Session: BL09

.||II

LAB: V5R2 Newest
Journal and Commit
Features

Larry Youngren
Adam Stallman
Peg Levering

|BM @server 1Series

© Copyright IBM Corporation, 2003. All Rights Reserved.
This publication may refer to products that are not currently
available in your country. 1IBM makes no commitment to
make available any products referred to herein.

IBM @server. For the next generation of e-business.

Trademarks and Disclaimers

IBM (@ server iSeries

© IBM Corporation 1994-2003. All rights reserved.

References in this document to IBM products or services do not imply that IBM intends to make them available in every country.
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States,
other countries, or both:

AS/400 IBM Logo
AS/400e iSeries
e-business logo 0S/400
IBM DB2

Lotus, Freelance Graphics, and Word Pro are registered trademarks of Lotus Development Corporation and/or IBM Corporation.
Domino is atrademark of Lotus Development Corporation and/or IBM Corporation.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Information is provided "AS |S" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may
have achieved. Actual environmental costs and performance characteristics may vary by customer.

Information in this presentation concerning non-IBM products was obtained from a supplier of these products, published
announcement material, or other publicly available sources and does not constitute an endorsement of such products by IBM. Sources
for non-1BM list prices and performance numbers are taken from publicly available information, including vendor announcements and
vendor worldwide homepages. 1BM has not tested these products and cannot confirm the accuracy of performance, capability, or any
other claims related to non-IBM products. Questions on the capability of hon-IBM products should be addressed to the supplier of
those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and
objectives only. Contact your local IBM office or IBM authorized reseller for the full text of the specific Statement of Direction.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual
throughput or performance that any user will experience will vary depending upon considerations such as the amount of
multiprogramming in the user's job stream, the 1/O configuration, the storage configuration, and the workload processed. Therefore,
no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios sated
here.

IBM @server. For the next generation of e-business.

Contents

Lab 1l TypeSJournalDatacciuiiiiiiiinnennenn.. 1
INtrOdUCKION e 2
Task 1. Introduction to the New Type 5 Journal DataOption 3
Task 22 CHGJRN, FIXLENDTA, and Outfile Querying 6
Task 3: Intruson Detectionooiiiiiiiiiii e 7
Task 4: Compare Arm Behavior when Using Caching 11
Lab 2. Journal Standby Mode 15
INtrOdUCKION ... et 16
Task 1. Producing the Performance Basdine 17
Task 2: Running with Batch Journd Caching 20
Task 3: Running with Journal Standby Mode 22
Task 4: STRJIRN vs. Standby -> Active Trangition 25
Optiond Task 5: Sending Entriesto a Journd in Standby Mode 28
Lab 3. SMAPP Visbilityand Tuning 31
INtrOdUCKION e 32
Task 1: Displaying the Default SMAPP Journal 33
Task 2: New SMAPP ‘Protected’ Index Screen 39
Task 3: *INCHIDENT - Display Hidden Journal Entries 41
Task 4. New ‘Not Eligible for SMAPPScreen 43
Lab 4. Savepointso a7
INtrOdUCKION ..\t 48
Task 1. Savepoints - Releases, Rollbacks, and Nested 49
Task 2: Journa Entries Associated with Savepoints 55
Lab 5. Journal Performance Countersand Tracepoints 57
INrOdUCKION . ..o e 58
Task 1: Journal PerformanceCounterscooiiiennn.... 60
Task 2: Journa Tracepoints 64
Task 3 Additional Journa TracepointsSccvvveeennnniinnn. 67
APPENAIX A e e 71
UPDVAC SoUrce Code oviiiiiiiiii e 71
SQLSTMT/SQLDSP SQL SCHPt « vt 72
BUNDLE SourceCodecoiiiiiiiiiiii e 73
SQLSTMT/SQLSBYPERF SQL Script ..o vvvv e 75
PERFRUN SourceCode ... 75
JOTIMEIT Source Codeovviii it 76
STRIRNLIB SourceCode ... 78
PARTSDaafile ... e 80
JODSPIRN SourceCodeooiiiie e 81
MANYPARTS SourceCodeooviiiiiiiiiiiiiiiieeeeen 81

SQLSTMT/SQLSPT SQL SCHPE et e e 7)

JOPARSEPEX SourceCodevvie e e e 82

I mportant Note:

If you are not an experienced Journa user and proficient with using the iSeries, you may not be able to
complete thisentire Lab in the time dlotted. Please take a moment to look over the Table of Contents
and choose the Labs from which you would benefit most. We suggest completing the Labsin the
provided order if you are new to Journding.

The following are estimates of the time required to complete the various Labs:

Lab 1. Type5 Journd Data 25 to 35 minutes
Lab 2: Journd Standby Mode 25 to 35 minutes
Lab 3: SMAPP Vighility and Tuning 30 to 40 minutes
Lab 4: Savepoints 20 to 30 minutes

Lab 5: Journa Performance Counters and Tracepoints 25 to 35 minutes

Also keep in mind that there are various Optiona steps dong theway. These Steps are not required to
complete the Lab.

.||II

V5R2 Newest Journal
and Commit Features

Lab 1. New Style (TYPED)
Formatting of Journal Data

IBI\/I@

“server 1Series

© Copyright IBM Corporation, 2003. All Rights Reserved.
This publication may refer to products that are not currently
available in your country. 1BM makes no commitment to
make available any products referred to herein.

IBM @server. For the next generation of e-business.

3

Lab 1. TYPES5 Journal Data

In this section of the lab neat, new, never before seen data you can now display by
usng the DSPJRN CL command will be explored.

Introduction
New featuresin V5R2 dlow you to both collect and display more environmenta
descriptive information with each Journa Entry. Some of this data can be used to better
andyze performance while other choices provide more audit or replay information with
eaech Entry. Thislab will show you how to enable and view this new data and will
demonstrate some ways in which this data can be used.

Objectives
This lab teaches you how to:
* Usethenew V5R2 FIXLENDTA option on the CHGJRN command to
customize the environment information collected for each Journd Entry.
* Digdlay Journd Entry information using the new V5R2 TY PES format including
display of Remote Addressinformation aswell asthe Disk Arm number
asociated with each Journd Entry.

Lab Information
The notation XX that gppearsin library names, profile names, and so on, refersto your
Team Number (for example, JOTEAMXX, JOLABXX, JODSPXX). Refer to your
lab worksheet for detalls.

Lab Prerequisites
Before you begin thislab, be sure the following prerequisites are available:

* AnIBM eServer iSeries or AS/400 with OS/400 V5R2, or higher, with:
- 5722-QU1 -Query for AS/400
- 5722-ST1 -DB2 Query Manager and SQL Development Kit for AS/400
- 5722-SS1 -Feature 5117 (Option 42) AS/400-HA Journa Performance
e TheJOLABXX library containing a program and an SQL script for the lab.

Timerequired
Thetime required to efficiently complete this Iab ranges from 25 to 35 minutes.

Task 1. Introduction to the New Type 5 Journal Data Formatting Option

You have been put in charge of maintaining the vacation records for a large
company. Thisjob involves managing vacation records and updating the
employee files appropriately to show the remaining number of vacation days. The
company has a programin place which verifies the authenticity of the requests
and updates the employee records.

Firgt, you will need to set up a database collection and put dataiin it to represent these
company records.

1. Satinteractive SQL withthe STRSQL CL command.

2. Create your SQL collection with the Create collection JODSPXX SQL
gatement. An SQL collection cregtes anative library, a Journal named
QSQJIRN, and various SQL related objects. Database objects created within
the collection will automaticaly be journded to the Journal QSQJIRN. Don't
get impatient... creating dl of the objects may take awhile. Thereé'salot going
on under the covers at this point.

3. Exitinteractive SQL with the F3 option and then select option 1.

4. We havewritten aspecia SQL script for this lab to save you a bunch of
keystrokes. Create a set of database tables by executing the SQL statementsin
the SQLDSP member of the JOLABXX/SQLSTMT file. These tableswill
automaticaly be journaled because they are being created in an SQL collection.
This can be donewiththe RUNSQLSTM
SRCFILE(JOLABXX/SQLSTMT) SRCMBR(SQLDSP)
DFTRDBCOL(JODSPXX) CL command. The script executed by this
command contains the following SQL statements and will create the database

tables shown below:

Yacation | [= 'ﬁjfnﬂnﬁeﬂﬁw
etnpid Integer Monday -
Matne Char (307 emp_id Integer r
vac_days Integer regdate Diate

Create table Vacation (emp_id int, Name char(30), vac_daysint)
Insert into Vacation values (1001, ‘Bill’, 5)

[Followed by anumber of additional employees]

Create table Monday (emp_id int, regdate date)

[Followed by anumber of additional days]

Insert into Monday values (1001, ‘4/05/02)

[Followed by anumber of additional requests]

6

The Vacation file holds the vacation totals for each employee for the year,
revealing the number of days of vacation remaining. The files named after the
days of the week contain the pending employee vacation requests for each day
which need to be decremented from the Vacation file.

Don’t forget to add yourself to the company Database. You wouldn’t want to
have to do all of this work without receiving any vacation time!

You can accomplish this with the following steps:

5. Satinteractive SQL withthe STRSQL CL command.

___ 6. Enter your own namein Vacation with the following SQL Statement:
Insert into JODSPXX/Nacation values(1115, ‘your name’, 5)

___ 7. Exitinteractive SQL with the F3 option and then select option 1.

Now that the data isin place, it is your job to kickoff the program which runs
every night to verify the requests and update the company records. This program
allows you to specify asinput the file containing the new vacation requests for the
particular day. Run the program using Monday’ s requests thistime.

__ 8. Set JODSPXX to your current library withthe CHGCURLIB JODSPXX
CL command. Thiswill dlow the UPDVAC program used below to accessthe
database objects residing within your collection.

9. Runthe JOLABXX/UPDVAC to update the madter file with dl the new
changes made throughout Monday. This can be done with the following CL
command: CALL JOLABXX/UPDVAC PARM(‘Monday’).

___Optiond: Quickly view the Journd Entries produced so far. This can be done using
the DSPJRN JODSPXX/QSQJRN CL command. You will see Entries of
type PT (Record added) from populating the table, dong with UB/UP Entries
(Updates) at the end from the UPDVAC program you just ran. Entry #55
should be a PT where your data was added to the Vacation table.

__10. Let’'sroute acopy of the Journa Entries which you have produced so far to an
OUTHLE which you can then query with the following steps:

___A. TypeDSPJRN onthe CL command line and press F4. Enter Journd,
QSQJRN, and library, JODSPXX. Caution: Don't press enter yet.

7

__B. Pagedown until you find the find keywords, the ‘Output’ parameter.
Type *OUTFILE for the‘Output’ parameter. Press Enter. More
options will appear for the * Outfile format’ parameter.

Up until now, everything we' ve done could have been performed prior to
V5R2. Here comes the new stuff...

__C. Replace*TYPEL with*TYPES asthe ' Outfileformat’ parameter.
Thisisanew outfile format for V5R2. It alows you to see more of the
'behind the scenes workings within Journd for dl of the available
journaled object types so you can make more informed decisions on
how to get the most out of your machine.

D. Enter DSPJRNOUT for 'Fileto receive output.” Type JODSPXX
for thelibrary. PressEnter twice. You should see amessage
confirming that 59 Entries were converted. You will seea“Daa
Truncated to Outfile” message. Thisisokay. Using the default of
*OUTFILFMT for ENTDTALEN limits the Entry specific data written
to the outfile to avoid amassvely sized outfile,

That'sit. We've created an outfile and copied Journal Entriesinto it.

__11. Startinteractive SQL with the STRSQL CL command. Y ou can now query
the outfile we produced above: DSPIRNOUT, which contains the Journa
Entriesyou just copied into thisfile with the DSPJIRN command. To seethe
myriad of information the new Type 5 formaiting option provides, enter: Select
*from JODSPXX/DSPJRNOUT. UseF20 (Shift + F8) to scrall to the
right and F19 (Shift + F7) to scroll to the left within the data... Notice dll of the
column headings.

One of the fields in the table containing the Journal ID (JID) for an object may
contain non-displayable characters which will result in an odd looking screen.
Press the Escape key if you get stuck due to these non-displayable characters.

If you are an old pro at journaling, you are going to notice some new values on
the screen. If you are brand new to Journaling, you may want to ask your Lab
instructors to explain some of what you are seeing on the screen.

You may have noticed some data fields such as'REMOTE ADDRESS and 'XID'
which have no data in their columns. Thisis new data available for the first time
in V5R2 which is collected at Runtime only if you advise the machine to do so...
(wedidn’t). You can use the CHGJRN command and work with the FIXLENDTA

8

option to add some of these fields to the information collected for the * TYPES
display. Inthe next task, you will try adding some of these options.

Type5 (rather than the pre-V5R2 styles such as Typed) is the newest kid in town
and he' s able to show you information about your Journal that otherscan’t. You
may want to consider replacing your former use of Typed with Type5 when you
start using V5R2. We'll take a look at how you can use this new information in
the upcoming tasks.

__12. Exitinteractive SQL with the F3 option and then sdlect option 1.

Task 22 CHGJRN, FIXLENDTA, and Outfile Querying

In this task we will handle employee requests for the following day (Tueday), thistime
gathering and displaying more of the new optional Journd Entry deta available for the
firg timein V5R2.

Your boss has requested more security and performance data to be collected with
each Journal Entry. Luckily for you, the new V5R2 FIXLENDTA option is
available to help you collect the extra information he' slooking for. This
information is stored internally in a sub-section of each Journal Entry known as
the fixed length area. Hence the name: Fixed Length Data.

1. Wewill need to specify the new FIXLENDTA option on CHGJRN to ingtruct
the machine that the new (optiond) Journa Entry information should henceforth
be collected.

__A. TypeCHGJRN JRN(JODSPXX/QSQJRN) and press F4 to
prompt this command. 1t would be awfully confusing to represent new
data and old-style data in the same Journal Receiver so V5R2 enforces
the reasonable rule that you need to change Journa Receivers any time
you tinker with the Journd Collection Attributes. Hence, in order to
turn on the option to collect the new FIXLENDTA, anew Journa
Recalver isrequired. That's easy... amply specify *GEN on the
Journa Recaiver lineinstead of the default * SAME.

__B. Now page down to the'FIXED LENGTH DATA' (FIXLENDTA)
fidd. Hint: If you prefer to see keywords, you can use F11 to make
them appear on your screen. To add more values, type ‘+' on thefirgt
line (where it probably says*JOB), blank out the rest of *JJOB, and
press Enter. The'Specify More Vauesfor Parameter FIXLENDTA'
screen should appear. *JOB, *USR, and *PGM are the pre-V5R2
trio of historica “Fixed Length” descriptive information collected for

9

each Journd Entry. Thissametrio of information can till be collected
in V5R2, but they must be specified as three individud optionsto be
used in concert with the newly available Fixed Length Data options.
Arrow down to ablank line and pressF4. You will be given alig of
various options. These are dl of the available parameters for the
FIXLENDTA field. PressF12 to back off this prompt screen and add
*SYSSEQ, *PGMLIB, and *RMTADR into the 'Specify More
Vauesfor Parameter FIXLENDTA' screen. Once dl of these
parameters are set for FIXLENDTA, press Enter to accept these
vaues. Now blank out the *JOB attribute listed as a parameter for
FIXLENDTA, and press Enter again twice to execute the CHGIRN
command.

You will get amessage about a Journa sequence number not being reset.
Don't worry about it, we didn't specify to reset the Journal sequence number
thistime.

Let’sreview what you have just done: You have selectively enumerated which
descriptive bits of information you would like collected for each new Journal
Entry produced. Some of the traditional favorites like User_Profile (*USR) and
Program_Name (* PGM) wer e selected, along with some new V5R2 choices, like
System_Sequence Number (* SYSSEQ) and Remote Addresses (*RMTADR).

In this case, we even decided not to collect the Job_Name (* JOB) information
that has historically been collected. That was a conscious choice on our part.
Harvesting jobs names for each and every Journal Entry costs CPU cycles. By
eliminating what we don’t really need, we can save those cycles. Of all the
traditional pieces of descriptive environmental information collected, the most
costly to harvest by far isthe program name. The microcode has to climb the
execution stack frame by frame looking for the culprit up at the user-level who
initiated this Journal request... and that can consume cycles.

Suppressing collection of program names may be especially attractive if you have
a Journal which is predominantly populated by the same batch job executing the
same program day after day. Do you really need to have all 100,000 Journal
Entries look up the program name anew? If not, why not suppressit? Hmm...
thereisa good tip you can take home. If you don’t have a need for the
information, you can help performance and save space in the Journal Receiver by
not collecting the information! That’s the beauty of the new “ Fixed Length
Data” versatility V5R2 affords. (Got any spurious Journal overhead you can
eliminate when you return home?)

10

2. If youdidn't dready do thisin Task 1, set JODSPXX to your current library
withthe CHGCURLIB JODSPXX CL command.

3. Runthe JOLABXX/UPDVAC to update our master vacation file with all
changes made throughout Tuesday. This can be done with the following CL
command: CALL JOLABXX/UPDVAC PARM(‘Tuesday’).

4. Let'sroute acopy of the new Journa Entries which you just produced to an
OUTFILE by executing the following command: DSPJRN
JRN(JODSPXX/QSQJRN) OUTPUT(*OUTFILE)
OUTFILFMT(*TYPES) OUTFILE(JODSPXX/DSPJRNOUT). This
will overwrite the same table which you creeted in step 10-D of the previous
task by prompting on the DSPJRN except that it isdone al in one step. You
should see a confirmation message pointing out that 9 new Journd Entries were
converted.

Next you will be sdectively querying and digplaying portions of the resulting outpuit file,
50 you will need to know the field namesto employ in the SQL SELECT dsatement
which appears below.

__ 5. Enter DSPFFD JODSPXX/DSPJRNOUT. To view the fidd names of dl
of the fieldsin afile, you can use the DSPFFD (digplay file fidld description) CL
command. Page down and you will be able to see the fidld names
corresponding to each field a* TY PE5 formatted Journa Entry houses, such as:
JOSY SSEQ, JOPGMLIB, JOUSER, and JOPGM. Exit usng F3.

You may be asking yourself, “ Why do | need all of thisextra data? What can | do
with it?” In fact, this extra data shows you many things about your Entries which
you might find useful. For example, you may have many programs at home with
the same name, but residing in different libraries. By including the new V5R2
*PGMLIB data, you can find out exactly which instance of the program made the
changes to the database record and where this program can be found. You can
seethisin action right now. Everyonein thislab isrunning a program, each
having the same name, UPDVAC, yet in their own individual libraries. When you
display the Entries of your Journal, you will see that the UPDVAC program which
you ran was from your own library (JODSPXX) and not from someone else’s
library. Let’stake alook at those Entries...

6. Satinteractive SQL withthe STRSQL CL command.

Thistime, instead of viewing dl of the fields present in the output file for each
Journd Entry, wée'll view only the customized FIXLENDTA onesyou have just
included using arefined SELECT.

11

__ 7. Enter Select JOSEQN, JOSYSSEQ, JOPGMLIB, JOUSPF,
JOPGM, JORADR from JODSPXX/DSPJRNOUT. Now only those
gx fieddswill be shown, and the fields (like JORADR) which did not previoudy
have any data when we performed Monday night’ s refresh (because we had not
yet ingructed the Journd to sart collecting such information) will now have
Tueday’ s information in their columns rather than blanks. If you don't seedl
sx column headings, you probably left out some commas. Exit this display
usng F3.

Y ou have now seen how the FIXLENDTA option alows you to collect exactly the
customized information you prefer with each Journd Entry. No more, and no less. This
feature provides you with the ability to only use the processing power and disk spaceto
collect what is needed in your own shop. Once you have determined what information
you need, you' |l probably want to customize your own Journas o as to discard the
chaff.

The Security Audit Journa on aV5R2 sysem will include dl of the Fixed Length
Data information that is possble to collect. The Journa Entries produced in this

Journd will now have this extra Audit information available.

So let’sreview:

1) You can use the new V5R2 CHGJRN options to customize what is collected.

2) You can then use the new V5R2 DSPJRN * TYPEDS to customize what is
displayed.

Task 3: Intrusion Detection

Task 3 demondtrates the ability to see the IP address of the remote origin machine
associated with a given Journd Entry using the new V5R2 Typeb Journa Display
Option. It isespecidly useful if you adlow remote access to your machine.

Now that you have the hang of the vacation request program, wouldn’t it be
great to just go in and give yourself a few more vacation days? The profile you
are using is shared by a number of developers, so there is no way for the auditors
to figure out who did it, right? Let’sgiveit atry and see what happens!

__ 1. Without using the standard UPDVAC program, let’s snesk in the backdoor and
use native SQL to update your own data record to have more vacation days.

12

Update JODSPXX/Vacation set vac_days = 30 whereemp_id =
1115

__ 2. Exitinteractive SQL with the F3 option and then sdlect option 1.

That SQL update undoubtedly produced a Journal Entry. Now that a new
Journal Entry has been produced in your Journal Receiver, let’ s refresh the
contents of our outfile so we can query what happened.

3. Type DSPJRN JRN(JODSPXX/QSQJRN) OUTPUT(*OUTFILE)
OUTFILFMT(*TYPES) OUTFILE(JODSPXX/DSPJRNOUT) onthe
CL command line and run the command (you may be able to use F9 to retrieve
this command since you used it in the last task). 'Y ou should see a confirmation
message that 11 Entries were converted.

___Optiona: DSPJRN to screen and look at the * Job’ column. DSPJRN
JRN(JODSPXX/QSQJRN). You will seethat no Job Name was
recorded. Rather, such information was‘*OMITTED.’

Feeling smug, aren’t you? Maybe nobody can detect what you did.

Do you remember when we added *RMTADR to the FIXLENDTA with the
CHGJIRN command back in step 1-B of task two? Well, here is where you can use
that remote address data we' ve been collecting.

4. Sartinteractive SQL with the STRSQL CL command.

5. Enter Select JOSEQN, JOPGM, JORADR, JORPORT, JOUSPF
from JODSPXX/DSPJRNOUT. Findthelast Journd Entry. That'sthe
one that corresponds to the change you recently made to your number of
vacdion days. Use F20 (Shift + F8) to scrall to the right to view the entry.
Notice that the PROGRAM NAME field indicates that it was not the
authorized UPDVAC program which made the change to the Vacation file! It
was you typing acommand. Also note that the REMOTE ADDRESSfield of
the Entry indicates where the change originated from. This showsthe IP
address of the clandestine remote computer making the request!

Record the IP address here:

6. Exitinteractive SQL with the F3 option and then select option 1.

7. Find the IP address of the machine you are currently working on. Open a
smple Command Prompt by clicking on the Microsoft Windows Start Button,

13

choosng ‘RUN’, and entering ‘command’ beforedicking ‘OK’. Type
‘ipconfig’ and press Enter. Some information will be disolayed, including
your PC’s IP address.

Record the IP address here:

Type Exit and press Enter to exit the Command Prompt.

Your machine's IP address is the same as the one posted in the * Remote Address
field of the outfile. BUSTED! Maybe giving yourself a few extra days wasn't the
best idea! The boss seems to be posting a help-wanted sign in the window. Looks
like you' re going to have a loooooong vacation now. The new Journal Entry data
can help to pinpoint exactly how a particular change was made (and by whom
and fromwhere!).

Hmm... your auditors are going to love this option.

Task 4. Compare Disk Arm Behavior when Using Journal Caching

Okay, now you see how that works. Why don’t we take a peek at another item
that has just become available with V5R2: the identity of the disk ARM housing
each Journal Entry. Thisfield tells you which arm (or disk drive) a certain
Journal Entry resides on. This can be used to determine the “ bundling rate” and
scattered disk write pattern of Journal Entries. Armed with this information you
can determine how many Journal Entries are being written to disk together at the
sametime. And why would you want to know this? The more Journal Entriesin
a bundle, the fewer disk writes that need to be done. The Journal Caching option
(available for the first time as a native Journal Attribute in V5R2) is one way to
achieve enhanced bundling.

In the Appendix you can find the “ BUNDLE” program which you can use to help
reduce the row disk arm data and cal culate the average bundling rate.

Let’s give this stuff a try.

1. TurontheV5R2 Batch Journd Caching feature for your Journd by cdling the
CL command provided by the Journa Caching BOSS Option (we pre-loaded
this new option on our lab machine). CHGJRN
JRN(JODSPXX/QSQJRN) JRNCACHE(*YES). Thisnew V5R2 Boss
Option isavailable for afee and can be ordered as 5722-SS1 Option 42.

14

You may have noticed that we didn’t have to generate and attach a new Journal
Receiver in order to execute this command. In fact, the caching feature can be
toggled on or off as often as you wish. Some shops will want it on during Batch
and off during the interactive portion of the day.

2. Set JODSPXX to your current library withthe CHGCURLIB JODSPXX
CL command. The Batch Journd Caching festure smisson in lifeisto cache
multiple Journd Entriesin main memory, then write a bunch of them in unison to
the same disk arm in one disk revolution for the sake of efficiency.

3. Runthe JOLABXX/UPDVAC to update dl changes made on Wednesday.
This can be done with the following CL command: CALL
JOLABXX/UPDVAC PARM(‘Wednesday’).

Let’ s see what the Journal can tell usregarding disk arm usage.

__ 4. TypeDSPJRN JRN(JODSPXX/QSQJRN) OUTPUT(*OUTFILE)
OUTFILFMT(*TYPES) OUTFILE(JODSPXX/DSPJRNOUT) onthe
CL command line and run the command (you may be able to use F9 to retrieve
this command since you used it in the last task). 'Y ou should see a confirmation
message showing that 40 Journal Entries were converted.

You will recall that * TYPES is the new V5R2 stuff that let us take a peek at
formerly hidden information (such as arm number). In past releases, only
microcoders and service personnel in IBM’s laboratories could see this
information. With VV5R2, you can too! In Task 2 we worked with some of the
customized FIXLENDTA types, which are not normally collected, but must be
‘turned on’ if you want to collect and view them. However, certain information
(such as arm number) have always been collected and have only become available
for viewing in V5R2.

5. Satinteractive SQL withthe STRSQL CL command. We performed
Monday’ s and Tuesday’ s nightly refreshes without the benefit of the Journa
Caching option. So those Journa Entries should be scattered dl over the disk
amsin dribs and drabs. Y ou can now query the outfile DSPJIRNOUT to seeif
the dispersion of data onto the arms is different for Wednesday’ s refresh, since
it had the benefit of Journa Caching.

The identity of the disk arm to which each Journal Entry was written isrevealed
in the JOARM column of our Type5 ouitfile.

15

6. Enter Select JOSEQN, JOARM, JOENTT from
JODSPXX/DSPJRNOUT to view the sequence numbers, am numbers,
and Entry types of the Journd Entries you have produced.

Y ou will notice that the Journa Entries before the Cl Journd Entry (marking the
transfer into Caching mode) are spread out over the arms, with only a couple of
Entriesin arow going out to the same arm a onetime. This modest bundling is
because the update before and after images (UB and UP) are always bundled
together. Hence Monday and Tuesday’ s runs were not disk efficient.

Next, compare this to the improved bundling that occurs when you use a feature
such as Caching. After the Cl Entry, nearly dl of the Journd Entries are
bundled onto one arm and are written to disk with agnge disk write.
(Interactive SQL closes the file after your first update forcing the first set of
entriesto their own arm.) If enough Journd Entries had been produced to
completdy fill the Journa buffer, these Entries would have been written out to
disk and then the next arm would have been used for a second bundle. The
Entries are bundled on the arms because they have been 'saved up' before being
journaed, thus many Entries are being written to disk at once. Fewer disk
writes means much better performance for Wednesday’ s refresh!

Want to be a hero when you return home? Why not propose speeding up your
nightly Batch Jobs by turning on this V5R2 Caching feature?

How will you know if you need it? ...Display your arm numbers!

__ 7. Exitinteractive SQL with the F3 option and then sdlect option 1.

Various factors including commitment control, an OVRDBF with SEQONLY
*YES, Journal Caching, and high levels of concurrent processing from multiple
jobs affecting the same Journal can improve the bundling rate in your own
environment. If you currently have a low bundling rate, it islikely that the
usage of these features can greatly increase your Journal performance. With
V5R2 and the * TYPES option you now have the tools to analyze disk efficiency
of journaling in your own shop.

For
mor e information regarding Journal Bundling and Cache tuning and the
associated performance benefits you may want to take a look at the Redbook:
‘Striving for Optimal Journal Performance’ found on the IBM Redbook Web
site: www.redbooks.ibm.com

16

17

.||I

V5R2 Newest Journal
and Commit Features

Lab 2: Journal Standby Mode

|BM C

server 1Series

© Copyright IBM Corporation, 2003. All Rights Reserved.
This publication may refer to products that are not currently
available in your country. 1BM makes no commitment to
make available any products referred to herein.

18

IBM @server. For the next generation of e-business.

19

Lab 2. Journal Standby Mode

I ntroduction

Objectives

In this section of the lab the Journal Standby feature will be explored. Standby isa
new V5R2 feature available only if you have ingtadled Option 42 of OS/400. 1t makes
the most sense for shops that have a high availability requirement.

The main purpose of the Journd Standby feature is to speed up the process of switching
over from a production system to a hot backup system. Standby mode dlowsthisto
be done without hurting run time on a backup system and without having to endure
time-consuming Journa enabling steps during switching over. It alows you to prepay
your start-up costs well in advance.

In short: Standby is what you do on your target machine,

Thislab teaches you how to:

* Enable Standby mode for a Journd.

* Compare the performance between normad journding, Journa Caching, and
Journal Standby mode.

* Compare the performance between changing from Standby mode to active
journding vs. starting journding for your objects.

* Put out critica Journd Entries to a Journd despite the fact that it'sin Standby
mode.

Lab Information

The notation XX that gppearsin library names, profile names, and so on, refersto your
Team Number (for example, JOTEAMXX, JOLABXX, JOSBY_A_XX). Refer to
your lab worksheet for details.

Optiona steps are included in thislab in addition to the required steps. These seps are
not required to complete the lab, but can be attempted to further demondrate the usage
of various Journal commands. Optiona steps are denoted with “Optiond:” instead of
the step number.

Lab Prerequisites

Before you begin this lab, be sure the following prerequisites are avallable:

* AnIBM eServer iSeries or AS400 with OS400 V5R2, or higher, with:
- 5722-QU1 -Query for AS/400
- 5722-ST1 -DB2 Query Manager and SQL Development Kit for AS400
- 5722-SS1 -Feature 5117 (Option 42) AS/400-HA Journal Performance
* TheJOLABXX library contains a program and an SQL script for the lab.

20

Timerequired
The time required to efficiently complete this lab ranges from 25 to 35 minutes.

21

Task 1. Producing the Performance Baseline

Your company has a large database system and you are in charge of keeping it
running, and bringing it back up if the system goes down. You have a main
system A which registers all of your company’ s transactions. These transactions
are then remote journaled and replayed on another system, B. Should system A
go down, system B must take over your production workload. (Seethe diagram
on the next page)

Before the new Standby feature in V5R2, you had only two choices: 1) you would
either aways journa your entire replicated database and other journaled objects on
system B or 2) wait and start journaling these objects only when you want to switch
over to this system.

Both of those former choices had disadvantages:

* TheFrg Alternative: Alwaysjournaling your entire replicated database and objects
on the target system takes up resources day after day after day... and may dow down
the replication process itsdlf taking place on sysem B. Infact, if you' reusng HABP
(High Availability Business Partner) software to replay database and object changes to
the redirected objects residing on this system, this option would have increased the
likelihood that such HABP jobs would have atough time keeping up. (Ever seen your
HABP replay jobs begin to fal behind? This could be one of the causes!) By contrad,
with the new Standby feeture turned on, you will not be consuming as many vauable
System resources on the target system so you will not incur as much performance

impact.

* The Second Alternative: Although garting journding for asmple environment on a
few objects at the last minute on your target system, during a so-called role-swap, from
gsystem A to system B may not take long, starting journaling on thousands of objects on
the target sysem will take avery long time. If you have an environment consisting of
hundreds of objects, that' sthe risk you face. Are you willing to make your customers
(and your impatient boss) wait for dl of this activity to complete before a switch from
system A to system B can be completed? Probably not. With the new Standby feature
in V5R2, you won't haveto. If your primary machine goes down and you have your
secondary machine set up such that your critical objects are dready journded to a
Journa which isin Standby mode, you can start running on system B very quickly by
amply taking the Journd out of Standby mode. It'sthat ample!l Task 4 dlowsusto
find out how rapidly we can make that trangtion. (Trust us, you're going to be
impressed.)

22

Systern A mystern B

V—\l/

Vi =
;]

r
wJe
% Eemaote Journal % =i

You look like an entrepreneur with a sweet tooth who' d like to open a gourmet
cheesecake factory. Have we got a deal for you....

In this section of the lab you will create a set of database tables and indexes
representing a cheesecake factory. Sounds yummy, doesn't it? This environment will
then be used to establish a basdine measurement for comparison againgt asimilar
environment with Journa performance enhancements such as Standby mode.

1. Satinteractive SQL withthe STRSQL CL command.

2. Create our first SQL collection (we'll cal it collection *A”) with the Create
collection JOSBY_A XX SQL statement. An SQL collection createsa
native library, a Journa named QSQJRN, and various SQL related objects.
Database objects created within collection * A’ will autometicaly be journded to
the Journa QSQJIRN. Givethis sometimeto complete... There are alot of
underlying objects to creste.

3. Exit interactive SQL with the F3 option and then select option 1.

4. Create aset of database tables and indexes by executing the SQL statementsin
the SQLSBY PERF member of the JOLABXX/SQLSTMT file. Thiscan be
done with the RUNSQLSTM SRCFILE(JOLABXX/SQLSTMT)
SRCMBR(SQLSBYPERF) DFTRDBCOL(JOSBY_A_XX) CL
command. The script executed by this command contains the following SQL
statements and will creste the database tables shown below:

Product Trans
pid Integer tid Integer
qty Integer pid Integer
price Float gt Integer
descrip Char {2007

23

Create table Product (pid int, gty int, price float, descrip char(200))
Createtable Trans (tid int, pid int, gty int)

Createindex prod_pid on Product (pid)

Createindex trans_ids on Trans (pid, tid)

Insert into Product values (1, 200, 12.00, ‘ Cherry Cheesecake')
Insert into Product values (2, 100, 10.00, ‘ Lemon Cheesecake')

[Followed by a number of additional products]

Y ou may see brief progress messages flash across the bottom of your screen as
Access Paths are built.

5. Set JOSBY_A XX toyour current library with the CHGCURLIB
JOSBY_A_ XX CL command. Thiswill dlow the PERFRUN program used
bel ow to access the database objects resding within your collection.

At this point your Transaction table (Trans) isempty (i.e. no one has placed any
ordersyet). We're about to create some transactions to fill thistable, so hold
onto your hat! Our freezer isfull, all of the school groups are starting their
fundraisers, and we're about to start shipping product.

__ 6. Runthe JOLABXX/PERFRUN program for 30 seconds. This can be done
with the following CL command: CALL JOLABXX/PERFRUN
PARM('30’). Thisprogram will insert records into the Transaction table and
update the Quantity field in the Product table thereby smulating the shipments
we' ve made. The program will terminate after running for 30 seconds. After
30 seconds have passed and the compl etion message appears on your screen,
press Enter to get back to origina session.

Our purpose isto determine how many transactions we can service in 30 seconds.
Thiswill be our baseline for comparison.

___Optiond: The Journd Entries that have been produced during this 30 second run
can be viewed withthe DSPJRN JRN(JOSBY_A_XX/QSQJRN) CL
command. After the CT (Create Table), MC (Member Create), and JF
Journd File) Entries which put our tablesin place, you should see a series of
Journd Entries such as PT (Put in a Transaction) and UP (Update our
inventory) which were generated by the PERFSBY RUN Program. Y ou may
have to page down to seethem dl. Enter 5 next to Entries to browse through
some of the UP flavored Entries from the Product table so you can see the
kinds of merchandise your hard earned dollars have bought.

Gosh, it looks like a good day - turtle cheesecakes and cheesecake minisare
selling well!

24

___ 7. Agan dat interactive SQL with the STRSQL CL command.

___ 8. Determine how many transactions were produced during this run of the
performance program with the Select count(*) from
JOSBY_A_ XX/Trans SQL statement.

Record the number of transactions completed here:

Your new business has a profit margin of $1.00 on each cheesecake you sell.
Hmm... nice profit for 30 seconds of work.

The faster your Journal environment ran and the smaller the Journal overhead,
the greater the number of complete transactions that will have been produced in
30 seconds. Thisvalue will serve as your performance baseline. Thisisalso the
value we're going to try to beat by tuning our Journal environment. It represents
the highest sustained rate of cheesecake sales your application can muster. The
guestionis. “ Can we do better?”

Task 2: Running with Batch Journal Caching

Task 2 illudrates the performance improvement we can achieve by enabling the V5R2
Batch Journd Caching festure. The impact of this performance enhancement will
depend greetly upon the specific environment being used.

Before Standby mode arrived in V5R2, turning on Caching via the Journal
Caching PRPQ on the backup system was the best software option to reduce the
overhead of journaling on your target machine. Let’s see how Caching compares
to our baseline and later we'll give Sandby mode a try.

1. Sartinteractive SQL with the STRSQL CL command if you are not dready
in interactive SQL from the previous task.

OK, it’stime to create collection ‘B’ in order to do a comparison.

2. Createan SQL collection with the Create collection JOSBY_B_XX
SQL statement. An SQL collection creates a native library, a Journa named
QSQJIRN, and various SQL related objects. Database objects created within
callection ‘B’ will automaticdly be journaed to the Journd QSQJRN. Yes,
yes... this sep may take alittle while, but you know that.

__ 3. Exitinteractive SQL with the F3 option and then select option 1.

25

__ 4. Createyour tables and indexes by running the SQL statementsin the
SQLSBY PERF member of the JOLABXX/SQLSTMT file. The can be done
withthe RUNSQLSTM SRCFILE(JOLABXX/SQLSTMT)
SRCMBR(SQLSBYPERF) DFTRDBCOL(JOSBY_B_XX) CL
command. The script contains the same SQL statements we used in task 1 and
will create the same database tables shown intask 1, but in collection ‘B’ this
time.

5. Turn on the new Batch Journa Caching feature for the Journd in collection ‘B’
by cdling the CL. command using the new VV5R2 option enabled by the HA
Journd Performance BOSS Option with the following command: CHGJRN
JRN(JOSBY_B_XX/QSQJRN)JRNCACHE(*YES). Thisoptionis
available for afee (and worth every penny) and can be ordered for V5R2 as
5722-SS1 Option 42.

___Optiond: To confirm that the Journd knows Caching is enabled, let'sdo a
WRKJIRNA to display the Journa attributes. WRKJRNA
JRN(JOSBY_B_XX/QSQJRN). Also note that *MAXOPT2 has become
the new default setting for SQL collectionsin V5R2.

Those of you who' ve used similar support in the form of the * Journal Caching
PRPQ' for release VAR4, VAR5, or VSR1 will recognize this new V5R2 choice.

The former PRPQ has grown up! It's now available as a ssmple keyword on a
regular Journal command and its scope has been expanded to Cache not just
database changes, but also journaled IFS, Data Area, and Data Queue changes as
well.

Let’ s get ready for our head to head performance comparison:

6. SetJOSBY_B XX toyour current library with the CHGCURLIB
JOSBY_B_XX CL command. Thiswill dlow the PERFSBYRUN program
to run againg the tables residing in your ‘B’ collection.

7. Runthe JOLABXX/PERFSBYRUN program for 30 seconds. This can be
done with the following CL command: CALL JOLABXX/PERFRUN
PARM('30’). Thisprogram will insert records into the Transaction table and
update the Quantity field in the Product table. The program will terminate after
running for 30 seconds. Press Enter get back to origind sesson.

___Optiond: The Journd Entries that have been produced can be viewed with the
DSPJRN JRN(JOSBY_B_XX/QSQJRN) CL command.

26

__ 8. Agan, gart interactive SQL with the STRSQL CL command.

_ 9. Runthefodlowing SQL statement to determine how many transactions were
produced during this Cache-enabled run of the PERFSBY RUN program.
Select count(*) from JOSBY_B_XX/Trans.

Record the number of Transactions completed here

How does that compare to the value you recorded for step 8 of task 1? You
accomplished more work in 30 seconds this time, right?

Asyou can see, the Journd Caching feature has alarge beneficid impact on the
performance of your journding environment. The Journal Caching feature has been
made available on pre-V5R2 machines as an optiona, nonstandard part of OS400. It
isavaladlefor VAR4, VAR5, and V5R1 through the Batch Journa Caching PRPQ
5722-BJC plusamatching set of PTFs. It isavailable for V5R2 as OS/400 optiona
feature 42. Both the pre-V5R2 version and the V5R2 optiond feature version have a
FREE trid verson! That'sright, you can try out these fabulous options on your own
system without spending adime.

Y ou can read more about this PRPQ and the benefits of Journd Caching in the
Redbook: “Striving for Optimal Journal Performance” which can be found at:
www.redbooks.ibm.com.

Wow, this sure does reduce the journaling overhead! This option should allow for
those replay jobs to more easily keep your hot backup in sync with your
production system. Hmm... at $1.00 profit per cheesecake, you' re getting filthy
rich, right?

Task 3: Running with Journal Standby Mode

The question is: “ Good though Caching is, can we do even better?”

Task 3 shows the performance improvement when using the Journal Standby option
aone without any other performance improvements. Theimpact of this performance
enhancement will depend greetly upon the specific environment being used.

1. Sartinteractive SQL with the STRSQL CL command if you are not dready
in interactive SQL from the previous task.

OK, it’stime to create collection ‘C’ in order to do yet another comparison.

27

2. Create an SQL callection with the Create collection JOSBY_C_ XX
SQL statement. An SQL collection creates antive library, a Journa named
QSQJIRN, and various SQL related objects. Database objects created within
collection *C’ will automatically be journded to the Journal QSQJIRN.

3. Exitinteractive SQL with the F3 option and then select option 1.

4. Here comesthe critical new piece for V5R2: turn on the new Standby festure
for the Journd in collection ‘C’ by calling the CHGJRN CL command:
CHGJRN JRN(JOSBY_C_XX/QSQJRN)
JRNSTATE(*STANDBY).

__Optiond: Confirm the fact that our journd is now in Standby mode by using
WRKJIRNA. WRKJRNA JRNJOSBY_C_XX/QSQJRN). You should
see *STANDBY beside * Journal state.’

The Journd is now in Standby mode. Gosh, that was easy! Thejournaled
objects are no longer being actively protected and thus the norma Journal
Entrieswill not be produced nor written to disk. That's the whole point of
Standby mode. If used properly, such as on our hot backup system where we
do not require this protection until we switch over, Standby mode can provide a
great performance bood... Let’sfind out how much:

5. Create your tables and indexes by running the SQL statementsin the
SQLPERF member of the JOLABXX/SQLSTMT file. The can be done with
the RUNSQLSTM SRCFILE(JOLABXX/SQLSTMT)
SRCMBR(SQLSBYPERF) DFTRDBCOL(JOSBY_C_XX)
COMMIT(*NONE) CL command. The script contains the same SQL
statements we used in task 1 and will create the same database tables shown in
task 1.

Note: Commit(* NONE) is used here because commitment control is not
vaid with Standby mode. Commitment control transactions would not be
able to berolled back without the Journa Entries being recorded in the
Journd. If your application makes use of commitment control, your best
option on the Target system will be to use Journd Caching.

6. SetJOSBY_C_ XX toyour current library withthe CHGCURLIB
JOSBY_C_ XX CL command. Thiswill dlow the PERFSBYRUN program
to run againgt the SQL tables residing within your ‘C’ collection.

28

__ 7. Runthe JOLABXX/PERFSBYRUN program for 30 seconds. Thiscan be
done with the fallowing CL command: CALL JOLABXX/PERFRUN
PARM(*30’). Thisprogram will insert records into the Transaction table and
update the Quantity field in the Product table. The program will terminate after
running for 30 seconds. Press Enter get back to origind session.

__ 8. Agan, gat interactive SQL withthe STRSQL CL command.

What do you think? Will Standby really turn out to be even more efficient than
Caching mode?

_ 9. Runthefodlowing SQL statement to determine how many transactions were
produced during this run of the PERFSBY RUN program. Select count(*)
from JOSBY_C_XX/Trans.

Record the number of Transactions completed here

As you can see, the Journal Standby feature can have a large positive impact on
the performance of a Journaling environment. When the Journal isin Standby
mode, almost nothing is being written out to the Journal or the related Journal
disks, thus object changes can be replayed to your replica environment more
quickly. Thiswill allow your backup system to better achieve the objective of
remaining in “ lock-step” with your source system, just in case you need to switch
over to the backup... And what would you do after such a role swap? Well...
you' d issue a CHGJRN command so as to leave Sandby mode and re-enable
ordinary full journaling support.

How many more transactions did you produce during the Sandby run in Sep 9 of
Task 3 than during the original baseline of Task 1, Sep 8? See... wetold you, you
would be impressed.

_10. Exitinteractive SQL with the F3 option and then sdlect option 1.

Why not compare the Journal Entries from our baseline run with those produced
during our Standby Journal run?

11, Enter DSPJRN JOSBY_A_ XX/QSQJRN. Page down to thefind screen.
Use F3 to exit when you are ready to move on.

29

Whoa! Therearea lot of Entriesfor our original Baselinein collection ‘A’!
Every change to your rows within the SQL tables have been logged to the
Journal! Do you wonder what the Standby Journal looks like? Why don’t we go
take a look?

__12. Enter DSPJRN JOSBY_C_XX/QSQJRN. Exitusngan F3 whenyou
are ready.

Quite a difference, isn't it?

For coallection *C,” none of the row by row database changes were Journaled! No
wonder it was so fast. Yet, that’s exactly what we told the database to do by

enabling Sandby mode. Standby mode has the additional benefit of not using up
disk space on your backup system or contending for disk resources on the system.

So let’sreview: You' d use Standby on the target system, not the production
system. You' d leave Standby mode only when a role swap ensues, making your
former target system take on a production role. And why would this be so
attractive? ...Because we don’t want to incur the full overload of starting
journaling at role swap time... especially if our factory has thousands of journaled
objects.

$0... how much time would we actually save at role-swap time by our insightful
use of Journal Sandby mode? Let’sfind out...

Task 4: STRJIRN vs. Standby --> Active Transition

Let’stry alittle comparison to test the vaidity of the ideaithat it isfaster to keep your
Journas in Standby mode and change them to Active mode a role swap timethan it is
to sart journaling on dl of your objects a role-swap time. Thisis exactly what you
would need to do in the event you need to switch over to your backup system.

You have decided to employ this new V5R2 Sandby feature as the role-swap
strategy in your factory, but your pesky, know-it-all brother-in-law insists on
employing the older vintage strategy of starting journaling for all the filesin his
own factory at roll swap time. He's always done it that way, and hence believes
thereis no reason to change his practices for V5R2. (He also still wears bell
bottoms...) You both use the same application package so thisisatrue “ applesto
apples’ comparison. Oops! Both of your production systems went down at the
same time (must be that new so-called killer *fix' you installed last night)! You
make a bet to see who gets their machine up and running first!

30

Remember, your brother-in-law must start journaling from scratch on all of his
filesresiding on the target system. You can see thesefilesin library JOFILEXX.
Let’ stake a peek.

__ 1. TypeDSPLIB JOFILEXX to seethefilestha will need to have journding
garted. In the upper right hand corner of the display the ‘Number of objects is
displayed.

Record the number of files here:

Exit back to the Command Entry Screen with an F3.

How does this compare to the quantity of filesin your shop? Pretty timid, huh?
But probably sufficient to make our point. It'stime to start simulating your
brother-in-law’ s experience.

__ 2. TypeJOLABXX/JOTIMEIT (CALL JOLABXX/STRJRNLIB
PARM(‘JOFILEXX '*QSQJRN’ ‘JOSBY_A_XX")) onthe CL command
line. The STRIRNLIB program will sart journaling on dl of thefilesin
JOFILEXX. Thisisgoing to take awhile, o be patient. By using the
JOTIMEIT command, the time it takes to do thiswill be returned.

Record the it took to start journaling here:

___Optiond: You can use F10 to see detailed messages and thus view the ligt of files
for which journaling was darted.

That took a while, didn’t it? Your brother-in-law must be a patient man. |
wonder if heisstill confident that he will win? (Hope you bet a bundle on the
outcome of this test).

What if there were one thousand more files? Ten thousand? One hundred
thousand? The time could really add up. Thisisn’t just normal “ go grab a

Coke” time... thisiswhen your bossis standing next to you waiting for your
backup system to complete the role-swap after your production system went
down!

Some popular ERP packages in the marketplace place tens of thousands of files
on your system. Can you imagine what role-swap time must be for such packages
if Sandby journaling isn’t used?

Let’ s reuse the environment we just created and this time put our Journal into
Standby mode.

31

3. TypeCHGJRN JRN(JOSBY_A_XX/QSQJRN)
JRNSTATE(*STANDBY) on the CL command line.

__ Optiond: Confirm the fact that our journd is now in Standby mode by using
WRKJIRNA. WRKJRNA JRN(JOSBY_A_ XX/QSQJRN). You should
see *STANDBY beside Journdl state.’

That was simple. Infact, that’sall it takes on your target machine to put
Standby mode in place.

Okay, now it’syour turn! We know how long it took your brother-in-law’s system
to complete the journaling phase of therole. Let’s see how long it takes to bring
your Journal back to Active mode from Standby. Will there really be an
improvement? Will you beat your brother-in-law in the race to get your target
system back up first? We'll soon find out!

__ 4. TypeJOLABXX/JOTIMEIT (CHGJRN
JRN(JOSBY_A_XX/QSQJRN)JRNSTATE(*ACTIVE)) onthe CL
command line. Thiswill return the timeit takes to change dl of the journaled
files from Standby mode to Active mode.

Record thetime it took to make the transition to Active mode here:

Whoa! That is quite the differenceintime! Imagine the difference this simple
switch would make over the STRIRN method if you had many, many more
objects. Your customers (and your boss) will be happy that you could make the
system available again so quickly. AND, you won the bet.

___Optiond: Let’s confirm that the Journd redly did make the trangition back into
Active mode. To do this, we will use the WRKJRNA command.
WRKJRNA JRN(JOSBY_A XX/QSQJRN). You should now see
* ACTIVE, rather than *STANDBY, beside ‘ Journa state.’

S0... let’ssummarize: 1f you want your day to day overhead on the target system
to be ultra low prior to V5R2, you had to leave journaling turned off, but that
makes the actual role-swap slow. Yuk! V5R2 changes all of that. You can enjoy
both day to day low overhead HABP replay on the target machine and fast
role-swaps. How? Merely employ Standby mode on your target machine. Sounds
like you and your boss need to have a discussion regarding these new V5R2
choices when you get home.

And how do you get your hands on thisimpressive performance boost? Why Option
42 of OS/400, of course.

32

Optional Task 5: Sending Entriesto a Journal in Standby Mode

In this section of the lab you will explore some of the critical operations that will be
journaed regardless of the system being in Standby mode. These operationsinclude
object deletes, renames, restores, and starting and stopping journaling transactions,
aong with anumber of others. These types of uncommon Journd Entries will flow out
to the Journal Receiver even though the Journd isin Standby mode. Why? Because
the Entries are uncommon enough to not cause a performance impact and some are
essentia to the proper recovery of the machine. (Y ou wouldn’t, for example, want to
lose afile rename, would you?)

In thistask you will dso beintroduced to anew SNDJRNE option which is provided to
dlow youto briefly override the Standby setting for selected critical application steps.
The SNDJRNE option is useful if you only want afew, specific application-provided
Journd Entries to be written out.

Y ou will beworking with the JOSBY _C_XX library. You previoudy placed itin
Standby mode back in step 4 of task 3.

___ Optiond: Why don’'t we make sure that the Journd redlly isin Standby mode? To
do this, we will use the WRKJRNA command. WRKJRNA
JOSBY_C_XX/QSQJRN. You should see* STANDBY beside ‘ Journd
state.’

One type of Journal Entry that is journaled regardless of Sandby mode isan
object rename operation. Let’'s perform a rename on a file and see what happens
in our Standby Journal.

__ 1. Renameafilein JOSBY_C_XX. RNMOBJ
OBJ(JOSBY_C_XX/TRANS) OBJTYPE(*FILE)
NEWOBJ(SALES).

Now display the Journal to see which Entries have been produced despite the
Journal being in Sandby mode.

33

2. TypeDSPJRN JOSBY_C_XX/QSQJRN.

You will see two Entriesin the Journal, FN (File Renamed) and MN (Member
Renamed). Asyou can see, even though Standby mode is on, these essential DDL
Entries were written to the Journal.

That’ s the good news. The system honors Standby mode for plain-Jane Journal
Entrieslike PT, UP, DL which tend to be numerous, but is smart enough to
recognize critical DDL operations like FN, MN and let them reach the Journal.
And what happensto the PT'sand UP’s? They're tossed into the proverbial “ Bit
Bucket” and vanish into thin air.

Many applications write out their own gpplication-initisted Journd Entriesto a
Journd during processing for avariety of reasons. If you have an gpplication which
uses the SNDJRNE CL command or the QJOSIRNE API to do this and your
Entries are S0 critica that you don’'t want to risk having them dropped into the bit
bucket, you may want to make use of a new option which will alow Journa Entries
to flow out to the Journa even though it isin Standby mode.

Let’' s see how this works:

3. WEl use the SNDJRNE command to send a new Journd Entry. Don't press
Enter until you have completed filling in al of the fields required.

__A. TypeSNDJRNE and press F4 to prompt on this command.

__B. Enter Journd, QSQJRN, and library, JOSBY_C_XX. Don't press
Enter yet, thereis more to add.

Let’s say your CEO wants positive confirmation over on your target
machine that your HABP software has replayed all of the daily sales
activity for each store.

__C. Enter‘Minneapolis Store Sales Complete’ intheEntry data
parameter. Include the single quotes. If you would like, you may enter
a‘Journd entry type parameter on the line aboveto tell you what kind
of Entry you made. For example, if you would like to reiterate that this
isa‘End of Day’ (the Journd code ‘U’ desgnatesit asauser Entry)
you could enter aJournal entry type of ‘ED.

Here comes the new option for V5R2:

34

__D. PagedowntotheOverride journal state parameter. Enter
*STANDBY. PressEnter. We aretdling the machine to override
the norma Standby mode for this ONE specid Journd Entry.

Let’s see whether this critical application phase marker flowed out to our Journal
despite the fact that it is in Standby mode.

__ 4. TypeDSPJRN JOSBY_C_XX/QSQJRN.

Do you see the Entry you just added? You should seea Code of ‘U,’ (sinceitisa
user provided rather than an OS400 generated Journal Entry) and if you set the
‘Journal entry type,” the code you chose should show up under ‘ Type.” Otherwise,
under Type there will be *00.’

5. Arrow down to your new Entry. Type5. PressEnter. You can seethatitis
a‘User generated entry,” dong with the Entry specific data,” in this case
‘Minnegpolis Store Sdes Complete” Usethe F3 key to exit.

So let’sreflect. What have we learned? Standby mode can redlly save you time and
resourcesif you use abackup system for your data and need it as a production machine
should your origind production system go down. It's remarkably easy to turn on and
off. You can gtill get your critical Entries deposited. And... your brother-in-law has lost
another bet. You fed good, don’t you?

Caching, Standby... they’re both performance winners. Caching makes sense for Batch
Jobs on your production system. Standby makes sense on your target (backup)
system.

And how do you get your hands on these two performance gems? Simply ingtal option

42 of OS/400 for V5R2. Guess you and your boss have a few things to talk about
when you return home.

35

.||I

V5R2 Newest Journal
and Commit Features

Lab 3: SMAPP Visibility and Tuning

|BM @server 1Series

© Copyright IBM Corporation, 2003. All Rights Reserved.
This publication may refer to products that are not currently
available in your country. 1BM makes no commitment to
make available any products referred to herein.

IBM @server. For the next generation of e-business.

36

37

Lab 3. SMAPP Vishbility and Tuning

Introduction

Objectives

Thislab will provide an introduction to recent enhancements provided for SMAPP
(System Managed Access Path Protection).

SMAPP is apatented feature of OS/400 which alows the system to protect access
paths within your Database s0 that these access paths do not need to be rebuilt after an
abnormal end (i.e., acrash!). Rebuilding of such access paths can contribute alarge
amount of time to restarting the system. Most folks wouldn't want that experience.
Thus, they're awfully glad that SMAPP exigs. SMAPP implicitly journas only those
access paths on your system which contribute the largest amount of rebuild time so that
these selected indexes can be recovered from the Journa rapidly instead of being
laborioudy rebuilt from scratch. Each shop may specify their customized desired
rebuild time to manage the baance between recovery time and the run time impact of
protecting such access paths.

This Lab exercise will use the terms Access Path and Index interchangeably. SQL calls
these objects Indexes. Native interfaces often refer to them as Access Paths.

This lab teaches you how to:

* Make wise tuning choices based on the new screens provided in V5R2

* View and change the SMAPP threshold setting

* Usethenew V5R2 “Protected” and “Not Eligible” SMIAPP screens

e Usethenew *INCHIDENT parameter on the DSPIRN command to view hidden
Journd Entries

Lab Information

The notation XX that appearsin library names, profile names, and so on, refersto your
Team Number (for example, JOTEAMXX, JOLABXX, JOSMAPPXX). Refer to
your lab worksheet for details.

Optiona steps are included in thislab in addition to the required steps. These Seps are
not required to complete the lab, but can be attempted to further demongrate the usage
of various Journal commands. Optiona steps are denoted with “Optiond:” instead of
the step number.

Lab Prerequisites

Before you begin this lab, be sure the following prerequisites are avallable:
* AnIBM eServer iSeries or AS/400 with OS/400 V5R2, or higher, with:
- 5722-QU1 -Query for AS/400
- 5722-ST1 -DB2 Query Manager and SQL Development Kit for AS/400
* TheJOLABXX library containing a datafile for the lab.

38

Timerequired
The time required to efficiently complete this lab ranges from 30 to 40 minutes.

39

Task 1. Displaying the Default SMAPP Journal
This task will demonstrate how SMAPP behaves on the system.

You own one of the largest auto salvage yards in the area (despite the fact that
your seventh grade teacher said that anyone with that much “ junk” in their
locker wouldn’t amount to much) and you have just finished getting every one of
your parts entered into your new iSeries system. Let’stake a look at what this
data looks like....

1. Sartinteractive SQL with the STRSQL CL command.

2. Create our SQL collection with the Create collection JOSMAPPXX
SQL statement. An SQL collection creates anative library, a Journa named
QSQJIRN, and various SQL related objects. Database objects created within
the collection will automaticdly be journded to the Journd QSQJRN. All of
these objects take time to create, SO wait just a moment as you gaze out your
window at your vast array of junk (err... we mean parts).

3. Exitinteractive SQL with the F3 option and then salect option 1.

4. Let’'smovethe‘Parts file we ve pre-populated for you from the JOLABXX
library to your newly created SQL collection JOSMAPPXX. Type MOVOBJ
OBJ(JOLABXX/PARTS) OBJTYPE(*FILE) TOLIB(JOSMAPPXX).
Thefile you are moving is an SQL table which looks like the table shown

below:
Parts

Part_id Integer
cost Float
make Char (30;
tnodel Char (30}
part Char (30}
Wear Integer

5. Before entering Interactive SQL, let’s note the current time according to the
system cock. You will usethisinformeation in step 12. DSPSYSVAL
QTIME.

Enter the current system time here:

6. Statinteractive SQL withthe STRSQL CL command.

40

___Optiond: Toview theinitid contents of the database type Select * from
JOSMAPPXX/PARTS. Exit the screen with F3 after display.

Reminder: Y ou can use F20 (F8 + Shift) to scrall to the right.

Thisisa big sucker housing a whopping 50 parts (we had to keep this reasonable
for Lab purposes - but your files are probably much larger!). With abigfilelike
thisthat isaccessed every time you buy or sell a part, you're going to want an
index built over the file to help speedup performance. Thiswill be helpful when
you need to perform random lookups -- as you'd do if a customer called and
asked if you had a 4-barrel carburetor for a’ 72 Cutlass Supreme.

7. Let'screate anindex over the Partsfilee. CREATE INDEX
JOSMAPPXX/PARTIX ON JOSMAPPXX/PARTS(PART_ID,
COST).

The index is needed to improve the performance of the queries that are commonly run
usng thisfile

Someone just brought in a muffler and tailpipe froma’ 79 Ford Pinto and you’ ve
decided to add them to your vast collection. Let’s makes the updatesto our file...

__ 8. Enter thefollowing SQL statementsto insert the records into the Partsfile:

Insert into JOSMAPPXX/PARTS values (1001, 20.00, ‘Ford’,
‘Pinto’, ‘Muffler’, 1979)

Insert into JOSMAPPXX/PARTS values(1002, 10.00, ‘Ford’,
‘Pinto’, ‘Tail pipe’, 1979)

9. Exitinteractive SQL with the F3 option and then sdlect option 1.

There sureisalot of commotion around the junkyard. Butch, the junkyard dog,
loves to chase gophers and keeps knocking the power cord out of the i Series!
With all of the activity around here and these large indexes which would need to
be rebuilt, we should be very concerned with how long it will take our systemto
recover.

In order to quickly recover our datain the event of a system outage, your Lab
ingtructors have preset the SMMAPP time on our Lab sysem to *MIN. Thiswill assure
that in the event of a power outage your index will be recovered from the Journa
instead of experiencing along rebuild. That's the beauty of SMAPP.

41

__10. TypeDSPRCYAP and press Enter to verify that the SMAPP “ System
access path recovery time” is dill set to*MIN. Press F3 to exit the
DSPRCY AP screen. This SMAPP threshold can be atered with the
EDTRCYAP CL command. (We obvioudy don't want you to tinker with this
vaue now snce we're dl sharing the same system for thislab!)

The EDTRCYAP CL command is the method you use to control SMAPP activity
on the sysem. Y ou smply specify the amount of time you are willing to spend
rebuilding access paths after a system crash. No additiona setup steps are
required! It'sthat smple. The system automatically will protect enough access
paths to meet this threshold. Y ou can specify atime in minutes, or the specid vaue
of *MIN aswe have done here to protect al access paths on the system.

Note: *MIN may be abit too aggressive for
some of your shops. A more reasonable vaue of 30 minutes or even 40 minutes
might be more appropriate. We selected *MIN for this Lab exercise so asto help
put the " Peda to the Metd” and deliberately make our background SMIAPP tasks
work hard.

__11. Look in your SQL-provided user Journd (that's the QSQJIRN Journa residing
in'your collection) for evidence that the index is being protected. If the index
were protected, we would see Journa Entries for both our file and index,
wouldn't we? Use DSPJRN JRN(JOSMAPPXX/QSQJRN) to view the
Journd Entries and see if both varieties exist.

Hmm.... no Entriesfor the objects here. How can that be? Well... that is because
the underlying physical file (Parts) for our index is not being journaled since we
just copied it into our collection (library).

An index must be journaled to the same Journal asthe physical fileit is built over.
If SMAPP decides to journal an index such as ourswhich is not already explicitly
journaled, it will instead clandestinely journal both the file and the index to the
default hidden SMAPP Journal. That’s the state our Table and Index are in right
now.

In fact, such a system Default Journal exists on each ASP of the system. When
your Partsfileisn't being explicitly Journaled by you, this Default Journal will be
used by SMAPP to protect your largest Indexes. | guess we need to look behind
the curtain. Let’s see what the systen’ s Default Journal looks like. Will our
Entries be in the Default SMAPP Journal? Let’s go take a look.

42

__12. Areyou ready to learn adeep dark secret that most folks outsde of IBM’s Lab
don’t even redize they can do? Good! The JRN parameter of the DSPIRN
command hasaspecia vaue*INTSY SIRN. Bet you've never used this
option, huh? If you prompt the DSPJRN CL command, you'll seethis choice
liged. The problem isthat using this option requires * ALL OBJ authority, and
we weren't about to give you that authority on thislab sysem! Instead, we
have a smple program that will invoke this DSPJRN command for you. Cdll
this program using the current date and specifying thetime you recorded
in step 7 likethefollowing example:

CALL JOLABXX/JODSPJRN parm(‘02/11/2003’ ‘11:30:00’)

The main satement of the program that you are invoking looks like the
fallowing:

DSPJRN JRN(* I NTSYSJRN) JRNI D(10001) FROMTI ME(&DATE &TI ME)

Notice that we ve specified arather mysterious parameter JRNID(10001).
Here' sthe deep dark secret. Thefirst two characters of the code represent the
journal type. The 10 tells the system you want to see the SMAPP Journd
Entries, while the last three, 001, identify the specific ASP.

Y ou can learn more about SMAPP and the *INTSY SIRN by reading more on this
topic within the V5R2 Infocenter at:

http://publib.boul der.ibm.comiseries'vor2/ic2924/infolrzaki/rzakismappintro.htm

If you don’'t see any Journal Entrieslisted on your screen, double check that
you' ve really entered Today' s date and the time prior to the time you made your
changes.

43

Can you find the ‘PT" Entries fromthe last changesto your file? (It may be
difficult to determine which entries are yours due to the fact that everyone will be
sharing the same default Journal. It iseven more difficult because the object
name and other identifying information is not collected in the default Journal
because these entries are only needed by the system for recovery) See! You've
already learned something new in this lab exercise that most shops haven't even
thought about! Thereisa hidden Journal on each ASP and you now know how
to find it and view its contents. Imagine the interesting conver sations you can
now conduct around the water cooler or at your next Local User’s Group meeting
when you return home! Note: In this example, there isreally no way for you to
find your particular Entries, sincethisisa“ short” Entry - i.e. No user, file,
program, etc. information is included.

SMAPP is good, but it’s only a safety net. SMAPP also takes some extra
resources. Aneven wiser choiceisto explicitly Journal your largest and most
important tables as well as the access paths built over them. For your Junkyard
that would be the ‘Parts’ fileand ‘Partlx’ index.

Why don’'t we start explicitly journaling the Partsfile to our SQL-provided
Journal (QSQJRN), make some changes, and take a look at our user Journal
again.

_13. Usethe STRIRNPF FILE(JOSMAPPXX/PARTS)
JRN(JOSMAPPXX/QSQJRN) CL command to gart journaling ‘ Parts .

This has the effect of ripping the Parts file away from the clutches of the hidden
Default SMAPP Journa whose contents you viewed above and directing our
Partsfile' s subsequent Journal Entries instead toward the more traditiond

SQL -provided Journa: QSQJRN.

___Optiond. Let's note the current time again according to the system clock. Y ou will
use thisinformation in an upcoming optiond sep. DSPSYSVAL QTIME.

Enter the current system time here:

The phoneisringing, let’s pick it up and see if we can make a sale.
__ 14, Startinteractive SQL with the STRSQL CL command.
Someone has just ordered a muffler and tailpipe for their * 79 Pinto! Wow, that

was fast. We barely entered that part a few minutes ago. Let’s hope we make a
nice profit on thissale. Let’s remove these items fromour file.

44

___15. Enter the following two SQL statements to remove these records.
Delete from JOSMAPPXX/PARTS WHERE PART_ID = 1001
Delete from JOSMAPPXX/PARTS WHERE PART_ID = 1002
Y ou should see a confirmation message that these rows have been deleted.
__16. Exitinteractive SQL with the F3 option and then select option 1.

Now let’slook again and see what our SQL-provided user Journal (QSQJRN)
looks like. Will any of these new Entries be in the SQL Journal? Let's go see.

__17. UseDSPJRN JRN(JOSMAPPXX/QSQJRN) to view the Journd Entries
and see what Entriesexist. Unlike the SMAPP Journd, you will not see any
access paths Journal Entries displayed here. Task 3 of thislab explainsthis
phenomenon.

Y ou should now be able to see some recently deposited Entries of type ‘DL
These Journa Entries show that arecord was deleted at that point. You can
display the specifics of the Entry by typing a5 and pressing the Enter key next
to the Journa Entry you would like to see. Obvioudy our SQL-provided user
Journa (QSQJIRN) is now picking up the changes you make to both your file
and index ingtead of having them routed to the default SMAPP Journa. And
why? Because the Parts file has been explicitly journaded to your user Journd.

While you have this screen up, take alook at the Journa Sequence numbers.
Arethere any skipped numbers? Do you know why? If not, stay tuned, we're
going to let you in on that secret too!

The SMAPP activity is managed by SLIC tasks operating in the background. The
background SLIC tasks which SMAPP employs to journal your largest indexes
obvioudy consume some system resources, o you will want to carefully consder the
ba ance between minimal recovery times and low run-time performance overhead if
you want your system to maintain desired levels of performance. Oneway to
balance IPL recovery time vs. performance is to expliditly journa any access paths
you know you want protected, rather than dlowing SMIAPP to implicitly do so.
Why is this better? Because SMAPP doesn't need to repeatedly, day after day,
make the decision if you explicitly journa an index.

Hint: If you want short IPL / Recovery times for your
most critical access paths (those most important to your business -- and your boss)

45

explicitly Journd them. Doing so gives you faster IPL processing with less runtime
overhead then expecting SMAPP to discover this need for you. How do you
accomplish this? Answer: STRIRNAP.

__Optiond: Verify that the Entries are not aso flowing into both your SQL Journal
and the hidden default SMAPP Journd by running the program to display the
default SMAPP journd againusing: CALL JOLABXX/JODSPJRN
parm(‘current date - MO/DA/YEAR format’ ‘time before your
deletes - HH:MM:SS format’). Remember that this Journd is used by
everyone using this ASP, so you may see the Entries from others taking the

Lab!

Task 2. New SMAPP ‘Protected’ Index Screen

WEe ve discovered, above, that SMAPP tasks lurk in the background and periodicaly
gart and stop journaing protection for access paths of its own choosing in an effort to
meet your specified target |PL/Recovery time. But which access pathsisit protecting?
We thought you would never a....

Thistask will show off the new screen (yup! it's new for V5R2) which can be used to
determine which access paths are currently protected by SMAPP. It providesa
sngpshot in time and thereby |ets you see what these dy background SLIC tasks have
been up to.

1. TypeDSPRCYAP and press Enter and Verify that the * System access path
recovery time’ isgill sat to *MIN. Don't exit the DSPRCY AP screen yet.

2. Open another sesson to the machine you are currently running on, using the
same username as provided on your lab worksheet.

3. 2nd window: Start interactive SQL with the STRSQL CL command.

4. 2ndwindow: Insert a couple of recordsinto our table to open it and keep it
open using the SQL statements provided below. (DB2 oniSeriesis extrasmart
about deciding when to leave files open. Thefile will be implicitly dosed if only
one SQL initiated change is entered - because Interactive SQL thinks you're
probably done and not coming back hence it closes the file so as to perform
timely housekeeping, but the file will be |eft open after the second change -
because now you' ve got Interactive SQL thinking you just might be serious
about coming back. Hence we want you to insert at least two new rows as
shown below.)

46

We want the file kept open because that will “Exposg’ our index and leaveit in
an exposed state. (Exposed meansthat there' sarisk that amachine crash
might have to rebuild this Index from scratch). When an index (access path)
admitsit’s exposed, SMAPP swings into action and tries to mitigate the 1PL
duration consequence of this exposure. That is precisely what happens for this
Lab Exercise. By leaving the index “exposed’, we re going to be able to
illustrate some additiona VV5R2 features.

Insert into JOSMAPPXX/PARTS values(1003, 50.00, ‘Pontiac’,
‘Grand Am’, ‘Engine’, 1984)

Insert into JOSMAPPXX/PARTS values(1004, 10.00, ‘Pontiac’,
‘Grand Am’, ‘Trunk lid’, 1984)

Remember your first car?, the one you were so proud to drive, the one you
washed every day?, the one you hated to give up? | think | see it over
there in the corner of the Junkyard and no one has yet inventoried its
parts... Take a few minutes, for old time's sake, and enter a few of it's
partsinto our database.

Both the Table and the corresponding Index are now open and waiting for more
addsinto the Partstable. If the projected Rebuild time of your exposed indexes
are of long enough duration to be of concern - SMAPP notices the access
paths that have been affected (and left open) by your Interactive SQL session,
enables Journding implicitly under the covers for these Access Paths and marks
them as ‘ Protected.” Since we' ve got the SMAPP target recovery duration
objective for thisLab set to *MIN, SMAPP is going to strive to protect every
access path in sght. Normally, SMAPP would dect to protect only the biggest
ones and leave the smaller ones unprotected. The *Protected’” tate means that
SMAPP has decided that they qudify for implicit journding (i.e. are both
exposed and big enough to care about). Hence they’re not going to take long
to recover if you should crash. A new feature in V5R2 dlows you to view the
identity of these protected access paths (indexes). Let us see which access
paths are protected right now.

1st window: Press F14 (Shift + F2) for ‘ Display protected access paths from
the DSPRCY AP screen. Select *ALL for the ASP on thefirst *Display
Protected Access Paths screen by pressing Enter.

The ‘Display Protected Access Paths screen will show al of the protected
access paths (system wide!) on one screen. This screen will show up to 500

47

protected access paths, ordering them from the greatest * Estimated Recovery
Time totheleast. Canyou find ‘Partlx’ from your library?

If you' ve reached this part of the lab exercise at about the same time that others
gtting around you in this Lab are trying Smilar steps, you' re going to see not
merely your own Indexes on this screen but those from your colleagues as well.
But that’s good news. It hdpsilludirate that when you return home you can
take a snapshot of al such SMIAPP protected Access Paths system-wide.

When you close your files, your Indexes cease to be exposed and hence will
disgppear from this screen.

___Optiond: The rebuild time that you see for your Index hereisindeed puny. If you
would like to see thisgrow, exit SQL using an F3 followed by option 1 in your
2nd window. Runthe MANY PARTS program to insert datainto the PARTS
fileby usngacdl suchascall JOLABXX/MANYPARTS
parm(‘PARTS’ ‘JOSMAPPXX’ ‘n’) where n isthe number of rowsto
insert (maybe a couple of thousand parts). Press F5 on your 1st window while
thisis running to refresh your view of protected indexes.

Leave the second window open for use in the task 4, below.

You can see the estimated (rebuild from scratch) recovery time for each exposed
Index. If Butch knocks out that power cord right now, thisis how long it would
take to rebuild thisindex if it were not protected by SMAPP. Thisisan easy way
to determine which access paths on your system require the longest rebuild time.

OK - we realize that the value you see on the screen may not be very impressive
or scary, since the size of the index and hence its estimated rebuild duration
needed to remain limited for Lab purposes (you didn’t want to spend your whole
day in here, did you?). When you return home you’ll probably want to display
this screen and our hunch isthat you'll see substantially larger values for your
production indexes. And what action should you take? Well... why not relieve
SMAPP of the burden of protecting the biggest critical access paths by explicitly
Journaling them yourself via a STRIRNAP CL command? Remember, however,
that the information on this screen is a changing snapshot. It only shows
currently exposed indexes. Hence, you' || want to sample this screen during the
busiest part of your day.

__Optiond: 1st window: We vetaked alot about these background SMAPP tasks.
Let's seeif we can catch one of these tasks running with the WRKSY SACT
command. Only one user can run this command & atime, so if you don't get in
you may havetotry again later. Enter the WRKSY SACT CL command.

48

Press F15 (Shift + F3) to show only tasks. Use the F10 button to refresh the
screen and seeif you can catch one of the SMAPP tasks at work
(JO-TUNING-TASK or JO-EVALUATE-TASK).

Y ou will only see these tasks running if there is sufficient activity on the system
when you are running this command. To learn how to use various performance
tools to track exactly what these tasks are up to - see the 5th Lab on
Performance Counters and Tracepoints!

Task 3: *INCHIDENT - Display Hidden Journal Entries

This task demongtrates our new V5R2 DSPIRN option to display formerly hidden,
internal Journd Entries.

Have you ever looked at the sequence number s associated with your Journal
Entries and noticed any skips? Do you wonder why? In thistask, you will find
the answer to that age old question. Let’sfirst take a look at your Journal and
see wher e some of these skipped sequence numbers are.

_ 1. TypeDSPJRN JOSMAPPXX/QSQJRN ontheCL command line.

Can you see some skips in the numbers? Are you missing Entries? Have they
been dropped somewhere? What is going on? Have car parts been going out the
door without the changes being journaled? Hmmm.... Thisisa matter for a
super sleuth. But hold the phone. Before you dial 911 and ask for the Bunko
squad, let’s take a closer 1ook.

Actually, nothing ismissing. There are some Entries which are not displayed.
Would you like to see what they are? Well, now -- with the new support in VS5R2
-- you can.

The*INCHIDENT (include hidden Entries) option on the DSPIRN CL command is
new in V5R2. This option dlows you to see previoudy hidden Entriesin your
Journd. These hidden Entries are the *skips you may see in the sequence numbers
of your Journd Entries.

2. TypeDSPJRN JOSMAPPXX/QSQJRN INCHIDENT(*YES) on the
CL command lineto display al of the Journa Entries including the hidden
Entries.

49

Now you can see dl of the Entriesthat were previoudy hidden. There are no more
missing or skipped sequence numbers. Y ou're feding empowered, right? The Entries
that formerly were hidden from your view have the vdue*OMITTED in the * Job'
column. Hidden Journa Entries are Smply Entries from interna OS/400 and SLIC
operaionsinvolved in the execution of our Database requests. Thisincludes
index-related Entries (ak.a. SMAPP induced Entries), internal format Entries (those
that help DSPJRN figure out how to map internd representations, like date fields, to
externa humanly readable representations), and Entries used to track the location and
quantity of deleted recordsin afile.

They’ve formerly been hidden (and that’ s still the default on DSPIRN) because we
didn’'t want to clutter your screen with purely Internal OS/400 induced Journal Entries
which mere mortas need not manage. Only the SLIC code needsto “see” them
because he' s the only one who responds at I1PL time to their presence. However, for
V5R2, we' ve eected to let you show your Auditor that such Entries aren’t redlly
missing, just hidden to help reduce clutter. Got a pesky auditor back home? Now you
can put their mind to rest.

Ahhh.... you'refeding better dready.

Task 4: New ‘Not Eligible’ for SMAPP Protection Screen

This task will demondtrate the new V5R2 screen you can use to display access paths
which are not dligible for SMAPP to protect.

| know... you'’ve already been in thislab for quite awhile and you are probably
getting a littletired - but the contents of this task could be the most important
thing you learn in thislab if your shop has access paths which are not eligible for
SMAPP. But how would you possibly know if you had any of these access paths?
Go ahead, stand up, and stretch if you need to before we show you how to do this.

Congder the following scenario: 'Y ou have determined that you are willing to spend no
more than 50 minutes rebuilding indexes in the case of a system crash s you have set
your SMAPP target recovery vaue to 50 using the EDTRCYAP CL command. You
have alarge number of smdl indexes which frequently change and afew large indexes
which stay open for long periods of time. These large indexes would have a combined
rebuild time of greater than 50 minutes if they were not protected by SMAPP.
Obvioudy it’sthe Big ones you want SMAPP to sdlect.

In this case the norma SMAPP response would be to protect these large indexesin
order to meet your specified recovery time while the large number of small, frequently
changing indexes would not need to be protected in order to achieve your target.
However, there s a subtle caveat: if your large indexes are not eigible for SMAPP

50

protection, your system will immediately be over the 50 minute recovery threshold and
SMAPP will respond by working extra hard to protect al of your smdl indexes. Yikes!
The time to manage, dart journaling, and record the changesfor dl of these many small
indexes will be much more time-consuming than journaing afew of your large indexes.

Hmmm... what’s going on here? Why did our intuition mislead us? Let’'s seeif
the new V5R2 screen can unravel this mystery.

1. TypeDSPRCYAP and press Enter.

___ 2. Veify that the ' System access path recovery time’ is gl set to *MIN. Exit
usng F3.

One way for an access path to be indigible for any SMAPP protection isif the access
path is built over a physicd file which was created with the attribute
FRCACCPTH(*YES). Thisparticular option is an ancient option which achievesthe
same recoverability as journding with amuch higher overhead. (If any of your files have
inherited this option from the past, you should turn this atribute off ASAP and explicitly
journd the file and access pathsingead.) You'll thank usfor thisadvice. Wewill use
this variety of indigibility in our example (there are other causes documented &t the end
of thisLab exercise).

__ 3. Let'sst up the problem by assigning this ancient and offengve option to our
index. Type CHGLF FILE(JOSMAPPXX/PARTIX)
FRCACCPTH(*YES).

Note: This should convince SMAPP that this Access Path dready has other means of
IPL protection and hence it should skip this Access Path when looking for access paths
in need of protection.

Let’s pretend you haven't attended this Lab and hence still use the ancient (may it rest in
peace) option:

4. 2ndwindow: Start interactive SQL with the STRSQL CL commeand if your
session does not aready have Interactive SQL started.

5. 2nd window: Insert acouple of Entriesinto our table to open it and keep it
open with the following two SQL statements.

Insert into JOSMAPPXX/PARTS values(3005, 15.00, ‘Ford’,
‘F150’, ‘Door’, 1978)

51

Insert into JOSMAPPXX/PARTS values(3006, 25.00, ‘Ford’,
‘F150’, ‘Alternator’, 1978)

Thefile is now open and waiting for more records to be added into Parts.
SMAPP considers our exposed access path ‘Not eligible’ for implicitly journal
protection. Why? Because it notices the FRCACCPTH setting, bummer!

A new feature in V5R2 allows you to view these ineligible access paths. Let us see
which paths are ‘not digible’ right now.

6. 1stwindow: Enter DSPRCYAP and press Enter.

7. 1stwindow: PressF13 (Shift + F1) for ‘Display not digible access paths’
Choose *ALL for the ASP to use by pressing Enter.

On the ‘Display Not Eligible Access Paths screen, you can see all of the currently
exposed Access Paths ‘not eligible’ for SMAPP protection on one screen. This
screen will show up to 500 ineligible access paths, ordering them from the
greatest ‘ Estimated Recovery Time' to the least. Why do you think we elected to
sort such that the biggest guys are at the beginning of the list?

It's obvious that objects on the top of thislist which deserve our immediate attention...
And what should we do if we find such access paths? Answer: Try to modify as many
of them as practica so they no longer show up on this screen. If they’re using the
ancient FRCACCPTH(* YES) option, use CHGPF or CHGLF to turn off thisancient
and wageful setting. Doing so will improve both IPL duration and reduce CPU and
disk overhead. It'sawin-win Stuation. But please remember: thisscreenisonly a
sngpshot intime. Just because you find no culprits on this screen a 2 AM on Sunday
doesn’'t mean you might not have some exposed and Indigible Access Paths show up at
10 AM on Monday.

Y our goa when you return home should be to assure that few if any culprits show up on
this screen. Notice that the final column on this screen shows you why a particular
Access Path has ceased to be digible for SMAPP protection.

__ 8. 2ndwindow: Exitinteractive SQL with the F3 option and then select option
1.

We thought you' Il want to know some other ways an access path may end up being
dassfied asindigible
* an access path built over aphysicd filewhich in turnis journded to a Journd which
iscurrently in *STANDBY mode (like the stuff we did in Lab #2) would be
congdered indigible
52

* multi-format access paths whose underlying physicd files are journded to at least
two different Journals would be considered indligible (the solution? Cease using
different Journadl)

* an access path resding in the QTEMP library would be considered indigible

* atemporary access path created by Query, SQL, or DFU for the duration of the
query

* an access path constructed as an SQL encoded vector flavored index

* you explicitly journd an access path by usng the STRIRNAP command

* an access path defined over a database table that has MAINT(* REBLD) specified
for its access paths

Not al of these reasons will show up onthe ‘Not Eligible’ screen. In order to
understand why, you must redlize that there are redlly 3 categories of Indligible access
paths:

1. Access paths which do not need to be rebuilt a |PL and therefore do not need to
be protected by SMAPP (access paths in QTEMP, temporary access paths whose
lifetimeisonly the duration of a query, MAINT (* REBLD) access paths, and
explicitly journaled access paths). SMAPP doesn't think about these, nor does it
need to.

2. Access paths which cannot be Journaed (encoded vector indexes). SMAPP
samply ignores these.

3. Access paths which can’'t be journded due to user action (standby journd used,
multi-format access paths, and FRCACCPTH(* Y ES) access paths).

Only the access pathsin category 3 are the ones that are shown on the screen. The
access paths in category 1 will not contribute to IPL recovery time. Hence you need to
take no action on their behaf. The access pathsin category two cannot be journaled so
there’ s not a darn thing you or SMAPP can do about them. Only these access pathsin
category 3 are the ones which you can do something about! Once you go back home
and use the new ‘Not Eligible Screen’ you will be able to make the necessary changes
to make these access paths digible for SMAPP protection and improve your overal
system performance.

One more note for those of you consdering using Standby Mode.... It'strue that
Standby mode makes indexes indigible for SMAPP. That's avery deliberate choice on
our part. Thus, if you plan on doing other activity on the target syssemin an HA (High
Avallability) environment system, you will want to use the other new V5R2 SMAPP
option available on both the EDTRCY AP and CHGRCY AP commands to not include
indigiblesin the estimated SMIAPP recovery time. Thiswill dlow you to use Standby
and not force SMAPP to Journd dl of the other indexes on your system due to the
large exposure resulting from the indligible indexes journded to your Journd in Standby

53

mode. In essence, you're letting SMAPP off the hook by advising it that you don’'t
mind rebuilding the Indexes associated with files that are being replicated.

Y ou can specify that choice when you get back home (don't do it now... You'll mess
up other users of this Lab) withthe EDTRCY AP CL command. This command brings
up ascreen very smilar to the DSPRCY AP screen that you have seen on which you
can modify the SMAPP etting.

By now you should have learned quite a bit about SMAPP. Hopefully you will be able
to take some of the suggestions made throughout this lab back home with you and
employ some new choices on your own systemd!

.||I

V5R2 Newest Journal
and Commit Features

Lab 4: Savepoints

|BM @server 1Series

© Copyright IBM Corporation, 2003. All Rights Reserved.
This publication may refer to products that are not currently
available in your country. 1BM makes no commitment to
make available any products referred to herein.

55

IBM @server. For the next generation of e-business.

Lab 4. Savepoints

Introduction

Objectives

In this section of the lab SQL savepoints will be explored.

Savepoints are anew SQL feature in V5R2 which can be used with commitment

control transactions to set milestones within atransaction. Their presence dlows an
gpplication to easily and sdectively backout portions of a transaction without
abandoning the entire transaction. And why would a Journal Lab exercise include
savepoints? Information stored within your Journd facilitates such savepoint operations.

Thislab will:
* Demondrate the usage of Savepoints
e Show you how to view the Journa Entries produced from a savepoint scenario

Lab Information

The notation XX that gppearsin library names, profile names, and so on, refersto your
Team Number (for example, JOTEAMXX, JOLABXX, JOSAVPTXX). Refer to
your lab worksheset for detalls.

Optiona steps are included in thislab in addition to the required steps. These seps are
not required to complete the lab, but can be attempted to further demondrate the usage
of various Journal commands. Optiona steps are denoted with “Optiond:” instead of
the step number.

Caution: If you quit thislab before completing it, please turn commitment control off for
your job. Having commitment control on may affect other |abs which you continue to
work on. To turn commitment control off: gtart interactive SQL with the STRSQL
CL command; press F13; choose 1, ‘ Change session atributes,” on the*SQL Session
Services Screen;” on the * Commitment control’ line enter *NONE; press Enter
twice. Exit interactive SQL with the F3 option and then select option 1. Thenrunthe
ENDCMTCTL CL command.

Lab Prerequisites

Before you begin thislab, be sure the following prerequisites are available:

* AnIBM eServer iSeries or AS/400 with OS/400 V5R2, or higher, with:

- 5722-QU1 -Query for AS/400

- 5722-ST1 -DB2 Query Manager and SQL Development Kit for AS/400
* TheJOLABXX library contains an SQL script for the lab.

56

Timerequired
The time required to efficiently complete this lab ranges from 20 to 30 minutes.

57

Task 1: Savepoints - Releases, Rollbacks, and Nested

In this section of the lab you will creste a set of database tables representing atravel
agency’ sdatabase. Y ou will then tdl the travel agent your plans and they will enter
them into the database.

Your vacation timeis coming up quickly. Thisyear you decided to spend a week
in Florida! You need to make reservations. You will need to book a hotel room,
plane tickets, and don’t forget the rental car!

So herewe are at the travel agency. Let’stake alook at their computer system as
they enter your information.

1. Satinteractive SQL withthe STRSQL CL command.

2. Turn commitment control on. Commitment control must be used here for
savepointsto work. PressF13. Choose 1, ‘ Change session éttributes,” on the
‘SQL Sesson Sarvices Screen.” On the * Commitment control’ line enter
*CHG. PressEnter twice.

Hereafter, any changes made to the Travel Agency’s database as part of booking
your reservations will be flagged as tentative until you elect to close out the
reservation by committing the transaction.

3. Create an SQL collection with the Create collection JOSAVPTXX SQL
gatement. An SQL collection creates a native library, a Journd named
QSQJIRN, and various SQL related objects. Database objects created within
the collection will automaticaly be journded to the Journa QSQJRN. Be
patient, this may take awhile.

4. Commit the creation of your new callection by entering Commit. This needs
to be accomplished before we exit the SQL Interactive environment below.
We need to assure that the creation of our collection ceases to be flagged as
tentative before we execute RUNSQLSTM in step 6.

5. Exitinteractive SQL with the F3 option and then select option 1.

At this point we are going to create your travel agency’s database tables.

58

6.

Cregte a set of database tables by executing the SQL statements residing in the
SQLSPT member of the JOLABXX/SQLSTMT file. This can be
accomplished with the RUNSQLSTM
SRCFILE(JOLABXX/SQLSTMT) SRCMBR(SQLSPT)
DFTRDBCOL(JOSAVPTXX) CL command. The script executed by this
command contains the following SQL statements and will create the database
tables shown below:

Hatel | Car rental
Customer br Flight e
cid Integer 30 cid Integer (309
Matne Char (307 Aitline Char (30} (30)
depart date

Create table Customer (cid int, Name char(30));

Create table Hotel(cid int, H_Name char(30));

Create table Flight(cid int, Airline char(30), depart date);

Createtable Car_rental(cid int, Rental_Co char(30), car_type char(30));

__ 7. Sartinteractive SQL withthe STRSQL Commit(*CHG) CL command.

Thisinforms the operating system that any records in the database that are
added or changed (* CHG) are to remain locked up until we make our fina
decison to commit the transaction (in asense it holds your tentative hotel room
and airline seat for you). Commitment control must be enabled here since
savepoints are a selective commit falback mechanism.

Okay, the travel agent isready to enter your information. First, your identity
must be entered into the Customer database.

)

Enter theInsert into JOSAVPTXX/CUSTOMER values(1001, ‘Your
Name’) SQL statement.

You have just given the travel agent your personal information. Should anything
need to change later on, you don’t want to have to answer all of those questions
again, so we will enter a savepoint here. Now if anything needs to be changed
later on, the agent can simply rollback to the point in time after your personal
information was entered (rather than cancel the whole transaction).

)

Set asavepoint, Cust_Data, by entering SAVEPOINT Cust_Data unique
on rollback retain cursors. Now if you need to rollback changes after
this point, you will only need to come back to here, rather than dl the way back
to the beginning of the transaction. By declaring the savepoint ‘unique’ you are
specifying that the savepoint name cannot be reused within the unit of work.

59

‘On rollback retain cursors you are saying that you do not want cursors to be
closed upon rollback to the savepoint if they are opened after the savepoint is
Set.

Alright, you are going to Florida. Do you know where you are going to
stay? Well, let the travel agent know!

10. Typelnsert into JOSAVPTXX/HOTEL values(1001, ‘Your hotel
name’) on the Interactive SQL screen and execute this statement.

Hope you have picked a really nice hotel chain. No use skimping. You deserveit.
It's by the beach, right?

Okay, there were rooms available, and that is settled. We haven’'t committed
anything yet, but what if your flight isfull or the rental car company who has sent
you a discount coupon doesn’t operate in Florida? We don’t want to haveto roll
all the way back to the beginning of the transaction. Let’s set up another
savepoint, so if anything needs to be changed, hereafter we can just roll back to
after the hotel Entry.

Savepoints can be stacked and nested, as shown here, so you can rollback to different
stages of atransaction, depending on the changes you want to make.

__11. Set asavepoint, HotelSvpt, by entering SAVEPOINT HotelSvpt unique
on rollback retain cursors.

Bdow isatimdine of what we have accomplished so far:

Journal FT FT
Entries .. Customer Entry Hotel Entry
Savepoints Cust Data HotelSwpt

Now that your second savepoint isin place, why don’t you choose a tentative car
rental company and the car you want to drive. If you need to make changesto
thislater, you easily can do so using the rollback command.

12, Typelnsert into JOSAVPTXX/CAR_RENTAL values(1001,
‘Rental company’, ‘car type’) and kick off this satement. Go ahead.
Pick adream car. Something you've dways wanted to drive. A convertible?
A Corvette? A Viper? Name your persond favorite.

60

__13. Set another savepoint, Renta Svpt, by entering Savepoint RentalSvpt
unique on rollback retain cursors.

Hereafter if there is anything that needs to be changed, you will still get your
favorite car.

Okay, now you can book your flight. Pick an airline and a date, and let’s see if
there is anything available.

__14. Runthefollowing SQL statement: Insert into JOSAVPTXX/FLIGHT
values(1001, ‘Airline name’, ‘departure date MO/DA/YR’).

Ohno! Thereisalarge convention in Florida the week you are going. This
airlineisfull. Infact, all of the flights to thisairport are booked. Luckily, thereis
another airport not far away. Unfortunately, your rental car company does not
have an office and lot in that area. You will need to make a reservation with a
different car company. But we sure don’t want to perform a full rollback of the
whole transaction, do we? No! That would put us back to the point we were
before we even walked in the door. We' d have to start from scratch and
re-register our personal information and lose our hotel room. We sure don’t want
that to happen! | guessit’s a good thing we' ve been setting savepoints along the
way.

Asyou can see from the diagram below, there are three dternative Savepoints we have
edablished. We can sdlectively rollback to any one of them. In fact, your gpplication
actudly has four Rollback choices a this point. Can you name the fourth?

Before we do a selective rollback to a particular savepoint, let’s confirm that our
changes for this tentative transaction have truly made it into the database.

__15. Enter Select * from JOSAVPTXX/CUSTOMER,
JOSAVPTXX/HOTEL, JOSAVPTXX/FLIGHT,
JOSAVPTXX/ICAR_RENTAL. What doyou see? Areadl of your
tentative choices visble in the Travel Agency’ s database? Remember, you can
scrall to theright with F20 (Shift + F8).

61

Jourtal
Entries

sawvepoints

Bdow isatimdine reminder of what we have accomplished so far:

FT FT PT FT
.......... Customer Entry Hotel Entry Fental Car Entry | Flight Entry
Cust Data HotelZwpt Fental3wpt

You will want to cancel portions of your previous tentative reservations using the
rollback command. The rollback command will rollback all changes occurring
after the specified savepoint. Since you want to keep your hotel reservation,
which savepoint will you want to rollback to? Yup! That sright... the second
savepoint, Hotel Svpt. You need to make new reservations only for your car rental
and your flight.

When you rollback to savepoint, Hotel Svpt, you are also discarding the savepoint,
Renta Svpt.

__16. | guessit’stime we Rolledback the changes to both the Hight and Car_rentd
tables. Enter Rollback to savepoint HotelSvpt.

Let’s see how this has changed our database:

__17. Runthefollowing SQL sdect satement: Select * from
JOSAVPTXX/CUSTOMER, JOSAVPTXX/HOTEL. You should see
that your name, customer id, and hotel exist despite the rollback. Now type
Select * from JOSAVPTXX/FLIGHT,
JOSAVPTXX/ICAR_RENTAL. What do you notice? Theflight and car
rental data has been removed from the tables, but (as you discovered in the
previous sdlect) the data entered before the Hotel savepoint is dtill there.

Gee! That’sneat... got any application in your shop that could benefit fromthis
kind of selective rollback?

Here sapictorid representation of where we stand now:

62

Journal
Entries

Savepoints

4\ 4\

PT PT P P
.......... Customer Entry Hoatel Entry ar Flight Exi

+ 1 P

Cust_Data HotelSwpt Fentsteugy

Let’stry picking another car rental company.

_18. Pick arenta car company by running the satement: Insert into

JOSAVPTXX/CAR_RENTAL values(1001, ‘Alternative rental
company’, ‘car type’).

Now you can book your flight at the alternate airport. Pick an airline and a date,
and let’s make sure there is something available.

__19. Insat arow into the“Hight” table by running Insert into

JOSAVPTXX/FLIGHT values(1001, ‘Second airline name’,
‘departure date MO/DA/YR’).

Everything is good thistime. Your hotdl, flight, and car rental are all set up. We
no longer need the savepoints we set up. We could release them one at a time,
starting with the most recent, or we could simply release the first savepoint, and
all savepoints created thereafter would also be released.

Let’s make life easier and simply release the first savepoint.

_ 20. Reeasetheinitid savepoint. Enter Release savepoint Cust_Data.
There' s no selective going back now! You're Florida-bound!

We still need to commit the changes. A commit will automatically release all
savepoints so we did not necessarily need to release them when we did.

However, were we to have had more transactions, i.e. billing work, to do
afterward, we probably would have wanted to release these savepoints and create
SOme New oOnes.

__21. ExecuteaCommit to commit the entire transaction.

That’sit. Your reservationisin place. Bring along some sun screen and enjoy the
trip! Look out for sharks, and... oh yeah, send us a postcard.

__ 22, Exitinteractive SQL with the F3 option and then sdlect option 1.
63

Task 2: Journal Entries Associated with Savepoints

In thistask, we will take alook at the Journd Entries generated from the savepoint
operations we performed earlier.

1. TypeDSPJRN JOSAVPTXX/QSQJRN and usethe Page Down key
to browse through the Entries you find there. Use option 5 to explore the
Entries that have been generated.

The SC and CM Entries are common Journa Entries during savepoint
transactions, and tell you where the commits start and end, the PT and DR
Journal Entries tell you where records were added, and where records were
deleted during rollbacks.,

The SC Entry isthe start of your commit cycle, while the CM marks the
commit, or end of your cycle. Following the PT (record added) for the hotel
are two more PTsfor theinitid reservations you booked within the Car_rental
and Flight tables. Next are two DR Entries for the records deleted when we
rolled back to savepoint 2 (Hotel Svpt).

If you are Journd savvy, you will probably recognize the PX Entries Thisisthe
Journa Entry flavor used when inserted new records into deleted record
locationsin afile. If you would like more of an explanation - ask your lab
ingructors.

___Optiond: Why don't you try making reservations for your vacation to Germany
next summer? Y ou can make your hotel, flight, and car renta reservations.

Don't forget to add a savepoint after your hotdl isbooked. They fill up quickly,
S0 you wouldn't want to lose that greet view of the Rhine if something needed
to be changed later.

But wait! Y our wife redly wanted to experience the excdlent public
trangportation system in Germany. She doesn't want al the hasde of finding
parking places and paying such high pricesfor gas. Y ou had better rollback
and get rid of that car rentd. | know, | know... you had your heart set on
seeing what “Peda to the Medd” could do on the Autobahn where there are no
gpeed limits. But trust us, the train ride aong the Rhine is breathtaking and oh,
so rdaxing. Keep an eye peded for the castles on the surrounding hilld!

Don't forget to rebook your flight, if you had booked it before you rolled back.
Now commit your changes and take alook at your Journal Entries. Arethey
what you expected?

__ 2. Sartinteractive SQL with the STRSQL CL command.

It'stime for abit of housekeeping:

3.

We need to turn commitment control off. PressF13. Choose 1, ‘Change
session attributes,” on the * SQL Session Services Screen.” On the
‘Commitment control’ line enter *NONE. Press Enter twice.

Exit interactive SQL with the F3 option and then select option 2.

Enter ENDCMTCTL on the CL command line.

65

.||I

V5R2 Newest Journal
and Commit Features

Lab 5: Journa Performance Counters
and Trace Points

|BM @server 1Series

© Copyright IBM Corporation, 2003. All Rights Reserved.
This publication may refer to products that are not currently
available in your country. 1BM makes no commitment to
make available any products referred to herein.

IBM @server. For the next generation of e-business.

66

67

Lab 5. Journal Performance Countersand Tracepoints

I ntroduction

Objectives

In this section of the lab the newest Collection Services Journd performance counters
and Performance Explorer (PEX) tracepoints will be explored.

A number of brand new Journa Performance measurements are available in V5R2.
These new measurements include new system wide Collection Services counters, new
task-based (per job) Collection Services performance counters, and new Performance
Explorer tracepoints. The addition of these counters are intended to assist in detailed
performance andysis of scenarios involving journaing and SMIAPP usage.

If you' re serious about getting the best possible performance in your shop, you' Il want
to heed the advice given in the Redbook: “Striving for Optimal Journal
Performance” found on the web at: www.redbooks.ibm.com, and you' |l want to
confirm the resulting performance benefits (or investigeate lingering performance
bottlenecks) by employing the new performance counters demongtrated here.

If you're a performance tool provider, you may want to fold some of these new
countersinto your product.

If you' re a performance consultant, you may want to bone-up on these new
performance counters so that you can tune the Journa environment more effectively for
your customers.

This lab teaches you how to:
* Enable and digplay the newest Journa Performance counters.
* Enable and display Journa PEX tracepoints

Lab Information

The notation XX that appearsin library names, profile names, and so on, refers to your
Team Number (for example, JOTEAMXX, JOLABXX, JOPFRXX). Refer to your
lab worksheet for detalls.

Optiond gteps areincluded in thislab in addition to the required steps. These Seps are
not required to complete the lab, but can be attempted to further demongtrate the usage
of various Journal commands. Optiona steps are denoted with “Optiond:” instead of
the step number.

Reminder - To gracefully exit the lab:

68

If you quit thislab before completing it, please turn commitment control off for your job.
Having commitment control on may affect other |abs which you continue to work on.
To turn commitment control off: gtart interactive SQL with the STRSQL CL
command; pressF13; choose 1, ‘ Change session attributes,” on the* SQL Session
Services Screen;” on the * Commitment control’ line enter *NONE; press Enter
twice. Exit interactive SQL with the F3 option and then sdect option 2. Thenrun the
ENDCMTCTL CL command.

Lab Prerequisites
Before you begin this lab, be sure the following prerequisites are avallable:

* AnIBM eServer iSeries or AS/400 with OS/400 V5R2, or higher, with:
- 5722-QU1 -Query for AS/400
- 5722-ST1 -DB2 Query Manager and SQL Development Kit for
AS400
* TheJOLABXX library contains a program and an SQL script for the lab.

Timerequired
The time required to efficiently complete this lab ranges from 25 to 35 minutes.

69

Task 1: Journal Performance Counters

The st of tools known as Collection Services collects a broad range of system data,
cdled Performance Counters, at regularly scheduled intervas, with minima system
resource consumption.

There are many new V5R2 Journa related counters, a complete list may be found at the
end of thislab. A number of them will be demongtrated during thislab.

School will be starting soon and you have been asked to help design and tune a
database for a new school supply store in town being opened by your
mother-in-law. You want to make a good impression.

1. Satinteractive SQL withthe STRSQL CL command.

2. Create acollection, JOPFRXX, which will be used in this Lab by executing the
Create collection JOPFRXX SQL statement. An SQL collection creates
anative library, a Journa named QSQJRN, and various SQL related objects.
Database objects created within the collection will automaticaly be journded to
the Journa QSQJRN. Be patient, this may take awhile.

3. Exitinteractive SQL with the F3 option and then salect option 1.

4. Createtwo libraries which will be used to store your Performance results with
the CRTLIB JOBEFOREXX and CRTLIB JOAFTERXX CL
commands.

5. Note the current time according to the system clock. Y ou will usethis
information later. DSPSYSVAL QTIME.

Enter the current system time here:

6. Type WRKJOB to get the name of your job in the upper left-hand corner of
the “Work with Job’ screen. We're going to need that |later, too.

Enter your job name here:

Collection Servicesis ether on or off for an entire system. Your lab instructors enabled
Collection services on this system for you using the *go perform’ menu.

___ 7. Create performance database files to view what your Performance Counters
read prior to any actionsby you. CRTPFRDTA
FROMMGTCOL(*ACTIVE) TOLIB(JOBEFOREXX) CGY(*JOBMI)

70

FROMTIME(‘today’s date - MO/DA/YR’ ‘current time from step 4
- HH:MM:SS’). Thiswill create and prime a st of database filesin your
library containing the thread level performance counters starting with the time
you have specified. The CGY parameter of the command specifies the
categories in the management collection object which will be processed into
database files. Declaring * JOBM I as the category name thus specifies that
Jobs (M1 tasks and threads) will be processed into database files.

8. Sart interactive SQL withthe STRSQL CL command.

9. Usethefollowing statement to view the current values of some Performance
Counters (primary commit operations, user Journa SMAPP deposits, and
primary decommit operations). Select JIBNAME, sum(JBCOP)
Commits, sum(JBUJD) SMAPP_Deposits, sum(JBDOP)
Rollbacks from JOBEFOREXX/gapmjobmi WHERE JBNAME =
‘lob name’ group by JBNAME. Thejob name must be in UPPERCASE.

The values of the counters are all zero!' Right? Well of course they are...we
haven’t done any work yet. Let’s make some changes which will bump these
performance counters and then come back and take another |ook.

__10. Turn commitment control on. Commitment control must be used here for our
subsequent commits to work. Press F13. Choose 1, ‘ Change session
attributes,” on the * SQL Session Services Screen.” On the * Commitment
control’ lineenter *CHG. Press Enter twice.

Our first few supplies have arrived, the Fed Ex driver is unloading now.

__11. Create atable, perform some inserts, arollback, and finaly commit the
changes. Thiswill increment the counters related to these actions.

Create table JOPFRXX/Supplies (item char(30), price float)
Insert into JOPFRXX/Supplies values(‘scissors’, 3.00)
Insert into JOPFRXX/Supplies values(‘backpack’, 20.00)

Break time! Your mother-in-law has just walked in with a tray of cookies. Well,
we haven't gotten very far, but you would rather not have to start over if
something went wrong while you were gone. Let’s commit it to make sure our
datais safe.

Commit

71

Break' s over! Back to work! (Gosh, your mother-in-law isareal stickler, isn't
she! No taking a few extra minutes at break time with her!)

Look, the ‘ Grand Opening’ salesflyer! Backpacks are only going to be $17.00!
Well, our original price of $20.00 is already committed, we'll just have to update
the Entry. Let'sgo ahead and do so. Then commit it again so we don’'t have to
worry about it later.

Update JOPFRXX/Supplies set price = 17.00 where item =
‘backpack’

Commit

Insert into JOPFRXX/Supplies values(‘nifty calculator’, 5.00)

Your boss just came by to let you know that you won'’t be getting those nifty
see-through calculators you just entered after all. You had better remove them
from the inventory!

Rollback

...by the way, how much of what you’ ve entered this morning will actudly be
rolled back at this point?

_12. Exitinteractive SQL with the F3 option and then select option 1.

OK, let’sreflect: we created a table, added some product, committed our
changes, updated an Entry, committed again, and rolled one Entry back... Hmm...
| wonder what the Journal Performance counters have to say about our work up
tothispoint. Let’sfind out...

At this point, make sure that it has been at least 1 minute since you made your last set of
changesinstep 11. For the lab, we have set the Collection Servicesinterva to 1
minute. In order to make sure that your changes have been recorded, you must wait at
leadt this much time.

__13. Cresate performance database files to view what your Performance Counters
read after these actions. Again, use the system clock time you recorded in step
5 and the “After” library, instead of the “Before’ library asin step 7.
CRTPFRDTA FROMMGTCOL (*ACTIVE) TOLIB(JOAFTERXX)
CGY(*JOBMI) FROMTIME(‘today’s date - MO/DA/YR’ ‘current
time from step 4 - HH:MM:SS").

__ 14, Start interactive SQL with the STRSQL CL command

72

__15. Let'sview the current values of some Performance Counters (primary commit
operations, user Journa SMAPP deposits, and primary decommit operations).
Caution: When entering the ‘job name’ the query is case sendtive. Make sure
you are entering your job name with the correct capitd letters. Select
JBNAME, sum(JBCOP) Commits, sum(JBUJD)
SMAPP_Deposits, sum(JBDOP) Rollbacks from
JOAFTERXX/qapmjobmi WHERE JBNAME = ‘job name’ group
by JBNAME. Job name must bein UPPERCASE.

What do you see? Can you explain each count? Do they make sense? If you
have an application back home, maybe one you didn’t personally write, and
you’ ve wondered how many Journal operationsit performs or how frequently it
decommits transactions, you now have an easy way to collect such statistics.

And... If you’ ve got a mother-in-law who thinks you' re a slacker, you’ ve now got
the assistance of the Journal facility to help prove otherwise!

___Optiond: To seethefull set of performance data that has been collected for each
interva in thisfile for your job, execute the Select * from
JOAFTERXX/gapmjobmi WHERE JBNAME = ‘job name’ SQL
Statement. Use F20 (Shift + F8) to scrall to the right to view dl of the dataand
column headings.

_16. Exitinteractive SQL with the F3 option and then select option 1.
There are awide variety of Journd related performance counters available on both a

system-wide and thread (TDE) based level. A full ligt of the new Journd related
performance counters for V5R2 is included below:

73

Column Description

System wide counters

SYJOER SMAPP evaluations requested

SYJOES SMAPP evaluations serviced

SYJOIB SMAPP index build time estimations

SYJOS1 Most popular Journal Entry type flushing Journal buffer
SYJOC1 Number of bundles terminated by first Entry type

SYJOS2 Second most popular Journal Entry type flushing Journal buffer
SyJoc2 Number of bundles terminated by second Entry type

SYJOS3 Third most popular Journal Entry type flushing Journal buffer
SYJOC3 Number of bundles terminated by third Entry type

Thread specific counters

JBCOP Primary Commit operations

JBCOS Secondary Commit operations

JBDOP Primary Decommit operations

JBDOS Secondary Decommit operations

JBPJE Physical Journal writes

JBNSJIE Non-SMAPP Journa Entries

JBUJD SMAPP deposits to user Journals

JBSID SMAPP deposits to System (default) Journals

JBBFW Bytes written to fixed (ordinary) Journal Receiver area

JBBFA Bytes deposited to fixed (ordinary) Journal Receiver area
JBBTW Bytes written to transient (hidden due to *RMVINTENT) area
JBBTA Bytes deposited to transient (hidden dueto *RMVINTENT) area
JBTWT Cumulative Journal bundle wait time

JBTNW Duration of Journal bundle waits

Task 2: Journal Tracepoints

The counters we ve been examining give ahigh leve view of what's going on and are
lessintrusive than tracepoints. Hence, they're often the first tool you' Il want to employ
if you're trying to gauge the performance characterigtics of a Journa-rich environmen.
Once you know a performance problem exists and you decide to drill down and
investigate the particulars, you' re going to want to shift gears from counters and turn to
tracepoints. Tracepoints help isolate and identify complex performance problems. In
this section of the lab, you will be looking a an example of some of the new Journd

tracepointsin action.

1. Addapersona PEX definition. ADDPEXDFN DFN(JOPEXDFNXX)
TYPE(*TRACE) JOB(*) TRCTYPE(*SLTEVT) SLTEVT(*YES)
JRNEVT(*ALL). Thisdefinition will collect al of the Journd events for your
job (thread) because you specified *ALL for the JRNEVT parameter and * for

the JOB parameter.

74

Unlike Collection Services which must be enabled system-wide (and hence you didn't
have a private copy), any number of PEX traces can be running on a system at any
particular time. Therefore, each lab user can start and end their own PEX session.

2. Start PEX. STRPEX SSNID(JOPEXDFNXX) OPTION(*NEW)
DFN(JOPEXDENXX).

3. Sartinteractive SQL with the STRSQL CL command.

4. Turn commitment control on if it isnot dready on. Commitment control must
be enabled here so that our commits will be honored. PressF13. Choose 1,
‘Change session attributes,” on the* SQL Session Services Screen.” On the
‘Commitment control’ line enter *CHG if it is not dready st to this vaue from
apreviouslab. PressEnter twice.

A big semi is backing up to the loading dock and here comes your mother-in-law
with a list of the new items coming in! Let’'s add some more of these school
suppliesto our pricing database.

__ 5. Continue inserting vaues into the database.

Insert into JOPFRXX/Supplies values(‘pencils’, 1.50)
Insert into JOPFRXX/Supplies values(‘lunchbox’, 7.00)

Lunch time! It’sthat special goulash you don’t have the courage to tell your
mother-in-law you don’t really like! Hmmm.... the system sure seems slow today!
Let’s commit our Entries to make sure they are safe.

Commit
Lunch’'sover! Back to work!
Insert into JOPFRXX/Supplies values(‘book covers’, 25.00)

Oops! You just entered the price incorrectly. The book covers should only cost
$2.50! You had better fix them quickly! You do not want to incur the wrath of
your mother-in-law.

Rollback
Insert into JOPFRXX/Supplies values(‘book covers’, 2.50)

Commit

75

__ 6. Exitinteractive SQL with the F3 option and then sdlect option 1.

Whew! That's enough for one day. But before we leave, let’ s find out what the
trace facility has to say about the Journal-related actions that have been
occurring in the supplies Database.

7. EndPEX. ENDPEX SSNID(JOPEXDFNXX)
DTALIB(JOAFTERXX). Thismay take jus alittle while to complete while
it isputting al of the performance data into Database files.

The above command will end your PEX session and also create a set of database files
inyour library. One of these files, QAYUSRDFN, contains the Journa PEX tracepoint
data Thisdataisunformatted within thisfile. To format this data, you need to invoke a
neet little program we wrote just for thislab. Y ou can find a copy of this Trace Point
formatter in the Appendix.

__ 8. Cdl the PARSEJOPEX program which will parse the trace data into an easly
readable representation. CALL JOLABXX/PARSEJOPEX
parm(‘JOAFTERXX’).

Let’ stake a look at the resulting data...
9. Satinteractive SQL withthe STRSQL CL command

__10. Toview the current tracepoint data: Select record, type, subtype,
cycleid, mjocommitops, mjodecommops from
JOAFTERXX/JOPEXOUT.

The tracepoints provide you with avariety of information from the time when the
tracepoint was encountered. Y ou could use this data for avariety of purposes
depending on what you are trying to investigate. For example, you could determine
how long Rollbacks are taking in your gpplication using the Start and End Rollback
Operations and the timestamyps which come with these tracepoints. The CyclelD can
as0 be usad to associate the Journa Entries involved in the same commit cycle.

Beow isatable you can employ to decipher the Journd actions corresponding to the
type and subtype you will find listed from the above sdect Satement:

Type Subtype Description
20
20
20
20

Start of Commit Operation

End of Commit Operation
Start of Rollback Operation
End of Rollback Operation

galbh|lw|N

76

20
20

Start of Commit Cycle (the SC Entry)

Start of Journal Background Task Object Force
20 End of Journa Background Task Object Force
20 Start of SMAPP Evaluation

20 10 | End of SMAPP Evaluation

O|lo[(N|O®

Some of the events tracked here are reveding the actions of background Housekeeping
Journal tasks which operate at the SLIC level of OS/400 (check out the optiona Task
3 to see these tracepoints at work!). For example:

+ Theeventswith subtype 7 and 8 refer to the background forces done by the
JORECRA tasks. The JORECRA tasks on a system occasionaly sweep through main
memory to flush changed pages of journaed objects from main memory onto disk. By
flushing out the changed pages to disk, fewer Journa Entries will need to be gpplied to
your objects at IPL time. These JORECRA tasks may have an impact on the
performance of your system. Section 4.2.2. of the Redbook “ Striving for Optimal
Journd Performance’ shows how to adjust the JORECRA behavior.

+ Theeventswith subtypes 9 and 10 refer to some of the background activity by
SMAPP (System Managed Access Path Protection). These trace points track each
time an index is evauated by SMAPP to determine if the index should be implicitly
journaled. SeeLab 3 for more details on SMAPP. Section 4.1 of the Redbook
“Striving for Optima Journa Performance’ is agood source for information on SMAPP
performance information.

___Optiond: With each tracepoint, additiona datais aso collected. View dl of the
data for a particular tracepoint with the following SQL statement: Select *
from JOAFTERXX/JOPEXOUT.

In addition to this data, more generic data, such asthe job name and
timestamps, is available in other PEX resultsfiles.

11. Turn commitment control off. Commitment control must be turned off for some
of the other sections of thislab to work. PressF13. Choose 1, ‘Change
sesson atributes,” onthe * SQL Session Services Screen.” On the
‘Commitment control’ line enter *NONE. Press Enter twice.

_12. Exitinteractive SQL with the F3 option and then select option 2.

__13. Enter ENDCMTCTL onthe CL command line.

Optional Task 3: Additional Journal Tracepoints
77

The previous task introduced you to some of the new PEX tracepoints availablein
V5R2. Thistask dso mentioned some of the tracepoints that are now available to help
you understand what the background Journa tasks are doing on the systlem. ThisLab
will dlow you to capture some of tracepoints being produced by these background
tasks and examine what is happening.

__ 1. Addapersona PEX definition. ADDPEXDFN DFN(JOPEX2_XX)
TYPE(*TRACE) JOB(*) TASK(*ALL) TRCTYPE(*SLTEVT)
SLTEVT(*YES) JRNEVT(*ALL). Thistime we have specified to collect
tracepoints which are being produced by dl tasks on the system in addition to
our own job with the TASK(*ALL) option.

2. Cregtealibrary which will contain your PEX results with the CRTLIB
JOPEX2_XX CL command.

3. StatPEX. STRPEX SSNID(JOPEX2_XX) OPTION(*NEW)
DFEN(JOPEX2_XX).

__ 4. Atthispoint, we urge you to run any activity on the sysem which may drive the
JORECRA tasks or the SMAPP eva uation tasks (perhaps you could repeat a
section of your favorite previous lab). The RECRA taskswill force objects
when alarge number of changes have been made and the SMAPP tasks will
evauate indexes which are changing on the sysem. If athersinthelab are
running other activities on the system, they may cause you to collect datafor
these tasks since these are shared background tasks.

If you can't think of anything to run, follow these steps (using a program from
Lab 3) to produce some RECRA and SMAPP activity.

___A. Satinteractive SQL with the STRSQL CL command.
B. Createatablewiththe CREATE TABLE JOPEX2_ XX/PARTS

(ID int, COST float, MAKE char(30), MODEL char(30),
PART CHAR(30), YEAR int) SQL statement.

C. Let'screate anindex over the Patsfilee CREATE INDEX
JOPEX2_XX/PARTIX ON JOPEX2_XX/PARTS(ID).

D. Exitinteractive SQL with the F3 option and then select option 1.

__E. Create aJournd Receiver withthe CRTIJRNRCV JOPEX2_XX/R1
CL command.

78

___F. Create aJournd withthe CRTJRN JOPEX2_XX/J1
JOPEX2_XX/R1 CL command.

k. Satjournding for your Partsfileusngthe STRIRNPF
JOPEX2_XX/PARTS JOPEX2_XX/J1 CL command.

G. Runthe MANYPARTS program to create some journd activity. Call
JOLABXX/MANYPARTS parm(‘PARTS’ ‘JOPEX2_XX’
‘50000).

__ 5. End PEX by running the following command ENDPEX SSNID(*SELECT)
DTALIB(JOPEX2_XX). Thiswill dlow you to seeif you have cregted any
PEX eventsfor your trace. If the event count column shows that events have
been created for your trace, choose option 1 to end your trace. If you haven't
created any events yet, go back to step 4 and try again.

6. Cdl the PARSEJOPEX program which will parse the trace datainto an eedly
readable representation. CALL JOLABXX/PARSEJOPEX
parm(‘JOPEX2_XX’).

Take alook at the data in the output file using the techniques learned in the previous lab
(Hint: you “*’ in your SQL statement to see dl of the datain the JOPEXOUT file or
look at the program source in the Appendix). Can you determine if any SVIAPP or
RECRA background task behavior took place during your trace? Refer back to the
tablein Task 2 to see the definitions of the various tracepoint subtypes. Fed freeto ask
your lab assgantsif you would like any help.

By examining data such asthis, you can determine avariety of information such asthe
number of SMIAPP eva uations that are occurring, the number of RECRA forces, the
amount of time spent doing the activities, and the objects involved in these activities.
These may be hepful in determining the exact cause of a performance dowdown on
your system.

79

80

Appendix A

This Appendix contains various sample programs and SQL. scripts which have been
used throughout the labs. These example programs have not been subjected to any
formd testing. They are provided "ASIS" and they should be used for reference only.

UPDVAC Source Code

/ *
* This C programwi |l run database operations for
* specified file of change requests. This program contains
* statenments which are valid only for the
* dat abase environnment specific to the Journa
*
* Synt ax:
* UPDVAC file
* file - the nane of a Requests file
*
* Conpile Statenment:
* CRTSQLCI OBJ(JOLABXX/ UPDVAC)
* SRCFI LE(JOLABXX/ UPDVAC)
* COWMM T(*NONE) OBJTYPE(* PGM
*
*/
#i ncl ude <stdio. h>
#incl ude <string. h>
#i nclude <stdlib. h>
EXEC sql include SQLCA
EXEC sql include SQLDA
int main(int argc, char *argv[])
{

EXEC SQL BEGI N DECLARE SECTI ON
short int
short
short
char
char
char
char

req = 0;
int counter = 1;
int enpid = 0;
updst nt [1000] ;
sel st mt [1000] ;
sel 2stnt [1000] ;
file[30];

EXEC SQL

DECLARE cl1l CURSOR FOR exestnt
EXEC SQL

DECLARE c2 CURSOR FOR act stnt

EXEC SQL END DECLARE SECTI ON

/**

* Parsing command line / error checking

**/

if (argc !'= 2)
81

printf("UPDVAC Requests file");
el se
sprintf(file, "%", argv[1]);

sprintf(selstnm, "SELECT COUNT(*) FROM %", file);
EXEC SQL
PREPARE actstnm FROM : sel stnt;
EXEC SQL
OPEN c2;
EXEC SQL
FETCH c2 INTO :req;
EXEC SQL
EXEC SQL
CLCSE c2;

sprintf(sel2stnm, "SELECT enp_id FROM %", file);
EXEC SQL

PREPARE exestnt FROM : sel 2stnt;
EXEC SQL

OPEN c1;

whi | e(counter <= req)

{

EXEC SQL

FETCH c1 I NTO : enpid;

sprintf(updstnt,

"UPDATE Vacation SET vac_days = vac_days - 1 WHERE enp_id = ?");

EXEC SQL
PREPARE newstnt FROM :updstnt;

EXEC SQL
EXECUTE newstnt USI NG : enpi d;

counter = counter + 1;

}
EXEC SQL

CLCSE c1;
}

return O;

SQLSTMT/SQLDSP SQL Script

Create table Monday (enp_id int, regdata date);
Create table Tuesday (enp_id int, reqdata date);
Create table Wednesday (enp_id int, reqdata date);

82

Create table Vacation (enp_id int, Name char(30), vac_days int);

Insert into Monday values (1001, '04/05/02");
Insert into Monday val ues (1002, '05/15/02");
Insert into Monday values (1003, '07/03/02");
Insert into Monday values (1004, 'O02/25/02");
nsert into Tuesday val ues (1005, '10/28/02");
nsert into Tuesday val ues (1006, '08/02/02");
nsert into Tuesday val ues (1007, '06/21/02");
nsert into Tuesday val ues (1008, '06/21/02");
nsert into Wednesday val ues (1001, '04/06/02");
nsert into Wednesday val ues (1005, '02/24/02");
nsert into Wednesday val ues (1005, '02/25/02");
nsert into Wednesday val ues (1004, '02/24/02");
nsert into Wednesday val ues (1005, '07/01/02");
nsert into Wednesday val ues (1005, '07/02/02");

i
i
i
i
i
i
i
i
i
i
i
i
i
i
nsert into Wednesday val ues (1005, '10/26/02");
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

nsert into Wednesday val ues (1005, '11/12/02");
nsert into Wednesday val ues (1005, '09/08/02");
nsert into Wednesday val ues (1005, '12/12/02");
nsert into Wednesday val ues (1005, '08/30/02");
nsert into Wednesday val ues (1005, '03/15/02");
nsert into Wednesday val ues (1005, '04/21/02");
nsert into Wednesday val ues (1005, '04/22/02");
nsert into Vacation values(1001, 'Bill"', 5);
nsert into Vacation values(1002, 'Sue', 7);
nsert into Vacation values(1003, 'Sam, 4);
nsert into Vacation values(1004, 'Beth', 8);
nsert into Vacation val ues(1005, 'Cody', 30);
Insert into Vacation val ues(1006, 'Mchelle', 6);
Insert into Vacation val ues(1007, 'Tom , 3);
Insert into Vacation val ues(1008, 'Jane', 9);

BUNDLE Source Code

/*

* This C programwill read an DSPJRN outfile of *TYPE5 (new for V5R2) and
* return bundling information. You will receive an error fromthis

* program stating that the JOARM colum is missing if you fail to
produce

* the OUTFILE using the *TYPE5 option. Use the DSPJRN | NCHI DENT(* YES)
* option for accurate bundling information. This will allow

* for the hidden entries to be included in your outfile which

* al so take up space on the Journal bundles.

* The following is an exanple of a DSPJRN command with the options

* required:

* DSPJRN JRN(LI B/ JRN) OUTPUT(*OUTFI LE) OUTFI LFMT(* TYPES)
* OUTFI LE(LI B/ OUTFI LE) | NCHI DENT(* YES)

*

* Synt ax:

* BUNDLE Iib file

* lib - library

* outfile - dspjrn outfile

* Conpile Statenent:
CRTSQLCI OBJ(JOLABXX/ BUNDLE)
SRCFI LE(JOLABXX/ BUNDLE)
COWMM T(*NONE) OBJTYPE(*PGM)

*/

83

/* include the necessary C header

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i nclude <stdlib. h>

#i ncl ude <ctype. h> /* toupper() cal

/* Statements required for

EXEC sql include SQLCA

EXEC sql include SQLDA

/* Begin main function */

int main(int argc, char *argv[])
{

EXEC SQL BEGI N DECLARE SECTI ON

files */

*/

enbedded SQL */

int i; /* a sinple counter */

long int numents = 0; /* nunber of entries in outfile */

long int curr_ent = 1; /* current entry being processed */

short int armmum = 0; /* arm nunber of current entry */

long int entsize = 0; /* size of current entry */

short int formerarmumnber = -1; /* arm nunber of previous entry */

I ong int bundlesize = -1; /* running total size of current bundle */
I ong runni ngnunbundl es = 0; /* current nunmber of bundles found */
long int total size = 0; /* cumul ative size of all entries */
long int maxbundle = -1, /* current maxi mum bundl e size */

long int mnbundle = 9999999; /* current mninmum bundle size */

char sel stnmt[200]; /* character arrays to hold our select statenents
*/

char sel 2stnt[200];

char 1ib[11]; /* character array to hold input |ibrary name */
char outfile[1l1]; /* character array to hold outfile nane */

EXEC SQL

DECLARE c1l CURSOR FOR exestnt; /* declare SQL cursor Cl1 */
EXEC SQL
DECLARE c2 CURSOR FOR actstnt; /* declare SQL cursor C2 */

EXEC SQL END DECLARE SECTI ON

/**

* Par si ng conmand line / error
**/

checki ng

if (argc !'= 3)
{
printf("ERROR - proper syntax is: BUNDLE lib outfile")
}
el se
{
/* extract the library fromthe first argument */

sprintf(lib, "%", argv[1l]);

/* extract the outfile fromthe second argunent

84

*/

*/

*/

sprintf(outfile, "%", argv[2]);

/* convert the library to upper case */

for (i =0; i < 10; i++)
{

lib[i] = toupper(lib[i]);
}
/* convert the outfile to upper case */
for (i =0; i < 10; i++)
{

outfile[i] = toupper(outfile[i]);
}
/* create the SQL statenent to determ ne the number of entries */
sprintf(selstnt, "SELECT COUNT(*) FROM %s/ %", |ib, outfile);
EXEC SQL

PREPARE actstnt FROM : sel stnt;
EXEC SQL

OPEN c2; /* open the SQL view (cursor) */
EXEC SQL

FETCH c2 I NTO : nunents; /* set the nunmber of entries */
EXEC SQL

CLOSE c2; /* close the SQL cursor */

/* output the nunber of Entries to the screen */
printf("\n\n\n\n\n\n\n");
printf("nunber of entries = %\n", nunments);

/* Create SQ. query which will pull two colums from your OUTFI LE:
* the arm number on which each Journal entry resides and the
* width in bytes of each Journal entry. These will be sorted
* by the Journal Sequence nunber so that we see consecutive Journal
* Entries in the order in which they were deposited.
*/
sprintf(sel 2stnt,
"SELECT JOARM JOENTL FROM ¥s/ % order by JOSEQN',

l'ib, outfile);
EXEC SQL
PREPARE exestnt FROM :sel 2stnt;
EXEC SQL
OPEN c1; /* open the SQL view (cursor) */

/* loop through each entry in the outfile */
whi l e(curr_ent <= numents)

{
/* get the next available entry */
EXEC SQL
FETCH c1 INTO :armum :entsize; /* extract the arm nunmber width

total size = total size + entsize;

/* test if current entry is start of new bundle */
if (armmum != fornerarmunber) /* provided that we have seen a bundle

{
/* maintain overall stats if we really just finished a bundle */
if (formerarmunber != -1)
{
if (bundl esize > maxbundl e)
maxbundl e = bundl esi ze;

85

if (bundlesize < m nbundle && bundl esize = -1)
m nbundl e = bundl esi ze;

}

/* maintain stats considering this new bundle */
runni ngnunbundl es = runni ngnunbundl es + 1;

bundl esi ze = entsi ze; /[* prime the size of the new bundle */
}
/* else this entry belongs to the current bundle */
el se
{
bundl esi ze = bundl esi ze + entsi ze;
}

/* track the armof the current entry */
f or merar munber = armum
curr_ent = curr_ent + 1;
}
EXEC SQL
CLOSE c1,

/* make sure to add our last bundle into the statistics */
i f (bundl esize > maxbundl e)

maxbundl e = bundl esi ze;
i f (bundlesize < m nbundle && bundl esize !'= -1)

m nbundl e = bundl esi ze;

printf("Nunber of bundles = %\n", runni ngnunbundl es);
printf("Average bundle size = % bytes\n",
total size / runni ngnumbundl es);

printf(" max bundl e size = % bytes\n", nmaxbundl e);
printf(" m n bundl e size = %l bytes\n", m nbundle);
printf("\n");
printf("The bundle size optimal size is 128 KB or wider\n");
printf("\n");

}

return O;

}

SQOL STMT/SQLSBYPERF SQL Script

Create table Product (pid int, qty int, price float, descrip char(200));
Create table Trans (tid int, pidint, qty int);

Insert into Product values (1, 20000, 12.00, 'Turtle Cheesecake');
Create index prod_pid on Product (pid);

Create index trans_ids on Trans (pid, tid);

Insert into Product values (2, 10000, 10.00, 'Cheesecake with
Strawberries');

Insert into Product values (3, 10000, 10.00, 'Cheesecake with

Bl ueberries');

Insert into Product values (4, 30000, 6.00, 'Cheesecake Mnis');

Insert into Product values (5, 20000, 15.00, 'cChocol ate Cheesecake');

86

Insert into Product values (6, 35000, 13.00, 'Keylinme Cheesecake');
Insert into Product values (7, 12500, 12.00, 'New York Cheesecake');
Insert into Product values (8, 25000, 13.00, 'Caranel Cheesecake');
Insert into Product values (9, 35000, 10.50, 'Cheesecake with Cherries');

Insert into product values (10, 15000, 12.00, 'Raspberry Cheesecake');

PERFRUN Sour ce Code

/*

* This C programwi |l run database operations for the

* speci fi ed nunber of seconds. This program contains
* statements which are valid only for the

* dat abase environment specific to the Journal Lab.

*

* Synt ax:

* PERFRUN seconds

* seconds - the nunber of seconds for the run

* Conpile Statenent:

* CRTSQLCl OBJ(JOLABXX/ PERFRUN)

* SRCFI LE(JOLABXX/ PERFRUN)

* COMM T(*NONE) OBJTYPE(* PGM)
*

*

#i ncl ude <stdio. h>

#i ncl ude <string. h>
#i ncl ude <sys/tinme. h>
#i ncl ude <stdlib. h>

int main(int argc, char *argv[])

{

EXEC SQL BEG N DECLARE SECTI ON,

/1 variables to store the cnd |ine args
unsi gned long int seconds = O;

/'l variables for gettimeofday()
struct timeval end_tinme;

struct timeval cur_tinme;

struct timezone tinez;

long int varpid = 1;
long int vartid = 1;
long int varqty = 1;

EXEC SQL END DECLARE SECTI ON,

/**

* Parsing command line / error checking

**/

87

EXEC sql include SQLCA

if (argc !'= 2)

{
printf("PERFRUN seconds");

}

el se

{
/1 get seconds from command |ine
seconds = atol (argv[1]);

/1l set the starting tine
getti meof day(&end_tine, &tinmez);

printf("------------- PERFRUN has

/1l set the end time to start tine
end_tine.tv_sec = end_tine.tv_sec

/1l continue to | oop while current
do

{

started runni ng

pl us seconds specified
+ seconds;

time < end tine

/1 conplete a database transaction

EXEC SQL

I NSERT into Trans values (:vartid,

EXEC SQL
UPDATE Product set
WHERE pid = :varpid;
/1 update val ues for
vartid = vartid + 1;
varpid = (varpid % 10) + 1;
varqty (varqty %5) + 1;

/1 get the current tine

getti meof day(&cur _tinme, &tinmez);

qty = qty -

cvarpid, :varqty)

Tvarqty

a variety of data

} while (cur_tine.tv_sec < end_tine.tv_sec |
cur _time.tv_usec <= end_time.tv_usec)

printf(" Total running tinme =

cur_time.tv_usec -
printf("-------memmnnnan-

}

return O

}

Q.
seconds + cur_tinme.tv_sec -

%6u\ n",
end_tinme.tv_sec

end_tine.tv_usec);
PERFRUN has conpl et ed

JOTIMEIT Source Code

*

* This C program outputs the time required to run the input

* command (does not work if

*

* Synt ax:

88

runtime includes change of day)

* JOTI MEI' T conmand
* conmmand - the command to tinme

* Conpile Statenment:
CRTBNDC PGM JOLABXX/ JOTI MEI T) SRCFI LE(JOLABXX/ JOTI MEI T)

*

*/

#i ncl ude <stdio. h>
#i nclude <string. h> /1l strstr() call
#i ncl ude <sys/tine. h>

#i ncl ude <qcndexc. h>
#i nclude <m conput.h> // needed for deci mal conversion

int main(int argc, char *argv[])

{

/1 variables to store the cnd |ine args
char command[1000] ;

/|l paranmeters for the CL command call
deci mal (15, 5) packed_I engt h;
int |ength;

/1l variables for gettimeofday()
struct timeval start_tinme;
struct timeval end_tinme;

struct tinmezone tinez;

/**

* Parsing command line / error checking

**/

if (argc !'= 2)

{
printf("JOTI MEIT command");

}

el se

{
/1 get command |ine argunments
sprintf(command, "%", argv[1]);

/'l snapshot the start tine
getti meof day(&start_tine, &tinez);

/1 run the conmand

Il ength = strlen(command);

cpynv(NUM_DESCR(_T_PACKED, 15, 5),
&packed_I engt h,
NUM_DESCR(_T_SI GNED, 4, 0) ,
&l engt h) ;

QCMDEXC(conmmand, packed_I ength);

/1l get the end tine
getti meof day(&end_tine, &tinmez);

/] output the total runtine
printf("\n\n\n\n\n\n\n\n\n\n\n\n\in\n");
if (end_tine.tv_usec > start_tinme.tv_usec)

{

printf(" Total running time = %. %6u seconds\n",

89

end_time.tv_sec - start_tine.tv_sec,
end_tinme.tv_usec - start_tine.tv_usec);

}
el se
{
printf(" Total running time = %. %6u seconds\n",
end_tine.tv_sec - start_tine.tv_sec - 1,
100000 - start_tinme.tv_usec + end_tinme.tv_usec);
}
printf("\n\n");
}
return O;

}

STRJRNLIB Source Code

* This C program starts journaling on all of the *FILE objects

* in the specified library.

*

* Synt ax:

* STRIRNLIB lib jrn jrnlib

* lib - the library containing the objects to journal
* jrn - the journal

* jrnlib - the library containing the journal

* Conpile Statenent:
CRTBNDC PGM JOLABXX/ STRIRNLI B) SRCFI LE(JOLABXX/ STRIRNLI B)

*

*/

#i ncl ude <stdio. h>

#incl ude <string. h> /1l strstr() call
#i ncl ude <ctype. h> /1 toupper() call
#include <stdlib. h> /1 malloc() call

#i ncl ude <gcnmdexc. h>

#i ncl ude <m conput.h> // needed for decinmal conversion
#i nclude <quscrtus.h> // create user space

#i ncl ude <qusl obj . h> /1 1ist objects ap

#incl ude <qusptrus.h> // get user space ptr

#i ncl ude <qusrtvus.h> // retrieve user space

#i nclude <qusdltus.h> // delete user space

#i ncl ude <qusec. h> /'l error structures

#i ncl ude <qusgen. h> /'l general user space structs

int main(int argc, char *argv[])

{

/'l variables to store the cnmd |ine args
char |ib[11];

char jrn[11];

char jrnlib[11];

/'l counters

int i;

int entrynunber;

/'l paraneters for QUSCRTUS cal |
char quserspace[21];

Qus_EC_t *errcode;

char errorbuffer[8];

90

/|l paranmeters for the QUSLOBJ call
char objandlib[21];

/'l paraneters for QUSPTRUS
Qus_Generi c_Header _0100_t *spaceptr;

/1l parameters for QUSRTVUS
char *objectlistptr;
char objectlist[2000];

/1l paranmeters for the CL conmand call
deci mal (15,5) packed_I engt h;

char command[200] ;

int |ength;

/1l tenporary pointer
char * tenpptr;

/**

* Parsing command line / error checking

**/

if (argc !'= 4)

{
printf("STRIRNLIB lib jrn jrnlib");

}

el se

{
/1 get command |ine argunments
sprintf(lib, "%", argv[1l]);
sprintf(jrn, "%", argv[2]);
sprintf(jrnlib, "%", argv[3]);

/1l convert the lib, jrn, and jrnlib to upper case
for (i = 0; i < 10; i++)

{
jrnfi] = toupper(jrn[i]);
lib[i] = toupper(lib[i]);
jrnlib[i] = toupper(jrnlib[i]);
}

/'l create the user space
sprintf(quserspace, "JOUSRSPC 9% 10s", |ib);
errcode = (Qus_EC t *) errorbuffer;
errcode->Bytes_Provi ded = 0;

QUSCRTUS(quser space,

" TEMPSPACE ",

2000, /'l bytes

e, /1 intial val
"*ALL ", I/ authority
" ",] text

"*YES ", Il replace
errcode);

/1 get the list of *FILE objects in the library
sprintf(objandlib, "*ALL % 10s", |ib);
QUSLOBJ(quser space, /'l space object for output
"OBJL0100", // output format
objandlib, // object and library name
"*F| LE "); I/ object type

/| access the user space

91

QUSPTRUS(quser space,
&spaceptr,
errcode);

/] allocate the object |list of appropriate size
objectlistptr =
mal | oc(spaceptr->Nunber _List_Entries * spaceptr->Size_Each_Entry +

if (objectlistptr == NULL)

{
printf("unable to allocate heap\n");
return -1,

}

/1 get the object list fromthe user space

QUSRTVUS(quser space,
spaceptr->Of fset _Li st_Data,
spaceptr->Nunber _List_Entries * spaceptr->Size_Each_Entry,
objectlistptr);

/] data really starts on the 2nd byte
objectlistptr += 1;
entrynunmber = 1;

/1 start journaling each of the files
whil e (entrynunmber <= spaceptr->Nunber_List_Entries)

{
/'l drop in some null characters to parse out the nanes
/1 (if the objectname is 10 characters, a null char wll
/1 not be placed at the end. W nust use a maxi num of
/1 10 characters when we actually use the nanmes)
tenpptr = strstr(objectlistptr, " ");
if (tempptr !'= NULL) *tenpptr = "\0';
tempptr = strstr(objectlistptr + 10, " ");
if (tempptr !'= NULL) *tempptr = "\0';

/1 build and execute the start journal conmand
sprintf(commuand,
"STRIRNPF FI LE(%l. 10s/%l. 10s) JRN(¥%s/ %s)",
objectlistptr + 10,
objectlistptr,
jrnlib,
jrn);
Il ength = strlen(command);
cpynv(NUM_DESCR(_T_PACKED, 15, 5),
&packed_| engt h,
NUM_DESCR(_T_SI GNED, 4, 0),
&l engt h) ;

QCMDEXC(command, packed_| ength);

/'l increment to the next object
objectlistptr =

objectlistptr + spaceptr->Size_Each_Entry;
entrynunmber += 1;

}

/1 delete the user space
QUSDLTUS(quser space,
errcode);

92

return O

}

PARTS datafile

PART_1 D COST MAKE MODEL PART
2,001 10. 00 Geo Metro tire
2,002 25.00 Bui ck Regal bunper
2,003 75.00 Ford Taur us exhaust system
2,004 35. 00 Dodge Ram wi ndshi el d
2,005 43. 00 Chevy Bl azer door
2,006 27.00 Dodge Ram t opper
2,007 7.00 Bui ck Regal wi ndshi el d wi pers
2,008 25. 00 VW Beetl e hood
2,009 32.00 AMC Hor net not or
2,010 14. 00 Ford Expl orer st eeri ng whee
2,011 30. 00 Ford Mist ang hub cap
2,012 30. 00 Pl ynout h Sundance radi at or
2,013 12. 00 Vol kswagen Passat gas cap
2,014 78.00 Mer cury Mount ai neer axl e
2,015 55. 00 Jeep Cher okee radi at or
2,016 34.00 Dodge Intrepid al ternat or
2,017 48. 00 Dodge Vi per mud fl ag
2,018 81. 00 Chevy Tahoe rim
2,019 22.00 Vol kswagen Gol f battery

JODSPJRN Source Code

/**/

/* */
/* Run DSPJRN JRN(*1 NTSYSJRN) JRNI D(10001) FROMTI ME(' passed */
/* time'). Allows users without *ALLOBJ authority to see */
/* this data in the V5R2 COMON | ab. */
/* */

/**/

PGM

DCL

DCL

/***/

/* Program ar gunment

is the current

date */

/* and tinme passed in a string. */

/***/

PARM &DATE &TI ME)

/* Passed date */

VAR(&DATE) TYPE(*CHAR) LEN(10)

/* Passed time */

VAR(&TI ME) TYPE(* CHAR) LEN(10)

MONMSG CPF0000

DSPJRN

JRN(*1 NTSYSJRN) JRNI D(10001) FROMTI ME(&DATE &TI ME)

ENDPGM

93

MANYPARTS Sour ce Code

* This programinserts the specified nunber of records into the
* file specified (must have specific format for the SMAPP

* journal Lab).

*

* Synt ax:

* MANYPARTS file library n

* Conpile statenment:

CRTSQLCI OBJ(JOLABXX/ MANYPARTS) SRCFI LE(JOLABXX/ MANYPARTS)
SRCVBR(MANYPARTS) COMM T(* NONE) OBJTYPE(* PGM)

**/

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
#include <string. h>
#i ncl ude <unistd. h>

#i ncl ude <qusec. h> /1 Error code structures
#include <qglichgll.h> // needed for QLI CHGLL call

#i ncl ude <qgcnmdexc. h>

#incl ude <m conput.h> // needed for decimal conversion

#i ncl ude <ctype. h> /1 toupper() call
EXEC sqgl include SQLCA;

int main(int argc, char *argv[])
{

long int i;

int num

char file[11];

char lib[11];

char statement[200];

if (argc !'= 4)
{
printf("MANYPARTS file Iib num\n ");
}
el se
{
sprintf(file, "9% 10s", argv[1]);
sprintf(lib, "% 10s", argv[2]);
num = atoi (argv[3]);

/1 convert the dtaq and library to upper case

for (i = 0; i < 10; i++)

{
file[i] = toupper(file[i]);
lib[i] = toupper(lib[i]);

}

sprintf(statenent,

"I NSERT into %/ % values (?, 1.00, 'car'

lib, file);
EXEC SQL
PREPARE actstnt FROM : statenent;

94

1

'make', 'part’,

2002) ",

for (i = 10000; i < (10000 + num); i ++)
{
EXEC SQL
EXECUTE actstm USING :i;
}
}

return O;

SQL STMT/SQLSPT SQL Script

Create table Custonmer (cid int, Nane char(30));

Create table Hotel (cid int, H_Nane char(30));

Create table Flight (cid int, Airline char(30), depart date);
Create table Car_rental (cid int, R Conp char(30), pickup date);

PARSEJOPEX Source Code

* This program parses the Journal PEX Trace point events in
* QAYUSRDFN and puts theminto a nicely formatted table

* Syntax: PARSEJOPEX library
* library = library which contains results
* al so used as output file location

* Conpile statement:
CRTSQLCI OBJ(JOLABXX/ PARSEJOPEX) SRCFI LE(JOLAB/ PARSEJOPEX)
SRCMBR(PARSEJOPEX) COWMM T(*NONE) OBJTYPE(* PGV

#i ncl ude <stdio. h>
#i nclude <stdlib. h>
#include <string. h>
#i ncl ude <unistd. h>
#i ncl ude <ctype. h> /1l toupper() cal

#i ncl ude <qusec. h>

#i nclude <qglichgll.h>
#i ncl ude <qcndexc. h>
#i ncl ude <m conput. h>

EXEC sql include SQLCA

int main(int argc, char *argv[])

{

EXEC SQL BEGI N DECLARE SECTI ON
/* command |ine paranmeters */
char 1ib[11]

/* host vars */
long int cnt = O;

95

char dta[300];
short int typ = O;
short int styp = 0;

/* a counter */
long int i;
int j;

/* for QLICHGLL call */

char current[11];

char sane[11];

long int numuser_libs = -1;
Qus_EC_t *err_code;

char errorbuffer[512];

/* for QCMDEXC call */

deci mal (15, 5) packed_I engt h;
int |ength;

char command[200] ;

char statenment[200];

/* data */
char port[16];
EXEC SQL END DECLARE SECTI ON;

if (argc !'= 2)

{
printf("PARSEJOPEX |ib\n");

}

el se

{
sprintf(lib, "%", argv[1]);

/* convert the library to upper case */
for (i =0; i < 10; i++)

lib[i] = toupper(lib[i]);

}

/* set the current library */
sprintf(current, "% 10s", |ib);
strcpy(same, "*SAME ")

err_code = (Qus_EC_ t *) errorbuffer;
err_code->Bytes_Provi ded = 0;
QLI CHGLL(current,

sane,

sane,

sane,

num user _li bs,

err_code);

/* create the output table */
EXEC SQL

CREATE TABLE JOPEXOUT

(record int,

type int,

subtype int,

portaddr char(16),

accpat haddr char (16),

obj ect addr char (16),

96

recrasetting char(16),
recraobj ects char(8),
smapptrans char(2),
smappreason char(2),
cycleid char(16),

cur SeqNum char (16),

cur SyncPoi nt char (16),
writes char(8),

permWites char(8),
syncDbReads char (8),
syncNonDbReads char (8),
syncDbWites char(8),
syncNonDbWites char(8),
asyncDbReads char(8),
asyncNonDbReads char (8),
asyncDbWites char(8),
asyncNonDbW i tes char(8),
accessGroupFaults char(8),
i oPendi ngWaits char (8),
synl oWaits char(8),
pageFaul ts char(8),

sei zewt char(16),

mJOConmmi t Ops char (8),
mJOSecConmi t Ops char (8),
mJODeconmOps char (8),
mJOSecDecommOps char (8),
mIQAJrnWts char(8),
mJONonSMAPP char (8),
mJOUser char(8),

mJOSyst em char (8),

mJOFi xedByt es char (16),
mJODepFi xedByt es char (16),
mJOTr ansi ent char (16),
mJODepTr ansi ent char (16),
mJONapti me char (16),
mJONaps char (8),

mJOEval _Messages char(8),
mJOTri ggered_Eval s char (8),
mJOBui | dti ne_Ests char(8),
queui ng\Wai t Ti me char (16));

/* copy the QAYPEUSRDF and QAYPETI DX table */
/* copy the table because a table of the same nane exists in
* QSYS which will be found prior to the one in the
* specified library due to the library list. A new nane
* will allow this one to be found wi thout specifying
* a library. This is due to the fact that | do not know
* how to use a host variable in a dynam c statenment which
* woul d allow me to specify the library name passed in.
*/
sprintf(command,

"CPYF %s/ QAYPEUSRDF %/ USRDFCOPY CRTFI LE(*YES)",

lib, lib);
I ength = strlen(command);
cpynv(NUM_DESCR(_T_PACKED, 15, 5), &packed_| engt h,

NUM_DESCR(_T_SI GNED, 4, 0), &l ength);

QCMDEXC(command, packed_| ength);

sprintf(command,

" CPYF %s/ QAYPETI DX %s/ TI DXCOPY CRTFI LE(*YES)",
lib, 1ib);

97

I ength = strlen(command);

cpynv(NUM _DESCR(_T_PACKED, 15, 5), &packed_I engt h,
NUM_DESCR(_T_SI GNED, 4, 0), &l ength);

QCMDEXC(command, packed_I ength);

/* get the nunmber of events to parse */
EXEC SQL
sel ect max(QRECN) into :cnt from USRDFCOPY;

for (i = 1; i <= cnt; i++)
{
/* get a row of data to parse */
EXEC SQL
sel ect QUSDTA into :dta from USRDFCOPY where QRECN = :i;
EXEC SQL
I NSERT i nt o JOPEXOUT
(record,
portaddr,

accpat haddr,

obj ect addr,
recrasetting,
recraobjects,
smapptrans,
smappreason,
cycleid,

cur SegNum

cur SyncPoi nt,
writes,
permifites,
syncDbReads,
syncNonDbReads,
syncDbW i tes,
syncNonDbW i t es,
asyncDbReads,
asyncNonDbReads,
asyncDbWites,
asyncNonDbW i tes,
accessG oupFaul ts,
i oPendi ng\Wai ts,
synl oWi ts,
pageFaul t s,

sei zewt ,

mJOCommi t Ops,

mJ OSec Conmi t Ops,
mJ ODecomOps,

mJ OSec DecomOps,
mQAIrnWts,

mJ ONon SMAPP,
mJOUser ,
mJOSyst em

mJ OFi xedByt es,

mJ ODepFi xedByt es,
mJOTr ansi ent
mJODepTr ansi ent,
mJONapt i nme,
mJONaps,

mJOEval _Messages,
mJOTri ggered_Eval s,
mJOBui | dti me_Est s,
queui ng\Wai t Ti me)
sel ect QRECN,

98

HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,

HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,

HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,

HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,

HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,
HEX(SUBSTR(QUSDTA,

HEX(SUBSTR(QUSDTA,

1,
9
17,
25,
33,
37,
38,

8))

8))
8))
4))
1))
1))

41, 8))
49, 8))
57, 8))
65, 4)
69, 4)
73, 4)
77, 4)
81, 4)
85, 4)
89, 4)
93, 4)
97, 4)
101, 4
105, 4
109, 4
113, 4
117, 4
121, 8

129,
133,
137,
141,
145,
149,
153,
157,
161,
169,
177,
185,
193,
201,

NOOOWMOWMODMNDMNDMNDMNMNMNNNANDNALDN
NGNS ING NSNS INSINS NGNS IS NSNS
NN NN NN N NN NN N NN

205,
209,
213,

A DD
I
— — —

217, 8))

port addr,
8)) accpat haddr,

obj ect addr,
recrasetting,
recraobj ects,
smapptrans,
smeppr eason,

cycleid,
cur SegqNum
cur SyncPoi nt,

writes,
permiites,
syncDbReads,
syncNonDbReads,
syncDbW it es,
syncNonDbW i t es,
asyncDbReads,
asyncNonDbReads,
asyncDbW i tes,
asyncNonDbW i tes,
accessG oupFaul ts,
i oPendi ngWai t s,
synl oWai ts,
pageFaul ts,
sei zewt ,

mJ OConmi t Ops,

mJ OSec Conmi t Ops,
mJ ODecomOps,

mJ OSec DecomrOps,
mIQIrnWts,

mJ ONonSMAPP,
mJOUser ,
mJOSyst em

mJOFi xedByt es,
mJODepFi xedByt es,
mJOTr ansi ent ,
mJODepTr ansi ent,
mJONapt i me,

mJ ONaps,

mJOEval _Messages,
mJOTri gger ed_Eval s,
mJOBui | dti nme_Est s,

queui ngWai t Ti me

from USRDFCOPY where QRECN = :i;

EXEC SQL
SELECT QTITY, QTISTY
into :typ, :styp
from Tl DXCORPY
where QRECN = :i;
EXEC SQL
UPDATE JOPEXOUT
SET type =

where record = :i;

99

:typ, subtype = :styp

}

/* clean up the tenp files */
sprintf(conmmand,
"DLTF TI DXCOPY",
lib, 1ib);
length = strlen(comand);
cpynv(NUM_DESCR(_T_PACKED, 15, 5), &packed_| engt h,
NUM_DESCR(_T_SI GNED, 4, 0), &l ength);
QCMDEXC(command, packed_| ength);

/* clean up the tenp files */
sprintf(command,
"DLTF USRDFCOPY",
lib, lib);
Il ength = strlen(comand);
cpynv(NUM_DESCR(_T_PACKED, 15, 5), &packed_| ength,
NUM_DESCR(_T_SI GNED, 4, 0), &l ength);
QCMDEXC(command, packed_Il engt h);

/* set the current library to nothing */
sprintf(current, "*CRTDFT ");
strcpy(same, "*SAME ")

err_code = (Qus_EC_t *) errorbuffer;
err_code->Bytes_Provi ded = 0;

QLI CHGLL(current,

sane,
sane,
sane,
num user _li bs,
err_code);

}

return O;

}

100

