaction
Processing Monitor (TP Monitor) calls into your adapter code. Use the
Adapter API methods described in this section if you want to implement
transaction processing.
Using adapter API methods � 187

begin method

This method starts a new transaction. The Adapter Designer does not add
this method to an implementation for you.

Declaration

public abstract void begin() throws ISException

Exceptions

Thrown for an error in starting a transaction, such as not being able to
connect to the TP Monitor or a network resource.

See also

commit, createTransactionContext, rollback
188 � Adapter Developer’s Guide

commit method

This method commits a transaction. The Adapter Designer does not add this
method to an implementation for you.

Declaration

public abstract void commit() throws ISException

Exceptions

Thrown for an error in committing a transaction, such as not being able to
connect to the TP Monitor or a network resource.

See also

begin, createTransactionContext, rollback
Using adapter API methods � 189

rollback method

This method rolls back a transaction. The Adapter Designer does not add this
method to an implementation for you.

Declaration

public abstract void rollback() throws ISException

Exceptions

Thrown for an error in committing a transaction, such as not being able to
connect to the TP Monitor or a network resource.

See also

begin, commit, createTransactionContext
190 � Adapter Developer’s Guide

c h a p t e r�
9

Using Business Object API

methods
Read this chapter for information on the business object API methods
that you can use in your adapter code. This chapter will give Java
programmers the information necessary to expand on the Java
implementation created by the Adapter Designer. The business object
(BO) API is in the com.extricity.document.api package.

This chapter includes these sections:

� About the Business Object API on page 192.

� BusinessObject interface on page 197.

� Element interface on page 210.

� ElementSequence interface on page 235.

� Exceptions on page 243.
Using Business Object API methods � 191

About the Business Object API

The Business Object API has two interfaces that an adapter developer will
use: Element and ElementSequence. The Element interface provides
methods for working with group and field elements, and the
ElementSequence interface provides methods that work with sequences of
elements.

Group vs. field elements

Partner Agreement Manager requires that every element consist of data only
or one or more sub-elements. That is, an element can be the root of an
element subtree, or it can contain data. An element might not directly
contain both data and sub-elements.

Elements that contain sub-elements are referred to as group elements;
elements that contain data only are referred to as field elements. This
interface includes methods for operating on both group elements and field
elements. Note that some methods are defined to work only on either a group
or a field element and will throw an exception if the element is not of the
expected type.

Note: Some methods are defined to operate over all data contained in the
Element—whether it is a field element, or a group element containing
data located in more than one subtree. Some examples are clearData() and
hasData().

Data

All data must be set using a string representation of the data unit. Likewise,
data might be retrieved only in its string form. A data type String is available
to describe the data that might be contained in a field element. Partner
Agreement Manager supports only one data type, Java.lang.String.

Copying

All methods that take an element reference as a parameter copy any data
objects contained in that parameter element (see copyIn). The source
element must be of the same element type as the receiver element, but it need
not be a member of the same business object instance.
192 � Adapter Developer’s Guide

Tag path strings

Several of the methods in this interface take a tag path string as a parameter.
This string is used to identify and operate on an element or a sequential set
of elements of the same type (an ElementSequence).

A tag path indicates a position in the element tree relative to this element. An
element identified by a tag path will either be this element itself, if the path is
null or an empty string, or a descendant element. It’s not possible to identify
a parent or ancestor element with a tag path.

For example, given some group element, the path string Header would
identify the child element of that group with tag name Header. The path
string Header/Company_Name would identify the Company_Name element
contained in the “Header” child group element.

Note: Tag paths are case-sensitive. If you want to access a child element of
type Header, you must use the path Header not header.

Because field elements cannot contain child elements, an
InvalidQueryException will always be thrown if a tag path method is called
on a field element and the path string is not null or an empty string.

An indexing notation is supported to allow access to a descendant element
that is repeatable. For example, if a group element named Purchase_Order is
defined to contain a sequence of Line_Item child elements, a path string
accessing a specific Line_Item element must use the index notation to
identify one of the Line_Item children.

line_item = po.getElement("Line_Item[0]")

This code gets the first Line_Item element that occurs in the element po. If
the index value is less than zero or greater than or equal to the number of
elements in the sequence accessed, an IndexOutOfBoundsException will be
thrown.

An ElementSequence might be retrieved by omitting the index in the last
term of a tag path string. Such a path might only be used in the
getElementSequence method. For example,

line_item_seq = po.getElementSequence("Line_Item")

This code gets an ElementSequence that contains the elements of type
Line_Item that occur within the po element.
Using Business Object API methods � 193

To address an attribute of an element, use the @ notation. For example,
foo@bar is the attribute bar of the element foo.

BusinessObject methods

The BusinessObject interface represents the entire BusinessObject. It
contains information about the type of the business object as well as access to
the root of the content tree. In addition, it provides methods for serializing
and de-serializing via an XML character stream.

Use this BusinessObject
method To do this

deepClone Create a new business object of the same type, with the
same data.

fromStream Deprecated. Use readStream instead.

fromXMLString Initialize the content of this business object from the
specified XML String

getDocument Return the W3C Document for manipulation using
the W3C DOM API.

getRootElement Get the root element of the content tree.

getTypeID Get the type identifier for this BusinessObject.

getTypeURI Deprecated. Use getTypeID instead.

readStream Initialize the content of this business object from the
specified stream.

toStream Deprecated. Use writeStream instead.

toXMLString Initialize the content of this business object from the
specified XML String

validate Validate this business object.

writeStream Write the content of this BusinessObject to a stream.
194 � Adapter Developer’s Guide

Element methods

The methods in the Element interface let you access and manipulate the
content of a business object instance. Both fields and groups are elements:
fields are elements that can contain data, and groups are elements that
contain other elements. The following is a summary of the Element interface
methods that are currently available:

Use this Element
method To do this

clearAll Deprecated. Do not use this method. Use
removeElement instead.

clearData Deprecated. Do not use this method. Use
removeElement instead.

copyIn Copy data from an element to another element of the
same business object type, either within the same
business object or between business objects. The
elements copied from and to must be of the same
element type: you can copy a group into a group, and a
field into a field, and they must have a hierarchy of
subordinate elements that is a subset of the hierarchy
being copied into. Subordinate element sequences are
copied; the element sequence length doesn’t have to be
the same between elements.

getAttr Get the value of the specified attribute for this element.

getAttrDefault Return the default value for this attribute.

getBusinessObject Get the business object that “owns” this element
instance.

getData Return a string representation of the data contained in
a field.

getElement Get a reference to the group or field identified by a tag
path string. The tag path can specify an element in a
sequence by its index number.

getElementSequence Get a reference to an element sequence. An element
sequence is a collection of consecutive “sibling”
elements of the same element type. The group or field
is specified as repeatable in the group that contains it.

getTagName Get the name of this element. This can also be thought
of as the element type name.

hasData Check whether a group or field contains data (is not
null). A zero length string is considered null.
Using Business Object API methods � 195

ElementSequence methods

The methods in the ElementSequence interface let you manipulate an
element sequence: a collection of consecutive Element objects of the same
element type. Element sequences are indexed starting at zero (0); for
example, four occurrences of an element (the sequence length is 4) will be
indexed 0, 1, 2, 3. Valid index values are zero to the length of the sequence
minus one (0 to length - 1). The following is a summary of the
ElementSequence interface methods that are currently available:

isField Check whether an element is a field or group. This
procedure is useful when you want to use code that can
manipulate different business object types, for
example.

isValid Determine the validity of an element based on the
content of the business object type.

removeAttr Remove the attribute from this element.

removeAttrs Remove all attributes from this element.

removeElement Remove this element.

setAttr Set the specified attribute for this element.

setData Set the data contained in a field element. This method
can also be used to set attribute values.

toString Return a string describing the validity and content of
an element and any elements subordinate to it that
contain data. Required subordinate elements appear in
the description string; optional subordinate elements
without any data do not appear. This helps you see
which elements must have data for this element to be
valid. You can use the println method to display the
value returned by toString.

Use this
ElementSequence
method To do this

getElementAt Get the group or field at the specified position in this element
sequence.

hasData Check whether any element in an element sequence contains
data.

Use this Element
method To do this
196 � Adapter Developer’s Guide

BusinessObject interface

The BusinessObject interface contains information about the type of the
business object as well as access to the root of the content tree. In addition, it
provides methods for serializing and deserializing via an XML character
stream.

length Return the number of elements in this element sequence. This
is useful for setting boundary values to loop through all the
elements in an element sequence.

newElement Add a new element to the end of this sequence and return the
newly created element.

newElementAt Insert a new element at the specified position in the sequence
and return a reference to the newly created element. Adds 1 to
the index of the element currently in that position (if any) and
any following elements, so they are “shifted to the right.” As
with the newElement procedure, you can use this procedure
to add to the end of the sequence.

removeAll Remove all elements in a sequence. Any data contained in any
of the elements is deleted. The length of this element sequence
becomes 0.

removeElementAt Remove an element (and its data) at the specified position in
a sequence. The indexes of elements at greater index values
are reduced by 1 (they are “shifted to the left”). The length of
the sequence is reduced by 1.

Use this
ElementSequence
method To do this
Using Business Object API methods � 197

deepClone method

Creates a new business object from this business object. The new business
object has the same type and data as the original business object. The new
business object will share no mutable information with this business object.

Declaration

BusinessObject deepClone()

Return value

BusinessObject is the new, cloned business object.
198 � Adapter Developer’s Guide

fromStream method

This method has been deprecated. Use readStream instead.
Using Business Object API methods � 199

fromXMLString method

Initializes the content of this business object from the specified XML String.

An element that has an empty value or is not represented is considered to
have a value of the empty string. Likewise, if mixed content is not present for
an element that supports mixed content, the value of that element will be set
to the empty string.

Declaration

void fromXMLString(String str) throws IOException

Parameters

str is the XML String, corresponding to an instance of this type of business
object.

Exceptions

IOException is thrown if the String is not correct XML.

See Also

writeStream, from XMLString
200 � Adapter Developer’s Guide

getDocument method

Return the W3C Document for manipulation using the W3C DOM API.

Declaration

org.w3c.dom.Document getDocument()

Return value

Document, the W3C document.
Using Business Object API methods � 201

getRootElement method

Gets the root Element of the content tree.

Declaration

Element getRootElement()

Return value

Element, the root element of the content tree.
202 � Adapter Developer’s Guide

getType ID method

Gets the type identifier for this business object.

Declaration

BOTypeID getTypeID()

Return value

BOTypeID, the type ID of this business object.
Using Business Object API methods � 203

getTypeURI method

This method has been deprecated. Use getTypeID instead.
204 � Adapter Developer’s Guide

readStream method

Initializes the content of this business object from the specified stream.

An element that has an empty value or is not represented is considered to
have a value of the empty string. Likewise, if mixed content is not present for
an element that supports mixed content, the value of that element will be set
to the empty string.

Declaration

void fromStream(Reader r) throws IOException

Parameters

r is the reader, the XML character stream corresponding to an instance of this
type of business object.

Exceptions

IOException is thrown if there is a problem reading the stream.

See Also

writeStream, fromXMLString, toXMLStream
Using Business Object API methods � 205

toStream method

This method has been deprecated. Use writeStream instead.
206 � Adapter Developer’s Guide

toXMLString method

Writes the content of this business object to a string.

The returned string contains an XML declaration and a DOCTYPE entity.
The value of the SYSTEM ID string used in the DOCTYPE might be either
the BODefID or an external ID.

Declaration

String toXMLString(boolean use_external_id)

Parameters

use_external_id indicates whether to use an external ID for the SYSTEM ID
in the DOCTYPE, if one is available. If this is true, use an external ID. If false,
don’t use one, use the BODefID instead.

Return value

Returns the business object in an XML string.

See Also

fromStream, fromXMLString, setAttr
Using Business Object API methods � 207

writeStream method

Writes the content of this business object to the specified stream. An XML
declaration and DOCTYPE is written. Unless specified, the SYSTEM ID is the
BODefID.

Declaration

void writeStream(Writer w) throws IOException

void writeStream(OutputStream o) throws IOException

void writeStream(Writer w, boolean use_external_id, String encoding) throws
IOException

void writeStream(OutputStream o, boolean use_external_id, String encoding)
throws IOException

Parameters

w is the writer, the character stream that the contents of this business object
will be written to in XML format.

o is the byte stream.

use_external_id indicates whether to use an external ID, if available for the
SYSTEM ID.

encoding will be UTF-8 if this argument is null.

Exceptions

IOException is thrown if there is a problem writing to the stream.

See Also

readStream
208 � Adapter Developer’s Guide

validate method

Validates this business object.

Declaration

String validate(Element element, boolean deep, boolean
null_and_empty_are_not_valid)

Parameters

element

deep

null_and_empty_are_not_valid indicates whether to consider null and empty
elements as valid. True indicates that they are not valid, false that they are.

Return value

String is either the first error or null if the business object is valid.
Using Business Object API methods � 209

Element interface

The element interface provides programmatic access to the content of a
business object. The logical structure of a business object's content is a tree of
elements. Every instance of a business object has exactly one element that is
the root of its element tree. Any element in a business object might be
considered an “element subtree” of the business object's content. Every
instance of an element exists within the context of a particular business
object. Each element has a tag name, which is a string.
210 � Adapter Developer’s Guide

clearAll method

This method is deprecated. Use removeElement instead.
Using Business Object API methods � 211

clearData method

This method is deprecated. Use removeElement instead.
212 � Adapter Developer’s Guide

copyIn method

This method copies an element to another element of the same business
object type, either within the same business object or between business
objects. The source and destination elements must be of the same element
type.

� You can copy a group into a group, or a field into a field.

� The elements within a group must have a hierarchy that is a subset of the
hierarchy being copied into.

Subordinate element sequences are also copied; after the copy, the element
sequence length will be the same as the sequence copied from.

Declaration

void copyIn(Element copy_element) throws ElementTypeException

void copyIn(String tag_path, Element copy_element) throws
InvalidQueryException, ElementTypeException,
IndexOutOfBoundsException

Parameters

copy_element is the element you’re copying from.

tag_path is a string indicating the location of the element or group in the
element tree.

Exceptions

ElementTypeException indicates that the element types do not match. This
exception is thrown if you try to copy to an element with a different tag name,
for example, from po_data to po_number. Or you try to copy an element
from a different business object type.

InvalidQueryException indicates that the tag path you supplied is invalid.
For example, you can get this error if you typed a wrong name. This is also
thrown if you specify an array index for a non-sequence, or if you didn’t
specify an array index for a sequence.

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length - 1 for that element sequence.
Using Business Object API methods � 213

Example

This example copies the ship_to group in the first element of the po_line
element sequence to the ship_to group of the second po_line element
sequence:

Element line1_ship_to, line2_ship_to;

line1_ship_to = po.getElement("po_line[0]/ship_to");

line2_ship_to = po.getElement("po_line[1]/ship_to");

line2_ship_to.copyIn (line1_ship_to);

See Also

ElementTypeException, InvalidQueryException,
IndexOutOfBoundsException
214 � Adapter Developer’s Guide

getAttr method

This method gets a string representation of the value contained in this
attribute.

Declaration

String getAttr(String attribute_name) throws InvalidQueryException

Parameter

attribute_name is a string indicating the name of the attribute.

Return value

String representation of the value of this attribute, or an empty string if the
value of this attribute hasn’t been set.

Exceptions

InvalidQueryException indicates that the attribute name you supplied is
invalid. For example, you can get this error if you typed a wrong name.

Example

This example returns the value of the attribute my_attribute. value holds the
returned string.

String value;

value = po.getAttr("my-attribute");

See Also

setAttr, InvalidQueryException
Using Business Object API methods � 215

getAttrDefault method

This method gets a string representation of the default value for this
attribute. If no default value is specified, return null.

Declaration

String getAttrDefault(String attribute_name) throws InvalidQueryException

Parameter

attribute_name is a string indicating the name of the attribute.

Return value

String representation of the default value for this attribute, or null if no
default value has been set.

Exceptions

InvalidQueryException indicates that the attribute name you supplied is
invalid. For example, you can get this error if you typed a wrong name.

Example

This example returns the default value of the attribute my_attribute. value
holds the returned string.

String value;

value = po.getDefaultAttr("my-attribute");

See Also

setAttr, getAttr, InvalidQueryException
216 � Adapter Developer’s Guide

getBusinessObject method

This method gets the business object that “owns” this element instance.

Important: Only use this method on the root element of the business
object’s content tree.

Declaration

BusinessObject getBusinessObject()

Return value

BusinessObject that “owns” this element instance.

Exceptions

InvalidQueryException indicates that the attribute name you supplied is
invalid. For example, you can get this error if you typed a wrong name.

Example

This example returns the value of the attribute my_attribute. value holds the
returned string.

BusinessOBject bo = po.getBusinessObject();

bo.toStream(file_writer);

See Also

setAttr, InvalidQueryException
Using Business Object API methods � 217

getData method

This method gets a string representation of the data contained in this field
element or the field element identified by the tag path string.

Declaration

public abstract String getData() throws ElementTypeException

public abstract String getData(String tag_path) throws
InvalidQueryException, ElementTypeException,
IndexOutOfBoundsException

Parameter

tag_path is a string indicating the location of the element or group in the
element tree.

Return value

String representation of the data in this field, or null if this field does not
contain data. If the tag path is valid, but the element doesn’t exist, the
element is created. If the tag path specifies an attribute and value for the
attribute is not set, the empty string is returned.

Exceptions

ElementTypeException indicates that you called this method on a group
element instead of a field element. This is also thrown if you called this
method on a group and that group does not support mixed content.

InvalidQueryException indicates that the tag path you supplied is invalid.
For example, you can get this error if you typed a wrong name. This is also
thrown if the data contains an invalid attribute. This is also thrown if you
specify an array index for a non-sequence, or if you didn’t specify an array
index for a sequence.

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length - 1 for that element sequence.
218 � Adapter Developer’s Guide

Examples

This example returns the value of the item_code field in the first po_line
group. item holds the returned string.

String item;

item = po.getElement("po_line[0]/item_code").getData();

This code does exactly the same thing.

String item;

item = po.getData("po_line[0]/item_code");

See Also

ElementTypeException, InvalidQueryException,
IndexOutOfBoundsException
Using Business Object API methods � 219

getDataType method

This method gets a string describing the type of data object that might be
contained in this field element.

Declaration

public abstract String getDataType() throws ElementTypeException

Return value

String, data type, (String, Date, Integer,...). Only the String data type is
supported.

Exceptions

ElementTypeException indicates that you called this method on a group
element. This method only works on field elements.

Example

You can use the getDataType method to wrap the language-specific
functionality, such as integer assignments in Java, from a String variable.

int ponum;

if (po.getElement("po_number").getDataType().equals("String"))
{

ponum = new Integer(po.getData("po_number")).intValue();

}

See Also

ElementTypeException
220 � Adapter Developer’s Guide

getElement method

This method gets a reference to the group or field identified by the tag path
string. The tag path can specify either a nonrepeatable element or an element
in an element sequence by using an index number. If the element doesn’t
exist, create it.

Declaration

Element getElement(String tag_path) throws InvalidQueryException,
IndexOutOfBoundsException

Parameters

tag_path is a string indicating the path to the group or field, relative to element,
which is a reference to a group or field.

Return value

Element, the element identified by the tag path.

Exceptions

InvalidQueryException indicates that the tag path you supplied is invalid.
For example, you can get this error if you typed a wrong name. This is also
thrown if you specify an array index for a non-sequence, or if you didn’t
specify an array index for a sequence.

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length - 1 for that element sequence.

Example

In this example, the ship_to group is assigned to the shipping_address
variable:

Element shipping_address;

shipping_address = po.getElement("po_line[0]/ship_to");

See Also

InvalidQueryException, IndexOutOfBoundsException
Using Business Object API methods � 221

getElementSequence method

This method gets a reference to an element sequence. An element sequence
is a collection of consecutive sibling elements of the same element type. The
group or field element identified by the tag path must be specified as
repeatable by its parent group. An index must not be used with the last
element in the tag path parameter.

If the specified element sequence does not exist, create it.

Declaration

ElementSequence getElementSequence(String tag_path) throws
InvalidQueryException, IndexOutOfBoundsException

Parameters

tag_path is a string indicating the location of the element or group in the
element tree.

Return value

ElementSequence.

Exceptions

InvalidQueryException indicates the tag path you supplied is invalid, or the
tag path doesn’t resolve to a sequence. This is also thrown if an array index is
specified for the last component of the tag path.If an array index is specified
for a parent that is not a sequence, this exception is thrown.

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length - 1 for that element sequence.

Example

This example assigns the po_line element sequence to the eseqLines variable
(Purchase_Order defines po_line as repeatable):

ElementSequence eseqLines;

eseqLines = po.getElementSequence("po_line");

See Also

ElementSequence, InvalidQueryException, IndexOutOfBoundsException
222 � Adapter Developer’s Guide

getTagName method

This method gets the tag name of this element. This can also be thought of as
the element type name.

Declaration

public abstract String getTagName()

Return value

tag name, which is a String indicating the name of this element. For example,
a PO might have elements with tag names such as po_date and po_number.

Example

This example prints Purchase_Order:

System.out.println(po.getTagName());
Using Business Object API methods � 223

hasData method

This method checks whether the element contains data.

� If the element is a field, the procedure returns true if the field contains data
(is not null).

� If the element is a group, the procedure returns true if any subordinate
field contains data.

� For an element sequence, the procedure returns true if any element in the
sequence contains data.

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length - 1 for that element sequence.

Declaration

public abstract boolean hasData()

Return value

Boolean true, if this element contains data in any field, or any attribute is not
null or " "; boolean false, if it contains no data.

Example

The following example checks if any part of the summary_info element has
been filled in.

if (po.getElement("summary_info").hasData() == false) {

System.out.println("The summary info has not been filled in
for PO " + po.getData("po_number"))

}

224 � Adapter Developer’s Guide

isField method

This method checks whether this element is a field or group. This procedure
is useful when you want to use code that can manipulate different business
object types, for example.

Declaration

public abstract boolean isField()

Return value

Boolean true if this element is a field element; boolean false if this element is
a group element.

Example

The following example supports two different business object types: one type
has ship_to as a group with an address field within it, while the other type has
ship_to as a field holding address data. The following piece of code is reusable
for both cases.

public String getShippingAddress(Element ship_to) {

if (ship_to.isField()) {

return ship_to.getData();

} else {

return ship_to.getData("address");

}

}

Using Business Object API methods � 225

isValid method

This method determines the validity of an element based on its business
object type.

� If the element you're checking is a group, isValid determines whether all
mandatory fields it contains have data; if a subordinate optional group
contains data, it also checks whether all mandatory fields in the optional
group have data. If a subordinate optional group doesn’t have data, it’s
ignored. For subordinate element sequences, each element is checked
individually for validity. For mixed content, the mixed content must not
be null or " ".

� If the element is a field, isValid checks whether it contains data or not.

� If the element is an attribute, isValid checks that it is not null or " "; if the
attribute declaration has a list of legal values and the current value is in
that list; the attribute is #FIXED and its current value is null or " " or the
default value.

isValid does not consider whether the element you called isValid on was
optional or mandatory when it determines validity. For fields, it only checks
whether the field has data or not; for groups, isValid checks the elements it
contains for validity based on whether they are optional or mandatory. It is
often useful to invoke isValid method in conjunction with the hasData
method, whenever operating on any optional element.

Note: An empty string ("") as a data value is equivalent to null. A string
containing one or more spaces (" ") is not null, and is data.

Declaration

public abstract boolean isValid()

Return value

Boolean true if this element is a field containing data or is a group whose
subordinate elements are valid (or are optional and contain no data);
boolean false if this element is a field with null data or is a group with a
mandatory subordinate field that has null data.
226 � Adapter Developer’s Guide

Example

The following example checks the validity of the top-level element of a
business object. It prints an error message if the po business object is not
valid:

if (po.isValid() == false) {

System.out.println("The Purchase_Order has unfilled
mandatory fields: " + po.toString(true));

}

See Also

hasData
Using Business Object API methods � 227

removeAttr method

This method removes the specified attribute.

Declaration

void removeAttr(String attribute_name) throws InvalidQueryException

Parameter

attribute_name is a string indicating the name of the attribute.

Exceptions

InvalidQueryException indicates that the attribute name you supplied is
invalid. For example, you can get this error if you typed a wrong name.

Example

This example removes the attribute my_attribute.

po.removeAttr("my-attribute");

See Also

getAttr, setAttr, InvalidQueryException, InvalidDataException
228 � Adapter Developer’s Guide

removeAttrs method

This method removes all attributes.

Declaration

void removeAttr()

Example

This example removes all attributes.

po.removeAttrs();

See Also

getAttr, setAttr, removeAttr
Using Business Object API methods � 229

removeElement method

This method removes the specified element. If the element doesn’t exist,
nothing is removed. If the tag_path refers to an element in a sequence, this is
equivalent to calling removeElementAt(index).

Declaration

void removeElement(String tag_path) throws InvalidQueryException,
IndexOutOfBoundsException

Parameter

tag_path is a string indicating the location of the element or group in the
element tree.

Exceptions

InvalidQueryException indicates the tag path you supplied is invalid. If an
array index is specified for a parent that is not a sequence, this exception is
thrown.

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length - 1 for that element sequence.

Example

This example removes the attribute my_attribute.

po.removeElement("my_element");

See Also

removeElementAt, InvalidQueryException, InvalidDataException
230 � Adapter Developer’s Guide

setAttr method

This method sets the value of the specified attribute. To remove the attribute,
set the attribute value to null.

Declaration

setAttr(String attribute_name, String attribute_value) throws
InvalidQueryException, InvalidDataException

Parameter

attribute_name is a string indicating the name of the attribute.

attribute_value is a string indicating the value to set for this attribute.

Exceptions

InvalidQueryException indicates that the attribute name you supplied is
invalid. For example, you can get this error if you typed a wrong name. This
is also thrown if you specify an array index for a non-sequence, or if you
didn’t specify an array index for a sequence.

InvalidDataException indicates that the attribute declaration has a list of
valid values and the value you supplied is invalid.

Example

This example returns the value of the attribute my_attribute. value holds the
returned string.

String value;

value = po.getAttr("my-attribute");

See Also

getAttr, InvalidQueryException, InvalidDataException
Using Business Object API methods � 231

setData method

This method sets the data contained in this field element or in the field
element identified by the tag path string. If the tag path is valid, but the
element doesn’t exist, the element is created. If you set the data for an
attribute to be null, this removes the attribute.

Note: An empty string ("") as a data value is equivalent to null. A string
containing one or more spaces (" ") is not null, and is data.

Declaration

public abstract void setData(String data) throws ElementTypeException

public abstract void setData(String tag_path, String data) throws
InvalidQueryException, ElementTypeException, InvalidDataException,
IndexOutOfBoundsException

Parameters

data String representation of the data to be contained in this field. A null or
empty string clears any data currently contained in this element. To specify
an attribute, use the @ notation. For example, foo@bar would be the
attribute bar of the element foo.

tag_path is a string indicating the location of the element in the element tree.

Exceptions

ElementTypeException indicates that you called this method on a group
element and the group doesn’t support mixed content.

InvalidQueryException indicates that the tag path you supplied is invalid.
For example, you can get this error if you typed a wrong name. This is also
thrown if you specify an invalid attribute. This is thrown if you called this
method on a group and that group does not support mixed content.

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length - 1 for that element sequence.

InvalidDataException indicates that you tried to set data for an attribute that
doesn’t conform to the attribute declaration list of valid values.
232 � Adapter Developer’s Guide

Examples

This example sets the po_number field to the string 24567:

po_num_el.getElement("po_number").setData ("24567");

This example does exactly the same thing:

String po_num;

po_num = "24567";

po_num_el.setData ("po_number", po_num);

See Also

ElementTypeException, InvalidQueryException,
IndexOutOfBoundsException
Using Business Object API methods � 233

toString method

This method returns a string describing the validity and content of this
element and any elements subordinate to it that contain data. Mandatory
subordinate elements always appear in the description; optional subordinate
elements without any data do not appear. This helps you see which elements
must have data for this element to be valid. You can use the println procedure
to display the value returned by toString.

Declaration

public abstract String toString(boolean include_data)

Parameters

include_data is a boolean. If it is true, toString includes field data values in the
returned string; if false, it doesn’t include the data values, which makes the
description shorter.

Return value

String describing the element.

Example

This example prints the description string, including the data values:

System.out.println(po.toString(true));

The output might look like this (note that the top-level Purchase_Order
element isn’t valid because the mandatory field po_date has no value):

<Purchase_Order valid="false">

<po_number valid="true">123</po_number>

<po_date valid="false"></po_date>

<supplier_id valid="true">99999</supplier_id>

<po_line valid="true">

<item_code valid="true">2222</item_code>

<qty valid="true">55</qty>

<expected_ship_date valid="true">9.9.99</expected_ship_date>

<summary_info valid="true">

<comments valid="true">first line item</comments>

</summary_info>

</po_line>

</Purchase_Order>
234 � Adapter Developer’s Guide

ElementSequence interface

An ElementSequence is a collection of consecutive Elements of the same
element type. An ElementSequence might contain a set of either group
elements or field elements. This interface provides a way to manage the
number of these consecutive, repeatable Elements.

Every ElementSequence is associated with a specific location in the logical
Element tree of a BO instance. The legal locations of ElementSequences are
determined by element declarations in the BO type definition. If an element
type declaration has specified that a particular child element type might
occur zero-or-more or one-or-more times in its content model, then an
ElementSequence might be used to add and remove child elements of that
type.

Note that if a sequence of elements is said to be optional, it doesn’t mean that
members of the sequence are not required to contain data. It means that the
sequence might legally be of length zero. If an Element is added to any
sequence, optional or mandatory, the Element must be valid for its parent to
be valid.
Using Business Object API methods � 235

getElementAt method

This method gets a reference to the group or field at the specified position in
an element sequence.

Declaration

public abstract Element getElementAt(int index) throws
IndexOutOfBoundsException

Parameters

index is an integer and is the index of the Element to return.

Return value

Element, the element at the specified position.

Exceptions

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length - 1 for that element sequence.

Example

This example gets the element at the position i.

int i = 0;

Element single_line;

single_line = po.getElementSequence("po_line").getElementAt(i);

See Also

getElementSequence, IndexOutOfBoundsException
236 � Adapter Developer’s Guide

hasData method

This method checks whether the element sequence contains data.

Note: An empty string ("") as a data value is equivalent to null. A string
containing one or more spaces (" ") is not null, and is data.

Declaration

public abstract boolean hasData()

Return value

Boolean true if any element in this sequence contains data; boolean false if no
element contains no data.

Example

The following example checks if there are any design_drawing elements in
the po business object.

if (po.getElementSequence("design_drawing").hasData() == false)
{

System.out.println("There’s no design drawing associated with
this PO " + po.getData("po_number"));

}

Using Business Object API methods � 237

length method

This method returns the number of elements in this element sequence. This
is useful for setting boundary values to loop through all the elements in an
element sequence.

Declaration

public abstract int length()

Return value

length returns an integer, the number of elements in the sequence.

Example

This example loops through all the po_line elements and prints the data in
each po_line in string form:

int lines, nLines, i;

ElementSequence lines;

lines = po.getElementSequence("po_lines");

nLines = lines.length();

for (i=0; nLines - 1; i++) {

System.out.println(lines.getElementAt(i).toString(true));

}

See Also

getElementSequence
238 � Adapter Developer’s Guide

newElement method

This method adds a new element to the end of this sequence and returns a
reference to the newly created element. The new length of the sequence will
be length and the index of the new element will be length - 1.

Declaration

Element newElement()

Return value

Element, the new empty element.

Example

This example creates a new po_line element at the end of the sequence and
copies into it the value of the element before it in the sequence:

lines = po.getElementSequence("po_line");

nlines = lines.length();

last_line_index = nlines - 1;

new_line = lines.newElement();

if (last_line_index >= 0) {

new_line.copyIn(lines.getElementAt(last_line_index));

}

See Also

newElementAt
Using Business Object API methods � 239

newElementAt method

This method inserts a new element at the specified position in the sequence
and returns a reference to the newly created element. Adds 1 to the index of
the element currently in that position (if any) and any following elements, so
they are shifted to the right.

Valid index values are 0 to length. If the index is length, an element is added
to the end of the sequence.

Declaration

public abstract Element newElementAt(int index) throws
IndexOutOfBoundsException

Parameters

index specifies a position in the sequence.

Return value

Element the new empty element.

Exceptions

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length - 1 for that element sequence.

Example

This example adds a new po_line element at the beginning of a sequence:

line = po.getElementSequence("po_line").newElementAt(0);

See Also

newElement
240 � Adapter Developer’s Guide

removeAll method

This method removes all elements in this sequence. Any data contained in
any of the elements is deleted. The length of this element sequence becomes
0.

Declaration

public abstract void removeAll()

Example

The following example removes all the po_line elements from the po
business object:

po.getElementSequence("po_line").removeAll;

See Also

removeElementAt
Using Business Object API methods � 241

removeElementAt method

This method removes the element at the specified position in this sequence
and its data. The indices of elements at greater index values are reduced by 1
(they are shifted to the left). After the call successfully completes, the length
of the sequence is reduced by 1.

Valid index values are 0 to length() - 1.

Declaration

public abstract void removeElementAt(int index) throws
IndexOutOfBoundsException

Parameters

index specifies an element in the sequence (remember indices start at zero
[0]).

Exceptions

IndexOutOfBoundsException indicates that, when specifying an element in
a sequence, you provided an invalid index value, such as a number greater
than length - 1 for that element sequence.

Example

The following example loops through all po_line elements and removes all
the invalid ones. Note that removeElementAt will move the remaining
elements one index down in the sequence. Perform this operation starting at
the end of the sequence so your index value is always valid.

Element line;

ElementSequence lines;

lines = po.getElementSequence("po_line");

for (i = lines.length() - 1; i >= 0; i--) {

line = lines.getElementAt(i);

if (!line.isValid()) {

lines.removeElementAt(i);

}

}

See Also

removeAll, removeElement
242 � Adapter Developer’s Guide

Exceptions

ElementTypeException

This exception is used to indicate one of two types of errors that can occur
when using Element methods:

� An element type mismatch in a call to one of the copyIn methods. copyIn
only supports copying between elements of the same type from the same
Element Definition Set.

� Use of a field Element method on a group element, or vice versa. Certain
methods are defined to only operate on field elements or group elements.
Examples are getData and setData which might only operate on field
elements.

Thrown By:

copyIn, getData, getDataType, setData

InvalidQueryException

This exception is thrown when a tag path used in an Element method is not
valid according to the element's content definition. Cases where this
exception will be thrown include:

� Using a non-empty tag path when calling a method on a field element.
Field elements never contain child elements.

� Mistyping a subordinate element's name in a tag path. Note that element
names in tag paths are case-sensitive.

� Using an index with an element in the tag path that is not repeatable.

� Failing to use an index with a repeatable element when accessing an
element or element sequence within that repeatable element.

� Failing to use an index with the last element in a tag path when calling
getElement to access a member of a sequence.

� Using an index with the last element in a tag path when calling
getElementSequence to access an element sequence.

Note that in cases where an index value in a tag path is out of bounds, an
IndexOutOfBoundsException will be thrown.
Using Business Object API methods � 243

Thrown By:

copyIn, getData, getElement, getElementSequence, setData

IndexoutOfBoundsException

This exception is thrown when an index value in a tag path is out of bounds.
Cases where this exception will be thrown include:

� Using a tag path index that is greater than length -1 of the
ElementSequence.

� Using a tag path index that is less than 0.

Thrown By:

copyIn, getData, getElement, getElementSequence, setData, getElementAt,
newElementAt, removeElementAt
244 � Adapter Developer’s Guide

c h a p t e r�
10
Adding custom code to

adapters
Read this chapter for information about adding custom code to
adapter implementations. For detailed information about the Partner
Agreement Manager Adapter API, see Using Business Object API
methods on page 191.

This chapter includes these sections:

� About adding custom code on page 246.

� Using helpers on page 246.

� Using life cycle methods on page 248.

� Using execution methods on page 249.

� Using event production methods on page 252.

� Developing adapter class libraries on page 252.

� About compiling, testing, and debugging adapters on page 253.
Adding custom code to adapters � 245

About adding custom code

When you generate code for an adapter, Partner Agreement Manager
provides stubbed code for the operations you specify. The generated code
contains “To Do” sections that identify the areas of the code that you need to
implement.

The next step is to open the generated code in a text editor or the integrated
development environment (IDE) of your choice and add the required code.
The code you add depends on the operations your adapter performs and the
interfaces it connects to.

Before you add code to a generated adapter, you might want to consider
using helpers, life cycle methods, execution methods, event production
methods, and libraries. The sections that follow describe considerations for
each area.

Tip: Generating code is a write-only operation. Changes you make in
generated code are not maintained if you generate new code. Therefore, if
you change an adapter type and generate new code, or generate new code
for an adapter implementation, any changes you have made to the
generated code are lost unless you use a different file name for the
generated code. (The Adapter Designer prompts you before overwriting
files.) To minimize the amount of cut and paste required, you should
make a practice of making calls outside of the generated code to a separate
module(s) that contain the actual business logic code. This way, once a
business logic module is debugged and ready for production, a change to
the design of the adapter type itself will not introduce new bugs to the
business logic.

Using helpers

As you develop adapter implementations, it’s a good idea to maintain
business logic for all but the most trivial adapters in a separate helper file. If
you find later that you need to revise your adapter type—to add a new
operation, for example—you will also need to generate a new
implementation, and then merge the logic contained in your old file with the
newly generated file.
246 � Adapter Developer’s Guide

You might find it more practical to put all adapter entry points in a helper file
that contains all the substantive adapter logic. This allows you to regenerate
the adapter implementation Java source code file freely and often. Then, you
copy and paste snippets of code from the helper file into five Java adapter
implementation sections: Variables, Constructors, Life cycle methods,
Execution methods, and Event Production methods.

The following are examples of method calls from the sample
InventoryAdapter into its InventoryAdapterHelper.

Declaration of the helper variable and instantiation in the constructor:

public class InventoryAdapter extends Adapter{

private InventoryAdapterHelper helper;

public InventoryAdapter() {

super();

this.helper = new InventoryAdapterHelper();

}

Life cycle method—in startup(AdapterContext context):

helper.startup(jdbc_driver, database_url, user, password,
reorder_quantity);

Execution method—in
executeGetInventoryInformation(OperationContext context)

helper.getInventoryInformation(item_number, output_bo,
status_bo);

Event Production method—in checkForEvents(EventContext context)

helper.checkForEvents(context);

Following are the corresponding method signatures in the helper class:

Life cycle method

void startup(String jdbc_driver, String database_url,
String user, String password, int reorder_quantity)

Execution method

void getInventoryInformation(String item_str,
BusinessObject output_bo,BusinessObject status_bo)
Adding custom code to adapters � 247

Event Production method

void checkForEvents(EventContext context)

The helper method signatures can look very similar to those in the generated
adapter. Helper life cycle and execution methods typically take arguments
unpacked from the AdapterContext or OperationContext, respectively. If
more convenient, they can take the entire context object. Helper event
production methods can just receive the original EventContext object.

Using life cycle methods

Life cycle methods are called when the adapter is started for the first time.
They include the startup and shutdown methods. When you generate an
adapter implementation, you can set the implementation to include stubs for
sections that override standard life cycle behavior.

Startup validation

Use the startup method to perform startup validation to check property
values at this point (if applicable or possible), before the adapter begins to
execute operations. This allows you to report configuration errors while the
user starts the adapter or Adapter Server. Startup is also the place to connect
to business applications such as databases. If the attempt to connect to the
business system fails, throw an EndSystemNotAvailableException exception.
This will be caught be the Adapter Server. If you set error handling in the
adapter instance, the Adapter Server will suspend the failed adapter and
attempt to restart it, in case the connection error was momentary. For more
on setting error handling in adapter instances, see the Partner Agreement
Manager Administrator’s Guide.

String properties

When checking string property values, remember the difference between the
null string and the empty string ("").

You might want to treat the empty string as equivalent to null, the absence of
a value. Code constructs like the following trap both cases:

if (prop != null && prop.length() != 0) {

// do something

} else {

// do something else

}

248 � Adapter Developer’s Guide

Integer properties

Be careful about optional integer properties. If left unbound in an adapter
instance, the default loadAdapterProperties method in generated Java
implementations will not attempt to set a value for the generated integer
variable.

However, the Java language's default value for uninitialized scalar integers is
zero (0). You might want to change the generated integer variable's default
value to something more appropriate—for example, something that would
not be an actual property value.

Before:

protected int optional_integer;

After:

protected int optional_integer = 17;

Because the Adapter Designer requires you to choose a default value for both
mandatory and optional boolean properties, you do not encounter this issue
with boolean properties.

Exception handling

It’s a good idea to throw an EndSystemNotAvailableException if your
adapter needs to connect with an outside system but fails to do so. This will
trigger the Adapter Server to suspend this adapter and attempt to retry it. The
Adapter Server will attempt retries until it reaches the maximum number of
recovery attempts, as set in the adapter implementation properties. See the
Partner Agreement Manager Administrator’s Guide for more information on
setting retry parameters.

Using execution methods

Execution methods are called to execute a specific operation and can be
called by several threads. You can manipulate business objects generically
using the classes in the com.extricity.document.api package. See Using
Business Object API methods on page 191 for more information.
Adding custom code to adapters � 249

Exception handling

You can handle exceptions in one of two ways: in the adapter or in the private
process logic. If you throw exceptions in the adapter, you run the risk of
aborting the process when an error occurs. If this exception is encountered,
the process aborts: you will see the exception in the audit log and stack trace.
If you’re sure you know how to handle the exception, you can catch
application exceptions and pass them back in the status business object. This
will give a process designer the opportunity to handle the error condition in
the private process. Make sure that the description for your operation clearly
states what exceptions can be reported in the status business object. If you are
not entirely sure you know how to handle an exception, let the Adapter
Server handle it.

From the private process, you can branch from different possible success,
warning, and failure outcomes. For example, different branches can notify an
individual of the error, continue processing, or abort the process using the
Termination action. For different errors, you can notify different individuals
on different error paths. For example, the private process can notify the
database administrator if the purchasing database is down, or the order
administrator if an order has not yet been approved.

The key is to give process designers the flexibility to do whatever they need to
do.

That said, you might want to throw ISException from an execution method
during the early stage of an implementation. As an adapter developer, you
will likely be in an iterative development cycle—starting many processes and
restarting the Adapter Server and adapters many times. Therefore, you might
want the process to abort at the first sign of an adapter error. As your
implementation nears the production cutover, however, errors can be
relayed back to the private process for notification of business users.

Do not catch any exceptions that you do not know how to handle. Whatever
exceptions you catch should be named.

This construct is preferable:

} catch (IOException e) {

// report IO problem in status BO

}

250 � Adapter Developer’s Guide

To this one:

} catch (Exception e) {

// report unknown problem in status BO

}

The second construct might hide some condition that should genuinely stop
process execution (for example, out of memory, disk full).

Long-running operations

The requestRetry method (defined in the OperationContext class) allows you
to programmatically specify a long-running operation. It defines how long
you want to wait before the Adapter Server asks your execution method again
for its result.

context.requestRetry(int seconds):

You can manage this flexibility through properties or operation inputs. In
deciding which approach to use, consider if a private process designer is likely
to need this type of control. The more system-oriented or low-level the
timing specification, the more likely it is that the configuration should be
managed in the adapter properties.

Here are some examples of ways you can manage the flexibility.

Options with no user input:

� appropriate constant value for requestRetry

� exponential backoff algorithm (tries again in 1 minute the first time, tries
again in 2 minutes the second time, then 4 minutes, then 8 minutes, and
so on)

Configured per adapter instance (applies across all operations):

� single property in one time unit (for example, minutes)

� several properties up to four time units; you can have a property each for
seconds, minutes, hours, and days—a property with static list of likely
time period values

Configured per operation execution:

� time specified in input BO field

� time specified in input variant
Adding custom code to adapters � 251

For example, the example Purchasing adapter contains a method that looks
to determine if it should call requestRetry based on the status of orders. If an
order has been approved, the method returns a value of true.

If, however, the order has not been approved, the value is false, and the
adapter must call requestRetry to check again for approval after the specified
period of time.

if (!this.helper.waitForPurchaseOrderApproval(po_number,
output_bo,status_bo)) {

context.requestRetry(this.wait_polling_interval);

}

Using event production methods

Event production methods are called to check for new Adapter Server events.
They can be either stateful or stateless (see the Partner Agreement Manager
Administrator’s Guide).

Exception handling

Here you should throw an ISException if you encounter an error. No events
will initiate Partner Agreement Manager processes, but this is the best way to
communicate problem conditions to the Adapter Server window. You can
also throw an EndSystemNotAvailableException if you detect a lost
connection during a checkForEvents.

You might also define an event that gets returned to Partner Agreement
Manager after catching an exception. Then a process can be run to send the
exception message to an administrator.

Developing adapter class libraries

A class library provides Java methods for a business system, a technical
interface, or an industry standard protocol. Class libraries can have static
methods—methods that don’t need to be called on a Java object instance—
and can have no state.
252 � Adapter Developer’s Guide

About compiling, testing, and debugging adapters

Following are some tips for testing adapters and implementing exception
handling for easier troubleshooting.

Testing adapters

Because the Java class files are unloaded when an adapter is stopped,
recompilation changes take effect when the adapter is restarted, rather than
requiring you to restart the Adapter Server.

Some issues to bear in mind when testing adapters are:

� main method: Your adapters, adapter helpers, and library classes should
have a main method for testing from the command prompt. Almost every
class can perform useful sanity checks in the main method. If your adapter
doesn't work by itself, it most likely won't work in a process. (See
JDBCLibrary.java and InventoryAdapterHelper.java for examples.)

� Use your adapter in a single-node public process with a simple private
process for unit testing. You should catch as many errors as possible before
integration testing with your partners.

� If you use the Jikes compiler, add the command line argument -g when
testing to embed line numbers in the class file.

� If you use the Microsoft JVC compiler, add the command-line arguments
/g or /g:l when testing to embed line numbers in the class file.

Implementing exception handling

When you throw an ISException to wrap an underlying exception, use the
ISException constructors that allow you to pass in the nested exception:

public ISException(Throwable e)

public ISException(String message, Throwable e)

Seeing the nested exception will make it easier for troubleshooters to find and
fix the source of the problem.

If you encounter a run-time exception and still need to perform some
cleanup operations, catch any cascading exception so you can yield the earlier
exception. The earlier exception will generally be more closely related to the
problem. See the Inventory Example Helper and JDBC Library for an
example.
Adding custom code to adapters � 253

254 � Adapter Developer’s Guide

appendix�
A

Java implementation

example
Read this appendix for a full description of the sample Inventory
adapter that is included in the Adapter Development Environment.

This appendix includes these sections:

� About the Java implementation example on page 256.

� The Example Inventory Adapter type on page 256.

� Generated adapter implementation on page 258.

� Testing inventory adapter implementation on page 264.

� Inventory adapter implementation on page 273.
Java implementation example � 255

About the Java implementation example

This section presents a sample Inventory database adapter type for the Java
implementation, including the full source code. There are three
implementations of the inventory database as follows:

� Generated Inventory Adapter — the generated implementation “works,”
but doesn’t do much. It’s a minimal, stub implementation.

� Testing Inventory Adapter — the testing implementation illustrates a very
simple in-memory database that does not require an actual JDBC
connection.

� Inventory Adapter — the “real” implementation uses a JDBC connection
and illustrates a functional adapter. It also illustrates the use of a helper
class that isolates the JDBC code from the Adapter Designer code.

Note: The source code for this example is on the Partner Agreement
Manager CD and is installed in your partner directory:
<partner root>\com\extricity\adapters\Example\inv or \jdbc or \purch

The Example Inventory Adapter type

This example Partner Agreement Manager adapter for a simple inventory
system demonstrates Get and Post operations, as well as event polling. This
adapter needs to be accompanied by the Example_Inventory_Item.1 BO.
This adapter also makes use of the Operation_Status.1 BO.

Note: Before running any operations, be sure to set up your simple
Inventory system by running the accompanying SQL schema script to
create the Inventory database table(s).

Properties jdbc_driver (Java class name of the database driver)
database_url (database URL of the form jdbc:subprotocol:subname)
user (database user name)
password (database user’s password)

reorder_quantity (on-hand quantity below which items need to be
reordered)
256 � Adapter Developer’s Guide

GET: Get inventory information
Description: Retrieves information about an item from the
Inventory database and stores it into the output
Example_Inventory_Item.1 BO.

Returns Operation_Status.result of “success” if item is found and
information is successfully queried.
Returns Operation_Status.result of “failure” if item_number input
field is not an integer. Also returns “failure” if a database error
occurs. Also returns “failure” if no item with the given number exists
in the database.

Input: item_number — The queried item number variant
Output: Extricity.3.Example_Inventory_Item.1 BO
Status: Extricity.3.Operation_Status.1 BO

POST: Create inventory item
Description: Creates a new item in the Inventory database with the
data in the input Example_Inventory_Item.1 Business Object.
Returns Operation_Status.result of “success” if item is successfully
created.

Returns Operation_Status.result of “failure” if item_number or
quantity_on_hand input BO fields are not integers. Also returns
“failure” if a database error occurs. Also returns “failure” if an item
with the given item_number already exists in the database.
Input: Extricity.3.Example_Inventory_Item.1 BO
Status: Extricity.3.Operation_Status.1 BO

Operations POST: Update item quantity
Description: Updates Inventory database with a new on-hand
quantity using the data in the input Example_Inventory_Item.1 BO.
Ignores the description and warehouse_id BO fields.
Returns Operation_Status.result of “success” if item quantity is
successfully updated.
Returns Operation_Status.result of “failure” if item_number or
quantity_on_hand input BO fields are not integers. Also returns
“failure” if a database error occurs. Also returns “failure” if no item
with the given number exists in the database.
Input: Extricity.3.Example_Inventory_Item.1 BO

Status: Extricity.3.Operation_Status.1 BO

Events EVENT: Example inventory item below reorder quantity
This event indicates that inventory levels have fallen below the
reorder level.
Java implementation example � 257

Generated adapter implementation

The Generated Inventory Adapter Java Implementation is the Java source
code file exactly as it was generated from the Adapter Designer, except for the
initial copyright header and the FileVersion constant.

This is a compilable, functioning adapter, but only in the barest sense. It will
start up and shut down properly. It will also poll for events, though no events
will ever be returned. However, the Get operations will not work properly
and return an invalid output BO because mandatory fields in the
Example_Inventory_Item.1 Business Object will not be set. Moreover, both
Get and Post operations will return an invalid status BO because the
mandatory “result” field of the Operation_Status.1 Business Object will not
be set. Properties will be ignored.

//--
// Source code auto-generated by:
//
// Adapter Designer
//
// Generated on: Sat Mar 04 17:19:34 PST 2001
//--

package com.extricity.adapters.example.inv;

import com.extricity.adapter.api.*;
import com.extricity.document.api.*;

/*
* The Generated Inventory Adapter Java Implementation
*
* This is the Java source code file exactly as it was generated from the
* Adapter Designer except for the initial copyright header, this comment,
* and the FileVersion constant.
*
* This is a compilable, functioning adapter, but only in the barest sense.
* It will start up and shut down properly. It will also poll for events,
* though no events will ever be returned. However, the Get operations will
* not work properly and return an invalid output BO because mandatory fields
* in the Example_Inventory_Item.1 Business Object will not be set.
* Moreover, both Get and Post operations will return an invalid status BO
* because the mandatory "result" field of the Operation_Status.1 Business
* Object will not be set. Properties will be ignored.
*/
/**
* This is an example Partner Agreement Manager adapter for a simple Inventory system.

It demonstrates Get and Post operations as well as event polling.
*
* This adapter should be accompanied by the Example_Inventory_Item.1 BO.
* This adapter also makes use of the Operation_Status.1 BO. Before running
* any operations, be sure to set up your simple Inventory system by running
* the accompanying SQL schema script to create the Inventory database
* table(s).
*
*

258 � Adapter Developer’s Guide

public class GeneratedInventoryAdapter extends Adapter
{

static final String FileVersion = "$Revision: 5 $";

//---
// Constants - Protected - Internal
//---

protected static final String UNKNOWN_OPERATION_TYPE_ID =
"Trying to execute an Adapter operation with an unknown operation type";

protected static final String UNKNOWN_OPERATION_ID =
"Trying to execute an unknown Adapter operation";

//---
// Constants - Protected - Adapter Properties
//---

protected static final String PROP_REORDER_QUANTITY = "reorder_quantity";
protected static final String PROP_JDBC_DRIVER = "jdbc_driver";
protected static final String PROP_PASSWORD = "password";
protected static final String PROP_DATABASE_URL = "database_url";
protected static final String PROP_USER = "user";

//---
// Constants - Protected - Adapter Events
//---

protected static final String EVENT_EXAMPLE_INVENTORY_ITEM_BELOW_REORDER_QUANTITY =
"Example inventory item below reorder quantity";

//---
// Constants - Private - Post Operations
//---

// "Create inventory item" constants
protected static final String CREATE_INVENTORY_ITEM = "Create inventory item";

// "Update item quantity" constants
protected static final String UPDATE_ITEM_QUANTITY = "Update item quantity";

//---
// Constants - Private - Get Operations
//---

// "Get inventory information" constants
protected static final String GET_INVENTORY_INFORMATION = "Get inventory
information";

protected static final String GET_INVENTORY_INFORMATION_INPUT_ITEM_NUMBER =
"item_number";

//---
// Variables - Protected - Adapter Properties
//---

/**
* The on hand quantity below which items should be reordered.
*/
protected int reorder_quantity;

/**
* The Java class name of the database driver.
*/
Java implementation example � 259

protected String jdbc_driver;

/**
* The user's password.
*/
protected String password;

/**
* A database URL of the form jdbc:subprotocol:subname .
*/
protected String database_url;

/**
* The database user on whose behalf the Connection is being made.
*/
protected String user;

//---
// Constructors
//---

/**
* Default constructor.
*/
public GeneratedInventoryAdapter() {

super();
}

//---
// Methods - Lifecycle
//---

/**
* Called when the adapter is started for the first time.
*
* @param context Holds Adapter specific properties, may be empty.
*
* @exception ISException Thrown if there is a problem starting the
* Adapter.
*/
public void startup(AdapterContext context)

throws ISException {

// load the properties from the adapter
loadAdapterProperties(context);

// add startup code here
}

/**
* Called when the adapter is stopped. Allows the adapter to perform any
* necessary cleanup work.
*
* @param context Holds Adapter specific properties, may be empty.
*
* @exception ISException Thrown if there is a problem starting the
* Adapter.
*/
public void shutdown(AdapterContext context)

throws ISException {

// add shutdown code here
}

260 � Adapter Developer’s Guide

//---
// Methods - Execution
//---

/**
* Called to execute a specific operation. This method must be overridden
* by all Adapter subclasses.
*
* This method can be called by multiple threads.
*
* If the adapter subclass supports transactions, the transaction will be
* either commited after this method returns or rolled back if an exception
* is thrown. If the Adapter subclass does not support transactions, it
* must either commit or rollback all stateful actions performed during
* execution of this method.
*
* @param context Runtime context for the operation. Container for
* operation inputs and outputs (output values must be added by the Adapter
* subclass implementation).
*
* @exception ISException Thrown if there is an error during execution.
*/
public void execute(OperationContext context)

throws ISException {
int operation_type_id;
String operation_id;

operation_type_id = context.getOperationTypeID();
operation_id = context.getOperationID();

switch (operation_type_id) {
case OperationContext.GET:

if (operation_id.equals(GET_INVENTORY_INFORMATION)) {
executeGetInventoryInformation(context);

} else {
throw new ISException(UNKNOWN_OPERATION_ID + ": " + operation_id);

}
break;

case OperationContext.POST:
if (operation_id.equals(CREATE_INVENTORY_ITEM)) {

executeCreateInventoryItem(context);
} else if (operation_id.equals(UPDATE_ITEM_QUANTITY)) {

executeUpdateItemQuantity(context);
} else {

throw new ISException(UNKNOWN_OPERATION_ID + ": " + operation_id);
}
break;

case OperationContext.ADVANCED:
break;

default:
throw new ISException(UNKNOWN_OPERATION_TYPE_ID + ": " + operation_type_id);

}
}

/**
* Retrieves information about an item from the Inventory database and
* stores it into the output Example_Inventory_Item.1 BO.
*
* Returns Operation_Status.result of "success" if item is found and
* information is successfully queried.
*
* Returns Operation_Status.result of "failure" if item_number input field
Java implementation example � 261

* is not an integer. Also returns "failure" if a database error occurs.
* Also returns "failure" if no item with the given number exists in the
* database.
*/
protected void executeGetInventoryInformation(OperationContext context)

throws ISException {
String item_number;
Element status_bo;
Element output_bo;

// load the inputs from the OperationContext
item_number =

context.getInputVariant(GET_INVENTORY_INFORMATION_INPUT_ITEM_NUMBER);

// create the output Business Objects
output_bo = context.createOutputBOElement();
status_bo = context.createStatusBOElement();

// add execute code here
}

/**
* Updates Inventory database with a new on-hand quantity using the data in
* the input Example_Inventory_Item.1 Business Object. Ignores the
* description and warehouse_id BO fields.
*
* Returns Operation_Status.result of "success" if item quantity is
* successfully updated.
*
* Returns Operation_Status.result of "failure" if item_number or
* quantity_on_hand input BO fields are not integers. Also returns
* "failure" if a database error occurs. Also returns "failure" if no item
* with the given number exists in the database.
*/
protected void executeUpdateItemQuantity(OperationContext context)

throws ISException {
Element input_bo;
Element status_bo;

// load the inputs from the OperationContext
input_bo = context.getInputBOElement();

// create the output Business Objects
status_bo = context.createStatusBOElement();

// add execute code here
}

/**
* Creates a new item in the Inventory database with the data in the input
* Example_Inventory_Item.1 Business Object.
*
* Returns Operation_Status.result of "success" if item is successfully
* created.
*
* Returns Operation_Status.result of "failure" if item_number or
* quantity_on_hand input BO fields are not integers. Also returns
* "failure" if a database error occurs. Also returns "failure" if an item
* with the given item_number already exists in the database.
*/
protected void executeCreateInventoryItem(OperationContext context)

throws ISException {
Element input_bo;
Element status_bo;
262 � Adapter Developer’s Guide

// load the inputs from the OperationContext
input_bo = context.getInputBOElement();

// create the output Business Objects
status_bo = context.createStatusBOElement();

// add execute code here
}

//---
// Methods - Runtime - Event Production
//---

/**
* Called to check for new IS events. Produced events must be added to the
* EventContext.
*
* @param context Context for the check call, functions as container for
* produced events.
*
* @exception ISException Thrown if there is an error checking for the
* event.
*/
public final void checkForEvents(EventContext context)

throws ISException {

// add event production code here
}

//---
// Methods - Private
//---

/**
* Loads values for declared properties from the AdapterContext.
*/
private void loadAdapterProperties(AdapterContext context)

throws ISException {

if (context == null) {
return;

}

jdbc_driver = context.getPropertyAsString(PROP_JDBC_DRIVER);
password = context.getPropertyAsString(PROP_PASSWORD);
database_url = context.getPropertyAsString(PROP_DATABASE_URL);
user = context.getPropertyAsString(PROP_USER);

if (context.isPropertyBound(PROP_REORDER_QUANTITY)) {
reorder_quantity = context.getPropertyAsInt(PROP_REORDER_QUANTITY);

}
}

}

Java implementation example � 263

Testing inventory adapter implementation

This section describes the Testing Inventory Adapter Java Implementation.
This adapter implementation is useful for testing the interface of the example
Inventory Adapter Type in Partner Agreement Manager private processes
without having a real database connection.

It actually implements an in-memory inventory database of a single item.
Later you can see how this stubbed implementation is quite similar to the real
JDBC implementation in the InventoryAdapter and
InventoryAdapterHelper classes.

Here is how the simulated behavior differs from the real implementation:

� Because the item is stored only in memory, the single item will not persist
if you shut down the Adapter Server, unlike the real JDBC
implementation.

� All properties except for the reorder_quantity (in other words, the JDBC
properties) will be ignored.

This item Does this

startup Only caches reorder quantity property; does not open
any database connection.

shutdown Nothing; does not close any database connection.

Get inventory information
(Get)

Gets the information if the input item number
matches the only item in memory.

Create inventory item
(Post)

Creates the item if it does not exist in the database (in
other words, if the new item number is different than
the single existing number); replaces the old item in
memory.

Update item quantity
(Post)

Updates the item quantity only if the item number
matches the only item in the database.

Events Sees if the single item is below reorder quantity, but
can generate the one event per checkForEvents call.
264 � Adapter Developer’s Guide

Note: The modifications from the generated Java implementation appear in
bold. You can also look for comments in this form:

// XXX added for TestingInventoryAdapter
//--
// Source code auto-generated by:
//
// Adapter Designer
//
// Generated on: Sat Mar 04 17:19:40 PST 2001
//--

package com.extricity.adapters.example.inv;

import com.extricity.adapter.api.*;

import com.extricity.document.api.*;

/*
* The Testing Inventory Adapter Java Implementation.
*
* This adapter implementation is useful for testing the interface of the
* Example Inventory Adapter Type in Partner Agreement Manager private processes
* without having a real database connection.
*
* It actually implements an in-memory inventory database of a single item.
* Later you can see how this stubbed implementation is quite similar to
* the real JDBC implementation in the InventoryAdapter and
* InventoryAdapterHelper classes.
*
* Here is how the simulated behavior will differ from the real
* implementation:
*
* startup: only caches reorder quantity property; does not open any database
* connection
*
* shutdown: does nothing; does not close any database connection
*
* Get inventory information (Get): gets the info if the input item number
* matches the only item in memory
*
* Create inventory item (Post): creates the item if it does not exist
* in the database (in other words, if the new item number is different
* than single existing number); replaces the old item in memory
*
* Update item quantity (Post): updates the item quantity only if the item
* number matches the only item in the database
*
* Events: only sees if the single item is below reorder quantity, but
* can generate the one event per checkForEvents() call
*
* Because the item is stored only in memory, the single item will not be
* persisted if you shut down the Adapter Server, unlike the real JDBC
* implementation.
*
* All properties except for the reorder_quantity (in other words, the JDBC
* properties) will be ignored.
*
* To see modifications from the generated Java implmentation, look for
* comments of the form:
*
* // XXX added for TestingInventoryAdapter
*/
/**
Java implementation example � 265

* This is an example Partner Agreement Manager Adapter for a simple Inventory system.
It

* demonstrates Get and Post operations as well as event polling.
*
* This adapter should be accompanied by the Example_Inventory_Item.1 BO.
* This adapter also makes use of the Operation_Status.1 BO. Before running
* any operations, be sure to set up your simple Inventory system by running
* the accompanying SQL schema script to create the Inventory database
* table(s).
*
*/
public class TestingInventoryAdapter extends Adapter
{

static final String FileVersion = "$Revision: 9 $";

//---
// Constants - Protected - Internal
//---

protected static final String UNKNOWN_OPERATION_TYPE_ID =
"Trying to execute an Adapter operation with an unknown operation type";

protected static final String UNKNOWN_OPERATION_ID =
"Trying to execute an unknown Adapter operation";

//---
// Constants - Protected - Adapter Properties
//---

protected static final String PROP_REORDER_QUANTITY = "reorder_quantity";
protected static final String PROP_JDBC_DRIVER = "jdbc_driver";
protected static final String PROP_PASSWORD = "password";
protected static final String PROP_DATABASE_URL = "database_url";
protected static final String PROP_USER = "user";

//---
// Constants - Protected - Adapter Events
//---

protected static final String EVENT_EXAMPLE_INVENTORY_ITEM_BELOW_REORDER_QUANTITY =
"Example inventory item below reorder quantity";

//---
// Constants - Private - Post Operations
//---

// "Create inventory item" constants
protected static final String CREATE_INVENTORY_ITEM = "Create inventory item";

// "Update item quantity" constants
protected static final String UPDATE_ITEM_QUANTITY = "Update item quantity";

//---
// Constants - Private - Get Operations
//---

// "Get inventory information" constants
protected static final String GET_INVENTORY_INFORMATION = "Get inventory
information";

protected static final String GET_INVENTORY_INFORMATION_INPUT_ITEM_NUMBER =
"item_number";
266 � Adapter Developer’s Guide

//---
// Variables - Protected - Adapter Properties
//---

/**
* The on hand quantity below which items should be reordered.
*/
protected int reorder_quantity;

/**
* The Java class name of the database driver.
*/
protected String jdbc_driver;

/**
* The user's password.
*/
protected String password;

/**
* A database URL of the form jdbc:subprotocol:subname .
*/
protected String database_url;

/**
* The database user on whose behalf the Connection is being made.
*/
protected String user;

// XXX added for TestingInventoryAdapter
/**
* These four fields represent the simulated inventory database of a
* single item. They are named after the fields of the
* Example_Inventory_Item.1 Business Object.
*/
private int item_number = Integer.MIN_VALUE;
// the item number value before any item has been created
private String description;
private int quantity_on_hand;
private String warehouse_id;

//---
// Constructors
//---

/**
* Default constructor.
*/
public TestingInventoryAdapter() {

super();
}

//---
// Methods - Lifecycle
//---

/**
* Called when the adapter is started for the first time.
*
* @param context Holds Adapter specific properties, may be empty.
*
* @exception ISException Thrown if there is a problem starting the
* Adapter.
*/
public void startup(AdapterContext context)
Java implementation example � 267

throws ISException {

// load the properties from the adapter
loadAdapterProperties(context);

// add startup code here
}

/**
* Called when the adapter is stopped. Allows the adapter to perform any
* necessary cleanup work.
*
* @param context Holds Adapter specific properties, may be empty.
*
* @exception ISException Thrown if there is a problem starting the
* Adapter.
*/
public void shutdown(AdapterContext context)

throws ISException {

// add shutdown code here
}

//---
// Methods - Execution
//---

/**
* Called to execute a specific operation. This method must be overridden
* by all Adapter subclasses.
*
* This method can be called by multiple threads.
*
* If the adapter subclass supports transactions, the transaction will be
* either commited after this method returns or rolled back if an exception
* is thrown. If the Adapter subclass does not support transactions, it
* must either commit or rollback all stateful actions performed during
* execution of this method.
*
* @param context Runtime context for the operation. Container for
* operation inputs and outputs (output values must be added by the Adapter
* subclass implementation).
*
* @exception ISException Thrown if there is an error during execution.
*/
public void execute(OperationContext context)

throws ISException {
int operation_type_id;
String operation_id;

operation_type_id = context.getOperationTypeID();
operation_id = context.getOperationID();

switch (operation_type_id) {
case OperationContext.GET:

if (operation_id.equals(GET_INVENTORY_INFORMATION)) {
executeGetInventoryInformation(context);

} else {
throw new ISException(UNKNOWN_OPERATION_ID + ": " + operation_id);

}
break;

case OperationContext.POST:
if (operation_id.equals(CREATE_INVENTORY_ITEM)) {

executeCreateInventoryItem(context);
268 � Adapter Developer’s Guide

} else if (operation_id.equals(UPDATE_ITEM_QUANTITY)) {
executeUpdateItemQuantity(context);

} else {
throw new ISException(UNKNOWN_OPERATION_ID + ": " + operation_id);

}
break;

case OperationContext.ADVANCED:
break;

default:
throw new ISException(UNKNOWN_OPERATION_TYPE_ID + ": " + operation_type_id);

}
}

/**
* Retrieves information about an item from the Inventory database and
* stores it into the output Example_Inventory_Item.1 BO.
*
* Returns Operation_Status.result of "success" if item is found and
* information is successfully queried.
*
* Returns Operation_Status.result of "failure" if item_number input field
* is not an integer. Also returns "failure" if a database error occurs.
* Also returns "failure" if no item with the given number exists in the
* database.
*/
protected void executeGetInventoryInformation(OperationContext context)

throws ISException {
String item_number;
Element status_bo;
Element output_bo;
int item; // XXX added for TestingInventoryAdapter

// load the inputs from the OperationContext
item_number =

context.getInputVariant(GET_INVENTORY_INFORMATION_INPUT_ITEM_NUMBER);

// create the output Business Objects
output_bo = context.createOutputBOElement();
status_bo = context.createStatusBOElement();

// add execute code here

// XXX added for TestingInventoryAdapter - begin

// validate input field(s)
try {

item = Integer.parseInt(item_number);
} catch (NumberFormatException e) {

status_bo.setData("result", "failure");
status_bo.setData("reason", "Error: item_number input field"

+ " is not an integer: " + item_number);
return;

}

// call simulated inventory database
if (item != this.item_number) {

status_bo.setData("result", "failure");
status_bo.setData("reason", "Error: Item " + item_number

+ " does not exist in the database.");
return;

}

// set output BO field(s)
output_bo.setData("item_number",
Java implementation example � 269

Integer.toString(this.item_number));
output_bo.setData("description", this.description);
output_bo.setData("quantity_on_hand",

Integer.toString(this.quantity_on_hand));
output_bo.setData("warehouse_id", this.warehouse_id);

// set status BO field(s)
status_bo.setData("result", "success");

// XXX added for TestingInventoryAdapter - end
}

/**
* Updates Inventory database with a new on-hand quantity using the data in
* the input Example_Inventory_Item.1 Business Object. Ignores the
* description and warehouse_id BO fields.
*
* Returns Operation_Status.result of "success" if item quantity is
* successfully updated.
*
* Returns Operation_Status.result of "failure" if item_number or
* quantity_on_hand input BO fields are not integers. Also returns
* "failure" if a database error occurs. Also returns "failure" if no item
* with the given number exists in the database.
*/
protected void executeUpdateItemQuantity(OperationContext context)

throws ISException {
Element input_bo;
Element status_bo;
String item_str, quan_str; // XXX added for TestingInventoryAdapter
int item, quan; // XXX added for TestingInventoryAdapter

// load the inputs from the OperationContext
input_bo = context.getInputBOElement();

// create the output Business Objects
status_bo = context.createStatusBOElement();

// add execute code here

// XXX added for TestingInventoryAdapter - begin

// read input BO field(s)
item_str = input_bo.getData("item_number");
quan_str = input_bo.getData("quantity_on_hand");

// validate input BO field(s)
try {

item = Integer.parseInt(item_str);
} catch (NumberFormatException e) {

status_bo.setData("result", "failure");
status_bo.setData("reason", "Error: item_number input BO field"

+ " is not a integer: " + item_str);
return;

}
try {

quan = Integer.parseInt(quan_str);
} catch (NumberFormatException e) {

status_bo.setData("result", "failure");
status_bo.setData("reason", "Error: quantity_on_hand input BO"

+ " field is not an integer: "
+ quan_str);

return;
}

// call simulated inventory database
270 � Adapter Developer’s Guide

if (item != this.item_number) {
status_bo.setData("result", "failure");
status_bo.setData("reason", "Error: Item " + item_str

+ " does not exist in the database.");
return;

}
this.quantity_on_hand = quan;

// set status BO field(s)
status_bo.setData("result", "success");

// XXX added for TestingInventoryAdapter - end
}

/**
* Creates a new item in the Inventory database with the data in the input
* Example_Inventory_Item.1 Business Object.
*
* Returns Operation_Status.result of "success" if item is successfully
* created.
*
* Returns Operation_Status.result of "failure" if item_number or
* quantity_on_hand input BO fields are not integers. Also returns
* "failure" if a database error occurs. Also returns "failure" if an item
* with the given item_number already exists in the database.
*/
protected void executeCreateInventoryItem(OperationContext context)

throws ISException {
Element input_bo;
Element status_bo;
String item_str, quan_str; // XXX added for TestingInventoryAdapter
String desc, ware; // XXX added for TestingInventoryAdapter
int item, quan; // XXX added for TestingInventoryAdapter

// load the inputs from the OperationContext
input_bo = context.getInputBOElement();

// create the output Business Objects
status_bo = context.createStatusBOElement();

// add execute code here

// XXX added for TestingInventoryAdapter - begin

// read input BO field(s)
item_str = input_bo.getData("item_number");
desc = input_bo.getData("description");
quan_str = input_bo.getData("quantity_on_hand");
ware = input_bo.getData("warehouse_id");

// validate input BO field(s)
try {

item = Integer.parseInt(item_str);
} catch (NumberFormatException e) {

status_bo.setData("result", "failure");
status_bo.setData("reason", "Error: item_number input BO field"

+ " is not a integer: " + item_str);
return;

}
try {

quan = Integer.parseInt(quan_str);
} catch (NumberFormatException e) {

status_bo.setData("result", "failure");
status_bo.setData("reason", "Error: quantity_on_hand input BO"

+ " field is not an integer: "
+ quan_str);
Java implementation example � 271

return;
}

// call simulated inventory database
if (item == this.item_number) {

status_bo.setData("result", "failure");
status_bo.setData("reason", "Error: Item " + item_str

+ " already exists in the database.");
return;

}
this.item_number = item;
this.description = desc;
this.quantity_on_hand = quan;
this.warehouse_id = ware;

// set status BO field(s)
status_bo.setData("result", "success");

// XXX added for TestingInventoryAdapter - end
}

//---
// Methods - Runtime - Event Production
//---

/**
* Called to check for new IS events. Produced events must be added to the
* EventContext.
*
* @param context Context for the check call, functions as container for
* produced events.
*
* @exception ISException Thrown if there is an error checking for the
* event.
*/
public final void checkForEvents(EventContext context)

throws ISException {

// add event production code here

// XXX added for TestingInventoryAdapter - begin

// trap for case when no item has been created yet
if (this.item_number != Integer.MIN_VALUE

&& this.quantity_on_hand < this.reorder_quantity) {
context.addVariantEvent(

EVENT_EXAMPLE_INVENTORY_ITEM_BELOW_REORDER_QUANTITY,
Integer.toString(this.item_number),
null);

}

// XXX added for TestingInventoryAdapter - end
}

//---
// Methods - Private
//---

/**
* Loads values for declared properties from the AdapterContext.
*/
private void loadAdapterProperties(AdapterContext context)

throws ISException {

if (context == null) {
272 � Adapter Developer’s Guide

return;
}

jdbc_driver = context.getPropertyAsString(PROP_JDBC_DRIVER);
password = context.getPropertyAsString(PROP_PASSWORD);
database_url = context.getPropertyAsString(PROP_DATABASE_URL);
user = context.getPropertyAsString(PROP_USER);

if (context.isPropertyBound(PROP_REORDER_QUANTITY)) {
reorder_quantity = context.getPropertyAsInt(PROP_REORDER_QUANTITY);

}
}

}

Inventory adapter implementation

This is the real Inventory Adapter Java Implementation adapter, which
connects through JDBC to an SQL database. It requires the
InventoryAdapterHelper class which, in turn, requires the JDBC Library
from the com.extricity.adapters.example.jdbc Java package.

All of the substantive Inventory database logic is performed by the
InventoryAdapterHelper class. Therefore, most of the modifications in this
file are single-line calls to methods in the helper class.

Note: The modifications from the generated Java implementation appear in
bold. You can also look for comments in this form:

// XXX added for InventoryAdapter

//--
// Source code auto-generated by:
//
// Adapter Designer
//
// Generated on: Sat Mar 04 17:19:46 PST 2000
//--

package com.extricity.adapters.example.inv;

import com.extricity.adapter.api.*;

import com.extricity.document.api.*;

/*
* The [Real] Inventory Adapter Java Implementation
*
* This is the real adapter which connects through JDBC to a database.
* It requires the InventoryAdapterHelper class which, in turn, requires the
* JDBC Library from the com.extricity.adapters.example.jdbc Java package.
*
* All of the substantive Inventory database logic is performed by the
* InventoryAdapterHelper class. Therefore, most of the modifications in
* this file are single-line calls to methods in the helper class.
*

Java implementation example � 273

* To see modifications from the generated Java implmentation, look for
* comments of the form:
*
* // XXX added for InventoryAdapter
*/
/**
* This is an example Partner Agreement Manager adapter for a simple inventory system.

It demonstrates Get and Post operations as well as event polling.
*
* This adapter must be accompanied by the Example_Inventory_Item.1 BO.
* This adapter also makes use of the Operation_Status.1 BO. Before running
* any operations, be sure to set up your simple Inventory system by running
* the accompanying SQL schema script to create the Inventory database
* table(s).
*
*/
public class InventoryAdapter extends Adapter
{

static final String FileVersion = "$Revision: 6 $";

//---
// Constants - Protected - Internal
//---

protected static final String UNKNOWN_OPERATION_TYPE_ID =
"Trying to execute an Adapter operation with an unknown operation type";

protected static final String UNKNOWN_OPERATION_ID =
"Trying to execute an unknown Adapter operation";

//---
// Constants - Protected - Adapter Properties
//---

protected static final String PROP_REORDER_QUANTITY = "reorder_quantity";
protected static final String PROP_JDBC_DRIVER = "jdbc_driver";
protected static final String PROP_PASSWORD = "password";
protected static final String PROP_DATABASE_URL = "database_url";
protected static final String PROP_USER = "user";

//---
// Constants - Protected - Adapter Events
//---

protected static final String EVENT_EXAMPLE_INVENTORY_ITEM_BELOW_REORDER_QUANTITY =
"Example inventory item below reorder quantity";

//---
// Constants - Private - Post Operations
//---

// "Create inventory item" constants
protected static final String CREATE_INVENTORY_ITEM = "Create inventory item";

// "Update item quantity" constants
protected static final String UPDATE_ITEM_QUANTITY = "Update item quantity";

//---
// Constants - Private - Get Operations
//---

// "Get inventory information" constants
protected static final String GET_INVENTORY_INFORMATION = "Get inventory
information";
274 � Adapter Developer’s Guide

protected static final String GET_INVENTORY_INFORMATION_INPUT_ITEM_NUMBER =
"item_number";

//---
// Variables - Protected - Adapter Properties
//---

/**
* The on hand quantity below which items should be reordered.
*/
protected int reorder_quantity;

/**
* The Java class name of the database driver.
*/
protected String jdbc_driver;

/**
* The user's password.
*/
protected String password;

/**
* A database URL of the form jdbc:subprotocol:subname .
*/
protected String database_url;

/**
* The database user on whose behalf the Connection is being made.
*/
protected String user;

// XXX added for InventoryAdapter
// The helper class for the Example Inventory Adapter
private InventoryAdapterHelper helper;

//---
// Constructors
//---

/**
* Default constructor.
*/
public InventoryAdapter() {

super();

// XXX added for InventoryAdapter
this.helper = new InventoryAdapterHelper();

}

//---
// Methods - Lifecycle
//---

/**
* Called when the adapter is started for the first time.
*
* @param context Holds Adapter specific properties, may be empty.
*
* @exception ISException Thrown if there is a problem starting the
* Adapter.
*/
public void startup(AdapterContext context)

throws ISException {
Java implementation example � 275

// load the properties from the adapter
loadAdapterProperties(context);

// add startup code here

// XXX added for InventoryAdapter
this.helper.startup(this.jdbc_driver, this.database_url,

this.user, this.password, this.reorder_quantity);
}

/**
* Called when the adapter is stopped. Allows the adapter to perform any
* necessary cleanup work.
*
* @param context Holds Adapter specific properties, may be empty.
*
* @exception ISException Thrown if there is a problem starting the
* Adapter.
*/
public void shutdown(AdapterContext context)

throws ISException {

// add shutdown code here

// XXX added for InventoryAdapter
this.helper.shutdown();

}

//---
// Methods - Execution
//---

/**
* Called to execute a specific operation. This method must be overridden
* by all Adapter subclasses.
*
* This method can be called by multiple threads.
*
* If the adapter subclass supports transactions, the transaction will be
* either commited after this method returns or rolled back if an exception
* is thrown. If the Adapter subclass does not support transactions, it
* must either commit or rollback all stateful actions performed during
* execution of this method.
*
* @param context Runtime context for the operation. Container for
* operation inputs and outputs (output values must be added by the Adapter
* subclass implementation).
*
* @exception ISException Thrown if there is an error during execution.
*/
public void execute(OperationContext context)

throws ISException {
int operation_type_id;
String operation_id;

operation_type_id = context.getOperationTypeID();
operation_id = context.getOperationID();

switch (operation_type_id) {
case OperationContext.GET:

if (operation_id.equals(GET_INVENTORY_INFORMATION)) {
executeGetInventoryInformation(context);

} else {
throw new ISException(UNKNOWN_OPERATION_ID + ": " + operation_id);
276 � Adapter Developer’s Guide

}
break;

case OperationContext.POST:
if (operation_id.equals(CREATE_INVENTORY_ITEM)) {

executeCreateInventoryItem(context);
} else if (operation_id.equals(UPDATE_ITEM_QUANTITY)) {

executeUpdateItemQuantity(context);
} else {

throw new ISException(UNKNOWN_OPERATION_ID + ": " + operation_id);
}
break;

case OperationContext.ADVANCED:
break;

default:
throw new ISException(UNKNOWN_OPERATION_TYPE_ID + ": " + operation_type_id);

}
}

/**
* Retrieves information about an item from the Inventory database and
* stores it into the output Example_Inventory_Item.1 BO.
*
* Returns Operation_Status.result of "success" if item is found and
* information is successfully queried.
*
* Returns Operation_Status.result of "failure" if item_number input field
* is not an integer. Also returns "failure" if a database error occurs.
* Also returns "failure" if no item with the given number exists in the
* database.
*/
protected void executeGetInventoryInformation(OperationContext context)

throws ISException {
String item_number;
Element status_bo;
Element output_bo;

// load the inputs from the OperationContext
item_number =

context.getInputVariant(GET_INVENTORY_INFORMATION_INPUT_ITEM_NUMBER);

// create the output Business Objects
output_bo = context.createOutputBOElement();
status_bo = context.createStatusBOElement();

// add execute code here

// XXX added for InventoryAdapter
this.helper.getInventoryInformation(item_number, output_bo,

status_bo);
}

/**
* Updates Inventory database with a new on-hand quantity using the data in
* the input Example_Inventory_Item.1 Business Object. Ignores the
* description and warehouse_id BO fields.
*
* Returns Operation_Status.result of "success" if item quantity is
* successfully updated.
*
* Returns Operation_Status.result of "failure" if item_number or
* quantity_on_hand input BO fields are not integers. Also returns
* "failure" if a database error occurs. Also returns "failure" if no item
Java implementation example � 277

* with the given number exists in the database.
*/
protected void executeUpdateItemQuantity(OperationContext context)

throws ISException {
Element input_bo;
Element status_bo;

// load the inputs from the OperationContext
input_bo = context.getInputBOElement();

// create the output Business Objects
status_bo = context.createStatusBOElement();

// add execute code here

// XXX added for InventoryAdapter
this.helper.updateItemQuantity(input_bo, status_bo);

}

/**
* Creates a new item in the Inventory database with the data in the input
* Example_Inventory_Item.1 Business Object.
*
* Returns Operation_Status.result of "success" if item is successfully
* created.
*
* Returns Operation_Status.result of "failure" if item_number or
* quantity_on_hand input BO fields are not integers. Also returns
* "failure" if a database error occurs. Also returns "failure" if an item
* with the given item_number already exists in the database.
*/
protected void executeCreateInventoryItem(OperationContext context)

throws ISException {
Element input_bo;
Element status_bo;

// load the inputs from the OperationContext
input_bo = context.getInputBOElement();

// create the output Business Objects
status_bo = context.createStatusBOElement();

// add execute code here

// XXX added for InventoryAdapter
this.helper.createInventoryItem(input_bo, status_bo);

}

//---
// Methods - Runtime - Event Production
//---

/**
* Called to check for new IS events. Produced events must be added to the
* EventContext.
*
* @param context Context for the check call, functions as container for
* produced events.
*
* @exception ISException Thrown if there is an error checking for the
* event.
*/
public final void checkForEvents(EventContext context)

throws ISException {
278 � Adapter Developer’s Guide

// add event production code here

// XXX added for InventoryAdapter
this.helper.checkForEvents(context);

}

//---
// Methods - Private
//---

/**
* Loads values for declared properties from the AdapterContext.
*/
private void loadAdapterProperties(AdapterContext context)

throws ISException {

if (context == null) {
return;

}

jdbc_driver = context.getPropertyAsString(PROP_JDBC_DRIVER);
password = context.getPropertyAsString(PROP_PASSWORD);
database_url = context.getPropertyAsString(PROP_DATABASE_URL);
user = context.getPropertyAsString(PROP_USER);

if (context.isPropertyBound(PROP_REORDER_QUANTITY)) {
reorder_quantity = context.getPropertyAsInt(PROP_REORDER_QUANTITY);

}
}

}

Inventory adapter helper class

This class contains all the substantive adapter logic so you can regenerate the
Adapter Implementation Java source code file freely and often. All you need
to do is copy and paste snippets of code from this file into four Java Adapter
Implementation sections:

� Variables

� Life cycle Methods

� Execution Methods

� Event Production Methods

Note: The code snippets that you need to copy into the Inventory Adapter
code file appear in bold. You can also look for comments in this form:

/* Copy and paste:
/*
*
* The Example Inventory Adapter
*
* This is an example Partner Agreement Manager adapter for a simple inventory system.

It
* demonstrates Get and Post operations as well as event polling.
*
* This adapter should be accompanied by the Example_Inventory_Item.1 BO.
Java implementation example � 279

* This adapter also makes use of the Operation_Status.1 BO. Be sure to
* set up your simple Inventory system by running the accompanying
* SQL schema script to create the Inventory database table(s).
*/

package com.extricity.adapters.example.inv;

import com.extricity.adapters.example.jdbc.JDBCLibrary;

import com.extricity.adapter.api.*;

import com.extricity.is.lib.util.Debug;

import com.extricity.document.api.BusinessObject;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

import java.util.Enumeration;
import java.util.Vector;
import java.util.Hashtable;

public class InventoryAdapterHelper
{

static final String FileVersion = "$Revision: 4 $";

//---
// Constants
//---

/** Event names */
private static final String REORDER_EVENT

= "Example inventory item below reorder quantity";

/** Example_Inventory_Item BO fields, database columns */
private static final String ITEM = "item_number";
private static final String DESC = "description";
private static final String QUAN = "quantity_on_hand";
private static final String WARE = "warehouse_id";

/** Operation_Status BO fields and field values */
private static final String RESU = "result";
private static final String REAS = "reason";
private static final String SUCC = "success";
private static final String FAIL = "failure";

/** Database details */
private static final String TABLE = "Example_Inventory_Items_tbl";
private static final String COLUMNS

= ITEM + ", " + DESC + ", " + QUAN + ", " + WARE;

//---
// Variables
//---

/** The database connection. */
private Connection con;
private int reorder_quantity;

/*
* These "copy and paste" sections should be copied and pasted into the
* corresponding section in the generated adapter Java source code file.
280 � Adapter Developer’s Guide

* They demonstrate how the helper should be called.
*/

/* Copy and paste:
*

// The helper class for the Example Inventory Adapter
private InventoryAdapterHelper helper;

*
*/

//---
// Constructors
//---

/* Copy and paste:
*

helper = new InventoryAdapterHelper();
*
*/

/**
* Default constructor.
*/
public InventoryAdapterHelper() {
}

/* **
*
* Section 1: These "entry point" methods should be called from the
* generated adapter Java source code file.
*
* **/

//---
// Methods - Public - Lifecycle Entry Point
//---

/* Copy and paste:
*

helper.startup(jdbc_driver, database_url, user, password,
reorder_quantity);

*
*/

/**
* Opens a database connection and sets reorder quantity.
*
* @param jdbc_driver The Java class name of the database driver.
* @param database_url A database url of the form
* jdbc:subprotocol:subname .
* @param user The database user on whose behalf the
* Connection is being made.
* @param password The user’s password.
* @param reorder_quantity The on hand quantity below which items should
* be reordered.
*
* @exception ISException if a database error occurs.
*/
public void startup(String jdbc_driver, String database_url,

String user, String password, int reorder_quantity)
throws ISException {
this.con = JDBCLibrary.openConnection(jdbc_driver, database_url,

user, password);
this.reorder_quantity = reorder_quantity;

}

Java implementation example � 281

/* Copy and paste:
*

helper.shutdown();
*
*/

/**
* Closes database connection.
*
* @exception ISException if a database error occurs.
*/
public void shutdown()

throws ISException {
JDBCLibrary.closeConnection(this.con);

}

//---
// Methods - Public - Execution Entry Point
//---

/* Copy and paste:
*

helper.getInventoryInformation(item_number, output_bo, status_bo);
*
*/

/**
* Retrieves information about an item from the Inventory database and
* stores it into the output Example_Inventory_Item.1 BO.
*
* Returns Operation_Status.result of "success" if item is found and
* information is successfully queried.
*
* Returns Operation_Status.result of "failure" if item_number input
* field is not an integer. Also returns "failure" if a database error
* occurs. Also returns "failure" if no item with the given number
* exists in the database.
*
* @param item_str The item number as a String.
* This String input must be parsable as integer.
* @param output_bo BO Type: Extricity.3.Example_Inventory_Item.1
* @param status_bo BO Type: Extricity.3.Operation_Status.1
*/
public void getInventoryInformation(String item_str,

BusinessObject output_bo,
BusinessObject status_bo) {
int item;
String info_str;
Hashtable item_info;

// validate input field(s)
try {

item = Integer.parseInt(item_str);
} catch (NumberFormatException e) {

status_bo.setField(RESU, FAIL);
status_bo.setField(REAS, "Error: " + ITEM

+ " input field is not an integer: "
+ item_str);

return;
}

// call Inventory database API
try {

item_info = getItemInfo(item);
} catch (SQLException e) {

status_bo.setField(RESU, FAIL);
status_bo.setField(REAS, "Database error: " + e.toString() + "\n");
282 � Adapter Developer’s Guide

e.printStackTrace(System.err);
return;

}
if (item_info == null) {

status_bo.setField(RESU, FAIL);
status_bo.setField(REAS, "Error: Item " + item_str

+ " does not exist in the database.");
return;

}

// set output BO field(s)
output_bo.setField(ITEM, item_str);
output_bo.setField(DESC, (String) item_info.get(DESC));
output_bo.setField(QUAN, item_info.get(QUAN).toString());
output_bo.setField(WARE, (String) item_info.get(WARE));

// set status BO field(s)
status_bo.setField(RESU, SUCC);

}

/* Copy and paste:
*

helper.createInventoryItem(input_bo, status_bo);
*/

/**
* Creates a new item in the Inventory database with the data in the
* input Example_Inventory_Item.1 Business Object.
*
* Returns Operation_Status.result of "success" if item is successfully
* created.
*
* Returns Operation_Status.result of "failure" if item_number or
* quantity_on_hand input BO fields are not integers. Also returns
* "failure" if a database error occurs. Also returns "failure" if an
* item with the given item_number already exists in the database.
*
* @param input_bo BO Type: Extricity.3.Example_Inventory_Item.1
* @param status_bo BO Type: Extricity.3.Operation_Status.1
*/
public void createInventoryItem(BusinessObject input_bo,

BusinessObject status_bo) {
String item_str, quan_str;
String desc, ware;
int item, quan;
boolean success;

// read input BO field(s)
item_str = input_bo.getField(ITEM);
desc = input_bo.getField(DESC);
quan_str = input_bo.getField(QUAN);
ware = input_bo.getField(WARE);

// validate input BO field(s)
try {

item = Integer.parseInt(item_str);
} catch (NumberFormatException e) {

status_bo.setField(RESU, FAIL);
status_bo.setField(REAS, "Error: " + ITEM

+ " input BO field is not an integer: "
+ item_str);

return;
}
try {

quan = Integer.parseInt(quan_str);
} catch (NumberFormatException e) {

status_bo.setField(RESU, FAIL);
Java implementation example � 283

status_bo.setField(REAS, "Error: " + QUAN
+ " input BO field is not an integer: "
+ quan_str);

return;
}

// call Inventory database API
try {

success = createItem(item, desc, quan, ware);
} catch (SQLException e) {

status_bo.setField(RESU, FAIL);
status_bo.setField(REAS, "Database error: " + e.toString() + "\n");
e.printStackTrace(System.err);
return;

}

// set status BO field(s)
if (success) {

status_bo.setField(RESU, SUCC);
} else {

status_bo.setField(RESU, FAIL);
status_bo.setField(REAS, "Error: Item " + item_str

+ " already exists in the database.");
}

}

/* Copy and paste:
*

helper.updateItemQuantity(input_bo, status_bo);
*/

/**
* Updates Inventory database with a new on hand quantity using the data
* in the input Example_Inventory_Item.1 Business Object. Ignores the
* description and warehouse_id BO fields.
*
* Returns Operation_Status.result of "success" if item quantity is
* successfully updated.
*
* Returns Operation_Status.result of "failure" if item_number or
* quantity_on_hand input BO fields are not integers. Also returns
* "failure" if a database error occurs. Also returns "failure" if no
* item with the given number exists in the database.
*
* @param input_bo BO Type: Extricity.3.Example_Inventory_Item.1
* @param status_bo BO Type: Extricity.3.Operation_Status.1
*/
public void updateItemQuantity(BusinessObject input_bo,

BusinessObject status_bo) {
String item_str, quan_str;
int item, quan;
boolean success;

// read input BO field(s)
item_str = input_bo.getField(ITEM);
quan_str = input_bo.getField(QUAN);

// validate input BO field(s)
try {

item = Integer.parseInt(item_str);
} catch (NumberFormatException e) {

status_bo.setField(RESU, FAIL);
status_bo.setField(REAS, "Error: " + ITEM

+ " input BO field is not a integer: "
+ item_str);

return;
}

284 � Adapter Developer’s Guide

try {
quan = Integer.parseInt(quan_str);

} catch (NumberFormatException e) {
status_bo.setField(RESU, FAIL);
status_bo.setField(REAS, "Error: " + QUAN

+ " input BO field is not an integer: "
+ quan_str);

return;
}

// call Inventory database API
try {

success = updateItemQuantity(item, quan);
} catch (SQLException e) {

status_bo.setField(RESU, FAIL);
status_bo.setField(REAS, "Database error: " + e.toString() + "\n");
e.printStackTrace(System.err);
return;

}

// set status BO field(s)
if (success) {

status_bo.setField(RESU, SUCC);
} else {

status_bo.setField(RESU, FAIL);
status_bo.setField(REAS, "Error: Item " + item_str

+ " does not exist in the database.");
}

}

//---
// Methods - Public - Event Production Entry Point
//---

/* Copy and paste:
*

helper.checkForEvents(context);
*
*/

/**
* Called to check for new IS events. Produced events must be added to the
* EventContext.
*
* @param context Context for the check call, functions as container for
* produced events.
*
* @exception ISException if there is an error checking for the
* event.
*/
public void checkForEvents(EventContext context)

throws ISException {
Enumeration enum;

try {
enum = getReorderItems(this.reorder_quantity);

} catch (SQLException e) {
throw new ISException("Database error when checking for events", e);

}
while (enum.hasMoreElements()) {

context.addISEvent(REORDER_EVENT, enum.nextElement().toString(),
null);

}
}

/* **
Java implementation example � 285

*
* Section 2: The following Inventory database methods are not directly
* related to Partner Agreement Manager adapters. They only represent API calls
into the
* simple inventory database.
*
* Disclaimer: In the interests of simplicity, a few corner cases are
* not handled. These could easily be trapped in the
* Execution Entry Point methods above.
*
* - methods allows negative item numbers and quantities
*
* - methods do not report truncation of input fields if they
* are wider than database columns
*
* ***/

//---
// Methods - Private - Inventory database query (Accessors)
//---

/**
* Determines if an item already exists in the Inventory database.
*
* @param item The number of the item that may or may not exist.
*
* @return True if item number already exists. False if it does not.
*
* @exception SQLException if a database error occurs.
*/
private boolean itemExists(int item)

throws SQLException {
String sql;
PreparedStatement ps = null;
ResultSet rs = null;
int rows = 0;

sql = "SELECT COUNT(*) FROM " + TABLE + " WHERE " + ITEM + " = ?";
if (Debug.ON) {

System.out.println("itemExists: " + sql + "\n");
}

try {
ps = this.con.prepareStatement(sql);
ps.setInt(1, item);
rs = ps.executeQuery();
if (rs.next()) {
rows = rs.getInt(1); // get the count column (first position)
}

} finally {
JDBCLibrary.forceQueryClose(rs, ps);

}

return (rows > 0);
}

/**
* Retrieves information about an item from the Inventory database.
*
* @param item The queried item number.
*
* @return Hashtable with column names as keys and column data as Integer
* or String object values. (See schema file for names of columns
* in Example_Inventory_Items_tbl.) Null if item does not exist.
*
* @exception SQLException if a database error occurs.
286 � Adapter Developer’s Guide

*/
private Hashtable getItemInfo(int item)

throws SQLException {
String sql;
PreparedStatement ps = null;
ResultSet rs = null;
int quan;
String desc, ware;
Hashtable item_info = new Hashtable();

sql = "SELECT " + COLUMNS + " FROM " + TABLE + " WHERE " + ITEM
+ " = ?";

if (Debug.ON) {
System.out.println("getItemInfo: " + sql + "\n");

}

try {
ps = this.con.prepareStatement(sql);
ps.setInt(1, item);
rs = ps.executeQuery();
if (rs.next()) {

Debug.assert(item == rs.getInt(1));
desc = rs.getString(2);
quan = rs.getInt(3);
ware = rs.getString(4);

} else {
return (null);
}

} finally {
JDBCLibrary.forceQueryClose(rs, ps);

}

// put key-value pairs into Hashtable
item_info.put(ITEM, new Integer(item));
item_info.put(DESC, desc);
item_info.put(QUAN, new Integer(quan));
item_info.put(WARE, ware);
return (item_info);

}

/**
* Returns a list of all items.
*
* @return Enumeration of item numbers as Integer objects.
*
* @exception SQLException if a database error occurs.
*/
private Enumeration getAllItems()

throws SQLException {
String sql;
PreparedStatement ps = null;
ResultSet rs = null;
Vector items = new Vector();

sql = "SELECT " + ITEM + " FROM " + TABLE;
if (Debug.ON) {

System.out.println("getAllItems: " + sql + "\n");
}

try {
ps = this.con.prepareStatement(sql);
rs = ps.executeQuery();
while (rs.next()) {

items.addElement(new Integer(rs.getInt(1)));
}

} finally {
Java implementation example � 287

JDBCLibrary.forceQueryClose(rs, ps);
}

return (items.elements());
}

/**
* Returns a list of all items whose on hand quantity is below the
* reorder quantity.
*
* @param quan The on hand quantity below which items should be reordered.
*
* @return Enumeration of item numbers as Integer objects.
*
* @exception SQLException if a database error occurs.
*/
private Enumeration getReorderItems(int quan)

throws SQLException {
String sql;
PreparedStatement ps = null;
ResultSet rs = null;
Vector items = new Vector();

sql = "SELECT " + ITEM + " FROM " + TABLE + " WHERE " + QUAN + " < ?";
if (Debug.ON) {

System.out.println("getReorderItems: " + sql + "\n");
}

try {
ps = this.con.prepareStatement(sql);
ps.setInt(1, quan);
rs = ps.executeQuery();
while (rs.next()) {

items.addElement(new Integer(rs.getInt(1)));
}

} finally {
JDBCLibrary.forceQueryClose(rs, ps);

}

return (items.elements());
}

//---
// Methods - Private - Inventory database update (Mutators)
//---

/**
* Creates a new item in the Inventory database.
*
* @param item A new item number.
* @param desc The item’s description.
* @param quan The item’s initial quantity on hand.
* @param ware The item’s warehouse identifier.
*
* @return True if item was successfully created. False if item already
* exists.
*
* @exception SQLException if a database error occurs.
*/
private synchronized boolean createItem(int item, String desc,

int quan, String ware)
throws SQLException {
String sql;
PreparedStatement ps = null;
ResultSet rs;
288 � Adapter Developer’s Guide

int rows = 0;

// make sure item doesn’t already exist
if (itemExists(item)) {

return (false);
}

sql = "INSERT INTO " + TABLE + " (" + COLUMNS + ") values (?, ?, ?, ?)";
if (Debug.ON) {

System.out.println("createItem: " + sql + "\n");
}

try {
ps = this.con.prepareStatement(sql);
ps.setInt(1, item);
ps.setString(2, desc);
ps.setInt(3, quan);
ps.setString(4, ware);
rows = ps.executeUpdate();
this.con.commit();

} finally {
JDBCLibrary.forceUpdateClose(ps);

}

if (Debug.ON) {
System.out.println("createItem: " + rows + " row(s) inserted.");

}
return (true);

}

/**
* Updates Inventory database with a new on hand quantity.
*
* @param item The number of the item to update.
* @param quan The new quantity on hand.
*
* @return True if quantity is updated successfully. False if item does
* not exist.
*
* @exception SQLException if a database error occurs.
*/
private synchronized boolean updateItemQuantity(int item, int quan)

throws SQLException {
String sql;
PreparedStatement ps = null;
int rows;

// make sure item already exists
if (!itemExists(item)) {

return (false);
}

sql = "UPDATE " + TABLE + " SET " + QUAN + " = ? WHERE " + ITEM
+ " = ?";

if (Debug.ON) {
System.out.println("updateItemQuantity: " + sql + "\n");

}

try {
ps = this.con.prepareStatement(sql);
ps.setInt(1, quan);
ps.setInt(2, item);
rows = ps.executeUpdate();
this.con.commit();

} finally {
JDBCLibrary.forceUpdateClose(ps);
Java implementation example � 289

}

if (Debug.ON) {
System.out.println("updateItemQuantity: " + rows

+ " row(s) updated.");
}
return (true);

}

//---
// Methods - Public Static - Testing
//---

/**
* Useful for testing from the command prompt.
*
* USAGE:
*
* To get a list of all item numbers:
* AdapterHelper <driver> <url> <user> <pass>
*
* To see if inventory item exists:
* AdapterHelper <driver> <url> <user> <pass> <item>
*
* To get inventory item info:
* AdapterHelper <driver> <url> <user> <pass> <item>
*
* To get a all items below a reorder quantity:
* AdapterHelper <driver> <url> <user> <pass> <quan>
*
* To update inventory item quantity:
* AdapterHelper <driver> <url> <user> <pass> <item> <quan>
*
* To create an inventory item:
* AdapterHelper <driver> <url> <user> <pass> <item> <desc> <quan> <ware>
*
* For more information on the first four arguments, see the JDBCLibrary:
* com.extricity.adapters.example.jdbc.JDBCLibrary .
*/
public static void main(String args[])

throws ISException, SQLException {
InventoryAdapterHelper helper;
Enumeration enum;

if (args.length < 4) {
System.err.println("USAGE:"

+ "\n\nTo get a list of all item numbers:"
+ "\n AdapterHelper <driver> <url>"
+ " <user> <pass>"

+ "\n\nTo see if inventory item exists:"
+ "\n AdapterHelper <driver> <url>"
+ " <user> <pass> <item>"

+ "\n\nTo get inventory item info:"
+ "\n AdapterHelper <driver> <url>"
+ " <user> <pass> <item>"

+ "\n\nTo get all items below a reorder quantity:"
+ "\n AdapterHelper <driver> <url>"
+ " <user> <pass> <quan>"

+ "\n\nTo update inventory item quantity:"
+ "\n AdapterHelper <driver> <url>"
+ " <user> <pass> <item> <quan>"
290 � Adapter Developer’s Guide

+ "\n\nTo create an inventory item:"
+ "\n AdapterHelper <driver> <url>"
+ " <user> <pass> <item> <desc> <quan> <ware>");

return;
}

// Lifecycle
helper = new InventoryAdapterHelper();
helper.startup(args[0], args[1], args[2], args[3], 0);

// Execution
if (args.length == 4) {

// <driver> <url> <user> <pass>
enum = helper.getAllItems();
System.out.println("getAllItems: ");
while (enum.hasMoreElements()) {

System.out.println(enum.nextElement().toString());
}

} else if (args.length == 5) {
// <driver> <url> <user> <pass> <item>
System.out.println("itemExists: "

+ helper.itemExists(Integer.parseInt(args[4])));

// <driver> <url> <user> <pass> <item>
System.out.println("getItemInfo: "

+ helper.getItemInfo(Integer.parseInt(args[4])));

// <driver> <url> <user> <pass> <quan>
enum = helper.getReorderItems(Integer.parseInt(args[4]));
System.out.println("getReorderItems: ");
while (enum.hasMoreElements()) {

System.out.println(enum.nextElement().toString());
}

} else if (args.length == 6) {
// <driver> <url> <user> <pass> <item> <quan>
System.out.println("updateItemQuantity: "

+ helper.updateItemQuantity(
Integer.parseInt(args[4]),
Integer.parseInt(args[5])));

} else if (args.length == 8) {
// <driver> <url> <user> <pass> <item> <desc> <quan> <ware>
System.out.println("createItem: "

+ helper.createItem(Integer.parseInt(args[4]),
args[5],
Integer.parseInt(args[6]),
args[7]));

}

// Lifecycle
helper.shutdown();

}

}

Java implementation example � 291

292 � Adapter Developer’s Guide

appendix�
B

Notices
This information was developed for products and services offered in the
United States. IBM may not offer the products, services, or features discussed
in this information in other countries. Consult your local IBM representative
for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject
matter described in this information. The furnishing of this information
does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.
Notices � 293

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the information. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.
294 � Adapter Developer’s Guide

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of
this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of
the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating
environments may vary significantly. Some measurements may have been
made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore,
some measurement may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.
Notices � 295

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX
DB2
IBM
MQSeries
SupportPac
WebSphere

Pentium is a registered trademark of Intel Corporation in the United States
and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, and service names may be trademarks or service
marks of others.
296 � Adapter Developer’s Guide

g l o s s a r y�
Glossary
action—a task performed as part of a private process. A private process action is the
equivalent of a step in a public process. See the following terms in this glossary for more
information about the action types you can include in a private process:

� approval action

� extension action

� mapping action

� notification action

� output object action

� script action

� subprocess action

� termination action

� timer action

See also private process.

adapter—the software bridge between Partner Agreement Manager processes and specific
end-system and business-application interfaces. Adapters manage interactions between
business applications and the Adapter Server. They allow private processes to interact with
external business applications while a process is running, and they allow PAM to start
public processes based on events that occur in external business applications. See also
adapter implementation, adapter instance, adapter type.
Glossary � 297

adapter implementation—the implementation declaration for an adapter type. It specifies
the name and location of the Java source file that defines the application logic used to
communicate with a specific end system through that end system’s interface. The
application logic is specified in the form of properties. See also adapter, adapter instance,
adapter type.

adapter instance—an instance of an adapter implementation. The adapter instance is used in
a private process extension action and provides the specific values to be used for the
properties declared in the adapter implementation. See also adapter, adapter
implementation, adapter type, extension action.

adapter type—a definition that is stored in XML format and specifies the adapter’s properties
as well as the operations and events it supports. A single adapter type can have several
implementations, and each implementation can have several instances. See also adapter,
adapter implementation, adapter instance.

approval action—a private process action that you use to ask for a response from a user before
letting the process continue to run. You can use an approval action, for example, to ask for
an OK when a purchase order exceeds a predetermined amount. See also private process.

business object—a message transmitted as part of a public process. Business objects take the
form of purchase orders, acknowledgments, requests for clarification, and so on. See also
business object type.

business object type—a definition that determines the types of information a message can
contain. It has three properties: the top-level element in its element definition set, its key
field, and whether instances of it return audit information for non-repudiation purposes.
The name of the business object type is the name of the element you select as its top-level
element. See also business object, element definition set, non-repudiation.

business object variable—one of the two types of variables used in Partner Agreement
Manager to store information within a process. Business object variables create an instance
of a business object type. They can be used to store, for example, the outputs from
extension actions, the inputs for map actions, or the inputs and outputs for subprocesses.
See also business object, business object type, extension action, variant variable.

CA—see certificate authority.
298 � Adapter Developer’s Guide

certificate—a security document that binds a public encryption key to an entity (an
individual or organization) known as the principal. The security document (a digital
certificate) is signed by another entity known as the issuer. A digital certificate for which
both the principal and issuer are the same entity is known as a self-signed certificate. A
certificate for which the principal and issuer are different entities is issued by a certificate
authority (CA) like VeriSign and is known as a CA-issued (or third-party-signed)
certificate. Partner Agreement Manager supports both self-signed and CA-issued
certificates. PAM also supports the binding of certificates to be used for signature
authentication, message encryption, and SSL authentication for channels other than
Partner Agreement Manager. See also certificate authority, SSL.

certificate authority—a trusted third-party organization or company that issues digital
certificates used to create digital signatures and public-private key pairs. The role of the
certificate authority, or CA, is to authenticate the entities (individuals or organizations)
involved in electronic transactions. CAs are a critical component in data security and
electronic commerce because they guarantee that the two parties exchanging information
are really who they claim to be. See also certificate.

channel—a communications mechanism that encapsulates all the processing information
needed to send messages to a partner’s system, as well as to translate data received from a
partner into Partner Agreement Manager messages. PAM provides channels for
RosettaNet, EDI, cXML, and other systems and protocols. See also message.

digital certificate—see certificate.

DTD—Document Type Definition. A type of file associated with SGML and XML documents
that defines how the formatting tags should be interpreted by the application presenting
the document. In Partner Agreement Manager, a DTD file contains the complete
description of a business object type’s element definition set. See also business object,
business object type, element definition set.

element definition set—a collection of data fields (or elements) or groups of data fields that
defines the structure and meaning of a business object type. See also business object, business
object type.

encryption certificate—see certificate.

event—a piece of information that comes into Partner Agreement Manager as a message from
another source (an enterprise system or business application, for example) and triggers a
public process. See also message.
Glossary � 299

event push—a method that uses the HTTP POST mechanism to push events into Partner
Agreement Manager as a way to trigger processes. A port on the Process Server is set to
listen for events in the form of HTTP POST messages. When a message is detected, PAM
uses the information in the message to generate an event. See also event.

extended enterprise—a business model under which companies that work together as
partners function as efficiently as a single organization through the implementation of
automated communication technologies.

extension action—a private process action that communicates via an adapter with an external
application that is registered with Partner Agreement Manager. You can use an extension
action, for example, to launch a spreadsheet application, perform calculations, and update
the enterprise system, or to get information from an enterprise system or listen for an event
in the enterprise system. See also adapter, private process.

LDAP—Lightweight Directory Access Protocol. LDAP provides a standard method for
accessing information from a central directory. After user authentication is set up in the
LDAP directory, applications that use the LDAP protocol can retrieve the information
from that directory. An authenticated user can log in to any application that supports the
LDAP protocol with the same user name and password.

linked certificate—see certificate.

map—a Java Script or VBScript that inserts data into fields in an output business object type
generated by a private process. The map specifies which fields in the output business object
type receive data, and it identifies the information source.

map method—a reusable logical block of code that inserts data into a particular type of
element or element sequence in a business object type. Within a map method, you can
write the expressions that map individual input and output fields in the sequence. Or you
can create a submap and drag input fields to output fields and have Partner Agreement
Manager create the appropriate mapping expressions. See also map, submap.

mapping action—a private process action that you use to call a map. The map specifies the
fields in a business object type that will receive data extracted from another source. You use
a mapping action when you want to extract data from one business object type and insert
it in a different business object type. For example, you use a mapping action to transform
a purchase order generated by your inventory system into a sales order in a format that
your partner expects. See also map, private process.
300 � Adapter Developer’s Guide

message—a structured communication used to pass information and control to another
partner in a public process. The action in the process passes to the partner who receives the
message. The content of a message is determined by its business object type. A message can
be transmitted via synchronous or asynchronous methods, as determined by its
communication service type. See business object type.

non-repudiation—a business object security feature that authenticates instances of a business
object type and maintains an audit record to verify that they were received by the intended
recipient. For business object instances that you receive, Partner Agreement Manager
authenticates each instance and maintains an audit record to verify that the instance
actually originated with the stated originator. If you disable auditing for a business object
type, non-repudiation support is disabled for all messages that contain instances of that
business object type.

notification action—a private process action that you use to send an e-mail, fax, or pager
message to addressees that you specify. You use a notification action to inform someone
inside or outside your organization that an event has occurred. For example, you can use a
notification action to alert the order entry department when a purchase order arrives from
a customer. See also private process.

output object action—a private process action that you use to bind a business object to the
expected output object and path in a public process. You use an output object action at the
point in a private process when you are ready to send a business object to the associated
public process. This is typically the last action in the private process. See also private process.

partner group—a group of partners that perform the same role in a process at different times.
Instead of duplicating a public process and substituting a different partner name, you can
set up a partner group for the public process and then designate a specific partner as the
participant when you start an instance of the process. For example, you might design a
generic purchasing process that works equally well with any of your suppliers and then
designate the appropriate partner when you start the process.

partner profile—information that identifies an organization, specifies a contact person in
that organization, lists the communication services the organization supports, and defines
the organization’s security profile. When partners agree to participate in a public process,
they must exchange profile information as a way to ensure authenticity before they can
proceed.
Glossary � 301

PIP—Partner Interface Process. RosettaNet PIPs are specialized system-to-system XML-
based dialogs that define business processes between supply-chain partners and provide
models and documents for the implementation of e-commerce standards. Each PIP
includes a technical specification based on the RosettaNet Implementation Framework
(RNIF), a message guideline document with a PIP-specific version of the business
dictionary, and an XML message guideline document. See also RosettaNet.

post method—the last block of code that is executed when a mapping action runs. Its only
parameter is the output business object. You use the post method when you need to
perform post-processing on the output business object. For example, you might use the
post method to set the value of a summary field based on the number of line items in the
output business object, or to examine a range of dates in a repeated group, extract the most
recent date, and post that date in a header field. See also mapping action, pre method.

pre method—the first block of code that is executed when a mapping action runs. The pre
method’s parameters are the map inputs. You use the pre method to access a map’s inputs
and set global variables based on their content. See also mapping action, post method.

private process—a task or set of tasks that business partners participating in a public process
perform at points where they need to take action internally. Partners participating in a
public process must implement a private process for each public process step that they
own. A private process begins with input from the public process and ends with output that
feeds back into the public process. The input can be the receipt of a business object from a
partner, or it can be a triggering event from an internal system. The output is the business
object that transfers control back to the public process. See also action, process, public
process.

private process action—see action.

process—the flow of actions and the exchange of business information between partners in
an extended enterprise. A process operates on two levels, public and private. See extended
enterprise, private process, public process.

public process—the step-by-step flow of messages, events, and actions between two or more
business partners. Public processes are set up by agreement between partners, and each step
in a public process has a private process associated with it. A public process is developed by
one partner, and all the partners who participate in it must review and approve it before it
can be implemented. The partner who designs a public process is its owner. See also private
process, process.

RosettaNet—a consortium of major information technology, electronic components, and
semiconductor manufacturing companies that is working to create and implement
industry-wide, open e-business process standards. See also PIP.
302 � Adapter Developer’s Guide

script action—a private process action that consists of a script written in VBScript or
JavaScript and is designed to manipulate information or set up conditional actions based
on input. You use a script to establish decision-making criteria for branches or loops, to set
variables, or to calculate values that are used elsewhere in the private process. See also
private process.

security certificate—see certificate.

self-signed certificate—see certificate.

signature certificate—see certificate.

SSL—Secure Sockets Layer. The SSL protocol is a security protocol that provides for
communications privacy and reliability over the Internet. The protocol allows client/server
applications to communicate in a way that is designed to prevent eavesdropping,
tampering, or message forgery.

submap—a secondary level map that is called by a map method to insert data into an output
element other than the top-level element. See map, map method.

subprocess action—a private process action you use to call an existing public process. You
can call any public process in which your organization owns the first partner action. For
example, you can use a subprocess to get a quote approved by a third-party supplier before
responding to a customer. See also private process.

termination action—a private process action that you use to stop a process at a
predetermined point for a reason that you specify. You can use a termination action to deal
with errors in data that might prevent a process from completing successfully. For example,
you might want to stop a process in cases where an enterprise system passes incomplete or
corrupted information to it. See also private process.

third-party-signed certificate—another name for a CA-issued certificate. See certificate.

timer action—a private process action that you use to insert a pause. You can use a timer
action to specify the period of time you want to elapse before the next action in the process
starts. See also private process.

variant variable—single field variables. Variant variables store text strings—the type of
information contained in a single field element. You can use variant variables to store the
input for actions, to set flags (such as the time-out flag for an approval action), to move
information within scripts, or to store the results of an approval action. See also business
object variable.
Glossary � 303

304 � Adapter Developer’s Guide

i n d e x�
Index
Symbols

% wildcard character 74
& variable in Oracle 75
; character (ending Oracle statements) 75
@ variable in SQL Server 75

A

Adapter API methods 103
adapter architecture 4
Adapter class 104, 116
adapter class libraries 252
adapter design 25
Adapter Designer

adding events 51
adding Javadoc 55, 64
adding operations 46
adding properties 54
creating adapter types 44
editing adapter types 57
generating implementations 63
opening the JDBC Integration Wizard 70
regenerating implementations 246
starting 42
toolbar 43
window features 43

Adapter Development Environment (ADE) 7

adapter instances
definition 4, 7
overview of workflow 29
test and production 80

Adapter Server
Adapter API methods 104
checkForEvents method 116
execute method 122
ISException 113
reExecute method 125
shutdown method 127
startup method 129

adapter types
creating 44
definition 4, 5, 42
editing 57
Email utility 86
Encode utility 88
examples 256
Exec utility 90
exporting 57
File utility 90
FTP utility 94
importing 58
multiple implementations 4
overview of workflow 26
relationship to implementations 62, 63
Zip utility 96
See also Adapter Designer
Index � 305

AdapterContext interface 107, 131
adapters

adding events 76
building for JDBC 70
compiling 253
debugging adapters 253
event properties 80
example 8
generating with Wizard 79
naming 79
running 80
test and production instances 80
testing 253
utility 8

addBOElementEvent method 143
adding

database profile 72
events 76
operations 73

addVariantEvent method 145
ADE. See Adapter Development Environment
Advanced operations. See operations
alias, column 80
architecture, adapters 4
ARRAY data type 81
audit log 145, 174
auditing business objects 75

B

begin method 188
BLOB data type 81
building a JDBC adapter 70
business logic, coding 246
business objects

auditing 75
checking status 80
freezing 75
in adapter types 34
inputs to operations 47
outputs to operations 47
populating the input business object 80
setting options for 75
status 34, 155, 168
using in events 51

BusinessObject interface methods 194

C

checkForEvents method 116
class libraries, adapter 252
classpath 65
CLASSPATH, editing for adapters 11
classpath, modifying 80
clearAll method 195
clearData method 195
CLOB data type 81
coding guidelines 245
column aliases 80
columns, shadow table 77
commit method 189
compiling adapters 253
connectivity, testing 71
context variables

described 47
See also business objects and variants

Copy_File_Operation BO 97
copyIn method 195
CREATE TABLE schema 79
CREATE TRIGGER schema 79
createOutputBOElement method 154
createStatusBOElement method 155
createTransactionContext method

described 120
selecting in Adapter Designer 66

custom code, adding to implementations 245

D

Data processed column 77
data types

ARRAY 81
BLOB 81
CLOB 81
expected formats 81
image 81
ntext 81
REF CURSOR 81
text 81
troubleshooting 81
unsupported 81
306 � Adapter Developer’s Guide

database
connectivity information 71
driver 72
port 72
shadow table 77
specifying name and server 71
URL 72

database profile
adding 72
choosing 71
options 71
viewing 71

Date format 81
debugging adapters 253
deepClone method 194, 198
Delete SQL statements 75, 81
dialog boxes

Edit Integration Wizard 11
Edit Integration Wizard CLASSPATH 12

driver, database 72
drivers, using more than one 80

E

Edit Integration Wizard CLASSPATH dialog box
12

Edit Integration Wizard dialog box 11
Element interface methods 195
ElementSequence interface procedures 196
Email adapter type 86
Encode adapter type 88
Encode_Operation BO 97
ending characters and keywords 75
EndSystemNotAvailableException exception 25,
114
error handling 25, 114
event polling 78, 80
event production methods 252
EventContext interface 108, 142
events

adding 51
adding to JDBC adapter 76
in adapter types 38
time-out 53

example adapters 8
example implementations 256

exception handling
described 253
during execution 250

exceptions
BO API 243
EndSystemNotAvailableException 25, 114
ISException 113

Exec adapter type 90
Exec_Operation BO 97
Exec_Output BO 98
execute method 122
executing schemas 78, 79
execution ID 149
execution methods 249
ExecutionID interface 109
Extension actions in private process 44

F

File adapter type 90
file name, SQL schemas 77
File_Attributes BO 98
File_Contents BO 98
File_Location BO 98
File_Location_List BO 99
filters 74
Flat File Integration Wizard 13
formats, data types 81
freezing business objects 75
fromStream method 194, 199, 200, 205
fromXMLString method 194
FTP adapter type 94
FTP_Operation BO 99

G

generating adapter project 79
generic SQL statements 75
Get operations. See operations
getAttr method 195, 215, 217
getAttrDefault method 195, 216
getBoundProperties method 132
getBusinessObject method 195
getData method 195, 218
getDataType method 133
getDisplayName method 150
getDocument method 194, 201
Index � 307

getElement method 195
getElementAt procedure 196
getElementSequence method 195
getExecutionID method 156
getExecutionMode method 157
getID method 151
getInput method 158
getInputBOElement method 160
getInputNames method 161
getInputVariant method 162
getOperationID method 164
getOperationTypeID method 165
getOutputBOElement method 166
getOutputVariant method 167
getPrivateProcessID method 152
getProperties method 134
getPropertyAsBoolean method 135
getPropertyAsInt method 136
getPropertyAsString method 138
getRootElement method 194, 202
getStatusBOElement method 168
getTagName method 195
getTransactionContext method 147, 169
getTypeID method 194, 203
getTypeURI method 194, 204
go keyword 75

H

hasData method 195
hasData procedure 196
helper files

described 63
using with implementations 246

I

Image data type 81
implementation

definition 6
multiple 4

implementation declarations
creating 63
definition 4, 62
exporting 57
importing 58
overview of workflow 27

implementations
adding custom code 245
adding Javadoc in Adapter Designer 55, 64
coding tips 245
definition 62
examples 256
generating 63
multiple instances 4
overview of workflow 27
regenerating 246
using helper files 246

input business object, populating 80
inputs, operations 47
Insert SQL statements 75, 81
instances, multiple 4
Integration Wizard Manager 11, 80
integration wizards

configuring 10
deleting 13
described 8
running 13

ISException 113
isField method 196
isFirstExecution method 170
isPropertyBound method 140
isPropertyDeclared method 141
isReexecuted method 172
isStateful method 173
isValid method 196

J

Java classpath 65
JDBC adapter, defining operations for 73
JDBC implementations 264
JDBC Integration Wizard

adding events 76
running the adapter 80
SQL schemas 78
starting 70

JDBC Library 273
JVC compiler 253

L

length procedure 197
libraries, adapter class 252
308 � Adapter Developer’s Guide

life cycle methods 248
loadAdapterProperties method 107, 249
log method

described 174, 175
See also audit log

long-running operations
and requestRetry method 177
described 251

M

Mail_Attachment BO 99
Mail_Contents BO 99
main method 253
methods

Adapter API 103
Adapter class 104, 116
adding Adapter API 104
BO API 191
event production 252
execution 249
fromStream 194, 199
fromXMLString 200
getRootElement 194
GetTypeURI 204
getTypeURI 194
life cycle 248
list of those in Adapter API by class 104
main 253
readStream 205
toStream 206
toXMLString 207
writeStream 208

Move_File_Operation BO 100

N

naming adapters 79
newElement procedure 197
newElementAt procedure 197
ntext data type 81

O

operation ID 149
operation type ID 149
Operation_Status BO 34, 100
operationCompleted method

See also requestWaitForCallback
OperationContext interface 110, 153

operations
adding 46, 73
defining for adapter 73
entering generic SQL statements 75
immediate 37
implementing with Adapter API methods 114
in adapter types 35
long-running 37
specifying stored procedures 74

Oracle SQL Server, Thin Client 71
order for executing schemas 79
output business object, inspecting results 80
outputs, operations 47

P

Partner Agreement Manager, adapters 8
password, specifying database 71
port, database 72
Post operations. See operations
primary key

column 77
specifying 78
unsupported data types 81

private process ID 149
private processes, specifying adapter descriptions
for Extension actions 44
Process Manager, event time-outs 53
Processed column 77
production adapter instance 80
profile, database 71
properties

adding 54
adding Javadoc in Adapter Designer 55
in adapter types 39
performing startup validation 248

properties, events 80
public processes

defining event types in adapter 51
distinguishing between test and production

systems in code 143, 145, 157
effect of event time-outs 53
starting with events 38
Index � 309

R

readStream method 194, 205
reExecute method

and isReexecuted method 172
and reExecute method 173
described 125
selecting in Adapter Designer 66

REF CURSOR data type 81
removeAll procedure 197
removeAttr method 196, 228, 230
removeAttrs method 229
removeElement method 196
removeElementAt procedure 197
removeEvent method 148
Rename_File_Operation BO 100
requestRetry method

and isFirstExecution method 170
described 177
long-running operations 37, 251

requestWaitForCallback method
described 179
See also operationCompleted

rollback method 190

S

schemas
CREATE TABLE 79
CREATE TRIGGER 79
executing 79

search filters 74
Select SQL statements

entering generic 75
specifying 75

setAttr method 196, 231
setData method 196, 232
setOutputVariant method 180
shadow table, columns 77
shutdown method

described 127, 248
selecting in Adapter Designer 65

specifying primary key 78
SQL database, connecting through JDBC 273
SQL schemas

executing 78
saving 77

SQL statements
Delete 81
ending keywords and characters 75
entering generic SQL 75
Insert 75
planning ahead 70
Select 75
specifying 75
specifying stored procedures 74
Update 75
validating 75

SQL wildcard character (%) 74
starting

JDBC Integration Wizard 70
Process Server and Adapter Server 70

startup method 129, 248
status business objects 34, 155, 168
stored procedures

and REF CURSOR data type 81
specifying 74
unsupported data types 81

supported SQL statements 75

T

table schema 79
Termination action and exception handling 250
test adapter instance 80
testing adapters 253
testing database connectivity 71
Text data type 81
Time format 81
time-out, for events 53
Timestamp format 81
toStream method 194, 206, 207, 208
toString method 196
toXMLString method 194
TP Monitor 187
Transaction Processing Monitor 187
TransactionContext interface 112
Trigger type column 77
triggering events 77
triggers, schema 79
tutorial (Flat File Wizard) 9
310 � Adapter Developer’s Guide

U

unsetOutput method 181
unsetOutputBO method 183
unsetStatusBO method 185
Update SQL statements 75, 81
URL, database 72
user name, specifying 71
utility adapters 8, 83
Uudecode_Operation BO 101
Uuencode_Operation BO 100

V

validate method 194, 209
variables in SQL statements 75
variants

in adapter types 34
inputs to operations 47
outputs to operations 47

W

wildcard character, SQL 74
writeStream method 194

Z

Zip adapter type 96
Zip_Operation BO 101
Index � 311

312 � Adapter Developer’s Guide

	Welcome to the Adapter Developer’s Guide
	Who should use this information
	Related information

	Summary of changes
	Introducing adapters
	Adapter architecture
	About the Adapter Development Environment
	About MQSeries adapters

	Using an integration wizard
	About configuring integration wizards
	Configuring an integration wizard
	Managing integration wizards
	About the Flat File Integration Wizard
	Using the Flat File Integration Wizard

	Designing Adapters
	About developing adapters
	Designing the adapter
	Defining the adapter type
	Creating an adapter implementation
	Coding your adapter
	Creating an adapter instance
	Debugging and testing your adapter

	Planning an adapter—questions to consider
	About adapter type information
	About business objects and variants
	About operations
	About events
	About properties

	Creating an adapter type
	About adapter types
	Starting the Adapter Designer
	About the Adapter Designer

	Defining a new adapter type
	About operations
	Adding operations
	Adding events
	Adding properties

	Editing an adapter type
	Exporting an adapter type or implementation declaration
	Importing an adapter type or implementation declaration

	Creating Adapter Implementations
	About creating adapter implementations
	Generating code for an adapter implementation
	Adding Java code
	Compiling and debugging

	Using the JDBC Integration Wizard
	Before you start
	Creating a JDBC Adapter
	Starting the JDBC Integration Wizard
	Building a JDBC adapter

	Executing the schemas
	Running the JDBC adapter
	Troubleshooting tips

	Using utility adapters
	About utility adapters
	Utility adapter reference
	Email Adapter type
	Encode Adapter type
	Exec Adapter type
	File Adapter type
	FTP Adapter type
	Zip Adapter type

	Utility business object (BO) reference
	Copy_File_Operation BO
	Encode_Operation BO
	Exec_Operation BO
	Exec_Output BO
	File_Attributes BO
	File_Contents BO
	File_Location BO
	File_Location_List BO
	FTP_Operation BO
	Mail_Attachment BO
	Mail_Contents BO
	Move_File_Operation BO
	Operation_Status BO
	Rename_File_Operation BO
	Uuencode_Operation BO
	Uudecode_Operation BO
	Zip_Operation BO

	Using adapter API methods
	About the adapter API methods
	Adapter methods
	AdapterContext methods
	EventContext methods
	ExecutionID methods
	OperationContext methods
	TransactionContext methods

	About Exceptions
	ISException

	Executing operations
	Adapter class
	checkForEvents method
	createTransactionContext method
	execute method
	reExecute method
	shutdown method
	startup method

	AdapterContext interface
	getBoundProperties method
	getDataType method
	getProperties method
	getPropertyAsBoolean method
	getPropertyAsInt method
	getPropertyAsString method
	isPropertyBound method
	isPropertyDeclared method

	EventContext interface
	addBOElementEvent method
	addVariantEvent method
	getTransactionContext method
	removeEvent method

	ExecutionID interface
	getDisplayName method
	getID method
	getPrivateProcessID method

	OperationContext interface
	createOutputBOElement method
	createStatusBOElement method
	getExecutionID method
	getExecutionMode method
	getInput method
	getInputBOElement method
	getInputNames method
	getInputVariant method
	getOperationID method
	getOperationTypeID method
	getOutputBOElement method
	getOutputVariant method
	getStatusBOElement method
	getTransactionContext method
	isFirstExecution method
	isReexecuted method
	isStateful method
	log method
	operationCompleted method
	requestRetry method
	requestWaitForCallback method
	setOutputVariant method
	unsetOutput method
	unsetOutputBO method
	unsetStatusBO method

	TransactionContext interface
	begin method
	commit method
	rollback method

	Using Business Object API methods
	About the Business Object API
	Group vs. field elements
	Data
	Copying
	Tag path strings
	BusinessObject methods
	Element methods
	ElementSequence methods

	BusinessObject interface
	deepClone method
	fromStream method
	fromXMLString method
	getDocument method
	getRootElement method
	getType ID method
	getTypeURI method
	readStream method
	toStream method
	toXMLString method
	writeStream method
	validate method

	Element interface
	clearAll method
	clearData method
	copyIn method
	getAttr method
	getAttrDefault method
	getBusinessObject method
	getData method
	getDataType method
	getElement method
	getElementSequence method
	getTagName method
	hasData method
	isField method
	isValid method
	removeAttr method
	removeAttrs method
	removeElement method
	setAttr method
	setData method
	toString method

	ElementSequence interface
	getElementAt method
	hasData method
	length method
	newElement method
	newElementAt method
	removeAll method
	removeElementAt method

	Exceptions
	ElementTypeException
	InvalidQueryException
	IndexoutOfBoundsException

	Adding custom code to adapters
	About adding custom code
	Using helpers
	Using life cycle methods
	Startup validation
	String properties
	Integer properties
	Exception handling

	Using execution methods
	Exception handling
	Long-running operations

	Using event production methods
	Exception handling

	Developing adapter class libraries
	About compiling, testing, and debugging adapters
	Testing adapters
	Implementing exception handling

	Java implementation example
	About the Java implementation example
	The Example Inventory Adapter type
	Generated adapter implementation
	Testing inventory adapter implementation
	Inventory adapter implementation
	Inventory adapter helper class

	Notices
	Trademarks

	Glossary
	Index

