
© 2003 IBM Corporation

ITSO iSeries Technical Forum

International Technical Support Organization

bm.com

Hernando Bedoya

BP02

DB2 UDB Extenders for iSeries
XML and Text Extenders

F
0
3
B

P
0
2
.p

rz

1

© 2003 IBM Corporation

Notes

The DB2 UDB Extenders for iSeries is shipped as a separate license program 5722-DE1. This means that the Extenders LPP is not a part of the
DB2 UDB for iSeries runtime.
The current release contains two extenders:
DB2 UDB XML Extender
DB2 UDB Text Extender
In fact, you can think of both extenders as a middleware that resides on top of the DB2 UDB for iSeries database and enhances its functionality
by providing a range of user defined types (UDTs), user defined functions (UDFs), and stored procedures.

F
0
3
B

P
0
2
.p

rz

2

© 2003 IBM Corporation

Information is provided "AS IS" without warranty of any kind.
Mention or reference to non-IBM products is for informational
purposes only and does not constitute an endorsement of such
products by IBM.

This presentation contains IBM plans and directions. Such plans
are subject to change without notice.

Disclaimer
F
0
3
B

P
0
2
.p

rz

3

© 2003 IBM Corporation

Putting DB2's Power to Support XML

XML represents a fundamental change in computing ... away from
proprietary file and data formats to a world of open interchange

XML = portable data

DB2 provides stability, scalability and security

Your mission-critical business data is currently stored in DB2
Where do you store your XML documents?

How can you convert your business data into XML documents?

How can you turn the XML data into database data?

Answer: DB2 UDB for iSeries Extenders

F
0
3
B

P
0
2
.p

rz

4

© 2003 IBM Corporation

Notes

XML is universal not only by its range of applications but also by its ease of use: Its text-based nature makes it easy to create tools, and it is also
an open, license-free, cross-platform standard, which means anyone can create,develop, and use tools for XML.

Although XML solves many problems by providing a standard format for data interchange, some challenges remain. In the real world, application
design has always had to address issues such as sharing data between applications, replication, transformation, exporting and saving of data.
These kinds of issues can be addressed only by a database management system. By incorporating the XML information and meta-information
directly in the database, you can more efficiently obtain the XML results that your other applications need. With the content of your structured XML
documents in a DB2 database, you can combine structured XML information with traditional relational data. With the help of the XML Extender,
the XML documents can be stored entirely in the database columns or you can setup mapping so that XML documents can be decomposed in to
existing columns or generated from data in existing columns.

F
0
3
B

P
0
2
.p

rz

5

© 2003 IBM Corporation

XML Extender Overview

DB2

XML

DOC
DB2 XML
Extender

DAD
(Data Access

Definition)

Application
Program

DB2 XML Extender provides
new data types that let you store XML documents in DB2 databases

new functions that assist you in working with these structured documents

F
0
3
B

P
0
2
.p

rz

6

© 2003 IBM Corporation

Notes

There are several components that make up the XML Extender architecture. DB2 is used to store and retrieve XML data and also generates
helper side tables that can greatly improve the performance of the XML retrieval process. Additionally there is the extender itself which mediates
between DB2 and the application requester.

The extender is functional and flexible depending on whether you have relational data that need to be transformed into XML or XML data to store
into DB2 tables. The extender contains a rich set of user defined types (UDTs), user defined functions (UDFs) and stored procedures to manage
XML data in DB2. XML documents can be stored in DB2 databases as character data or stored as external files but still managed by DB2.
Retrieval UDFs allow you to retrieve either the entire XML document or individual elements or attributes.

F
0
3
B

P
0
2
.p

rz

7

© 2003 IBM Corporation

Order

Key

Name

PartCustomer

Email

parts@am.com
American

Motors

1

black

ShipmentTaxExtendedPriceQauntityKey

ShipDate ShipMode

Boat2000-10-03

0.0234,850.163668

Color

XML document logical structure

<?xml version="1.0"?>
<!DOCTYPE Order SYSTEM
"/dxx/samples/dtd/getstart.dtd">
<Order key="1">
 <Customer>
 <Name>American Motors</Name>
 <Email>parts@am.com</Email>
 </Customer>
 <Part color="black ">
 <key>68</key>
 <Quantity>36</Quantity>
<ExtendedPrice>34850.16</ExtendedPrice>
 <Tax>6.000000e-2</Tax>
 <Shipment>
 <ShipDate>2000-10-03</ShipDate>
 <ShipMode>BOAT </ShipMode>
 </Shipment>

 </Part>
</Order>

XML document has a tree-like hierarchical structure

XML uses start and end tags as containers

XML document must have only one root element

F
0
3
B

P
0
2
.p

rz

8

© 2003 IBM Corporation

Notes

Before we cover the details of the DB2 XML Extender implementation, we need to explain several basic concepts used throughout this
presentation.
As you can see from this foil, an XML document has a tree-like structure, with the root element (<Order>) at the top of the tree. All the elements
that are inside the root element are also contained within each other. The document must contain one and only one root element. We say that an
element is the parent of the elements it contains. The elements that are inside an element are called its children. Similarly, the elements that have
the same parent element are called siblings.
In our example, <Order> is parent of all other elements, <Name> is a child of <Customer>, and <Customer> and <Part> are siblings. Going
down the element tree, each child element must be fully contained with its parent element. Sibling elements may not overlap.

F
0
3
B

P
0
2
.p

rz

9

© 2003 IBM Corporation

Document Type Definition Repository

DTD reference table created when database is enabled for XML

Each row of the DTD reference table represents a DTD

Users can insert their own DTDs

The DTDs used to validate XML documents

<?xml encoding='IBM037'?>
<!ELEMENT Order (Customer, Part+)>
<!ATTLIST Order key CDATA #REQUIRED>
<!ELEMENT Customer (Name, Email)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Email (#PCDATA)>
<!ELEMENT Part (key,Quantity,ExtendedPrice,Tax,
Shipment+)>
<!ELEMENT key (#PCDATA)>
<!ELEMENT Quantity (#PCDATA)>
<!ELEMENT ExtendedPrice (#PCDATA)>
<!ELEMENT Tax (#PCDATA)>
<!ATTLIST Part color CDATA #REQUIRED>
<!ELEMENT Shipment (ShipDate, ShipMode)>
<!ELEMENT ShipDate (#PCDATA)>
<!ELEMENT ShipMode (#PCDATA)>

DTD_REF

F
0
3
B

P
0
2
.p

rz

1
0

© 2003 IBM Corporation

Notes

The DTD specifies the structure of an XML document, thereby allowing XML parsers to understand and interpret the document’s contents. The
DTD contains the list of tags which are allowed within the XML document and their types and attributes. More specifically, the DTD defines how
elements relate to one another within the document’s tree structure, and specifies which attributes may be used with which elements. Therefore,
it also constrains the element types that can be included in the document and determines its conformance: An XML document which conforms to
its DTD is said to be valid.
DB2 XML Extender provides an XML DTD repository. A DTD reference table called DTD_REF is created at the time when the database is
enabled. Enabling the database creates the following objects:
• The db2xml schema (library).
• The user-defined types (UDT) XMLVARCHAR, XMLCLOB, XMLFILE, as well as all required user-defined functions (UDF) and stored
procedures
• The necessary control tables required by DB2 XML Extender such as XML_USAGE and DTD_REF
Each row in the DTD_REF table contains a DTD with additional metadata information about it. You can insert your own DTDs into this table. The
DTDs in this table are used to validate the XML documents.

F
0
3
B

P
0
2
.p

rz

1
1

© 2003 IBM Corporation

A sequence of XML tags that identify an XML element or attribute

used by XML Extender to map an XML element or attribute to a DB2 column

used by Text Extender for structural text search

Location path

Order

Key

Name

PartCustomer

Email

parts@am.com
American
Motors

1

black

ShipmentTaxExtendedPriceQauntityKey

ShipDate ShipMode

Boat2000-10-03

0.0234,850.163668

Color

Location path for the ShipDate element:
/Order/Part/Shipment/ShipDate

F
0
3
B

P
0
2
.p

rz

1
2

© 2003 IBM Corporation

Notes

A location path is a sequence of XML tags separated by a forward slash (/) that identifies an XML element or attribute. Location paths are used in
the following situations within DB2 XML Extender and DB2 Text Extender:
• They are given as input to extracting UDFs to identify elements and attributes to be extracted.
• They are used to specify the mapping file between an XML element or attribute and a DB2 column when defining the indexing scheme in the
DAD for XML Columns
• They are used by the Text Extender for structural-text search.
The following is the location path syntax supported by DB2 XML Extender:
• /: Represents the XML root element.
• /tag1:Represents the element tag1under root.
• /tag1/tag2/..../tagn : Represents an element with the name tagn as the child of the descending chain from root, tag1, tag2, through tagn-1.
• //tagn: Represents any element with the name tagn, where double slashes(//) denote zero or more arbitrary tags.
• /tag1//tagn: Represents any element with the name tagn, a child of an element with the name tag1under root, where double slashes (//) denote
zero or more arbitrary tags.
• /tag1/tag2/@attr1: Represents the attribute attr1of an element with the name tag2, which is a child of element tag1under root.
• /tag1/tag2[@attr1=”5”]: Represents an element with the name tag2 whose attribute attr1 has the value 5. tag2is a child of element with the name
tag1under root.
• /tag1/tag2[@attr1=”5”]/.../tagn: Represents an element with the name tagn, which is a child of the descending chain from root, tag1, tag2,
through tagn-1, where the attribute attr1 of tag2 has the value 5.

F
0
3
B

P
0
2
.p

rz

1
3

© 2003 IBM Corporation

Two Access and Storage Methods

DB2 XML
Extender

DAD
(Data Access

Definition)

DB2

Application

XML
Column

book

user table

XML
Collection

XML
DOC

XML
DOC

XML column

store and retrieve entire XML documents as DB2 column data

XML data represented by XML column

XML Collection

decompose XML document into a collection of relational tables

compose XML documents from a collection of relational tables

F
0
3
B

P
0
2
.p

rz

1
4

© 2003 IBM Corporation

Notes

The DB2 XML Extender provides you with the ability to use DB2 to store, manage, query and update XML data. There are two basic techniques
used, the XML column method, and the XML collection method.
Using the XML column method, you can use DB2 tables store XML documents in columns that have been enabled for XML, or you can store
them as external files. The XML data can then be retrieved, updated, and searched. Furthermore, you can extract XML element or attribute values
into secondary tables called side tables which, when indexed, provide fast XML element and attribute search capabilities.
Columns that have been enabled for XML are known as XML columns, and can be implemented as one of the three user-defined types provided
with the XML Extender:

XMLVARCHAR
XMLCLOB
XMLFILE

The XML collection method allows you to compose XML documents from existing DB2 data, or decompose XML documents into DB2 data,
that is, store untagged element or attribute values in DB2 tables. This method is useful for Business-to-Business (B2B) or Electronic Data
Interchange (EDI) applications, particularly if the contents of XML documents are frequently updated.

F
0
3
B

P
0
2
.p

rz

1
5

© 2003 IBM Corporation

XML Columns Scenario
 Scenarios suitable for XML Columns:

XML documents already exist or come from some external source
you want to store them in DB2 for integrity or for archive and auditing purpose
you prefer to store documents in native XML format

XML documents are read mostly
performance of update is not critical
range search is needed based on the values of XML elements or attributes

The documents have elements with large text block and you want to use Text
Extender for structural text search

F
0
3
B

P
0
2
.p

rz

1
6

© 2003 IBM Corporation

Notes

As mentioned earlier, using the XML Columns method allows you to store the entire XML document, as it is, in a column. We recommend
choosing the XML Columns method if one or more of the following criteria are met:
• The XML documents already exist — for example, you want to archive documents such as newspaper articles, orders, and so on.
• The XML documents are read-often and update-rarely.
• The performance of the update is not critical.
• You want to store the intact XML documents.
• You want to keep the XML documents externally from DB2 in a local file system.
• You know what elements or attributes will be frequently searched. To perform efficient searches on these documents, you can decide to create
indexes in side tables on the elements or attributes that you need to access more often.

F
0
3
B

P
0
2
.p

rz

1
7

© 2003 IBM Corporation

XML column setup

XML

DTD
DTD_REF

Store DTD in the
repository

DAD

SALES_TAB Add the XML column

SALES_TAB

order_side_tab

part_side_tab

ship_side_tab
Enable XML column

Store XML document

F
0
3
B

P
0
2
.p

rz

1
8

© 2003 IBM Corporation

Notes

This foil presents the steps required to store an XML document in a XML column. We assume that the database is already XML-enabled.
1. If you plan to validate the XML documents, you should store the appropriate DTD document in the DTD repository.
2. The next step is to decide in which table you will store the XML documents. You can create a new table with an XML Column or just alter an
existing table to add an XML Column. DB2 XML Extender provides you with three new user-defined types located in the db2xml schema (library)
to store your XML documents as column data:
• XMLVARCHAR: You can store an XML document in the database, with a maximum size of 32 KB.
• XMLCLOB: The XML document is also stored in the database, but its maximum size is 2 GB.
• XMLFILE: This UDT allows you to keep the document on the local file.
3. Create the Document Access Definition file. The DAD file, itself an XML document, specifies how the XML documents that you store in the
database are to be handled.
In the case of XML Columns, the DAD file is only needed if you want to validate your XML documents before storing them, or if you want to index
elements or attributes in side tables. The side tables are additional tables created by DB2 XML Extender to improve performance when searching
elements or attributes in an XML Column.
4. If you created a DAD file for an XML Column, it is necessary that you tell DB2 XML Extender to which XML Column and in which table this file
relates. When you enable an XML Column, DB2 XML Extender does the following:
• It parses the DAD file.
• It creates the side tables with the desired columns corresponding to the elements and attributes in the XML document.
• It creates the triggers on the user table or XML table containing the XML Column to synchronize with side tables.
• It adds a new entry in the db2xml.xml_usage table created during the XML enablement of the database. This new entry keeps the relation
between the user table, the XML Column in this table, the DTD ID and the DAD file. This DAD file is stored as a CLOB in the XML_USAGE table.
5. Insert an XML document into the XML Column. At this point, the side tables will be also updated by the triggers created in step 4.

F
0
3
B

P
0
2
.p

rz

1
9

© 2003 IBM Corporation

Document Access Definition (DAD)

XML document itself
defines the location of key files such as DTD
defines the mapping between XML document and relational tables

Used for both XML Column and XML Collection

<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "/dxx/dtd/dad.dtd">
<DAD>
<dtdid>/dxx/samples/dtd/getstart.dtd</dtdid>
<validation>YES</validation>
<Xcolumn>
 <table name="ship_side_tab">
 <column name="date"
 type="DATE"
 path="/Order/Part/Shipment/ShipDate"
 multi_occurrence="YES"/>
 </table>
</Xcolumn>
</DAD>

ship_side_tab

location of DTD file

side table name

location path for the
element

F
0
3
B

P
0
2
.p

rz

2
0

© 2003 IBM Corporation

Notes

Before creating the DAD file, you should:
• Decide which elements or attributes you often want to search in your XML documents
• For each element or attribute that you want to index in a side table, define:
- The location path to represent it: Use the XPath data model to map XML structure (the element and attribute) to the relational tables (the
columns). In our example, we map <ShipDate> element to a date column located in the ship_side_tab table. The location path for the element is
/Order/Part/Shipment/ShipDate.
- The data type your element or attribute should be converted to. In your XML documents, all your elements content and attributes value are
considered character data. But in your side tables, you can use any DB2 data types. In the example, we map the ShipDate into a DATE data type.
- Consider whether they have multiple occurrences or not. This must match the declaration in the DTD validating your XML documents. The
multi_occurrence attribute for the <ShipDate> element is set to YES, which means that there can be several shipments for one part.
• For each multiple occurring element or attribute, you need to create a new side table if you want to extract their value for indexing.
• Decide whether you want the validation to occur or not. This decision can be based on the following considerations:
- The validation has a small performance impact
- You may not want to validate XML documents that you know are valid
- The validation by DB2 XML Extender can only occur at the time the XML documents are stored into the XML table and not afterwards
In the example, the validation is set to YES. Note that you need to use capital letters for the content of the <validation> element.

F
0
3
B

P
0
2
.p

rz

2
1

© 2003 IBM Corporation

Side tables

DAD
SALES_TAB

order_side_tab

part_side_tab

ship_side_tab

Additional tables created by the XML Extender
based on the DAD specification

improve performance when searching elements or attributes in an XML column

Creating indexes on side tables further enhances the performance

F
0
3
B

P
0
2
.p

rz

2
2

© 2003 IBM Corporation

Notes

As mentioned earlier, side tables are additional tables created by the XML Extender to improve performance when searching elements or
attributes in an XML column. The side tables are created at the time when the XML column is enabled. The definition of the side tables is
specified in the DAD associated with a given XML column. Note that side tables are not mandatory.
To further enhance the performance for the search requests, you may create indexes over the side tables.

F
0
3
B

P
0
2
.p

rz

2
3

© 2003 IBM Corporation

User Distinct Types (UDTs) provided by the XML Extender:
XMLFile - external file name

XMLVarchar - for internal short document

XMLCLOB - for internal long document

User Defined Functions (UDFs) provided by the XML Extender:
Storage

XMLVarcharFromFile(), XMLClobFromFile(), XMLFileFromVarchar(), XMLFileFromClob

Retrieval
default cast functions varchar(XMLVarChar), clob(XMLClob) varchar(XMLFile) or Content(XMLobj, XMLFile)

Update
default cast functions or storage UDFs

Extract the content of an element or attribute
convert XML data to SQL data types
extractVarchar(XMLCol, LocationPath), extractCLOB(XMLCol, LocationPath), ...

XML Column Storage and Access Means
F
0
3
B

P
0
2
.p

rz

2
4

© 2003 IBM Corporation

Notes

The XML Extender user-defined types (UDTs) are data types that are used for XML columns and XML collections. All the UDTs have the schema
(library) name DB2XML. The XML Extender creates UDTs for storing and retrieving XML documents.
The XML Extender provides functions for storing, retrieving, searching, and updating XML documents, and for extracting XML elements or
attributes. Use XML user-defined functions (UDFs) for XML columns, but not for XML collections. There are four types of the XML Extender
functions:

storage functions
Use storage functions to insert XML documents into a DB2 database. You can use the default casting functions of a UDT directly in INSERT or
SELECT statements. Additionally, the XML Extender provides UDFs to take XML documents from sources other than the UDT base data type
and convert them to the specified UDT. For instance, XMLVarcharFromFile() reads an XML document from a server file and returns the
document as an XMLVARCHAR type.

retrieval functions
The XML Extender provides an overloaded function Content(), which is used for retrieval. This overloaded function refers to a set of retrieval
functions that have the same name, but behave differently based on where the data is being retrieved. You can also use the default casting
functions to convert an XML UDT to the base data type.

update function
The Update() function modifies the element content or attribute value and returns a copy of an XML document with an updated value that is
specified by the location path. The Update() function allows the application programmer to specify the element or attribute that is to be updated.

extracting functions
Extracting functions extract and convert the element content or attribute value from an XML document to the data type that is specified by the
function name. The XML Extender provides a set of extracting functions for various SQL data types.

F
0
3
B

P
0
2
.p

rz

2
5

© 2003 IBM Corporation

XML column example (1/3)

Storing the DTD in the DTD repository
INSERT into db2xml.dtd_ref values('/dxx /samples /dtd /getstart.dtd',
db2xml.XMLClobFromFile('/dxx /samples /dtd /getstart.dtd'),0,'user1',
'user1','user1')

Preparing the DAD file
 ...

<Xcolumn>
<table name="ship_side_tab">
<column name="shipdate"
type="DATE"
path="/Order/Part/Shipment/ShipDate"
multi_occurrence="NO"/>
</table>
</Xcolumn>
...

DTD
DTD_REF

Store DTD in the
repository

F
0
3
B

P
0
2
.p

rz

2
6

© 2003 IBM Corporation

XML Column example (2/3)

Adding the XML column
ALTER TABLE SALES_TAB ADD COLUMN ORDER DB2XML.XMLVARCHAR

SALES_TAB
Add the XML column

Enabling the XML column (QShell)
dxxadm enable_column PWD2 sales_tab order
/dxxsamples/dad/getstart_xcolumn.dad -v sales_order_view -r invoice_num
Note: The column ORDER located in the SALES_DB.SALES_TAB is enabled.
The side table SHIP_SIDE_TABLE is created based on the DAD specification. The
default view SALES_ORDER_VIEW is created. The primary key for
the side table is INVOICE_NUM.

F
0
3
B

P
0
2
.p

rz

2
7

© 2003 IBM Corporation

XML column example (3/3)

Storing the XML document
INSERT INTO SALES_TAB (INVOICE_NUM,SALES_PERSON,ORDER)VALUES('123456',
'Joe Doe',db2xml.XMLVarcharFromFile('/dxx /samples/xml/getstart.xml'))

Verifying the content of side tables
SELECT * FROM SHIP_SIDE_TAB

Searching the XML document
SELECT DISTINCT SALES_PERSON FROM SALES_TAB S,SHIP_SIDE_TAB P
WHERE SHIPDATE > DATE('2000-01-01') AND
S.INVOICE_NUM=P.INVOICE_NUM

SALES_TAB order_side_tab

part_side_tab

ship_side_tab

XML
Store XML document

DAD

Enable XML column

F
0
3
B

P
0
2
.p

rz

2
8

© 2003 IBM Corporation

XML Collections Scenario

 Scenarios suitable for XML Collections

 Your have data in your existing relational tables, and you want to compose XML
documents using your existing data based on DTD

 You want to create different view of your relational data using different mapping
scheme

 The XML documents come from other source and you want to store pure data

 A small part of your XML documents need to be updated often, and update
performance is critical

 You like to store the data of entire incoming XML documents but often only want to
retrieve a subset of them;

 Your XML documents are large in size, which exceed 2 GB and you must decompose
them

F
0
3
B

P
0
2
.p

rz

2
9

© 2003 IBM Corporation

Notes

Using the XML Collections method allows you to map XML document structures to DB2 tables, so that you can compose XML documents from
existing DB2 data or decompose XML documents into DB2 tables.
This foil lists scenarios suitable for the XML Collection method.

F
0
3
B

P
0
2
.p

rz

3
0

© 2003 IBM Corporation

XML collection: composing a document

part_tab

ship_tab

order_tab

Mapping

DAD

result_tab

XML

XML

Map the database and XML
document relationship

Prepare the DAD
file

Compose the XML document
and store it in the database

Export the XML
document

F
0
3
B

P
0
2
.p

rz

3
1

© 2003 IBM Corporation

Notes

This foil illustrates the steps required to compose a XML document from the underlying database tables.
 You can compose XML documents using stored procedures. To use these stored procedures, you must create a DAD file, which specifies the
mapping between the XML document and the DB2 table structure.
1.Map the structure of the XML document to the relational tables that contain the contents of the element and attribute values (see next foil).
2. Create the appropriate DAD file. For XML collections, the DAD file maps the structure of the XML document to the
DB2 tables from which you either compose the document, or to where you decompose the document.
For example, if you have an element called <ShipDate> in your XML document, you might need to map <ShipDate> to a column called
Ship_Date. You define the relationship between the XML data and the relational data in the DAD.
3. To compose the XML document you call the dxxGenXML() stored procedure. The stored procedure constructs XML documents using data that
is stored in the XML collection tables that are specified by the <Xcollection> in the DAD file and inserts each XML document as a row into the
result table. The appropriate DAD is passed to the stored procedure as one of the input parameters.
4. Now you can retrieve the XML document for the result table and store in the IFS or send it over the net to your business partner or customer.

F
0
3
B

P
0
2
.p

rz

3
2

© 2003 IBM Corporation

Relational tables to XML mapping

element_node
Order

attribute_node
Key

element_node
Name

element_node
Part

element_node
Customer

element_node
Email

order_key

element_node
Shipment

element_node
Tax

element_node
ExtendedPrice

element_node
Qauntity

element_node
Key

ShipDate ShipMode

attribute_node
Color

root_node

text_nodetext_node

part_key

text_node

quantity

text_node

customer_name

color

text_node
customer_email

text_node

text_node text_node

price tax

date mode

Column
Name

Data Type

order_key integer
customer varchar(16)

customer_name varchar(16)

customer_email varchar(16)

Column
Name

Data Type

part_key integer

color char(6)

quantity integer

price decimal(10,2)
tax decimal(5,2)

order_key integer Column
Name

Data Type

date date

mode char(6)

comment varchar(128)
part_key integer

A column is mapped to an element_node or an attribute_node

F
0
3
B

P
0
2
.p

rz

3
3

© 2003 IBM Corporation

Notes

If you are using an XML collection, you must select a mapping scheme that defines how XML data is represented in a relational database.
Because XML collections must match a hierarchical structure that is used in XML documents with a relational structure, you should understand
how the two structures compare. This foil shows how the hierarchical structure can be mapped to relational table columns. A shaded column
from the database table is directly mapped to a particular element in the composed XML document. For instance, the CUSTOMER_NAME
columns will be mapped to the <Name> element. Note that in this hierarchy, <Name> is a child of <Customer>.

F
0
3
B

P
0
2
.p

rz

3
4

© 2003 IBM Corporation

Mapping methods

SQL mapping
uses SQL statement element to specify the SQL query to retrieve DB2 data

can be used only for composing XML documents

RDB_node mapping
uses an XML Extender-unique element called RDB_node

used to specify tables, columns, conditions, and order for XML data

can be used for both composing and decomposing

RDB_node example:
<RDB_node>
 <table name="order_tab"/>
 <table name="part_tab"/>
 <table name="ship_tab"/>
 <condition>order_tab.order_key=part_tab.order_key
 AND part_tab.part_key=ship_tab.part_key </condition>
 </RDB_node>

F
0
3
B

P
0
2
.p

rz

3
5

© 2003 IBM Corporation

Notes

The mapping scheme is specified in the <Xcollection> element in the DAD file. The XML Extender provides two types of mapping schemes: SQL
mapping and Relational Database (RDB_node) mapping. Both methods use the XPath model to define the hierarchy of the XML document.
SQL mapping
Allows direct mapping from relational data to XML documents through a single SQL statement and the XPath data model. SQL mapping is used
for composition; it is not used for decomposition. SQL mapping is defined with the SQL_stmt element in the DAD file. The content of the
SQL_stmt is a valid SQL statement. The SQL_stmt maps the columns in the SELECT clause to XML elements or attributes that are used in the
XML document. When defined for composing XML documents, the column names in the SQL statement’s SELECT clause are used to define the
value of an attribute_node or a content of text_node. The FROM clause defines the tables containing the data; the WHERE clause specifies the
join and search condition. The SQL mapping gives DB2 users the power to map the data using SQL. When using SQL mapping, you must be
able to join all tables in one SELECT statement to form a query. If one SQL statement is not sufficient, consider using RDB_node mapping. To tie
all tables together, the primary key and foreign key relationship is recommended among these tables.
RDB_node mapping
Defines the location of the content of an XML element or the value of an XML attribute so that the XML Extender can determine where to store or
retrieve the XML data. This method uses the XML Extender-provided RDB_node, which contains one or more node definitions for tables, optional
columns, and optional conditions. The tables and columns are used to define how the XML data is to be stored in the database. The condition
specifies the criteria for selecting XML data or the way to join the XML collection tables.

F
0
3
B

P
0
2
.p

rz

3
6

© 2003 IBM Corporation

....
<DAD>
<validation>NO</validation>
<Xcollection>
<SQL_stmt>select o.order_key, customer_name, customer_email, p.part_key,
color, quantity, price, tax, ship_id, date, mode from order_tab o, part_tab p,
(select rrn(ship_tab) as ship_id, date, mode, part_key from ship_tab) s where
o.order_key = 1 and p.price > 20000 and p.order_key = o.order_key and
s.part_key = p.part_key ORDER BY order_key, part_key, ship_id</SQL_stmt>
<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE Order SYSTEM "/dxx/samples/dtd/getstart.dtd"</doctype>
<root_node>
<element_node name="Order">
 <attribute_node name="key">
 <column name="order_key"/>
 </attribute_node>

</element_node>
</root_node>
</Xcollection>
</DAD>

DAD with SQL mapping

SELECT statement for
SQL mapping

part_tab

ship_tab

order_tab

DB2 column mapped to an
element_node or an

attribute node

F
0
3
B

P
0
2
.p

rz

3
7

© 2003 IBM Corporation

Notes

Follow these guidelines to create the SQL statement for mapping the relational data to the XML document:
- Columns are specified in top-down order, by the hierarchy of the XML document structure.
- The columns for an entity are grouped together, and each group has an object ID column: order_key, part_key.
- The object ID column is the first column in each group. For example, order_key precedes the columns related to the order element and part_key
precedes columns for the part element.
- The SHIP_TAB table does not have a single key column, and therefore, the rrn() DB2 built-in function is used to generate the ship_id column.
- The object ID columns are then listed in top-down order in an ORDER BY statements. The columns in ORDER BY should not be qualified by
any schema and table name and should match the column names in the SELECT clause.

Note also that the columns in ORDER BY clause should not be qualified and they should match the column names in the SELECT clause. This
iSeries-specific restriction for the ORDER BY clause will be lifted in a future release of DB2 UDB for iSeries.

F
0
3
B

P
0
2
.p

rz

3
8

© 2003 IBM Corporation

XML collection example

Steps to compose XML from DB2 data with SQL
mapping

1. Prepare DAD

Specify SQL for SQL mapping
<SQL_stmt>select o.order_key, customer_name, customer_email, p.part_key,
color, quantity, price, tax, ship_id, date, mode
from order_tab o, part_tab p, (select
rrn(ship_tab) as ship_id, date, mode, part_key from ship_tab) s
where o.order_key = 1 and p.price > 20000
and p.order_key = o.order_key
and s.part_key =p.part_key
ORDER BY order_key, part_key, ship_id</SQL_stmt>
...

Define <element_node> tag for each element in XML document
<element_node name="ShipMode">
<text_node>
<column name="mode"/>
</text_node>
</element_node>
...

F
0
3
B

P
0
2
.p

rz

3
9

© 2003 IBM Corporation

XML collection example cont.

2. Compose the XML document using the dxxGenXML stored procedure
dxxGenXML(
CLOB(100K) DAD, /*CLOB containing the DAD file */
char(UDB_SIZE) resultTabName, /*result table name, contains one column */
integer overrideType /*flag to indicate the type of the override */
varchar(1024)override, /*overrides the condition in the DAD file */
integer maxRows, /*maximum number of rows in the result table */
integer numRows, /*number of generated rows */
long returnCode, /*return code */
varchar(1024)returnMsg) /*message text returned in case of error */
...

result_tab

XMLDAD

Compose the XML document
and store it in the database

Mappingpart_tab

ship_tab

order_tab

Prepare the DAD file

Map the database and XML
document relationship

F
0
3
B

P
0
2
.p

rz

4
0

© 2003 IBM Corporation

XML Collection example (3/3)

3. Export the XML document
SELECT db2xml.Content(db2xml.xmlvarchar(doc),
'/dxx /samples /cmd /getstart.xml')FROM RESULT_TAB

result_tab

XML

XML Export the XML
document

F
0
3
B

P
0
2
.p

rz

4
1

DB2 UDB for iSeries Text
Extenders

F
0
3
B

P
0
2
.p

rz

4
2

© 2003 IBM Corporation

Putting DB2's power to Support Text Mining

Looking for a fast, versatile, and intelligent full text and mining tool?

Answer: DB2 UDB Text Extender

It's fast
 can search through thousands of documents at high speed.

It's versatile
 can access text documents including XML documents (e.g. DB2 XML
Extenders) and documents in a variety of languages

It's intelligent
utilizes DB2 Universal Database's built-in support for user-defined types and
user-defined functions and also exploits DB2 UDB's support for large objects

F
0
3
B

P
0
2
.p

rz

4
3

© 2003 IBM Corporation

Notes

DB2 Text Extender adds the power of full-text retrieval to SQL queries by making use of features available in DB2 UDB for iSeries that let you
store text documents in databases.
DB2 Text Extender offers DB2 UDB for iSeires users and application programmers a fast, versatile, and intelligent method of searching through
such text documents. DB2 Text Extender’s strength lies in its ability to search through many thousands of large text documents, finding not only
what you directly ask for, but also word variations and synonyms.

F
0
3
B

P
0
2
.p

rz

4
4

© 2003 IBM Corporation

Text Extender Overview
Powerful linguistic text searching technology

Search for documents that contain a specific word, such as "Internet," or phrase, such
as "large object"

Make a "fuzzy" search to find words that are spelled in a similar way to the search
term

Search for documents that contain synonyms of a word or phrase.
 search for documents that contain the word "book" and also find documents that contain "article,"
"volume," "manual", and other synonyms

Search for documents that contain words in any sequence, or words in the same
sentence or paragraph

 search for the word "compress," in the same paragraph as "encryption"

Perform wild card searches using word and character masking

Search for documents by variations of a word, such as its plural form or the word in a
different tense

 For example, search for documents that contain the word "drive" and also find documents that

contain "driving," "drove," and "driven."

F
0
3
B

P
0
2
.p

rz

4
5

© 2003 IBM Corporation

Indexing

Text Extender indexes are created to enable intelligent text search
capabilities

are non-relational index structures stored in IFS stream files

store list of significant words with a list of documents that contain them

Indexing process is asynchronous
Search is available during indexing

Index update can be triggered
Immediately

Periodically

IFS file support
Files stored in the IFS can also be indexed

F
0
3
B

P
0
2
.p

rz

4
6

© 2003 IBM Corporation

Notes

There are three types of indexes that allow you for a fast text search using DB2 Text Extender. The three types of indexes available with DB2 Text
Extender are linguistic, precise, and NGram.
The type of index you choose for a text column determines how you can search and what you can find. You can create more than one index (of
different types) on the same text column if you want to benefit from the advantages provided by more than one index type.
Generally, a text index contains a list of the significant terms contained in your documents, and a reference to where the documents are located.
All the insignificant terms such as “a” and “the”, referred to as “STOP-WORDS”,are ignored by the indexing process.
The Text Extender indexes are stored in IFS and their structure and features are completely different from the regular database indexes.
The indexing is a two-step process:
1. Record all the documents that need to be indexed in a log file (or more precisely, a log table). This step is automatically executed for you by the
insert, update, and delete triggers created by DB2 Text Extender for each
text column enabled for text search.
2. Periodically, process all the documents recorded in the log and index their significant terms to keep the content of the index synchronized with
the content of the database. The period between two such processes is
determined by a configuration setting.
You are not restricted to searching only in text documents stored in DB2 UDB for iSeries, you can also search in text documents stored in files.

F
0
3
B

P
0
2
.p

rz

4
7

© 2003 IBM Corporation

Structured document support

Structured document support introduces the concept of sections within
a document.

A section is a part of the document that is identified by an HTML-like
tag.

The sections and the path to the section are recognized during indexing
and stored in the index

A model definition file is used to identify the tags
that are processed as sections.

Search on sections, list of sections and
nested sections

F
0
3
B

P
0
2
.p

rz

4
8

© 2003 IBM Corporation

Notes

Section support allows you to index and search specific sections in a structured document, for example, in the title, author, or description. The
documents can be in XML or HTML format or flat-file documents with HTML-like tags.
The sections are divided in two categories:
• The plain-text sections: These have no type.
• The attribute sections: These have a declared type. Using these declared types, it is possible to search for documents whose given attribute
section is within a specified range.

F
0
3
B

P
0
2
.p

rz

4
9

© 2003 IBM Corporation

Structured document support

Supported formats
ASCII with tagged sections

HTML

XML (with or without DTD)
nested sections

Model definition file
[MODELS]

modelname=Order

;left side =section name identifier

;right side =section name tag

[Order]

Order =/Order

Order/Customer/Name =/Order/Customer/Name

Order/Customer/Email =/Order/Customer/Email

Order/Part/@color =/Order/Part/@color

F
0
3
B

P
0
2
.p

rz

5
0

© 2003 IBM Corporation

Notes

You define the markup tags and their corresponding section names in a document model. All the document models for the server instance are
listed in the document models file. The default document models file is DESMODEL.INI, which is created automatically with the server instance.
Each document model in the document models file is made up of two components: its name and its description. When describing an XML
document, the document model must have the same name and case as the root element. For each element or attribute you want to define and
use as a section, its complete hierarchy must be included in the model description.

F
0
3
B

P
0
2
.p

rz

5
1

© 2003 IBM Corporation

XML document search example
<?xml version="1.0"?>
<!DOCTYPE Order SYSTEM
"/dxx/samples/dtd/getstart.dtd">
<Order key="1">
 <Customer>
 <Name>American Motors</Name>
 <Email>parts@am.com</Email>
 </Customer>
 ...
</Order>

Data for section
Order/Customer/Name

Enable the XML column for the Text Extender search
CALL PGM(QDB2TX/DB2TX) PARM('enable text column order xvarchar function
db2xml.varchartovarchar handle varcharhandle ccsid 850 language us_english
format xml indextype precise indexproperty sections_enabled')
Search using the section
select xvarchar from order where db2tx.contains(varcharhandle,
'model Order section(Order/Customer/Name)"Motors"')=1

F
0
3
B

P
0
2
.p

rz

5
2

© 2003 IBM Corporation

DB2 UDB for iSeries home page - http://www.iseries.ibm.com/db2

 DB2 UDB Extenders Site: http://www.ibm.com/software/data/db2/extenders/

Newsgroups
USENET: comp.sys.ibm.as400.misc, comp.databases.ibm-db2
iSeries Network (NEWS/400 Magazine) SQL & DB2 Forum -
http://www.iseriesnetwork.com/Forums/main.cfm?CFApp=59

Education Resources - Classroom & Online
http://www.iseries.ibm.com/db2/db2educ_m.htm
http://www.iseries.ibm.com/developer/education/ibo/index.html

DB2 UDB for iSeries Publications
Online Manuals: http://www.iseries.ibm.com/db2/books.htm
Porting Help: http://www.iseries.ibm.com/developer/db2/porting.html
DB2 UDB for iSeries Redbooks (http://ibm.com/redbooks)

Stored Procedures & Triggers on DB2 UDB for iSeries (SG24-6503)
DB2 UDB for AS/400 Object Relational Support (SG24-5409)
SQL Query Engine Redpiece
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg2456598.html
 Integrating XML with DB2 XML Extender and DB2 Text Extender (SG24-6130)

Additional Information
F
0
3
B

P
0
2
.p

rz

5
3

© 2003 IBM Corporation

Upcoming Residencies

 IS-3101 - SQL Query Enhancements on DB2 UDB for iSeries - Phase 2

This Rochester residency begins 21 Apr 2003, ends 30 May 2003 (6 weeks), and requires 3 residents.

IS-3102 - V5R1 and V5R2 DB2 UDB for iSeries Functionality Update

This Rochester residency begins 7 July 2003, ends 15 Aug 2003 (6 weeks), and requires 4 residents.

F
0
3
B

P
0
2
.p

rz

5
4

© 2003 IBM Corporation

Trademarks and Disclaimers

8 IBM Corporation 1994-2003. All rights reserved.
References in this document to IBM products or services do not imply that IBM intends to make them available in every country.

The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

Lotus and SmartSuite are trademarks of Lotus Development Corporation and/or IBM Corporation in the United States, other countries, or both.

MMX, Pentium, and ProShare are trademarks or registered trademarks of Intel Corporation in the United States, other countries, or both.
Microsoft and Windows NT are registered trademarks of Microsoft Corporation in the United States, other countries, or both.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC.
C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Other company, product or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual environmental costs and
performance characteristics may vary by customer.

Information in this presentation concerning non-IBM products was obtained from a supplier of these products, published announcement material, or other publicly available sources and does
not constitute an endorsement of such products by IBM. Sources for non-IBM list prices and performance numbers are taken from publicly available information, including vendor
announcements and vendor worldwide homepages. IBM has not tested these products and cannot confirm the accuracy of performance, capability, or any other claims related to non-IBM
products. Questions on the capability of non-IBM products should be addressed to the supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Contact your local IBM office or IBM
authorized reseller for the full text of the specific Statement of Direction.

Some information in this presentation addresses anticipated future capabilities. Such information is not intended as a definitive statement of a commitment to specific levels of performance,
function or delivery schedules with respect to any future products. Such commitments are only made in IBM product announcements. The information is presented here to communicate IBM's
current investment and development activities as a good faith effort to help with our customers' future planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any user will experience will
vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

Photographs shown are of engineering prototypes. Changes may be incorporated in production models.

AS/400 IBM
AS/400e IBM (logo)
eServer iSeries

OS/400

F
0
3
B

P
0
2
.p

rz

5
5

