
�����������	
����������������
�
���

Adapters for MQSeries User’s Guide
Version 2 Release 2
BIAAAG02

Note: Before using this information and the product it supports, read the information in Notices on page 129.
Third Edition (July 2001)

This edition applies to version 2, release 2 of WebSphere Partner Agreement Manager (product number 5724-
A85) and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can make comments on this information via e-mail at
idrcf@hursley.ibm.com.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000-2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

c o n t e n t s�
Table of Contents
Welcome to the Adapters for MQSeries User’s Guide vii
Who should use this information viii

Related information viii

Summary of changes xi

Chapter 1 Introducing Adapters for MQSeries 1

Introducing MQSeries 2

Introducing Adapters for MQSeries 3

About Adapters for MQSeries 3

Chapter 2 Installing Adapters for MQSeries 5

System requirements 6

Server hardware requirements on Windows NT 6

Server hardware requirements on UNIX 7

Software requirements on Windows NT 8

Server software requirements on UNIX 8

Importing key elements 9

Chapter 3 Using Adapter for MQSeries Messaging 11

About Adapter for MQSeries Messaging 12

About the Adapter for MQSeries Messaging environment 14
Contents � iii

Updating the CLASSPATH 14

About configuring IBM MQSeries Messaging 16

Installing Adapter for MQSeries Messaging 17

Configuring Adapter for MQSeries Messaging 19

Modifying Adapter for MQSeries Messaging 21

Testing Adapter for MQSeries Messaging 23

Adapter for MQSeries Messaging reference 24

Adapter for MQSeries Messaging type 24

Chapter 4 Using Adapter for MQSeries Integrator (RFH) 31

About IBM MQSeries Integrator (RFH) 32

About Adapter for MQSeries Integrator (RFH) 33

About the Adapter for MQSeries Integrator (RFH) environment 34

Updating the CLASSPATH 34

About configuring IBM MQSeries Integrator (RFH) 35

Installing Adapter for MQSeries Integrator (RFH) 36

Configuring Adapter for MQSeries Integrator (RFH) 38

Modifying Adapter for MQSeries Integrator (RFH) 40

Testing Adapter for MQSeries Integrator (RFH) 42

Adapter for MQSeries Integrator (RFH) reference 44

Adapter for MQSeries Integrator (RFH) type 44

Chapter 5 Using Adapter for MQSeries Integrator (RFH2) 53

About IBM MQSeries Integrator (RFH2) 54

About Adapter for MQSeries Integrator (RFH2) 55

About the Adapter for MQSeries Integrator (RFH2) environment 56

Updating the CLASSPATH 56

About configuring IBM MQSeries Integrator (RFH2) 58

Installing Adapter for MQSeries Integrator (RFH2) 59

Configuring Adapter for MQSeries Integrator (RFH2) 61

Importing the business objects 61

Importing the adapter type 62

Importing the adapter implementation 64

Importing the adapter instance 64

Working with Adapter for MQSeries Integrator (RFH2) 65

Modifying Adapter for MQSeries Integrator (RFH2) 66
iv � Adapters for MQSeries User’s Guide

Testing Adapter for MQSeries Integrator (RFH2) 68

Adapter for MQSeries Integrator (RFH2) reference 69

Adapter for MQSeries Integrator (RFH2) type 69

Adapter for MQSeries Integrator (RFH2) business objects 79

Working with business objects 81

Chapter 6 Using Adapter for MQSeries Publish/Subscribe 89

About IBM MQSeries Publish/Subscribe 90

About Adapter for MQSeries Publish/Subscribe 90

About the Adapter for MQSeries Publish/Subscribe environment 91

Updating the CLASSPATH 92

About configuring IBM MQSeries Publish/Subscribe 93

Installing Adapter for MQSeries Publish/Subscribe 94

Configuring Adapter for MQSeries Publish/Subscribe 96

Modifying Adapter for MQSeries Publish/Subscribe 99

Testing Adapter for MQSeries Publish/Subscribe 101

Adapter for MQSeries Publish/Subscribe reference 101

Adapter for MQSeries Publish/Subscribe type 102

Chapter 7 Using Adapter for MQSeries Workflow 111

About IBM MQSeries Workflow 112

About Adapter for MQSeries Workflow 112

About the Adapter for MQSeries Workflow environment 114

Updating the CLASSPATH 114

About configuring IBM MQSeries Workflow 116

Installing Adapter for MQSeries Workflow 118

Configuring Adapter for MQSeries Workflow 119

Modifying Adapter for MQSeries Workflow 121

Testing Adapter for MQSeries Workflow 123

Adapter for MQSeries Workflow reference 124

Adapter for MQSeries Workflow type 124

Appendix a Notices 129

Trademarks 132

Glossary 133

Index 141
Contents � v

vi � Adapters for MQSeries User’s Guide

�

Welcome to the Adapters

for MQSeries User’s Guide
This document describes WebSphere® Partner Agreement Manager
Adapters for MQSeries® and explains how to configure, customize, debug,
and use the Adapters for MQSeries.

To customize your own adapters, see these chapters:

� Introducing Adapters for MQSeries on page 1 provides an overview of IBM
MQSeries and how it relates to Adapters for MQSeries.

� Installing Adapters for MQSeries on page 5 provides general installation
information that applies to all the adapters.

� Using Adapter for MQSeries Messaging on page 11 explains how to
customize and use the basic messaging adapter.

� Using Adapter for MQSeries Integrator (RFH) on page 31 explains how to
customize and use the integrator adapter.

� Using Adapter for MQSeries Integrator (RFH2) on page 53 explains how to
customize and use the latest integrator adapter.

� Using Adapter for MQSeries Publish/Subscribe on page 89 explains how to
customize and use the publish/subscribe adapter.

� Using Adapter for MQSeries Workflow on page 111 explains how to
customize and use the workflow adapter.
 � vii

Who should use this information

This information is for those who need to create their own customized
Adapters for MQSeries.

Related information

For additional information see the following:

� The MQAdaptersReadme.htm file. This file may contain information that
became available after this book was published. The
MQAdaptersReadme.htm file is located in the root directory of the
product CD-ROM.

� The StartHere.htm file. This file contains links to the Adapters for
MQSeries readme file and to the Adobe Acrobat PDF file. The
StartHere.htm file is located in the root directory of the product CD-ROM.

� The Partner Agreement Manager Installation Guide, form number GC34-
5964-02, which describes how to install Partner Agreement Manager.

� The Partner Agreement Manager Administrator’s Guide, form number
BIAAAB02, which describes how to set up, configure, and administer
Partner Agreement Manager after you install it.

� The Partner Agreement Manager User’s Guide, form number BIAAAC02,
which describes how to start a Partner Agreement Manager session, design
public and private processes, define element definition sets, create
business objects, and manage process distribution.

� The Partner Agreement Manager Adapter Developer’s Guide, form number
BIAAAD02, which describes how to develop and administer adapters
using the Partner Agreement Manager Adapter Development
Environment.

� The Partner Agreement Manager Script Developer’s Guide, form number
BIAAAE02, which describes how to write scripts used in Partner
Agreement Manager private processes and elsewhere.
viii � Adapters for MQSeries User’s Guide

� The Partner Agreement Manager External API Guide, form number
BIAAAF02, which describes principles behind the Partner Agreement
Manager External API. See also, the Javadoc for the External API, which is
installed in the Partner Agreement Manager Docs folder.

� The Partner Agreement View User’s Guide, form number GC34-5965-02,
which describes how to install, configure, and use Partner Agreement
View.
 � ix

x � Adapters for MQSeries User’s Guide

�

Summary of changes
This edition includes these changes since the previous, second, edition:

� External APIs. Partner Agreement Manager 2.2 provides added flexibility
to external applications through additional APIs. These APIs allow third-
party applications to take advantage of the Partner Agreement Manager
partner management and process engine through programmatic access.
The API is distributed as a set of Java classes that the external application
can import. Communication between the API classes and the Process
Server is through RMI, but in the future can be swapped out for HTTP or
SOAP. Specifically, APIs have been added to the following functional
areas:

� Session Service API

� Admin Service API

� Document Service API

� Partner Service API

� Adapter Service API

� Process Service API
 � xi

� LDAP Support. Partner Agreement Manager 2.2 provides centralized user
authentication and administration through an LDAP directory. Partner
Agreement Manager can retrieve user information—such as name, e-mail
address, phone, and fax—stored in an LDAP directory. Updating this
information is done in a single place, through the LDAP management
tool. Users are authenticated through the same directory, giving them
single-sign-on capabilities across enterprise applications.

� Double-byte character sets (DBCS) and National Language Support (NLS).
Double-byte character sets are now supported in Partner Agreement
Manager 2.2. Double-byte and multibyte data can be transferred and
operated on in business objects and adapters. NLS lets Partner Agreement
Manager display user interface text in other languages.

� Improved XML Support. The Partner Agreement Manager 2.2 engine
fundamentally changes the way it interacts with business objects by
replacing proprietary parsers with a third-party parser. This simplifies
support of DTD 1.0 and the support of XML schemas when the standard
is finalized.

The Business Object and Script API have been extended with new classes
and methods. The new classes and methods let you work with business
objects as W3C Documents.

� Adapter Asynchronous Callback. An additional Adapter API allows
adapters to be more efficient with long-running adapter operations. The
Asynchronous Callback method tells the Adapter Server that an operation
will be long-running, that system resources should be freed while the
adapter waits for a response from the end system, and that another
method will be called when the response arrives. The Asynchronous
Callback method frees the adapter developer from using the request-retry
method that makes the Adapter Server responsible for polling the end
system for the response.

� Script API Changes. The script API now provides access to the
PartnerGroupContext and the Public and Private Process Contexts.
Through these contexts, you can get information such as partner group
binding, a reference to the process, inputs to the process (which contain a
reference to the sender, the ID of the sending node, and the variable
name), and unique node and loop IDs.
xii � Adapters for MQSeries User’s Guide

� Certificate Support. Partner Agreement Manager 2.2 is able to request and
import certificates from certificate authorities like VeriSign. This lets
organizations use their existing certificate, or request a new one if their
partners do not accept self-signed certificates. Partner Agreement
Manager 1.1 supported only self-signed certificates.

� Outbound Proxy Support. Partner Agreement Manager 2.2 channels that
use HTTP communication can work with outbound proxies that use
authentication. Outbound proxy authentication is used within internal
networks to ensure that only people and applications that are
authenticated may communicate with an external network.
Authentication in the outbound proxy is done with a standard user name
and password combination. You can turn on the outbound proxy feature
after installation. Thereafter, all outbound HTTP communication will use
the same user name and password combination for the proxy.

Note: Note that this feature is only used by channels using HTTP
communication; it does not apply to channels that use the built-in Partner
Agreement Manager proxy.
 � xiii

xiv � Adapters for MQSeries User’s Guide

c h a p t e r�
1

Introducing Adapters for

MQSeries
Welcome to WebSphere Partner Agreement Manager Adapters for
MQSeries, the business-to-business integration system tailored to
work specifically with IBM MQSeries.

This chapter includes the following sections:

� Introducing MQSeries on page 2.

� Introducing Adapters for MQSeries on page 3.

With the WebSphere Partner Agreement Manager XML-based
e-commerce solution, Global 2000 companies can dramatically
improve both their efficiencies and competitiveness by leveraging the
Internet to automate critical business processes and the flow of
information between partners, customers, and suppliers.

Adapters for MQSeries combine the flexibility of MQSeries with the
efficiency of Partner Agreement Manager (PAM), providing the
infrastructure required to automate complete business processes with
both internal and external interfaces.
Introducing Adapters for MQSeries � 1

Introducing MQSeries

IBM MQSeries, the most widely used message-queueing software on the
market, enables users to exchange information between applications across
more than 35 different platforms, from mainframes to PCs.

IBM’s MQSeries is a key element of enterprise systems integration—an open,
scalable messaging and information infrastructure—that provides any-to-
any connectivity across platforms, from desktop PCs to mainframes.

MQSeries is a queue-based messaging tool that stores and forwards messages
asynchronously. Messages consist of the content plus specialized descriptive
fields (known collectively as the MQ message descriptor). No metadata or self-
descriptive information is inherent in the message content, and no
restrictions are placed on how data is represented. All meaning is at the
application level, and understanding of message formats is usually hard-
coded into the applications themselves. Adapter for MQSeries Messaging is
an example of such an application.

Key MQSeries features include:

� point-to-point message communications.

� MQSeries messages are sent and received via queues.

� asynchronous transit.

� synchronous client access.

� multiple queue types, including local queues, remote queues, alias queues,
transmission queues, and dead-letter queues.

� dynamic configuration and administration.

� segmentation of large messages.

� support for binary messages.

Business
Application

Business
Application

Business
Application

Business
Application

Business
Application

Business
Application

MQSeries
2 � Adapters for MQSeries User’s Guide

� failure recovery.

� acknowledgment/Reply messages.

For more information about MQSeries, visit the IBM web site at
http://www.ibm.com/software/ts/MQSeries/.

Introducing Adapters for MQSeries

One of the primary objectives of Partner Agreement Manager is to enable
companies to take full advantage of their existing infrastructure. This
infrastructure comprises not only software and hardware, but also the
employee skill sets and the operations infrastructure of a company. The tight
interface with MQSeries allows Adapters for MQSeries both to communicate
with applications that are already MQSeries-enabled, and to continue to
leverage existing methodologies and knowledge bases when establishing
connections with additional applications. Adapters for MQSeries provide all
the components required for integration with MQSeries.

About Adapters for MQSeries

In addition to the core Partner Agreement Manager product, Adapters for
MQSeries communicate with internal applications, which manage
connections, the exchange of business objects, transaction contexts, and data
transformation.

Adapters for MQSeries include:

� Adapter for MQSeries Messaging

� Adapter for MQSeries Integration (RFH support)

� Adapter for MQSeries Integration (RFH2 support)

� Adapter for MQSeries Publish/Subscribe

� Adapter for MQSeries Workflow

Adapter for MQSeries Messaging

Adapter for MQSeries Messaging works with the base messaging features of
MQSeries. MQSeries Messaging is the core of the IBM MQSeries family,
providing once-only message and queueing capabilities on over 35
platforms.

See Using Adapter for MQSeries Messaging on page 11 for more information.
Introducing Adapters for MQSeries � 3

Adapter for MQSeries Integrator (RFH)

Adapter for MQSeries Integrator (RFH) facilitates the connection of external
partners to information flows that have been established with the message
brokering capabilities of MQSeries Integrator, using the MQSeries Rules and
Format Header (MQRFH). The product manages the secure and reliable
communication of messages as part of intercompany processes.

See Using Adapter for MQSeries Integrator (RFH) on page 31 for more
information.

Adapter for MQSeries Integrator (RFH2)

Adapter for MQSeries Integrator (RFH2) facilitates the connection of
external partners to information flows that have been established with the
message brokering capabilities of MQSeries Integrator, using the updated
MQSeries Rules and Format Header (MQRFH2).

See Using Adapter for MQSeries Integrator (RFH2) on page 53 for more
information.

Adapter for MQSeries Publish/Subscribe

Adapter for MQSeries Publish/Subscribe provides access to MQSeries
Publish/Subscribe message brokering capabilities.

See Using Adapter for MQSeries Publish/Subscribe on page 89 for more
information.

Adapter for MQSeries Workflow

Adapter for MQSeries Workflow allows internal workflow steps that have
been automated with MQSeries Workflow to be incorporated into larger
inter-company processes. Conversely, it also allows inter-company
exchanges to be incorporated into internal workflows.

See Using Adapter for MQSeries Workflow on page 111 for more information.
4 � Adapters for MQSeries User’s Guide

c h a p t e r�
2

Installing Adapters for

MQSeries
Read this chapter to learn how to install the WebSphere Partner
Agreement Manager Adapters for MQSeries version 2.2.

This chapter includes the following sections:

� System requirements on page 6.

� Server hardware requirements on Windows NT on page 6.

� Server hardware requirements on UNIX on page 7.

� Software requirements on Windows NT on page 8.

� Server software requirements on UNIX on page 8.

� Importing key elements on page 9.

Specific configuration information can be found in the subsequent
chapters for each individual adapter.
Installing Adapters for MQSeries � 5

System requirements

Warning: Make sure you back up your partner root directory before
installing. This is especially important if you have ever used (and
customized) previous versions of MQSeries adapters.

This section describes the products and versions required. These are the
current system requirements for Adapters for MQSeries.

Tip: For best adapter performance, be sure that the computer your Adapter
Server is running on meets the minimum Partner Agreement Manager
system requirements. See the Partner Agreement Manager Installation
Guide.

Server hardware requirements on Windows NT

� Pentium II 300 MHz processor (or better)

� 1 MB or higher L2 cache

� 128 MB RAM (or more)

Note: Although you can run the Partner Agreement Manager server with
only 64 MB RAM, you achieve significantly better performance with
128 MB RAM.

� 4 GB hard drive (or larger)

The hard disk requirement for the Partner Agreement Manager server and
all supporting software is approximately 390 MB. Make provisions for a
1 GB (or more) database device and a 250 MB (or more) database log
device.

Note: Plan to allocate additional disk space to archive audit information,
because the total amount of disk space you actually need is variable. The
size of the business objects that pass between you and your PAM partners
also affects the amount of disk space required. If you expect to develop
business objects that contain complicated schematics or CAD drawings,
for example, plan to allocate significantly more disk space.
6 � Adapters for MQSeries User’s Guide

Server hardware requirements on UNIX

Note: Throughout the MQSeries adapter documentation, the name UNIX is
a generic term for the UNIX operating system; the name AIX is used only
when it is necessary to indicate information that is specific to an AIX
implementation of UNIX.

� The Partner Agreement Manager server requires at least 128 MB of RAM.
DB2 requires at least 512 MB of RAM. DB2 and the PAM server need not
be installed on the same machine.

� The hard disk requirements for the Partner Agreement Manager server
and all supporting software is approximately 200 MB. Additionally,
provisions should be made to for a 1 GB (or more) database device and a
250 MB (or more) log device set up in DB2.

� You need 150 MB free disk space, after the installation is completed.

Note: You should also plan to allocate additional disk space to archive audit
information, so the total amount of disk space you actually need is
variable. Another factor that affects the amount of disk space required is
the size of business objects that pass between you and your PAM partners.
If you expect to create business objects that contain complicated
schematics or CAD drawings, for example, plan to allocate significantly
more disk space.
Installing Adapters for MQSeries � 7

Software requirements on Windows NT

� Windows NT Server 4.0 or later operating system with Service Pack (SP)
3 or later

Important: Be sure to configure the NT Server used to host Partner
Agreement Manager to use the NTFS file system rather than the FAT (file
allocation table) file system. Using FAT disables many of Windows NT’s
built-in security features.

� IBM DB2® version 7.1 (see http://www-4.ibm.com/cgi-bin/db2www/
data/db2/udb/winos2unix/support/download.d2w/report) with
FixPak 2

� JDBC driver 2

� Partner Agreement Manager version 2.2

� IBM HTTP Server 1.3.12.2

� Internet Explorer 4.0 or later (available from www.microsoft.com/
msdownload)

� Network access to an SMTP server (for e-mail notifications), plus an
e-mail account that PAM can use for sending e-mail for notifications

� A certificate for the web server (available from any certificate authority,
such as www.verisign.com, depending on the local security policy)

Server software requirements on UNIX

You must have one of the following: (in future, add bullets for each type of
UNIX software)

� NT 2.7, fully patched. You can download the recommended patches from
Sun at: ftp://sunsolve.sun.com

� AIX 4.3.3 at patch level 4330-05_AIX_ML or greater. You can download
the recommended patches from:
http://www-1.ibm.com/servers/aix/download/index.html

On AIX, you can determine patch level by issuing this command:
instfix -i | grep AIX_ML
8 � Adapters for MQSeries User’s Guide

Importing key elements

This section describes importing business objects, adapter types and
implementations, and creating an instance.

Note: You must move all the XML files for business object exports and
adapter types/implementations from the Partner Agreement Manager
server computer to the computer running the PAM client. You can do this
using any of the following methods:

� Use File Transfer Protocol (FTP) to transfer the files from the PAM server
to the local PAM client computer. Make sure you use binary mode to FTP
the files.

� Use file sharing software to make the partner directory remotely accessible
across your network so the PAM client can directly access the XML files to
import them.

� Load the zip file (NT) or the tar file (UNIX) from the CD onto the local
PAM client computer and manually extract the files.

Warning: When you start customizing an adapter, it is a good idea to do so
in your own work space, for example:
<partner_root>\com\<your_company>\adapters\ibm\mqseries\test
This helps ensure that any future Adapters for MQSeries updates do not
overwrite your custom work.
Installing Adapters for MQSeries � 9

10 � Adapters for MQSeries User’s Guide

c h a p t e r�
3

Using Adapter for MQSeries

Messaging
Read this chapter to learn how to configure and use WebSphere
Partner Agreement Manager Adapters for MQSeries Messaging
version 2.2.

This chapter includes the following sections:

� About Adapter for MQSeries Messaging on page 12.

� About the Adapter for MQSeries Messaging environment on page 14.

� Installing Adapter for MQSeries Messaging on page 17.

� Configuring Adapter for MQSeries Messaging on page 19.

� Modifying Adapter for MQSeries Messaging on page 21.

� Testing Adapter for MQSeries Messaging on page 23.

� Adapter for MQSeries Messaging reference on page 24.

Adapter for MQSeries Messaging combines the messaging and
queueing features of IBM MQSeries Messaging with the business-to-
business integration capabilities of WebSphere Partner Agreement
Manager.
Using Adapter for MQSeries Messaging � 11

About Adapter for MQSeries Messaging

This version of Adapter for MQSeries Messaging is compatible with
WebSphere Partner Agreement Manager(PAM) version 2.2 on both
Windows NT and UNIX. It requires the IBM MQSeries classes for Java (MQ
base Java)™, which are compatible with all versions of MQSeries through
version 5.1.

Adapter for MQSeries Messaging consists of:

� Class files corresponding to all Java classes.

� Java files for MQSeriesAdapter and MQSeriesAdapterCustom classes.

� Java and class files for an example MQSeriesAdapterCustom subclass
(MQSeriesCustomExample.java and MQSeriesCustomExample.class).

� XML representations of template adapter type and implementation
(MQSeriesAdapterType.xml, MQSeriesAdapterJavaImp.xml).

� Javadoc reference for all class files.

Key features of Adapter for MQSeries Messaging include:

� The ability to perform request-reply operations with other applications on
the MQSeries network, in addition to just reading a message from a queue
or putting a message on a queue. You should bear in mind the distinction
between just reading/writing messages to/from queues versus actually
communicating with endpoint applications. The latter usually requires
some kind of two-way request-reply communication, especially if you are
expecting some kind of response from the application. For example, from
the perspective of a PAM process designer, a simple Post operation is
executed against a particular end system. But, from your perspective,
Adapter for MQSeries Messaging is sending a message to a queue, and
might need to wait for an acknowledgment.

� On-site customizability of data transformation and reply behavior via
custom methods—per adapter instance.

� Three data transformation options that enable you to:

� Call out to third-party mapping tools that manage the mapping
between MQSeries message contents and XML corresponding to PAM
business objects. These maps must be set up separately as command-
line executables or scripts that can be executed from the adapter. As
long as the XML written by or read into the map matches the given
PAM business object, you can implement full data transformation.
12 � Adapters for MQSeries User’s Guide

� Custom-code mapping in custom Java methods, to be called at the
appropriate times by the adapter’s core logic. The preset behavior of the
standard custom methods is to send/receive messages in XML format
corresponding to the PAM business objects being posted or received,
but you can overwrite this behavior with your own mapping logic.

� Perform no mapping in the adapter at all. Instead, you can have the
adapter operation accept and return variant data that is copied directly
into or out of the message. The task of interpreting or parsing the
message contents is, in this case, up to the private process designer, who
might choose to do this in VBScript (NT) or JavaScript (NT and
UNIX), in other extension actions, or in some other process logic. The
unparsed operations perform this kind of data transformation.

� Per-adapter-instance event, mapping, and network configuration that lets
you define properties in each adapter instance that contain information
that the adapter needs for successful operation. This includes which
Adapter Server event to return, which maps to apply, and how to connect
to the MQSeries network (queue manager, channel, hostname, port,
default queue). If necessary, you can override these values in the adapter
implementation code so that each adapter instance can conform to a wide
variety of MQSeries messaging infrastructures.

� Low-level message acknowledgment lets you automatically return low-level
acknowledgment messages that might be of little or no functional interest
to the process designer. You can customize the adapter to automatically
return these acknowledgments, or to expect their arrival, without
representing the acknowledgments as operation inputs or outputs.
Custom methods enable you to implement this functionality.

� Exposure of message headers and descriptive fields that enables you to access
the MQSeries Java Client MQMessage object, including the message
descriptor fields. This enables further customization of messaging
behavior beyond what is provided in the packaged classes.

� QueueName and CorrelationID that are exposed to the private process,
which gives private process designers flexibility when communicating
with MQSeries. It also avoids the necessity of writing custom Java code to
specify message identification properties.

� Operations that can all report informative exceptions and return status
business objects, which enables you to redirect exception text to a StatusBO
instance. Each method in the prepackaged adapter code can throw a
specialized MQSeriesAdapterException class, which includes useful
information regarding the nature of errors.
Using Adapter for MQSeries Messaging � 13

� Syncpoint control treats all interactions with the queue manager, including
sending and receiving messages, as a unit of work that can be committed
or rolled back at any point.

� Optional debug messaging, which can be useful during deployment. As the
adapter executes, debug-level messages can be directed to the Adapter
Server shell.

� MQSeries client tracing, which enables you to set the level of MQSeries
client tracing via an adapter property. The adapter writes traces to a file.

� A template adapter type with sample custom code, which illustrates the
above features. You can use Adapter for MQSeries Messaging type, its Java
implementation, and the associated custom Java code as a reference while
you develop your own adapters.

Tip: Adapter for MQSeries Messaging includes Javadoc for all Java classes,
which provides detailed descriptions of the behavior of these classes and
their associated methods. You might want to refer to the Javadoc when
you develop your own adapters.

About the Adapter for MQSeries Messaging

environment

See Installing Adapters for MQSeries on page 5 for general system
requirements. In addition to general requirements, Adapter for MQSeries
Messaging requires the following software:

� IBM MQSeries classes for Java (MQ base Java), version 5.1.

Updating the CLASSPATH

Adapter for MQSeries Messaging requires that the IBM MQSeries classes for
Java (MQ base Java) be installed on the computer where the Adapter Server
is running. This software is separately available from IBM.

Note: The IBM SupportPac™, MA88: MQSeries classes for Java and
MQSeries classes for Java Message Service, contains the required
MQSeries software.
14 � Adapters for MQSeries User’s Guide

The following jar files must be installed (on both the PAM client and server
computers):

� MQSeries\java\lib\com.ibm.mq.jar

� MQSeries\java\lib\com.ibm.mqbind.jar

� MQSeries\java\lib\com.ibm.mq.iiop.jar

For more information on IBM MQSeries Messaging products and software,
see the IBM web site: http://www.software.ibm.com/ts/mqseries/support

After you install the IBM MQSeries classes for Java (MQ base Java), you must
update your system CLASSPATH.

To update your CLASSPATH on Windows NT:

1 From the Windows Start menu, choose Settings > Control Panel > System.

2 Click the Environment tab.

3 Select the CLASSPATH system variable.

The current CLASSPATH value appears.

4 Edit this field as necessary to include the class paths.

For example, if the Java client components are installed in C:\mqm\java\lib,
your CLASSPATH should include C:\mqm\java\lib\com.ibm.mq.jar,
C:\mqm\java\lib\com.ibm.mqbind.jar, and
C:\mqm\java\lib\com.ibm.mq.iiop.jar.

5 Click Set, and then click Apply.

6 Restart the Adapter Server so the new MQSeries Java classes can be
recognized.

To update your CLASSPATH on UNIX:

� Set the environment variable CLASSPATH.

If the Java client components are installed in
/mqm/java/lib, your CLASSPATH should include
/mqm/java/lib/com.ibm.mq.jar, and
/mqm/java/lib/com.ibm.mqbind.jar.

The next time you start the Adapter Server, it will recognize the MQSeries
Java classes.
Using Adapter for MQSeries Messaging � 15

http://www.software.ibm.com/ts/mqseries/support
http://www.software.ibm.com/ts/mqseries/support

About configuring IBM MQSeries Messaging

Adapter for MQSeries Messaging is designed to require minimal setup in
MQSeries.

� Adapter for MQSeries Messaging does not require its own local MQSeries
resources (queues, channels, or queue managers).

Because it uses the Java Client API, Adapter for MQSeries Messaging can
connect to a queue manager on another computer. In fact, we recommend
that the queue manager be remote; running both the queue manager and
the Adapter Server on the same computer might adversely affect
performance, especially in high-throughput environments. You can use
an existing queue manager, or you can set up a dedicated queue manager
if you choose, with alias and remote queues serving as the adapter’s
interface to the rest of the MQSeries network.

Tip: If you are using a non-TCP network, you must set up a new queue
manager to act as a proxy between the TCP and non-TCP networks.

� Adapter for MQSeries Messaging requires any queue managers it accesses
to be up and running, with all channels and queues properly defined.

Attempts to communicate with a queue manager that is down, with an
undefined or full queue, or with a disabled or non-existent channel, results
in exceptions being reported. The adapter does not enable or actively
troubleshoot an MQSeries network—beyond reporting these types of
exceptions.

� When Adapter for MQSeries Messaging encounters an exception
condition in MQSeries, the MQSeriesAdapterException contains the
exact exception text returned by MQSeries.

This exception text normally contains an error code number and short
description. For more information on error conditions, see the IBM
MQSeries Messages reference.
16 � Adapters for MQSeries User’s Guide

Installing Adapter for MQSeries Messaging

You must install Adapter for MQSeries Messaging—on the same computer
where the Adapter Server is running—by placing the appropriate Java and
class files in your PAM partner directory.

Before you install Adapter for MQSeries Messaging, you must install and
configure the MQSeries queue manager. Although you can run both the
MQSeries queue manager and the Adapter Server on the same computer, we
strongly recommend that you install them on different computers. The two
computers must be able to communicate via TCP/IP.

Configuring the MQSeries queue manager requires defining a server
connection channel, defining one or more local queues, and starting the
channel listener. The queue manager might already exist in your enterprise,
or you might need to create a new one for PAM.

Make sure that the IBM MQSeries classes for Java (MQ base Java) are
installed on the computer where the Adapter Server is running, and that the
Adapter Server’s CLASSPATH is set to include the Java Client class files (see
Updating the CLASSPATH on page 14).

Important: Make sure you back up your partner root directory before
installing the adapter. This is especially important if you have ever used
(and customized) previous versions of MQSeries adapters.

To install Adapter for MQSeries Messaging:

1 Log in—as a user with administrative privileges—to the computer where the
Adapter Server is installed.

2 Install Adapter for MQSeries Messaging.

On Windows NT:

a. Copy MQSeriesMessaging2_2.zip to your partner root directory.

b. Extract the zip file into your partner root directory.

Important: If you previously installed an MQSeries adapter, a Confirm File
Overwrite dialog appears. Click Yes to All (twice) to replace the existing
files.
Using Adapter for MQSeries Messaging � 17

Note: If you have the PAM client and server on two different computers, you
must extract the files into the partner directory on both computers.

On UNIX:

a. Copy MQSeriesMessaging2_2.tar to your partner root directory.

b. Extract the tar file into your partner root directory.

Important: If you previously installed an MQSeries adapter, a Confirm File
Overwrite dialog appears. Click Yes to All (twice) to replace the existing
files.

Note: If you have the PAM client and server on two different computers, you
need to extract the files into the partner directory on both computers.

Adapter for MQSeries Messaging files appear in this location:

Make sure that the Java and class files are present in the same directory.

To import key elements:

� Move the file named MQSeriesMsgOptionsBO.xml from the Process Server
computer to the computer where you’ll be running the PAM client.

For general importing guidelines, see Importing key elements on page 9.

On this platform The files are located in

Windows NT <partner_root>\com\extricity\adapters\ibm\mqseries\test

UNIX <partner_root>/com/extricity/adapters/ibm/mqseries

On this platform The files are located in

Windows NT <partner_root>\com\extricity\adapters\ibm\mqseries\test

UNIX <partner_root>/com/extricity/adapters/ibm/mqseries
18 � Adapters for MQSeries User’s Guide

Configuring Adapter for MQSeries Messaging

After you install Adapter for MQSeries Messaging, you can configure it and
take advantage of its default behavior, or you can modify the adapter to suit
your specific needs (see Modifying Adapter for MQSeries Messaging on
page 21).

To configure Adapter for MQSeries Messaging:

1 Implement any custom code by writing one or more
MQSeriesAdapterCustom subclasses.

Tip: If you plan to use the default mapping behavior of converting business
objects to/from XML, do not edit the MQSeriesAdapterCustom class. See
Modifying Adapter for MQSeries Messaging on page 21 for tips on
implementing custom code.

2 If the Adapter Server is not already running, start it.

3 Start the Partner Agreement Manager Process Server and the Adapter Server.

4 Choose Adapter Designer from the Tools menu to open the Adapter
Designer.

5 In the Adapter Designer, choose Import from the File menu.

The Select Import Type dialog box appears.

6 Select Adapter Type and click OK. In the Import dialog box, select the
MQSeries Adapter Type XML file located in:
<partner_root>\com\extricity\adapters\ibm\mqseries\test

This creates a template adapter type that you can edit to conform to your
customized adapter code. For example, you can add any new operations you
need.

� If you plan to use the mapped operations, you can edit their inputs and
outputs to match the business objects you plan to get and post.

You can import either an
adapter type or an adapter
implementation.
Using Adapter for MQSeries Messaging � 19

� Follow the instructions in the Partner Agreement Manager Adapter
Developer’s Guide to set default property values as appropriate for the
adapter type.

� If you plan to use mapped events (events containing business object data),
create a corresponding event type.

7 In the Adapter Designer, choose Import again, select Adapter
Implementation, and select the MQSeries Adapter Java Imp XML file located
in: <partner_root>\com\extricity\adapters\ibm\mqseries\test

This creates the adapter implementation. Make sure the adapter
implementation’s class name and package names are correct.

8 In the Adapter Server, choose Adapter Manager from the Tools menu to start
the Adapter Manager.

9 Choose Add from the Adapter menu to create a new instance of Adapter for
MQSeries Messaging, and follow the instructions in the Partner Agreement
Manager Adapter Developer’s Guide to set the connection property values.

� If you plan to use a command-line-executable map for your mapped
operations, you must enter the system commands in the IncomingMap
and OutgoingMap properties. Make sure to enter full pathnames.

� If your adapter checks for events, make sure that event polling is enabled
and polls at an appropriate time interval.

� If you have created a subclass of the MQSeriesAdapterCustom class for
this instance, you must enter its name in the CustomClass property.

� Set the DebugMessaging and MQSeriesTrace properties according to your
debugging needs. You might want to turn these on only during
development, testing, or maintenance. The logs associated with these
properties can quickly grow very large.

� In the Adapter Manager, start the new adapter instance and resolve any
exceptions that occur.

As soon as the adapter instance has connected to the queue manager, you
are ready to begin using it in extension actions.
20 � Adapters for MQSeries User’s Guide

Modifying Adapter for MQSeries Messaging

Although you can use Adapter for MQSeries Messaging as is, the default
behavior and settings (the name of the default queue, for example) might not
meet your business needs. In addition, the default adapter instance
communicates with only one queue. Therefore, you might want to customize
Adapter for MQSeries Messaging to suit your specific needs.

Important: See the Partner Agreement Manager Adapter Developer’s Guide
for more information about customizing adapters.

The following are tips to keep in mind during implementation:

� Customize the operations in the adapter type to make it easier for process
designers to select operations correctly.

The PAM process builders who will use Adapter for MQSeries Messaging
in private process extension actions rely on the names of the operations
and their inputs and outputs to identify the correct operation. The
operations provided with the Adapter for MQSeries Messaging type are
intended as templates for your own specialized operations. Therefore, it’s
a good idea to change the generic GetMapped operation name to
something more meaningful, such as GetPurchaseOrder. It’s also a good
idea to remove operations that you don’t expect process designers to use.
For example, if you do not expect to use unparsed messages, you might
want to remove them from your adapter type.

� Make sure you understand your MQSeries network topology, its
performance constraints, and its security rules so that you can set up
specialized queue managers for PAM as appropriate.

Normally, applications in an MQSeries network might have dedicated
queue managers, or need to use queue managers set up as network proxies.
For example, if PAM needs to communicate with an SNA network, you
need a proxy queue manager to act as a bridge between SNA and TCP (the
only protocol that Adapter for MQSeries Messaging can use). Also, if you
expect PAM to send and receive a large number of messages, setting up a
dedicated queue manager might be a more scalable alternative than simply
reusing an existing queue manager, which might already experience heavy
throughput.

� Make sure you understand the trade-offs between using mapped and
unparsed operations.
Using Adapter for MQSeries Messaging � 21

Mapped operations enable you to customize the transformation of data
between PAM business objects and MQSeries messages. This enables PAM
process designers to use the exact business objects that they want when
defining private process extension actions. However, building these
custom transformations involves development and ongoing maintenance
efforts. On the other hand, using unparsed operations pushes business
object transformation responsibility, as well as its maintenance, to the
private process, where it might normally be implemented using VBScript
(NT) or JavaScript (NT and UNIX), a different extension action, or other
process-level logic.

� Make sure you implement the appropriate Adapter Server events.

For example, the checkForEvents method included with Adapter for
MQSeries Messaging merely checks for the availability of a message on a
given queue. Although this is sufficient in most cases, you might want to
implement a Request-Reply model, in which the adapter sends a message
to some other application and awaits a response. If so, you must
implement this separately, possibly by reusing the Request operation
logic.

� Review template operations provided in Adapter for MQSeries Messaging
and add new operations as necessary.

The template operations provided with Adapter for MQSeries Messaging
represent only a portion of the full range of operations you can implement
using the Core class public methods. For example, although the template
operations call the Core class getMessage and/or sendMessage functions
only once (if at all), you can include operations that call these functions
more than one time within an operation. This enables you to encapsulate
more complex messaging interactions within a single operation, such as a
single PAM business object to multiple MQSeries messages.

For example, a PAM process might include a purchase order business
object that corresponds to several MQSeries messages—one for the
header, plus additional messages for each individual order line. The easiest
way to implement this is to add a new basic operation—“Get Purchase
Order”—that calls getMessage multiple times in unparsed mode and
copies information from the resulting variants into your Purchase Order
business object.

Note: If you must run a queue manager and the Adapter Server on the same
computer, we recommend a minimum of a 400 MHz processor computer
with 256 MB or more RAM. You can improve performance by setting the
Hostname property to localhost.
22 � Adapters for MQSeries User’s Guide

For more information about using or implementing the
MQSeriesAdapterCore and MQSeriesAdapterCustom classes, see the
accompanying Javadoc reference. You might also want to review the
MQSeriesCustomExample subclass, which illustrates how to implement the
various custom methods contained in the MQSeriesAdapterCustom class.

Testing Adapter for MQSeries Messaging

As a minimum, an adapter instance must meet these criteria before you can
use it in an extension action. You must be able to:

� Start up and shut down the adapter instance without error.

� Verify that you can connect to the queue manager.

Before you release an adapter for general use by process designers, it’s a good
idea to test any custom code you have implemented. The easiest way to test
custom code is to create a sample Partner Agreement Manager private
process that uses extension actions that execute the adapter operations.

To test Adapter for MQSeries Messaging:

1 Create a PAM private process that includes attempts to post and get a series
of business objects. Make sure that you execute every path in your custom
code.

2 After getting a business object, make sure—in VBScript (NT) or JavaScript
(NT and UNIX)—that the contents are as you expect.

Tip: Use the StatusBO operation output and check the results.

3 Review the log file to make sure that no exceptions were reported within the
adapter itself.

4 While debugging, try setting the adapter’s DebugMessaging property to
Terse or Verbose.

5 Turn on MQSeries tracing and look at the MQSeriesTrace.log file (located in
the partner root directory) in the event of any MQSeries exceptions.

6 Test the public process events.
Using Adapter for MQSeries Messaging � 23

Adapter for MQSeries Messaging reference

This section describes in more detail the sample Adapter for MQSeries
Messaging type that comes packaged with the product. The class names,
properties, operations, and events are all described in the table below. Note
that the operations are intended as templates only. You are encouraged to
rename these operations and their parameters as needed, or design your own
operations from scratch that use the MQSeriesAdapterCore class’s methods
in other ways.

Note: Each operation has a status BO that returns either result="success" or
result="failure". If the operation fails, the status BO also returns the
specific reason why it failed.

Adapter for MQSeries Messaging type

These are the components of the Adapter for MQSeries Messaging type.

Class name com.extricity.adapters.ibm.mqseries.MQSeriesAdapter

Description This class represents the adapter implementation. It is generated by
the Adapter Designer and subsequently edited to call methods in the
MQSeriesAdapterCore class.

Class name com.extricity.adapters.ibm.mqseries.MQSeriesAdapterCore

Description This represents the bulk of the MQSeries logic. It includes the
following features:
� Connect to and disconnect from queues and queue managers

given connection information specified in the instance’s properties
or passed as parameters to given methods.

� Dispatch the task of mapping between business objects and
MQSeries messages.

� Send and receive messages to/from queues.
� Report exceptions containing meaningful error text in case error

conditions are found.
� Execute maps as specified in properties.
� Call methods in the Custom class.
� Handle transaction contexts via commit and rollback methods.

Class name com.extricity.adapters.ibm.mqseries.MQSeriesAdapterException

Description This exception subclass can be thrown by most methods, and
contains information on error conditions. It also differentiates
between those exceptions that are thrown by the MQSeries Java
Client and those that are thrown by adapter code.
24 � Adapters for MQSeries User’s Guide

Class name com.extricity.adapters.ibm.mqseries.MQSeriesRFH

Description Base class for managing MQSeries Rules and Format Headers. This
class might be helpful when interacting with MQSeries-enabled
products such as MQSeries Integrator or MQSeries Publish/
Subscribe. Further refinements of this class are provided with
Adapter for MQSeries Integrator and Adapter for MQSeries Publish/
Subscribe.

Class name com.extricity.adapters.ibm.mqseries.MQSeriesAdapterCustom

Description This class contains stub methods that can be implemented on site.
These methods are as follows:
� sendReply. Send a low-level acknowledgment to an incoming

message.
� receiveReply. Await a low-level acknowledgment to an outgoing

message.
� callInMap. Custom data transformation method for incoming

messages; called whenever a “mapped” operation is indicated and
the IncomingMap property is left null.

� callOutMap. Custom data transformation method for outgoing
messages; called whenever a “mapped” operation is indicated and
the OutgoingMap property is left null.

The default behavior of the mapping methods is to convert business
objects to/from XML.

Properties QueueManager Name of queue manager to connect to.
Mandatory.

Channel Name of server connection channel by which
to connect to queue manager. Mandatory.

DefaultQueue Name of a default queue to use for sending
and receiving messages. Can be overridden in
code or in MQSeriesMsgOptions operation
argument. Optional.

Hostname Name of host on which QueueManager
resides. This can be an IP address or the IP
host name. Mandatory.

Port Name of port on which channel is listening.
Defaults to 1414. Mandatory.

UserID The user name used to connect to the queue
manager. Optional, but must be entered if
security is enabled on the server connection
channel.

Password The password associated with the user name.
Optional, but must be entered if security is
enabled on the server connection channel.
Using Adapter for MQSeries Messaging � 25

CorrelationID The value is used only during event checking
(that is, checkForEvents); otherwise, it is
ignored. Optional.

MapWorking
Directory

The location in the local file system to use for
writing and reading files during a command-
line mapping execution. Ignored if
IncomingMap and OutgoingMap are blank.
Optional.

IncomingMap Command line that must be executed to map
incoming messages. Optional. If left blank,
the adapter calls the callInMap custom
method instead for all incoming mapped
messages.
If populated, then mapped messages undergo
the following steps:
1. Write incoming MQSeries message

contents to a file,
<MapWorkingDirectory>\inMsg.txt
(Windows NT)
<MapWorkingDirectory>/inMsg.txt
(UNIX).

2. Call the property value as a system
command, which translates the MQSeries
file to an XML file,
<MapWorkingDirectory>\outBO.xml
(Windows NT)
<MapWorkingDirectory>/outBO.xml
(UNIX).

3. Read in the XML file and fill a business
object with the contents.
26 � Adapters for MQSeries User’s Guide

OutgoingMap Command line that must be executed to map
outgoing messages. Optional. If left blank,
the adapter calls the callOutMap custom
method instead for all outgoing mapped
messages.
If populated, mapped messages undergo the
following steps:
1. Write BO to an XML file,

<MapWorkingDirectory>\inBO.xml
(Windows NT)
<MapWorkingDirectory>/inBO.txt
(UNIX).

2. Call the property value as a system
command, which translates the XML file to
an MQSeries message file,
<MapWorkingDirectory>\outMsg.txt
(Windows NT)
<MapWorkingDirectory>/outMsg.txt
(UNIX).

3. Read in the MQSeries file and put contents
into an MQSeries message.

MQSeriesTraceLevel Sets the MQSeries trace level. One of six
values: Off, or one of the five levels of detail
that the MQSeries trace facility records
debug-level information to the file
MQSeriesTrace.log, located in the partner
root directory. Mandatory.

WaitInterval The length of time, in milliseconds, that an
attempt to get a message from a queue must
wait before erroring out, if a message is not
immediately available. Mandatory. Can be
overridden in code.

DebugMessaging One of three values: Off, Terse, Verbose,
representing different levels of debug
messaging. Messages are written to the
Adapter Server console. Debug messaging
might be useful during development and
deployment, but is generally set to Off in a
production environment. Mandatory.

CustomClass Name of Custom class. Must be the fully
qualified class pathname, dot-delimited,
relative to the classpath. Defaults to
com.extricity.adapters.ibm.mqseries.
MQSeriesAdapterCustom. Mandatory.

Operations GetUnparsed Retrieves a message and returns raw contents
to the private process. Message is consumed
in the queue.
Using Adapter for MQSeries Messaging � 27

Input MQSeriesMsgOptions business object
containing the value for the QueueName to
be used by the operation.

Output Variant, representing message contents. Also,
status BO, which returns either
result="success" or result="failure". If the
operation fails, the status BO also returns the
specific reason why it failed.

BrowseUnparsed Retrieves a message and returns raw contents
to the private process. Message is not
consumed in the queue.

Input MQSeriesMsgOptions business object
containing the value for the QueueName to
be used by the operation.

Output Variant, representing message contents. Also,
status BO, which returns either
result="success" or result="failure". If the
operation fails, the status BO also returns the
specific reason why it failed.

GetMapped Retrieves a message, calls a map, and returns
the business object. Consumes message in the
queue.
Note: If the IncomingMap property is
specified, the operation writes the incoming
message to a file, calls the command specified
in this property, reads in the resulting XML,
and returns the BO. If this property is left
null, calls the Custom callInMap method.

Input MQSeriesMsgOptions business object
containing the value for the QueueName to
be used by the operation.

Output Business object. Also, status BO.

BrowseMapped Retrieves a message, calls a map, and returns
the business object. Does not consume
message in the queue.
Note: If the IncomingMap property is
specified, the operation writes the incoming
message to a file, calls the command specified
in this property, reads in the resulting XML,
and returns the BO. If this property is left
null, calls the Custom callInMap method.

Input MQSeriesMsgOptions business object
containing the value for the QueueName to
be used by the operation.
28 � Adapters for MQSeries User’s Guide

Output Business object. Also, status BO.

PostUnparsed Send a message, given the raw message
contents.

Input Variant, representing message contents.
MQSeriesMsgOptions business object
containing the value for the QueueName to
be used by the operation.

Output Status BO.

PostMapped Send a message using map to do data
transformation.
Note: If the OutgoingMap property is
specified, the operation writes the BO as an
XML file, calls the command specified in this
property, reads the resulting bytes into a new
MQSeries message, and sends it. If this
property is left null, calls the Custom
callOutMap method.

Input Business object.
MQSeriesMsgOptions business object
containing the value for the QueueName to
be used by the operation.

Output Status BO.

RequestUnparsed Send a message (unparsed), and then wait for
a return message (unparsed).

Input Variant, representing contents of outgoing
message.
MQSeriesMsgOptions business object
containing the value for the QueueName to
be used by the operation.
ReplyQueueName variant, an optional field,
which specifies the queue from which the
reply message is retrieved.

Output Variant, representing contents of reply
message. Also, status BO.

RequestMapped Send a message (mapped), and then wait for a
return message (mapped).
Using Adapter for MQSeries Messaging � 29

Note: Each operation has a status BO that returns either result="success" or
result="failure". If the operation fails, the status BO also returns the
specific reason why it failed.

Input Business object corresponding to output
message. Map is applied to this BO as in
PostMapped.
MQSeriesMsgOptions business object
containing the value for the QueueName to
be used by the operation.
ReplyQueueName variant, an optional field,
which specifies the queue from which the
reply message is retrieved.

Output Business object corresponding to reply
message. Map is applied to this BO as in
GetMapped. Also, status BO.

Events MQEvent. Contains Variant data. Functionality of checkForEvents is
to poll a given queue and return any messages that appear, as in
GetUnparsed.
30 � Adapters for MQSeries User’s Guide

c h a p t e r�
4

Using Adapter for MQSeries

Integrator (RFH)
Read this chapter to learn how to configure and use WebSphere
Partner Agreement Manager Adapters for MQSeries Integrator (RFH)
version 2.2.

This chapter includes the following sections:

� About IBM MQSeries Integrator (RFH) on page 32.

� About Adapter for MQSeries Integrator (RFH) on page 33.

� About the Adapter for MQSeries Integrator (RFH) environment on
page 34.

� Installing Adapter for MQSeries Integrator (RFH) on page 36.

� Configuring Adapter for MQSeries Integrator (RFH) on page 38.

� Modifying Adapter for MQSeries Integrator (RFH) on page 40.

� Testing Adapter for MQSeries Integrator (RFH) on page 42.

� Adapter for MQSeries Integrator (RFH) reference on page 44.

Adapter for MQSeries Integrator (RFH) combines the message
routing and transformation features of IBM MQSeries Integrator with
the business-to-business integration capabilities of WebSphere
Partner Agreement Manager.
Using Adapter for MQSeries Integrator (RFH) � 31

About IBM MQSeries Integrator (RFH)

IBM MQSeries Integrator works with MQSeries messaging, extending its
basic connectivity and transport capabilities to provide a powerful message
broker solution driven by business rules. Messages are formed, routed, and
transformed according to defined rules.

IBM MQSeries Integrator is a data transformation and routing engine for
MQSeries. Also called MQSI, it is divided into three components, all of which
store rules and formats in a relational database.

� The Formatter enables users to define data formats as well as the maps
between them with a graphical, drag-and-drop interface.

� The Rules Editor enables users to specify, again in a graphical
environment, which maps to apply to incoming messages depending on
their formats and contents, as well as to which MQSeries queues to route
the resulting outbound messages.

� The Rules Engine connects to an MQSeries queue manager and processes
incoming messages according to the rules and formats defined in the
Formatter and Rules Editor.

IBM MQSeries Integrator also includes command line utilities and scripts
designed to facilitate development and on-site testing.

The Rules Engine recognizes incoming MQSeries messages as being of given
formats by either:

� Scanning the full message and applying it to stored formats in a declarative
manner.

� Reading the format identifiers in the message’s MQSeries Rules and
Format Header (MQRFH).

The MQRFH is a well-defined segment at the beginning of the MQSeries
message’s contents section. It provides information to the Rules Engine
about the message, including its format, string representation, message
length, and so forth. The presence of an MQRFH header in a message often
improves processing times.
32 � Adapters for MQSeries User’s Guide

Adapter for MQSeries Integrator (RFH) provides support to adapter
developers who must work with messages that include MQRFH headers. It
also includes template adapter operations and sample custom code that
illustrates how to manipulate and further customize MQRFH headers by way
of an intuitive API.

About Adapter for MQSeries Integrator (RFH)

This version of Adapter for MQSeries Integrator (RFH) is compatible with
WebSphere Partner Agreement Manager(PAM) version 2.2 on both
Windows NT and UNIX. It requires the IBM MQSeries classes for Java (MQ
base Java)™, which is compatible with all versions of MQSeries through
version 5.1. Adapter for MQSeries Integrator (RFH) is compatible with IBM
MQSeries Integrator version 1.0/1.1.

Adapter for MQSeries Integrator (RFH) contains the following:

� class files corresponding to all Java classes.

� Java files for MQSeriesIntegratorAdapter and
MQSeriesIntegratorAdapterCustom classes.

� Java and class files for an example MQSeriesIntegratorAdapterCustom
subclass (MQSeriesIntegratorCustomExample.java and
MQSeriesIntegratorCustomExample.class).

� XML representations of template adapter type and implementation
(MQSeriesIntegratorAdapterType.xml,
MQSeriesIntegratorAdapterJavaImp.xml).

� Javadoc reference for all class files.

Key features of Adapter for MQSeries Integrator (RFH) include:

� Adapter for MQSeries Integrator (RFH) implementations are subclassed
from the base Adapter for MQSeries Messaging. With the exception of
managing the MQRFH, the sending and receiving of messages is the same
in both adapters.

� Customizable classes allow you to manage the MQRFH.

� Templates provide for specialized MQSeriesIntegrated send, receive, and
request-reply operations.

� The adapter provides an ability to construct and send administrative
messages to the Rules Engine, including shutting down and reloading rule
sets from the database.
Using Adapter for MQSeries Integrator (RFH) � 33

Tip: Adapter for MQSeries Integrator (RFH) includes Javadoc for all Java
classes, which provides detailed descriptions of the behavior of these
classes and their associated methods. You might want to refer to the
Javadoc when you develop your own adapters.

About the Adapter for MQSeries Integrator (RFH)

environment

See Installing Adapters for MQSeries on page 5 for general system
requirements. In addition to general requirements, Adapter for MQSeries
Integrator (RFH) requires the following software:

� IBM MQSeries classes for Java (MQ base Java), version 5.1.

Updating the CLASSPATH

Adapter for MQSeries Integrator (RFH) requires that the IBM MQSeries
classes for Java (MQ base Java) be installed on the computer where the
Adapter Server is running. This software is separately available from IBM.

Note: The IBM SupportPac, MA88: MQSeries classes for Java and MQSeries
classes for Java Message Service, contains the required MQSeries software.

The following jar files must be installed (on both the PAM client and server
computers):

� MQSeries\java\lib\com.ibm.mq.jar

� MQSeries\java\lib\com.ibm.mqbind.jar

� MQSeries\java\lib\com.ibm.mq.iiop.jar

For more information on IBM MQSeries Integrator products and software,
see the IBM web site:

http://www.software.ibm.com/ts/mqseries/support

After you install the IBM MQSeries classes for Java (MQ base Java), you must
update your system CLASSPATH.

To update your CLASSPATH on Windows NT:

1 From the Windows Start menu, choose Settings > Control Panel > System.

2 Click the Environment tab.
34 � Adapters for MQSeries User’s Guide

http://www.software.ibm.com/ts/mqseries/support

3 Select the CLASSPATH system variable.

The current CLASSPATH value appears.

4 Edit this field as necessary to include the class paths.

For example, if the Java client components are installed in C:\mqm\java\lib,
your CLASSPATH should include C:\mqm\java\lib\com.ibm.mq.jar,
C:\mqm\java\lib\com.ibm.mqbind.jar, and
C:\mqm\java\lib\com.ibm.mq.iiop.jar.

5 Click Set, and then click Apply.

6 Restart the Adapter Server so the new MQSeries Java classes can be
recognized.

To update your CLASSPATH on UNIX:

� Set the environment variable CLASSPATH.

If the Java client components are installed in
/mqm/java/lib, your CLASSPATH should include
/mqm/java/lib/com.ibm.mq.jar,
/mqm/java/lib/com.ibm.mqbind.jar.

The next time you start the Adapter Server, it will recognize the MQSeries
Java classes.

About configuring IBM MQSeries Integrator

(RFH)

Adapter for MQSeries Integrator (RFH) is designed to require minimal setup
in MQSeries.

� An MQSeries adapter requires any queue managers it accesses to be up
and running, with all channels and queues properly defined. The queue
manager must be accessible via the IBM MQSeries classes for Java (MQ
base Java), it must have an MQSeries Integrator Rules Engine running
against it, and the MQSI-specific queues (input, outputs, no-hit, failure)
must be defined correctly.

Important: Be sure to edit the MQSeriesIntegratorAdapter.java file to enter
the input and output queue names in the appropriate queueName
variables.
Using Adapter for MQSeries Integrator (RFH) � 35

The adapter reports an exception if you attempt to communicate with a
queue manager that is down, with an undefined or full queue, or with a
disabled or non-existent channel. The adapter doesn’t enable or actively
troubleshoot an MQSeries network—beyond reporting these types of
exceptions.

If the Rules Engine is inoperative, sending messages to it results in those
messages queueing up without any feedback. Attempts to receive messages
fail in this case. In general, the adapter does not actively troubleshoot an
inoperative or otherwise improperly functioning MQSeries queue
manager or MQSeries Integrator Rules Engine, beyond reporting on
exceptions or time-outs encountered.

� When the adapter encounters an exception condition in MQSeries, the
MQSeriesAdapterException contains the exact exception text returned by
MQSeries.

This exception text contains an error code number and short description.
For more information on possible error conditions, see chapter 5 of the
IBM MQSeries Application Programming Reference.

Installing Adapter for MQSeries Integrator (RFH)

You must install Adapter for MQSeries Integrator (RFH)—on the same
computer where the Adapter Server is running—by copying the appropriate
Java and class files into your PAM partner directory.

Before you install Adapter for MQSeries Integrator (RFH), you must install
and configure the MQSeries queue manager. Although you can run both the
MQSeries queue manager and the Adapter Server on the same computer, we
strongly recommend that you install them on different computers. The two
computers must be able to communicate via TCP/IP.

Configuring the MQSeries queue manager includes defining a server
connection channel, defining one or more local queues, and starting the
channel listener. The queue manager might already exist in your enterprise,
or you might need to create a new one for Partner Agreement Manager.
36 � Adapters for MQSeries User’s Guide

Make sure that:

� the MQSeries Integrator Rules Engine is running against the correct queue
manager, that rules and formats are properly defined, and that MQSI-
specific queues are set up. By default, the adapter sends messages intended
for MQSeries Integrator to a queue named MQSI.INPUT, and receives
messages from IBM MQSeries Integrator in a queue named
MQSI.OUTPUT.

� the IBM MQSeries classes for Java (MQ base Java) are installed on the
computer where the Adapter Server is running, and that the Adapter
Server’s CLASSPATH is set to include the Java client class files (see
Updating the CLASSPATH on page 34).

Important: Make sure you back up your partner root directory before
installing the adapter. This is especially important if you have ever used
(and customized) previous versions of MQSeries adapters.

To install Adapter for MQSeries Integrator (RFH):

1 Log in—as a user with administrative privileges—to the computer where the
Adapter Server is installed.

Make sure the Process Server and Adapter Server are not running.

2 Install Adapter for MQSeries Integrator (RFH).

On Windows NT:

a. Copy MQSeriesIntegrator2_2.zip to your partner root directory.

b. Extract the zip file into your partner root directory.

Important: If you previously installed an MQSeries adapter, a Confirm File
Overwrite dialog appears. Click Yes to All (twice) to replace the existing
files.

Note: If you have the PAM client and server on two different computers, you
must extract the files into the partner directory on both computers.

On UNIX:

a. Copy MQSeriesIntegrator2_2.tar to your partner root directory.

b. Extract the tar file into your partner root directory.
Using Adapter for MQSeries Integrator (RFH) � 37

Important: If you previously installed an MQSeries adapter, a Confirm File
Overwrite dialog appears. Click Yes to All (twice) to replace the existing
files.

Note: If you have the PAM client and server on two different computers, you
need to extract the files into the partner directory on both computers.

Adapter for MQSeries Integrator (RFH) files appear in this location:

Make sure that the Java and class files are present in the same directory.

To import key elements:

� Move the file named MQSeriesMsgOptionsBO.xml from the Process Server
computer to the computer where you’re running the PAM client.

For general importing guidelines, see Importing key elements on page 9.

Configuring Adapter for MQSeries Integrator (RFH)

After you install Adapter for MQSeries Integrator (RFH), you can configure
it and take advantage of its default behavior, or you can modify the adapter
to suit your specific needs (see Modifying Adapter for MQSeries Integrator
(RFH) on page 40).

To configure Adapter for MQSeries Integrator (RFH):

1 Implement any custom code by writing one or more
MQSeriesAdapterCustom classes or subclasses.

On this platform The files are located in

Windows NT <partner_root>\com\extricity\adapters\ibm\mqseries\mqsi2

UNIX <partner_root>/com/extricity/adapters/ibm/mqseries/mqsi2

On this platform The files are located in

Windows NT <partner_root>\com\extricity\adapters\ibm\mqseries\mqsi2
\test

UNIX <partner_root>/com/extricity/adapters/ibm/mqseries/
mqsi2/test
38 � Adapters for MQSeries User’s Guide

See Modifying Adapter for MQSeries Integrator (RFH) on page 40 for tips on
implementing custom code.

2 If the Adapter Server is not already running, start it.

3 Start the Partner Agreement Manager Process Server and the Adapter Server.

4 Choose Adapter Designer from the Tools menu to open the Adapter
Designer.

5 In the Adapter Designer, choose Import from the File menu.

The Select Import Type dialog box appears.

6 Select Adapter Type and click OK. In the Import dialog box, select the
MQSeriesIntegratorAdapterType XML file located in:
<partner_root>\com\extricity\adapters\ibm\mqseries\mqsi2\test

This creates a template adapter type that you can edit to conform to your
customized adapter code. For example, you can add any new operations you
need.

� If you plan to use the MQSI or mapped operations, you can edit their
inputs and outputs to match the business objects you plan to get and post.

� Follow the instructions in the Partner Agreement Manager Adapter
Developer’s Guide to set default property values as appropriate for the
adapter type.

� If you plan to use mapped events (events containing business object data),
create a corresponding event type.

7 In the Adapter Designer, choose Import again, select Adapter
Implementation, and select the MQSeriesIntegratorAdapterJavaImp XML
file located in:
<partner_root>\com\extricity\adapters\ibm\mqseries\mqsi2\test

This creates the adapter implementation. Make sure the adapter
implementation’s class name and package names are correct.

You can import either an
adapter type or an adapter
implementation.
Using Adapter for MQSeries Integrator (RFH) � 39

8 In the Adapter Server, choose Adapter Manager from the Tools menu to start
the Adapter Manager.

9 Choose Add from the Adapter menu to create a new instance of Adapter for
MQSeries Integrator (RFH), and follow the instructions in the Partner
Agreement Manager Adapter Developer’s Guide to set the connection property
values.

� If you plan to use a command-line-executable map for your mapped
operations, you must enter the system commands in the IncomingMap
and OutgoingMap properties.

� If your adapter checks for events, make sure that event polling is enabled
and polls at an appropriate time interval.

� If you have created a subclass of the MQSeriesIntegratorAdapterCustom
class for this instance, you must enter its name in the CustomClass
property.

� Set the DebugMessaging and MQSeriesTrace properties according to your
debugging needs. You might want to turn these on only during
development, testing, or maintenance. The logs associated with these
properties can quickly grow very large.

� In the Adapter Manager, start the new adapter instance and resolve any
exceptions that occur.

As soon as the adapter instance has connected to the queue manager, you are
ready to begin using it in extension actions.

Modifying Adapter for MQSeries Integrator (RFH)

Although you can use Adapter for MQSeries Integrator (RFH) as is, the
default behavior and settings might not meet your business needs. For
example, the default mapping behavior for mapped operations is to convert
business objects to/from XML with MQRFH. In addition, MQSI operations
are preset to send messages to a queue named MQSI.INPUT and receive
messages from a queue named MQSI.OUTPUT. Other operations are preset
to connect to the queue that is specified in the DefaultQueue property.

Also, remote applications receiving your MQSeries messages must
understand XML and be able to construct the XML messages that your
adapter expects.
40 � Adapters for MQSeries User’s Guide

As a result, you might want to customize Adapter for MQSeries Integrator
(RFH) to suit your specific needs.

Important: See the Partner Agreement Manager Adapter Developer’s Guide
for more information about customizing adapters.

The following are tips to keep in mind during implementation:

� Customize the operations in the adapter type to make it easier for process
designers to select operations correctly.

The PAM process builders who will use this adapter in private process
extension actions rely on the names of the operations and their inputs and
outputs to identify the correct operation. The operations provided with
the Adapter for MQSeries Integrator (RFH) type are intended as templates
for your own specialized operations. Therefore, it’s a good idea to change
the generic PostMQSI operation name to something more meaningful,
such as PostPurchaseOrder. It’s also a good idea to remove operations that
you don’t expect process designers to use. For example, if you do not
expect to use unparsed messages, you might want to remove them from
your adapter type.

� Review template operations provided in Adapter for MQSeries Integrator
(RFH) and add new operations as necessary.

The template operations provided with Adapter for MQSeries Integrator
(RFH) represent only a portion of the full range of operations you can
implement using the Core class public methods combined with MQRFH
class methods. For example, although the template operations call the
Core class getMessage and/or sendMessage functions only once (if at all)
and create generic MQRFH instances, you can include operations that call
these functions more than one time within an operation. This enables you
to encapsulate more complex messaging interactions within a single
operation, such as a single PAM business object to multiple MQSeries
messages.

For example, a PAM process might include a purchase order business
object that corresponds to several MQSeries messages—one for the
header, plus additional messages for each individual order line. The easiest
way to implement this would be to add a new basic operation—“Get
Purchase Order”—that might call getMessage multiple times in unparsed
mode and copy information from the resulting variants into your
Purchase Order business object.
Using Adapter for MQSeries Integrator (RFH) � 41

Tip: Before you begin writing custom Java code for your adapter that deals
with messages to/from MQSI, you must have a solid understanding of the
formats defined in MQSI, which applications require those formats, and
how the Rules Engine is mapping messages and routing them to their
destinations. Information you must have before coding includes the
Application Group and Message Type of your messages, their formats, and
the queues on which they appear.

For more information about using or implementing the
MQSeriesAdapterCore, MQSeriesIntegratorRFH, and
MQSeriesIntegratorAdapterCustom classes, see the accompanying Javadoc
reference. You might also want to review the
MQSeriesIntegratorCustomExample subclass, which illustrates how to
implement the various custom methods contained in the
MQSeriesAdapterCustom class.

Testing Adapter for MQSeries Integrator (RFH)

As a minimum, an adapter instance must meet these criteria before you can
use it in an extension action. You must be able to:

� start up and shut down the adapter instance without error.

� verify that you can connect to the queue manager.

Before you release an adapter for general use by process designers, it’s a good
idea to test any custom code you have implemented. The easiest way to test
custom code is to create a sample Partner Agreement Manager private
process that uses extension actions that execute the adapter operations.

To test Adapter for MQSeries Integrator (RFH):

1 Create a PAM private process that includes attempts to post and get a series
of business objects. Make sure that you execute every path in your custom
code.

2 After getting a business object, make sure—in VBScript (NT) or JavaScript
(NT and UNIX)—that the contents are as you expect.

Tip: Use the StatusBO operation output and check the results.

3 Review the log file to make sure that no exceptions were reported within the
adapter itself.

4 While debugging, try setting the adapter’s DebugMessaging property to
Terse or Verbose.
42 � Adapters for MQSeries User’s Guide

5 Turn on MQSeries tracing and look at the MQSeriesTrace.log file (located in
the partner root directory) in the event of any MQSeries exceptions.

6 Test the public process events.
Using Adapter for MQSeries Integrator (RFH) � 43

Adapter for MQSeries Integrator (RFH) reference

This section describes in more detail the sample Adapter for MQSeries
Integrator (RFH) type that comes packaged with the product. The class
names, properties, operations, and events are all described in the table below.

Note: The operations are intended as templates only. You are encouraged to
rename these operations and their parameters as needed, or design your
own operations from scratch that use the MQSeriesAdapterCore class’s
methods in other ways.

Finally, because this sample adapter is a subclass of the PAM Adapter for
MQSeries Messaging, the messaging adapter’s operations are also included.

Note: Each operation has a status BO that returns either result="success" or
result="failure". If the operation fails, the status BO also returns the
specific reason why it failed.

Adapter for MQSeries Integrator (RFH) type

These are the components of Adapter for MQSeries Integrator (RFH) type.

Class name com.extricity.adapters.ibm.MQSeries.mqsi.MQSeriesIntegrator
Adapter

Description This class represents the adapter implementation. It was generated
from the Adapter Designer and subsequently edited to call methods in
the MQSeriesAdapterCore class.

Class name com.extricity.adapters.ibm.MQSeries.mqsi.MQSeriesIntegratorRFH

Description Class for managing MQSeries Rules and Format Headers of messages
sent to or received from the MQSI Rules Engine. This class hides the
complexity of managing the MQRFH fields and commands that are
specific to MQSI.

Class name com.extricity.adapters.ibm.MQSeries.mqsi.MQSeriesIntegrator
CustomExample
44 � Adapters for MQSeries User’s Guide

Description This class contains stub methods that can be implemented on site.
These methods are as follows:
� sendReply. Send a low-level acknowledgment to an incoming

message.
� receiveReply. Await a low-level acknowledgment to an outgoing

message.
� callInMap. Custom data transformation method for incoming

messages; called whenever a “mapped” operation is indicated and
the IncomingMap property is left null.

� callOutMap. Custom data transformation method for outgoing
messages; called whenever a “mapped” operation is indicated and
the OutgoingMap property is left null.

The default behavior of the mapping methods is to convert business
objects to/from XML as well as read/write default MQRFHs.

Properties QueueManager Name of queue manager to connect to.
Mandatory.

Channel Name of server connection channel by which
to connect to queue manager. Mandatory.

DefaultQueue Name of a default queue to use for sending and
receiving messages. Can be overridden in code.
Optional.

Hostname Name of host on which QueueManager
resides. This can be an IP address or the IP host
name. Mandatory.

Port Name of port to which Channel is listening.
Defaults to 1414. Mandatory.

UserID The user name used to connect to the queue
manager. Optional, but must be entered if
security is enabled on the server connection
channel.

Password The password associated with the user name.
Optional, but must be entered if security is
enabled on the server connection channel.

CorrelationID The value is used only during event checking
(that is, checkForEvents); otherwise, it is
ignored. Optional.

MapWorking
Directory

The location in the local file system to use for
writing and reading files during a command-
line mapping execution. Ignored if
IncomingMap and OutgoingMap are blank.
Optional.
Using Adapter for MQSeries Integrator (RFH) � 45

IncomingMap Command line that must be executed in order
to map incoming messages. Optional. If left
blank, the adapter calls the callInMap custom
method instead for all incoming mapped
messages.
If populated, then mapped messages undergo
the following steps:
1. Write incoming MQSeries message contents

to a file, <MapWorkingDirectory>\inMsg.txt
(Windows NT)
<MapWorkingDirectory>/inMsg.txt
(UNIX).

2. Call the property value as a system
command, which translates the MQSeries
file to an XML file,
<MapWorkingDirectory>\outBO.xml
(Windows NT)
<MapWorkingDirectory>/outBO.xml
(UNIX).

3. Read in the XML file and fill a business object
with the contents.

Note: If this mapping feature is used for MQSI
adapters, the map executable must be
MQRFH-aware.

OutgoingMap Command line that must be executed in order
to map outgoing messages. Optional. If left
blank, the adapter calls the callOutMap custom
method instead for all outgoing mapped
messages.
If populated, mapped messages undergo the
following steps:
1. Write BO to an XML file,

<MapWorkingDirectory>\inBO.xml
(Windows NT)
<MapWorkingDirectory>/inBO.xml
(UNIX).

2. Call the property value as a system
command, which translates the XML file to
an MQSeries message file,
<MapWorkingDirectory>\outMsg.txt
(Windows NT)
<MapWorkingDirectory>/outMsg.txt
(UNIX).

3. Read in the MQSeries file and put contents
into an MQSeries message.

Note: If this mapping feature is used for MQSI
adapters, the map executable must be
MQRFH-aware.
46 � Adapters for MQSeries User’s Guide

MQSeriesTraceLevel Sets the MQSeries trace level. One of six values:
Off, or one of the five levels of detail that the
MQSeries trace facility records debug-level
information to the file MQSeriesTrace.log,
located in the partner root directory.
Mandatory.

WaitInterval The length of time, in milliseconds, that an
attempt to Get a message from a queue must
wait before an error is generated, if a message is
not immediately available. –1 indicates waiting
indefinitely. Mandatory. Can be overridden in
code.

DebugMessaging One of three values: Off, Terse, Verbose,
representing different levels of debug
messaging. Messages are written to the Adapter
Server console. Debug messaging can be useful
during development and deployment, but is
generally set to Off in a production
environment. Mandatory.

ApplicationGroup The default MQSI Application Group to
embed in the MQRFH of all outbound
messages. Can be overridden in code.
Optional.

DefaultMessageType The default MQSI Message Type to embed in
the MQRFH of all outbound messages. Can be
overridden in code. Optional.

CustomClass Name of example Custom class. Must be the
fully qualified class pathname, dot-delimited,
relative to the classpath. Defaults to
com.extricity.adapters.ibm.mqseries.
MQSeriesIntegratorCustomExample.
Mandatory.

Operations GetUnparsed Retrieves a message and returns raw contents
to the private process. Message is consumed in
the queue.

Input MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Variant, representing message contents. Also,
status BO, which returns either
result="success" or result="failure". If the
operation fails, the status BO also returns the
specific reason why it failed.
Using Adapter for MQSeries Integrator (RFH) � 47

GetMQSI Retrieves a message, calls a map, including
MQRFH, and returns the functional BO.
Note: If the IncomingMap property is
specified, the operation writes the incoming
message to a file, calls the command specified
in this property, reads in the resulting XML,
and returns the BO. If this property is left null,
then calls the custom map method.

Input MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output The BO specified in the adapter's type
definition. Also, status BO, which returns
either result="success" or result="failure". If
the operation fails, the status BO also returns
the specific reason why it failed.

BrowseMQSI Retrieves a message without consuming it in
queue, calls a map, including MQRFH, and
returns the functional BO.
Note: If the IncomingMap property is
specified, the operation writes the incoming
message to a file, calls the command specified
in this property, reads in the resulting XML,
and returns the BO. If this property is left null,
then calls the custom map method.

Input MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output The BO specified in the adapter type definition.
Also, status BO, which returns either
result="success" or result="failure". If the
operation fails, the status BO also returns the
specific reason why it failed.

PostMQSI Send a message using map to do data
transformation, with MQRFH.
Note: If the OutgoingMap property is specified,
the operation writes the BO as an XML file,
calls the command specified in this property,
reads the resulting bytes into a new MQSeries
message, and sends it. If this property is left
null, then calls the custom map method.

Input The BO specified in the adapter type definition.
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.
48 � Adapters for MQSeries User’s Guide

Output Status BO, which returns either
result="success" or result="failure". If the
operation fails, the status BO also returns the
specific reason why it failed.

RequestMQSI Send a message (mapped), with MQRFH, and
then wait for a return message (mapped) with
MQRFH

Input The BO specified in adapter type definition.
Map is applied to this BO as in PostMapped.
A variant, which must be specified by the
private process, indicating the queue name
where the reply must be sent.
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output The BO specified in adapter type definition.
Map is applied to this BO as in GetMapped.
Also, status BO, which returns either
result="success" or result="failure". If the
operation fails, the status BO also returns the
specific reason why it failed.

BrowseUnparsed Retrieves a message and returns raw contents
to the private process. Message is not
consumed in the queue.

Input MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Variant, representing message contents. Also,
status BO.

GetMapped Retrieves a message, calls a map, and returns
the business object. Consumes message in the
queue.
Note: If the IncomingMap property is specified,
the operation writes the incoming message to a
file, calls the command specified in this
property, reads in the resulting XML, and
returns the BO. If this property is left null, calls
the Custom callInMap method.

Input MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Business object. Also, status BO.
Using Adapter for MQSeries Integrator (RFH) � 49

BrowseMapped Retrieves a message, calls a map, and returns
the business object. Does not consume message
in the queue.
Note: If the IncomingMap property is
specified, the operation writes the incoming
message to a file, calls the command specified
in this property, reads in the resulting XML,
and returns the BO. If this property is left null,
calls the Custom callInMap method.

Input MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Business object. Also, status BO.

PostUnparsed Send a message, given the raw message
contents.

Input Variant, representing message contents.
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Status BO.

PostMapped Send a message using map to do data
transformation.
Note: If the OutgoingMap property is specified,
the operation writes the BO as an XML file,
calls the command specified in this property,
reads the resulting bytes into a new
MQMessage, and sends it. If this property is left
null, calls the Custom callOutMap method.

Input Business object.
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Status BO.

RequestUnparsed Send a message (unparsed), and then wait for a
return message (unparsed).

Input Variant, representing contents of outgoing
message.
A variant, which must be specified by the
private process, indicating the queue name
where the reply must be sent.
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.
50 � Adapters for MQSeries User’s Guide

Note: Each operation has an optional status BO that returns either
result="success" or result="failure". If the operation fails, the status BO
also returns the specific reason why it failed.

Output Variant, representing contents of reply
message. Also, status BO.

RequestMapped Send a message (mapped), and then wait for a
return message (mapped).

Input Business object corresponding to output
message. Map is applied to this BO as in
PostMapped.
A variant, which must be specified by the
private process, indicating the queue name
where the reply must be sent.
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Business object corresponding to reply
message. Map is applied to this BO as in
GetMapped. Also, status BO.

Events MQEvent. Contains Variant data. Functionality of checkForEvents is
to poll a given queue and return any messages that appear, as in
GetUnparsed.
Using Adapter for MQSeries Integrator (RFH) � 51

52 � Adapters for MQSeries User’s Guide

c h a p t e r�
5

Using Adapter for MQSeries

Integrator (RFH2)
Read this chapter to learn how to configure and use WebSphere
Partner Agreement Manager Adapters for MQSeries Integrator
(RFH2) version 2.2.

This chapter includes the following sections:

� About IBM MQSeries Integrator (RFH2) on page 54.

� About Adapter for MQSeries Integrator (RFH2) on page 55.

� About the Adapter for MQSeries Integrator (RFH2) environment on
page 56.

� Installing Adapter for MQSeries Integrator (RFH2) on page 59.

� Configuring Adapter for MQSeries Integrator (RFH2) on page 61.

� Working with Adapter for MQSeries Integrator (RFH2) on page 65.

� Modifying Adapter for MQSeries Integrator (RFH2) on page 66.

� Testing Adapter for MQSeries Integrator (RFH2) on page 68.

� Adapter for MQSeries Integrator (RFH2) reference on page 69.

Adapter for MQSeries Integrator (RFH2) combines the message
routing and transformation features of IBM MQSeries Integrator with
the business-to-business integration capabilities of WebSphere
Partner Agreement Manager.
Using Adapter for MQSeries Integrator (RFH2) � 53

About IBM MQSeries Integrator (RFH2)

IBM MQSeries Integrator works with MQSeries messaging, extending its
basic connectivity and transport capabilities to provide a powerful message
broker solution driven by business rules. Messages are formed, routed, and
transformed according to defined rules.

IBM MQSeries Integrator is a data transformation and routing engine for
MQSeries. Also called MQSI, it is composed of four major components, all
of which store message and configuration data in a relational database.

� A message broker hosts and controls business processes, or message flows.
Applications communicate with the broker for the services provided by
the message flows. There can be any number of brokers within a broker
domain.

� The Configuration Manager manages the components and resources—
called a broker domain—in the configuration repository. It initializes
brokers and message processing operations and checks the authority of
defined user IDs.

� The Control Center provides a graphical user interface for creating,
manipulating, and deploying a broker domain. It also allows for
monitoring and managing the operational state of the broker domain.

� The User Name Server interfaces with the operating system to determine
valid users and groups.

A message broker recognizes incoming MQSeries messages as being of given
formats by either:

� Scanning the full message and applying it to stored formats in a declarative
manner.

� Reading the format identifiers in the message’s MQ rules and formatting
header (MQRFH2).

The MQRFH2 is a well-defined segment at the beginning of the MQ
message’s contents section. It provides information to the message broker
about the message, including its format, string representation, message
length, and so forth. The presence of an MQRFH2 header in a message often
improves processing times.
54 � Adapters for MQSeries User’s Guide

Note: Although IBM MQSeries Integrator also supports the MQMD header,
it is not exposed to Adapter for MQSeries Integrator (RFH2) developers
directly. For example, if you need to set MQMD properties, you can use
an MQMessage object.

Adapter for MQSeries Integrator (RFH2) provides support to adapter
developers who must work with messages that include MQRFH2 headers. It
also includes template adapter operations and sample custom code that
illustrates how to manipulate and further customize MQRFH2 headers by
way of an intuitive API.

About Adapter for MQSeries Integrator (RFH2)

This version of Adapter for MQSeries Integrator (RFH2) is compatible with
WebSphere Partner Agreement Manager(PAM) version 2.2 on both
Windows NT and UNIX. It requires the IBM MQSeries classes for Java (MQ
base Java)™, which is compatible with all versions of MQSeries through
version 5.1. Adapter for MQSeries Integrator (RFH2) is compatible with
IBM MQSeries Integrator version 2.0.

Adapter for MQSeries Integrator (RFH2) contains the following:

� Java files for MQSeriesAdapter, MQSeriesAdapterCustom,
MQSeriesCustomExample, and MQSeriesIntegratorAdapter,
MQSeriesIntegratorCustomExample.

� class files corresponding to all Java classes.

� class files designed to handle the IBM MQRFH2 rules and formatting
header, MQSeriesIntegratorRFH2.

� various other class and properties files, inherited from the PAM Adapter
for MQSeries Messaging.

� Java and class files, MQSeriesIntegratorCustomExample, providing an
example adapter, which you can use as a base for your own adapter
customizations.

� XML representations of template adapter type, implementation, and
instance (MQSeriesIntegrator V2Adapter Type.xml, MQSeriesIntegrator
Adapter V2Java Imp.xml, MQSeriesIntegratorV2Adapter.xml).
Using Adapter for MQSeries Integrator (RFH2) � 55

� XML formatted business objects (BOs) including
MQSeriesMsgOptionsBO.xml, MQSIv2HeaderBO.xml, and
MQSIv2MessageBO.xml.

� Javadoc reference for class files.

Key features of Adapter for MQSeries Integrator (RFH2) include:

� Adapter for MQSeries Integrator (RFH2) implementations are subclassed
from the base Adapter for MQSeries Messaging, which enables you to reuse
your Adapter for MQSeries Messaging. With the exception of managing
the MQRFH2, the sending and receiving of messages is the same in both
adapters.

� With customizable classes, you can manage the MQRFH2 rules and
formatting header.

� Templates for a specialized Adapter for MQSeries Integrator (RFH2)
provide for send, receive, and request-reply operations.

� The adapter provides an ability to check for events, or MQSeries messages,
which then initiate PAM public processes.

Tip: Adapter for MQSeries Integrator (RFH2) includes Javadoc for required
Java classes, which provides detailed descriptions of the behavior of these
classes and their associated methods. You might want to refer to the
Javadoc when you develop your own adapters.

About the Adapter for MQSeries Integrator (RFH2)

environment

See Installing Adapters for MQSeries on page 5 for general system
requirements. In addition to general requirements, Adapter for MQSeries
Integrator (RFH2) requires the following software:

� IBM MQSeries classes for Java (MQ base Java), version 5.1.

Updating the CLASSPATH

Adapter for MQSeries Integrator (RFH2) requires that the IBM MQSeries
classes for Java (MQ base Java) be installed on the computer where the
Adapter Server is running. This software is separately available from IBM.

Note: The IBM SupportPac, MA88: MQSeries classes for Java and MQSeries
classes for Java Message Service, contains the required MQSeries software.
56 � Adapters for MQSeries User’s Guide

The following jar files must be installed (on both the PAM client and server
computers):

� MQSeries\java\lib\com.ibm.mq.jar

� MQSeries\java\lib\com.ibm.mqbind.jar

� MQSeries\java\lib\com.ibm.mq.iiop.jar

For more information on IBM MQSeries Integrator products and software,
see the IBM web site:
http://www.software.ibm.com/ts/mqseries/support

After you install the IBM MQSeries classes for Java (MQ base Java), you must
update your system CLASSPATH.

To update your CLASSPATH on Windows NT:

1 From the Windows Start menu, choose Settings > Control Panel > System.

2 Click the Environment tab.

3 Select the CLASSPATH system variable.

The current CLASSPATH value appears.

4 Edit this field as necessary to include the class paths.

For example, if the Java client components are installed in C:\mqm\java\lib,
your CLASSPATH should include C:\mqm\java\lib\com.ibm.mq.jar,
C:\mqm\java\lib\com.ibm.mqbind.jar, and
C:\mqm\java\lib\com.ibm.mq.iiop.jar.

5 Click Set, and then click Apply.

6 Restart the Adapter Server so the new MQSeries Java classes will be
recognized.

To update your CLASSPATH on UNIX:

� Set the environment variable CLASSPATH.

If the Java client components are installed in
/mqm/java/lib, your CLASSPATH should include
/mqm/java/lib/com.ibm.mq.jar, and
/mqm/java/lib/com.ibm.mqbind.jar.

The next time you start the Adapter Server, it will recognize the MQSeries
Java classes.
Using Adapter for MQSeries Integrator (RFH2) � 57

http://www.software.ibm.com/ts/mqseries/support
http://www.software.ibm.com/ts/mqseries/support

About configuring IBM MQSeries Integrator

(RFH2)

Adapter for MQSeries Integrator (RFH2) is designed to require minimal
setup in MQSeries. However, be aware of the following basic interactions
between Adapter for MQSeries Integrator (RFH2) and MQSeries:

� Adapter for MQSeries Integrator (RFH2) requires any queue managers it
accesses to be up and running, with all channels and queues properly
defined. The queue manager must be accessible via the MQSeries Java
client, it must have an IBM MQSeries Integrator message broker running
against it, and the MQSI-specific queues (input, outputs, no-hit, failure)
must be defined correctly.

� The adapter reports an exception if you attempt to communicate with a
queue manager that is down, with an undefined or full queue, or with a
disabled or non-existent channel.

� If the message broker is inoperative, sending messages to it results in those
messages queueing up without any feedback. Attempts to receive messages
would fail in this case.

� In general, the adapter does not actively troubleshoot an inoperative or
otherwise improperly functioning MQSeries queue manager or IBM
MQSeries Integrator message broker, beyond reporting on exceptions or
time-outs encountered.

� When the adapter encounters an exception condition in MQSeries, the
MQSeriesAdapterException contains the exact exception text returned by
MQSeries.

This exception text normally contains an error code number and short
description. For more information on possible error conditions, see the
IBM MQSeries Messages reference.
58 � Adapters for MQSeries User’s Guide

Installing Adapter for MQSeries Integrator (RFH2)

You must install Adapter for MQSeries Integrator (RFH2)—on the same
computer where the Adapter Server is running—by placing the appropriate
Java and class files into your PAM partner directory.

Before you install Adapter for MQSeries Integrator (RFH2), you must install
and configure the MQSeries queue manager. Although you can run both the
MQSeries queue manager and the Adapter Server on the same computer, we
strongly recommend that you install them on different computers. The two
computers must be able to communicate via TCP/IP.

Configuring the MQSeries queue manager includes defining a server
connection channel, defining one or more local queues, and starting the
channel listener. The queue manager might already exist in your enterprise,
or you can create a new one.

Make sure that:

� The IBM MQSeries Integrator message broker is running against the
correct queue manager, that message flows are properly defined, and that
MQSI-specific queues are set up.

� The IBM MQSeries classes for Java (MQ base Java) are installed on the
computer where the Adapter Server is running, and that the Adapter
Server’s CLASSPATH is set to include the Java Client class files (see
Updating the CLASSPATH on page 56).

Important: Make sure you back up your partner root directory before
installing the adapter. This is especially important if you have ever used
(and customized) previous versions of MQSeries adapters.

To install Adapter for MQSeries Integrator (RFH2):

1 Log in—as a user with administrative privileges—to the computer where the
Adapter Server is installed.

2 Install Adapter for MQSeries Integrator (RFH2).

On Windows NT:

a. Copy MQSeriesIntegrator2_2.zip to your partner root directory.

b. Extract the zip file into your partner root directory.
Using Adapter for MQSeries Integrator (RFH2) � 59

Important: If you previously installed an MQSeries adapter, a Confirm File
Overwrite dialog appears. Click Yes to All (twice) to replace the existing
files.

Note: If you have the PAM client and server on two different computers, you
must extract the files into the partner directory on both computers.

On UNIX:

a. Copy MQSeriesIntegrator2_2.tar to your partner root directory.

b. Extract the tar file into your partner root directory.

Important: If you previously installed an MQSeries adapter, a Confirm File
Overwrite dialog appears. Click Yes to All (twice) to replace the existing
files.

Note: If you have the PAM client and server on two different computers, you
need to extract the files into the partner directory on both computers.

Adapter for MQSeries Integrator (RFH2) files appear in this location:

Make sure that the Java and class files are present in the same directory.

To import key elements:

1 Locate the business objects: MQSeriesMsgOptionsBO.xml,
MQSIv2HeaderBO.xml, MQSIv2MessageBO.xml.

2 Locate the adapter type: MQSeriesIntegratorV2AdapterType.xml.

3 Locate the adapter implementation:
MQSeriesIntegratorAdapterV2JavaImp.xml.

On this platform The files are located in

Windows NT <partner_root>\com\extricity\adapters\ibm\mqseries\mqsi2

UNIX <partner_root>/com/extricity/adapters/ibm/mqseries/mqsi2
60 � Adapters for MQSeries User’s Guide

4 Locate the adapter instance: MQSeriesIntegratorV2Adapter.xml.

For general importing guidelines, see Importing key elements on page 9.

Configuring Adapter for MQSeries Integrator

(RFH2)

After you install Adapter for MQSeries Integrator (RFH2), you can configure
it and take advantage of its default behavior, or you can modify the adapter
to suit your specific needs (see Modifying Adapter for MQSeries Integrator
(RFH2) on page 66).

Before you can customize the adapter, you must import all the required
objects.

Importing the business objects

You must import the business objects provided with the adapter.

1 In the Partner Agreement Manager window, choose Import/Export Manager
from the Tools menu.

2 In the Import/Export Manager, choose Open for Import from the File menu.

3 Browse to find the MQSeriesMsgOptionsBO.xml business object. Then click
Open.

On this platform The files are located in

Windows NT <partner_root>\com\extricity\adapters\ibm\mqseries\mqsi2
\test

UNIX <partner_root>/com/extricity/adapters/ibm/mqseries/
mqsi2/test

On this platform The files are located in

Windows NT <partner_root>\com\extricity\adapters\ibm\mqseries\mqsi2
\test

UNIX <partner_root>/com/extricity/adapters/ibm/mqseries/
mqsi2/test
Using Adapter for MQSeries Integrator (RFH2) � 61

The business object appears in the list for importing.

4 Click Import. An Operation Complete dialog indicates success.

5 The MQSeriesMessageOptions business object and element definition set
appear in your Business Objects folder.

6 Repeat steps 2 through 4 for the MQSIv2HeaderBO.xml business object.

7 The MQSIv2Header business object and element definition set appear in
your Business Objects folder.

8 Repeat steps 2 through 4 for the MQSIv2MessageBO.xml business object.

9 The MQSIv2Message business object and element definition set appear in
your Business Objects folder.

Importing the adapter type

Next, you must import the adapter type.

1 Start the Adapter Manager.

2 Choose Adapter Designer from the Tools menu to open the Adapter
Designer.

3 In the Adapter Designer, choose Import from the File menu.

Click the Import button
to add this business
object to your PAM
business objects.
62 � Adapters for MQSeries User’s Guide

The Select Import Type dialog box appears.

4 Select Adapter Type and click OK. In the Import dialog box, browse to find
the MQSeriesIntegratorV2AdapterType.xml file.

5 Click Open. The adapter type appears in your Adapter Types folder.

Note: If you have previously installed an MQSeriesIntegratorV2 Adapter
Type, the import will not work. If you are reinstalling, you must delete the
previous instance; then you can delete the implementation and type.

On this platform The files are located in

Windows NT <partner_root>\com\extricity\adapters\ibm\mqseries\mqsi2
\test

UNIX <partner_root>/com/extricity/adapters/ibm/mqseries/
mqsi2/test

You can import either an
adapter type or an adapter
implementation.
Using Adapter for MQSeries Integrator (RFH2) � 63

Importing the adapter implementation

Next, you must import the adapter implementation.

1 In the Adapter Designer, choose Import from the File menu.

2 Select Adapter Implementation from the list and click OK.

3 Browse to find the MQSeriesIntegratorAdapterV2JavaImp.xml adapter
implementation. Then click Open.

4 The adapter implementation appears under the adapter type.

Importing the adapter instance

Finally, you must import the adapter instance.

1 In the Adapter Manager window, choose Import Adapter Instance from the
Server menu.

2 Browse to find the MQSeriesIntegratorV2Adapter.xml adapter instance.
Then click Open.

3 The adapter instance appears in the Adapter Instances list.

On this platform The files are located in

Windows NT <partner_root>\com\extricity\adapters\ibm\mqseries\mqsi2
\test

UNIX <partner_root>/com/extricity/adapters/ibm/mqseries/
mqsi2/test

On this platform The files are located in

Windows NT <partner_root>\com\extricity\adapters\ibm\mqseries\mqsi2
\test

UNIX <partner_root>/com/extricity/adapters/ibm/mqseries/
mqsi2/test
64 � Adapters for MQSeries User’s Guide

Working with Adapter for MQSeries Integrator

(RFH2)

Here’s a brief overview of the steps you follow when working with Adapter
for MQSeries Integrator (RFH2):

Step 1 Install Adapter for MQSeries Integrator (RFH2) and update the
CLASSPATH with the Java classes.

Step 2 Verify the installation. Make sure that the basic adapter example code works
and the adapter starts up. Create simple Get and Post operations and test a
simple private process. Test an event with a simple public process. Check the
status BO for results.

Step 3 Plan your Adapter for MQSeries Integrator (RFH2), including its required
operations, events, and queues.

Step 4 Define and create the necessary business objects in PAM (if they do not
already exist).

Step 5 Copy and create your own Java class files (for example,
com.<your_company>.adapters.ibm.mqseries.mqsi2.
MQSeriesIntegratorAdapter).

Step 6 Duplicate the adapter type.

Step 7 Add new adapter instance properties if required.

Step 8 Modify the adapter instance CustomClass property to point to your own Java
class files.

Step 9 Go to the adapter operations and change the business objects from the
example default to your own business object names.

Step 10 Modify your copy of the MQSeriesIntegratorCustomExample as required
(for example, instead of Example_Inventory_Item BO, your own business
object).

Step 11 Test your work as you build up the adapter.

Step 12 Add and customize events as required.
Using Adapter for MQSeries Integrator (RFH2) � 65

Step 13 Enhance the adapter with more advanced options after you work through the
basics (for example, adding new operations, advanced mapping techniques,
specialized events).

Modifying Adapter for MQSeries Integrator (RFH2)

Although you can use Adapter for MQSeries Integrator (RFH2) as is, the
default behavior and settings might not meet your business needs. For
example, business objects used in the adapter can be changed to something
more appropriate for your business needs. Other customizations can vary
from simply changing an operation name to using the API to make major
changes to the adapter.

Warning: When you start customizing the adapter, it is a good idea to do so
in your own work space, for example:
<partner_root>\com\<your_company>\adapters\ibm\mqseries\mqsi2\
test
This helps ensure that any future Adapter for MQSeries Integrator (RFH2)
updates do not overwrite your custom work.

Important: See the Partner Agreement Manager Adapter Developer’s Guide
for more information about customizing adapters.

The following are tips to keep in mind during implementation:

� Customize the operations in the adapter type to make it easier for process
designers to select operations correctly.

The PAM process builders who will use this adapter in private process
extension actions rely on the names of the operations and their inputs and
outputs to identify the correct operation. The operations provided with
the Adapter for MQSeries Integrator (RFH2) type are intended as
templates for your own specialized operations. Therefore, it’s a good idea
to change the generic PostMQSI operation name to something more
meaningful, such as PostPurchaseOrder. It’s also a good idea to remove
operations that you don’t expect process designers to use. For example, if
you do not expect to use unparsed messages, you might want to remove
the related operations from your adapter type.

� Review template operations provided in Adapter for MQSeries Integrator
(RFH2) and add new operations as necessary.
66 � Adapters for MQSeries User’s Guide

The template operations provided with Adapter for MQSeries Integrator
(RFH2) represent only a portion of the full range of operations you can
implement using the MQSeriesAdapterCore class public methods
combined with MQRFH2 class methods. For example, although the
template operations call the MQSeriesAdapterCore class getMessage and/
or sendMessage functions only once (if at all) and create generic MQRFH2
instances, you can include operations that call these functions more than
one time within an operation. This enables you to encapsulate more
complex messaging interactions within a single operation, such as a single
PAM business object to multiple MQSeries messages.

For example, a PAM process might include a purchase order business
object that corresponds to several MQSeries messages—one for the
header, plus additional messages for each individual order line. The easiest
way to implement this would be to add a new basic operation—
GetPurchaseOrder—that calls getMessage multiple times in unparsed
mode (that is, using variants instead of business objects) and copy
information from the resulting variants into your Purchase Order
business object.

Note: Before you begin writing custom Java code for your adapter that deals
with messages to/from MQSI, you should have a solid understanding of
the formats defined in MQSI, which applications require those formats,
and how the message broker is mapping messages and routing them to
their destinations. Information you must have before coding includes
message formats, queues, queue managers, channels, listeners, and the
MQRFH2 header format.

To configure Adapter for MQSeries Integrator (RFH2), implement any
custom code by writing one or more MQSeriesAdapterCustom classes or
subclasses.

For more information about using or implementing the
MQSeriesAdapterCore, MQSeriesIntegratorRFH2, and
MQSeriesAdapterCustom classes, see the accompanying Javadoc reference.
You might also want to review the MQSeriesIntegratorCustomExample
subclass, which illustrates how to implement the various custom methods
contained in the MQSeriesAdapterCustom class.

Tip: See <product_root>\Docs\Javadoc\MQSI\index.html for the Javadoc on
NT.
Using Adapter for MQSeries Integrator (RFH2) � 67

Testing Adapter for MQSeries Integrator (RFH2)

As a minimum, an adapter instance must meet these criteria before you can
use it in an extension action. You must be able to:

� start up and shut down the adapter instance without error.

� verify that you can connect to the queue manager.

Before you release an adapter for general use by process designers, it’s a good
idea to test any custom code you have implemented. The easiest way to test
custom code is to create a sample Partner Agreement Manager private
process that uses extension actions that execute the adapter operations.

To test Adapter for MQSeries Integrator (RFH2):

1 Create a PAM private process that includes attempts to post and get a series
of business objects. Make sure that you execute every path in your custom
code.

2 After getting a business object, make sure—in VBScript (NT) or JavaScript
(NT and UNIX)—that the contents are as you expect.

Tip: Use the StatusBO operation output and check the results.

3 Review the log file to make sure that no exceptions were reported within the
adapter itself.

4 While debugging, try setting the adapter’s DebugMessaging property to
Terse or Verbose.

5 Turn on MQSeries tracing and look at the MQSeriesTrace.log file (located in
the partner root directory) in the event of any MQSeries exceptions.

6 Test the public process events.
68 � Adapters for MQSeries User’s Guide

Adapter for MQSeries Integrator (RFH2) reference

This section describes in more detail the sample Adapter for MQSeries
Integrator (RFH2) type that comes packaged with the product. The class
names, properties, operations, and events are described.

Note: The operations are intended as templates only. You are encouraged to
rename these operations and their parameters as needed, or design your
own operations from scratch that use the MQSeriesAdapterCore class’s
methods in other ways.

Finally, because this sample adapter is a subclass of the underlying PAM
Adapter for MQSeries Messaging, the messaging adapter’s operations are
also included.

Note: Each operation has a StatusBO that returns either result="success" or
result="failure". If the operation fails, the StatusBO also returns the
specific reason why it failed.

Adapter for MQSeries Integrator (RFH2) type

These are the components of the Adapter for MQSeries Integrator (RFH2)
type.

Class name com.extricity.adapters.ibm.MQSeries.mqsi2.MQSeriesIntegrator
Adapter

Description The MQSeriesIntegratorAdapter class is a template for MQSeries
adapter implementations that use MQSeriesIntegrator version 2.0.
While this can be run as is, you might need to make site-specific
customizations, particularly for event polling.
This class requires the presence of the MQSeriesAdapterCore,
MQSeriesIntegratorRFH2 and MQCustomIntegrator classes.
This template implementation works with the adapter type that comes
with the MQSeries Integrator v2. If changes are made here,
corresponding changes might need to be made in the type. This class
represents the adapter implementation.

Class name com.extricity.adapters.ibm.MQSeries.mqsi2.MQSeries
IntegratorRFH2

Description This class provides several helper methods for manipulating an MQ
rules and formatting header. This class represents a root class for
accessing the common fields in the header. Note: Publish/Subscribe is
not supported with the MQRFH2 header format.
Using Adapter for MQSeries Integrator (RFH2) � 69

Class name com.extricity.adapters.ibm.MQSeries.mqsi.MQSeriesIntegrator
CustomExample

Description This class contains stub methods that can be implemented on site.
These methods are as follows:
� sendReply. Send a low-level acknowledgment to an incoming

message. Note: You must customize this method (or nothing will
happen).

� receiveReply. Await a low-level acknowledgment to an outgoing
message.
Note: You must customize this method (or nothing will happen).

� callInMap. Custom data transformation method for incoming
messages; called whenever a Mapped or MQSI operation is indicated
and the IncomingMap property is left null.

� callOutMap. Custom data transformation method for outgoing
messages; called whenever a Mapped or MQSI operation is indicated
and the OutgoingMap property is left null.

The default behavior of the mapping methods is to convert business
objects to/from XML as well as read/write default MQRFH2 headers.

Properties Channel Name of server connection channel by which
to connect to queue manager. Mandatory.

CorrelationID The value is used only during event checking
(that is, checkForEvents); otherwise, it is
ignored. Optional.

CustomClass Name of example Custom class. Must be the
fully qualified class pathname, dot-delimited,
relative to the classpath. Defaults to
com.extricity.adapters.ibm.mqseries.MQSeries
IntegratorCustomExample. Mandatory.

DebugMessaging One of three values: Off, Terse, Verbose,
representing different levels of debug
messaging. Messages are written to the Adapter
Server console. Debug messaging might be
useful during development and deployment,
but is generally set to Off in a production
environment. Mandatory.

DefaultQueue Name of a default queue to use for sending and
receiving messages. Can be overridden in code.
Optional.

Hostname Name of host on which QueueManager resides.
This can be an IP address or the IP host name.
Mandatory.
70 � Adapters for MQSeries User’s Guide

IncomingMap Command line that must be executed in order
to map incoming messages. Optional. If left
blank, the adapter calls the callInMap custom
method instead for all incoming mapped
messages.
If populated, mapped messages undergo the
following steps:
1. Write incoming MQSeries message contents

to a file, <MapWorkingDirectory>\inMsg.txt
(Windows NT)
<MapWorkingDirectory>/inMsg.txt
(UNIX).

2. Call the property value as a system
command, which translates the MQSeries
file to an XML file,
<MapWorkingDirectory>\outBO.xml
(Windows NT)
<MapWorkingDirectory>/outBO.xml
(UNIX).

3. Read in the XML file and fill a business object
with the contents.

Note: If this mapping feature is used for MQSI
adapters, the map executable must be
MQRFH2-aware.

MQSeriesTraceLevel Sets the MQSeries trace level. One of six values:
Off, or one of the five levels of detail that the
MQSeries trace facility records debug-level
information to the file MQSeriesTrace.log,
located in the partner root directory.
Mandatory.

MapWorking
Directory

The location in the local file system to use for
writing and reading files during a command-
line mapping execution. Ignored if
IncomingMap and OutgoingMap are blank.
Optional.
Using Adapter for MQSeries Integrator (RFH2) � 71

OutgoingMap Command line that must be executed in order
to map outgoing messages. Optional. If left
blank, the adapter calls the callOutMap custom
method instead for all outgoing mapped
messages.
If populated, mapped messages undergo the
following steps:
1. Write BO to an XML file,

<MapWorkingDirectory>\inBO.xml
(Windows NT)
<MapWorkingDirectory>/inBO.xml
(UNIX).

2. Call the property value as a system
command, which translates the XML file to
an MQSeries message file,
<MapWorkingDirectory>\outMsg.txt
(Windows NT)
<MapWorkingDirectory>/outMsg.txt
(UNIX).

3. Read in the MQSeries file and put contents
into an MQSeries message.

Note: If this mapping feature is used for MQSI
adapters, the map executable must be
MQRFH2-aware.

Password The password associated with the user name.
Optional, but must be entered if security is
enabled on the server connection channel.

Port Name of port to which channel is listening.
Defaults to 1414. Mandatory.

QueueManager Name of queue manager to connect to.
Mandatory.

UserId The user name used to connect to the queue
manager. Optional, but must be entered if
security is enabled on the server connection
channel.

WaitInterval The length of time, in milliseconds, that an
attempt to Get a message from a queue must
wait before erroring out, if a message is not
immediately available. Mandatory. Can be
overridden in code.
72 � Adapters for MQSeries User’s Guide

Operations BrowseMapped Retrieves a message, calls a map, and returns
the business object. Does not consume message
in the queue.
Note: If the IncomingMap property is
specified, the operation writes the incoming
message to a file, calls the command specified
in this property, reads in the resulting XML,
and returns the BO. If this property is left null,
calls the Custom callInMap method (stub
function).

Input MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Business object. Also, status BO. Defaults to the
Example_Inventory_Item BO. Modify this to
output to your own BO as necessary.

BrowseMQSI Retrieves a message without consuming it in
the queue, calls a map, including MQRFH2,
and returns the functional BO.
Note: If the IncomingMap property is
specified, the operation writes the incoming
message to a file, calls the command specified
in this property, reads in the resulting XML,
and returns the BO. If this property is left null,
then calls the custom map method.

Input MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output The MQSIv2Message BO specified in the
adapter type definition. Also, status BO, which
returns either result="success" or
result="failure". If the operation fails, the status
BO also returns the specific reason why it
failed.

BrowseUnparsed Retrieves a message and returns raw contents
to the private process. Message is not
consumed in the queue.

Input MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Variant, representing message contents. Also,
status BO, which returns either
result="success" or result="failure". If the
operation fails, the status BO also returns the
specific reason why it failed.
Using Adapter for MQSeries Integrator (RFH2) � 73

GetMapped Retrieves a message, calls a map, and returns
the business object. Consumes the message in
the queue.
Note: If the IncomingMap property is specified,
the operation writes the incoming message to a
file, calls the command specified in this
property, reads in the resulting XML, and
returns the BO. If this property is left null, calls
the Custom callInMap method (stub
function).

Input MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Business object. Also, status BO. Defaults to the
Example_Inventory_Item BO. Modify this to
output to your own BO as necessary.

GetMQSI Retrieves a message, calls a map, including
MQRFH2, and returns the functional BO.
Consumes the message in the queue.
Note: If the IncomingMap property is
specified, the operation writes the incoming
message to a file, calls the command specified
in this property, reads in the resulting XML,
and returns the BO. If this property is left null,
then calls the custom map method.

Input MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output The MQSIv2Message BO specified in the
adapter type definition. Also, status BO, which
returns either result="success" or
result="failure". If the operation fails, the status
BO also returns the specific reason why it
failed.

GetUnparsed Retrieves a message and returns raw contents
to the private process. Message is consumed in
the queue.

Input MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Variant, representing message contents. Also,
status BO, which returns either
result="success" or result="failure". If the
operation fails, the status BO also returns the
specific reason why it failed.
74 � Adapters for MQSeries User’s Guide

PostMapped Send a message using map for data
transformation.
Note: If the OutgoingMap property is specified,
the operation writes the BO as an XML file,
calls the command specified in this property,
reads the resulting bytes into a new
MQMessage, and sends it. If this property is left
null, calls the Custom callOutMap method
(stub function).

Input Business object, which defaults to the
Example_Inventory_Item BO. Modify this to
output to your own BO as necessary.
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Status BO, which returns either
result="success" or result="failure". If the
operation fails, the status BO also returns the
specific reason why it failed.

PostMQSI Send a message using map for data
transformation, with MQRFH2 header
included.
Note: If the OutgoingMap property is specified,
the operation writes the BO as an XML file,
calls the command specified in this property,
reads the resulting bytes into a new
MQMessage, and sends it. If this property is left
null, then calls the custom map method.

Input The BO specified in the adapter type definition.
Defaults to the Example_Inventory_Item BO.
Modify this to output to your own BO as
necessary.
The MQSIv2Header BO specified in the
adapter type definition.
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Status BO, which returns either
result="success" or result="failure". If the
operation fails, the status BO also returns the
specific reason why it failed.

PostUnparsed Send an unparsed, unmapped message.
Using Adapter for MQSeries Integrator (RFH2) � 75

Input Variant, representing the outgoing message
contents.
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Status BO, which returns either
result="success" or result="failure". If the
operation fails, the status BO also returns the
specific reason why it failed.

RequestMapped Send a message (mapped), and then wait for a
return message (mapped).

Input Business object, which defaults to the
Example_Inventory_Item BO. This BO
corresponds to the output message (map is
applied to this BO as in PostMapped).
Specified in the adapter type definition. Modify
this to output to your own BO as necessary.
A variant, which must be specified by the
private process, indicating the queue name
where the reply must be sent.
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Business object, which defaults to the
Example_Inventory_Item BO. This BO
corresponds to reply message (map is applied
to this BO as in GetMapped).
Also, status BO, which returns either
result="success" or result="failure". If the
operation fails, the status BO also returns the
specific reason why it failed.

RequestMQSI Send a message (mapped), with MQRFH2, and
then wait for a return message (mapped) with
MQRFH2.
76 � Adapters for MQSeries User’s Guide

Input Business object, which defaults to the
Example_Inventory_Item BO. This BO
corresponds to the output message (map is
applied to this BO as in PostMapped).
Specified in the adapter type definition. Modify
this to output to your own BO as necessary.
A variant, which must be specified by the
private process, indicating the queue name
where the reply must be sent.
The MQSIv2Header BO specified in the
adapter type definition.
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output The MQSIv2Message BO specified in the
adapter type definition (map is applied to this
BO as in GetMapped). Also, status BO, which
returns either result="success" or
result="failure". If the operation fails, the status
BO also returns the specific reason why it
failed.

RequestUnparsed Send a message (unparsed), and then wait for a
return message (unparsed).

Input Variant, representing contents of the outgoing
message.
A variant, which must be specified by the
private process, indicating the queue name
where the reply must be sent.
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Variant, representing contents of the reply
message. Also, status BO, which returns either
result="success" or result="failure". If the
operation fails, the status BO also returns the
specific reason why it failed.

Events MQEvent. Contains variant data as the default. Functionality of
checkForEvents is to poll a given queue and return any messages that
appear, as in the GetUnparsed operation.
You can use a business object (BO) instead of a variant for your event.
You can also create your own event. You must modify the
checkForEvents method in MQSeriesIntegratorAdapter.java as well.
If the business object (BO) being returned is an MQSIv2Message, the
adapter does not need to be customized. If you are using a BO that
doesn't contain the MQRFH2 header and contains only the data, the
adapter might need to be customized.
Using Adapter for MQSeries Integrator (RFH2) � 77

Tip: Each operation has an optional StatusBO that returns either
result="success" or result="failure". If the operation fails, the StatusBO
also returns the specific reason why it failed. It is a good idea to check this
status.
78 � Adapters for MQSeries User’s Guide

Adapter for MQSeries Integrator (RFH2) business

objects

The following table provides details about Adapter for MQSeries Integrator
(RFH2) business objects.

Business Object MQSeriesMsgOptions

Description This business object contains message-level options for queue
name and correlation ID. It can be used with all the predefined
operations.

Elements QueueName Queue name, which is used as required for
various operations (for example, as input
for GetMQSI operation—this is the queue
where the GetMQSI operation gets the
message).

CorrelationID CorrelationID, which is used as required for
operations to relate messages to the
application. See IBM MQSeries
documentation for more information.

Business Object MQSIv2Header

Description This business object corresponds to the IBM MQSeries Integrator
MQRFH2 header. It can be used with the MQSI operations (for
example, RequestMQSI). See the IBM MQSeries Integrator
Programming Guide for more information.

Elements standard_header The fixed part of the MQRFH2 header. All
fields are optional. If not defined, the
defaults are used. (See the IBM MQSeries
Integrator Programming Guide, chapter 4,
for the initial value defaults.) By default,
only the standard_header is populated/
defined.

mcd Message content descriptor, which contains
elements to describe the structure of the
message data (for example, XML or PDF).

psc Publish/subscribe command, describing
command messages to the broker.
Note: The publish/subscribe features are not
supported with this adapter release.

pscr Contains information in response to
publish/subscribe messages. Note: The
publish/subscribe features are not
supported with this adapter release.
Using Adapter for MQSeries Integrator (RFH2) � 79

 usr Application (that is, user) defined
properties. With a string representation of
XML, you can add a comment or other
descriptive information to your message
headers. See Using the usr folder on page 82
for more information.

other Optionally, you can add your own group
elements. These elements can be used to
include metadata for advanced processing
requirements, brokering, or data
transformation. See Creating other (custom)
header folders on page 83 for more
information.

Business Object MQSIv2Message

Description The Adapter for MQSeries Integrator (RFH2) message. It consists
of two parts:
� A container for the header of the message.

- If the message received contains an MQRFH2 header, this
container gets populated with the header information. If not,
this is left empty.

� The body of the message (by default, it is set to
Example_Inventory_Item). Modify this to suit your business
needs.

Elements MQSIv2Header See above.

Example_Inventory
_Item

Sample message data BO. This must be
customized (that is, replace this BO with the
one you need) to fit your needs.
80 � Adapters for MQSeries User’s Guide

Working with business objects

Adapter for MQSeries Integrator (RFH2) provides basic functionality when
you install it. First, you must understand the structure of the messages being
passed by the adapter.

You can make changes to the standard header, the folders, and the message
data itself. See the IBM MQSeries Integrator Programming Guide for more
information.

Modifying the MQSIv2header

If your message header needs to include more than the default information,
you must customize the adapter for this. For example, you can change the
default standard_header elements, or you can describe the message contents
using the mcd folder. You can also create your own custom folders, which are
called “other” folders in the MQSeries documentation.

Using the standard_header

You can modify the standard_header defaults, if necessary. To do so, you
must populate and bind the input business object to the operations, using a
private process script action.

Adapter for MQSeries Integrator
(RFH2) provides MQ message
descriptor information behind the
scenes.

MQRFH2
Standard Header

Folders
(mcd, psc, and so on)

Data...

The folders are optional
and have no default values.

You must customize the message
data for your business needs.

Adapter for MQSeries Integrator
(RFH2) provides defaults for the
standard_header. You can modify
the defaults as necessary.

MQMD
(message descriptor)
Using Adapter for MQSeries Integrator (RFH2) � 81

Using the mcd folder

You can use a private process script action to describe your message contents.
If you want to use the mcd header folder, you must populate and bind the
input business object to the operations.

Using the psc folder

If you want to change the defaults in the psc header folder, you must populate
and bind the input business object to the operations, using a private process
script action. See chapter 5 in the IBM MQSeries Integrator Programming
Guide for more information.

Note: The publish/subscribe features are not supported with this adapter
release.

Using the pscr folder

To change the defaults in the pscr header folder, you must populate and bind
the input business object to the operations, using a private process script
action. See chapter 5 in the IBM MQSeries Integrator Programming Guide for
more information.

Note: The publish/subscribe features are not supported with this adapter
release.

Using the usr folder

You can add your own application-defined properties with the usr header
folder. This feature can be used to add a comment or other descriptive
information to your message headers.

The following shows how the usr folder is populated with an XML string.
This can be done in the BO Mapper Utility or the Script Editor. (This script
would be executed before the operation call.)

function main() {
createBO("mqrfh");
var mqrfh2 =

mqrfh.getElementSequence("MQRFH2").newElement();
..... // populate all the standard folders as required.
mqrfh2.setData("usr", "<usr>This is a test string</usr>");

-OR-
82 � Adapters for MQSeries User’s Guide

mqrfh2.setData("usr", "<usr> <user_defined_xml_element>test
data</user_defined_xml_element></usr>");
.
.
.

}

Note: PAM business objects cannot handle the greater than (>) or less than
(<) characters (as part of the data within an element). So a “<” is
translated to “<” and a “>” is translated as “>”.
For example, for the case where usr is set to:

<usr>This is a test string</usr>
The result is:

<usr>This is a test string</usr>

Creating other (custom) header folders

If you want to create your own group elements, you can create customized
“other” header folders. These user-defined elements can be used to include
metadata for advanced processing, brokering, or data transformation.

Here are the steps to follow when creating a customized folder:

1 Open the business object element definition set MQSIv2Header. Use File >
Save As to create a copy in your partner folder. (You can modify your own
partner version; you cannot modify the original.)

2 Open your copy of the MQSIv2Header element definition set. From the
MQRFH2 element/group, use Insert New Element to add a new other folder
(element/group). Add elements to the new other folder as required.

3 Create a business object from the new element definition set. Freeze the
business object.

4 In the Adapter Designer, modify the adapter operations to use the new
business object. See the Partner Agreement Manager Adapter Developer’s
Guide for more information.

5 Modify the MQSeriesIntegratorAdapter.java file.

6 Recompile the MQSeriesIntegratorAdapter.java file.

7 Restart the Adapter Server.

8 Start the adapter instance.

9 Create the process to use the new adapter instance.
Using Adapter for MQSeries Integrator (RFH2) � 83

To make changes to the business objects and element definition sets, you
must make your own copies of the adapter-provided ones. Then, you can add
the folders and elements you need. As an illustration:

You also must update the MQSeriesIntegratorAdapter.java file to include the
new other folder names. The following example illustrates this:

/**
* List of all "other" folders defined in the MQRFH2 header.
* Initially this list is empty, but this list will have to be
* customized if there are folders added to the MQRFH2 header
structure
* other than the "mcd", "psc", "pscr" and "usr".
* This has to be public static.</p>
*/
public static String[] other_folder_list = {
“custom_folder1”,
“custom_folder2”,
“custom_folder3”
};

Use Insert New Element to
add your own other (custom)
folders and elements.
84 � Adapters for MQSeries User’s Guide

Tips for

other

(custom)

folders

� It is safer to add optional elements and sub-elements to the element
definition set. This way, unused fields do not render the BO invalid.

� See the IBM MQSeries Integrator Programming Guide, chapter 4, for
guidelines on creating and using the other (custom) folders.

� MQSeries allows “custom.folder”—PAM does not allow embedded
periods—use “custom_ folder” (with an underscore) as an alternative.

� Only the top-level folders must be defined in the Java code (that is, the
same level as the “psc” and “mcd” folders). Lower-level folders and
sub-elements do not need to be defined.

Working with other (custom) header folders

When an incoming message is intended to start a public process, you can use
an other (custom) header folder and customized dispatching logic (that is,
logic to determine which PAM event a given message corresponds to) to
determine information such as:

� which event type or subprocess the incoming message needs to be
associated with.

� if the process contains partner groups, which partners need to be notified.

� if the message originated from another partner, the identity of that
partner.

If this information is provided (by the originating application) in a
well-defined header, the dispatching logic does not need to scan the message
contents or other fields. Instead, the message processing logic can be
determined from the header alone.

The following element definition set illustrates an other (custom) header:

One possible use for an
other (custom) folder is to
include B2B partner
information.
Using Adapter for MQSeries Integrator (RFH2) � 85

Modifying the MQSIv2Message

If your message data does not include the default Example_Inventory_Item
business object, you must customize the adapter to fit your needs.

Here are the steps that you follow to modify your message (data) business-
object-related information:

1 Open the business object element definition set MQSIv2Message. Use File >
Save As to create a copy in your partner folder. (You can modify your own
partner version; you cannot modify the original.)

2 Create a business object for your message data, if one does not already exist.
This replaces the Example_Inventory_Item BO in your copy of
MQSIv2Message. (This is the data to be returned from the Get operations.)

3 Open your copy of the MQSIv2Message element definition set. Replace the
Example_Inventory_Item element with your new BO.

4 Create a business object from the new element definition set. Freeze the
business object.

5 Modify the MQSeriesIntegratorAdapterCustomExample.java file.

6 Recompile the MQSeriesIntegratorAdapterCustomExample.java file.

7 Use the new custom class in the adapter instance property.

The following example uses the Example_Inventory_Item to construct the
messageBO (callInMap method). There are five arguments that you must
customize in the code. These can be found in the call to
Utilities.constructMessageBO:

constructMessageBO(getBO, // the BO being returned
MQRFH2, // The MQSeriesIntegrator RFH2 // object
EXAMPLE_INVENTORY_ITEM, // BO type name
EXAMPLE_INVENTORY_ITEM, // BO definition name
1, // version of the BO
EXTRICITY, // Owner of the output BO
3L, // Partner ID of owner of BO
sr); // String reader

The third through seventh arguments must be modified.

For this argument You provide this information

BO type name The type name of the new business object that you
created.
86 � Adapters for MQSeries User’s Guide

Do not modify the other arguments.

BO definition name The new business object definition name.

Version of the BO The version number of the new business object.

Owner of the output
BO

The business object owner’s partner name.

Partner ID of BO
owner

The business object owner’s partner ID.

For this argument You provide this information
Using Adapter for MQSeries Integrator (RFH2) � 87

88 � Adapters for MQSeries User’s Guide

c h a p t e r�
6

Using Adapter for MQSeries

Publish/Subscribe
Read this chapter to learn how configure and use WebSphere Partner
Agreement Manager Adapters for MQSeries Publish/Subscribe
version 2.2.

This chapter includes the following sections:

� About IBM MQSeries Publish/Subscribe on page 90.

� About Adapter for MQSeries Publish/Subscribe on page 90.

� About the Adapter for MQSeries Publish/Subscribe environment on
page 91.

� Installing Adapter for MQSeries Publish/Subscribe on page 94.

� Configuring Adapter for MQSeries Publish/Subscribe on page 96.

� Modifying Adapter for MQSeries Publish/Subscribe on page 99.

� Testing Adapter for MQSeries Publish/Subscribe on page 101.

� Adapter for MQSeries Publish/Subscribe reference on page 101.

Adapter for MQSeries Publish/Subscribe combines the message
distribution and subscription features of IBM MQSeries Publish/
Subscribe with the business-to-business integration capabilities of
WebSphere Partner Agreement Manager.
Using Adapter for MQSeries Publish/Subscribe � 89

About IBM MQSeries Publish/Subscribe

IBM MQSeries Publish/Subscribe is freely available from IBM as a
SupportPac to MQSeries 5.x.

When you use the IBM MQSeries Publish/Subscribe capability, a broker
listens to specialized queues on a given queue manager. Applications needing
to exchange messages via a publish/subscribe protocol send messages to a
control queue. The control queue, in turn, notifies the broker that they are to
be publishers and subscribers of specific message topics. Then, published
messages are sent to specific queues (known as streams). From there, the
broker forwards them to queues associated with the subscribers of the given
message’s topics. Both control and published messages must include an
MQSeries Rules and Format Header (MQRFH) that identifies the nature of
the message. This MQRFH is a variation of the IBM MQSeries Integrator
MQRFH.

About Adapter for MQSeries Publish/Subscribe

Adapter for MQSeries Publish/Subscribe, used in conjunction with Adapter
for MQSeries Messaging, provides further support to adapter developers
who must work with MQSeries messages that are published or subscribed via
the publish/subscribe broker. It includes support for managing the publish/
subscribe MQRFH, as well as template adapter operations and sample
custom code that illustrates how to send control messages, send publications,
receive subscribed messages, and manipulate the MQRFH of each message,
all via an intuitive API.

This version of Adapter for MQSeries Publish/Subscribe is compatible with
WebSphere Partner Agreement Manager (PAM) version 2.2 on both
Windows NT and UNIX. It requires the IBM MQSeries classes for Java (MQ
base Java)™, which is compatible with all versions of MQSeries through
version 5.1.

Adapter for MQSeries Publish/Subscribe consists of:

� class files corresponding to all Java classes.

� Java files for MQSeriesPubSubAdapter class.

� Java and class files for an example MQSeriesAdapterCustom subclass
(MQSeriesPubSubCustomExample.java and
MQSeriesPubSubCustomExample.class).
90 � Adapters for MQSeries User’s Guide

� XML representations of template adapter type and implementation
(MQSeriesPubSubAdapterType.xml,
MQSeriesPubSubAdapterJavaImp.xml).

� Javadoc reference for all class files.

Key features of Adapter for MQSeries Publish/Subscribe include:

� Adapter for MQSeries Publish/Subscribe implementations are subclassed
from the base Adapter for MQSeries Messaging. Other than managing the
publish/subscribe MQRFH, in all other respects the same code can be
reused.

� Customizable classes allow you to manage the publish/subscribe MQRFH.

� Sample publish and broadcast-reply operations automatically call the
MQRFH class methods for you.

� The adapter provides the ability to construct and send control messages,
including publisher and subscriber registration and deregistration, and
reloading and deleting retained messages. These control messages can be
sent from any adapter operation.

� The ability to receive broker-generated messages as low-level replies, via a
subclass of the base MQSeries adapter’s custom class is provided. If these
messages include error conditions, the adapter can automatically generate
an exception containing the appropriate error information.

� The adapter provides multiple subscribers per adapter instance as a
checkForEvents feature. The adapter keeps track of which business objects
are associated with which message topic, and which data transformations
to apply.

About the Adapter for MQSeries Publish/Subscribe

environment

See Installing Adapters for MQSeries on page 5 for general system
requirements. In addition to general requirements, Adapter for MQSeries
Publish/Subscribe requires the following software:

� The PAM Adapter for MQSeries Messaging (see Using Adapter for
MQSeries Messaging on page 11).
Using Adapter for MQSeries Publish/Subscribe � 91

� The IBM MQSeries publish/subscribe broker (installed and configured on
an MQSeries queue manager).

� IBM MQSeries classes for Java (MQ base Java), which is available
separately from IBM.

Important: If you are using MQSeries 5.1, make sure that the latest
MQSeries CSDnn (Corrective Service Diskette) is installed before using
the publish/subscribe broker.

See the IBM MQSeries Publish/Subscribe documentation for information
on configuring a publish/subscribe broker.

Updating the CLASSPATH

Adapter for MQSeries Publish/Subscribe requires that the IBM MQSeries
classes for Java (MQ base Java) be installed on the computer where the
Adapter Server is running. This software is separately available from IBM.

Note: The IBM SupportPac, MA88: MQSeries classes for Java and MQSeries
classes for Java Message Service, contains the required MQSeries software.

The following jar files must be installed (on both the PAM client and server
computers):

� MQSeries\java\lib\com.ibm.mq.jar

� MQSeries\java\lib\com.ibm.mqbind.jar

� MQSeries\java\lib\com.ibm.mq.iiop.jar

For more information on IBM MQSeries Publish/Subscribe products and
software, see the IBM web site:
http://www.software.ibm.com/ts/mqseries/support

After you install the IBM MQSeries classes for Java (MQ base Java), you must
update your system CLASSPATH.

To update your CLASSPATH on Windows NT:

1 From the Windows Start menu, choose Settings > Control Panel > System.

2 Click the Environment tab.

3 Select the CLASSPATH system variable.

The current CLASSPATH value appears.
92 � Adapters for MQSeries User’s Guide

http://www.software.ibm.com/ts/mqseries/support
http://www.software.ibm.com/ts/mqseries/support

4 Edit this field as necessary to include the class paths.

For example, if the Java client components are installed in C:\mqm\java\lib,
your CLASSPATH should include C:\mqm\java\lib\com.ibm.mq.jar,
C:\mqm\java\lib\com.ibm.mqbind.jar, and
C:\mqm\java\lib\com.ibm.mq.iiop.jar.

5 Click Set, and then click Apply.

6 Restart the Adapter Server so the new MQSeries Java classes can be
recognized.

To update your CLASSPATH on UNIX:

� Set the environment variable CLASSPATH.

If the Java client components are installed in
/mqm/java/lib, your CLASSPATH should include
/mqm/java/lib/com.ibm.mq.jar, and
/mqm/java/lib/com.ibm.mqbind.jar.

The next time you start the Adapter Server, it will recognize the MQSeries
Java classes.

About configuring IBM MQSeries Publish/

Subscribe

Adapter for MQSeries Publish/Subscribe is designed to require minimal
setup in MQSeries.

� An MQSeries adapter requires any queue managers it accesses to be up
and running, with all channels and queues properly defined. The queue
manager must be accessible via the MQSeries Java Client, it must have an
MQSeries publish/subscribe broker running against it, and the publish/
subscribe-specific queues (control, publish, reply, subscription) must be
defined correctly.

Important: Be sure to edit the MQSeriesPubSubCustomExample.java file
to specify the replyToQueueManagerName and replyToQueueName
variables (set them to your local queue manager).
Using Adapter for MQSeries Publish/Subscribe � 93

The adapter reports an exception if you attempt to communicate with a
queue manager that is down, with an undefined or full queue, or with a
disabled or non-existent channel. The adapter doesn’t enable or actively
troubleshoot an MQSeries network—beyond reporting these types of
exceptions.

If the publish/subscribe broker is inoperative, sending messages to it
results in those messages queueing up without any feedback. Attempts to
receive messages fail in this case. In general, Adapter for MQSeries
Publish/Subscribe does not actively troubleshoot an inoperative or
otherwise improperly functioning MQSeries queue manager or MQSeries
publish/subscribe broker, beyond reporting exceptions and time-outs
encountered.

� When the adapter encounters an exception condition in MQSeries, the
MQSeriesAdapterException contains the exact exception text returned by
MQSeries.

This exception text normally contains an error code number and short
description. For more information on possible error conditions, see the
IBM MQSeries Messages reference.

Installing Adapter for MQSeries Publish/Subscribe

You must install Adapter for MQSeries Publish/Subscribe—on the same
computer where the Adapter Server is running—by copying the appropriate
Java and class files into your PAM partner directory.

Before you install Adapter for MQSeries Publish/Subscribe, you must install
and configure the MQSeries queue manager. See About IBM MQSeries
Publish/Subscribe on page 90 for more information.

Although you can run both the MQSeries queue manager and the Adapter
Server on the same computer, we strongly recommend that you install them
on different computers. The two computers must be able to communicate
via TCP/IP.
94 � Adapters for MQSeries User’s Guide

Make sure that:

� the MQSeries publish/subscribe broker is running against the correct
queue manager, that the broker is configured, and that broker-specific
queues are set up. By default, the adapter sends messages intended for the
broker to the SYSTEM.BROKER.CONTROL.QUEUE, and receives
messages from MQSeries publish/subscribe in queues named
PUBLISHER.REPLY.QUEUE and SUBSCRIBER.REPLY.QUEUE. The
adapter sends publications to PUBLISHER.STREAM, and subscribed
messages appear in SUBSCRIBER.QUEUE. Make sure that the
PUBLISHER.STREAM is not sharable.

� Adapter for MQSeries Messaging is installed. Its files appear in this
location: <partner_root>\com\extricity\adapters\ibm\mqseries.

� the IBM MQSeries classes for Java (MQ base Java) are installed on the
computer where the Adapter Server is running, and make sure that the
Adapter Server’s CLASSPATH is set to include the Java Client class files
(see Updating the CLASSPATH on page 92).

Important: Make sure you back up your partner root directory before
installing the adapter. This is especially important if you have ever used
(and customized) previous versions of MQSeries adapters.

To install Adapter for MQSeries Publish/Subscribe:

1 Log in—as a user with administrative privileges—to the computer where the
Adapter Server is installed.

2 Install Adapter for MQSeries Publish/Subscribe.

On Windows NT:

a. Copy MQSeriesPubSub2_2.zip to your partner root directory.

b. Extract the zip file into your partner root directory.

Important: If you previously installed an MQSeries adapter, a Confirm File
Overwrite dialog appears. Click Yes to All (twice) to replace the existing
files.

Note: If you have the PAM client and server on two different computers, you
must extract the files into the partner directory on both computers.

On UNIX:
Using Adapter for MQSeries Publish/Subscribe � 95

a. Copy MQSeriesPubSub2_2.tar to your partner root directory.

b. Extract the tar file into your partner root directory.

Important: If you previously installed an MQSeries adapter, a Confirm File
Overwrite dialog appears. Click Yes to All (twice) to replace the existing
files.

Note: If you have the PAM client and server on two different computers, you
need to extract the files into the partner directory on both computers.

Adapter for MQSeries Publish/Subscribe files appear in this location:

Make sure that the Java and class files are present in the same directory.

To import key elements:

� Move the file named MQSeriesMsgOptionsBO.xml from the Process Server
computer to the computer where you’re running the PAM client.

For general importing guidelines, see Importing key elements on page 9.

Configuring Adapter for MQSeries Publish/

Subscribe

After you install Adapter for MQSeries Publish/Subscribe, you can configure
it and take advantage of its default behavior, or you can modify the adapter
to suit your specific needs.

On this platform The files are located in

Windows NT <partner_root>\com\extricity\adapters\ibm\mqseries\pubsub

UNIX <partner_root>/com/extricity/adapters/ibm/mqseries/pubsub

On this platform The files are located in

Windows NT <partner_root>\com\extricity\adapters\ibm\mqseries\pubsub
\test

UNIX <partner_root>/com/extricity/adapters/ibm/mqseries/
pubsub/test
96 � Adapters for MQSeries User’s Guide

To configure Adapter for MQSeries Publish/Subscribe:

1 Implement any custom code by writing one or more
MQSeriesAdapterCustom classes or subclasses.

See Modifying Adapter for MQSeries Publish/Subscribe on page 99 for tips on
implementing custom code.

2 If the Adapter Server is not already running, start it.

3 Start the Partner Agreement Manager Process Server and the Adapter Server.

4 Choose Adapter Designer from the Tools menu to open the Adapter
Designer.

5 In the Adapter Designer, choose Import from the File menu.

The Select Import Type dialog box appears.

6 Select Adapter Type and click OK. In the Import dialog box, select the
MQSeriesPubSub Adapter Type XML file located in:
<partner_root>\com\extricity\adapters\ibm\mqseries\pubsub\test

This creates a template adapter type that you can edit to conform to your
customized adapter code. For example, you can add any new operations you
need.

� If you plan to use the publish/subscribe or mapped operations, you can
edit their inputs and outputs to match the business objects you plan to get
and post.

� Follow the instructions in the Partner Agreement Manager Adapter
Developer’s Guide to set default property values as appropriate for the
adapter type.

You can import either an
adapter type or an adapter
implementation.
Using Adapter for MQSeries Publish/Subscribe � 97

� If you plan to subscribe to any publications, you must write a
checkForEvents() method that is appropriate for your style of messaging.
The sample checkForEvents() method included in
MQSeriesPubSubAdapter.java sends a RequestUpdate message to the
broker before checking for subscribed messages. If you are not using
Retained Publications, don’t send RequestUpdate messages.

� If you plan to subscribe to multiple message topics, each topic might
require different data transformation logic. Make sure that your
callInMap() method or your command-line maps know how to transform
multiple message types to the correct business object types.

� If you plan to use subscribed message events (events containing business
object data), create a corresponding event type.

7 In the Adapter Designer, choose Import again, select Adapter
Implementation, and select the MQSeriesPubSub Adapter Java Imp XML file
located in:
<partner_root>\com\extricity\adapters\ibm\mqseries\pubsub\test

This creates the adapter implementation. Make sure that the adapter
implementation’s class name and package names are correct.

8 In the Adapter Server, choose Adapter Manager from the Tools menu to start
the Adapter Manager.

9 Choose Add from the Adapter menu to create a new instance of Adapter for
MQSeries Publish/Subscribe, and follow the instructions in the Partner
Agreement Manager Adapter Developer’s Guide to set the connection property
values.

� If you plan to use a command-line-executable map for your Mapped
operations, you must enter the system commands in the IncomingMap
and OutgoingMap properties.

� If your adapter checks for events, make sure that event polling is enabled
and polls at an appropriate time interval.

� If you have created a subclass of the MQSeriesPubSubAdapterCustom
class for this instance, you must enter its name in the CustomClass
property.

� Set the MQSeriesTrace property according to your debugging needs. You
might want to turn this on only during development, testing, or
maintenance. The logs can quickly grow very large.

� In the Adapter Manager, start the new adapter instance and resolve any
exceptions that occur.
98 � Adapters for MQSeries User’s Guide

As soon as the adapter instance has connected to the queue manager, you are
ready to begin using it in extension actions.

It is unlikely that the adapter’s default behavior will suit your business needs.
The adapter instance communicates with only one queue. Also, remote
applications receiving your MQSeries messages must understand XML, and
they also must be able to construct the XML messages that your adapter
consumes.

The following sections provide guidelines for customizing the adapter to suit
your specific needs.

Modifying Adapter for MQSeries Publish/Subscribe

Although you can use Adapter for MQSeries Publish/Subscribe as is, the
default behavior and settings might not meet your business needs. For
example:

� The default mapping behavior for mapped operations is to convert
business objects to/from XML with MQRFH.

� Publish and BroadcastReply operations send messages to a queue named
PUBLISHER.STREAM and receive messages from a queue named
SUBSCRIBER.QUEUE. Subscribed messages also arrive in
SUBSCRIBER.QUEUE.

� Control messages are sent by most operations, as well as startup, to
SYSTEM.BROKER.CONTROL.QUEUE.

� Broker reply messages are sent to PUBLISHER.REPLY.QUEUE and
SUBSCRIBER.REPLY.QUEUE.

� Other operations connect to the queue specified in the DefaultQueue
property.

As a result, you might need to customize Adapter for MQSeries Publish/
Subscribe to suit your specific needs.

Important: See the Partner Agreement Manager Adapter Developer’s Guide
for more information about customizing adapters.

The following are tips to bear in mind during implementation:

� Customize the operations in the adapter type to make it easier for process
designers to select operations correctly.
Using Adapter for MQSeries Publish/Subscribe � 99

The PAM process builders who will use this adapter in private process
extension actions rely on the names of the operations and their inputs and
outputs to identify the correct operation. The operations provided with
the Adapter for MQSeries Publish/Subscribe type are intended as
templates for your own specialized operations. Therefore, it’s a good idea
to change the generic Publish operation name to something more
meaningful, such as PublishPurchaseOrder. It’s also a good idea to remove
operations that you don’t expect process designers to use. For example, if
you do not expect to use unparsed messages, you might want to remove
them from your adapter type.

� Review template operations provided in Adapter for MQSeries Publish/
Subscribe and add new operations as necessary.

The template operations provided with Adapter for MQSeries Publish/
Subscribe represent only a portion of the full range of operations you can
implement using the Core class public methods combined with MQRFH
class methods. For example, although template operations call the Core
class getMessage and/or sendMessage functions only once (if at all) and
create generic MQRFH instances, you can include operations that call
these functions multiple times within an operation. This allows you to
encapsulate complex messaging interactions within a single operation,
such as one PAM business object to multiple MQSeries messages.

For example, a PAM process might include a purchase order business
object that corresponds to several MQSeries messages—one for the
header, plus additional messages for each individual order line. The easiest
way to implement this is to add a new basic operation (for example,
GetPurchaseOrder) that calls getMessage multiple times in unparsed
mode and copies information from the resulting variants into your
Purchase Order business object.

Tip: Before you begin writing custom Java code for your adapter to deal with
messages to/from publish/subscribe broker, you must have a solid
understanding of the message topics that applications are exchanging,
which applications require which messages, and how the broker(s) are
routing publications to their destinations. Information you must have
before coding includes the publication streams and subscription queues of
your messages, their topics and the structure of their contents, and the
queues on which broker replies appear.
100 � Adapters for MQSeries User’s Guide

For more information about using or implementing the
MQSeriesAdapterCore and MQSeriesPubSubCustomExample classes, see
the accompanying Javadoc reference. You might also want to review the
MQSeriesPubSubCustomExample subclass, which illustrates how to
implement the various custom methods contained in the
MQSeriesAdapterCustom class.

Testing Adapter for MQSeries Publish/Subscribe

As a minimum, an adapter instance must meet these criteria before you can
use it in an extension action. You must be able to:

� start up and shut down the adapter instance without error.

� verify that you can connect to the queue manager.

Before you release an adapter for general use by process designers, it’s a good
idea to test any custom code you have implemented. The easiest way to test
custom code is to create a sample Partner Agreement Manager private
process that uses extension actions that execute the adapter operations.

To test Adapter for MQSeries Publish/Subscribe:

1 Create a PAM private process that includes attempts to post and get a series
of business objects. Make sure that you execute every path in your custom
code.

2 After getting a business object, make sure—in VBScript (NT) or JavaScript
(NT and UNIX)—that the contents are as you expect.

Tip: Use the StatusBO operation output and check the results.

3 Review the log file to make sure that no exceptions were reported within the
adapter itself.

4 Turn on MQSeries tracing and look at the MQSeriesTrace.log file (located in
the partner root directory) in the event of any MQSeries exceptions.

5 Test the public process events.

Adapter for MQSeries Publish/Subscribe reference

This section describes in more detail the sample Adapter for MQSeries
Publish/Subscribe type that comes packaged with the product. The class
names, properties, operations, and events are all described here.
Using Adapter for MQSeries Publish/Subscribe � 101

Note: The operations are intended as templates only. You are encouraged to
rename these operations and their parameters as needed, or design your
own operations from scratch that use the MQSeriesAdapterCore class’s
methods in other ways.

Finally, because this sample adapter is really a subclass of the underlying
sample Adapter for MQSeries Messaging type, its operations are also
included.

Note: Each operation has a status BO that returns either result="success" or
result="failure". If the operation fails, the status BO also returns the
specific reason why it failed.

Adapter for MQSeries Publish/Subscribe type

These are the components of the Adapter for MQSeries Publish/Subscribe
type.

Class name com.extricity.adapters.ibm.mqseries.pubsub.MQSeriesPubSub
Adapter.

Description This class represents the adapter implementation. It was generated
from the Adapter Designer and subsequently edited to call methods
in the MQSeriesAdapterCore class.

Class name com.extricity.adapters.ibm.mqseries.pubsub.MQSeriesPubSubRFH.

Description Class for managing MQ Rules and Format Headers of messages sent
to or received from the broker. This class hides the complexity of
managing the MQRFH fields and commands that are specific to the
publish/subscribe MQRFH.

Class name com.extricity.adapters.ibm.mqseries.pubsub.MQSeriesPubSub
CustomExample.
102 � Adapters for MQSeries User’s Guide

Description This class contains stub methods that can be implemented on site.
These methods are as follows:
� sendReply. Send a low-level acknowledgment to an incoming

message.
� receiveReply. Await a low-level acknowledgment to an outgoing

message, including replies sent from the broker.
� callInMap. Custom data transformation method for incoming

messages; called whenever a “mapped” operation is indicated and
the IncomingMap property is left null.

� callOutMap. Custom data transformation method for outgoing
messages; called whenever a “mapped” operation is indicated and
the OutgoingMap property is left null.

The default behavior of the mapping methods is to convert business
objects to/from XML as well as read/write default MQRFHs.

Properties QueueManager Name of queue manager to connect to.
Mandatory.

Channel Name of server connection channel by which
to connect to queue manager. Mandatory.

DefaultQueue Name of a default queue to use for sending
and receiving messages. Can be overridden in
code. Optional.

Hostname Name of host on which QueueManager
resides. This can be an IP address or the IP
host name. Mandatory.

Port Name of port to which channel is listening.
Defaults to 1424. Mandatory.

CorrelationID The value is used only during event checking
(that is, checkForEvents), otherwise, it is
ignored. Optional.

MapWorking
Directory

The location in the local file system to use for
writing and reading files during a command-
line mapping execution. Ignored if
IncomingMap and OutgoingMap are blank.
Optional.
Using Adapter for MQSeries Publish/Subscribe � 103

IncomingMap Command line that must be executed in
order to map incoming messages. Optional. If
left blank, the adapter calls the callInMap
custom method instead for all incoming
mapped messages.
If populated, mapped messages undergo the
following steps:
1. Write incoming MQSeries message

contents to a file,
<MapWorkingDirectory>\MQmsg.txt
(Windows NT)
<MapWorkingDirectory>/MQmsg.txt
(UNIX).

2. Call the property value as a system
command, which translates the MQSeries
file to an XML file,
<MapWorkingDirectory>\MQmsg.xml
(Windows NT)
<MapWorkingDirectory>/MQmsg.xml
(UNIX).

3. Read in the XML file and fill a business
object with the contents.

Note: If this mapping feature is used for
publish/subscribe adapters, the map
executable must be MQRFH-aware.

UserID The user name used to connect to the queue
manager. Optional, but must be entered if
security is enabled on the server connection
channel.

Password The password associated with the user name.
Optional, but must be entered if security is
enabled on the server connection channel.
104 � Adapters for MQSeries User’s Guide

OutgoingMap Command line that must be executed in
order to map outgoing messages. Optional. If
left blank, the adapter calls the callOutMap
custom method instead for all outgoing
mapped messages.
If populated, mapped messages undergo the
following steps:
1. Write BO to an XML file,

<MapWorkingDirectory>\MQmsg.xml
(Windows NT)
<MapWorkingDirectory>/MQmsg.xml
(UNIX).

2. Call the property value as a system
command, which translates the XML file to
an MQSeries message file,
<MapWorkingDirectory>\MQmsg.txt
(Windows NT)
<MapWorkingDirectory>/MQmsg.txt
(UNIX).

3. Read in the MQ file and put contents into
an MQSeries message.

Note: If this mapping feature is used for
publish/subscribe adapters, the map
executable must be MQRFH-aware.

MQSeriesTraceLevel Sets the MQSeries trace level. One of six
values: Off, or one of the five levels of detail
that the MQSeries trace facility records
debug-level information to the file
MQSeriesTrace.log, located in the partner
root directory. Mandatory.

WaitInterval The length of time, in milliseconds, that an
attempt to get a message from a queue must
wait before erroring out, if a message is not
immediately available. –1 indicates waiting
indefinitely. Mandatory. Can be overridden
in code.

BrokerControl
Queue

The name of the queue to which to send
broker control messages, such as publisher
and subscriber registration/deregistration.
Mandatory. Can be overridden in code.

PublisherStream The name of the queue to which published
messages must be sent. Optional. Can be
overridden in adapter implementation.

SubscriberQueue The name of the queue to which subscribed
messages are to be sent. Optional. Can be
overridden by adapter implementation.
Using Adapter for MQSeries Publish/Subscribe � 105

PublisherQueue The queue to which a subscriber of a message
must send a response to that message.
Optional. The publisher awaits responses on
this queue. The PublisherQueue also becomes
part of the publisher's identity; subscribers
who want to receive messages from a
publisher with PublisherQueue specified
must specify this queue as part of the
subscription. Set this property if you expect
subscribing applications to respond to
messages that the adapter publishes.

SubscriberStream Limits the messages a subscriber receives to
only those messages that a publisher sent to
this specific publication stream. Optional.
Only incoming publications sent to this
stream are forwarded to the adapter.

RegisterPublisherPer
Message

Indicates whether or not to perform dynamic
publication registration whenever a message
is published, as opposed to registering the
publisher ahead of time, upon startup.
Mandatory. Can be overridden in the adapter
implementation.

CustomClass Name of example Custom class. Must be the
fully qualified class pathname, dot-delimited,
relative to the classpath. Defaults to
com.extricity.adapters.ibm.mqseries.
MQSeriesPubSubCustomExample.
Mandatory.

Operations GetUnparsed Retrieves a message and returns raw contents
to the private process. Message is consumed
in the queue.

Input MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Variant, representing message contents. Also,
status BO, which returns either
result="success" or result="failure". If the
operation fails, the status BO also returns the
specific reason why it failed.

Publish Publish a message, with MQRFH.

Input The BO to publish.
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.
106 � Adapters for MQSeries User’s Guide

Output Status BO, which returns either
result="success" or result="failure". If the
operation fails, the status BO also returns the
specific reason why it failed.

BroadcastReply Publish a message, with MQRFH, and await a
single reply.

Input The BO to publish.
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output The BO that contains the reply. Also, status
BO.

BrowseUnparsed Retrieves a message and returns raw contents
to the private process. Message is not
consumed in the queue.

Input MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Variant, representing message contents. Also,
status BO.

GetMapped Retrieves a message, calls a map, and returns
the business object. Consumes message in the
queue.
Note: If the IncomingMap property is
specified, the operation writes the incoming
message to a file, calls the command specified
in this property, reads in the resulting XML,
and returns the BO. If this property is left
null, calls the Custom callInMap method.

Input MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Business object. Also, status BO.

BrowseMapped Retrieves a message, calls a map, and returns
the business object. Does not consume
message in the queue.
Note: If the IncomingMap property is
specified, the operation writes the incoming
message to a file, calls the command specified
in this property, reads in the resulting XML,
and returns the BO. If this property is left
null, calls the Custom callInMap method.
Using Adapter for MQSeries Publish/Subscribe � 107

Input MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Business object. Also, status BO.

PostUnparsed Send a message, given the raw message
contents.

Input Variant, representing message contents
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Status BO.

PostMapped Send a message using map to do data
transformation.
Note: If the OutgoingMap property is
specified, the operation writes the BO as an
XML file, calls the command specified in this
property, reads the resulting bytes into a new
MQMessage, and sends it. If this property is
left null, calls the Custom callOutMap
method.

Input Business object.
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Status BO.

RequestUnparsed Send a message (unparsed), and then wait for
a return message (unparsed).

Input Variant, representing contents of outgoing
message.
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.

Output Variant, representing contents of reply
message. Also, status BO.

RequestMapped Send a message (mapped), and then wait for a
return message (mapped).

Input Business object corresponding to output
message. Map is applied to this BO as in
PostMapped.
MQSeriesMsgOptions business object
containing values for the QueueName and
CorrelationID to be used by the operation.
108 � Adapters for MQSeries User’s Guide

Note: Each operation has a status BO that returns either result="success" or
result="failure". If the operation fails, the status BO also returns the
specific reason why it failed.

Output Business object corresponding to reply
message. Map is applied to this BO as in
GetMapped. Also, status BO.

Events MQEvent. Contains Variant data. Functionality of checkForEvents is
to poll a given queue and return any messages that appear, as in
GetUnparsed.
Using Adapter for MQSeries Publish/Subscribe � 109

110 � Adapters for MQSeries User’s Guide

c h a p t e r�
7

Using Adapter for MQSeries

Workflow
Read this chapter to learn how to configure and use WebSphere
Partner Agreement Manager Adapters for MQSeries Workflow
version 2.2.

This chapter includes the following sections:

� About IBM MQSeries Workflow on page 112.

� About Adapter for MQSeries Workflow on page 112.

� About the Adapter for MQSeries Workflow environment on page 114.

� Installing Adapter for MQSeries Workflow on page 118.

� Configuring Adapter for MQSeries Workflow on page 119.

� Modifying Adapter for MQSeries Workflow on page 121.

� Testing Adapter for MQSeries Workflow on page 123.

� Adapter for MQSeries Workflow reference on page 124.

Adapter for MQSeries Workflow combines the process automation
and tracking features of IBM MQSeries Workflow with the business-
to-business integration capabilities of WebSphere Partner Agreement
Manager.
Using Adapter for MQSeries Workflow � 111

About IBM MQSeries Workflow

IBM MQSeries Workflow provides process-oriented solutions on top of
MQSeries. Processes consist of several activities that data passes through.
This data is hierarchically structured, and closely matches the structure of
PAM business objects. The activities represent programs running on client
computers. These programs can link with end systems or present interfaces
for user interaction (this is more common).

IBM MQSeries Workflow presents a client API in multiple languages—
including Java—that you can use to implement a client application that both
interacts with running processes and administers—starts or stops—them.
Adapter for MQSeries Workflow is an example of such an application.

About Adapter for MQSeries Workflow

This version of Adapter for MQSeries Workflow is compatible with
WebSphere Partner Agreement Manager (PAM) version 2.2 on both
Windows NT and UNIX. It requires the IBM MQSeries Workflow Java API,
which is shipped with IBM MQSeries Workflow 3.3.

Note: Earlier versions of IBM MQSeries Workflow are not supported by this
adapter.

Adapter for MQSeries Workflow consists of:

� class files corresponding to all Java classes.

� Java files for MQSeriesWorkflowAdapter and
MQSeriesWorkflowAdapterCustom classes.

� Java and class files for an example MQSeriesWorkflowAdapterCustom
subclass (MQSeriesWorkflowCustomExample.java and
MQSeriesWorkflowCustomExample.class).

� XML representations of template adapter type, implementation, and
instance (MQSeriesWorkflowAdapterType.xml,
MQSeriesWorkflowAdapterJavaImp.xml,
MQSeriesWorkflowAdapterInstance.xml).

� Javadoc reference for all class files.
112 � Adapters for MQSeries User’s Guide

Key features of Adapter for MQSeries Workflow include:

� Ability to run an IBM MQSeries Workflow (MQWF) process from an
extension action. Certain operations create and start a process instance.
These operations can also convert a PAM business object into an MQWF
data container and pass it as the input to the new process. This feature
allows an MQWF process to act as a subprocess in a PAM private process.
You can also return immediately to PAM after submitting the MQWF
process, waiting for it to finish.

� Ability to embed PAM processes in an MQWF work item. The adapter’s
checkForEvents method polls for work items belonging to a specific user.
When a work item is found, its input container can be converted into a
PAM business object and passed to PAM as an Adapter Server event. The
work item is then programmatically closed out, allowing the MQWF
process to continue. This feature allows a PAM public process to act as a
subprocess in an MQWF process.

� Ability to check status of MQWF processes. This allows PAM users to design
processes to react to changes in the state of MQWF processes—for
example, to notify an administrator if an MQWF process has failed, or to
go down a different path if an MQWF process hasn’t completed yet.

� Two kinds of data translation are supported:

� Direct isomorphic translation between PAM business objects and
MQWF data containers that are identically named and structured.

� Custom translation that allows you to implement your own
transformation logic, which can include the direct translation of
sub-elements.

� Isomorphic translation is the translation between a PAM business object
and an MQWF data container in which the structures and element names
are identical.

� Per-adapter-instance mapping and network configuration. Information that
the adapter needs for successful operation, such as which maps to apply
and how to connect to the MQWF execution server (domain name,
system group name, system name), are set up as properties in the adapter
instance. You can reuse the same adapter implementation, regardless of
these property values.
Using Adapter for MQSeries Workflow � 113

� All operations return a specialized Exception subclass. This Exception
differentiates between MQWF-related errors and non-MQSeries errors,
and contains message and stack trace functionality that allows for better
error reporting in Adapter Server dialog boxes and the PAM Auditor. In
adapter operations, it’s a good idea to catch this exception in your adapter
implementations and populate a status business object.

� Security in the form of a user name and password that are entered as
adapter properties.

About the Adapter for MQSeries Workflow

environment

See Installing Adapters for MQSeries on page 5 for general system
requirements. In addition to general requirements, you need:

� IBM MQSeries Workflow 3.3, which includes IBM MQSeries Workflow
Java API and RMI-IIOP.

� IBM JDK 1.2.2 on the Adapter Server computer, and on the IBM
MQSeries Workflow Java agent computer.

� IBM JDK 1.2.2 on the IBM MQSeries Workflow Java agent computer.

� IBM MQSeries Workflow Java agent up and running.

It must be installed and running on the MQWF server computer and use
the RMI-IIOP transport and locator options. The adapter can connect
only if the gateway is up and running.

� IBM MQSeries Workflow JNDI name server, which must be set to connect
to the IBM MQSeries Workflow Java agent. See IBM documentation to
update the JNDI locator policy.

� IBM MQSeries Workflow JNDI name server, which must be set to connect
to the IBM MQSeries Workflow Java agent. See IBM documentation to
update the JNDI locator policy.

Updating the CLASSPATH

Adapter for MQSeries Workflow requires that certain IBM MQSeries
Workflow Java agent jar files be present on the computer where the Adapter
Server is running. The IBM MQSeries Workflow Java agent is included with
IBM MQSeries Workflow 3.3, which is separately available from IBM.
114 � Adapters for MQSeries User’s Guide

After you install each of these products, you must move the required files to
the computer where the Adapter Server is running. We recommend that you
create a subdirectory under your partner root directory for third-party
library files—for example, <partner_root>\external.

To update your CLASSPATH on Windows NT:

1 From the Windows Start menu, choose Settings > Control Panel > System.

2 Click the Environment tab.

3 Select the CLASSPATH system variable.

The current CLASSPATH value appears.

4 Edit this field as necessary to include the jar file.

For example, if you copied the jar files to <partner_root>\external, the
following must be in your CLASSPATH:
<partner_root>\external\fmcojagt.jar;
<partner_root>\external\fmcojapi.jar.

5 Click Set, and then click Apply.

The next time you launch the Adapter Server, it will recognize the MQSeries
Java Client classes.

To update your CLASSPATH on UNIX:

If you copied the jar files to <partner_root>/external, these files must be in
your CLASSPATH:
<partner_root>/external/fmcojagt.jar;
<partner_root>/external/fmcojapi.jar.

Product Required jar file(s) Installed in (default)

IBM MQSeries
Workflow Java agent

fmcojagt.jar,
fmcojapi.jar

C:\fmcwinnt\bin\java3300
(Windows NT)

/bin/java3300 (UNIX)
Using Adapter for MQSeries Workflow � 115

About configuring IBM MQSeries Workflow

Adapter for MQSeries Workflow is designed to require minimal setup in
MQSeries.

� If you plan to use Direct translation, you must define MQWF data
structures and PAM business objects in advance. Business objects and
MQWF data structures must be isomorphic (identical in name and
structure). For example, if a “submit process” adapter operation uses
Direct translation, the input of the MQWF process must be a container
that is identical to the operation’s input business object.

� If you plan to use checkForEvents, you must define MQWF program
activities so that their input data structure is isomorphic to the PAM
business object that corresponds to the Adapter Server event. Also, the
name of the program activity (as it appears in the MQWF process, not the
name of the program itself) must match the name of the Adapter Server
event.

� You might want to create an MQWF user exclusively for Partner
Agreement Manager adapters. When Adapter for MQSeries Workflow
connects to an MQWF domain, it uses a specific user name, and its
checkForEvents checks for any work items with a specific name visible to
that user. Therefore, you must make sure that work items do not get
assigned to that user if they are not intended for the adapter.

� The MQWF program activity that corresponds to Adapter Server events
must have these properties:

� It must be set for manual invocation, so that it is in a wait state until the
adapter’s checkForEvents can pick up its input. If it is invoked
automatically, the adapter might never “see” it.
116 � Adapters for MQSeries User’s Guide

� There is no need to implement an executable for this program. (Use a
harmless executable, such as java.exe without any arguments.) The
adapter’s checkForEvents force-finishes the work item once it has read
the input container; consequently the specified executable never
executes.

� If you use an MQWF process as a PAM subprocess that is set so that the
extension action waits for the MQWF process to complete, you might
need to return the output of the MQWF process to PAM. The only way to
do so is via a work item that the extension action looks for (much like
checkForEvents looks for work items). Make sure that this work item is
identified with a name that differs from work items that checkForEvents
picks up. Also, this should be the last activity in the process, so that its
output really represents the finished state of the MQWF process.
Using Adapter for MQSeries Workflow � 117

Installing Adapter for MQSeries Workflow

You must install Adapter for MQSeries Workflow—on the same computer
where the Adapter Server is running—by copying the appropriate Java and
class files into your PAM partner directory.

Warning: Make sure you back up your partner root directory before
installing the adapter. This is especially important if you have ever used
(and customized) previous versions of MQSeries adapters.

Before you install Adapter for MQSeries Workflow, make sure that:

� the IBM MQSeries Workflow execution server is installed and configured
correctly. Although you can run both the IBM MQSeries Workflow
execution server and the Adapter Server on the same computer, we
strongly recommend that you install them on different computers. The
two computers must be able to communicate via TCP/IP.

� the IBM MQSeries Workflow Java API is installed on the computer where
the Adapter Server is running, and that the Adapter Server’s CLASSPATH
is set to include the Java API class files (see Installing Adapters for MQSeries
on page 5).

To install Adapter for MQSeries Workflow:

1 Log in—as a user with administrative privileges—to the computer where the
Adapter Server is installed.

2 Add the following libraries to the client’s CLASSPATH:

� MQSeries support library (com.ibm.mq.jar)

� Workflow library (fmcojagt.jar, fmcojapi.jar)

3 Install Adapter for MQSeries Workflow.

On Windows NT:

a. Copy MQSeriesWorkflow2_2.zip to your partner root directory.

b. Extract the zip file into your partner root directory.

Important: If you previously installed an MQSeries adapter, a Confirm File
Overwrite dialog appears. Click Yes to All (twice) to replace the existing
files.
118 � Adapters for MQSeries User’s Guide

Note: If you have the PAM client and server on two different computers, you
must extract the files into the partner directory on both computers.

On UNIX:

a. Copy MQSeriesWorkflow2_2.tar to your partner root directory.

b. Extract the tar file into your partner root directory.

Important: If you previously installed an MQSeries adapter, a Confirm File
Overwrite dialog appears. Click Yes to All (twice) to replace the existing
files.

Note: If you have the PAM client and server on two different computers, you
need to extract the files into the partner directory on both computers.

Adapter for MQSeries Workflow files appear in this location:

Make sure that the Java and class files are present in the same directory.

Configuring Adapter for MQSeries Workflow

After you install Adapter for MQSeries Workflow, you can configure it and
take advantage of its default behavior, or you can modify the adapter to suit
your specific needs (see Modifying Adapter for MQSeries Workflow on
page 121). For general importing guidelines, see Importing key elements on
page 9.

To configure Adapter for MQSeries Workflow:

1 Implement any custom code by writing one or more
MQSeriesWorkflowAdapterCustom classes or subclasses.

Tip: If you plan to use the default mapping behavior of converting business
objects directly to/from MQWF data container objects, do not edit the
MQSeriesWorkflowAdapterCustom class. See Modifying Adapter for
MQSeries Workflow on page 121 for tips on implementing custom code.

On this
platform

The files are located in

Windows NT <partner_root>\com\extricity\adapters\ibm\mqwf

UNIX <partner_root>/com/extricity/adapters/ibm/mqwf
Using Adapter for MQSeries Workflow � 119

2 If the Adapter Server is not already running, start it.

3 Start the Partner Agreement Manager Process Server and the Adapter Server.

4 Choose Adapter Designer from the Tools menu to open the Adapter
Designer.

5 In the Adapter Designer, choose Import from the File menu.

The Select Import Type dialog box appears.

6 Select Adapter Type and click OK. In the Import dialog box, select the
MQSeriesWorkflow Adapter Type XML file located in:
<partner_root>\com\extricity\adapters\ibm\mqwf\test

This creates a template adapter type that you can edit to conform to your
customized adapter code. For example, you can add any new operations you
need.

� Edit the inputs and outputs or operations to match the business objects
you plan to get and post.

� Follow the instructions in the Partner Agreement Manager Adapter
Developer’s Guide to set default property values as appropriate for the
adapter type.

� If you plan to use checkForEvents, you must create an appropriate event
type. Its name must match the name of the corresponding MQWF
program activity, and its business object must map (either Direct or in
your Custom code) from the input to this activity.

7 In the Adapter Designer, choose Import again, select Adapter
Implementation, and select the MQSeriesWorkflow Adapter Java Imp XML
file located in: <partner_root>\com\extricity\adapters\ibm\mqwf\test

This creates the adapter implementation. Make sure the adapter
implementation’s class name and package names are correct.

You can import either an
adapter type or an adapter
implementation.
120 � Adapters for MQSeries User’s Guide

8 In the Adapter Server, choose Adapter Manager from the Tools menu to start
the Adapter Manager.

9 Choose Add from the Adapter menu to create a new instance of Adapter for
MQSeries Workflow, and follow the instructions in the Partner Agreement
Manager Adapter Developer’s Guide to set the connection property values.

� If your adapter checks for events, make sure that event polling is enabled
and polls at an appropriate time interval.

� If you have implemented custom mapping methods, set the
TranslationStyle property to “Custom.”

� If you have created a subclass of the MQSeriesWorkflowAdapterCustom
class for this instance, you must enter its name in the CustomClass
property.

� Set the DebugMessaging and MQSeriesTrace properties according to your
debugging needs. You might want to turn these on only during
development, testing, or maintenance. The logs associated with these
properties can quickly grow very large.

� Click the Environment tab and make sure the Use System’s Classloader
setting is turned on.

10 In the Adapter Manager, start the new adapter instance and resolve any
exceptions that occur.

As soon as the adapter instance has connected to the queue manager, you are
ready to begin using it in extension actions.

Modifying Adapter for MQSeries Workflow

Although you can use Adapter for MQSeries Workflow as is, the default
behavior and settings might not meet your business needs. For example, the
default mapping behavior for mapped operations is to use Direct translation.

As a result, you might want to customize Adapter for MQSeries Workflow to
suit your specific needs.

Important: See the Partner Agreement Manager Adapter Developer’s Guide
for more information about customizing adapters.
Using Adapter for MQSeries Workflow � 121

Before you begin writing custom Java code for your adapter, make sure that
you understand:

� The layout of your MQWF network, including the domain -> system
group -> system hierarchy and how Adapter for MQSeries Workflow
communicates with it.

� The MQWF staff requirements and how they relate to PAM.

Make sure that the user (user name and password) that the adapter uses
sees only those work items that are intended for PAM.

Make sure you understand how this requirement fits in with other MQWF
staff requirements.

� The formats of MQWF data containers that PAM sends and receives, and
how these messages are to be converted to and from business objects.

� What are the message contents?

� Can third-party mapping and data transformation tools be used for
MQWF-to-XML mapping?

� Which of the two basic data transformation types are more appropriate
for each data structure?

� Is Direct mapping sufficient? If not, can you still perform Direct
mapping to an “intermediary” business object (or specific elements of
the business objects), and then use a Map or Script step in the private
process? Or is coding in a Custom class method more appropriate?

� When determining how to do the data mapping, consider not only the
data format and available mapping capabilities, but also whether it’s
appropriate for process designers to do the mapping in the private
process.

� How MQWF processes interact with PAM processes.

Which is a subprocess of the other? Or are they subprocesses at all? If there
is a subprocess relationship, make sure that you understand which data is
passed from one process to the other.

Keep the following tips in mind during implementation:

� Customize the operations in the adapter type to make it easier for process
designers to select operations correctly.
122 � Adapters for MQSeries User’s Guide

The PAM process builders who will use this adapter in private process
extension actions rely on the names of the operations and their inputs and
outputs to identify the correct operation. The operations provided with
Adapter for MQSeries Workflow type are intended as templates for your
own specialized operations. Therefore, it’s a good idea to change the
generic operation names to something more meaningful. It’s also a good
idea to remove operations that you don’t expect process designers to use.

� Review template operations provided in Adapter for MQSeries Workflow
and add new operations as necessary.

The template operations provided with Adapter for MQSeries Workflow
represent only a portion of the full range of operations you can
implement.

For more information about using or implementing the
MQSeriesWorkflowAdapterCore and MQSeriesWorkflowCustomExample
classes, see the accompanying Javadoc reference. You might also want to
review the MQSeriesWorkflowCustomExample subclass, which illustrates
how to implement the various custom methods contained in the
MQSeriesWorkflowAdapterCustom class.

Testing Adapter for MQSeries Workflow

As a minimum, an adapter instance must meet these criteria before you can
use it in an extension action. You must be able to:

� start up and shut down the adapter instance without error.

� verify that you can connect to the queue manager.

Before you release an adapter for general use by process designers, it’s a good
idea to test any custom code you have implemented. The easiest way to test
custom code is to create a sample Partner Agreement Manager private
process that uses extension actions that execute the adapter operations.

To test Adapter for MQSeries Workflow:

1 Create a PAM private process that includes attempts to post and get a series
of business objects. Make sure that you execute every path in your custom
code.

2 After getting a business object, make sure—in VBScript (NT) or JavaScript
(NT and UNIX)—that the contents are as you expect.

Tip: Use the StatusBO operation output and check the results.
Using Adapter for MQSeries Workflow � 123

3 Review the log file to make sure that no exceptions were reported within the
adapter itself.

4 While debugging, try setting the adapter’s DebugMessaging property to
Terse or Verbose.

5 Turn on MQSeries tracing and look at the MQSeriesTrace.log file (located in
the partner root directory) in the event of any MQSeries exceptions.

6 Test the public process events.

Adapter for MQSeries Workflow reference

This section describes in more detail the sample Adapter for MQSeries
Workflow type that comes packaged with the product. The class names,
properties, operations, and events are all described. Note that the operations
are intended as templates only. You are encouraged to rename these
operations and their parameters as needed, or design your own operations
from scratch that use the MQSeriesWorkflowAdapterCore class’s methods in
other ways.

Note: Each operation has a status BO that returns either result="success" or
result="failure". If the operation fails, the status BO also returns the
specific reason why it failed.

Adapter for MQSeries Workflow type

These are the components of Adapter for MQSeries Workflow.

Class name com.extricity.adapters.ibm.mqwf.MQSeriesWorkflowAdapter

Description This class represents the adapter implementation. It was generated
from the Adapter Designer and subsequently edited to call methods in
the MQSeriesWorkflowAdapterCore class.

Class name com.extricity.adapters.ibm.mqwf.MQSeriesWorkflowAdapterCore
124 � Adapters for MQSeries User’s Guide

Description This represents the bulk of the MQSeries Workflow logic. It includes
the following features:
� Connect to and disconnect from an MQWF execution server’s Java

gateway given connection information specified in the instance’s
properties or passed as parameters to given methods.

� Dispatch the task of mapping between business objects and MQWF
data container objects.

� Process instance control, including starting, checking status, and
waiting to finish.

� Checking for work items, both process outputs and activities
intended for checkForEvents.

� Throw exceptions containing meaningful error text when error
conditions are found.

� Call methods in the Custom class.

Class name com.extricity.adapters.ibm.mqwf.MQSeriesWorkflowAdapter
Exception

Description This exception subclass can be thrown by most methods, and contains
information on error conditions. It also differentiates between those
exceptions that are thrown by the MQWF Java API and those that are
thrown by adapter code.

Class name com.extricity.adapters.ibm.mqwf.MQSeriesWorkflowTransform

Description Performs direct, isomorphic translation between PAM business
objects and MQWF data container objects. These methods are
implemented as statics and can be called from anywhere, including
Custom map methods.

Class name com.extricity.adapters.ibm.mqwf.MQSeriesAdapterCustom

Description This class contains stub methods that can be implemented on site.
These methods are as follows. (1) callInMap. Custom data
transformation method for incoming data. (2) callOutMap. Custom
data transformation method for outgoing data.

Properties DomainName Name of MQSeriesWorkflow domain to connect
to. In form of
iiop://<host_name>:<port>/<MQWF agent_name>
where:
host_name - of MQWF Java agent;
port - that the Java agent is configured to use;
agent_name - name of Java agent.
Mandatory.

SystemGroup Name of the system group. Mandatory.

System Name of the system on which the MQWF
execution server’s Java gateway is running.
Mandatory.
Using Adapter for MQSeries Workflow � 125

UserID Name of the MQSeriesWorkflow user. Must be
capitalized. Mandatory.

Password Password associated with the UserID. Case-
sensitive. Mandatory.

TranslationStyle Indicates whether Direct or Custom mapping is
to be used for all operations that accept or return
business objects. If Direct, then the Core class
calls MQSeriesWorkflowTransform methods in
order to translate between PAM business objects
and MQWF data container objects. If Custom,
then the Core class calls the Custom mapping
methods. Mandatory.

DebugMessaging One of three values: Off, Terse, Verbose,
representing different levels of debug messaging.
Messages are written to the Adapter Server
console. Debug messaging can be useful during
development and deployment, but is generally set
to Off in a production environment. Mandatory.

CustomClass Name of Custom class. Must be the fully qualified
class pathname, dot-delimited, relative to the
classpath. Defaults to
com.extricity.adapters.ibm.MQSeries.MQSeries
WorkflowAdapterCustom. Mandatory.

Operations SubmitProcess Submits a process and returns immediately after
submission. An input BO is translated and passed
as the input to the process.

Input Business object

Output Variant representing the unique name of the
process instance. Also, status BO, which returns
either result="success" or result="failure". If the
operation fails, the status BO also returns the
specific reason why it failed.

SubmitProcessAnd
Wait

An “Advanced” variation of the SubmitProcess
operation, submits a process and waits for it to
complete, translating and returning any output
data.

Input Business object

Output Returned business object. Also, status BO, which
returns either result="success" or result="failure".
If the operation fails, the status BO also returns
the specific reason why it failed.
126 � Adapters for MQSeries User’s Guide

Note: Each operation has a status BO that returns either result="success" or
result="failure". If the operation fails, the status BO also returns the
specific reason why it failed.

CheckProcessState This simple operation returns the status (variant)
of a given named process instance. Adapter
developers and/or process designers can use this
feature to implement conditional logic based on
the status of a given process instance.

Input Variant representing the unique name of the
process instance whose status must be checked.

Output Variant indicating status, one of: Deleted,
Finished, Ready, Running, Suspended,
Suspending, Terminated, Terminating,
Undefined. Also, a status BO.

RetrieveProcess
Output

If a process was submitted earlier without waiting
for it to complete, the receipt of any output data
can be performed later via this “Get” operation.

Input Variant representing the unique name of the
process instance whose status must be checked.

Output Returned business object. Also, a status BO.

Ping Tests that the connection with the MQWF
server’s Java gateway is live. If the connection has
been idle for several hours, the MQWF server
might disconnect without notifying the client.
This Ping operation performs some stateless
interactions that ensure that the connection is live
and that data can be passed across.

Input None

Output Status BO

Events ExampleProgram. A sample event illustrating how checkForEvents
checks for open work items and generates Adapter Server events out
of them.
Using Adapter for MQSeries Workflow � 127

128 � Adapters for MQSeries User’s Guide

appendix�
A

Notices
This information was developed for products and services offered in the
United States. IBM may not offer the products, services, or features discussed
in this information in other countries. Consult your local IBM representative
for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject
matter described in this information. The furnishing of this information
does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.
 � 129

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the information. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.
130 � Adapters for MQSeries User’s Guide

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of
this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of
the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating
environments may vary significantly. Some measurements may have been
made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore,
some measurement may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.
 � 131

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX
DB2
IBM
MQSeries
SupportPac
WebSphere

Pentium is a registered trademark of Intel Corporation in the United States
and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks
of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, and service names may be trademarks or service
marks of others.
132 � Adapters for MQSeries User’s Guide

g l o s s a r y�
Glossary
action—a task performed as part of a private process. A private process action is the
equivalent of a step in a public process. See the following terms in this glossary for more
information about the action types you can include in a private process:

� approval action

� extension action

� mapping action

� notification action

� output object action

� script action

� subprocess action

� termination action

� timer action

See also private process.

adapter—the software bridge between Partner Agreement Manager processes and specific
end-system and business-application interfaces. Adapters manage interactions between
business applications and the Adapter Server. They allow private processes to interact with
external business applications while a process is running, and they allow PAM to start
public processes based on events that occur in external business applications. See also
adapter implementation, adapter instance, adapter type.
Glossary � 133

adapter implementation—the implementation declaration for an adapter type. It specifies
the name and location of the Java source file that defines the application logic used to
communicate with a specific end system through that end system’s interface. The
application logic is specified in the form of properties. See also adapter, adapter instance,
adapter type.

adapter instance—an instance of an adapter implementation. The adapter instance is used in
a private process extension action and provides the specific values to be used for the
properties declared in the adapter implementation. See also adapter, adapter
implementation, adapter type, extension action.

adapter type—a definition that is stored in XML format and specifies the adapter’s properties
as well as the operations and events it supports. A single adapter type can have multiple
implementations, and each implementation can have multiple instances. See also adapter,
adapter implementation, adapter instance.

approval action—a private process action that you use to ask for a response from a user before
letting the process continue to run. You can use an approval action, for example, to ask for
an OK when a purchase order exceeds a predetermined amount. See also private process.

business object—a message transmitted as part of a public process. Business objects take the
form of purchase orders, acknowledgments, requests for clarification, and so on. See also
business object type.

business object type—a definition that determines the types of information a message can
contain. It has three properties: the top-level element in its element definition set, its key
field, and whether instances of it return audit information for non-repudiation purposes.
The name of the business object type is the name of the element you select as its top-level
element. See also business object, element definition set, non-repudiation.

business object variable—one of the two types of variables used in Partner Agreement
Manager to store information within a process. Business object variables create an instance
of a business object type. They can be used to store, for example, the outputs from
extension actions, the inputs for map actions, or the inputs and outputs for subprocesses.
See also business object, business object type, extension action, variant variable.

CA—see certificate authority.
134 � Adapters for MQSeries User’s Guide

certificate—a security document that binds a public encryption key to an entity (an
individual or organization) known as the principal. The security document (a digital
certificate) is signed by another entity known as the issuer. A digital certificate for which
both the principal and issuer are the same entity is known as a self-signed certificate. A
certificate for which the principal and issuer are different entities is issued by a certificate
authority (CA) like VeriSign and is known as a CA-issued (or third-party-signed)
certificate. Partner Agreement Manager supports both self-signed and CA-issued
certificates. PAM also supports the binding of certificates to be used for signature
authentication, message encryption, and SSL authentication for channels other than
Partner Agreement Manager. See also certificate authority, SSL.

certificate authority—a trusted third-party organization or company that issues digital
certificates used to create digital signatures and public-private key pairs. The role of the
certificate authority, or CA, is to authenticate the entities (individuals or organizations)
involved in electronic transactions. CAs are a critical component in data security and
electronic commerce because they guarantee that the two parties exchanging information
are really who they claim to be. See also certificate.

channel—a communications mechanism that encapsulates all the processing information
needed to send messages to a partner’s system, as well as to translate data received from a
partner into Partner Agreement Manager messages. PAM provides channels for
RosettaNet, EDI, cXML, and other systems and protocols. See also message.

digital certificate—see certificate.

DTD—Document Type Definition. A type of file associated with SGML and XML documents
that defines how the formatting tags should be interpreted by the application presenting
the document. In Partner Agreement Manager, a DTD file contains the complete
description of a business object type’s element definition set. See also business object,
business object type, element definition set.

element definition set—a collection of data fields (or elements) or groups of data fields that
defines the structure and meaning of a business object type. See also business object, business
object type.

encryption certificate—see certificate.

event—a piece of information that comes into Partner Agreement Manager as a message from
another source (an enterprise system or business application, for example) and triggers a
public process. See also message.
Glossary � 135

event push—a method that uses the HTTP POST mechanism to push events into Partner
Agreement Manager as a way to trigger processes. A port on the Process Server is set to
listen for events in the form of HTTP POST messages. When a message is detected, PAM
uses the information in the message to generate an event. See also event.

extended enterprise—a business model under which companies that work together as
partners function as efficiently as a single organization through the implementation of
automated communication technologies.

extension action—a private process action that communicates via an adapter with an external
application that is registered with Partner Agreement Manager. You can use an extension
action, for example, to launch a spreadsheet application, perform calculations, and update
the enterprise system, or to get information from an enterprise system or listen for an event
in the enterprise system. See also adapter, private process.

LDAP—Lightweight Directory Access Protocol. LDAP provides a standard method for
accessing information from a central directory. After user authentication is set up in the
LDAP directory, applications that use the LDAP protocol can retrieve the information
from that directory. An authenticated user can log in to any application that supports the
LDAP protocol with the same user name and password.

linked certificate—see certificate.

map—a Java Script or VBScript that inserts data into fields in an output business object type
generated by a private process. The map specifies which fields in the output business object
type receive data, and it identifies the information source.

map method—a reusable logical block of code that inserts data into a particular type of
element or element sequence in a business object type. Within a map method, you can
write the expressions that map individual input and output fields in the sequence. Or you
can create a submap and drag input fields to output fields and have Partner Agreement
Manager create the appropriate mapping expressions. See also map, submap.

mapping action—a private process action that you use to call a map. The map specifies the
fields in a business object type that will receive data extracted from another source. You use
a mapping action when you want to extract data from one business object type and insert
it in a different business object type. For example, you use a mapping action to transform
a purchase order generated by your inventory system into a sales order in a format that
your partner expects. See also map, private process.
136 � Adapters for MQSeries User’s Guide

message—a structured communication used to pass information and control to another
partner in a public process. The action in the process passes to the partner who receives the
message. The content of a message is determined by its business object type. A message can
be transmitted via synchronous or asynchronous methods, as determined by its
communication service type. See business object type.

non-repudiation—a business object security feature that authenticates instances of a business
object type and maintains an audit record to verify that they were received by the intended
recipient. For business object instances that you receive, Partner Agreement Manager
authenticates each instance and maintains an audit record to verify that the instance
actually originated with the stated originator. If you disable auditing for a business object
type, non-repudiation support is disabled for all messages that contain instances of that
business object type.

notification action—a private process action that you use to send an e-mail, fax, or pager
message to addressees that you specify. You use a notification action to inform someone
inside or outside your organization that an event has occurred. For example, you can use a
notification action to alert the order entry department when a purchase order arrives from
a customer. See also private process.

output object action—a private process action that you use to bind a business object to the
expected output object and path in a public process. You use an output object action at the
point in a private process when you are ready to send a business object to the associated
public process. This is typically the last action in the private process. See also private process.

partner group—a group of partners that perform the same role in a process at different times.
Instead of duplicating a public process and substituting a different partner name, you can
set up a partner group for the public process and then designate a specific partner as the
participant when you start an instance of the process. For example, you might design a
generic purchasing process that works equally well with any of your suppliers and then
designate the appropriate partner when you start the process.

partner profile—information that identifies an organization, specifies a contact person in
that organization, lists the communication services the organization supports, and defines
the organization’s security profile. When partners agree to participate in a public process,
they must exchange profile information as a way to ensure authenticity before they can
proceed.
Glossary � 137

PIP—Partner Interface Process. RosettaNet PIPs are specialized system-to-system XML-
based dialogs that define business processes between supply-chain partners and provide
models and documents for the implementation of e-commerce standards. Each PIP
includes a technical specification based on the RosettaNet Implementation Framework
(RNIF), a message guideline document with a PIP-specific version of the business
dictionary, and an XML message guideline document. See also RosettaNet.

post method—the last block of code that is executed when a mapping action runs. Its only
parameter is the output business object. You use the post method when you need to
perform post-processing on the output business object. For example, you might use the
post method to set the value of a summary field based on the number of line items in the
output business object, or to examine a range of dates in a repeated group, extract the most
recent date, and post that date in a header field. See also mapping action, pre method.

pre method—the first block of code that is executed when a mapping action runs. The pre
method’s parameters are the map inputs. You use the pre method to access a map’s inputs
and set global variables based on their content. See also mapping action, post method.

private process—a task or set of tasks that business partners participating in a public process
perform at points where they need to take action internally. Partners participating in a
public process must implement a private process for each public process step that they
own. A private process begins with input from the public process and ends with output that
feeds back into the public process. The input can be the receipt of a business object from a
partner, or it can be a triggering event from an internal system. The output is the business
object that transfers control back to the public process. See also action, process, public
process.

private process action—see action.

process—the flow of actions and the exchange of business information between partners in
an extended enterprise. A process operates on two levels, public and private. See extended
enterprise, private process, public process.

public process—the step-by-step flow of messages, events, and actions between two or more
business partners. Public processes are set up by agreement between partners, and each step
in a public process has a private process associated with it. A public process is developed by
one partner, and all the partners who participate in it must review and approve it before it
can be implemented. The partner who designs a public process is its owner. See also private
process, process.

RosettaNet—a consortium of major information technology, electronic components, and
semiconductor manufacturing companies that is working to create and implement
industry-wide, open e-business process standards. See also PIP.
138 � Adapters for MQSeries User’s Guide

script action—a private process action that consists of a script written in VBScript or
JavaScript and is designed to manipulate information or set up conditional actions based
on input. You use a script to establish decision-making criteria for branches or loops, to set
variables, or to calculate values that are used elsewhere in the private process. See also
private process.

security certificate—see certificate.

self-signed certificate—see certificate.

signature certificate—see certificate.

SSL—Secure Sockets Layer. The SSL protocol is a security protocol that provides for
communications privacy and reliability over the Internet. The protocol allows client/server
applications to communicate in a way that is designed to prevent eavesdropping,
tampering, or message forgery.

submap—a secondary level map that is called by a map method to insert data into an output
element other than the top-level element. See map, map method.

subprocess action—a private process action you use to call an existing public process. You
can call any public process in which your organization owns the first partner action. For
example, you can use a subprocess to get a quote approved by a third-party supplier before
responding to a customer. See also private process.

termination action—a private process action that you use to stop a process at a
predetermined point for a reason that you specify. You can use a termination action to deal
with errors in data that might prevent a process from completing successfully. For example,
you might want to stop a process in cases where an enterprise system passes incomplete or
corrupted information to it. See also private process.

third-party-signed certificate—another name for a CA-issued certificate. See certificate.

timer action—a private process action that you use to insert a pause. You can use a timer
action to specify the period of time you want to elapse before the next action in the process
starts. See also private process.

variant variable—single field variables. Variant variables store text strings—the type of
information contained in a single field element. You can use variant variables to store the
input for actions, to set flags (such as the time-out flag for an approval action), to move
information within scripts, or to store the results of an approval action. See also business
object variable.
Glossary � 139

140 � Adapters for MQSeries User’s Guide

i n d e x�
Index
A

Adapter for MQSeries Integrator (RFH)
classes 44
classpath 34
components 33
configuring 38
customizing 40
described 4, 33
events 51
installing 36
key features 33
operations 47
properties 45
reference 44
software requirements 34
testing 42

Adapter for MQSeries Integrator (RFH2)
business objects 79
business objects, reference 79
classes 69
classpath 56
components 55
configuring 61
customizing 66
described 4, 55
events 77

installing 59
key features 56
operations 73
properties 70
reference 69
software requirements 56
steps to use 65
testing 68
type, reference 69

Adapter for MQSeries Messaging
classes 24
classpath 14
components 12
configuring 19
customizing 21
described 3, 12
events 30
installing 17
key features 12
operations 27
properties 25
reference 24
software requirements 14
testing 23

Adapter for MQSeries Publish/Subscribe
classes 102
Index � 141

classpath 92
components 90
configuring 96
customizing 99
described 4, 90
events 109
installing 94
key features 91
operations 106
properties 103
reference 101
software requirements 91
testing 101

Adapter for MQSeries Workflow
classes 124
classpath 114
components 112
configuring 119
customizing 121
described 4, 112
events 127
installing 118
key features 113
operations 126
properties 125
reference 124
required jar files 114
software requirements 114
testing 123

adapter implementations, importing 20, 39, 64,
98, 120
adapter instances, importing 20, 40, 64, 98, 121
adapter types, importing 19, 39, 62, 97, 120
adapters for MQSeries

available adapters 3
described 3
key features 3

application elements, with MQSIv2Header 80
ApplicationGroup property 47

B

backup, before installing 6
BroadcastReply operation 107
broker

domain 54

message 54
BrokerControlQueue property 105
BrowseMapped operation 28, 50, 73, 107
BrowseMQSI operation 48, 73
BrowseUnparsed operation 28, 49, 73, 107
business objects

Adapters for MQSeries Integrator (RFH2) 81
importing 61
MQSeriesMsgOptions 79
MQSIv2Header 79
MQSIv2Message 80

C

Channel property 25, 70
checkForEvents

Adapter for MQSeries Integrator (RFH) 51
Adapter for MQSeries Integrator (RFH2) 77
Adapter for MQSeries Messaging 22
Adapter for MQSeries Publish/Subscribe 98
Adapter for MQSeries Workflow 116

CheckProcessState operation 127
classes

Adapter for MQSeries Integrator (RFH) 44
Adapter for MQSeries Integrator (RFH2) 69
Adapter for MQSeries Messaging 24
Adapter for MQSeries Publish/Subscribe 102
Adapter for MQSeries Workflow 124

classpath
Adapter for MQSeries Integrator (RFH) 34
Adapter for MQSeries Integrator (RFH2) 56
Adapter for MQSeries Messaging 14
Adapter for MQSeries Publish/Subscribe 92
Adapter for MQSeries Workflow 114

Configuration Manager 54
Control Center 54
CorrelationID property 26, 70
CorrelationID, MQSeries element 79
custom folders 83
CustomClass property 27, 70, 126

D

debugging 23, 42, 68, 124
DebugMessaging property 27, 70, 126
DefaultMessageType property 47
DefaultQueue property 25, 70
Direct translation, with MQSeries Workflow 116
142 � Adapters for MQSeries User’s Guide

domain broker 54
DomainName property 125

E

element definition set, for business objects 62
elements

advanced 80
MQSeriesMsgOptions business object 79
MQSIv2Header business object 79
MQSIv2Message business object 80

elements, application
mcd 82
other (custom) 83
psc 82
pscr 82
usr 82

events
Adapter for MQSeries Integrator (RFH) 51
Adapter for MQSeries Integrator (RFH2) 77
Adapter for MQSeries Messaging 30
Adapter for MQSeries Publish/Subscribe 109
Adapter for MQSeries Workflow 127

Example_Inventory_Item, element 80

F

folders, Adapter for MQSeries Integrator (RFH2).
See elements, application

G

GetMapped operation 28, 49, 74, 107
GetMQSI operation 48, 74
GetUnparsed operation 27, 47, 74, 106

H

hardware requirements
UNIX server 7

hardware requirements, NT server 6
headers

mcd folder 82
other (custom) folders 83
psc folder 82
pscr folder 82
standard_header 81
usr folder 82

Hostname property 25, 70

I

IIOP, RMI 114
implementations, adapter 64
importing

adapter types 62
business objects 61
key elements 9

IncomingMap property 26, 71
installing, Adapters for MQSeries 5
instances, importing adapter 64
ISV-defined elements 80

J

jar files
Adapter for MQSeries Integrator (RFH) 34
Adapter for MQSeries Integrator (RFH2) 57
Adapter for MQSeries Messaging 15
Adapter for MQSeries Publish/Subscribe 92
Adapter for MQSeries Workflow 115

Java agent 115
Java API 114
Javadoc

Adapter for MQSeries Integrator (RFH) 34
Adapter for MQSeries Integrator (RFH2) 67
Adapter for MQSeries Messaging 14
Adapter for MQSeries Publish/Subscribe 101

JDK 1.2.2, IBM 114
JNDI name server 114

M

MA88
IBM MQSeries SupportPac 14, 34, 56, 92

MapWorkingDirectory property 26, 71
mcd

element 79
using 82

message broker 54
message flows 54
MQMD header 55
MQRFH Rules and Format Header, described 32
MQRFH2 rules and formatting header, described
54

MQSeries
described 2
key features 2

MQSeries Integrator (RFH)
Index � 143

configuring 35
described 32

MQSeries Integrator (RFH2)
configuring 58
described 54

MQSeries Messaging, configuring 16
MQSeries Publish/Subscribe

configuring 93
described 90

MQSeries Workflow
configuring 116
described 112

MQSeries Workflow Java agent 115
MQSeries Workflow Java API 114
MQSeries Workflow JNDI 114
MQSeriesMsgOptions, business object 79
MQSeriesTraceLevel property 27, 71
MQSIv2Header

business object 79
element 80
modifying 81

MQSIv2Message
business object 80
modifying 86

MQWF data structures, defining 116
MQWF program activities

defining 116
properties 116

MQWF user, creating 116

O

operations
Adapter for MQSeries Integrator (RFH) 47
Adapter for MQSeries Integrator (RFH2) 73
Adapter for MQSeries Messaging 27
Adapter for MQSeries Publish/Subscribe 106
Adapter for MQSeries Workflow 126
BroadcastReply 107
BrowseMapped 28, 50, 73, 107
BrowseMQSI 48, 73
BrowseUnparsed 28, 49, 73, 107
CheckProcessState 127
GetMapped 28, 49, 74, 107
GetMQSI 48, 74
GetUnparsed 27, 47, 74, 106

Ping 127
PostMapped 29, 50, 75, 108
PostMQSI 48, 75
PostUnparsed 29, 50, 75, 108
Publish 106
RequestMapped 29, 51, 76, 108
RequestMQSI 49, 76
RequestUnparsed 29, 50, 77, 108
RetrieveProcessOutput 127
SubmitProcess 126
SubmitProcessAndWait 126

other (custom) folders
creating 83
element 80
tips for 85
working with 85

OutgoingMap property 27, 72

P

Partner Agreement Manager
described 1
with Adapter for MQSeries Integrator (RFH2)

55
with Adapter for MQSeries Messaging 12
with Adapter for MQSeries Publish/Subscribe

90
with Adapter for MQSeries Workflow 112

Password property 25, 72, 126
Ping operation 127
Port property 25, 72
PostMapped operation 29, 50, 75, 108
PostMQSI operation 48, 75
PostUnparsed operation 29, 50, 75, 108
properties

Adapter for MQSeries Integrator (RFH) 45
Adapter for MQSeries Integrator (RFH2) 70
Adapter for MQSeries Messaging 25
Adapter for MQSeries Publish/Subscribe 103
Adapter for MQSeries Workflow 125
ApplicationGroup 47
BrokerControlQueue 105
Channel 25, 70
CorrelationID 26, 70
CustomClass 27, 70, 126
DebugMessaging 27, 70, 126
144 � Adapters for MQSeries User’s Guide

DefaultMessageType 47
DefaultQueue 25, 70
DomainName 125
Hostname 25, 70
IncomingMap 26, 71
MapWorkingDirectory 26, 71
MQSeriesTraceLevel 27, 71
OutgoingMap 27, 72
Password 25, 72, 126
Port 25, 72
PublisherQueue 106
PublisherStream 105
QueueManager 25, 72
RegisterPublisherPerMessage 106
SubscriberQueue 105
SubscriberStream 106
System 125
SystemGroup 125
TranslationStyle 126
UserID 25, 72, 126
WaitInterval 27, 72

psc
element 79
using 82

pscr
element 79
using 82

Publish operation 106
PublisherQueue property 106
PublisherStream property 105

Q

QueueManager property 25, 72
QueueName element 79

R

RegisterPublisherPerMessage property 106
repository, configuration 54
RequestMapped operation 29, 51, 76, 108
RequestMQSI operation 49, 76
RequestUnparsed operation 29, 50, 77, 108
RetrieveProcessOutput operation 127
RMI-IIOP 114

S

server

hardware, requirements on NT 6
software, requirements on NT 8

server hardware
requirements on UNIX 7

server software
requirements on UNIX 8

software requirements
Adapter for MQSeries Integrator (RFH) 34
Adapter for MQSeries Integrator (RFH2) 56
Adapter for MQSeries Messaging 14
Adapter for MQSeries Publish/Subscribe 91
Adapter for MQSeries Workflow 114
NT server 8
UNIX server 8

standard_header
element 79
using 81

SubmitProcess operation 126
SubmitProcessAndWait operation 126
SubscriberQueue property 105
SubscriberStream property 106
System property 125
system requirements, general 6
SystemGroup property 125

T

TranslationStyle property 126
types, adapter 62

U

User Name Server 54
user-defined elements, with MQSIv2Header 80
UserID property 25, 72, 126
usr

element 80
using 82

W

WaitInterval property 27, 72
Index � 145

146 � Adapters for MQSeries User’s Guide

	Welcome to the Adapters for MQSeries User’s Guide
	Who should use this information
	Related information

	Summary of changes
	Introducing Adapters for MQSeries
	Introducing MQSeries
	Introducing Adapters for MQSeries
	About Adapters for MQSeries

	Installing Adapters for MQSeries
	System requirements
	Server hardware requirements on Windows NT
	Server hardware requirements on UNIX
	Software requirements on Windows NT
	Server software requirements on UNIX
	Importing key elements

	Using Adapter for MQSeries Messaging
	About Adapter for MQSeries Messaging
	About the Adapter for MQSeries Messaging environment
	Updating the CLASSPATH
	About configuring IBM MQSeries Messaging

	Installing Adapter for MQSeries Messaging
	Configuring Adapter for MQSeries Messaging
	Modifying Adapter for MQSeries Messaging
	Testing Adapter for MQSeries Messaging
	Adapter for MQSeries Messaging reference
	Adapter for MQSeries Messaging type

	Using Adapter for MQSeries Integrator (RFH)
	About IBM MQSeries Integrator (RFH)
	About Adapter for MQSeries Integrator (RFH)
	About the Adapter for MQSeries Integrator (RFH) environment
	Updating the CLASSPATH
	About configuring IBM MQSeries Integrator (RFH)

	Installing Adapter for MQSeries Integrator (RFH)
	Configuring Adapter for MQSeries Integrator (RFH)
	Modifying Adapter for MQSeries Integrator (RFH)
	Testing Adapter for MQSeries Integrator (RFH)
	Adapter for MQSeries Integrator (RFH) reference
	Adapter for MQSeries Integrator (RFH) type

	Using Adapter for MQSeries Integrator (RFH2)
	About IBM MQSeries Integrator (RFH2)
	About Adapter for MQSeries Integrator (RFH2)
	About the Adapter for MQSeries Integrator (RFH2) environment
	Updating the CLASSPATH
	About configuring IBM MQSeries Integrator (RFH2)

	Installing Adapter for MQSeries Integrator (RFH2)
	Configuring Adapter for MQSeries Integrator (RFH2)
	Importing the business objects
	Importing the adapter type
	Importing the adapter implementation
	Importing the adapter instance

	Working with Adapter for MQSeries Integrator (RFH2)
	Modifying Adapter for MQSeries Integrator (RFH2)
	Testing Adapter for MQSeries Integrator (RFH2)
	Adapter for MQSeries Integrator (RFH2) reference
	Adapter for MQSeries Integrator (RFH2) type
	Adapter for MQSeries Integrator (RFH2) business objects
	Working with business objects

	Using Adapter for MQSeries Publish/Subscribe
	About IBM MQSeries Publish/Subscribe
	About Adapter for MQSeries Publish/Subscribe
	About the Adapter for MQSeries Publish/Subscribe environment
	Updating the CLASSPATH
	About configuring IBM MQSeries Publish/ Subscribe

	Installing Adapter for MQSeries Publish/Subscribe
	Configuring Adapter for MQSeries Publish/ Subscribe
	Modifying Adapter for MQSeries Publish/Subscribe
	Testing Adapter for MQSeries Publish/Subscribe
	Adapter for MQSeries Publish/Subscribe reference
	Adapter for MQSeries Publish/Subscribe type

	Using Adapter for MQSeries Workflow
	About IBM MQSeries Workflow
	About Adapter for MQSeries Workflow
	About the Adapter for MQSeries Workflow environment
	Updating the CLASSPATH
	About configuring IBM MQSeries Workflow

	Installing Adapter for MQSeries Workflow
	Configuring Adapter for MQSeries Workflow
	Modifying Adapter for MQSeries Workflow
	Testing Adapter for MQSeries Workflow
	Adapter for MQSeries Workflow reference
	Adapter for MQSeries Workflow type

	Notices
	Trademarks

	Glossary
	Index

