
WebSphere® Partner Agreement View

User’s Guide
Version 2 Release 2
GC34-5965-02

WebSphere® Partner Agreement View

User’s Guide
Version 2 Release 2
GC34-5965-02

Note: Before using this information and the product it supports, read the information in Notices on page 137.
Third Edition (July 2001)

This edition applies to version 2, release 2 of WebSphere Partner Agreement View (product number 5724-A86)
and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can make comments on this information via e-mail at
idrcf@hursley.ibm.com.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000-2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

c o n t e n t s�
Table of Contents
Welcome to the Partner Agreement View User’s Guide ix
Who should use this information x

Related information xi

Summary of changes xiii

Chapter 1 Introducing WebSphere Partner Agreement View 2.2 1

What you need to know 2

About WebSphere Partner Agreement View 2

Using Partner Agreement View in your processes 3

About the Channel API 4

About your PAV application 5

Sending information to a partner 5

Receiving information from a partner 5

What you must set up to use Partner Agreement View 6

Planning your Partner Agreement View system 7

Support for conversation threading 8

Where to go from here 8
Contents � iii

Chapter 2 Installing WebSphere Partner Agreement View 9

Installing Partner Agreement View on Windows NT 11

Windows NT distribution image directory hierarchy 11

Before you begin 12

Installing the Channel Interface 13

Installing the Channel API 14

Installing Partner Agreement View on UNIX 18

UNIX install image directory hierarchy 19

Before you begin 20

Installing the Channel Interface 21

Installing the Tomcat servlet engine 23

Installing the Channel API 24

Running the Channel Installer 26

Chapter 3 Designing processes using Partner Agreement View 29

About public and private processes 30

About Partner Agreement View and public processes 30

Processes you can create using Partner Agreement View 31

About the design considerations 33

Chapter 4 Managing WebSphere Partner Agreement View 39

About the Channel Manager 40

Setting Channel Profiles 40

Adding Partner Agreement View partners 43

Chapter 5 Creating conversations 47

About conversations 48

Requests with multiple business objects 49

About the conversation editor 50

Creating conversations 53

Saving a conversation 57
iv � Partner Agreement View User’s Guide

Chapter 6 Using the Channel API 59

Compiling your servlets 60

Compiling on Windows NT 60

Compiling on UNIX 60

About Partner Agreement View communication 61

About Partner Agreement View queues 61

About the active state 61

Per-partner vs. shared queues 64

Getting a queue 64

Getting active states from the queue 65

Sending messages to Partner Agreement Manager 69

About business objects in Partner Agreement View 71

Creating business objects 71

Displaying business objects 72

Generating html forms based on business objects 72

Mapping business objects 74

About web.xml 78

Chapter 7 Sample public processes 81

About the sample public processes 82

Importing the sample public processes 82

Editing the XML files 83

Importing the sample processes 83

Distributing the sample processes 85

Sample Servlets 86

OSI_OSIR 88

Multi_BO 90

Invoice 91

RFQ_Quotation 92

Shipment_Notice 93
Contents � v

Appendix a Windows NT Quick Install Instructions 95

Installing Partner Agreement View 96

Configuring Partner Agreement View 97

Running the samples 98

Using the WebProxy 99

Appendix b Upgrading Partner Agreement View 101

Software version comparisons 102

Upgrade the Channel Interface computer 102

Upgrade the Channel API computer 103

Appendix c Upgrading Partner Agreement View applications from 1.1 to 2.2 105

Affected areas 106

Remove references to deprecated classes 107

Code changes 108

Getting business objects from ProcessMessages 108

Getting business objects from DisplayBOFactory 108

Get DTD for BOTypeID 108

Use UTF-8 encoding with getBytes() 109

Writing business objects to a file 109

Special printer classes not supported 110

Printing non-editable BO instance data 110

Printing editable BO instance data 111

Retrieving validation errors 112

Form handlers not supported 112

Check for Submit button 112

Setting business object values from a map file 114

Appendix d Configuring Tomcat and Apache on UNIX 119

About Apache Tomcat 120

Installing Tomcat with Apache/SSL 121

Adding Tomcat to an Apache installation 122

Installing Tomcat with Stronghold 123

Using Tomcat with other Apache-based Web servers 124
vi � Partner Agreement View User’s Guide

Appendix e Installing the IBM HTTP Server and configuring SSL 125

Installing the IBM HTTP Server 125

IBM HTTP Server redirection 127

Importing certificates 127

Appendix f Configuring per-partner or shared queues 129

Active state queues 129

Altering the queue mode 130

Appendix g Setting the conversation aware mode 133

Channel Interface 134

Channel API 135

Appendix h Notices 137

Trademarks 140

Glossary 141

Index 149
Contents � vii

viii � Partner Agreement View User’s Guide

�

Welcome to the Partner

Agreement View User’s Guide
This document describes Partner Agreement View 2.2 and explains how to
install, configure and use it.

WebSphere Partner Agreement View provides a well-defined interface to
WebSphere Partner Agreement Manager, allowing you to seamlessly
integrate it with your Web applications. With Partner Agreement View,
Partner Agreement Manager has visibility and control over partners
connecting to your Web application in a consistent fashion with all other
partners in your business-to-business environment.

All of the advantages of Partner Agreement Manager business-to-business
relationship management are available to intercompany interactions that are
based on a web browser.

To use Partner Agreement View, follow these general steps:

� To become familiar with the Partner Agreement View concepts, see
Introducing WebSphere Partner Agreement View 2.2 on page 1.

� To install and configure Partner Agreement View, see Installing
WebSphere Partner Agreement View on page 9.
Welcome to the Partner Agreement View User’s Guide � ix

� To design processes that will be used with Partner Agreement View, see
Designing processes using Partner Agreement View on page 29.

� To manage Partner Agreement View using the Channel Manager, see
Managing WebSphere Partner Agreement View on page 39.

� To use conversation threading with Partner Agreement View, see Creating
conversations on page 47.

� For a description of the key concepts of the Channel API, see Using the
Channel API on page 59.

� To see a set of example processes, see Sample public processes on page 81.

� To install and configure Tomcat and the Apache Web server, see
Configuring Tomcat and Apache on UNIX on page 119.

� To install and configure the IBM HTTP Server, see Installing the IBM
HTTP Server and configuring SSL on page 125.

� To configure the Channel Interface and Channel API queues, see
Configuring per-partner or shared queues on page 129.

� To change how Partner Agreement View participates in conversations, see
Setting the conversation aware mode on page 133.

Who should use this information

Read this guide if you are:

� an administrator who will install and configure Partner Agreement View.

� a developer who will write custom web applications using Partner
Agreement View.

� with business partner(s) using a web application.
x � Partner Agreement View User’s Guide

Related information

For additional information see the following:

� The StartHere.htm file. This file contains links to the Partner Agreement
View Readme and Release Notes. Before installation, you can link to the
StartHere.htm file (via a redirect) by opening the StartHere.htm file in the
root directory of the product CD-ROM. After installation, you can find
the StartHere.htm file in the Docs\Partner_Agreement_View_StartHere
directory of the Partner Agreement Manager installation.

� The Partner Agreement Manager Installation Guide, form number GC34-
5964-02, which describes how to install Partner Agreement Manager.

� The Partner Agreement Manager Administrator’s Guide, form number
BIAAAB02, which describes how to set up, configure, and administer
Partner Agreement Manager after you install it.

� The Partner Agreement Manager User’s Guide, form number BIAAAC02,
which describes how to start a Partner Agreement Manager session, design
public and private processes, define element definition sets, create
business objects, and manage process distribution.

� The Partner Agreement Manager Adapter Developer’s Guide, form number
BIAAAD02, which describes how to develop and administer adapters
using the Partner Agreement Manager Adapter Development
Environment.

� The Partner Agreement Manager Script Developer’s Guide, form number
BIAAAE02, which describes how to write scripts used in Partner
Agreement Manager private processes and elsewhere.

� The Partner Agreement Manager External API Guide, form number
BIAAAF02, which describes principles behind the Partner Agreement
Manager External API. See also the Javadoc for the External API, which is
installed in the Partner Agreement Manager Docs folder.

� The Partner Agreement Manager Adapters for MQSeries User’s Guide, form
number BIAAAG02, which describes how to install, configure, and run
the Partner Agreement Manager Adapters for MQSeries.
Welcome to the Partner Agreement View User’s Guide � xi

xii � Partner Agreement View User’s Guide

�

Summary of changes
This edition includes these changes since the previous, first, edition:

� Logout. Partner Agreement View 2.2 allows the PAV application to log out
of the channel interface, providing additional security and simplifying
session management.

� Outbound Proxy Support. Partner Agreement View 2.2 can work with
outbound proxies that use authentication. Outbound proxy
authentication is used within internal networks to ensure that only people
and applications that are authenticated may communicate with an
external network. Authentication in the outbound proxy is done with a
standard user name and password combination. You can turn on the
outbound proxy feature in Partner Agreement Manager after installation.
Thereafter, all outbound HTTP communication will use the same user
name and password combination for the proxy.
Summary of changes � xiii

xiv � Partner Agreement View User’s Guide

c h a p t e r�
1

Introducing WebSphere

Partner Agreement View 2.2
Topics in this chapter include:

� What you need to know on page 2.

� About WebSphere Partner Agreement View on page 2.

� About your PAV application on page 5.

� What you must set up to use Partner Agreement View on page 6.

� Planning your Partner Agreement View system on page 7.

� Support for conversation threading on page 8.

� Where to go from here on page 8.
Introducing WebSphere Partner Agreement View 2.2 � 1

What you need to know

This guide assumes you know how to use Partner Agreement Manager to
construct and manipulate business objects and processes. For more
information on using Partner Agreement Manager, see the Partner
Agreement Manager User’s Guide. This guide also assumes that you are
familiar with your organization’s business processes.

The administrator deploying WebSphere Partner Agreement View needs to
understand your WebSphere Partner Agreement Manager installation and
be familiar with your HTTP server’s configuration and administration.

The developer writing Web applications using Partner Agreement View must
know how to develop Web applications in the Java language.

The process designer must know how to use Partner Agreement Manager. In
particular, the process designer needs to know how to perform the following
tasks:

� define and use business object types

� create public and private processes, and distribute and install them

� associate events with public processes, so the public processes run when
the events are received

It is also useful for a process designer to write and read scripts. See the Partner
Agreement Manager Script Developer’s Guide for more information.

About WebSphere Partner Agreement View

WebSphere Partner Agreement View (occasionally written PAV) consists of
two distinct parts:

� One part of Partner Agreement View is installed on the computer running
your Process Server. This part is called the Channel Interface.

� The second part provides the interfaces for your Web application. This
part is called the Channel API.

The application you write to communicate between Partner Agreement
Manager and your Web application is called your Partner Agreement View
application.
2 � Partner Agreement View User’s Guide

Using the Channel API, your PAV application can communicate with
Partner Agreement Manager, display business objects on a Web page, and
generate business object forms. The Channel API includes libraries that allow
you to do all these things quickly and easily with a minimum of custom
coding.

These Partner Agreement View components enable Partner Agreement
Manager processes to use your PAV application as an alternative channel for
communicating with your business partners. The model looks like this:

Using Partner Agreement View in your processes

Partner Agreement View 2.2 supports Partner Agreement Manager public
processes. You can create public processes that use Partner Agreement View
to communicate with your partners. For complete information on public
processes and how to design them, see the Partner Agreement Manager User’s
Guide.

Using your Partner Agreement View-enabled application, process designers
can construct public processes that send and receive business objects in one-
way and two-way communications.

You can start processes manually or schedule them. In addition, you can start
processes from Partner Agreement View based on input from your partners.

Channel
InstancePartner

Agreement
Manager

 Channel
API

PAV
Application

Web app

This is the part
you write.

 HTTPS HTTP
HTTPS
Introducing WebSphere Partner Agreement View 2.2 � 3

About the Channel API

The Channel API provides classes and interfaces that allow your PAV
application to:

� participate in public processes via a web application

� create and populate new business objects

� send business objects to Partner Agreement Manager

� receive business objects from Partner Agreement Manager via a queue or
an event listener interface

� display business objects on your Web pages

� generate Web forms from business objects

� start Partner Agreement Manager public processes (initiated by a Partner
Agreement View partner).

The Channel API can be used in your PAV applications to perform these
functions, minimizing custom coding on the part of the developer.

The Channel API consists of a set of servlets and some supporting classes. It
must run in a servlet engine. Any servlet engine that supports Java Servlet 2.2
can be used to host the Channel API. For your convenience, the Tomcat 3.2.1
servlet engine is included with the Partner Agreement View distribution. For
more information on the Tomcat servlet engine, see
http://jakarta.apache.org.

Tomcat 3.2.1 supports both HTTP and HTTPS. Although it is possible to
send requests directly to Tomcat using HTTPS, you may prefer to use a
different SSL-enabled web server and then redirect to Tomcat. Tomcat
redirectors are available for many web servers, including Apache, IPlanet and
the IBM HTTP Server. The Partner Agreement View distribution includes a
redirector for the most popular web server on each platform. For more
information on configuring the redirector for common configurations, see
Configuring Tomcat and Apache on UNIX on page 119.
4 � Partner Agreement View User’s Guide

About your PAV application

Your PAV application can be any application that participates in a Partner
Agreement Manager business process by exchanging Partner Agreement
Manager business objects. A typical application might be a web user interface
that exposes your business objects and processes to your partners.

To integrate with Partner Agreement Manager, your PAV application uses
the Channel API.

Sending information to a partner

Sending information to a partner via PAV application follows this scenario:

Step 1 A Partner Agreement Manager process reaches a public step that includes
this Partner Agreement View partner.

Step 2 Partner Agreement Manager sends the business object data in XML format
to the PAV application.

Step 3 Using the Channel API, the PAV application gets the business object.

Step 4 The PAV application calls the Channel API to interpret the XML business
object data and do whatever is appropriate, based on the nature of the
application.

Receiving information from a partner

Receiving information from a partner via a PAV application follows this
scenario:

Step 1 The PAV application receives data from the partner, converts it to one or
more Partner Agreement Manager business object instances using the
Channel API, and sends those business objects, now in XML format, to the
Process Server.

Step 2 Partner Agreement Manager gets the business objects and the Partner
Agreement Manager process proceeds.
Introducing WebSphere Partner Agreement View 2.2 � 5

What you must set up to use Partner Agreement

View

To use Partner Agreement View, you must install and configure the
following:

� WebSphere Partner Agreement Manager — You must have Partner
Agreement Manager installed and configured correctly before starting the
Partner Agreement View installation.

� HTTP server — This software must be installed and set up on the
computer that will host your Partner Agreement View application to allow
the Channel API to communicate with the Channel Interface. The HTTP
server used must support servlets; if secure communication is required, it
must support SSL. For security reasons, the HTTP server computer is not
usually the same computer that is running WebSphere Partner Agreement
Manager.

Any computer can be turned into a HTTP server by installing Web server
software and connecting the computer to your intranet or the Internet.
There are many Web server software packages, including public domain
software from NCSA and Apache, as well as commercial packages from
IBM, Microsoft, Netscape, Sun, and others. We include the Tomcat server
for use as a servlet engine in the Channel API distribution.

In addition, you may wish to configure your HTTP server to use a proxy,
particularly if you will be using it to host a Web application. You can use
a proxy that is already installed at your location, or you can purchase a
third-party proxy.

IBM provides a web proxy implementation (on the Partner Agreement
View installation CD) if you don’t have your own third party proxy
software or if your security policy does not allow you to open a port from
your DMZ into your enterprise through the firewall.

� Partner Agreement View application — This is an application that you
must write and install. Your Partner Agreement View application uses the
Channel API to connect your Web application to Partner Agreement
Manager. Generally speaking, writing this application involves custom
Java coding. This document, the Partner Agreement View tools, samples,
and the Partner Agreement View Javadocs are available to help application
developers integrate their applications with Partner Agreement Manager.

� Partner Agreement View — An administrator must install and configure
Partner Agreement View as described in this guide.
6 � Partner Agreement View User’s Guide

Planning your Partner Agreement View system

The following members should be on the planning team:

� A systems administrator, who will install and configure the Partner
Agreement View software. This person will also install and configure the
HTTP server.

� A process designer, who will create processes that use Partner Agreement
View and define the Partner Agreement Manager business object types
that are sent to and received from partners via the PAV application.

� An application developer, who will write the PAV application.

Setting up your Partner Agreement View system has the following steps:

1 After the team has looked through this guide and is familiar with Partner
Agreement View, have a planning meeting to decide:

� What partners will you communicate with using Partner Agreement
View-enabled PAV applications and what are their Partner IDs?

� What business object types you will send and receive?

� Will you receive business objects by using processes that you run
manually or processes that are scheduled? Or you will start processes
when you receive input from your partners?

� Will you require conversation threading? If so, what business object
information will be used to define a conversation. For more
information on conversation threading, see Creating conversations on
page 47.

� Will you be using a shared queue for all partners or a separate queue for
each partner? For more information, see Per-partner vs. shared queues
on page 64.

2 The process designer defines the business object types and the application
developer writes the PAV application. If necessary, the administrator installs
and configures the HTTP server on a test system. The administrator then
installs Partner Agreement View and the PAV application on the test system.

3 The process designer designs the processes that use the PAV application.

4 After the PAV application is set up, team members test the Partner
Agreement View system and modify it as needed.

5 Team members deploy the Partner Agreement View system.
Introducing WebSphere Partner Agreement View 2.2 � 7

Support for conversation threading

Partner Agreement View shares some common code with other channels
supported by Partner Agreement Manager. Because messages sent to the
channel applications from Partner Agreement Manager are sent
asynchronously, it is important for Partner Agreement Manager to be able to
distinguish the context of an incoming message.

The concept of conversation threading enables Partner Agreement Manager
to associate an incoming response message from a channel partner with a
previous request message sent to that partner.

Note: Because Partner Agreement View maintains its own association
between outbound and inbound business objects (that is, it is process-
aware), it does not need to use conversation threading. However, this
feature is documented in this manual for completeness.

You define Conversations in the Conversation Editor. Conversations are
described in detail in Creating conversations on page 47.

Where to go from here

Depending on your role, you will be interested in different parts of this
document.

Administrators will want to go to Installing WebSphere Partner Agreement
View on page 9.

Process designers will want to read Designing processes using Partner
Agreement View on page 29 and Sample public processes on page 81.

Developers will need Using the Channel API on page 59 and the Javadocs
installed with the Channel API. If upgrading applications from Partner
Agreement View 1.1 to 2.2, see also Upgrading Partner Agreement View
applications from 1.1 to 2.2 on page 105.
8 � Partner Agreement View User’s Guide

c h a p t e r�
2

Installing WebSphere

Partner Agreement View
Read this chapter for information about installing Partner Agreement
View. For a quick start on installing Partner Agreement View on
Windows NT, see Windows NT Quick Install Instructions on page 95.

Sections in this chapter include:

� Installing Partner Agreement View on Windows NT on page 11.

� Installing Partner Agreement View on UNIX on page 18.

For information on upgrading from Partner Agreement View 1.1 to
2.2, see Upgrading Partner Agreement View on page 101.
Installing WebSphere Partner Agreement View � 9

Before beginning the installation, it is a good idea to understand how the
components used by Partner Agreement View relate to one another.

In the figure, the red arrows (steps 1, 2, and 3) indicate communication from
Partner Agreement Manager to the Partner Agreement View application; the
blue arrows (steps 4 and 5) indicate communication from the Partner
Agreement View application to Partner Agreement Manager.

The enumerated steps are:

1 The Partner Agreement View Channel Interface sends Active State to
Computer 2 via HTTP or HTTPS on the Outbound_URL.

2 The HTTP server on Computer 2 redirects the request to the servlet engine.

3 The Partner Agreement View application requests the relevant Active State
from the queue or receives it via a callback.

4 The Partner Agreement View application uses the Channel API to deliver a
response business object.

5 The Channel API sends the response to Computer 1 via HTTP or HTTPS on
the host address specified in AppChannel.properties.

Computer 1:
Process Server

PAM

PAV Interface

Tomcat
Servlet engine
(port:8080)

HTTP Server
(port:80 or :443)

Computer 2:
Hosted Web Server

Servlet engine
port: 8080

PAV
Channel API

Partner Agreement
View Application

HTTP Server
port :80 or :443

Firewall (optional)

1

2

34

5

HTTPS

HTTPS
10 � Partner Agreement View User’s Guide

Installing Partner Agreement View on Windows NT

Typically, on Windows NT, you install Partner Agreement View in two parts,
each on a separate computer.

� The first part, called the Channel Interface, is installed on the same
computer that runs the Process Server. This Channel Interface is, as the
name suggests, an interface between Partner Agreement View and Partner
Agreement Manager.

� The second part, the Channel API, is installed on the computer where
your Partner Agreement View application will reside. This Channel API
exposes Partner Agreement Manager functionality such as business
objects as well as communication functions.

There are other possible arrangements of the two parts of Partner Agreement
View, but for clarity these directions only address this one.

Windows NT distribution image directory

hierarchy

This figure shows the hierarchy of the Windows NT distribution image for
Partner Agreement View.

Contains setup.bat to install the Channel Instance.
Contains setup.bat to install the Channel API.

Contains a batch file to configure Partner Agreement View on WebSphere.

Contains jakarta-tomcat-3.2.1.zip, which contains Apache Tomcat 3.2.1 for NT.

Contains source code for redirectors. To create binaries, you use the makefile and other
files from the apache 1.3 (or apache 2.0) and jk directories.

Contains redirectors that redirect from a number of popular Web servers to Tomcat.
Contains a double-byte character set (DBCS) patch for Tomcat.

Contains tomcat.conf to be appended to httpd.conf.
Contains configuration files for IBM HTTP server.

Contains binaries for redirectors.

Contains Webproxy.zip.
Installing WebSphere Partner Agreement View � 11

Before you begin

This section lists the Partner Agreement View system requirements for a
Windows NT installation. These requirements include what software you
need to have installed before installing Partner Agreement View and what
information you need to gather.

System requirements

Following are the minimum requirements for the Channel Interface portion
of Partner Agreement View:

� IBM Partner Agreement Manager 2.2. For details on the requirements of
Partner Agreement Manager, see chapter 1, “Installing the Process Server”
in the Partner Agreement Manager Installation Guide.

� JDBC driver. The Partner Agreement Manager installation includes a
JDBC driver.

� 20 MB disk space for the database, depending on the size of your business
object instances and how frequently you intend to archive.

Following are the minimum requirements for the Channel API portion of
Partner Agreement View:

� Tomcat version 3.2.1 HTTP server software (or any other Web server that
supports servlets), along with the necessary data communications
software and hardware. In the remainder of this manual, this is just called
the “Tomcat servlet engine”.

� If you intend to use SSL, an HTTP server that supports SSL (such as IBM
HttpServer)

� JDK 1.2.2.

� JSDK 2.1 (or more recent)

� The Java integrated development environment (IDE) of your choice.

� 20 MB disk space for the Channel API.
12 � Partner Agreement View User’s Guide

Other necessary information

In addition to the hardware and software requirements, you must also know
a few pieces of information. You must know:

� Your Partner Agreement Manager Partner ID. This is usually your
company’s D-U-N-S number. For more information on Partner
Agreement Manager Partner IDs, see the Partner Agreement Manager
Installation Guide.

� The host name and port for the host running the Partner Agreement
Manager. This will be the host running your Partner Agreement View-
interface applications. You set this up as part of the installation.

Installing the Channel Interface

As mentioned earlier, there are two parts to installing Partner Agreement
View. This section describes how to install the Channel Interface. For
information on installing the Channel API, see Installing the Channel API on
page 14.

If you use just the Partner Agreement Manager client (the Process Server is
installed elsewhere at your site) and you wish to develop Partner Agreement
View-enabled applications, you must also install the Channel Interface on
your local computer. The Channel Interface must be installed on all
computers that need to use Partner Agreement View.

Note: If you are installing over an existing installation (upgrading), some of
the dialogs in the Channel Interface installation might not appear.

To install the Channel Interface:

1 Shut down the Partner Agreement Manager Adapter Server and the Process
Server.

2 Insert the installation CD into your CD-ROM drive.

a Click Start and choose Run.

b Type the letter of your CD-ROM drive followed by a colon and
Partner_Agreement_View\PAMSide\setup.bat in the Open field and click
OK. The Welcome screen appears. Click Next to continue.

3 The license screen appears.

Check the box to accept the terms of the license and click Next to continue.
Installing WebSphere Partner Agreement View � 13

4 The Partner Agreement Manager directory screen appears.

The default directory is the directory into which you installed Partner
Agreement Manager. The screen also displays the Partner Agreement
Manager Partner ID. Accept the defaults for both these fields, and click Next.

5 The confirmation screen appears.

The screen lists the name of the channel you are installing, such as Partner
Agreement View. Ensure this is correct, then click Next to accept the Partner
Agreement Manager installation information.

6 The Channel Instance/ID screen appears. Enter your Channel Instance name
and Channel ID. The default name is Partner Agreement View 1001; the
default ID is 1001.

Click Next.

7 The final screen displays the destination folder, click Next to begin installing
Channel Interface to the designated directory

8 Click Finish to complete the Channel Interface installation.

Note: Once you have installed the Channel Interface, you will need to set the
Outbound_URL property to point to the Channel API computer’s HTTP
server. For more information, see Setting Channel Profiles on page 40.
Note that the Outbound URL is case-sensitive.

Installing the Channel API

The second part of the Partner Agreement View installation takes place on
the computer that will host your Partner Agreement View application.

Installing the Tomcat servlet engine

Partner Agreement View for NT requires a servlet engine, such as Tomcat, or
you can use any other web server that supports servlets. For your
convenience, Tomcat 3.2.1 is included in the Partner Agreement View
distribution.

Note: These instructions presume that you are installing on your computer's
D: drive.

To install Tomcat:

1 Insert the installation CD into your CD-ROM drive.

2 Navigate to the Webservers\Tomcat directory on the CD.
14 � Partner Agreement View User’s Guide

3 Extract jakarta-tomcat-3.2.1.zip to D: to install Tomcat.

4 Rename the newly created jakarta-tomcat-3.2.1 directory to tomcat. You can
get more information about the Tomcat from www.apache.org.

5 Add these Java packages to your Web server’s CLASSPATH (that is,
D:\Tomcat\lib). You can download them from the JavaSoft web site
(www.javasoft.com/products):

� Java Beans Activation Framework version 1.0.1—activation.jar.

� Java Mail version 1.2—mail.jar.

6 In tomcat.bat (located in D:\tomcat\bin), add the following line after set
_CLASSPATH:

set JAVA_HOME=<path to your jdk>.

Of course, you will need to make sure that you are pointing to the correct
directories on your own computer.

7 You can test the Tomcat installation by starting Tomcat:

a Open up an MS-DOS window.

b Change directory to the Tomcat root directory:

cd d:\tomcat

c Start Tomcat by entering the command:

.\bin\tomcat start
d Open a browser and view one of the Tomcat sample pages such as: http://

<tc-computer>:<port>/examples/jsp/index.html where tc-computer is
the computer running Tomcat and port is the port on which Tomcat
listens.

8 To shut down Tomcat, you use an MS-DOS window and:

a Change directory to the Tomcat root directory:

cd d:\tomcat

b Stop Tomcat by entering the command:

.\bin\tomcat stop
Once you have Tomcat installed, you can configure it using the tomcat.bat
file that is located in the \tomcat\bin directory. If you are using another
HTTP server to handle SSL, you need to redirect your HTTP server to
communicate with Tomcat.
Installing WebSphere Partner Agreement View � 15

Note: To enable Tomcat to work with DBCS data, you will need to copy the
classes directory from <channel>\Webservers\Tomcat\
dbcs_pack\classes on your distribution medium to your tomcat home
directory

Installing the Channel API

Now that you have the Tomcat servlet engine installed, you are ready to
install the Channel API.

Note: If you are installing over an existing installation (upgrading), some of
the dialogs in the Channel API installation might not appear.

To install the Channel API:

1 Start the Channel API installer.

a Put the installation CD into your CD-ROM drive.

b Click Start and choose Run.

c Type the letter of your CD-ROM drive followed by a colon and
Partner_Agreement_View\WebServerSide\setup.bat in the Open field
and click OK.

The Welcome screen appears. Click Next to continue.

2 The license screen appears. Read the license agreement. If you agree with the
terms, check the Accept box and click Next to continue.

3 The conditions screen appears. Ensure that your Web server is not running
and check the box. Click Next to continue.

4 The Web server type screen appears. Choose the Web server type (Tomcat or
Other) and click Next to continue.

5 The servlet engine directory screen appears. Enter the path to your Web
servlet engine directory.

If you are using Tomcat, enter your Tomcat directory (D:\tomcat).

Click Next to continue.

6 The Virtual Root (Relative to Web Server Root) screen appears.

Take the default value.

Important: The virtual root that you specify must be used for all other
Partner Agreement View instances used on your Web server.

Click Next to continue.
16 � Partner Agreement View User’s Guide

7 The Channel ID and Channel Instance Name screen appears. The Channel
ID is used by Partner Agreement Manager to distinguish between the
channels you have installed, for example, RosettaNet Channel and Partner
Agreement View. Each channel must have a Channel ID that is unique within
your Partner Agreement Manager installation.

Unless you have another Partner Agreement View installed, the default
Channel ID will be correct. If you need to change this default so it doesn’t
conflict with another Partner Agreement View installation, enter a number
greater than 1000 that is not used by any other channel you have installed.

Important: This number must be the same as the Channel ID you specified
during the installation of the Channel Interface.

Note this number so you don’t use it when you install any other channels.
You can always check which channel ID values are in use by opening the
Channel Manager from the Process Manager window and viewing the
Channel profiles.

Unless you have another instance of your channel installed, accept the
default for the channel instance name.

Important: The Channel Instance name cannot start with a number. The
installer does not check this.

Click Next to continue.

8 The Partner ID screen appears. Enter your Partner Agreement Manager
Partner ID.

This must be the same Partner Agreement Manager Partner ID you used
when you installed Partner Agreement Manager. For more information on
Partner Agreement Manager Partner IDs, see the Partner Agreement Manager
Installation Guide.

Click Next to continue.

9 The Web server information screen appears. Enter the host name and
domain name of the Partner Agreement Manager Web server.

In Partner Agreement Manager WebServer Port, type in the value 80 for
HTTP connections or 443 for HTTPS connections. Contact your Web server
administrator to verify these values.
Installing WebSphere Partner Agreement View � 17

Important: The Process Server requires a Web server to properly handle
approvals. However, for security reasons, this is not the Web server you
will be using to serve your Partner Agreement View-enabled Web
applications.

Click Next to continue.

10 The Extracting files screen appears. You will see a progress bar as Partner
Agreement View installs. When the installer is finished extracting files, this
screen will disappear and the completion screen appears.

11 Click Finish to complete the installation.

Opening the Partner Agreement View home page

When you are finished with the installation, start Tomcat, then use a Web
browser to view the Partner Agreement View home page, which contains
links to the documentation, samples, and much more information. The URL
for the home page is:

http://<machine.domain.com>:<port>/WebSphere/
Partner_Agreement_View/jsp/home.jsp

Where machine.domain.com and port is the Web server and port where you
installed the Process Server. Note that you must start Tomcat before you can
view this page.

For example:

http://foo.bar.com:8080/WebSphere/Partner_Agreement_View/jsp/
home.jsp

Installing Partner Agreement View on UNIX

Currently supported UNIX platforms include AIX 4.3.3 and Solaris 2.7.

On UNIX, you typically install Partner Agreement View in three parts.
Generally each of these parts is on a separate computer.

� The first part, called the Channel Interface, is installed on the same
computer that runs the Process Server. This Channel Interface is, as the
name suggests, an interface between Partner Agreement View and Partner
Agreement Manager.
18 � Partner Agreement View User’s Guide

� The second part, the Channel API, is installed on the computer where
your Partner Agreement View application will reside. This Channel API
exposes Partner Agreement Manager functionality such as business
objects as well as communication functions.

� The UNIX version of Partner Agreement View also includes a Channel
addition to the Partner Agreement Manager client. Note that this is not
needed for Partner Agreement Manager running on Windows NT,
because on that platform, the server and client installations are integrated.

There are other possible arrangements of the Channel Interface and Channel
API parts of Partner Agreement View, but for clarity these directions only
address this one.

Important: For specifics on installing Partner Agreement View on your
particular variant of UNIX, see the StartHere.htm in the root of your
installation CD.

UNIX install image directory hierarchy

This figure shows the hierarchy of the UNIX install image for Partner
Agreement View.

Contains setup to install the Channel Instance.
Contains setup to install the Channel API.

Contains a batch file to configure Partner Agreement View on WebSphere.

Contains jakarta-tomcat-3.2.1.tar, which contains Apache Tomcat 3.2.1.

Contains source code for redirectors. To create binaries, you use the makefile and other
files from the apache 1.3 (or apache 2.0) and jk directories.

Contains redirectors that redirect from a number of popular Web servers to Tomcat.
Contains a double-byte character set (DBCS) patch for Tomcat.

Contains tomcat.conf to be appended to httpd.conf.
Contains configuration files for IBM HTTP server.

Contains binaries for redirectors.

Contains Webproxy.zip.
Installing WebSphere Partner Agreement View � 19

Before you begin

This section lists the Partner Agreement View system requirements. These
requirements include what software you need to have installed before
installing Partner Agreement View and what information you need to gather.

System requirements

The Channel Interface portion of Partner Agreement View must be installed
on the computer running the Process Server. These are the minimum
requirements for the Channel Interface portion of Partner Agreement View
on UNIX:

� 20 MB hard disk space for Partner Agreement View Channel Interface.

� 150MB free disk space, after the installation is completed, to run Partner
Agreement View.

� One of the supported UNIX platforms:

� AIX 4.3.3, patch level 4330-05_AIX_ML. You can download the
recommended patches from IBM at: http://www-1.ibm.com/servers/
aix/download/index.html

You can determine the current AIX patch level with this command:

instfix -i | grep AIX_ML

� Solaris 2.7, fully patched. You can download the recommended patches
from Sun at: ftp://sunsolve.sun.com

� IBM Partner Agreement Manager 2.2 for one of the supported UNIX
platforms (currently AIX and Solaris). For details on the requirements of
Partner Agreement Manager, see chapter 1, “Installing the Process Server
on UNIX” in the Partner Agreement Manager Installation Guide.

� A Web server that is accessible from the Partner Agreement Manager host
computer (note that this is built into Partner Agreement Manager).

For security reasons, the Channel API is typically installed on a computer
other than the one running the Process Server. Following are the minimum
requirements for the Channel API portion of Partner Agreement View:

� Apache Tomcat version 3.2.1 HTTP server software (called “Tomcat
servlet engine” in the rest of this manual) or any other Web server that
supports servlets, along with the necessary data communications software
and hardware. For information on configuring Tomcat with the Apache
Web server, see Partner Agreement Manager Installation Guide.

� JDK 1.2.2.
20 � Partner Agreement View User’s Guide

� JSDK 2.1 (or more recent)

� The Java integrated development environment (IDE) of your choice.

� 20 MB disk space for the Channel API.

Other necessary information

In addition to the hardware and software requirements, you must also know
a few pieces of information. You must know:

� Your Partner Agreement Manager Partner ID. This is usually your
company’s D-U-N-S number. For more information on Partner
Agreement Manager Partner IDs, see the Partner Agreement Manager
Administrator’s Guide.

� The host name and port for the host running Partner Agreement
Manager. This will be the host running your Partner Agreement View-
interface applications. You set this up as part of the installation.

Important: Partner Agreement Manager requires a Web server to properly
handle approvals. However, this is not the Web server you will be using to
serve your Partner Agreement View-enabled applications.

Installing the Channel Interface

As mentioned earlier, there are three parts to installing Partner Agreement
View. This section describes how to install the Channel Interface. For
information on installing the Channel API, see Installing the Tomcat servlet
engine on page 23 and Installing the Channel API on page 24. For information
on installing the Channel addition to the Partner Agreement Manager client,
see Running the Channel Installer on page 26.

Important: You must run the installer using an X11 graphical environment,
such as XWindows or XServer. Before running the installer, be sure that
the DISPLAY environment variable is properly configured for the
computer running the X11 graphical environment.

Important: Before installing the Channel Interface, back up your Partner
Agreement Manager and Partner directories.
Installing WebSphere Partner Agreement View � 21

The Channel Interface, must be installed on the same computer as the
Process Server. To install the Channel Interface:

1 Log on as root.

2 Shut down the Partner Agreement Manager Adapter Server and the Process
Server.

3 Mount the installation CD-ROM.

4 Navigate to the Partner_Agreement_View/PAMSide directory on the
installation CD.

5 Execute the script named setup from a shell:

sh setup

6 The Welcome screen appears. Click Next to continue.

7 The license screen appears.

Check the box to accept the terms of the license and click Next to continue.

8 The Partner Agreement Manager directory screen appears.

Enter the full path to the root directory of your Partner Agreement Manager
installation and your Partner Agreement Manager Partner ID, then click
Next.

9 The confirmation screen appears.

The screen lists the name of the channel you are installing, such as Partner
Agreement View. Ensure this is correct, then click Next to accept the Partner
Agreement Manager installation information.

10 The Channel Instance/ID screen appears. Enter your Channel Instance name
and Channel ID. The default name is Partner Agreement View 1001; the
default ID is 1001.

Click Next.

11 The final screen displays the destination folder, click Next to begin installing
Channel Interface to the designated directory

12 Click Finish to complete the Channel Interface installation.

Note: Once you have installed the Channel Interface, you will need to set the
Outbound_URL property to point to the Channel API computer’s HTTP
server. For more information, see Setting Channel Profiles on page 40.
Note that the Outbound URL is case-sensitive.
22 � Partner Agreement View User’s Guide

Installing the Tomcat servlet engine

The second part of the Partner Agreement View installation takes place on
the computer that will host your Partner Agreement View application. Before
you install the Channel API, you need to install Tomcat.

Important: Tomcat and the Channel API must be installed on the same
computer where you are running the HTTP server you will use to
communicate with your Partner Agreement Manager partners.

Partner Agreement View for both AIX and Solaris requires the Tomcat
servlet engine, version 3.2.1 or any other HTTP server that supports servlets.
Tomcat 3.2.1 is included in the Partner Agreement View distribution. For
information on setting up your Web server with Tomcat, see Configuring
Tomcat and Apache on UNIX on page 119.

To install the Tomcat servlet engine:

1 Navigate to the /WebServer/Tomcat directory on the installation CD-ROM.
Tomcat for UNIX is distributed as a tar file: jakarta-tomcat-3.2.1.tar.

2 Make a directory on your Web server computer for Tomcat and untar the
jakarta-tomcat-3.2.1.tar file into that directory (in the rest of this section, this
directory is identified as <Tomcat>.

You can get more information about Tomcat from www.apache.org.

3 Test the Tomcat installation by starting Tomcat:

a Set the JAVA_HOME environment variable to the full path to the root
directory of your JDK. Be sure to export the environment variable.

b Set the TOMCAT_HOME environment variable to the full path to the
directory where you installed Tomcat (usually <Tomcat>/jakarta-tomcat-
3.2.1).

c Change directory to <Tomcat>/jakarta-tomcat-3.2.1. This is necessary for
the startup script to find the files it needs.

d Start Tomcat by entering the command

./bin/startup.sh

e Open a browser and view one of the Tomcat sample pages such as: http://
<tc-computer>:<port>/examples/jsp/index.html where
tc-computer is the computer running Tomcat and port is the port on
which Tomcat listens.
Installing WebSphere Partner Agreement View � 23

4 Shut down Tomcat by entering the command:

./bin/shutdown.sh

You must shut down Tomcat before you install the Channel API.

Once you have Tomcat installed, you can configure it using the server.xml
file that is located in the <Tomcat>/jakarta-tomcat-3.2.1/conf directory. For
additional information on configuring Tomcat with your Web server, see
Configuring Tomcat and Apache on UNIX on page 119.

Note: To enable Tomcat to work with DBCS data, you will need to copy the
classes directory from WebServer\Tomcat\dbcs_pack\classes on your
distribution medium to your tomcat home directory

Installing the Channel API

Now that you have Tomcat installed, you are ready to install the Channel
API.

To install the Channel API, you install Partner Agreement View on the Web
server computer:

1 Log on as root.

2 Navigate to the Partner_Agreement_View/WebServerSide directory on the
installation CD-ROM.

3 Execute the script named setup:

sh setup

4 A Welcome screen appears. Click Next to continue.

5 The license screen appears. Read the license agreement. If you agree with the
terms, check the Accept box and click Next to continue.

6 The Web server type screen appears. Choose the Web server type (Tomcat or
Other) and click Next to continue.

7 The servlet engine directory screen appears. Enter the full path to your Web
servlet engine root directory.

If you are using Tomcat, enter your Tomcat directory.

Click Next to continue.

8 The Virtual Root (Relative to Web Server Root) screen appears.

Take the default value.
24 � Partner Agreement View User’s Guide

Important: The virtual root that you specify must be used for all other
Partner Agreement View instances used on your Web server.

Click Next to continue.

9 The Channel ID and Channel Instance Name screen appears. The Channel
ID is used by Partner Agreement Manager to distinguish between the
channels you have installed, for example, RosettaNet Channel and Partner
Agreement View. Each channel must have a Channel ID that is unique within
your Partner Agreement Manager installation.

Unless you have another Partner Agreement View installed, the default
Channel ID will be correct. If you need to change this default so it doesn’t
conflict with another Partner Agreement View installation, enter a number
greater than 1000 that is not used by any other channel you have installed.

Important: This number must be the same as the Channel ID you specified
during the installation of the Channel Interface.

Note this number so you don’t use it when you install any other channels.
You can always check which channel ID values are in use by opening the
Channel Manager from the Process Manager window and viewing the
Channel profiles.

Unless you have another instance of your channel installed, accept the
default for the channel instance name.

Important: The Channel Instance name cannot start with a number. The
installer does not check this.

Click Next to continue.

10 The Partner ID screen appears. Enter your Partner Agreement Manager
Partner ID.

This must be the same Partner Agreement Manager Partner ID you used
when you installed Partner Agreement Manager. For more information on
Partner Agreement Manager Partner IDs, see the Partner Agreement Manager
Installation Guide.

Click Next to continue.

11 The Web server information screen appears. Enter the host name and
domain name of the Partner Agreement Manager Web server.
Installing WebSphere Partner Agreement View � 25

In Partner Agreement Manager WebServer Port, type in the value 80 for
HTTP connections or 443 for HTTPS connections. Contact your Web server
administrator to verify these values.

Important: The Process Server requires a Web server to properly handle
approvals. However, for security reasons, this is not the Web server you
will be using to serve your Partner Agreement View-enabled Web
applications.

Click Next to continue.

12 The Extracting files screen appears. You will see a progress bar as Partner
Agreement View installs. When the installer is finished extracting files, this
screen will disappear and the completion screen appears.

13 Click Finish to complete the installation.

14 Navigate to the <tomcat root>/bin folder and change the permissions of
startup.sh and tomcat.sh to be executable.

Running the Channel Installer

You must run the Channel Installer on the same computer as the AIX- or
Solaris-compatible Partner Agreement Manager client in order to interact
with the Partner Agreement View channel from the Partner Agreement
Manager client.

To run the Channel Installer:

1 Click Start and choose Run.

2 Navigate to Partner_Agreement_View\PAMSide\setup.bat in your
installation CD-ROM and click OK.

The Welcome panel appears for the Partner Agreement View installation.
The Partner Agreement View installer guides you through the installation,
one panel at a time. Click Next to continue.

3 The Partner Agreement View license agreement panel appears. You must
agree to all the terms of the license to proceed with the installation.

Click Accept all terms of the license, then click Next to proceed.

4 The next panel shows the details of your Partner Agreement Manager client
installation on this computer. Confirm that the default root directory and
Partner ID are correct for your Partner Agreement Manager installation.

Click Next to continue.
26 � Partner Agreement View User’s Guide

5 The confirmation screen appears. Confirm that the data is correct and click
Next.

6 The Channel Instance panel appears.

This table describes the information you must provide in each field:

When you have entered the information, click Next.

7 The destination directory screen appears.

The destination directory is your Partner Agreement Manager client
directory and this is not editable. Click Next.

8 The Channel Installer starts copying files.

You might be prompted to overwrite some files. These files are updates to
your Partner Agreement Manager client. Click Yes to All.

9 The final screen appears.

Click Finish to complete the installation.

Opening the Partner Agreement View home page

When you are finished with the installation, start Tomcat, then use a Web
browser to view the Partner Agreement View home page, which contains
links to the documentation, samples, and much more information. The URL
for the home page is:

In this field Provide this information

Channel Instance The name of the Channel Instance. This name cannot start
with a number.
This Channel Instance must be the same Channel Instance
you specified for the Channel Interface and Channel API
portions of the Partner Agreement View installation.
Accept the default unless you have multiple Partner
Agreement View installations.

Channel Type The type of channel you are installing. This defaults to and
is not editable.

Channel ID A number that uniquely identifies this channel within your
Partner Agreement Manager installation.
This Channel ID must be the same Channel ID you
specified for the Channel Interface and Channel API
portions of the Partner Agreement View installation.
Accept the default unless you have multiple Partner
Agreement View installations.
Installing WebSphere Partner Agreement View � 27

http://<machine.domain.com>:<port>/WebSphere/
Partner_Agreement_View/jsp/home.jsp

Where machine.domain.com and port is the Web server and port where you
installed the Process Server.

For example:

http://foo.bar.com:8096/WebSphere/Partner_Agreement_View/jsp/home.jsp
28 � Partner Agreement View User’s Guide

c h a p t e r�
3

Designing processes using

Partner Agreement View
Read this chapter for specific information on how to design processes
that will be used with Partner Agreement View. Sections in this
chapter include:

� About public and private processes on page 30.

� About Partner Agreement View and public processes on page 30.
Designing processes using Partner Agreement View � 29

About public and private processes

Partner Agreement Manager’s two-level process model is designed to
automate transactions and the exchange of information between partners in
an extended enterprise. This model promotes cooperation between partners,
yet maintains total security and flexibility for each partner’s internal
activities.

The first level is the public process, which defines the step-by-step flow of
information and actions between two or more partners in an extended
enterprise. One partner develops the public process, and all partners involved
review and accept the process before it is implemented. The partner who
designs a process is its owner.

The second level is the private process, which defines each partner’s internal
sequence of actions for its steps in the public process. Although all partners
in a public process see and agree to its flow, each partner’s private process is
just that—private. The partner who develops a private process is the only one
who can ever see it.

See the Partner Agreement Manager User’s Guide for design guidelines and a
complete explanation of how to design and develop processes.

About Partner Agreement View and public processes

Partner Agreement View 2.2 supports Partner Agreement View partners in
public processes. A Partner Agreement View partner is a partner who uses
Partner Agreement View in a public process to exchange data. The Partner
Agreement View partner uses the Partner Agreement View-enabled
application to interact with the host partner via a Web application. The host
partner has Partner Agreement Manager and is the owner of the Partner
Agreement View-enabled application. As a host partner, you can construct a
variety of processes that use Partner Agreement View.
30 � Partner Agreement View User’s Guide

Processes you can create using Partner

Agreement View

You can create a large variety of processes using Partner Agreement View,
utilizing all the richness of the Partner Agreement Manager process
development tools. These processes fall into three very general types:

� the Partner Agreement View partner initiates the process

� the host partner initiates the process

� the Partner Agreement View partner completes the process

The Partner Agreement View partner initiates the process

The Partner Agreement View partner can initiate a process. For example, if
the Partner Agreement View partner is buying something from the host
partner, the Partner Agreement View partner might issue an order status
inquiry:

The example SAMPLE_AppChannel_WAW_OSI_OSIR shows this process
in more detail. See OSI_OSIR on page 88 for more details on this sample
process.

Partner Agreement View
partner

Main (Process 1)

Host partner

Partner Agreement
View partner

Business object of type Order_Status_Inquiry

Business object of type Order_Status_Inquiry_Response
Designing processes using Partner Agreement View � 31

The host partner initiates the process

The host partner can initiate a process that includes a Partner Agreement
View partner. For example, if the host partner is buying something from the
Partner Agreement View partner, the host partner might start by asking for a
quotation:

The example SAMPLE_AppChannel_AWA_RFQ_Quotation shows this
process in more detail. See RFQ_Quotation on page 92 for more details on
this sample process.

Partner Agreement
View partner

Main (Process 1)

Host partner

Business object of type Request_For_Quotation

Host partner

Business object of type Quotation
32 � Partner Agreement View User’s Guide

The Partner Agreement View partner completes the process

The Partner Agreement View partner can be the terminal step of a process.
This is shown in the first example The Partner Agreement View partner
initiates the process on page 31. In that example, not only did the Partner
Agreement View partner initiate the process, they also completed it. Another
example would be if the Partner Agreement View partner were the buyer and
the host partner sent an invoice:

The example SAMPLE_AppChannel_AW_Invoice shows this process in
more detail. See Invoice on page 91 for more details on this sample process.

About the design considerations

When designing processes that include a Partner Agreement View partner,
there are a few design considerations you must take into account. These
considerations reflect a few corner cases and are unlikely to be present in
your process design. The process verifier will reject any process that does not
conform to these design considerations.

A Partner Agreement View partner can communicate only

with the process owner

The process owner cannot author a process in which a non-host Partner
Agreement Manager partner communicates directly with a partner using
Partner Agreement View.

Main

Host partner

Partner Agreement
View partner

Business object of type Invoice1
Designing processes using Partner Agreement View � 33

For example, this process flow is not valid:

You cannot author processes that contain only a Partner

Agreement View partner

A process that contains a Partner Agreement View partner must also contain
at least one host partner step. The single step of a single step process cannot
contain only a Partner Agreement View partner, either as a static partner or
a group member.

For example, the following configuration is not valid:

A Partner Agreement View partner step cannot be:

� immediately preceded or followed by a step assigned to anyone except
the process owner or

� the single step of a single step process.

Messages are allowed between
the host partner and a partner
using Partner Agreement View.Partner Agreement

View partner

Main

Host partner

Non-host Partner Agreement
Manager partner

Messages are not allowed
between a Partner Agreement
View partner and a non-host
Partner Agreement Manager
partner.

Partner Agreement
View partner

The process must have at least
one host partner step.

Main
34 � Partner Agreement View User’s Guide

A Partner Agreement View partner cannot initiate a

parametric process

A Partner Agreement View partner may not be the non-group initiator of a
process which contains a group. In such a case, Partner Agreement Manager
will not be able to determine which group member should be selected to
participate in this process instance.

For example, this process is not valid:

A Partner Agreement View partner cannot initiate multiple

processes with the same business object type

One Partner Agreement View partner cannot initiate multiple processes with
the same business object type. In such a case, Partner Agreement Manager
cannot determine which process to initiate.

For example, these two processes cannot co-exist:

Group

Partner Agreement
View partner

Main

Host partner

Business
object of type
PO

Business object of type PO

Partner
Agreement
View partner

Partner
Agreement
View partner

Main
(Process 1)

Main
(Process 2)

Host partner Host partner
Designing processes using Partner Agreement View � 35

Note that two different Partner Agreement View partners could initiate
different processes with the same business object type.

The default configuration includes this design consideration. If you need this
functionality, contact IBM customer support about changing the
configuration.

A Partner Agreement View partner cannot output two or

more business objects of the same type

A Partner Agreement View partner cannot send two or more business objects
of the same type from a single step. In such a case, the channel cannot
determine the process path for each business object. This applies to both
conjunctive and disjunctive out paths.

For example, neither of these processes is valid:

The default configuration includes this design consideration. If you need this
functionality, contact IBM customer support about changing the
configuration.

A Partner Agreement View partner cannot output the same

business object type on concurrent paths

A Partner Agreement View partner cannot output the same business object
type on concurrently executing paths. In such a case, the channel cannot
identify the path to which a newly arrived business object belongs. This
applies only to conjunctive paths.

1 1

&AND operator

1 1

?XOR operator

business
object of
type PO

business
object of
type PO

Partner Agreement
View partner

Partner Agreement
View partner
36 � Partner Agreement View User’s Guide

For example, this process is not valid:

The default configuration includes this design consideration. If you need this
functionality, contact IBM customer support about changing the
configuration.

A Partner Agreement View partner cannot initiate a process

with two or more business objects on conjunctive paths

If a Partner Agreement View partner is the initiating step, it cannot output
two or more business objects on conjunctive paths.

For example, this process is not valid:

Business object
of type PO

1

&

Business object
of type PO

1

Partner
Agreement
View partner

Partner
Agreement
View partner

Host partner

Host partner Host partner

Business object
of type
PO_Acceptance

1

&

Business object
of type
Shipment_Notice

2

Partner Agreement
View Partner 1

Host partner
Designing processes using Partner Agreement View � 37

The default configuration includes this design consideration. If you need this
functionality, contact IBM customer support about changing the
configuration.
38 � Partner Agreement View User’s Guide

c h a p t e r�
4

Managing WebSphere

Partner Agreement View
Read this chapter for information on how to manage Partner
Agreement View partners and processes. Sections in this chapter
include:

� About the Channel Manager on page 40.

� Setting Channel Profiles on page 40.

� Adding Partner Agreement View partners on page 43.
Managing WebSphere Partner Agreement View � 39

About the Channel Manager

Partner Agreement Manager 2.2 includes a tool, the Channel Manager, that
you can use to manage Partner Agreement View processes and partners.

Important: The Channel Manager is part of the Partner Agreement
Manager client. If your Process Server is running on UNIX, you must use
the UNIX variant-compatible Partner Agreement Manager client.

Setting Channel Profiles

Before you can use a channel, you must edit the channel’s profile. You edit
the channel’s profile using the Channel Manager. To launch the channel
manager:

1 In the Partner Agreement Manager window, click Actions and select Channel
Manager.

2 The channel manager window appears.

To edit a channel profile:

1 In the Channel Manager, click on the Channel Profiles icon.
40 � Partner Agreement View User’s Guide

The installed Channels appear in the right-hand pane.

2 Double-click on the name of the channel for which you want to edit the
profile.

The Channel Profile screen appears.

3 Click on the Other tab, and then double-click on the Outbound_URL
property.

The Edit Property Value screen appears, with this default value:

...to display the channels
here.

Click the Channel
Profiles icon...

Click on Other tab.
Managing WebSphere Partner Agreement View � 41

https://machine.domain.com:443/WebSphere/PAV/servlet/
AppChannelPOBox

...and edit this value.

Double-click on the
property...
42 � Partner Agreement View User’s Guide

4 There are several changes you should make to the string value for the
property (note that the Outbound URL is case-sensitive):

� The protocol can be either HTTP or HTTPS. Chose the appropriate one.

� You must replace machine.domain.com with the fully qualified dot path
to the Web server that is running your Partner Agreement View-enabled
application.

� If your Web server is listening on a different port (usually 443 for HTTPS
or 80 for HTTP), change the port value.

� You can modify the virtual root of the servlet (WebSphere/PAV),
however, if you do, it must be the same as the string that you specified in
response to the Doc Base prompt when you installed the Channel API.

5 Click OK to set the new Outbound URL value.

6 Click OK to close the Channel Profile screen.

7 Close the Channel Manager window.

Adding Partner Agreement View partners

Before your partners can participate in processes using Partner Agreement
View, you need to set that partner up in the Channel Manager as a Partner
Agreement View user.

To add a Partner Agreement View partner:

1 In the IBM Partner Agreement Manager window, choose Channel Manager
from the Actions menu.
Managing WebSphere Partner Agreement View � 43

The Channel Manager window appears.

2 Click the Partner Profiles icon.

3 Click the New Partner button to start the New Partner Wizard.

The New Partner Wizard screen appears.

4 Enter a name for the new partner and choose the name of the channel used
in installation as the channel you wish this partner to use.

These are the channel
profiles currently set up.

New partner name

Channel for new partner
to use

Click Next.
44 � Partner Agreement View User’s Guide

If you used a channel ID different from the default, your Channel will reflect
that.

5 Click Next to continue.

The Partner ID screen appears.

6 Enter a Partner ID for the new partner and click Next to continue.

The partner information confirmation screen appears.

7 Click Finish to complete.

New Partner ID

Click Next.

Click Finish.
Managing WebSphere Partner Agreement View � 45

The New Partner Wizard will close and you will see the new partner in the
Partner Profiles window.

The partner you just
added appears here.
46 � Partner Agreement View User’s Guide

c h a p t e r�
5

Creating conversations
Partner Agreement Manager matches up responses to requests by
associating business objects it receives with those that it has sent.
Usually this information is maintained as process metadata between
Partner Agreement Manager and its partners, but in some cases, the
partner has no provision for maintaining this process metadata.

Read this chapter for information about creating conversations that
allow Partner Agreement Manager to identify responses from a
channel partner.

� About conversations on page 48.

� About the conversation editor on page 50.

� Creating conversations on page 53.

Note: Conversation threading is available in Partner Agreement View, but is
not turned on by default. Generally, conversation threading is not
necessary for Partner Agreement View because your Partner Agreement
View application can maintain the association between outbound and
inbound business objects. If you need to turn conversation threading on
in Partner Agreement View, please see Setting the conversation aware mode
on page 133.
Creating conversations � 47

About conversations

The conversation threading feature allows you to use unique information
shared by outbound and inbound business objects (such as a PO number) to
route inbound business objects to the appropriate Partner Agreement
Manager process.

When a public process includes a channel partner, you usually pass a
business object to the partner and, in many cases, the partner returns another
business object.

The conversation associates fields in the outbound business object (in this
case a purchase order) and uses the values in these fields to associate the
inbound message (a purchase order acknowledgement) with the appropriate
process.

Note: You cannot create two conversations that use the same inbound and
outbound business objects, even if the fields used in conversations are
different.

If conversation threading is turned on an you do not create a conversation
for the outbound and inbound business objects used by a channel partner,
the Partner Agreement Manager process verifier will issue an error, stating
that the conversation is not defined.

A conversation is global. Once you have created a conversation, it is used to
evaluate all inbound messages routed through the channel.

PAV partner

PO (outbound BO)

PO ack (inbound BO)
48 � Partner Agreement View User’s Guide

If Partner Agreement Manager receives an inbound business object from a
channel partner, but cannot match the business object to a running process,
Partner Agreement Manager looks for a process that can be started by the
partner using that business object. If Partner Agreement Manager finds such
a process, it starts it; if no process is found, Partner Agreement Manager
reports an error initiating a process.

Requests with multiple business objects

Each conversation can have one or more outbound business objects, joined
with an AND, but can only have one inbound business object. For example,
the process flow on the left can be identified by a single conversation (object
1 and 2 outbound with object 3 inbound). Whereas the flow on the right
must be identified by two separate conversations (object 1 and 2 outbound
with object 3 inbound; object 1 and 2 outbound with object 4 inbound):

1 2

&

 PAV partner

3

1 2

&

 PAV partner

3

&

4

Creating conversations � 49

If the outbound business objects are joined by an OR, each outbound set of
business objects requires a separate conversation. For example, this process
flow requires two conversations (object 1 and 2 outbound with object 4
inbound; object 3 outbound with object 4 inbound).

About the conversation editor

This section describes some of the general functionality found in the
Conversation editor. For information on how to start the Conversation
editor and create conversations, see Creating conversations on page 53.

When creating a conversation, you start by selecting the inbound business
object type (that is, the business object returned from the channel partner).
Then, you select one or more outbound business object types (the business
object passed to the channel partner).

The Conversation editor is divided into two panels: the outbound panel and
inbound panel.

� The outbound panel (on the left) shows the business object type that is
sent to the channel partner.

� The inbound panel (on the right) shows the business object types that can
be returned from the channel partner.

1 2

?

 PAV partner

4

&

3

50 � Partner Agreement View User’s Guide

Note: At times the terms “outbound” and “inbound” can be confusing. Just
remember that the perspective of the Conversation editor (and this
documentation) is from the Partner Agreement Manager perspective.
Business objects are “outbound” when they are being sent from Partner
Agreement Manager to the channel partner; business objects are
“inbound” when they are sent from the channel partner to Partner
Agreement Manager.

The lower portions of each panel display the description of an element
selected in the corresponding upper portion.

You can resize the panels by dragging their borders.

The Conversation editor uses the same icons and graphical cues that appear
in the Map editor.

Toolbar buttons give you
quick access to common
commands.

This panel shows the
business object type being
sent to the partner.

This panel shows the
hierarchy of elements in
business object type being
returned from the partner.

This area shows a
description of the selected
element.

Drag a panel’s border to
resize the panel.

Group icon

Field icon
Creating conversations � 51

These are the font cues in the outbound and inbound panels.

This table summarizes the icons that can appear in the Conversation editor.

Note: Unless they are specifically designated as optional (a question mark
appears to the right of the icon), all elements are required. This means that
any element without a question mark is required in its parent group. We
recommend that you only use required fields to identify conversations.

About the Command toolbar

The Command toolbar at the top of the Conversation editor gives you access
to common File and Edit menu commands and lets you remove outbound
business objects.

Bold text indicates a
group.

Italics indicates elements
in a repeatable group.

This icon Represents This icon Represents

A required field A required group

An optional field An optional group

A required field
sequence*

A required group
sequence*

An optional field
sequence*

An optional group
sequence*

* This version of the Conversation editor does not allow you to use sequences
to identify conversations.

Open an existing conversation

Create a new Conversation

Cut, Copy, Paste

Save the active conversation

Delete selected itemAdd a business object
52 � Partner Agreement View User’s Guide

About the status bar

The status bar at the bottom of the Conversation editor shows information
about the current user and the state of the map.

About the menu bar

The Conversation editor menu bar appears at the top of the window.

The File menu contains commands for creating, opening, saving, and closing
conversations.

Creating conversations

The first step in creating a conversation is to select the inbound business
object type. You then add outbound business object types as needed and
establish associations between fields in the outbound business objects and
the inbound business objects.

You create conversations in the Channel Manager. To launch the channel
manager:

1 In the Process Manager window, click Actions and select Channel Manager
from the Actions menu.

Profile nameUser name

Current state of the conversationConversation version number

Conversation owner’s name
Creating conversations � 53

2 The Channel Manager window appears.

To create a conversation:

1 Click the New Conversation button in the Channel Manager’s Command
toolbar. This button is only enabled when you select Conversations in the
panel on the left.

Or, you can click File on the Channel Manager menu and choose
New>General>Conversation.

2 The Conversation Editor dialog appears. Click the Create a new conversation
button from the command toolbar.

Or, you can click File on the Conversation Editor menu and choose New.
54 � Partner Agreement View User’s Guide

The New Conversation dialog box appears.

3 Select the inbound business object type that you want associate with this
conversation and click OK.

The Conversation editor appears. The business object type you selected
appears on the right side of the Conversation editor, in the output area.

4 To add an outbound business object, click the Add business object button in
the Conversation editor’s Command toolbar.

Select an inbound
business object.

This panel displays the
inbound business object
type. Double-click a group
element to display its
contents.

When you have multiple
outbound business
objects in a conversation,
you can view them in this
list.
Creating conversations � 55

Or, you can choose Add Business Object from the Edit menu. The Add
Outbound Business Object dialog box appears.

5 Type in a name for the Outbound business object type.

6 Select an outbound business object type for this conversation. Click OK.

The business object type you select appears in the input panel.

7 Expand the groups in the outbound and inbound business object types so
that you can see their contents.

Select an outbound business
object.

Type a name for the Output.

This panel displays the
current outbound
business object type.
Double-click a group
element to display its
contents.
56 � Partner Agreement View User’s Guide

8 Associate one or more fields in the outbound business object with the
inbound business object by clicking on a field in the outbound business
object and dragging it to a field in the inbound business object. When you
associate an inbound field, an asterisk (*) appears to the right of its name.

Note: In this release of the Conversation Editor, you cannot map sequences
(repeatable elements).

You need to associate fields that will have identical content in both the
outbound and inbound business object. Partner Agreement Manager uses
these fields to identify the conversation.

The names of the fields can be different; the important thing is that the data
contained in the fields is identical.

Note: We recommend that you always use required fields. If you use an
optional field and the field is not present in either the outbound or
inbound business object instance, Partner Agreement Manager will not be
able to complete the conversation.

Saving a conversation

When you save a conversation, you give it a name; the Channel Manager lists
it in the Conversations folder.

To save a conversation:

1 Choose Save from the File menu.

The Save Conversation dialog box appears.

2 Type a name and click OK.

The conversation appears in the Conversations folder in the Channel
Manager.

Type a name and click OK.
Creating conversations � 57

58 � Partner Agreement View User’s Guide

c h a p t e r�
6

Using the Channel API
Read this chapter for a description of the key concepts of the Channel
API and examples of how to use the basic features of the Channel API.
Sections in this chapter include:

� Compiling your servlets on page 60.

� About Partner Agreement View communication on page 61.

� About Partner Agreement View queues on page 61.

� About business objects in Partner Agreement View on page 71.

� About web.xml on page 78.

All example code used here is in the sample servlets. These example servlets
can be found in:

On this
platform:

the files are in:

Windows
NT

<tomcat>\webapps\WebSphere\PAV\WEB-
INF\classes\appchannel\sample

UNIX <tomcat>/jakarta-tomcat-3.2.1/webapps/WebSphere/PAV/
WEB-INF/classes/appchannel/sample
Using the Channel API � 59

Compiling your servlets

Before compiling your servlets, you must perform certain tasks associated
with your build environment. The specific tasks depend on whether you are
using Windows NT or UNIX.

Compiling on Windows NT

Before compling your custom servlets on Windows NT, edit and then run the
appchannelEnv.bat file. This file helps to define your environment (such as
JAVA_HOME, path and classpath). In particular, you should change these
lines:

SET JAVASDK= <JAVA home directory> (for example: c:\jdk1.2.2)

SET WEBSERVER_ROOT=<webserver-root directory> (for example: c:\tomcat)

SET DOCUMENT_ROOT=<document root relative to webserver-root directory>
(for example: \webapps\Extricity\AppChannel)

Compiling on UNIX

Before compiling your custom servlets on UNIX, you must ensure that your
PATH and CLASSPATH environment variables include your JDK and Partner
Agreement View installation.

The following commands illustrate how you can set these variables:

export JAVASDK=<full path to jdk home directory>

export WEBSERVER_ROOT=<full path to Tomcat-Jakarta home directory>

export DOCUMENT_ROOT=webapps\WebSphere\PAV
export SERVLETS_ROOT=$WEBSERVER_ROOT/$DOCUMENT_ROOT/WEB-INF/
classes

export CLASSPATH=$JAVASDK/lib/tools.jar:$WEBSERVER_ROOT/lib/
servlet.jar:$WEBSERVER_ROOT/lib/xerces.jar:$WEBSERVER_ROOT/lib/
xml4j.jar:$WEBSERVER_ROOT/lib/mail.jar:$WEBSERVER_ROOT/lib/
activation.jar:$WEBSERVER_ROOT/lib/ibmjsse.jar:$WEBSERVER_ROOT/lib/
AppChannel.jar:$SERVLETS_ROOT:.:$CLASSPATH
export PATH=$JAVASDK\bin:$PATH
60 � Partner Agreement View User’s Guide

After setting the PATH and CLASSPATH variables, change the present working
directory to your servlets root directory ($WEBSERVER_ROOT/
$DOCUMENT_ROOT/WEB-INF/classes). From here, you may compile your
servlets.

About Partner Agreement View communication

A key feature of Partner Agreement View is that it provides the infrastructure
to allow your Partner Agreement View applications to communicate with
Partner Agreement Manager. This communication is not symmetric. Your
Partner Agreement View application sends information to Partner
Agreement Manager in an synchronous fashion. Partner Agreement
Manager sends information to your Partner Agreement View application
asynchronously using Partner Agreement View queues. You can also
implement the event listener interfaces to allow Partner Agreement Manager
to communicate with your Partner Agreement View application on an event-
driven basis.

About Partner Agreement View queues

Partner Agreement View queues are the conduits of information from
Partner Agreement Manager to your Partner Agreement View application.

About the active state

Each element in a Partner Agreement View queue is called an active state
object. Each of these active state objects contains information about a Partner
Agreement View node in a Partner Agreement Manager public process. This
information is everything your Partner Agreement View application needs to
know from Partner Agreement Manager in order to complete that node in
the Partner Agreement Manager process. The active state contains data as
well as metadata describing the data, the process and the active state itself.
Using the Channel API � 61

Conceptually, the active state looks like this:

At the top level, the active state contains three things:

� data about this particular instance of the active state such as the active state
ID and the process ID.

� an active state info object.

� a list of process messages. Each process message describes one input
business object. These are objects that have been sent from Partner
Agreement Manager to the Partner Agreement View application. There is
one process message for each input business object. Each process message
has an associated process message info (PMI) object.

The active state info object contains:

� metadata about the process (process definition ID, the label on this node
of the process as it is visible in the Process Designer, Partner ID).

� a list of lists of PMI objects.

The list of lists of PMI objects is a list of valid response sets that your
Partner Agreement View application can return to Partner Agreement
Manager to successfully complete this node in the Partner Agreement
Manager process. Any one of the lists of PMIs constitutes a completion set
for this node in the process.

For example, in response to a purchase order change request there are three
possible response sets:

� a purchase order and a sales order

� an invoice and a change order

� a quote

ActiveState

ActiveStateInfo

ProcessMessage

List of ProcessMessages (input)

ProcessMessage ProcessMessage . . . ProcessMessage

ProcessMessageInfo ProcessMessageInfoProcessMessageInfoProcessMessageInfo

List of lists of
ProcessMessageInfo
62 � Partner Agreement View User’s Guide

Each of these response sets is a valid response to a purchase order change
request. Your Partner Agreement View application would have to send one
and only one of these valid response sets back to Partner Agreement Manager
to continue the process.

Another way to think of the active state information is in terms of data and
metadata:

The input instance data tells you the input paths to this node in the process
and the input business objects. For each input business object, the active state
also has a ProcessMessage object that describes the input business object.
Associated with each ProcessMessage is a ProcessMessageInfo (PMI) object,
which contains methods to access metadata about the process message and
input business object.

The process instance data defines this particular active state and indicates
which process it is part of. The process ID allows you to select from the queue
an active state that is associated with a particular process instance. The active
state ID uniquely identifies this active state object instance.

The process metadata tells you a bit more about the process. The active state
is associated with one and only one node in a Partner Agreement Manager
process. The node label is the label you see in the Process Designer for this
node in the Partner Agreement Manager process. The partner ID allows you
to select from the queue an active state that is sent to a particular Partner
Agreement View Partner ID.

Data or metadata about the specific data

data input instance input paths
input business objects

process instance process ID
active state ID

metadata process process definition ID
partner ID
node label

output output paths
output business object types
Using the Channel API � 63

The output metadata tells you what output is expected from this node in the
process and what the process output paths are. You can use the output
business object types to generate the correct output business objects. For
more information, see the Javadocs.

Per-partner vs. shared queues

When you install the Partner Agreement View, the installer configures one of
two types of active state queues:

� Shared queues allow all partners to access active state objects on a single
queue.

� Per-partner queues allow each partner to view only the active state objects
intended for it. This is more secure and more efficient. It is the default for
Partner Agreement View, because usually the Channel API is accessed
directly by a number of different partners.

For information about configuring the queues, see Configuring per-partner or
shared queues on page 129.

Getting a queue

Before you perform any queue operations, you must first get an instance of
that queue. The entire queue structure is a singleton, so each servlet can
simply get an instance of the queue. In the samples, persistent session
information including queue information is stored in the session_data hash
table. The storage of persistent data in the session_data structure is standard
servlet and server-side application practice. For the purposes of the samples,
the session_data structure contains a pointer to the queue (the queue field)
and a pointer to the current active state in the queue. For more information
on using the session_data hash table, see reference material on Sun’s site or
any book covering servlet development.
64 � Partner Agreement View User’s Guide

For example, the sample GetNotificationServlet gets an instance of the queue,
using the channelID. Note that different forms of the getInstance() method
are required for shared or per-partner queues:

// get the queue instance

AppChannel queue = null;

if (AppChannelConfig.get().isSharedQueue(channelID))

{

queue = AppChannelFactory.getInstance(channelID, password);

}

else

{

queue = AppChannelFactory.getInstance(channelID, partnerID, password);

}

The channelID comes from the configuration data file web.xml. For more on
web.xml, see About web.xml on page 78.

Getting active states from the queue

Once you have an instance of the queue, you can get active states sent by
Partner Agreement Manager. However, the queue could contain many active
states. When you get something from the queue, you want to make sure you
are getting the active state you are expecting, from the potentially large
number of active states in the queue.

To only get the active states you want, you must indicate the constraints that
active states must conform to. Examples of common constraints are:

� The active state must be associated with a particular process (i.e., have a
given process ID)

� The active state must be from a particular partner (i.e., have a given
partner ID)

� The active state must be a reply to a particular request you made. When
you send an active state to Partner Agreement Manager, that active state is
assigned a conversation ID. You can link the reply with the original
request using the conversation ID.
Using the Channel API � 65

The simplest way to get a particular active state is to use the getActiveState
method. This method is overloaded and can be used in four ways:

� getActiveState() No arguments causes getActiveState to return the first
available active state posted to you by Partner Agreement Manager.

� getActiveState(ActiveStateId asid) Invoking getActiveState with an active
state ID causes it to return the active state that contains that active state ID.

� getActiveState(integer i) Invoking getActiveState with an integer
argument causes it to return the i’th available active state posted to you by
Partner Agreement Manager. For example, if the integer you used was 2,
it would return the second available active state in the queue.

� getActiveState(string id) Invoking getActiveState with an ID string causes
it to return the active state that contains the given ID. The ID string is
either a conversation ID or a process ID. The conversation ID links
responses with requests and is obtained from the process ID. The process
ID is returned by deliverInitialMessage or deliverResponseMessage.

For example, the following code snippet shows how to get an active state with
a particular conversation ID (or process ID). This code is from the
GetReplyServlet sample.

First, the servlet gets a queue:

// get an Instance of the queue

AppChannel queue = null;

if (AppChannelConfig.get().isSharedQueue(channelID))

{

// use the factory for Shared queue mode

int channelID = 1234;

queue = AppChannelFactory.getInstance(channelID,

"channel1234_password");

} else {

long partnerID = 777;

int channelID = 1102;

// use the factory for per partner queue mode

queue = AppChannelFactory.getInstance(channelID,

partnerID,

"partner1102_password");

}

66 � Partner Agreement View User’s Guide

Then it initializes the active state variable and if the conversation ID isn’t
null, it calls getActiveState with that conversation ID:

ActiveState replyActiveState = null;

if (conversationID != null)

{

System.out.println(

"attempting to get the

ActiveState for conversationID == " + conversationID);

replyActiveState = queue.getActiveState(conversationID);

}

This is the simplest way to get a particular active state from the queue.

Using CQConstraints to get an active state

If your constraints are more complex, you can use a CQConstraints structure
to define the constraints. Once you’ve defined your particular set of
constraints, you can use that object to get the conforming active states from
the queue. The following example is from GetWithConstraintsServlet:

The servlet first gets an instance of the queue:

// get an Instance of the queue

AppChannel queue = null;

if (AppChannelConfig.get().isSharedQueue(channelID))

{

// use the factory for Shared queue mode

int channelID = 1234;

queue = AppChannelFactory.getInstance(channelID,

"channel1234_password");

} else {

long partnerID = 777;

int channelID = 1102;

// use the factory for per partner queue mode

queue = AppChannelFactory.getInstance(channelID,

partnerID,

"partner1102_password");

}

Using the Channel API � 67

Then the servlet instantiates a CQConstraints object and builds the
constraints:

// BUILD CONSTRAINTS

CQConstraints cqc = new CQConstraints();

The first constraint is the partner ID. The servlet sets the PartnerID to the
partner ID from session_data.

// PartnerID

String strPartnerID = (String)session_data.get("partner.id");

if (strPartnerID != null)

{

cqc.setPartnerID(Long.parseLong(strPartnerID));

}

The next constraint is the label. So you want to get only the active states that
are associated with a process node that has a particular label. Recall that this
label is the same label that you see next to the node in the Process Designer.
Again, the servlet is getting this label from the session_data structure.

// Label

String strLabel=(String) session_data.get("label_CONSTRAINT");

if (strLabel != null)

{

cqc.setLabel(strLabel);

}

The last constraint the servlet sets is the process definition ID.

// Process Definition ID

String strProcDefID = (String) session_data.get(

"processName_CONSTRAINT");

if (strProcDefID != null)

{

cqc.setProcessDefID(strProcDefID);

}

Now that the constraints are done, create an iterator to get all the active
states. Then get all the matching active states.

// fetch all avaliable active states that match

Iterator iterActiveStates = queue.activeStates(cqc);
68 � Partner Agreement View User’s Guide

Using event listeners to get active states

Using getActiveState (or getActiveStates with an iterator) relies on the
servlet to poll the queue, looking for active states. To use an event-driven
approach, you need to use the NAEngineListener methods of the
AppChannelQueue object. The NAEngineListener interface is in
com.extricity.channels.api. Implement this interface and call
AppChannelQueue.addNAEngineListener with your object to have your
application listen on the queue for incoming active states.

In order to use a FileSystemEventListener, you must have conversation
threading turned on. Conversation threading is turned off by default in
Partner Agreement View. See Setting the conversation aware mode on
page 133 for more information.

Sending messages to Partner Agreement

Manager

Once you have an instance of the queue, you can send messages to Partner
Agreement Manager. There are four kinds of messages your Partner
Agreement View application can send to Partner Agreement Manager:
initial, response, abort and terminal. You send an initial message when your
Partner Agreement View application is the first node in the process. A
response is a response to a request sent from Partner Agreement Manager.
An abort message tells Partner Agreement Manager to abort the process. You
should use this very rarely. You send a terminal message when your Partner
Agreement View application is the final node in the process.

The PostNotification sample posts an initial message and does not expect a
response. It already has an instance of the queue. Then it uses the
deliverInitialMessage method of the queue object to send a message
containing a partner ID and a business object:

long partnerID = 1102;

long partnerID = 777;

// first construct the BusinessObject in variable bo

// Shared Queue vs. Per-Partner Queue use a different API

// ProcessAware vs. Process unaware also use a different API

if (!AppChannelConfig.get().isProcessAware(queue.getChannelID()))

{

Using the Channel API � 69

if (AppChannelConfig.get().isSharedQueue(channelID))

{

conversation_id = queue.deliverMessage(partnerID,

bo,

null);

}

else

{

conversation_id = queue.deliverMessage(bo,

null);

}

}

else

{

if (AppChannelConfig.get().isSharedQueue(channelID))

{

conversation_id = queue.deliverInitialMessage(partnerID,

null, // process_def_id

null, // path

AppChannel.EXEC_MODE_EITHER,//exec_mode

bo,

null);

}

else

{

conversation_id = queue.deliverInitialMessage(

null, // process_def_id

null, // path

AppChannel.EXEC_MODE_EITHER,//exec_mode

bo,

null);

}

}

70 � Partner Agreement View User’s Guide

The conversation ID is used to link together requests and replies. It is not
used further in this example as there is no expected reply. However in the
general case, it is useful for keeping track of a series of requests and replies. If
there were an expected reply, you would call
AppChannelQueue.getActiveState (conversation_id) to get the expected
reply from the queue.

Note that the deliverInitialMessage method is synchronous. It returns
immediately. If it fails, it throws an exception indicating why it failed.
Likewise, deliverResponseMessage, deliverAbortMessage and
deliverTerminalMessage are all synchronous.

About business objects in Partner Agreement View

The Partner Agreement View packages com.extricity.document.apps.bo and
com.extricity.document.defs.dom allow you to manipulate your business
objects, display them in HTML format and also generate HTML forms based
on your business object types.

Creating business objects

If you have a request for which you need to generate a valid response, you’ll
need to create the appropriate business objects and populate them. To do
this, you first get an instance of the BusinessObject factory:

// example BOTypeID

bo_type_id = "Invoice!2.Invoice.2";

// Create an instance of WebAppBOFactory

WebAppBOFactory bean = new WebAppBOFactory();

// Create BO

BusinessObject bo = bean.instanceFromDTD(new BOTypeID(bo_type_id));

// Use the PAM defined BO API for setting and getting elements

// and fields

bo.getRootElement().setData("InvoiceDate","1/1/2000 4:00pm"));

Now you have a new BusinessObject, ready to populate.
Using the Channel API � 71

Displaying business objects

The com.extricity.web.document.apps.bo package contains classes to allow
you to display your business objects in HTML. The Channel API methods
that display business objects use an object called a BusinessObject. A
BusinessObject implements BusinessObject. This means that a
BusinessObject contains methods that allow you to manipulate and inspect
its contents using the Partner Agreement Manager business object API, just
like any other Partner Agreement Manager business object. A BusinessObject
also has methods that allow you to use the printer objects in the
com.extricity.web.bo.printer package to display the BusinessObject contents
in HTML format. You can think of the BusinessObject object as a superset of
the standard Partner Agreement Manager BusinessObject. For more on the
Partner Agreement Manager BO API, see the Partner Agreement Manager
Adapter Developer’s Guide.

Use the WebAppBOFactory class to generate a BusinessObject from a
business object type. If you are constructing a response to an request, you can
get the correct response business object type from the ActiveStateInfo
associated with the request. ActiveStateInfo.getResponseMessageInfos
returns a list of lists of ProcessMessageInfo objects that define all valid
response sets.

Analogous to the BusinessObject, the com.extricity.document.defs.dom
package includes classes called ElementImp and ElementSequenceImp. This
is the same implementation of BusinessObject as in Partner Agreement
Manager.

Generating html forms based on business

objects

The com.extricity.web.document.apps.bo package contains classes that you
can use to make HTML forms from your business objects. The Text methods
(such as TextPrinter) are all used for displaying the business object as a read-
only page. The Form methods (such as FormPrinter) are used for creating
HTML forms based on the business object types.

For example, PostRequestServlet uses FormHandler to display a
BusinessObject in an HTML form.
72 � Partner Agreement View User’s Guide

First get a queue:

// get the queue instance

AppChannel queue = null;

if (AppChannelConfig.get().isSharedQueue(channelID))

{

//*** HARD CODED PASSWORD FOR TEST PURPOSES...

//*** CHANGE THIS TO YOUR OWN PASSWORD!!

queue = AppChannelFactory.getInstance(channelID,

__HARD_CODED_TEST_CHANNEL_PASSWORD__);

}

else

{

//*** HARD CODED PASSWORD FOR TEST PURPOSES...

//*** CHANGE THIS TO YOUR OWN PASSWORD!!

queue = AppChannelFactory.getInstance(channelID,

partnerID,

__HARD_CODED_TEST_PARTNER_PASSWORD__);

}

Then create a BusinessObject from the business object type Partner
Agreement Manager expects to receive in response:

// create an instance of a business object from the

// business object type ID perscribed in the initialization property

BusinessObject bo = bean.instanceFromDTD(bo_type_id);

Now, take the business object and put it into the session_data structure.

session_data.put("botypeid", bo_type_id);

Then create a printer and a BOWalker to display the business object:

BOTypeID bo_type_id = (BOTypeID) session_data.get("botypeid");

BusinessObject bo = bean.instanceFromRequest(request);

PrintWriter form_printer = new PrintWriter(new OutputStreamWriter(

response.getOutputStream(), "UTF-8"), true);
Using the Channel API � 73

//create bo printer to print the BusinessObject

FormPrinter bo_printer = new FormPrinter(form_printer, bo);

//create OpenFormTag i.e. <Form>

bo_printer.openFormTag(null);

//print the BO in HTML

 BOWalker walker = new BOWalker(bo.getTypeID(), bo_printer);

 walker.traverse((org.w3c.dom.Node)bo.getRootElement());

//create submit button in HTML

 bo_printer.printSubmitButton();

//create Close form tag i.e. </Form>

 bo_printer.closeFormTag();

Mapping business objects

You can use maps to fill business objects fields with default values. For
example, you receive a purchase order and need to reply to it. You will want
to include the information from the purchase order in your reply. You can
use a map to copy the information from the business object you receive to the
one you will be sending in reply.

About map files

Map files have a specific format. An example map file is in:

The first part of the file is a long header of comments describing the format
and contents of the file. Below that, there are the following sections:

� size—lists the maximum number of elements in repeating groups.

� readonly—indicates whether a value can be edited in a form.

� visible—indicates whether this field is visible in a form.

On this
platform:

the file is in:

Windows NT <tomcat>\webapps\WebSphere\PAV\Web-
inf\classes\appchannel\sample\ShipmentNotice.map

UNIX <tomcat>/jakarta-tomcat-3.2.1/webapps/WebSphere/
PAV/WEB-INF/classes/appchannel/sample/
ShipmentNotice.map
74 � Partner Agreement View User’s Guide

� inputType—indicates the input method in a form. SELECT indicates that
the valid values for this field are subject to a constrained list. If you indicate
an inputType of SELECT, you must specify the constrained list of valid
values in the dataOptions section. If the valid values of a field are not
subject to a constrained list, do not list an inputType for that field.
SELECT is the only valid inputType.

� dataOptions—goes with inputType. If one or more fields have the
inputType SELECT, dataOptions must be set for those fields indicating
the values in the constrained list. These values are specified as a comma-
delineated list of string values. The specified values will appear in a drop-
down menu in a form that uses this map. See the dataOptions in example
map file, next.

� data—lists the default values for fields.

The format of each field description is the same. Group names are listed in
hierarchical order, separated by a forward slash (/). Following the group
names is the field name followed by a dot (.). Next is the attribute (size,
readOnly, visible, inputType, dataOptions or data) an equals sign and the
value. For example, the first line of the .size section of ShipmentNotice.map
looks like this:

Shipment_Header/Ship_To/Address.size=1

This indicates that in the repeating group Shipment_Header, there is a sub-
group called Ship_To with a field called Address. The value 1 indicates that
there can be only one Address field in Ship_To. That is, the size of the
repeating field is 1.

The valid values for the field Shipment_Method are subject to a constrained
list in the inputType section:

Shipment_Header/Shipment_Method.inputType = "SELECT"

Since there is an inputType set to SELECT, there is a corresponding
dataOptions entry with the constrained list of valid values:

Shipment_Header/Shipment_Method.dataOptions = "UPS, FedEx, U.S.
Postal Service, U.S. Mail (Ground), DHL"
Using the Channel API � 75

The last section contains the default values for fields. You need not list every
field, only the ones you want to set default values for. For example,
ShipmentNotice.map sets the description field of the second
Shipment_Addenda sub-group in the Shipment_Header group:

Shipment_Header/Shipment_Addenda[1]/Description.data = "Top
Secret"

The default values need not be hard-coded into the map file. You can use
variables to indicate the values as well. To set the default value of a field to a
variable you use in your code, use the same name you use in your code and
preface it with a $character. For example, ShipmentNotice.map sets the
default date to today:

Shipment_Header/Shipment_Date.data = $today

The dollar sign indicates that what follows is a variable in your servlet code.

Using a map

Once you have a map file, you can use it to fill in the default values for a
business object. The following code snippets are from PostRequestServlet.
They demonstrate how to use a map to fill in default values for a business
object.

First, instantiate a new properties structure:

// set the business object map. default values using

// a property value provider

Properties propsBOMap = new Properties();

Then open the map file as a stream and fill in the propsBOMap structure you
just instantiated:

InputStream stream = this.getClass().getResourceAsStream(boMapName);

propsBOMap.load(stream);

stream.close();

Add the date to the properties file:

// add current date to the list of properties

propsBOMap.setProperty("today", new java.util.Date().toString());
76 � Partner Agreement View User’s Guide

Note that “today” is the name of the variable used in the map file.

Now that you have a complete map, instantiate a new business object with
that map. The map will fill in the default information.

// if we are here properties have loaded successfully. Now

// all that remains is to initialize the business object ...

new PropertyValueProvider(propsBOMap).initialize(bo);

Note that you are using PropertyValueProvider to apply the map to the new
business object. PropertyValueProvider is in the com.extricity.web.bo.util
package. Note that the constructor for PropertyValueProvider is overloaded.
The code snippet above uses PropertyValueProvider with a mapper as an
argument. This initializes the business object with the values from the map.
Using PropertyValueProvider with a map is useful when you are sending an
initial message to Partner Agreement Manager.

You can use PropertyValueProvider with a source BusinessObject and a map
as arguments. This will create a map from the source and initialize a business
object with the values from that map:

new PropertyValueProvider(sourceBusinessObject, propsBOMap).initialize(bo);

Using PropertyValueProvider with a source business object is useful when
you are sending a reply to Partner Agreement Manager.

If you are using a map file, that map file must be in the same directory as the
servlet class file, otherwise your servlet will not be able to find the map.

Making a map

The com.extricity.document.apps.bo.MapWriter class is a utility class that
takes a business object and generates a map from that business object.

To use the MapWriter to generate a map file from a business object:

1 Instantiate a FileWriter.

2 Create a MapWriter object, passing FileWriter and BOTypeID.

3 Create BOWalker to traverse the business object.

4 Invoke mapwriter.traverse method on the root element of the business
object for which you want to create a map.
Using the Channel API � 77

Now, all the values in the business object you used as a template are the
default values in the map file. You may want to edit the map file and remove
some of the default values generated by the MapWriter or set other options,
such as inputType. To change the default values, change only the value
within the quotes. If you do so, be careful as there is no syntax checking on
map files.

For more on using map files, see the example servlet.

About web.xml

The file named web.xml is called a deployment descriptor, meaning that it
contains configuration information about the Partner Agreement View
application. It is an XML file, containing a DTD which is specified in detail
in the Java Servlet API. See www.developer.java.sun.com for more details on
the Java Servlet API. For the purposes of Partner Agreement View, the
web.xml file translates the full path and name of servlets into something
much more readable. For example,
appchannel.sample.GetNotificationServlet becomes GetNotificationServlet.
The web.xml file also specifies initialization parameters.

The section of web.xml for GetNotificationServlet is:

<servlet>

On this
platform:

the file is in:

Windows NT <tomcat>\webapps\WebSphere\PAV\Web-
inf\classes\appchannel\sample\PostRequestServlet.java

UNIX <tomcat>/jakarta-tomcat-3.2.1/webapps/WebSphere/
PAV/WEB-INF/classes/appchannel/sample/
PostRequestServlet.java

On this
platform:

the file is in:

Windows NT <tomcat>\webapps\WebSphere\PAV\Web-inf\web.xml

UNIX <tomcat>/jakarta-tomcat-3.2.1/webapps/Extricity/PAV/
WEB-INF/web.xml
78 � Partner Agreement View User’s Guide

<servlet-name>

GetNotificationServlet

</servlet-name>

<servlet-class>

appchannel.sample.GetNotificationServlet

</servlet-class>

<init-param>

<param-name>

appchannel.partner.id

</param-name>

<param-value>

777

</param-value>

</init-param>

<init-param>

<param-name>

channel.id

</param-name>

<param-value>

1004

</param-value>

</init-param>

<init-param>

<param-name>

business.object.type.id

</param-name>

<param-value>

Invoice!2.Invoice.2

</param-value>

</init-param>

<init-param>

<param-name>

web.admin.email

</param-name>

<param-value>

foo@bar.com

</param-value>

</init-param>

<init-param>

<param-name>

error.image.url
Using the Channel API � 79

</param-name>

<param-value>

../images/execute.gif

</param-value>

</init-param>

</servlet>

The servlet-name tag indicates the short form of the servlet name and the
servlet-class tag indicates the full path and name of the servlet. The init-
param blocks list initialization parameters and their values.

You will want to use web.xml for your own Partner Agreement View
applications to translate long names and specify the initial parameters for the
first instantiation of the servlets.
80 � Partner Agreement View User’s Guide

c h a p t e r�
7

Sample public processes
Read this chapter to learn more about the sample processes that are
provided with Partner Agreement View. The sample public processes
are provided as an illustration of using Partner Agreement View in
public processes.

Sections in this chapter include:

� About the sample public processes on page 82.

� Importing the sample public processes on page 82.

� Sample Servlets on page 86.

� OSI_OSIR on page 88.

� Multi_BO on page 90.

� Invoice on page 91.

� RFQ_Quotation on page 92.

� Shipment_Notice on page 93.
Sample public processes � 81

About the sample public processes

Partner Agreement View 2.2 supports Partner Agreement View partners in
public processes. The sample public processes are included with the Partner
Agreement View product to demonstrate how to use Partner Agreement
View.

There are five sample public processes distributed with Partner Agreement
View. The Partner Agreement View installer places the sample processes in
your Partner Agreement Manager installation as XML files. You must import
the processes under your partner name, as described in Importing the sample
public processes, next. The sample processes imported are:

� SAMPLE_AppChannel_WAW_OSI_OSIR

� SAMPLE_AppChannel_AWA_Multi_BO

� SAMPLE_AppChannel_AW_Invoice

� SAMPLE_AppChannel_WA_ShipmentNotice

� SAMPLE_AppChannel_AWA_RFQ_Quotation

To use these samples, you must either have a partner ID of 777 and have
configured the Partner Agreement View password (see page 86) or edit the
web.xml file to change the partner ID and/or password (see Sample Servlets
on page 86).

Importing the sample public processes

In order to use the sample public processes, you must first edit them and
then import them. The steps for importing the sample processes are:

Step 1 Edit the XML files so that your partner name and partner ID owns the
processes.

Step 2 Import the sample processes.

Step 3 Distribute the sample processes.
82 � Partner Agreement View User’s Guide

Editing the XML files

You need to perform minor edits on each of the sample process XML files so
the processes are owned by your organization. To do this, you will need to
know your Partner Agreement Manager Partner name, Partner Agreement
Manager Partner ID, Partner Agreement View Partner name, and Partner
Agreement View Partner ID.

The sample process XML files are located in <PAM
root>\Alliance\Exports\Processes. The XML files are named:

� SAMPLE_AppChannel_WAW_OSI_OSIR.xml

� SAMPLE_AppChannel_AWA_Multi_BO.xml

� SAMPLE_AppChannel_AW_Invoice.xml

� SAMPLE_AppChannel_WA_ShipmentNotice.xml

� SAMPLE_AppChannel_AWA_RFQ_Quotation.xml

To edit the XML files:

1 Open one of the XML files in a text editor. You will need to replace four
placeholders with your partner information. You can do this with a search
and replace.

2 Save the file. You may wish to save as another file name.

3 Repeat this process with the remaining XML files.

Now that you own the processes, you can import them.

Importing the sample processes

You must import the samples into your Partner Agreement Manager
installation using the IBM Partner Agreement Manager window.

Replace this placeholder: With:

__MASKED_ALLIANCE_PARTNER_0_NAME__ Your PAM partner name

__MASKED_ALLIANCE_PARTNER_0_ID__ Your PAM partner ID

__MASKED_APPCHANNEL_PARTNER_1_NAME__ A Partner Agreement
View Partner name

__MASKED_APPCHANNEL_PARTNER_1_ID__ A Partner Agreement
View Partner ID
Sample public processes � 83

To import the sample processes:

1 Open the IBM Partner Agreement Manager window.

Important: If your Process Server is running on UNIX, you must use the
UNIX variant-compatible Partner Agreement Manager client.

2 Click the Import/Export Manager button on the Command Toolbar. Or, you
can choose Import/Export Manager from the Tools menu. The Import/
Export manager window appears.

3 Click on the Open XML File for Import button in the Command Toolbar.
Or, you can choose Open for Import from the File menu.

The Open Exported File window appears. Browse to the Processes directory.
The sample process XML files are located in
<PAM root>\Alliance\Exports\Processes.

A list of all of the sample public processes appears.

4 Select one of the sample process XML files and click Open.

Click this button to
select the file to be
imported.
84 � Partner Agreement View User’s Guide

You should see public processes as well as business objects in the Import
dialog. In this example, you will notice that the partner name is Falling
Anvil1. When you have edited the XML files and are importing the processes,
you’ll see your partner name as the owner of the process. If do not properly
edit the XML file, you will receive an error message.

5 Click Import.

6 Click OK in the confirmation dialog box.

7 Repeat steps 3 through 6 to import the remaining sample XML files.

8 Close the Import/Export Manager when all remaining sample XML files have
been imported.

Distributing the sample processes

To run the sample processes, you must distribute them. For more details on
distributing processes, see the Partner Agreement Manager User’s Guide.

To distribute the sample processes:

1 In the IBM Partner Agreement Manager window, right-click on one of the
sample processes and select Process Distribution Manager to open the
Process Distribution Manager window.

2 Select Review and click Apply.

3 Select Distribution and click Apply.

Your partner name
appears here.
Sample public processes � 85

4 Select Approval and click Apply.

5 Select Test Installation and click Apply.

Sample Servlets

The Partner Agreement View distribution includes a number of sample
servlets. You can access these servlets from:

<Channel API computer>:<port>:/WebSphere/PAV/jsp/home.jsp.

From this location you select the link to the Samples. The actual files are in:

Before running the servlets, you must edit the web.xml file. This file is located
in:

The default Partner Agreement View partner ID is 777. You need to replace
this with the partner ID of the partner who will be using your Partner
Agreement View-enabled Web server applications to participate in the
Partner Agreement Manager process. The web.xml file is described in detail
in About web.xml on page 78.

To run the sample servlets, you must add a password:

1 In the Administration folder of the Process Manager window, click on
Passwords.

On this
platform:

the files are in:

Windows
NT

<tomcat>\webapps\WebSphere\PAV\WEB-
INF\classes\appchannel\sample

UNIX <tomcat>/jakarta-tomcat-3.2.1/webapps/WebSphere/PAV/
WEB-INF/classes/appchannel/sample

On this
platform:

the files are in:

Windows
NT

<tomcat>\webapps\Extricity\PAV\WEB-INF\web.xml

UNIX <tomcat>/jakarta-tomcat-3.2.1/webapps/WebSphere/PAV/
WEB-INF/web.xml
86 � Partner Agreement View User’s Guide

For Partner Agreement View (per partner queue mode) use,

Login name: AppChannelInboundPartner<Instance-ID>

password: <partner_password>

Where Instance-ID is the partner ID (a numeric value). For example, if your
partner ID is 777, the login name would be AppChannelInboundPartner777.
The password is whatever text you choose; however to use the sample servlet,
the password must be “partner_password”.
Sample public processes � 87

OSI_OSIR

This process is a two-way communication. The communication starts with
Partner Agreement View, goes to Partner Agreement Manager and back to
Partner Agreement View.

In these examples, the partner named FallingAnvil1 is the host partner. Recall
that the host partner has Partner Agreement Manager installed and a Partner
Agreement View interface. The partner named Zax is the Partner Agreement
View partner using the PAV application (which uses the Channel API) to
participate in the Partner Agreement Manager process. Since you edited the
sample XML files to include your partner name and ID as the owner of the
process, you will see your partner name in place of FallingAnvil1 in these
sample processes. Likewise, you will see the name of the Partner Agreement
View partner you specified in the XML files in place of the Zax name. The
public process has these actions:

It performs these tasks:

1 In the first action, the Partner Agreement View partner creates and populates
an Order_Status_Inquiry business object instance. The Partner Agreement
View partner initiates the process by sending the Order_Status_Inquiry
business object instance to the host partner.

2 In the second action, the host partner receives the Order_Status_Inquiry,
generates and populates an Order_Status_Inquiry_Response business object
instance and sends it to the Partner Agreement View partner.

Your Partner Agreement Manager partner name
appears here.

Your Partner Agreement View partner name
appears here.
88 � Partner Agreement View User’s Guide

3 In the final action, the Partner Agreement View partner receives the
Order_Status_Inquiry_Response business object instance, completing the
process.
Sample public processes � 89

Multi_BO

This process demonstrates how to use multiple business objects and multiple
paths in a public process using Partner Agreement View.

The public process has these actions:

It performs this task:

� The host partner sends two business objects to the Partner Agreement
View partner. The host partner expects, in return, one of several possible
response sets.

Your Partner Agreement View partner
name appears here.

Your Partner Agreement Manager partner name
appears here.
90 � Partner Agreement View User’s Guide

Invoice

This process is a one-way communication. The host partner sends an Invoice
business object instance. The Partner Agreement View partner receives the
invoice business object instance.

The public process has these actions:

It performs these tasks:

1 In the first action, the host partner creates and populates an Invoice business
object instance. This Invoice business object instance is sent to Zax.

2 The Zax partner receives the invoice.

Your Partner Agreement Manager partner name
appears here.

Your Partner Agreement View partner name appears
here.
Sample public processes � 91

RFQ_Quotation

This process is a two-way communication. The host partner sends a business
object instance of the type Request_For_Quotation to the Partner Agreement
View partner. The process blocks until it receives a Quotation business object
in response. The Partner Agreement View partner via the Web server
application, sends a Quotation business object to the host partner. The host
partner receives the Quotation business object and processes it, completing
the process.

The public process has these actions:

It performs these tasks:

1 In the first action, the host partner creates and populates a
Request_for_Quotation business object instance. This business object
instance is sent to Zax via the Web server application.

2 In the second action, Zax receives the Request_for_Quotation business
object instance and replies with a Quotation business object instance.

3 In the third action, the host partner completes the process by receiving the
Quotation business object instance and processing it.

Your Partner Agreement Manager partner name
appears here.

Your Partner Agreement View partner name appears
here.
92 � Partner Agreement View User’s Guide

Shipment_Notice

This process is a one-way communication. The Partner Agreement View
partner using the Web server application, Zax, sends a shipment notice to the
host partner. The host partner then receives the shipment notice.

The public process has these actions:

It performs these tasks:

1 In the first action, the Zax partner uses the PAV application to create and
populate a Shipment_Notice business object instance.

2 In the second action, the host partner receives the Shipment_Notice business
object instance.

Your Partner Agreement Manager partner name
appears here.

Your Partner Agreement View partner name appears
here.
Sample public processes � 93

94 � Partner Agreement View User’s Guide

appendix�
A

Windows NT Quick Install

Instructions
These instructions help you get up and running quickly with Partner
Agreement View on Windows NT. They assume that you have Partner
Agreement Manager up and running. Furthermore, the instructions
assume that you are performing a default installation. For detailed
information on installing Partner Agreement View, see Installing
WebSphere Partner Agreement View on page 9.

Sections in this appendix include:

� Installing Partner Agreement View on page 96.

� Configuring Partner Agreement View on page 97.

� Running the samples on page 98.

� Using the WebProxy on page 99.
Windows NT Quick Install Instructions � 95

Installing Partner Agreement View

The instructions in this appendix assume that you have three computers: one
running Partner Agreement Manager (named Manager), one running the
Tomcat Web server (named WebServ), and one running the WebProxy
(named WebProx).

To install Partner Agreement View and related software:

1 From the installation CD, run PAV\PAMSide\setup.bat on the machine
where you have installed Partner Agreement Manager (Manager).

a Accept the defaults.

b Say Yes to All when prompted about overwriting existing files.

2 Install the Tomcat web server on a second machine (WebServ) by unzipping
Webservers\Tomcat\jakarta-tomcat-3.2.1.zip (on the CD) to your C:\ drive.
It will create a jakarta-tomcat-3.2.1 directory with subdirectories. Rename the
jakarta-tomcat-3.2.1 directory to tomcat.

3 From the CD, run Partner_Agreement_View\WebServerSide\setup.bat on
the machine where you have installed Tomcat (WebServ).

a For the Partner Agreement Manager Partner ID, enter the ID for the
Partner Agreement Manager installation you have on Manager. (Do not
confuse this with the Partner Agreement View installation you just did.)

b For the Partner Agreement Manager Host, enter the machine on which
Partner Agreement Manager is installed (Manager)

c For the Partner Agreement Manager port, enter 80, since that is the port
that the IBM HTTP Server (on Manager) listens to by default.

Note that these properties get written to the AppChannel.properties file,
located in:

<tomcat>\webapps\WebSphere\PAV\conf\AppChannel.properties.
96 � Partner Agreement View User’s Guide

Configuring Partner Agreement View

To configure Partner Agreement View:

1 Copy the contents of Webservers\IBMHttpServer\conf\tomcat.conf from the
CD and append it to httpd.conf for the IBM HTTP Server on WebServ.

2 From the CD, copy
Webservers\Tomcat\redirector\binary\Apache1.3\Win32-intel\mod_jk.dll
to the modules directory of your IBM HTTP Server installation.

Important: Be sure to restart the HTTP Server so that the changes take
effect.

3 On WebServ go to c:\tomcat\bin\tomcat.bat.

Under set _CLASSPATH, add the line:

set JAVA_HOME=<path to your jdk>.

The documentation contains more info on setting environment variables.

4 Now bring up the Partner Agreement Manager Server and Partner
Agreement Manager Client on Manager. From the Partner Agreement
Manager Process Manager window do the following:

a Open the Partner Agreement View 1001 channel profile from the
Channels folder of the Process Manager window. Edit the outbound URL
to be http://WebServ.<domain>.com/WebSphere/PAV/servlet/
AppChannelPOBox, where domain is the Web Server where you installed
the Partner Agreement Manager Process Server .

Note that the outbound URL is case-sensitive.

b With the new partner toolbar button, create a new partner (such as
PAVPartner) on your Partner Agreement View 1001 channel. Give it
partner id 777 (in order to run the sample servlets).

c Under the Administration folder, open the Passwords. Add the following
password

Login AppChannelInboundPartner777

Password partner_password
Windows NT Quick Install Instructions � 97

d Edit the processes (found under <your PAM
installation>\Alliance\Exports\Processes) for your Partner Agreement
Manager partner's name and ID and the new Partner Agreement View
partner's name and ID (PAV Partner, 777). Import and install these
processes.

Running the samples

From a browser check that the Web servers are working correctly as follows:

1 From a browser, connect to the URL: http://WebServ.<domain>.com to see
that the IBM HTTP Server is running.

2 Start Tomcat by navigating to the c:\tomcat directory from a DOS shell and
then running the command:

.\bin\tomcat start

3 Using the browser, connect to the URL: http://
WebServ.<domain>.com:8080. You should see the Tomcat page.

4 Now check that the redirection from the IBM HTTP Server to tomcat is
working correctly by connecting to http://WebServ/WebSphere/PAV/jsp/
home.jsp. If this works, everything is OK and you can continue.

5 Make sure the Partner Agreement Manager Server is running and try to log
in to the Active State Inbox as follows.

a From http://WebServ.<domain>.com:8080/Extricity/PAV/jsp/home.jsp
and go to Samples> Queue Samples. You will see a page with several
servlets, starting with a Hello World servlet. Click on the Active States
Inbox. You should see a login screen. Respond to the prompts as shown
here:

Channel ID: 1001
Partner ID: 777
Password: partner_password

b You should see the Active State Inbox appear. If it does not, look closely at
the error message to determine the source of the problem.
98 � Partner Agreement View User’s Guide

c If you logged in successfully, you can start trying out the samples. There
are two ways to try out the samples processes. One is through the Active
State Inbox; the other is through the sample servlets (same web page as
Hello World Servlet and Active State Inbox servlet.)

� The Partner Agreement Manager-initiated processes must be started
from the Partner Agreement Manager client. The PAV Partner can
respond either via the Active State Inbox or via the corresponding
sample servlet.

� PAV Partner-initiated processes can be started either through the
Active States Inbox or through the corresponding sample servlets.

Using the WebProxy

To use the WebProxy, you must run the webproxy executable, configure
Partner Agreement Manager via the partner.properties file, and configure
Partner Agreement View via AppChannel.properties.

Note: If you are using UNIX, you’ll have to compile the webproxy code
yourself before running the executable.

1 The computer where the webproxy will run is “WebProx”.

a On WebProx, create a directory c:\webproxy.

b From the CD, unzip the WebProxy\Webproxy.zip file to the c:\webproxy
directory.

c From c:\webproxy\release, run the command:

webproxy.exe 6500 6600 6700

2 On Manager, in <your PAM installation>\Partners\PartnerXXX\
Properties\Partner.properties, append the following lines:

WebProxy.HTTP.Host=<WebProx's IP address>; mode=server;
type=string;

WebProxy.HTTP.ControlPort=6500; mode=server; type=int;

WebProxy.HTTP.DataPort=6600; mode=server; type=int;

3 On WebServ open the AppChannel.properties file, located in <tomcat-
root>\webapps\WebSphere\PAV\conf.

a Edit alliance.host.<channelID> to be WebProx

b Edit alliance.port.<channelID> to be to be 6700.
Windows NT Quick Install Instructions � 99

Note: The WebProxy.HTTP.ControlPort used in step 2 (6500 in this
example) must match the first parameter in the webproxy.exe command
in step 1C; the WebProxy.HTTP.Data port used in step 2 (6600) must
match the second parameter in the webproxy.exe command; and the
Partner Agreement Manager Port used in step 3B (6700) must match the
third parameter in step 1C. For further information about the WebProxy,
please see the WebProxy appendix of Partner Agreement Manager
Administrator’s Guide.
100 � Partner Agreement View User’s Guide

appendix�
B

Upgrading Partner
Agreement View

This appendix describes how to upgrade Partner Agreement View
from version 1.1 to version 2.2. Sections in this appendix include:

� Software version comparisons on page 102.

� Upgrade the Channel Interface computer on page 102.

� Upgrade the Channel API computer on page 103.

These instructions assume that you have already installed Partner
Agreement Manager 2.2.
Upgrading Partner Agreement View � 101

Software version comparisons

The upgrade from Partner Agreement View version 1.1 to version 2.2
includes a number of new or changed versions of software. This table lists the
various components and compares the version numbers between 1.1 and 2.2.
For a figure that illustrates how these components work together, see
Installing WebSphere Partner Agreement View on page 9.

Upgrade the Channel Interface computer

To upgrade the Channel Interface computer:

1 Upgrade the IBM HttpServer to 1.3.12.2.

2 Run Partner Agreement View 2.2 Channel Interface installer on the Partner
Agreement Manager 2.2 computer (this assumes that you’ve already
upgraded to Partner Agreement Manager 2.2).

3 After upgrading Channel API, update the per-channel property
Outbound_URL to point to the new Tomcat 3.2.1 installation of Partner
Agreement View 2.2 Channel API address. Note that the Outbound URL is
case-sensitive.

4 Ensure you’re using the new sample processes, then run them.

Software version for 1.1 version for 2.2

Partner Agreement Manager 1.1 2.2

Apache Tomcat 3.0 3.2.1

Partner Agreement View 1.1 2.2

IBM HttpServer 1.3.11.1 1.3.12.2

WebProxy 1.0 1.1
102 � Partner Agreement View User’s Guide

Upgrade the Channel API computer

To upgrade the Channel API computer:

1 Upgrade IBM HttpServer to 1.3.12.2.

2 Install a fresh version of Apache Tomcat 3.2.1.

3 Install Partner Agreement View 2.2 on Tomcat 3.2.1

4 Test Partner Agreement View 2.2 in this environment. That is, run our
sample example servlets. This ensures you've installed and configured the
new Partner Agreement View 2.2 correctly

5 Update your PAV applications, as described in Upgrading Partner Agreement
View applications from 1.1 to 2.2 on page 105.

6 In each of your PAV application, implement the new partner logoff:

a Create an instance of AppChannel object queue, using channel_id,
partner_id, and password.

b Use queue.deliverLogoffMessage() API to implement logoff in your web
application.

7 Edit the appchannelEnv.bat file to point to correct JDK, Tomcat root, and
virtual root.

8 Compile your PAV application servlets, using Partner Agreement View 2.2.
For more information, see Compiling your servlets on page 60.

9 Test your migrated PAV application using Partner Agreement View 2.2.
Upgrading Partner Agreement View � 103

104 � Partner Agreement View User’s Guide

appendix�
C

Upgrading Partner Agreement

View applications from 1.1 to 2.2
Between Partner Agreement View 1.1 and 2.2 there are a number of
API changes that require servlet developers to make code changes.
Some classes are now deprecated and might not be supported in future
versions. For now, these deprecated classes work in version 2.2.

Sections in this appendix include:

� Affected areas on page 106.

� Remove references to deprecated classes on page 107.

� Code changes on page 108.

These instructions assume that you have already installed Process
Manager 2.2.
Upgrading Partner Agreement View applications from 1.1 to 2.2 � 105

Affected areas

For the most part, the API changes affect the Business Objects and Business
Object rendering in HTML (known as the “BO Printers”). The
BusinessObject implementation and the Printer technology was completely
rewritten in order to add support for the full DTD 1.0 specification
(particularly Attributes, OR constructs, and ANY constructs). Some
additional changes where required to make the appliations DBCS (double-
byte character set) compliant, which is is necessary for internationalized web
applications.

The following classes/packages have been deprecated:

� All classes in package appchannel.util

� All classes in package com.extricity.web.bo (except XMLUtils)

� All classes in package com.extricity.web.bo.util

� All classes in package com.extricity.web.bo.printer

� All classes in package com.extricity.web.html

The new classes that replace these, are:

� com.extricity.document.defs.dom.BOWalker;

� com.extricity.document.apps.bo.TextPrinter;

� com.extricity.document.apps.bo.FormPrinter;

� com.extricity.document.defs.dom.WebAppBOFactory;

� com.extricity.document.apps.bo.util.PropertyValueProvider;

� com.extricity.document.apps.bo.MapWriter;

The two best sources of information on these changes are:

� The Partner Agreement View Javadocs, which you can access at

� The sample servlet files. The sample files are in appchannel.sample. You
can look at your previous installation (Partner Agreement View 1.1) for
older sample files.
106 � Partner Agreement View User’s Guide

Remove references to deprecated classes

Remove all references to DisplayBO, DisplayBOFactory, TextBlockPrinter,
TextImagePrinter, FormTablePrinter, and so on, because these classes are
deprecated.

Remove any of these import statements, if they occur in your servlets:

� import com.extricity.web.bo.DisplayBO;

� import com.extricity.web.bo.DisplayBOFactory;

� import com.extricity.web.bo.util.PropertyValueProvider;

� import com.extricity.web.bo.printer.TextBlockPrinter;

� import com.extricity.web.bo.printer.TextImageTablePrinter;

� import com.extricity.web.bo.printer.FormTablePrinter;

� import com.extricity.web.html.HtmlColor;

� import appchannel.util.FormHandler;

Add these import statements:

� import java.io.OutputStreamWriter;

� import java.io.Writer;

� import java.io.FileOutputStream; (if you are using file input/output
operations)

� import java.io.PrintWriter;

� import com.extricity.document.defs.dom.BOWalker;

� import com.extricity.document.apps.bo.TextPrinter;

� import com.extricity.document.apps.bo.FormPrinter;

� import com.extricity.document.defs.dom.WebAppBOFactory;

� import com.extricity.document.apps.bo.util.PropertyValueProvider;

� import com.extricity.document.apps.bo.MapWriter;
Upgrading Partner Agreement View applications from 1.1 to 2.2 � 107

Code changes

The following sections on code changes reflect the change in classes and
methods used for business object rendering in HTML (BO Printers).

Getting business objects from ProcessMessages

The displayBO class is replaced with BusinessObject class. Thus, you must
change code that gets business objects from ProcessMessages.

Replace this

code

ProcessMessage msg

DisplayBO bo = (DisplayBO) msg.getBusinessObject();

With this ProcessMessage msg

BusinessObject bo = (BusinessObject) msg.getBusinessObject();

Getting business objects from DisplayBOFactory

The DisplayBOFactory class has been replaced with WebAppBOFactory.
You must change your code used to get business objects.

Replace this

code

DisplayBO bo = DisplayBOFactory.getInstance().getDisplayBO(

new BOTypeID(bo_type_id)

);

With this // First create an instance of WebAppBOFactory and then use
// instanceFromDTD(bo_type_id) to get the BusinessObject

WebAppBOFactory bean = new WebAppBOFactory();

BusinessObject bo = bean.instanceFromDTD(bo_type_id);

Get DTD for BOTypeID

The getDTD() method for the HttpDocumentManagementBean class now
requires a definition ID.

Replace this

code

//get the DTD using HttpDocumentManagementBean

String dtdString = docBean.getDTD(

msg.getMessageInfo().getBOTypeID()

);
108 � Partner Agreement View User’s Guide

With this //get the DTD using HttpDocumentManagementBean

String dtdString = docBean.getDTD(

msg.getMessageInfo().getBOTypeID().getDefinitionID()

);

Use UTF-8 encoding with getBytes()

When calling the getBytes() method, you must specify the UTF-8 encoding
constant, otherwise the method will use the system default encoding. This is
necessary for DBCS compliance.

Replace this

code

strMsgFileName.getBytes()

With this strMsgFileName.getBytes(Constants.ENCODING_UTF_8)

Writing business objects to a file

When writing business objects to a file, you must not write the XML prolog
and DOCTYPE declaration. Instead you use the toStream(writer) method,
which does this for you.

Replace this

code

//write xml prolog

writer.write(Constants.DEFAULT_XML_DECLARATION);

//form the <?DOCTYPE declaration

String docType = XMLUtils.getDocTypeFromBO(bo);

//write DOCTYPE

writer.write(docType);

//write BusinessObject

writer.write(bo.toString());
Upgrading Partner Agreement View applications from 1.1 to 2.2 � 109

With this //write BusinessObject along with prolog and DOCTYPE declaration

bo.toStream(writer);

Special printer classes not supported

The TextImageTablePrinter and TextBlockPrinter classes are no longer
supported; instead you should use the PrintWriter class with the
OutputStreamWriter class. For DBCS support, use the UTF-8 encoding
when creating OutputStreamWriter.

You should also remove any code that sets the colors of optional and required
groups and fields on printer, since this is no longer supported in Partner
Agreement View 2.2.

Replace this

code

writer respWriter =

new OutputStreamWriter(response.getOutputStream(), "UTF-8");

TextImageTablePrinter text_printer = new TextImageTablePrinter(respWriter);

or

PrintWriter printer = new PrintWriter(new OutputStreamWriter(

response.getOutputStream(), "UTF-8"),

true);

TextBlockPrinter text_printer = new TextBlockPrinter(printer);

With this PrintWriter printer = new PrintWriter(new OutputStreamWriter(

response.getOutputStream(), "UTF-8"), true);

When completing creation of HTML code in a servlet, you must now use the
flush() method on the printer object.

Add this

code

printer.flush();

Printing non-editable BO instance data

Rather than using the TextBlockPrinter class to print non-editable business
object instance data, you now create a TextPrinter instance and use the
BOWalker class to traverse all nodes and/attributes of the business object.

Replace this

code

PrintWriter printer = new PrintWriter(new OutputStreamWriter(

response.getOutputStream(), "UTF-8"), true);
110 � Partner Agreement View User’s Guide

TextBlockPrinter printer = new TextBlockPrinter(response.getWriter());

printer.print((DisplayBO) boReceived);

With this //create "PrintWriter instance

PrintWriter printer = new PrintWriter(new OutputStreamWriter(

response.getOutputStream(), "UTF-8"), true);

//pass the PrintWriter to "TextPrinter" to print the BO

TextPrinter txt_printer = new TextPrinter(printer);

//create a BOWalker to walk through all nodes and/attributes of the BO

BOWalker walker = new BOWalker(bo.getTypeID(), txt_printer);

walker.traverse((org.w3c.dom.Node)bo.getRootElement());

Printing editable BO instance data

Rather than use the FormHandler class to print editable business object
instance data, you now create a FormPrinter object and use the BOWalker
class to traverse all nodes and/attributes of the business object.

Replace this

code

FormHandler printer = new FormHandler(request, response);

// Print the BO instance Data

printer.print(bo);
Upgrading Partner Agreement View applications from 1.1 to 2.2 � 111

With this FormPrinter form_printer = new FormPrinter(printer, bo);

//prints validation JAVAScript

form_printer.printValidationScript();

//print form tag …<form name="display_options" onSubmit='return

//verify(this);' method="post" action="">

form_printer.openFormTag(null);

// Print the BO instance Data

BOWalker walker = new BOWalker(bo.getTypeID(), form_printer);

walker.traverse((org.w3c.dom.Node)bo.getRootElement());

// Print Submit button on HTML page

form_printer.printSubmitButton();

//Print form close tag …</Form>

form_printer.closeFormTag();

Retrieving validation errors

The new API allows you to use get validation errors for business objects.

Add this

code

WebAppBOFactory bean = new WebAppBOFactory();

//get the validation error…

String validation_error = bean.getValidationError(bo);

Form handlers not supported

The Partner Agreement View API no longer supports the FormHandler class.
Remove this code from your servlets.

Replace this

code

FormHandler printer = new FormHandler(request, response);

printer.setOutputFormat(FormHandler.IMAGE_TABLE_FORMAT);

printer.setServletContext(this.getServletContext());

With this //now we don't support setting different HTML display layout options

PrintWriter printer = new PrintWriter(new OutputStreamWriter(

response.getOutputStream(), "UTF-8"), true);

Check for Submit button

Because the FormHandler class is no longer supported, use the
WebAppBOFactory class to check for when the user clicks the Submit
button.
112 � Partner Agreement View User’s Guide

Replace this

code

FormHandler form_printer = new FormHandler(request, response);

//returns true only if the user clicks "Submit" button

boolean flag = form_printer.receive(bo);

With this WebAppBOFactory bean = new WebAppBOFactory();

//returns true only if the user clicks "Submit" button

 boolean flag = bean.isFinalSubmission(request);
Upgrading Partner Agreement View applications from 1.1 to 2.2 � 113

Get business object type

To get a business object’s type, you now use the getRootElementName()
method.

Replace this

code

String boType = boReceived.getTypeURI()

With this String boType = bo.getTypeID().getRootElementName()

Setting business object values from a map file

In the earlier versions of the Partner Agreement View API, you could
initialize a business object with the initialize() method of the
PropertyValueProvider class. In the current implementation, you must
create a FormPrinter object and use the setMap() method to initialize the
business object.

Replace this

code

// set the default values using a property value provider

Properties propMapDefaults = new Properties();

// Load the map from the filesystem (map should be in

// the same directory as this class instance)

InputStream stream = this.getClass().getResourceAsStream(boMapName);

propMapDefaults.load(stream);

stream.close();

// add current date to the list of properties

// This demonstrates how to set a variable property on the default

// value provider at runtime

propMapDefaults.setProperty("today", new java.util.Date().toString());

//initialize the business object ...

new PropertyValueProvider(propMapDefaults).initialize(bo);
114 � Partner Agreement View User’s Guide

With this // set the default values using a property value provider

Properties propMapDefaults = null;

// Load the map from the filesystem (map should be in

// the same directory as this class instance)

InputStream stream = this.getClass().getResourceAsStream(boMapName);

if (stream != null) {

propMapDefaults = new Properties();

propMapDefaults.load(stream);

stream.close();

// add current date to the list of properties

// This demonstrates how to set a variable property on the default

// value provider at runtime

propMapDefaults.setProperty("today",

new java.util.Date().toString());

}

PrintWriter printer = new PrintWriter(new OutputStreamWriter(

response.getOutputStream(), "UTF-8"), true);

FormPrinter bo_printer = new FormPrinter(printer, bo);

//print the business object with the values from map file

bo_printer.setMap(propMapDefaults);

For more information about printing business object data, see Printing non-
editable BO instance data on page 110 and Printing editable BO instance data
on page 111.
Upgrading Partner Agreement View applications from 1.1 to 2.2 � 115

Creating a map file from business object data

In Partner Agreement View 2.2, the MapPrinter class has been replaced with
a combination of the MapWriter and BOWalker classes.

There are three things to note in the following code examples:

� The FileWriter class has been replaced by the BufferedWriter class, which
is preferred. The BufferedWriter class allows you to specify the UTF-8
encoding for DBCS support.

� The MapPrinter class is replaced by the MapWriter class and the
BOWalker class.

� The traverse() method of BOWalker replaces the print() method of the
MapPrinter class.

Replace this

code

// Build a Map for this instance of the Business Object

// with a MapPrinter. This will write the Built map to the

// filesystem in the directory specified by filename.

// The Map will contain the current BusinessObject's instance data

// as the .data fields for the map.

FileWriter file_writer = new FileWriter(filename);

MapPrinter mapPrinter = new MapPrinter(file_writer, true);

mapPrinter.print((DisplayElement)bo.getRootElement());

With this // Build a Map for this instance of the Business Object

// with a MapPrinter. This will write the Built map to the

// filesystem in the directory specified by filename.

// The Map will contain the current BusinessObject's instance data

// as the .data fields for the map.

BufferedWriter file_writer = new BufferedWriter(new

OutputStreamWriter(new FileOutputStream(filename),

Constants.ENCODING_UTF_8));

//create mapwriter using Botype id and file writer

MapWriter mapwriter = new MapWriter(file_writer, boTypeID);

//create a mapwalker using Botype id and mapwriter

BOWalker mapwalker = new BOWalker(bo_type_id, mapwriter);

mapwalker.traverse((org.w3c.dom.Node)bo.getRootElement());
116 � Partner Agreement View User’s Guide

Message map functionality not supported

In previous versions of the Partner Agreement View API, the message map
functionality allowed a map file to include syntax in the form:

BO2/otherpath/version/two=BO1/path/version/one

Which states that when the input business object has a field named BO1/
path/version/one and the response business object has a field named BO2/
otherpath/version/two, the data from the input business object should be
copied into the response business object.

This functionality is not currently supported in Partner Agreement View 2.2.

Replace this

code

// After loading properties successfully, initialize the new business object

// from the source BO and data from the map file ...

new PropertyValueProvider(sourceBO, propertyMap).initialize(bo);

With this //set BO field data

// from Request_For_Quotation/RFQ_Header/RFQ_Number to

// Quotation/RFQ_Response_Header/RFQ_Number

bo.getRootElement().setData("RFQ_Response_Header/RFQ_Number",

sourceBO.getRootElement().

getData("RFQ_Header/RFQ_Number"));

//set BO field data having zero or multiple lines

//Request_For_Quotation/RFQ_Lines[*]/RFQ_Line_Number to

// Quotation/RFQ_Response_Lines[*]/RFQ_Line_Number

bo.getRootElement().setData("RFQ_Response_Lines[0]/RFQ_Line_Number",

sourceBO.getRootElement().

getData("RFQ_Lines[0]/RFQ_Line_Number"));

//Copy data

//from Request_For_Quotation/RFQ_Header/Contact to

//Quotation/RFQ_Response_Header/Responder_Contact

bo.getRootElement().getElement("RFQ_Response_Header/Responder_Contact").

copyIn(sourceBO.getRootElement().

getElement("RFQ_Header/Contact"));
Upgrading Partner Agreement View applications from 1.1 to 2.2 � 117

118 � Partner Agreement View User’s Guide

appendix�
D

Configuring Tomcat and

Apache on UNIX
Read this appendix for information on installing and configuring
Tomcat with your Apache Web server on UNIX. This section includes:

� About Apache Tomcat on page 120.

� Installing Tomcat with Apache/SSL on page 121.

� Installing Tomcat with Apache/SSL on page 121.

� Installing Tomcat with Apache/SSL on page 121.

� Installing Tomcat with Stronghold on page 123.

� Using Tomcat with other Apache-based Web servers on page 124.

Note: At present time, there is no redirector for Tomcat and Apache for
AIX.
Configuring Tomcat and Apache on UNIX � 119

About Apache Tomcat

Partner Agreement View uses the Tomcat servlet engine produced by the
Apache Jakarta project. You can deploy Tomcat to work as a servlet engine
for another Web server. For example, you can configure the Apache Web
server to serve HTML pages, using Tomcat strictly as a servlet engine.

In this configuration, a commercial strength Web server, such as Apache,
receives URL requests. It then forwards the appropriate requests to Tomcat,
where they can be serviced by the Partner Agreement View API. To achieve
this configuration, the Web server needs to be configured to redirect to
Tomcat. For more information on Tomcat, see the Apache Jakarta web site:
jakarta.apache.org.

Apache (www.apache.org) provides redirectors for Apache and iPlanet that
allow those Web servers to redirect to Tomcat. As there is a wide variety of
possible configurations, the Partner Agreement View installer does not
automatically add the Tomcat redirector to the Web server.

Integration
Server

Tomcat

Apache

mod_jserv.so

rsa.ref

open.ssl

mod.ssl

server.xml
web.xml

This comes with the Partner
Agreement Manager distribution.
You can also use mod_jk.so.

Tomcat configuration files.

Security modules not
included in this Partner
Agreement Manager
distribution.

Channel API
120 � Partner Agreement View User’s Guide

Installing Tomcat with Apache/SSL

This section outlines the steps required to install and configure an Apache
web server. For more information on the Apache web server, see
www.apache.org. For more information on SSL, see www.modssl.org and
www.openssl.org.

Before installing Apache/SSL, you must have a C++ compiler installed.

1 Download the Apache and SSL packages.

2 Copy these four components to a directory called ApacheSrc.

3 Go to that directory.

cd ApacheSrc

4 Uncompress and untar these files.

gunzip openssl-0.9.5a.tar.gz

tar xvf openssl-0.9.5a.tar

gunzip mod_ssl-2.6.6-1.3.12.tar gz

tar xvf mod_ssl-2.6.6-1.3.12.tar

gunzip apache_1.3.12.tar.gz

tar xvf apache_1.3.12.tar

5 Unpack your RSA implementation.

6 Go to the mod SSL directory.

cd mod_ssl-2.6.6-1.3.12

Build and configure Apache with SSL, following the instructions outlined in
INSTALL file included in this directory.

Download this From

apache_1.3.12.tar.gz www.apache.org

mod_ssl-2.6.6-1.3.12.tar.gz www.modssl.org

openssl-0.9.5a.tar.gz www.openssl.org

RSA implementation See the INSTALL file in mod_ssl for more
information on RSA implementations.
Configuring Tomcat and Apache on UNIX � 121

7 Now that Apache with SSL is successfully installed, enable shared modules.
Shared modules are required as the Tomcat redirector is a shared module. In
the mod_ssl-2.6.6-1.3.12 directory, execute the following commands:

./configure --with-apache=../apache_1.3.12 \

--with-ssl=../openssl-0.9.5a \

--with-rsa=<your RSA library> \

--prefix=/path/to/your/Apache/installation \

--enable-module=so \

--enable-rule=SHARED_CORE

cd ../apache_1.3.12

make

make install

In these commands, replace your RSA library with the actual RSA library
name. Likewise, replace /path/to/your/Apache/installation with the actual
path to your Apache installation.

You may need to generate a certificate via the command make certificate if
you do not have a certificate to use.

Important: Verify that your Apache Web server is functioning correctly
before proceeding further. To verify your Apache Web server is working,
start it. Then open a browser and request a page.

Adding Tomcat to an Apache installation

Now that you have your Apache Web server installed, you must install the
Tomcat servlet engine.

If you have difficulty with the mod_jserv.so that is distributed on the Partner
Agreement View CD, you will have to build it yourself for your platform (one
symptom of the difficulty might be that Apache crashes after you add
mod_jserv.so). For more information on this, see Using Tomcat with other
Apache-based Web servers on page 124.

1 On the Partner Agreement View CD, find the file named Webservers/
Tomcat/redirector/binary/apache1.3/<webserver>. Unpack this into your
local file system. This directory contains a Tomcat redirector (mod_jk.so)
and the source to build mod_jk.so yourself for alternate configurations.
122 � Partner Agreement View User’s Guide

2 Copy the Tomcat redirector into the Apache libexec directory. This directory
is where all the shared modules are stored.

cp mod_jk.so /ApacheRoot/libexec

Important: The mod_jserv.so in this command is not the mod_jserv.so
that comes with the Apache installation. Tomcat has its own version of
mod_jserv.so that is supplied on the Partner Agreement View CD.

3 Copy the Tomcat configuration file <tomcat>/conf/tomcat.conf to the
Apache configuration directory:

cp <tomcat>/conf/tomcat.conf /<apache install>/conf

Where tomcat is the directory into which Tomcat was installed when you
installed Partner Agreement View; and apache install is the correct path for
your Apache installation.

4 Add the Tomcat configuration file to the Apache configuration file.

Add the contents of tomcat.conf to the bottom of the httpd.conf file.

You have successfully configured Apache with Tomcat.

Note: On UNIX, you will need to edit tomcat.conf after you finish installing
the Channel API, as described in Installing the Channel API on page 24.

Installing Tomcat with Stronghold

Stronghold from www.c2.net is an Apache Web server with commercial
support. Since it is based on Apache, mod_ssl and openssl, you can use the
mod_jserv.so that ships on the Partner Agreement Manager CD to configure
Stronghold with Tomcat, following the same directions as those for Apache.
See Adding Tomcat to an Apache installation on page 122.

Important: Stronghold creates an additional directory
APACHE_ROOT/modules. The libexec directory is created under this
modules directory. This means you must change the LoadModule variable
in the alliance-tomcat-apache.conf file, to have the correct path which
includes the modules directory. If you do not do this, Apache will not
start.
Configuring Tomcat and Apache on UNIX � 123

Using Tomcat with other Apache-based Web servers

Other Apache-based Web servers, such as Raven from www.covalent.net, do
not use the same set of modules that were used to build the mod_jserv.so that
ships on the Partner Agreement Manager CD. Therefore, you need to build
your own mod_jserv.so. On the Partner Agreement Manager CD, we have
provided the source to the Tomcat redirector.

To create mod_jserv.so:

1 Go to the Tomcat redirector source directory.

cd jserv

2 Create mod_jserv.so.

apxs -o mod_jserv.so -DEAPI -c *.c

apxs is from the /bin directory of your Apache-based Web server.

To add Tomcat to your Apache installation, see Adding Tomcat to an Apache
installation on page 122.
124 � Partner Agreement View User’s Guide

appendix�
E

Installing the IBM HTTP

Server and configuring SSL
The IBM HTTP Server is the recommended Web server for Partner
Agreement View running on Windows NT. Sections in this appendix
include:

� Installing the IBM HTTP Server on page 125.

� IBM HTTP Server redirection on page 127.

� Importing certificates on page 127.

Installing the IBM HTTP Server

To install the IBM HTTP Server:

1 Download version 1.3.12.2 of the software from http://www-4.ibm.com/
software/webservers/httpservers/download.html.

2 Create a user on the Windows NT server. Name the user ibmhttp, give it the
password ibmhttp, and assign it administrative privileges, including the
permission to log on as a service. The installation requires this user name and
password.

3 Run the installer, which installs and starts both the HTTP Server and the
Administration Server.

4 Open a browser and enter the URL http://<yourcomputername>, to verify
that the server is running and to begin configuring SSL.
Installing the IBM HTTP Server and configuring SSL � 125

5 Click Configure Server and enter the user name and password that you
created in step 2 (ibmhttp).

6 Open another browser and enter the URL http://<yourcomputername>, to
see the configuration instructions:

a. Click View Documentation.

b. Click How To.

c. Click Get Started.

d. Click With Secure connections.

e. Follow the instructions to configure the HTTP Server and enable SSL.

7 Use the Key Management Utility to create a new key database for storing
certificates. Enter and confirm the password for the key database, and click
Stash Password to a File. The password for the key database must match the
password you use to run the HTTP Server (ibmhttp).

8 Use the Key Management utility to create a self-signed certificate. Creating a
self-signed certificate enables you to configure SSL quickly; after configuring
SSL, request a certificate from a certificate authority.

Important: The Create New Self-Signed Certificate dialog box contains a
Common Name field, for the name of the computer where you installed
the IBM HTTP Server. You must enter the fully qualified name of that
computer in the Common Name field.

9 Follow the IBM documentation you opened in step 6 to configure SSL, using
the HTTP administration server.

The administration server adds information to the httpd.conf file as you
configure SSL. The httpd.conf file is in the conf directory, in the directory
where you installed the HTTP Server. It’s a good idea to open the httpd.conf
file and review the additions as they occur, to ensure that the configuration
information is correct.

Important: When the HTTP administration server creates a server name, it
adds a period (.) to the end of the server name you enter. However, when
this server name is used in redirection, the resulting URL is invalid. To
ensure that redirections work, edit the httpd.conf file and either remove
the trailing period or add a domain name to the server name, so that it is
fully qualified (for example foo.domain.com)
126 � Partner Agreement View User’s Guide

10 Use the URL https://computer_name to open the main IBM server page and
verify that the server is running and that the SSL configuration is correct.

IBM HTTP Server redirection

To redirect web requests from IBM HTTP Server to Tomcat:

1 Copy the mod_jk.dll from the WebServer/IBMHttp_Redirect directory of
your Partner Agreement View CD to the modules directory in your IBM
HTTP Server installation.

2 Append the tomcat.conf file, found in WebServer\IBMHTTP_Redirect on the
CD, to the end of the httpd.conf file for the IBM HTTP Server.

Notes about the portion of the httpd.conf appended from tomcat.conf:

� The ApJServDefaultPort value must match the port value for
Ajp12ConnectionHandler in tomcat\server.xml. By default both will have
value 8007.

� In the “Context mapping” section, the line ApJServMount /WebSphere/
PAV /root is the default virtual root for the PAV Channel API. If you do
not accept the default virtual root during your PAV Channel API
installation, you must edit this line so that it contains the virtual root that
you chose during installation.

Importing certificates

Before the Process server and the Partner Agreement View web server can
respond to requests from each other, each must import the SSL certificate
from the other.

To enable trust for a self-signed certificate that is not trusted (that is, a
certifying authority has not issued the certificate), you use Keytool to import
the certificate. You must use the Keytool provided in JDK 1.3. To download
JDK 1.3, browse to http://java.sun.com/j2se/1.3/ and find the download page.

Note: The Keytool is also provided in JDK 1.2, but that version cannot
generate the RSA keys.
Installing the IBM HTTP Server and configuring SSL � 127

For information about how to use Keytool, see:

� Windows NT: http://java.sun.com/j2se/1.3/docs/tooldocs/win32/
keytool.html.

� Solaris: http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/keytool.html

To get the certificate from a server:

1 Use a Web browser to connect to the server. For example, from the Process
server machine, use a Web browser to connect to the Web server on the
Partner Agreement View computer.

2 Because the browser has not yet confirmed receipt of a certificate, you will see
a security alert.

3 Click on View Certificate and select the Details tab.

4 Click on Copy to file and save the certificate to a location you can easily
remember.

5 To import the certificate on the Process server, change directory to
<JAVA_HOME>\jre\lib\security directory (where JAVA_HOME is the
location of the JVM). Then use keytool to import the certificate using this
command:

keytool -import -alias <certificate alias name>

-file <full path to the saved certificate>

-keystore jssecacerts

Note: To import the certificate on the Partner Agreement View computer,
change directory to <JAVA_HOME>\jre\lib\security, where JAVA_HOME
is the location of the JVM (as specified in tomcat.bat in step 2 of Installing
the Tomcat servlet engine on page 23), and then run keytool as described
above.
128 � Partner Agreement View User’s Guide

appendix�
F

Configuring per-partner or

shared queues
When you configure the Channel Interface and Channel API, you can
choose one of two queue types: per-partner or shared. This appendix
describes these queue types and helps you choose the queue type that
works best for your application. Sections in this appendix include:

� Active state queues on page 129.

� Altering the queue mode on page 130.

Important: You must specify the same queue type on both the Channel
Interface (on the Process Server) and the Channel API (on the Web
server).

Active state queues

The computer that runs the channel API can maintain two types of
ActiveState queues:

� A shared queue allows all partners to access a single queue.

� Per-partner queues creates a queue for each partner. This is more secure
and is more efficient, because each partner can only see the their own
active states. This is optimal for Partner Agreement View, where each
partner logs in separately to the Partner Agreement View application.
Partner Agreement View is installed in per-partner mode.
Configuring per-partner or shared queues � 129

Altering the queue mode

If you want to alter the mode after installing Partner Agreement View,
follow the steps described here.

1 If there are any existing (in-progress) processes, stop them.

2 On the Partner Agreement Manager side, modify the Uses_Shared_Queue
boolean property in the Other tab of the Channel Profile. For more
information on modifying the Channel Profile, see Setting Channel Profiles
on page 40.

3 Stop the Tomcat Web server on the channel API computer.

4 On the channel API computer, locate the AppChannel.properties file and set
the “uses.shared.queue” property to the desired value (either true or false).

The location of the AppChannel.properties depends on the platform:

On this
platform

The file is in

Windows NT <tomcat>\webapps\WebSphere\PAV\conf\AppChannel.p
roperties.

UNIX <tomcat>/jakarta-tomcat-3.2.1/webapps/WebSphere/
PAV/conf/AppChannel.properties

130 � Partner Agreement View User’s Guide

The relevant portion of the AppChannel.properties file looks like this:

#This determines the channel mode i.e. whether it uses shared queue

#to store active states for all partner or there is a separate

#queue for each of the partner

true - indicates channel uses shared queue mode

false - indicates channel uses separate queue to store active states

#

Template Example:

uses.shared.queue.XXXX=true

uses.shared.queue.1001=true

Important: You must set this property to the same value on both the
Partner Agreement Manager side and Partner Agreement View Web
server side.

5 Start the Tomcat server on the channel API computer.

6 In the Administration folder of the Process Manager window, click on
Passwords.

a For per partner queue mode use,

Login name: AppChannelInboundPartner<Instance-ID>

password: <partner_password>

Where Instance-ID is the partner ID (a numeric value). For example, if
your partner ID is 777, the login name would be
AppChannelInboundPartner777. The partner_password is whatever text
you choose; however for the samples, the password is actually
“partner_password”.

b For shared queue mode, use :

Login name: AppChannelInboundChannel<Instance-ID>

password: <channel_password>

Where Instance-ID is the channel instance ID (an integer value). For
example, if your channel instance ID is 1004, the login name would be
AppChannelInboundChannel1004. The password is whatever text you
choose; however for the samples, the password is actually
“channel_password”.
Configuring per-partner or shared queues � 131

7 Start new processes from Partner Agreement Manager. The new processes
should show-up in your queue.

Note: If you don’t stop existing processes, you will have to shut down
Partner Agreement Manager. After restarting Partner Agreement
Manager, those processes should show up in your queue.
132 � Partner Agreement View User’s Guide

appendix�
G

Setting the conversation

aware mode
When Partner Agreement View is installed, conversation threading is
turned off by default. This appendix describes how to turn on
conversation threading for Partner Agreement View. Sections in this
appendix include:

� Channel Interface on page 134.

� Channel API on page 135.

Note that there are two separate pieces: you must turn on conversation
threading for the Channel Interface (on the Process Server) as well as the
Channel API (on the Web server).
Setting the conversation aware mode � 133

Channel Interface

Note that you must perform this step for both the Process Server, as well as
the Partner Agreement Manager client.

To turn on conversation threading for the Channel Interface, perform these
steps:

1 On the Process Server, locate the file
<PAM root>\Alliance\Properties\Alliance.properties. Set the properties
shown here:

channel.manager.general.conversations.enable=true;
mode=client;
type=boolean;
desc=whether to display the conversation navigation item in
the general group of the channel manager

These properties might not be present; if they aren’t, you should add these
lines. If they are present, ensure that
channel.manager.general.conversations.enable is set to true.

This enables the conversation definition editor to be viewed from within the
Channel Manager.

2 On the Process Server, locate the file:
<PAM root>\Alliance\com\extricity\channels\appchannel\PAVChannelTy
pe<instance ID>.properties (where instance ID is the Channel Instance ID).
Add the value 0x00020000 to the constraint list.

Constraints=0x00000008 ... 0x00020000

This switch turns the conversation definitions requirement on. To pass
verification, processes with partners on this channel now require
conversations to be defined for outbound and inbound business objects.

3 Using the Conversation editor in the Channel Manager, create a new
conversation between the inbound business object type and the outbound
business object type. For more information about conversations, see Creating
conversations on page 47.

The outbound business object is chronologically before the incoming one.
You must bind a particular field or fields from one business object type to
particular fields of the other business object. (For example, Partner
Agreement Manager sends a PO to its Partner Agreement View partner, and
the partner sends back a PO Ack. The PO Ack is the incoming business object
and the PO is the outbound business object.)
134 � Partner Agreement View User’s Guide

4 Deactivate any processes that you had installed before changing conversation
threading. Save the processes as new versions, make sure that conversation
definitions are defined in all necessary cases, verify the processes, and install
them for execution.

Channel API

To turn on conversation threading for the Channel API:

1 On the Web server computer, locate the AppChannel.properties file.

The location of the AppChannel.properties file is different for each platform:

The relevant section of AppChannel.properties looks like this:

This determines whether channel is conversation aware or not. If

the Application (EDI or WebApp) can keep track of the conversation

identifier (in this case the ActiveStateID) to pair up a given response

with a given request, then this Application is "conversation aware".

If it cannot (as in EDI's case), then it is unaware and requires

use of the Process Server's process/conversation threading functionality.

true - indicates channel is conversation aware (i.e WebAppChannel)

false - indicates channel is conversation unaware (i.e EDIChannel)

#

Template Example:

conversation.aware.XXXX=false

conversation.aware.1001=false

Note: Both the Process Server and Tomcat must be restarted before these
changes take effect.

On this
platform

The file is in

Windows NT <tomcat>\webapps\WebSphere\PAV\conf\AppCh
annel.properties

UNIX <tomcat>/jakarta-tomcat-3.2.1/webapps/
WebSphere/PAV/conf/AppChannel.properties
Setting the conversation aware mode � 135

136 � Partner Agreement View User’s Guide

appendix�
H

Notices
This information was developed for products and services offered in the
United States. IBM may not offer the products, services, or features discussed
in this information in other countries. Consult your local IBM representative
for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject
matter described in this information. The furnishing of this information
does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.
Notices � 137

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the information. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.
138 � Partner Agreement View User’s Guide

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you. Licensees of
this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of
the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating
environments may vary significantly. Some measurements may have been
made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore,
some measurement may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.
Notices � 139

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX
DB2
IBM
MQSeries
SupportPac
WebSphere

Pentium is a registered trademark of Intel Corporation in the United States
and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, and service names may be trademarks or service
marks of others.
140 � Partner Agreement View User’s Guide

g l o s s a r y�
Glossary
action—a task performed as part of a private process. A private process action is the
equivalent of a step in a public process. See the following terms in this glossary for more
information about the action types you can include in a private process:

� approval action

� extension action

� mapping action

� notification action

� output object action

� script action

� subprocess action

� termination action

� timer action

See also private process.

adapter—the software bridge between Partner Agreement Manager processes and specific
end-system and business-application interfaces. Adapters manage interactions between
business applications and the Adapter Server. They allow private processes to interact with
external business applications while a process is running, and they allow PAM to start
public processes based on events that occur in external business applications. See also
adapter implementation, adapter instance, adapter type.
Glossary � 141

adapter implementation—the implementation declaration for an adapter type. It specifies
the name and location of the Java source file that defines the application logic used to
communicate with a specific end system through that end system’s interface. The
application logic is specified in the form of properties. See also adapter, adapter instance,
adapter type.

adapter instance—an instance of an adapter implementation. The adapter instance is used in
a private process extension action and provides the specific values to be used for the
properties declared in the adapter implementation. See also adapter, adapter
implementation, adapter type, extension action.

adapter type—a definition that is stored in XML format and specifies the adapter’s properties
as well as the operations and events it supports. A single adapter type can have multiple
implementations, and each implementation can have multiple instances. See also adapter,
adapter implementation, adapter instance.

approval action—a private process action that you use to ask for a response from a user before
letting the process continue to run. You can use an approval action, for example, to ask for
an OK when a purchase order exceeds a predetermined amount. See also private process.

business object—a message transmitted as part of a public process. Business objects take the
form of purchase orders, acknowledgments, requests for clarification, and so on. See also
business object type.

business object type—a definition that determines the types of information a message can
contain. It has three properties: the top-level element in its element definition set, its key
field, and whether instances of it return audit information for non-repudiation purposes.
The name of the business object type is the name of the element you select as its top-level
element. See also business object, element definition set, non-repudiation.

business object variable—one of the two types of variables used in Partner Agreement
Manager to store information within a process. Business object variables create an instance
of a business object type. They can be used to store, for example, the outputs from
extension actions, the inputs for map actions, or the inputs and outputs for subprocesses.
See also business object, business object type, extension action, variant variable.

CA—see certificate authority.
142 � Partner Agreement View User’s Guide

certificate—a security document that binds a public encryption key to an entity (an
individual or organization) known as the principal. The security document (a digital
certificate) is signed by another entity known as the issuer. A digital certificate for which
both the principal and issuer are the same entity is known as a self-signed certificate. A
certificate for which the principal and issuer are different entities is issued by a certificate
authority (CA) like VeriSign and is known as a CA-issued (or third-party-signed)
certificate. Partner Agreement Manager supports both self-signed and CA-issued
certificates. PAM also supports the binding of certificates to be used for signature
authentication, message encryption, and SSL authentication for channels other than
Partner Agreement Manager. See also certificate authority, SSL.

certificate authority—a trusted third-party organization or company that issues digital
certificates used to create digital signatures and public-private key pairs. The role of the
certificate authority, or CA, is to authenticate the entities (individuals or organizations)
involved in electronic transactions. CAs are a critical component in data security and
electronic commerce because they guarantee that the two parties exchanging information
are really who they claim to be. See also certificate.

channel—a communications mechanism that encapsulates all the processing information
needed to send messages to a partner’s system, as well as to translate data received from a
partner into Partner Agreement Manager messages. PAM provides channels for
RosettaNet, EDI, cXML, and other systems and protocols. See also message.

digital certificate—see certificate.

DTD—Document Type Definition. A type of file associated with SGML and XML documents
that defines how the formatting tags should be interpreted by the application presenting
the document. In Partner Agreement Manager, a DTD file contains the complete
description of a business object type’s element definition set. See also business object,
business object type, element definition set.

element definition set—a collection of data fields (or elements) or groups of data fields that
defines the structure and meaning of a business object type. See also business object, business
object type.

encryption certificate—see certificate.

event—a piece of information that comes into Partner Agreement Manager as a message from
another source (an enterprise system or business application, for example) and triggers a
public process. See also message.
Glossary � 143

event push—a method that uses the HTTP POST mechanism to push events into Partner
Agreement Manager as a way to trigger processes. A port on the Process Server is set to
listen for events in the form of HTTP POST messages. When a message is detected, PAM
uses the information in the message to generate an event. See also event.

extended enterprise—a business model under which companies that work together as
partners function as efficiently as a single organization through the implementation of
automated communication technologies.

extension action—a private process action that communicates via an adapter with an external
application that is registered with Partner Agreement Manager. You can use an extension
action, for example, to launch a spreadsheet application, perform calculations, and update
the enterprise system, or to get information from an enterprise system or listen for an event
in the enterprise system. See also adapter, private process.

LDAP—Lightweight Directory Access Protocol. LDAP provides a standard method for
accessing information from a central directory. After user authentication is set up in the
LDAP directory, applications that use the LDAP protocol can retrieve the information
from that directory. An authenticated user can log in to any application that supports the
LDAP protocol with the same user name and password.

linked certificate—see certificate.

map—a Java Script or VBScript that inserts data into fields in an output business object type
generated by a private process. The map specifies which fields in the output business object
type receive data, and it identifies the information source.

map method—a reusable logical block of code that inserts data into a particular type of
element or element sequence in a business object type. Within a map method, you can
write the expressions that map individual input and output fields in the sequence. Or you
can create a submap and drag input fields to output fields and have Partner Agreement
Manager create the appropriate mapping expressions. See also map, submap.

mapping action—a private process action that you use to call a map. The map specifies the
fields in a business object type that will receive data extracted from another source. You use
a mapping action when you want to extract data from one business object type and insert
it in a different business object type. For example, you use a mapping action to transform
a purchase order generated by your inventory system into a sales order in a format that
your partner expects. See also map, private process.
144 � Partner Agreement View User’s Guide

message—a structured communication used to pass information and control to another
partner in a public process. The action in the process passes to the partner who receives the
message. The content of a message is determined by its business object type. A message can
be transmitted via synchronous or asynchronous methods, as determined by its
communication service type. See business object type.

non-repudiation—a business object security feature that authenticates instances of a business
object type and maintains an audit record to verify that they were received by the intended
recipient. For business object instances that you receive, Partner Agreement Manager
authenticates each instance and maintains an audit record to verify that the instance
actually originated with the stated originator. If you disable auditing for a business object
type, non-repudiation support is disabled for all messages that contain instances of that
business object type.

notification action—a private process action that you use to send an e-mail, fax, or pager
message to addressees that you specify. You use a notification action to inform someone
inside or outside your organization that an event has occurred. For example, you can use a
notification action to alert the order entry department when a purchase order arrives from
a customer. See also private process.

output object action—a private process action that you use to bind a business object to the
expected output object and path in a public process. You use an output object action at the
point in a private process when you are ready to send a business object to the associated
public process. This is typically the last action in the private process. See also private process.

partner group—a group of partners that perform the same role in a process at different times.
Instead of duplicating a public process and substituting a different partner name, you can
set up a partner group for the public process and then designate a specific partner as the
participant when you start an instance of the process. For example, you might design a
generic purchasing process that works equally well with any of your suppliers and then
designate the appropriate partner when you start the process.

partner profile—information that identifies an organization, specifies a contact person in
that organization, lists the communication services the organization supports, and defines
the organization’s security profile. When partners agree to participate in a public process,
they must exchange profile information as a way to ensure authenticity before they can
proceed.
Glossary � 145

PIP—Partner Interface Process. RosettaNet PIPs are specialized system-to-system XML-
based dialogs that define business processes between supply-chain partners and provide
models and documents for the implementation of e-commerce standards. Each PIP
includes a technical specification based on the RosettaNet Implementation Framework
(RNIF), a message guideline document with a PIP-specific version of the business
dictionary, and an XML message guideline document. See also RosettaNet.

post method—the last block of code that is executed when a mapping action runs. Its only
parameter is the output business object. You use the post method when you need to
perform post-processing on the output business object. For example, you might use the
post method to set the value of a summary field based on the number of line items in the
output business object, or to examine a range of dates in a repeated group, extract the most
recent date, and post that date in a header field. See also mapping action, pre method.

pre method—the first block of code that is executed when a mapping action runs. The pre
method’s parameters are the map inputs. You use the pre method to access a map’s inputs
and set global variables based on their content. See also mapping action, post method.

private process—a task or set of tasks that business partners participating in a public process
perform at points where they need to take action internally. Partners participating in a
public process must implement a private process for each public process step that they
own. A private process begins with input from the public process and ends with output that
feeds back into the public process. The input can be the receipt of a business object from a
partner, or it can be a triggering event from an internal system. The output is the business
object that transfers control back to the public process. See also action, process, public
process.

private process action—see action.

process—the flow of actions and the exchange of business information between partners in
an extended enterprise. A process operates on two levels, public and private. See extended
enterprise, private process, public process.

public process—the step-by-step flow of messages, events, and actions between two or more
business partners. Public processes are set up by agreement between partners, and each step
in a public process has a private process associated with it. A public process is developed by
one partner, and all the partners who participate in it must review and approve it before it
can be implemented. The partner who designs a public process is its owner. See also private
process, process.

RosettaNet—a consortium of major information technology, electronic components, and
semiconductor manufacturing companies that is working to create and implement
industry-wide, open e-business process standards. See also PIP.
146 � Partner Agreement View User’s Guide

script action—a private process action that consists of a script written in VBScript or
JavaScript and is designed to manipulate information or set up conditional actions based
on input. You use a script to establish decision-making criteria for branches or loops, to set
variables, or to calculate values that are used elsewhere in the private process. See also
private process.

security certificate—see certificate.

self-signed certificate—see certificate.

signature certificate—see certificate.

SSL—Secure Sockets Layer. The SSL protocol is a security protocol that provides for
communications privacy and reliability over the Internet. The protocol allows client/server
applications to communicate in a way that is designed to prevent eavesdropping,
tampering, or message forgery.

submap—a secondary level map that is called by a map method to insert data into an output
element other than the top-level element. See map, map method.

subprocess action—a private process action you use to call an existing public process. You
can call any public process in which your organization owns the first partner action. For
example, you can use a subprocess to get a quote approved by a third-party supplier before
responding to a customer. See also private process.

termination action—a private process action that you use to stop a process at a
predetermined point for a reason that you specify. You can use a termination action to deal
with errors in data that might prevent a process from completing successfully. For example,
you might want to stop a process in cases where an enterprise system passes incomplete or
corrupted information to it. See also private process.

third-party-signed certificate—another name for a CA-issued certificate. See certificate.

timer action—a private process action that you use to insert a pause. You can use a timer
action to specify the period of time you want to elapse before the next action in the process
starts. See also private process.

variant variable—single field variables. Variant variables store text strings—the type of
information contained in a single field element. You can use variant variables to store the
input for actions, to set flags (such as the time-out flag for an approval action), to move
information within scripts, or to store the results of an approval action. See also business
object variable.
Glossary � 147

148 � Partner Agreement View User’s Guide

i n d e x�
Index
A

active state 61
described 61
getting from queue 65
getting from queue with constraints 65, 67
input instance data 63
output metadata 64
process instance data 63
valid response sets 62

active states
getting from a queue with constraints 65
getting from the queue 65

Add Outbound Business Object dialog box 56
adding Partner Agreement View partners 43
Apache installation

adding Tomcat 122
Apache Tomcat

about 120
configuring on UNIX 119
installing on UNIX 23
installing on Windows NT 14
shutting down on UNIX 24
shutting down on Windows NT 15
starting on UNIX 23
starting on Windows NT 15

B

business objects
creating 71
creating with Channel API 71
displaying in forms 72
displaying in HTML 72
displaying with Channel API 72
in Partner Agreement View 71
mapping 74
mapping with Channel API 74
Partner Agreement View, described 71
receiving 5
sending 5

C

Channel API 4, 135
defined 11
described 4, 19
installing on UNIX 24
installing on Windows NT 14
using 59

Channel Installer
running on UNIX 26
Index � 149

Channel Interface 134
described (UNIX) 18
described (Windows NT) 11
installing on UNIX 21
installing on Windows NT 13

Channel Manager 40
described 40

channel profiles
setting 40

command toolbar
Conversation editor 52

constraints
on active states from queue 65

conversation aware mode 133
setting 133

Conversation Editor
command toolbar 52
described 50
font cues 52
icons 52
inbound panel, described 50
menu bar 53
outbound panel, described 50
status bar 53

Conversation editor
about 50

conversation ID, described 66
conversation threading

enabling 133
support for 8

conversations 48
adding outbound business objects 55
components, described 48
creating 50, 53
icons for fields and groups, described 51

CQConstraints object, specifying constraints 67

D

design considerations 33
dialog boxes

Add Outbound Business Object 56
New Conversation 55
Save Conversation 57

directory hierarchy
UNIX 19
Windows NT 11

DisplayBO, described 72

E

event listeners, using 69

H

host partner
initiating a process 32

I

IBM HTTP Server 125
input instance data 63
installing

Apache Tomcat on UNIX 23
Apache Tomcat on Windows NT 14
Channel API on UNIX 24
Channel API on Windows 14
Partner Agreement View on UNIX 18
Partner Agreement View on Windows 11

Invoice 91

M

map files
See maps

maps
file format 74
for business objects 74

menu bar
Conversation editor 53

messages, sending to Partner Agreement Manager
69

Multi_BO 90

N

NAEngineListener methods 69
New Conversation dialog box 55

O

OSI_OSIR 88
outbound business objects, adding to conversa-
tions 55
output metadata 64
150 � Partner Agreement View User’s Guide

P

parametric processes
and Partner Agreement View partner 35

Partner Agreement Manager
sending messages using Channel API 69

Partner Agreement View
and public processes 30
background 2
communication 61
conversation aware 133
installing on UNIX 18
installing on Windows NT 11
managing 39
partner, defined 30
processes 31
public processes 31
queues 61
setup requirements 6
using in processes 3

Partner Agreement View applications
about 5
defined 6

Partner Agreement View client
channel addition for UNIX 19

Partner Agreement View partners
adding 43
and business object types 36
and multiple business objects 36, 37
and parametric processes 35
communication with process owner 33
completing a process 33
initiating a process 31
initiating multiple processes 35
only step in processes 34

partners
receiving information 5
receiving request information 5
sending information to 5

password
to run sample servlets 14, 23

per-partner queues 129
and shared queues 64

planning meeting 7
private processes

about 30
process instance data 63

process message info objects 62
processes

designing with Partner Agreement View 29
public and private 30
using Partner Agreement View 3

public processes 30
about 30
and Partner Agreement View 30
samples 82

Q

queue mode
altering 130

queues
active state 61
getting an instance of a 64
getting with Channel API 64
Partner Agreement View 61
per-partner or shared 129

R

replies
linking 66

request/reply communication 66
requests

linking 66
requirements

Solaris 20
Windows NT 12

RFQ_Quotation sample 92

S

sample processes
distributing 85
importing 83

sample public processes 82
described 82
distributing 85
importing 82
Invoice 91
Multi_BO 90
OSI_OSIR 88
RFQ_Quotation 92
Shipment_Notice 93
Index � 151

sample servlets 86
adding password for 14, 23

servlets
sample 86

shared queues 129
and per-partner queues 64

Shipment_Notice sample 93
SSL

configuring 125
status bar

Conversation editor 53
system requirements

Solaris 20
Windows NT 12

T

Tomcat
adding to Apache 122
installing with Apache/SSL on UNIX 121
installing with Stronghold on Solaris 123
See Apache Tomcat

toolbars, in Conversation Editor, described 52
trading partners

sending information 5

U

UNIX CD directory hierarchy 19

W

Web server application
Partner Agreement View and 5

web.xml file 78
Windows NT CD directory hierarchy 11

X

XML files
editing 83
152 � Partner Agreement View User’s Guide

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC34-5965-		

	Welcome to the Partner Agreement View User’s Guide
	Who should use this information
	Related information

	Summary of changes
	Introducing WebSphere Partner Agreement View 2.2
	What you need to know
	About WebSphere Partner Agreement View
	Using Partner Agreement View in your processes
	About the Channel API

	About your PAV application
	Sending information to a partner
	Receiving information from a partner

	What you must set up to use Partner Agreement View
	Planning your Partner Agreement View system
	Support for conversation threading
	Where to go from here

	Installing WebSphere Partner Agreement View
	Installing Partner Agreement View on Windows NT
	Windows NT distribution image directory hierarchy
	Before you begin
	Installing the Channel Interface
	Installing the Channel API

	Installing Partner Agreement View on UNIX
	UNIX install image directory hierarchy
	Before you begin
	Installing the Channel Interface
	Installing the Tomcat servlet engine
	Installing the Channel API
	Running the Channel Installer

	Designing processes using Partner Agreement View
	About public and private processes
	About Partner Agreement View and public processes
	Processes you can create using Partner Agreement View
	About the design considerations

	Managing WebSphere Partner Agreement View
	About the Channel Manager
	Setting Channel Profiles
	Adding Partner Agreement View partners

	Creating conversations
	About conversations
	Requests with multiple business objects

	About the conversation editor
	Creating conversations
	Saving a conversation

	Using the Channel API
	Compiling your servlets
	Compiling on Windows NT
	Compiling on UNIX

	About Partner Agreement View communication
	About Partner Agreement View queues
	About the active state
	Per-partner vs. shared queues
	Getting a queue
	Getting active states from the queue
	Sending messages to Partner Agreement Manager

	About business objects in Partner Agreement View
	Creating business objects
	Displaying business objects
	Generating html forms based on business objects
	Mapping business objects

	About web.xml

	Sample public processes
	About the sample public processes
	Importing the sample public processes
	Editing the XML files
	Importing the sample processes
	Distributing the sample processes

	Sample Servlets
	OSI_OSIR
	Multi_BO
	Invoice
	RFQ_Quotation
	Shipment_Notice

	Windows NT Quick Install Instructions
	Installing Partner Agreement View
	Configuring Partner Agreement View
	Running the samples
	Using the WebProxy

	Upgrading Partner Agreement View
	Software version comparisons
	Upgrade the Channel Interface computer
	Upgrade the Channel API computer

	Upgrading Partner Agreement View applications from 1.1 to 2.2
	Affected areas
	Remove references to deprecated classes
	Code changes
	Getting business objects from ProcessMessages
	Getting business objects from DisplayBOFactory
	Get DTD for BOTypeID
	Use UTF-8 encoding with getBytes()
	Writing business objects to a file
	Special printer classes not supported
	Printing non-editable BO instance data
	Printing editable BO instance data
	Retrieving validation errors
	Form handlers not supported
	Check for Submit button
	Get business object type
	Setting business object values from a map file
	Creating a map file from business object data
	Message map functionality not supported

	Configuring Tomcat and Apache on UNIX
	About Apache Tomcat
	Installing Tomcat with Apache/SSL
	Adding Tomcat to an Apache installation

	Installing Tomcat with Stronghold
	Using Tomcat with other Apache-based Web servers

	Installing the IBM HTTP Server and configuring SSL
	Installing the IBM HTTP Server
	IBM HTTP Server redirection
	Importing certificates

	Configuring per-partner or shared queues
	Active state queues
	Altering the queue mode

	Setting the conversation aware mode
	Channel Interface
	Channel API

	Notices
	Trademarks

	Glossary
	Index

