
© 2003 IBM Corporation

ITSO iSeries Technical Forum

International Technical Support Organization

ibm.com
What's New in DB2 UDB for iSeries V5R2

Hernando Bedoya

BP01

 F03BP01.PRZ 1

© 2003 IBM Corporation

Acknowledgments

Thank to the following people who contributed to this presentation
materials during an ITSO residency at the Rochester, MN Center.

* Satid Singkorapoom from IBM Thailand
* Nicolas Bueso from IBM Brasil
* Kent Milligan from PWD in Rochester

 F03BP01.PRZ 2

© 2003 IBM Corporation

1 9 8 8 1 9 9 2 1 9 9 6 2 0 0 0 2 0 0 4
0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

iSeries Customers using SQL

The industry trend toward
off-the-shelf software
results in a move to SQL

...

Openness - Industry Standard Support
Accomodate ISVs

Portability/Compatibility

Flexibility

Continued LEADERSHIP in database
technologies

Consistency across DB2 family

Shared R & D across IBM Labs

Continued Leveraging of iSeries Strengths

Availability

Scalability

Usability - Total Cost of Ownership

Application Flexibility

79.5

70

49

58.5C
on

fo
rm

an
ce

 S
ub

It
em

s

0 10 20 30 40 50 60 70 80

SQL Core Standard Items

DB2 UDB for iSeries V5R2DB2 UDB for iSeries V5R2

Microsoft SQL Server 2000

Oracle 8i

DB2 UDB for iSeries V5R1

DB2 UDB for iSeries Strategic Intiatives

 F03BP01.PRZ 3

© 2003 IBM Corporation

Notes

SQL is the industry standard for database access and programming. While the heritage of application
development on the iSeries has been to use RPG-like native interfaces such as Data Desription
Specifications (DDS) for defining databases, and using HLL languages such as RPG or COBOL to
manipulate the data - ISVs and other application development efforts will be done using SQL.
From a terminology standpoint, there are many SQL-based database access methods, but they are all
fundamentally using the SQL (Structured Query Language) constructs. For instance, JDBC, ODBC,
DRDA, CLI are all common standards that leverage SQL.
A key BENEFIT of DB2 UDB for iSeries is that you can use SQL or DDS/HLL interfaces interchangeably
because you have a SINGLE database management system (DB2 UDB for iSeries). For example,
tables created with SQL can be accessed by HLL programs like RPG. Files (Tables) created with DDS
can be accessed by SQL programs.

Another benefit of this architecture is you do not have to DIVE FULL SPEED AHEAD into SQL - but you
can move at the pace that makes the most sense as you obtain more SQL skills.

 F03BP01.PRZ 4

© 2003 IBM Corporation

Adaptive e-transaction Services

Extends iSeries robust transaction
services to e-business applications

Further optimizes iSeries
performance for Websphere &
Java transaction workloads

Open Standards support:
XA & JTA (Java Transaction API)

1000s of clients

A
pp

lic
at

io
n

S
er

ve
r

5

1 Server Job 1

Server Job
m

Transaction
Objects

DB2 UDB
for

ISeries

iS
er

ie
s

C
o

n
n

ec
ti

o
n

M

an
ag

em
en

t

DB2 Re-engineering: Building the Foundation

Database Technology Enhancements

Incorporation of the latest query
optimization techniques and algorithms

Object-oriented query optimizer that lays
foundation for self-learning query optimizer

Streamlined data access for SQL interfaces

Subset of read-only queries supported in V5R2

 F03BP01.PRZ 5

© 2003 IBM Corporation

Notes

One of the reasons that DB2 UDB for iSeries is such a reliable server is that much of the database
engine code has been customer-proven for many, many years. Parts of the database engine even
pre-dates the original AS/400 which arrived in 1988. One of the challenges with a mature code base is
that it is harder over time to enhance that code to meet new industry standards and interfaces. Thus, a
couple of re-engineering projects have been necessary to modernize the engine of DB2 UDB for iSeries.
Two of these re-engineering projects have surfaced in V5R2 with the delivery of adaptive e-transaction
services and a new query engine.

 F03BP01.PRZ 6

© 2003 IBM Corporation

"Of all the vendors that have embraced the concept of the universal database it is arguably DB2 that is the most
comprehensive. In particular, IBM appears to be the most firmly committed to offering an all-embracing product
set." - Bloor Research, "Databases - an evaluation and comparison," Jan. 2002

Application Flexibility & Portability
Enhanced SQL Standards support

IDENTITY column attribute
UNION in a View

Improved DB2 Family Compatibility
UDTFs & Temporary tables

Adaptive e-Transaction Services

Server Consolidation
DB2 UDB in Linux
Database Migration Toolkits

Performance
Improved EVI Maintenance
Adaptive e-Transaction Services

Usability
iSeries Navigator Enhancements
DB2 OLAP V8
SQL Enhancements for Traditional
Progammers

SQL Field Reference File
SQL Source Debugger

Database Availability
Switchable Disk Clustering with
Independent ASP Support
Journal Standby Mode
Access Path Protection Advisor

DB2 UDB for iSeries: V5R2 Enhancements

 F03BP01.PRZ 7

© 2003 IBM Corporation

Notes

Some of the more interesting V5R2 database enhancements that are covered here are
categorized to proivede a perspective on the strategy behind these enhancements.

 F03BP01.PRZ 8

© 2003 IBM Corporation

Agenda

OS/400 V5R2 Enhancements for

SQL Enhancements for Traditional Programmers

SQL Enhancements for Compatibility and Portability
iSeries Navigator: Database Functions
Other DB2-related Enhancements

 F03BP01.PRZ 9

© 2003 IBM Corporation

Notes
This presentation has been divided in four main sections:

SQL Enhancements for Traditional Programmers: In this section we will discuss the
SQL enhancements of the database and SQL syntax support of V5R2.
SQL Enhancements for Portability and Compatibility: In this section we will
discuss the major SQL enhancements of the database that makes DB2 UDB for iSeries
the database the complies the most with the SQL Standard.
iSeries Navigator Database enhancements: Since V4R5, iSeries Navigator has
become the main tool for all the database administration tasks in DB2 UDB for iSeries.
In V5R2, there are two major enhancements that are covered in this presentation: SQL
Assist tool and Enhanced Visual Explain
Other DB2-related tools: We discuss other DB2-related enhancements such as
ODBC/JDBC enhancements and SQL source-level debugger.

 **
 Note: Throughout the presentation, we use the following terms :
 "Schema" is equivalent to library or database.
 "Table" is equivalent to physical file.
 "View" is equivalent to logical file.
 "Index" is equivalent to keyed logical file.
 "Column" is equivalent to field.
 "Row" is equivalent to record.

 F03BP01.PRZ 10

SQL Enhancements for
Traditional Programmers

 F03BP01.PRZ 11

© 2003 IBM Corporation

Notes

Let's start discussing theSQL enhancements that benefit the traditional iSeries programmers.

 F03BP01.PRZ 12

© 2003 IBM Corporation

SQL Enhancements for Traditional Programmers

Field Reference Files and CREATE TABLE AS

Packaging and Debug improvements
SQL Procedure Debug improvements
Library List Interoperability

 F03BP01.PRZ 13

© 2003 IBM CorporationField Reference Files & CREATE
TABLE AS

CREATE TABLE AS builds on the CREATE TABLE LIKE support
introduced in V5R1

Allows data to be copied into newly created table
SQL Interface for CRTDUPOBJ & CPYF support

Allows for simulation of DDS Field Reference File support

Simpilifies summary/work table creation into one step

CREATE TABLE SalesByRegion AS
 (SELECT region, SUM(to_sales) FROM sales GROUP BY region)
 WITH DATA

CREATE TABLE customer AS
 (SELECT id cust_id, lname cust_lastname, fname cust_firstname,
 city cust_city FROM ref_file)
 WITH NO DATA

Field Reference Files & CREATE TABLE AS

 F03BP01.PRZ 14

© 2003 IBM Corporation

Notes

SQL support for field reference files will be the most appealing new function to the traditional iSeries
programming community. Field reference files allowed DDS definitions for common fields like city and
phone number to be reused instead of duplicating in multiple physical file definitions. SQL's CREATE
TABLE statement did not have any equivalent to field reference files, so that made it tough for you to
convert physical file definitions over to SQL. CREATE TABLE statement has been enhanced with
special syntax in V5R2 to make common field definitions stored in field reference files available to SQL
tables. The first SQL statement shown here demonstrates how to use this new syntax. You want to
create a customer table reusing the definitions for id, last names (lname), first names (fname) and city
from the field reference file, ref_file. If the city field definition was a 30-byte character field in the
reference file, cust_city will be defined as a 30-byte character field in the customer table. The WITH NO
DATA clause specifies that the referenced SELECT statement should not be run to return data.

The second statement shows how this new support on the CREATE TABLE statement can be used to
create and populate a work or summary table with a single SQL statement. The nested SELECT
statement is processed by DB2 UDB to figure out the column definitions (type and length) that need to
be created in the specified table and the WITH DATA clause tells DB2 UDB to run the specified SELECT
statement and place the results in the newly created table.

 F03BP01.PRZ 15

© 2003 IBM CorporationPackaging & Debug Improvements

SQL procedures, triggers, and function can be created without buying the DB2
SQL Development Kit product

V5R1 eliminated the C compiler requirement

V5R2 eliminates the SQL C precompiler requirement
Easier deployment of SQL Triggers since most of the time they have to be recreated on production systems

SET OPTION DBGVIEW=*SOURCE allows SQL procedures, triggers, and
functions to be debugged without having to view generated C code

Source debug can only be done within the job that created the SQL object (procedure, trigger,
etc) - debuggable view stored in QTEMP

iSeries Navigator Generate SQL option makes it very easy to recreate SQL object with
*SOURCE debug view

DBGVIEW(*SOURCE) parameter also added to RUNSQLSTM

Lays groundwork for graphical DB2 debugger

Packaging & Debug Improvements

 F03BP01.PRZ 16

© 2003 IBM Corporation

Notes

Traditional iSeries programmers that are already utilizing SQL procedures, functions, and triggers to
implement business processes will attest to the debug challenges associated with these SQL objects.
When an SQL procedures, function, or a trigger is created, DB2 UDB generates a C-program object
that implements the specified logic. iSeries programmers wanting to debug these SQL objects soon
found that they had to step thru the C code generated by DB2 UDB which is not a pleasant experience
for an RPG or COBOL programmer. To improve the debug process in V5R2, an SQL source-level
debugger has been delivered so that the programmer only sees and debugs the SQL statements they
coded. The SQL source-level debugger is activated by embedding this SQL statement, SET OPTION
DBGVIEW=*SOURCE within their SQL procedure, trigger, or function definition.

SQL source-level debugging can only be done within the job that created the *SOURCE debug view
since that debug view is stored in QTEMP.

iSeries programmers interested in leveraging SQL procedures, triggers, and functions will no longer
have to first convince their boss to buy the DB2 SQL Development Kit product. When SQL stored
procedures were first introduced, programmers first had to purchase and install the DB2 SQL
Development Kit and the ILE C compiler - the V5R2 implementation has no dependencies on LPPs
(licensed-program products).

 F03BP01.PRZ 17

© 2003 IBM CorporationSQL Procedure Debug
Improvements

*SOURCE
 view

V5R1
PTFs:
SI06359
SI06310
SI06358

SQL Procedure Debug Improvements

 F03BP01.PRZ 18

© 2003 IBM Corporation

Notes

You can eval the label or procedure name to get all the values.
The indicators are always immediately following the variable.
EVAL TST
TST.V1 = 1
TST.SQLP_I2 = 0
TST.C1 = SPP:F68CDAC3240011F6
TST.SQLP_I3 = 0

 EVAL PA99
 PA99.P1 = 1
 PA99.SQLP_I1 = 0

 EVAL TST.V1
 TST.V1 = 1

Character data must be eval'd with an *. It's best to specify
the length.
EVAL *TST.C1 :S 5
*TST.C1 :S 5 = "AAAAA"

 F03BP01.PRZ 19

© 2003 IBM CorporationSQL Procedure Debug
Improvements - *SOURCE tips

CREATE PROCEDURE p22(IN parm1 INTEGER)
 LANGUAGE SQL
 SET OPTION DBGVIEW=*SOURCE
sp: BEGIN
DECLARE x,y INT;
DECLARE z CHAR(5);
 SET x = parm1;
 SET y =-9;
 SET y = absval((x+1)*y);
 SET z = 'ABCDE';
END;

Accessing SQL variables & parameters
Parameters:

EVAL P22.PARM1
Variables:

EVAL SP
EVAL SP.X
EVAL *SP.Z :S 5

SQL Procedure Debug Improvements - *SOURCE tips

 F03BP01.PRZ 20

© 2003 IBM CorporationLibrary List Interoperability

New SET SCHEMA statement for controlling current library via SQL interface
(Dynamic SQL only)

Example: SET SCHEMA=prodlib

Does not effect unqualified procedure, UDF, and UDT references which are controlled by the
SET PATH statement

New special register, CURRENT SCHEMA, contains the current schema value
VALUES (CURRENT SCHEMA) INTO :hostvar

Defaults to *LIBL for *SYS naming and USER special register
for *SQL naming

SQLID treated as synonym for SCHEMA for DB2 UDB Family compatability,
Ex: SET SQLID=prodlib

Dynamic SQL executed from an SQL Package (ie, Extended Dynamic) will
always use the DYNDFTCOL setting from the package if it has been specified

Library List Interoperability

 F03BP01.PRZ 21

© 2003 IBM Corporation

Notes

Traditional programmers will also benefit from being able to control the current library for dynamic SQL
statements with the new SET SCHEMA statement.
Static embedded SQL statements (eg, a SELECT embedded in an RPG program) are not affected by
the SET SCHEMA statement
Unqualified procedure, function, and UDT references are also not affect since they rely on the SET
PATH statement

SET SCHEMA equivalent to calling the QSQCHGDC API that was made available on previous releases -
this API sets the default collection for Dynamic SQL requests.

Dynamic SQL statements that are stored in an SQL Package that has been created with a Dynamic
Default Collection will continue to use this specified collection (or schema) and ignore any SET SCHEMA
requests.

 F03BP01.PRZ 22

SQL Enhancements for
Portability & Compatibility

 F03BP01.PRZ 23

© 2003 IBM Corporation

V5R2 DB2 UDB Enhancements

New support for IDENTITY column attribute

New support for ROWID data type and ROWID function
New support for UDTF (User-defined Table Function)
Table Statistics Manager

Many SQL enhancements

 F03BP01.PRZ 24

© 2003 IBM Corporation

Notes
Among the most important enhancements to DB2 UDB for iSeries in V5R2 are:

New support for IDENTITY column attribute. Very useful for automatic value increment generation for a column.
New support for ROWID data type and ROWID function which identifies a row in a table giving the row an unique value.
New support for User Defined Table Functions. This is an improvement to the concept of UDFs announced back in V4R4.
New table statistics manager which will provide an alternative to creating new indexes.
Many more SQL enhancements
Other new enhancements will be discussed.

 F03BP01.PRZ 25

© 2003 IBM Corporation

IDENTITY Column Attribute

For columns with data types:
INTEGER, SMALLINT, BIGINT, DECIMAL, or NUMERIC

For automatic "running number" values
Can be incremented or decremented with:

Starting value and stepping value (+ or -)
Minimum and maximum limits
Whether to allow external input of values
Whether to recycle the value when limit is reached
Not guaranteed to be unique, primary key constraint or unique index should
be defined over the column

Value generated only for newly-inserted rows

Declared by using CREATE / ALTER TABLE or iSeries
Navigator

New in
V5R2

 F03BP01.PRZ 26

© 2003 IBM Corporation

Notes
Identity column attribute

This new feature is used to declare only one column (per table) with a data type of INTEGER,
SMALLINT, BIGINT, NUMERIC or DECIMAL to be used as the identity column with automatic value
increment (or decrement). This is useful when you want to use that column to contain an automatic
running numeric value that serves, for example, as an identity for each row of data.

The running number occurs for every newly inserted row.

You can specify many attributes for the identity column, such as:
Starting value and its step (positive value for increment or negative for decrement)
Minimum and maximum values
Whether to allow external input of the value in this column or not
Whether to recycle the value when its maximum or minimum limit is reached or not
An identity column cannot coexist with another column of type ROWID in the same table.

You can also use SQL syntax ALTER TABLE <table name> ALTER COLUMN to:
Change attributes of the existing identity column
Add a new column with the identity definition (if none exists yet)
Drop an existing identity column definition (without dropping the column).

Attention: This syntax does not support declaring an existing eligible column into an identity one (if none
exists yet).

 F03BP01.PRZ 27

© 2003 IBM Corporation

IDENTITY Column Attribute

New in
V5R2

 F03BP01.PRZ 28

© 2003 IBM Corporation

Notes
iSeries Navigator support for Identity Column declaration

- Right -click the schema object where the table is to be created and select New --> Table from its pop-up menu
or
- Right-click an existing table object and select Properties from its pop-up menu

IDENTITY_VAL_LOCAL function can be used to retrieve value generated by the database. For example: VALUES
IDENTITY_VAL_LOCAL() INTO :IVAR

This function is not affected by the following statements: UPDATE, COMMIT, ROLLBACK, and Non-Identity INSERT
BEFORE Trigger would obtain the generated value with Trigger transition variable

 F03BP01.PRZ 29

© 2003 IBM Corporation

ROWID Data Type

Used as a unique identifier of each row among tables
Declaring a unique constraint guarantees uniqueness

System-generated value
Generated for existing and new rows

40-byte bit-oriented value : not subject to CCSID
Generated by an algorithm that produces highly unique value

Take server's serial number as one of the input

Example of use: bank account transaction ID, sales order transaction
ID, etc.

Can receive value from external sources
Use ROWID scalar function to convert the external value

New in
V5R2

 F03BP01.PRZ 30

© 2003 IBM Corporation

Notes

The ROWID data type can be specified for only one column in a table to hold a
unique identity value (40-byte long) for a row of data. This identity value is
calculated by a complex formula that takes into account, for example, the
machine’s serial number, so that even each row of data in tables residing in
different machines of the same organization can be uniquely identified with a
very low possibility of duplicated ROWID values.

The ROWID data type is not subject to CCSID because it is treated by DB2
UDB as bit-oriented data.

You have no control over the attributes of the ROWID data type. If you need to
control certain attributes of the identity value, identity column attribute may be
your alternative option. But the identity column attribute is based on a relatively
simpler implementation concept than the ROWID type. So, it may not sufficiently
serve the purpose of a very highly unique identification of a data row in many
situations.

 F03BP01.PRZ 31

© 2003 IBM Corporation

ROWID Data Type

 F03BP01.PRZ 32

© 2003 IBM Corporation

Notes
A new column of type ROWID can be added to existing tables and ROWID values will be automatically generated for all existing rows.

 F03BP01.PRZ 33

© 2003 IBM Corporation

User-defined Table Function

Return rows of data in a temporary table
Additional flexibility in tailoring a function for repetitive use

Invoked by TABLE function
Example: SELECT * FROM TABLE (<udtf>) AS T1 ;

<udtf> = Its name and parameters
"AS T1" is correlation clause representing temp table

SQL UDTF or External UDTF
No Sourced UDTF

Improve performance of DB2 UDB XML Extenders

New in
V5R2

 F03BP01.PRZ 34

© 2003 IBM Corporation

Notes
User-defined functions (UDF) has been around since DB2 UDB for OS/400 was introduced in V4R4, but it has only been a
scalar function that returns a single value each time it is invoked. As of V5R2, you can create a UDF that can return a set of
rows of data, and thus its name of User-defined Table Function (UDTF). Like UDF, UDTF can be an external or SQL UDTF.

Unlike UDF, there is no “sourced” UDTF.

Imagine the advantage a UDTF can bring to you when you wish to standardize a complex customized SQL program that
produces a result set into an SQL syntax that everyone who needs its functionality can use it from SQL interface. For
example, you can create a UDTF named EMPBYPROJ that contains the following statement:

SELECT EMPNO,FIRSTNME,LASTNAME,BIRTHDATE
FROM SAMPLEDB01.EMPLOYEE WHERE EMPNO IN (
 SELECT EMPNO FROM SAMPLEDB01.EMPPROJACT
 WHERE PROJNO =‘<project_number>’);

Then you can use it with the following standard one-line statement:
SELECT *FROM TABLE(EMPBYPROJ(‘<project_number>’)) AS T1;

A UDTF is invoked by: SELECT ... FROM TABLE(<UDTF_name> (<its_parameters>)) AS T1 ;

Like a UDF, you can create a UDTF by using SQL statement: CREATE FUNCTION or iSeries
Navigator. For the latter method, you right-click the schema name in which you want to keep
the UDTF definition and select New --> Function --> SQL or External.

 F03BP01.PRZ 35

© 2003 IBM Corporation

 Creating a UDTF (1/2)

New
in

V5R2

 F03BP01.PRZ 36

© 2003 IBM Corporation

Notes
On this chart you can see the iSeries Navigator interface for creating User Defined table functions.

Note that in V5R2 the UDF can not only return a scalar function as in V4R4 but it can return a table.

 F03BP01.PRZ 37

© 2003 IBM Corporation

 Creating a UDTF (2/2)

 F03BP01.PRZ 38

© 2003 IBM Corporation

Notes
Note that there are three tabs for creating an UDF.

On the first tab we define that the returning value is a table instead of a scalar function.

On the second tab we define any parameters that the function has an in input.

On the third tab we define the columns which will be the returning values of the table.

 F03BP01.PRZ 39

© 2003 IBM Corporation

Key
Value

Co
de

First
Row

Last
Row

Coun
t

MN 1 1 4 2

NY 2 5 5 1

TX 3 2 3 2

1 3 3 1 2

Index

Name Age Street City St
at
e

John Smith 30 111
Broadway

Rochester M
N

Miike
Johnson

40 5 N 7th St Austin T
X

Pete
Peterson

35 1234 E Main Dallas T
X

Debra
Jones

33 1133
Washington
Av

Austin M
N

Angie Smith 25 111
Broadway

Rochester N
Y

Table

Statistics Manager
Background
automatic analysis of
table and indexes to
produce statistics

Index Advisor
Analyzes statistics related
to a query to determine
which indexes should be
created

Additional statistics
and indexes help the
query optimizer pick
the optimal access

methods

Statistics
Cardinality (unique key values)
By column:
 Estimated value ranges (histograms)
 Estimated most common values

Index Advisor
Analyze and suggest
recommendations for
performance improvements

Statistics Manager
Additional statistics to aid
query optimization

Estimated Value Ranges
Estimated Count of
 Most Common Values

Stats provide alternative to
creating new indexes

Performance and Self-Management

 F03BP01.PRZ 40

© 2003 IBM Corporation

Table Statistics Manager

Collection of additional table and column statistics data
Additional statistics to aid query optimization

Estimated Value Range in columns
Estimated count of Most Common Values in columns

Providing alternative to creating new indexes
Less indexes to manage, less disk space occupied

Automatic or manual update of statistics

New in
V5R2

 F03BP01.PRZ 41

© 2003 IBM Corporation

Notes
Since its creation DB2/400 or DB2 UDB for iSeries has rely on the statistics provided by the logical files or indexes to give the optimizer
information on the best way to execute a query request.

As of V5R2 DB2 UDB for iSeries has a additional Table statistics manager which is able to collect statistics on tables and columns. This
statistics are useful to aid the optimizer. It is an alternative to creating indexes.

This statistics can be updated on a manual way or it could be automatically.

 F03BP01.PRZ 42

© 2003 IBM Corporation

Invoked from three places:
iSeries Navigator's Databases functional icon
right-click pop-up menu

iSeries Navigator's Table object right-click
pop-up menu
From V5R2 Visual Explain's Statistics and
Index Advisor menu option.

Invoking the Table Statistics Manager

 F03BP01.PRZ 43

© 2003 IBM Corporation

Notes

This chart shows the three different places where the table statistics Manager can be invoked.

 F03BP01.PRZ 44

© 2003 IBM Corporation

Collecting Statistics New in
V5R2

 F03BP01.PRZ 45

© 2003 IBM Corporation

Notes

Once you have invoked the Table Statistics manager, you can start to collect statistics data for specifics columns as shown on this chart.

 F03BP01.PRZ 46

© 2003 IBM Corporation

Displaying Statistics New in
V5R2

 F03BP01.PRZ 47

© 2003 IBM Corporation

Notes

Once we have gathered statistics for certain tables , we can display the statistics by pressing the details radio button. On the chart we are
looking the statistics for the column L_SUPPKEY.

 F03BP01.PRZ 48

© 2003 IBM Corporation

SQL: Fullselect (UNION) in a VIEW

UNIONs can now be included in common table expressions and
derived tables

Example:

CREATE VIEW AS total_sales (

SELECT COUNT(*), SUM(total_sale) FROM sales1999

WHERE product_id = 'XYZ'

UNION SELECT COUNT(*), SUM(total_sale) FROM sales2000

WHERE product_id = 'XYZ'

UNION SELECT COUNT(*), SUM(total_sale) FROM sales2001

WHERE product_id = 'XYZ')

New in
V5R2

 F03BP01.PRZ 49

© 2003 IBM Corporation

Notes

In V5R1, the CREATE VIEW AS only supports subselect which means
UNION cannot be specified. As of V5R2, you can use a fullselect
statement which means UNION is supported.

V5R2: enhancements for derived tables and common table expressions

You can now use the following syntax in derived tables and common table
expressions:

Fullselect (SELECT with UNION)
ORDER BY and FETCH FIRST n ROWS ONLY.
An example: SELECT SUM(COMM) FROM (SELECT COMM
FROM SAMPLEDB01.STAFF WHERE COMM IS NOT NULL
ORDER BY COMM DESC FETCH FIRST 10 ROWS ONLY) AS T1
;

 F03BP01.PRZ 50

© 2003 IBM Corporation

SQL: GLOBAL TEMPORARY TABLE

Creates a table for the current application process that is not
registered in DB2 catalogs and cannot be shared by other processes
(global within a process)
When application process ends (job end or connection end), the
temp. table is deleted
Always created in SESSION schema (QTEMP library)

Example:

DECLARE GLOBAL TEMPORARY TABLE tmp_projects (
projno INTEGER, name CHAR(30), deadline TIMESTAMP)
ON COMMIT PRESERVE ROWS

DECLARE GLOBAL TEMPORARY TABLE summary

LIKE prodlib.sales_summ ON COMMIT DELETE ROWS

 F03BP01.PRZ 51

© 2003 IBM Corporation

Notes
V5R2: DECLARE GLOBAL TEMPORARY TABLE

This syntax creates a temporary table that is accessible to all applications running within the same process (global within a process). The
table information does not appear in DB2 system-wide catalogs. Once created, the global temporary table can be manipulated in the same
way you do with a normal table. But it cannot be accessed from other application processes and is automatically deleted when you end your
application process.

Use this syntax in the same way you would use CREATE TABLE (including LIKE and AS).

 F03BP01.PRZ 52

© 2003 IBM Corporation

Procedural SQL Syntax (1/2)

Procedural SQL, used in stored procedures, triggers,
and functions, now supports the following:

Nested compound statements
CREATE PROCEDURE CheckCategory ...
BEGIN
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN SET PrevSQLState=SQLSTATE; SET ErrorState=ErrorOccurred;
 END;
...
 SET ErrorState=CleanState;
 SET MyCategory=SELECT Category FROM orders WHERE...
...
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION...
 UPDATE inquiries SET inqCount=inqCount+1 WHEREMyCategory=...
 END
...
END

 F03BP01.PRZ 53

© 2003 IBM Corporation

Notes

In procedural SQL used in Stored Procedures, triggers and functions nested compound statements are supported. Prior to V5R2 nested
compound statements were not possible to code in a Stored Procedure, trigger or function.

 F03BP01.PRZ 54

© 2003 IBM Corporation

Procedural SQL Syntax (2/2)

Iterate Statement
...
ins_loop: LOOP
 FETCH c1 INTO v_dept,v_deptname,v_admdept;
 IF at_end =1 THEN LEAVE ins_loop;
 ELSE IF v_dept =’D11 ’THEN ITERATE ins_loop;
 END IF ;
 INSERT INTO department VALUES (’NEW ’,v_deptname,v_admdept);
END LOOP;

Multiple conditions for a handler
...
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION, NOT FOUND
 BEGIN
 SET PrevSQLState=SQLSTATE;
 SET ErrorState=ErrorOccurred;
 END;
... F03BP01.PRZ 55

© 2003 IBM Corporation

Notes
The other two programming structures supported in Procedural SQL are:

The ITERATE statement
When you are defining a condition for a Handler, in V5R2 you can define multiple conditions for a handler.

 F03BP01.PRZ 56

© 2003 IBM Corporation

SQL: Scalar Subselect Enhancement

Scalar Subselect was first allowed in the select-list in V5R1. V5R2
eliminates restrictions that were part of the initial support

Subselect can now be part of an expression and be included anywhere an
expression is allowed
Also now allowed on INSERT VALUES clause

Example:
SELECT deptno, (SELECT MAX(salary) FROM employee WHERE
workdept = deparment.deptno) AS maxsalary FROM department
WHERE location = 'MN'

INSERT INTO department
 VALUES ((SELECT MAX(deptno)+1 FROM DEPARTMENT),

 'Corporate Relations', 'MN')

 F03BP01.PRZ 57

© 2003 IBM Corporation

Notes
Scalar subselect was supported prior to V5R2, but there were some limitations. In V5R2 such limitations have been lifted and now a
subselect can now be part of an expression and can be included anywhere an expression is allowed. It can now be also allowed on the
INSERT VALUES clause.

 F03BP01.PRZ 58

© 2003 IBM Corporation

Support for switching database and non-database
objects between systems

Easy switchover of application database(s) for
scheduled maintenance and upgrades

Primary & Secondary system have to be within 250 meters
Clustering (IP Takeover) is the switching mechanism

Switched Disk

System
Data

System
Data

DB2
BI App

DB2
ERP App

IFS
UDFS

DB2
SCM App

DB2 object support in IASPs (Independent ASPs)

 F03BP01.PRZ 59

© 2003 IBM Corporation

Library (database) names only have to be unique within an IASP
Example: one server could have 3 libraries named MYLIB, each in it's own
independent ASP
Which "duplicate" library to access is controlled by one of the following:

Job description parameter (INLASPGRP)
SQL CONNECT statement
SETASPGRP CL command

Provides another level of Server Consolidation by sharing a single
application across multiple databases that share the same name

NOT recommended if the applications use SQL program, module, or
package objects

SQL stores access plans in program & package objects that are dependent on the
database location
SQL access plans will be rebuilt each time that an end-user accesses a database
that's different than the previous execution with the program - this will cause
performance problems

SQL application object would need a copy in each IASP to achieve
acceptable performance

Multiple Database Names Spaces with IASP

 F03BP01.PRZ 60

© 2003 IBM Corporation

Miscellaneous

Result Set support for stored procedure calls between iSeries servers
(ie, web server calls procedure on production server)
Removal of ORDER BY restriction

Previously, columns specified in ORDER BY clause must exist in the SELECT
list. As of V5R2, they do not have to.

 SELECT empno, lastname FROM employee ORDER BY birthdate
64K SQL statement length (also delivered via PTF for V5R1)
Fullselect supported on Table Expressions & Derived Views

Allows UNION & FETCH FIRST N ROWS to be specified

 F03BP01.PRZ 61

© 2003 IBM Corporation

Notes
On this chart there is a list of additional enhancements to DB2 UDB for iSeries. Such as:

Improved support of result sets for stored procedures
Previously, columns specified in an ORDER BY clause must exist in the SELECT list. As of V5R2 this is no longer necessary.
Now an SQL statement can be up to 64K long.
Fullselect support on Table expressions and derived views.

 F03BP01.PRZ 62

iSeries Navigator: DB functions
V5R2 enhancements

 F03BP01.PRZ 63

© 2003 IBM Corporation

Notes
iSeries Navigator is the new name for the previous Operations Navigator. This is the prefer graphical tool on the iSeries. From a Database
point of view this is the Database administrators administration tool. Now lets look at the iSeries Navigator enhancements related to DB2
UDB for iSeries.

 F03BP01.PRZ 64

© 2003 IBM Corporation

V5R2 iSeries Navigator: DB functions

New DB2-related capabilities in iSeries Navigator
SQL Assist tool
Managing transactions
Enhanced Visual Explain

Enhanced Database Navigator
Explain SQL for SQL package, procedure, or function

SQL Scripts Center

New in
V5R2

New in
V5R2

 F03BP01.PRZ 65

© 2003 IBM Corporation

Notes
This chart shows a list of all the new DB2 related capabilities in the iSeries Navigator as of V5R2.

SQL Assist tool
Managing transactions
Enhanced Visual Explain
Enhanced Database Navigator
Explain for SQL Package, procedure and function
SQL Script center.

 F03BP01.PRZ 66

© 2003 IBM Corporation

SQL Assist New in
V5R2

A GUI that helps generate syntax for:
SELECT, INSERT, UPDATE, DELETE

Invoked from Run SQL Script Center
Edit --> Insert Built SQL
Edit --> Prompt SQL after highlighting an existing statement

Some useful features
Expression Builder: lists all supported SQL functions and procedure
flow control

Automatically identify declared primary/foreing keys relationships (from
referential contraints)

 F03BP01.PRZ 67

© 2003 IBM Corporation

Notes
SQL Assist function brings the same ease-of-use feature of 5250 session’s CL syntax prompt (F4) to Run SQL Scripts center. It helps you
create some basic SQL statements (SELECT, INSERT, UPDATE, and DELETE) by going through step by step prompts in the GUI. It is
intended to help those who are not fluent in SQL in building basic statements.

You invoke SQL Assist from Run SQL Scripts center menu item Edit --> Insert Built SQL.. Or you highlight a statement in the work area and
press F4 function key or select Edit -> Prompt SQL. You use the latter method when you wish to modify an existing statement.

 F03BP01.PRZ 68

© 2003 IBM Corporation

SQL Assist

 F03BP01.PRZ 69

© 2003 IBM Corporation

Notes
This tool is an example of the advantages of the integration between the different DB2 labs. This is a tool which was borrowed from the DB2
for NT and Unix environment.
The main SQL Assist window is composed of three main panels: Outline, Details, and SQL Code

You can use the Change Connection button to switch your connection among multiple database instances that you wish to work with

 F03BP01.PRZ 70

© 2003 IBM Corporation

SQL Assist : Expression Builder

 F03BP01.PRZ 71

© 2003 IBM Corporation

Notes

The SQL Assist tool has an Expression Builder for making easier the creation of complex expression using a graphical interface.

 F03BP01.PRZ 72

© 2003 IBM Corporation

SQL Assist : Find Column Value
- Display all distinct values of a column

 F03BP01.PRZ 73

© 2003 IBM Corporation

Notes

Another of the features of the SQL Assist is the Find Column Value which opens a window where you can select from a list of unique values
for the column in the current database.

 F03BP01.PRZ 74

© 2003 IBM Corporation

iSeries Navigator view: Relational DB Directory (WRKRDBDIRE) View:

Relational Remote
Database Location

AS20 RCHASX20
DBCOOK LOOPBACK
DBEUOPS LOOPBACK
RCHASE5C *LOCAL

Schema / Library in IASP database

Schema / Library in system ASP database

DDM access of IASP database objects controlled with new RDB parameter
CRTDDMF ... RMTLOCNAME(*RDB) RDB(DBCOOK)

Multiple Database Name Spaces with IASPs

 F03BP01.PRZ 75

© 2003 IBM Corporation

Managing transactions

Manage two types of transactions:
DB2 UDB-managed transactions

X/Open global transactions

Can customize view by:
Sorting

Include: transaction of interest
Columns: attributes of interest

New in
V5R2

 F03BP01.PRZ 76

© 2003 IBM Corporation

Notes
V5R2 delivers a new support for Adaptive e-Transaction Services. This model complies with X/Open Architecture standard and JTA model
that allow multiple transactions per database connection and multiple database connections per transaction. Each thread running in an
OS/400 job can now have its own commitment definition and lock control rather than sharing these within the job. So, it is now more
necessary for you to be able to monitor and manage transactions within your server. You use Transactions functional icon for such a
purpose.

There are two icons here for you to select:
Database Transactions: displays all transactions managed by DB2 UDB for iSeries
Global Transactions: displays all transactions associated with X/Open global transaction

You can customize the view of these two types of transactions by right-clicking the functional icon and select Customize this View for a
submenu which provides the following features:

Sort: You can specify a sorting based on various combinaton of transaction attributes
Include: You can specify a selection criteria of the transactions of your interest.

The available selection criteria for database transactions are: Unit of Work ID, Unit of Work State (All, Reset, Prepare in progress, Prepared, Last agent pending,
Commit in progress, Committed, Vote read-only, Rollback required, Rollback in progress), Job Name, Job User, Job Number, Resynchroniztion in Progress (All,
Yes, No)
The available selection criteria for global transactions are: Unit of Work ID, Unit of Work State (which cantain the same list as database transaction criteria),
Global Transaction ID, Branch Qualifier, Branch State (All, Active, Idle, Prepared, Rollback only, Heuristically completed, Non-existent), Lock Scope (All,
Transaction, Job), Resynchroniztion in Progress (All, Yes, No)

Columns:: You can select to view transaction attributes of your interest in the right panel.
The available attributes for database transactions are: Unit of Work ID, Unit of Work State, Job Name, Job User, Job Number, Resynchroniztion in Progress,
Commitment Definition
The available attributes for global transactions are: Global Transaction ID, Branch Qualifier, Branch State, Lock Scope, Unit of Work ID, Unit of Work State,
Resynchroniztion in Progress

 F03BP01.PRZ 77

© 2003 IBM Corporation

Managing Transactions

 F03BP01.PRZ 78

© 2003 IBM Corporation

Notes

Can manage individual transaction on :
Force commit

Force rollback
Cancel resynchronization

Display associated jobs
Display resource status

Row, DB Object, DB Journal, SNA conversation, TCP/IP connection, Remote
file, Remote DB, APIs

Display other properties

 F03BP01.PRZ 79

© 2003 IBM Corporation

Visual Explain

Enhancements in V5R2:
Print Preview
Index and Statistics Advisor

Can launch windows for Statistics Collection or Index Creation without having
to go back to iSeries Navigator main window

Selectable Graph Detail and Attributes Detail
Basic: excludes detailed low-level operations
Full: includes detailed low-level operations

New in
V5R2

 F03BP01.PRZ 80

© 2003 IBM Corporation

Notes
In V4R5 , Visual Explain was announced for DB2 UDB for AS/400. Visual Explain provides a graphical representation of the optimizer
implementation of a query request. The query request is broken down into individual components with icons representing each unique
component. Visual Explain also includes information on the database objects considered and chosen by the query optimizer. Visual Explain’s
detailed representation of the query implementation makes it easier to understand where the greatest cost is being incurred.

Visual Explain shows the job run environment details and the levels of database parallelism that were used to process the query. It also
shows the access plan in diagram form, which allows you to zoom to any part of the diagram for further details. If query performance is an
issue, Visual Explain provides information that can help you to determine whether you need to:
Rewrite or alter the SQL statement
Change the query attributes or environment settings
Create new indexes

Best of all, you do not have to run the query to find this information. Visual Explain has a modeling option that allows you to explain the query
without running it. That means you could try any of the changes suggested and see how they are likely to work, before you decide whether to
implement them.

Visual Explain is an advanced tool to assist you with the task of enhancing query performance, although it does not actually do this task for
you. You still need to understand the process of query optimization and the different access plans that can be implemented.

In V5R1, Visual Explain was enhanced to support more complex data access methods. It is now possible to save the explainable statements
as a Performance monitor. You can visualize the optimizer messages without having to go to the job log.

In V5R2 there are additional enhancements for this tool such as:
Print Preview
Index and Statistics advisor
Selectable graph detail and attributes detail.

On the following charts you will see this new enhacements.

 F03BP01.PRZ 81

© 2003 IBM Corporation

Visual Explain:Print Preview

 F03BP01.PRZ 82

© 2003 IBM Corporation

Visual Explain: Index Advisor (1/2)

New in
V5R2

 F03BP01.PRZ 83

© 2003 IBM Corporation

Visual Explain: Index Advisor (2/2)

 F03BP01.PRZ 84

© 2003 IBM Corporation

Notes

Now using Visual Explain you can see on one window all the indexes advised by the optimizer. You can decide to create this indexes by
pressing the Create radio button.

 F03BP01.PRZ 85

© 2003 IBM Corporation

Visual Explain: Selectable Detail

 F03BP01.PRZ 86

© 2003 IBM Corporation

DB Nav: Better Map and Trigger Support

TRIGGER

 F03BP01.PRZ 87

© 2003 IBM Corporation

Notes
The launch of DB2 UDB for iSeries Database Navigator, which is part of Operations Navigator in V5R1M0 Client Access Express, allows
database administrators to view a graphical representation of the database that they are trying to administer.

With Database Navigator, you can explore the complex relationships of your database objects using a graphical representation called a map.
The relationships that you see on the Database Navigator map are the relationships between:
Tables (for example, Referential Integrity constraints)
Any indexes over the tables
Any constraints, such as primary, foreign, unique, and check
Any views over the tables
Any aliases for the tables, etc.

Note: Database Navigator is not intended to be a data modeling tool like some existing products in the industry.

In V5R2 some enhancements were made to Database Navigator such as:

Improved graphical tool to visualize the maps created by the tool.
Better printing facility
Trigger support was added to the tool.

 F03BP01.PRZ 88

© 2003 IBM Corporation

Explain SQL Support

New in
V5R2

 F03BP01.PRZ 89

© 2003 IBM Corporation

Notes
Right-click an SQL package, procedure or function object and select Explain SQL from the pop-up menu. This produces the same result as
running OS/400 command PRTSQLINF (Print SQL Information).

 F03BP01.PRZ 90

© 2003 IBM Corporation

SQL Scripts Center

V5R2 SQL Scripts Center can display output parameter values
of a called procedure

New in
V5R2

 F03BP01.PRZ 91

© 2003 IBM Corporation

Notes
V5R2: Displaying output parameters of a procedure in Run SQL Scripts

Run SQL Scripts window is a good tool for you to use in testing stored procedures, UDF, or UDTF. Since it uses JDBC to connect to DB2
UDB for iSeries, you can call a stored procedure and receive the returned result without having to do any programming to prepare for the
result.

As of V5R2, when you call, from Run SQL Scripts window, a stored procedure that contains output parameters, the returned values of all
output parameters will automatically be displayed in the Messages tab for you.

 F03BP01.PRZ 92

Other DB2-related
V5R2 Enhancements

 F03BP01.PRZ 93

© 2003 IBM Corporation

Notes

Now lets take a look at some of the additional DB2 related V5R2 enhacements.

 F03BP01.PRZ 94

© 2003 IBM Corporation

V5R2 DB2-related Enhancements

Other DB2-related enhancements:
ODBC and JDBC catalog views
V5R2 ODBC Enhancements

Enhanced source-level debugger for SQL routines
Licensed programs requirement for creating SQL routines
Adaptive e-Transaction Services model

New in
V5R2

 F03BP01.PRZ 95

© 2003 IBM Corporation

Notes

On this chart you can see the additional enhancements related to DB2 on V5R2.

 F03BP01.PRZ 96

© 2003 IBM Corporation

ODBC and JDBC Catalog Views

ODBC and JDBC Catalog Views
Satisfy metadata API from client applications that store their data in
DB2 UDB for iSeries

Compatible with those of DB2 UDB for OS/390 and z/OS and DB2
UDB UWO version 8
Stored in a new schema: SYSIBM for better DB2 UDB portability

Will be adjusted accordingly if new specifications come out
Documented in Appendix G of V5R2 SQL Reference manual

New in
V5R2

 F03BP01.PRZ 97

© 2003 IBM Corporation

Notes
A new set of catalog views is added in V5R2 to satisfy ODBC and JDBC
metadata API requests from client/server applications that use DB2 UDB
for iSeries to stored their data. These views are compatible with those on
DB2 UDB for OS/390 and z/OS and DB2 UDB UWO Version 8.
They will also be accordingly adjusted when ODBC or JDBC specification
 enhances or modifies its metadata APIs.

These views exist in a new schema named SYSIBM for
better DB2 UDB portability.

You can find more details in appendix G: DB2 UDB for iSeries
Catalog Views of the V5R2 SQL Reference.

 F03BP01.PRZ 98

© 2003 IBM Corporation

ODBC Enhancements

V5R2 ODBC
Support for 2 GB LOBs (previously only 15 MB)

64-bit ODBC Driver for Windows
ODBC Driver for Linux clients

Enhanced support for SQLTablePriviliges & SQLColumnPrivileges
Ability to get back additional descriptor information, such as the base
table name for a result set column
Kerberos authentication

Improved documentation in iSeries Information Center web page

 F03BP01.PRZ 99

© 2003 IBM Corporation

Notes
The iSeries ODBC driver for LINUX clients can be downloaded from :
http://www.iseries.ibm.com/linux/odbc/

Further information at : http://www.iseries.ibm.com/clientaccess/toolkit/

 F03BP01.PRZ 100

© 2003 IBM Corporation

Enhanced source debugger for SQL

Source-level debugger now displays SQL source listing
Previously, only display C-generated code level

SET OPTION DBGVIEW = *STMT or *LIST since V4R2
Quite a messy view
For tracing detailed information by experienced programmers

New V5R2 option: SET OPTION DBGVIEW = *SOURCE
Used in CREATE FUNCTION, PROCEDURE or TRIGGER

Run in 5250 session only
1. Run CREATE routine syntax (with RUNSQLSTM)
2. SQL sources are stored in QTEMP/QSQDSRC file (member name = routine

name)
3. STRDBG lib/routine_name (in the same 5250 session as 1.)

Lay a future groundwork for graphical debugger

New
in

V5R2

 F03BP01.PRZ 101

© 2003 IBM Corporation

Notes
SQL routines are SQL functions, SQL stored procedures, or SQL triggers.

If your are an SQL programmer, you may find that, in many occasions, you wish to perform program source-level debugging on the SQL
routines that you create. Since V4R2, you have been able to do this by using the syntax SET OPTION DBGVIEW = *STMT or *LIST with the
CREATE FUNCTION, PROCEDURE, or TRIGGER syntaxes. But the source-level listing you can see in the debugger view is displayed in
C-generated codes only, which tends to be quite long and thus difficult to identify the entities of your interest. In V5R2, an enhancement helps
you see only SQL source codes listing in the debugger view.

Before you create an SQL routine, add the new syntax: SET OPTION DBGVIEW =*SOURCE before the program body of the SQL routine.
After the routine is created, you can use the OS/400 command: STRDBG lib/<routine name> to invoke the source debugger. You can see
SQL code debug view by pressing F15 and select “SQL Output View” option.

This support is not available through iSeries Navigator. You must use 5250 session for this support only. It is also important that you use
OS/400 command: RUNSQLSTM to execute the SQL scripts that create the routines (with SET OPTION DBGVIEW = *SOURCE) and then
run STRDBG command in that same 5250 session. This is because when the SQL routine is created, its source codes are added as a
member (with the same name as the routine’s name) into a source file named QSQDSRC which is always created in QTEMP library. The
debugger then uses this member to display the source codes in the debugger view. QTEMP library is always destroyed when you log off.

 F03BP01.PRZ 102

© 2003 IBM Corporation

Requirement for Creating SQL Routines

SQL procedures, triggers, and functions can be created with
less licensed program requirement

Before V5R1, need both CX1 (ILE C Compiler) and ST1 (SQL
Development Kit)

V5R1: no longer need CX1
V5R2: no longer need CX1 nor ST1

Need to install a free-of-charge OS/400 option: System
Openness Includes

Good
News

 F03BP01.PRZ 103

© 2003 IBM Corporation

Notes
The term SQL routine refers to SQL procedure, trigger, or user-defined function.

Before V5R1, you need two licensed programs to be able to create SQL routines:
57xx-CX1: ILE C Compiler
57xx-ST1: SQL Development Kit

In V5R1, you only need 57xx-ST1 to be able to create SQL routines.

As of V5R2, you do not need any of these licensed programs to create SQL routines.

You still need to install a free-of-charge OS/400 option “System Openness Includes” to create SQL routines.

 F03BP01.PRZ 104

© 2003 IBM Corporation

Adaptive e-Transaction Services

Easier porting of new e-business solutions to the iSeries
Eliminate iSeries specific code to manage transactions and database
connections in e-business and distributed applications

Compliant with XA standard and JTA
Multiple transactions per database connection
Multiple DB connections per transaction

Increased performance & improved scalability
Resources shared between clients

Efficient use of system resources
No improvement to simple SQL transactions

 F03BP01.PRZ 105

© 2003 IBM Corporation

Notes Current versus New Model

Activation
Groups

Commitment
Definitions

Job

LocksCommit
Blocks

Thread 1

Thread n

Current Model
Resources and locks
associated with job

Activation
Groups

Commitment
Definitions

Job

LocksCommit
Blocks

Thread 1

Thread n
Transaction

Object

Locks

Commit
Blocks

Commitment
Definitions

New Model
Resources and locks associated
independent of job

x

 F03BP01.PRZ 106

© 2003 IBM Corporation

1 9 8 8 1 9 9 2 1 9 9 6 2 0 0 0 2 0 0 4
0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

iSeries Customers using SQL

The industry trend toward
off-the-shelf software
results in a move to SQL

...

Openness - Industry Standard Support
Accomodate ISVs

Portability/Compatibility

Flexibility

Continued LEADERSHIP in database
technologies

Consistency across DB2 family

Shared R & D across IBM Labs

Continued Leveraging of iSeries Strengths

Availability

Scalability

Usability - Total Cost of Ownership

Application Flexibility

79.5

70

49

58.5C
on

fo
rm

an
ce

 S
ub

It
em

s

0 10 20 30 40 50 60 70 80

SQL Core Standard Items

DB2 UDB for iSeries V5R2DB2 UDB for iSeries V5R2

Microsoft SQL Server 2000

Oracle 8i

DB2 UDB for iSeries V5R1

DB2 UDB for iSeries Strategic Intiatives

 F03BP01.PRZ 107

© 2003 IBM Corporation

DB2 UDB for iSeries home page - http://www.iseries.ibm.com/db2

 DB2 UDB Extenders Site: http://www.ibm.com/software/data/db2/extenders/

Newsgroups
USENET: comp.sys.ibm.as400.misc, comp.databases.ibm-db2
iSeries Network (NEWS/400 Magazine) SQL & DB2 Forum -
http://www.iseriesnetwork.com/Forums/main.cfm?CFApp=59

Education Resources - Classroom & Online
http://www.iseries.ibm.com/db2/db2educ_m.htm
http://www.iseries.ibm.com/developer/education/ibo/index.html

DB2 UDB for iSeries Publications
Online Manuals: http://www.iseries.ibm.com/db2/books.htm
Porting Help: http://www.iseries.ibm.com/developer/db2/porting.html
DB2 UDB for iSeries Redbooks (http://ibm.com/redbooks)

Stored Procedures & Triggers on DB2 UDB for iSeries (SG24-6503)
DB2 UDB for AS/400 Object Relational Support (SG24-5409)
SQL Query Engine Redpiece
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg2456598.html
 Integrating XML with DB2 XML Extender and DB2 Text Extender (SG24-6130)

Additional Information

 F03BP01.PRZ 108

© 2003 IBM Corporation

Upcoming Residencies

 IS-3101 - SQL Query Enhancements on DB2 UDB for iSeries - Phase 2

This Rochester residency begins 21 Apr 2003, ends 30 May 2003 (6 weeks), and requires 3 residents.

IS-3102 - V5R1 and V5R2 DB2 UDB for iSeries Functionality Update

This Rochester residency begins 7 July 2003, ends 15 Aug 2003 (6 weeks), and requires 4 residents.

 F03BP01.PRZ 109

© 2003 IBM Corporation

Trademarks and Disclaimers

8 IBM Corporation 1994-2003. All rights reserved.
References in this document to IBM products or services do not imply that IBM intends to make them available in every country.

The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

Lotus and SmartSuite are trademarks of Lotus Development Corporation and/or IBM Corporation in the United States, other countries, or both.

MMX, Pentium, and ProShare are trademarks or registered trademarks of Intel Corporation in the United States, other countries, or both.
Microsoft and Windows NT are registered trademarks of Microsoft Corporation in the United States, other countries, or both.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC.
C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Other company, product or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual environmental costs and
performance characteristics may vary by customer.

Information in this presentation concerning non-IBM products was obtained from a supplier of these products, published announcement material, or other publicly available sources and
does not constitute an endorsement of such products by IBM. Sources for non-IBM list prices and performance numbers are taken from publicly available information, including vendor
announcements and vendor worldwide homepages. IBM has not tested these products and cannot confirm the accuracy of performance, capability, or any other claims related to
non-IBM products. Questions on the capability of non-IBM products should be addressed to the supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Contact your local IBM office or IBM
authorized reseller for the full text of the specific Statement of Direction.

Some information in this presentation addresses anticipated future capabilities. Such information is not intended as a definitive statement of a commitment to specific levels of
performance, function or delivery schedules with respect to any future products. Such commitments are only made in IBM product announcements. The information is presented here to
communicate IBM's current investment and development activities as a good faith effort to help with our customers' future planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any user will experience
will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

Photographs shown are of engineering prototypes. Changes may be incorporated in production models.

AS/400 IBM
AS/400e IBM (logo)
eServer iSeries

OS/400

 F03BP01.PRZ 110

Thank for your attention

 F03BP01.PRZ 111

