
Lab BL01- Part I
Piloting DB2 UDB for iSeries
with iSeries Navigator V5R2

ITSO iSeries Technical Forum 2003

February 2003

Contents

Part 1. Basic database functions .1

Lab 1. iSeries Navigator setup and basic operations3
Task 1: Configuring a PC connection to the iSeries server.3
Task 2: Creating an alternate connection to the same iSeries server5
Task 3: Changing the Refresh option .6
Task 4: Maintaining your active library list for iSeries Navigator7
Task 5: Creating a library/schema .7
Task 6: Using the Find and Positioner features (optional)9
Task 7: Creating Database function shortcut on Windows desktop (optional) . .10
Task 8: Deleting a library/schema (optional) .10

Lab 2. SQL Script Center .11
Task 1: Creating a sample DB schema and setting up a JDBC connection . . .11
Task 2: Using SQL Script Center .14
Task 3: Running SQL scripts in debug mode (optional)17
Task 4: Using basic Visual Explain .18
Task 5: Using SQL Assist to build your basic SQL statement23
Task 6: Running OS/400 CL commands from SQL Script Center (optional) . . .27

Lab 3. Working with tables using iSeries Navigator29
Task 1: Creating a database table with a primary key constraint30
Task 2: Adding a Check constraint to a table .32
Task 3: Adding rows to the table and testing the check constraint33
Task 4: Testing the primary key constraint .35
Task 5: Generating SQL from existing database objects36
Task 6: Altering a table .37
Task 7: Displaying properties and descriptions of DB objects38
Task 8: Using the Hot Link feature in the Quick View function (optional)40

Lab 4. Other database tasks using iSeries Navigator43
Task 1: Creating a view .43
Task 2: Applying permissions to a database object .47
Task 3: Creating a view with SQL statement (optional)49
Task 4: Displaying the latest SQL statement in other jobs (optional)50

Lab 5. Journal management (optional) .53
Task 1: Viewing journals .53
Task 2: Swapping journal receivers .56
Task 3: Creating journals/receivers .57
Task 4: Dropping journals/receivers .58

Part 2. Advanced database functions .59

Lab 6. Database referential constraint .61
Task 1: Creating a primary key .61
Task 2: Creating a referential constraint .62
Task 3: Testing referential constraints .65

Lab 7. Database trigger .67
Task 1: Creating an SQL trigger for AFTER INSERT .68
© Copyright IBM Corp. 2002. All rights reserved. i

Task 2: Creating a column-level SQL trigger for AFTER UPDATE (optional) . 70
Task 3: Testing the SQL trigger for AFTER INSERT. 72
Task 4: Testing the column-level SQL trigger for AFTER UPDATE (optional) . 73

Lab 8. Stored procedure . 75
Task 1: SQL stored procedure that returns result sets 76
Task 2: SQL stored procedure that returns the value of output parameter . . . 79
Task 3: Perform SQL source-level debugging (new in V5R2 - optional) 81

Lab 9. User-defined function . 87
Task 1: Creating and using a scalar SQL UDF . 87
Task 2: Creating and using an SQL UDTF . 91
ii Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Part 1. Basic database functions
1

2 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Lab 1. iSeries Navigator setup and basic operations

This lab explains the tasks that a database administrator performs during an
initial iSeries Navigator setup.

The XX notation that appears in library names, profile names, and so on refers to
your team number (for example, DBNAVXX, SAMPLEDBXX and LIBXX). Refer to
your lab worksheet for details.

Objectives
This lab teaches you how to:

• Configure a connection to the iSeries server from iSeries Navigator
• Maintain your working library list in iSeries Navigator
• Create and delete an OS/400 library/SQL schema
• Use Find and Positioner features and create database function shortcut

Lab prerequisites
Before you begin this lab, be sure the following prerequisites are available:

• An IBM~ iSeries or AS/400e server with OS/400 V5R2 (or higher) with:

– 5722-SS1 Option: Host Servers
– 5722-SS1 Option: System Openness Includes
– 5722-TC1 TCP/IP Connectivity Utilities

• A PC with Client Access Express V5R2M0 with the latest Service Pack
applied.

• A Windows HOSTS file containing I400WS and I400WS2 entries that point to
your iSeries server’s IP address.

• User profiles DBNAVXX and DBNAVXX_A created in the iSeries server.

• Use WRKRDBDIRE command to create a named database entry of I400WS
as your *LOCAL database. You can also use the existing *LOCAL entry of
your machine throughout the lab exercises, but be sure you recognize it when
we refer to our assumed named database of I400WS.

Time required
The time required to efficiently complete this lab is 20 minutes.

Naming convention for a ‘schema’
Starting at V5R1, the term “schema” is used in the same sense as the term
“collection”. This is an OS/400 library created with automatic DB journaling
enabled and local DB catalog views.

Task 1: Configuring a PC connection to the iSeries server

Be sure that you have met the prerequisites that are outlined for this lab. You
must also have completed the lab setup instructions.

Before you begin
© Copyright IBM Corp. 2002. All rights reserved. 3

Your first task is to create a connection definition from the iSeries Navigator on
your PC to the iSeries server:

__ 1. Double-click the iSeries Navigator icon on your Windows Desktop.

If this is your first time running iSeries Navigator on your PC, a message
window appears indicating that there are no connections to the server yet.
Click Yes. The Add Connection - Welcome window appears.

If this is not your first time running iSeries Navigator and you need to define
a connection, follow these steps.

a. Right-click the My Connections icon in the left panel.

b. Select Connections to Servers.

c. Click Add connection... The Add Connection - Welcome window
appears.

__ 2. In the Server input field, type I400WS and click Next. The Signon
Information window appears. Select the Use default User ID, prompt as
needed radio button and type your team profile (DBNAVXX) in the input field
shown in Figure 1 (XX is your team number).

Figure 1. Signon Information window

__ 3. Click Next. The Verify Connection window appears. Click Verify
Connection to verify that the Host Servers functions on the server are up
and running. If you encounter an error message in this step, notify your lab

For the purposes of this lab, the server names I400WS and I400WS2 are
used for the primary and alternate connections. If you decide to use
different server names, you must make appropriate changes throughout
this and subsequent lab documents.

Note
4 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

supervisor. When the verification is successful, click OK and then click
Finish.

Task 2: Creating an alternate connection to the same iSeries server

In this task, you create an alternate connection to the same iSeries server:

__ 1. From the main iSeries Navigator window, right-click the My Connections
icon in the left panel. Select Connection to servers and Add
Connection.... The Add Connection - Welcome window appears.

__ 2. In the Server input field, type I400WS2 and click Next. The Signon
Information window appears. Select the Use default User ID, prompt as
needed radio button, and type DBNAVXX_A in the input field below the radio
button. Make sure you use the alternate user profile (DBNAVXX_A) for this
step.

__ 3. Click Next. The Verify Connection window appears. Click the Verify
Connection button. When the verification finishes, click OK and then click
Finish.

__ 4. From the iSeries Navigator window, click the plus sign (+) in front of the
I400WS connection. The Signon window (Figure 2) appears, on which you
must enter your user name and password.

Refer to your lab worksheet for your user name and password. When you
are finished, click OK.

Figure 2. Signon to the iSeries server

Because this is your first time signing on to the iSeries server, the client
checks the server for the available functions to be displayed in the left
panel.

__ 5. Click the plus sign (+) in front of the Databases icon to expand it. Then
click the plus sign (+) in front of the Named Database icon (I400ws in this
case). The Libraries, Database Navigator, SQL Performance monitors, and
Transactions options appear in the expanded list (Figure 3).

You see a different name for the Named Database icon if you let the
system create it automatically.

Note
5

Figure 3. Main iSeries Navigator window

Task 3: Changing the Refresh option

In this task, you change the Auto Refresh option for the database work area on
the right panel of iSeries Navigator window. If you do not change the Refresh
option, the screen is only refreshed when you click the Refresh icon on the
toolbar, press F5, or change an object.

__ 1. Right-click the Databases icon to display the pop-up context menu. Then
select Customize this View and then Auto Refresh... option. The
Database Auto Refresh window appears.

__ 2. Deselect Use automatic refresh options from parent folder if it is
selected.

__ 3. Select the Refresh contents every time list is displayed check box and
click OK. The screen now refreshes each time a list is displayed.

With V5R2 support of OS/400 Independent Disk Pool (IASP) for DB2 storage
space, you can now create multiple Named Databases using the
WRKRDBDIRE command. This serves the same purpose of failover clustering
that was introduced in V5R1 for OS/400 User-defined File System (UDFS).

Each Named Database resides in separated auxiliary storage pool.The one
created in System ASP (ASP 1) is called SYSBASE. The rest are called “User
Database”.

You work with SYSBASE in this entire lab.

New in V5R2: Databases icon
6 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Task 4: Maintaining your active library list for iSeries Navigator

This task explains how to maintain the list of libraries that you want to work with in
iSeries Navigator.

__ 1. Click the plus sign (+) in front of the Libraries icon to display the current
active list. There may be no library listed at all, depending on the user part
of your profile’s library list.

__ 2. Right-click the Libraries icon and select Select Libraries to Display from
the pop-up context menu. The Select Libraries to Display window appears.

__ 3. In the Enter libraries input field, type QSYS2 QGPL QTEMP (each separated
by a space), and click Add. If QGPL and QTEMP are already in your active
library list, just type QSYS2 and click OK.

The QGPL, QSYS2, and QTEMP libraries are added (in alphabetical order)
to the list in the right panel of the window.

__ 4. Click OK. The three libraries are added to the active library list (Figure 4).

Figure 4. iSeries Navigator: Active library list

__ 5. Try removing a library from the active list by right-clicking QTEMP and
selecting Remove from List. Wait a little while. The screen refreshes and
the QTEMP library disappears from the active library list.

Task 5: Creating a library/schema

This task explains creating a library/schema, the available options at the time of
creation, and viewing the properties of a library:

__ 1. In the left-hand panel of iSeries Navigator main window, right-click the
Libraries icon and select New Library.

When you use iSeries Navigator for the first time, the active library list (under
the Libraries icon) contains all the libraries in the user part of your user profile
library list. If you make any changes to the list (which you do in this task), the
user-part library list is no longer in effect.

The initial active library list of iSeries Navigator

The client always passes the library name to the server to check for its
existence before adding it to the list. Therefore, if you incorrectly type the
library name, you may see the error message “Library xxxxx does not
exist”. It also checks your access authorization to the library. If you do
not have proper access right, you will see the error message.

Note
7

__ 2. Name the new library LIBXX and enter a description for the library as:

SQL schema for team DBNAVXX

Here, XX is your team number.

__ 3. Select the Add to list of libraries displayed (should be selected by
default) and Create as an SQL schema options.

Do not select Create a data dictionary. This is not an SQL data dictionary. It
is an OS/400 IDDU dictionary. See Figure 5.

Figure 5. New Library window

__ 4. Click OK to create the library. The new library is automatically added into
the active library list under the Libraries icon as a result of the option you
selected in the previous step.

__ 5. Under Libraries, click the newly-created LIBXX schema icon. In the right
panel, you can see that catalog views, a journal, and a journal receiver
were automatically created in your schema.

An SQL schema (called “collection” before V5R1) is an OS/400 library
created with a journal, a journal receiver, local catalog views, and,
optionally, IDDU data dictionaries (used for S/36 backward
compatibility).

All tables created in an SQL schema are automatically associated to the
database journal object in that corresponding schema.

OS/400 database journal is generally equivalent to what is called a
“database transaction log” or “database redo log” on other database
products.

The local catalog views in a schema contain information of all tables,
views, indexes, packages, and other database-related entities created in
that corresponding schema. These are different from the system-wide
catalog views (in the QSYS2 library), which cover all database-related
entities in the server.

OS/400 catalog views are generally equivalent to what is called “data
dictionary” in other database products.

A note on the OS/400 SQL ‘schema’
8 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

__ 6. Right-click the LIBXX icon and select Properties. A new window showing
all the properties of your library in four different tabs appears (General,
Storage, Save, Creation). Explore these properties and click OK to return
to the main iSeries Navigator window.

Task 6: Using the Find and Positioner features (optional)

A large number of objects may occasionally exist in a library. iSeries Navigator
provides two methods to help you locate an entry in a list of objects:

• The Find function: This allows you to find the next occurrence of a text string
in a list. This is a modeless window, so you can keep using it to find the next
instance. It supports searching up or down, case-sensitive/insensitive, and
partial/whole word searches.

• The Positioner function: This allows you to position quickly to an item by
pressing a single keyboard character. This is similar to the Find function that
works only on the first character of the object names in a list.

__ 1. Under Libraries in the left panel, click the QGPL library. The list of all
objects in this library appears in the right panel.

__ 2. Click the Name field bar to sort the list before you search for a particular
object. The objects in the QGPL library are now sorted by name (Figure 6).
Clicking once more on the Name field bar results in sorting in reverse order
(ascending <--> descending toggle).

You can also sort by object type or by description by clicking the
corresponding field bars.

Figure 6. Sorting objects by name

A modeless window can be opened without locking the parent window from
which it is invoked. This means that you can open a modeless window and
switch back to work in its parent window.

A modeless window
9

__ 3. Select Edit->Find from the menu bar (or press Ctrl+F). The QGPL -
I400WS - Find window appears. In the Search for field, type src and click
Find. iSeries Navigator locates the first occurrence of the “src” text string in
the list by highlighting the object name.

__ 4. Click Find repeatedly to progress down the list. Click Close when you are
finished.

__ 5. To use the positioner function, you must place the cursor on one of the
objects in the list. Go back and click the name of the first object in the list.
The name should be highlighted.

__ 6. Press the letter Q on the keyboard. iSeries Navigator finds the first
occurrence of an object that starts with the letter Q.

__ 7. Press Q repeatedly to progress down the list.

Task 7: Creating Database function shortcut on Windows desktop (optional)

iSeries Navigator allows you to create a shortcut icon on a Windows desktop for
all its main functions, including Database, Named Database, and Libraries. This
helps you directly launch the function of your interest without having to start the
main iSeries Navigator first.

On the right-hand panel of iSeries Navigator window, right-click the Databases
icon and select Create Shortcut. You now create a shortcut icon on Windows
desktop for Databases function.

Shortcuts for each Named Database (I400ws in this case), Libraries functions,
and many other iSeries Navigator functions can also be created this way. Look for
Create Shortcut in the pop-up context menu.

Task 8: Deleting a library/schema (optional)

You can delete a library/schema using iSeries Navigator if you have proper
authority to do so. We do not delete the library since we will use it in later.

__ 1. On the right-hand panel of iSeries Navigator window, right-click the library
LIBXX and select Delete.... The Confirm Object Deletion window appears
containing a single entry of LIBXX.

__ 2. Click Delete and you see a message: “This object has dependent
tables, views, indexes, or constraints. Are you sure you want to
delete this object and all dependent objects?”.

__ 3. Click Cancel since we will use the library later. If you click Yes, LIBXX
disappears from under the Libraries icon.

You have now completed this lab!

The Find function searches text strings in the Name and Description
fields of each object in the list.

A note on the Find function
10 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Lab 2. SQL Script Center

This lab teaches you how to use the SQL Script Center, which is an integrated
component of the iSeries Navigator - Database function.

The notation XX that appears in library names, profile names, and so on refers to
your team number.

Objectives
This lab teaches you how to:

• Create, run, and save SQL statements and OS/400 CL commands
• Run SQL Script Center in debug mode and view job log output
• Use SQL Assist feature (new in V5R2)
• Use the basic Visual Explain function (enhanced in V5R2)

Lab prerequisites
You must complete Lab 1, “iSeries Navigator setup and basic operations” on
page 3, before you proceed with this lab.

Time required
The time required to efficiently complete this lab project is 25 minutes.

Naming convention for a ‘schema’
Starting in V5R1, the term “schema” is used in the same sense as the term
“collection”. This is an OS/400 library created with automatic DB journaling
enabled along with local DB catalog views.

Task 1: Creating a sample DB schema and setting up a JDBC connection

In this task, you run a system-provided stored procedure to create a sample
schema with which you will work. You also set up the JDBC connection
parameters used by SQL Script Center.

__ 1. Under the Databases icon, right-click the database I400WS icon and
select Run SQL Scripts... to launch the SQL Script Center. A new Run
SQL Scripts window appears.

__ 2. Click the Options menu item and select the following options (one at a
time) as shown in Figure 7:

• Stop on Error
• Smart Statement Selection
• Run Statement on Double-Click
© Copyright IBM Corp. 2002. All rights reserved. 11

Figure 7. Run SQL Scripts: Options menu items

__ 3. Invoke the DB2-supplied stored procedure that creates a sample schema.
You use the schema in subsequent tasks and labs. In the SQL statement
working area, enter the following statement:

CALL QSYS.CREATE_SQL_SAMPLE(’SAMPLEDBXX’);

Be sure to replace XX with your team number.

Be sure to include a semicolon (;) at the end of every SQL statement to
ensure that the Smart Statement Selection feature knows where each
statement ends. The SQL Script Center recognizes a semicolon as the
SQL statement separator.

When the Smart Statement Selection option is selected, all highlighted
SQL statements run in sequence. If this option is not selected, the
highlighted SQL statements are executed as single statements. This
option also ensures that complete statements are run, even if one or
more statements are only partially highlighted.

Note

Note that SQL commands are not case-sensitive. However, SQL-related
names, such as table and column names and character strings data are
case-sensitive.

Case sensitivity in SQL statements

As of V5R1, the CREATE_SQL_SAMPLE stored procedure is included in
the QSYS library. You call it to create a sample schema that contains
many database objects, such as tables (with rows of data), views,
indexes, aliases, constraints, journal, and journal receiver. This sample
schema is about 10 megabytes in size.

This procedure takes one parameter for the name of the library/SQL
schema to be created for the database. We suggest that you use a name
(of up to ten characters) typed in single quotation marks (for example
‘SAMPLEDB01’).

You can find details of this sample schema in Appendix A of the V5
version of the manual DB2 UDB for iSeries SQL Programming Concepts.

A note on CREATE_SQL_SAMPLE
12 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

__ 4. Move the text cursor anywhere into the statement and double-click to run it.
Monitor the Messages tab for a completion notification, which indicates that
you now have a sample schema to work with.

If there is any error message, notify your lab supervisor.

Since V5R1, the SQL Script Center uses JDBC to connect to the server. To
maintain compatibility for those who are familiar with an ODBC connection,
JDBC connection parameters are generally equivalent to those previously
used by ODBC.

__ 5. In the menu bar, click Connection-> JDBC Setup. The JDBC Setup
window appears.

__ 6. Click the Server tab and type SAMPLEDBXX in the SQL default library input
field.

Type your team number in place of XX.

From this point on, SAMPLEDBXX is your SQL default library. You do not
have to specify a fully-qualified object name in SQL statements if that
object is in the SAMPLEDBXX library. For example, you can specify
EMPLOYEE, rather than SAMPLEDBXX.EMPLOYEE. However, if the
object is not in the library list, you need to specify a fully-qualified name.

Set Commit immediate to *NONE under Commit mode. In a real-life
application setting, you would set this parameter to *CS, *CHG, *ALL, or
*RR rather than *NONE to ensure data integrity within each application
transaction.

__ 7. Click the Format tab, select SQL(*SQL) under Naming convention, and
click OK.

This requires you to use a dot (.) as a separator symbol in a fully-qualified
DB object name (for example, schema.table).

A naming convention of *SYS requires that you use a slash (/) symbol as
the separator (for example, library/object).

__ 8. You should now be in the Run SQL Scripts window. In the SQL statement
working area, enter and run the following statement:

SELECT * FROM VEMPDPT1 ORDER BY EMPNO;

The selected rows from the view appear in the lower panel of the window
(in a separate result tab), as shown in Figure 8.

For convenience, double-click each SQL statement to run it in all
exercises, unless you are instructed otherwise.

Note

With *SQL naming convention, both the SQL Default Library and Library
List parameters (in the Server tab) are active for use. But with *SYS
naming, only Library List is active.

Note
13

Figure 8. Results of the SELECT * FROM VEMPDPT1 statement

__ 9. Add the following line to the end of the original SQL statement:

FETCH FIRST 5 ROWS ONLY:

The statement looks like this:

SELECT * FROM VEMPDPT1 ORDER BY EMPNO FETCH FIRST 5 ROWS ONLY;

Run the SQL statement. Only the first five rows appear in the result panel.

You are now ready to explore other features of the V5R2 SQL Script Center.

Task 2: Using SQL Script Center

In this task, you create, run, and save SQL scripts using the Script Center. You
also learn many Script Center functions.

__ 1. Switch to the Run SQL Scripts window and remove any existing SQL
statements from the working area.

When you want to close the result tab, click Edit-> Clear Results from
the menu bar.

If you want to display the results in a separate window (like what it was
before V5R1), click Options-> Display Results in Separate Window
before you run the statement.

A note on the Script Center result view

FETCH FIRST n ROWS ONLY is a new SQL syntax added to V5R1. It is
most suitable for filtering out the “Top n” rows from the result set.
Normally, you would use it in conjunction with the ORDER BY statement
for a meaningful view of the results.

FETCH FIRST n ROWS ONLY
14 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

__ 2. The SQL statement examples drop-down list displays supported SQL
statements and their proper syntax (Figure 9).

Figure 9. SQL Script Center: Selecting an SQL statement example

The list can be used as a template for your SQL statements. Scroll down
the list in the Data Manipulation Statements section and click the second
SELECT statement:

SELECT * FROM QSYS2.SYSTABLES WHERE TABLE_NAME LIKE 'FILE%';

__ 3. Click Insert to place the selected SQL statement into the working area.

__ 4. Modify the statement and run it. The edited statement should look like this
example:

SELECT * FROM QSYS2.SYSVIEWS WHERE TABLE_NAME LIKE 'VE%';

Here you should see all the table names that start with VE.

If the syntax is correct, you should see the returned rows. If the syntax is
incorrect, a message indicates why it does not execute properly.

__ 5. If the Messages tab does not provide sufficient information regarding the
operation of your SQL statements, you can view the OS/400 job log for
additional information, if there is any.

To do this, click View-> Job Log. A new XXXXXX/Qzdasoinit/Quser Job
Log window appears.

__ 6. To view a second level message of any message in the job log,
double-click the message ID of the line you want to view. A new Message
Details window appears showing all the detailed information about that
message. You can also see the Advanced button that can display further
details of that message.

Close the Message Details window and the Job Log window.

At this point, you know how to display a job log of your activities in the SQL
Script Center.

__ 7. Click File->Save As. The Save As window appears. In the Look in
drop-down list, open the C:\temp directory (or any temporary directory on
your PC) and type MySQL in the File name input field (Figure 10).
15

Figure 10. SQL Script Center: Saving an SQL script

__ 8. Click Save to return to the Run SQL Scripts window. Then, close the Run
SQL Scripts window.

__ 9. Create a shortcut icon of MySQL.sql on your Windows desktop. To do this,
using Windows Explorer, right-click the file MySQL, select Send To, and
then select Desktop (Create Shortcut).

__ 10.Minimize all windows and double-click the MySQL.sql shortcut (Figure 11).

If you do not know how to create a shortcut, go directly to the MySQL.sql
file and double-click it.

Figure 11. SQL Script Center: MySQL.sql shortcut icon

__ 11.The Run SQL Scripts window appears. From the toolbar, click the Run All
icon (Figure 12).

Figure 12. SQL Script Center: Run All icon

__ 12.A small Connect To Server window appears and prompts you for the server
name you want to connect. Select or type I400WS and click OK.

__ 13.A Signon to the Server window may appear prompting you to log on to the
target server. Type your team user profile and password and click OK.

The result should appear in a window. Close the result tab by clicking
Edit->Clear Results.
16 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Task 3: Running SQL scripts in debug mode (optional)

This exercise explains how to run an SQL script in debug mode and view the
messages in the job log. Debug mode messages can help you determine any
possible problems or figure out the access plan when executing SQL statements.

__ 1. Click the New icon on the toolbar (or click File-> New from the menu bar).
If you are prompted to save the existing script, select No.

Then, type and run the following SQL statement:

SELECT * FROM EMPLOYEE WHERE EMPNO IN (SELECT EMPNO FROM EMPPROJACT
WHERE PROJNO = 'MA2113') ORDER BY EMPNO;

This query identifies all employees who are engaged in project number
MA2113. The resulting rows should appear.

__ 2. From the menu bar, click View-> Job Log to display the job log window.
You should not see any message about database operations. Do not close
the job log window.

__ 3. Switch back to the Run SQL Scripts window by pressing Alt+Tab and
clicking Options-> Include Debug Messages in Job Log from its menu
bar.

__ 4. Run the same SQL statement again by double-clicking it. You should see
the same result.

__ 5. Switch to the job log window by pressing Alt+Tab and pressing F5 to
refresh the contents in Job Log window. You should now see a few
messages about database operations of the query engine (Figure 13).

Figure 13. Query Optimizer messages in Job Log window

If you do not see the messages shown in Figure 13, review what you have
done so far.

When you install the Database function of the iSeries Navigator, the “.sql” file
name extension is automatically associated with the SQL Script Center.
Therefore, you can run it without having to invoke iSeries Navigator.

SQL Script Center file association
17

__ 6. Double-click any message ID to see a new Message Details window for
that particular message. Close the window when you finish viewing the
details.

Close the job log window when you are finished, and you are back to SQL
Script Center window.

An alternative to tracing the query engine debug messages in the job log (and
much easier to use) is the Visual Explain. Task 4 introduces you to this tool.

Task 4: Using basic Visual Explain

Introduced in OS/400 V4R5, the Visual Explain helps you more easily analyze
messages from the OS/400 query optimizer. Rather than browsing for
database-related messages in the job log (as you did in the preceding task), you
use Visual Explain to filter them and display a graphical representation that
contains detailed useful information and is easier to understand.

__ 1. Go back to Run SQL Scripts window and place the text cursor anywhere in
the statement:

SELECT * FROM EMPLOYEE WHERE EMPNO IN (SELECT EMPNO FROM EMPPROJACT
WHERE PROJNO = 'MA2113') ORDER BY EMPNO;

This is the same SQL statement as in Task 3. You may need to retype the
statement if it is not already in the working area.

__ 2. From the menu bar, click Visual Explain-> Explain. A new Visual Explain
window appears that shows a graphical representation of the resulting
access plan of the SQL statement along with other information as shown in
Figure 14.

The messages in the job log window are sorted so that the most recent
message appears as the top line. You can also observe the “Time Sent”
column to identify the time sequence of all the messages.

You can see where the debug message starts and ends in the job log by
locating the following messages (Figure 13):

CPI434A *** Starting optimizer debug message for query
CPI434B *** Ending optimizer debug message for query

Browsing the job log window

To use debug mode, you must have *USE authority to OS/400 command
object STRDBG. This authority can be arranged for you by a security
officer.

Note
18 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Figure 14. A Visual Explain window showing the access plan of a query

__ 3. In the top-left panel, you can scroll left to right to see the entire graphical
representation of the resulting access plan.

__ 4. Go to the bottom panel of the window and click the Optimizer Messages
tab.

If you do not see any messages, click Options and select Show Optimizer
Messages. Messages similar to those shown in the Job Log window
(Figure 13 on page 17) appear. However, the messages are sorted in a
reverse order (the most recent message appears as the bottom-most line).

Visual Explain filters only messages that relate to the DB2 optimizer engine
for you in the Optimizer message tab (Figure 14). This saves you time from
manually browsing in the job log, which can sometimes contain too many
other messages.

Double-click a message of your interest to expand the detailed information
of that message. Double-click the detailed information again to collapse it.

__ 5. Browse the detailed query attributes information in the top-right panel of
the Visual Explain window.

__ 6. Go to the top-left panel of the window, move the pointer over an icon in the
graph, and leave it there for a short while. A fly-over panel appears
showing information about the operation that the icon represents.
19

Figure 15. Visual Explain: Fly-over panel example

__ 7. In V5R2, we make it easier than in V5R1 for you to identify any possible
query engine advisor information by providing a new toolbar icon that
brings up such information in details. On the toolbar, click the Statistics
and Index Advisor icon (Figure 16).

Figure 16. Visual Explain: Statistics and Index Advisor icon (new in V5R2 client)

A new Statistics and Index Advisor window appears. It contains two tabs:
Statistics Advisor and Index Advisor.

Click the Index Advisor tab. You should see one entry for the table
EMPPROJACT.

Figure 17. Visual Explain: Statistics and Index Advisor window

The Columns bar indicates that an index should be created with the column
EMPNO in ASCENDing order. Notice a Create... button at the bottom-right
corner of the window. This helps you with an immediate index creation. You
do not need to click it.

__ 8. Click OK to close the Statistics and Index Advisor window and return to
Visual Explain window.

__ 9. Change the orientation of the graph to a vertically aligned format by
clicking the Orient Bottom icon in the toolbar (Figure 18).
20 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Figure 18. Visual Explain: Orient Bottom icon

You should see the alignment change accordingly.

__ 10.In V5R1, a new print capability is added to Visual Explain to help you
produce hardcopy outputs. From the menu bar, click File-> Print
Preview.... The preview window appears with a preview of the graph
displayed (Figure 19).

Figure 19. Visual Explain: Print Preview window

__ 11.Click the Print Setup button to bring up the window that contains many
print setup parameters that you can tailor to your hardcopy requirements.
Explore the parameters as you choose.

__ 12.Click Cancel to close the Print Setup window. Then, click Close in the Print
Preview window to return to Visual Explain window.

Sometimes, you may want to save the resulting access plan for later use.
21

__ 13.From the menu bar, click File-> Save As SQL Performance Monitor.
Then specify a name of QUERYXX (XX is your team number) for the saved
data and specify the save library as SAMPLEDBXX (XX is your team number).

Click OK to save the data and return to Visual Explain window.

Then, close the Visual Explain window.

__ 14.You can then open the saved data later for analysis from SQL Script
Center. Go to SQL Script Center window and click Monitor-> List
Explainable Statements from its menu bar. A new Explainable Statements
window appears.

__ 15.Select QUERYXX (XX is your team number) from the drop-down list
Recent performance monitors. A few entries appear under SQL statements
monitored list box.

__ 16.Click each entry once until you see the following statement in SQL
statement selected box ():

SELECT * FROM EMPLOYEE WHERE EMPNO IN (SELECT EMPNO FROM EMPPROJACT
WHERE PROJNO = ?) ORDER BY EMPNO

Figure 20. Visual Explain: Explainable Statements window

Once you find the desired statement, you can click the Run Visual Explain
button to launch it. You do not need to do it.

__ 17.Close the Explainable Statements window and then close the SQL Script
Center window.

Now you have a basic idea on what Visual Explain is about.

If you are not quite fluent in writing SQL code, there’s a new V5R2 feature in SQL
Script Center that helps you build some statements using a prompting method.
The following tasks explains this new SQL Assist tool.
22 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Task 5: Using SQL Assist to build your basic SQL statement

SQL Assist is a new feature in V5R2 that helps you build some basic statements
(SELECT, INSERT, UPDATE, and DELETE) by going through step by step
prompts.

Let’s try building the following statement that joins the STAFF and ORGanization
tables and calculates each staff’s earning by adding SALARY and COMMission.
The resulting statement should look similar to this:

SELECT STAFF.ID, STAFF.NAME,

(COALESCE(STAFF.SALARY, 0) + COALESCE(STAFF.COMM, 0)),
ORG.DEPTNAME, ORG.MANAGER, ORG.LOCATION

FROM ORG, STAFF WHERE (STAFF.DEPT = ORG.DEPTNUMB) ORDER BY ID ASC;

The function COALESCE converts a NULL value, if found in SALARY or COMM
column, to a value of zero (0) so that they can be added together.

Complete the following steps to learn how to build the statement:

__ 1. From the menu bar of SQL Script Center, click Edit-> Insert Built SQL.
The SQL Assist window appears (Figure 21).

Figure 21. SQL Assist window
23

There are three panels within this window: Outline, Details, and SQL Code.
The SQL Code panel displays the statement being built, but you can also
directly edit the code in this panel if necessary.

This window and all three panels are resizable. Resize them to your
preference.

__ 2. In the Outline panel, click FROM (Source tables) and then move your
pointer to the Details panel and expand your SAMPLEDBXX schema.

__ 3. Scroll down to the ORG table, click it, and then click the Add (>) button to
select the table. Also select the STAFF table in the same way (Figure 22).

Figure 22. SQL Assist: Selecting tables or views

You can now see that the statement in the SQL Code panel is updated
accordingly.

__ 4. In the Outline panel, click SELECT (Result columns). Then move your
pointer to the Details panel and expand the SAMPLEDBXX.STAFF and
SAMPLEDBXX.ORG tables to see their column names.

__ 5. Select, one-by-one, the columns ID, NAME, SALARY, DEPTNAME,
MANAGER, and LOCATION, by clicking each column name and then the
Add (>) button.

Since we want to calculate the staff’s total earnings by adding their salaries
and commissions, we make changes to the result column SALARY.

__ 6. Move your pointer into the Result Columns list box and click the (...) button
on the right of SALARY column. This launches the Expression Builder
window for that particular result column (Figure 23).
24 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Figure 23. SQL Assist: Selecting columns and creating a result column with Expression Builder

__ 7. Click the Clear button (right of the Expression text box) to delete the
existing text in the box. Then move your pointer to the Functions box, scroll
down to locate the COALESCE function, and double-click it. A new
Function Parameters window opens for COALESCE (Figure 24).
25

Figure 24. SQL Assist: Function Parameter window

__ 8. Click the down arrow button on the right of Parameter1 (*) to expand it.
Then locate and click STAFF.SALARY to select it as the first parameter.

__ 9. Type 0 for Parameter2 (*), and then click OK.

You now see that COALESCE(STAFF.SALARY,0) is added to the
Expression text box. Make sure you put the cursor at the end of the added
expression.

__ 10.Double-click the plus sign (+) in the Operators list box to add it to the
expression.

__ 11.Double-click COALESCE in the Functions list box again. Select
STAFF.COMM as its first parameter and type 0 as its second parameter.
Click OK when finished.

You can see now that COALESCE(STAFF.SALARY,0) +
COALESCE(STAFF.COMM,0) is built in the Expression text box of the
Expression Builder window.

__ 12.In the Expression Builder window, click OK. You are now back to the SQL
Assist window.

__ 13.In the Outline panel, click WHERE (Row filter) and then move your pointer
to the Predicate box and expand the Column field. Then select the DEPT
column under SAMPLEDBXX.STAFF.

__ 14.Select ‘=’ from the Operator field.

__ 15.Expand the Value field and select Expression. The Expression Builder
window appears.

__ 16.In the Columns box, expand the ORG table and double-click the
DEPTNUMB field. The text string ORG.DEPTNUMB now appears in the
Expression text box.

Click OK. Then you return to SQL Assist window with ORG.DEPTNUMB
appearing in the Value field.

__ 17.Click the Add (>) button to add this search condition. The SQL code panel
is now updated with the WHERE condition. (You may need to scroll down
the SQL Code panel to see this).

__ 18.In the Outline panel, click ORDER BY (Sort criteria). Then move your
pointer to the Available Columns box to expand your
SAMPLEDBXX.STAFF table.
26 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

__ 19.Click the ID column and then click the Add (>) button.

You can now see the complete statement in the SQL Code panel.

__ 20.In the SQL Code panel, click Run to execute the statement. You should
see the new Query Result window. Review your results. Click OK to close it
and go back to SQL Assist window.

If you SQL statement does not run in this step, you should review the steps
that you have completed so far for any possible errors.

__ 21.In the SQL Assist window, click OK to finish building the statement.

You return to SQL Script Center with the built statement inserted in its
working area.

__ 22.Double-click anywhere in the statement to run it. You should see the same
result as the one you tested two steps back.

Clear the result when finished (click Edit-> Clear results).

You have now learned how to use SQL Assist.

Task 6: Running OS/400 CL commands from SQL Script Center (optional)

Using the SQL Script Center, you can also run OS/400 CL commands. The
following steps show an example on how to display all the column information of
the STAFF table of the sample database by using the CL command Display File
Field Description (DSPFFD).

__ 1. In the SQL Script Center window, click the New icon on the toolbar (or
select File->New from the menu bar). If you are prompted to save the
existing script, select No.

__ 2. Insert the following statements:

CL: DSPFFD FILE(STAFF) OUTPUT(*OUTFILE) OUTFILE(QTEMP/DSPFFD);
SELECT * FROM QTEMP.DSPFFD;

__ 3. From the toolbar, click the Run All icon (Figure 12). The column
information for the STAFF table should appear in a new tab or window.

__ 4. From the menu bar, click Edit-> Clear Results when finished.

You can use this feature by right-clicking the server name icon and selecting Run
Command as shown in Figure 25.

As of Client Access V5R1, the Navigator provides a new support for
running a CL command with prompts for its parameters. You can use this
feature to create a full CL command line so that you can copy it to the
Run SQL Scripts window to ensure a correct syntax.

Note
27

Figure 25. CL command prompting as of Client Access V5R1

You have now completed this lab!
28 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Lab 3. Working with tables using iSeries Navigator

This lab explains how to work with tables. It also explains how to perform such
tasks as creating a table, generating an SQL statement from an existing table,
and creating constraints for the table.

The notation XX that appears in library names, profile names and so on refers to
your team number.

Objectives
This lab teaches you how to:

• Create a database table and insert rows of data
• Create an identity column for automatic value maintenance
• Create a primary key and check constraints for the database table
• Generate an SQL DDL statement from the existing database table
• Display a database table description
• Use the hot link feature in quick view window

Lab prerequisites
Before you begin this lab, be sure you meet the following prerequisites:

• You must have completed Lab 1, “iSeries Navigator setup and basic
operations” on page 3.

• You must have completed Task 1 in Lab 2, “SQL Script Center” on page 11,
because the SAMPLEDBXX schema and SQL Script Center are used in this
lab.

Time required
The time required to efficiently complete this lab is 20 minutes.

Introduction
An SQL table is the equivalent of a DDS defined physical file. Similarly, table
rows equate to physical file records for DB2 UDB for iSeries, and SQL columns
are a synonym for record fields.

An SQL index provides a keyed access path for physical data exactly the same
way as a keyed logical file.

An SQL view is similar to a logical file on a physical file. It provides a different
view of the data to allow columns, subsetting, record selection, and joining of
multiple database files.

Naming convention for a ‘schema’
In V5R1, the term “schema” is used in the same sense as the term “collection”.
This is an OS/400 library created with automatic DB journaling enabled and local
DB catalog views.
© Copyright IBM Corp. 2002. All rights reserved. 29

Task 1: Creating a database table with a primary key constraint

This task explains how to create a table named CUSTOMER with iSeries
Navigator.

Let’s start:

__ 1. Start iSeries Navigator and expand I400WS-> Database-> Libraries.

__ 2. Right-click the LIBXX library icon and click New-> Table.

__ 3. In the Table input field, type Customer. In the Description input field, type
Customer Master. Click OK. The New Table - Customer window appears.

__ 4. To add a new column, click the Insert button.

__ 5. Type Customer_number under Column Name.

__ 6. Select BIGINT from the drop-down list of the column Type.

__ 7. In the Column tab, change the Short column name input field to CUSNUM.

__ 8. Select the Set as identity column check box. Additional parameters
appear as: Step value, Starting value, Minimum value, and Maximum value.

__ 9. Specify 999999 as the Maximum value. Leave the rest at their default
values.

__ 10.Select the Cycle values when the limit is reached check box.

Do not click the OK button on the Create Table window before you finish
entering all the required column definitions in a table. By clicking OK, you
actually submit a CREATE TABLE statement to the server with the columns
currently defined in the dialog. All subsequent column-related actions are then
submitted as ALTER TABLE statements rather then CREATE TABLE. This may
cause unexpected results and generate SQL errors.

Before your begin

If you do not specify a short column name, OS/400 generates a default
name for you.

If your column name is longer than 10 characters, a 10-character short
column name is automatically generated for you. It uses the first five
characters of the original column name followed by a five-digit unique
number (starting from 00001).

If the column name is not longer than 10 characters, the short column
name is the same as the column name.

A note on short column name
30 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

__ 11.Click Insert to add another column definition. Do not click OK yet because
it creates the table even though you are not finished adding the columns.

Add the remaining columns using the information provided in Table 1
(remember to click Insert between each column). The completed window is
shown in Figure 26.

Table 1. Customer table properties

Column name Column
type

Column
length

Short
column
name

Must
contain
a value

Default
value

Customer_Number BIGINT - CUSNUM - -

Customer_Name Character 20 CUSNAM Yes no

Customer_Telephone Character 15 CUSTEL Yes no

Customer_Address Character 20 CUSADR Yes no

Customer_Cred_Lim Decimal 11, 2 CUSCRD No 1000

Customer_Tot_Amt Decimal 11, 2 CUSTOT No 0 (zero)

New in V5R2, the identity column feature lets you declare that a column
(with a data type of INTEGER, SMALLINT, BIGINT, NUMERIC or
DECIMAL) be maintained by the DB2 database engine with automatic
increment (or can be decreased) applied to its value every time a new
row in inserted. This feature allows you to specify the starting value,
minimum and maximum values, incremental step value, and whether the
value can be restarted when the specified maximum is reached. You can
also specify whether the identity column can receive its value from an
external source.

The ALTER TABLE statement is enhanced in V5R2 to support identity
column. See V5R2 SQL Reference manual for more details.

Identity Column support
31

Figure 26. Creating the Customer Master table

__ 12.When you finish adding all the columns, click the Key Constraints tab.
Click New. A New Key Constraint window appears.

__ 13.At the Constraint input field, type the key constraint name as CUSTELKEY.

Move down to click the Customer_Telephone column name. The number
1 appears in front, which means that this is the first field of the key
constraint you want to create.

In the Constraint type field, select the Primary radio button.

Click OK to return to the New Table - Customer window.

__ 14.Click OK to create the table. The CREATE TABLE statement is submitted
to the server with the specified primary key constraint.

__ 15.In the left panel, click LIBXX. In the right panel, to right-click the
CUSTOMER table and select Properties. From the Table Properties
window, you can view all the column definitions and the primary key
constraint. Check that you entered the columns correctly as shown in Table
1.

Task 2: Adding a Check constraint to a table

This task explains how to add check constraints to the table and test it by adding
rows that violate the constraint.
32 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

__ 1. Click the Check Constraints tab, and click New. A new Check Constraint
Search Condition window appears.

__ 2. In the Constraint input field, type CREDITLIMIT. This serves as the name of
the check constraint that you are about to create.

In the Columns list box, double-click the CUSTOMER_TOT_AMT column.
The column name should appear underneath in the Clause text box.

In the Operators list box, double-click the less-than-or-equal-to symbol
(<=). The <= operator should appear to the right of the
CUSTOMER_TOT_AMT in the Clause text box.

In the Columns list box, double-click the CUSTOMER_CRED_LIM column.
The complete clause should be:

CUSTOMER_TOT_AMT <= CUSTOMER_CRED_LIM

__ 3. Click OK to return to the Check Constraint tab. Click OK again to finish
creating the check constraint. The ALTER TABLE with ADD CONSTRAINT
statement is now submitted to the server.

The check constraints you created ensure that a customer’s accumulated credit
(CUSTOMER_TOT_AMT) does not exceed the specified credit limit
(CUSTOMER_CRED_LIM).

Task 3: Adding rows to the table and testing the check constraint

You now add a few rows to test the Check and Primary Key constraints that you
created. You start by testing the check constraint.

__ 1. Right-click the CUSTOMER table and select Open (or double-click it). A
new window appears that contains column headings but has no data rows.
This is the empty CUSTOMER table you created.

Resize the window to your preference.

__ 2. At the menu bar, click Rows-> Insert. A new row appears containing empty
cells. Add the first row with the data shown in Table 2 (use the left and right
arrow keypad to move through the columns). Press Enter when you are
finished.

Table 2. Inserting a Customer row

Customer_Number - Do not type any value -

Customer_Name John Doe

Customer_Telephone 777-555-2222

Customer_Address New York, NY

Customer_Cred_Lim 99999

Customer_Tot_Amt 55555

During the row insertion operation, if you see a message window stating that
“the table you are going to change is not being journaled”, simply click Yes to
proceed.

Note
33

__ 3. Test the check constraint that you created in the previous task.

From the menu bar, click Rows->Insert again to add the second row using
the information provided in Table 3. You may see a warning message
stating that the table is not being journaled. Simply click Yes to proceed.

Table 3. Inserting a Customer row

Note that CUSTOMER_TOT_AMT exceeds CUSTOMER_CRED_LIM.

Press Enter when you are finished. You should see the SQL0545 error
message “INSERT or UPDATE not allowed by CHECK constraint” shown
in Figure 27.

Figure 27. SQL0545: Check Constraint violation message

Note that the CREDITLIMIT constraint that you created is mentioned. If you
do not see the constraint mentioned, you should review what you have
done so far.

__ 4. Click OK. A message should appear stating “The insert failed. Do you
want to remove the row?”.

Click No and go back and change the Customer_Cred_Lim to 77777. Then
press Enter. The error message should not appear this time because the
check constraint is not violated.

__ 5. From the menu bar of the table content window, click View-> Refresh. The
message “You have made changes to LIBXX.CUSTOMER. Do you want to
save the changes?” appears. Click Yes.

Figure 28. Customer table content with auto-incremented CUSTOMER_NUMBER value

Notice that the identity column CUSTOMER_NUMBER contains
auto-incremented values as specified when you created it in Task 1.

Customer_Number - Do not type any value -

Customer_Name Dave Jones

Customer_Telephone 666-555-4444

Customer_Address Camel, CA

Customer_Cred_Lim 44444

Customer_Tot_Amt 55555
34 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Also notice that the CUSTOMER_NUMBER of this second row is “3” rather
than a “2”. This is because the value “2” is generated when the row with
constraint violation was inserted. When you changed
CUSTOMER_CRED_LIM to the new value that did not violate the
constraint, it became the THIRD row to the database engine.

Task 4: Testing the primary key constraint

In this task, you test the primary key constraint you created in the previous task.

__ 1. Insert a third row using the information provided in Table 4.

Table 4. Inserting a Customer row

Note that CUSTOMER_TELEPHONE intentionally contains a duplicated
value with the preceding row.

Press Enter when you are finished. The SQL0803 message “Duplicated
Key value specified” shown in Figure 29 appears. This indicates that
your primary key constraint works. If you do not see this error message,
review your work so far.

Figure 29. SQL0803: Duplicate key violation message

__ 2. Click OK. The message “The insert failed. Do you want to remove the
row?” should appear.

Click No and return to change the Customer_Telephone to 111-222-3333.
Then press Enter. The error message should not appear this time because
the key constraint is not violated.

__ 3. From the menu bar of the table content window, click View-> Refresh. The
message “You have made changes to LIBXX.CUSTOMER. Do you want to
save the changes?” appears.

Click Yes. You should see the new row in the table with a
CUSTOMER_NUMBER of “5”. This is because of the same reason as
explained in the previous task.

__ 4. From the menu bar, click File-> Save and then close the window.

Customer_Number - Do not type any value -

Customer_Name Brian Smith

Customer_Telephone 666-555-4444

Customer_Address Rochester, MN

Customer_Cred_Lim 90000

Customer_Tot_Amt 55555
35

Task 5: Generating SQL from existing database objects

In this task, you learn about an V5R1 enhancement that generates SQL data
definition language (DDL) statements from the existing database objects in your
system. There are separate workshop materials and a redpaper that describe this
new function in detail. The redpaper is DB2 UDB Database Navigator and
Reverse Engineering in V5R1 on the IBM~ iSeries Server, REDP0515.

__ 1. Right-click your CUSTOMER table icon and select Generate SQL. A new
Generate SQL window appears with the CUSTOMER table displayed in the
list box.

__ 2. Click the Output tab, and select the Open in Run SQL Scripts option.
This ensures that the SQL Script Center is invoked to store the generated
statements.

__ 3. Click the Options tab and make sure the following options are selected:

• DB2 UDB Family
• Extensions
• Generate labels
• Format statements for readability
• Include informational messages

__ 4. Click the Format tab and choose a naming convention of your choice. Click
Generate. The SQL Script Center appears with the generated SQL DDL
statements posted in its working area as shown in Figure 30.

Figure 30. SQL scripts generated from the CUSTOMER database table

Three statements appear:

• CREATE TABLE: This corresponds to your tasks for creating the
CUSTOMER table and its primary key constraint.

• ALTER TABLE: This corresponds to your tasks for creating check
constraints.

• LABEL ON TABLE: This adds a label to the CUSTOMER table.

__ 5. Close the SQL Script Center without saving the statements.
36 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Now let’s move on to the sample schema SAMPLEDBxx that you created in Lab 2
Task 1 and explore it with iSeries Navigator.

Task 6: Altering a table

This task explains how to alter an existing table using iSeries Navigator. You
modify a column of the SALES table in your SAMPLEDBXX library. This modified
SALES table is used in subsequent lab exercises on referential constraints and
triggers.

__ 1. In the left panel of the main iSeries Navigator window, click I400WS->
Database-> Libraries.

You should see your SAMPLEDBXX library in the active library list under
the Libraries icon. If not, add it by right-clicking Libraries and selecting
Select Libraries to Display. Refer to Task 4, ”Maintaining your active
library list for iSeries Navigator” on page 7, in Lab 1, for instructions on how
to do this.

__ 2. Click your SAMPLEDBXX library. All the objects in this library appear in the
right panel.

__ 3. Locate and right-click the SALES table. Select Properties. The Table
Properties window appears.

A column named SALES_PERSON appears with a VARCHAR data type.
This column contains the names of the sales persons who make the sales
transaction. We change the data type to SMALLINT and insert new data in
this column so that it represents staff ID numbers instead. The staff ID
column exists in the STAFF table that you work with later.

__ 4. Click the SALES_PERSON column and click the Delete button. The
column immediately disappears.

You now have experienced two aspects for creating a database object in V5R1:

• Creating a database object using a GUI provided by iSeries Navigator. This
method generates SQL DDL statements for you under the covers so that
you do not need to remember all the SQL syntax involved in the process.
The statements are passed to the server for execution but are not stored for
future use.

• Once the object is created, if you need to repeat this process in a different
system or just want to keep a documented reference of the database, the
Generate SQL function helps you extract all SQL DDL statements, store
them, and run them on a different system.

Two choices for creating tables

With the GUI provided by iSeries Navigator, you can drop or add columns in a
table. You cannot change the data type of a column definition (use ALTER
TABLE statement to do this instead). But you can alter the NOT NULL and
DEFAULT VALUE attributes of a column from the GUI.

A note on the table properties GUI
37

__ 5. Click New to add a column. A New_Column entry appears and is
immediately highlighted. Change the entry to SALES_STAFF and press the
Tab key to move right. Select SMALLINT data type from the drop-down list
box.

__ 6. Click the Short column name input field and type SALESSTAFF. Select the
(not null) check box and specify a Default value of 99.

Click OK to make changes to the table and the window disappears.

__ 7. Right-click the SALES table and select Properties. Click the
SALES_STAFF column to verify your work. Click OK to close.

__ 8. Right-click the SALES table and select Quick View. Make sure that the
SALES_STAFF column appears with a value of 99 in all the rows.

You work with this SALES table again in Lab 6, “Database referential constraint”
on page 61.

You now know how to alter a table with iSeries Navigator. Remember that you
can also use the SQL Script Center (from Lab 2, “SQL Script Center” on page 11)
to execute SQL statements for a more complex table alteration.

You are ready to complete the next task.

Task 7: Displaying properties and descriptions of DB objects

This task explains how to use other database functions in iSeries Navigator to
access various kinds of useful information for database administration tasks. The
Database Description feature used in this task was added in V4R5.

__ 1. In the left panel of the main iSeries Navigator window, click I400WS->
Database-> Libraries.

You should see your SAMPLEDBXX library in the active library list under
the Libraries icon. If not, add it by right-clicking Libraries and select Select
Libraries to Display. Refer to Task 4, ”Maintaining your active library list
for iSeries Navigator” on page 7, in Lab 1, for instructions on how to do
this.

__ 2. Right-click your SAMPLEDBXX library and select Properties. A new
SAMPLEDBXX Properties window appears. There are four information
tabs in this window as shown in Figure 31.

You cannot specify the same name of SALES_PERSON to the
newly-added column. If you do so, the operation fails when you click OK.
This is a current limitation of the GUI.

Note
38 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Figure 31. Information tabs in your library properties window

__ 3. Explore the information in this window and answer the following questions:

• How large is this library? _____________ megabytes

Hint: General tab->Total allocated size

• How many objects are there in this library? ___________ objects

Hint: Storage tab->Contents

• When was this library last-saved? ____________

Hint: Save tab->Last saved

• When was this library created? By whom? ___________________

Hint: Creation tab->Created

Close the window when you are finished.

__ 4. Click your SAMPLEDBXX library to see all of the objects in this library
displayed in the right panel.

__ 5. Locate and right-click the EMPLOYEE table. Select Description. A new
Description window appears with six different information tabs as shown in
Figure 32.

Figure 32. Information tabs in your table description window

This option is used in the same manner as the CL commands Display File
Description (DSPFD), Change Physical File (CHGPF), and Change Logical
File (CHGLF).

You can click Help here to see detailed information about your table
description attributes in the corresponding tab that you are in.

__ 6. Explore the information in this window and answer the following questions:

• How large is this table? _____________ kilobytes

Hint: Select General tab->Data size

• How many rows are in this table? ____________ rows

• Is Reuse deleted rows feature active? _________

• How large is the access path of this table? ____________ bytes

• How many distinct valid indexes does this table have? _______
39

Hint: Click the Activity tab

• How many bytes is the longest row in this table? ____________ bytes

Hint: Select Details tab->Maximum row length

Close the window when you are finished.

__ 7. In the previous step, you discovered that there are two indexes built for the
EMPLOYEE table. How do you identify the names of its indexes?

Hint: right-click the EMPLOYEE table and select Properties. Find the
proper information tab that shows you the required information.

If you think the Indexes tab is correct, click it. If you are correct, two index
names appear: XEMP1 and XEMP2. Click OK to close the window.

__ 8. In the iSeries Navigator main window, locate and right-click the
VEMPDPT1 view and select Description.

__ 9. Click the Details tab and look at the Allowed activities attribute. Why is it
read-only? Notice the check mark in front of Read, while there is none for
Update, Write, or Delete.

Answer: Normally, a joined view is a read-only object. You can prove that
VEMPDPT1 is a joined view by right-clicking VEMPDPT1 and selecting
Properties. Notice the SQL DDL statement that joins DEPARTMENT and
EMPLOYEE tables.

Close the window when you are finished.

Task 8: Using the Hot Link feature in the Quick View function (optional)

In V5R1, the Quick View function is enhanced with a Hot Link feature. This task
explains how to the use the Hot Link feature.

__ 1. Locate and right-click the EMP_PHOTO_RESUME view. Select
Properties.

In V5R1, a new function named Database Navigator was added to
iSeries Navigator. It generates a graphical representation of many
database objects in which you are interested. For example, you can use
it to display indexes of a specific table instead of using the Properties
window.

If you are interested in learning more about Database Navigator, consult
the “DB2 UDB for iSeries Database Navigator and Reverse Engineering”
hands-on lab.

Displaying database object relationship

This task uses an HTTP server on your iSeries machine. If you already have
one configured, start it now. If not, you can still proceed without encountering
serious problems.

Before you begin
40 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

This view joins EMP_PHOTO and EMP_RESUME tables
(A.EMPNO = B.EMPNO). These two tables contain columns that have a
Data Link data type. Click OK to close the window.

__ 2. Right-click the EMP_PHOTO_RESUME view again and select Quick View.

__ 3. Select the DL_PICTURE and DL_RESUME columns to see URL names
that are automatically enabled as hot links as shown in Figure 33.

Figure 33. Hot links in the EMP_PHOTO_RESUME view

If an HTTP server is active on your iSeries server, notice that, when you
click any of the URL hot links, the default Web browser of your PC is
invoked to display the destination file to which the URL points (which really
exists on a V5R1 server).

If an HTTP server is not active in your server, the Web browser displays a
“File not found” error message.

Close the browser and the quick-view windows when you are finished.

You have now completed this lab!

The Data Link column type was introduced in OS/400 V4R4. It stores a
URL-format name that provides links to data sources that are outside of
the database. Normally, these external data sources are
binary-large-object types, such as images, digitized voice, and so on.

Data Link data type
41

42 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Lab 4. Other database tasks using iSeries Navigator

This lab teaches you how to perform various database tasks, such as creating a
view and displaying the current SQL for a job.

The notation XX that appears in library names, profile names, and so on refers to
your team number.

Objectives
This lab teaches you how to:

• Create a view that joins two base tables
• Grant permissions on libraries, tables, and views
• Display the current SQL statement in other jobs

Lab prerequisites
Before you begin this lab, be sure you meet the following prerequisites:

• You must have completed Lab 1, “iSeries Navigator setup and basic
operations” on page 3.

• You must have completed Task 1, ”Creating a sample DB schema and setting
up a JDBC connection” on page 11, in Lab 2, because the SAMPLEDBXX
schema and SQL Script center are used in this lab.

• You must have completed Lab 3, “Working with tables using iSeries Navigator”
on page 29.

Time required
The time required to efficiently complete this lab is 20 minutes.

Introduction
An SQL table is equivalent to a DDS-defined physical file. Similarly, table rows
equate to physical file records for DB2 UDB for iSeries. SQL columns are
synonymous with record fields.

An SQL index provides a keyed access path for the physical data just like a keyed
logical file.

SQL views are similar to logical files on a physical file. They provide a different
view of the data and allow columns, subsetting, record selection, and joining
multiple database files.

Naming convention for a ‘schema’
Starting in V5R1, the term “schema” is used in the same sense as the term
“collection”. This is an OS/400 library created with automatic DB journaling
enabled and local DB catalog views.

Task 1: Creating a view

In your SAMPLEDBXX library, you create a view that joins the STAFF and ORG
tables with a new result column that calculates the total earnings of each staff.
© Copyright IBM Corp. 2002. All rights reserved. 43

__ 1. Locate and right-click the STAFF table (in your SAMPLEDBXX library).
Select Properties from its pop-up menu to see the column definitions.

Click the SALARY column. Notice that this column can contain NULL as
the default value. The same is true with the COMM column. You must deal
with this fact when you create the view.

Click OK to close the window

__ 2. Locate and right-click the ORG table. Select Properties to see the column
definitions.

Notice that the MANAGER column (the manager who is in charge of the
department) has a SMALLINT data type. This column is, in fact, the staff ID
like the ID column in the STAFF table.

You also deal with this fact when you want to enhance the view.

Click OK to close the window

__ 3. In the left panel of the iSeries Navigator window, right-click your
SAMPLEDBXX library and click New->View. A New View in SAMPLEDBXX
window appears.

__ 4. Name the view VSTAFFD. Type a Staff Details View Description, and click
OK. A New View - VSTAFFD window appears.

__ 5. Click the Select Tables button. The Browse Tables window appears.

__ 6. Expand your SAMPLEDBXX library. Click the ORG table and then click
Add button. Scroll down the list to locate and click the STAFF table. Then
click Add.

Close the Browse Tables window when you are finished. Then you return to
the New View - VSTAFFD window.

__ 7. Reposition the ORG and STAFF tables in the working area so that the
STAFF table is on the left side of the working area and the ORG table is on
the right side (Figure 34).

__ 8. Specify the join condition by dragging the DEPT column from the STAFF
table and dropping it precisely on the DEPTNUMB column of the ORG
table. A Join Properties window appears.

__ 9. Select the first (Inner Join) radio button (it should already be selected by
default) and then click OK. This specifies the join condition as:

SAMPLEDBXX.STAFF.DEPT = SAMPLEDBXX.ORG.DEPTNUMB

__ 10.Drag the ID column from the STAFF table and drop it into the bottom panel.
This is how you select which columns are included into the view.

__ 11.Click the word ID under the Column Name column and change it to Staff
ID. This is how you rename the column heading when the view is
displayed.

Another way to perform this step is to drag the selected tables from the
Browse Tables window and drop them (one-by-one) into the New View -
VSTAFFD window.

Note
44 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

__ 12.Select and rename the remaining columns using the information shown in
Table 5.

Table 5. Columns for view

The result should resemble the windows shown in Figure 34.

Figure 34. Creating the VSTAFFD view

__ 13.Click the Total Earnings column and click the Formula button. A new
window appears with SAMPLEDBXX.STAFF.SALARY already shown in the
Clause text box.

As you noticed earlier, the SALARY and COMM columns can contain a NULL
value that is incompatible with the arithmetic addition operation. A NULL added to
a decimal value generates a NULL that does not convey a meaningful result.

Fortunately, there is a COALESCE SQL function that converts a NULL value into
another specific value instead. Here, you use this function to return a 0 if NULL is
detected. To do this, you follow these steps:

__ 1. Scroll down through the Functions list box. Locate and double-click
COALESCE to add COALESCE() into the Clause text box.

Table Column Rename to:

STAFF NAME
SALARY

Staff Name
Total Earnings

ORG DEPTNAME
MANAGER
LOCATION

Dept Name
Report To
Office City

Do not press Enter key each time you finish renaming the column name
of the view. Instead, simply click the next column name to continue.

Attention

The original SALARY column is renamed to Total Earnings because you
calculate a total of salary+sales commission instead.

Note
45

Move SAMPLEDBXX.STAFF.SALARY inside the parentheses (using cut
(Ctrl+X) and paste (Ctrl+V)) and add a comma and a 0. The result is:

COALESCE(SAMPLEDBXX.STAFF.SALARY,0)

Now, place the text cursor at the end of this clause.

__ 2. Add the additional operator by double-clicking the plus symbol (+) in the
Operators list box.

You now want to add the COMM (sales commission) column to the
SALARY column.

__ 3. Double-click the COALESCE function and put the text cursor inside the
parentheses. Double-click SAMPLEDBXX.STAFF.COMM in the Columns
list box and add a comma and a 0. The result is:

COALESCE(SAMPLEDBXX.STAFF.SALARY,0) + COALESCE(SAMPLEDBXX.STAFF.COMM,0)

Click OK.

__ 4. Click the Show SQL button to view the SQL statements that are prepared
for view creation (Figure 35).

Figure 35. Show Generated SQL result

Click OK to close the window and return to the New View - VSTAFFD
window.

__ 5. Click OK to create the view. The CREATE VIEW is submitted to the server.
When the view is created, you are back to iSeries Navigator window.

__ 6. Locate and right-click the VSTAFFD view in the right panel of iSeries
Navigator window to invoke the pop-up menu. Select the Properties option
and you see the SQL statement that represents this view. It is the portion
after CREATE VIEW ... AS of the statement that you saw in Figure 35.

Then, click Close.

__ 7. To display the view, double-click it. This opens a quick-view window that
displays the content of the view.

To create more complex statements, you can click the Edit SQL button
that invokes SQL Script Center for you to make changes to the
statements before submitting them to the server.

Note
46 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Notice that the Report To column contains manager’s staff ID rather than
their names (Figure 36).

If you want to enhance this view so that it displays the manager’s name
instead, you need to use the SQL Script Center to create more
sophisticated SQL statements. If you want, you can do this in Task 3,
”Creating a view with SQL statement (optional)” on page 49.

Figure 36. The VSTAFFD view

__ 8. Close the quick-view window when you are finished.

Task 2: Applying permissions to a database object

This exercise shows you how to apply permissions to a library/schema, table, and
view using iSeries Navigator. To allow your alternate user DBNAVXX_A to access
the view created in the previous task, you must authorize the user to the schema
(SAMPLEDBXX), the view (VSTAFFD), and the tables that are being joined in the
view (STAFF and ORG).

__ 1. Right-click your SAMPLEDBXX library icon and select Permissions. The
SampledbXX.lib Permissions window appears.

You can see from the list that the public permission is Exclude and
DBNAVXX’s permission is All. You now add a permission for DBNAVXX_A.

__ 2. Click the Add button. The Add Users or Groups window appears.

Double-clicking a table and a view object produces different results:

• Double-clicking a table object opens it for update. A record locking
mechanism is active on the table. To quick-view the table, right-click it
and select Quick View.

• Double-clicking a view object allows you to quick-view its contents.

Notes on double-clicking

You cannot alter a view once it is created. To alter a view, you must drop
the view and recreate it with the appropriate changes.

Note
47

__ 3. In the User or group name field, type DBNAVXX_A. and click OK. You now
see DBNAVXX_A in the permission list.

__ 4. Click the Details button and apply the permissions shown in Table 6 for the
DBNAVXX_A user profile.

Table 6. Library permissions

Click OK when finished.

__ 5. Repeat steps 1 through 4 for the STAFF and ORG tables and the VSTAFFD
view.

__ 6. Log on to the iSeries server using the alternate connection name by
clicking the plus sign (+) in front of I400WS2. Make sure you log on with the
DBNAVXX_A user profile.

This is not another iSeries server. Rather, it is the same server known in
the host table by another name.

__ 7. Expand the Libraries icon and add your SAMPLEDBXX library into the
I400WS2 active library list.

__ 8. Click the newly-added SAMPLEDBXX schema in the left panel. Then move
to the right panel and double-click the VSTAFFD view. A new window
shows you the content of the view.

Close the results window.

__ 9. Try deleting the view by right-clicking the VSTAFFD view and selecting the
Delete option. Then click the Delete confirmation button.

Although you attempt to delete the view, a window appears with an error
message stating that you are not authorized to VSTAFFD (Figure 37).

Type Permission

Operational Yes

Management No

Existence No

Alter No

Reference Yes

Read Yes

Add No

Update No

Delete No

Execute Yes
48 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Figure 37. SQL0551 authority violation message

__ 10.Click OK to return to the main iSeries Navigator window.

Task 3: Creating a view with SQL statement (optional)

You now create an enhanced view to VSTAFFD that displays manager names
rather than their staff IDs. You must write SQL statements to achieve this goal.

__ 1. Make sure the I400WS icon under Databases is expanded. You must sign
on with your original user ID (DBNAVXX).

Then expand Libraries and click SAMPLEDBXX.

__ 2. Move to the right panel. Then, locate and right-click the VSTAFFD view and
select Generate SQL. (VSTAFFD should be the bottommost entry in the
list).

Click the Generate button in the subsequent window. The Run SQL Scripts
window appears with the CREATE VIEW statement of VSTAFFD view
generated.

__ 3. In the SQL codes, change the original view name to VSTAFFDX :

CREATE VIEW SAMPLEDBXX.VSTAFFDX
LABEL ON TABLE SAMPLEDBXX.VSTAFFDX)

__ 4. Change the statements so that it looks like the example shown in Figure
38. The changed portion is highlighted.

Make sure you type your team number in all occurrences of
SAMPLEDBXX.

Authority to delete an object in a library must be obtained from a security
officer or from the library owner.

Note
49

Figure 38. SQL for VSTAFFDX view

__ 5. From the menu bar, click Run-> All to create the new VSTAFFDX view.
Close the SQL Script Center. You may want to save the statements for
future use.

__ 6. To display the view, go to the right panel of the iSeries Navigator window
and press F5 key to refresh the content in the panel.

__ 7. Locate and double-click the VSTAFFDX view to open a quick-view window
for the result. It should be the last entry in the right panel.

Notice now that the Report To column contains manager names rather than
their IDs (Figure 39).

Figure 39. The VSTAFFDX view

If you want to proceed on to the next task, minimize the quick-view window
when you are finished. Otherwise, close the window.

Task 4: Displaying the latest SQL statement in other jobs (optional)

If your work requires supporting other SQL users, the function you learn in this
task helps you acquire the SQL statements of other user jobs when you need to
analyze them. This function has been available since V4R5.
50 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

__ 1. In the iSeries Navigator main window, expand the I400WS2 alternate
server icon and log on to it using the DBNAVXX_A profile.

__ 2. Right-click the Databases icon and select Current SQL for a job.... The
Current SQL - I400WS2 window that displays all current active jobs in your
server appears as shown in Figure 40.

Figure 40. The Current SQL window

__ 3. Click the Current User column heading to sort the jobs by user IDs who
are being served by the server jobs. You may need to slightly narrow the
width of the first four columns. You can click the column heading twice for
descending sort order.

__ 4. Browse through the job list to locate a job named QZDASOINIT. This
serves your DBNAVXX profile as its Current User. Click the name
QZDASOINIT to highlight it (Figure 40).

__ 5. Click the SQL Statement button to see the most current SQL statements
that you executed in the previous task. They appear in the lower panel:

/* Last statement to finish as of hh:mm:ss */
SELECT * FROM SAMPLEDB01.VSTAFFDX

This is an example of the statement issued by iSeries Navigator to your
QZDASOINIT server job when you quick-view the VSTAFFDX view in the
last step of Task 3.

__ 6. Click the Edit SQL button to see the SQL Script Center invoked with the
statements entered in its working area.

You now learn what you can do if you want to edit, save, or analyze SQL
statements of other jobs from the Script Center.

Close the SQL Script Center when you are finished. You do not have to
save anything.

__ 7. You may experiment with other jobs, but do not spend too much time on
this step.

Your profile needs special Job Control authority to execute this task.

Note
51

__ 8. Close all windows, except the iSeries Navigator main window, when you
are finished.

This is not necessarily an exhaustive lab exercise, but you have learned many
interesting database-related functions here. You also have a better understanding
of how iSeries Navigator can help you do your job better.

You have now finished Lab 4, “Other database tasks using iSeries Navigator”!
52 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Lab 5. Journal management (optional)

This lab explains how to manage database journals and journal receivers.

Objectives
This lab teaches you how to:

• View journals
• Swap receivers
• Create journals and journal receivers
• Drop journals and journal receivers

Lab prerequisites
Before you begin this lab, be sure you meet the following prerequisites:

• You must have completed Lab 1, “iSeries Navigator setup and basic
operations” on page 3.

• You must have completed Task 1 of Lab 2, “SQL Script Center” on page 11,
because the SAMPLEDBXX schema is used in this lab.

Time required
The time required to efficiently complete this lab project is 10 minutes.

Naming convention for a ‘schema’
Starting in V5R1, the term “schema” is used in the same sense as the term
“collection”. This is an OS/400 library created with automatic DB journaling
enabled and local DB catalog views.

Task 1: Viewing journals

Since database journaling is already activated for the SAMPLEDBXX sample
schema, you initially learn how to view the entries in the journal using the SQL
Script Center:

__ 1. Start iSeries Navigator and expand I400WS-> Database-> Libraries.

You should see SAMPLEDBXX in the active library list under the Libraries
icon. If you do not, add it by right-clicking Libraries and selecting Select
Libraries to Display. Refer to Task 4, ”Maintaining your active library list
for iSeries Navigator” on page 7, of Lab 1, for instructions on how to do
this.

__ 2. Click the SAMPLEDBXX library to display its current content in the right
panel of the window.

__ 3. In the right panel, locate and right-click the QSQJRN journal. Select
Properties. The Journal Properties window appears (Figure 41).
© Copyright IBM Corp. 2002. All rights reserved. 53

Figure 41. The Journal Properties window

Notice that the Activate journal check box is selected. This means that
journaling is active. Leave it active.

Note: You can stop journaling by deselecting this check box.

If you need journaling only to ensure database transaction integrity, you
can save disk space by allowing OS/400 to automatically manage the
journal receivers.

To do this, refer to the “Receivers managed by” section in Figure 41.
Select System and Delete receivers when no longer needed.

• System: This means, when a receiver reaches its size threshold,
OS/400 detaches it from the journal and automatically attaches a new
receiver (swapping receivers).

• Delete receivers when no longer needed: This means the detached
receiver is automatically deleted.

If you need the receivers for other purposes, such as auditing or data
recovery, you should select User or System. Do not select Delete
receivers when no longer needed to maintain the receivers in your
system.

See the help message in the Journal Properties window for more details.

Managing journal receivers
54 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

__ 4. To display the tables that are being journaled, click the Tables button. The
Start/End Journaling window appears. The current journaled tables appear
in the list box under the Tables already journaled.

Figure 42. The Start/End Journal window

__ 5. Click Cancel to close the current window. Click Cancel again to go back to
the iSeries Navigator main window.

__ 6. Start the SQL Script Center by right-clicking the Database icon and
selecting Run SQL Scripts. Remove any existing SQL statements from the
working area.

__ 7. Scroll to the bottom-most part of the SQL Statement Examples drop-down
list. The /* Display Journal Entries */ section appears.

Click Insert to insert both statements of this section into the work area.

__ 8. Change library1 to SAMPLEDBXX as shown in the following code sample:

CL: DSPJRN JRN(SAMPLEDBXX/QSQJRN) OUTPUT(*OUTFILE) OUTFILFMT(*TYPE4)
OUTFILE(QTEMP/DSPJRN);
SELECT * FROM QTEMP.DSPJRN;

__ 9. From the menu bar, click Run-> All. The result window appears with all the
entries in the journal.

Close the result and the Run SQL Scripts windows when finished.

You can add or remove journaled tables using this window.

Note
55

Task 2: Swapping journal receivers

This exercise explains the two methods for swapping receivers for journaling:

__ 1. Right-click the QSQJRN journal icon and select Swap receivers. The right
panel is refreshed and you see a new QSQJRN000X receiver added to the
panel. With this method, the system generates a new name when it creates
the receiver.

__ 2. To attempt a different method for creating a new receiver and swapping it
with the current one, double-click the QSQJRN journal icon.

__ 3. Click the Receivers button. A new window appears displaying all of the
receivers that are associated with the journal.

__ 4. To add another new receiver, click New. A New Journal Receiver window
appears. All of the fields are filled with the default values for the new
receiver. You may make any appropriate changes.

__ 5. Change the storage space threshold to 20 MB and click OK.

The new receiver goes into a pending state (Figure 43).

You must have appropriate permission to view the journal.

Note

The name of the new receiver is similar to the old one with a different
running number in the last four digits. Using this method, you cannot
change the attributes of the new receiver.

Note
56 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Figure 43. Journal receivers status window

__ 6. Click OK to close the Journal Receivers window. Click OK again. The new
journal receive window changes its status to attached.

Task 3: Creating journals/receivers

This task explains how to create a journal and a receiver. However, you learn to
do this at the end of this task, because there is already a journal and receiver.

__ 1. Right-click your SAMPLEDBXX library and click New-> Journal. A New
Journal window appears.

__ 2. In the Name input field, type DBJRNXX. Here, XX is your team number.

__ 3. For the Description, type: Journal for SAMPLEDBXX library.

__ 4. Type SAMPLEDBXX in both the Library and the Library to hold receivers
boxes.

When the system is managing the receivers, a new receiver is created
during an IPL.

Note

Normally, the receivers are not kept in the same library as the tables that
are to be journaled. For the sake of illustrating how to create a journal
and receivers, they are kept in the same library.

Note
57

__ 5. Click Advanced. An Advanced Journal Attributes window appears.

__ 6. Click New Receiver to open the New Journal Receiver window.

Type DBRCVXX as the Receiver name, and change the receiver’s Storage
space threshold to 10 MB.

__ 7. Click OK to complete the new receiver properties.

__ 8. Click OK to complete the advanced options.

__ 9. Click OK to create the journal and receiver. The screen refreshes and the
newly created DBJRNXX journal and DBRCVXX receiver appear in the
right panel.

__ 10.Double-click DBJRNXX to bring up the Journal Properties window.

__ 11.Click the Tables button. This window allows you to select the tables on
which you want to activate DB journaling. This option is also available by
right-clicking the journal icon menu item Starts and ends table journaling.

You do not add a table here, so click Cancel to go back.

__ 12.Click Cancel again to finish this task.

Task 4: Dropping journals/receivers

The purpose of this task is to drop a journal and a receiver. Delete the journal and
then the receiver.

__ 1. Right-click your DBJRNXX journal icon and select Delete. A new window
appears to confirm your delete action. Check that you specified the correct
DBJRNXX to be deleted, and then click Delete.

__ 2. Take the same action with your DBRCVXX receiver. A warning message
appears indicating that the receiver is not yet saved. Click Yes to delete it.

You have now completed this lab!

Journal receivers are not automatically deleted when you delete their
associated journal. They must be manually deleted.

Note
58 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Part 2. Advanced database functions
59

60 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Lab 6. Database referential constraint

Referential Integrity is a set of mechanisms by which a DB engine enforces some
common integrity rules among related tables. Without the Referential Integrity
function in the DB engine, the only way to ensure that integrity rules are enforced
is to write application codes to take care of them.

With Referential Integrity, these rules can be implemented directly into the
database. Once the rules are defined, DB2 UDB for OS/400 automatically
enforces them for you.

Objectives
This lab teaches you how to:

• Create primary key and referential constraints
• Test the referential constraint

Lab prerequisites
Before you begin this lab, be sure you meet the following prerequisites:

• You must have completed Lab 1, “iSeries Navigator setup and basic
operations” on page 3.

• You must have completed Task 1 of Lab 2, “SQL Script Center” on page 11,
because the SAMPLEDBXX schema and SQL Script Center are used here.

• You must have completed Task 6, ”Altering a table” on page 37, in Lab 3,
because the modified SALES table is used here.

Time required
The time required to efficiently complete this lab project is 15 minutes.

Naming convention for a ‘schema’
Starting in V5R1, the term “schema” is used in the same sense as the term
“collection”. This is an OS/400 library created with automatic DB journaling
enabled and local DB catalog views.

Task 1: Creating a primary key

This exercise explains how to create a primary key and view the effects on the
database when data is inserted:

__ 1. In the left panel of the main iSeries Navigator window, expand I400WS->
Database-> Libraries and click your SAMPLEDBXX library.

Your SAMPLEDBXX library should appear in the active library list under the
Libraries icon. If it does not, add it by right-clicking Libraries and selecting
Select Libraries to Display. Refer to Task 4, ”Maintaining your active
library list for iSeries Navigator” on page 7, in Lab 1, for information on how
to do this.

__ 2. In the right panel, right-click the STAFF table and select Quick View from
its pop-up menu. Scan through the rows of this table to see what kind of
data it contains.
© Copyright IBM Corp. 2002. All rights reserved. 61

Close the quick-view window when you are finished.

__ 3. Right-click the STAFF table and select Properties.

__ 4. In the new Table Properties window, click the Key Constraints tab and
then click New to bring up a New Key Constraint window.

__ 5. In the Constraint field, type its name as STAFFID_PK. Then, click the ID
column. The number 1 appears in front of the column.

Select the Primary Constraint type. Click OK.

__ 6. Click OK again to create the primary key constraint (Figure 44).

Figure 44. STAFFID_PK primary key constraint

At this time, the STAFF table is ready to be used as a parent table for a referential
constraint. You now define a referential constraint for the SALES table, which is
called a dependent table to the STAFF table.

Task 2: Creating a referential constraint

Create and test a referential constraint:

__ 1. In the right panel, right-click the SALES table and select Quick View. Scan
through the rows of this table to see what kind of data it contains. Notice
that the SALES_STAFF column contains only a value of 99 for all rows.

Close the quick-view window when you are finished.

__ 2. Start the SQL Script Center by right-clicking the Database icon on the left
panel and selecting Run SQL Scripts.

__ 3. Clear the Script Center working area, and enter the following statement:

INSERT INTO STAFF VALUES(99,’UNKNOWN',NULL,NULL,NULL,NULL,NULL);

Do not run it now. Switch back to the iSeries Navigator main window to
continue (press Ctrl+Tab or use the Windows task bar).

__ 4. Right-click the SALES table and select Properties.
62 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

__ 5. In the new Table Properties window, click the Referential Constraints tab
and then click New to bring up a New Referential Constraint window.

__ 6. In the Constraint field, type its name as SALESID_FK. Then, move down to
click the SALES_STAFF column in the list box beneath. The number 1
appears in front of the column.

Specify your SAMPLEDBXX library in the Parent table library field (XX is your
team number).

Move down to the Parent table: list box. Scroll down to locate and click the
STAFF table. All the columns of the STAFF table appear in the list box on
the right side with a number 1 in front of the ID column.

Move down to the Delete action and Update action fields. Select Restrict
for both (Figure 45).

Click OK to return to the Table Properties window.

Figure 45. SALESID_FK referential constraint

__ 7. Click OK again to create the constraint. An SQL0667 error message
window appears (Figure 46).
63

Figure 46. SQL0667 error message

Click OK to close the error message window.

This error occurs because the SALES_STAFF column of every row in the
SALES table refers to the staff ID number 99, which does not yet exist in
the STAFF table. This is a violation to the referential constraint you are
adding. Therefore, DB2 stops adding the constraint and issues an error.

__ 8. Add a new row with staff ID 99 in the parent table (STAFF) by switching to
the SQL Script Center window and running the INSERT INTO STAFF
statement that you created previously. Close the Script Center when you
are finished (there is no need to save anything).

You should now be able to create the referential constraint without a
violation.

__ 9. Switch back to Table Properties window and click OK to create the
referential constraint.

The STAFF and SALES tables are now related with the referential
constraint you just created (Figure 47).

Figure 47. Data relationship
64 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Task 3: Testing referential constraints

Referential constraints are active when:

• You delete a row from the parent file.
• You insert a row into the dependent file.
• You update a row in the parent or dependent file.

However, referential constraints are checked but not enforced during an
apply/remove DB journal change operation. Therefore, a check pending status
may result in which you have to resolve the violation.

You now test the constraint you added in the preceding task:

__ 1. Double-click the STAFF table to open it (for update). Keep the window
open in a corner of your PC screen for future use.

__ 2. Double-click the SALES table to open it (for update).

__ 3. Click the SALES_STAFF column of the first row and change the value from
99 to 88. Press Enter.

__ 4. The SQL0530 error message should appear:

Operation not allowed by referential constraint SALESID_FK in SAMPLEDBXX

Read through the message details to obtain more information. Click OK.
You see another message stating:

The update failed. Do you want the original values reset into the row?

Click Yes to return to the SALES table window.

__ 5. From the menu bar, click Rows-> Insert and insert a row with the
information provided in Table 7. Press Enter when you are finished. The
row should be inserted without any error.

Table 7. Inserting a SALES row

__ 6. Switch to the STAFF window and locate a row with an ID of 20. This may be
located in the second row.

__ 7. Click anywhere in the row and click Row-> Delete from the menu bar.

The following SQL0532 error message should appear:

Delete prevented by referential constraint SALESID_FK in SAMPLEDBXX

SALES_DATE 2000-11-11

REGION Quebec

SALES 3

SALES_STAFF 20

You cannot update the SALES row to refer to a SALES_STAFF value of
88 because a STAFF row with such an ID does not exist. Browse through
the STAFF table. Notice that there is no row with an ID of 88. This
operation violates the basic referential constraint.

Explanation
65

Read through the details of the message to obtain more information. Click
OK to close the message window.

__ 8. Try changing the ID of this STAFF row from 20 to 77. Another error
message should appear because you also specified a Restrict update
action. You cannot change the ID of this row while it is still referred to by a
row from the SALES table.

This means that the referential constraint is working correctly.

You have now completed this lab!

You cannot delete a STAFF row with an ID of 20 because you just added
a SALES row with a SALES_STAFF value of 20, which refers to the
STAFF row you just tried to delete. The operation failed because you
specified a Restrict delete action.

Explanation
66 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Lab 7. Database trigger

Triggers are user-written programs that are activated by the database manager
when a data change is performed in the database. Triggers are mainly intended
for monitoring database changes and taking appropriate actions. The main
advantage of using triggers, instead of calling the program from within an
application, is that triggers are activated automatically. It does this regardless of
the application (local or remote, or whichever programming language it is
developed in) that generates the data change.

In addition, once a trigger is put in place, application programmers and end users
cannot circumvent it. When a trigger is activated, the control shifts from the
application program to the database manager. The operating system then
executes the specifications you coded in the trigger program to perform the
actions you designed. The application waits until the trigger ends and then
regains control.

In OS/400 V5R1, new support for an SQL trigger is added. This means that you
can now use procedural SQL to create a trigger program. To do this, you need the
DB2 SQL Development Kit (Licensed Program 5722-ST1) on your system to
support compile-time generation of the trigger program. It is not required for
run-time support and you do not need a C language compiler to create an SQL
trigger.

There are now two types of trigger program implementations:

• External trigger: This is a trigger program developed in OS/400-supported
high-level language compilers, such as CL, RPG, COBOL, and C (but not
Java) and compiled into an OS/400 program object. With the exception of CL,
these languages can include embedded SQL. External triggers have been
available since V3R1. They have simply been given this new name in V5R1.

• SQL trigger: This is an internal trigger program created purely in procedural
SQL statements. A program object is created for an SQL trigger that is
equivalent to an ILE C program with embedded SQL (*PGM type with CLE
attribute).

The SQL trigger is available in V5R1. You are given the opportunity to use it in
this lab exercise.

Two new features added in V5R1 include a column-level SQL trigger (for update
event only) and Read After event support for an external trigger. This makes the
DB2 UDB for OS/400 trigger more flexible than ever to use.

Objectives
This lab teaches you how to:

• Add SQL triggers to a table
• Code procedural SQL for the triggers
© Copyright IBM Corp. 2002. All rights reserved. 67

Lab prerequisites
Before you begin this lab, be sure you meet the following prerequisites:

• You must have completed Lab 1, “iSeries Navigator setup and basic
operations” on page 3.

• You must have completed Task 1 of Lab 2, “SQL Script Center” on page 11,
because the SAMPLEDBXX schema and SQL Script Center are used here.

• You must have completed Task 6, ”Altering a table” on page 37, in Lab 3,
because the modified SALES table is used here.

• You need to install an OS/400 optional component named “System Openness
Includes” in your machine. It contains include files necessary for creating SQL
triggers.

Time required
The time required to efficiently complete this lab project is 30 minutes.

Naming convention for a ‘schema’
Starting in V5R1, the term “schema” is used in the same sense as the term
“collection”. This is an OS/400 library created with automatic DB journaling
enabled and local DB catalog views.

Task 1: Creating an SQL trigger for AFTER INSERT

You now move on to explore triggers. In this task, you create an SQL trigger,
named COMMCALC, that maintains an accumulated sales commission for a
sales staff when someone makes a sales transaction. This is done when a new
row is added into the SALES table. A value of 100 (dollars) is multiplied to the
accomplished number of transactions. The result is added and updated into the
COMM column of the STAFF table.

The trigger is therefore associated with the SALES table.

__ 1. In the left panel of the main iSeries Navigator window, expand I400WS->
Database-> Libraries and click your SAMPLEDBXX library.

Your SAMPLEDBXX library should appear in the active library list under the
Libraries icon (XX is your team number). If it does not, add it by
right-clicking Libraries and selecting Select Libraries to Display. Refer to
Task 4, ”Maintaining your active library list for iSeries Navigator” on page 7,
in Lab 1, for instructions on how to do this.

__ 2. In the right panel, right-click the STAFF table and select Quick View. Scan
through the rows of this table to see what kind of data it contains. Note the
COMM column, which keeps the current total sales commission income of
each staff member.

Close the quick-view window when you are finished.

__ 3. Right-click the SALES table and select Properties.

Considering the information in the Table Properties window, you can make
the following assumptions to prepare for the use of the triggers that you
create:
68 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

• Each row in this table represents a sales record that a staff member
accomplishes on a specific date.

• The SALES_STAFF column represents the staff member who makes
the sales record.

• The SALES column represents the number sales transactions a staff
member makes for that sales record. Each transaction means that a
$100 sales commission is added to that staff member’s current sales
commission (this is the value in the COMM column of the corresponding
row in the STAFF table).

You now create the first SQL trigger for an insert-after event that
accumulates sales commissions for the staff member who accomplishes
sales transactions.

__ 4. Click the Triggers tab, and then click Add SQL Trigger to bring up the Add
SQL Trigger for Table... window.

__ 5. Select the General tab and perform the following steps:

a. In the Trigger field, type COMMCALC as the name.
b. Make sure the Library field contains your SAMPLEDBXX library.
c. Type the Description as Sales Commission Calculation.
d. Select Insert for Event

__ 6. Click the Timing tab and perform the following steps:

a. Select After event for When to run.
b. Select For each row for Run Trigger.
c. Specify NewSalesRow for Correlation name for new row.

NewSalesRow is used in the procedural SQL code of the trigger to refer to
the record being inserted.

d. Select DB2ROW for Mode.

__ 7. Click the SQL Statements tab. In the SQL statement working area, delete
the first line WHEN (search condition).

Then, enter the following statements:

BEGIN

DECLARE NEWCOMM DECIMAL(7,2);
SET NEWCOMM = 0;

SELECT COALESCE(COMM,0) INTO NEWCOMM FROM SAMPLEDBXX.STAFF WHERE ID =
NEWSALESROW.SALES_STAFF;

SET NEWCOMM = NEWCOMM + (100 * NEWSALESROW.SALES);

UPDATE SAMPLEDBXX.STAFF SET COMM = NEWCOMM WHERE ID =
NEWSALESROW.SALES_STAFF;

END

__ 8. Click Check Syntax to ensure that you entered the code correctly. If you
receive an error message, verify the syntax of the SQL statements and
make the proper correction.

Click OK when you are finished.
69

Figure 48. Trigger tab of the Table Properties window

__ 9. If you do not want to add another trigger (in the next optional task), click
OK to create the COMMCALC SQL trigger. Then, go to Lab 3, “Testing the
SQL trigger for AFTER INSERT” on page 72.

If you do want to add another trigger (in the next task), do not click OK.

You have now successfully prepared an SQL trigger for the insert-after event to
the SALES table. You must now add another SQL trigger.

Task 2: Creating a column-level SQL trigger for AFTER UPDATE (optional)

Assume that an existing row in the SALES table can be changed. One possibility
is that the number of the sales transactions (in the SALES column) can be
adjusted. Therefore, the sales commission of that sales staff member must also
be adjusted accordingly. The adjustment can be an addition or a subtraction of a
proper multiplication of 100 (dollars) to the current value.

__ 1. In the Table Properties window of the SALES table, click the Triggers tab
and then click Add SQL Trigger to bring up an Add SQL Trigger for Table...
window.

__ 2. Select the General tab and perform the following steps:

a. In the Trigger input field, type the name COMMADJ.
b. Make sure the Library field contains your SAMPLEDBXX library.
c. Type the Description as Sales Commission Adjustment.
d. Select Update for selected columns for Event.

Under the Available columns: list box, select SALES_STAFF and click
Add->. Then, select SALES and click Add->

__ 3. Click the Timing tab and perform the following steps:

After adding a trigger, you can disable/enable it by using the Disable and
Enable buttons in the Triggers tab as shown in Figure 48. The initial status of
a newly-added trigger is Enable=Yes.

Note
70 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

a. Select After event for When to run.
b. Select For each row for Run Trigger.
c. Specify:

• OldValue for Correlation name for old row
• NewValue for Correlation name for new row

OldValue and NewValue are used in the procedural SQL code of the
trigger (shown in Step 4) to refer to the before-image and the
after-image of the record being updated.

d. Select DB2ROW for Mode.

__ 4. Click the SQL Statements tab and type the following statements (use
copy/paste, or Ctrl+X/Ctrl+V, to speed up your typing and reduce
mistakes):

WHEN(NEWVALUE.SALES <> OLDVALUE.SALES OR NEWVALUE.SALES_STAFF <>
OLDVALUE.SALES_STAFF)
BEGIN

DECLARE NEWCOMM DECIMAL(7,2);
SET NEWCOMM = 0;

SELECT COALESCE(COMM, 0) INTO NEWCOMM FROM SAMPLEDBXX.STAFF WHERE ID
= OLDVALUE.SALES_STAFF;

SET NEWCOMM = NEWCOMM - (100 * OLDVALUE.SALES);

UPDATE SAMPLEDBXX.STAFF SET COMM = NEWCOMM WHERE ID =
OLDVALUE.SALES_STAFF;

SELECT COALESCE(COMM, 0) INTO NEWCOMM FROM SAMPLEDBXX.STAFF WHERE ID
= NEWVALUE.SALES_STAFF;

SET NEWCOMM = NEWCOMM + (100 * NEWVALUE.SALES);

UPDATE SAMPLEDBXX.STAFF SET COMM = NEWCOMM WHERE ID =
NEWVALUE.SALES_STAFF;

END

__ 5. Click Check Syntax to ensure that you entered the code correctly. If you
receive an error message, verify the syntax of the SQL statements and
make the proper correction.

Click OK when you are finished.
71

Figure 49. Trigger tab of Table Properties window

__ 6. In the Table Properties window (Figure 49), click OK to create the two SQL
triggers.

You must now test the AFTER INSERT trigger.

Task 3: Testing the SQL trigger for AFTER INSERT

In this task, you test the trigger by inserting three rows (representing sales
records of three staff members) into the SALES table and looking into the STAFF
table for trigger updates of their commission earnings (in the COMM column).

__ 1. Right-click the STAFF table and select Quick View from the pop-up menu
to quick-view its contents. Write down the current values in the COMM
column of the following staff IDs:

• Staff ID = 10: COMM = __________ dollars
• Staff ID = 20: COMM = __________ dollars
• Staff ID = 40: COMM = __________ dollars

Close the quick-view window when you are finished.

__ 2. Double-click the SALES table to open it for update.

From the menu bar of the SALES table window, click Rows-> Insert and
enter the information shown in Table 8 for the three new rows. Press Enter
for each row that you add.

When you finish entering the three rows, click File-> Save from the menu
bar and close the window.

If you see the message “The table is not being journaled”, simply
click Yes to proceed.

Note
72 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Table 8. Inserting rows to the SALES table

__ 3. Quick-view the STAFF table again and write down (in the COMM column)
the current values of the following staff IDs. Compare them to the values
that you wrote down previously:

• Staff ID = 10: COMM = __________ dollars (should be 300 more)
• Staff ID = 20: COMM = __________ dollars (should be 500 more)
• Staff ID = 40: COMM = __________ dollars (should be 200 more)

If you do not see the result suggested above, go back to the preceding task
and verify your SQL trigger codes.

Close the quick-view window when you are finished.

If you ran Task 2, you are ready to go to the next task to test it. Otherwise, skip
the next task and go to Lab 8, “Stored procedure” on page 75.

Task 4: Testing the column-level SQL trigger for AFTER UPDATE (optional)

In this task, you test the trigger by updating an existing SALES row and looking
into the STAFF table for the trigger updates of their commission adjustment:

__ 1. Quick-view the STAFF table and write down (in the COMM column) the
current values of the following staff IDs:

• Staff ID = 30: COMM = __________ dollars
• Staff ID = 40: COMM = __________ dollars

__ 2. Double-click the SALES table to open it for update. Locate the last row that
you inserted in the previous task and change it as indicated in Table 9.

Table 9. Updating a row in the SALES table

__ 3. Quick-view the STAFF table again and write down (in the COMM column)
the current values of the following staff IDs. Compare them to the values
that you wrote down previously:

• Staff ID = 30: COMM = __________ dollars (should be 500 more)
• Staff ID = 40: COMM = __________ dollars (should be 200 less)

SALES_DATE REGION SALES SALES_STAFF

2001-01-01 North West 3 10

2001-01-01 North West 5 20

2001-01-01 North West 2 40

SALES_DATE REGION SALES SALES_STAFF

2001-01-01 North West 2 changed to 5 40 changed to 30

If you see the message “The table is not being journaled”, simply
click Yes to proceed. When you finish entering these rows, click File->
Save to finish updating the row and close the window.

Note
73

If you do not see the result suggested above, go back to the preceding task
and verify your SQL trigger codes.

Try changing a few other rows of the SALES table and see that your
changes are reflected in the STAFF table by the trigger.

Close the quick-view window when you are finished.

You have now completed this lab!
74 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Lab 8. Stored procedure

Stored procedures provide a standard method for calling an external program
module from within an SQL application by the CALL statement.

The implementation of SQL stored procedures is based on the SQL standard. It
supports constructs that are common to most programming languages. It
supports the declaration of local variables, statements to control the flow of the
procedure, assignment of expression results to variables, receiving and returning
of parameters, and error handling.

In V4R5, Java stored procedure support is added to DB2 UDB to provide more
choices for implementation.

In V5R1, like the SQL trigger, the C language compiler is no longer required to
create an SQL stored procedure. Only an SQL Development Kit is needed. As for
the run-time environment of stored procedures, only OS/400 is required.

In V5R2 a new support is added where the SQL Script Center can receive and
display the results from the “output parameters” of the procedure.

Objectives
This lab teaches you how to create an SQL stored procedure that:

• Returns result sets to SQL Script Center
• Returns the value of output parameter to SQL Script Center

You can optionally learn the V5R2 support for SQL source-level debugging.

Lab prerequisites
Before beginning this lab, be sure you meet the following prerequisites:

• You must have completed Lab 1, “iSeries Navigator setup and basic
operations” on page 3.

• You must have completed Task 1 of Lab 2, “SQL Script Center” on page 11,
because the SAMPLEDBXX schema and SQL Script Center are used in this
lab.

• You need to install an OS/400 optional component named “System Openness
Includes” in your machine. It contains include files necessary for creating SQL
procedure.

Time required
The time required to efficiently complete this lab project is 15 minutes.

Naming convention for a ‘schema’
Starting in V5R1, the term “schema” is used in the same sense as the term
“collection”. This is an OS/400 library created with automatic DB journaling
enabled and local DB catalog views.
© Copyright IBM Corp. 2002. All rights reserved. 75

Task 1: SQL stored procedure that returns result sets

In this lab, you create a stored procedure named EARNLIST that generates up to
two lists of top “n” staff earnings from the STAFF table in your SAMPLEDBXX
schema. The lists are:

• Staff members who earn top “n” salaries
• Staff members who earn top “n” sales commissions

This procedure requires four input parameters, as indicated in the following order:

• SAL CHAR(6): Type ‘salary’ here if you want to see the salary earning list.

• TOPSAL CHAR(2): Type up to two digits for the top ‘N’ result.

• COMM CHAR(6): Type ‘comm’ here if you want to see a commission earning
list.

• TOPCOMM CHAR(2): Type up to two digits for the top ‘N’ result.

Any of the four parameters listed above can be NULL.

Start by creating EARNLIST (sal, topsal, comm, topcomm):

__ 1. In the left panel of the main iSeries Navigator window, expand I400WS->
Database-> Libraries and click your SAMPLEDBXX library.

Your SAMPLEDBXX library should appear in the active library list under the
Libraries icon (XX is your team number). If it does not, add it by
right-clicking Libraries and selecting Select Libraries to Display. Refer to
Task 4, ”Maintaining your active library list for iSeries Navigator” on page 7,
in Lab 1, for instructions on how to do this.

__ 2. In the right panel, right-click the STAFF table and select Quick View. Scan
through the rows of this table to see what kind of data it contains. Note the
COMM column, which keeps the current total sales commission earnings of
each staff member, and the SALARY column that indicates the staff
member’s monthly fixed earning.

Close the quick-view window when you are finished.

__ 3. In the left panel, right-click your SAMPLEDBXX library and click
New->Procedure->SQL. A New SQL Procedure in ... window appears.

__ 4. Click the General tab and perform the following steps:

a. In the Procedure field, type the name EARNLIST.
b. Type the Description as Staff Earnings List.
c. Specify the Maximum number of result sets as 2.
d. Select Reads SQL data for Data access.

__ 5. Click the Parameters tab and click the Insert button to enter each of the
four parameters shown in Figure 50.
76 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Figure 50. Parameters for EARNLIST stored procedure

__ 6. Click the SQL Statements tab. In the SQL statement working area, enter
the following statements:

-- EARNLIST (sal , topsal, comm, topcomm)
BEGIN

DECLARE SQLS1 CHAR(256);
DECLARE SQLS2 CHAR(256);
DECLARE C1 CURSOR WITH RETURN FOR S1;
DECLARE C2 CURSOR WITH RETURN FOR S2;

IF SAL IS NOT NULL THEN
SET SQLS1 = 'SELECT ID, NAME, DEPT, JOB, SALARY FROM
SAMPLEDBXX.STAFF WHERE SALARY IS NOT NULL ORDER BY SALARY DESC
FETCH FIRST ' CONCAT TOPSAL CONCAT ' ROWS ONLY';

PREPARE S1 FROM SQLS1; OPEN C1;
END IF;
IF COMM IS NOT NULL THEN

SET SQLS2 = 'SELECT ID, NAME, DEPT, JOB, COMM FROM SAMPLEDBXX.STAFF
WHERE COMM IS NOT NULL ORDER BY COMM DESC FETCH FIRST ' CONCAT
TOPCOMM CONCAT ' ROWS ONLY';

PREPARE S2 FROM SQLS2; OPEN C2;
END IF;
SET RESULT SETS CURSOR C1, CURSOR C2;

END

The text indentation format shown here is only for readability. You do not
have to follow this exact format. Please use care in typing the semicolon
(;) as indicated only. Also type your team number for SAMPLEDBXX.

Note

Type a space after FIRST and before ROWS. XX is your team number.

Note

Type a space after FIRST and before ROWS. XX is your team number.

Note
77

Figure 51. SQL codes for EARNLIST stored procedure

After you verify the codes, click OK to create the EARNLIST stored
procedure. Notice the message “Procedure SAMPLEDBXX.EARNLIST
created successfully” in the bottom-most status bar of the iSeries
Navigator window.

You must now test the stored procedure.

__ 7. Open the SQL Script Center by right-clicking the I400WS icon (under
Databases) in the left panel. Select Run SQL Scripts.

__ 8. Clear the working area and type the following statement:

CALL SAMPLEDBXX.EARNLIST(’salary’,’10’,’comm’,’10’);

Replace XX with your team number and then double-click the statement to
run it. This specifies that you want to see the top ten salary earners and the
top ten commission earners. You should see the result sets of the two
separate tabs shown in Figure 52 (or in two new separate windows).
78 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Figure 52. Two result sets of top ‘n’ list from EARNLIST stored procedure

__ 9. Close the result window and the SQL Script Center when you are finished.
You do not need to save anything.

Notice how convenient this can be done using the tools provided by iSeries
Navigator. You should now have an idea of how to test a stored procedure using
the SQL Script Center and iSeries Navigator.

Task 2: SQL stored procedure that returns the value of output parameter

In this lab, you create a stored procedure named TOPCOMPAY(N, TOTAL) that
calculates a summation of the total commission payment to the top ‘N’
commission makers. This procedure takes one input parameter named N of data
type INTEGER. It returns the result to an output parameter named TOTAL of data
type DECIMAL(10,2).

You call this procedure from SQL Script Center. You can see the value returned to
the output parameter displayed in the Script Center. This is a new feature in
V5R2.

Follow these steps to create the procedure (the steps are generally similar to the
previous task):

__ 1. In the left panel of the main iSeries Navigator window, expand I400WS->
Database-> Libraries and click your SAMPLEDBXX library.

Your SAMPLEDBXX library should appear in the active library list under the
Libraries icon (XX is your team number). If it does not, add it by
right-clicking Libraries and selecting Select Libraries to Display. Refer to

The stored procedure used in this exercise is a good example of how you can
test a functional SQL module from a PC client before you incorporate it into the
productive application of your business.

Note
79

Task 4, ”Maintaining your active library list for iSeries Navigator” on page 7,
in Lab 1, for instructions on how to do this.

__ 2. In the left panel, right-click your SAMPLEDBXX library and click New->
Procedure-> SQL. A New SQL Procedure in ... window appears.

__ 3. Click the General tab and perform the following steps:

a. In the Procedure input field, type the name TOPCOMPAY.
b. Type the Description as Top N commission payment summation.
c. Select Reads SQL data for Data access.

__ 4. Click the Parameters tab and click the Insert button to enter one output
parameter as shown in Table 10.

Table 10. Parameter declaration for TOP10COMPAY procedure

__ 5. Click the SQL Statements tab. In the SQL statement working area, enter
the following statements:

-- TOPCOMPAY (N, TOTAL)
BEGIN
DECLARE SQLS1 CHAR(256);
DECLARE C1 CURSOR FOR S1;
SET TOTAL = 0;

IF N IS NOT NULL THEN
SET SQLS1 = 'SELECT SUM(COMM) FROM (
SELECT COMM FROM SAMPLEDBXX.STAFF
WHERE COMM IS NOT NULL ORDER BY COMM DESC
FETCH FIRST ' CONCAT CHAR(N) CONCAT
' ROWS ONLY) AS T1';

PREPARE S1 FROM SQLS1;
OPEN C1;
FETCH C1 INTO TOTAL;
CLOSE C1;

END IF;
END

After verifying the codes, click OK to create the TOPCOMPAY SQL
procedure. Notice the message “Procedure SAMPLEDBXX.TOPCOMPAY
created successfully” in the bottom-most status bar of the iSeries
Navigator window.

Now test the stored procedure.

Parameter name Type Length in/Out

N INTEGER ------ IN

TOTAL DECIMAL 10,2 OUT

The text indentation format shown here is only for readability. You do not
have to follow this exact format. Use care in typing the semicolon (;) as
indicated only. Also type your team number for SAMPLEDBXX.

Note
80 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

__ 6. Open the SQL Script Center by right-clicking the I400WS icon (under
Databases) in the left panel. Select Run SQL Scripts.

__ 7. Clear the working area and type the following statement:

CALL SAMPLEDBXX.TOPCOMPAY(10, ?);

Replace XX with your team number and then double-click the statement to
run it.

You should the result as shown in Figure 53 where the calculated value of
the output parameter TOTAL is displayed in the lower panel of the Script
Center (Messages tab area). The figure shows a sample of the top 10, 15,
and 20 commission payment summation.

Figure 53. The total top N commission payment from TOPCOMPAY procedure

__ 8. Close the result window and the SQL Script Center when you are finished.
You do not need to save anything.

Now you have learned about an SQL stored procedure that returns the value of
the output parameter.

Task 3: Perform SQL source-level debugging (new in V5R2 - optional)

If your are an SQL programmer, you may find that, in many occasions, you want
to perform program source-level debugging on the SQL routines that you create.
Since V4R2, you have been able to do this by using the syntax SET OPTION
DBGVIEW = *STMT or *LIST with the CREATE FUNCTION, PROCEDURE, or
TRIGGER syntaxes. But the source-level listing, you can see in the debugger
view is displayed in C-generated codes only. This tends to be quite long and,
therefore, difficult to identify the SQL entities of your interest. In V5R2, an
enhancement helps you see only SQL source codes listing in the debugger view.
81

Before you create an SQL routine, add the new syntax: SET OPTION DBGVIEW
=*SOURCE before the program body of the SQL routine. After the routine is
created, you can use the following OS/400 command to invoke the source
debugger:

STRDBG lib/<routine name>

You can see SQL code debug view by pressing F15 and selecting the SQL
Output View option.

This support is, currently at V5R2, not available through iSeries Navigator. You
must use 5250 session for this support.

It is also important that you use OS/400 command RUNSQLSTM to execute the
SQL scripts that create the routines (with SET OPTION DBGVIEW = *SOURCE)
and then run STRDBG command in that same 5250 session. This is because
when the SQL routine is created, its source codes are added as a member (with
the same name as the routine’s name) into a source file named QSQDSRC,
which is always created in QTEMP library. The debugger then uses this member
to display the source codes in the debugger view. QTEMP library is always
destroyed when you log off.

Let’s start SQL source-level debugging:

__ 1. In the left panel of the main iSeries Navigator window, expand I400WS->
Database-> Libraries and click your SAMPLEDBXX library.

Your SAMPLEDBXX library should appear in the active library list under the
Libraries icon (XX is your team number). If it does not, add it by
right-clicking Libraries and selecting Select Libraries to Display. Refer to
Task 4, ”Maintaining your active library list for iSeries Navigator” on page 7,
in Lab 1, for instructions on how to do this.

__ 2. In the right panel, locate and right-click the TOPCOMPAY(INT, DEC())
procedure that you created in the previous task. Then select Generate
SQL from the pop-up menu. The Generate SQL -I400WS window appears.

__ 3. In the Output tab, select the Write to file radio button and specify the
following parameters:

• File type: Database source file (default)
• Library: SAMPLEDBXX (XX = your team number)
• File name: QSQLSRC
• Member: TOPCOMPAID (we use a different name for debugging)
• Deselect the Append option.

Then click Generate button to create the SQL source of CREATE
PROCEDURE.

__ 4. In the right panel, refresh the list by pressing F5 and then make sure you
can locate the QSQLSRC table (an OS/400 source physical file is identified
as a table).

__ 5. Open a 5250 session and sign on to the server. Then use OS/400 PDM -
SEU (STRSEU or WRKOBJPDM commands) to open the member
TOPCOMPAID of the source file QSQLSRC.

__ 6. Locate the line with the syntax CALLED ON NULL INPUT and insert a new
line underneath with the following syntax :

SET OPTION DBGVIEW = *SOURCE
82 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

This line is shown in bold in the example in Figure 54.

Figure 54. Inserting the line: SET DBGVIEW = *SOURCE

__ 7. Change all occurrences in the source codes of the name TOPCOMPAY to
TOPCOMPAID. There are three occurrences in the lines that begin with
CREATE PROCEDURE, SPECIFIC, and COMMENT ON SPECIFIC.

__ 8. Change TOTAL, which is an OUT parameter, to be an IN parameter.

__ 9. Qualify the BEGIN clause with PROC:. This is because to evaluate (eval) a
variable, it has to be qualified.

__ 10.Save and exit the Source Entry Utility. Go back to the OS/400 command
line in your 5250 session.

__ 11.Use the Run SQL Statement (RUNSQLSTM) command to create a new
procedure TOPCOMPAID:

RUNSQLSTM SRCFILE(SAMPLEDBXX/QSQLSRC) SRCMBR(TOPCOMPAID) NAMING(*SQL)

__ 12.Once the procedure is created, use the DSPJOBLOG command (with F10 for
detailed messages). Make sure you see the following messages in your job
log (Figure 55):

File QSQLSRC created in library QTEMP.
File QSQLSRC in library QTEMP changed.
Member TOPCOMPAID added to file QSQLSRC in QTEMP.
File QSQDSRC created in library QTEMP.
File QSQDSRC in library QTEMP changed.
Member TOPCOMPAID added to file QSQDSRC in QTEMP.

This indicates that the SQL source-level debug information is ready for the
debugger to use.

Columns . . . : 1 71 Edit SAMPLEDB90/QSQLSRC
SEU==> TOPCOMPAID
FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7

*************** Beginning of data *************************************
0001.00 -- Generate SQL
0002.00 -- Version: V5R2M0 020719
0003.00 -- Generated on: 04/30/02 08:37:36
0004.00 -- Relational Database: I400WS
0005.00 -- Standards Option: DB2 UDB AS/400
0006.00
0007.00 CREATE PROCEDURE SAMPLEDB90.TOPCOMPAID (
0008.00 IN TOP_N INTEGER ,
0009.00 IN TOTAL DECIMAL(10, 2))
0010.00 LANGUAGE SQL
0011.00 SPECIFIC SAMPLEDB90.TOPCOMPAID
0012.00 NOT DETERMINISTIC
0013.00 READS SQL DATA
0014.00 CALLED ON NULL INPUT
0015.00 SET OPTION DBGVIEW = *SOURCE
0016.00 PROC: BEGIN

F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor F11=Toggle
F16=Repeat find F17=Repeat change F24=More keys

(C) COPYRIGHT IBM CORP. 1981, 2002.
83

Figure 55. Creating an SQL procedure with DBGVIEW = *SOURCE option

__ 13.On the OS/400 command line, start the debugger:

STRDBG SAMPLEDBXX/TOPCOMPAID

You should see the SQL source in the debugger listing view (Figure 56).

Figure 56. OS/400 Debugger view of SQL procedure with DBGVIEW = *SOURCE option

__ 14.As you can see from Figure 56, you are no longer debugging C code but
you are debugging SQL code.

Command Entry I400WS
Request level: 1

All previous commands and messages:
Job 013368/SATID/QPADEV0003 started on 04/30/02 at 10:52:00 in subsystem
QINTER in QSYS. Job entered system on 04/30/02 at 10:52:00.

> STRSEU SRCFILE(SAMPLEDB90/QSQLSRC) SRCMBR(TOPCOMPAID)
> RUNSQLSTM SRCFILE(SAMPLEDB90/QSQLSRC) SRCMBR(TOPCOMPAID) NAMING(*SQL)
Printer device PRT01 not found. Output queue changed to QPRINT in library
QGPL.

File QSQLSRC created in library QTEMP.
File QSQLSRC in library QTEMP changed.
Member TOPCOMPAID added to file QSQLSRC in QTEMP.
File QSQDSRC created in library QTEMP.
File QSQDSRC in library QTEMP changed.
Member TOPCOMPAID added to file QSQDSRC in QTEMP.

More...
Type command, press Enter.
===>

F3=Exit F4=Prompt F9=Retrieve F10=Exclude detailed messages
F11=Display full F12=Cancel F13=Information Assistant F24=More keys

Display Module Source

Program: TOPCOMPAID Library: SAMPLEDB90 Module: TOPCOMPAID
1 CREATE PROCEDURE SAMPLEDB90 . TOPCOMPAID (IN TOP_N INTEGER , OUT TOTA
2 DETERMINISTIC READS SQL DATA CALLED ON NULL INPUT SET OPTION DBGVIEW =
3 BEGIN
4 DECLARE SQLS1 CHAR (256);
5 DECLARE C1 CURSOR FOR S1;
6 IF TOP_N IS NOT NULL
7 THEN
8 SET SQLS1 = 'SELECT SUM(COMM) FROM (SELECT COMM FROM SAMPLEDB01.STAFF
9 CONCAT ' ROWS ONLY) AS T1';
10 PREPARE S1 FROM SQLS1;
11 OPEN C1;
12 FETCH C1 INTO TOTAL_COMM;
13 CLOSE C1;
14 END IF;
15 END;

Bottom
Debug . . .

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
84 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

__ 15.Define a breakpoint in statement 10. Place the cursor anywhere in
statement 10 and press F6. Then press F3.

__ 16.Type the STRSQL command to invoke interactive SQL.

__ 17.Type the following command:

CALL SAMPLEDBXX/TOPCOMPAID (10,0)

__ 18.The stored procedure should stop its execution on instruction 10. Once it
does, type the following command:

EVAL PROC.SQLS1 :X

This is good news! We can now debug SQL code instead of the C-generated
code.

You can apply the method you just learned to debugging SQL triggers and
functions.

You have now completed this lab!
85

86 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Lab 9. User-defined function

User-defined function is a DB2 UDB feature that helps you extend the existing set
of SQL functions in your system with your own customized functions that provide
additional flexibility or common business-specific functions through SQL
interface. All UDFs created by an SQL programmer can be used by all SQL users
in the same system.

UDF also provides additional functions for any User-defined Data Type (UDT)
created in the system. Without UDF, UDT would be of limited benefit to SQL
programmers.

Once created, a UDF can run in the database engine (as opposed to SQL codes
at application level). This can potentially provide improved performance in some
cases such as row selection processing and dealing with large objects (LOB).

Since V4R4, you can only create a Scalar UDF that returns only a single value to
the calling SQL program. In V5R2, we provide you with a support for
User-defined Table Function (UDTF) that returns rows of result. You must only
use SELECT with the TABLE function to see the result from a UDTF.

Objectives
This lab teaches you how to create a Scalar SQL UDF and an SQL UDTF.

Lab prerequisites
Before you begin this lab, be sure you meet the following prerequisites:

• You must have completed Lab 1, “iSeries Navigator setup and basic
operations” on page 3.

• You must have completed Task 1 of Lab 2, “SQL Script Center” on page 11,
because the SAMPLEDBXX schema and SQL Script Center are used in this
lab.

• You need to install an OS/400 component named “System Openness
Includes” (V5R2 option number 13) in your machine. It contains include files
needed when SQL UDFs are created.

Time required
The time required to efficiently complete this lab project is 15 minutes.

Naming convention for a ‘schema’
Starting in V5R1, the term “schema” is used in the same sense as the term
“collection”. This is an OS/400 library created with automatic DB journaling
enabled and local DB catalog views.

Task 1: Creating and using a scalar SQL UDF

In this task, let’s suppose we want to create a scalar UDF that can simplify the
following statement:

SELECT ID, NAME, DEPTNAME, JOB, SALARY FROM STAFF, ORG WHERE DEPT =
DEPTNUMB;
© Copyright IBM Corp. 2002. All rights reserved. 87

The DEPTNAME and DEPTNUMB columns are in ORG table, while the rest are
in STAFF table. It would be nice if we could select only from the STAFF table. So
we are going to create a UDF that receives DEPT (Dept. No.) from STAFF and
use it to select a corresponding DEPTNAME from ORG for us.

This helps to simplify your SQL query to STAFF table by not having to explicitly
refer to ORG table in the query.

Here’s how you do this:

__ 1. In the left panel of the main iSeries Navigator window, expand I400WS->
Databases-> Libraries and click your SAMPLEDBXX library.

Your SAMPLEDBXX library should appear in the active library list under the
Libraries icon (XX is your team number). If it does not, add it by
right-clicking Libraries and selecting Select Libraries to Display. Refer to
Task 4, ”Maintaining your active library list for iSeries Navigator” on page 7,
in Lab 1, for instructions on how to do this.

__ 2. Right-click the SAMPLEDBXX icon and click New-> Function-> SQL from
the pop-up menu. The New SQL Function in SAMPLEDBXX window
appears.

__ 3. In the General tab (Figure 57), type the name DNAME in the Function input
field. In the Description input field, type RETURN DEPT NAME OF DEPT NO.
This is the name of the SQL UDF that you are going to create and use.

In the Data returned to invoking statement box, select the Single value
radio button. This means you create a scalar SQL UDF.

Select CHARACTER from the Type drop-down list and specify a Length of
25. This is the same data type as the DEPTNAME column of the ORG table
that this UDF will read from and return it to the calling statement.

Figure 57. Creating a scalar SQL UDF: General tab

At the bottom part of the tab, select the following check boxes:

• Program does not call outside of itself (No External Action)
• Attempt to run in same thread as invoking statement (Not Fenced)

Leave the rest at their defaults.

__ 4. Click the Parameters tab (Figure 58) and then click the Insert button. A
default entry is now added into the parameter list box.
88 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Double-click New_Parameter entry to highlight it and then change it to
DEPTNO.

Press the Tab key to move to the next column and select SMALLINT from
the Type drop-down list. This is the same data type as the DEPTNO
column of the STAFF table from which this UDF will receive its input value.

Figure 58. Creating a scalar SQL UDF: Parameters tab

__ 5. Click the SQL Statements tab (Figure 59) and enter the following SQL
statements:

BEGIN
DECLARE X CHAR(25) ;
SELECT DEPTNAME INTO X
FROM SAMPLEDBXX.ORG WHERE DEPTNUMB = DEPTNO;

RETURN X;
END

You can see that the UDF uses the DEPTNO value (to be received from
DEPT column in STAFF table) to select a corresponding DEPTNAME from
the ORG table and put it into a variable X. For each DEPTNAME value
read, it RETURNs this result to the calling statement via the variable X.

Figure 59. Creating a scalar SQL UDF: SQL Statements tab

__ 6. Click OK to create the SQL UDF, DNAME.

You are now back to iSeries Navigator window. Notice the message
“Function SAMPLEDB99.DNAME created successfully.” in the status bar
located at the bottom-most part of the iSeries Navigator window.

The text indentation format shown here is only for readability. You do not
have to follow this exact format. Use care in typing the semicolon (;) as
indicated only. Also type your team number for SAMPLEDBXX.

Note
89

If there is any failure at this point, you should review what you have done
so far.

You should also see an icon for the DNAME function added on the right
panel of the object list (Figure 60).

Figure 60. Creating a scalar SQL UDF: The newly created DNAME UDF

__ 7. To test the UDF, open the SQL Script Center by right-clicking the I400WS
icon (right under Databases) in the left panel and selecting Run SQL
Scripts.

__ 8. Type the following statement and run it:

SELECT ID, NAME, DNAME(DEPT) AS DEPTNAME, JOB, SALARY FROM STAFF;

You should see the result as shown in Figure 61.

Figure 61. Result of the UDF: DNAME and its equivalent normal statement

Running the previous statement with UDF is equivalent to running the
following normal statement, where the ORG table and its DEPTNAME and
DEPTNUMB columns must be explicitly specified:

SELECT ID, NAME, DEPTNAME, JOB, SALARY FROM STAFF, ORG WHERE DEPT =
DEPTNUMB ORDER BY ID;

Close SQL Script Center when you are finished.

Now you see how an SQL scalar UDF is created and used. Let’s move on to the
new V5R2 UDTF topic.
90 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Task 2: Creating and using an SQL UDTF

In this lab, we work on the same statement as in Task 4, ”Using basic Visual
Explain” on page 18, from Lab 2. “SQL Script Center”.

SELECT * FROM EMPLOYEE WHERE EMPNO IN (SELECT EMPNO FROM EMPPROJACT
WHERE PROJNO = '??????');

This statement identifies all employees who are involved in a particular project
(identified by the project number). Now let’s suppose that this statement is so
frequently used that we want to standardize it into a UDTF for more convenient
access.

Let’s begin the task:

__ 1. Right-click the SAMPLEDBXX icon and click New-> Function-> SQL from
the pop-up menu. The New SQL Function in SAMPLEDBXX window
appears.

__ 2. In the General tab (Figure 57), type the name EMPBYPROJ in the Function
input field. In the Description input field, type EMPLOYEE LIST BY PROJECT
NO. This is the name of the SQL UDTF that you are going to create and use.

In the box, Data returned to invoking statement, select the Table radio
button. This means you create an SQL UDTF.

__ 3. Click Insert button to add the four columns from Table 11 to be returned by
the EMPBYPROJ UDTF. (Do not press Enter key between each column;
simply click Insert to add each column.)

Table 11. Defining the returned columns of the UDTF: EMPBYPROJ

At the bottom part of the tab, select the following check boxes:

• Program does not call outside of itself (No External Action)
• Attempt to run in same thread as invoking statement (Not Fenced)

Leave the rest at their defaults.

__ 4. Click the Parameters tab and the click the Insert button. A default entry is
now added into the parameter list box.

Double-click the New_Parameter entry to highlight it and then change it to
PROJNBR.

Press the Tab key to move to the next column and select VARCHAR from
the Type drop-down list. Then, specify a Length of 6. This is the project

Column Name Type Length

EMPNO CHARACTER 6

FIRSTNME CHARACTER 20

LASTNAME CHARACTER 20

BIRTHDATE DATE -

The data Type is selected from the drop-down list.

Note
91

number to be entered in the SQL statement as the input value for the
UDTF.

__ 5. Click the SQL Statements tab and enter the following SQL statements:

BEGIN
RETURN
SELECT EMPNO, FIRSTNME, LASTNAME, BIRTHDATE
FROM SAMPLEDBXX.EMPLOYEE WHERE EMPNO IN (
SELECT EMPNO FROM SAMPLEDBXX.EMPPROJACT
WHERE PROJNO = PROJNBR) ;

END

You can see here that the input parameter PROJNBR is used first, in the
subselect of EMPPROJACT table, to identify EMPNO of all the employees
who work in the project (identified by its number). Then the result of the
subselect is used by the main query to extract the desired columns of
EMPLOYEE table. Then it is passed back as a set of rows to the calling
SQL statement.

__ 6. Click OK to create the SQL UDTF, EMPBYPROJ.

You are now back at the iSeries Navigator window. Notice the message
“Function SAMPLEDB99.EMPBYPROJ created successfully.” in the status
bar located at the bottom-most part of the window.

If there is any failure at this point, you should review what you have done
so far.

You should also see the icon of the EMPBYPROJ function added to the
right panel of the object list (Figure 60).

__ 7. To test the UDTF, open the SQL Script Center by right-clicking the I400WS
icon (right under Databases) in the left panel and selecting Run SQL
Scripts.

__ 8. Type the following statement and run it:

SELECT * FROM TABLE(EMPBYPROJ('OP1010')) AS X;

You can see now that the statement is simpler than the original one. You
should see the results as shown in Figure 62.

Figure 62. Result of the UDTF: EMPBYPROJ

The text indentation format shown here is only for readability. You do not
have to follow this exact format. Use care in typing the semicolon (;) as
indicated only. Make sure you type your team number for
SAMPLEDBXX.

Note
92 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

Close the SQL Script Center when you are finished.

Now you should understand how an SQL UDTF is created and used.

You have completed this lab!

You invoke a UDTF with the following TABLE built-in function syntax:

TABLE (UDTF_name (expression)) correlation clause

The (expression) follows the same convention as in scalar or column
function. This syntax is most frequently used in the FROM clause (as in
the lab exercise).

The Correlation clause takes a form of:

AS correlation_name (column)

Here AS and (column) are optional. This represents an intermediate
result table built from the TABLE function.

Invoking a UDTF
93

94 Piloting DB2 UDB for iSeries with iSeries Navigator V5R2

	Lab 1. iSeries Navigator setup and basic operations
	Task 1: Configuring a PC connection to the iSeries server
	Task 2: Creating an alternate connection to the same iSeries server
	Task 3: Changing the Refresh option
	Task 4: Maintaining your active library list for iSeries Navigator
	Task 5: Creating a library/schema
	Task 6: Using the Find and Positioner features (optional)
	Task 7: Creating Database function shortcut on Windows desktop (optional)
	Task 8: Deleting a library/schema (optional)

	Lab 2. SQL Script Center
	Task 1: Creating a sample DB schema and setting up a JDBC connection
	Task 2: Using SQL Script Center
	Task 3: Running SQL scripts in debug mode (optional)
	Task 4: Using basic Visual Explain
	Task 5: Using SQL Assist to build your basic SQL statement
	Task 6: Running OS/400 CL commands from SQL Script Center (optional)

	Lab 3. Working with tables using iSeries Navigator
	Task 1: Creating a database table with a primary key constraint
	Task 2: Adding a Check constraint to a table
	Task 3: Adding rows to the table and testing the check constraint
	Task 4: Testing the primary key constraint
	Task 5: Generating SQL from existing database objects
	Task 6: Altering a table
	Task 7: Displaying properties and descriptions of DB objects
	Task 8: Using the Hot Link feature in the Quick View function (optional)

	Lab 4. Other database tasks using iSeries Navigator
	Task 1: Creating a view
	Task 2: Applying permissions to a database object
	Task 3: Creating a view with SQL statement (optional)
	Task 4: Displaying the latest SQL statement in other jobs (optional)

	Lab 5. Journal management (optional)
	Task 1: Viewing journals
	Task 2: Swapping journal receivers
	Task 3: Creating journals/receivers
	Task 4: Dropping journals/receivers

	Lab 6. Database referential constraint
	Task 1: Creating a primary key
	Task 2: Creating a referential constraint
	Task 3: Testing referential constraints

	Lab 7. Database trigger
	Task 1: Creating an SQL trigger for AFTER INSERT
	Task 2: Creating a column-level SQL trigger for AFTER UPDATE (optional)
	Task 3: Testing the SQL trigger for AFTER INSERT
	Task 4: Testing the column-level SQL trigger for AFTER UPDATE (optional)

	Lab 8. Stored procedure
	Task 1: SQL stored procedure that returns result sets
	Task 2: SQL stored procedure that returns the value of output parameter
	Task 3: Perform SQL source-level debugging (new in V5R2 - optional)

	Lab 9. User-defined function
	Task 1: Creating and using a scalar SQL UDF
	Task 2: Creating and using an SQL UDTF

