
IBM Systems Group

IBM eServerJ iSeriesJ

BP08: Art and Science of SQL Performance Tuning

Jarek Miszczyk
PartnerWorld for Developers, eServer iSeries

ITSO iSeries Technical Forum

F03BP08-Art and Science of SQL Performance.PRZ 1

IBM eServer iSeries

Science

What are you asking the system to do?
Type of request
SQL coding

How can the system do it?
SQL Query implementation via the Optimizer, OS and SLIC
DB design

Where is the system going to do it?
I/O Intensive
CPU Intensive
Available Resources

F03BP08-Art and Science of SQL Performance.PRZ 2

IBM eServer iSeries

The Optimizer
Provides the recipe
Provides the methods
Does no cooking

The Optimizer
Writes the best? program to fulfill your request

Optimization

F03BP08-Art and Science of SQL Performance.PRZ 3

IBM eServer iSeries

Optimization... the intersection of various factors

Server configuration
Server attributes

Version/Release/Modification
Level

SMP

Database design

Table sizes, number of rows

Views and Indexes (Radix, EVI)

Work
management

Static
Dynamic

Extended Dynamic
Interfaces

SQL Request

Job, Query attributes

Server performance

The
Plan

F03BP08-Art and Science of SQL Performance.PRZ 4

IBM eServer iSeries

Common Terms
Term Meaning Object
Table Data repository or dataspace. Physical File. *File, PF
Index Binary radix tree built over a table to order particular

columns (keys) of the table, useful for quick binary
searches. Encoded vector (EVI) built over a table,
used to create bitmaps for query processing. Logical
File.

*File, LF

Temporary
Index

Radix index built "on the fly" by the optimizer.

Temporary
Result

Copy of data from an intermediate step of the query.
Needed to complete the query.

Access
Plan

Plan generated by the optimizer of how to access the
tables being queried.

Dynamic,
*PGM,
*SRVPGM,
*SQLPKG

ODP
(Open Data

Path)

Active path through which query data is read.

Reusable
ODP

ODP kept open by the system when an SQL query is
repeatedly executed (run).

F03BP08-Art and Science of SQL Performance.PRZ 5

IBM eServer iSeries

Access Plans

Contents
A control structure that contains information on the actions necessary to
satisfy each SQL request
These contents include:

Access Method
Info on associated tables and indexes
Any applicable program and/or environment information

F03BP08-Art and Science of SQL Performance.PRZ 6

IBM eServer iSeries

Data Access

Write a program to find the rows that contain the color purple within a 1
million row DB table

...WHERE COLOR = 'Purple'...
When...

1 row contains the color purple
1,000 rows contain the color purple
100,000 rows contain the color purple
1,000,000 rows contain the color purple

F03BP08-Art and Science of SQL Performance.PRZ 7

IBM eServer iSeries

Data Access

SQL to find the rows that contain the color purple, within a 1 million row DB table,
when...

300,000 rows contain the color purple

SELECT ORDER, COLOR, QUANTITY
FROM ITEM_TABLE
WHERE COLOR = 'PURPLE'

Without index over COLOR, assume 100,000 rows (10% default from =)
With radix index over COLOR, estimate 291,357 rows (read keys)
With EVI over COLOR, actual 300,000 rows (read symbol table)

Optimizer uses number of rows, not a percentage

F03BP08-Art and Science of SQL Performance.PRZ 8

IBM eServer iSeries

Science - Implementation Methods

F03BP08-Art and Science of SQL Performance.PRZ 9

IBM eServer iSeries

Implementation Methods Overview
Non-Keyed Data Access Methods

Table Scan
Parallel Table Scan
Parallel Pre-fetch
Parallel Table Pre-load
Skip Sequential with dynamic bitmap
Parallel Skip Sequential

Keyed Data Access Methods
Key Positioning and Parallel Key Positioning
Dynamic Bitmaps / Index ANDing ORing
Key Selection and Parallel Key Selection
Index-From-Index
Index-Only Access
Parallel Index Pre-load

Joining, Grouping, Ordering
Nested Loop Join
Hash Join
Index Grouping
Hash Grouping
Index Ordering
Sort

F03BP08-Art and Science of SQL Performance.PRZ 10

IBM eServer iSeries

Reads all rows from the table and applies the selection criteria
to the data within the table.

Advantages:
Minimizes page I/O operations through asynchronous
pre-fetching of the data since the pages are scanned
sequentially
Can perform selection directly on the table image in memory
or on the intermediate buffer after all derived operations have
been performed

Potential disadvantages:
All rows in the table are examined regardless of the selectivity
of the query
Rows marked as deleted are examined even though none will
be selected

Used when:
Greater than ~20% of the rows are selected
Table size is less than 32K

Table Scan

F03BP08-Art and Science of SQL Performance.PRZ 11

IBM eServer iSeries

SELECT * FROM EMPLOYEE
WHERE WORKDEPT BETWEEN 'A01' AND 'E01'

SQL4010 Arrival sequence access for file 1.

Why might a table scan be used...?

This message = Table scan

Table Scan Example

F03BP08-Art and Science of SQL Performance.PRZ 12

IBM eServer iSeries

Data Access Methods

Table Scan

R
es

po
ns

e
Ti

m
e

/
S

ys
te

m
 R

es
ou

rc
es

Number of rows accessed

Few Many

F03BP08-Art and Science of SQL Performance.PRZ 13

IBM eServer iSeries

Encoded Vector Index (EVI)

New index object for delivering fast data access in decision support and
query reporting environments

Complementary alternative to existing index object (binary radix tree
structure - logical file or SQL index)
Advanced technology from IBM Research, that's a variation on bitmap
indexing
Easy to access data statistics improve query optimizer decision making

F03BP08-Art and Science of SQL Performance.PRZ 14

IBM eServer iSeries

Key Value Code First
Row

Last
Row

Count

Arizona 1 1 80005 5000
Arkansas 2 5 99760 7300
......
Virginia 37 1222 30111 340
Wyoming 38 7 83000 2760

Code 1
Code 17
Code 18
Code 9
Code 2
Code 7
Code 38
Code 38
Code 1
...

EVI composed of two parts:

SYMBOL
TABLE:

VECTOR:

Symbol table contains information for each distinct key value. Each key value is
assigned a unique hex code

Code is 1, 2, or 4 bytes - depending on number of distinct key values

Rather than a bit array for each distinct key value, the index has one array of codes
(a.k.a., the Vector)

What is it?
New type of index
File object type, LF subtype

Record
1
2
3
4
5
6
7
8
9
...

Encoded Vector Index (EVI)

F03BP08-Art and Science of SQL Performance.PRZ 15

IBM eServer iSeries

Location Topic

NY DB2/400
LA JAVA

NY JAVA

CHI NOTES

Index LocEVI, created over the
Location column and index TopIX,
created over the Topic column in the
Courses table.

Dynamic Bitmaps
Index ANDing ORing

CREATE ENCODED VECTOR INDEX LocEVI on Courses (Location)

CREATE INDEX TopIX on Courses (Topic)

Binary Radix
Index

EncodedVector
Index

Courses

F03BP08-Art and Science of SQL Performance.PRZ 16

IBM eServer iSeries

Location Topic

NY DB2/400
LA JAVA

NY JAVA

CHI NOTES

Index LocEVI, has been created
over the Location column and index
TopIX, created over the Topic column
in the Courses table.

SELECT coursenumber FROM courses
 WHERE location='NY' OR topic='JAVA'

Bitmap from LocEVI index: 1 0 1 0

Bitmap from TopIX index: 0 1 1 0

OR
bitmaps

Resulting
Bitmap:
1 1 1 0

Dynamic Bitmaps
Index ANDing ORing

Bitmaps can be derived from binary radix or encoded vector indices
bit order mirrors physical ordering of table data

LocEVI

TopIX
Row1 2 3 4

Courses

F03BP08-Art and Science of SQL Performance.PRZ 17

IBM eServer iSeries

Dynamic Bitmaps
Index ANDing ORing

Bitmaps are dynamically generated from existing indexes to
reduce the I/O operations against the table

Advantages:
Multiple indexes can be used against a single table
OR'ed predicates can be implemented with a tertiary index
Bitmaps can be generated and analyzed (logical AND and OR
operations) in parallel
Can help to avoid some index creations

Potential disadvantages:
The entire bitmap must be generated prior to retrieving any
records
The generated bitmaps are static for the duration of the query

Used when:
The savings from eliminating I/O operations outweigh the cost
to generate and analyze the bitmap(s)

CPU parallelism

F03BP08-Art and Science of SQL Performance.PRZ 18

IBM eServer iSeries

Scans the bitmap and sequentially reads rows from the table that
match the selection criteria represented in the bitmap

Advantages:
Minimizes page I/O operations through the use of dynamically
generated bitmap(s), by skipping pages that have no rows
represented in the bitmap
Minimizes page I/O operations through asynchronous pre-fetching
of the data since the pages are scanned sequentially
Can perform selection directly on the table image in memory or on
the intermediate buffer after all derived operations have been
performed

Potential disadvantages:
The entire bitmap must be generated prior to retrieving any records
The generated bitmaps are static for the duration of the query

Used when:
Greater than ~20% of the rows are selected
The savings from eliminating I/O operations outweigh the cost to
generate and analyze the bitmap(s)

Skip Sequential Access

F03BP08-Art and Science of SQL Performance.PRZ 19

IBM eServer iSeries

Skip Sequential Access

EMPLOYEE
Step 1
Select keys
and build dynamic
bitmaps

EVI_LOCATION Bitmap

IX_TOPIC Bitmap

Final
Bitmap

Step 3
Skip
sequentially
and read row
from table

Step 2
Scan final
bitmap and
select RRNs

ANDing
ORing

F03BP08-Art and Science of SQL Performance.PRZ 20

IBM eServer iSeries

CREATE ENCODED VECTOR INDEX EVI1 ON EMPLOYEE
(WORKDEPT)
:

SELECT * FROM EMPLOYEE
WHERE WORKDEPT BETWEEN 'A01' AND 'E01'

SQL4010 Arrival sequence access for file 1.
SQL4032 Access path EVI1 used for bitmap processing of file 1.

Skip Sequential Example

F03BP08-Art and Science of SQL Performance.PRZ 21

IBM eServer iSeries

Data Access Methods

Skip Sequential Table Scan

R
es

po
ns

e
Ti

m
e

/
S

ys
te

m
 R

es
ou

rc
es

Number of rows accessed

Few Many

F03BP08-Art and Science of SQL Performance.PRZ 22

IBM eServer iSeries

Implementation Methods Overview
Non-Keyed Data Access Methods

Table Scan
Parallel Table Scan
Parallel Pre-fetch
Parallel Table Pre-load
Skip Sequential with dynamic bitmap
Parallel Skip Sequential

Keyed Data Access Methods
Key Positioning and Parallel Key Positioning
Dynamic Bitmaps / Index ANDing ORing
Key Selection and Parallel Key Selection
Index-From-Index
Index-Only Access
Parallel Index Pre-load

Joining, Grouping, Ordering
Nested Loop Join
Hash Join
Index Grouping
Hash Grouping
Index Ordering
Sort

F03BP08-Art and Science of SQL Performance.PRZ 23

IBM eServer iSeries

Selection criteria are applied to ranges of index entries before
the table is processed.

Advantages:
Only those index entries that are within a selected range are
processed
Can process both join and selection processing within a
single operation if the correct index exists

Potential disadvantages:
Can perform poorly when a large number of rows are selected

Used when:
Less than ~20% of the keys are selected
Ordering, grouping, or join operation requires the use of an
index
The selection columns match the first (n) key fields of the
index
May be used in combination with key selection

Key Positioning

F03BP08-Art and Science of SQL Performance.PRZ 24

IBM eServer iSeries

CREATE INDEX X1 ON EMPLOYEE
(LASTNAME, WORKDEPT)
:

SELECT * FROM EMPLOYEE
WHERE WORKDEPT BETWEEN 'A01' AND 'E01'

AND LASTNAME IN ('SMITH', 'JONES', 'PETERSON')

SQL4008 Access path X1 used for file 1.
SQL4011 Key row positioning used on file 1.

Key Positioning Example

F03BP08-Art and Science of SQL Performance.PRZ 25

IBM eServer iSeries

CREATE INDEX X1 ON EMPLOYEE
(LASTNAME, WORKDEPT)
:

SELECT * FROM EMPLOYEE
WHERE WORKDEPT BETWEEN 'A01' AND 'E01'

AND LASTNAME IN ('SMITH', 'JONES', 'PETERSON')

LASTNAME WORKDEPT
Adamson B01
Anderson B01
Anderson G01
Cain A01
Caine G01
Doe E01
Jones A01
Jones C01
Jones D01
Milligan A01
Peterson C01
Peterson F01
Smith B01
Smith C01
Smith D01
Smith F01
Wulf A01

Think of processing a set of ranges...

JonesA01 - JonesE01
PetersonA01 - PetersonE01
SmithA01 - SmithE01

Key Positioning Example

F03BP08-Art and Science of SQL Performance.PRZ 26

IBM eServer iSeries

Selection criteria are applied to the key(s) of the index before
the table page is retrieved.

Advantages:
The table is only accessed for rows that satisfy the key
selection criteria

Potential disadvantages:
The entire index is read and the key selection criteria is
applied to each key entry
A random I/O is performed against the table for each key
selected from the index
Can perform poorly when a large number of rows are selected

Used when:
Less than ~20% of the keys are selected
Ordering, grouping, or join operation requires the use of an
index
May be used in combination with key positioning

Key Selection

F03BP08-Art and Science of SQL Performance.PRZ 27

IBM eServer iSeries

CREATE INDEX X1 ON EMPLOYEE
(LASTNAME, WORKDEPT)
:

SELECT * FROM EMPLOYEE
WHERE WORKDEPT BETWEEN 'A01' AND 'E01'

SQL4008 Access path X1 used for file 1.

Key Selection Example

F03BP08-Art and Science of SQL Performance.PRZ 28

IBM eServer iSeries

CREATE INDEX X1 ON EMPLOYEE
(LASTNAME, WORKDEPT)
:

SELECT * FROM EMPLOYEE
WHERE WORKDEPT BETWEEN 'A01' AND 'E01'

LASTNAME WORKDEPT
Adamson B01
Anderson B01
Anderson G01
Cain A01
Caine G01
Doe E01
Jones A01
Jones C01
Jones D01
Milligan A01
Peterson C01
Peterson F01
Smith B01
Smith C01
Smith D01
Smith F01
Wulf A01

Think of scanning the entire index...

testing WORKDEPT for A01 - E01

...

Key Selection Example

F03BP08-Art and Science of SQL Performance.PRZ 29

IBM eServer iSeries

Data Access Methods

Number of rows accessed

Few Many

Keyed Skip Sequential Table Scan

R
es

po
ns

e
Ti

m
e

/
S

ys
te

m
 R

es
ou

rc
es

F03BP08-Art and Science of SQL Performance.PRZ 30

IBM eServer iSeries

Implementation Methods Overview
Non-Keyed Data Access Methods

Table Scan
Parallel Table Scan
Parallel Pre-fetch
Parallel Table Pre-load
Skip Sequential with dynamic bitmap
Parallel Skip Sequential

Keyed Data Access Methods
Key Positioning and Parallel Key Positioning
Dynamic Bitmaps / Index ANDing ORing
Key Selection and Parallel Key Selection
Index-From-Index
Index-Only Access
Parallel Index Pre-load

Joining, Grouping, Ordering
Nested Loop Join
Hash Join
Index Grouping
Hash Grouping
Index Ordering
Sort

F03BP08-Art and Science of SQL Performance.PRZ 31

IBM eServer iSeries

Term Meaning

Join Position Position in which this file is being joined.

Join Dial Same as Join Position.
Join Order The order of all of the files used to process

the join. (Dial1 --> Dial2 --> Dial3 --> Dial4)
Average

Duplicates
Average number of records for each distinct
value. Statistic derived from an index.

Dial Synonymous with the odometer on a vehicle.
For each record of dial 1, you must spin
through all of the records of dial 2.

Join Fanout The number of join combinations that can be
expected for each join value.

Joins
Common Terms

F03BP08-Art and Science of SQL Performance.PRZ 32

IBM eServer iSeries

Join Support for SQL

For inner join, optimizer not biased toward using specified join order
For left outer and exception join, tables are joined from left to right

INNER JOIN tables can be reordered
Multiple join types supported for a single query
Join implementation methods

Nested Loop
Hash

F03BP08-Art and Science of SQL Performance.PRZ 33

IBM eServer iSeries

Nested Loop Joins

Each row selected from the primary file is joined to each secondary file
using a key value built over the join-to fields.

The join spins like an odometer on a car (from right to left).
After a file has been completely cycled, then it backs up to the previous
dial and gets the next join value.
The join is performed again spinning through the next secondary file in
the odometer (N-1).

The join is not complete until all the rows of the primary file have been
processed.

F03BP08-Art and Science of SQL Performance.PRZ 34

IBM eServer iSeries

Table 3Index 3Table 2

Table 1Index 1

Step 1
Select row
and build key

Step 3
Random read
row from table

Step 2
Position into
index

Step 4
Build key and
position into
index

Step 5
Random read
row from table

Repeat
Steps 4 - 5
until key not found

Repeat
Steps 2 - 3
until key not found

SELECT * FROM TABLE_1, TABLE_2, TABLE_3
WHERE FKEY1 = PKEY3
AND FKEY2 = PKEY3

Nested Loop Joins

F03BP08-Art and Science of SQL Performance.PRZ 35

IBM eServer iSeries

Creating a Temporary Index for the Join Criteria
If an index over the join fields of the secondary file(s) does not
exist, one is created.
Advantages:

Since local selection is performed ahead of the join (during index
creation) the temporary index generally is smaller so there are less
index pages to be faulted in.

Disadvantages:
Creating a temporary index is very CPU intensive and is not suitable for
OLTP.
If index is built using host variable selection, then the query is not
reusable.

Optimizer may create a temporary index when a permanent index exists. If the join fan out
is high (or the cost of the NL join is very high) the optimizer may chose to create a sparse,
temporary index, trying to make the join as efficient as possible.

Nested Loop Joins

F03BP08-Art and Science of SQL Performance.PRZ 36

IBM eServer iSeries

Hashing Algorithm
Joining

A hashing algorithm is used to correlate data with a common
value together for grouping and/or join queries.

Advantages:
Allows for the exploitation of CPU parallelism for the creation of
the hash table
Reduces the random I/O to the table generally associated with
longer running queries using an index
Generally faster than creating a temporary index to perform the
specified operation

Potential disadvantages:
May perform poorly when processing a small subset of the rows
that will be used as input into the hashing algorithm
A temporary copy of the data is required to process the hash

Used when:
The value *OPTIMIZE is specified or *YES if a temporary file is
required, on the ALWCPYDTA parameter
Grouping and/or a join processing is specified in the query

CPU parallelism

F03BP08-Art and Science of SQL Performance.PRZ 37

IBM eServer iSeries

The hash join uses a hash table to correlate all of the distinct join values
into common buckets (hash points) and then using the buckets to find all of
the join combinations.
Query rewritten to take advantage of SMP
This has the following improvements over a Nested Loop Join:

An index is no longer required to find the join matches.
No longer have to iterate through all of the files for each of the join
possibilities (i.e. odometer processing).

Equal join predicates only
No specific information on hash joins in DB monitor

Query to select records and build hash table(s) do show up

Hash Join

F03BP08-Art and Science of SQL Performance.PRZ 38

IBM eServer iSeries

Hashing
Algorithm

Table 1
Table 2

Hash Table

Part 1
Select rows and
build hash table
from Table 2

Part 2
Select rows
and join
Table 1 to
hash table

Hashing
Algorithm

Hash Join Like join values are grouped together by their
hash value and all the appropriate data is
stored.
Collisions are handled by linked list.

Example:

SELECT *
FROM TABLE1 A, TABLE2 B
WHERE A.PARTKEY in ('103', '104', '105')
and A.PARTKEY = B.PARTKEY

103
104
105

104
103
103
104
105

F03BP08-Art and Science of SQL Performance.PRZ 39

IBM eServer iSeries

Hash Join Example

SELECT * FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.WORKDEPT = DEPARTMENT.DEPTNO

AND EMPLOYEE.HIREDATE BETWEEN '1995-01-30' AND
'1996-01-30'

AND DEPARTMENT.DEPTNO IN ('A00', 'D01', 'D21', 'E11')
OPTIMIZE FOR ALL ROWS

SQL402A Hashing algorithm used to process join.
SQL402B File EMPLOYEE used in hash join step 1.
SQL402B File DEPARTMENT used in hash join step 2.

F03BP08-Art and Science of SQL Performance.PRZ 40

IBM eServer iSeries

Join Optimization

The main optimization rule of thumb for a join query is the reordering of the
files.

This minimizes the join fanout and that in turn minimizes I/Os.
Reordering of files is allowed only on inner joins. Left Outer or Exception
joins cannot be reordered.
 The DB2 UDB for iSeries optimizer uses a greedy join algorithm to
determine the most efficient table order.

F03BP08-Art and Science of SQL Performance.PRZ 41

IBM eServer iSeries

Greedy Join Algorithm

Determine best access for each individual file, ignoring the join for a
moment (keyed access, data space scan, etc.)
For each join combination determine the join cost

For a 4 file join, the join combinations would be:
1-2, 2-1, 1-3, 3-1, 1-4, 4-1, 2-3, 3-2, 2-4, 4-2, 3-4, 4-3

The combination with lowest cost determines the primary and first
secondary files

2 3 x x
For each remaining file, determine cost of joining to previous files

File with lowest cost becomes next secondary file
2 3 1 x

Repeat join cost calculation until complete join order has been determined
2 3 1 4

F03BP08-Art and Science of SQL Performance.PRZ 42

IBM eServer iSeries

Non-Keyed Data Access Methods
Table Scan
Parallel Table Scan
Parallel Pre-fetch
Parallel Table Pre-load
Skip Sequential with dynamic bitmap
Parallel Skip Sequential

Keyed Data Access Methods
Key Positioning and Parallel Key Positioning
Dynamic Bitmaps / Index ANDing ORing
Key Selection and Parallel Key Selection
Index-From-Index
Index-Only Access
Parallel Index Pre-load

Joining, Grouping, Ordering
Nested Loop Join
Hash Join
Index Grouping
Hash Grouping
Index Ordering
Sort

Implementation Methods Overview

F03BP08-Art and Science of SQL Performance.PRZ 43

IBM eServer iSeries

The query optimizer chooses between index grouping and hash grouping
Indexes are used for grouping statistics (number of groups)

Keys over grouping column(s)
Average duplicates statistics
Number of hash points (hash table size)

16K
64K

Query attributes affect which method is used
Index Group by

First I/O
ALWCPYDTA(*NO), ALWCPYDTA(*YES)

Hash Group by
All I/O
ALWCPYDTA(*OPTIMIZE)

Group-By Optimization

F03BP08-Art and Science of SQL Performance.PRZ 44

IBM eServer iSeries

Implementation Methods Overview
Non-Keyed Data Access Methods

Table Scan
Parallel Table Scan
Parallel Pre-fetch
Parallel Table Pre-load
Skip Sequential with dynamic bitmap
Parallel Skip Sequential

Keyed Data Access Methods
Key Positioning and Parallel Key Positioning
Dynamic Bitmaps / Index ANDing ORing
Key Selection and Parallel Key Selection
Index-From-Index
Index-Only Access
Parallel Index Pre-load

Joining, Grouping, Ordering
Nested Loop Join
Hash Join
Index Grouping
Hash Grouping
Index Ordering
Sort

F03BP08-Art and Science of SQL Performance.PRZ 45

IBM eServer iSeries

The query optimizer chooses between index ordering and sort
Optimizer costs the use of each method and picks the fastest
Query attributes affect which method is used

Index Order by
First I/O
ALWCPYDTA(*NO), ALWCPYDTA(*YES)

Sort Order by
All I/O
ALWCPYDTA(*OPTIMIZE)

Order-By Optimization

F03BP08-Art and Science of SQL Performance.PRZ 46

IBM eServer iSeries

Art of SQL Optimization

F03BP08-Art and Science of SQL Performance.PRZ 47

IBM eServer iSeries

Perspective

iSeries Architecture

User Interface

OS/400

SLIC

HW

CPU Memory Disk

TIMI Technology Independent Machine Interface

Request

Design
Implementation

Resource
Performance

F03BP08-Art and Science of SQL Performance.PRZ 48

IBM eServer iSeries

What can be done...?

Change the request or SQL coding
Change the design or influence the implementation

Database design
Tuning "knobs" and indexes
Upgrade OS to obtain new features

Change the resource performance
Work Management
Additional or upgraded hardware
SMP

Change response time expectations

F03BP08-Art and Science of SQL Performance.PRZ 49

IBM eServer iSeries

Art

Environments
A few long running or complex requests

Dedicate all resources
SMP
Highly tuned

Many quick, small or medium ad-hoc requests
Share resources (like OLTP)
Little or no SMP
Unpredictable - no chance to tune

Mixture
Separate environments
Separate systems or logical partitions

F03BP08-Art and Science of SQL Performance.PRZ 50

IBM eServer iSeries

Considering the entire request...

SELECTION
Keyed access SMP
Skip Sequential access SMP
Sequential access SMP

JOIN
Nested loop (via keyed access)
Hash SMP

GROUP BY
Index
Hash SMP

ORDER BY
Index
Sort

F03BP08-Art and Science of SQL Performance.PRZ 51

IBM eServer iSeries

Art - The Perfect Index

A "perfect" index is a radix index that is permanent and can provide:
Good, useful statistics to the optimizer

Index contains appropriate selection, joining, grouping, ordering
fields
Applicable key fields are contiguous
Equal predicate fields first, one non-equal predicate field last

Multiple implementation methods
Index ANDing / ORing with dynamic bitmaps
Single key and multi-key row positioning
Index scan
Index only access
Nested loop join (with multi-key row positioning)
Index grouping
Index ordering

Multi-key index that provides very narrow range of values
Think in terms of lower and upper bounds

F03BP08-Art and Science of SQL Performance.PRZ 52

IBM eServer iSeries

CREATE INDEX X1 ON EMPLOYEE
(LASTNAME, WORKDEPT, SALARY)
:

SELECT * FROM EMPLOYEE
WHERE WORKDEPT BETWEEN 'A01' AND 'E01'

AND LASTNAME IN ('SMITH', 'JONES', 'PETERSON')
AND SALARY BETWEEN 50000 AND 100000

LASTNAME WORKDEPT SALARY

... ...

... ...

... ...

Jones A01 35000

Jones C01 51000

Jones D01 45000

... ...

Peterson C01 60000

Peterson E01 100000

Peterson E01 120000

... ...

Smith B01 47000

Smith C01 59000

Smith F01 62000

... ...

... ...

Think of processing a set of ranges...

JonesA0150000 - JonesE01100000
PetersonA0150000 - PetersonE01100000
SmithA0150000 - SmithE01100000

Art - The Perfect Index

Early elimination of rows is the
key

Narrow range(s)

F03BP08-Art and Science of SQL Performance.PRZ 53

IBM eServer iSeries

SELECTION
Keyed access SMP
Skip Sequential access SMP
Sequential access SMP

JOIN
Nested loop (via keyed access)
Hash SMP

GROUP BY
Index
Hash SMP

ORDER BY
Index
Sort

 "Perfect" radix indexes...

F03BP08-Art and Science of SQL Performance.PRZ 54

IBM eServer iSeries

CREATE INDEX IX1 on TABLE1 (YEAR, MONTH, CUSTOMER, ORDERNO)

CREATE INDEX IX2 on TABLE2 (ORDERNO, QUANTITY, SALES_AMOUNT)

SELECT A.YEAR, A.MONTH, A.CUSTOMER, SUM(B.QUANTITY),
SUM(B.SALES_AMOUNT)

FROM TABLE1 A, TABLE2 B
WHERE A.YEAR = 2000 and A.MONTH in (10, 11, 12) and A.CUSTOMER = 'SMITH'
and A.ORDERNO = B.ORDERNO
GROUP BY A.YEAR, A.MONTH, A.CUSTOMER
ORDER BY A.YEAR, A.MONTH, A.CUSTOMER

Selection, grouping, ordering

Joining

Statistics
Multi key selection
Index only access
Nested loop join
Index grouping
Index ordering

 "Perfect" radix indexes...

F03BP08-Art and Science of SQL Performance.PRZ 55

IBM eServer iSeries

SELECTION
Keyed access SMP
Skip Sequential access SMP
Sequential access SMP

JOIN
Nested loop (via keyed access)
Hash SMP

GROUP BY
Index
Hash SMP

ORDER BY
Index
Sort

Multiple techniques...

F03BP08-Art and Science of SQL Performance.PRZ 56

IBM eServer iSeries

CREATE ENCODED VECTOR INDEX IX1 on TABLE1 (YEAR, MONTH)

SELECT A.YEAR, A.MONTH, A.CUSTOMER, SUM(B.QUANTITY),
SUM(B.SALES_AMOUNT)

FROM TABLE1 A, TABLE2 B
WHERE A.YEAR = 2000 and A.MONTH in (10, 11, 12) and A.CUSTOMER = 'SMITH'
and A.ORDERNO = B.ORDERNO
GROUP BY A.YEAR, A.MONTH, A.CUSTOMER
ORDER BY A.YEAR, A.MONTH, A.CUSTOMER

Selection via
dynamic bitmap

Some statistics
Parallel skip sequential
Parallel table scan
Hash join
Hash grouping
Sort

Multiple techniques...

F03BP08-Art and Science of SQL Performance.PRZ 57

IBM eServer iSeries

Tuning "knobs"...

ALWCPYDTA
*NO
*YES
*OPTIMIZE

OPTIMIZE FOR n ROWS, OPTIMIZE FOR ALL ROWS
*FIRSTIO
*ALLIO

CHGQRYA / QQRYDEGREE
*NONE
*IO
*NBRTASKS
*OPTIMIZE
*MAX

QAQQINI file

F03BP08-Art and Science of SQL Performance.PRZ 58

IBM eServer iSeries

You must create some indexes
Statistics
Implementation

In general: equal selection columns first, then join columns -or- group-by
and order-by columns
Be aware of limitations when creating null capable key columns (no index
only access)
May have to play around with key order based on the queries, the data and
selectivity of the columns
Consider Index Only Access

All columns in the SELECT clause as keys
Consider dynamic bitmaps and index ANDing/ORing

Simple indexes can be combined together for selection
Consider EVIs for stats, dynamic bitmaps, and star schema join

Single key, low number of unique values
Fact table foreign key
Over temporary results file to provide stats

Check for messages and iterate

Indexing Strategies - Basic Approach

F03BP08-Art and Science of SQL Performance.PRZ 59

IBM eServer iSeries

Run queries on system tables to find table and associated indexes
Example tool can be found at: www.iseries.ibm.com/db2/indexlist.htm

Use ANZDBF and ANZDBFKEY commands to produce reports that show
tables, indexes and key analysis
Tables with truly unique keys, specify UNIQUE on the index or PK
constraint

Primary key and RI constraints use "hidden" indexes that the optimizer
can use

Proactive
Create indexes over primary, foreign key columns and dependent
columns
Create indexes for selection and joining
Create indexes for selection, grouping and ordering

Reactive
Create indexes based on optimizer feedback
Create indexes based on optimization, implementation, system
resources and performance

Indexing Strategies cont.

F03BP08-Art and Science of SQL Performance.PRZ 60

IBM eServer iSeries

Proactive
Analyze the SQL request

Reactive
Rely on feedback and actual implementation methods

Profile long running or complex queries to capture the optimization and
implementation method
Profile the system when running long or complex queries to capture work
management configurations and performance statistics
Understand the data being queried
Consider separating complex queries into two or more queries and tune
individual parts

Join query + Group-by query
Subquery

Indexing Strategies

F03BP08-Art and Science of SQL Performance.PRZ 61

IBM eServer iSeries

Art - Tools and Methodologies

F03BP08-Art and Science of SQL Performance.PRZ 62

IBM eServer iSeries

Overview

How do I know what's going on with my queries?
How can I tell what the optimizer is doing?
Answer: Tools and analysis

Query optimizer debug messages
Print SQL Information (PRTSQLINF)
Database Monitor Statistics

Detailed Monitor (STRDBMON)
Summary (Memory-based) Monitor (Operations Navigator)

Visual Explain
Change Query Attributes (CHGQRYA)
QAQQINI file attributes

F03BP08-Art and Science of SQL Performance.PRZ 63

IBM eServer iSeries

Debug Messages

Informational messages written to the joblog about the
implementation of a query
Describes query implementation method

Indexes
Join order
Access plans
ODPs (Open Data Paths)

Messages explain what happened during query optimization
Why index was or was not used
Why a temporary index result was required
Index advised by the optimizer

STRDBG UPDPROD(*YES) & STRSRVJOB and STRDBG for
batch jobs
ODBC & JDBC Driver Exit program
MESSAGES_DEBUG = *YES in QAQQINI file

F03BP08-Art and Science of SQL Performance.PRZ 64

IBM eServer iSeries

Print SQL Information

OS/400 command that lists SQL information
contained in a program, SQL package, or service
program.

Creates a spooled file that contains:
SQL statements
Type of access plan used by each statement
Command (CRTSQLxxx) and parameters used to invoke
the SQL precompiler

iSeries version of SQL EXPLAIN utility
Output similar to debug messages

PRTSQLINF OBJ(MY_PGM) OBJTYPE(*PGM)

PRTSQLINF OBJ(MY_PKG) OBJTYPE(*SQLPKG)

F03BP08-Art and Science of SQL Performance.PRZ 65

IBM eServer iSeries

Database Monitors

Integrated tools used to gather database performance related statistics for
SQL-based requests
Monitor data dumped into table(s) where it can be queried to help identify
and tune performance problem areas

Detailed monitor writes all of the information out to a single table as it's
collected

Interface: STRDBMON & Operations Navigator
Summary monitor collects similar information at a summarized level in
memory and then dumps the data into multiple tables

Interface: Operations Navigator & APIs

F03BP08-Art and Science of SQL Performance.PRZ 66

IBM eServer iSeries

Query Performance Tuner - QAQQINI

Provides central point of control for all attributes, options, and knobs that can
impact query opitmization

Table design allows attributes to be set dynamically with just database
updates or insert/delete

UPDATE mylib/QAQQINI SET QQVAL='600'
WHERE QQPARM='QUERY_TIME_LIMIT';

 INSERT mylib/QAQQINI
 VALUES('MESSAGES_DEBUG','*YES','Activated - 4pm');

One row per attribute/parm and 3 character columns
QQPARM - the attribute/option name
QQVAL - value of the attribute/option
QQTEXT - optional description of the attribute or it values

QQPARM QQVAL QQTEXT
MESSAGES_DEBUG *YES Debug Set - 11pm
QUERY_TIME_LIMIT 600 New time limit - set 7/25
PARALLEL_DEGREE *DEFAULT
FORCE_JOIN_ORDER *DEFAULT
... ...

F03BP08-Art and Science of SQL Performance.PRZ 67

IBM eServer iSeries

Visual Explain

Visualization of the query access plan
Details and attributes of the query plan, execution, and database
objects involved
V5R1 includes auto-highlighting of icons

Visual Explain can be used in one of two ways
Interactively with Ops Navigator SQL Script window
Reactively based on previously collectly database monitor data
(detailed monitor)

Requires V4R5 or higher of OS/400 and IBM iSeries Navigator

F03BP08-Art and Science of SQL Performance.PRZ 68

IBM eServer iSeries

PRTSQLINF STRDBG/CHGQRYA
QAQQINI

STRDBMON Memory -based
Monitor

Available without
running query (after
access plan has been
created)

Only available when the
query is run

Only available when the
query is run

Only available when the
query is run

Displayed for all
queries in SQL pgm or
pkg, whether executed
or not

Displayed only for those
queries which are
executed

Displayed only for
those queries which
are executed

Displayed only for those
queries which are
executed

Information on host
variable
implementation

Limited information on
the implementation of
host variables

All information on host
variables,
implementation, and
values

All information on host
variables,
implementation and
values

Available only to SQL
users with pgms,
packages, or service
pgms

Available to all query
users (OPNQRYF,
SQL, QUERY/400)

Available to all query
users (OPNQRYF,
SQL, QUERY/400)

Available only to SQL
interfaces

Messages printed to
spool file

Messages displayed in
job log

Performance records
written to database file

Performance information
collected in memory and
then written to database
file

Easier to tie messages
to query with
subqueries or unions

Difficult to tie messages
to query with
subqueries or unions

Uniquely identifies
every query

Repeated query
requests are
summarized

Tuning Tools Comparison Table

F03BP08-Art and Science of SQL Performance.PRZ 69

IBM eServer iSeries

DB2 UDB for iSeries home page: www.iseries.ibm.com/db2
iSeries SQL Performance Workshop (Course #S6140)

http://www-1.ibm.com/servers/eserver/iseries/service/igs/db2performance.html
Online DB2 UDB publications www.iseries.ibm.com/db2/books.htm

Database Performance & Query Optimization
SQL Interface FAQs:

CLI : www.iseries.ibm.com/db2/clifaq.htm
JDBC

Toolbox: www.iseries.ibm.com/toolbox/faqjdbc.htm
Native: www.iseries.ibm.com/developer/jdbc/index.html

QAQQINI script builder:
www.iseries.ibm.com/developer/bi/tuner.html
DB2 UDB for iSeries Online Education
www.iseries.ibm.com/developer/education/ibo/view.html?biz
Third-pary performance tools:

Centerfield Technology (www.centerfieldtechnology.com)

Additional Resources

F03BP08-Art and Science of SQL Performance.PRZ 70

