
WebSphere® Business Integrator

Process Broker Services Developer’s
Guide

Version 2.1

���

WebSphere® Business Integrator

Process Broker Services Developer’s
Guide

Version 2.1

���

Note
Before using this information and the products it supports, read the information in “Notices” on page 103

Second Edition (December 2001)

This edition applies to Version 2.1 of the IBM® WebSphere® Business Integrator (program number 5724-A78) and to
all subsequent release and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures. v

About this book vii
Who should read this book vii
What you need to know vii
Before you implement WebSphere Business
Integrator Process Broker Services vii
Conventions and terminology used in this
book viii
How to send your comments viii

Chapter 1. Introduction 1

Chapter 2. Building and deploying solution
artifacts 3
Building an adaptive document 4

Creating the Enterprise Bean 5
Creating and configuring controllers 10

Controller definition 14
Conditional logic in controllers. 17
Command definition 19
Receiver definitions 28

Chapter 3. Client programming 33
Process Broker Services Web clients 33

Composing service requests 34
Querying adaptive documents 39

Process Broker Services messaging clients . . 41
Handling automatic activities in workflows 44

Chapter 4. Advanced Topics 47
Life-cycle management of adaptive
documents 47

Archiving adaptive documents 47
Reviving adaptive documents 48
Removing adaptive documents. 49

Process Broker Services scheduler 50
Writing custom action listeners or handlers 50
Process Broker Services scheduler service
dispatcher. 51

Process brokering patterns 52
Event with Time Window 52
Non-deterministic conditional 54
Activity Mediator 55

Web of responsibility 56
Dynamic Collaboration 58

Assigning a user-generated adaptive
document Identifier 59
Dynamically incorporating changes to
controllers 59
Receiver caching 59
Overriding the DB2 userId and password for
Process Broker Services Queries 60
Advanced tips 60

Chapter 5. Troubleshooting 61
Checklist 61
Trace files 62
Operation specific errors 62

Creating an adaptive document 62
Making a service request 63
Process Broker Services scheduler errors 63

WebSphere Application Server trace dump . . 64

Appendix A. Process Broker Services
properties 65
Package names 65
Controller file locations 65
Trace and debug flags. 65
Process Broker Services scheduler dispatcher
properties 66
Automated activities 67
Miscellaneous 67

Appendix B. Process Broker Services
Application Program Interfaces 69
BFMAdminBean Class 69

archiveAdoc 69
createAdoc 69
createAdoc 70
createAdocIdReturn 70
ejbActivate 71
ejbCreate 71
ejbPassivate 71
ejbRemove 72
getAdoc 72
getAdocs 72
getAdocsByFilter 73
getAllAdocEvents 74

© Copyright IBM Corp. 2001 iii

getAllPossibleBusinessEvents 75
getArchivedAdocs 75
incomingEpicMessage. 76
incomingEpicMessage. 76
initializeAdocDoServiceRequest 77
invoke 78
removeAdoc 79
reviveAdoc 79
serviceRequest 80
serviceRequest 80
setSessionContext 81

AdocEvents Class 81
toString 82

AdocProxy Class 82
archive 82
filter 82
getActionList. 83
getAdocId. 83
getAdocName 83
getAdocOwner 84
getAdocState 84
getPKString 84
getUniqueString. 84
revive 85
setAdocOwner 85
setAdocState 85
unsetInternalState 86

DefaultGenericServiceRequestHandler Class 86
doServiceRequest 87

PBSEventInput Class 87
PBSEventInput 87
setEventParam 88

PBSEventOutput Class 88
PBSEventOutput 88

AdocDetails Class 89
AdocDetails 89
getAdocId. 89
getAdocName 89
getAdocOwner 89
getAdocState 90
getAdocType 90

getPKString 90
getUniqueString. 90
toString 90

EventDetails Class 91
toString 91

TimerServiceBean Class 91
ejbActivate 92
ejbCreate 92
ejbPassivate 92
ejbRemove 92
getAllExpiredTimerEntries 93
getAllProcessableTimerEntries 93
getSessionContext 93
markUnprocessable 93
recordAnAttempt 94
removeTimerEvent 94
scheduleAdocArchival 94
scheduleAdocInitializationWithGeneratedID 95
scheduleAdocInitializationWithGivenID . . 96
scheduleAdocRemoval 97
scheduleServiceRequestWithDefaultHandler 98
scheduleServiceRequestWithGivenHandler 98
scheduleServiceRequestWithGivenHandlerbySpecifiedUser99
setSessionContext 100

UserCondition Interface. 101
evaluate 101

Notices 103

Glossary of Terms and Abbreviations . . 107

Bibliography 123
IBM WebSphere Business Integrator library 123

Related documentation 125
WebSphere Partner Agreement Manager
library 126
DataInterchange library 126
Other Libraries. 126

Index 129

iv WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Figures

1. Solution adaptive document 4
2. VisualAge Java -- Creating an Enterprise

Bean Group. 5
3. Adaptive document and activity

controllers 10
4. Registration of lists of Commands and

Receivers in LDAP 13
5. Simple Adaptive Document Controller

example 16
6. Scheduler System Command Example 22
7. Workflow System Command Example 25
8. Web Client Interaction Pattern 34
9. Process Broker Services Event Input and

Output Objects for Service Requests . . 36

10. Adaptive document query Process
Broker Services application program
interface 40

11. Process Broker Services Messaging
Client Interaction Pattern 41

12. Example User Registration Microflow
showing how Confirm BOD is processed 43

13. Event with Time Window Pattern 53
14. Non-Deterministic Conditional Pattern 54
15. Activity Mediator Pattern. 56
16. Web of Responsibility Process Broker

Pattern 57
17. Dynamic Collaboration Process Broker

Pattern 58

© Copyright IBM Corp. 2001 v

vi WebSphere® Business Integrator: Process Broker Services Developer’s Guide

About this book

The WebSphere Business Integrator Process Broker Services Developer’s Guide
provides the information necessary to create and deploy Process Broker
Services solution artifacts.

Who should read this book

This book is for solution developers who build and deploy the Process Broker
Services solution artifacts. This book is also intended for those who perform
any required initial problem determination.

What you need to know

Solution developers must have a solid understanding of Business Integrator
Process Broker Services; the WebSphere Business Integrator Concepts and Planning
book and the WebSphere Business Integrator Process Broker Services Concepts
Guide provide the required background information.

Before you implement WebSphere Business Integrator Process Broker Services

WebSphere Business Integrator uses multiple underlying products and
technologies to support the solutions that you create and run. In general,
before you implement Business Integrator, you will need to understand the
underlying products and technologies that support your solution.

Before you implement Business Integrator, you or other members of your
organization will need to be generally skilled in the activities listed below for
similar solutions, products and underlying products and technologies. If you
and other members of your organization do not possess these skills, you will
need to obtain assistance, from qualified services staff, either from IBM or
from third parties, to implement Business Integrator. You must be prepared to
use the documentation of the underlying products and technologies. (This
documentation is provided with Business Integrator or otherwise from IBM.)

When you plan, install, and configure Business Integrator, you will need to
understand how to install and configure some of the underlying products and
technologies that you use in your installation. Business Integrator provides the
installation of most of the underlying products and technologies into its run
time environment. However, you might need to install and configure certain
underlying products separately into either the build time or run time
environment. You might also need to diagnose and correct installation
problems with underlying products and technologies.

© Copyright IBM Corp. 2001 vii

Before you design, develop and publish solutions, you will need to be:
v Generally familiar with system integration techniques in a business

environment.
v Prepared to use the tools of the underlying products and technologies that

your solution requires.
v Familiar with the run time behavior of the underlying products and

technologies that your solution requires.
v Familiar with modeling concepts and techniques such as Unified Modeling

Language, and related tools, with state machine concepts, and with visual
flow composition-modeling concepts and techniques.

v Familiar with Internet and Electronic Data Interchange (EDI) concepts and
technologies, if required by your solution.

v Prepared to research the existing applications, systems, and networks that
you integrate with Business Integrator.
– Inside your enterprise, they can be known as legacy systems, back-end

systems, enterprise applications, or endpoint applications.
– Outside your enterprise, they can be known as trading networks, private

EDI networks, or similar networks that your solution requires.

Before you deploy, run, manage, diagnose, and tune Business Integrator, you
will need to be prepared to use the management, trace, audit, exception
handling, diagnostic and related tools of the underlying products and
technologies that support your solution. You will need to be prepared to
understand the solution itself to the degree needed for these tasks.

Conventions and terminology used in this book

The “Glossary of Terms and Abbreviations” on page 107 introduces the
terminology relevant to Business Integrator Process Broker Services.

How to send your comments

IBM welcomes your comments. You can send your comments by any one of
the following methods:
1. Electronically to this address:

idrcf@hursley.ibm.com

Be sure to include your network address if you want a reply.
2. By FAX, to the following numbers:

UK: 01962-842327
Other countries: +44-1962-842327

3. By mail to the following address:

viii WebSphere® Business Integrator: Process Broker Services Developer’s Guide

mailto:idrcf@hursley.ibm.com

User Technologies
Mail Point 095
IBM United Kingdom Laboratories
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

About this book ix

x WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Chapter 1. Introduction

Process Broker Services is the core of the Business Flow Manager component
of WebSphere Business Integrator. This document is intended for solution
developers who will build and deploy the Process Broker Services solution
artifacts.

This guide provides the following information:
v “Chapter 2. Building and deploying solution artifacts” on page 3. This

chapter describes how to build an adaptive document, and how to create
and configure controllers.

v “Chapter 3. Client programming” on page 33. This chapter describes Web
clients and messaging clients. It also provides information about handling
automatic activities in workflows.

v “Chapter 4. Advanced Topics” on page 47. This chapter provides the
following topics:
– Life cycle management of adaptive documents (archiving, revival, and

removal)
– Process Broker Services Scheduler
– Assigning an adaptive document identifier
– Dynamically incorporating changes to controllers
– Receiver caching
– Tips

v “Chapter 5. Troubleshooting” on page 61. This chapter provides a checklist
to use when troubleshooting. It also provides information about trace files
and trace dumps.

v “Appendix A. Process Broker Services properties” on page 65. This
appendix describes package names, file locations, trace and debug flags,
scheduler dispatcher properties, and automated activities.

v “Appendix B. Process Broker Services Application Program Interfaces” on
page 69. This appendix provides a summary of the interfaces, classes and
methods.

© Copyright IBM Corp. 2001 1

Introduction

2 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Chapter 2. Building and deploying solution artifacts

The solution artifacts for Process Broker Services include the adaptive
documents and the associated controllers that define the dynamic behavior of
adaptive documents. See the WebSphere Business Integrator Process Broker
Services Concepts Guide for a functional overview of Process Broker Services
and how adaptive documents enable collaborative business process
management.

© Copyright IBM Corp. 2001 3

Building an adaptive document

Adaptive documents are entity beans with container- managed persistence; for

example, the attributes of an adaptive document are persisted by the
Enterprise Bean container. The Process Broker Services framework provides
the base AdocBean and an abstract AdocProxy class that are accessed by
importing com.ibm.epic.bfm.ejb.base.*. Building a solution specific adaptive
document requires extending the AdocProxy class implementing the abstract
methods of AdocProxy. See Figure 1.

Note: The convention for naming a solution adaptive document is
SolutionAdoc, where the word Solution can be replaced with any
business entity in the solution, such as POAdoc for a Purchase Order
adaptive document and so on.

AdocBean
<<EJB Class>>

AdocProxy

getAdocId()

getAdocName()
getAdocState()

getAdocOwner()
getPKString()
getActionList()
setAdocOwner()
setAdocState()
unsetInternalState()

<<abstract>
>

SolutionAdoc

$ _DEBUG : Boolean

ejbPassivate() : void
ejbRemove() : void
ejbCreate() : void
ejbCreate(adocID : String) : void

<<EJB Class>>

Process Broker

Services Framework

SolutionAdocServices

getAdocId()
getAdocName()

getAdocState()
getAdocOwner()
getPKString()
getActionList()
setAdocOwner()
setAdocState()

<<Remote Interface>>

SolutionAdocHome

Create() : void

Create(adocId : String) : void

<<HomeInterface>>

Deployment Descriptors

JNDI Name SolutionAdoc
Transaction Attribute TX_REQUIRED

Isolation Level TX_REPEATABLE_READ
Run_As Mode SYSTEM_IDENTITY

Reentrant Unchecked(NO)

getAdoId()
getAdocname()
getAdocstate()
getAdocowner()
getPKString()
getActionList()
getAdocOwner()
getAdocState()
unsetInternalState()

AdocProxy Process Broker
Services Framework

<<HomeInterface>>
SolutionAdocHome

Create() : void
Create(adocId : String) : void

<<EJB Class>>
SolutionAdoc

$_DEBUG : Boolean

ejbPassivate() : void
ejbRemove() : void
ejbCreate() : void
ejbCreate(adocID : String) : void

<<Remove Interface>>
SolutionAdocServices

getAdoId()
getAdocname()
getAdocstate()
getAdocowner()
getPKString()
getActionList()
getAdocOwner()
getAdocState()

Deployment Descriptors

JNDI Name
Transaction Attribute
Isolation Level
Run_ As Mode
Reentrant

SolutionAdoc
TX_REQUIRED
TX_REPEATABLE_READ
SYSTEM_IDENTITY
Unchecked(NO)

Figure 1. Solution adaptive document

Solution Artifacts

4 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

The specific steps in building a SolutionAdoc are described in the following
sections.

Creating the Enterprise Bean
1. In the VisualAge Java IDE, select the EJB tab. (If this tab is not there,

select File → Quick Start and then Features → Add Features and add the
Enterprise Bean Development environment). Add the Enterprise Bean
Group for the solution, named as SampleApp as shown in Figure 2, and
also define the project for the solution. All adaptive documents for the
solution are now under this Enterprise Bean Group.

2. Create the SolutionAdoc Enterprise Bean under the SampleApp
Enterprise Bean Group. The SolutionAdoc Bean has the import statement:
import com.ibm.epic.bfm.ejb.base.*. The SolutionAdoc Enterprise Bean
also has a variable _DEBUG that is initialized as follows:
private static boolean _DEBUG =

BFMResources.getSingleton().getDebugInfo ("SolutionAdocDebug");

3. The SolutionAdoc extends the AdocProxy –
com.ibm.epic.bfm.base.AdocProxy. VisualAge Java IDE might report

Create a new EJB group named:

Add EJB group(s) from the repository

IBM WSBI Sample

Sample App

Project:

Finish Cancel<Back

Add EJB Group

Smart Guide

_

_

_

Available group names Available editions

Browse..._

Figure 2. VisualAge Java -- Creating an Enterprise Bean Group

Solution Artifacts

Chapter 2. Building and deploying solution artifacts 5

some errors at this stage, but the errors are resolved as the next few steps
are performed.

Programming the home interface

4. The SolutionAdoc has a primary key that is java.lang.string and this
key is initialized in the Create () method. The solutionId is assumed to be
the primary key of the SolutionAdoc.

5. The SolutionAdoc Home Interface has the Create method with no
arguments (see Figure 1 on page 4). The SolutionAdoc Bean Class has the
corresponding ejbCreate method that is shown below.
public void ejbCreate() throws javax.ejb.CreateException,

java.rmi.RemoteException
{

try {
// Intialize the base adoc

solutionAdocid =super.createAdoc("Solution")

// Initialize all the other fields of the ADOC here
//

if (_DEBUG)
System.out.println ("SampleApp::SolutionAdoc created ..");

}

catch (Throwable e) {
throw new RemoteException(e.getMessage()); }

}

6. The SolutionAdoc Home Interface also has a Create method with the
adocId as the argument (see Figure 1 on page 4). In this case, the
ejbCreate method is used as shown in the next sample.
public void ejbCreate(java.lang.string argAdocId)

throws javax.ejb.CreateException, java.rmi.RemoteException
{
_initLinks();

// All Container Managed Persistence fields are initialized here

try {
adocId = argAdocId;
if (_DEBUG)
System.out.println ("SampleApp::SolutionAdoc.ejbCreate() –
Creating SolutionAdoc with id " + adocId + ". Creating the Base ADOC");

// Create the base ADOC
super.createAdoc (adocId, "Solution");

if (_DEBUG)
System.out.println ("SampleApp::SolutionAdoc created ..");

}

Solution Artifacts

6 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

catch (Throwable e) {
throw new RemoteException(e.getMessage()); }

}

Programming the remote interface

7. Since the SolutionAdoc extends the AdocProxy it implements the abstract
methods specified in the AdocProxy class (see Figure 1 on page 4). Except
for the unsetInternalState method, all the other methods are featured in
the SolutionAdoc Remote Interface. The methods on the AdocProxy
include:

public string getAdocId ()
throws RemoteException. See the get method pattern in step 8 on
page 8 for the implementation.

public string getAdocName ()
throws RemoteException. The adaptive document name is also
referred to as the adaptive document type. See the get method
pattern in step 8 on page 8 for the implementation.

public string getAdocOwner ()
throws RemoteException. The adaptive document owner is the
user who created the adaptive document. See the get method
pattern in step 8 on page 8 for the implementation.

public string getAdocState ()
throws RemoteException. The adaptive document state is the
current state of the document controller associated with the
adaptive document. See the get method pattern in step 8 on
page 8 for the implementation.

public string getPKString ()
This method establishes the link between the base adaptive
document and the SolutionAdoc by having the same primary key
for the base adaptive document (provided by the Process Broker
Services framework) and the SolutionAdoc (see Figure 1 on
page 4). The method returns the primary key.

public string getPKString () { return solutionId;}

public java.util.vector getActionList ()
throws RemoteException This method returns the events that can
be raised on a given adaptive document instance based on the
current state of the adaptive document controller.

public void setAdocOwner (java.lang.string arg1)
throws RemoteException. See the set method pattern in step 9 on
page 8 for the implementation.

Solution Artifacts

Chapter 2. Building and deploying solution artifacts 7

public void unsetInternalState ()
throws RemoteException; This is the only method on the
AdocProxy class that is not promoted to the remote interface of
the SolutionAdoc.
public void unsetInternalState () throws RemoteException
{

resetProxy();
// any additional logic

}

8. The Get Method Pattern for the get methods on the AdocProxy class –
this is needed in order to avoid Enterprise Bean Inheritance using the
AdocProxy. Enterprise Bean Inheritance is supported by VisualAge Java,
which at the current time is not portable across other Enterprise Bean
Containers.
public string getMethod () throws Remote Exception
{

try {
return getProxy().getMethod ();

}

catch (Throwable e) {
throw new RemoteException
("SampleApp::SolutionAdoc.getMethod – " e.getMessage());}

}

9. The Set Method Pattern for the set methods on the AdocProxy class – this
is needed in order to avoid Enterprise Bean Inheritance using the
AdocProxy. Enterprise Bean Inheritance is supported by VisualAge Java,
which at the current time is not portable across other Enterprise Bean
Containers.
public string setMethod (....) throws Remote Exception
{

try {
return getProxy().setMethod (....);

}

catch (Throwable e) {
throw new RemoteException
("SampleApp::SolutionAdoc.setMethod – " e.getMessage());}

}

Additional methods on the solution adaptive document
10. In addition to the methods on the AdocProxy class, the SolutionAdoc

Enterprise Bean must also implement the ejbPassivate and the ejbRemove
methods.
public void ejbPassivate () throws RemoteException

{

Solution Artifacts

8 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

this.unsetInternalState();
// Any additional logic

}

public void ejbRemove () throws
java.rmi.RemoteException, javax.ejb.RemoveException

{

try {
getProxy().remove();

} catch (RemoveException re)
{
throw re;
} catch (Throwable t)
{

if (_DEBUG)
System.out.println("SampleApp::SolutionAdoc:
ejbRemove() - " + t.getMessage());
throw new RemoteException(

"SampleApp::SolutionAdoc:ejbRemove() –"
+ t.getMessage());

}
}

Schema mapping for SolutionAdoc

The schema and data mapping for SolutionAdoc must follow the procedures
as outlined in the VisualAge Java documentation. As mentioned before, the
SolutionAdoc is an entity bean with container managed persistence. The
solutionId is a mandatory attribute for the SolutionAdoc and it must be
mapped to a VARCHAR of length 32. There is no restriction on the database
(data source) used for the adaptive documents. However, the recommendation
is to use the database used by the Business Flow Manager application server.

Deployment and configuration

The SolutionAdoc must have the following deployment descriptors:
JNDI Name – SolutionAdoc (Not the fully qualified name in VisualAge
Java.)
Transaction Attribute – TX_REQUIRED
Isolation Level – T-REPEATABLE_READ
Run-As Mode – SYSTEM_IDENTITY
Reentrant – Unchecked(NO)

Additionally, all the get functions should be marked Read-Only. The following
methods by default are marked Read-Only:
v archive
v getAdocId
v getAdocState

Solution Artifacts

Chapter 2. Building and deploying solution artifacts 9

v getAdocOwner
v getAdocName
v getActionList.

For purposes of the configuration it is assumed that all the Solution adaptive
documents are deployed in the same application server as Process Broker
Services (a mandatory requirement in WebSphere Business Integrator Version
2.1). Process Broker Services has to know the package name of the
SolutionAdoc Bean and this is done through the bfm.properties file – the
following entry is made in the file: SolutionAdocPackage =
com.ibm.epic.solution.SampleApp

Creating and configuring controllers

Controllers provide the dynamic behavior for the adaptive documents. There
are two types of controllers in Process Broker Services: the Adaptive
Document Controllers and the Activity Controllers (see Figure 3). See the
WebSphere Business Integrator Process Broker Services Concepts Guide for an
explanation of the controller concepts.

State

Command

Receiver

:
SolutionAd
oc

persistent

SolutionAdocContr
oller

ActivityContro
ller

ProcessInstan
ce

1

1

1

0+

1

1+

Realized in Workflow
Engine andaccessed via
WebSphereWorkflow
S i

Realized in
PBS

Even
t

Even
t

SolutionAdocController.xml

A1ActivityController.xml
command.xml

Contains all command definitions

receiver.xml

contains all receiver definitions

SolutionAdocController.xml

A1ActivityController.xml
command.xml

Contains all command definitions

receiver.xml

contains all receiver definitions

Same

Structure

SolutionAdocController

SolutionAdocController.xml
1

Event

1

1

Event
1+

Realized in PBSSolutionAdoc
persistent

0+ ActivityController

A1ActivityController.xml

1
ProcessInstance

Realized in Workflow Engine and
accessed via WebSphere
Workflow Services

Figure 3. Adaptive document and activity controllers

Solution Artifacts

10 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

The creation and configuration of the controllers involve the following steps:
1. Define the adaptive document Controller

Each adaptive document has one controller; for example, in Figure 3 on
page 10 the SolutionAdocController.xml defines the
SolutionAdocController associated with the SolutionAdoc. The Adaptive
Document Controller persists over the life-cycle of the adaptive document.
The convention for naming the Adaptive Document Controller is based on
the naming convention of the adaptive document. For example, the
Adaptive Document Controller is named as SolutionAdocController, where
the prefix Solution can be replaced by the solution entity. For example, for
an RFQAdoc the Adaptive Document Controller is named as the
RFQAdocController.
See “Controller definition” on page 14 for details on the controller XML
tags.

2. Define the Activity Controllers

Multiple (zero or more) Activity Controllers can be associated with an
adaptive document. An Activity Controller corresponds to an activity, in a
given Process Instance, in which the adaptive document participates. The
Activity Controller persists over the life-cycle of an activity and
coordinates the tasks associated with the activity. Therefore, the set of
Activity Controllers associated with an adaptive document changes over
time as some activities are completed and new activities become available.
Each activity controller definition is captured in an XML file. For example,
in Figure 3 on page 10 the A1ActivityController.xml file defines the activity
controller for an activity named A1.
The convention for naming the Activity Controller is
ActivityNameActivityController, where the ActivityName is replaced with
the actual name of the activity.
See “Controller definition” on page 14 for details on the controller XML
tags.

3. Associating the Controllers with the adaptive document

The adaptive document and the Activity Controllers are registered with
Process Broker Services through entries in the bfm.properties file. For
example, the Adaptive Document Controller is registered as:
SolutionAdocControllerXML =

\\WebSphere\\AppServer\\properties\\bfm\\SolutionAdocController.xml

The Activity Controllers are similarly registered in the bfm.properties file
as:
A1ActivityControllerXML =

\\WebSphere\\AppServer\\properties\\bfm\\A1ActivityController.xml

Solution Artifacts

Chapter 2. Building and deploying solution artifacts 11

If the Activity Controller is not defined, then Process Broker Services uses
a default activity controller for the activity. The default activity controller
is named defaultActivityController and is registered in the bfm.properties
file. See “Activity controllers” on page 16 for details on the
defaultActivityController.

Once an Adaptive Document Controller is registered in the bfm.properties
file using the naming convention as described in step 2 on page 11, the
controller is associated with the named adaptive document. Similarly, an
activity gets associated with the Activity Controller once it is registered in
the bfm.properties file. The association of Activity Controllers to the
adaptive document is dynamic and is handled by the Activity-Adaptive
Document Map that is part of the Process Broker Services framework.
Explicit user configuration is not required (see the WebSphere Business
Integrator Process Broker Services Concepts Guide for an overview of the
Activity-Adaptive Document).

4. Implementing the Commands and Receivers

Commands are invoked from within transitions in the adaptive document
and Activity Controllers. All the commands used in the various controllers
are defined in a single command.xml file within Process Broker Services.
The command.xml file is registered in the LDAP directory as shown in
Figure 4 on page 13; if not, then it must be registered in the bfm.properties
file. The commands represent the interface to business services provided
by various end points and business objects. Each command has a unique
identifier, the command id. More details on the XML tags for defining
commands as well as the system commands that are predefined in the
default command.xml file are provided in “Command definition” on
page 19.
Receivers can be viewed as implementations for the commands. The Flow
Composition Builder is used to construct the receivers for the commands
(See the WebSphere Studio Business Integrator Extensions Installation Guide for
details on the Flow Composition Builder). All receivers used in Process
Broker Services are defined in a single XML file within the Process Broker
Services file receiver.xml. The receiver.xml file is registered in the LDAP
directory as shown in Figure 4 on page 13, or alternately in the
bfm.properties file. Each receiver has a unique identifier, the receiver id.
The receivers are referenced from within the command definitions based
on the receiver id. More details on the XML tags for defining receivers as
well as the default receivers supplied with the Process Broker Services are
described in “Receiver definitions” on page 28.

Solution Artifacts

12 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Figure 4. Registration of lists of Commands and Receivers in LDAP

Solution Artifacts

Chapter 2. Building and deploying solution artifacts 13

Controller definition
The Adaptive Documents controllers and the Activity controllers, are defined
in XML in accordance with the controller dtd (the controller XML Data Type
Definition). The controller.dtd description follows:
<xml encoding="US-ASCII"?>
<!ELEMENT statemachine (name, directive?,state+)>
<!ATTLIST statemachine id ID #REQUIRED>
<!ELEMENT state (name,type?, transition*)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT transition (target, event?, condition?, directive?, action*)>
<!ELEMENT target (#PCDATA)>
<!ELEMENT event (#PCDATA)>
<!ELEMENT condition (#PCDATA)>
<!ELEMENT directive (#PCDATA)>
<!ELEMENT action (#PCDATA)>

The XML tags in the controller definition are explained below:

<xml encoding=″US-ASCII″?>
Processing instruction that indicates that US-ASCII is used as the
encoding for the XML content model for the controller.

<!ELEMENT statemachine (name, directive?, state+)>
The controller is essentially a state machine that has a unique name,
an optional directive element, and one or more states (at least one
state). The name of an Adaptive Document controller must match the
name of the adaptive document (for example, SolutionAdoc) and the
name of the Activity controller must match the name of the Activity
(for example, AI).

<!ATTLIST statemachine id ID #REQUIRED>
An identifier, for example SolutionAdoc, that identifies the state
machine.

<!ELEMENT state (name,type?, transition*)>
Each state in the controller has a name (unique in the scope of the
controller), an optional type, such as Normal, and zero or more
transitions that it originates. When an adaptive document controller is
initialized, it is in an Open state. When it is in initialized, an Activity
Controller is in the available state.

<!ELEMENT name (#PCDATA)>
The name element is used in defining the state and the state machine
elements.

<!ELEMENT type (#PCDATA)>
The optional type element is used in defining the state element.

<!ELEMENT transition (target, event?, condition?, directive?, action*)>
The transition element defines the transition from a state to a target

Solution Artifacts

14 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

state, given an event that is optional, subject to satisfying an optional
guard condition, applying an optional directive, and triggering zero or
more actions as part of the transition.

<!ELEMENT target (#PCDATA)>
The target state element that is used to define the transition element.

<!ELEMENT event (#PCDATA)>
The event element that defines the context for the transition. See the
service request in “Chapter 3. Client programming” on page 33 to
understand the importance of this element.

<!ELEMENT condition (#PCDATA)>
Condition, an optional element, is used in defining the transition
element. It is evaluated prior to effecting a transition. More details on
the usage of the condition element are explained in “Conditional logic
in controllers” on page 17.

<!ELEMENT directive (#PCDATA)>
The Directive is an optional element that is used to express additional
processing instructions for the controller. The Directive element is
applied either at the controller level or in a transition. The Directive at
the lowest level supersedes the directive at any higher level. Currently
only the AUDIT directive is recognized by the controller. Examine the
following controller definition that contains the AUDIT directive.
<?xmlversion="1.0"?>
<!DOCTYPE statemachine SYSTEM "controller.dtd">
<statemachine id="RegistrationAdoc">
<name>RegistrationAdoc</name>
<directive>AUDIT:NO</directive>
<state>>

<name>Open</name>
<type>Normal</type>
<transition>

<target>Verifying</target>
<event>Create</event>
<condition></condition>
<directive>AUDIT:YES</directive>
<action>CreateNewRegistration</action>

</transition>
</state>
</statemachine>

In the above example, the first AUDIT directive applies to the overall
controller definition while the second directive applies to the
transition from Open state to the Verifying state. In this case the
transition is logged because the transition level directive supersedes
the one at the controller level. Further, the controller level AUDIT
directive supersedes the AUDIT flag if any, that is set in the LDAP.
The AUDIT flag in LDAP applies to the all of Process Broker Services.

Solution Artifacts

Chapter 2. Building and deploying solution artifacts 15

<!ELEMENT action (#PCDATA)>
The Action element represents the commands that are invoked within
a transition. See “Command definition” on page 19 for more details on
the usage of this tag.

Adaptive document controller
The Adaptive Document Controller follows the controller definition. The
Adaptive Document Controller by default starts in the Open state. Adaptive
document controllers are associated with adaptive documents as described in
“Creating and configuring controllers” on page 10.

A simple Adaptive Document Controller example is shown as a state chart
and in XML form in Figure 5.

Activity controllers
The Activity Controller, like the Adaptive Document Controller, follows the
controller definition. However, the Activity Controller by default starts in the
Available state. Further, the events in the Activity controller follow the naming
convention ActivityName.Event, where the ActivityName must be replaced
with the name of the Activity. Activity controllers are associated with
Activities as described in “Creating and configuring controllers” on page 10.

If an Activity Controller is not defined for an Activity, then Process Broker
Services associates the defaultActivityController to the Activity. The
defaultActivityController definition is provided in the next example:

Open

Event1 / Command1, Command2

Event 2 / Command3

Event4 / Command5

Event3 / Command4

Done

State1

State2

Figure 5. Simple Adaptive Document Controller example

Solution Artifacts

16 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

<?xml version="1.0" encoding="UTF-8">
<!DOCTYPE statemachine SYSTEM "controller.dtd">
<statemachine id="Default">
<name>defaultActivity</name>
<state>

<name>Available</name>
<transition>

<target>Claimed</target>
<event>DefaultActivity.Claim</event>
<action>WWWFS_Claim_2</action>

</transition>
</state>
<state>

<name>Claimed</name>
<transition>

<target>Completed</target>
<event>DefaultActivity.Complete</event>
<action>WWFS_Complete_2</action>

</transition>
</state>
</statemachine>

Conditional logic in controllers
Conditions are used in the definition of transitions in the Adaptive Document
and Activity controllers. Conditions are expressed by specifying the
name-value pairs that are delimited by a semi-colon;
{<name>:<value>;<name>:<value>;...}. For example: <condition>USER:John
Doe;SHIPPER:Acme Inc</condition>

In this example, the USER and SHIPPER element values are obtained from the
context hashtable that is part of the Process Broker Services service request
and compared to the values provided in the condition (See “Process Broker
Services Web clients” on page 33 for details on the service request). If the
conditions match, the transition is triggered.

Conditions are used to also express role-based access to specific transitions in
the Adaptive Document and Activity controllers. The controller checks for the
ROLES element and its value in either the input or the context hashtable in
the service request. There are different ways of expressing Role-based
conditional logic:

<condition></condition>
This statement implies that the transition and the associated actions in the
transition is role independent.

<condition>ROLES:Vendor</condition>
Only the Vendor role has access to the transition and the privileges to
invoke the actions associated with the transition.

Solution Artifacts

Chapter 2. Building and deploying solution artifacts 17

<condition>ROLES:Vendor|Supplier</condition>
Either the Vendor role or the Supplier role has access to the transition and
the privileges to invoke the actions associated with the transition. Here
the character ″|″ stands for OR.

See “Process Broker Services Web clients” on page 33 for the specific Process
Broker Services Interface methods that provides role-based queries, such as
the list of permissible events for a given role.

User defined conditional logic
User defined conditional logic can be used in defining the transitions in either
the Adaptive Document controllers or the Activity Controllers. This requires
implementing a class that captures the conditional logic, say
MyConditionClass, and referencing this in the condition expression with the
keyword USERCOND such as:
<condition>USERCOND:MyConditionClass</condition>

The MyConditionClass must implement the evaluate method in the
com.ibm.epic.bfm.controller.UserCondition interface. The signature of the
evaluate method is as follows:

Boolean evaluate (String request, Hashtable context, Hashtable input)

The evaluate method returns a Boolean value, for example, true or false. The
input parameters to the evaluate method include the request (for example, the
event), the context, and the input that are passed by the service request to
Process Broker Services. See “Process Broker Services Web clients” on page 33.

As an example, consider a scenario where the user defined condition is to
check if the purchase order amount is greater than a certain amount. The
MyConditionClass is implemented as follows.
Class MyConditionClass implements com.ibm.epic.bfm.controller.UserCondition {

public MyConditonClass() {
super();

}
Boolean evaluate(String request,Hashtable context, Hashtable input)
{

String poAdocId = (String) input.get ("ADOCREFERNCE");
POAdoc poAdoc = POAdocHome.findByPrimaryKey(new AdocKey(poAdocId));
String poBOId = poAdoc.getBOId();
//The POService is a session bean – include the JNDI lookup and create logic here
long poAmount = POService.getPOAmount (poBOId);
if (poAmount > 100) return Boolean.TRUE;
return Boolean.FALSE;

}
}

Solution Artifacts

18 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

The MyConditionClass requires a constructor with no arguments to be
provided. This MyConditionClass is then used as part of the transition logic.

See “Chapter 4. Advanced Topics” on page 47 for additional information on
use of the conditional logic in non-deterministic scenarios. For example, when
the same event can cause different transitions to be invoked from a given state
based on the conditional logic.

Command definition
The definition of a command (actions on a transition in either the Adaptive
Document controller or the Activity Controller) is based on the command
XML Data Type Definition (command.dtd):
<?xml encoding="US-ASCII"?>
<!ELEMENT commandlist (command+)>
<!ELEMENT command (input*, output*, methodName, receiverId, undoCmd*)>
<!ATTLIST command id ID #REQUIRED>
<!ELEMENT input (name, value?)>
<!ELEMENT output (name, value?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT value (#PCDATA)>
<!ELEMENT methodName (#PCDATA)>
<!ELEMENT receiverId (#PCDATA)>

<?xml encoding=″US-ASCII″?>
Processing instruction that indicates that US-ASCII is used as the
encoding for the content model for the command.

<!ELEMENT commandlist (command+)>
Process Broker Services has a list of commands that are defined in the
command.xml file.

<!ELEMENT command (input*, output*, methodName, receiverId,
undoCmd*)>

A command element is defined with zero or more input and output
elements, a method name, the receiver identifier for the command,
and zero or more undo commands.

<!ATTLIST command id ID #REQUIRED>
Each command is identified uniquely with the command id attribute.

<!ELEMENT input (name, value?)>
An input element for a command consists of the name, value pair
where the value is optional.

<!ELEMENT output (name, value?)>
The output element, similar to the input, also consists of the name,
value pair where the value is optional.

<!ELEMENT name (#PCDATA)>
The name element is used in defining the input and output elements.

Solution Artifacts

Chapter 2. Building and deploying solution artifacts 19

<!ELEMENT value (#PCDATA)>
The value element, an optional element, is used in defining input and
output for a command.

<!ELEMENT methodName (#PCDATA)>
The methodName element along with the input and output represents
the signature of the command.

<!ELEMENT receiverId (#PCDATA)>
The receiverId identifies the implementation for a command. For
example, the unique receiver that actually executes the command.

A command.xml file with two commands is shown in the next example. Both
commands use the same receiver, but invoke different methods with
appropriate input parameters.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE commandlist SYSTEM "command.dtd">
<commandlist>
<command id="CreateNewRegistration">
<input>
<name>RegistrationType</name>
<value/>
</input>
<name>RegistrationInputList</name>
<value/>
</input>
<methodName>newRegistration</methodName>
<receiverId>RegistrationRMIBOReceiver</receiverId>
</command>
<command id="ApproveNotification">
<input>
<name>RegistrationId</name>
<value/>
</input>
<name>RegistrationType</name>
<value/>
</input>
<methodName>sendApproveNotifyMessage</methodName>
<receiverId>RegistrationRMIBOReceiver</receiverId>
</command><><>

Command groups
Commands can also be grouped into a command group. Command groups
are used to batch commands that are sequentially executed. For any other
complex sequencing of commands, it is advisable to compose them as a
microflow using the microflow builder. The command group XML data type
definition follows:

Solution Artifacts

20 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

<?xml encoding="US-ASCII"?>
<!ELEMENT commandGrplist (commandGroup+)>
<!ELEMENT commandGroup (command+)>
<!ATTLIST commandGroup id ID #REQUIRED>
<!ELEMENT command (#PCDATA)>

<?xml encoding=″US-ASCII″?>
Processing instruction that indicates that US-ASCII is used as the
encoding for the XML content model for the command group.

<!ELEMENT commandGrplist (commandGroup+)>
The command groups are defined in the commandGroup.xml file in
Process Broker Services (This file is registered in LDAP, see Figure 4 on
page 13.

<!ELEMENT commandGroup (command+)>
A command group contains one or more commands that are sequentially
executed.

<!ATTLIST commandGroup id ID #REQUIRED>
Each command group is uniquely identified by its id attribute.

<!ELEMENT command (#PCDATA)>
The command element is used to define the command group.

A sample commandGroup.xml file is shown below:
<?xml version="1.0"?>
<!DOCTYPE commandGrplist SYSTEM "commandGroup.dtd">
<commandGrplist>

<commandGroup id="InitializeSolutionAdoc">
<command>getSolutionBOId</command>
<command>setAdocBOId</command>
<command>setSolutionBOFieldabc</command>

</commandGroup>
</commandGrplist>

In this example, the InitializeSolutionAdoc command group represents a
sequence of three commands. This command group can be used as an action
in the controller definition just as any individual command.

Process Broker Services system commands
Process Broker Services has commands that are pre-defined in the
command.xml file. These are referred to as the system commands. Process
Broker Services System commands are categorized as the scheduler system
commands for invoking the Process Broker Services scheduler, and are
categorized as the workflow system commands for invoking WebSphere
Workflow Services.

Scheduler system commands: Scheduler system commands are pre-defined
commands that invoke the services of the Process Broker Services Scheduler.
There are nine scheduler system commands. Each command consists of a

Solution Artifacts

Chapter 2. Building and deploying solution artifacts 21

method name, a receiver id, and a number of input and output parameters.
Figure 6 provides a diagram of one of the scheduler system commands.

The XML for the scheduler system command shown in Figure 6, is based on
the command.dtd:
<command id="PBS_ScheduleServiceRequestWithDefaultHandler">

<!-- the adoc or activity id, String -->
<input><name>BFMREFID</name><value></value></input>
<!-- ADOC or ACTIVITY, String -->
<input><name>BFMREFTYPE<value>ADOC</value></input>
<!-- The Event to be raised, String -->
<input><name>NAMEDEVENT</name><value></value></name>
<!-- The input hashtable, Hashtable -->
<input><name>INPUTHASH</name><value></value></input>
<!-- The context hashtable, Hashtable -->
<input><name>CONTEXTHASH</name><value></value></input>
<!-- Date/time, String -->
<input><name>RUNAT</name></value></input>
<!-- Number of Retries, String -->
<input><name>NUMRETRIES</name><value></value></input>
<!--The expiry date/time, String-->
<output><name>EXPIRYSTR</name><value></value></output>
<methodName>schduleServiceRequestWithDefaultHandler</methodName>
<receiverId>TimerServicesReceiver</receiverId>
</command>

This scheduler system command is used to schedule service requests with a
specific handler. See “Process Broker Services scheduler” on page 50 for details
on writing a customized handler.
<command id="PBS_ScheduleServiceRequestWithGivenHandler">

<input><name>BFMREFID</name><value></value></input>
<input><name>BFMREFTYPE</name><value>ADOC</value></input>
<input><name>NAMEDEVENT</name><value>Timeout</value></input>

StringNUMRETRIES

StringRUNAT

HashtableCONTEXTHASH

HashtableINPUTHASH

StringNAMEDEVENT

“ADOC” or

“ACTIVITY”

BFMREFTYPE

StringBFMREFID

ValueName

StringNUMRETRIES

StringRUNAT

HashtableCONTEXTHASH

HashtableINPUTHASH

StringNAMEDEVENT

“ADOC” or

“ACTIVITY”

BFMREFTYPE

StringBFMREFID

ValueName

Input

StringEXPIRYSTR

ValueName

StringEXPIRYSTR

ValueName

OutputMethod Name

scheduleServiceRequest

WithDefaultHandler

TimerServicesReceiver

Receiver Id

st

Figure 6. Scheduler System Command Example

Solution Artifacts

22 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

<input><name>INPUTHASH</name><value></value></input>
<input><name>CONTEXTHASH</name><value></value></input>
<!-- The fully qualified handler class, String -->
<input><name>HANDLERCLASS</name><value></value></input>
<input><name>RUNAT</name><value></value></input>
<input><name>NUMRETRIES</name><value></value></input>
<output><name>EXPIRYSTR</name><value></value></output>
<methodName>scheduleServiceRequestWithGivenHandler</methodName>
<receiverId>TimerServicesReceiver</receiverId>

</command>

This system command is used to schedule a service request with a specific
handler and on behalf of a given user. Such a request is meaningful especially
when there are role-based conditions on a transition in the controller.
<command id="PBS_ScheduleServiceRequestWithGivenHandlerBySpecifiedUser">

<input><name>BFMREFID</name><value></value></input>
<input><name>BFMREFTYPE</name><value>ADOC</value></input>
<input><name>NAMEDEVENT</name><value>Timeout</value></input>
<input><name>INPUTHASH</name><value></value></input>
<input><name>CONTEXTHASH</name><value></value></input>
<input><name>HANDLERCLASS</name><value></value></input>
<input><name>RUNAT</name><value></value></input>
<input><name>NUMRETRIES</name><value></value></input>
<!-- User, String -->
<input><name>USER</name><value></value></input>
<output><name>EXPIRYSTR</name><value></value></output>
<methodName>scheduleServiceRequestWithGivenHandlerBySpecifiedUser</methodName>
<receiverId>TimerServicesReceiver</receiverId>

</command>

This system command is used to schedule a service request given the
PBSEventInput object and using the default action listener or handler. (See
“Chapter 3. Client programming” on page 33 for making service requests by
passing a Process Broker Services event object.)
<command id="PBS_ScheduleServiceRequestWithDefaultHandlerPBSInput">

<!-- The PBSEventInput, PBSEventInput -->
<input><name>PBSEVENTINPUT</name><value/></input>
<input><name>RUNAT</name><value/></input>
<input><name>NUMRETRIES</name><value/></input>
<output><name>EXPIRYSTR</name><value/></output>
<methodName>scheduleServiceRequestWithDefaultHandler</methodName>
<receiverID>TimerServicesReceiver</receiverId>

</command>

This system command is used to schedule a service request given the
PBSEventInput object and using a given action listener or handler. (See
“Chapter 3. Client programming” on page 33 for making a service request by
passing a Process Broker Services event object.)
<command id="PBS_ScheduleServiceRequestWithGivenHandlerPBSInput">

<input><name>PBSEVENTINPUT</name><value/></input>
<input><name>HANDLERCLASS</name><value/></input>

Solution Artifacts

Chapter 2. Building and deploying solution artifacts 23

<input><name>RUNAT</name><value/></input>
<input><name>NUMRETRIES</name><value/></input>
<output><name>EXPIRYSTR</name><value/></output>
<methodName>scheduleServiceRequestWithGivenHandler</methodName>
<receiverId>TimerServicesReceiver</receiverId>

</command>

This system command is used to schedule a service request to initialize an
adaptive document that is created with a system generated adaptive
document Id.
<command id="PBS_ScheduleAdocInitializationWithGeneratedId">

<input><name>AC_ADOCTYPE</name><value></value></input>
<input><name>AC_ADOCOWNER</name><value></value></input>
<input><name>AC_NAMEDEVENT</name><value>Initialize</value></input>
<input><name>AC_INPUTHASH</name><value></value></input>
<input><name>AC_CONTEXTHASH</name><value></value></input>
<input><name>AC_RUNAT</name><value></value></input>
<input><name>AC_NUMRETRIES</name><value></value></input>
<output><name>AC_EXPIRYSTR</name><value></value></output>
<methodName>scheduleAdocInitializationWithGeneratedId</methodName>
<receiverId>TimerServicesReceiver</receiverId>

</command>

This system command is used to schedule a service request to initialize an
adaptive document that is created with a given adaptive document id.
<command id="PBS_ScheduleAdocInitializationWithGivenId">

<input><name>AC_ADOCTYPE</name><value></value></input>
<input><name>AC_ADOCOWNER</name><value></value></input>
<input><name>AC_NAMEDEVENT</name><value>Initialize</value></input>
<input><name>AC_INPUTHASH</name><value></value></input>
<input><name>AC_CONTEXTHASH</name><value></value></input>
<input><name>AC_RUNAT</name><value></value></input>
<input><name>AC_NUMRETRIES</name><value></value></input>
<output><name>AC_EXPIRYSTR</name><value></value></output>
<methodName>scheduleAdocInitializationWithGivenId</methodName>
<receiverId>TimerServicesReceiver</receiverId>

</command>

This system command is used to schedule a service request for archiving an
adaptive document.
<command id="PBS_ScheduleAdocArchival">

<input><name>AR_ADOCID</name><value></value></input>
<input><name>AR_RUNAT</name><value></value></input>
<input><name>AR_NUMRETRIES</name><value></value></input>
<output><name>AR_EXPIRYSTR</name><value></value></output>
<methodName>scheduleAdocArchival</methodName>
<receiverId>TimerServicesReceiver</receiverId>

</command>

This system command is used to schedule a service request to remove an
adaptive document.

Solution Artifacts

24 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

<command id="PBS_ScheduleAdocRemoval">
<input><name>RE_ADOCID</name><value></value></input>
<input><name>RE_RUNAT</name><value></value></input>
<input><name>RE_NUMRETRIES</name><value></value></input>
<output><name>RE_EXPIRYSTR</name><value></value></output>
<methodName>scheduleAdocRemoval</methodName>
<receiverId>TimerServicesReceiver</receiverId>

</command>

Workflow system commands: The workflow system commands are used to
communicate to the workflow engine using the WebSphere Workflow Services
layer. These commands take a number of input parameters such as the
PROCDEF, INSTANCENAME, ACTIVITYVARS, PROCVARS, and USER.
These input parameters are automatically initialized by Process Broker
Services and do not have to be provided when using the workflow system
commands.

A diagram of an example workflow system command is shown in Figure 7.
There are nine workflow system commands, all based on the command.dtd.

The command definition in XML for the sample Workflow system command
shown in Figure 7 is as follows. It is used to create a process instance in the
underlying workflow engine.
<command id="WWFS_Create">

<input><name>PROCDEF</name><value></value></input>
<input><name>INSTANCENAME</name><value></value></input>
<input><name>USER</name><value></value></input>
<input><name>PROCVARS</name><value></value></input>

PROCVARS

USER

ISNTANCENAME

PROCDEF

Name

PROCVARS

USER

ISNTANCENAME

PROCDEF

Name

Input

StringWWFEVENTs

ValueName

StringWWFEVENTs

ValueName

OutputMethod Name

createPBS

WWFServicesReceiver

Receiver Id

Hashtablele

Figure 7. Workflow System Command Example

Solution Artifacts

Chapter 2. Building and deploying solution artifacts 25

<output><name>WFEVENTs</name><value></value></output>
<methodName>createPBS</methodName>
<receiverId>WWFServicesReceiver</receiverId>

</command>

This workflow system command is used to claim an activity that is available
for a given process and a user.
<command id="WWFS_Claim_1">

<input><name>PROCDEF</name><value></value></input>
<input><name>INSTANCENAME</name><value></value></input>
<input><name>USER</name><value></value></input>
<input><name>ACTIVITYVARS</name><value></value></input>
<output><name>WFEVENTs</name><value></value></output>
<methodName>claimPBS</methodName>
<receiverId>WWFServicesReceiver</receiverId>

</command>

The following system command is used to claim a specific activity in a
process that is available for a given user.
<command id="WWFS_Claim_2">

<input><name>PROCDEF</name><value></value></input>
<input><name>INSTANCENAME</name><value></value></input>
<input><name>ACTIVITYNAME</name><value></value></input>
<input><name>USER</name><value></value></input>
<input><name>ACTIVITYVARS</name><value></value></input>
<output><name>WFEVENTs</name><value></value></output>
<methodName>claimPBS</methodName>
<receiverId>WWFServicesReceiver</receiverId>

</command>

The command to complete an activity claimed using the system command is
in the following example:
<command id="WWFS_Complete_1">

<input><name>PROCDEF</name><value></value></input>
<input><name>INSTANCENAME</name><value></value></input>
<input><name>USER</name><value></value></input>
<input><name>ACTIVITYVARS</name><value></value></input>
<output><name>WFEVENTs</name><value></value></output>
<methodName>completePBS</methodName>
<receiverId>WWFServicesReceiver</receiverId>

</command>

The command to complete the activity claimed using the system command is
in the following example:
<command id="WWFS_Complete_2">

<input><name>PROCDEF</name><value></value></input>
<input><name>INSTANCENAME</name><value></value></input>
<input><name>ACTIVITYNAME</name><value></value></input>
<input><name>USER</name><value></value></input>
<input><name>ACTIVITYVARS</name><value></value></input>

Solution Artifacts

26 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

<output><name>WFEVENTs</name><value></value></output>
<methodName>completePBS</methodName>
<receiverId>WWFServicesReceiver</receiverId>

</command>

The command to unclaim an activity that is claimed using the system
command command id="WWFS_Complete_1"

<command id="WWFS_Unclaim_1">
<input><name>PROCDEF</name><value></value></input>
<input><name>INSTANCENAME</name><value></value></input>
<input><name>USER</name><value></value></input>
<input><name>ACTIVITYVARS</name><value></value></input>
<output><name>WFEVENTs</name><value></value></output>
<methodName>unclaimPBS</methodName>
<receiverId>WWFServicesReceiver</receiverId>

</command>

The command to unclaim an activity that is claimed using the system
command command id="WWFS_Complete_2"

<command id="WWFS_Unclaim_2">
<input><name>PROCDEF</name><value></value></input>
<input><name>INSTANCENAME</name><value></value></input>
<input><name>ACTIVITYNAME</name><value></value></input>
<input><name>USER</name><value></value></input>
<input><name>ACTIVITYVARS</name><value></value></input>
<output><name>WFEVENTs</name><value></value></output>
<methodName>unclaimPBS</methodName>
<receiverId>WWFServicesReceiver</receiverId>

</command>

This is the command to force the completion of a specific activity for a given
process.
<command id="WWFS_ForceFinish">

<input><name>PROCDEF</name><value></value></input>
<input><name>INSTANCENAME</name><value></value></input>
<input><name>ACTIVITYNAME</name><value></value></input>
<input><name>USER</name><value></value></input>
<input><name>ACTIVITYVARS</name><value></value></input>
<output><name>WFEVENTs</name><value></value></output>
<methodName>ForceFinishPBS</methodName>
<receiverId>WWFServicesReceiver</receiverId>

</command>

This is the command to terminate a given process.
<command id="WWFS_Terminate">

<input><name>PROCDEF</name><value></value></input>
<input><name>INSTANCENAME</name><value></value></input>
<input><name>USER</name><value></value></input>
<input><name>ACTIVITYVARS</name><value></value></input>

Solution Artifacts

Chapter 2. Building and deploying solution artifacts 27

<output><name>WFEVENTs</name><value></value></output>
<methodName>TerminatePBS</methodName>
<receiverId>WWFServicesReceiver</receiverId>

</command>

Receiver definitions
Receivers are implementations of the commands that are used in the Adaptive
Document and Activity Controllers. Each command is associated with a
unique receiver that is identified by its receiver id. See “Command definition”
on page 19. A receiver, however, can provide implementation for multiple
commands. Receivers in Process Broker Services are defined in the
receiver.xml file based on the receiver XML data type definition (receiver.dtd).

The receiver.dtd is shown next. The associated transport definition follows the
receiver dtd.
<?xml encoding="US-ASCII"?>
<!ENTITY % PROTOCOL SYSTEM "transport.dtd">
%PROTOCOL;
<!ELEMENT receiverlist (receiver)+>
<!ELEMENT receiver (mode)>
<!ATTLIST receiver id ID #REQUIRED>
<!ELEMENT mode (protocol)>

<?xml encoding=″US-ASCII″?>
Processing instruction that indicates that US-ASCII is used as the
encoding for the XML definition for the receiver.

<!ENTITY % PROTOCOL SYSTEM ″transport.dtd″>
The data structure for the protocol associated with receivers is defined in
the transport.dtd file.

%PROTOCOL;
The transport.dtd definition is included to complete the receiver
definition.

<!ELEMENT receiverlist (receiver)+>
The list of receivers, one or more, in Process Broker Services is defined in
the receiver.xml file.

<!ELEMENT receiver (mode)>
Each receiver element consists of the mode element in its definition.

<!ATTLIST receiver id ID #REQUIRED>
The receiver id attribute uniquely identifies a receiver.

<!ELEMENT mode (protocol)>
The mode element consists of the protocol, whose structure is defined in
the transport.dtd.

<?xml encoding="US-ASCII"?>
<!ELEMENT protocol (iiop | rmi | localrmi | native)>
<!ELEMENT iiop (objectIORfile, JNDIname, Home)>

Solution Artifacts

28 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

<!ELEMENT rmi (providerHost?, providerPort?, initialContext, JNDIname, Home,
PKclassName?, PKParamName*)>

<!ELEMENT native (JNDIname, PKParamName*)>
<!ELEMENT localrmi (JNDIname, PKclassName?, PKParamName*)>
<!ELEMENT providerHost (#PCDATA)>
<!ELEMENT providerPort (#PCDATA)>
<!ELEMENT objectIORfile (#PCDATA)>
<!ELEMENT initialContext (#PCDATA)>
<!ELEMENT JNDIname (#PCDATA)>
<!ELEMENT Home (#PCDATA)>
<!ELEMENT PKclassName (#PCDATA)>
<!ELEMENT PKParamName (name, value?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT value (#PCDATA)>

<?xml encoding=″US-ASCII″?>
Processing instruction that indicates that US-ASCII is used as the
encoding for the XML definition for the receiver protocol.

<!ELEMENT protocol (iiop | rmi | localrmi | native)>
Currently the protocols for the receivers include iiop, rmi, localrmi, and
native.
v The Internet Inter-ORB Protocol (iiop) is a TCP/IP specific CORBA

standard transport protocol and is used to communicate to remote
CORBA objects.

v The Remote Method Invocation (rmi) protocol is a Java-only version of
the CORBA standard and is used to communicate to remote Java
objects.

v The localrmi is also a Remote Method Invocation protocol. In localrmi
and rmi, Process Broker Services caches the home reference of the object
and does not look up the receiver upon every invocation as it does for
receivers. The localrmi is typically the protocol used for the system
receivers in Process Broker Services that are operating in the same Java
Virtual Machine as Process Broker Services.

v The native protocol is used to communicate to simple Java objects in
the same Java Virtual Machine as Process Broker Services.

Note: Note that Process Broker Services can use microflows as either rmi
or native receivers to compose XML messages and send these to
various end points using the MQseries Adapter Kernel
infrastructure.

<!ELEMENT iiop (objectIORfile, JNDIname, Home)>
The objectIORfile, JNDIname, and the Home parameters define the iiop
protocol.

<!ELEMENT rmi (providerHost?, providerPort?, initialContext, JNDIname,
Home, PKclassName?, PKParamName*)>

The rmi protocol is defined by a collection of parameters of which the

Solution Artifacts

Chapter 2. Building and deploying solution artifacts 29

providerHost, providerPort, and the PKClassName are optional elements. The
initialContext, JNDIname, and Home are mandatory elements in the rmi
protocol. There are also zero or more PKParamName elements in the rmi
protocol. Note that the PKClassName and the PKParamName are both
essential to create the Home object if the rmi receiver is a
container-managed persistence entity bean. In the case that the rmi
receiver is a session bean only, the PKParamName is needed for defining
the rmi protocol. Process Broker Services in WebSphere Business
IntegratorVersion 2.1 only supports rmi receivers for Enterprise Beans as
target objects.

An example of an rmi protocol receiver is shown below.
<receiver id="WWFServicesReceiver">

<mode>
<protocol>

<rmi>
<providerHost>9.83.96.192</providerHost>
>providerPort<900></providerPort>
<initialContext>com.ibm.ejs.ns.jndi.CNInitialContextFactory</initialContext>

<JNDIname>com.ibm.b2bi.bfm.ejb.WWFServices</JNDIname>
<Home>com.ibm.b2bi.bfm.ejb.WWFServicesHome</Home>

</rmi>
</protocol>
</mode>

</receiver>

<!ELEMENT native (JNDIname, PKParamName*)>
The native protocol uses the JNDIname and the PKParamName (zero or
more) as parameters. The PKParamName contains the input that is
required to create the target object. An example of a native protocol
receiver is shown below.
<receiver id="LogAdapterReceiver">

<mode>
<protocol>

<native>
<JNDIname>com.ibm.epic.LogTrace.EpicLog</JNDIname>
<PKParamName>

<name>appName</name>
<value/>

</PKParamName>
<PKParamName>

<name>compName</name>
<value>BFM</value>

</PKParamName>
</native>

</protocol>
</mode>

</receiver>

<!ELEMENT localrmi (JNDIname, PKclassName?, PKParamName*)>
The localrmi protocol uses the JNDIname, an optional PKclassName and
zero or more PKParamNames as parameters. For localrmi-based receivers

Solution Artifacts

30 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

the home is obtained from the Process Broker Services cache. As in the
case of the rmi receivers, the localrmi receivers in Process Broker Services
for WebSphere Business IntegratorVersion 2.1 only support Enterprise
Beans as target objects. An example localrmi protocol receiver is shown
below.
<receiver id="TimerServicesReceiver">

<mode>
<protocol>

<localrmi>
<JNDIname>com.ibm.epic.bfm.TimerService</JNDIname>

</localrmi>
</protocol>

</mode>
</receiver>

<!ELEMENT providerHost (#PCDATA)>
The providerHost optional element is used in the definition of the rmi
protocol based receiver.

<!ELEMENT providerPort (#PCDATA)>
The providerPort is also an optional element that is used in the definition
of the rmi protocol based receiver.

<!ELEMENT objectIORfile (#PCDATA)>
The objectIORfile is used as a parameter in defining the iiop protocol based
receiver.

<!ELEMENT initialContext (#PCDATA)>
The initialContext is a parameter used in defining the rmi protocol based
receiver.

<!ELEMENT JNDIname (#PCDATA)>
The JNDIname element is used as a parameter in rmi, localrmi, and native
protocol receiver definitions.

<!ELEMENT Home (#PCDATA)>
The Home element is used in defining the rmi protocol.

<!ELEMENT PKclassName (#PCDATA)>
The PKclassName is an optional element that is used in defining the rmi
and the localrmi protocol.

<!ELEMENT PKParamName (name, value?)>
The PKParamName element consists of a name and an optional value
element. The PKParamName is used in defining rmi, localrmi, and native
protocols – it represents parameters that are typically used in the Primary
Key class constructor.

<!ELEMENT name (#PCDATA)>
The name element is used in defining the PKParamName.

Solution Artifacts

Chapter 2. Building and deploying solution artifacts 31

<!ELEMENT value (#PCDATA)>
The value element is an optional element also used in the PKParamName.

System receivers
Some receivers are pre-defined in the receiver.xml file and are provided with
Process Broker Services. These receivers are referred to as the System
Receivers and they include:

WWFServicesReceiver
Use the WWFServicesReceiver to communicate with any JointFlow
based workflow engine. This receiver executes workflow actions on
WebSphere Workflow Services. It is defined as an rmi based protocol
receiver. See the rmi protocol description and the sample rmi protocol
receiver on page 29.

TimerServicesReceiver
Use the TimerServicesReceiver to execute actions on the Process
Broker Services Scheduler. It is defined as a localrmi based protocol
receiver. See the sample localrmi protocol receiver on page 31.

LogAdapterReceiver
Use the LogAdapterReceiver to execute actions on the Business Flow
Manager solution management services to generate audit and
exception logs from Process Broker Services. It is defined as a native
protocol based receiver. See the sample LogAdapterReceiver on page
30.

Solution Artifacts

32 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Chapter 3. Client programming

The clients can communicate with Process Broker Services either using remote
method invocation (Web Clients), or by sending messages (Messaging Clients).
In either case, the Process Broker Services Interface provides the set of services
that the clients use to interact with adaptive documents (See “Appendix B.
Process Broker Services Application Program Interfaces” on page 69 for details
on the Process Broker Services Application Programming Interface).

Process Broker Services Web clients

Typically users with web browsers interact with Process Broker Services using
the Interaction Manager that maintains the user session and renders the
content delivered by Process Broker Services (see the WebSphere Business
Integrator Run Time book for more details on Interaction Manager). The
Process Broker Services Web Client, therefore, refers to the Interaction
Manager and any other web application that interacts with Process Broker
Services. The Process Broker Services Web Client Interaction Pattern is shown
in Figure 8 on page 34.
1. The Process Broker Services Web Clients access the Process Broker Services

interface through the Business Flow Manager Access Bean, which is a
client to the BFMAdmin Enterprise Bean that implements the Process
Broker Services Interface. (WebSphere Business Integrator Version
2.1provides the bfm.client.jar and the bfm.samples.client.jar files as part of
the Process Broker Services that can be used by Web Clients).

2. The Web Client interacts with Process Broker Services typically by making
a serviceRequest (see “Composing service requests” on page 34 for details).

3. Process Broker Services then brokers this service request and raises the
event on the appropriate adaptive document instance.

4. This event is consumed within one or more controllers associated with the
adaptive document.

5. The event triggers transitions within the controllers causing them to
launch one or more actions.

6. Receivers that represent the various endpoints execute these actions
(business objects, applications, databases, and other enterprise information
systems are examples of endpoints).

7. The actual communication with an endpoint uses a variety of
communication protocols, such as, rmi, iiop, or MQ.

8. The output from the serviceRequest, following the adaptive document
transitions, is then returned to the Web Client.

© Copyright IBM Corp. 2001 33

This pattern is also used by Web Clients to invoke other methods on the
Process Broker Services interface such as adaptive document queries.

Composing service requests
The most commonly used serviceRequest Application Programming Interface
for Process Broker Services is:
public java.util.Hashtable serviceRequest (java.lang.String request,

java.util.Hashtable context,
java.util.Hashtable input,
java.lang.String adocId,
java.lang.String user)
throws java.rmi.RemoteException

v The request refers to business events and is of type string. It corresponds to
the events that are specified in the controller definitions using the
<event></event> elements. Events on the Activity Controllers follow the
convention ActivityName.eventName, where the ActivityName must be
replaced by the actual name of the activity, and the eventName corresponds
to the event name. The same event can be used in multiple controllers (see
“Process brokering patterns” on page 52 for usage of this scenario). It is
possible to query an adaptive document to get the events. The
getAllAdocEvents Application Programming Interface call on Process
Broker Services returns a list of adaptive documents and the events for each
adaptive document (these are events on the Adaptive Document
Controller). The getAllPossibleBusinessEvents API call on Process Broker
Services returns all the events associated with an adaptive document
instance given its current business state. For example, all the events that are

PBSEventInput

adocType : String
event : String
adocId : String
user : String
eventParams : hashtable

PBSEventInput()
getAdocId()
getAdocType()
getEvent()
getEventParams()
getUser()
setEventParams()

PBSEventOutput
adocType : String
event : String
adocId : String
user : String
outVals : hashtable

PBSEventOutput()

getAdocId()
getAdocType()
getEvent()
getInvokingUser()

getOutVals()

PBSEventInput
PBSEventOutput

adocType : String
event : String
adocID : String
user : String
eventParams : hashtable

adocType : String
event : String
adocId : String
user : String
outVals : hashtable

PBSEventInput()
getAdocId()
getAdocType()
getEvent()
getEventParams()
getUser()
setEventParams()

PBSEventOutput()
getAdocId()
getAdocType()
getEvent()
getInvokingUser()
getOutVals()

Figure 8. Web Client Interaction Pattern

Client Programming

34 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

available for the set of Activity and Adaptive Document controllers that are
associated with an adaptive document. (See “Querying adaptive
documents” on page 39).

v The context refers to the context in which the service request is made and is
of type Hashtable. The context parameters are name-value pairs in the
Hashtable. The context parameters are used in the condition tags defined in
the controllers (see “Conditional logic in controllers” on page 17 for details
on condition logic). If no conditions are defined in a transition associated
with an event, Process Broker Services ignores the context provided in the
service request for that event.

v The input refers to the collection of input parameters that are required to
execute the actions triggered by the service request and is of type
Hashtable. The input parameters are ascertained by determining the list of
actions and then inspecting the command and receiver definitions contained
in the command.xml and receiver.xml files respectively.

v The adocId is the unique identifier of an adaptive document instance (it is
equivalent to a business transaction identifier). The adocId can be obtained
in several different ways prior to making the service request, and the
particular approach that is used depends on the client scenario. For
example, the createAdocIdReturn Application Program Interface creates a
new adaptive document of a certain type and returns the adocId. The
getAdocs Application Program Interface is used to obtain a vector of
AdocDetails for a list of adaptive documents that match a certain criterion.
The AdocDetails is a data structure that contains the base attributes of an
adaptive document, such as the adocId, the adocName, the current
adocOwner, and the current adocState.

v The user refers to the user who is making the service request. If the user is
not known, then it is acceptable to pass a null value. The user information
is used in the condition evaluation of a transition in the controller (see
“Conditional logic in controllers” on page 17).

v The output from the service request is of type Hashtable and consists of the
aggregated output from all the actions that were triggered by the service
request on the appropriate controllers.

Service request with event object
Another form of serviceRequest is to compose an event object referred to as
the PBSEventInput object and make the service request. The return value is
the PBSEventOutput object.
public PBSEventOutput serviceRequest (PBSEventInput event)

throws java.rmi.RemoteException.

Client Programming

Chapter 3. Client programming 35

The PBSEventInput and the PBSEventOutput classes are shown in Figure 9.
The PBSEventInput class contains the basic information necessary for making
the service request. The eventParams Hashtable contains the event data, for
example, the input and the context data (name-value parameter information)
that is needed to make the service request. Note that the setEventParams is a
protected method in the PBSEventInput class that is used to set the event
data. The output data following a service request is contained in the outVals
Hashtable in the PBSEventOutput class. The getOutVals method can be used
to get the output data from the PBSEventOutput.

An example of how to use the PBSEventInput in a service request is provided
in the test client in the com.ibm.epic.bfm.utils package that ships with
WebSphere Business Integrator Version 2.1. This test client uses the TestAdoc
in the com.ibm.epic.bfm.samples package.
v The example begins by creating a TestAdocIntializeEvent object that extends

the PBSEventInput.
public class TestAdocInitializeEvent

extends com.ibm.epic.bfm.ejb.base.PBSEventInput {

public TestAdocInitializeEvent(String adocId, String user) {
//this essentially invokes the PBSEventInput constructor
super("Test", "Initialize", adocId, user);}

}

v This event object is then used to make a service request. Notice that when
the service request is invoked with a null in the adocId field, this implies
that a new adaptive document is created.
TestAdocInitializeEvent ie = new TestAdocInitializeEvent(null, user);
PBSEventOutput o = getBFMSession().serviceRequest(ie);

PBSEventInput

adocType : String
event : String
adocId : String
user : String
eventParams : hashtable

PBSEventInput()
getAdocId()
getAdocType()
getEvent()
getEventParams()
getUser()
setEventParams()

PBSEventOutput
adocType : String
event : String
adocId : String
user : String
outVals : hashtable

PBSEventOutput()

getAdocId()
getAdocType()
getEvent()
getInvokingUser()

getOutVals()

Figure 9. Process Broker Services Event Input and Output Objects for Service Requests

Client Programming

36 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

v The service request with the Initialize event causes the following transition
in the TestAdoc controller:
<state>

<name>Open</name>
<type>Normal</type>
<transition>

<target>Open</target>
<event>Initialize</event>
<condition/>

</transition>
</state>

v The TestAdoc is created and left in the Open state. The Intialize event
triggers the command-group referred to as the InitializeTestAdoc. The
individual commands in the command group are implemented by two
receivers: the TestAdocReceiver and the TestBOReceiver.
<receiver id="TestAdocReceiver">
<mode>
<protocol>
<localrmi>
<JNDIname>com.ibm.epic.bfm.samples.TestAdoc</JNDIname>
<PKclassName>com.ibm.epic.bfm.samples.TestAdocKey</PKclassName>
<PKParamName>
<name>adocReference</name>
<value/>
</PKParamName>
</localrmi>
</protocol>
</receiver>
<receiver id="TestBOReceiver">
<mode>
<protocol>
<localrmi>
<JNDIname>com.ibm.epic.bfm.samples.TestBO</JNDIname>
<PKclassName>com.ibm.epic.bfm.samples.TestBOKey</PKclassName>
<PKParamName>
<name>testboid</name>
<value/>
</PKParamName>
</localrmi>
</protocol>
</mode>
</receiver>

v The adocId obtained from the PBSEventOutput is then used to make a
subsequent service request with a new event object,
TestAdocTimerTest_11Event.
public class TestAdocTimerTest_11Event

extends com.ibm.epic.bfm.ejb.base.PBSEventInput {
public TestAdocTimerTest_11Event(String adocId, String user) {

super("Test", "TimerTest_11", adocId, user);
}
public void setNumRetries(String numRetries) {

super.setEventParam("NUMRETRIES", numRetries);

Client Programming

Chapter 3. Client programming 37

}
public void setPBSEventInputObject (com.ibm.epic.bfm.ejb.base.PBSEventInput p) {

super.setEventParam("PBSEVENTINPUT", p);
}
public void setRunAt(String runat) {

super.setEventParam("RUNAT", runat);
}

}

v The service request with the TestAdocTimerTest_11Event object causes the
TestAdoc to schedule a service request on the Process Broker Services
Scheduler service. The TestAdocTimerTest_11Event object encapsulates the
TimerTest_11 event that causes the TestAdoc to trigger the
PBS_ScheduleServiceRequestWithDefaultHandler system command. The
effect of this system command is to schedule a service request with a
TimeOut event to be raised on the TestAdoc after 10 000 milliseconds and
Process Broker Services can make four retries in case the event is not raised
in the first attempt.
TestAdocTimerTest_11Event event = new TestAdocTimerTest_11Event(o.getAdocId(), user);
event.setNumRetries("4");
event.setRunAt("10000");

v Consequently the event data in the TestAdocTimerTest_11Event object must
contain the information necessary for the scheduling service system
command. This information is contained in the TestAdocTimeoutEvent
object that is then inserted as an event parameter in the
TestAdocTimerTest_11Event object. The output Hashtable provides the
output from the service request, in this case the EXPIRYSTR parameter (see
“Process Broker Services system commands” on page 21).
TestAdocTimeoutEvent toe = new TestAdocTimeoutEvent(o.getAdocId(), user);
event.setPBSEventInputObject(toe.convertToPBSEventInput());
o = getBFMSession().serviceRequest(event);
Hashtable output = o.getOutVals();

Service request to create and initialize an adaptive document
The following Process Broker Services Application Program Interface creates
an adaptive document and then raises an event through a subsequent service
request to initialize the adaptive document.
public java.util.Hashtable initializeAdocDoServiceRequest

(java.lang.String request,
java.util.Hashtable context,
java.util.Hashtable input,
java.lang.String adocType,
java.lang.String adocId,
java.lang.String user)
throws java.rmi.RemoteException

The parameters are the same as the basic service request. The request string
represents the event that will be raised on the adaptive document after its
creation. The adocId can be either null in which case Process Broker Services

Client Programming

38 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

generates a default Id, or the adocID can be explicitly provided for Process
Broker Services to use in creating the adaptive document.

This Application Program Interface is particularly useful in initializing the
adaptive document after its creation. The InitializeTestAdoc command group,
introduced in “Service request with event object” on page 35, that is invoked
upon raising the Initialize event on the TestAdoc, is an example where the
initialization actions include: creating business objects, associating the
references in the adaptive document, and then setting some business object
attributes.
<commandGrplist>

<commandGroup id="InitializeTestAdoc">
<command>getTestBOId</command>
<command>setAdocBOId</command>
<command>setTestBOField1</command>

</commandGroup>
</commandGrplist>

<command id="getTestBOId">
<output><name>THETESTBOID</name><value></value></output>
<methodName>getTestBOId</methodName>
<receiverId>TestBOReceiver</receiverId>

</command>

<command id="setAdocBOId">
<input><name>THETESTBOID</name><value></value></input>
<methodName>setBoId</methodName>
<receiverId>TestAdocReceiver</receiverId>

</command>

<command id="setTestBOField1">
<input><name>THETESTBOID</name><value></value></input>
<methodName>setBoField1</methodName>
<receiverId>TestBOReceiver</receiverId>

</command>

Querying adaptive documents
The Web Clients can also use various Process Broker Services Application
Program Interfaces to query adaptive documents. These Application Program
Interface calls are categorized based on the scope of the query, either on a
single adaptive document, or on a list of adaptive documents. Further, the
queries are also classified based on the nature of the query. For example, to
query the adaptive document details or the adaptive document services that
are available based on its current state. A complete set of adaptive document
queries is shown in Figure 10 on page 40.

Client Programming

Chapter 3. Client programming 39

Queries on a single adaptive document
v The getAdoc Application Program Interface returns either the adaptive

document object or the AdocDetails containing the adaptive document
attributes for a specific adaptive document instance.

v The getAllPossibleBusinessEvents Application Program Interface returns a
vector of all business events (for example, services provided by an adaptive
document) that are available for a given business state of the adaptive
document, based on the state of the adaptive document and the Activity
controllers associated with the adaptive document.

Queries yielding multiple adaptive documents
v The getAdocs Application Program Interface returns a vector of

AdocDetails objects for any combination of type, user, and state information
for an adaptive document.

v The Application Program Interface returns a vector of AdocDetails objects
for a given user filter. The Solution adaptive documents have to implement
the method ″boolean filter (Hashtable filterParams)″ for this Application
Program Interface to be invoked. getAdocsByFilter is invoked in one of two
ways:
– with just the adaptive document type and the user-defined filter.
– with a combination of type, user, state and the user-defined filter.

v The getAllAdocEvents Application Program Interface returns a list of
adaptive documents and for each adaptive document all of its associated
events. For example, all the services exposed by the adaptive document
given the state of the adaptive document and the associated Activity
Controllers. Each event is returned as an EventDetails object containing the
event and the associated parameters.

v The getArchivedAdocs Application Program Interface returns a vector of
AdocDetails for archived adaptive documents given a certain adaptive
document type and the start and end date strings between which time the
adaptive document was archived. The date format used is: [MM: DD: YY]
HH:MM AM/PM.

getAdoc

returns object

getAdoc

returns AdocDetails

Query ADOC Details

getAllPossibleBusinessEvents

returns vector of all events

Query ADOC Services

Single ADOC

getAdocs

returns list matching criteria

getAdocsByFilter

returns list of ADOCs

matching the user filter

Query By Criteria

getAllAdocEvents

returns list of Adocs

Events for each Adoc

in a given state

Query Services

getArchivedAdocs

returns list of archived ADOCs

Special Query

Many ADOCs

Querying ADOC

Figure 10. Adaptive document query Process Broker Services application program interface

Client Programming

40 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Process Broker Services messaging clients

Any endpoint can communicate with Process Broker Services using MQ as the
transport for guaranteed message delivery and Java Messaging Service as the
messaging protocol. The messaging client interaction pattern shows how the
messages (regardless of their type) are received and handled by Process
Broker Services.

1. An endpoint generates an XML message. Typically an MQseries Adapter
co-located with the endpoint, transforms the data from the endpoint to
Open Application Group Business Object Document XML format. See
http://www.openapplicationsgroup.com for OAG-BOD specifications.

2. WebSphere Business Integrator Information Delivery Manager, which
serves as the message bus, routes the message to Business Flow Manager
based on the content in the message header. The message bus also does
any necessary message transformation. The Java Message Services
Listener configured in the WebSphere Application Server on the Process
Broker Services Node, picks up the message from the Process Broker
Services Input Queue (BFMAIQ).

3. The onMessage method on the Java Message Services Listener invokes
the MQseries Adapter Kernel Bean (this bean spawns worker threads as
needed).

4. The message is formatted as required by the MQseries Adapter Kernel
Bean using appropriate formatter classes.

5. The MQseries Adapter Kernel Bean then launches the Business Flow
Manager Message Receiver (implemented as a stateless session Enterprise
Bean) passing it the EpicMessage (this is the internal message wire
format that is recognized by WebSphere Business Integrator components

EndPoint Message Bus :

WBI IDM

JMS Listener MQAK Bean PBS Interface :
BFMAdminBean

Adoc Instance
: SolutionAdoc

Microflow :
Receiver

BFM Message
Receiver

1: XML Message
2: XML Message

3: onMessage
4: Message Formatting

5: EpicMessage 6: incomingEpicMessage

7: Broker Request

8: event 9: Controller Transition

10: action

12: XML Message
13: XML Message

11: Process EpicMessage

Process Broker ServiceBFM Messaging Services

Figure 11. Process Broker Services Messaging Client Interaction Pattern

Client Programming

Chapter 3. Client programming 41

http://www.openapplicationsgroup.com

using MQseries). The Business Flow Manager Message Receiver is the
same for all message types that are received. It is registered as the
″command″ class for messages received on the BFMAIQ input queue.

6. Upon receiving the EpicMessage, the Business Flow Manager Message
Receiver invokes the Process Broker Services Application Program
Interface incomingEpicMessage (EpicMessage em) passing the
EpicMessage as a parameter. This invocation is equivalent to a service
request that a web client makes on Process Broker Services.

7. The Process Broker Services Interface then brokers the request. The
brokering logic is based on extracting the following parameters from the
message header:
v BodyCategory (BC)
v BodyType (BT)
v BodySecondaryType (BST)
v CorrelationId

The Process Broker Services then constructs a message-mask containing
<BC>.<BT>.<BST>. For example, consider a message with a bodycategory
field of EMP, a bodytype field of LoadReceiveable.SubmitBOD″ and a
bodysecondary typefield of 003. The message-mask for the example is
then EMP.LoadReceivable.SubmitBOD.003. This message-mask is then
used to lookup the adaptive document Type and the event to be raised.
All message-masks must be registered in the bfm.properties file. For the
above example, the bfm.properties entry is as follows:
EMP.LoadReceiveable.SubmitBOD.003 = Registration, Submit

This implies that the incoming EpicMessage is used to raise a Submit
event on a Registration adaptive document Type.

Note: The BodySecondaryType (BST) field of the EpicMessage is taken to
be optional when constructing the message mask to correlate to the
Adoc type or event. If the field is not specified (a null is
encountered), it is ignored when constructing the message mask.
In the this case, the message mask only consists of the
bodycategory and bodytype fields.

The Correlation Id in the message header is then used to identify the
actual adaptive document instance, for example, the Correlation Id is
equivalent to the adocId. If the Correlation Id is null then a new adaptive
document is created and the adocId of the new adaptive document is
then set as the Correlation Id of the message.

8. A service request is then made on the specific adaptive document
instance, as identified in step 7, raising the event and passing in the
following input parameters:

MESSAGE
the value is the entire EpicMessage

Client Programming

42 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

MESSAGEBODYCATEGORY
the value is BodyCategory field in the message

MESSAGEBODYTYPE
the value is the BodyType field in the message

ADOCREFERENCE
the value is the adocId

9. The event triggers a transition in the controller (Adaptive Document or
Activity Controllers associated with the adaptive document).

10. As part of the transition, one or more actions are triggered. The action
corresponds to a method invocation on a microflow built using the Flow
Composition Builder tool (see WebSphere Studio Business Integrator
Extensions Developer’s Guide for details on using this tool). The microflow
is registered as a command in the command.xml file and is invoked as an
action from the controller.

11. The microflow processes the message, for example, it parses the message
and operates on the content as appropriate. The operations could include
creating new business objects, updating existing ones, or composing new
messages to be sent (see Figure 12).

12. The microflow uses the source command classes to send a message using
MQseries Adapter Kernel to the message bus.

13. The message is routed to the appropriate endpoint.

+ + +

+

+

+

+
+

ConfirmBOD1

Input Terminal1

Error Terminal1

RegistrationManagerAccessBean1
AllAppsUpdatedTest1

EpicMessage1

InputHashTable1
InputHashTable2

ContextHashTable

BFMTimerService1

Output Terminal1

Figure 12. Example User Registration Microflow showing how Confirm BOD is processed

Client Programming

Chapter 3. Client programming 43

Handling automatic activities in workflows

The workflow engine can be viewed as a special client to Process Broker
Services. See the WebSphere Business Integrator Process Broker Services Concepts
Guide for details on how the workflow engine interacts with Process Broker
Services at a component level. The details of handling automatic activities (for
example, activities executed by some system component as opposed to
humans) in a workflow using Process Broker Services are described here.
1. The HANDLEAUTOACTIVITY flag in the bfm.properties file must be set

for Process Broker Services to handle automatic activities. If this flag is
either set to NO, or not set at all, then Process Broker Services does not
handle any automated activity.
HANDLEAUTOACTIVITY = YES

2. When an activity becomes active, known to Process Broker Services
through workflow events from WebSphere Workflow Services, Process
Broker Services schedules a service request for execution either
immediately, or at a specified time. The Process Broker Services scheduler
service then launches either the default action-listener (also known as
DefaulTaskServiceRequestHandler) or a user-defined action-listener (see
“Chapter 4. Advanced Topics” on page 47 for writing user-defined
action-listeners). These action-listeners or handlers then make the service
request to raise the AutoExecute event on the associated Activity
Controller.

3. The action-listeners or handlers must be registered with Process Broker
Services for each automatic activity. The following entry in the
bfm.properties file handles the registration.
<Activity Name>HANDLER =<Handler Class>,<Run after/at>,<Num Retries>
where:
v Activity Name is replaced by the name of the automatic activity.

Handler Class is a mandatory parameter and specifies the action-listener
class. It is either a fully qualified name of the action-listener class or the
keyword DEFAULT.

v Run after/at is the parameter that specifies when the service request must
start. The formats for specifying this include: [MM/DD/YY HH:MM
AM/PM] to schedule on a specific date and time, [HH:MM AM/PM] to
schedule at a specific time on the current day, and a fixed value such as
10 000 to schedule the request after 10 000 milliseconds. If this field is
not specified, or does not conform to the mentioned formats, Process
Broker Services starts the service request immediately.

v The Num Retries parameter indicates the number of times the Process
Broker Services Scheduler Service will retry the service request in case
of failure.

4. The action-listener launches the service request with the following
parameters that are available by default in the input and context Hashtable

Client Programming

44 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

of the service request:

Name Value Hashtable

User Activity Owner Input

ADOCREFERENCE AdocId Input

ACTIVITYID Activity Identifier Input

ROLES Role of User Context

ACTIVITYNAME Name of Activity Input

PROCDEF Process Definition Name Input

ACTIVITYVARS Activity Variables Input

INSTANCENAME Activity Instance ID Input

5. An Activity Controller when launched is always initialized to be in the
Available State. For automatic activities, the Activity Controller must
define a transition from the Available State with the AutoExecute event.
This event is automatically triggered when the action-listener registered
with Process Broker Services for automatic activity makes a service
request. Note that the Activity Controller for automatic activities can have
many other states and transitions – only the AutoExecute event transition
is automatically started. An example of an activity controller with an
AutoExecute event is shown below.
<statemachine id = "sm0">
<name>ReivewPO</name>
<state>
<name>Available</name>
<type>Normal</type>
<transition>
<target>Complete</target>
<event>ReviewPO.AutoExecute</event>
<condition></condition>
<action>Action 1</action>
... other actions ...
<action>WWFS_ForceFinish</action>
</transition>
</state>
</statemachine>

Client Programming

Chapter 3. Client programming 45

Client Programming

46 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Chapter 4. Advanced Topics

This chapter describes advanced topics related to Process Broker Services
solution development in the following sections.
v “Life-cycle management of adaptive documents”.

– Archiving
– Restoring
– Removing

v “Process Broker Services scheduler” on page 50.
v “Process brokering patterns” on page 52.

– “Event with Time Window” on page 52.
– “Non-deterministic conditional” on page 54.
– “Activity Mediator” on page 55.
– “Web of responsibility” on page 56.
– “Dynamic Collaboration” on page 58.

v “Assigning a user-generated adaptive document Identifier” on page 59.
v “Dynamically incorporating changes to controllers” on page 59.
v “Receiver caching” on page 59.
v “Overriding the DB2 userId and password for Process Broker Services

Queries” on page 60.
v “Advanced tips” on page 60.

Life-cycle management of adaptive documents

Life-cycle management of adaptive documents refers to the archival, revival,
and removal of adaptive documents. The adaptive document behavior over its
life-cycle is mainly governed by the Adaptive Document Controller definition.
The Process Broker Services container also influences the life-cycle behavior of
adaptive documents through some automatic life-cycle actions based on the
state of the adaptive document.

Archiving adaptive documents
An adaptive document is archived under two conditions:
1. <statemachine id = "TestAdoc">

<name>TestAdoc</name>
<state>
<name>Open</name>
<type>Normal</type>
<transition>
<target>TimeoutError</target>
<event>Timeout</event>
<condition></condition>

© Copyright IBM Corp. 2001 47

</transition>
</state>
<state>
<name>TimeoutError</name>
<type>Archive</type>
</state>
</statemachine>

2. When the adaptive document enters a state from which there are no
defined transitions. In this case Process Broker Services automatically
schedules the adaptive document for archiving. The default schedule for
archiving is Immediate, but altering the following entry in the
bfm.properties file can modify this default behavior:
<AdocType>ARCHIVETIME = [MM/DD/YY] HH:MM AM/PM or nnnnn
milliseconds, where the AdocType must be replaced by the actual type of
the adaptive document.
The AdocArchivalHandler, a System ActionListener provided by Process
Broker Services in WebSphere Business Integrator Version 2.1 and
registered with the Process Broker Services Scheduler Service, launches the
archival process. The archival process involves the following steps:
v Invokes an archive method on the Solution adaptive document. Any

Solution adaptive document must implement this method to persist any
solution attributes such as the business object references. If this method
is not implemented, only the basic adaptive document attributes in
AdocDetails are persisted.
A sample implementation of an archive method is shown below. The
business object attributes are contained in the Hashtable as name, value
pairs.
public Hashtable archive () throws java.rmi.RemoteException {

try {
Hashtable params = new Hashtable();
params.put("BOID", getBoId());
return params;

} catch (Throwable e) {
throw new RemoteException(e.getMessage());

}
}

v Creates an instance of ArchivedAdoc with the solution and the base
adaptive document attributes.

v Removes the Solution adaptive document.

Reviving adaptive documents
Archived adaptive documents are revived using the Application Program
Interface, Object reviveAdoc(String adocId), or an adaptive document to
revive is selected using Vector getArchivedAdocs (adocType, StartDate,
EndDate). See “Appendix B. Process Broker Services Application Program
Interfaces” on page 69.

Advanced Topics

48 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

An automatic mechanism is not provided in Process Broker Services to revive
adaptive documents. The Solution Developer must implement a utility using
Process Broker Services Application Program Interfaces to revive adaptive
documents. Also, if a Solution adaptive document has to be revived, the
adaptive document must implement the method public void ejbCreate
(java.lang.String argAdocId). A sample implementation of this method is
provided below (Attention: It may not work exactly this way in all
situations).
public void ejbCreate(java.lang.String argAdocId) throws javax.ejb.CreateException,
java.rmi.RemoteException
{
_initLinks();
// All CMP fields should be initialized here.
try {
adocId = argAdocId;
if (_DEBUG)
System.out.println("TestAdoc.ejbCreate(String) - creating TestAdoc with id " +
adocId + ". Creating the Base Adoc");
// create the base adoc
super.createAdoc(adocId, "Test");
if (_DEBUG)
System.out.println("Test Adoc created ..");
} catch (Throwable e) {
throw new RemoteException(e.getMessage());
}
}

Removing adaptive documents
An adaptive document is scheduled for removal when it enters a state of type
Terminal. See the sample below. If there are transitions defined from such a
state, they are ignored by Process Broker Services.
<statemachine id= "TestAdoc">
<name>TestAdoc</name>
<state>
<name>Open</name>
<type>Normal</type>
<transition>
<target>TimeoutError</target>
<event>Timeout</event>
<condition></condition>
</state>
<state>
<name>TimeoutError</name>
<type>Terminal</type>
</state>
</statemachine>

When an adaptive document is scheduled for removal, a removal task is
automatically scheduled on the Process Broker Services Scheduler. The
AdocRemovalHandler, a System ActionListener provided by Process Broker
Services in WebSphere Business Integrator Version 2.1 and registered with the

Advanced Topics

Chapter 4. Advanced Topics 49

Process Broker Services Scheduler Service, executes the removal. The default
schedule for removal is Immediate, but altering the entry in the
bfm.properties file can change this default behavior. Edit the following entry
in the properties file:<AdocType>REMOVETIME = [MM/DD/YY] HH:MM AM/PM or
nnnnn milliseconds, where the AdocType must be replaced by the actual type
of the adaptive document. This implies that either the adaptive document can
be scheduled to be removed at a certain date and time, or it can be removed
after a certain time interval after its enters the Terminal state.

Process Broker Services scheduler

The Process Broker Services Scheduler enables Process Broker Services to
schedule service requests for execution at a given time. This capability allows
Process Broker Services to model asynchronous behavior. Following are some
of the ways that the Process Broker Services Scheduler is used:
v Consider a scenario where a timeout has to be modeled in an adaptive

document. If a request is not received within a certain time, raise a timeout
event on the adaptive document. This is accomplished by scheduling a
service request on the Process Broker Services Scheduler to raise a Timeout
event on the adaptive document after a given time (See “Process brokering
patterns” on page 52).

v Process Broker Services handles automatic Activities in a workflow by
using the Process Broker Services Scheduler (See “Handling automatic
activities in workflows” on page 44).

v It is possible to cascade service requests (for example, service requests that
are executed one after another, but not in the same unit of work), by
scheduling a service request from within a transition that is triggered by
another service request. (See “Process brokering patterns” on page 52).

Process Broker Services provides a number of system commands for
scheduling service requests. See “Process Broker Services system commands”
on page 21 for definitions of these commands. Tasks that are scheduled on
the Process Broker Services Scheduler Service are executed by Action Listeners
(also referred to as Handlers). Process Broker Services provides system Action
Listeners such as the AdocArchivalHandler for archiving adaptive documents
and AdocRemovalHandler for removing adaptive documents. It is also
possible to define custom Action Listeners or Handlers.

Writing custom action listeners or handlers
Use the following steps to write a Custom Action Listener for use in the
Process Broker Services Scheduler.
1. Import the SDK bfm.sdk.zip into your development environment.
2. Extend the

com.ibm.epic.bfm.timer.DefaultGenericServiceRequestHandler.

Advanced Topics

50 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

3. The Custom Action Listener must have a constructor like the example
shown below.
public MyHandlerConstructor (String namedEvent,
java.util.Hashtable context,
java.util.Hashtable input,
String refId,
String user,
com.ibm.epic.bfm.ejb.BFMAdmin bfm)
{
super(namedEvent, context, input, refId, user, bfm);
}

4. The Custom Action Listener can override the doServiceRequest Process
Broker Services Application Program Interface to add the custom code to
augment for instance, the input and context Hashtable. Essentially, all the
fields are protected variables in the base class. They can be accessed by
directly referencing them as, _namedEvent, _context, _refId, and _bfm. A
sample code fragment for a custom Action Listener is shown below.
public void doServiceRequest () {
// add/modify the service request parameters
_context.put ("MYCONTEXTATTRIBUTE&", value);
// other attributes
_input.put ("MYINPUTATTRIBUTE&", value);
// other attributes
// call the service request method in the base class
super.doAdocServiceRequest();
}

5. Ensure that the Custom Action Listener run time classes are in the
class-path of the Process Broker Services Scheduler Service Dispatcher.

Process Broker Services scheduler service dispatcher
The Process Broker Services Scheduler Service Dispatcher (also known as the
Timer Dispatcher) is installed as a Service on Windows NT® (in WebSphere
Business Integrator Version 2.1) and is started when the Process Broker
Services node boots. The service daemon polls for scheduled service request
entries using the TimerService Enterprise Beans. The polling interval can be
modified with the following entry in the bfm.properties
file:TIMERPOLLINTERVAL = 10000 // unit is milliseconds.

The Process Broker Services Scheduler Service Dispatcher launches individual
threads for each of the timer entries that are ready to be started. Each thread
makes the appropriate serviceRequest calls back to Process Broker Services
with the parameters established when the request was scheduled. To launch a
number of threads concurrently, irrespective of the number of active timer
entries, the following property in the bfm.properties file can be specified.
MAXTHREADS = 50

Advanced Topics

Chapter 4. Advanced Topics 51

An Action Listener must be specified when scheduling the request. A default
Action Listener is provided that makes the service request using the data
(input, context) provided with the scheduled request.

Each scheduled request is launched on a different thread. Error trace can be
turned on by setting the flag TIMERDISPATCHERDEBUG = YES in the
bfm.properties file. Only error messages are written out to files in the working
directory specified above. The file name format is: tt.<bfmRefId>.err

bfmRefId is the Adoc/Task Id for which the service request was scheduled.

To view trace output, the Windows NT service entry property for Allow
Service To Interact With Desktop needs to be checked, to have trace output
displayed on the console.

Process brokering patterns

Process Brokering Patterns encapsulate the design experiences with adaptive
documents. They can be viewed as building blocks in the formation of a
solution model using Process Broker Services. A Process Brokering Pattern is
not specific to a solution, but it is based on scenarios that are commonly
found in business process integration and management problems.

Each of the following patterns is described in terms of the modeling scenario,
the solution, and the usage of the pattern.

Event with Time Window

Modeling Scenario
A Solution adaptive document enters a certain state and a business event
associated with that state must occur within a given time window. If the event
times out, then a suitable recovery action must be launched. The Event with
Time Window Process Brokering Pattern handles this modeling scenario.

Advanced Topics

52 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Solution

The state chart on the left in Figure 13 describes the context for the modeling
pattern. The adaptive document is in the current state and the anticipated
event has to occur within a certain time window.

The state chart on the right in Figure 13 describes the brokering pattern:
1. In the transition that placed the adaptive document in the current state,

add a command that schedules a service request with the Process Broker
Services Scheduler with the Time Window of the anticipated event.

2. Once the timeout has occurred, the Process Broker Services scheduler
raises the TimeOut event.

3. The appropriate recovery is modeled based on the TimeOut event, such as,
rolling back to the previous state, a self-transition on the current state, or
moving to a new state. During any of these transitions appropriate actions
can be taken for the recovery.

Usage
v This pattern is used for cascading service requests on the same adaptive

document instance, for example, triggering one service request followed by
another where one triggers the other, although not in the same
unit-of-work. This is done by making the TimeOut factor Immediate on the
Process Broker Services Scheduler.

v This pattern also illustrates how the adaptive document can model
asynchronous behavior, meaning the scheduling of service requests within a
transition that in turn triggers another transition asynchronously to execute
actions.

v The TimeOut scenario is common in situations, such as an
acknowledgement from an endpoint application following a message that

Some
State

Some
State

Current
State

Current
State

Target
State

Target
State

Recourse
State

Condition - Event
must occur within
a certain time

Anticipated Event Anticipated Event

/Action: Schedule a Service Request(TimeOut)

Event: TimeOut / Action:
Some Recourse

Context Solution

Figure 13. Event with Time Window Pattern

Advanced Topics

Chapter 4. Advanced Topics 53

was sent a priority. If no acknowledgement is received within a given time,
then suitable recovery actions need to be executed.

Non-deterministic conditional

Modeling scenario
When a business event is raised against a Solution adaptive document, the
behavior is non-deterministic in that the same event can transition the
adaptive document to one among many other possible target states based on
mutually exclusive conditional business logic.

Solution
The state chart on the left in Figure 14 explains the context of this pattern. The
same event can trigger a self-transition of the adaptive document in the
current state as well as transition it to Target State 1 (there could be many
other possible states). The state machine is therefore non-deterministic.

The state chart in the right of Figure 14 reveals the non-deterministic
conditional pattern.
v The solution involves using conditional logic on the transitions where the

conditional logic expressed in the set of transitions is mutually exclusive.
v The transition Current State→Target State 1 is triggered when the conditional

expression evaluates to true. The self-transition does not have any
conditional logic defined. The transitions are ordered in the controller
definition such that the self-transition follows the transition to Target State
1.

v Process Broker Services evaluates the transitions for an event from a given
state in a controller in the order in which they appear in the controller

Mutually Exclusive
Business Condition

Same Event

Current
State

Same Event

Target
State 1

Target
State 1

Current
State

Same Event [Condition: C=True]

Same Event [No Condition]

Figure 14. Non-Deterministic Conditional Pattern

Advanced Topics

54 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

definition, triggers the transition that first evaluates as true, and skips the
rest. If the condition evaluates to false, then the transition to Target State 1
does not occur and the self-transition is triggered. Otherwise, the first
transition occurs and the second transition is skipped.

Usage
This pattern is useful in modeling situations where the adaptive document
receives confirmation messages from several endpoints. It needs to be in the
same state until it has received a certain number of confirmations (n), upon
which it makes the transition out of the state. In this case, a business object
can be used to keep track of the number of confirmations that have been
received. The conditional expression on the transition out of the current state
can be defined so that it queries the business object and returns true if n−1
confirmations have already been received. Further, the self-transition can
involve an action that calls the same business object, to just update the
counter every time a confirmation is received unless it has received the
maximum number of confirmations.

Activity Mediator

Scenario
A Solution adaptive document (for example, PO adaptive document) can
transition from a given document state, such as To-Be-Approved, to a specific
document state, such as Approved, only when two independent activities are
completed. Further, the two activities can complete in any order. This could be
activities that are either executed in parallel within a process, or belong to two
separate processes, for example, Technical Approval and Financial Approval
are complete.

Solution
The context and solution to the scenario is shown in Figure 15 on page 56. The
scenario calls for the coordination of the adaptive document life-cycle with
that of two independent activities that can be part of different business
processes and can engage different systems and people.

The solution uses the mediation capabilities of the Process Broker, where the
Financial Approval and the Technical Approval activities execute
independently. The completion events in either controller are also raised
against the adaptive document controller. Process Broker Services executes all
transitions that are eligible to be triggered for a given event across controllers
in an adaptive document, in a single unit-of-work. This implies that when the
FinancialApproval.Complete event is raised and suppose the adaptive
document is in the Technical Approval Done state, then the transitions in the
Financial Approval controller as well as the transition to the Approved state
in the Adaptive Document Controller are executed in a single unit-of-work. It
can be seen that the activity mediation (for example, activities loosely coupled
and indirectly coordinated through the adaptive document) ensures that

Advanced Topics

Chapter 4. Advanced Topics 55

regardless of the order in which the activities are completed the adaptive
document moves to the Approved state only when the Financial Approval
and Technical Approval are complete.

Usage
The Activity Mediation is a common Process Brokering pattern in business
process integration problems where multiple business processes have to be
integrated to provide an end-to-end business control and view.

Web of responsibility

Scenario
When a Solution adaptive document, such as an RFQAdoc enters a specific
state, such as Cancelled for a certain business event, the web of activities
associated with the adaptive document need to be appropriately updated.
These activities are essentially independent activities that are associated with a
single adaptive document.

Activity Controller
Financial Approval

FinancialApproval.Complete

Independent
Activities-

Possibly separate
Business Processes

TechnicalApproval.Complete

Complete

Technical Approval
Activity Controller

ToBeApproved

Review Parameters

FinancialApproval.Complete

FinancialApproval.Complete

TechnicalApproval.Complete

TechnicalApproval.Complete

Technical
Approval
Done

Financial
Approval
Done

Generate
Report

View

Approved

Complete

Figure 15. Activity Mediator Pattern

Advanced Topics

56 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Solution

The context and solution for the scenario is shown in Figure 16. When the
RFQAdoc is cancelled the web of activities in which the RFQAdoc is involved
also need to be cancelled. This is accomplished by raising the same event on
the web of activity controllers. Process Broker Services executes the transition
for a given event across all controllers for an adaptive document within the
same unit-of-work.

Usage
The Web of Responsibility pattern is common in business process brokering
where there are hierarchical dependencies between business entities, such as
between a Purchase Order and its line items coming from different vendors,
participating in separate business processes resulting in a web of
responsibility for the root entity. For example, each line item may be involved
in an individual shipping process that in turn engages different logistics
participants.

RFQAdoc
ADOC Controller

Submitted

Cancelled

Terminate All

Activity 1 Activity Controller

Terminate All

Cancelled

Cancelled

Terminate All

Activity 2 Activity Controller

Complete

Complete

Activity 1. Complete

Activity 2. Complete

Figure 16. Web of Responsibility Process Broker Pattern

Advanced Topics

Chapter 4. Advanced Topics 57

Dynamic Collaboration

Scenario
The Solution adaptive document spawns and participates in a long-running
business process where one of the activities in the long-running process in
turn generates a dynamic set of child activities that are executed in parallel.
The number of child activities is dynamically determined by some business
logic. Further, the parent activity must be completed only after the conclusion
(completion or timeout) of the child activities.

Solution
The context and solution for the Dynamic Collaboration Broker Pattern is

shown in Figure 17. The Solution adaptive document spawns a long-running
business process. One of the activities in the process, referred to as the Parent
Activity, in turn spawns a number of Child Activities where the number is
computed dynamically. The Parent Activity can complete only after all the
Child Activities are completed.

The Solution involves spawning the dynamic set of activity controllers based
on some business logic encapsulated in a command in the transition of the
Parent Activity controller. Each of the Child Activity controllers raises the
Done event upon completion. These same events are also raised on the Parent

Long-running Process

Parent Activity

Coordinate?

Dynamic
Set of Child
Activities
Based on
Business Logic

Solution
ADOC

Parent Activity Controller

Available

Claimed

Complete

Done

Activity Claim/
Spawn Child Activities

Done
Condition: Not n

Child Activity Controllers

Done Done

CompleteComplete

Figure 17. Dynamic Collaboration Process Broker Pattern

Advanced Topics

58 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Activity Controller. The Parent Activity Controller then uses the
Non-Deterministic Conditional Pattern to coordinate the completion of the
child activities; the conditional logic checks to see if all the child activities are
completed, where the conditional evaluation can be encapsulated in user
defined evaluate function (see “User defined conditional logic” on page 18.

Usage
The Dynamic Collaboration pattern is common in business problems that
involve business processes spanning multiple parties. For example, consider a
cascaded RFQ process where one of the activities is to match the customer
submitting an RFQ with a set of vendors, determine the dynamic set of
vendors, and initiate a number of child Quote processes. Following the receipt
of all quotes, the Quote step is completed and the process moves forward. See
the WebSphere Business Integrator Process Broker Services Concepts Guide for an
example of the Dynamic Collaboration Pattern.

Assigning a user-generated adaptive document Identifier

Process Broker Services provides a helper method on the AdocProxy class that
generates an unique id based on a given string and time stamp. The method
is called in the ejbCreate() of the Solution adaptive documents, and is as
follows: String poadocId = super.getUniqueString ("PO");

Modifying this method can generate unique adaptive document ids: String
poadocId = yourUUIDService.getUUId ("PO");

The size limit for the adaptive document Id is 32 characters.

Dynamically incorporating changes to controllers

Process Broker Services can be configured to dynamically incorporate any
changes in the controller, command, and receiver xml files without stopping
the Process Broker Services Application Server. This feature is turned on and
off through the ACCEPTFILECHANGE flag in the bfm.properties file:
ACCEPTFILECHANGE = YES

Receiver caching

Receiver caching has two main aspects: caching the Receiver Home, and
caching of Receiver instances within a unit-of-work. The receiver Home is
cached in Process Broker Services and is not looked up with each invocation.
This implies that when a receiver is restarted, the cache is likely to be
outdated, resulting in a transaction rollback. However, in the case of
Enterprise Bean receivers, the cache is refreshed automatically upon the next
invocation, and the transaction rollback error is cleared.

Advanced Topics

Chapter 4. Advanced Topics 59

In the case of caching Receiver instances in a unit-of-work, the Process Broker
Services default behavior is to cache the Receiver instance after the first
invocation. This implies that in a controller transition, if two or more
commands target the same receiver, the same receiver instance is used in
repeated invocations. To change this default behavior, such as spawning a
new instance of the receiver for each command, a copy of the receiver
definition must be placed in the receiver.xml file with a different receiverId.
Subsequent commands can then use the copy of the receiver by having the
command in the command.xml file refer to the new receiverId.

Overriding the DB2 userId and password for Process Broker Services Queries

The DB2 user id and password is read from LDAP under
dn="cn=db2admin,o=ePICUsers,o=epic",name=uid and
dn="cn=db2admin,o=ePICUsers,o=epic",name=userPassword. To override the
default or if LDAP is unavailable, the values are read from the bfm.properties
file. The uid with the name ’DBUser’ is expected and the password is
expected under the name ’DBPassword’.

Advanced tips

v Nested service requests are supported, for example, a service request can be
called as a command from within another service request. However, such
nested service requests cannot be made on the same adaptive document
instance. This violates the Enterprise Bean re-entrant property and the result
will be unpredictable, possibly resulting in a transaction rollback.

v Multiple Process Broker Services AppID: The application Name lookup in
LDAP can be changed to start at a different AppID node, rather than
defaulting to o=ePICAppID as BFM in LDAP. A new variable has been
added to specify the Process Broker Services application name during
deployment. Specify the following environment variable in the Application
Server command line: -Dbfm.ldapname=ACMEBFM

Advanced Topics

60 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Chapter 5. Troubleshooting

Process Broker Services runs as an Enterprise Bean application inside the
container provided by the WebSphere Application Server. Some of the errors
happening inside the container though caused by the Process Broker Services,
do not necessarily appear at the client invocation layer. Troubleshooting a
Process Broker Services error can pose challenges. Following is a step-by-step
guideline to troubleshoot an error caused by a Process Broker Services
application.

For best results, use the following Checklist sequentially; going to the next
step if the current method does not detect the cause of the problem.

Checklist

The following conformance points must be checked:
v All Solution adaptive documents must be deployed in the same Application

Server as Process Broker Services, although they are not required to be in
the same container.

v All Solution adaptive documents are deployed with parameters as specified
in “Building an adaptive document” on page 4. Important parameters to
check are the Transaction and Read-only attributes on the Enterprise Bean
remote interface methods.

v The Data-source defined for the Process Broker Services and Solution
adaptive documents container needs to use the Java Transaction Application
Program Interface (JTA) enabled driver from DB2. To verify, check the
following items:
– Confirm the following entries on the Database driver used for the

data-source
- Class Name is COM.ibm.db2.jdbc.app.DB2Driver
- URL prefix is jdbc:jta:db2
- JTA enabled is True

– The DB2 JDBC driver (db2java.zip) must use the JDBC2.0 drivers. To
confirm verify that:
- The <DB2 install>\java12\inuse file is JDBC 2.0
- <DB2 install>\java\db2java.zip files has *XA class files

© Copyright IBM Corp. 2001 61

Trace files

Process Broker Services pbsout.txt and pbserr.txt are trace output files. They
are found in the <WBI Install>\logs directory. Depending on the trace/debug
settings in the bfm.properties file (see “Appendix A. Process Broker Services
properties” on page 65), the trace content can be controlled. These files
provide information on the cause of the failure that needs to be investigated.

Operation specific errors

If the trace output files do not provide enough information about the cause of
the error, then the error is most likely caused due to some run time exceptions
that Process Broker Services was not able to handle. Some of the common run
time errors are listed below, grouped by the nature of the operational tasks
performed by Process Broker Services.

Creating an adaptive document
The following errors can happen during the creation or initialization of an
adaptive document.

Note: Set the trace levels/flags appropriately to obtain trace output in the
pbsout and pbserr files (See “Trace and debug flags” on page 65 for
details about setting the trace/flags)

Link exception
This exception occurs if the client stubs generated for the Solution adaptive
documents are not available in the Process Broker Services class-path. This is a
requirement because Process Broker Services acts as a client to the Solution
adaptive documents to instantiate them during run time and as such, needs
the client jars to make the appropriate bindings.

To resolve this, extract the client stubs generated from the Solution adaptive
documents into the class-path of Process Broker Services.

Controller initialization failed
This error in most cases is the result of a malformed
controller/command/receiver XML file. Check pbserr.txt to see possible
parsing errors and the location at which the error occurred. Correct the error
and retry.

Transaction rollback
In this case, the container has thrown a transaction rollback exception and the
trace output does not readily show the cause. This happens when a run time
exception has occurred in the Enterprise Bean container code, and the error
does not make it back to the application level. The only way to debug this is
to take a trace dump on the Process Broker Services Application Server using
the trace facilities provided in the WebSphere Application Server. The

Troubleshooting

62 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

mechanism to perform this operation is discussed in detail in WebSphere
Application Server documentation, but the basic approach is described in
“WebSphere Application Server trace dump” on page 64.

Making a service request

Service request transaction rollback
A transaction rollback is indicated in the call return or the trace files, but the
cause is not identifiable. Perform the following to find the cause:
v The pbsout.txt file indicates the command that failed. The trace contains an

entry that looks like the following: COMMAND <CommandId> FAILED

v Check the trace for the receiver that this commands executes to see if the
error occurred in the receiver. If the receiver trace shows an error, fix it.

v The service request happens under a distributed transaction spawned by
the Enterprise Bean container. As such all commands invoked in the
transition need to be executed on receivers that support the Java
Transaction Application Program Interface protocol. If they do not and the
receiver is an Enterprise Bean, then the corresponding method name should
be marked as TX_NOT_SUPPORTED.

v If the receiver is an Enterprise Bean receiver, check that the receiver client
stubs are present in the Process Broker Services application server
class-path.

v Use the Application Server trace dump to investigate further. Details about
taking the trace dump are provided in “WebSphere Application Server trace
dump” on page 64.

Process Broker Services scheduler errors
There is a retry count for every request scheduled using the Process Broker
Services Scheduler. On expiration of the entry, Process Broker Services uses
the registered Action Listener/Handler to make the appropriate call back to
Process Broker Services. These calls are either calls to make a service request
or to create, archive, or remove an adaptive document. The TimerDispatcher
decrements the retry count every time it fails in the call. When the retry count
is zero, the timer entry is assumed to be not able to be processed and no
further action is taken. To resolve the reason for such a timer entry the
following steps can be taken:
v If the scheduler dispatcher trace/debug flag is turned ON (See “Trace and

debug flags” on page 65), the dispatcher generates a trace file for each timer
entry.

Note: If the call back invocation for the entry is successful, there is no
entry. The file name convention used is tt.<AdocId>.err

v If the scheduled event is the removal or archival of an adaptive document,
make sure the retry count is set to a high number (for example, 20). If
concurrent removal or archival requests are placed to Process Broker

Troubleshooting

Chapter 5. Troubleshooting 63

Services, transaction rollbacks happen due to timeout or deadlocks. In
Process Broker Services in WebSphere Business Integrator Version 2.1a high
retry count is recommended for removal and archival schedule requests.

WebSphere Application Server trace dump

To take a WebSphere Application Server trace dump, perform the following:
1. Open the WebSphere Application Server console for the Process Broker

Services WebSphere Application Server node (same as the Business Flow
Manager node).

2. Right-click on the Process Broker Services Application Server, while it is
running, and select Trace to view the Trace Administration window.

3. In the Window, right-click on Components and select All. Then select Set.
4. Select Apply on the WebSphere Application Server Console.
5. Run the application transaction that was causing the failure.
6. After the error occurs, right-click on the Application Server node on the

Console to bring up the Trace Administration window .
7. Provide a file name for the Dump File Name, where you want the

WebSphere Application Server to write the trace, for example <WBI
Install>\logs\pbswasdump.txt

8. Select Dump and the trace is written to the file.
9. Open the dump file with an editor and scan for errors. It is normally a

large file, so it may be advisable to search for the word Exception to go to
the line in the dump where the exception is recorded.

Troubleshooting

64 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Appendix A. Process Broker Services properties

Process Broker Services uses the bfm.properties file to store and read run time
properties. Following is the list of properties that Process Broker Services
expects to be available in the bfm.properties file.
v Package names
v Controller file locations
v Trace and debug flags
v Process Broker Services scheduler dispatcher
v Automated activities
v Miscellaneous.

Package names

Process Broker Services run time uses its own utility classes to lookup the
JNDI Homes for Enterprise Beans that are directly accessed within Process
Broker Services. The Solution adaptive documents fall into this category. The
format for the entry is: <AdocName>Package=<PackageName>. For example:
TestAdocPackage = com.ibm.epic.bfm.samples
POAdocPackage = com.ibm.epic.acme.bfm

Refer to “Building an adaptive document” on page 4 for details.

Controller file locations

The mapping between the controller file names and their physical location on
the file system is expected to be in the bfm.properties file. The format is:
<Adoc/Activity>ControllerXML = <file system path>/<file name>. For
example:
TestAdocControllerXML = D:/../xml/testAdocController.xml

Refer to “Creating and configuring controllers” on page 10 for details.

Trace and debug flags

Tracing output for different parts of Process Broker Services is turned on or
off using these flags. Trace output is written to the files that have been
specified in the Application Server’s stdout and stdin configuration properties.
By default they are named pbsout.txt and pbserr.txt

The format of an entry is: <PBSComponent>Debug = YES/NO

© Copyright IBM Corp. 2001 65

The following flags are used to collect trace information for different parts of
the Process Broker Services run time.

BFMAdminDebug
This flag traces the different client invocations on the Process Broker
Services.

AdocDebug
This flag traces the lifecycle events on the Adaptive Document such as
create, archive, remove, and restore.

ControllerDebug
This flag traces the activities within the controller engine: the state
machine, the commands invoked, and how they are being executed on
the receivers.

BaseDebug
This flag traces the miscellaneous run time utilities classes available in
the Process Broker Services runtime using the JNDI home lookups.

<Solution>AdocDebug
This flag outputs a trace from the Solution adaptive documents.

PUBLISH_EVENTS
This flag controls whether Process Broker Services publishes workflow
events, such as the availability of an activity, an activity being
claimed, and so on. For Process Broker Services in WebSphere
Business Integrator Version 2.1 it is recommended to set flag to NO.

Process Broker Services scheduler dispatcher properties

The Process Broker Services Dispatcher uses the following flags. Their values
can impact the load on Process Broker Services. Therefore care must be
exercised in their use.

TIMERPOLLINTERVAL
The format is, TIMERPOLLINTERVAL =<nnnnnn> milliseconds. The
Process Broker Services Scheduler Dispatcher checks every nnnnnn
milliseconds for scheduled entries that have expired and need to be
handled.

MAXTIMERTHREADS
The format is, MAXTIMERTHREADS =<n>. This number controls the
maximum number of threads that the Process Broker Services
Scheduler Dispatcher spawns to handle the active events, such as,
events that are ready to be launched. One thread is launched per
scheduled entry. For example, ten scheduled events need to be
handled, but the maxtimerthreads is set to 5. In this case, only the
first five entries for action listeners are launched in individual threads.

Process Broker Services properties

66 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

TIMERDISPATCHERDEBUG
This flag can be turned on or off to collect trace output from the
Dispatcher and the different Action Listeners that are launched. The
dispatcher generates a trace file for each timer entry.

Note: If the call back invocation for the entry is successful, there will
be no entry. The file name convention used is tt.<AdocId>.err.
Refer to “Process Broker Services scheduler” on page 50 for
details.

Automated activities

Please refer to “Handling automatic activities in workflows” on page 44 for
details.

Miscellaneous

ADOCSTRLEN
Process Broker Services uses the value specified in this entry to
determine the number of characters to prepend to the generated adoc
id. Suppose this value is set to 6 and the name of the adaptive
document passed during creation is SOLUTION. The id generated by
Process Broker Services is SOLUTI<the currentTimeStamp>. Making the
value 3 generates an id of SOL<thecurrentTimeStamp>. Refer to
“Building an adaptive document” on page 4 for details about the
adaptive document name.

ACCEPTFILECHANGE
Set this flag to yes to prompt Process Broker Services to automatically
refresh the internal controller definition cache if the XML files
controller, command, or receiver are changed after Process Broker
Services has started. The changes are read and the internal objects are
refreshed without the need to restart Process Broker Services. Set this
flag to no to disable this function.

Process Broker Services properties

Appendix A. Process Broker Services properties 67

Process Broker Services properties

68 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Appendix B. Process Broker Services Application Program
Interfaces

BFMAdminBean Class
java.lang.Object

|
+--com.ibm.epic.bfm.ejb.BFMAdminBean

public class BFMAdminBean
extends java.lang.Object and impletments javax.ejb.SessionBean

BFMAdmin is a stateless session bean that implements the interface provided
by Process Broker Services. All methods in this bean are executed within a
transactional context.

archiveAdoc
public void archiveAdoc(java.lang.String adocId)

throws java.rmi.RemoteException

Archives the adaptive document. Archives the adaptive document specified
by the adocId and any business attributes specified by the Hashtable archive()
method in the Solution adaptive document. Normally this method is invoked
automatically by the adaptive document Archival Listener when the archival
request is scheduled. An adaptive document can also be scheduled for
archival using the scheduling services. For more information please refer to
“Life-cycle management of adaptive documents” on page 47.

Parameters:

adocId
The adaptive document identifier.

Throws:

java.rmi.RemoteException
Wrapped around any thrown exception.

createAdoc
public java.lang.Object createAdoc(java.lang.String adocType)

throws java.rmi.RemoteException

Creates an instance of an adaptive document for the given type.

Parameters:

© Copyright IBM Corp. 2001 69

adocType
The adaptive document type.

Returns:

Object
The solution adaptive document object. This must be narrowed
before it is used.

Throws:

java.rmi.RemoteException
Wrapped around any thrown exception.

createAdoc
public java.lang.Object createAdoc(java.lang.String adocType,

java.lang.String adocId)
throws java.rmi.RemoteException

This method is used to create an instance of the solution adaptive document.

Parameters:

adocType
The adaptive document type.

adocId
The adaptive document Id.

Returns:
Object The solution adaptive document object.

Throws:

java.rmi.RemoteException
The exception description.

createAdocIdReturn
public java.lang.String createAdocIdReturn(java.lang.String adocType)

throws java.rmi.RemoteException

Creates an adaptive document for a given adaptive document type, or creates
an adaptive document for a given adaptive document type, but returns the
adaptive document identifier instead of the remote object.

Parameters:

adocType
The adaptive document type.

Returns:

String
The adaptive document Id.

Application Program Interfaces

70 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Throws:

java.rmi.RemoteException
Wrapped around any thrown exception.

ejbActivate
public void ejbActivate()

throws java.rmi.RemoteException

This method is called when the Enterprise Java Bean is activated. This method
is specified by the interface javax.ejb.SessionBean.

Returns:
Void

Throws:

java.rmi.RemoteException
The exception description.

ejbCreate
public void ejbCreate()

throws java.ejb.CreateException
java.rmi.RemoteException

This method creates the bean.

Returns:
Void

Throws:

java.ejb.CreateException
The exception description.

java.rmi.RemoteException
The exception description.

ejbPassivate
public void ejbPassivate()

throws java.rmi.RemoteException

This method is called when the Enterprise bean changes to the passivation
state. Cached objects are released. This method is specified by ejbPassivate in
the interface javax.ejb.SessionBean.

Returns:
Void

Throws:

java.rmi.RemoteException
The exception description.

Application Program Interfaces

Appendix B. Process Broker Services Application Program Interfaces 71

ejbRemove
public void ejbRemove()

throws java.rmi.RemoteException

This method is called when the Enterprise bean is removed. All internal
references are cleared and all database connections are closed. This method is
specified by ejbRemove in the interface javax.ejb.SessionBean.

Returns:
Void

Throws:

java.rmi.RemoteException
The exception description.

getAdoc
public java.lang.Object getAdoc(java.lang.Object key,

java.lang.String adocType)
throws java.rmi.RemoteException

Gets an adaptive document, or gets the remote Solution adaptive document
object using the key for the adocType. The key object passed in must be the
key object for the Solution adaptive document, otherwise a run time exception
is thrown.

Parameters:

key
The primary key of the particular solution adaptive document, for
example, RFQAdocKey

adocType
The adaptive document type, for example a Request for Quote.

Returns:

Object
The adaptive document Object. It must be narrowed to the
appropriate adaptive document.

Throws:

java.rmi.RemoteException
The exception description.

getAdocs
public java.util.Vector getAdocs(java.lang.String adoctype,

java.lang.String user,
java.lang.String state)

throws java.rmi.RemoteException

Application Program Interfaces

72 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Gets a list of Adaptive documents that match some criterion. Gets a list of
AdocDetails for a given adocType, a give user, a given state, or any
combination of the three.

Parameters:

adocType
The adaptive document type.

user
The adaptive document owner.

state
The adaptive document state.

Returns:

Vector
A list of AdocDetails objects.

Throws:

java.rmi.RemoteException
The exception description.

getAdocsByFilter
public java.util.Vector getAdocsByFilter(java.lang.String adocType,

java.lang.String user,
java.lang.String state,
java.util.Hashtable filterParams)

throws java.rmi.RemoteException

Gets a list of adaptive documents based on a user filter. The filtering logic is
implemented in the boolean filter (Hashtable filterParams) method on the
solution adaptive document. The filter method returns a true or false, based
on whether the adaptive document is selected or is not selected. This allows
selection of an adaptive document based on referenced business object
attributes.

A null can be passed for any or all of the adaptive document attributes: type,
owner, or state.

Parameters:

adocType
The adaptive document type.

user
The adaptive document owner.

state
The adaptive document state.

Application Program Interfaces

Appendix B. Process Broker Services Application Program Interfaces 73

Hashtable
Filter parameters as name-value pairs.

Returns:

Vector
A list of AdocDetails objects.

Throws:

java.rmi.RemoteException
The exception description.

getAllAdocEvents
public java.util.Vector getAllAdocEvents(java.lang.String adocType,

java.lang.String state,
java.lang.String role,
java.lang.String user)

throws java.rmi.RemoteException

Gets a list of adaptive documents and for each adaptive document a list of
events that the adaptive document can accept in the current state. The event
list includes the ones that can be raised on Activities with which the adaptive
document might be associated. The event and associated attributes are
wrapped in an EventDetails object. The input parameters can be provided in
any combination, although a null must be specified if the particular attribute
is insignificant.

Parameters:

adocType
An adaptive document type. Provide null if unknown.

state
An adaptive document state. Provide null if unknown.

role
The Role of the interacting user. Provide null if unknown.

user
The name of the user. Provide null if unknown.

Returns:

Vector
A Vector of AdocEvents.

Throws:

java.rmi.RemoteException
The exception description.

Application Program Interfaces

74 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

getAllPossibleBusinessEvents
public java.util.Vector getAllPossibleBusinessEvents(java.lang.String adocId,

java.lang.String role,
java.lang.String user)

throws java.rmi.RemoteException

Gets a list of events that the adaptive document can accept in the current
state. The event list includes the ones that can be raised on Activities with
which the adaptive document might be associated. The event and associated
attributes are wrapped in an EventDetails object.

Parameters:

adocId
An adaptive document Instance identifier.

role
The Role of the interacting user. Provide null if unknown.

user

The name of the user. Provide null if unknown.

Returns:

Vector
A Vector of named event String.

Throws:

java.rmi.RemoteException
The exception description.

getArchivedAdocs
public java.util.Vector getArchivedAdocs(java.lang.String adocType,

java.lang.String startDateTimeStr,
java.lang.String endDateTimeStr)

throws java.rmi.RemoteException

Gets a list of adaptive documents that have been archived. This is probably a
call that is made as the first step to revive or restore an adaptive document or
a group of adaptive documents. The following adaptive documents are
returned:
v All adaptive documents that have been archived within the given period of

time (both start and end time is provided).
v All adaptive documents that have been archived before a particular time

(only end time is provided).
v All adaptive documents that have been archived after a particular time

(only start time is provided).

Parameters:

Application Program Interfaces

Appendix B. Process Broker Services Application Program Interfaces 75

adocType
An adaptive document type. Provide null if unknown.

startDateTime
Provide in the format [MM:DD:YY] HH:MM AM/PM. For
example, 4/12/01 1:40 AM, 1:00 PM (1:00 PM today) or null.

endDateTimeStr
Provide in the format [MM:DD:YY] HH:MM AM/PM. For
example, 4/12/01 1:40 AM, 1:00 PM (1:00 PM today) or null.

Returns:

Vector
A Vector of AdocDetails.

Throws:

java.rmi.RemoteException
The exception description.

incomingEpicMessage
public java.util.Hashtable incomingEpicMessage

(com.ibm.epic.adapters.eak.mcs.EpicMessage em)
throws java.rmi.RemoteException

This method provides the necessary logic to map or transform an incoming
message (EpicMessage) to raise an event on an adaptive document instance
using the serviceRequest method. For more information refer to “Process
Broker Services messaging clients” on page 41.

Parameters:

EpicMessage
A full formed message as an EpicMessage.

Returns:

Hashtable
The output, similar to the ones produced by the serviceRequest
method.

Throws:

java.rmi.RemoteException
The exception description.

incomingEpicMessage
public java.util.Hashtable incomingEpicMessage(java.lang.String bodyCategory,

java.lang.String bodyType,
java.lang.String corrId,
java.lang.String message)

throws java.rmi.RemoteException

Application Program Interfaces

76 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

This method provides the necessary logic to map/transform an incoming
message (EpicMessage) to raise an event on an adaptive document instance
using the serviceRequest method. For more information refer to “Process
Broker Services messaging clients” on page 41.

Parameters:

bodyCategory
The body category of the message. This is mapped to an adaptive
document type

bodyType
The body type of the message. This is mapped to the event to be
raised on the adaptive document.

corrId
The correlation Id of the message. This is assumed to be the
adaptive document Id.

message
The message itself in a string form.

Returns:

Hashtable
The output, similar to the ones produced by the serviceRequest
method.

Throws:

java.rmi.RemoteException
The exception description.

initializeAdocDoServiceRequest
public java.util.Hashtable initializeAdocDoServiceRequest

(java.lang.String request,
java.util.Hashtable context,
java.util.Hashtable input,
java.lang.String adocType,
java.lang.String adocId,
java.lang.String user)

throws java.rmi.RemoteException

This creates the adaptive document and then raises the event (request) as a
service request. This method automatically creates the adaptive document and
then makes a service request with the event (request) passed using the event
parameters passed in the input and context hashtables. Normally the event is
used to initialize the adaptive document, for example, create any BO’s, assign
the references to the adaptive document, set some BO attributes and so on. An
example of an Initialize event is found in the testAdocController.xml file,

Application Program Interfaces

Appendix B. Process Broker Services Application Program Interfaces 77

which is used for the adaptive document provided as the sample, TestAdoc.
See “Service request to create and initialize an adaptive document” on
page 38.

Parameters:

request
The event.

context
The context information.

input
The input information.

adocType
The type of adaptive document to be created. For example, PO or
RFQ.

adocId
The adaptive document identifier to be used or null if Process
Broker Services has to generate one.

user
The user invoking the operation. A null can be passed if the user
is unknown.

Returns:

Hashtable
The output of adaptive document and task controller commands.

Throws:

java.rmi.RemoteException
The exception description.

invoke
public java.util.Hashtable invoke(java.lang.String commandId,

java.util.Hashtable _context,
java.util.Hashtable _inputList)

throws java.rmi.RemoteException

Allows execution of any command defined in the command.xml file without
involving a controller.

Parameters:

commandId
The command Id, as defined in the command.xml file.

_context
Hashtable of context information.

Application Program Interfaces

78 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

_inputList
Hashtable of input information.

Returns:

Hashtable
Output values of the executed command.

Throws:

java.rmi.RemoteException
The exception description.

removeAdoc
public void removeAdoc(java.lang.String adocId)

throws java.rmi.RemoteException

Removes the given adaptive document object. Life cycle management of
adaptive documents are handled automatically. Use this method if required to
handle removal of an adaptive document otherwise, use
scheduleAdocRemoval on the TimerServices Enterprise Bean to schedule an
adaptive document removal.

Parameters:

adocId
The primary key for the adaptive document object.

Returns:
void

Throws:

java.rmi.RemoteException
The exception description.

reviveAdoc
public java.lang.Object reviveAdoc(java.lang.String adocId)

throws java.rmi.RemoteException

Revives the adaptive document specified in the adocDetails. If a revive
(Hashtable solutionAttributes) is implemented on the Solution adaptive
document, all business attributes that were archived are passed onto this
method for re-initializing the referenced business objects. For more
information see “Life-cycle management of adaptive documents” on page 47.

Parameters:

adocId
The adaptive document identifier of the archived adaptive
document.

Returns:

Application Program Interfaces

Appendix B. Process Broker Services Application Program Interfaces 79

Object
The Solution adaptive document remote handle. Must be
narrowed before it is used.

Throws:

java.rmi.RemoteException
Wrapped around any thrown exception.

serviceRequest
public PBSEventOutput serviceRequest(PBSEventInput event)

throws java.rmi.RemoteException

This method provides the capability to make a service request on an adaptive
document instance. The PBSEventInput, PBSEventOutput classes encapsulate
the parameter requirements for the service request.

Returns:

Hashtable
The output, encapsulated in a PBSEventOutput object.

Throws:

java.rmi.RemoteException
The exception description.

serviceRequest
public java.util.Hashtable serviceRequest(java.lang.String request,

java.util.Hashtable context,
java.util.Hashtable input,
java.lang.String adocId,
java.lang.String user)

throws java.rmi.RemoteException

This brokers the event (request) across the adaptive document instance and all
associated activity controllers. First the event is checked to be raised against
the adaptive document instance. If the adaptive document is in a state to
accept the event, it is consumed and the adaptive document transitions to
another state. Next the same event is raised against all associated activities
and thus is consumed if it is found to be valid. All these operations happen
within a single unit of work.

Parameters:

request
The Event.

context
The context information.

Application Program Interfaces

80 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

input
The input information.

adocid
The adaptive document identifier.

user
The user invoking the operation. A null can be passed if the user
is unknown.

Returns:

Hashtable
The output of the adaptive document and task controller
commands.

Throws:

Throws: java.rmi.RemoteException
The exception description.

setSessionContext
public void setSessionContext(javax.ejb.SessionContext ctx

throws java.rmi.RemoteException

SetSessionContext method comment. This method is specified by
setSessionContext in the interface javax.ejb.SessionBean.

Parameters:

ctx
javax.ejb.SessionContext

Returns:
void

Throws:

java.rmi.RemoteException
The exception description.

AdocEvents Class
java.lang.Object

|
+--com.ibm.epic.bfm.ejb.base.AdocEvents

public abstract class AdocEvents
extends java.lang.Object implements java.io.Serializable

Application Program Interfaces

Appendix B. Process Broker Services Application Program Interfaces 81

This class is used to transport the adaptive document along with all events
that can be raised against it. This class is primarily used to encapsulate
adaptive document query calls.

toString
public java.lang.String toString()

Returns a concatenated string with all the adaptive document attributes.

Overrides:

toString in class java.lang.Object

AdocProxy Class
java.lang.Object

|
+--com.ibm.epic.bfm.ejb.base.AdocProxy

public abstract class AdocProxy
extends java.lang.Object

AdocProxy is an abstract base class. Each solution adaptive document must be
derived from this class.All the abstract methods in this class has to be
implemented by the solution adaptive document classes. The AdocProxy class
has a reference to the adaptive document enterprise bean. This reference could
be obtained by the child classes using the method getProxy() to use any other
services provided by the adaptive document enterprise bean.

archive
public java.util.Hashtable archive

throws java.rmi.RemoteException

Parameters

filterParams
java.util.Hashtable

Returns
Boolean

Throws

java.rmi.RemoteException
The description of the exception.

filter
public java.lang.Boolean filter(java.util.Hashtable filterParams

throws java.rmi.RemoteException

Application Program Interfaces

82 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Parameters

filterParams
java.util.Hashtable

Returns
Boolean

Throws

java.rmi.RemoteException
The description of the exception.

getActionList
public abstract java.util.Vector getActionList()

throws java.rmi.RemoteException

This method gets the action list. It must be implemented by the derived class.

Returns
A vection actions list.

Throws

java.rmi.RemotException
A description of the exception.

getAdocId
public abstract java.lang.String getAdocId()

throws java.rmi.RemoteException

This method gets the adaptive document ID.

Returns
A string containing the adaptive document ID.

Throws

java.rmi.RemotException
A description of the exception.

getAdocName
public abstract java.lang.String getAdocName()

throws java.rmi.RemoteExecption

Access method to get the adaptive document name. This method must be
implemented by the derived class. A string containing the adaptive document
name is returned.

Returns
A string containing the adaptive document ID.

Throws

Application Program Interfaces

Appendix B. Process Broker Services Application Program Interfaces 83

java.rmi.RemotException
A description of the exception.

getAdocOwner
public abstract java.lang.String getAdocOwner()

throws java.rmi.RemoteExecption

Access method to get the adaptive document owner. This method must be
implemented by the derived class. A string containing the adaptive document
owner is returned.

Returns
A string containing the adaptive document owner.

Throws

java.rmi.RemotException
A description of the exception.

getAdocState
public abstract java.lang.String getAdocState()

throws java.rmi.RemoteExecption

Access method to get the adaptive document state. This method must be
implemented by the derived class.

Returns
A string containing the adaptive document state.

Throws

java.rmi.RemotException
A description of the exception.

getPKString
public abstract java.lang.String getPKString()

Access method to get the primary key. This method must be implemented by
the derived class. The primary key is returned as a string.

getUniqueString
public java.lang.String getUniqueString()

(java.lang.String type)
throws java.rmi.RemoteException

Access method to get a unique string for a given type.

Parameters

type
The type for the controller.

Application Program Interfaces

84 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Returns

String
The string contains the unique ID.

Throws

java.rmi.RemoteException
The description of the exception.

revive
public void revive(java.util.Hashtable adocData

throws java.rmi.RemoteException

Parameters

filterParams
java.util.Hashtable

Returns
Boolean

Throws

java.rmi.RemoteException
The description of the exception.

setAdocOwner
public abstract void setAdocOwner

(java.lang.String arg1)
throws java.rmi.RemoteException

Access method to set the owner of the adaptive document.

Parameters

String
The adaptive document owner.

Returns
Void

Throws

java.rmi.RemoteException
The description of the exception.

setAdocState
public abstract void setAdocState

(java.lang.String arg1)
throws java.rmi.RemoteException

Access method to set the type of the adaptive document.

Parameters

Application Program Interfaces

Appendix B. Process Broker Services Application Program Interfaces 85

String
The adaptive document state.

Returns
Void

Throws

java.rmi.RemoteException
The description of the exception.

unsetInternalState
public abstract void unsetInternalState

throws java.rmi.RemoteException

A clean up method for resetting member variables in the adaptive document.
This method must be implemented by the derived class.

Returns
Void

Throws

java.rmi.RemoteException
The description of the exception.

DefaultGenericServiceRequestHandler Class
java.lang.Object

|
+--com.ibm.epic.timer.DefaultGenericServiceRequestHandler

public class DefaultGenericServiceRequestHandler
extends DefaultGenericServiceRequestHandler Class

This is the generic service request handler. An entry of DEFAULT when
scheduling a service request prompts the TimerDispatcher to instantiate and
run one of these. This class uses the timer entries to invole the service request.
A subclass of this class can potentially augement the service request
parameters. The subclass can be registered as the handler class.
public DefaultGenericServiceRequestHandler(java.lang.String namedEvent,

java.util.Hashtable context,
java.util.Hashtable input,
java.lang.String refId,
java.lang.String user,
com.ibm.epic.bfm.ejb.BFMAdmin bfm)

The constructor calls the constructor in the base class and passes the
parameters.

Application Program Interfaces

86 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

java.lang.String namedEvent
The named event.

java.util.Hashtable context
The context

java.util.Hashtable input
The input

java.lang.String refId
The adaptive document ID.

com.ibm.epic.bfm.ejb.BFMAdmin bfm bfm
The reference to the BFMAdmin session bean.

doServiceRequest
public void doServiceRequest()

throws java.lang.Throwable

PBSEventInput Class
java.lang.Object

|
+--com.ibm.epic.bfm.ejb.base.PBSEventInput

public abstract class PBSEventInput
extends java.lang.Object implements java.io.Serializable

This class is used to encapsulate the parameters needed to make a service
request. An instance of this class needs to be created for every possible event.
This is done by sub-classing from this class and providing additional methods
to set the input parameters.

PBSEventInput
public PBSEventInput(java.lang.String adocType,

java.lang.String event,
java.lang.String adocId,
java.lang.String user)

getAdocId
public java.lang.String getAdocId()

getAdocType
public java.lang.String getAdocType()

getEvent
public java.lang.String getEvent()

getEventParams
public java.util.Hashtable getEventParams()

Application Program Interfaces

Appendix B. Process Broker Services Application Program Interfaces 87

getUser
public java.lang.String getUser()

setEventParam
protected void setEventParam(java.lang.String paramName,

java.lang.Object obj)
throws java.lang.NullPointerException

Is called from the concrete class to set required input parameters for the
service request.

Parameters:

paramName
The key to use for this parameter.

obj
The parameter Object

Throws:

java.lang.NullPointerException
If either of the parameters are null, a NullPointerException is
thrown.

PBSEventOutput Class
java.lang.Object

|
+--com.ibm.epic.bfm.ejb.base.PBSEventOutput

public class PBSEventOutput
extends java.lang.Object
implements java.io.Serializable

A simple class to encapsulate the return of a service request.

PBSEventOutput
public PBSEventOutput(java.lang.String adocType,

java.lang.String event,
java.lang.String adocId,
java.lang.String user,
java.util.Hashtable outVals)

getAdocId
public java.lang.String getAdocId()

getAdocType
public java.lang.String getAdocType()

Application Program Interfaces

88 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

getEvent
public java.lang.String getEvent()

getInvokingUser
public java.lang.String getInvokingUser()

getOutVals
public java.util.Hashtable getOutVals()

AdocDetails Class
java.lang.Object

|
+--com.ibm.epic.bfm.ejb.base.AdocDetails

public class AdocDetails
extends java.lang.Object
implements java.io.Serializable

This is a simple class to transport base adaptive document attributes by
Process Broker Services. All adaptive document query methods return the
base adaptive document attributes wrapped in this structure.

AdocDetails
public AdocDetails(java.lang.String aid,

java.lang.String an,
java.lang.String as,
java.lang.String ao)

getAdocId
public java.lang.String getAdocId()

Access method to get the adaptive document identifier.

getAdocName
public java.lang.String getAdocName()

throws java.rmi.RemoteExecption

Access method to get the adaptive document name. This method must be
implemented by the derived class. A string containing the adaptive document
name is returned.

getAdocOwner
public java.lang.String getAdocOwner()

Access method to get the adaptive document owner.

Application Program Interfaces

Appendix B. Process Broker Services Application Program Interfaces 89

getAdocState
public java.lang.String getAdocState()

Access method to get the adaptive document state.

getAdocType
public java.lang.String getAdocType()

Access method to get the adaptive document type.

getPKString
public java.lang.String getPKString()

Access method to get the primary key. This method must be implemented by
the derived class. The primary key is returned as a string.

getUniqueString
public java.lang.String getUniqueString()

(java.lang.String type)
throws java.rmi.RemoteException

Access method to get a unique string for a given type.

Parameters

type
The type for the controller.

Returns

String
The string contains the unique ID.

Throws

java.rmi.RemoteException
The description of the exception.

toString
public java.lang.String toString()

Returns a concatenated string with all the adaptive document attributes.

Overrides:

toString in class java.lang.Object

Application Program Interfaces

90 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

EventDetails Class
java.lang.Object

|
+--com.ibm.epic.bfm.ejb.base.EventDetails

public class EventDetails
extends java.lang.Object
implements java.io.Serializable

This is a simple class to transport an event with its associated activity details.
public EventDetails(java.lang.String en,

java.lang.String an,
java.lang.String ar,
java.lang.String au)

public java.lang.String _eventName
The event.

public java.lang.String _activityName
The associated Activity Name if an activity event

public java.lang.String _activityRole
The associated Activity Role if an activity event.

public java.lang.String _activityUser
The associated Activity User if an activity event

toString
public java.lang.String toString()

Returns a concatenated string with all the adaptive document attributes.

Overrides:

toString in class java.lang.Object

TimerServiceBean Class
java.lang.Object

|
+--com.ibm.epic.bfm.ejb.TimerServiceBean

public class TimerServiceBean
extends java.lang.Object
implements javaax.ejb.SessionBean

TimerService is a Stateless Session Bean. It is a service to schedule service
requests on Process Broker Services. The scheduled service requests are
consumed by the TimerDispatcher that invokes listeners or handlers to make

Application Program Interfaces

Appendix B. Process Broker Services Application Program Interfaces 91

the service request at the scheduled time. The interfaces to schedule requests
are available as system commands in the command.xml file. For details refer
to “Process Broker Services scheduler” on page 50.

ejbActivate
public void ejbActivate()

throws java.rmi.RemoteException

This method is specified by ejbActivate in the interface javax.ejb.SessionBean.

Returns:
Void

Throws:

java.rmi.RemoteException
The exception description.

ejbCreate
public void ejbCreate()

throws java.ejb.CreateException
java.rmi.RemoteException

This method creates the bean.

Throws:

java.ejb.CreateException
The exception description.

java.rmi.RemoteException
The exception description.

ejbPassivate
public void ejbPassivate()

throws java.rmi.RemoteException

This method is called when the Enterprise bean changes to the passivation
state. Cached objects are released. This method is specified by ejbPassivate in
the interface javax.ejb.SessionBean.

Throws:

java.rmi.RemoteException
The exception description.

ejbRemove
public void ejbRemove()

throws java.rmi.RemoteException

Application Program Interfaces

92 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

This method is called when the Enterprise bean is removed. All internal
references are cleared and all database connections are closed. This method is
specified by ejbRemove in the interface javax.ejb.SessionBean.

Throws:

java.rmi.RemoteException
The exception description.

getAllExpiredTimerEntries
public java.util.Vector getAllExpiredTimerEntries()

throws java.rmi.RemoteException

This method gets all expired service requests. The service request details are
returned wrapped in a TEStruct object.

Throws:

java.rmi.RemoteException
The exception description.

getAllProcessableTimerEntries
public java.util.Vector getAllProcessableTimerEntries()

throws java.rmi.RemoteException

This method gets all expired service requests that can be processed. A service
request entry can still be processed if the retry count is not equal to zero.

Throws:

java.rmi.RemoteException
The exception description.

getSessionContext
public javax.ejb.SessionContext getSessionContext()

throws java.rmi.RemoteException

Returns
javax.ejb.SessionContext

markUnprocessable
public void markUnprocessable(long _timerEntryId)

throws java.rmi.RemoteException

Mark the timer entry as unprocessable. Sets the number of attempts left to
zero.

Parameters:

_timerentryId
The Id for the service request entry.

Throws:

Application Program Interfaces

Appendix B. Process Broker Services Application Program Interfaces 93

java.rmi.RemoteException
The exception description.

recordAnAttempt
public int recordAnAttempt(long _timerEntryId)

throws java.rmi.RemoteException

Record an attempt to inoke a service request entry. This updates the
lastExecutedTimeStamp and decrease the retry count.

Parameters:

_timerentryId
The Id for the service request entry.

Throws:

java.rmi.RemoteException
The exception description.

removeTimerEvent
public void removeTimerEvent(long Id)

throws java.rmi.RemoteException

Record an attempt to inoke a service request entry. This updates the
lastExecutedTimeStamp and decrease the retry count.

Parameters:

Id The Id for the service request entry.

Throws:

java.rmi.RemoteException
The exception description.

scheduleAdocArchival
public java.lang.String scheduleAdocArchival

(java.lang.String adocId,
java.lang.String dateTimeStr,
java.lang.String numRetries)

throws java.rmi.RemoteException

Schedules an adaptive document for archival. This method is available as a
system command in the command.xml. It is recommended to specify a high
retry count in the case of transaction rollbacks happening due to high volume
of transactions. A retry count of 20 is recommended

Parameters:

java.lang.String adocId
The Id of the adaptive document.

Application Program Interfaces

94 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

java.lang.String dateTimeStr
The date and time when the document should be archived.
[MM:DD:YY] HH:MM AM/PM for example, 4/12/01 1:40 AM,
1:00 PM (1:00 PM today), or null nnnnnn archive after nnnnnn
milliseconds of creation. For example, 60000 (fire after 1 min)

java.lang.String numRetries
The number of retry attempts.

Throws:

java.rmi.RemoteException
The exception description.

scheduleAdocInitializationWithGeneratedID
public java.lang.String scheduleAdocInitializationWithGeneratedID

(java.lang.String adocType,
java.lang.String adocOwner
java.lang.String namedEvent,
java.util.Hashtable input,
java.util.Hashtable context,
java.lang.String dateTimeStr,
java.lang.String numRetries)
throws java.rmi.RemoteException

This method is used to schedule the creation and initialization of an adaptive
document. This method is available as a system command in the
command.xml file. It can be used to create an adaptive document from within
the transition of another document. After the document is created, a service
request is made on the document with the event passed, using the input and
context hashtables. This event can potentially be used to initialize the created
adaptive document by creating BO’s, setting the BO references in the adaptive
document and so on.

Parameters:

java.lang.String adocType
The type of adaptive document to be created.

java.lang.String adocOwner
The user creating the adaptive document.

java.lang.String namedEvent
The event to be raised on the adaptive document. If null the
default is the document is initialized.

java.util.Hashtable input
The input Hashtable to be used for the event.

java.util.Hashtable context
The context Hastable to be used for the event.

Application Program Interfaces

Appendix B. Process Broker Services Application Program Interfaces 95

java.lang.String dateTimeStr
The date and time when the document should be archived.
[MM:DD:YY] HH:MM AM/PM for example, 4/12/01 1:40 AM,
1:00 PM (1:00 PM today), or null nnnnnn archive after nnnnnn
milliseconds of creation. For example, 60000 (fire after 1 min)

java.lang.String numRetries
The number of retry attempts.

Throws:

java.rmi.RemoteException
The exception description.

scheduleAdocInitializationWithGivenID
public java.lang.String scheduleAdocInitializationWithGivenID

(java.lang.String adocType,
java.lang.String adocId,
java.lang.String adocOwner
java.lang.String namedEvent,
java.util.Hashtable input,
java.util.Hashtable context,
java.lang.String dateTimeStr,
java.lang.String numRetries)
throws java.rmi.RemoteException

This method is used to schedule the creation and initialization of an adaptive
document. This method is available as a system command in the
command.xml file. It can be used to create an adaptive document from within
the transition of another document. After the document is created, a service
request is made on the document with the event passed, using the input and
context hashtables. This event can potentially be used to initialize the created
adaptive document by creating BO’s, setting the BO references in the adaptive
document and so on.

Parameters:

java.lang.String adocType
The type of adaptive document to be created.

java.lang.string adocId
The adaptive document ID to used as the key for the created
adaptive document or null. If null, the Business Flow Manager
generates the ID.

java.lang.String adocOwner
The user creating the adaptive document.

java.lang.String namedEvent
The event to be raised on the adaptive document. If null the
default is the document is initialized.

Application Program Interfaces

96 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

java.util.Hashtable input
The input Hashtable to be used for the event.

java.util.Hashtable context
The context Hastable to be used for the event.

java.lang.String dateTimeStr
The date and time when the document should be archived.
[MM:DD:YY] HH:MM AM/PM for example, 4/12/01 1:40 AM,
1:00 PM (1:00 PM today), or null nnnnnn archive after nnnnnn
milliseconds of creation. For example, 60000 (fire after 1 min)

java.lang.String numRetries
The number of retry attempts.

Throws:

java.rmi.RemoteException
The exception description.

scheduleAdocRemoval
public java.lang.String scheduleAdocRemoval

(java.lang.String adocId,
java.lang.String dateTimeStr,
java.lang.String numRetries)
throws java.rmi.RemoteException

Schedules an Adoc to be removed. This method is available as a system
command in the command.xml file. It is recommended to assign a high retry
count in the case of transaction rollbacks happening due to a high volume of
transactions.. A retry count of 20 is suggested.

Parameters:

java.lang.string adocId
The ID of the adaptive document to be removed.

java.lang.String dateTimeStr
The date and time when the document should be archived.
[MM:DD:YY] HH:MM AM/PM for example, 4/12/01 1:40 AM,
1:00 PM (1:00 PM today), or null nnnnnn archive after nnnnnn
milliseconds of creation. For example, 60000 (fire after 1 min)

java.lang.String numRetries
The number of retry attempts.

Throws:

java.rmi.RemoteException
The exception description.

Application Program Interfaces

Appendix B. Process Broker Services Application Program Interfaces 97

scheduleServiceRequestWithDefaultHandler
public java.lang.String scheduleServiceRequestWithDefaultHandler

(java.lang.String bfmRefId,
java.lang.String bfmRefType,
java.lang.String namedEvent,
java.util.Hashtable input,
java.util.Hashtable context,
java.lang.String dateTimeStr,
java.lang.String numRetries)

throws java.rmi.RemoteException

This method is used to schedule a service request. This method is available as
a system command in the command.xml file.

Parameters:

java.lang.string bfmRefId
The adaptive document or Activity ID.

java.lang.String bfmRefType
The bfmRefType of the adaptive document or activity.

java.lang.String namedEvent
The event to be raised on the adaptive document. If null the
default is the document is initialized.

java.util.Hashtable input
The input Hashtable to be used for the event.

java.util.Hashtable context
The context Hastable to be used for the event.

java.lang.String dateTimeStr
The date and time when the document should be archived.
[MM:DD:YY] HH:MM AM/PM for example, 4/12/01 1:40 AM,
1:00 PM (1:00 PM today), or null nnnnnn archive after nnnnnn
milliseconds of creation. For example, 60000 (fire after 1 min)

java.lang.String numRetries
The number of retry attempts.

Throws:

java.rmi.RemoteException
The exception description.

scheduleServiceRequestWithGivenHandler
public java.lang.String scheduleServiceRequestWithGivenHandler

(java.lang.String bfmRefId,
java.lang.String bfmRefType,
java.lang.String namedEvent,
java.util.Hashtable input,
java.util.Hashtable context,

Application Program Interfaces

98 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

java.lang.String handlerClass
java.lang.String dateTimeStr,
java.lang.String numRetries)

throws java.rmi.RemoteException

This method is used to schedule a service request. This method is available as
a system command in the command.xml file.

Parameters:

java.lang.string bfmRefId
The adaptive document or Activity ID.

java.lang.String bfmRefType
The bfmRefType of the adaptive document or activity.

java.lang.String namedEvent
The event to be raised on the adaptive document. If null the
default is the document is initialized.

java.util.Hashtable input
The input Hashtable to be used for the event.

java.util.Hashtable context
The context Hastable to be used for the event.

java.lang.String handlerClass
The fully qualified handler or listener class, or Default to use the
default handlers.

java.lang.String dateTimeStr
The date and time when the document should be archived.
[MM:DD:YY] HH:MM AM/PM for example, 4/12/01 1:40 AM,
1:00 PM (1:00 PM today), or null nnnnnn archive after nnnnnn
milliseconds of creation. For example, 60000 (fire after 1 min)

java.lang.String numRetries
The number of retry attempts.

Throws:

java.rmi.RemoteException
The exception description.

scheduleServiceRequestWithGivenHandlerbySpecifiedUser
public java.lang.String scheduleServiceRequestWithGivenHandlerbySpecifiedUser

(java.lang.String bfmRefId,
java.lang.String bfmRefType,
java.lang.String namedEvent,
java.util.Hashtable input,
java.util.Hashtable context,
java.lang.String handlerClass
java.lang.String dateTimeStr,

Application Program Interfaces

Appendix B. Process Broker Services Application Program Interfaces 99

java.lang.String numRetries)
java.lang.String user

throws java.rmi.RemoteException

This method is used to schedule a service request. This method is available as
a system command in the command.xml file.

Parameters:

java.lang.string bfmRefId
The adaptive document or Activity ID.

java.lang.String bfmRefType
The bfmRefType of the adaptive document or activity.

java.lang.String namedEvent
The event to be raised on the adaptive document. If null the
default is the document is initialized.

java.util.Hashtable input
The input Hashtable to be used for the event.

java.util.Hashtable context
The context Hastable to be used for the event.

java.lang.String handlerClass
The fully qualified handler or listener class, or Default to use the
default handlers.

java.lang.String dateTimeStr
The date and time when the document should be archived.
[MM:DD:YY] HH:MM AM/PM for example, 4/12/01 1:40 AM,
1:00 PM (1:00 PM today), or null nnnnnn archive after nnnnnn
milliseconds of creation. For example, 60000 (fire after 1 min)

java.lang.String numRetries
The number of retry attempts.

java.lang.String user
The user that needs to launch this request or null if the user is not
known.

Throws:

java.rmi.RemoteException
The exception description.

setSessionContext
public void setSessionContext(javax.ejb.SessionContext ctx

throws java.rmi.RemoteException

This method is specified by setSessionContext in the interface
javax.ejb.SessionBean.

Application Program Interfaces

100 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Parameters:

ctx
javax.ejb.SessionContext

Returns:
void

Throws:

java.rmi.RemoteException
The exception description.

UserCondition Interface
com.ibm.epic.bfm.controller

public interface UserCondition

evaluate
public java.lang.Boolean evaluate(java.lang.String event,

java.util.Hashtable context,
java.util.Hashtable input

Parameters:

java.lang.String event
The event to be raised on the adaptive document. If null the
default is the document is initialized.

java.util.Hashtable input
The input Hashtable to be used for the event. The adaptive
document reference can be passed in this Hashtable if the
adaptive document attributes are required in order to write the
logic.

java.util.Hashtable context
The context Hastable to be used for the event.

Returns:

Boolean
Returns True or False.

Application Program Interfaces

Appendix B. Process Broker Services Application Program Interfaces 101

Application Program Interfaces

102 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Notices

This information was developed for products and services offered in the
U.S.A.

IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions; therefore,
this statement may not apply to you.

© Copyright IBM Corp. 2001 103

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or program(s) described
in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM United Kingdom Limited
Intellectual Property Department
Hursley Park
Winchester SO21 2JN
United Kingdom

Such information may be available, subject to appropriate terms and
conditions, including, in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measures may have been made on
development-level systems, and there is no guarantee that these
measurements will be the same on generally available system. Furthermore,
some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the application data of
their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy

Notices

104 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

of performance, compatibility or any other claim related to non-IBM products.
Questions on capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
names of individuals, companies, brands, and products. All of these names
are fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

Notices

Notices 105

106 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Glossary of Terms and Abbreviations

This glossary defines terms and
abbreviations used in Business Integrator. If
you do not find the term you are looking
for, see the IBM Dictionary of Computing,
New York: McGraw-Hill, 1994, or refer to
the Web Site at
http://www.ibm.com/ibm/terminology,
which consolidates several of the main
glossaries created for IBM products in one
convenient location, including:
v Glossary of Computing Terms
v DB2 Glossary
v Tivoli Glossary

The following cross-references are used in
this glossary:

Contrast with This refers you to a term
that has an opposed or
substantively different
meaning.

See This refers you to (a) a
related term, (b) a term that
is the expanded form of an
abbreviation or acronym, or
(c) a synonym or more
preferred term.

A

Active Directory Service Interfacer (ADSI). A
means for client applications to use a common
set of interfaces to communicate with and control
any server that implements them. This allows a
single client application to configure a number of
different servers because it is shielded from API
details specific to each server.

adapter. An element of a solution that provides
semantic adaptations based on specific
interchange schema specified by the message set

and that allows legacy applications to
communicate with the Business Integrator
system.

During run time, the adapter with MQSeries
Adapter Kernel and MQSeries act as the
Information Delivery Manager.

The adapter is output from MQSeries Adapter
Builder under Solution Studio. See the MQSeries
Adapter Builder documentation for a full
definition of adapter.

Contrast with Business Process Integration Adapter.

adaptive document. Part of how Process
Choreography is implemented on Business Flow
Manager. The adaptive document includes state
machine functionality and persistent data. It can
be realized through several approaches.

Different views of the business content are
rendered to the end user by the Interaction
Manager.

application adapter. See adapter.

Application Service Provider (ASP). A
company that offers subscription services for
applications and related services on a
pay-per-use basis. ASPs host, manage and
maintain applications at their own site and make
them available via the Web. This enables smaller
companies or those with limited budgets to take
full advantage of the latest information
technology.

artifacts. The name for the set of all deployable
files that make up a solution. Artifacts can be:

v Executables, for example, enterprise beans,
Java beans, Java Server Pages, servlets,
MQSeries Adapter Offering adapters, and
various class files

v Configuration files, for example, MQSeries
configuration files that control queues, LDIF
(LDAP configuration) files, MQSeries
Integrator MRP files, Policy Director map files,
and files that control personalization

© Copyright IBM Corp. 2001 107

http://www.ibm.com/ibm/terminology

v Other content, for example, HTML files

You create artifacts by means of Solution Studio
and its associated tools such as VisualAge for
Java, MQSeries, MQSeries Integrator, MQSeries
Adapter Offering, WebSphere Application Server,
Partner Agreement Manager, DataInterchange
and others. See solution package.

ASP. See Application Service Provider

Audit Log. The log of messages that are sent
between applications and adapters.

Audit Log server. The Business Integrator
component that allows the storage and retrieval
of audit log information in a DB2 database.

B

B2B. See business-to-business.

B2C. See business-to-customer.

base machine. The machine that contains the
Topology Repository, and the Trust and Access
Manager facility. Depending on the topology
selected, the base machine may also contain
other facilities.

BO. See business object.

BOD. See Business Object Document.

broker. See message broker.

business flow. The business processes, at the
task level, that drive the business.

Business Flow Manager. The Business
Integrator component that controls the flow of
business processes. It can be invoked
programmatically by Interaction Manager, or via
a message from a gateway or an Endpoint. It can
invoke Endpoints.

Business Flow Manager provides a platform for:

v Microflows

v Data objects

v Workflow enterprise beans that invoke and
communicate with MQSeries Workflow

v JMS Listener

v Worker beans

Business Integrator. The short name for IBM
WebSphere Business Integrator.

Business Integrator Log Client. Software that is
installed with most of the facilities of Business
Integrator, and which allows logging at those
facilities.

business object. Data and application objects
that persist data for business entities or tasks that
are used to populate messages exchanged with
other components during run time. Business
objects are reusable Enterprise Java Beans (EJB)
that typically implement a business entity or
task. A business object has both data and
function. For example, a request for quotation
(RFQ) is a business object that might have a
unique identifier, a vendor, and one or more
parts.

Business objects are also known as business data
objects.

Business Object Document (BOD). A
representation of a standard business process
that flows within an organization or between
organizations. Examples are: add purchase order,
show product availability, and add sales order.
BODs are defined by the Open Applications Group
using XML.

business process. The step-by-step flow of
information and actions within one organization
or between two or more trading partners. A
business process can be as simple or complex as
needed to meet the business needs of the
organization or trading partners. See task. There
are several types of business processes. See
private process and public process.

Business Process Integration Adapter. Software
that enables Partner Agreement Manager to work
with the rest of Business Integrator. It packages
XML message payloads from a public process
into message formats that can be transported by
Information Delivery Manager to Endpoints or to
the Business Flow Manager. It packages
messages from Endpoints or the Business Flow
Manager into message formats that can be sent

ASP • Business Process Integration Adapter

108 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

through a public process. The Business Process
Integration Adapter manages the correlation
information that is necessary to bind public
processes in Partner Agreement Manager with
business processes in the Business Flow Manager.

Business Process Managers. The Business
Integrator components that control Business
Integrator. The Business Process Managers are
Trust and Access Manager, Business Flow Manager,
Interaction Manager, Information Delivery Manager,
and Solution Manager.

business-to-business (B2B). Electronic
commerce where a buyer organization buys
goods or services from a merchant organization.

business-to-customer (B2C). Electronic
commerce where a consumer buys goods or
services from a merchant.

C

capacity unit. A measure of the number of
Symmetrical Multiprocessors (SMP) in a
machine. This is used to calculate the license
requirements when you purchase Business
Integrator.

Certificate Authority (CA). A trusted
third-party organization or company that issues
digital certificates used to create digital
signatures and public-private key pairs. The role
of the CA is to authenticate the entities
(individuals or organizations) involved in
electronic transactions. CAs are a critical
component in data security and electronic
commerce because they guarantee that the two
parties exchanging information are really who
they claim to be.

channel. In Partner Agreement Manager, an
encapsulation of all the processing information
needed to send messages to a trading partner’s
system, and to translate data from a trading
partner into Partner Agreement Manager
messages. All Partner Agreement Manager
installations have the PAM-to-PAM channel
installed. Available non-Partner Agreement
Manager channels include the RosettaNet and
XML channel.

ClearCase repository. In Solution Studio, the
storage place for the solution artifacts. Rational
ClearCase manages version control for all of the
artifact files created for each solution.

common systems administration (CSA). Tools
and technology used to implement the Product
Console Launchpad and solution management
framework in Business Integrator. The use of
CSA provides a consistent look and feel within
the system management consoles of Business
Integrator and other IBM products.

correlation identifier. A field in a message that
provides a means of identifying related
messages. Correlation identifiers are used, for
example, to match request messages with their
corresponding reply message.

CRM. See Customer Relationship Management.

CSA. See common systems administration.

Customer Relationship Management (CRM).
The systems and infrastructure required to
analyze, capture, and share all parts of the
customer’s relationship with the enterprise. From
a strategy perspective, CRM represents a process
for measuring and allocating organizational
resources to those activities that have the greatest
return and impact on profitable customer
relationships.

D

DataInterchange. A component of the Business
Integrator that performs messaging between the
trusted zone and an EDI network or virtual
private network. DataInterchange reformats data
for transmission via one or more channels,
transforms data, supports registration of trading
partners, performs auditing and reporting,
supports extensive customization, and provides
APIs for administrative, logging and command
procedures.

DataInterchange can accept messages from the
untrusted zone, perform appropriate processing
and send the message to Endpoints or to the
Business Flow Manager.

Business Process Managers • DataInterchange

Glossary of Terms and Abbreviations 109

Endpoints or the Business Flow Manager can
send messages to DataInterchange which cause
DataInterchange to execute one or more
command procedures to perform one or more
actions, for example, to log on to a mailbox, and
then to check for messages.

DataInterchange adapter. Software that enables
DataInterchange to work with the rest of
Business Integrator.

data object. In the Business Integrator
programming model, a special type of command
that encapsulates access to a data store.

Data Universal Numbering System (DUNS). A
system in which internationally recognized
nine-digit numbers are assigned and maintained
by Dun & Bradstreet to uniquely identify
worldwide businesses.

DB2. An IBM relational database management
system that is available as a licensed program.
Programmers and users of DB2 can create,
access, modify, and delete data in relational
tables using a variety of interfaces.

DB2 XML Extender. An extension to DB2 that
provides data types that let you store XML
documents in DB2 databases and functions that
assist you in working with these structured
documents. Entire XML documents can be stored
in DB2 databases as character data or stored as
external files but still managed by DB2. Retrieval
functions allow you to retrieve either the entire
XML document or individual elements or
attributes.

DCE. See distributed computing environment.

Demilitarized Zone (DMZ). In network
security, a network that is isolated from, and
serves as a neutral zone between, a trusted
network (for example, a private intranet) and an
untrusted network (for example, the Internet).
One or more secure gateways usually control
access to the DMZ from the trusted or the
untrusted network.

deployment. The process of making all the
elements of a solution available to the run-time
system. Compare with publishing.

deployment application. Part of the run time
that unzips the solution package into the
constituent artifacts and that moves the artifacts
to the correct location on each machine in the
run time environment according to the topology.
The deployment application is invoked by the
Solution Deployment Wizard. See artifact and
solution package.

Digital Certificate. A form of electronic ID. The
digital certificate facilitates unique identification
of the entity that holds it. It is issued by a
Certificate Authority (CA).

distributed computing environment (DCE). A
product that assists in networking by providing
such functions as authentication, directory
service (DS), and remote procedure call (RPC).

DMZ. See Demilitarized Zone.

Document Type Definition (DTD). A file
associated with XML documents that defines
how the markup tags should be interpreted by
the application using the document.

DUNS. See Data Universal Numbering System.

Dynamic MBean. An MBean that implements
the DynamicMBean interface, so called because
certain elements of its instrumentation can be
controlled at runtime. See Managed Bean and
contrast with Standard MBean.

E

EAI. See enterprise application integration.

e-business process integration (e-BPI). A
system that enables companies to create, execute,
and manage processes that span diverse
applications, enterprises, and people, and to
manage those processes—as well as the
components that support those processes—as a
unified, extensive, flexible solution.

Business Integrator is an e-business process
integration system.

EDI. See Electronic Data Interchange.

EJB. See Enterprise Java Bean.

DataInterchange adapter • EJB

110 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Electronic Data Interchange (EDI). A method of
transmitting business information over a
network, between trading partners who agree to
follow approved national or industry standards
in translating and exchanging information.

e-market. Where business-to-business buyers
and sellers meet to trade in a virtual market.

Endpoint. A machine within the trusted zone
that contains one or more Endpoint applications,
each with an application adapter that allows
communication with the Business Integrator
system. A Business Integrator system can contain
one or more Endpoint machines. Each Endpoint
machine contains a single Endpoint facility.

Endpoint application. A business application
that resides on an Endpoint machine together
with an application adapter. Endpoint applications
are typically called legacy applications or
enterprise applications. Examples of such
applications are SAP applications.

Endpoint facility. A significant portion of
Business Integrator’s run time functionality that
is installed on each Endpoint machine. An
Endpoint facility provides access via one or more
adapters to Endpoint applications, and enable
messaging within Business Integrator. The
Endpoint facility also helps support deployment
and management of the solution.

Endpoint machine. Synonymous with Endpoint.

element. See solution element.

enterprise application integration (EAI). The
integration of disparate systems and applications
across an enterprise, and the interoperability of
complementary systems and applications
between enterprises.

Enterprise configuration. The version of
Business Integrator used by large enterprises.
Enterprise configuration provides capabilities for
more complex interactions with trading partners
including EDI capability and generalized access
to a Web Application server. Compare with Entry
configuration.

Enterprise Java Bean (EJB). A Java API that
defines a component architecture for multi-tier
client/server systems. EJB systems allow
developers to concentrate on the business
architecture of a model, instead of programming
the connections between components. EJB
systems are platform-independent and
object-oriented, and can be implemented into
existing systems with minimal recompiling and
configuring.

entity bean. A reusable Java component that is
built using the Java Beans technology. Entity
beans model business concepts that can be
expressed as nouns. Entity beans represent data,
so a change to an entity bean results in a change
on a database. Entity beans are persistent; if the
container in which an entity bean is hosted
crashes, the entity bean and any remote
references survive the crash. Contrast with session
bean.

Entry configuration. The version of Business
Integrator used by small companies and
departments of large enterprises. Entry
configuration enables trading partners to
participate in e-markets with a limited initial
investment and relatively low level of
complexity. It allows peer-to-peer or
spoke-to-hub participation in electronic markets.
Compare with Enterprise configuration.

EPAC. See Extended Privilege Attribute Certificate.

event. In the context of Partner Agreement
Manager, a piece of information that comes into
Partner Agreement Manager as a message from
another source (an enterprise system or business
application, for example) and and which triggers
a public process.

Exception Management server. The Business
Integrator component that allows the storage and
retrieval of exception information in a DB2
database.

Extended Privilege Attribute Certificate
(EPAC). A certificate that contains authorization
information specific to the user, for example,
details of groups to which the user belongs.
EPACs are used to authorize users; that is, to

Electronic Data Interchange (EDI) • Extended Privilege Attribute Certificate
(EPAC)

Glossary of Terms and Abbreviations 111

help a server decide whether users should be
granted access to resources that the server
manages.

Extensible Markup Language (XML). A
standard metalanguage for defining markup
languages that was derived from and is a subset
of Standard Generalized Markup Language
(SGML). XML omits the more complex and
less-used parts of SGML and makes it much
easier to (a) write applications to handle
document types, (b) author and manage
structured information, and (c) transmit and
share structured information across diverse
computing systems. The use of XML does not
require the robust applications and processing
that is necessary for SGML.

extension action. A private process action that
communicates, via an adapter, with an external
application that is registered with Partner
Agreement Manager. You can use an extension
action, for example, to get information from an
enterprise system or listen for an event in the
enterprise system. See also adapter, private process.

F

facility. In Business Integrator, an indivisible
unit of installation that must be completely
installed on one machine. A machine contains
one or more facilities. Several facilities installed
on a single machine may contain a number of
common components, in which case those base
components are shared amongst the facilities and
not multiply installed.

FDL. See MQSeries Workflow Definition Language.

firewall. A functional unit that protects and
controls the connection of one network to other
networks. The firewall (a) prevents unwanted or
unauthorized communication traffic from
entering the protected network and (b) allows
only selected communication traffic to leave the
protected network.

G

gateway. A type of component of the Business
Integrator that performs messaging between the
trusted zone and the Internet or an EDI network.

There are two gateways:

v Partner Agreement Manager, for the Internet

v DataInterchange, for EDI

Global Secure Toolkit (GSK). A toolkit for
managing digital certificates used in
implementing Secure Sockets Layer (SSL)
security.

H

HTTP. See Hypertext Transfer Protocol.

HTTP Server. The component of WebSphere
Application Server that provides secure Web
Server functionality.

Hypertext Transfer Protocol (HTTP). The
protocol used by the Internet to transfer HTML
and other information from servers to browsers
and other servers.

I

Information Delivery Manager. The Business
Integrator component that sends messages:

v Between the gateways and the Business Flow
Manager

v Between the Business Flow Manager and
Endpoints

v Between the gateways and Endpoints

The messages are typically in a common
canonical format, that is, in an
application-neutral format such as a Business
Object Document in XML.

The Information Delivery Manager can perform
assured delivery of messages, transformation of
data elements and related functionalities, routing
of messages, and message brokering. This
functionality is performed by MQSeries Adapter
Kernel with adapters that you build with

Extensible Markup Language (XML) • Information Delivery Manager

112 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

MQSeries Adapter Builder, along with MQSeries
for assured delivery, and optionally MQSeries
Integrator for message brokering services such as
complex routing, data transformation, and data
mediation.

instrument. In application or system software,
to use monitoring functions to provide
performance and other information to a
management system.

instrumentation. In application or system
software, either (a) monitoring functions that
provide performance and other information to a
management system or (b) the use of monitoring
functions to provide performance and other
information to a management system.

Interaction Manager. The Business Integrator
component that helps to render a view of a
business entity that is appropriate to the role of
the end user based on their authorization and
the point in the business process. Interaction
Manager gets the content of the view that it will
render from the Business Flow Manager, as the
result of the Business Flow Manager’s
processing.

How the content is rendered depends on the
target device used to view the content. For
example, presentation on a Web browser might
be different from the presentation on a personal
digital assistant.

Interaction Manager is not involved when the
content of the view is delivered by one of the
gateways.

Internet Inter-ORB Protocol (IIOP). A protocol
used for communication between CORBA object
request brokers.

J

J2EE Connector Architecture. An architecture
for the integration of J2EE products with
enterprise information systems. The architecture
has two parts: a resource adapter provided by an
enterprise information system vendor, and the
J2EE product that allows this resource adapter to
plug in.

Java 2 Platform, Enterprise Edition (J2EE
platform). An environment for developing and
deploying enterprise applications. The J2EE
platform consists of a set of services, APIs, and
protocols that provide functionality for
developing multi-tiered, Web-based applications.

Java Authentication and Authorization Service
(JAAS). A Java package that enables services to
authenticate users and enforce access controls
upon them.

Java Cryptography Extension (JCE). A
framework and implementations for encryption,
key generation and key agreement, and Message
Authentication Code (MAC) algorithms. JCE is
used by Partner Agreement Manager for
certificate-based authentication

Java Database Connectivity (JDBC). An
industry standard for database-independent
connectivity between the Java platform and a
wide range of databases. JDBC provides a
call-level API for SQL-based database access.

Java Development Kit (JDK). A software
package used to write, compile, debug, and run
Java applets and applications.

Java Management Extensions (JMX). A means
of doing management of and through Java
technology. JMX was developed through the Java
Community ProcessSM program, by Sun
Microsystems, Inc. and some leading companies
in the management field. JMX is a universal,
open extension of the Java programming
language for management that can be deployed
across all industries, wherever management is
needed.

Java Message Service (JMS). An API for using
enterprise messaging systems such as IBM
MQSeries.

Java Naming and Directory Interface (JNDI). A
set of application programming interfaces that
assist with interfacing to multiple naming and
directory services.

instrument • Java Naming and Directory Interface (JNDI)

Glossary of Terms and Abbreviations 113

Java Runtime Environment (JRE). A subset of
the Java Development Kit (JDK) comprising the
Java Virtual Machine (JVM), the Java core classes,
and supporting files.

Java Secure Socket Extension (JSSE). A Java
package that enables secure Internet
communications. It implements a Java version of
the Secure Sockets Layer (SSL) and Transport
Layer Security (TSL) protocols and supports data
encryption, server authentication, message
integrity, and optionally client authentication.
JSSE is used by Partner Agreement Manager for
certificate-based authentication

Java Server Pages (JSP). An extensible Web
technology that uses template data, custom
elements, scripting languages, and server-side
Java objects to return dynamic content to a client.
The template data is typically HTML or XML
elements, and the client is often a Web browser.

Java Virtual Machine (JVM). A software
implementation of a central processing unit
(CPU) that runs compiled Java code (applets and
applications).

JCE. See Java Cryptography Extension

JCX. A deprecated abbreviation for J2EE
Connector Architecture.

JDBC. See Java Database Connectivity.

JDK. See Java Development Kit.

JMS. See Java Message Service.

JMS Listener. Part of the Business Flow
Manager that is started as a WebSphere service.
The JMS Listener, in concert with a worker bean,
decides which enterprise bean in the Business
Flow Manager to invoke. The JMS Listener
monitors a JMS queue that is associated with a
worker bean. It receives the message from the
queue and passes it to the worker bean, which
then determines the enterprise bean to invoke
based on the content of the message.

The JMS Listener is configured through its own
XML file, and in WebSphere’s Class of Service
Naming service.

JMX. See Java Management Extensions.

JNDI. See Java Naming and Directory Interface.

JRE. See Java Runtime Environment.

JSP. See Java Server Pages.

JSSE. See Java Secure Socket Extension.

JVM. See Java Virtual Machine.

L

LDAP. See Lightweight Directory Access Protocol.

Lightweight Directory Access Protocol (LDAP).
An open protocol that (a) uses TCP/IP to
provide access to directories that support an
X.500 model and (b) does not incur the resource
requirements of the more complex X.500
Directory Access Protocol (DAP). Applications
that use LDAP (known as directory-enabled
applications) can use the directory as a common
data store for retrieving information about
people or services, such as e-mail addresses,
public keys, or service-specific configuration
parameters.

Lightweight Third Party Authentication
(LTPA). An authentication framework that
allows single sign-on across a set of Web servers
that fall within an Internet domain.

logical topology view. A view of a topology
that shows a tree structure in terms of the
facilities of Business Integrator and their base
products. See topology and facility.

M

Managed Bean (MBean). According to the Java
Management Extensions (JMX) specification, the
Java objects that implement resources and their
instrumentation are called Managed Beans, or
MBeans for short. MBeans must follow the
design patterns and interfaces defined in the
instrumentation level of the JMX specification.
This ensures that all MBeans provide the
instrumentation of managed resources in a
standardized way. MBeans are manageable by

Java Runtime Environment (JRE) • Managed Bean (MBean)

114 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

any JMX agent, but they may also be managed
by non-compliant agents that support the MBean
concept. See also Java Management Extensions,
Standard MBean, and Dynamic MBean.

MBean Server. A set of services for handling
MBeans.

message broker. (1) A set of executing processes
hosting one or more message flows. MQSeries
Integrator is an example of a message broker. (2)
The Business Integrator facility that works with
existing messaging transports by adding both
routing intelligence and the ability to convert
data from one protocol to another. It analyzes a
message to determine the application to receive it
(rules engine). It then converts the data into the
structure that the receiving application requires.

microflow. Part of a solution, that is modeled as
a Java Service Adapter in MQSeries Adapter
Builder. A microflow is deployed as stateless
session beans, Java beans, and Java classes,
which at run time are part of the Business Flow
Manager, running under WebSphere Application
Server. A microflow can also can invoke
Endpoints, MQSeries Integrator and MQSeries
Workflow.

Microsoft Management Console (MMC). An
extensible user interface that provides an
environment for running management
applications structured as components called
snap-ins.

middleware. The software that provides the
links between applications.

MMC. See Microsoft Management Console.

MQSeries. An IBM licensed program that
provides reliable message queuing and
associated services across a range of platforms.

MQSeries Adapter Builder (MQAB). One of
the MQAO set of products, MQAB uses a visual
interface to help build an adapter for virtually
any application and to build microflows.

MQSeries Adapter Kernel (MQAK). One of the
MQSeries Adapter Offering set of products that
provides common runtime services. In the

Business Integrator run time, MQAK, together
with MQSeries, and optionally MQSeries
Integrator, acts as the Information Delivery
Manager.

MQSeries Adapter Offering (MQAO). A set of
application integration products that work with
MQSeries messaging to reduce the risk,
complexity and cost of managing point-to-point
application integration. MQAO allows you to
create adapters that use a standard interface that
remains stable even though the application
changes. The interface is typically based on
Business Object Documents (BOD), message
format standards defined by the Open
Applications Group Inc (OAG).

The MQAO is a set of products that includes
MQSeries Adapter Builder (MQAB) and
MQSeries Adapter Kernel (MQAK).

MQSeries classes for Java Message Service
(JMS) (MQ JMS). A set of Java classes, that
implement Sun’s Java Message Service (JMS)
interfaces to enable JMS programs to access
MQSeries systems.

MQSeries Integrator (MQSI). A product that
works with MQSeries messaging, extending its
basic connectivity and transport capabilities to
provide a powerful message broker solution
driven by business rules.

MQSeries Integrator User Name Server. A
component of MQSI that can be used to provide
authentication of users and groups performing
publish/subscribe operations. At least one of
these may be used for each domain, to manage
the access paths to resources.

MQSeries Publish/Subscribe. An MQSeries
product that allows you to decouple the provider
of information from the consumers of the
information. An application can send information
to a destination managed by MQSeries
Publish/Subscribe, which deals with the
distribution of the information.

MQSeries Workflow. An MQSeries product
that manages workflow. MQSeries Workflow is
used to design, refine, document, and control
business processes.

MBean Server • MQSeries Workflow

Glossary of Terms and Abbreviations 115

MQSeries Workflow Definition Language
(FDL). The language used to exchange
MQSeries Workflow information between
MQSeries Workflow systems.

N

node. In Business Integrator one of the points in
a topology view. Depending on the type of view, a
node might correspond to a machine, facility,
base product, solution element, or solution artifact.

non-repudiation. In business-to-business
communication the ability of the recipient to
prove who sent a message based on the contents
of the message. This can derive from the use of a
digital signature on the message, which links the
sender to the message.

O

Object Management Group (OMG). A group of
vendors formed for the purpose of creating a
standard architecture for distributed objects in
networks. The architecture that resulted is the
Common Object Request Broker Architecture
(Common Object Request Broker Architecture).
See also XML Metadata Interchange.

Open Applications Group (OAG). A non-profit
industry consortium comprised of many
prominent stakeholders in the business software
component interoperability arena. The OAG
defines Business Object Documents (BOD).

P

PAM Proxy Server. Software that resides in the
DMZ and which performs access control on
inbound messages from business partners to
Business Integrator and on outbound messages
from Business Integrator to business partners.

PAM-to-PAM channel. A channel that is
ready-installed in Partner Agreement Manager.

Partner Agreement Connect. A limited licence
version of Partner Agreement Manager that
allows a customer to participate in a public

process defined by a trading partner, but does
not allow the authoring of new public processes.

Partner Agreement Manager.

The Business Integrator component that
implements the public process and trading partner
agreements.

Partner Agreement Manager is a separately
purchased, optional component, of both the
Entry configuration and Enterprise configuration
of Business Integrator.

Partner Agreement View. (1) A product that
provides an interface that allows the seamless
integration of Partner Agreement Manager with
Web applications. (2) The Business Integrator
facility that encapsulates Partner Agreement
View.

physical topology view. A view of a topology
that shows a tree structure in terms of the
machines in the topology, the facilities installed
on those machines, and their base products. See
topology and facility.

Platform Console. The Business Integrator
console used to monitor and manage the
Business Process Managers and components of
Business Integrator and, through the Solution
Deployment Wizard to deploy solution packages
onto the runtime system.

point-to-point messaging. Data transmission
between two locations without the use of any
intermediate display station or computer.

predefined topology. A topology,
corresponding to a tested configuration, that can
be selected at installation time. A number of
predefined topologies are shipped with Business
Integrator to allow for different business needs
and complexity of solution.

private process. A trading partner’s internal
sequence of actions for its steps in the public
process. Although all trading partners in a public
process see and agree to its flow, the trading
partner that develops a private process is the
only one that can ever see it.

MQSeries Workflow Definition Language (FDL) • private process

116 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

process choreography capability. The name of
the capability in Business Integrator that:

v Aggregates business content that is managed
by a variety of underlying processes (also
known as tasks). One underlying process might
be performed by MQSeries Workflow, another
might be performed by an Endpoint application.
Processes can be performed by different
organizations.

v Provides the output of an underlying process
to one or more other underlying processes that
might need it as an input.

v Based on the states of the underlying
processes, assigns one state to the overall
business process.

v Assigns security privileges to each of the
participants across the set of processes.

v Dynamically delivers different views of the
business content, based on the point in the
business process at which the business content
is accessed and on the role of the participant
who accesses it.

v Manages the life cycle of the business process.

In summary, the process choreography capability
coordinates the set of underlying processes that
make up a business process, to align the business
process with changing business conditions. Many
things can happen at any time that can affect
what the business process should do next. To
align the business process with changing
business conditions, the process choreography
capability synchronizes information across
multiple underlying processes. It maintains the
state of the business process apart from the main
process.

The process choreography capability is key to
understanding how Business Integrator adds
value beyond the value of the individual
underlying products and technologies that are
part of Business Integrator.

The adaptive document is part of how the process
choreography capability is implemented.

process state. The current state of a business
process.

Product Console Launchpad. The graphical
user interface used to monitor the runtime
system of Business Integrator and launch the
management consoles of base products of
Business Integrator. The Product Console
Launchpad provides a wizard to facilitate the
addition of new product consoles to the
launchpad.

program client. A Business Integrator client that
provides for the automated interchange of
business documents with trading partners by
responding to program requests and maintaining
a relationship with requesting programs.

project. In the build time of Business Integrator,
the project organizes and contains all artifacts of
a single solution. The project and its artifacts are
stored in the Clear Case server and in the
WebSphere Studio Project, on a mapped network
drive that can be shared by a team creating a
solution together. You employ the project to
organize the work-in-progress files during
creation of a solution and the artifacts that result
when creation is complete. Project is a
WebSphere Studio term.

public process. The step-by-step flow of
information and actions between two or more
trading partners. One trading partner develops
the public process, and all trading partners
involved review and accept the process before it
is implemented. The trading partner that designs
a process is its owner. See private process.

publishing. The process of preparing a solution
package using Solution Studio. The solution
package is deployed to the runtime system by
the deployment application. See also deployment.

Publishing Wizard. The wizard within Solution
Studio that is used to prepare a solution package.
Contrast with Solution Deployment Wizard.

publish/subscribe. See MQSeries
Publish/Subscribe.

Q

QoS. Quality of service.

process choreography capability • QoS

Glossary of Terms and Abbreviations 117

queue manager. (1) A program that provides
queuing services to applications. It provides an
application programming interface to enable
programs to access messages on the queues that
the queue manager owns. (2) An object that
defines the attributes of a particular queue
manager.

R

Rational ClearCase. A product used by Solution
Studio to enforce version control, provide change
management, and as a repository for solution
templates, elements, and artifacts. ClearCase is
jointly developed between IBM and Rational.

receiver channel. A channel that moves
messages from the target to the source machine.

Remote Method Invocation (RMI). A
distributed object model for Java program to Java
program, in which the methods of remote objects
written in the Java programming language can
be invoked from other Java virtual machines,
possibly on different hosts.

repudiation. Backing out of, or denying taking
part in, an e-business transaction.

RMI. See Remote Method Invocation.

role-based desktop. A view rendered in a user’s
browser that provides access to the services the
user is authorized to access when they log on to
a solution. For example, a user with a defined
role of buyer typically has authorization to create
and view purchase orders, or a user with a role
of administrator typically has authorization to
add users and change passwords. In Business
Integrator access to the specific services for each
user is rendered in the user’s browser.

RosettaNet. A non-profit organization that seeks
to implement standards for supply chain
management transactions on the Internet. The
group includes companies such as Microsoft,
Netscape, and IBM, and is working to
standardize labels for elements such as product
descriptions, part numbers, pricing data, and
inventory status. The group aims to implement
many of its goals through XML.

RosettaNet channel. A type of channel in
Partner Agreement Manager.

S

SCM. See Supply Chain Management

SecureWay Directory. A Lightweight Directory
Access Protocol (LDAP) cross-platform, highly
scalable, robust directory server for security and
e-business solutions.

SecureWay Policy Director. A Tivoli product
that provides highly available, centralized,
authentication, authorization, and user
management.

SecureWay Policy Director WebSEAL. The
authentication component of SecureWay Policy
Director, the product that provides highly
available, centralized, authentication,
authorization, and user management.

sender channel. A channel that moves messages
from the source to the target machine.

service. In the Business Integrator programming
model, a set of command operations that is
exposed within a public process or a private
process.

servlet. An application program, written in the
Java programming language, that is executed on
a Web server. A reference to a servlet appears in
the markup for a Web page, in same way that a
reference to a graphics file appears. The Web
server executes the servlet and sends the results
of the execution (if there are any) to the Web
browser.

session bean. An enterprise bean that is created
by a client, that usually exists only for the
duration of a single client/server session, and
which is responsible for managing processes and
tasks. A session bean may be transactional, but it
is not recoverable if a system crash occurs.
Session bean objects can be either stateless or
they can maintain conversational state across
methods and transactions. Contrast with entity
bean.

queue manager • session bean

118 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

solution. The realization of a business process.
The solution is an instance of a solution
template. At build time, you build a solution
template and employ the project to organize and
contain its artifacts. Before deployment the
solution is published to create a solution
package, and at run time, solutions are deployed,
sometimes customized for the run time
environment, and then run. When it is running
in production, the solution is key to Business
Integrators added value.

See business process, solution template, artifacts.
solution package and deployment application.

solution artifact. See artifact.

Solution Console. An extensible application
providing a unified view of selected aspects of a
solution and solution services at the application
level. Solution Console is a web-enabled interface
that provides access to data that is persisted in
the Audit Log server, the Exception Management
server, and Trace server databases.

Solution Deployment Wizard. A wizard called
from the Platform Console that invokes the
deployment application to deploy a solution package
onto the runtime system. The wizard also allows
the redeployment of solution packages that have
already been deployed, or partly deployed.

solution elements. The component parts of a
solution. An element is a group of artifacts that
is installed on one machine. Typical elements of
solutions include: Business Processes Model,
System Registry, Business Objects, application
adapters, Business Flow, Web Clients, and
Program Clients.

Solution Manager. The software that provides
the infrastructure for monitoring and managing
the Business Integrator system. This includes the
Platform Console, Product Console Launchpad and
Solution Console, which are used to manage the
Business Integrator system and solution.

Solution Manager Client. Software that is
installed with most of the facilities of Business
Integrator, and which provides the solution
management and deployment frameworks. These
frameworks consist of Java Management Extensions

(JMX) and Managed Beans (MBeans) to support
the management of solutions and deployment of
artifacts.

solution package. A zip file comprising solution
elements, metadata, and scripts created by the
publishing process of Solution Studio. The
metadata contains information that determines
how solution elements will map to machines and
facilities in the runtime system. The scripts are
used by the deployment application in the
deployment of the solution to the runtime
system.

Solution Services. Services provided by
Solution Manager that include audit logging,
tracing, events, and exception management.

Solution Studio. The Business Integrator
component that is used to define the business
processes and assemble the solution.

Solution Studio wizards. Wizards provided by
Solution Studio for use in developing solutions.
The wizards perform a variety of tasks. For
example, many of the tools (products such as
MQSeries Adapter Builder) that you use to create
the solution artifacts are launched by using
Solution Studio wizards. These wizards are also
used to store the created artifacts in the project
folders in the ClearCase repository. Solution Studio
provides online help for using the wizards.

solution template. In build time, a
representation of the business process that the
solution is intended to carry out later at run
time. In a business domain, such as supply chain
management, the solution template defines the
following:

v A business process model that defines the
business process, for example, in the areas of
enterprise integration, planning, forecasting,
replenishment, scheduling, order management,
and transportation. A typical business process
is “purchase order”.

v A system registry that defines the run-time
repository that contains system configuration
and solution-specific information such as
users, roles, and trading partner profiles.

solution • solution template

Glossary of Terms and Abbreviations 119

v Business objects, which define the distributed
objects necessary to support the business
process.

v Adapters, which define the connection
between gateways, the Business Flow Manager
and Endpoints.

v Business flow, which provides a detailed view
of the business process.

You model and create the solution template
through Solution Studio, and publish the
solution template as a solution in a solution
package.

Solution templates typically can be reusable
assets, and are key to Business Integrator’s
added value.

solution topology view. A view of a topology
that shows a tree structure in terms of the
elements and artifacts that make up a solution
instance. See topology, facility and solution.

Standard Bean. A class that implements its own
MBean interface, See Managed Bean and contrast
with Dynamic MBean.

stateful session bean. A session bean that has a
conversational state.

state machine. Software that defines one or
more states with multiple transitions. Each
transition contains a to-state, transition event,
conditions, and a set of actions (or commands).
For the transition to go to the next state (the
to-state), it must successfully execute all the
actions defined for the current state. In Business
Integrator, a state machine can be realized in a
microflow.

stateless session bean. A session bean that has
no conversational state. All instances of a
stateless session bean are identical.

Supply Chain Management (SCM). The
management of resources, functions, and
sequence of processes used by organizations
involved in the supply of raw materials and
products, and their delivery to manufacturers,
wholesalers, retailers, and finally consumers.
Business Integrator provides SCM in terms of

integrated design, development, and deployment
tools for creating solutions that manage the
supply of goods and services between supplier
and consumer.

T

task. A step in the business process.

topology. A definition of the arrangement of
physical machines, together with the software
products and components installed on these
machines, that make up a Business Integrator
runtime environment. A number of predefined
topologies are shipped with Business Integrator,
and one of these is selected at installation time.

Topology Repository. An XML file that stores
the details of the machines, facilities and
products that make up the topology. The
Topology Repository is accessed by Business
Integrator runtime components and used to
display topology views.

Topology Server. The software that creates, and
controls access, to the Topology Repository.

topology type. The identification of an object in
the topology repository, for example, computer
systems, facilities and products are topology
types. Each topology type can have zero, one, or
more properties, which can be displayed using
the Platform Console or Product Console
Launchpad.

topology view. A view of the topology in terms
of either the logical, physical, or solution-related
elements of the topology. You can use both the
Product Console Launchpad and the Platform
Console to display a logical topology view, physical
topology view, or a solution topology view.

Trace server. The Business Integrator
component that allows the storage and retrieval
of trace information in a DB2 database.

trading partner agreement (TPA). The formal
agreement between trading partners.

transition. A change in state when certain
conditions are met.

solution topology view • transition

120 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

transmission queue. A queue that stores the
messages that are to be sent across a channel.

Trust and Access Manager. The Business
Integrator software components that control
access to the system and its associated business
applications. The Trust and Access Manager
provides authorization, authentication, and
directory services for Business Integrator. Trust
and Access Manager grants users and other
business applications access, based on their
authorized solutions and roles. The audit and
logging capabilities of Trust and Access Manager
allow administrators to monitor the system for
security breaches.

TPA. See trading partner agreement.

U

UML. Unified Modeling Language. A
general-purpose notational language for
specifying and visualizing complex software,
especially object-oriented projects. UML builds
on previous notational methods such as Booch,
OMT, and OOSE.

UNS. Short for User Name Server. See MQSeries
Integrator User Name Server.

utilities. In the context of Solution Studio,
executable software and associated
documentation that can prove useful in building
and running solutions. Utility software can be
found in the utilities directory in Solution Studio.

W

WebDAV. An abbreviation for Web Distributed
Authoring and Version. It is a set of extensions to
the HTTP protocol that allows users to
collaboratively edit and manage files on remote
web servers.

Web Proxy Server. Software that resides in the
DMZ and which performs access control on
inbound messages from Web clients to Business
Integrator

WebSeal. See SecureWay Policy Director
WebSEAL.

WebSphere. A family of IBM software products
that provides a development and deployment
environment for basic Web publishing and for
transaction-intensive, enterprise-scale e-business
applications.

WebSphere Application Server. An e-business
application deployment environment built on
open standards-based technology. The Advanced
Edition is a high-performance EJB server for
implementing EJB components that incorporate
business logic.

worker bean. An enterprise bean that, in
concert with a JMS Listener, decides which
enterprise bean in the Business Flow Manager to
invoke. See JMS Listener for information about
how they work together.

Worker beans are configured through the LDAP
directory.

worker message bean. Synonymous with worker
bean.

workflow. The sequence of activities performed
in accordance with the business processes of an
enterprise. For a full definition, refer to the
MQSeries Workflow documentation.

X

X.500. The directory services standard of ITU,
ISO, and IEC.

XML. See Extensible Markup Language.

XML channel. A type of channel in Partner
Agreement Manager.

XML Metadata Interchange (XMI). A proposal
from the Object Management Group that uses the
Extensible Markup Language (XML) to provide a
standard way for programmers and other users
to exchange information about metadata
(essentially, information about what a set of data
consists of and how it is organized). XMI is
intended to help programmers using the Unified
Modeling Language with different languages and
development tools to exchange their data models
with each other. XMI can also be used to
exchange information about data warehouses.

transmission queue • XML Metadata Interchange (XMI)

Glossary of Terms and Abbreviations 121

The XMI format standardizes the way in which
any set of metadata is described and requires
users across many industries and operating
environments to see data the same way.

122 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Bibliography

This bibliography lists the books in the IBM WebSphere Business Integrator
and associated libraries.

IBM WebSphere Business Integrator library

The Business Integrator library consists of the following books:
v WebSphere Business Integrator Concepts and Planning, GC34-5960

This book introduces the Business Integrator system, providing a high-level
system overview, defining the system capabilities, and describing its value
to e-businesses. This book also provides the information that you need to
plan the installation of Business Integrator.

v WebSphere Business Integrator Installation Guide for Windows NT, GC34-5961

This book is a guide to installing and configuring Business Integrator, It
contains information about:
– Selecting your required topology
– Installing and configuring the base products and software components of

Business Integrator on each machine in the topology
– Installing and configuring firewalls and proxies

v WebSphere Studio Business Integrator Extensions Installation Guide, SC34-5962

This book is a guide to installing and configuring Solution Studio, It also
contains information about setting up clients and servers, and creating
projects.

v WebSphere Business Integrator Run Time

This book is a comprehensive guide to the Business Integrator runtime
system, providing the following information:
– Detailed conceptual information about the runtime components of

Business Integrator.
– Deployment of solutions to the runtime system
– System administration, such as starting and stopping software

components and base products, defining users, and using the Exception
Console.

– General problem determination information, including how to trace and
debug, and information on obtaining help from technical support

© Copyright IBM Corp. 2001 123

v WebSphere Business Integrator Messages

This book lists the error messages that are produced by Business Integrator
and provides references to the documentation for the messages of base
products.

v WebSphere Studio Business Integrator Extensions Developer’s Guide

This book describes how to create a Business Integrator solution, beginning
with the solution design phase, to the solution implementation phase, and
finally the solution deployment phase using a sample business problem.
This book also provides procedures for assembling a Business Integrator
solution in the run-time environment and a description of how to use the
Solution Studio for solution design and implementation.

v WebSphere Business Integrator DataInterchange for Windows NT User’s Guide,
SC34-5963

This book is a guide to installing and using DataInterchange, in the
Business Integrator environment.

v WebSphere Business Integrator Solution Samples,

This book discusses the two sample templates provided with Business
Integrator and Solution Studio, the user-registration sample and the
purchase-order management sample. It provides instructions for
developing, deploying, and running the samples; it also discusses the
programming model for Business Integrator Version 2.x.

v WebSphere Business Integrator Process Broker Services Installation and
Configuration Guide,

This book explains how to install and configure Process Broker Services.
v WebSphere Business Integrator Process Broker Services Concepts Guide,

This book introduces the concepts involved in the Process Broker Services
component of the Business Integrator system. This book also includes
information on a sample that uses Process Broker Services.

v WebSphere Business Integrator Process Broker Services Developer’s Guide,

This book explains how to use the Application Programming Interfaces
provided by Process Broker Services to create and build solution artifacts.
This book also provides code samples for many of these interfaces to enable
developers to understand how to implement the interfaces provided by
Process Broker Services.

v WebSphere Business Integrator Data Access Object Utility Installation and User’s
Reference,

This book describes how to install the Data Acess Object utility and
explains the concept of using XML to represent SQL queries for data
retrieval. This book is for solution developers who want to use XML to
create database queries.

You can find the latest versions of the books at the following Web site:

124 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

http://www-4.ibm.com/software/webservers/btobintegrator/

This site contains links to the Web sites of the underlying products of IBM
WebSphere Business Integrator.

Related documentation
WebSphere Business Integrator also provides a number of external application
programming interfaces (API). HTML documentation that is generated using
the Javadoc tool is provided for these APIs. For a list of the APIs, refer to the
WebSphere Business Integrator Run Time book.

Bibliography 125

http://www-4.ibm.com/software/webservers/btobintegrator/

WebSphere Partner Agreement Manager library

The Partner Agreement Manager Version 2 Release 2 library consists of:
v Partner Agreement Manager Installation Guide, GC34-5964
v Partner Agreement Manager Administrator’s Guide

v Partner Agreement Manager User’s Guide

v Partner Agreement Manager Adapter Developer’s Guide

v Partner Agreement Manager Script Developer’s Guide

v Partner Agreement Manager External API Guide

v Partner Agreement Manager Adapters for MQSeries User’s Guide

v Partner Agreement Manager Channel Toolkit Configuration Guide

v Partner Agreement View User’s Guide, GC34-5965
v B2B Alliance Manager iForms User’s Guide,

v WebSphere Partner Agreement Manager Business Process Integration Adapter
Guide.

DataInterchange library

The DataInterchange Version 3 Release 1 library consists of:
v DataInterchange Client User’s Guide, SB34-2010
v DataInterchange Administrator’s Guide, SB34-2002
v DataInterchange Installation Guide, GB09-8070
v DataInterchange Messages and Codes, SB34-2000
v DataInterchange Programmer’s Reference, SB34-2001

Other Libraries

You can find important information in the libraries of the following products:
v DB2® UDB

– IBM DB2 Universal Database Quick Beginnings Version 6.1 , S10J-8149
v MQSeries®

– MQSeries for Windows NT Quick Beginnings, GC34-5389
– MQSeries System Administration, SC33-1873
– MQSeries Using Java, SC34-5456
– MQSeries MQSC Command Reference, SC33-1369
– MQSeries Queue Manager Clusters, SC34-5349
– MQSeries Integrator Introduction and Planning, GC24-5599
– MQSeries Integrator for Windows NT Installation , GC34-5600
– MQSeries Workflow Getting Started with Buildtime, SH12-6286

126 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

– MQSeries Workflow Getting Started with Runtime, SH12-6287
– MQSeries Adapter Kernel for Multiplatforms: Quick Beginnings, GC34-5855
– MQSeries Adapter Kernel for Multiplatforms: Problem Determination Guide,

GC34-5897
– MQSeries Adapter Builder for Windows NT: Using the Control Center,

GC34-5882
v SecureWay®

– SecureWay Policy Director Up and Running, SCT6-3KNA
– SecureWay Policy Director Base Administration Guide

– SecureWay Firewall User’s Guide, CG31-8658
v VisualAge®

– VisualAge Java, Enterprise Edition Getting Started

– VisualAge C++ Professional for Windows NT Getting Started

v WebSphere™ Application Server
– Introduction to WebSphere Application Server, SC09-4430

Bibliography 127

128 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

Index

Special Characters
_context parameter 78
<Solution>AdocDebug flag 66
_inputList 78

A
A1ActivityController.xml 11
ACCEPTFILECHANGE parameter 59, 67
access, role-based 17
action element, xml 15
activity

controllers 10, 16
default 12
naming convention 11

activity mediator 55
activity mediator pattern diagram 56
ACTIVITYID parameter 45
ACTIVITYNAME parameter 45
ACTIVITYVARS 25, 45
adaptive document

archiving 47
associating controllers 11
building 4
controllers 5, 10
description 4
diagram 10, 16
errors

controller initialization 62
link exception 62
transaction rollback 62

naming convention 4
querys 39
removing 49
revived 48
solution diagram 4

adding
enterprise bean grup 5

AdocArchival 24
AdocArchivalHandler 48, 50
AdocDebug flag 66
AdocDetails 48, 73, 89, 91
AdocEvents class 81
adocId 69, 70, 73, 75, 78, 79, 81
AdocInitializationWithGeneratedId 24
AdocInitializationWithGivenId 24
AdocProxy class 59, 82
ADOCREFERENCE parameter 43, 45
AdocRemoval 24
AdocRemovalHandler 49, 50

ADOCSTRLEN 67
adocType 70, 72, 73, 74, 76, 78
archive method 9, 82
archive method example 48
archiveAdoc 69

adocId parameter 69
ArchivedAdoc 48
artifacts

building 3
deployding 3
deploying 3

attlist command Id 19
attlist receiver 28
attlist receiver Id 28
attlist statemachine id 14
audit directive example 15
audit logs, generate 32
automatic activities 44

B
BaseDebug flag 66
bfm.client.jar 33
BFM properties file 10, 11, 44, 48, 49, 51, 52, 59, 62, 65
bfm.samples.client.jar 33
bfm.sdk.zip 50
BFMAdminbean 33, 69
BFMAdminDebug flag 66
BFMAIQ, input queue 41
Body Secondary Type 42
bodycategory parameter 42, 77
bodytype parameter 42, 77
building adaptive documents 4
building solution artifacts 3
Business Flow Manager Access Bean 33
Business Flow Manager message receiver 41

C
caching, receiver 59
checklist, troubleshooting 61
claimPBS

an activity 26
classes

AdocDetails 89, 91
AdocEvents 81
AdocProxy 59, 82
BFMAdminBean 69
DefaultGenericServiceRequestHandler 86
MyCondition 18, 36
PBSEventInput 36, 87
PBSEventOuput 36, 88

© Copyright IBM Corp. 2001 129

classes (continued)
TimerServiceBean 91

clients
Messaging 33, 41
Web 33

command.dtd 19, 22, 25
command element, xml 19, 21
command Id, attlist 19
command.xml file 12, 20, 21
commandgroup dtd 20
commandGroup element, xml 21
commandGroup Id element, xml 21
commandGroup.xml file 21
commandGrplist element, xml 21
commandId parameter 78
commandlist element, xml 19
commands

scheduler 21
workflow 25

completePBS 26
condition element, xml 15, 17
conditions, user-defined 18
constructor 51
context parameter 78, 80
controller.dtd 14
ControllerDebug flag 66
controllers

activity 10, 16
adaptive document 10
associating adaptive document 11
default activity 12
defining 11, 14
file locations 65
initialization error 62
naming convention 11
state diagram 16

Correlation Id paramter 42, 77
createAdoc 69, 70

adocId parameter 70
adocType parameter 70

createAdocIdReturn 70
adocType parameter 70

creating
controllers 10
enterprise bean group 5

D
default activity controller 12
defining

activity controller 11, 14, 16
adaptive document controller 11, 14
command 19
receiver 28
transport 28

deploying solution artifacts 3

deployment descriptors 9
diagrams

activity mediator 56
adaptive document controller 16
adaptive document queries 39
controllers 10
dynamic collaboration 58
event with time window 53
messaging client interaction pattern 41
non-Deterministic Conditional 54
scheduler system commands 22
serviceRequest 35
solution adaptive document 4
user registration microflow 43
Web client interaction pattern 34
Web of responsibility 57
workflow system command 25

directive element, xml 15
directive example 15
doServiceRequest 51, 87
dtd, command 19
dtd, commandgroup 20
dtd, controller 14
dtd, receiver 28
dtd, transport 28
dump 64
dynamic collaboration pattern 58
dynamic collaboration pattern diagram 58

E
ejbActivate 71, 92
ejbcreate method example 6, 49

with adocId argument 6
ejbPassivate 8, 71, 92
ejbRemove 8, 72, 92
elements, xml

action 15
attlist command Id 19
attlist statemachine Id 14
command 19, 21
commandGroup 21
commandGroup Id 21
commandGrplist 21
commandlist 19
condition 15
directive 15
encoding 14, 19, 21, 28, 29
event 15
Home 31
iiop 29
initialContext 31
input 19
JNDIname 31
localrmi 30
methodName 20

130 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

elements, xml (continued)
mode 28
name 14, 19, 31
native 30
objectIORfile 31
output 19
PKclassName 31
PKParamName 31
providerHost 31
providerPort 31
receiver 28
receiver Id 20
receiverlist 28
rmi 29
roles 17
state 14
statemachine 14
target 15
transition 14
type 14
value 19, 31

endDateTimeStr 76
enterprise bean

BFMAdmin 33
creating 5

entities
protocol 28, 29
protocol system 28

EpicMessage parameter 76
errors

adaptive document
controller intialization 62
link exception 62
transaction rollback 62

scheduler 63
service request transaction rollback 63

evaluate method 101
event with time window diagram 53
event with time window pattern 52
examples

action listener 30, 51
activity controller autoexecute 45
AdocInitializationWithGeneratedId 24
AdocInitializationWithGivenId 24
AdocRemoval 24
archive method 48
audit directive 15
command.xml 20
commandGroup 20, 21
constructor 51
defaultActivityController 16
ejbcreate method 6, 49, 71, 92
ejbcreate with argument 6
ejbPassivate 8
ejbremove 8

examples (continued)
getMethod 8
localrmi protocol receiver 31
MyCondition class 18
native protocol receiver 30
PBS_ScheduleAdocArchival 24
PBSEventInput 36
receiver.dtd 28
register controller 11
rmi protocol receiver 30
scheduler system command 22
service request 22
service request for user 23
setMethod 8
unsetInternalState 8
WithDefaultHandlerPBSInput 23
WithGivenHandlerPBSInput 23
workflow system commands 25

claimPBS 26
completePBS 26
ForceFinishPBS 27
TerminatePBS 27
unclaimPBS 27

exception log, generate 32
exceptions

java.lang.NullPointerException 88
java.rmi.RemoteException 69, 70, 71, 72, 73, 74, 75,

76, 77, 78, 79, 80, 81, 92, 93, 101
EXPIRYSTR 38

F
files

A1ActivityController.xml 11
bfm.client.jar 33
BFM properties 10, 11, 42, 48, 49, 51, 59, 62, 65
bfm.sdk.zip 50
command.xml 12, 20
commandGroup.xml 21
controller.dtd 14
db2java.zip 61
location 65
pbserr.txt 62, 65
pbsout.txt 62, 65
receiver.dtd 28
receiver.xml 32, 59
SolutionAdocController.xml 11

filter method 82
flags, trace

<Solution>AdocDebug 66
AdocDebug 66
BaseDebug 66
BFMAdminDebug 66
ControllerDebug 66
PUBLISH_EVENTS 66

flow composition builder 12, 43

Index 131

ForceFinishPBS 27

G
getActionList 7, 9, 83
getAdoc 40, 72

adocId 73
adocType parameter 72
key parameter 72

getAdocId 7, 9, 83, 87, 88, 89
getAdocName 7, 9
getAdocOwner 7, 9, 84, 89
getAdocsByFilter 40, 73

adoctype parameter 73
hashtable parameter 73
state parameter 73
user parameter 73

getAdocState 7, 9, 84, 90
getAdocType 87, 88, 90
getAllAdocEvents 40, 74

adocType parameter 74
role parameter 74
state parameter 74
user parameter 74

getAllExpiredTimerEntries 93
getAllPossibleBusinessEvents 40, 75

adocId parameter 75
role parameter 75
user parameter 75

getAllProcessableTimerEntries 93
getArchivedAdocs 40, 75

adocType parameter 76
endDateTimeStr 76
startDateTime parameter 76

getEvent 87, 89
getEventParams 87
getInvokingUser 89
getmethod 8
getOutVals 89
getPKString 7, 84
getSessionContext 93
getUniqueString 84
getUser 88
glossary 107

H
HANDLEAUTOACTIVITY parameter 44
handlers

AdocArchivalHandler 48, 50
AdocRemovalHandler 50
custom, writin 50
DefaultGenericServiceRequestHandler 50, 86

hashtable 73
Home element, xml 31
home interface, programming 6

I
iiop element, xml 29
iiop protocol 29
incomingEpicMessage 42, 76

bodyCategory parameter 77
bodyType parameter 77
corrId parameter 77
EpicMessage parameter 76
message parameter 77

Information Delivery Manager 41
initialContext element, xml 31
initializeAdocDoServiceRequest 38, 77

adocId 78
adocType 78
context 78
input 78
request 78
user 78

InitializeSolutionAdoc 21
input element, xml 19
input parameter 78, 80
input queue, BFMAIQ 41
INSTANCENAME parameter 25, 45
Interaction Manager 33
introduction 1
invoke 78

_context parameter 78
_inputlist parameter 78
commandId parameter 78

J
Java Transaction API 61, 63
JNDIname element, xml 31

K
key 72

L
link exception 62
localrmi element, xml 30
localrmi protocol 29
localrmi protocol receiver example 31
location, files 65
LogAdapterReceiver 32
logs, generate

audit 32
exception 32

M
markUnprocessable 93
MAXTHREADS 51
MAXTIMERTHREADS 66
MESSAGE parameter 42, 77
message receiver, Business Flow Manager 41
MESSAGEBODYCATEGORY parameter 42

132 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

MESSAGEBODYTYPE parameter 43
messaging client interaction pattern diagram 41
messaging clients 41
methodName element, xml 20
methods

archive 9, 82
archiveAdoc 69
create 6
createAdoc 69, 70
createAdocIdReturn 70
doServiceRequest 87
ejbActivate 71, 92
ejbcreate 6, 49, 71, 92
ejbPassivate 8, 71, 92
ejbRemove 8, 72, 92
evaluate 18, 101
filter 82
getActionList 7, 9, 83
getAdoc 72
getAdocId 7, 9, 83, 87, 88, 89
getAdocName 7, 9, 83, 89
getAdocOwner 7, 9, 84, 89
getAdocsByFilter 73
getAdocState 7, 9, 84, 90
getAdocType 87, 88, 90
getAllAdocEvents 74
getAllExpiredTimerEntries 93
getAllPossibleBusinessEvents 75
getAllProcessableTimerEntries 93
getArchivedAdocs 75
getEvent 87, 89
getEventParams 87
getInvokingUser 89
getOutVals 89
getPKString 7, 84, 90
getSessionContext 93
getUniqueString 84, 90
getUser 88
incomingEpicMessage 42, 76
initializeAdocDoServiceRequest 77
markUnprocessable 93
onMessage 41
recordAnAttempt 94
removeAdoc 79
removeTimerEvent 94
revive 85
reviveAdoc 79
scheduleAdocArchival 94
scheduleAdocInitializationWithGeneratedID 95
scheduleAdocInitializationWithGivenID 96
scheduleAdocRemoval 97
scheduleServiceRequestWithDefaultHandler 98
scheduleServiceRequestWithGivenHandler 98
scheduleServiceRequestWithGivenHandlerbySpecifiedUser 99
serviceRequest 34, 35, 80

methods (continued)
setAdocOwner 7, 85
setAdocState 85
setEventParam 88
setSessionContext 81, 100
toString 82, 90, 91
unsetInternalState 7, 86

microflow 20, 29, 43
mode element, xml 28
MyCondition

class 18
example 18

N
name element, xml 14, 19, 31
name-value pairs 17
names, package 65
naming convention, activity controller 11
naming convention, adaptive document 4, 11
native protocol receiver example 30
non-deterministic conditional pattern 54
non-Deterministic Conditional Pattern diagram 54
Num Retries parameter 44

O
obj parameter 88
Object reviveAdoc 48
objectIORfile element, xml 31
onMessage method 41
output element, xml 19

P
package names 65
parameters

_context 78
<Solution>AdocDebug 66
_inputList 78
ACCEPTFILECHANGE 59, 67
ACTIVITYID 45
ACTIVITYNAME 45
ACTIVITYVARS 45
AdocDebug 66
adocId 69, 70, 73, 75, 78, 79, 81
ADOCREFERENCE 45
ADOCSTRLEN 67
adocType 70, 72, 73, 74, 76, 78
BaseDebug 66
BFMAdminDebug 66
commandId 78
context 78, 80
ControllerDebug 66
endDateTimeStr 76
EpicMessage 76
EXPIRYSTR 38
HANDLEAUTOACTIVITY 44
hashtable 73

Index 133

parameters (continued)
input 78, 80
INSTANCENAME 45
key 72
MAXTHREADS 51
MAXTIMERTHREADS 66
Name 45
Num Retries 44
obj 88
paramName 88
PROCDEF 45
PUBLISH_EVENTS 66
request 78, 80
ROLES 45, 74, 75
Run after/at 44
startDateTime 76
state 73, 74
TIMERDISPATCHERDEBUG 52, 66
TIMERPOLLINTERVAL 66
user 45, 73, 74, 75, 78, 81

parameters, input
ACTIVITYVARS 25
ADOCREFERENCE 43
INSTANCENAME 25
MESSAGE 42, 77
MESSAGEBODYCATEGORY 42
MESSAGEBODYTYPE 43
PROCDEF 25
PROCVARS 25
USER 25

parameters, message header
Body Category 42, 77
Body Secondary Type 42
Body Type 42, 77
Correlation Id 42, 77

patterns 52
activity mediator 55
dynamic collaboration 58
event with time window 52
getMethod 8
non-deterministic conditional 54
setMethod 8
Web of responsibility 56

PBS_Schedule
AdocArchival 24
AdocInitializationWithGeneratedId 24
AdocRemoval 24
ServiceRequest

WithDefaultHandler 22
WithDefaultHandlerPBSInput 23
WithGivenHandler 22
WithGivenHandlerPBSInput 23

PBSEventInput class 36, 87
PBSEventOutput class 36, 88
PKclassName element, xml 31

PKParamName element, xml 31
PROCDEF parameter 25, 45
Process Broker Services

description 1
messaging clients 41
properties 65
scheduler 50
scheduler service dispatcher 51
system commands 21
Web clients 33

PROCVARS 25
programming home interface 6
programming remote interface 7
properties, miscellaneous

ACCEPTFILECHANGE 67
ADOCSTRLEN 67

properties, scheduler dispatcher
MAXTIMERTHREADS 66
TIMERDISPATCHERDEBUG 66
TIMERPOLLINTERVAL 66

properties file 65
BFM 10, 11

protocol 28, 29
iiop 29
localrmi 29
native 29
rmi 29

protocol system 28
providerHost element, xml 31
providerPort element, xml 31
PUBLISH_EVENTS flag 66

R
receiver, message, Business Flow Manager 41
receiver attlist 28
receiver definition 28
receiver element, xml 28
receiver Id attlist 28
receiver Id element, xml 20
receiver.xml file 32, 59
receiverlist element, xml 28
receivers

caching 59
implementing 12
LogAdapterReceiver 30, 32
system 32
TimerServicesReceiver 32
WWFServicesReceiver 32

recordAnAttempt 94
remote interace programming 7
removeAdoc 79

adocId 79
removeTimerEvent 94
request parameter 78, 80
revive 85

134 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

reviveAdoc
adocId parameter 79

rmi element, xml 29
rmi protocol 29
rmi protocol receiver example 30
role-based access 17
ROLES 45, 74, 75, 79
roles element, xml 17
Run after/at parameter 44

S
scheduleAdocArchival 94
scheduleAdocInitializationWithGeneratedID 95
scheduleAdocInitializationWithGivenID 96
scheduleAdocRemoval 97
scheduler errors 63
scheduler service dispatcher 51

properties
MAXTIMERTHREADS 66
TIMERDISPATCHERDEBUG 66
TIMERPOLLINTERVAL 66

scheduler system commands 21
service requests

AdocArchival 24
AdocInitializationWithGeneratedId 24
AdocInitializationWithGivenId 24
AdocRemoval 24
GivenHandlerBySpecifiedUser 23
WithDefaultHandlerPBSInput 23
WithGivenHandler 22, 98
WithGivenHandlerPBSInput 23

scheduleServiceRequestWithDefaultHandler 98
service request errors

transaction rollback 63
serviceRequest method 34, 35, 80

adocId 81
context 80
input 80
request 80
user 81

serviceRequests diagram 35
ServiceRequestWithGivenHandlerbySpecifiedUser 99
setAdocOwner 7, 85
setAdocState 85
setEventParam 88

obj parameter 88
paramName parameter 88

setmethod 8
setSessionContext 81, 100
size limit, adocId 59
solution artifacts

building 3
deploying 3

SolutionAdocController.xml 11
startDateTime parameter 76

state 14, 73, 74
state diagram 16
statemachine Id 14
statemachine xml element 14
system commands 21
system receivers 32

T
target element, xml 15
TerminatePBS 27
terminology used in this book 107
timer dispatcher 51
TIMERDISPATCHERDEBUG 52, 66
TIMERPOLLINTERVAL 66
TimerServiceBean Class 91
TimerServicesReceiver 32
toString 82, 90, 91
trace files

pbserr.txt 62, 65
pbsout.txt 62, 65

trace flags
<Solution>AdocDebug 66
AdocDebug 66
BaseDebug 66
BFMAdminDebug 66
ControllerDebug 66
PUBLISH_EVENTS 66

transaction rollback error 62, 63
transition element, xml 14
transport.dtd 28
troubleshooting 61
type element, xml 14

U
unclaimPBS 27
unsetInternalState 7, 86
USER 25, 45, 73, 74, 75, 78, 81
user-generated Adoc Id 59
user registration microflow diagram 43
user service request 23
usercond keyword 18

V
value element, xml 19, 31
variables

-Dbfm.ldapname=ACMEBFM 60
_DEBUG 5
VARCHAR 9

W
Web client interaction pattern diagram 34
Web clients 33
Web of responsibility diagram 57
Web of responsibility pattern 56
workflow system commands 25

claimPBS 26

Index 135

workflow system commands (continued)
completePBS 26
ForceFinishPBS 27
TerminatePBS 27
unclaimPBS 27
WWFS_Create 25

WWFServicesReceiver 32

X
xml elements

action 15
attlist command Id 19
attlist receiver 28
attlist receiver Id 28
attlist statemachine Id 14
command 19, 21
commandGroup 21
commandGroup Id 21
commandGrplist 21
commandlist 19
condition 15
directive 15
encoding 14, 19, 21, 28, 29
event 15
Home 31
iiop 29
initialContext 31
input 19
JNDIname 31
localrmi 30
methodName 20
mode 28
name 14, 19, 31
objectIORfile 31
output 19
PKclassName 31
PKParamName 31
providerHost 31
providerPort 31
receiver 28
receiverId 20
receiverlist 28
rmi 29
roles 17
state 14
statemachine 14
target 15
transition 14
type 14
value 19, 31

xml files
A1ActivityController 11
AdocInitializationWithGeneratedId 24
AdocInitializationWithGivenId 24
claimPBS 26

xml files (continued)
command 12, 20
commandGroup 20, 21
completePBS 26
controller.dtd 14
ForceFinishPBS 27
PBS_ScheduleAdocArchival 24
PBS_ScheduleAdocRemoval 24
receiver 32, 59
receiver.dtd 28
scheduler system command 22
service request 22
service request for user 23
SolutionAdocController 11
TerminatePBS 27
unclaimPBS 27
WithDefaultHandlerPBSInput 23
WithGivenHandlerPBSInput 23
workflow system command 25

136 WebSphere® Business Integrator: Process Broker Services Developer’s Guide

����

File Number: BIZAAN00

Printed in U.S.A.

	Contents
	Figures
	About this book
	Who should read this book
	What you need to know
	Before you implement WebSphere Business Integrator Process Broker Services
	Conventions and terminology used in this book
	How to send your comments

	Chapter 1. Introduction
	Chapter 2. Building and deploying solution artifacts
	Building an adaptive document
	Creating the Enterprise Bean

	Creating and configuring controllers
	Controller definition
	Adaptive document controller
	Activity controllers

	Conditional logic in controllers
	User defined conditional logic

	Command definition
	Command groups
	Process Broker Services system commands

	Receiver definitions
	System receivers

	Chapter 3. Client programming
	Process Broker Services Web clients
	Composing service requests
	Service request with event object
	Service request to create and initialize an adaptive document

	Querying adaptive documents
	Queries on a single adaptive document
	Queries yielding multiple adaptive documents

	Process Broker Services messaging clients
	Handling automatic activities in workflows

	Chapter 4. Advanced Topics
	Life-cycle management of adaptive documents
	Archiving adaptive documents
	Reviving adaptive documents
	Removing adaptive documents

	Process Broker Services scheduler
	Writing custom action listeners or handlers
	Process Broker Services scheduler service dispatcher

	Process brokering patterns
	Event with Time Window
	Modeling Scenario
	Solution
	Usage

	Non-deterministic conditional
	Modeling scenario
	Solution
	Usage

	Activity Mediator
	Scenario
	Solution
	Usage

	Web of responsibility
	Scenario
	Solution
	Usage

	Dynamic Collaboration
	Scenario
	Solution
	Usage

	Assigning a user-generated adaptive document Identifier
	Dynamically incorporating changes to controllers
	Receiver caching
	Overriding the DB2 userId and password for Process Broker Services Queries
	Advanced tips

	Chapter 5. Troubleshooting
	Checklist
	Trace files
	Operation specific errors
	Creating an adaptive document
	Link exception
	Controller initialization failed
	Transaction rollback

	Making a service request
	Service request transaction rollback

	Process Broker Services scheduler errors

	WebSphere Application Server trace dump

	Appendix A. Process Broker Services properties
	Package names
	Controller file locations
	Trace and debug flags
	Process Broker Services scheduler dispatcher properties
	Automated activities
	Miscellaneous

	Appendix B. Process Broker Services Application Program Interfaces
	BFMAdminBean Class
	archiveAdoc
	createAdoc
	createAdoc
	createAdocIdReturn
	ejbActivate
	ejbCreate
	ejbPassivate
	ejbRemove
	getAdoc
	getAdocs
	getAdocsByFilter
	getAllAdocEvents
	getAllPossibleBusinessEvents
	getArchivedAdocs
	incomingEpicMessage
	incomingEpicMessage
	initializeAdocDoServiceRequest
	invoke
	removeAdoc
	reviveAdoc
	serviceRequest
	serviceRequest
	setSessionContext

	AdocEvents Class
	toString

	AdocProxy Class
	archive
	filter
	getActionList
	getAdocId
	getAdocName
	getAdocOwner
	getAdocState
	getPKString
	getUniqueString
	revive
	setAdocOwner
	setAdocState
	unsetInternalState

	DefaultGenericServiceRequestHandler Class
	doServiceRequest

	PBSEventInput Class
	PBSEventInput
	getAdocId
	getAdocType
	getEvent
	getEventParams
	getUser

	setEventParam

	PBSEventOutput Class
	PBSEventOutput
	getAdocId
	getAdocType
	getEvent
	getInvokingUser
	getOutVals

	AdocDetails Class
	AdocDetails
	getAdocId
	getAdocName
	getAdocOwner
	getAdocState
	getAdocType
	getPKString
	getUniqueString
	toString

	EventDetails Class
	toString

	TimerServiceBean Class
	ejbActivate
	ejbCreate
	ejbPassivate
	ejbRemove
	getAllExpiredTimerEntries
	getAllProcessableTimerEntries
	getSessionContext
	markUnprocessable
	recordAnAttempt
	removeTimerEvent
	scheduleAdocArchival
	scheduleAdocInitializationWithGeneratedID
	scheduleAdocInitializationWithGivenID
	scheduleAdocRemoval
	scheduleServiceRequestWithDefaultHandler
	scheduleServiceRequestWithGivenHandler
	scheduleServiceRequestWithGivenHandlerbySpecifiedUser
	setSessionContext

	UserCondition Interface
	evaluate

	Notices
	Glossary of Terms and Abbreviations
	Bibliography
	IBM WebSphere Business Integrator library
	Related documentation

	WebSphere Partner Agreement Manager library
	DataInterchange library
	Other Libraries

	Index

