
Session: BL09

LAB: V5R2 Newest
Journal and Commit

Features
Larry Youngren
Adam Stallman

Peg Levering

IBM server iSeries

© Copyright IBM Corporation, 2003. All Rights Reserved.
This publication may refer to products that are not currently
available in your country. IBM makes no commitment to
make available any products referred to herein.

7

Trademarks and Disclaimers

iSeriesIBM server

© IBM Corporation 1994-2003. All rights reserved.
References in this document to IBM products or services do not imply that IBM intends to make them available in every country.
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States,
other countries, or both:

AS/400 IBM Logo
AS/400e iSeries
e-business logo OS/400
IBM DB2

Lotus, Freelance Graphics, and Word Pro are registered trademarks of Lotus Development Corporation and/or IBM Corporation.
Domino is a trademark of Lotus Development Corporation and/or IBM Corporation.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may
have achieved. Actual environmental costs and performance characteristics may vary by customer.

Information in this presentation concerning non-IBM products was obtained from a supplier of these products, published
announcement material, or other publicly available sources and does not constitute an endorsement of such products by IBM. Sources
for non-IBM list prices and performance numbers are taken from publicly available information, including vendor announcements and
vendor worldwide homepages. IBM has not tested these products and cannot confirm the accuracy of performance, capability, or any
other claims related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the supplier of
those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and
objectives only. Contact your local IBM office or IBM authorized reseller for the full text of the specific Statement of Direction.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual
throughput or performance that any user will experience will vary depending upon considerations such as the amount of
multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore,
no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated
here.

Contents

Lab 1. Type5 Journal Data . 1
Introduction . 2
Task 1: Introduction to the New Type 5 Journal Data Option 3
Task 2: CHGJRN, FIXLENDTA, and Outfile Querying 6
Task 3: Intrusion Detection . 7
Task 4: Compare Arm Behavior when Using Caching 11

Lab 2. Journal Standby Mode . 15
Introduction . 16
Task 1: Producing the Performance Baseline . 17
Task 2: Running with Batch Journal Caching . 20
Task 3: Running with Journal Standby Mode . 22
Task 4: STRJRN vs. Standby -> Active Transition 25
Optional Task 5: Sending Entries to a Journal in Standby Mode 28

Lab 3. SMAPP Visibility and Tuning . 31
Introduction . 32
Task 1: Displaying the Default SMAPP Journal . 33
Task 2: New SMAPP ‘Protected’ Index Screen 39
Task 3: *INCHIDENT - Display Hidden Journal Entries 41
Task 4: New ‘Not Eligible’ for SMAPP Screen . 43

Lab 4. Savepoints . 47
Introduction . 48
Task 1: Savepoints - Releases, Rollbacks, and Nested 49
Task 2: Journal Entries Associated with Savepoints 55

Lab 5. Journal Performance Counters and Tracepoints 57
Introduction . 58
Task 1: Journal Performance Counters . 60
Task 2: Journal Tracepoints . 64
Task 3: Additional Journal Tracepoints . 67

Appendix A . 71
UPDVAC Source Code . 71
SQLSTMT/SQLDSP SQL Script . 72
BUNDLE Source Code . 73
SQLSTMT/SQLSBYPERF SQL Script . 75
PERFRUN Source Code . 75
JOTIMEIT Source Code . 76
STRJRNLIB Source Code . 78
PARTS Data file . 80
JODSPJRN Source Code . 81
MANYPARTS Source Code . 81
SQLSTMT/SQLSPT SQL Script . 82

JOPARSEPEX Source Code . 82

Important Note:

If you are not an experienced Journal user and proficient with using the iSeries, you may not be able to
complete this entire Lab in the time allotted. Please take a moment to look over the Table of Contents
and choose the Labs from which you would benefit most. We suggest completing the Labs in the
provided order if you are new to Journaling.

The following are estimates of the time required to complete the various Labs:

Lab 1: Type5 Journal Data 25 to 35 minutes
Lab 2: Journal Standby Mode 25 to 35 minutes
Lab 3: SMAPP Visibility and Tuning 30 to 40 minutes
Lab 4: Savepoints 20 to 30 minutes
Lab 5: Journal Performance Counters and Tracepoints 25 to 35 minutes

Also keep in mind that there are various Optional steps along the way. These steps are not required to
complete the Lab.

1

2

V5R2 Newest Journal
and Commit Features

Lab 1: New Style (TYPE5)
Formatting of Journal Data

IBM server iSeries

© Copyright IBM Corporation, 2003. All Rights Reserved.
This publication may refer to products that are not currently
available in your country. IBM makes no commitment to
make available any products referred to herein.

3

7

4

Lab 1. TYPE5 Journal Data

In this section of the lab neat, new, never before seen data you can now display by
using the DSPJRN CL command will be explored.

Introduction
New features in V5R2 allow you to both collect and display more environmental
descriptive information with each Journal Entry. Some of this data can be used to better
analyze performance while other choices provide more audit or replay information with
each Entry. This lab will show you how to enable and view this new data and will
demonstrate some ways in which this data can be used.

Objectives
This lab teaches you how to:
� Use the new V5R2 FIXLENDTA option on the CHGJRN command to

customize the environment information collected for each Journal Entry.
� Display Journal Entry information using the new V5R2 TYPE5 format including

display of Remote Address information as well as the Disk Arm number
associated with each Journal Entry.

Lab Information
The notation XX that appears in library names, profile names, and so on, refers to your
Team Number (for example, JOTEAMXX, JOLABXX, JODSPXX). Refer to your
lab worksheet for details.

Lab Prerequisites
Before you begin this lab, be sure the following prerequisites are available:

� An IBM eServer iSeries or AS/400 with OS/400 V5R2, or higher, with:
 - 5722-QU1 -Query for AS/400
 - 5722-ST1 -DB2 Query Manager and SQL Development Kit for AS/400

- 5722-SS1 -Feature 5117 (Option 42) AS/400-HA Journal Performance
� The JOLABXX library containing a program and an SQL script for the lab.

Time required
The time required to efficiently complete this lab ranges from 25 to 35 minutes.

5

Task 1: Introduction to the New Type 5 Journal Data Formatting Option

You have been put in charge of maintaining the vacation records for a large
company. This job involves managing vacation records and updating the
employee files appropriately to show the remaining number of vacation days. The
company has a program in place which verifies the authenticity of the requests
and updates the employee records.

First, you will need to set up a database collection and put data in it to represent these
company records.

__ 1. Start interactive SQL with the STRSQL CL command.

__ 2. Create your SQL collection with the Create collection JODSPXX SQL
statement. An SQL collection creates a native library, a Journal named
QSQJRN, and various SQL related objects. Database objects created within
the collection will automatically be journaled to the Journal QSQJRN. Don’t
get impatient... creating all of the objects may take a while. There’s a lot going
on under the covers at this point.

__ 3. Exit interactive SQL with the F3 option and then select option 1.

__ 4. We have written a special SQL script for this lab to save you a bunch of
keystrokes. Create a set of database tables by executing the SQL statements in
the SQLDSP member of the JOLABXX/SQLSTMT file. These tables will
automatically be journaled because they are being created in an SQL collection.
This can be done with the RUNSQLSTM
SRCFILE(JOLABXX/SQLSTMT) SRCMBR(SQLDSP)
DFTRDBCOL(JODSPXX) CL command. The script executed by this
command contains the following SQL statements and will create the database
tables shown below:

Create table Vacation (emp_id int, Name char(30), vac_days int)
Insert into Vacation values (1001, ‘Bill’, 5)
[Followed by a number of additional employees]
Create table Monday (emp_id int, reqdate date)
[Followed by a number of additional days]
Insert into Monday values (1001, ‘4/05/02’)
[Followed by a number of additional requests]

6

The Vacation file holds the vacation totals for each employee for the year,
revealing the number of days of vacation remaining. The files named after the
days of the week contain the pending employee vacation requests for each day
which need to be decremented from the Vacation file.

Don’t forget to add yourself to the company Database. You wouldn’t want to
have to do all of this work without receiving any vacation time!

You can accomplish this with the following steps:

__ 5. Start interactive SQL with the STRSQL CL command.

__ 6. Enter your own name in Vacation with the following SQL statement:

Insert into JODSPXX/Vacation values(1115, ‘your name’, 5)

__ 7. Exit interactive SQL with the F3 option and then select option 1.

Now that the data is in place, it is your job to kickoff the program which runs
every night to verify the requests and update the company records. This program
allows you to specify as input the file containing the new vacation requests for the
particular day. Run the program using Monday’s requests this time.

__ 8. Set JODSPXX to your current library with the CHGCURLIB JODSPXX
CL command. This will allow the UPDVAC program used below to access the
database objects residing within your collection.

__ 9. Run the JOLABXX/UPDVAC to update the master file with all the new
changes made throughout Monday. This can be done with the following CL
command: CALL JOLABXX/UPDVAC PARM(‘Monday’).

__ Optional: Quickly view the Journal Entries produced so far. This can be done using
the DSPJRN JODSPXX/QSQJRN CL command. You will see Entries of
type PT (Record added) from populating the table, along with UB/UP Entries
(Updates) at the end from the UPDVAC program you just ran. Entry #55
should be a PT where your data was added to the Vacation table.

__ 10. Let’s route a copy of the Journal Entries which you have produced so far to an
OUTFILE which you can then query with the following steps:

__ A. Type DSPJRN on the CL command line and press F4. Enter Journal,
QSQJRN, and library, JODSPXX. Caution: Don’t press enter yet.

7

__ B. Page down until you find the final keywords, the ‘Output’ parameter.
Type *OUTFILE for the ‘Output’ parameter. Press Enter. More
options will appear for the ‘Outfile format’ parameter.

Up until now, everything we’ve done could have been performed prior to
V5R2. Here comes the new stuff...

__ C. Replace *TYPE1 with *TYPE5 as the ‘Outfile format’ parameter.
This is a new outfile format for V5R2. It allows you to see more of the
'behind the scenes' workings within Journal for all of the available
journaled object types so you can make more informed decisions on
how to get the most out of your machine.

__ D. Enter DSPJRNOUT for 'File to receive output.’ Type JODSPXX
for the library. Press Enter twice. You should see a message
confirming that 59 Entries were converted. You will see a “Data
Truncated to Outfile” message. This is okay. Using the default of
*OUTFILFMT for ENTDTALEN limits the Entry specific data written
to the outfile to avoid a massively sized outfile.

That’s it. We’ve created an outfile and copied Journal Entries into it.

__ 11. Start interactive SQL with the STRSQL CL command. You can now query
the outfile we produced above: DSPJRNOUT, which contains the Journal
Entries you just copied into this file with the DSPJRN command. To see the
myriad of information the new Type 5 formatting option provides, enter: Select
* from JODSPXX/DSPJRNOUT. Use F20 (Shift + F8) to scroll to the
right and F19 (Shift + F7) to scroll to the left within the data... Notice all of the
column headings.

One of the fields in the table containing the Journal ID (JID) for an object may
contain non-displayable characters which will result in an odd looking screen.
Press the Escape key if you get stuck due to these non-displayable characters.

If you are an old pro at journaling, you are going to notice some new values on
the screen. If you are brand new to Journaling, you may want to ask your Lab
instructors to explain some of what you are seeing on the screen.

You may have noticed some data fields such as 'REMOTE ADDRESS' and 'XID'
which have no data in their columns. This is new data available for the first time
in V5R2 which is collected at Runtime only if you advise the machine to do so...
(we didn’t). You can use the CHGJRN command and work with the FIXLENDTA

8

option to add some of these fields to the information collected for the *TYPE5
display. In the next task, you will try adding some of these options.

Type5 (rather than the pre-V5R2 styles such as Type4) is the newest kid in town
and he’s able to show you information about your Journal that others can’t. You
may want to consider replacing your former use of Type4 with Type5 when you
start using V5R2. We’ll take a look at how you can use this new information in
the upcoming tasks.

__ 12. Exit interactive SQL with the F3 option and then select option 1.

Task 2: CHGJRN, FIXLENDTA, and Outfile Querying

In this task we will handle employee requests for the following day (Tuesday), this time
gathering and displaying more of the new optional Journal Entry data available for the
first time in V5R2.

Your boss has requested more security and performance data to be collected with
each Journal Entry. Luckily for you, the new V5R2 FIXLENDTA option is
available to help you collect the extra information he’s looking for. This
information is stored internally in a sub-section of each Journal Entry known as
the fixed length area. Hence the name: Fixed_Length_Data.

__ 1. We will need to specify the new FIXLENDTA option on CHGJRN to instruct
the machine that the new (optional) Journal Entry information should henceforth
be collected.

__ A. Type CHGJRN JRN(JODSPXX/QSQJRN) and press F4 to
prompt this command. It would be awfully confusing to represent new
data and old-style data in the same Journal Receiver so V5R2 enforces
the reasonable rule that you need to change Journal Receivers any time
you tinker with the Journal Collection Attributes. Hence, in order to
turn on the option to collect the new FIXLENDTA, a new Journal
Receiver is required. That’s easy... simply specify *GEN on the
Journal Receiver line instead of the default *SAME.

__ B. Now page down to the 'FIXED LENGTH DATA' (FIXLENDTA)
field. Hint: If you prefer to see keywords, you can use F11 to make
them appear on your screen. To add more values, type ‘+’ on the first
line (where it probably says *JOB), blank out the rest of *JOB, and
press Enter. The 'Specify More Values for Parameter FIXLENDTA'
screen should appear. *JOB, *USR, and *PGM are the pre-V5R2
trio of historical “Fixed Length” descriptive information collected for

9

each Journal Entry. This same trio of information can still be collected
in V5R2, but they must be specified as three individual options to be
used in concert with the newly available Fixed_Length_Data options.
Arrow down to a blank line and press F4. You will be given a list of
various options. These are all of the available parameters for the
FIXLENDTA field. Press F12 to back off this prompt screen and add
*SYSSEQ, *PGMLIB, and *RMTADR into the 'Specify More
Values for Parameter FIXLENDTA' screen. Once all of these
parameters are set for FIXLENDTA, press Enter to accept these
values. Now blank out the *JOB attribute listed as a parameter for
FIXLENDTA, and press Enter again twice to execute the CHGJRN
command.

You will get a message about a Journal sequence number not being reset.
Don’t worry about it, we didn’t specify to reset the Journal sequence number
this time.

Let’s review what you have just done: You have selectively enumerated which
descriptive bits of information you would like collected for each new Journal
Entry produced. Some of the traditional favorites like User_Profile (*USR) and
Program_Name (*PGM) were selected, along with some new V5R2 choices, like
System_Sequence_Number (*SYSSEQ) and Remote_Addresses (*RMTADR).

In this case, we even decided not to collect the Job_Name (*JOB) information
that has historically been collected. That was a conscious choice on our part.
Harvesting jobs names for each and every Journal Entry costs CPU cycles. By
eliminating what we don’t really need, we can save those cycles. Of all the
traditional pieces of descriptive environmental information collected, the most
costly to harvest by far is the program name. The microcode has to climb the
execution stack frame by frame looking for the culprit up at the user-level who
initiated this Journal request... and that can consume cycles.

Suppressing collection of program names may be especially attractive if you have
a Journal which is predominantly populated by the same batch job executing the
same program day after day. Do you really need to have all 100,000 Journal
Entries look up the program name anew? If not, why not suppress it? Hmm...
there is a good tip you can take home. If you don’t have a need for the
information, you can help performance and save space in the Journal Receiver by
not collecting the information! That’s the beauty of the new “Fixed Length
Data” versatility V5R2 affords. (Got any spurious Journal overhead you can
eliminate when you return home?)

10

__ 2. If you didn’t already do this in Task 1, set JODSPXX to your current library
with the CHGCURLIB JODSPXX CL command.

__ 3. Run the JOLABXX/UPDVAC to update our master vacation file with all
changes made throughout Tuesday. This can be done with the following CL
command: CALL JOLABXX/UPDVAC PARM(‘Tuesday’).

__ 4. Let’s route a copy of the new Journal Entries which you just produced to an
OUTFILE by executing the following command: DSPJRN
JRN(JODSPXX/QSQJRN) OUTPUT(*OUTFILE)

 OUTFILFMT(*TYPE5) OUTFILE(JODSPXX/DSPJRNOUT). This
will overwrite the same table which you created in step 10-D of the previous
task by prompting on the DSPJRN except that it is done all in one step. You
should see a confirmation message pointing out that 9 new Journal Entries were
converted.

Next you will be selectively querying and displaying portions of the resulting output file,
so you will need to know the field names to employ in the SQL SELECT statement
which appears below.

__ 5. Enter DSPFFD JODSPXX/DSPJRNOUT. To view the field names of all
of the fields in a file, you can use the DSPFFD (display file field description) CL
command. Page down and you will be able to see the field names
corresponding to each field a *TYPE5 formatted Journal Entry houses, such as:
 JOSYSSEQ, JOPGMLIB, JOUSER, and JOPGM. Exit using F3.

You may be asking yourself, “Why do I need all of this extra data? What can I do
with it?” In fact, this extra data shows you many things about your Entries which
you might find useful. For example, you may have many programs at home with
the same name, but residing in different libraries. By including the new V5R2
*PGMLIB data, you can find out exactly which instance of the program made the
changes to the database record and where this program can be found. You can
see this in action right now. Everyone in this lab is running a program, each
having the same name, UPDVAC, yet in their own individual libraries. When you
display the Entries of your Journal, you will see that the UPDVAC program which
you ran was from your own library (JODSPXX) and not from someone else’s
library. Let’s take a look at those Entries...

__ 6. Start interactive SQL with the STRSQL CL command.

This time, instead of viewing all of the fields present in the output file for each
Journal Entry, we’ll view only the customized FIXLENDTA ones you have just
included using a refined SELECT.

11

__ 7. Enter Select JOSEQN, JOSYSSEQ, JOPGMLIB, JOUSPF,
JOPGM, JORADR from JODSPXX/DSPJRNOUT. Now only those
six fields will be shown, and the fields (like JORADR) which did not previously
have any data when we performed Monday night’s refresh (because we had not
yet instructed the Journal to start collecting such information) will now have
Tuesday’s information in their columns rather than blanks. If you don’t see all
six column headings, you probably left out some commas. Exit this display
using F3.

You have now seen how the FIXLENDTA option allows you to collect exactly the
customized information you prefer with each Journal Entry. No more, and no less. This
feature provides you with the ability to only use the processing power and disk space to
collect what is needed in your own shop. Once you have determined what information
you need, you’ll probably want to customize your own Journals so as to discard the
chaff.

The Security Audit Journal on a V5R2 system will include all of the Fixed Length
Data information that is possible to collect. The Journal Entries produced in this
Journal will now have this extra Audit information available.

So let’s review:
1) You can use the new V5R2 CHGJRN options to customize what is collected.
2) You can then use the new V5R2 DSPJRN *TYPE5 to customize what is
 displayed.

Task 3: Intrusion Detection

Task 3 demonstrates the ability to see the IP address of the remote origin machine
associated with a given Journal Entry using the new V5R2 Type5 Journal Display
Option. It is especially useful if you allow remote access to your machine.

Now that you have the hang of the vacation request program, wouldn’t it be
great to just go in and give yourself a few more vacation days? The profile you
are using is shared by a number of developers, so there is no way for the auditors
to figure out who did it, right? Let’s give it a try and see what happens!

__ 1. Without using the standard UPDVAC program, let’s sneak in the backdoor and
use native SQL to update your own data record to have more vacation days.

12

Update JODSPXX/Vacation set vac_days = 30 where emp_id =
1115

__ 2. Exit interactive SQL with the F3 option and then select option 1.

That SQL update undoubtedly produced a Journal Entry. Now that a new
Journal Entry has been produced in your Journal Receiver, let’s refresh the
contents of our outfile so we can query what happened.

__ 3. Type DSPJRN JRN(JODSPXX/QSQJRN) OUTPUT(*OUTFILE)
 OUTFILFMT(*TYPE5) OUTFILE(JODSPXX/DSPJRNOUT) on the

CL command line and run the command (you may be able to use F9 to retrieve
this command since you used it in the last task). You should see a confirmation
message that 11 Entries were converted.

__ Optional: DSPJRN to screen and look at the ‘Job’ column. DSPJRN
JRN(JODSPXX/QSQJRN). You will see that no Job Name was
recorded. Rather, such information was ‘*OMITTED.’

Feeling smug, aren’t you? Maybe nobody can detect what you did.

Do you remember when we added *RMTADR to the FIXLENDTA with the
CHGJRN command back in step 1-B of task two? Well, here is where you can use
that remote address data we’ve been collecting.

__ 4. Start interactive SQL with the STRSQL CL command.

__ 5. Enter Select JOSEQN, JOPGM, JORADR, JORPORT, JOUSPF
from JODSPXX/DSPJRNOUT. Find the last Journal Entry. That’s the
one that corresponds to the change you recently made to your number of
vacation days. Use F20 (Shift + F8) to scroll to the right to view the entry.
Notice that the PROGRAM NAME field indicates that it was not the
authorized UPDVAC program which made the change to the Vacation file! It
was you typing a command. Also note that the REMOTE ADDRESS field of
the Entry indicates where the change originated from. This shows the IP
address of the clandestine remote computer making the request!

Record the IP address here: _________________

__ 6. Exit interactive SQL with the F3 option and then select option 1.

__ 7. Find the IP address of the machine you are currently working on. Open a
simple Command Prompt by clicking on the Microsoft Windows Start Button,

13

choosing ‘RUN’, and entering ‘command’ before clicking ‘OK’. Type
‘ipconfig’ and press Enter. Some information will be displayed, including
your PC’s IP address.

Record the IP address here: _________________

Type Exit and press Enter to exit the Command Prompt.

Your machine’s IP address is the same as the one posted in the ‘Remote Address’
field of the outfile. BUSTED! Maybe giving yourself a few extra days wasn’t the
best idea! The boss seems to be posting a help-wanted sign in the window. Looks
like you’re going to have a loooooong vacation now. The new Journal Entry data
can help to pinpoint exactly how a particular change was made (and by whom
and from where!).

Hmm... your auditors are going to love this option.

Task 4: Compare Disk Arm Behavior when Using Journal Caching

Okay, now you see how that works. Why don’t we take a peek at another item
that has just become available with V5R2: the identity of the disk ARM housing
each Journal Entry. This field tells you which arm (or disk drive) a certain
Journal Entry resides on. This can be used to determine the “bundling rate” and
scattered disk write pattern of Journal Entries. Armed with this information you
can determine how many Journal Entries are being written to disk together at the
same time. And why would you want to know this? The more Journal Entries in
a bundle, the fewer disk writes that need to be done. The Journal Caching option
(available for the first time as a native Journal Attribute in V5R2) is one way to
achieve enhanced bundling.

In the Appendix you can find the “BUNDLE” program which you can use to help
reduce the row disk arm data and calculate the average bundling rate.

Let’s give this stuff a try.

__ 1. Turn on the V5R2 Batch Journal Caching feature for your Journal by calling the
CL command provided by the Journal Caching BOSS Option (we pre-loaded
this new option on our lab machine). CHGJRN
JRN(JODSPXX/QSQJRN) JRNCACHE(*YES). This new V5R2 Boss
Option is available for a fee and can be ordered as 5722-SS1 Option 42.

14

You may have noticed that we didn’t have to generate and attach a new Journal
Receiver in order to execute this command. In fact, the caching feature can be
toggled on or off as often as you wish. Some shops will want it on during Batch
and off during the interactive portion of the day.

__ 2. Set JODSPXX to your current library with the CHGCURLIB JODSPXX
CL command. The Batch Journal Caching feature’s mission in life is to cache
multiple Journal Entries in main memory, then write a bunch of them in unison to
the same disk arm in one disk revolution for the sake of efficiency.

__ 3. Run the JOLABXX/UPDVAC to update all changes made on Wednesday.
This can be done with the following CL command: CALL
JOLABXX/UPDVAC PARM(‘Wednesday’).

Let’s see what the Journal can tell us regarding disk arm usage.

__ 4. Type DSPJRN JRN(JODSPXX/QSQJRN) OUTPUT(*OUTFILE)
 OUTFILFMT(*TYPE5) OUTFILE(JODSPXX/DSPJRNOUT) on the

CL command line and run the command (you may be able to use F9 to retrieve
this command since you used it in the last task). You should see a confirmation
message showing that 40 Journal Entries were converted.

You will recall that *TYPE5 is the new V5R2 stuff that let us take a peek at
formerly hidden information (such as arm number). In past releases, only
microcoders and service personnel in IBM’s laboratories could see this
information. With V5R2, you can too! In Task 2 we worked with some of the
customized FIXLENDTA types, which are not normally collected, but must be
‘turned on’ if you want to collect and view them. However, certain information
(such as arm number) have always been collected and have only become available
for viewing in V5R2.

__ 5. Start interactive SQL with the STRSQL CL command. We performed
Monday’s and Tuesday’s nightly refreshes without the benefit of the Journal
Caching option. So those Journal Entries should be scattered all over the disk
arms in dribs and drabs. You can now query the outfile DSPJRNOUT to see if
the dispersion of data onto the arms is different for Wednesday’s refresh, since
it had the benefit of Journal Caching.

The identity of the disk arm to which each Journal Entry was written is revealed
in the JOARM column of our Type5 outfile.

15

__ 6. Enter Select JOSEQN, JOARM, JOENTT from
JODSPXX/DSPJRNOUT to view the sequence numbers, arm numbers,
and Entry types of the Journal Entries you have produced.

You will notice that the Journal Entries before the CI Journal Entry (marking the
transfer into Caching mode) are spread out over the arms, with only a couple of
Entries in a row going out to the same arm at one time. This modest bundling is
because the update before and after images (UB and UP) are always bundled
together. Hence Monday and Tuesday’s runs were not disk efficient.

Next, compare this to the improved bundling that occurs when you use a feature
such as Caching. After the CI Entry, nearly all of the Journal Entries are
bundled onto one arm and are written to disk with a single disk write.
(Interactive SQL closes the file after your first update forcing the first set of
entries to their own arm.) If enough Journal Entries had been produced to
completely fill the Journal buffer, these Entries would have been written out to
disk and then the next arm would have been used for a second bundle. The
Entries are bundled on the arms because they have been 'saved up' before being
journaled, thus many Entries are being written to disk at once. Fewer disk
writes means much better performance for Wednesday’s refresh!

Want to be a hero when you return home? Why not propose speeding up your
nightly Batch Jobs by turning on this V5R2 Caching feature?

How will you know if you need it? ...Display your arm numbers!

__ 7. Exit interactive SQL with the F3 option and then select option 1.

Various factors including commitment control, an OVRDBF with SEQONLY
*YES, Journal Caching, and high levels of concurrent processing from multiple
jobs affecting the same Journal can improve the bundling rate in your own
environment. If you currently have a low bundling rate, it is likely that the
usage of these features can greatly increase your Journal performance. With
V5R2 and the *TYPE5 option you now have the tools to analyze disk efficiency
of journaling in your own shop.

For
more information regarding Journal Bundling and Cache tuning and the
associated performance benefits you may want to take a look at the Redbook:
‘Striving for Optimal Journal Performance’ found on the IBM Redbook Web
site: www.redbooks.ibm.com

16

17

V5R2 Newest Journal
and Commit Features

Lab 2: Journal Standby Mode

IBM server iSeries

© Copyright IBM Corporation, 2003. All Rights Reserved.
This publication may refer to products that are not currently
available in your country. IBM makes no commitment to
make available any products referred to herein.

18

7

19

Lab 2. Journal Standby Mode

In this section of the lab the Journal Standby feature will be explored. Standby is a
new V5R2 feature available only if you have installed Option 42 of OS/400. It makes
the most sense for shops that have a high availability requirement.

Introduction
The main purpose of the Journal Standby feature is to speed up the process of switching
over from a production system to a hot backup system. Standby mode allows this to
be done without hurting run time on a backup system and without having to endure
time-consuming Journal enabling steps during switching over. It allows you to prepay
your start-up costs well in advance.

In short: Standby is what you do on your target machine.

Objectives
This lab teaches you how to:
� Enable Standby mode for a Journal.
� Compare the performance between normal journaling, Journal Caching, and

Journal Standby mode.
� Compare the performance between changing from Standby mode to active

journaling vs. starting journaling for your objects.
� Put out critical Journal Entries to a Journal despite the fact that it’s in Standby

mode.

Lab Information
The notation XX that appears in library names, profile names, and so on, refers to your
Team Number (for example, JOTEAMXX, JOLABXX, JOSBY_A_XX). Refer to
your lab worksheet for details.

Optional steps are included in this lab in addition to the required steps. These steps are
not required to complete the lab, but can be attempted to further demonstrate the usage
of various Journal commands. Optional steps are denoted with “Optional:” instead of
the step number.

Lab Prerequisites
Before you begin this lab, be sure the following prerequisites are available:

� An IBM eServer iSeries or AS/400 with OS/400 V5R2, or higher, with:
 - 5722-QU1 -Query for AS/400
 - 5722-ST1 -DB2 Query Manager and SQL Development Kit for AS/400

- 5722-SS1 -Feature 5117 (Option 42) AS/400-HA Journal Performance
� The JOLABXX library contains a program and an SQL script for the lab.

20

Time required
The time required to efficiently complete this lab ranges from 25 to 35 minutes.

21

Task 1: Producing the Performance Baseline

Your company has a large database system and you are in charge of keeping it
running, and bringing it back up if the system goes down. You have a main
system A which registers all of your company’s transactions. These transactions
are then remote journaled and replayed on another system, B. Should system A
go down, system B must take over your production workload. (See the diagram
on the next page)

Before the new Standby feature in V5R2, you had only two choices: 1) you would
either always journal your entire replicated database and other journaled objects on
system B or 2) wait and start journaling these objects only when you want to switch
over to this system.

Both of those former choices had disadvantages:

� The First Alternative: Always journaling your entire replicated database and objects
on the target system takes up resources day after day after day... and may slow down
the replication process itself taking place on system B. In fact, if you’re using HABP
(High Availability Business Partner) software to replay database and object changes to
the redirected objects residing on this system, this option would have increased the
likelihood that such HABP jobs would have a tough time keeping up. (Ever seen your
HABP replay jobs begin to fall behind? This could be one of the causes!) By contrast,
with the new Standby feature turned on, you will not be consuming as many valuable
system resources on the target system so you will not incur as much performance
impact.

� The Second Alternative: Although starting journaling for a simple environment on a
few objects at the last minute on your target system, during a so-called role-swap, from
system A to system B may not take long, starting journaling on thousands of objects on
the target system will take a very long time. If you have an environment consisting of
hundreds of objects, that’s the risk you face. Are you willing to make your customers
(and your impatient boss) wait for all of this activity to complete before a switch from
system A to system B can be completed? Probably not. With the new Standby feature
in V5R2, you won’t have to. If your primary machine goes down and you have your
secondary machine set up such that your critical objects are already journaled to a
Journal which is in Standby mode, you can start running on system B very quickly by
simply taking the Journal out of Standby mode. It’s that simple! Task 4 allows us to
find out how rapidly we can make that transition. (Trust us, you’re going to be
impressed.)

22

You look like an entrepreneur with a sweet tooth who’d like to open a gourmet
cheesecake factory. Have we got a deal for you....

In this section of the lab you will create a set of database tables and indexes
representing a cheesecake factory. Sounds yummy, doesn’t it? This environment will
then be used to establish a baseline measurement for comparison against a similar
environment with Journal performance enhancements such as Standby mode.

__ 1. Start interactive SQL with the STRSQL CL command.

__ 2. Create our first SQL collection (we’ll call it collection ‘A’) with the Create
collection JOSBY_A_XX SQL statement. An SQL collection creates a
native library, a Journal named QSQJRN, and various SQL related objects.
Database objects created within collection ‘A’ will automatically be journaled to
the Journal QSQJRN. Give this some time to complete... There are a lot of
underlying objects to create.

__ 3. Exit interactive SQL with the F3 option and then select option 1.

__ 4. Create a set of database tables and indexes by executing the SQL statements in
the SQLSBYPERF member of the JOLABXX/SQLSTMT file. This can be
done with the RUNSQLSTM SRCFILE(JOLABXX/SQLSTMT)
SRCMBR(SQLSBYPERF) DFTRDBCOL(JOSBY_A_XX) CL
command. The script executed by this command contains the following SQL
statements and will create the database tables shown below:

23

Create table Product (pid int, qty int, price float, descrip char(200))
Create table Trans (tid int, pid int, qty int)
Create index prod_pid on Product (pid)
Create index trans_ids on Trans (pid, tid)
Insert into Product values (1, 200, 12.00, ‘Cherry Cheesecake’)
Insert into Product values (2, 100, 10.00, ‘Lemon Cheesecake’)
[Followed by a number of additional products]

You may see brief progress messages flash across the bottom of your screen as
Access Paths are built.

__ 5. Set JOSBY_A_XX to your current library with the CHGCURLIB
JOSBY_A_XX CL command. This will allow the PERFRUN program used
below to access the database objects residing within your collection.

At this point your Transaction table (Trans) is empty (i.e. no one has placed any
orders yet). We’re about to create some transactions to fill this table, so hold
onto your hat! Our freezer is full, all of the school groups are starting their
fundraisers, and we’re about to start shipping product.

__ 6. Run the JOLABXX/PERFRUN program for 30 seconds. This can be done
with the following CL command: CALL JOLABXX/PERFRUN
PARM(‘30’). This program will insert records into the Transaction table and
update the Quantity field in the Product table thereby simulating the shipments
we’ve made. The program will terminate after running for 30 seconds. After
30 seconds have passed and the completion message appears on your screen,
press Enter to get back to original session.

Our purpose is to determine how many transactions we can service in 30 seconds.
This will be our baseline for comparison.

__ Optional: The Journal Entries that have been produced during this 30 second run
can be viewed with the DSPJRN JRN(JOSBY_A_XX/QSQJRN) CL
command. After the CT (Create Table), MC (Member Create), and JF
Journal File) Entries which put our tables in place, you should see a series of
Journal Entries such as PT (Put in a Transaction) and UP (Update our
inventory) which were generated by the PERFSBYRUN Program. You may
have to page down to see them all. Enter 5 next to Entries to browse through
some of the UP flavored Entries from the Product table so you can see the
kinds of merchandise your hard earned dollars have bought.

Gosh, it looks like a good day - turtle cheesecakes and cheesecake minis are
selling well!

24

__ 7. Again start interactive SQL with the STRSQL CL command.

__ 8. Determine how many transactions were produced during this run of the
performance program with the Select count(*) from
JOSBY_A_XX/Trans SQL statement.

Record the number of transactions completed here: ________

Your new business has a profit margin of $1.00 on each cheesecake you sell.
Hmm... nice profit for 30 seconds of work.

The faster your Journal environment ran and the smaller the Journal overhead,
the greater the number of complete transactions that will have been produced in
30 seconds. This value will serve as your performance baseline. This is also the
value we’re going to try to beat by tuning our Journal environment. It represents
the highest sustained rate of cheesecake sales your application can muster. The
question is: “Can we do better?”

Task 2: Running with Batch Journal Caching

Task 2 illustrates the performance improvement we can achieve by enabling the V5R2
Batch Journal Caching feature. The impact of this performance enhancement will
depend greatly upon the specific environment being used.

Before Standby mode arrived in V5R2, turning on Caching via the Journal
Caching PRPQ on the backup system was the best software option to reduce the
overhead of journaling on your target machine. Let’s see how Caching compares
to our baseline and later we’ll give Standby mode a try.

__ 1. Start interactive SQL with the STRSQL CL command if you are not already
in interactive SQL from the previous task.

OK, it’s time to create collection ‘B’ in order to do a comparison.

__ 2. Create an SQL collection with the Create collection JOSBY_B_XX
SQL statement. An SQL collection creates a native library, a Journal named
QSQJRN, and various SQL related objects. Database objects created within
collection ‘B’ will automatically be journaled to the Journal QSQJRN. Yes,
yes... this step may take a little while, but you know that.

__ 3. Exit interactive SQL with the F3 option and then select option 1.

25

__ 4. Create your tables and indexes by running the SQL statements in the
SQLSBYPERF member of the JOLABXX/SQLSTMT file. The can be done
with the RUNSQLSTM SRCFILE(JOLABXX/SQLSTMT)
SRCMBR(SQLSBYPERF) DFTRDBCOL(JOSBY_B_XX) CL
command. The script contains the same SQL statements we used in task 1 and
will create the same database tables shown in task 1, but in collection ‘B’ this
time.

__ 5. Turn on the new Batch Journal Caching feature for the Journal in collection ‘B’
by calling the CL command using the new V5R2 option enabled by the HA
Journal Performance BOSS Option with the following command: CHGJRN
JRN(JOSBY_B_XX/QSQJRN) JRNCACHE(*YES). This option is
available for a fee (and worth every penny) and can be ordered for V5R2 as
5722-SS1 Option 42.

__ Optional: To confirm that the Journal knows Caching is enabled, let’s do a
WRKJRNA to display the Journal attributes. WRKJRNA
JRN(JOSBY_B_XX/QSQJRN). Also note that *MAXOPT2 has become
the new default setting for SQL collections in V5R2.

Those of you who’ve used similar support in the form of the ‘Journal Caching
PRPQ’ for release V4R4, V4R5, or V5R1 will recognize this new V5R2 choice.
The former PRPQ has grown up! It’s now available as a simple keyword on a
regular Journal command and its scope has been expanded to Cache not just
database changes, but also journaled IFS, Data Area, and Data Queue changes as
well.

Let’s get ready for our head to head performance comparison:

__ 6. Set JOSBY_B_XX to your current library with the CHGCURLIB
JOSBY_B_XX CL command. This will allow the PERFSBYRUN program
to run against the tables residing in your ‘B’ collection.

__ 7. Run the JOLABXX/PERFSBYRUN program for 30 seconds. This can be
done with the following CL command: CALL JOLABXX/PERFRUN
PARM(‘30’). This program will insert records into the Transaction table and
update the Quantity field in the Product table. The program will terminate after
running for 30 seconds. Press Enter get back to original session.

__ Optional: The Journal Entries that have been produced can be viewed with the
DSPJRN JRN(JOSBY_B_XX/QSQJRN) CL command.

26

__ 8. Again, start interactive SQL with the STRSQL CL command.

__ 9. Run the following SQL statement to determine how many transactions were
produced during this Cache-enabled run of the PERFSBYRUN program.
Select count(*) from JOSBY_B_XX/Trans.

Record the number of Transactions completed here ______

How does that compare to the value you recorded for step 8 of task 1? You
accomplished more work in 30 seconds this time, right?

As you can see, the Journal Caching feature has a large beneficial impact on the
performance of your journaling environment. The Journal Caching feature has been
made available on pre-V5R2 machines as an optional, nonstandard part of OS/400. It
is available for V4R4, V4R5, and V5R1 through the Batch Journal Caching PRPQ
5722-BJC plus a matching set of PTFs. It is available for V5R2 as OS/400 optional
feature 42. Both the pre-V5R2 version and the V5R2 optional feature version have a
FREE trial version! That’s right, you can try out these fabulous options on your own
system without spending a dime.

You can read more about this PRPQ and the benefits of Journal Caching in the
Redbook: “Striving for Optimal Journal Performance” which can be found at:
www.redbooks.ibm.com.

Wow, this sure does reduce the journaling overhead! This option should allow for
those replay jobs to more easily keep your hot backup in sync with your
production system. Hmm... at $1.00 profit per cheesecake, you’re getting filthy
rich, right?

Task 3: Running with Journal Standby Mode

The question is: “Good though Caching is, can we do even better?”

Task 3 shows the performance improvement when using the Journal Standby option
alone without any other performance improvements. The impact of this performance
enhancement will depend greatly upon the specific environment being used.

__ 1. Start interactive SQL with the STRSQL CL command if you are not already
in interactive SQL from the previous task.

OK, it’s time to create collection ‘C’ in order to do yet another comparison.

27

__ 2. Create an SQL collection with the Create collection JOSBY_C_XX
SQL statement. An SQL collection creates a native library, a Journal named
QSQJRN, and various SQL related objects. Database objects created within
collection ‘C’ will automatically be journaled to the Journal QSQJRN.

__ 3. Exit interactive SQL with the F3 option and then select option 1.

__ 4. Here comes the critical new piece for V5R2: turn on the new Standby feature
for the Journal in collection ‘C’ by calling the CHGJRN CL command:
CHGJRN JRN(JOSBY_C_XX/QSQJRN)
JRNSTATE(*STANDBY).

__ Optional: Confirm the fact that our journal is now in Standby mode by using
WRKJRNA. WRKJRNA JRN(JOSBY_C_XX/QSQJRN). You should
see *STANDBY beside ‘Journal state.’

The Journal is now in Standby mode. Gosh, that was easy! The journaled
objects are no longer being actively protected and thus the normal Journal
Entries will not be produced nor written to disk. That’s the whole point of
Standby mode. If used properly, such as on our hot backup system where we
do not require this protection until we switch over, Standby mode can provide a
great performance boost... Let’s find out how much:

__ 5. Create your tables and indexes by running the SQL statements in the
SQLPERF member of the JOLABXX/SQLSTMT file. The can be done with
the RUNSQLSTM SRCFILE(JOLABXX/SQLSTMT)
SRCMBR(SQLSBYPERF) DFTRDBCOL(JOSBY_C_XX)
COMMIT(*NONE) CL command. The script contains the same SQL
statements we used in task 1 and will create the same database tables shown in
task 1.

Note: Commit(*NONE) is used here because commitment control is not
valid with Standby mode. Commitment control transactions would not be
able to be rolled back without the Journal Entries being recorded in the
Journal. If your application makes use of commitment control, your best
option on the Target system will be to use Journal Caching.

__ 6. Set JOSBY_C_XX to your current library with the CHGCURLIB
JOSBY_C_XX CL command. This will allow the PERFSBYRUN program
to run against the SQL tables residing within your ‘C’ collection.

28

__ 7. Run the JOLABXX/PERFSBYRUN program for 30 seconds. This can be
done with the following CL command: CALL JOLABXX/PERFRUN
PARM(‘30’). This program will insert records into the Transaction table and
update the Quantity field in the Product table. The program will terminate after
running for 30 seconds. Press Enter get back to original session.

__ 8. Again, start interactive SQL with the STRSQL CL command.

What do you think? Will Standby really turn out to be even more efficient than
Caching mode?

__ 9. Run the following SQL statement to determine how many transactions were
produced during this run of the PERFSBYRUN program. Select count(*)
from JOSBY_C_XX/Trans.

Record the number of Transactions completed here ______

As you can see, the Journal Standby feature can have a large positive impact on
the performance of a Journaling environment. When the Journal is in Standby
mode, almost nothing is being written out to the Journal or the related Journal
disks, thus object changes can be replayed to your replica environment more
quickly. This will allow your backup system to better achieve the objective of
remaining in “lock-step” with your source system, just in case you need to switch
over to the backup... And what would you do after such a role swap? Well...
you’d issue a CHGJRN command so as to leave Standby mode and re-enable
ordinary full journaling support.

How many more transactions did you produce during the Standby run in Step 9 of
Task 3 than during the original baseline of Task 1, Step 8? See... we told you, you
would be impressed.

__ 10. Exit interactive SQL with the F3 option and then select option 1.

Why not compare the Journal Entries from our baseline run with those produced
during our Standby Journal run?

__ 11. Enter DSPJRN JOSBY_A_XX/QSQJRN. Page down to the final screen.
Use F3 to exit when you are ready to move on.

29

Whoa! There are a lot of Entries for our original Baseline in collection ‘A’!
Every change to your rows within the SQL tables have been logged to the
Journal! Do you wonder what the Standby Journal looks like? Why don’t we go
take a look?

__ 12. Enter DSPJRN JOSBY_C_XX/QSQJRN. Exit using an F3 when you
are ready.

Quite a difference, isn’t it?

For collection ‘C,’ none of the row by row database changes were Journaled! No
wonder it was so fast. Yet, that’s exactly what we told the database to do by
enabling Standby mode. Standby mode has the additional benefit of not using up
disk space on your backup system or contending for disk resources on the system.

So let’s review: You’d use Standby on the target system, not the production
system. You’d leave Standby mode only when a role swap ensues, making your
former target system take on a production role. And why would this be so
attractive? ...Because we don’t want to incur the full overload of starting
journaling at role swap time... especially if our factory has thousands of journaled
objects.

So... how much time would we actually save at role-swap time by our insightful
use of Journal Standby mode? Let’s find out...

Task 4: STRJRN vs. Standby --> Active Transition

Let’s try a little comparison to test the validity of the idea that it is faster to keep your
Journals in Standby mode and change them to Active mode at role swap time than it is
to start journaling on all of your objects at role-swap time. This is exactly what you
would need to do in the event you need to switch over to your backup system.

You have decided to employ this new V5R2 Standby feature as the role-swap
strategy in your factory, but your pesky, know-it-all brother-in-law insists on
employing the older vintage strategy of starting journaling for all the files in his
own factory at roll swap time. He’s always done it that way, and hence believes
there is no reason to change his practices for V5R2. (He also still wears bell
bottoms...) You both use the same application package so this is a true “apples to
apples” comparison. Oops! Both of your production systems went down at the
same time (must be that new so-called killer ‘fix’ you installed last night)! You
make a bet to see who gets their machine up and running first!

30

Remember, your brother-in-law must start journaling from scratch on all of his
files residing on the target system. You can see these files in library JOFILEXX.
 Let’s take a peek.

__ 1. Type DSPLIB JOFILEXX to see the files that will need to have journaling
started. In the upper right hand corner of the display the ‘Number of objects’ is
displayed.

Record the number of files here: __________________

Exit back to the Command Entry Screen with an F3.

How does this compare to the quantity of files in your shop? Pretty timid, huh?
But probably sufficient to make our point. It’s time to start simulating your
brother-in-law’s experience.

__ 2. Type JOLABXX/JOTIMEIT (CALL JOLABXX/STRJRNLIB
PARM(‘JOFILEXX’ ‘QSQJRN’ ‘JOSBY_A_XX’)) on the CL command
line. The STRJRNLIB program will start journaling on all of the files in
JOFILEXX. This is going to take a while, so be patient. By using the
JOTIMEIT command, the time it takes to do this will be returned.

Record the it took to start journaling here: ________

__ Optional: You can use F10 to see detailed messages and thus view the list of files
for which journaling was started.

That took a while, didn’t it? Your brother-in-law must be a patient man. I
wonder if he is still confident that he will win? (Hope you bet a bundle on the
outcome of this test).

What if there were one thousand more files? Ten thousand? One hundred
thousand? The time could really add up. This isn’t just normal “go grab a
Coke” time... this is when your boss is standing next to you waiting for your
backup system to complete the role-swap after your production system went
down!
Some popular ERP packages in the marketplace place tens of thousands of files
on your system. Can you imagine what role-swap time must be for such packages
if Standby journaling isn’t used?

Let’s reuse the environment we just created and this time put our Journal into
Standby mode.

31

__ 3. Type CHGJRN JRN(JOSBY_A_XX/QSQJRN)
JRNSTATE(*STANDBY) on the CL command line.

__ Optional: Confirm the fact that our journal is now in Standby mode by using
WRKJRNA. WRKJRNA JRN(JOSBY_A_XX/QSQJRN). You should
see *STANDBY beside ‘Journal state.’

That was simple. In fact, that’s all it takes on your target machine to put
Standby mode in place.

Okay, now it’s your turn! We know how long it took your brother-in-law’s system
to complete the journaling phase of the role. Let’s see how long it takes to bring
your Journal back to Active mode from Standby. Will there really be an
improvement? Will you beat your brother-in-law in the race to get your target
system back up first? We’ll soon find out!

__ 4. Type JOLABXX/JOTIMEIT (CHGJRN
JRN(JOSBY_A_XX/QSQJRN) JRNSTATE(*ACTIVE)) on the CL
command line. This will return the time it takes to change all of the journaled
files from Standby mode to Active mode.

Record the time it took to make the transition to Active mode here: _____

Whoa! That is quite the difference in time! Imagine the difference this simple
switch would make over the STRJRN method if you had many, many more
objects. Your customers (and your boss) will be happy that you could make the
system available again so quickly. AND, you won the bet.

__ Optional: Let’s confirm that the Journal really did make the transition back into
Active mode. To do this, we will use the WRKJRNA command.
WRKJRNA JRN(JOSBY_A_XX/QSQJRN). You should now see
*ACTIVE, rather than *STANDBY, beside ‘Journal state.’

So... let’s summarize: If you want your day to day overhead on the target system
to be ultra low prior to V5R2, you had to leave journaling turned off, but that
makes the actual role-swap slow. Yuk! V5R2 changes all of that. You can enjoy
both day to day low overhead HABP replay on the target machine and fast
role-swaps. How? Merely employ Standby mode on your target machine. Sounds
like you and your boss need to have a discussion regarding these new V5R2
choices when you get home.

And how do you get your hands on this impressive performance boost? Why Option
42 of OS/400, of course.

32

Optional Task 5: Sending Entries to a Journal in Standby Mode

In this section of the lab you will explore some of the critical operations that will be
journaled regardless of the system being in Standby mode. These operations include
object deletes, renames, restores, and starting and stopping journaling transactions,
along with a number of others. These types of uncommon Journal Entries will flow out
to the Journal Receiver even though the Journal is in Standby mode. Why? Because
the Entries are uncommon enough to not cause a performance impact and some are
essential to the proper recovery of the machine. (You wouldn’t, for example, want to
lose a file rename, would you?)

In this task you will also be introduced to a new SNDJRNE option which is provided to
allow you to briefly override the Standby setting for selected critical application steps.
The SNDJRNE option is useful if you only want a few, specific application-provided
Journal Entries to be written out.

You will be working with the JOSBY_C_XX library. You previously placed it in
Standby mode back in step 4 of task 3.

__ Optional: Why don’t we make sure that the Journal really is in Standby mode? To
do this, we will use the WRKJRNA command. WRKJRNA
JOSBY_C_XX/QSQJRN. You should see *STANDBY beside ‘Journal
state.’

One type of Journal Entry that is journaled regardless of Standby mode is an
object rename operation. Let’s perform a rename on a file and see what happens
in our Standby Journal.

__ 1. Rename a file in JOSBY_C_XX. RNMOBJ
OBJ(JOSBY_C_XX/TRANS) OBJTYPE(*FILE)
NEWOBJ(SALES).

Now display the Journal to see which Entries have been produced despite the
Journal being in Standby mode.

33

__ 2. Type DSPJRN JOSBY_C_XX/QSQJRN.

You will see two Entries in the Journal, FN (File Renamed) and MN (Member
Renamed). As you can see, even though Standby mode is on, these essential DDL
Entries were written to the Journal.

That’s the good news. The system honors Standby mode for plain-Jane Journal
Entries like PT, UP, DL which tend to be numerous, but is smart enough to
recognize critical DDL operations like FN, MN and let them reach the Journal.
And what happens to the PT’s and UP’s? They’re tossed into the proverbial “Bit
Bucket” and vanish into thin air.

 Many applications write out their own application-initiated Journal Entries to a
Journal during processing for a variety of reasons. If you have an application which
uses the SNDJRNE CL command or the QJOSJRNE API to do this and your
Entries are so critical that you don’t want to risk having them dropped into the bit
bucket, you may want to make use of a new option which will allow Journal Entries
to flow out to the Journal even though it is in Standby mode.

Let’s see how this works:

__ 3. We’ll use the SNDJRNE command to send a new Journal Entry. Don’t press
Enter until you have completed filling in all of the fields required.

__ A. Type SNDJRNE and press F4 to prompt on this command.

__ B. Enter Journal, QSQJRN, and library, JOSBY_C_XX. Don’t press
Enter yet, there is more to add.

Let’s say your CEO wants positive confirmation over on your target
machine that your HABP software has replayed all of the daily sales
activity for each store.

__ C. Enter ‘Minneapolis Store Sales Complete’ in the Entry data
parameter. Include the single quotes. If you would like, you may enter
a ‘Journal entry type’ parameter on the line above to tell you what kind
of Entry you made. For example, if you would like to reiterate that this
is a ‘End of Day’ (the Journal code ‘U’ designates it as a user Entry)
you could enter a Journal entry type of ‘ED.’

Here comes the new option for V5R2:

34

__ D. Page down to the Override journal state parameter. Enter
*STANDBY. Press Enter. We are telling the machine to override
the normal Standby mode for this ONE special Journal Entry.

Let’s see whether this critical application phase marker flowed out to our Journal
despite the fact that it is in Standby mode.

__ 4. Type DSPJRN JOSBY_C_XX/QSQJRN.

Do you see the Entry you just added? You should see a Code of ‘U,’ (since it is a
user provided rather than an OS/400 generated Journal Entry) and if you set the
‘Journal entry type,’ the code you chose should show up under ‘Type.’ Otherwise,
under Type there will be ‘00.’

__ 5. Arrow down to your new Entry. Type 5. Press Enter. You can see that it is
a ‘User generated entry,’ along with the ‘Entry specific data,’ in this case
‘Minneapolis Store Sales Complete.’ Use the F3 key to exit.

So let’s reflect. What have we learned? Standby mode can really save you time and
resources if you use a backup system for your data and need it as a production machine
should your original production system go down. It’s remarkably easy to turn on and
off. You can still get your critical Entries deposited. And... your brother-in-law has lost
another bet. You feel good, don’t you?

Caching, Standby... they’re both performance winners. Caching makes sense for Batch
Jobs on your production system. Standby makes sense on your target (backup)
system.

And how do you get your hands on these two performance gems? Simply install option
42 of OS/400 for V5R2. Guess you and your boss have a few things to talk about
when you return home.

35

V5R2 Newest Journal
and Commit Features

Lab 3: SMAPP Visibility and Tuning

IBM server iSeries

© Copyright IBM Corporation, 2003. All Rights Reserved.
This publication may refer to products that are not currently
available in your country. IBM makes no commitment to
make available any products referred to herein.

36

7

37

Lab 3. SMAPP Visibility and Tuning

This lab will provide an introduction to recent enhancements provided for SMAPP
(System Managed Access Path Protection).

Introduction
SMAPP is a patented feature of OS/400 which allows the system to protect access
paths within your Database so that these access paths do not need to be rebuilt after an
abnormal end (i.e., a crash!). Rebuilding of such access paths can contribute a large
amount of time to restarting the system. Most folks wouldn’t want that experience.
Thus, they’re awfully glad that SMAPP exists. SMAPP implicitly journals only those
access paths on your system which contribute the largest amount of rebuild time so that
these selected indexes can be recovered from the Journal rapidly instead of being
laboriously rebuilt from scratch. Each shop may specify their customized desired
rebuild time to manage the balance between recovery time and the run time impact of
protecting such access paths.

This Lab exercise will use the terms Access Path and Index interchangeably. SQL calls
these objects Indexes. Native interfaces often refer to them as Access Paths.

Objectives
This lab teaches you how to:
� Make wise tuning choices based on the new screens provided in V5R2
� View and change the SMAPP threshold setting
� Use the new V5R2 “Protected” and “Not Eligible” SMAPP screens
� Use the new *INCHIDENT parameter on the DSPJRN command to view hidden

Journal Entries

Lab Information
The notation XX that appears in library names, profile names, and so on, refers to your
Team Number (for example, JOTEAMXX, JOLABXX, JOSMAPPXX). Refer to
your lab worksheet for details.

Optional steps are included in this lab in addition to the required steps. These steps are
not required to complete the lab, but can be attempted to further demonstrate the usage
of various Journal commands. Optional steps are denoted with “Optional:” instead of
the step number.

Lab Prerequisites
Before you begin this lab, be sure the following prerequisites are available:
� An IBM eServer iSeries or AS/400 with OS/400 V5R2, or higher, with:
 - 5722-QU1 -Query for AS/400
 - 5722-ST1 -DB2 Query Manager and SQL Development Kit for AS/400
� The JOLABXX library containing a data file for the lab.

38

Time required
The time required to efficiently complete this lab ranges from 30 to 40 minutes.

39

Task 1: Displaying the Default SMAPP Journal

This task will demonstrate how SMAPP behaves on the system.

You own one of the largest auto salvage yards in the area (despite the fact that
your seventh grade teacher said that anyone with that much “junk” in their
locker wouldn’t amount to much) and you have just finished getting every one of
your parts entered into your new iSeries system. Let’s take a look at what this
data looks like....

__ 1. Start interactive SQL with the STRSQL CL command.

__ 2. Create our SQL collection with the Create collection JOSMAPPXX
SQL statement. An SQL collection creates a native library, a Journal named
QSQJRN, and various SQL related objects. Database objects created within
the collection will automatically be journaled to the Journal QSQJRN. All of
these objects take time to create, so wait just a moment as you gaze out your
window at your vast array of junk (err... we mean parts).

__ 3. Exit interactive SQL with the F3 option and then select option 1.

__ 4. Let’s move the ‘Parts’ file we’ve pre-populated for you from the JOLABXX
library to your newly created SQL collection JOSMAPPXX. Type MOVOBJ
OBJ(JOLABXX/PARTS) OBJTYPE(*FILE) TOLIB(JOSMAPPXX).
The file you are moving is an SQL table which looks like the table shown
below:

__ 5. Before entering Interactive SQL, let’s note the current time according to the
system clock. You will use this information in step 12. DSPSYSVAL
QTIME.

Enter the current system time here: ____________________

__ 6. Start interactive SQL with the STRSQL CL command.

40

__ Optional: To view the initial contents of the database type Select * from
JOSMAPPXX/PARTS. Exit the screen with F3 after display.

Reminder: You can use F20 (F8 + Shift) to scroll to the right.

This is a big sucker housing a whopping 50 parts (we had to keep this reasonable
for Lab purposes - but your files are probably much larger!). With a big file like
this that is accessed every time you buy or sell a part, you’re going to want an
index built over the file to help speedup performance. This will be helpful when
you need to perform random lookups -- as you’d do if a customer called and
asked if you had a 4-barrel carburetor for a ’72 Cutlass Supreme.

__ 7. Let’s create an index over the Parts file. CREATE INDEX
JOSMAPPXX/PARTIX ON JOSMAPPXX/PARTS(PART_ID,
COST).

The index is needed to improve the performance of the queries that are commonly run
using this file.

Someone just brought in a muffler and tailpipe from a ’79 Ford Pinto and you’ve
decided to add them to your vast collection. Let’s makes the updates to our file...

__ 8. Enter the following SQL statements to insert the records into the Parts file:

Insert into JOSMAPPXX/PARTS values(1001, 20.00, ‘Ford’,
‘Pinto’, ‘Muffler’, 1979)

Insert into JOSMAPPXX/PARTS values(1002, 10.00, ‘Ford’,
‘Pinto’, ‘Tail pipe’, 1979)

__ 9. Exit interactive SQL with the F3 option and then select option 1.

There sure is a lot of commotion around the junkyard. Butch, the junkyard dog,
loves to chase gophers and keeps knocking the power cord out of the iSeries!
With all of the activity around here and these large indexes which would need to
be rebuilt, we should be very concerned with how long it will take our system to
recover.

In order to quickly recover our data in the event of a system outage, your Lab
instructors have preset the SMAPP time on our Lab system to *MIN. This will assure
that in the event of a power outage your index will be recovered from the Journal
instead of experiencing a long rebuild. That’s the beauty of SMAPP.

41

__ 10. Type DSPRCYAP and press Enter to verify that the SMAPP “System
access path recovery time” is still set to *MIN. Press F3 to exit the
DSPRCYAP screen. This SMAPP threshold can be altered with the
EDTRCYAP CL command. (We obviously don’t want you to tinker with this
value now since we’re all sharing the same system for this lab!)

The EDTRCYAP CL command is the method you use to control SMAPP activity
on the system. You simply specify the amount of time you are willing to spend
rebuilding access paths after a system crash. No additional setup steps are
required! It’s that simple. The system automatically will protect enough access
paths to meet this threshold. You can specify a time in minutes, or the special value
of *MIN as we have done here to protect all access paths on the system.

 Note: *MIN may be a bit too aggressive for
some of your shops. A more reasonable value of 30 minutes or even 40 minutes
might be more appropriate. We selected *MIN for this Lab exercise so as to help
put the ”Pedal to the Metal” and deliberately make our background SMAPP tasks
work hard.

__ 11. Look in your SQL-provided user Journal (that’s the QSQJRN Journal residing
in your collection) for evidence that the index is being protected. If the index
were protected, we would see Journal Entries for both our file and index,
wouldn’t we? Use DSPJRN JRN(JOSMAPPXX/QSQJRN) to view the
Journal Entries and see if both varieties exist.

Hmm.... no Entries for the objects here. How can that be? Well... that is because
the underlying physical file (Parts) for our index is not being journaled since we
just copied it into our collection (library).

An index must be journaled to the same Journal as the physical file it is built over.
If SMAPP decides to journal an index such as ours which is not already explicitly
journaled, it will instead clandestinely journal both the file and the index to the
default hidden SMAPP Journal. That’s the state our Table and Index are in right
now.

In fact, such a system Default Journal exists on each ASP of the system. When
your Parts file isn’t being explicitly Journaled by you, this Default Journal will be
used by SMAPP to protect your largest Indexes. I guess we need to look behind
the curtain. Let’s see what the system’s Default Journal looks like. Will our
Entries be in the Default SMAPP Journal? Let’s go take a look.

42

__ 12. Are you ready to learn a deep dark secret that most folks outside of IBM’s Lab
don’t even realize they can do? Good! The JRN parameter of the DSPJRN
command has a special value *INTSYSJRN. Bet you’ve never used this
option, huh? If you prompt the DSPJRN CL command, you’ll see this choice
listed. The problem is that using this option requires *ALLOBJ authority, and
we weren’t about to give you that authority on this lab system! Instead, we
have a simple program that will invoke this DSPJRN command for you. Call
this program using the current date and specifying the time you recorded
in step 7 like the following example:

CALL JOLABXX/JODSPJRN parm(‘02/11/2003’ ‘11:30:00’)

The main statement of the program that you are invoking looks like the
following:

DSPJRN JRN(*INTSYSJRN) JRNID(10001) FROMTIME(&DATE &TIME)

Notice that we’ve specified a rather mysterious parameter JRNID(10001).
Here’s the deep dark secret. The first two characters of the code represent the
journal type. The 10 tells the system you want to see the SMAPP Journal
Entries, while the last three, 001, identify the specific ASP.

You can learn more about SMAPP and the *INTSYSJRN by reading more on this
topic within the V5R2 Infocenter at:
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/rzaki/rzakismappintro.htm

If you don’t see any Journal Entries listed on your screen, double check that
you’ve really entered Today’s date and the time prior to the time you made your
changes.

43

Can you find the ‘PT’ Entries from the last changes to your file? (It may be
difficult to determine which entries are yours due to the fact that everyone will be
sharing the same default Journal. It is even more difficult because the object
name and other identifying information is not collected in the default Journal
because these entries are only needed by the system for recovery) See! You’ve
already learned something new in this lab exercise that most shops haven’t even
thought about! There is a hidden Journal on each ASP and you now know how
to find it and view its contents. Imagine the interesting conversations you can
now conduct around the water cooler or at your next Local User’s Group meeting
when you return home! Note: In this example, there is really no way for you to
find your particular Entries, since this is a “short” Entry - i.e. No user, file,
program, etc. information is included.

SMAPP is good, but it’s only a safety net. SMAPP also takes some extra
resources. An even wiser choice is to explicitly Journal your largest and most
important tables as well as the access paths built over them. For your Junkyard
that would be the ‘Parts’ file and ‘PartIx’ index.

Why don’t we start explicitly journaling the Parts file to our SQL-provided
Journal (QSQJRN), make some changes, and take a look at our user Journal
again.

__ 13. Use the STRJRNPF FILE(JOSMAPPXX/PARTS)
JRN(JOSMAPPXX/QSQJRN) CL command to start journaling ‘Parts’.

This has the effect of ripping the Parts file away from the clutches of the hidden
Default SMAPP Journal whose contents you viewed above and directing our
Parts file’s subsequent Journal Entries instead toward the more traditional
SQL-provided Journal: QSQJRN.

__ Optional. Let’s note the current time again according to the system clock. You will
use this information in an upcoming optional step. DSPSYSVAL QTIME.

Enter the current system time here: ____________________

The phone is ringing, let’s pick it up and see if we can make a sale.

__ 14. Start interactive SQL with the STRSQL CL command.

Someone has just ordered a muffler and tailpipe for their ’79 Pinto! Wow, that
was fast. We barely entered that part a few minutes ago. Let’s hope we make a
nice profit on this sale. Let’s remove these items from our file.

44

__ 15. Enter the following two SQL statements to remove these records.

Delete from JOSMAPPXX/PARTS WHERE PART_ID = 1001

Delete from JOSMAPPXX/PARTS WHERE PART_ID = 1002

You should see a confirmation message that these rows have been deleted.

__ 16. Exit interactive SQL with the F3 option and then select option 1.

Now let’s look again and see what our SQL-provided user Journal (QSQJRN)
looks like. Will any of these new Entries be in the SQL Journal? Let’s go see.

__ 17. Use DSPJRN JRN(JOSMAPPXX/QSQJRN) to view the Journal Entries
and see what Entries exist. Unlike the SMAPP Journal, you will not see any
access paths Journal Entries displayed here. Task 3 of this lab explains this
phenomenon.

You should now be able to see some recently deposited Entries of type ‘DL.’
These Journal Entries show that a record was deleted at that point. You can
display the specifics of the Entry by typing a 5 and pressing the Enter key next
to the Journal Entry you would like to see. Obviously our SQL-provided user
Journal (QSQJRN) is now picking up the changes you make to both your file
and index instead of having them routed to the default SMAPP Journal. And
why? Because the Parts file has been explicitly journaled to your user Journal.

While you have this screen up, take a look at the Journal Sequence numbers.
Are there any skipped numbers? Do you know why? If not, stay tuned, we’re
going to let you in on that secret too!

The SMAPP activity is managed by SLIC tasks operating in the background. The
background SLIC tasks which SMAPP employs to journal your largest indexes
obviously consume some system resources, so you will want to carefully consider the
balance between minimal recovery times and low run-time performance overhead if
you want your system to maintain desired levels of performance. One way to
balance IPL recovery time vs. performance is to explicitly journal any access paths
you know you want protected, rather than allowing SMAPP to implicitly do so.
Why is this better? Because SMAPP doesn’t need to repeatedly, day after day,
make the decision if you explicitly journal an index.

 Hint: If you want short IPL / Recovery times for your
most critical access paths (those most important to your business -- and your boss)

45

explicitly Journal them. Doing so gives you faster IPL processing with less runtime
overhead then expecting SMAPP to discover this need for you. How do you
accomplish this? Answer: STRJRNAP.

__ Optional: Verify that the Entries are not also flowing into both your SQL Journal
and the hidden default SMAPP Journal by running the program to display the
default SMAPP journal again using: CALL JOLABXX/JODSPJRN
parm(‘current date - MO/DA/YEAR format’ ‘time before your
deletes - HH:MM:SS format’). Remember that this Journal is used by
everyone using this ASP, so you may see the Entries from others taking the
Lab!

Task 2: New SMAPP ‘Protected’ Index Screen

We’ve discovered, above, that SMAPP tasks lurk in the background and periodically
start and stop journaling protection for access paths of its own choosing in an effort to
meet your specified target IPL/Recovery time. But which access paths is it protecting?
We thought you would never ask....

 This task will show off the new screen (yup! it’s new for V5R2) which can be used to
determine which access paths are currently protected by SMAPP. It provides a
snapshot in time and thereby lets you see what these sly background SLIC tasks have
been up to.

__ 1. Type DSPRCYAP and press Enter and Verify that the ‘System access path
recovery time’ is still set to *MIN. Don’t exit the DSPRCYAP screen yet.

__ 2. Open another session to the machine you are currently running on, using the
same username as provided on your lab worksheet.

__ 3. 2nd window: Start interactive SQL with the STRSQL CL command.

__ 4. 2nd window: Insert a couple of records into our table to open it and keep it
open using the SQL statements provided below. (DB2 on iSeries is extra smart
about deciding when to leave files open. The file will be implicitly closed if only
one SQL initiated change is entered - because Interactive SQL thinks you’re
probably done and not coming back hence it closes the file so as to perform
timely housekeeping, but the file will be left open after the second change -
because now you’ve got Interactive SQL thinking you just might be serious
about coming back. Hence we want you to insert at least two new rows as
shown below.)

46

We want the file kept open because that will “Expose” our index and leave it in
an exposed state. (Exposed means that there’s a risk that a machine crash
might have to rebuild this Index from scratch). When an index (access path)
admits it’s exposed, SMAPP swings into action and tries to mitigate the IPL
duration consequence of this exposure. That is precisely what happens for this
Lab Exercise. By leaving the index “exposed”, we’re going to be able to
illustrate some additional V5R2 features.

Insert into JOSMAPPXX/PARTS values(1003, 50.00, ‘Pontiac’,
‘Grand Am’, ‘Engine’, 1984)

Insert into JOSMAPPXX/PARTS values(1004, 10.00, ‘Pontiac’,
‘Grand Am’, ‘Trunk lid’, 1984)

Remember your first car?, the one you were so proud to drive, the one you
washed every day?, the one you hated to give up? I think I see it over
there in the corner of the Junkyard and no one has yet inventoried its
parts... Take a few minutes, for old time’s sake, and enter a few of it’s
parts into our database.

Both the Table and the corresponding Index are now open and waiting for more
adds into the Parts table. If the projected Rebuild time of your exposed indexes
are of long enough duration to be of concern - SMAPP notices the access
paths that have been affected (and left open) by your Interactive SQL session,
enables Journaling implicitly under the covers for these Access Paths and marks
them as ‘Protected.’ Since we’ve got the SMAPP target recovery duration
objective for this Lab set to *MIN, SMAPP is going to strive to protect every
access path in sight. Normally, SMAPP would elect to protect only the biggest
ones and leave the smaller ones unprotected. The ‘Protected’ state means that
SMAPP has decided that they qualify for implicit journaling (i.e. are both
exposed and big enough to care about). Hence they’re not going to take long
to recover if you should crash. A new feature in V5R2 allows you to view the
identity of these protected access paths (indexes). Let us see which access
paths are protected right now.

__ 5. 1st window: Press F14 (Shift + F2) for ‘Display protected access paths’ from
the DSPRCYAP screen. Select *ALL for the ASP on the first ‘Display
Protected Access Paths’ screen by pressing Enter.

The ‘Display Protected Access Paths’ screen will show all of the protected
access paths (system wide!) on one screen. This screen will show up to 500

47

protected access paths, ordering them from the greatest ‘Estimated Recovery
Time’ to the least. Can you find ‘PartIx’ from your library?

If you’ve reached this part of the lab exercise at about the same time that others
sitting around you in this Lab are trying similar steps, you’re going to see not
merely your own Indexes on this screen but those from your colleagues as well.
But that’s good news. It helps illustrate that when you return home you can
take a snapshot of all such SMAPP protected Access Paths system-wide.

When you close your files, your Indexes cease to be exposed and hence will
disappear from this screen.

__ Optional: The rebuild time that you see for your Index here is indeed puny. If you
would like to see this grow, exit SQL using an F3 followed by option 1 in your
2nd window. Run the MANYPARTS program to insert data into the PARTS
file by using a call such as call JOLABXX/MANYPARTS
parm(‘PARTS’ ‘JOSMAPPXX’ ‘n’) where n is the number of rows to
insert (maybe a couple of thousand parts). Press F5 on your 1st window while
this is running to refresh your view of protected indexes.

Leave the second window open for use in the task 4, below.

You can see the estimated (rebuild from scratch) recovery time for each exposed
Index. If Butch knocks out that power cord right now, this is how long it would
take to rebuild this index if it were not protected by SMAPP. This is an easy way
to determine which access paths on your system require the longest rebuild time.

OK - we realize that the value you see on the screen may not be very impressive
or scary, since the size of the index and hence its estimated rebuild duration
needed to remain limited for Lab purposes (you didn’t want to spend your whole
day in here, did you?). When you return home you’ll probably want to display
this screen and our hunch is that you’ll see substantially larger values for your
production indexes. And what action should you take? Well... why not relieve
SMAPP of the burden of protecting the biggest critical access paths by explicitly
Journaling them yourself via a STRJRNAP CL command? Remember, however,
that the information on this screen is a changing snapshot. It only shows
currently exposed indexes. Hence, you’ll want to sample this screen during the
busiest part of your day.

__ Optional: 1st window: We’ve talked a lot about these background SMAPP tasks.
 Let’s see if we can catch one of these tasks running with the WRKSYSACT
command. Only one user can run this command at a time, so if you don’t get in
you may have to try again later. Enter the WRKSYSACT CL command.

48

Press F15 (Shift + F3) to show only tasks. Use the F10 button to refresh the
screen and see if you can catch one of the SMAPP tasks at work
(JO-TUNING-TASK or JO-EVALUATE-TASK).

You will only see these tasks running if there is sufficient activity on the system
when you are running this command. To learn how to use various performance
tools to track exactly what these tasks are up to - see the 5th Lab on
Performance Counters and Tracepoints!

Task 3: *INCHIDENT - Display Hidden Journal Entries

This task demonstrates our new V5R2 DSPJRN option to display formerly hidden,
internal Journal Entries.

Have you ever looked at the sequence numbers associated with your Journal
Entries and noticed any skips? Do you wonder why? In this task, you will find
the answer to that age old question. Let’s first take a look at your Journal and
see where some of these skipped sequence numbers are.

__ 1. Type DSPJRN JOSMAPPXX/QSQJRN on the CL command line.

Can you see some skips in the numbers? Are you missing Entries? Have they
been dropped somewhere? What is going on? Have car parts been going out the
door without the changes being journaled? Hmmm.... This is a matter for a
super sleuth. But hold the phone. Before you dial 911 and ask for the Bunko
squad, let’s take a closer look.

Actually, nothing is missing. There are some Entries which are not displayed.
Would you like to see what they are? Well, now -- with the new support in V5R2
-- you can.

The *INCHIDENT (include hidden Entries) option on the DSPJRN CL command is
new in V5R2. This option allows you to see previously hidden Entries in your
Journal. These hidden Entries are the ‘skips’ you may see in the sequence numbers
of your Journal Entries.

__ 2. Type DSPJRN JOSMAPPXX/QSQJRN INCHIDENT(*YES) on the
CL command line to display all of the Journal Entries including the hidden
Entries.

49

Now you can see all of the Entries that were previously hidden. There are no more
missing or skipped sequence numbers. You’re feeling empowered, right? The Entries
that formerly were hidden from your view have the value *OMITTED in the ‘Job’
column. Hidden Journal Entries are simply Entries from internal OS/400 and SLIC
operations involved in the execution of our Database requests. This includes
index-related Entries (a.k.a. SMAPP induced Entries), internal format Entries (those
that help DSPJRN figure out how to map internal representations, like date fields, to
external humanly readable representations), and Entries used to track the location and
quantity of deleted records in a file.

They’ve formerly been hidden (and that’s still the default on DSPJRN) because we
didn’t want to clutter your screen with purely Internal OS/400 induced Journal Entries
which mere mortals need not manage. Only the SLIC code needs to “see” them
because he’s the only one who responds at IPL time to their presence. However, for
V5R2, we’ve elected to let you show your Auditor that such Entries aren’t really
missing, just hidden to help reduce clutter. Got a pesky auditor back home? Now you
can put their mind to rest.

Ahhh.... you’re feeling better already.

Task 4: New ‘Not Eligible’ for SMAPP Protection Screen

This task will demonstrate the new V5R2 screen you can use to display access paths
which are not eligible for SMAPP to protect.

I know... you’ve already been in this lab for quite awhile and you are probably
getting a little tired - but the contents of this task could be the most important
thing you learn in this lab if your shop has access paths which are not eligible for
SMAPP. But how would you possibly know if you had any of these access paths?
Go ahead, stand up, and stretch if you need to before we show you how to do this.

Consider the following scenario: You have determined that you are willing to spend no
more than 50 minutes rebuilding indexes in the case of a system crash so you have set
your SMAPP target recovery value to 50 using the EDTRCYAP CL command. You
have a large number of small indexes which frequently change and a few large indexes
which stay open for long periods of time. These large indexes would have a combined
rebuild time of greater than 50 minutes if they were not protected by SMAPP.
Obviously it’s the Big ones you want SMAPP to select.

In this case the normal SMAPP response would be to protect these large indexes in
order to meet your specified recovery time while the large number of small, frequently
changing indexes would not need to be protected in order to achieve your target.
However, there’s a subtle caveat: if your large indexes are not eligible for SMAPP

50

protection, your system will immediately be over the 50 minute recovery threshold and
SMAPP will respond by working extra hard to protect all of your small indexes. Yikes!
The time to manage, start journaling, and record the changes for all of these many small
indexes will be much more time-consuming than journaling a few of your large indexes.

Hmmm... what’s going on here? Why did our intuition mislead us? Let’s see if
the new V5R2 screen can unravel this mystery.

__ 1. Type DSPRCYAP and press Enter.

__ 2. Verify that the ‘System access path recovery time’ is still set to *MIN. Exit
using F3.

One way for an access path to be ineligible for any SMAPP protection is if the access
path is built over a physical file which was created with the attribute
FRCACCPTH(*YES). This particular option is an ancient option which achieves the
same recoverability as journaling with a much higher overhead. (If any of your files have
inherited this option from the past, you should turn this attribute off ASAP and explicitly
journal the file and access paths instead.) You’ll thank us for this advice. We will use
this variety of ineligibility in our example (there are other causes documented at the end
of this Lab exercise).

__ 3. Let’s set up the problem by assigning this ancient and offensive option to our
index. Type CHGLF FILE(JOSMAPPXX/PARTIX)
FRCACCPTH(*YES).

Note: This should convince SMAPP that this Access Path already has other means of
IPL protection and hence it should skip this Access Path when looking for access paths
in need of protection.

Let’s pretend you haven’t attended this Lab and hence still use the ancient (may it rest in
peace) option:

__ 4. 2nd window: Start interactive SQL with the STRSQL CL command if your
session does not already have Interactive SQL started.

__ 5. 2nd window: Insert a couple of Entries into our table to open it and keep it
open with the following two SQL statements.

Insert into JOSMAPPXX/PARTS values(3005, 15.00, ‘Ford’,
‘F150’, ‘Door’, 1978)

51

Insert into JOSMAPPXX/PARTS values(3006, 25.00, ‘Ford’,
‘F150’, ‘Alternator’, 1978)

The file is now open and waiting for more records to be added into Parts.
SMAPP considers our exposed access path ‘Not eligible’ for implicitly journal
protection. Why? Because it notices the FRCACCPTH setting, bummer!

A new feature in V5R2 allows you to view these ineligible access paths. Let us see
which paths are ‘not eligible’ right now.

__ 6. 1st window: Enter DSPRCYAP and press Enter.

__ 7. 1st window: Press F13 (Shift + F1) for ‘Display not eligible access paths.’
Choose *ALL for the ASP to use by pressing Enter.

On the ‘Display Not Eligible Access Paths’ screen, you can see all of the currently
exposed Access Paths ‘not eligible’ for SMAPP protection on one screen. This
screen will show up to 500 ineligible access paths, ordering them from the
greatest ‘Estimated Recovery Time’ to the least. Why do you think we elected to
sort such that the biggest guys are at the beginning of the list?

It’s obvious that objects on the top of this list which deserve our immediate attention...
And what should we do if we find such access paths? Answer: Try to modify as many
of them as practical so they no longer show up on this screen. If they’re using the
ancient FRCACCPTH(*YES) option, use CHGPF or CHGLF to turn off this ancient
and wasteful setting. Doing so will improve both IPL duration and reduce CPU and
disk overhead. It’s a win-win situation. But please remember: this screen is only a
snapshot in time. Just because you find no culprits on this screen at 2 AM on Sunday
doesn’t mean you might not have some exposed and Ineligible Access Paths show up at
10 AM on Monday.

Your goal when you return home should be to assure that few if any culprits show up on
this screen. Notice that the final column on this screen shows you why a particular
Access Path has ceased to be eligible for SMAPP protection.

__ 8. 2nd window: Exit interactive SQL with the F3 option and then select option
1.

We thought you’ll want to know some other ways an access path may end up being
classified as ineligible:
� an access path built over a physical file which in turn is journaled to a Journal which

is currently in *STANDBY mode (like the stuff we did in Lab #2) would be
considered ineligible

52

� multi-format access paths whose underlying physical files are journaled to at least
two different Journals would be considered ineligible (the solution? Cease using
different Journals!)

� an access path residing in the QTEMP library would be considered ineligible
� a temporary access path created by Query, SQL, or DFU for the duration of the

query
� an access path constructed as an SQL encoded vector flavored index
� you explicitly journal an access path by using the STRJRNAP command
� an access path defined over a database table that has MAINT(*REBLD) specified

for its access paths

Not all of these reasons will show up on the ‘Not Eligible’ screen. In order to
understand why, you must realize that there are really 3 categories of Ineligible access
paths:

1. Access paths which do not need to be rebuilt at IPL and therefore do not need to
be protected by SMAPP (access paths in QTEMP, temporary access paths whose
life time is only the duration of a query, MAINT(*REBLD) access paths, and
explicitly journaled access paths). SMAPP doesn’t think about these, nor does it
need to.

2. Access paths which cannot be Journaled (encoded vector indexes). SMAPP
simply ignores these.

3. Access paths which can’t be journaled due to user action (standby journal used,
multi-format access paths, and FRCACCPTH(*YES) access paths).

Only the access paths in category 3 are the ones that are shown on the screen. The
access paths in category 1 will not contribute to IPL recovery time. Hence you need to
take no action on their behalf. The access paths in category two cannot be journaled so
there’s not a darn thing you or SMAPP can do about them. Only these access paths in
category 3 are the ones which you can do something about! Once you go back home
and use the new ‘Not Eligible Screen’ you will be able to make the necessary changes
to make these access paths eligible for SMAPP protection and improve your overall
system performance.

One more note for those of you considering using Standby Mode.... It’s true that
Standby mode makes indexes ineligible for SMAPP. That’s a very deliberate choice on
our part. Thus, if you plan on doing other activity on the target system in an HA (High
Availability) environment system, you will want to use the other new V5R2 SMAPP
option available on both the EDTRCYAP and CHGRCYAP commands to not include
ineligibles in the estimated SMAPP recovery time. This will allow you to use Standby
and not force SMAPP to Journal all of the other indexes on your system due to the
large exposure resulting from the ineligible indexes journaled to your Journal in Standby

53

mode. In essence, you’re letting SMAPP off the hook by advising it that you don’t
mind rebuilding the Indexes associated with files that are being replicated.

You can specify that choice when you get back home (don’t do it now... You’ll mess
up other users of this Lab) with the EDTRCYAP CL command. This command brings
up a screen very similar to the DSPRCYAP screen that you have seen on which you
can modify the SMAPP setting.

By now you should have learned quite a bit about SMAPP. Hopefully you will be able
to take some of the suggestions made throughout this lab back home with you and
employ some new choices on your own systems!

54

V5R2 Newest Journal
and Commit Features

Lab 4: Savepoints

IBM server iSeries

© Copyright IBM Corporation, 2003. All Rights Reserved.
This publication may refer to products that are not currently
available in your country. IBM makes no commitment to
make available any products referred to herein.

55

7

Lab 4. Savepoints

In this section of the lab SQL savepoints will be explored.

Introduction
Savepoints are a new SQL feature in V5R2 which can be used with commitment
control transactions to set milestones within a transaction. Their presence allows an
application to easily and selectively backout portions of a transaction without
abandoning the entire transaction. And why would a Journal Lab exercise include
savepoints? Information stored within your Journal facilitates such savepoint operations.

Objectives
This lab will:
� Demonstrate the usage of Savepoints
� Show you how to view the Journal Entries produced from a savepoint scenario

Lab Information
The notation XX that appears in library names, profile names, and so on, refers to your
Team Number (for example, JOTEAMXX, JOLABXX, JOSAVPTXX). Refer to
your lab worksheet for details.

Optional steps are included in this lab in addition to the required steps. These steps are
not required to complete the lab, but can be attempted to further demonstrate the usage
of various Journal commands. Optional steps are denoted with “Optional:” instead of
the step number.

Caution: If you quit this lab before completing it, please turn commitment control off for
your job. Having commitment control on may affect other labs which you continue to
work on. To turn commitment control off: start interactive SQL with the STRSQL
CL command; press F13; choose 1, ‘Change session attributes,’ on the ‘SQL Session
Services Screen;’ on the ‘Commitment control’ line enter *NONE; press Enter
twice. Exit interactive SQL with the F3 option and then select option 1. Then run the
ENDCMTCTL CL command.

Lab Prerequisites
Before you begin this lab, be sure the following prerequisites are available:

� An IBM eServer iSeries or AS/400 with OS/400 V5R2, or higher, with:
 - 5722-QU1 -Query for AS/400
 - 5722-ST1 -DB2 Query Manager and SQL Development Kit for AS/400
� The JOLABXX library contains an SQL script for the lab.

56

Time required
The time required to efficiently complete this lab ranges from 20 to 30 minutes.

57

Task 1: Savepoints - Releases, Rollbacks, and Nested

In this section of the lab you will create a set of database tables representing a travel
agency’s database. You will then tell the travel agent your plans and they will enter
them into the database.

Your vacation time is coming up quickly. This year you decided to spend a week
in Florida! You need to make reservations. You will need to book a hotel room,
plane tickets, and don’t forget the rental car!

So here we are at the travel agency. Let’s take a look at their computer system as
they enter your information.

__ 1. Start interactive SQL with the STRSQL CL command.

__ 2. Turn commitment control on. Commitment control must be used here for
savepoints to work. Press F13. Choose 1, ‘Change session attributes,’ on the
‘SQL Session Services Screen.’ On the ‘Commitment control’ line enter
*CHG. Press Enter twice.

Hereafter, any changes made to the Travel Agency’s database as part of booking
your reservations will be flagged as tentative until you elect to close out the
reservation by committing the transaction.

__ 3. Create an SQL collection with the Create collection JOSAVPTXX SQL
statement. An SQL collection creates a native library, a Journal named
QSQJRN, and various SQL related objects. Database objects created within
the collection will automatically be journaled to the Journal QSQJRN. Be
patient, this may take a while.

__ 4. Commit the creation of your new collection by entering Commit. This needs
to be accomplished before we exit the SQL Interactive environment below.
We need to assure that the creation of our collection ceases to be flagged as
tentative before we execute RUNSQLSTM in step 6.

__ 5. Exit interactive SQL with the F3 option and then select option 1.

At this point we are going to create your travel agency’s database tables.

58

__ 6. Create a set of database tables by executing the SQL statements residing in the
SQLSPT member of the JOLABXX/SQLSTMT file. This can be
accomplished with the RUNSQLSTM
SRCFILE(JOLABXX/SQLSTMT) SRCMBR(SQLSPT)
DFTRDBCOL(JOSAVPTXX) CL command. The script executed by this
command contains the following SQL statements and will create the database
tables shown below:

Create table Customer (cid int, Name char(30));
Create table Hotel(cid int, H_Name char(30));
Create table Flight(cid int, Airline char(30), depart date);
Create table Car_rental(cid int, Rental_Co char(30), car_type char(30));

__ 7. Start interactive SQL with the STRSQL Commit(*CHG) CL command.
This informs the operating system that any records in the database that are
added or changed (*CHG) are to remain locked up until we make our final
decision to commit the transaction (in a sense it holds your tentative hotel room
and airline seat for you). Commitment control must be enabled here since
savepoints are a selective commit fallback mechanism.

Okay, the travel agent is ready to enter your information. First, your identity
must be entered into the Customer database.

__ 8. Enter the Insert into JOSAVPTXX/CUSTOMER values(1001, ‘Your
Name’) SQL statement.

You have just given the travel agent your personal information. Should anything
need to change later on, you don’t want to have to answer all of those questions
again, so we will enter a savepoint here. Now if anything needs to be changed
later on, the agent can simply rollback to the point in time after your personal
information was entered (rather than cancel the whole transaction).

__ 9. Set a savepoint, Cust_Data, by entering SAVEPOINT Cust_Data unique
on rollback retain cursors. Now if you need to rollback changes after
this point, you will only need to come back to here, rather than all the way back
to the beginning of the transaction. By declaring the savepoint ‘unique’ you are
specifying that the savepoint name cannot be reused within the unit of work.

59

‘On rollback retain cursors’ you are saying that you do not want cursors to be
closed upon rollback to the savepoint if they are opened after the savepoint is
set.

Alright, you are going to Florida. Do you know where you are going to
stay? Well, let the travel agent know!

__ 10. Type Insert into JOSAVPTXX/HOTEL values(1001, ‘Your hotel
name’) on the Interactive SQL screen and execute this statement.

Hope you have picked a really nice hotel chain. No use skimping. You deserve it.
It’s by the beach, right?

Okay, there were rooms available, and that is settled. We haven’t committed
anything yet, but what if your flight is full or the rental car company who has sent
you a discount coupon doesn’t operate in Florida? We don’t want to have to roll
all the way back to the beginning of the transaction. Let’s set up another
savepoint, so if anything needs to be changed, hereafter we can just roll back to
after the hotel Entry.

Savepoints can be stacked and nested, as shown here, so you can rollback to different
stages of a transaction, depending on the changes you want to make.

__ 11. Set a savepoint, HotelSvpt, by entering SAVEPOINT HotelSvpt unique
on rollback retain cursors.

Below is a timeline of what we have accomplished so far:

Now that your second savepoint is in place, why don’t you choose a tentative car
rental company and the car you want to drive. If you need to make changes to
this later, you easily can do so using the rollback command.

__ 12. Type Insert into JOSAVPTXX/CAR_RENTAL values(1001,
‘Rental company’, ‘car type’) and kick off this statement. Go ahead.
Pick a dream car. Something you’ve always wanted to drive. A convertible?
A Corvette? A Viper? Name your personal favorite.

60

__ 13. Set another savepoint, RentalSvpt, by entering Savepoint RentalSvpt
unique on rollback retain cursors.

Hereafter if there is anything that needs to be changed, you will still get your
favorite car.

Okay, now you can book your flight. Pick an airline and a date, and let’s see if
there is anything available.

__ 14. Run the following SQL statement: Insert into JOSAVPTXX/FLIGHT
values(1001, ‘Airline name’, ‘departure date MO/DA/YR’).

Oh no! There is a large convention in Florida the week you are going. This
airline is full. In fact, all of the flights to this airport are booked. Luckily, there is
another airport not far away. Unfortunately, your rental car company does not
have an office and lot in that area. You will need to make a reservation with a
different car company. But we sure don’t want to perform a full rollback of the
whole transaction, do we? No! That would put us back to the point we were
before we even walked in the door. We’d have to start from scratch and
re-register our personal information and lose our hotel room. We sure don’t want
that to happen! I guess it’s a good thing we’ve been setting savepoints along the
way.

As you can see from the diagram below, there are three alternative Savepoints we have
established. We can selectively rollback to any one of them. In fact, your application
actually has four Rollback choices at this point. Can you name the fourth?

Before we do a selective rollback to a particular savepoint, let’s confirm that our
changes for this tentative transaction have truly made it into the database.

__ 15. Enter Select * from JOSAVPTXX/CUSTOMER,
JOSAVPTXX/HOTEL, JOSAVPTXX/FLIGHT,
JOSAVPTXX/CAR_RENTAL. What do you see? Are all of your
tentative choices visible in the Travel Agency’s database? Remember, you can
scroll to the right with F20 (Shift + F8).

61

Below is a timeline reminder of what we have accomplished so far:

You will want to cancel portions of your previous tentative reservations using the
rollback command. The rollback command will rollback all changes occurring
after the specified savepoint. Since you want to keep your hotel reservation,
which savepoint will you want to rollback to? Yup! That’s right... the second
savepoint, HotelSvpt. You need to make new reservations only for your car rental
and your flight.

When you rollback to savepoint, HotelSvpt, you are also discarding the savepoint,
RentalSvpt.

__ 16. I guess it’s time we Rolledback the changes to both the Flight and Car_rental
tables. Enter Rollback to savepoint HotelSvpt.

Let’s see how this has changed our database:

__ 17. Run the following SQL select statement: Select * from
JOSAVPTXX/CUSTOMER, JOSAVPTXX/HOTEL. You should see
that your name, customer id, and hotel exist despite the rollback. Now type
Select * from JOSAVPTXX/FLIGHT,
JOSAVPTXX/CAR_RENTAL. What do you notice? The flight and car
rental data has been removed from the tables, but (as you discovered in the
previous select) the data entered before the Hotel savepoint is still there.

Gee! That’s neat... got any application in your shop that could benefit from this
kind of selective rollback?

Here’s a pictorial representation of where we stand now:

62

Let’s try picking another car rental company.

__ 18. Pick a rental car company by running the statement: Insert into
JOSAVPTXX/CAR_RENTAL values(1001, ‘Alternative rental
company’, ‘car type’).

Now you can book your flight at the alternate airport. Pick an airline and a date,
and let’s make sure there is something available.

__ 19. Insert a row into the “Flight” table by running Insert into
JOSAVPTXX/FLIGHT values(1001, ‘Second airline name’,
‘departure date MO/DA/YR’).

Everything is good this time. Your hotel, flight, and car rental are all set up. We
no longer need the savepoints we set up. We could release them one at a time,
starting with the most recent, or we could simply release the first savepoint, and
all savepoints created thereafter would also be released.

Let’s make life easier and simply release the first savepoint.

__ 20. Release the initial savepoint. Enter Release savepoint Cust_Data.

There’s no selective going back now! You’re Florida-bound!

We still need to commit the changes. A commit will automatically release all
savepoints, so we did not necessarily need to release them when we did.
However, were we to have had more transactions, i.e. billing work, to do
afterward, we probably would have wanted to release these savepoints and create
some new ones.

__ 21. Execute a Commit to commit the entire transaction.

That’s it. Your reservation is in place. Bring along some sun screen and enjoy the
trip! Look out for sharks, and... oh yeah, send us a postcard.

__ 22. Exit interactive SQL with the F3 option and then select option 1.

63

Task 2: Journal Entries Associated with Savepoints

In this task, we will take a look at the Journal Entries generated from the savepoint
operations we performed earlier.

__ 1. Type DSPJRN JOSAVPTXX/QSQJRN and use the Page Down key
to browse through the Entries you find there. Use option 5 to explore the
Entries that have been generated.

The SC and CM Entries are common Journal Entries during savepoint
transactions, and tell you where the commits start and end, the PT and DR
Journal Entries tell you where records were added, and where records were
deleted during rollbacks.

The SC Entry is the start of your commit cycle, while the CM marks the
commit, or end of your cycle. Following the PT (record added) for the hotel
are two more PTs for the initial reservations you booked within the Car_rental
and Flight tables. Next are two DR Entries for the records deleted when we
rolled back to savepoint 2 (HotelSvpt).

If you are Journal savvy, you will probably recognize the PX Entries. This is the
Journal Entry flavor used when inserted new records into deleted record
locations in a file. If you would like more of an explanation - ask your lab
instructors.

__ Optional: Why don’t you try making reservations for your vacation to Germany
next summer? You can make your hotel, flight, and car rental reservations.

Don’t forget to add a savepoint after your hotel is booked. They fill up quickly,
so you wouldn’t want to lose that great view of the Rhine if something needed
to be changed later.

64

But wait! Your wife really wanted to experience the excellent public
transportation system in Germany. She doesn’t want all the hassle of finding
parking places and paying such high prices for gas. You had better rollback
and get rid of that car rental. I know, I know... you had your heart set on
seeing what “Pedal to the Medal” could do on the Autobahn where there are no
speed limits. But trust us, the train ride along the Rhine is breathtaking and oh,
so relaxing. Keep an eye peeled for the castles on the surrounding hills!

Don’t forget to rebook your flight, if you had booked it before you rolled back.
Now commit your changes and take a look at your Journal Entries. Are they
what you expected?

__ 2. Start interactive SQL with the STRSQL CL command.

It’s time for a bit of housekeeping:

__ 3. We need to turn commitment control off. Press F13. Choose 1, ‘Change
session attributes,’ on the ‘SQL Session Services Screen.’ On the
‘Commitment control’ line enter *NONE. Press Enter twice.

__ 4. Exit interactive SQL with the F3 option and then select option 2.

__ 5. Enter ENDCMTCTL on the CL command line.

65

V5R2 Newest Journal
and Commit Features

Lab 5: Journal Performance Counters
and Trace Points

IBM server iSeries

© Copyright IBM Corporation, 2003. All Rights Reserved.
This publication may refer to products that are not currently
available in your country. IBM makes no commitment to
make available any products referred to herein.

66

7

67

Lab 5. Journal Performance Counters and Tracepoints

In this section of the lab the newest Collection Services Journal performance counters
and Performance Explorer (PEX) tracepoints will be explored.

Introduction
A number of brand new Journal Performance measurements are available in V5R2.
These new measurements include new system wide Collection Services counters, new
task-based (per job) Collection Services performance counters, and new Performance
Explorer tracepoints. The addition of these counters are intended to assist in detailed
performance analysis of scenarios involving journaling and SMAPP usage.

If you’re serious about getting the best possible performance in your shop, you’ll want
to heed the advice given in the Redbook: “Striving for Optimal Journal
Performance” found on the web at: www.redbooks.ibm.com, and you’ll want to
confirm the resulting performance benefits (or investigate lingering performance
bottlenecks) by employing the new performance counters demonstrated here.

If you’re a performance tool provider, you may want to fold some of these new
counters into your product.

If you’re a performance consultant, you may want to bone-up on these new
performance counters so that you can tune the Journal environment more effectively for
your customers.

Objectives
This lab teaches you how to:
� Enable and display the newest Journal Performance counters.
� Enable and display Journal PEX tracepoints

Lab Information
The notation XX that appears in library names, profile names, and so on, refers to your
Team Number (for example, JOTEAMXX, JOLABXX, JOPFRXX). Refer to your
lab worksheet for details.

Optional steps are included in this lab in addition to the required steps. These steps are
not required to complete the lab, but can be attempted to further demonstrate the usage
of various Journal commands. Optional steps are denoted with “Optional:” instead of
the step number.

Reminder - To gracefully exit the lab:

68

If you quit this lab before completing it, please turn commitment control off for your job.
Having commitment control on may affect other labs which you continue to work on.
To turn commitment control off: start interactive SQL with the STRSQL CL
command; press F13; choose 1, ‘Change session attributes,’ on the ‘SQL Session
Services Screen;’ on the ‘Commitment control’ line enter *NONE; press Enter
twice. Exit interactive SQL with the F3 option and then select option 2. Then run the
ENDCMTCTL CL command.

Lab Prerequisites
Before you begin this lab, be sure the following prerequisites are available:

� An IBM eServer iSeries or AS/400 with OS/400 V5R2, or higher, with:
 - 5722-QU1 -Query for AS/400
 - 5722-ST1 -DB2 Query Manager and SQL Development Kit for

AS/400
� The JOLABXX library contains a program and an SQL script for the lab.

Time required
The time required to efficiently complete this lab ranges from 25 to 35 minutes.

69

Task 1: Journal Performance Counters

The set of tools known as Collection Services collects a broad range of system data,
called Performance Counters, at regularly scheduled intervals, with minimal system
resource consumption.

There are many new V5R2 Journal related counters, a complete list may be found at the
end of this lab. A number of them will be demonstrated during this lab.

School will be starting soon and you have been asked to help design and tune a
database for a new school supply store in town being opened by your
mother-in-law. You want to make a good impression.

__ 1. Start interactive SQL with the STRSQL CL command.

__ 2. Create a collection, JOPFRXX, which will be used in this Lab by executing the
Create collection JOPFRXX SQL statement. An SQL collection creates
a native library, a Journal named QSQJRN, and various SQL related objects.
Database objects created within the collection will automatically be journaled to
the Journal QSQJRN. Be patient, this may take a while.

__ 3. Exit interactive SQL with the F3 option and then select option 1.

__ 4. Create two libraries which will be used to store your Performance results with
the CRTLIB JOBEFOREXX and CRTLIB JOAFTERXX CL
commands.

__ 5. Note the current time according to the system clock. You will use this
information later. DSPSYSVAL QTIME.

Enter the current system time here: ____________________

__ 6. Type WRKJOB to get the name of your job in the upper left-hand corner of
the ‘Work with Job’ screen. We’re going to need that later, too.

Enter your job name here: _____________________

Collection Services is either on or off for an entire system. Your lab instructors enabled
Collection services on this system for you using the ‘go perform’ menu.

__ 7. Create performance database files to view what your Performance Counters
read prior to any actions by you. CRTPFRDTA
FROMMGTCOL(*ACTIVE) TOLIB(JOBEFOREXX) CGY(*JOBMI)

70

FROMTIME(‘today’s date - MO/DA/YR’ ‘current time from step 4
- HH:MM:SS’). This will create and prime a set of database files in your
library containing the thread level performance counters starting with the time
you have specified. The CGY parameter of the command specifies the
categories in the management collection object which will be processed into
database files. Declaring *JOBMI as the category name thus specifies that
Jobs (MI tasks and threads) will be processed into database files.

__ 8. Start interactive SQL with the STRSQL CL command.

__ 9. Use the following statement to view the current values of some Performance
Counters (primary commit operations, user Journal SMAPP deposits, and
primary decommit operations). Select JBNAME, sum(JBCOP)
Commits, sum(JBUJD) SMAPP_Deposits, sum(JBDOP)
Rollbacks from JOBEFOREXX/qapmjobmi WHERE JBNAME =
‘job name’ group by JBNAME. The job name must be in UPPERCASE.

The values of the counters are all zero! Right? Well of course they are...we
haven’t done any work yet. Let’s make some changes which will bump these
performance counters and then come back and take another look.

__ 10. Turn commitment control on. Commitment control must be used here for our
subsequent commits to work. Press F13. Choose 1, ‘Change session
attributes,’ on the ‘SQL Session Services Screen.’ On the ‘Commitment
control’ line enter *CHG. Press Enter twice.

Our first few supplies have arrived, the Fed Ex driver is unloading now.

__ 11. Create a table, perform some inserts, a rollback, and finally commit the
changes. This will increment the counters related to these actions.

Create table JOPFRXX/Supplies (item char(30), price float)

Insert into JOPFRXX/Supplies values(‘scissors’, 3.00)

Insert into JOPFRXX/Supplies values(‘backpack’, 20.00)

Break time! Your mother-in-law has just walked in with a tray of cookies. Well,
we haven’t gotten very far, but you would rather not have to start over if
something went wrong while you were gone. Let’s commit it to make sure our
data is safe.

Commit

71

Break’s over! Back to work! (Gosh, your mother-in-law is a real stickler, isn’t
she! No taking a few extra minutes at break time with her!)
Look, the ‘Grand Opening’ sales flyer! Backpacks are only going to be $17.00!
Well, our original price of $20.00 is already committed, we’ll just have to update
the Entry. Let’s go ahead and do so. Then commit it again so we don’t have to
worry about it later.

Update JOPFRXX/Supplies set price = 17.00 where item =
‘backpack’

Commit

Insert into JOPFRXX/Supplies values(‘nifty calculator’, 5.00)

Your boss just came by to let you know that you won’t be getting those nifty
see-through calculators you just entered after all. You had better remove them
from the inventory!

Rollback

...by the way, how much of what you’ve entered this morning will actually be
rolled back at this point?

__ 12. Exit interactive SQL with the F3 option and then select option 1.

OK, let’s reflect: we created a table, added some product, committed our
changes, updated an Entry, committed again, and rolled one Entry back... Hmm...
I wonder what the Journal Performance counters have to say about our work up
to this point. Let’s find out...

At this point, make sure that it has been at least 1 minute since you made your last set of
changes in step 11. For the lab, we have set the Collection Services interval to 1
minute. In order to make sure that your changes have been recorded, you must wait at
least this much time.

__ 13. Create performance database files to view what your Performance Counters
read after these actions. Again, use the system clock time you recorded in step
5 and the “After” library, instead of the “Before” library as in step 7.
CRTPFRDTA FROMMGTCOL(*ACTIVE) TOLIB(JOAFTERXX)
CGY(*JOBMI) FROMTIME(‘today’s date - MO/DA/YR’ ‘current
time from step 4 - HH:MM:SS’).

__ 14. Start interactive SQL with the STRSQL CL command

72

__ 15. Let’s view the current values of some Performance Counters (primary commit
operations, user Journal SMAPP deposits, and primary decommit operations).
Caution: When entering the ‘job name’ the query is case sensitive. Make sure
you are entering your job name with the correct capital letters. Select
JBNAME, sum(JBCOP) Commits, sum(JBUJD)
SMAPP_Deposits, sum(JBDOP) Rollbacks from
JOAFTERXX/qapmjobmi WHERE JBNAME = ‘job name’ group
by JBNAME. Job name must be in UPPERCASE.

What do you see? Can you explain each count? Do they make sense? If you
have an application back home, maybe one you didn’t personally write, and
you’ve wondered how many Journal operations it performs or how frequently it
decommits transactions, you now have an easy way to collect such statistics.

And... If you’ve got a mother-in-law who thinks you’re a slacker, you’ve now got
the assistance of the Journal facility to help prove otherwise!

__ Optional: To see the full set of performance data that has been collected for each
interval in this file for your job, execute the Select * from
JOAFTERXX/qapmjobmi WHERE JBNAME = ‘job name’ SQL
Statement. Use F20 (Shift + F8) to scroll to the right to view all of the data and
column headings.

__ 16. Exit interactive SQL with the F3 option and then select option 1.

There are a wide variety of Journal related performance counters available on both a
system-wide and thread (TDE) based level. A full list of the new Journal related
performance counters for V5R2 is included below:

73

Duration of Journal bundle waitsJBTNW
Cumulative Journal bundle wait timeJBTWT
Bytes deposited to transient (hidden due to *RMVINTENT) areaJBBTA
Bytes written to transient (hidden due to *RMVINTENT) areaJBBTW
Bytes deposited to fixed (ordinary) Journal Receiver areaJBBFA
Bytes written to fixed (ordinary) Journal Receiver areaJBBFW
SMAPP deposits to System (default) Journals JBSJD
SMAPP deposits to user Journals JBUJD
Non-SMAPP Journal EntriesJBNSJE
Physical Journal writesJBPJE
Secondary Decommit operationsJBDOS
Primary Decommit operationsJBDOP
Secondary Commit operationsJBCOS
Primary Commit operationsJBCOP

Thread specific counters

Number of bundles terminated by third Entry typeSYJOC3
Third most popular Journal Entry type flushing Journal bufferSYJOS3
Number of bundles terminated by second Entry typeSYJOC2
Second most popular Journal Entry type flushing Journal bufferSYJOS2
Number of bundles terminated by first Entry typeSYJOC1
Most popular Journal Entry type flushing Journal bufferSYJOS1
SMAPP index build time estimationsSYJOIB
SMAPP evaluations servicedSYJOES
SMAPP evaluations requestedSYJOER

System wide counters
DescriptionColumn

Task 2: Journal Tracepoints

The counters we’ve been examining give a high level view of what’s going on and are
less intrusive than tracepoints. Hence, they’re often the first tool you’ll want to employ
if you’re trying to gauge the performance characteristics of a Journal-rich environment.
Once you know a performance problem exists and you decide to drill down and
investigate the particulars, you’re going to want to shift gears from counters and turn to
tracepoints. Tracepoints help isolate and identify complex performance problems. In
this section of the lab, you will be looking at an example of some of the new Journal
tracepoints in action.

__ 1. Add a personal PEX definition. ADDPEXDFN DFN(JOPEXDFNXX)
TYPE(*TRACE) JOB(*) TRCTYPE(*SLTEVT) SLTEVT(*YES)
JRNEVT(*ALL). This definition will collect all of the Journal events for your
job (thread) because you specified *ALL for the JRNEVT parameter and * for
the JOB parameter.

74

Unlike Collection Services which must be enabled system-wide (and hence you didn’t
have a private copy), any number of PEX traces can be running on a system at any
particular time. Therefore, each lab user can start and end their own PEX session.

__ 2. Start PEX. STRPEX SSNID(JOPEXDFNXX) OPTION(*NEW)
DFN(JOPEXDFNXX).

__ 3. Start interactive SQL with the STRSQL CL command.

__ 4. Turn commitment control on if it is not already on. Commitment control must
be enabled here so that our commits will be honored. Press F13. Choose 1,
‘Change session attributes,’ on the ‘SQL Session Services Screen.’ On the
‘Commitment control’ line enter *CHG if it is not already set to this value from
a previous lab. Press Enter twice.

A big semi is backing up to the loading dock and here comes your mother-in-law
with a list of the new items coming in! Let’s add some more of these school
supplies to our pricing database.

__ 5. Continue inserting values into the database.

Insert into JOPFRXX/Supplies values(‘pencils’, 1.50)

Insert into JOPFRXX/Supplies values(‘lunchbox’, 7.00)

Lunch time! It’s that special goulash you don’t have the courage to tell your
mother-in-law you don’t really like! Hmmm.... the system sure seems slow today!
Let’s commit our Entries to make sure they are safe.

Commit

Lunch’s over! Back to work!

Insert into JOPFRXX/Supplies values(‘book covers’, 25.00)

Oops! You just entered the price incorrectly. The book covers should only cost
$2.50! You had better fix them quickly! You do not want to incur the wrath of
your mother-in-law.

Rollback

Insert into JOPFRXX/Supplies values(‘book covers’, 2.50)

Commit

75

__ 6. Exit interactive SQL with the F3 option and then select option 1.

Whew! That’s enough for one day. But before we leave, let’s find out what the
trace facility has to say about the Journal-related actions that have been
occurring in the supplies Database.

__ 7. End PEX. ENDPEX SSNID(JOPEXDFNXX)
DTALIB(JOAFTERXX). This may take just a little while to complete while
it is putting all of the performance data into Database files.

The above command will end your PEX session and also create a set of database files
in your library. One of these files, QAYUSRDFN, contains the Journal PEX tracepoint
data. This data is unformatted within this file. To format this data, you need to invoke a
neat little program we wrote just for this lab. You can find a copy of this Trace Point
formatter in the Appendix.

__ 8. Call the PARSEJOPEX program which will parse the trace data into an easily
readable representation. CALL JOLABXX/PARSEJOPEX
parm(‘JOAFTERXX’).

Let’s take a look at the resulting data...

__ 9. Start interactive SQL with the STRSQL CL command

__ 10. To view the current tracepoint data: Select record, type, subtype,
cycleid, mjocommitops, mjodecommops from
JOAFTERXX/JOPEXOUT.

The tracepoints provide you with a variety of information from the time when the
tracepoint was encountered. You could use this data for a variety of purposes
depending on what you are trying to investigate. For example, you could determine
how long Rollbacks are taking in your application using the Start and End Rollback
Operations and the timestamps which come with these tracepoints. The CycleID can
also be used to associate the Journal Entries involved in the same commit cycle.

Below is a table you can employ to decipher the Journal actions corresponding to the
type and subtype you will find listed from the above select statement:

End of Rollback Operation520

Start of Rollback Operation420

End of Commit Operation320

Start of Commit Operation220

DescriptionSubtypeType

76

End of SMAPP Evaluation1020

Start of SMAPP Evaluation920

End of Journal Background Task Object Force820

Start of Journal Background Task Object Force720

Start of Commit Cycle (the SC Entry)620

Some of the events tracked here are revealing the actions of background Housekeeping
Journal tasks which operate at the SLIC level of OS/400 (check out the optional Task
3 to see these tracepoints at work!). For example:

w The events with subtype 7 and 8 refer to the background forces done by the
JORECRA tasks. The JORECRA tasks on a system occasionally sweep through main
memory to flush changed pages of journaled objects from main memory onto disk. By
flushing out the changed pages to disk, fewer Journal Entries will need to be applied to
your objects at IPL time. These JORECRA tasks may have an impact on the
performance of your system. Section 4.2.2. of the Redbook “Striving for Optimal
Journal Performance” shows how to adjust the JORECRA behavior.

w The events with subtypes 9 and 10 refer to some of the background activity by
SMAPP (System Managed Access Path Protection). These trace points track each
time an index is evaluated by SMAPP to determine if the index should be implicitly
journaled. See Lab 3 for more details on SMAPP. Section 4.1 of the Redbook
“Striving for Optimal Journal Performance” is a good source for information on SMAPP
performance information.

__ Optional: With each tracepoint, additional data is also collected. View all of the
data for a particular tracepoint with the following SQL statement: Select *
from JOAFTERXX/JOPEXOUT.

In addition to this data, more generic data, such as the job name and
timestamps, is available in other PEX results files.

__ 11. Turn commitment control off. Commitment control must be turned off for some
of the other sections of this lab to work. Press F13. Choose 1, ‘Change
session attributes,’ on the ‘SQL Session Services Screen.’ On the
‘Commitment control’ line enter *NONE. Press Enter twice.

__ 12. Exit interactive SQL with the F3 option and then select option 2.

__ 13. Enter ENDCMTCTL on the CL command line.

Optional Task 3: Additional Journal Tracepoints
77

The previous task introduced you to some of the new PEX tracepoints available in
V5R2. This task also mentioned some of the tracepoints that are now available to help
you understand what the background Journal tasks are doing on the system. This Lab
will allow you to capture some of tracepoints being produced by these background
tasks and examine what is happening.

__ 1. Add a personal PEX definition. ADDPEXDFN DFN(JOPEX2_XX)
TYPE(*TRACE) JOB(*) TASK(*ALL) TRCTYPE(*SLTEVT)
SLTEVT(*YES) JRNEVT(*ALL). This time we have specified to collect
tracepoints which are being produced by all tasks on the system in addition to
our own job with the TASK(*ALL) option.

__ 2. Create a library which will contain your PEX results with the CRTLIB
JOPEX2_XX CL command.

__ 3. Start PEX. STRPEX SSNID(JOPEX2_XX) OPTION(*NEW)
DFN(JOPEX2_XX).

__ 4. At this point, we urge you to run any activity on the system which may drive the
JORECRA tasks or the SMAPP evaluation tasks (perhaps you could repeat a
section of your favorite previous lab). The RECRA tasks will force objects
when a large number of changes have been made and the SMAPP tasks will
evaluate indexes which are changing on the system. If others in the lab are
running other activities on the system, they may cause you to collect data for
these tasks since these are shared background tasks.

If you can’t think of anything to run, follow these steps (using a program from
Lab 3) to produce some RECRA and SMAPP activity.

__ A. Start interactive SQL with the STRSQL CL command.

__ B. Create a table with the CREATE TABLE JOPEX2_XX/PARTS
(ID int, COST float, MAKE char(30), MODEL char(30),
PART CHAR(30), YEAR int) SQL statement.

__ C. Let’s create an index over the Parts file. CREATE INDEX
JOPEX2_XX/PARTIX ON JOPEX2_XX/PARTS(ID).

__ D. Exit interactive SQL with the F3 option and then select option 1.

__ E. Create a Journal Receiver with the CRTJRNRCV JOPEX2_XX/R1
CL command.

78

__ F. Create a Journal with the CRTJRN JOPEX2_XX/J1
JOPEX2_XX/R1 CL command.

__ F. Start journaling for your Parts file using the STRJRNPF
JOPEX2_XX/PARTS JOPEX2_XX/J1 CL command.

__ G. Run the MANYPARTS program to create some journal activity. Call
JOLABXX/MANYPARTS parm(‘PARTS’ ‘JOPEX2_XX’
‘50000’).

__ 5. End PEX by running the following command ENDPEX SSNID(*SELECT)
DTALIB(JOPEX2_XX). This will allow you to see if you have created any
PEX events for your trace. If the event count column shows that events have
been created for your trace, choose option 1 to end your trace. If you haven’t
created any events yet, go back to step 4 and try again.

__ 6. Call the PARSEJOPEX program which will parse the trace data into an easily
readable representation. CALL JOLABXX/PARSEJOPEX
parm(‘JOPEX2_XX’).

Take a look at the data in the output file using the techniques learned in the previous lab
(Hint: you ‘*’ in your SQL statement to see all of the data in the JOPEXOUT file or
look at the program source in the Appendix). Can you determine if any SMAPP or
RECRA background task behavior took place during your trace? Refer back to the
table in Task 2 to see the definitions of the various tracepoint subtypes. Feel free to ask
your lab assistants if you would like any help.

By examining data such as this, you can determine a variety of information such as the
number of SMAPP evaluations that are occurring, the number of RECRA forces, the
amount of time spent doing the activities, and the objects involved in these activities.
These may be helpful in determining the exact cause of a performance slowdown on
your system.

79

80

Appendix A

This Appendix contains various sample programs and SQL scripts which have been
used throughout the labs. These example programs have not been subjected to any
formal testing. They are provided "AS-IS" and they should be used for reference only.

UPDVAC Source Code

/*
 * This C program will run database operations for the
 * specified file of change requests. This program contains
 * statements which are valid only for the
 * database environment specific to the Journal Lab.
 *
 * Syntax:
 * UPDVAC file
 * file - the name of a Requests file
 *
 * Compile Statement:
 * CRTSQLCI OBJ(JOLABXX/UPDVAC)
 * SRCFILE(JOLABXX/UPDVAC)
 * COMMIT(*NONE) OBJTYPE(*PGM)
 *
 */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

EXEC sql include SQLCA;
EXEC sql include SQLDA;

int main(int argc, char *argv[])
{

 EXEC SQL BEGIN DECLARE SECTION;

 short int req = 0;
 short int counter = 1;
 short int empid = 0;
 char updstmt[1000];
 char selstmt[1000];
 char sel2stmt[1000];
 char file[30];

 EXEC SQL
 DECLARE c1 CURSOR FOR exestmt;
 EXEC SQL
 DECLARE c2 CURSOR FOR actstmt;

 EXEC SQL END DECLARE SECTION;

 /**
 * Parsing command line / error checking
 **/

 if (argc != 2)

81

 {
 printf("UPDVAC Requests file");
 }
 else
 {
 sprintf(file, "%s", argv[1]);

 sprintf(selstmt, "SELECT COUNT(*) FROM %s", file);
 EXEC SQL
 PREPARE actstmt FROM :selstmt;
 EXEC SQL
 OPEN c2;
 EXEC SQL
 FETCH c2 INTO :req;
 EXEC SQL
 EXEC SQL
 CLOSE c2;

 sprintf(sel2stmt, "SELECT emp_id FROM %s", file);

 EXEC SQL
 PREPARE exestmt FROM :sel2stmt;
 EXEC SQL
 OPEN c1;

 while(counter <= req)
 {

 EXEC SQL

 FETCH c1 INTO :empid;

 sprintf(updstmt,

 "UPDATE Vacation SET vac_days = vac_days - 1 WHERE emp_id = ?");

 EXEC SQL

 PREPARE newstmt FROM :updstmt;

 EXEC SQL
 EXECUTE newstmt USING :empid;

 counter = counter + 1;
 }
 EXEC SQL
 CLOSE c1;
 }

 return 0;
}

SQLSTMT/SQLDSP SQL Script

Create table Monday (emp_id int, reqdata date);
Create table Tuesday (emp_id int, reqdata date);
Create table Wednesday (emp_id int, reqdata date);

82

Create table Vacation (emp_id int, Name char(30), vac_days int);
Insert into Monday values (1001, '04/05/02');
Insert into Monday values (1002, '05/15/02');
Insert into Monday values (1003, '07/03/02');
Insert into Monday values (1004, '02/25/02');
Insert into Tuesday values (1005, '10/28/02');
Insert into Tuesday values (1006, '08/02/02');
Insert into Tuesday values (1007, '06/21/02');
Insert into Tuesday values (1008, '06/21/02');
Insert into Wednesday values (1001, '04/06/02');
Insert into Wednesday values (1005, '02/24/02');
Insert into Wednesday values (1005, '02/25/02');
Insert into Wednesday values (1004, '02/24/02');
Insert into Wednesday values (1005, '07/01/02');
Insert into Wednesday values (1005, '07/02/02');
Insert into Wednesday values (1005, '10/26/02');
Insert into Wednesday values (1005, '11/12/02');
Insert into Wednesday values (1005, '09/08/02');
Insert into Wednesday values (1005, '12/12/02');
Insert into Wednesday values (1005, '08/30/02');
Insert into Wednesday values (1005, '03/15/02');
Insert into Wednesday values (1005, '04/21/02');
Insert into Wednesday values (1005, '04/22/02');
Insert into Vacation values(1001, 'Bill', 5);
Insert into Vacation values(1002, 'Sue', 7);
Insert into Vacation values(1003, 'Sam', 4);
Insert into Vacation values(1004, 'Beth', 8);
Insert into Vacation values(1005, 'Cody', 30);
Insert into Vacation values(1006, 'Michelle', 6);
Insert into Vacation values(1007, 'Tom', 3);
Insert into Vacation values(1008, 'Jane', 9);

BUNDLE Source Code

/*
* This C program will read an DSPJRN outfile of *TYPE5 (new for V5R2) and
* return bundling information. You will receive an error from this
* program stating that the JOARM column is missing if you fail to
produce
* the OUTFILE using the *TYPE5 option. Use the DSPJRN INCHIDENT(*YES)
* option for accurate bundling information. This will allow
* for the hidden entries to be included in your outfile which
* also take up space on the Journal bundles.
*
* The following is an example of a DSPJRN command with the options
* required:
* DSPJRN JRN(LIB/JRN) OUTPUT(*OUTFILE) OUTFILFMT(*TYPE5)
* OUTFILE(LIB/OUTFILE) INCHIDENT(*YES)
*
* Syntax:
* BUNDLE lib file
* lib - library
* outfile - dspjrn outfile
*
* Compile Statement:
 CRTSQLCI OBJ(JOLABXX/BUNDLE)
 SRCFILE(JOLABXX/BUNDLE)
 COMMIT(*NONE) OBJTYPE(*PGM)
*
*/

83

/* include the necessary C header files */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h> /* toupper() call */

/* Statements required for embedded SQL */
EXEC sql include SQLCA;
EXEC sql include SQLDA;

/* Begin main function */
int main(int argc, char *argv[])
{

 EXEC SQL BEGIN DECLARE SECTION;

 int i; /* a simple counter */

 long int numents = 0; /* number of entries in outfile */
 long int curr_ent = 1; /* current entry being processed */
 short int armnum = 0; /* arm number of current entry */
 long int entsize = 0; /* size of current entry */

 short int formerarmnumber = -1; /* arm number of previous entry */
 long int bundlesize = -1; /* running total size of current bundle */
 long runningnumbundles = 0; /* current number of bundles found */
 long int totalsize = 0; /* cumulative size of all entries */
 long int maxbundle = -1; /* current maximum bundle size */
 long int minbundle = 9999999; /* current minimum bundle size */

 char selstmt[200]; /* character arrays to hold our select statements
*/
 char sel2stmt[200];
 char lib[11]; /* character array to hold input library name */
 char outfile[11]; /* character array to hold outfile name */

 EXEC SQL
 DECLARE c1 CURSOR FOR exestmt; /* declare SQL cursor C1 */
 EXEC SQL
 DECLARE c2 CURSOR FOR actstmt; /* declare SQL cursor C2 */

 EXEC SQL END DECLARE SECTION;

 /**
 * Parsing command line / error checking
 **/

 if (argc != 3)
 {
 printf("ERROR - proper syntax is: BUNDLE lib outfile");
 }
 else
 {

 /* extract the library from the first argument */
 sprintf(lib, "%s", argv[1]);
 /* extract the outfile from the second argument */

84

 sprintf(outfile, "%s", argv[2]);

 /* convert the library to upper case */
 for (i = 0; i < 10; i++)
 {
 lib[i] = toupper(lib[i]);
 }
 /* convert the outfile to upper case */
 for (i = 0; i < 10; i++)
 {
 outfile[i] = toupper(outfile[i]);
 }

 /* create the SQL statement to determine the number of entries */
 sprintf(selstmt, "SELECT COUNT(*) FROM %s/%s", lib, outfile);
 EXEC SQL
 PREPARE actstmt FROM :selstmt;
 EXEC SQL
 OPEN c2; /* open the SQL view (cursor) */
 EXEC SQL
 FETCH c2 INTO :numents; /* set the number of entries */
 EXEC SQL
 CLOSE c2; /* close the SQL cursor */

 /* output the number of Entries to the screen */
 printf("\n\n\n\n\n\n\n");
 printf("number of entries = %d\n", numents);

 /* Create SQL query which will pull two columns from your OUTFILE:
 * the arm number on which each Journal entry resides and the
 * width in bytes of each Journal entry. These will be sorted
 * by the Journal Sequence number so that we see consecutive Journal
 * Entries in the order in which they were deposited.
 */
 sprintf(sel2stmt,
 "SELECT JOARM, JOENTL FROM %s/%s order by JOSEQN",
 lib, outfile);
 EXEC SQL
 PREPARE exestmt FROM :sel2stmt;
 EXEC SQL
 OPEN c1; /* open the SQL view (cursor) */

 /* loop through each entry in the outfile */
 while(curr_ent <= numents)
 {
 /* get the next available entry */
 EXEC SQL
 FETCH c1 INTO :armnum, :entsize; /* extract the arm number width
*/

 totalsize = totalsize + entsize;

 /* test if current entry is start of new bundle */
 if (armnum != formerarmnumber) /* provided that we have seen a bundle
*/
 {
 /* maintain overall stats if we really just finished a bundle */
 if (formerarmnumber != -1)
 {
 if (bundlesize > maxbundle)
 maxbundle = bundlesize;

85

 if (bundlesize < minbundle && bundlesize != -1)
 minbundle = bundlesize;
 }

 /* maintain stats considering this new bundle */
 runningnumbundles = runningnumbundles + 1;
 bundlesize = entsize; /* prime the size of the new bundle */
 }
 /* else this entry belongs to the current bundle */
 else
 {
 bundlesize = bundlesize + entsize;
 }

 /* track the arm of the current entry */
 formerarmnumber = armnum;
 curr_ent = curr_ent + 1;
 }
 EXEC SQL
 CLOSE c1;

 /* make sure to add our last bundle into the statistics */
 if (bundlesize > maxbundle)
 maxbundle = bundlesize;
 if (bundlesize < minbundle && bundlesize != -1)
 minbundle = bundlesize;

 printf("Number of bundles = %d\n", runningnumbundles);
 printf("Average bundle size = %d bytes\n",
 totalsize / runningnumbundles);
 printf(" max bundle size = %d bytes\n", maxbundle);
 printf(" min bundle size = %d bytes\n", minbundle);
 printf("\n");
 printf("The bundle size optimal size is 128 KB or wider\n");
 printf("\n");
 }
 return 0;
}

SQLSTMT/SQLSBYPERF SQL Script

Create table Product (pid int, qty int, price float, descrip char(200));

Create table Trans (tid int, pid int, qty int);

Insert into Product values (1, 20000, 12.00, 'Turtle Cheesecake');

Create index prod_pid on Product (pid);

Create index trans_ids on Trans (pid, tid);

Insert into Product values (2, 10000, 10.00, 'Cheesecake with
Strawberries');
Insert into Product values (3, 10000, 10.00, 'Cheesecake with
Blueberries');
Insert into Product values (4, 30000, 6.00, 'Cheesecake Minis');

Insert into Product values (5, 20000, 15.00, 'Chocolate Cheesecake');

86

Insert into Product values (6, 35000, 13.00, 'Keylime Cheesecake');

Insert into Product values (7, 12500, 12.00, 'New York Cheesecake');

Insert into Product values (8, 25000, 13.00, 'Caramel Cheesecake');

Insert into Product values (9, 35000, 10.50, 'Cheesecake with Cherries');

Insert into product values (10, 15000, 12.00, 'Raspberry Cheesecake');

PERFRUN Source Code

/*
* This C program will run database operations for the
* specified number of seconds. This program contains
* statements which are valid only for the
* database environment specific to the Journal Lab.
*
*
* Syntax:
* PERFRUN seconds
* seconds - the number of seconds for the run
*
*
* Compile Statement:
* CRTSQLCI OBJ(JOLABXX/PERFRUN)
* SRCFILE(JOLABXX/PERFRUN)
* COMMIT(*NONE) OBJTYPE(*PGM)
*
*/

#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

 EXEC SQL BEGIN DECLARE SECTION;

 // variables to store the cmd line args
 unsigned long int seconds = 0;

 // variables for gettimeofday()
 struct timeval end_time;
 struct timeval cur_time;
 struct timezone timez;

 long int varpid = 1;
 long int vartid = 1;
 long int varqty = 1;

 EXEC SQL END DECLARE SECTION;

 /**
 * Parsing command line / error checking
 **/

87

 EXEC sql include SQLCA;

 if (argc != 2)
 {
 printf("PERFRUN seconds");
 }
 else
 {

 // get seconds from command line
 seconds = atol(argv[1]);

 // set the starting time
 gettimeofday(&end_time, &timez);

 printf("------------- PERFRUN has started running -------------\n");

 // set the end time to start time plus seconds specified
 end_time.tv_sec = end_time.tv_sec + seconds;

 // continue to loop while current time < end time
 do
 {
 // complete a database transaction
 EXEC SQL
 INSERT into Trans values (:vartid, :varpid, :varqty);
 EXEC SQL
 UPDATE Product set qty = qty - :varqty
 WHERE pid = :varpid;

 // update values for a variety of data
 vartid = vartid + 1;
 varpid = (varpid % 10) + 1;
 varqty = (varqty % 5) + 1;

 // get the current time
 gettimeofday(&cur_time, &timez);

 } while (cur_time.tv_sec < end_time.tv_sec ||
 cur_time.tv_usec <= end_time.tv_usec);

 printf(" Total running time = %u.%06u\n",
 seconds + cur_time.tv_sec - end_time.tv_sec,
 cur_time.tv_usec - end_time.tv_usec);
 printf("---------------- PERFRUN has completed ----------------\n");

 }

 return 0;
}

JOTIMEIT Source Code

/*
* This C program outputs the time required to run the input
* command (does not work if runtime includes change of day)
*
* Syntax:

88

* JOTIMEIT command
* command - the command to time
*
* Compile Statement:

 CRTBNDC PGM(JOLABXX/JOTIMEIT) SRCFILE(JOLABXX/JOTIMEIT)
*
*/

#include <stdio.h>
#include <string.h> // strstr() call
#include <sys/time.h>

#include <qcmdexc.h>
#include <micomput.h> // needed for decimal conversion

int main(int argc, char *argv[])
{
 // variables to store the cmd line args
 char command[1000];

 // parameters for the CL command call
 decimal(15,5) packed_length;
 int length;

 // variables for gettimeofday()
 struct timeval start_time;
 struct timeval end_time;
 struct timezone timez;

 /**
 * Parsing command line / error checking
 **/

 if (argc != 2)
 {
 printf("JOTIMEIT command");
 }
 else
 {
 // get command line arguments
 sprintf(command, "%s", argv[1]);

 // snapshot the start time
 gettimeofday(&start_time, &timez);

 // run the command
 length = strlen(command);
 cpynv(NUM_DESCR(_T_PACKED,15,5),
 &packed_length,
 NUM_DESCR(_T_SIGNED,4,0),
 &length);
 QCMDEXC(command, packed_length);

 // get the end time
 gettimeofday(&end_time, &timez);

 // output the total runtime
 printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
 if (end_time.tv_usec > start_time.tv_usec)
 {
 printf(" Total running time = %u.%06u seconds\n",

89

 end_time.tv_sec - start_time.tv_sec,
 end_time.tv_usec - start_time.tv_usec);
 }
 else
 {
 printf(" Total running time = %u.%06u seconds\n",
 end_time.tv_sec - start_time.tv_sec - 1,
 100000 - start_time.tv_usec + end_time.tv_usec);
 }
 printf("\n\n");
 }
 return 0;
}

STRJRNLIB Source Code

/*
* This C program starts journaling on all of the *FILE objects
* in the specified library.
*
* Syntax:
* STRJRNLIB lib jrn jrnlib
* lib - the library containing the objects to journal
* jrn - the journal
* jrnlib - the library containing the journal
*
* Compile Statement:

 CRTBNDC PGM(JOLABXX/STRJRNLIB) SRCFILE(JOLABXX/STRJRNLIB)
*
*/

#include <stdio.h>
#include <string.h> // strstr() call
#include <ctype.h> // toupper() call
#include <stdlib.h> // malloc() call

#include <qcmdexc.h>
#include <micomput.h> // needed for decimal conversion
#include <quscrtus.h> // create user space
#include <quslobj.h> // list objects api
#include <qusptrus.h> // get user space ptr
#include <qusrtvus.h> // retrieve user space
#include <qusdltus.h> // delete user space
#include <qusec.h> // error structures
#include <qusgen.h> // general user space structs

int main(int argc, char *argv[])
{
 // variables to store the cmd line args
 char lib[11];
 char jrn[11];
 char jrnlib[11];

 // counters
 int i;
 int entrynumber;
 // parameters for QUSCRTUS call
 char quserspace[21];
 Qus_EC_t *errcode;
 char errorbuffer[8];

90

 // parameters for the QUSLOBJ call
 char objandlib[21];
 // parameters for QUSPTRUS
 Qus_Generic_Header_0100_t *spaceptr;

 // parameters for QUSRTVUS
 char *objectlistptr;
 char objectlist[2000];

 // parameters for the CL command call
 decimal(15,5) packed_length;
 char command[200];
 int length;

 // temporary pointer
 char * tempptr;

 /**
 * Parsing command line / error checking
 **/

 if (argc != 4)
 {
 printf("STRJRNLIB lib jrn jrnlib");
 }
 else
 {
 // get command line arguments
 sprintf(lib, "%s", argv[1]);
 sprintf(jrn, "%s", argv[2]);
 sprintf(jrnlib, "%s", argv[3]);

 // convert the lib, jrn, and jrnlib to upper case
 for (i = 0; i < 10; i++)
 {
 jrn[i] = toupper(jrn[i]);
 lib[i] = toupper(lib[i]);
 jrnlib[i] = toupper(jrnlib[i]);
 }

 // create the user space
 sprintf(quserspace, "JOUSRSPC %-10s", lib);
 errcode = (Qus_EC_t *) errorbuffer;
 errcode->Bytes_Provided = 0;
 QUSCRTUS(quserspace,
 "TEMPSPACE ",
 2000, // bytes
 " ", // intial val
 "*ALL ", // authority
 " ", // text
 "*YES ", // replace
 errcode);

 // get the list of *FILE objects in the library
 sprintf(objandlib, "*ALL %-10s", lib);
 QUSLOBJ(quserspace, // space object for output
 "OBJL0100", // output format
 objandlib, // object and library name
 "*FILE "); // object type

 // access the user space

91

 QUSPTRUS(quserspace,
 &spaceptr,
 errcode);

 // allocate the object list of appropriate size
 objectlistptr =
 malloc(spaceptr->Number_List_Entries * spaceptr->Size_Each_Entry +
1);
 if (objectlistptr == NULL)
 {
 printf("unable to allocate heap\n");
 return -1;
 }

 // get the object list from the user space
 QUSRTVUS(quserspace,
 spaceptr->Offset_List_Data,
 spaceptr->Number_List_Entries * spaceptr->Size_Each_Entry,
 objectlistptr);

 // data really starts on the 2nd byte
 objectlistptr += 1;
 entrynumber = 1;

 // start journaling each of the files
 while (entrynumber <= spaceptr->Number_List_Entries)
 {
 // drop in some null characters to parse out the names
 // (if the objectname is 10 characters, a null char will
 // not be placed at the end. We must use a maximum of
 // 10 characters when we actually use the names)
 tempptr = strstr(objectlistptr, " ");
 if (tempptr != NULL) *tempptr = '\0';
 tempptr = strstr(objectlistptr + 10, " ");
 if (tempptr != NULL) *tempptr = '\0';

 // build and execute the start journal command
 sprintf(command,
 "STRJRNPF FILE(%1.10s/%1.10s) JRN(%s/%s)",
 objectlistptr + 10,
 objectlistptr,
 jrnlib,
 jrn);
 length = strlen(command);
 cpynv(NUM_DESCR(_T_PACKED,15,5),
 &packed_length,
 NUM_DESCR(_T_SIGNED,4,0),
 &length);

 QCMDEXC(command, packed_length);

 // increment to the next object
 objectlistptr =
 objectlistptr + spaceptr->Size_Each_Entry;
 entrynumber += 1;
 }

 // delete the user space
 QUSDLTUS(quserspace,
 errcode);
 }

92

 return 0;
}

PARTS data file

PART_ID COST MAKE MODEL PART
 2,001 10.00 Geo Metro tire
 2,002 25.00 Buick Regal bumper
 2,003 75.00 Ford Taurus exhaust system
 2,004 35.00 Dodge Ram windshield
 2,005 43.00 Chevy Blazer door
 2,006 27.00 Dodge Ram topper
 2,007 7.00 Buick Regal windshield wipers
 2,008 25.00 VW Beetle hood
 2,009 32.00 AMC Hornet motor
 2,010 14.00 Ford Explorer steering wheel
 2,011 30.00 Ford Mustang hub cap
 2,012 30.00 Plymouth Sundance radiator
 2,013 12.00 Volkswagen Passat gas cap
 2,014 78.00 Mercury Mountaineer axle
 2,015 55.00 Jeep Cherokee radiator
 2,016 34.00 Dodge Intrepid alternator
 2,017 48.00 Dodge Viper mud flag
 2,018 81.00 Chevy Tahoe rim
 2,019 22.00 Volkswagen Golf battery
 .
 .
 .

JODSPJRN Source Code

/**/
/* */
/* Run DSPJRN JRN(*INTSYSJRN) JRNID(10001) FROMTIME('passed */
/* time'). Allows users without *ALLOBJ authority to see */
/* this data in the V5R2 COMMON lab. */
/* */
/**/
 /***/
 /* Program argument is the current date */
 /* and time passed in a string. */
 /***/
 PGM PARM(&DATE &TIME)

 /* Passed date */
 DCL VAR(&DATE) TYPE(*CHAR) LEN(10)
 /* Passed time */
 DCL VAR(&TIME) TYPE(*CHAR) LEN(10)

 MONMSG CPF0000

 DSPJRN JRN(*INTSYSJRN) JRNID(10001) FROMTIME(&DATE &TIME)

 ENDPGM

93

MANYPARTS Source Code

/*
* This program inserts the specified number of records into the
* file specified (must have specific format for the SMAPP
* journal Lab).
*
* Syntax:
* MANYPARTS file library n
*
* Compile statement:
 CRTSQLCI OBJ(JOLABXX/MANYPARTS) SRCFILE(JOLABXX/MANYPARTS)
 SRCMBR(MANYPARTS) COMMIT(*NONE) OBJTYPE(*PGM)
**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include <qusec.h> // Error code structures
#include <qlichgll.h> // needed for QLICHGLL call
#include <qcmdexc.h>
#include <micomput.h> // needed for decimal conversion
#include <ctype.h> // toupper() call

 EXEC sql include SQLCA;

int main(int argc, char *argv[])
{
 long int i;
 int num;
 char file[11];
 char lib[11];
 char statement[200];

 if (argc != 4)
 {
 printf("MANYPARTS file lib num \n ");
 }
 else
 {
 sprintf(file, "%-10s", argv[1]);
 sprintf(lib, "%-10s", argv[2]);
 num = atoi(argv[3]);

 // convert the dtaq and library to upper case
 for (i = 0; i < 10; i++)
 {
 file[i] = toupper(file[i]);
 lib[i] = toupper(lib[i]);
 }

 sprintf(statement,
 "INSERT into %s/%s values (?, 1.00, 'car', 'make', 'part', 2002)",
 lib, file);
 EXEC SQL
 PREPARE actstmt FROM :statement;

94

 for (i = 10000; i < (10000 + num); i++)
 {
 EXEC SQL
 EXECUTE actstmt USING :i;
 }
 }
 return 0;

}

SQLSTMT/SQLSPT SQL Script

Create table Customer (cid int, Name char(30));
Create table Hotel (cid int, H_Name char(30));
Create table Flight (cid int, Airline char(30), depart date);
Create table Car_rental (cid int, R_Comp char(30), pickup date);

PARSEJOPEX Source Code

/*
*
* This program parses the Journal PEX Trace point events in
* QAYUSRDFN and puts them into a nicely formatted table
*
*
*
* Syntax: PARSEJOPEX library
* library = library which contains results
* also used as output file location
*
* Compile statement:
 CRTSQLCI OBJ(JOLABXX/PARSEJOPEX) SRCFILE(JOLAB/PARSEJOPEX)
 SRCMBR(PARSEJOPEX) COMMIT(*NONE) OBJTYPE(*PGM)
**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <ctype.h> // toupper() call

#include <qusec.h>
#include <qlichgll.h>
#include <qcmdexc.h>
#include <micomput.h>

EXEC sql include SQLCA;

int main(int argc, char *argv[])
{

EXEC SQL BEGIN DECLARE SECTION;
 /* command line parameters */
 char lib[11];

 /* host vars */
 long int cnt = 0;

95

 char dta[300];
 short int typ = 0;
 short int styp = 0;

 /* a counter */
 long int i;
 int j;

 /* for QLICHGLL call */
 char current[11];
 char same[11];
 long int num_user_libs = -1;
 Qus_EC_t *err_code;
 char errorbuffer[512];

 /* for QCMDEXC call */
 decimal(15,5) packed_length;
 int length;
 char command[200];

 char statement[200];

 /* data */
 char port[16];
EXEC SQL END DECLARE SECTION;

 if (argc != 2)
 {
 printf("PARSEJOPEX lib\n");
 }
 else
 {
 sprintf(lib, "%s", argv[1]);

 /* convert the library to upper case */
 for (i = 0; i < 10; i++)
 {
 lib[i] = toupper(lib[i]);
 }

 /* set the current library */
 sprintf(current, "%-10s", lib);
 strcpy(same, "*SAME ");
 err_code = (Qus_EC_t *) errorbuffer;
 err_code->Bytes_Provided = 0;
 QLICHGLL(current,
 same,
 same,
 same,
 num_user_libs,
 err_code);

 /* create the output table */
 EXEC SQL
 CREATE TABLE JOPEXOUT
 (record int,
 type int,
 subtype int,
 portaddr char(16),
 accpathaddr char(16),
 objectaddr char(16),

96

 recrasetting char(16),
 recraobjects char(8),
 smapptrans char(2),
 smappreason char(2),
 cycleid char(16),
 curSeqNum char(16),
 curSyncPoint char(16),
 writes char(8),
 permWrites char(8),
 syncDbReads char(8),
 syncNonDbReads char(8),
 syncDbWrites char(8),
 syncNonDbWrites char(8),
 asyncDbReads char(8),
 asyncNonDbReads char(8),
 asyncDbWrites char(8),
 asyncNonDbWrites char(8),
 accessGroupFaults char(8),
 ioPendingWaits char(8),
 synIoWaits char(8),
 pageFaults char(8),
 seizewt char(16),
 mJOCommitOps char(8),
 mJOSecCommitOps char(8),
 mJODecommOps char(8),
 mJOSecDecommOps char(8),
 mJOJrnWrts char(8),
 mJONonSMAPP char(8),
 mJOUser char(8),
 mJOSystem char(8),
 mJOFixedBytes char(16),
 mJODepFixedBytes char(16),
 mJOTransient char(16),
 mJODepTransient char(16),
 mJONaptime char(16),
 mJONaps char(8),
 mJOEval_Messages char(8),
 mJOTriggered_Evals char(8),
 mJOBuildtime_Ests char(8),
 queuingWaitTime char(16));

 /* copy the QAYPEUSRDF and QAYPETIDX table */
 /* copy the table because a table of the same name exists in
 * QSYS which will be found prior to the one in the
 * specified library due to the library list. A new name
 * will allow this one to be found without specifying
 * a library. This is due to the fact that I do not know
 * how to use a host variable in a dynamic statement which
 * would allow me to specify the library name passed in.
 */
 sprintf(command,
 "CPYF %s/QAYPEUSRDF %s/USRDFCOPY CRTFILE(*YES)",
 lib, lib);
 length = strlen(command);
 cpynv(NUM_DESCR(_T_PACKED,15,5), &packed_length,
 NUM_DESCR(_T_SIGNED,4,0), &length);
 QCMDEXC(command, packed_length);

 sprintf(command,
 "CPYF %s/QAYPETIDX %s/TIDXCOPY CRTFILE(*YES)",
 lib, lib);

97

 length = strlen(command);
 cpynv(NUM_DESCR(_T_PACKED,15,5), &packed_length,
 NUM_DESCR(_T_SIGNED,4,0), &length);
 QCMDEXC(command, packed_length);

 /* get the number of events to parse */
 EXEC SQL
 select max(QRECN) into :cnt from USRDFCOPY;

 for (i = 1; i <= cnt; i++)
 {
 /* get a row of data to parse */
 EXEC SQL
 select QUSDTA into :dta from USRDFCOPY where QRECN = :i;
 EXEC SQL
 INSERT into JOPEXOUT
 (record,
 portaddr,
 accpathaddr,
 objectaddr,
 recrasetting,
 recraobjects,
 smapptrans,
 smappreason,
 cycleid,
 curSeqNum,
 curSyncPoint,
 writes,
 permWrites,
 syncDbReads,
 syncNonDbReads,
 syncDbWrites,
 syncNonDbWrites,
 asyncDbReads,
 asyncNonDbReads,
 asyncDbWrites,
 asyncNonDbWrites,
 accessGroupFaults,
 ioPendingWaits,
 synIoWaits,
 pageFaults,
 seizewt,
 mJOCommitOps,
 mJOSecCommitOps,
 mJODecommOps,
 mJOSecDecommOps,
 mJOJrnWrts,
 mJONonSMAPP,
 mJOUser,
 mJOSystem,
 mJOFixedBytes,
 mJODepFixedBytes,
 mJOTransient,
 mJODepTransient,
 mJONaptime,
 mJONaps,
 mJOEval_Messages,
 mJOTriggered_Evals,
 mJOBuildtime_Ests,
 queuingWaitTime)
 select QRECN,

98

 HEX(SUBSTR(QUSDTA, 1, 8)) portaddr,
 HEX(SUBSTR(QUSDTA, 9, 8)) accpathaddr,
 HEX(SUBSTR(QUSDTA, 17, 8)) objectaddr,
 HEX(SUBSTR(QUSDTA, 25, 8)) recrasetting,
 HEX(SUBSTR(QUSDTA, 33, 4)) recraobjects,
 HEX(SUBSTR(QUSDTA, 37, 1)) smapptrans,
 HEX(SUBSTR(QUSDTA, 38, 1)) smappreason,

 HEX(SUBSTR(QUSDTA, 41, 8)) cycleid,
 HEX(SUBSTR(QUSDTA, 49, 8)) curSeqNum,
 HEX(SUBSTR(QUSDTA, 57, 8)) curSyncPoint,

 HEX(SUBSTR(QUSDTA, 65, 4)) writes,
 HEX(SUBSTR(QUSDTA, 69, 4)) permWrites,
 HEX(SUBSTR(QUSDTA, 73, 4)) syncDbReads,
 HEX(SUBSTR(QUSDTA, 77, 4)) syncNonDbReads,
 HEX(SUBSTR(QUSDTA, 81, 4)) syncDbWrites,
 HEX(SUBSTR(QUSDTA, 85, 4)) syncNonDbWrites,
 HEX(SUBSTR(QUSDTA, 89, 4)) asyncDbReads,
 HEX(SUBSTR(QUSDTA, 93, 4)) asyncNonDbReads,
 HEX(SUBSTR(QUSDTA, 97, 4)) asyncDbWrites,
 HEX(SUBSTR(QUSDTA, 101, 4)) asyncNonDbWrites,
 HEX(SUBSTR(QUSDTA, 105, 4)) accessGroupFaults,
 HEX(SUBSTR(QUSDTA, 109, 4)) ioPendingWaits,
 HEX(SUBSTR(QUSDTA, 113, 4)) synIoWaits,
 HEX(SUBSTR(QUSDTA, 117, 4)) pageFaults,
 HEX(SUBSTR(QUSDTA, 121, 8)) seizewt,

 HEX(SUBSTR(QUSDTA, 129, 4)) mJOCommitOps,
 HEX(SUBSTR(QUSDTA, 133, 4)) mJOSecCommitOps,
 HEX(SUBSTR(QUSDTA, 137, 4)) mJODecommOps,
 HEX(SUBSTR(QUSDTA, 141, 4)) mJOSecDecommOps,
 HEX(SUBSTR(QUSDTA, 145, 4)) mJOJrnWrts,
 HEX(SUBSTR(QUSDTA, 149, 4)) mJONonSMAPP,
 HEX(SUBSTR(QUSDTA, 153, 4)) mJOUser,
 HEX(SUBSTR(QUSDTA, 157, 4)) mJOSystem,
 HEX(SUBSTR(QUSDTA, 161, 8)) mJOFixedBytes,
 HEX(SUBSTR(QUSDTA, 169, 8)) mJODepFixedBytes,
 HEX(SUBSTR(QUSDTA, 177, 8)) mJOTransient,
 HEX(SUBSTR(QUSDTA, 185, 8)) mJODepTransient,
 HEX(SUBSTR(QUSDTA, 193, 8)) mJONaptime,
 HEX(SUBSTR(QUSDTA, 201, 4)) mJONaps,

 HEX(SUBSTR(QUSDTA, 205, 4)) mJOEval_Messages,
 HEX(SUBSTR(QUSDTA, 209, 4)) mJOTriggered_Evals,
 HEX(SUBSTR(QUSDTA, 213, 4)) mJOBuildtime_Ests,

 HEX(SUBSTR(QUSDTA, 217, 8)) queuingWaitTime

 from USRDFCOPY where QRECN = :i;

 EXEC SQL
 SELECT QTITY, QTISTY
 into :typ, :styp
 from TIDXCOPY
 where QRECN = :i;

 EXEC SQL
 UPDATE JOPEXOUT
 SET type = :typ, subtype = :styp
 where record = :i;

99

 }

 /* clean up the temp files */
 sprintf(command,
 "DLTF TIDXCOPY",
 lib, lib);
 length = strlen(command);
 cpynv(NUM_DESCR(_T_PACKED,15,5), &packed_length,
 NUM_DESCR(_T_SIGNED,4,0), &length);
 QCMDEXC(command, packed_length);

 /* clean up the temp files */
 sprintf(command,
 "DLTF USRDFCOPY",
 lib, lib);
 length = strlen(command);
 cpynv(NUM_DESCR(_T_PACKED,15,5), &packed_length,
 NUM_DESCR(_T_SIGNED,4,0), &length);
 QCMDEXC(command, packed_length);

 /* set the current library to nothing */
 sprintf(current, "*CRTDFT ");
 strcpy(same, "*SAME ");
 err_code = (Qus_EC_t *) errorbuffer;
 err_code->Bytes_Provided = 0;
 QLICHGLL(current,
 same,
 same,
 same,
 num_user_libs,
 err_code);
 }

 return 0;
}

100

