
WebSphere® Partner Agreement Manager

Channel Toolkit Configuration
Guide
Version 2 Release 2
BIAAAH02

Note: Before using this information and the product it supports, read the information in Notices on page 69.
Third Edition (July 2001)

This edition applies to version 2, release 2 of WebSphere Partner Agreement Manager (product number 5724-
A85) and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can make comments on this information via e-mail at
idrcf@hursley.ibm.com.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000-2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

c o n t e n t s�
Table of Contents
Welcome to the Channel Toolkit Configuration Guide vii
Who should use this information viii

Related information viii

API Javadocs ix

Chapter 1 Introduction 1

Terminology 2

Architecture 3

Framework 4

About Channel Toolkit instances 4

The framework manages transport polling 5

The framework handles retries 5

The framework requires conversations 5

Modules 5

Modules are invoked by the framework 6

The data transformation modules 6

The packaging and unpackaging modules 6

The transport modules 7

How the framework resolves overrides and defaults 7

Configuration Files 8
Contents � iii

Chapter 2 Installing Channel Toolkit 11

System requirements 12

Installation overview 12

Installing the Channel Toolkit framework 13

Setting default transport property values 15

Installing Modules 16

Chapter 3 Configuring modules 17

Overview 18

About CTAssignments.xml 18

Processing CTAssignments.xml 19

The CTAssignments.dtd file 19

Structure of the CTAssignments.xml file 21

Default assignments 22

Override assignments 23

Order of precedence 24

Using channel and partner properties 24

Creating helper files 25

PartnerIDsNNNN.txt 25

BOTypeIDs.txt 26

ModuleMetadata.txt 28

Creating assignments 29

Defining a default assignment 29

Defining an override assignment 30

Validating and using CTAssignments.xml 32

Returning to the Channel Manager 33

Process Manager installations 33

Chapter 4 Designing processes using Channel Toolkit 35

About public and private processes 36

About Channel Toolkit and public processes 36

Processes you can create using Channel Toolkit 36

Invalid processes detected by verifier 39

Synchronous partners and public processes 44

Invalid processes not detected at design time 44
iv � Channel Toolkit Configuration Guide

Chapter 5 Creating conversations 53

About conversations 54

Requests with multiple business objects 55

About the conversation editor 56

Creating conversations 59

Saving a conversation 63

Appendix a Module installer actions 65

Location for the module 66

Modifying CTModules.properties 66

Global module properties 67

Documenting your module 67

Appendix b Notices 69

Trademarks 72

Glossary 73

Index 81
Contents � v

vi � Channel Toolkit Configuration Guide

�

Welcome to the Channel

Toolkit Configuration Guide
This document describes the Partner Agreement Manager Channel Toolkit
and explains how to install and configure it.

To install and configure the Channel Toolkit, follow these general steps:

� Learn the general concepts about the Channel Toolkit. For more
information, see Introduction on page 1.

� Install the Channel Toolkit framework and modules. For more
information, see Installing Channel Toolkit on page 11.

� Configure the assignments for modules. For more information, see
Configuring modules on page 17.
Welcome to the Channel Toolkit Configuration Guide � vii

Who should use this information

The Channel Toolkit has two diverse audiences:

� Partner Agreement Manager administrators, who have special needs for
communicating with their partners and need to configure a channel that
addresses these special needs. For example, a customer may require a
channel that sends MIME-encoded XML to partners via FTP, and receives
responses via e-mail. This customer can use the Channel Toolkit along
with the appropriate modules to configure a channel that does this.

� IT Developers, who are writing code to perform special purpose
operations on a business object en route between Partner Agreement
Manager and a partner. These operations could include transformations,
encoding, encryption, and even special transport requirements. These
developers write modules using specific interfaces. These modules can
then be assembled into a special-purpose channel by any PAM
administrator.

This guide is primarily addressed to administrators, but also describes
concepts that are important to developers. Developers should refer to the
Javadocs for information on the Channel Toolkit API. The Javadocs are
located in <Alliance>\Docs\javadocs\ChannelToolkit\api\index.html.

Related information

For additional information see the following:

� The readme.htm file. This file may contain information that became
available after this guide was published. The readme.htm file is located in
the root directory of the product CD-ROM.

� The StartHere.htm file. This file contains links to the Partner Agreement
Manager readme.htm file and the Partner Agreement Manager
Installation Guide . Before installation, the StartHere.htm file is located in
the root directory of the product CD-ROM. After installation, the
StartHere.htm file is located in the root directory of the Partner Agreement
Manager installation.

� The Partner Agreement Manager Installation Guide, form number
GC34-5964-00, which describes how to install Partner Agreement
Manager.
viii � Channel Toolkit Configuration Guide

� The Partner Agreement Manager Administrator’s Guide, form number
BIAAAB02, which describes how to set up, configure, and administer
Partner Agreement Manager after you install it.

� The Partner Agreement Manager User’s Guide, form number BIAAAC02,
which describes how to start a Partner Agreement Manager session, design
public and private processes, define element definition sets, create
business objects, and manage process distribution.

� The Partner Agreement Manager Adapter Developer’s Guide, form number
BIAAAD02, which describes how to develop and administer adapters
using the Partner Agreement Manager Adapter Development
Environment.

� The Partner Agreement Manager Script Developer’s Guide, form number
BIAAAE02, which describes how to write scripts used in Partner
Agreement Manager private processes and elsewhere.

� The Partner Agreement Manager API Guide, form number BIAAAF02,
which describes principles behind the Partner Agreement Manager
External API. See also the API Javadocs, as described in API Javadocs, next.

� The Partner Agreement Manager Adapters for MQSeries User’s Guide, form
number BIAAAG02, which describes how to install, configure, and run
the Partner Agreement Manager Adapters for MQSeries.

� The Partner Agreement View User’s Guide, form number GC34-5965-00,
which describes how to install, configure, and use Partner Agreement
View.

API Javadocs

The Channel Toolkit Javadocs, are located in
<Alliance>\Docs\javadocs\ChannelToolkit\api\index.html.

IT developers will also be interested in these two sets of online Javadocs,
which will help you work with the Channel Toolkit API:

� The Partner Agreement Manager API online documentation, which
describes the programming interface for the adapters and business objects
programming interface.

� The Partner Agreement Manager External API online documentation,
which describes the programming interface for the Process Manager
functionality.

You can link to both of these sets of documentation via the
Alliance\StartHere.htm file.
Welcome to the Channel Toolkit Configuration Guide � ix

x � Channel Toolkit Configuration Guide

c h a p t e r�
1

Introduction
The Partner Agreement Manager Channel Toolkit allows you to create
your own simple channels from modular components. If you are an IT
developer, you can use the Channel Toolkit API to create your own
components that plug into the Channel Toolkit.

Topics in this chapter include:

� Terminology on page 2.

� Architecture on page 3.

� Framework on page 4.

� Modules on page 5.

� Configuration Files on page 8.
Introduction � 1

Terminology

It is useful to be familiar with these terms used by the Channel Toolkit:

For additional terms that encompass the Channel Toolkit API, see the
Channel Toolkit Javadocs.

Term Definition

framework The Channel Toolkit framework manages much of the
complexity in the channel, including the interaction
between Partner Agreement Manager and the modules,
validation of the channel configuration, error handling,
retry, and so on.

module Modules plug into the framework to provide specific
services required by the channel. See also definitions in
this table for: data transformation module, packaging
module, unpackaging module, and transport module.

data transformation
module

A module that transforms a single business object into an
arbitrary stream of data, or vice-versa.

packaging module A module that packages one or more business object
streams into a stream that can be sent by the transport
module. Examples of packaging include enveloping (such
as MIME encoding), encryption, grouping single business
objects together, and so on.
In general, the term “packaging module” is used to mean
both packaging and unpackaging modules.

unpackaging module A module that unpackages a stream into one or more
business object streams. Examples of unpackaging include
recognizing business object types, de-enveloping,
decryption, breaking a multi-business object message into
individual business objects, and so on.
In general the term “packaging module” is used to mean
both packaging and unpackaging modules.

transport module A module that takes a stream and sends it out over a
transport medium (such as HTTP), or receives a stream
from a transport medium and passes it to the framework.

assignment Information used by the framework to determine the
default and override modules and properties used for a
particular inbound or outbound transmission.
Given a partner ID and business object type ID, the
Channel Toolkit determines which module to invoke and
passes runtime configuration data to the module.
2 � Channel Toolkit Configuration Guide

Architecture

The Channel Toolkit design is modular, composed of a framework and
modules.

The Channel Toolkit is made up of four components:

� Channel Toolkit framework

� Data Transformation modules

� Packaging modules

� Transport modules

These are illustrated in this diagram. Note that the modules shown here are
examples; they don’t necessarily indicate modules that are shipped with the
Channel Toolkit.

The framework communicates with the Partner Agreement Manager and
invokes the modules. As information passes through the framework, it is
processed by an optional transformation module, an optional packaging (or
unpackaging) module, and a transport module.

3rd Party

3rd Party

XML
EnveloperXSLT

FlatFile

Data
Transformation

Modules
Packaging
Modules

Transport
Modules

File

HTTPS

FTP
3rd Party

Channel Toolkit Framework

Partner Agreement Manager

Partner
Introduction � 3

When you configure the Channel Toolkit, you specify the default and
override modules to be invoked for inbound and outbound messages. You
can specify overrides based on specific business objects, specific partners, or
both. You can also specify properties to be used when invoking a module.

Before calling each module, the framework examines the message data and
finds the module that best fits the default and override assignments specified
for the Channel Toolkit instance. Any of the modules can split inbound data
into separate pieces. Once separated, the framework routes each piece to
modules as a separate message. Thus, the parts of a single message can be
routed to two (or more) different modules in a subsequent step.

Note: The module assignments must specify a default inbound and
outbound transport module, but packaging and transform module
specifications are optional. If no packaging or transform module is
specified, the framework uses internal defaults that assume well-formatted
XML compatible with Partner Agreement Manager.

Framework

The Channel Toolkit framework is responsible for tasks that are common to
all basic channels; it is also responsible for module management tasks. The
common tasks include managing retry functionality, conversation threading,
polling for inbound messages, and logging. The module management tasks
include routing messages to the appropriate modules, splitting messages, and
handling errors from modules.

About Channel Toolkit instances

You can install multiple instances of the Channel Toolkit. This is done by
rerunning the installer and specifying a different Channel ID and Channel
name. Each instance must have a unique Channel ID and name, and each has
its own configuration information (for more information, see Installing the
Channel Toolkit framework on page 13).

There is a trade-off between multiple instances of the Channel Toolkit and a
single instance. It is possible to configure a single instance of the Channel
Toolkit to handle all the business objects that you need to send to and receive
from all your partners. However, such a configuration can become
unmanageably complex.
4 � Channel Toolkit Configuration Guide

The framework manages transport polling

The Channel Toolkit supports polling transports, such as FTP, through a
special interface that allows the framework to ask a transport module to
check for new messages. The framework manages the list of polling
transports configured for its channel instance and automatically polls them
according to a polling interval defined for that module. If no interval is
specified, the default is used (all defaults are specified in the local chanel
profile). For more information, see Setting default transport property values
on page 15.

The framework handles retries

In the event of a non-fatal delivery failure by the transport module, the
framework queues the message for redelivery. After a specified delay, the
framework passes the message back to the transport module for redelivery. If
the delay is not specified, the default for the channel instance is used instead.

The framework continues to resend the message until it is successful or until
the retry count exceeds a specified limit. Again, if the limit is not specified,
the default for the channel instance is used instead.

The framework requires conversations

The Channel Toolkit framework must use conversation threading to
maintain the process context of its messages. For more information about
conversation threading, see Creating conversations on page 53.

Modules

Modules plug into the framework and provide services required to:

� Prepare and send a business object to a partner.

� Receive and process messages containing one or more business objects
from a partner.
Introduction � 5

The modular architecture of the Channel Toolkit makes a wide variety of
modules possible. Some common modules are available from Extricity, and
new ones will be available in the future. You can also create your own
modules using the Channel Toolkit API, which is documented in the
Channel Toolkit Javadocs. The Channel Toolkit also comes with sample code
to help you understand how to create your module. If you choose to create
your own modules, see Module installer actions on page 65 to learn how to
register them with the Channel Toolkit Framework.

Modules are invoked by the framework

As mentioned earlier, the framework moves message data through the
channel, calling modules in order. For outbound messages, the order is data
transformation, packaging, and transport. For inbound messages, the order
is transport, unpackaging, and data transformation.

The following sections describe the modules in greater detail.

The data transformation modules

A data transformation module is an optional component that converts
business data to or from a business object. For inbound messages, the
destination business object must be determined by the unpackaging or
transport component, before invoking the data transformation module.

This module deals with a single business object at a time; the framework
cannot call this module more than once.

Examples of data transformation modules might include XSLT or flat file.

The packaging and unpackaging modules

A packaging module is an optional component that wraps, encrypts, or
otherwise manipulates outbound data before sending. An unpackaging
module similarly removes wrapping, decrypts, or manipulates inbound data.
The framework cannot call packaging or unpackaging modules more than
once.
6 � Channel Toolkit Configuration Guide

Examples of packaging module might include S/MIME encoding,
encryption, or packaging of multiple business objects together. Examples of
unpackaging module might include recognizing business object type,
decoding, decryption, or splitting one multi-business-object message into
individual business objects.

The transport modules

A transport module conveys data to or from a partner via whatever transport
mechanism it supports - ftp, http, e-mail, file, message queue, and so on. For
outbound data, the transport module simply conveys the data. For inbound
data, there are two modes of operation: polling or listening.

Note: The transport module is responsible for transport-level
authentication, so the framework assumes that inbound messages from a
transport module have been appropriately authenticated.

Examples of transport modules might include HTTP(S), FTP, or SMTP.

How the framework resolves overrides and

defaults

The framework determines the module to use for a particular message just
before it calls the module. The module used is determined by overrides and
defaults specified by the channel assignments.

The overrides are based on:

� The ID of the partner that is sending or receiving the data.

� The ID of the business object type being sent or received.

� Both the ID of the partner and the ID of the business object type.

� Whether the data is being sent or received (inbound or outbound).

Important: The framework cannot predict which module will be called
until the data is emitted by the previous module. This is particularly true
of the inbound case, where partner and/or business object type may only
be recognized after the message is handled by an unpackaging module.
Sometimes messages must be split and the component parts routed to
different modules as information about their content is determined. Thus,
the path that a particular message takes cannot be defined ahead of time.
Introduction � 7

Before calling a module, the framework compares the message’s business
object type, partner ID, and direction with the assignments defined for that
module. The assignments are defined in the CTAssignments.xml file, which is
described in Configuring modules on page 17.

After determining a message’s business object type (if that information has
been determined by a previous module), partner ID, and direction, the
framework:

1 Looks for an override for the module type (transport, packaging, or
transform) that matches the message’s direction, business object type, and
partner ID. If a match is found, that override is used.

2 Looks for an override for the module type that matches the direction and
business object. If a match is found, that override is used.

3 Looks for an override for the module type that matches the direction and
partner ID. If a match is found, that override is used.

4 Looks for a default for the module type. If a default is found, it is used.

5 If no default is specified for the packager module, it is skipped. If no default
is specified for a transform module, the Channel Toolkit uses its own internal
default (which treats data as well-formatted, XML data, compatible with
Process Server). The assignments file must define a default for transport.

Configuration Files

The Channel Toolkit has two configuration files:

� CTModules.properties - Serves as a registry of modules installed on the
system. It contains just enough of the global module properties so that a
module user (for example, the Channel Toolkit framework) can find the
module and use the API to query the rest of its properties. The remaining
properties are obtained by loading the module and querying its module
metadata interface. Administrators need not edit this file, but if you’re
writing your own modules, you will need to register them here. For more
information, see Module installer actions on page 65.

� CTAssignmentsNNNN.xml - Defines the default and override modules
used by this Channel Toolkit instance. Also contains the defaults and
overrides for module properties. The NNNN in the file name is the channel ID.

This file is stored in the local host’s partner directory:
<PAM root>\Partners\PartnerXXXX\Properties\ChannelToolkit
where XXXX is the Partner ID.
8 � Channel Toolkit Configuration Guide

Throughout this document, we refer to the CTAssignmentsNNNN.xml file
simply as CTAssignments.xml.

The CTAssignments.xml file is the file you will modify most frequently.
When you configure a new module or define a new set of overrides, you
must update CTAssignments.xml (for more information, see Configuring
modules on page 17).

Note: If you have installed multiple instances of Channel Toolkit, each
instance will have it’s own CTAssignments.xml file, however
CTModules.properties is shared.

A third file is the CTAssignments.dtd file, which describes the schema for the
CTAssignments.xml file. The DTD file is also in
<PAM root>\Partners\PartnerXXXX\Properties\ChannelToolkit.
Introduction � 9

10 � Channel Toolkit Configuration Guide

c h a p t e r�
2

Installing Channel Toolkit
Read this chapter for information about installing Channel Toolkit
and its modules.

Topics in this chapter include:

� System requirements on page 12.

� Installation overview on page 12.

� Installing the Channel Toolkit framework on page 13.

� Setting default transport property values on page 15.

� Installing Modules on page 16.
Installing Channel Toolkit � 11

System requirements

This section lists the Channel Toolkit system requirements for both
Windows NT and UNIX. These requirements include what software you
need to have installed before installing the Channel Toolkit.

system requirements

Following are the minimum requirements for the Channel Toolkit:

� A working installation of IBM Partner Agreement Manager 2.2 with
Service Pack 1. For details on the installation requirements see the Partner
Agreement Manager or Partner Agreement Manager Installation Guide.

� 5 MB disk space.

� On UNIX, the Channel Toolkit installer requires an X-Windows interface.

Installation overview

There are two fundamental parts to installing a Channel Toolkit channel:
installing the Channel Toolkit components and configuring the module
assignments. This chapter describes how to perform the first step. For more
information on configuration, see Configuring modules on page 17.

Step 1 Install the Channel Toolkit on the Process Server computer. This process is
described in Installing the Channel Toolkit framework on page 13.

You can have more than one installation (that is more than one instance) of
the Channel Toolkit. To do so, you simply run the installer again. For more
information about multiple instances, see About Channel Toolkit instances on
page 4.

In some cases, you might install the Channel Toolkit framework on both the
Process Manager and Process Server computers:

� On UNIX, you must install the Channel Toolkit framework on both the
Process Server and Process Manager computers.

� On Windows NT, it is optional to install the Channel Toolkit on the
Process Manager computer.

However, if you install Channel Toolkit on both computers, there are some
limitations. For more information, please see Process Manager installations
on page 33.
12 � Channel Toolkit Configuration Guide

Step 2 Install the modules you require. This process is described in Installing
Modules on page 16.

You can add new modules at a later time.

Step 3 Configure the Channel Toolkit instances to use the new modules. This
process is described in Configuring modules on page 17.

Installing the Channel Toolkit framework

These installation steps require that you have already installed IBM Partner
Agreement Manager 2.2.

To install the Channel Toolkit framework, perform these steps.

1 Shut down the PAM Process Server.

2 This next step depends on whether you are installing on Windows NT or
UNIX.

On Windows NT:

a. Click Start and choose Run

b. Click the Browse button and navigate to the location of the installation
image for Channel Toolkit and locate setup.bat and click Open.

c. Click OK to run setup.bat.

On UNIX:

a. If you are using AIX, you must be logged in as root.

b. Untar the installation image to an empty directory.

c. Change directory to the location of the untarred installation image.

d. Change the permissions of the setup file to be executable.

e. Run ./setup.

The Welcome panel appears. Click Next to continue.

3 The license panel appears. Read the license agreement and click the “I agree”
option button. Click Next to continue.

4 The next panel prompts for your PAM root directory and PAM Partner ID.
By default these values are filled in. If they are filled in, do not change them.
If they are not filled in, provide the information requested. Click Next to
continue.
Installing Channel Toolkit � 13

5 The next panel displays the prerequisite information needed for the Channel
Toolkit installation. Review the information and click Next to continue.

6 The next panel allows you to specify the Channel Instance name and the
Channel ID.

The Channel ID is used by Partner Agreement Manager to distinguish
between the channels you have installed, such as Channel for RosettaNet and
the Channel Toolkit. Each channel must have a Channel ID that is unique
within your Partner Agreement Manager installation.

Unless you have another Channel Toolkit installed, use the default Channel
Instance name and Channel ID. If you need to change these defaults so they
don’t conflict with another Channel Toolkit installation, use a Channel ID
number greater than 1000 that is not used by any other channel you have
installed and enter a unique Channel Instance name. Make a note of the
number and name so you don’t use them when you install any other
channels. You can check which channel ID values are in use by opening the
Channel Manager from the Process Manager window and viewing the
Channel profiles.

Unless you have another instance of your channel installed, accept the
default for the channel instance name.

Important: The Channel Instance name cannot start with a digit (0-9).

When you are satisfied with the values, click Next to continue.

7 The next panel prompts you for the destination folder for the Channel
Toolkit components. We recommend you use the default value provided
(the same directory as your PAM installation). Click Next to continue.

8 If the installer detects a previous installation of the Channel Toolkit.

9 The Installer adds the components. When it is finished, the final panel is
displayed. Click Finish to end the installation process.

After you install the Channel Toolkit framework, you install modules and
configure assignments for the modules. The next section (Installing Modules
on page 16) describes how to install the modules. The following chapter
(Configuring modules on page 17) describes how to configure assignments.
14 � Channel Toolkit Configuration Guide

Setting default transport property values

You use the Channel Manager to set default transport property values for a
Channel Toolkit instance.

To set the default transport property values

1 Launch PAM and open the Channel Manager.

2 Click on Channel Profiles.

3 Choose the Channel Toolkit instance you are configuring and click
Edit>Properties.

4 Click on the Other tab to view the values.

This table lists the values and their meanings:

Property Meaning

Default_Max_Retries The default number of times an outbound
transport module attempts to retry a failed send
operation. The default value is 5.
The assignments file can override this value for a
specific business object or partner.

Default_Polling_Frequency The default number of Polling_Interval units that
an inbound transport module waits between
polling. The default value is 3.
The assignments file can override this value for a
specific business object or partner. The total time
between polling is the polling frequency times
Polling_Interval.

Default_Retry_Frequency The default number of Retry_Timeout units that
an outbound transport module waits between
retries of a failed send operation. The default value
is 3.

The assignments file can override this value for a
specific business object or partner. The total time
between retries is the retry frequency times
Retry_Timeout.

Polling_Interval The basic polling time unit in seconds.
The default value is 60 seconds.

Retry_Timeout The basic retry time unit in seconds.
The default value is 60 seconds.
Installing Channel Toolkit � 15

The Update_Config_Info property is used when validating the assignments
XML file. Its use is described in Validating and using CTAssignments.xml on
page 32.

Installing Modules

After you install the Channel Toolkit framework, you must install the
modules you plan to use with the Channel Toolkit. The details of how to
install a module vary, depending on who produced the module. Some
modules might require you to hand edit the CTModules.properties file; other
modules might come with installers that perform those functions.

All individual modules should come with installation documentation. Please
refer to that documentation for installation instructions.

For information on the steps that a module installer must perform, see
Module installer actions on page 65.

Note: If you are running on UNIX, which requires you to install channel
toolkit on both the Process Server and Process Manager computers, or
have just chosen to install Channel Toolkit on the both the Process Server
and Process Manager computers, you must deploy modules to both
computers. For more information see Process Manager installations on
page 33.
16 � Channel Toolkit Configuration Guide

c h a p t e r�
3

Configuring modules
After installing the Channel Toolkit framework and modules, you
need to configure assignments to determine how to use the modules.

This chapter includes these topics:

� Overview on page 18.

� About CTAssignments.xml on page 18.

� Creating helper files on page 25.

� Creating assignments on page 29.

� Validating and using CTAssignments.xml on page 32.

� Process Manager installations on page 33.
Configuring modules � 17

Overview

After you install the Channel Toolkit framework and modules, you need to
configure one or more assignments for the modules. The steps to configure
assignments include:

Step 1 Create Partner Agreement Manager partners that will use the new Channel
Toolkit channel (if they don’t exist already).

Step 2 Create Partner Agreement Manager processes and business objects. This step
is only necessary if you intend to create per-partner overrides.

Step 3 Launch the Channel Manager. On start-up, Channel Toolkit creates three
helper text files that you can use to cut and paste information into
CTAssignments.xml. For more information, see Creating helper files on
page 25.

Step 4 Configure the defaults and overrides in CTAssignments.xml. The common
tasks involved in modifying CTAssignments.xml are described in Creating
assignments on page 29.

Step 5 Validate and employ the modified CTAssignments.xml file. This is described
in Validating and using CTAssignments.xml on page 32.

About CTAssignments.xml

CTAssignments.xml contains all the run-time module assignments and
properties. These definitions are too complex to fit into a flat-file schema, so
a hierarchical XML schema is used instead.

As part of adding a module that will be used by a Channel Toolkit instance,
you modify the corresponding CTAssignments.xml file to describe when to
use the module and the properties for that module. (For more information
on installing a module, see Installing Modules on page 16.)

More specifically, you:

� Define the default modules and their properties for a Channel Toolkit
instance (for both inbound and outbound messages). For more
information, see Default assignments on page 22.
18 � Channel Toolkit Configuration Guide

� Specify the override assignments by identifying combinations of business
object type, partner, and direction (inbound/outbound) and specifying
the modules and properties to use in those circumstances. For example,
you can specify that when a specific business object is received from a
partner, a special transform module must be used on that business object.

Important: If you are not familiar with editing XML files, there are many
XML file editors that help you create well-formed, valid XML. You can use
one of these editors to edit CTAssignments.xml. The IBM alphaWorks site
has a number of good XML file editors; the URL is http://
alphaworks.ibm.com.

Processing CTAssignments.xml

The Channel Toolkit uses the CTAssignments.xml file in two different ways:

� When a Channel Toolkit instance is started, it automatically processes the
CTAssignments.xml file to load the run-time properties for that instance.

� By using the Channel Manager, you can explicitly cause the Channel
Toolkit to process the CTAssignments.xml file (by setting the
update_config_info property to true).

Whenever a Channel Toolkit instance processes CTAssignments.xml
(whether automatically or explicitly), it does three things:

� It validates the contents of CTAssignments.xml.

� It generates helper files (see Creating helper files on page 25).

� It updates the runtime configuration information for that Channel
Toolkit instance. This allows you to change channel properties without
stopping and restarting Partner Agreement Manager.

For more information on explicitly processing CTAssignments.xml, see
Validating and using CTAssignments.xml on page 32.

The CTAssignments.dtd file

There are a number of ways to understand the structure of the
CTAssignments.xml file. The most accurate way to view the XML file is
through the DTD to which the file conforms (CTAssignments.dtd, stored in
<PAM root>\Partners\PartnerNNNN\Properties\ChannelToolkit). Following
sections show examples of the actual CTAssignments.xml file.
Configuring modules � 19

<!-- CTAssignments.dtd ChannelToolkit Assignments -->

<!ELEMENT assignments (default_assignment, override_assignment*)>

<!ELEMENT default_assignment (inbound_default, outbound_default)>

<!ELEMENT override_assignment (constraints, modules)>

<!ELEMENT constraints ((bo_type_id) | (partner_id) | (bo_type_id, partner_id))>

<!ELEMENT modules ((inbound_override | outbound_override) |
(inbound_override, outbound_override))>

<!ELEMENT inbound_override ((transport, packager?, transform?) | (transport?,
packager, transform?) | (transport?, packager?, transform)) >

<!ELEMENT outbound_override ((transport, packager?, transform?) | (transport?,
packager, transform?) | (transport?, packager?, transform)) >

<!ELEMENT inbound_default (transport, packager?, transform?)>

<!ELEMENT outbound_default (transport, packager?, transform?)>

<!ELEMENT transport (module, transport_internal?)>

<!ELEMENT packager (module)>

<!ELEMENT transform (module)>

<!ELEMENT module (module_name, module_properties?)>

<!ELEMENT module_name (#PCDATA)>

<!ELEMENT module_properties (description?, property*)>

<!ELEMENT property (name, value)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT bo_type_id (#PCDATA)>

<!ELEMENT partner_id (#PCDATA)>

<!ELEMENT transport_internal (

((retry_frequency, max_retries)?, is_synchronous?) | (polling_frequency))>

<!ELEMENT retry_frequency (#PCDATA)>

<!ELEMENT max_retries (#PCDATA)>

<!ELEMENT is_synchronous (#PCDATA)>
<!ELEMENT polling_frequency (#PCDATA)>

Some comments on the DTD:

� Default inbound and outbound transports are required, but both
packager and transform are optional. If no packager or transform is
specified, then the framework uses internal defaults that assume the data
is well-formatted PAM business-object-compatible XML.
20 � Channel Toolkit Configuration Guide

� The name-value pairs used to describe individual module properties are
defined by each module.

� The transport_internal elements override the default property values set
in the Channel Manager. For more information about these values, see
Setting default transport property values on page 15.

Structure of the CTAssignments.xml file

This figure illustrates the overall structure of the CTAssignments.xml file.

<assignments>

<default_assignment>

<inbound_default>

...

</inbound_default>

<outbound_default>

...

</outbound_default>

</default_assignment>

<override_assignment>

<constraint>

...

</constraint>

<modules>

...

</modules>

</override_assignment>

</assignments>

The sections list the default modules and their default
properties. These sections, are described in detail in
Default assignments on page 22.

This section specifies the modules and properties to
be used when the <constraint> conditions are met.

The constraints allow
you to specify overrides
for particular business
object types, Partner
IDs, or a combination of
the two.

The file contains only one <default_assignment>
section. It contains sections for inbound and outbound
defaults.

The file can contain as many <override_assignment>
sections as you need. The override assignments are
shown in greater detail in Override assignments on
page 23.
Configuring modules � 21

Default assignments

The portion of the CTAssignments.xml file that defines defaults has this form:

<assignments>

<default_assignment>

<inbound_default>

<transport>

<module>

<module_name>NAME</module_name>

<module_properties>

<property>

<name>PROP-NAME</name>

<value>PROP-VALUE</value>

</property>

</module_properties>

</module>

</transport>

<packager>

...

</packager>

<transform>

...

</transform>

</inbound_default>

...

</default_assignment>

...

The name and value pairs
are defined by the
metadata for each
module. For more
information, see
ModuleMetadata.txt on
page 28

You specify the default module and module properties
for the <packager> and <transform> sections in the
same way as shown for the <transport> section.

The <module_properties> section can
contain one or more <property>
sections. Each module defines its own
<name>/<value> pairs. There must be
one <property> section for each
property specified by the module;
required properties are identified in
ModuleMetadata.txt.

The default assignments <transport>
section must contain one <module>
section.
22 � Channel Toolkit Configuration Guide

Override assignments

The portion of the CTAssignments.xml file that defines override properties
has this form:

<assignments>

...

<override_assignment>

 <constraints>

<bo_type_id>ECO!2.ECO.1</bo_type_id>

<partner_id>UserCT.109654</partner_id>

 </constraints>

<modules>

<inbound_override>

<transform>

<module>

<module_name>SimpleInXform</module_name>

<module_properties>

<property>

<name>InXform1</name>

<value>ASSIGN1_InXform1</value>

</property>

</module_properties>

</module>

</transform>

</inbound_override>

</modules>

</override_assignment>

...

</assignments>

This example override
specifies both a business
object type ID (from
BOTypeIDs.txt) and a
partner ID (from
PartnerIDsNNNN.txt).

Each <override_assignments> section
contains one <constraints> section,
followed by one <modules> section.

The <modules> section can contain
override sections for both inbound and
outbound data.

The <module_properties> section
can contain multiple <property>
sections; each <property> section
can contain only one <name>/
<value> pair. Each module defines its
own <name>/<value> pairs.

The name and value pairs
are defined by the
metadata for each
module. For more
information, see
ModuleMetadata.txt on
page 28
Configuring modules � 23

Order of precedence

It is possible for business object type and partner ID overrides to conflict. In
cases where the constraints specify both a particular business object type and
a partner ID, the business object type override takes precedence. This table
illustrates the order of precedence:

Using channel and partner properties

The Channel Toolkit framework allows you to use special strings to refer to
Partner Agreement Manager password store entries, channel properties, and
partner properties from the CTAssignments.xlm file. These dereference
values are replaced with the actual values from Partner Agreement Manager
at runtime.

To use a dereference value, prefix the Partner Agreement Manager property
name with $CHANNEL_, $PARTNER_, or $PASSWORD_, as appropriate.

For example:

� To include the Default_Retry_Frequency channel property, use
<value>$CHANNEL_Default_Retry_Frequency</value>.

� To include the Basic_Authentication_Username partner property, use
<value>$PARTNER_Basic_Authentication_Username</value>.

A password store entry is the username corresponding to a password in the
Partner Agreement Manager password store. If the password store entry
includes a partner ID, you can include the string “$PARTNERID$” in the
password store entry, which is replaced with the partner ID before the
lookup. For example, if you have a password store entry in the form
CTInbound777, you can refer to this in the CTAssignments.xml file with:

$PASSWORD_CTInbound$PARTNERID$

1 Business object type and partner ID override

2 Business object type override

3 Partner ID override

4 Default
24 � Channel Toolkit Configuration Guide

When this value is resolved for partner TestPartner.777, the password store
entry would be CTInbound777 (the $PARTNERID$ has been replaced with
777). When the partner ID is 8743, the password store entry would be
CTInbound8743.

Validation

The Channel Toolkit framework validates the property names that follow
$CHANNEL_ and $PARTNER_, to ensure that the properties actually exist in the
channel or partner profiles.

As a security measure, this is not done for $PASSWORD_. Otherwise someone
could use this facility to check what passwords are in the password store.

Creating helper files

When the Channel Toolkit processes CTAssignments.xml, it creates three
helper files that assist you in modifying the CTAssignments.xml file:

� PartnerIDsNNNN.txt - lists partners using Channel ID NNNN.

� BOTypeIDs.txt - lists business object types.

� ModuleMetadata.txt - provides sections of XML data and metadata
information used to configure modules.

These files are also created when you validate the CTAssignments.xml file
through the Channel Manager; the files are described in greater detail in the
following sections.

PartnerIDsNNNN.txt

PartnerIDsNNNN.txt contains a list of partners using ChannelID NNNN.
When you need to identify overrides based on partner ID, you can reduce
typographical errors by copying partner IDs from this file and pasting them
into the CTAssignments.xml file for override constraints.
Configuring modules � 25

The file looks like this:

--

--

Filename : PartnerIDs1301.txt

Description: Describes the legal PartnerID values
 for channel: ChannelToolkit_Example1301.1301

(Note: This file was automatically generated at 4/24/01 5:52 PM)
--
--
SomeoneCT.109654
TestToolkitPartner.45678

BOTypeIDs.txt

BOTypeIDs.txt contains a list of business object type IDs known to Partner
Agreement Manager. When you need to identify overrides based on business
object, you can reduce typographical errors by copying business object type
IDs from this file and pasting them into the CTAssignments.xml file for
override constraints.

Note: When copying the BOTypeID, use the Internal BOTypeID, not the
External Document DefID.

The BOTypeIDs.txt file looks like this:

--

--

Filename : BOTypeIDs.txt

Description: Describes the legal DocumentID values

 in this system(internal and external)

 BOTypeID - Internal Document Type Identifier

 ExtDocDefID - External Document Type Identifier

 (Note: This file was automatically generated at 4/24/01 5:52 PM)

--

--
26 � Channel Toolkit Configuration Guide

DocumentID - ActionStatus

 - BOTypeID : ActionStatus!1.ActionStatus.1

 - DOCTYPE for this BOTypeID : <!DOCTYPE ActionStatus SYSTEM
"1.ActionStatus.1">

 - External Document DefID : null

DocumentID - Operation_Status

 - BOTypeID : Operation_Status!3.Operation_Status.1
 - DOCTYPE for this BOTypeID : <!DOCTYPE Operation_Status SYSTEM
"3.Operation_Status.1">
 - External Document DefID : null

In cases where the business object type ID includes an external element
definition set, the External Document DefID line is followed by another
DOCTYPE line that gives the URL for the DTD.

The external ID is defined ahead of time by the creator of the business object,
using the Element Definition Set Editor. The creator must also freeze the
business object. For more information about using the Element Definition
Set Editor, see the Partner Agreement Manager User’s Guide.

Here is business object type ID that includes an External Document DefID:

DocumentID - OrderInquiry

 - BOTypeID : OrderInquiry!1.iq39am35.8sm.1
 - DOCTYPE for this BOTypeID : <!DOCTYPE OrderInquiry SYSTEM "1.iq39am35.8sm.1">
 - External Document DefID : http://www.yourcompany.com/DTDs/OrderInquiry.dtd
 - DOCTYPE for this ExtDocDefID : <!DOCTYPE OrderInquiry SYSTEM "http://www.yourcompany.com/
DTDs/OrderInquiry.dtd">
Configuring modules � 27

ModuleMetadata.txt

ModuleMetadata.txt contains property information for each of the modules
listed in the CTModules.properties file. It is generated by the framework at
start-up and update time. The information takes the form of XML sections
that define assignments; you can cut and paste these into
CTAssignments.xml. Because the file contains information for all modules
listed in the CTModules.properties file, it might include modules that aren’t
used by the instance you’re configuring.

The ModuleMetadata.txt file typically looks like this:

ModuleMetadata - (SimplePollXport)

Module Name : SimplePollXport

Metadata Class : com.yourcompany.SimplePollingMetadata

Module Type : TRANSPORT

Supports Inbound : TRUE

Supports Outbound : FALSE

Externally Loaded : FALSE

Polling Transport : TRUE

Supports Async : TRUE

Supports Sync : FALSE

Supports Secure : FALSE

Property Names : File_Extension Inbox_Directory Partner_ID Outbox_Directory

CTAssignments.xml XML fragment :

 <transport>

 <module>

 <module_name>SimplePollXport</module_name>

 <module_properties>

 <description></description>

 <property>

 <name>File_Extension</name>

 <value>__REPLACE_VALUE__</value>

 </property>

 <property>

 <name>Inbox_Directory</name>
28 � Channel Toolkit Configuration Guide

 <value>__REPLACE_VALUE__</value>

 </property>

 <property>

 <name>Partner_ID</name>

 <value>__REPLACE_VALUE__</value>

 </property>

 <property>

 <name>Outbox_Directory</name>

 <value>__REPLACE_VALUE__</value>

 </property>

 </module_properties>

 </module>

 <transport_internal>

 <polling_frequency>3</polling_frequency>

 </transport_internal>

 </transport>

After cutting and pasting into CTAssignments.xml, you replace all the
“__REPLACE_VALUE__” placeholders with the appropriate information.

Creating assignments

The following sections describe how to perform common tasks in creating or
updating default and override assignments.

Defining a default assignment

To define a default assignment, you perform these steps:

1 Edit the appropriate CTAssignments.xml file.

2 Copy a module section for each of these three sections from the
ModuleMetadata.txt file to the appropriate section within the
<inbound_default> section:

� transport - required

� packager - optional

� transformation - optional

In each copied section, replace the “__REPLACE_VALUE__” placeholders with
the appropriate values or strings.
Configuring modules � 29

3 Copy a module section for each of these three sections from the
ModuleMetadata.txt file to the appropriate section within the
<outbound_default> section:

� transport - required

� packager - optional

� transformation - optional

In each copied section, replace the “__REPLACE_VALUE__” placeholders with
the appropriate values or strings.

Defining an override assignment

You can create overrides based on:

� Business object type

� Partner

� Both business object type and partner

For either of these constraints, you can further specify a direction (inbound,
outbound, or both).

To define an override:

1 Edit the appropriate CTAssignments.xml file.

2 Add a new <override_assignment> section to the file.

3 Create a <constraints> section.

� To create an override for a particular business object, add a <bo_type_id>
section to the <constraints> section.

To avoid typos, you can copy the business object type ID from
BOTypeIDs.txt (for more information, see BOTypeIDs.txt on page 26).

� To create an override for a particular partner ID, add a <partner_id>
section to the <constraints> section. To avoid typos, you can copy the
partner ID from PartnerIDsNNNN.txt (for more information, see
PartnerIDsNNNN.txt on page 25).

� You can specify both a business object type ID and a partner ID in the
<constraints> section:

 <constraints>

<bo_type_id>ECO!2.ECO.1</bo_type_id>

<partner_id>UserCT.109654</partner_id>

 </constraints>
30 � Channel Toolkit Configuration Guide

4 Create a <modules> section following the <constraints> section.

5 For inbound assignments, add an <inbound_override> section to the
<modules> section; for outbound assignments, add an
<outbound_override> section. To define an override that applies to both
inbound and outbound data, you must create both an <inbound_override>
and an <outbound_override> section and duplicate the tags enclosed in
those sections.

<modules>

<inbound_override>

</inbound_override>

</modules>

6 Copy the appropriate module section (<transform>, <packager>, or
<transport>) from the ModuleMetadata.txt file and insert it in the
appropriate <inbound_override> or <outbound_override> section (for
more information, see ModuleMetadata.txt on page 28). This figure shows an
inbound override assignment being added to CTAssignments.xml:

7 In each copied section, replace the “__REPLACE_VALUE__” placeholders the
appropriate values or strings.

 <override_assignment>

 <constraints>

 <bo_type_id>ECO!2.ECO.1</bo_type_id>

 <partner_id>UserCT.109654</partner_id>

 </constraints>

 <modules>

 <inbound_override>

 </inbound_override>

 </modules>

 </override_assignment>

<packager>

<module>

<module_name>SimpleInUnpackager</module_name>

<module_properties>

<description></description>

<property>

<name>InUnpack1</name>

<value>__REPLACE_VALUE__</value>

</property>

</module_properties>

</module>

</packager>

You cut this text from ModuleMetadata.txt and
paste it into the <inbound_override> section of the
CTAssignments.xml file.

CTAssignments.xml

ModuleMetadata.txt

After pasting the text in place, replace the
placeholders.
Configuring modules � 31

Validating and using CTAssignments.xml

After modifying CTAssignments.xml for a particular Channel Toolkit
instance, you must process the file to validate it and update the instance’s
run-time properties.

To process CTAssignments.xml:

1 Launch PAM and open the Channel Manager.

2 Click on Channel Profiles.

3 Choose the Channel Toolkit instance you are configuring and click
Edit>Properties.

4 Click on the Other tab.

5 Ensure Update_Config_Info is set to True and click OK.

When you click OK, the Channel Toolkit generates new versions of the three
helper files (described in Creating helper files on page 25) and validates both
CTAssignments.xml and CTModules.properties for the Channel Toolkit
instance you selected.

If both files are valid, it Channel Toolkit updates the run-time configuration
data for that instance. If either file is invalid, the Channel Toolkit displays an
error.

For a remote client installation (Channel Toolkit is installed on the Process
Manager computer) , Channel Toolkit displays an error if the Process
Manager computer’s file are incorrect. If the files on the Process Server and
Process Manager computers are out of sync, you might get a Process Server
side exception, even though you did not get an error dialog on the Process
Manager computer.

In summary, you use the steps listed above to validate your configuration:

� If validation of the configuration files on the Process Manager computer
fails, you’ll get an error dialog.

� If validation of the configuration files on the Process Server computer
fails, you’ll get an exception on the Process Server console.
32 � Channel Toolkit Configuration Guide

Returning to the Channel Manager

If you need to perform other tasks from Channel Manager before you can
create a valid CTAssignments.xml file (such as add a partner), you can either:

� Set Update_Config_Info to False and click OK.

When Update_Config_Info is False, no validation is performed.

� Click Cancel.

Process Manager installations

On UNIX, you must install and run the Channel Toolkit on a computer
running Process Manager, in addition to the Process Server computer. (This
is an option on Windows NT; it allows you to provide a local facility on which
users can edit and validate the CTAssignments.xml and
CTModules.properties file.)

Because the Channel Toolkit user interface has no facility for sending the
modified CTAssignments.xml, CTModules.properties, and other files from
the Process Manager computer to the Process Server computer, you must
synchronize these files yourself.

To do this:

1 Copy CTAssignments.xml and CTModules.properties to the Process Server
computer by hand.

2 On the computer running Process Server, perform the steps listed in
Validating and using CTAssignments.xml on page 32.
Configuring modules � 33

34 � Channel Toolkit Configuration Guide

c h a p t e r�
4

Designing processes using

Channel Toolkit
Read this chapter for specific information on how to design processes
that will be used with Channel Toolkit. Sections in this chapter
include:

� About public and private processes on page 36.

� About Channel Toolkit and public processes on page 36.

� Synchronous partners and public processes on page 44.
Designing processes using Channel Toolkit � 35

About public and private processes

Partner Agreement Manager’s two-level process model is designed to
automate transactions and the exchange of information between partners in
an extended enterprise. This model promotes cooperation between partners,
yet maintains total security and flexibility for each partner’s internal
activities.

The first level is the public process, which defines the step-by-step flow of
information and actions between two or more partners in an extended
enterprise. One partner develops the public process, and all partners involved
review and accept the process before it is implemented. The partner who
designs a process is its owner.

The second level is the private process, which defines each partner’s internal
sequence of actions for its steps in the public process. Although all partners
in a public process see and agree to its flow, each partner’s private process is
just that—private. The partner who develops a private process is the only one
who can ever see it.

See the Partner Agreement Manager User’s Guide for design guidelines and a
complete explanation of how to design and develop processes.

About Channel Toolkit and public processes

Partner Agreement Manager supports Channel Toolkit partners in public
processes. A Channel Toolkit partner is a partner that exchanges data with a
Partner Agreement Manager public process via a Channel Toolkit channel.
As a host partner, you can construct a variety of processes that use Channel
Toolkit.

Processes you can create using Channel Toolkit

You can create a large variety of processes using Channel Toolkit, utilizing all
the richness of the Partner Agreement Manager process development tools.
These processes fall into four very general types:

� the Channel Toolkit partner initiates the process

� the host partner initiates the process

� the Channel Toolkit partner completes the process
36 � Channel Toolkit Configuration Guide

� the host partner completes the process

The Channel Toolkit partner initiates the process

The Channel Toolkit partner can initiate a process. For example, if the
Channel Toolkit partner is buying something from the host partner, the
Channel Toolkit partner might issue an order status inquiry:

Channel Toolkit partner

Main (Process 1)

Host partner

Channel Toolkit
partner

Business object of type Order_Status_Inquiry

Business object of type Order_Status_Inquiry_Response
Designing processes using Channel Toolkit � 37

The host partner initiates the process

The host partner can initiate a process that includes a Channel Toolkit
partner. For example, if the host partner is buying something from the
Channel Toolkit partner, the host partner might start by asking for a
quotation:

The Channel Toolkit partner completes the process

The Channel Toolkit partner can be the terminal step of a process. This is
shown in the first example (The Channel Toolkit partner initiates the process
on page 37). In that example, not only did the Channel Toolkit partner
initiate the process, they also completed it. Another example would be if the
Channel Toolkit partner were the buyer and the host partner sent an invoice:

Channel Toolkit
partner

Main (Process 1)

Host partner

Business object of type Request_For_Quotation

Host partner

Business object of type Quotation

Main

Host partner

Channel Toolkit
partner

Business object of type Invoice1
38 � Channel Toolkit Configuration Guide

The host partner completes the process

The host partner can be the terminal step of a process. For example, if the
host partner was a buyer and the Channel Toolkit partner sent an invoice:

Invalid processes detected by verifier

When designing processes that include a Channel Toolkit partner, there are
a few design considerations you must take into account. These
considerations reflect a few corner cases and are unlikely to be present in
your process design. The process verifier rejects any process that does not
conform to these design considerations.

Note: The consideration listed in this section apply to partners that
communicate asynchronously. There are more invalid processes that can
exist for partners that communicate synchronously. For the synchronous
partner cases, see Synchronous partners and public processes on page 44.

A Channel Toolkit partner can communicate only with the

process owner

The process owner cannot author a process in which a non-host Partner
Agreement Manager partner communicates directly with a partner using
Channel Toolkit.

Main

Host partner

Channel Toolkit partner

Business object of type
Invoice

1

Designing processes using Channel Toolkit � 39

For example, this process flow is not valid:

You cannot author processes that contain only a Channel

Toolkit partner

A process that contains a Channel Toolkit partner must also contain at least
one host partner step. The single step of a single step process cannot contain
only a Channel Toolkit partner, either as a static partner or a group member.

For example, the following configuration is not valid:

A Channel Toolkit partner step cannot be:

� immediately preceded or followed by a step assigned to anyone except
the process owner or

� the single step of a single step process.

Messages are allowed between
the host partner and a partner
using Channel Toolkit.Channel Toolkit

partner

Main

Host partner

Non-host Partner Agreement
Manager partner

Messages are not allowed
between a Channel Toolkit
partner and a non-host Partner
Agreement Manager partner.

Channel Toolkit
partner

The process must have at least
one host partner step.

Main
40 � Channel Toolkit Configuration Guide

A Channel Toolkit partner cannot initiate a parametric

process

A Channel Toolkit partner may not be the non-group initiator of a process
which contains a group. In such a case, Partner Agreement Manager will not
be able to determine which group member should be selected to participate
in this process instance.

For example, this process is not valid:

A Channel Toolkit partner cannot initiate multiple processes

with the same business object type

One Channel Toolkit partner cannot initiate multiple processes with the
same business object type. In such a case, Partner Agreement Manager
cannot determine which process to initiate.

For example, these two processes cannot both be installed:

Group

Channel Toolkit
partner

Main

Host partner

Business
object of type
PO

Business object of type PO

Channel
Toolkit
partner

Channel
Toolkit partner

Main
(Process 1)

Main
(Process 2)

Host partner Host partner
Designing processes using Channel Toolkit � 41

Note that two different Channel Toolkit partners could initiate different
processes with the same business object type.

The default configuration includes this design consideration. If you need this
functionality, contact IBM customer support about changing the
configuration.

A Channel Toolkit partner cannot output two or more

business objects of the same type

A Channel Toolkit partner cannot send two or more business objects of the
same type from a single step. In such a case, the channel cannot determine
the process path for each business object. This applies to both conjunctive
and disjunctive out paths.

For example, neither of these processes is valid:

The default configuration includes this design consideration. If you need this
functionality, contact IBM customer support about changing the
configuration.

A Channel Toolkit partner cannot output the same business

object type on concurrent paths

A Channel Toolkit partner cannot output the same business object type on
concurrently executing paths. In such a case, the channel cannot identify the
path to which a newly arrived business object belongs. This applies only to
conjunctive paths.

1 1

&AND operator

1 1

?XOR operator

business
object of
type PO

business
object of
type PO

Channel Toolkit
partner

Channel Toolkit
partner
42 � Channel Toolkit Configuration Guide

For example, this process is not valid:

The default configuration includes this design consideration. If you need this
functionality, contact IBM customer support about changing the
configuration.

A Channel Toolkit partner cannot initiate a process with two

or more business objects on conjunctive paths

If a Channel Toolkit partner is the initiating step, it cannot output two or
more business objects on conjunctive paths.

For example, this process is not valid:

Business object
of type PO

1

&

Business object
of type PO

1

Channel
Toolkit partner

Channel
Toolkit partner

Host partner

Host partner Host partner

Business object
of type
PO_Acceptance

1

&

Business object
of type
Shipment_Notice

2

Channel Toolkit
Partner 1

Host partner
Designing processes using Channel Toolkit � 43

The default configuration includes this design consideration. If you need this
functionality, contact IBM customer support about changing the
configuration.

Synchronous partners and public processes

Previous examples in this chapter have involved partners that communicate
asynchronously; that is, each request and response is handled through a
separate connection. The processes introduced in this section involve
partners that communicate synchronously; that is, one connection (either
inbound or outbound) is used for both a request and a response. In the
following section, partners that communicate synchronously are called
synchronous partners.

Synchronous partners have one input business object to a public node and
one output business object from a public node.

Invalid processes not detected at design time

Some asynchronous process configurations are invalid, but cannot be caught
by the process verifier because there is nothing in the process definition that
specifies whether the partners communicate in synchronous or
asynchronous mode. The partners communication mode is set as a partner
property.

The errors in these configurations will show up at run-time when testing
your process.

Non-Partner Agreement Manager Channels should not

allow a terminating loop

Channels that do not pass outbound control messages cannot have a loop
branch coming out of them if they are the last node. Partner Agreement
Manager is not able to tell when to terminate the node; it’s ambiguous.
44 � Channel Toolkit Configuration Guide

For example, this process is not valid:

Synchronous partners can only have one input, one output

When a process includes a synchronous partner, there can be only one
business object input to the synchronous partner and a maximum of one
business object output via the completion set.

The same synchronous partner must precede and follow an

Partner Agreement Manager partner

A synchronous partner must either:

� Both precede and follow a Partner Agreement Manager partner. Both
synchronous partners must have the same PartnerID.

� Precede a Partner Agreement Manager partner, which must be the
terminal step in the process.

Business object

Channel
Toolkit partner

Host partner

Channel
Toolkit partner

Business object

Business object

Loop body path Loop
Designing processes using Channel Toolkit � 45

This first example shows a valid process using a synchronous partner. In this
case, the Partner Agreement Manager partner is sandwiched by a
synchronous partner.

This example also shows a valid process using a synchronous partner. In this
case, the Partner Agreement Manager partner is preceded by a synchronous
partner and is also the terminal step.

Partner Agreement Manager
partner X

Synchronous partner Z

Synchronous partner Z

Partner Agreement Manager
partner X

Synchronous partner Z
46 � Channel Toolkit Configuration Guide

The following is a valid variation of the previous example. In this case, the
Partner Agreement Manager partner is preceded by a synchronous partner
and is followed by a second Partner Agreement Manager partner, which is
then followed by the terminal step.

The following is a valid variation of the first and third examples. In this case,
the Partner Agreement Manager partner is preceded by a synchronous
partner and is followed, using an AND branch, by both the same
synchronous partner and a second Partner Agreement Manager partner. The
important thing here is that the AND branch makes the second synchronous
partner Z required.

Partner Agreement Manager
partner X

Synchronous partner Z

Partner Agreement Manager
partner Y

Partner Agreement Manager
partner X

Synchronous partner Z

Synchronous partner Z

&

Partner Agreement Manager
partner Y
Designing processes using Channel Toolkit � 47

The following process is invalid for synchronous partners, because the OR
doesn’t require execution of the process to follow the synchronous partner
branch.

In this example, the previous example is made valid by having synchronous
partner Z on one path and a termination on the other.

Partner Agreement Manager
partner X

Synchronous partner Z

Synchronous partner Z Partner Agreement Manager
partner Y

?

Partner Agreement Manager
partner X

Synchronous partner Z

Synchronous partner Z

?

48 � Channel Toolkit Configuration Guide

This process is invalid, because the Alliance Manager partner is not
sandwiched by the same synchronous partner.

Partner Agreement Manager
partner X

Synchronous partner Z

Synchronous partner Y The sandwiching synchronous partner
must be the same.
Designing processes using Channel Toolkit � 49

This final example of invalid processes that involve synchronous partners
shows a synchronous partner that does not directly sandwich an Partner
Agreement Manager partner. A possible workaround is to have Partner
Agreement Manager partner X call Partner Agreement Manager partner Y as
a subprocess.

Synchronous partner must receive exactly one response

object

If an Partner Agreement Manager partner is sandwiched by a synchronous
partner, the Partner Agreement Manager partner must emit exactly one
response object, unless the process terminates after the Partner Agreement
Manager partner.

Partner Agreement Manager
partner X

Synchronous partner Z

Synchronous partner Z

Partner Agreement Manager
partner Y

Partner Agreement Manager
partner X
50 � Channel Toolkit Configuration Guide

This examples shows an invalid process, because synchronous partner Z
receives two response objects.

Conversation thread required

If X is a client partner and A is an Partner Agreement Manager partner, you
must define a conversation for processes of the form A-X-A.

For more information on conversation threads, see Creating conversations on
page 53.

Partner Agreement Manager
partner X

Synchronous partner Z

Synchronous partner Z

&

Synchronous partner Z

Partner Agreement Manager
partner A

Partner Agreement Manager
partner A

Synchronous partner X

A conversation thread is
required for this part of the
process.
Designing processes using Channel Toolkit � 51

52 � Channel Toolkit Configuration Guide

c h a p t e r�
5

Creating conversations
Partner Agreement Manager matches up responses to requests by
associating business objects it receives with those that it has sent.
Usually this information is maintained as process metadata between
Partner Agreement Manager and its partners, but in some cases, (such
as Channel Toolkit channels), the partner has no provision for
maintaining this process metadata. Thus, Channel Toolkit uses a
feature called conversation threading to maintain the process context
of its messages.

Read this chapter for information about creating conversations that
allow Partner Agreement Manager to identify responses from a
Channel Toolkit partner.

� About conversations on page 54.

� About the conversation editor on page 56.

� Creating conversations on page 59.
Creating conversations � 53

About conversations

The conversation threading feature in Channel Toolkit allows you to use
unique information shared by outbound and inbound business objects (such
as a PO number) to route inbound business objects to the appropriate
Partner Agreement Manager process.

When a public process includes a Channel Toolkit partner, you usually pass
a business object to the partner and, in many cases, the Channel Toolkit
partner returns another business object.

The conversation associates fields in the outbound business object (in this
case a purchase order) and uses the values in these fields to associate the
inbound message (a purchase order acknowledgement) with the appropriate
process.

Note: You cannot create two conversations that use the same inbound and
outbound business objects, even if the fields used in conversations are
different.

If conversation threading is turned on an you do not create a conversation
for the outbound and inbound business objects used by a Channel Toolkit
partner, the Partner Agreement Manager process verifier issues an error,
stating that the conversation is not defined.

A conversation is global. Once you have created a conversation, it is used to
evaluate all inbound messages routed through the channel.

Channel Toolkit partner

PO (outbound BO)

PO ack (inbound BO)
54 � Channel Toolkit Configuration Guide

If Partner Agreement Manager receives an inbound business object from a
Channel Toolkit partner, but cannot match the business object to a running
process, Partner Agreement Manager looks for a process that can be started
by the Channel Toolkit partner using that business object. If Partner
Agreement Manager finds such a process, it starts it; if no process is found,
Partner Agreement Manager reports an error initiating a process.

Requests with multiple business objects

Each conversation can have one or more outbound business objects, joined
with an AND, but can only have one inbound business object. For example,
the process flow on the left can be identified by a single conversation (object
1 and 2 outbound with object 3 inbound). Whereas the flow on the right
must be identified by two separate conversations (object 1 and 2 outbound
with object 3 inbound; object 1 and 2 outbound with object 4 inbound):

1 2

&

Channel Toolkit partner

3

1 2

&

Channel Toolkit partner

3

&

4

Creating conversations � 55

If the outbound business objects are joined by an OR, each outbound set of
business objects requires a separate conversation. For example, this process
flow requires two conversations (object 1 and 2 outbound with object 4
inbound; object 3 outbound with object 4 inbound).

About the conversation editor

This section describes some of the general functionality found in the
Conversation editor. For information on how to start the Conversation
editor and create conversations, see Creating conversations on page 59.

When creating a conversation, you start by selecting the inbound business
object type (that is, the business object returned from the Channel Toolkit
channel partner). Then, you select one or more outbound business object
types (the business object passed to the channel Channel Toolkit partner).

The Conversation editor is divided into two panels: the outbound panel and
inbound panel.

� The outbound panel (on the left) shows the business object type that is
sent to the Channel Toolkit partner.

� The inbound panel (on the right) shows the business object types that can
be returned from the Channel Toolkit partner.

1 2

?

Channel Toolkit
channel partner

4

&

3

56 � Channel Toolkit Configuration Guide

Note: At times the terms “outbound” and “inbound” can be confusing. Just
remember that the perspective of the Conversation editor (and this
documentation) is from the Partner Agreement Manager perspective.
Business objects are “outbound” when they are being sent from Partner
Agreement Manager to the Channel Toolkit partner; business objects are
“inbound” when they are sent from the Channel Toolkit partner to
Partner Agreement Manager.

The lower portions of each panel display the description of an element
selected in the corresponding upper portion.

You can resize the panels by dragging their borders.

The Conversation editor uses the same icons and graphical cues that appear
in the Map editor.

Toolbar buttons give you
quick access to common
commands.

This panel shows the
business object type being
sent to the Channel Toolkit
partner.

This panel shows the
hierarchy of elements in
business object type being
returned from the Channel
Toolkit partner.

This area shows a
description of the selected
element.

Drag a panel’s border to
resize the panel.
Creating conversations � 57

These are the font cues in the outbound and inbound panels.

This table summarizes the icons that can appear in the Conversation editor.

Note: Unless they are specifically designated as optional (a question mark
appears to the right of the icon), all elements are required. This means that
any element without a question mark is required in its parent group. We
recommend that you only use required fields to identify conversations.

About the Command toolbar

The Command toolbar at the top of the Conversation editor gives you access
to common File and Edit menu commands and lets you remove outbound
business objects.

Bold text indicates a
group.

Italics indicates elements
in a repeatable group.

This icon Represents This icon Represents

A required field A required group

An optional field An optional group

A required field
sequence*

A required group
sequence*

An optional field
sequence*

An optional group
sequence*

* This version of the Conversation editor does not allow you to use sequences
to identify conversations.

Open an existing conversation

Create a new conversation

Cut, Copy, Paste

Save the conversation

Delete selected itemAdd a business object
58 � Channel Toolkit Configuration Guide

About the status bar

The status bar at the bottom of the Conversation editor shows information
about the current user and the state of the map.

About the menu bar

The Conversation editor menu bar appears at the top of the window.

The File menu contains commands for creating, opening, saving, and closing
conversations.

Creating conversations

The first step in creating a conversation is to select the inbound business
object type. You then add outbound business object types as required by the
public process structure (described in About conversations on page 54) and
establish associations between fields in the outbound business objects and
the inbound business objects.

You create conversations in the Channel Manager. To launch the channel
manager:

1 In the Process Manager window, click Actions and select Channel Manager
from the Actions menu.

Profile nameUser name

Current state of the conversationConversation version number

Conversation owner’s name
Creating conversations � 59

2 The Channel Manager window appears.

To create a conversation:

1 Click the New Conversation button in the Channel Manager’s Command
toolbar. This button is only enabled when you select Conversations in the
panel on the left.

Or, you can click File on the Channel Manager menu and choose
New>General>Conversation.

2 The Conversation Editor dialog appears. Click the Create a new conversation
button from the command toolbar.

Or, you can click File on the Conversation Editor menu and choose New.
60 � Channel Toolkit Configuration Guide

The New Conversation dialog box appears.

3 Select the inbound business object type that you want associate with this
conversation and click OK.

The Conversation editor appears. The business object type you selected
appears on the right side of the Conversation editor, in the output area.

4 To add an outbound business object, click the Add business object button in
the Conversation editor’s Command toolbar.

Select a business object
type to map to (the
output of the map).

This panel displays the
inbound business object
type. Double-click a group
element to display its
contents.

When you have multiple
outbound business
objects in a conversation,
you can view them in this
list.
Creating conversations � 61

Or, you can choose Add Business Object from the Edit menu. The Add
Outbound Business Object dialog box appears.

5 Type in a name for the Outbound business object type.

6 Select an outbound business object type for this conversation. Click OK.

The business object type you select appears in the input panel.

7 Expand the groups in the outbound and inbound business object types so
that you can see their contents.

Select a business object type
to map from (an input).

Type a name for the Outbound business object.

This panel displays the
current outbound
business object type.
Double-click a group
element to display its
contents.
62 � Channel Toolkit Configuration Guide

8 Associate one or more fields in the outbound business object with the
inbound business object by clicking on a field in the outbound business
object and dragging it to a field in the inbound business object. When you
associate an inbound field, an asterisk (*) appears to the right of its name.

Note: In this release of the Conversation Editor, you cannot map sequences
(repeatable elements).

You need to associate fields that will have identical content in both the
outbound and inbound business object. Partner Agreement Manager uses
these fields to identify the conversation.

The names of the fields can be different; the important thing is that the data
contained in the fields is identical.

Note: We recommend that you always use required fields. If you use an
optional field and the field is not present in either the outbound or
inbound business object instance, Partner Agreement Manager will not be
able to complete the conversation.

Saving a conversation

When you save a conversation, you give it a name; the Channel Manager lists
it in the Conversations folder.

To save a conversation:

1 Choose Save from the File menu.

The Save Conversation dialog box appears.

2 Type a name and click OK.

The conversation appears in the Conversations folder in the Channel
Manager.

Type a name and click OK.
Creating conversations � 63

64 � Channel Toolkit Configuration Guide

appendix�
A

Module installer actions
If you develop a module and provide an installer for the module, this
appendix describes the actions that your installer must perform. Note
that even if you don’t provide an installer, you should provide
instructions with your module that describe how the user is to install
your module.

Sections in this appendix include:

� Location for the module on page 66.

� Modifying CTModules.properties on page 66.

� Global module properties on page 67.

� Documenting your module on page 67.
Module installer actions � 65

Location for the module

To install your module class and properties files, you must copy them to in
<Alliance>\Partners\PartnerXXXX\com\<your-company>.

Note: If you are running on UNIX, which requires you to install channel
toolkit on both the Process Server and Process Manager computers, or
have just chosen to install Channel Toolkit on the both the Process Server
and Process Manager computers, you must deploy modules to both
computers. For more information see Process Manager installations on
page 33.

The class names specified in the global module properties of
CTModules.properties provide the paths to the files.

Modifying CTModules.properties

A module installer must perform these actions:

1 Open<Alliance>\Partner\PartnersXXXX\Properties\ChannelToolkit\
CTModules.properties file.

2 Locate the list of available modules, identified by “Modules=”, starting in
column 1.

3 Append the module name to the list of available modules.

For example, to add SimpleOutBound Packager, you would add:

Modules=... SimpleOutboundPackager

4 Depending on the module type (transport, packager, transform), locate the
appropriate section in the file (identified by the commented text
“# TRANSPORTS”, “# PACKAGERS”, “# TRANSFORM”), and add three lines
defining the global properties for the module (these properties are described
in Global module properties, next).

For example, if your Java class names are com.<your-company>.SimplePackager
and com.<your-company>.SimplePackagerMetadata, the #PACKERS section
might be:

PACKAGERS
#---------------------------
SimpleOutboundPackager.name=SimpleOutPackager
SimpleOutboundPackager.runtime.class.name=com.<your-company>.SimplePackager
SimpleOutboundPackager.metadata.class.name=com.<your-company>.SimplePackagerMetadata
66 � Channel Toolkit Configuration Guide

Global module properties

Each module must register these properties in CTModules.properties:

Documenting your module

The Channel Toolkit installation includes a Microsoft Word document
template that allows you to document your module for other users. The
template is stored in:

<Alliance>\Partner\PartnersXXXX\Properties\ChannelToolkit\CTModuleD
ocs\Channel_Toolkit_Module_Documentation_Template.dot

For cross-platform compatibility, we strongly suggest that you save the
resuling Microsoft Word document in HTML format.

You should ensure that when your module is installed, the HTML document
is installed in:

<Alliance>\Partners\PartnerXXXX\Properties\ChannelToolkit\CTModuleD
ocs

Property Name Description

ModuleName.name Friendly name used in CTAssignments.xml
to refer to this module.

ModuleName.runtime.class.name The Java class name of module run-time
implementation.

ModuleName.metadata.class.name The Java class name of module metadata
implementation.
Module installer actions � 67

68 � Channel Toolkit Configuration Guide

appendix�
B

Notices
This information was developed for products and services offered in the
United States. IBM may not offer the products, services, or features discussed
in this information in other countries. Consult your local IBM representative
for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject
matter described in this information. The furnishing of this information
does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.
Notices � 69

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the information. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.
70 � Channel Toolkit Configuration Guide

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of
this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of
the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating
environments may vary significantly. Some measurements may have been
made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore,
some measurement may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.
Notices � 71

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX
DB2
IBM
MQSeries
SupportPac
WebSphere

Pentium is a registered trademark of Intel Corporation in the United States
and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks
of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, and service names may be trademarks or service
marks of others.
72 � Channel Toolkit Configuration Guide

g l o s s a r y�
Glossary
action—a task performed as part of a private process. A private process action is the
equivalent of a step in a public process. See the following terms in this glossary for more
information about the action types you can include in a private process:

� approval action

� extension action

� mapping action

� notification action

� output object action

� script action

� subprocess action

� termination action

� timer action

See also private process.

adapter—the software bridge between Partner Agreement Manager processes and specific
end-system and business-application interfaces. Adapters manage interactions between
business applications and the Adapter Server. They allow private processes to interact with
external business applications while a process is running, and they allow PAM to start
public processes based on events that occur in external business applications. See also
adapter implementation, adapter instance, adapter type.
Glossary � 73

adapter implementation—the implementation declaration for an adapter type. It specifies
the name and location of the Java source file that defines the application logic used to
communicate with a specific end system through that end system’s interface. The
application logic is specified in the form of properties. See also adapter, adapter instance,
adapter type.

adapter instance—an instance of an adapter implementation. The adapter instance is used in
a private process extension action and provides the specific values to be used for the
properties declared in the adapter implementation. See also adapter, adapter
implementation, adapter type, extension action.

adapter type—a definition that is stored in XML format and specifies the adapter’s properties
as well as the operations and events it supports. A single adapter type can have multiple
implementations, and each implementation can have multiple instances. See also adapter,
adapter implementation, adapter instance.

approval action—a private process action that you use to ask for a response from a user before
letting the process continue to run. You can use an approval action, for example, to ask for
an OK when a purchase order exceeds a predetermined amount. See also private process.

assignment—information used by the Channel Toolkit framework to determine default and
override properties.

business object—a message transmitted as part of a public process. Business objects take the
form of purchase orders, acknowledgments, requests for clarification, and so on. See also
business object type.

business object type—a definition that determines the types of information a message can
contain. It has three properties: the top-level element in its element definition set, its key
field, and whether instances of it return audit information for non-repudiation purposes.
The name of the business object type is the name of the element you select as its top-level
element. See also business object, element definition set, non-repudiation.

business object variable—one of the two types of variables used in Partner Agreement
Manager to store information within a process. Business object variables create an instance
of a business object type. They can be used to store, for example, the outputs from
extension actions, the inputs for map actions, or the inputs and outputs for subprocesses.
See also business object, business object type, extension action, variant variable.

CA—see certificate authority.
74 � Channel Toolkit Configuration Guide

certificate—a security document that binds a public encryption key to an entity (an
individual or organization) known as the principal. The security document (a digital
certificate) is signed by another entity known as the issuer. A digital certificate for which
both the principal and issuer are the same entity is known as a self-signed certificate. A
certificate for which the principal and issuer are different entities is issued by a certificate
authority (CA) like VeriSign and is known as a CA-issued (or third-party-signed)
certificate. Partner Agreement Manager supports both self-signed and CA-issued
certificates. PAM also supports the binding of certificates to be used for signature
authentication, message encryption, and SSL authentication for channels other than
Partner Agreement Manager. See also certificate authority, SSL.

certificate authority—a trusted third-party organization or company that issues digital
certificates used to create digital signatures and public-private key pairs. The role of the
certificate authority, or CA, is to authenticate the entities (individuals or organizations)
involved in electronic transactions. CAs are a critical component in data security and
electronic commerce because they guarantee that the two parties exchanging information
are really who they claim to be. See also certificate.

channel—a communications mechanism that encapsulates all the processing information
needed to send messages to a partner’s system, as well as to translate data received from a
partner into Partner Agreement Manager messages. PAM provides channels for
RosettaNet, EDI, cXML, and other systems and protocols. See also message.

data transformation module—a Channel Toolkit module that transforms a single business
object into an arbitrary stream of data, and vice-versa.

digital certificate—see certificate.

DTD—Document Type Definition. A type of file associated with SGML and XML documents
that defines how the formatting tags should be interpreted by the application presenting
the document. In Partner Agreement Manager, a DTD file contains the complete
description of a business object type’s element definition set. See also business object,
business object type, element definition set.

element definition set—a collection of data fields (or elements) or groups of data fields that
defines the structure and meaning of a business object type. See also business object, business
object type.

encryption certificate—see certificate.

event—a piece of information that comes into Partner Agreement Manager as a message from
another source (an enterprise system or business application, for example) and triggers a
public process. See also message.
Glossary � 75

event push—a method that uses the HTTP POST mechanism to push events into Partner
Agreement Manager as a way to trigger processes. A port on the Process Server is set to
listen for events in the form of HTTP POST messages. When a message is detected, PAM
uses the information in the message to generate an event. See also event.

extended enterprise—a business model under which companies that work together as
partners function as efficiently as a single organization through the implementation of
automated communication technologies.

extension action—a private process action that communicates via an adapter with an external
application that is registered with Partner Agreement Manager. You can use an extension
action, for example, to launch a spreadsheet application, perform calculations, and update
the enterprise system, or to get information from an enterprise system or listen for an event
in the enterprise system. See also adapter, private process.

framework—manages much of the complexity in Channel Toolkit channels, including the
interaction between Partner Agreement Manager and the modules, channel configuration,
error handling, retry, and so on.

LDAP—Lightweight Directory Access Protocol. LDAP provides a standard method for
accessing information from a central directory. After user authentication is set up in the
LDAP directory, applications that use the LDAP protocol can retrieve the information
from that directory. An authenticated user can log in to any application that supports the
LDAP protocol with the same user name and password.

linked certificate—see certificate.

map—a Java Script or VBScript that inserts data into fields in an output business object type
generated by a private process. The map specifies which fields in the output business object
type receive data, and it identifies the information source.

map method—a reusable logical block of code that inserts data into a particular type of
element or element sequence in a business object type. Within a map method, you can
write the expressions that map individual input and output fields in the sequence. Or you
can create a submap and drag input fields to output fields and have Partner Agreement
Manager create the appropriate mapping expressions. See also map, submap.

mapping action—a private process action that you use to call a map. The map specifies the
fields in a business object type that will receive data extracted from another source. You use
a mapping action when you want to extract data from one business object type and insert
it in a different business object type. For example, you use a mapping action to transform
a purchase order generated by your inventory system into a sales order in a format that
your partner expects. See also map, private process.
76 � Channel Toolkit Configuration Guide

message—a structured communication used to pass information and control to another
partner in a public process. The action in the process passes to the partner who receives the
message. The content of a message is determined by its business object type. A message can
be transmitted via synchronous or asynchronous methods, as determined by its
communication service type. See business object type.

module—plugs into the Channel Toolkit framework to provide specific services required by
the channel. See also data transformation module, packaging module, unpackaging module,
and transport module.

non-repudiation—a business object security feature that authenticates instances of a business
object type and maintains an audit record to verify that they were received by the intended
recipient. For business object instances that you receive, Partner Agreement Manager
authenticates each instance and maintains an audit record to verify that the instance
actually originated with the stated originator. If you disable auditing for a business object
type, non-repudiation support is disabled for all messages that contain instances of that
business object type.

notification action—a private process action that you use to send an e-mail, fax, or pager
message to addressees that you specify. You use a notification action to inform someone
inside or outside your organization that an event has occurred. For example, you can use a
notification action to alert the order entry department when a purchase order arrives from
a customer. See also private process.

output object action—a private process action that you use to bind a business object to the
expected output object and path in a public process. You use an output object action at the
point in a private process when you are ready to send a business object to the associated
public process. This is typically the last action in the private process. See also private process.

packaging module—a Channel Toolkit module that packages one or more business object
streams into a stream that can be sent by the transport module. Examples of packaging
include enveloping (such as MIME encoding), encryption, grouping single business
objects together, and so on.

In general, the term “packaging module” is used to mean both packaging and unpackaging
modules.

partner group—a group of partners that perform the same role in a process at different times.
Instead of duplicating a public process and substituting a different partner name, you can
set up a partner group for the public process and then designate a specific partner as the
participant when you start an instance of the process. For example, you might design a
generic purchasing process that works equally well with any of your suppliers and then
designate the appropriate partner when you start the process.
Glossary � 77

partner profile—information that identifies an organization, specifies a contact person in
that organization, lists the communication services the organization supports, and defines
the organization’s security profile. When partners agree to participate in a public process,
they must exchange profile information as a way to ensure authenticity before they can
proceed.

PIP—Partner Interface Process. RosettaNet PIPs are specialized system-to-system XML-
based dialogs that define business processes between supply-chain partners and provide
models and documents for the implementation of e-commerce standards. Each PIP
includes a technical specification based on the RosettaNet Implementation Framework
(RNIF), a message guideline document with a PIP-specific version of the business
dictionary, and an XML message guideline document. See also RosettaNet.

post method—the last block of code that is executed when a mapping action runs. Its only
parameter is the output business object. You use the post method when you need to
perform post-processing on the output business object. For example, you might use the
post method to set the value of a summary field based on the number of line items in the
output business object, or to examine a range of dates in a repeated group, extract the most
recent date, and post that date in a header field. See also mapping action, pre method.

pre method—the first block of code that is executed when a mapping action runs. The pre
method’s parameters are the map inputs. You use the pre method to access a map’s inputs
and set global variables based on their content. See also mapping action, post method.

private process—a task or set of tasks that business partners participating in a public process
perform at points where they need to take action internally. Partners participating in a
public process must implement a private process for each public process step that they
own. A private process begins with input from the public process and ends with output that
feeds back into the public process. The input can be the receipt of a business object from a
partner, or it can be a triggering event from an internal system. The output is the business
object that transfers control back to the public process. See also action, process, public
process.

private process action—see action.

process—the flow of actions and the exchange of business information between partners in
an extended enterprise. A process operates on two levels, public and private. See extended
enterprise, private process, public process.
78 � Channel Toolkit Configuration Guide

public process—the step-by-step flow of messages, events, and actions between two or more
business partners. Public processes are set up by agreement between partners, and each step
in a public process has a private process associated with it. A public process is developed by
one partner, and all the partners who participate in it must review and approve it before it
can be implemented. The partner who designs a public process is its owner. See also private
process, process.

RosettaNet—a consortium of major information technology, electronic components, and
semiconductor manufacturing companies that is working to create and implement
industry-wide, open e-business process standards. See also PIP.

script action—a private process action that consists of a script written in VBScript or
JavaScript and is designed to manipulate information or set up conditional actions based
on input. You use a script to establish decision-making criteria for branches or loops, to set
variables, or to calculate values that are used elsewhere in the private process. See also
private process.

security certificate—see certificate.

self-signed certificate—see certificate.

signature certificate—see certificate.

SSL—Secure Sockets Layer. The SSL protocol is a security protocol that provides for
communications privacy and reliability over the Internet. The protocol allows client/server
applications to communicate in a way that is designed to prevent eavesdropping,
tampering, or message forgery.

submap—a secondary level map that is called by a map method to insert data into an output
element other than the top-level element. See map, map method.

subprocess action—a private process action you use to call an existing public process. You
can call any public process in which your organization owns the first partner action. For
example, you can use a subprocess to get a quote approved by a third-party supplier before
responding to a customer. See also private process.

termination action—a private process action that you use to stop a process at a
predetermined point for a reason that you specify. You can use a termination action to deal
with errors in data that might prevent a process from completing successfully. For example,
you might want to stop a process in cases where an enterprise system passes incomplete or
corrupted information to it. See also private process.

third-party-signed certificate—another name for a CA-issued certificate. See certificate.
Glossary � 79

timer action—a private process action that you use to insert a pause. You can use a timer
action to specify the period of time you want to elapse before the next action in the process
starts. See also private process.

transport module—a Channel Toolkit module that takes a stream and sends it out over a
transport medium (such as HTTP), or receives a stream from a transport medium and
passes it to the framework.

unpackaging module—a Channel Toolkit module that unpackages a stream into one or more
business object streams. Examples of unpackaging include recognizing business object
types, de-enveloping, decryption, breaking a multi-business object message into individual
business objects, and so on.

In general the term “packaging module” is used to mean both packaging and unpackaging
modules. See also packaging module.

variant variable—single field variables. Variant variables store text strings—the type of
information contained in a single field element. You can use variant variables to store the
input for actions, to set flags (such as the time-out flag for an approval action), to move
information within scripts, or to store the results of an approval action. See also business
object variable.
80 � Channel Toolkit Configuration Guide

i n d e x�
Index
A

Add Outbound Business Object dialog box 62
architecture

Channel Toolkit 3
assignments

concepts 6
creating 29
default 22

assigning 29
override

assigning 30

B

BOTypeIDs.txt 26

C

Channel Manager
returning to 33

channel properties
dereferencing 24

Channel Toolkit
and public processes 36
architecture 3
client-side installation 33
framework

installing 13
installing 11

multiple instances 4
partner, defined 36
processes 36
public processes 36

Channel Toolkit partners
and business object types 42
and multiple business objects 42, 43
and parametric processes 41
communication with process owner 39
completing a process 38
initiating a process 37
initiating multiple processes 41
only step in processes 40

command toolbar
Conversation editor 58

configuration files 8
Conversation Editor

command toolbar 58
described 56
font cues 58
icons 58
inbound panel, described 56
menu bar 59
outbound panel, described 56
status bar 59
Index � 81

Conversation editor
about 56

conversations 54
adding outbound business objects 61
components, described 54
creating 53, 56, 59
icons for fields and groups, described 57
saving 63

CTAssignments.dtd file 19
CTAssignments.xml 18

processing 19
structure of 21
validating 32

CTModules.properties
modifying 66

D

data transformation modules 6
default assignments

defining 29
Default_Max_Retries 15
Default_Polling_Frequency 15
Default_Retry_Frequency 15
dereference values 24
dereferencing properties and passwords 24
design considerations 39
dialog boxes

Add Outbound Business Object 62
New Conversation 61
Save Conversation 63

F

framework 4
installing 13

G

global module properties 67

H

helper files
creating 25

host partner
initiating a process 38

I

installation
overview 12

M

menu bar
Conversation editor 59

Microsoft Word
module template 67

module installer actions 65
module properties

global 67
ModuleMetadata.txt 28
modules

about 5
configuring 17
data transformation 6
documenting 67
installing 16
location in file system 66
packaging and unpackaging 6
transport 7

multiple business objects 55

N

New Conversation dialog box 61

O

order of precedence 24
outbound business objects, adding to conversa-
tions 61
override assignments 23

defining 30
overrides

order of precedence 24

P

packaging modules 6
parametric processes

and Channel Toolkit partner 41
partner properties

dereferencing 24
PartnerIDsNNNN.txt 25
password store entries

dereferencing 24
Polling_Interval 15
precedence

of overrides 24
private processes

about 36
82 � Channel Toolkit Configuration Guide

processes
designing with Channel Toolkit 35
public and private 36

property values
transport defaults 15

public processes 36
about 36
and Channel Toolkit 36

R

requirements
system 12

retries
handled by framework 5

Retry_Timeout 15

S

status bar
Conversation editor 59

system requirements 12

T

terminology 2
toolbars, in Conversation Editor, described 58
transport modules 7
transport properties

setting defaults 15

U

unpackaging modules 6
Index � 83

	Welcome to the Channel Toolkit Configuration Guide
	Who should use this information
	Related information
	API Javadocs

	Introduction
	Terminology
	Architecture
	Framework
	About Channel Toolkit instances
	The framework manages transport polling
	The framework handles retries
	The framework requires conversations

	Modules
	Modules are invoked by the framework
	The data transformation modules
	The packaging and unpackaging modules
	The transport modules
	How the framework resolves overrides and defaults

	Configuration Files

	Installing Channel Toolkit
	System requirements
	Installation overview
	Installing the Channel Toolkit framework
	Setting default transport property values
	Installing Modules

	Configuring modules
	Overview
	About CTAssignments.xml
	Processing CTAssignments.xml
	The CTAssignments.dtd file
	Structure of the CTAssignments.xml file
	Default assignments
	Override assignments
	Order of precedence
	Using channel and partner properties

	Creating helper files
	PartnerIDsNNNN.txt
	BOTypeIDs.txt
	ModuleMetadata.txt

	Creating assignments
	Defining a default assignment
	Defining an override assignment

	Validating and using CTAssignments.xml
	Returning to the Channel Manager

	Process Manager installations

	Designing processes using Channel Toolkit
	About public and private processes
	About Channel Toolkit and public processes
	Processes you can create using Channel Toolkit
	Invalid processes detected by verifier

	Synchronous partners and public processes
	Invalid processes not detected at design time

	Creating conversations
	About conversations
	Requests with multiple business objects

	About the conversation editor
	Creating conversations
	Saving a conversation

	Module installer actions
	Location for the module
	Modifying CTModules.properties
	Global module properties
	Documenting your module

	Notices
	Trademarks

	Glossary
	Index

