
© 2003 IBM Corporation

ITSO iSeries Technical Forum

International Technical Support Organization

ibm.com A V5R2 Look at the HTTP Server
(powered by Apache)

Brian R. Smith

EP01

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1

© 2003 IBM Corporation

This presentation is based upon original work from the HTTP team at the IBM Rochester development lab. Their
contributions are gratefully acknowledged. It was organized and expanded during a residency at the ITSO Rochester
Center by Sadamitsu Hayakawa of IBM Japan and Brian R. Smith, ITSO Rochester.

Copyright International Business Machines Corporation 2000
References in this document to IBM products or services do not imply that IBM intends to make them available in every country.
The following terms are trademarks or registered trademarks of the IBM Corporation in the United States or other countries or
both:

cc:Mail, Lotus, Lotus Notes, Lotus Domino, Domino.Action, and Domino.Merchant are trademarks or registered trademarks of Lotus Development Corporation in the United States or other countries or both.
Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks or registered trademarks of Microsoft Corporation.
UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Limited.
Java and all Java-related trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
IBM's VisualAge products and services are not associated with or sponsored by Visual Edge Software, Ltd.
Intel and Pentium are trademarks of Intel Corporation in the United States and other countries.
Tivoli is a registered trademark of Tivoli Systems Inc. in the United States or other countries or both.
Other company, product, and service names may be trademarks or service marks of others.

Information in this presentation concerning non-IBM products was obtained from a supplier of these products, published announcement material, or other publicly available sources. Sources for non-IBM list prices and performance numbers
are taken from publicly available information, including vendor announcements and vendor worldwide homepages. IBM has not tested these products and cannot confirm the accuracy of performance, capability, or any other claims related to
non-IBM products. Questions on the capability of non-IBM products should be addressed to the supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Contact your local IBM office or IBM authorized reseller for the full text of the specific
statement of direction.

Any performance data contained in this document was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurement quoted in this presentation may have
been made on development level systems. There is no guarantee these measurements will be the same on generally available systems. Some measurements quoted in this presentation may have been estimated through extrapolation. Actual
results may vary. Users of this presentation should verify the applicable data for their specific environment. Customer examples sited are examples of how the referenced customers use IBM and other products. Results vary by environment
and may not be realized in all situations.

THIS MATERIAL IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO
THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. IN NO EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL
DAMAGES FOR ANY USE OF THIS MATERIAL INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS INTERRUPTION, LOSS OF PROGRAMS OR OTHER DATA ON
YOUR INFORMATION HANDLING SYSTEM OR OTHERWISE, EVEN IF WE ARE EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Functions and availability dates
may change after this presentation was completed.

ADSTAR BrioQuery Information Warehouse NetView SmoothStart

Advanced Function Printing BRMS Integrated Language Environment OfficeVision SystemView

AFP Client Series Intelligent Printer Data Stream OS/2

AIX DataGuide IPDS OS/400

AnyNet DataPropagator iSeries 400 PowerPC

Application Development DB2 JustMail PowerPC AS

APPN IBM (or e(logo)server) Net.Commerce Print Services Facility

AS/400 IBM Net.Data PSF

AT IBM Network Station NetFinity SanFrancisco

Acknowledgments

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2

An Introduction to the HTTP
Server (powered by Apache)

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3

© 2003 IBM Corporation

Notes

This part introduces the HTTP Server (powered by Apache) begining with its history and includes information that leads you to understand its
features and advantages.

History of Apache
Apache Benefits to iSeries Users
Product Availability and Packaging
Server Features

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

4

© 2003 IBM Corporation

History of Apache

Most HTTP servers originated from CERN or NCSA
Two different implementations provide similar services
Prior to 2001 IBM's HTTP server products were CERN-based

Apache is NCSA-based
Name originated from "a patchy NCSA server"

Ongoing development by network of volunteers
Apache version 1.3 is very popular; version 2.0.43 is available

Apache Software Foundation formed in 1995
Apache is available on 30+ platforms
Platforms that provide all source code to users are true "Apache"

IBM does not provide source code

IBM HTTP products are "powered by Apache"

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

5

© 2003 IBM Corporation

Notes
Most HTTP servers originate from CERN or National Center for Supercomputing Application (NCSA). The Apache server originates from
NCSA. The fundamental ideas behind and the basic design of the World Wide Web evolved from work being done at CERN in Geneva,
Switzerland. In its roots, the Apache server was developed at NCSA, and it was based on the NCSA HTTP daemon (NCSA HTTPd 1.3).

The NCSA Web server, at that time, was adopted and used by a large number of webmasters in the market. In mid-1994, however, the
development for this Web server stalled and left many webmasters to find their own solutions to problems encountered in their environments.
Some of them developed their own extensions and problem fixes, which could apply to other webmasters searching for the same solution.

In February 1995, a group of webmasters volunteered to consolidate all information related to the server and placed it in a publicly accessible
domain for all webmasters to access. The Apache Group was then formed from people who had made substantial contributions to the Apache
server. NCSA later revived the suspended development of their NCSA Web server, and two members from that development team joined the
Apache Group so that ideas and contributions could be exchanged among both projects. The Apache Group reviewed some of the
enhancements and bug fixes and added them to their own server for testing purposes. In April 1995, the Apache server made its first public
release with Version 0.6.2. It was given this name because it was the “patched” version (A PAtCHy server) of the NCSA HTTPd 1.3 Web
server. In May through June 1995, some general overhaul and redesign was made to fine-tune the Apache server, along with the introduction
of some new features in the Version 0.7.x. The next release of the Apache server with Version 0.8.8 in August 1995 brought about a change in
the architecture of the server with the modular structure and API features. The latest level available for the Apache server is Version 2.0.43
which was recently GAed in April of 2002.

The market share for top servers across all domains in Feburary 2002 was:

Source: Feburary 2002 Netcraft (http://www.netcraft.com/survey/)

58.43% Apache
29.13% Microsoft IIS
 2.92% iPlanet (Netscape)

Apache, a freeware HTTP server, is open-source software that implements the industry standard HTTP/1.1 protocol. The focus is on being
highly configurable and easily extendable. It is built and distributed under the Apache Software Foundation and is available at on the Web at:
http://www.apache.org

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

6

© 2003 IBM Corporation

Apache Benefits to iSeries Users

Open source

Feature packed server

IBM's strategic server

Porting third party modules

Large installation base

Apache is a (relatively) secure server with tremendous
Rochester developer support

Problem: CERT Advisory CA-2002-17 Apache Web Server Chunk
Handling Vulnerability: Original release date: June 17, 2002

Solution: As of Friday afternoon, June 28, the iSeries Apache
development team has approved the following two hyper PTFs as a
response to the subject security advisory. Elapsed days: 11

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

7

© 2003 IBM Corporation

Notes

Open source - iSeries Powered by Apache server is based on the open-source server code provided by the Apache
Software Foundation. This version is based on the 'alpha' code for Apache version 2.0 - it will be updated as future Apache
versions are made available. While iSeries source code will not be published, IBM will offer any enhancements it develops to
the Apache Software Foundation in an open-source form for inclusion in the Apache server. As with any supported product,
IBM will provide defect support for the iSeries Powered by Apache server. IBMers have long been active in Apache
development.
Feature packed server - HTTP/1.1 compliant server
IBM's strategic server - In line with IBM Strategy on all eServers, and open Web Serving.
Porting third party modules - Apache is extremely customizable. IBM provides support for porting third-party and
user Apache modules to the iSeries. The API for modules has changed significantly for 2.0. Many of the
module-ordering/-priority problems from 1.3 should be gone. 2.0 does much of this automatically, and module ordering is now
done per-hook to allow more flexibility. Also, new calls have been added that provide additional module capabilities without
patching the core Apache server. The net of this is that first people who have modules written for 1.3 of Apache will have to
port to version 2.0. But then, the port to the iSeries (as a service program) should be fairly straight forward.
Large installation base - Apache is already a well established server in the Web Server world. Recent Netcraft Web
Survey says that Apache has around 60% of Market share. This will help finding already experienced Web Masters on this
product. This also helps in the area of image - it is easier to justify putting a Web server on your iSeries. And, a large install
base will allow Apache to have a high degree of quality. A wide user base for testing and fixing brings you a higher
quality product.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

8

© 2003 IBM Corporation

Notes

 Problem: CERT Advisory CA-2002-17 Apache Web Server Chunk Handling Vulnerability: Original release date: June 17, 2002
 Last revised: --
 Source: CERT/CC

Systems Affected:
Web servers based on Apache code versions 1.3 through 1.3.24
Web servers based on Apache code versions 2.0 through 2.0.36

Overview

 There is a remotely exploitable vulnerability in the handling of large
 chunks of data in web servers that are based on Apache source code.
 This vulnerability is present by default in configurations of Apache
 web servers versions 1.3 through 1.3.24 and versions 2.0 through
 2.0.36. The impact of this vulnerability is dependent upon the
 software version and the hardware platform the server is running on.

I. Description

 Apache is a popular web server that includes support for chunk-encoded
 data according to the HTTP 1.1 standard as described in RFC2616. There
 is a vulnerability in the handling of certain chunk-encoded HTTP
 requests that may allow remote attackers to execute arbitrary code.

 The Apache Software Foundation has published an advisory describing
 the details of this vulnerability. This advisory is available on their
 web site at

 http://httpd.apache.org/info/security_bulletin_20020617.txt

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

9

© 2003 IBM Corporation

Notes

Solution: (elapsed days: 11)

As of Friday afternoon, June 28, the iSeries Apache development team has approved the following two hyper PTFs as a response to the
subject security advisory. The fix pertains to the 2.0.18 level of Apache that is currently shipped in OS/400 v4r5 and v5r1. The team is also
working on porting 2.0.39 to v5r2 (Apache Software Foundation fixed the problem in 2.0.39). The fix will be incorporated into v5r2 when 2.0.39
is regression tested and officially delivered in PTF form - most likely the week of July 15. The PTF build team is working on transmitting the
PTFs to retain this afternoon.

The APAR number for the problem is SE06465:
OS/400 V4R5: SF67411
OS/400 V5R1: SI04996

As of Monday morning July 1, users can also get an entire package of the most current HTTP server PTFs by ordering the appropriate group
PTF. The aforementioned Apache integrity PTFs will be included in the refresh of the group PTFs. To be certain you have the fix, the data
area for the group PTFs should contain a date of June 27, 2002:

OS/400 V4R5: SF99035
OS/400 V5R1: SF99156

External inquiries can be directed to the HTTP server web site for more information. Updates are scheduled to occur there by Monday, July 1:
http://www.ibm.com/eserver/iseries/software/http

Note: In addition, the advisory reported other problems with the Apache server including the possibility that hackers could introduce their own
code to the system. It should be noted that unlike some other platforms, iSeries was only vulnerable to a Denial of Service attack - it is not
possible for hackers to introduce their own code via this exposure. This is due to the iSeries unique architecture.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
0

© 2003 IBM Corporation

New V5R2 Enhancements
Fast Response Cache
Accelerator (FRCA)

Highly Available HTTP server
Log rollover and archival

Logging to QSYS files
TLS upgrade
GUI enhancements
(usability/accessibility/wizards)

Support for PASE CGI
Full function migration wizard

Supported by Domino 6
Improved HTTP server
management capabilities

Server statistics to collection
services

Inbound addmission rate
control with QoS

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
1

© 2003 IBM Corporation

Notes

Details on all of these topics are spread throughout this presentation.

Inbound addmission rate control with QoS is not covered in this presentation. At a high level the new QoS control of inbound rate control
is as follows:
Basic Connection Admission Control mechanism

Limit acceptance rate of new connections
Prioritized listen queue
Keyed off local/remote IP address/ports

Basic URL Admission Control mechanism
Limit acceptance rate of URL pages
Prioritized queue
Keyed off HTTP data plus local IP address/port
Requires FRCA (Fast Response Cache Accelerator)

Available with V5R2 HTTP Server (powered by Apache) only

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
2

© 2003 IBM Corporation

Product Availability and Packaging

V4R5
Group PTF SF99035 to enhance 5769-DG1 product required to enable
Apache. Now both:

HTTP Server for iSeries (original) and
HTTP Server for iSeries (powered by Apache)

V5R1 and V5R2
Built into base of 5722-DG1. Contains both:

HTTP Server for iSeries (original) and
HTTP Server for iSeries (powered by Apache)

At V4R5, V5R1 and V5R2:
Packaged as part of the same product
Can coexist on the same iSeries server

Based upon Apache 2.0. GA version for V5R2; PTFed back to V5R1
Migration from original to HTTP Server (powered by Apache) available

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
3

© 2003 IBM Corporation

Notes

The V4R5 version of Apache was first shipped in December, 2000 via Group PTF SF99035 and was based on 'alpha' code from the Apache
Software Foundation. Through a series of revisions and updates from both the source code (from the Apache Software Foundation) and the
HTTP Server (powered by Apache) we have seen the progress from alpha; through beta; and now GA that coincides with V5R2.

V4R5 will stay at the 2.0.18 version of the Apache server - which is basically the beta version of Apache. If you want the GA version of the
HTTP Server (powered by Apache) you will need to upgrade to V5R1 at the very least.

V5R2 will see GA version (currently 2.0.43) - the latest available from ASF. You can obtain the latest and greatest code by ordering the HTTP
Server PTF Group SF99098. The PTF group is updated periodically with the latest PTFs. The PTF group number does not change. During an
update, any additional PTFs that impact the HTTP server are added to this PTF group.

V5R2 function will be PTFed back to V5R1, but not V4R5. You can obtain this list of PTFs by ordering the HTTP Server Group PTF SF99156.
The group PTF is updated periodically with the latest PTFs. The group PTF number does not change. During an update, any additional PTFs
that impact the HTTP server are added to this group PTF. This group PTF will provide Apache 2.0.43 with all the new V5R2 function (except
FRCA and HTTP Server collection services) to V5R1.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
4

© 2003 IBM Corporation

Server Features: General functions

HTTP version 1.1 support
Persistent connections

Support for the TRCTCPAPP command

Support for iASPs

pbA

Both

pbA

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
5

© 2003 IBM Corporation

Notes
HTTP Version 1.1 support- Both products support HTTP Version 1.1. The HTTP protocol implementation in Apache was chiefly architected
by one of the HTTP version 1.1 authors. Most current versions of popular Web browsers support HTTP Version 1.1. Apache is normally
configured to detect popular browsers that do not properly support HTTP Version 1.1, and use only HTTP Version 1.0.

Persistent connections- When you enter a URL into your browser’s address line or click a link on a Web page, you open a connection
between your browser and the HTTP server. Prior to the availability of persistent connections, each file referenced on the Web page was
retrieved using a separate connection. This type of retrieval is tremendously costly for the HTTP server and the network since overhead is
required to establish and terminate each connection. Persistent connections are the default behavior for an HTTP server that implements the
HTTP 1.1 protocol.

Support for the TRCTCPAPP command- The Trace TCP/IP Application (TRCTCPAPP) command can be used to trace the server, but only
one instance at a time. It can be started while the server is running.

Note: The old -vv (very verbose) still works at startup much like the original server (and -vi, -ve, which stand for informational and error
tracing, respectively). The Dump User Trace (DMPUSRTRC) and Display Physical File Member (DSPPFM) commands can be used to see the
results, but TRCTCPAPP is the suggested trace method.

Support for iASPs- An independent auxiliary storage pool (IASP) is a collection of disk units that you can bring online or take offline
independent of the rest of the storage on a system. Each IASP contains all of the necessary system information associated with the data it
contains. So, while the system is active, you can take the IASP offline, bring it online, or switch between systems. IASPs contain any of the
following:

one or more user-defined file systems
one or more external libraries

 This feature was fully tested with the V5R2 delivery of the HTTP Server (powered by Apache). It is not supported on the HTTP Server
(original).

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
6

© 2003 IBM Corporation

Server Features: Dynamic Contents

Server-side includes (SSI)

CGI programing
Control number of CGI jobs started with server and their user profile
OS/400 PASE CGI programs (UNIX binaries)

User written modules

Apache Portable Runtime (APR)

Original server API

pbA

O

pbA

pbA

Both

Both

pbA

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
7

© 2003 IBM Corporation

Notes

Server-side includes- Server-side includes (SSI) enable the server to process some of the Web pages before the server sends the page to
the client. The current date, size of the file, and the last change date of a file are examples of the kind of information that you can include in
Web pages that you send to the client.

CGI programing- The start up how the CGIs behave is different with Apache as compared to the original server.
With Apache, a new child job is spawned each time a CGI is executed until the 'MaxCGIJobs' number is reached. MaxCGIJobs defaults to the
value for 'ThreadsPerChild' which is set to 80 in your configuration (the default). Once 'MaxCGIJobs' is reached, the server looks for an
available CGI child job to use. If none are available, it recycles the first inactive CGI job that it finds. The CGI jobs never end (until the server
ends). Since the inactive CGI jobs consume virtually no system resources, it is OK to have them there. It is also possible to pre-start a large
number of CGI jobs to eliminate the overhead of starting new ones, using the StartCGIJobs directive.

So, it is very likely that Apache users will see up to 80 CGI jobs (server BCI jobs) running at any given time. Idle jobs do not consume any
significant resources, and using them in this manner reduces the startup cost for new CGI jobs.

At V5R1, we are also enforcing user profiles in CGI jobs. A CGI job can only have one user profile associated with it now. This will also result
in a greater number of CGI jobs.

The iSeries can run a CGI application that has been written and compiled for AIX. The binary output of the compiler is moved to the iSeries and
can run from the Portable Application Solution Environment (PASE). This built into the support for V5R2. For V5R1 you must load the latest
group PTF for 5722-DG1. You can obtain this list of PTFs by ordering the HTTP Server Group PTF SF99156. The group PTF is updated
periodically with the latest PTFs.

User written modules - The design of the HTTP Server (powered by Apache) is one that defines modules. Modules are operating system
objects that can be dynamically linked and loaded to extend the nature of the HTTP Server (powered by Apache). Depending on the operating
system this is similar to:

Window's Dynamic Link Libraries (DLL)
UNIX's shared object libraries
OS/400's ILE Service Programs

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
8

© 2003 IBM Corporation

Notes
(continued)
In this way the Apache modules provide a way to extend a server's function. Functions commonly added by optional modules include:

Authentication
Encryption
Application Support
Logging
Support for different content types
Diagnostics

You can extend the core functionality of the HTTP Server (powered by Apache) by writing your own modules. Or, take advantage of the many
open source solutions written for the Apache server. Here is an example of a tool that can give you a 90% improvement for your iSeries
Websphere application using a HTTP server plugging called MOD-GZIP that is now available from the eCTC

More: the mod-gzip compression software is a plugging today available from the internet for Intel platforms. The eCTC has done work on this
freeware and tested it on the iSeries: we have prepared a documentation for you to have the mod-gzip on your iSeries HTTP server up within
half a day. This enables at very little cost:
improved performance: customer sat / machine load increased
consolidation of the HTTP server inside the iSeries (in another LPAR): machine load increased

Full Details: Use the attached documents word or pdf+txt + html (configuration information) to have modgzip up immediately: the files explain
how to download the code, modify and compile the mod_gzip module to run on OS/400 V5R1.

For more eCTC support, please contact us !

> Eric Aquaronne > eServer Custom Technology Center
> e-Business Solutions Center (eBSC), IBM Europe/Middle-East/Africa Advanced Technical Support, France
> Tel. = Office: +33-4-9211-5791, Mobile: +33-686-086-401, email= aquaronn@fr.ibm.com, Fax: +33-4-9324-7821
> eCTC email: CTCEMEA@FR.IBM.COM
> eCTC Internet site: http://www.ibm.com/servers/eserver/iseries/service/ctc/
> eCTC Intranet site: http://w3.rchland.ibm.com/projects/CustomTechnologyCenter

note: the 90% figure quoted above is real, it has been provided by an EMEA ISV using modgzip on iSeries (replacing an NT server)

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
9

© 2003 IBM Corporation

Notes
Apache Portable Runtime (APR) - APR provides a set of routines to write your own modules to extend the functionality of the HTTP Server
(powered by Apache). When you write your own module to add some function to your HTTP server instance, you can use APR and once you
write it, it can be compiled on other platforms to run.
To serve dynamic contents can be one of the solutions achieved by using APR.

Original Server API- HTTP Server (original) APIs are not supported on HTTP Server (powered by Apache). The strategic direction of IBM
is to extend the function of the Web server using Java servlets rather than with modules or server APIs. This function can only be used in
HTTP Server (original).

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
0

© 2003 IBM Corporation

Server Features: Performance & Cache

Asynchronous I/O

KeepAliveTimeout (works with persistent connections)

Denial of service

Local memory cache

Fast Response Cache Accelerator (FRCA)

Proxy caching
Reverse Proxy cache

Triggered Cache Manager (TCM)

Both

Both

Both

Both

Both

pbA

Both

pbA

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
1

© 2003 IBM Corporation

Notes

Asynchronous I/O- With the HTTP Server (powered by Apache and original) implementation, the HTTP Server processes communications
requests asynchronously. In this asynchronous I/O model, threads are only involved in processing when there is work to be done. Threads are
dispatched to perform work as required and when not performing work, the threads are returned to a pool of available threads making the
server process more efficient and improving performance by better utilizing the thread resources. Asynchronous I/O also makes the server
more scalable to support a high number of users especially when combined with persistent connections.

KeepAliveTimeout- When the server runs with persistent connections, the KeepAliveTimeout setting determines the number of seconds the
server waits for subsequent requests before closing the connection. If this value is too low, the server could be impacted in terms of
performance as connections could be closed frequently. If this value is too high, the Web server could have many connections open and the
server could run out of resources. In this case the use of asynchronous I/O can alleviate (but not eliminate) the problem of running out of
resources.

Denial of service- The denial of service attribute is equally a performance setting as well as a security setting. This setting allow us to
identify, based on the data frame size, the possibility of an attack. The HTTP server may identify an attack because the frame size differs to
the one it expects. Although this setting impacts the server performance as each request is tracked, it allow you to prevent a more dangerous
performance degradation when dealing with a type of attack that may intentionally slow down or even completely paralyze your server.

Local memory cache- You can provide a caching service for files on your site using the local memory cache configuration options.
To use a local memory cache, you identify an amount of memory to allocate and a set of files to be cached. When the IBM HTTP Server for
iSeries is started, the files are read into the local memory cache up to the limit of the amount of memory allocated or the limit of the number of
files that you allow to be cached.
When a request is received at your IBM HTTP Server for iSeries, the local memory cache is checked first to determine if it has a copy of the
requested file. If so, the file is served from the cache, which is significantly faster than if the file is retrieved from disk storage.

Fast Response Cache Accelerator (FRCA)- With the HTTP Server (powered by Apache) FRCA provides a cache mechanism that
dramatically improves the file serving performance of the HTTP Server (powered by Apache). Once a file is loaded into the below the MI cache
called Network File Cache (NFC) the second request for that file can be served from the NFC. This eliminates open, read and close action for
the file and is entirely handled below the MI by specially written SLIC code. FRCA can handle both a static file caching and a dynamic reverse
proxy caching.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
2

© 2003 IBM Corporation

Notes

Proxy caching- The IBM HTTP Server for iSeries can be configured as a non-caching or caching proxy server. When used as a non-caching
proxy, the primary benefit of enabling proxy services is that the IP addresses used on the internal network are not sent out of your network.
The proxy service forwards the request from your internal network using the IP address of the proxy server, not the address of the original
requester. When the proxy server receives the response, it forwards the response to the original requester.
With caching enabled, the proxy server can act as a high-speed local store of previously accessed Web pages. When you configure the
server as a proxy caching server, you can improve performance. You can also allow users of your internal network to access documents on
the Internet. For example, if you frequently access the same set of Web pages from one or more sites, it may be advantageous to activate the
caching feature. The retrieved Web page is stored locally on your iSeries server. Any subsequent accesses to the page occur at LAN speed,
rather than at Internet speed.
Web pages can be encoded with a “no-cache” attribute or a specific expiration date. You can also configure the IBM HTTP Server for iSeries
proxy service so that it periodically performs “garbage collection” to remove expired files from the cache.
Another use of the proxy service (with or without caching) is to log client requests. Some of the data available includes:

Client IP address
Date and time
URL requested
Byte count
Success code

With this information, you can construct reports to account for the use of your Web site. For example, the information can be used in a
charge-back system to understand and track marketing trends.

Reverse Proxy Caching - Apache server only.

A reverse proxy is another common form of a proxy server and is generally used to pass requests from the Internet, through a firewall to
isolated, private networks. It is used to prevent Internet clients from having direct, unmonitored access to sensitive data residing on content
servers on an isolated network, or intranet. If caching is enabled, a reverse proxy can also lessen network traffic by serving cached
information rather than passing all requests to actual content servers. Reverse proxy servers may also balance workload by spreading
requests across a number of content servers. One advantage of using a reverse proxy is that Internet clients do not know their requests are
being sent to and handled by a reverse proxy server. This allows a reverse proxy to redirect or reject requests without making Internet clients
aware of the actual content server (or servers) on a protected network.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
3

© 2003 IBM Corporation

Notes

Triggered Cache Manager (TCM)- TCM provides a mechanism to manage dynamically-generated Web pages. TCM is a separate server
that can be used in conjunction with the HTTP Server to allow a Web designer to build dynamic pages. It only updates the page in the IFS
when the underlying data changes, thereby improving the performance of a Web site. TCM is not a cache - it is a cache manager.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
4

© 2003 IBM Corporation

Server Features: Configuration

GUI Configuration and administration

O

pbA

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
5

© 2003 IBM Corporation

Notes

GUI Configuration and administration- You can configure and administrate HTTP server instances from Web browsers. To show the
configuration and administration screen, type the following URL from a Web browser:
http://hostname:2001
These figures below show the configuration screens for the HTTP Server (original) and HTTP Server (powered by Apache), respectively. The
configuration screens are different between the HTTP Server (original) and the HTTP Server (powered by Apache), but you can reach each
screens from the same URL.

The HTTP Server (original) and the HTTP Server
(powered by Apache) can coexist. That is, you may
have zero, one or many original servers running at
the same time you have zero, one or many HTTP
Server (powered by Apache) servers running. The
administration screen allows you to create and
manage HTTP servers. This figure shows the GUI
Administration screen.
The navigation menu in the left-hand frame provides
the following choices:

Tasks and Wizards:Allows you to create new
HTTP and ASF Tomcat servers with a wizard. The
wizard provides a streamlined process for quickly
creating HTTP servers. You can also “migrate” or
create a new HTTP Server (powered by Apache)
based upon an existing HTTP Server (original)
without changing the existing configuration.
Global Settings: This section allows you to
configure the global server attributes (the rules
and configuration settings for all servers) such as
autostart, number of threads to use, and specific
mapping tables. See image to right.
Internet Users and Groups: Allows you to
define who can access resources on the server.
Search Engine Setup: Allows you to setup the
Webserver Search Engine.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
6

© 2003 IBM Corporation

Server Features: Virtual Host

Virtual hosts
IP based

Name based
Mass dynamic pbA

Both

Both

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
7

© 2003 IBM Corporation

Notes

Virtual hosts- You can enable virtual hosting. This allows you to host any number of Web sites through one communications adapter. With
virtual hosting, you do not need to assign a unique port to each Web site. Virtual hosting is useful if you need to provide multiple “top-level”
URLs for your Web sites or if you provide ISP services to clients.

IP based- The IP based virtual host uses the IP address to route the requests from the clients to each virtual host. In this inplementation, you
can use HTTP 1.0 for the client web browser. But at the same time, you have to configure multiple IP addresses on your iSeries.

Name based- The name based virtual host uses the domain name to handle the requests from the clients. Since this implementation always
needs the domain name in the URL header, the client web browser must support HTTP 1.1.

Mass dynamic- The dynamic virtual host allows you to dynamically add Web sites (host names) by adding directories of content. This
approach is based on automatically inserting the IP address and the contents of the Host: header into the pathname of the file that is used to
satisfy the request.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
8

© 2003 IBM Corporation

Basic authentication via
OS/400 user profiles

Validation lists
LDAP server

SSL (and TLS)
Server

Client

Server Features: Security

Both

Both

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
9

© 2003 IBM Corporation

Notes

Basic authentication- Basic authentication is a very popular way to secure Web resources. You can protect Web resources by asking the
user for a userid and password to gain access to these resources. The userid and password can be validated in one of three ways:

OS/400 User profile - This requires that each user must have a system user profile.
Validation list - This requires you to create a validation list that contains Internet users. You can create a validation list and Internet users
through the Configuration and Administration forms (click Administration --> Internet Users).
LDAP server - This requires that you configure a LDAP server with the user entries.

SSL and TLS- Secure Sockets Layer (SSL) has become an industry standard for enabling applications for secure communication sessions
over an unprotected network (such as the Internet). With the SSL protocol, you can establish secure connections between clients and server
applications which provide authentication of one or both end points of the communication session. SSL also provides privacy and integrity of
the data that client and server applications exchange.

There are multiple versions of the SSL protocol defined. The latest version, Transport Layer Security (TLS) Version 1.0, provides an
evolutionary upgrade from SSL Version 3.0.

Both the HTTP Server (original) and the HTTP Server (powered by Apache) support server authentication and client authentication.

With server authentication, the client will ensure that the server certificate is valid and that it is signed by a Certificate Authority which
the client trusts.

With client authentication, the server will ensure that the client certificate is valid and that it is signed by a Certificate Authority which the server
trusts.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
0

© 2003 IBM Corporation

Server Features: Application Serving

WebSphere Application Server plug-in

Apache Software Foundation's Jakarta Tomcat

Domino plug-in
Domino R6 provides a plug-in for the HTTP Server (powered by
Apache) (supported at V5R2 and V5R1)

Domino Release 5 provides a plug-in for the HTTP Server (original)

Both

pbA

O

pbA

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
1

© 2003 IBM Corporation

Notes

WebSphere Application Server plug-in- The IBM HTTP Server for iSeries handles static content, CGI program invocations, and proprietary
plug-ins. The run-time environment (WebSphere Application Server) plugs into IBM HTTP Server for iSeries using plug-in APIs. This extends
the support of the HTTP Server to include an implementation of the Java 2 Platform Enterprise Edition (J2EE) specification from SUN
Microsystems.

ASF Tomcat- The HTTP Server (powered by Apache) includes an industry-standard Java servlet and JavaServer Pages (JSP) container
engine based on technology from the Apache Software foundation's Jakarta Tomcat open source code base. Lightweight and easy-to-use
software extends the HTTP Server (powered by Apache) server and is compliant with the Java Servlet 2.2 and JavaServer Pages 1.1
specifications from SUN Microsystems.

Apache Software Foundation's Jakarta Tomcat for iSeries support can be used as a simple starting point for business partners and
customers interested in learning about or piloting Java servlet and JSP applications.

Available with the HTTP Server for iSeries (5769-DG1) in V4R5 is ASF Tomcat at version 3.2.1. Available with the HTTP Server for iSeries
(5722-DG1) at V5R1 and V5R2 is ASF Tomcat at version 3.2.4.

For more information refer to the iSeries HTTP server Web page
http://www.ibm.com/eserver/iseries/software/http

Domino plug-in- Domino 6: a Domino plug-in allows the HTTP Server (powered by Apache) to access Domino documents. This plug-in will
immediately support the HTTP Server (powered by Apache) at V5R2 of OS/400 (this support is also PTFed back to V5R1).

Domino 6 will not support the HTTP Server (original) via plug-in at that time.

For the latest information in this regard see http://www.ibm.com/servers/eserver/iseries/domino/.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
2

© 2003 IBM Corporation

Web Application Server Comparison

WAS 3.5 Standard
and Advanced (not
supported in V5R2)

WAS 4.0 Single server
and Advanced

Tomcat 3.2.4 (V5R1 and
V5R2)

Servlets 2.2 plus IBM
extensions

2.2 plus IBM extensions 2.2

Java Server Pages (JSP) 1.1 1.1 1.1

Java Developer Kit (JDK) 1.2 and 1.3 1.3 1.2 and 1.3

Enterprise Java Beans (EJB) 1.0 (Advanced
version only)

1.1 Not supported

eXtensible Markup Language
(XML)

Supported Supported Not provided directly as
part of 5722-DG1 but
available as part of the
IBM Toolbox for Java.

Connection pooling Supported Supported Not supported

Session support Supported - as an
IBM extension to
Servlet 2.2 support

Supported - as an IBM
extension to Servlet 2.2
support

Not supported Sessions
however, as defined in
servlet 2.2, are
supported by ASF
Tomcat.

J2EE compliant No Yes No

What about: WebSphere Application Server - Express, V5?

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
3

© 2003 IBM Corporation

Notes

Servlets- WebSphere Application server includes full support for servlet specification 2.1 and 2.2 (3.5.2 and later versions). In addition
WebSphere Application Server includes its own packages that extend and add to the Java Servlet API. Those extensions and additions make
it easier to manage session state, create personalized Web pages, generate better servlet error reports, and access databases.

Java Server Pages (JSP)- WebSphere Application Server version 3.5 includes full support for levels .91, 1.0, and 1.1 of the Java Server
Pages (JSP) specification. Version 4.0 supports JSP level 1.1, only.
ASF Tomcat includes full support for level 1.1.

Java Developer Kit (JDK) support- WebSphere Application Server and ASF Tomcat require a compatible Java Development Kit (JDK). The
iSeries server supports the installation of multiple JDK. The JDK support is installed as options of the iSeries Developer Kit for Java
(5722-JV1) license program.

Enterprise Java Beans (EJB)- WebSphere Application Server Advanced Edition at version 3.5 implements the EJB Version 1.0
specification, with some 1.1 specification enhancements, particularly in the area of the finder helper methods. Version 4.0 supports the EJB
1.1 specification.
ASF Tomcat does not include support for EJB. Note: For an open source EJB solution you could employ JBoss. Refer to
http://www.jboss.org/

eXtensible Markup Language (XML)- The IBM Toolbox for Java and JTOpen (JTOpen is the open source version of Toolbox for Java) is a
library of Java classes that give Java programs easy access to iSeries or AS/400 data and resources. It includes the XML4J parser (IBM XML
parser), Program Call Markup Language (PCML), an XML dialect, to support Java programs calling AS/400 application programs and Panel
Definition Markup Language (PDML), an XML dialect, to support GUI panel definition.
Any Java application (running on any system including, of course, an iSeries server) can make use of the special classes that are provided
with the IBM Toolbox for Java including those written as servlets over ASF Tomcat

Note: For an open source XML solution you could employ Apache Cocoon. Refer to http://xml.apache.org/cocoon/

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
4

© 2003 IBM Corporation

Notes

Connection pooling- Connection pooling allows you to manage a pool of relational database connections. This Data Source support allows
you to connect and disconnect to a data server more efficiently by pooling connections and reusing them. That reduces the overhead of
connecting and disconnecting. And lets you control the number of concurrent connections to a data server product. Data Source connects to
a remote database, pulls in required data, saves it into a local cache, and disconnects.
The Data Source utility is not supported by ASF Tomcat.

Note: For an open source solution you could employ Apache Cocoon with the esql.xsl. Refer to http://xml.apache.org/cocoon/

Session support- A session is a connection between a client and a server where information is exchanged. Session support allows a Web
application developer to maintain state information regarding a user’s visit. HTTP alone does not recognize or maintain a user’s state. HTTP
treats each user request as discrete, independent entity. In order to hold the user’s state information sessions are defined as part of the
servlet 2.2 specification.
Sessions, as defined by servlet 2.2, are directly supported by ASF Tomcat.
WebSphere Application Server provides an IBM extension for tracking user sessions, the Session Manager. The service is provided in the
form of IBM classes and packages. WebSphere Application Server uses some mechanisms to address this session affinity: cookie and URL
rewriting.

The Session Manager is not supported by ASF Tomcat.

J2EE compliant- The Java(TM) 2 Platform Enterprise Edition defines the standard for developing multi-tiered enterprise applications.
WebSphere Application Server Version 4.0 is fully J2EE(TM) 1.2 compliant.
For more information about J2EE, see the Sun Java(TM) 2 Platform Enterprise Edition Web site .
http://java.sun.com/j2ee/

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
5

© 2003 IBM Corporation

Notes

WebSphere Application Server Express as been announced. When this product becomes available for the iSeries this table will need to be
updated. Currently the web site at http://www.ibm.com/software/webservers/appserv/express/ says:

WebSphere Application Server - Express, V5

With all the tools necessary to create and run a simple dynamic Web site--in one tightly integrated and affordable package-- IBM
WebSphere® Application Server - Express, V5 offers a cost effective, approachable on-ramp to e-business - a ready-to-go, out-of-the-box
solution. Based on the latest Java™ and Web services standards, WebSphere Application Server - Express lets you convert static Web sites
into dynamic Web sites by viewing and performing simple information updates in back-end databases - while also providing the ability to
consume Web services and resources for integrating with packaged applications.

WebSphere Application Server - Express provides:
Quick , easy-to-use wizard-driven installation.
Integrated development environment (available separately as IBM WebSphere Studio Site Developer for Windows®) offering a simplified
programming model focusing on JavaScript™ and Tag Libraries.
Support for the latest specifications for Java ServerPages™ and Java Servlets.
Development environment complete with wizards and samples that can be used as a starting point, code repository or reference and
educational guide to help developers through the process of building a dynamic Web site.
One-click application assembly and deployment and near-zero maintenance to minimize administration requirements.
Smooth migration to other WebSphere Application Server and IBM WebSphere Studio configurations when more advanced development and
deployment capabilities are required.

Related to this is the fact that WAS V3.5 is not supported on V5R2. Considering the near-future availability of WAS Express V5 this 'window'
is considered small enough as to not pose a problem for most of our customers. Special note: A special 'as is' PTF is available for
WebSphere Application Server 3.5.4 that allows it to run on OS/400 V5R2M0. It is PTF SI05225. WAS at 3.5.4 is still unsupported at
V5R2M0.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
6

© 2003 IBM Corporation

Notes

More detailed information: The long-awaited WebSphere Application Server (WAS) -- Express version for the iSeries is on its way. Express is
a full-function Web application server, except that it lacks support for Enterprise Java Beans (EJBs) and a few other of WAS V5's
enterprise-class functions. The iSeries version contains lots of platform-specific goodies, most notably the IBM Telephone Directory
application. It will be available February 21 for V5R2 and March 14 for V5R1.

IBM U.S. Announcement Letter: http://www.ibmlink.ibm.com/usalets&parms=H_203-008
IBM Canada Announcement Letter: http://www.ibmlink.ibm.com/canalets&parms=H_A03-0055
IBM EMEA Announcement Letter: http://www.ibmlink.ibm.com/emealets&parms=H_ERIFZP030158
IBM Asia Pacific Announcement Letter: http://www.ibmlink.ibm.com/aplets&parms=H_AP031017

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
7

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
8

© 2003 IBM Corporation

Server Features: Miscellaneous

Webserver Search Engine and Webserver Search Engine Web
Crawler

Web-based Distributed Authoring and Versioning (WebDAV)

Access log reporting and Web usage mining

Platform for Internet Content Selection (PICS)

Collection Services

Log Rollover and Maintenance

Header Control (expires, etc.)

URL rewriting

NLS translated GUI

O

O

Both

Both

pbA

Both

pbA

pbA

Both

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
9

© 2003 IBM Corporation

Notes

Webserver Search Engine and Webserver Search Engine Web Crawler- The HTTP Server search engine allows you to perform full text
searches on HTML and text files stored in the iSeries file system from any Web browser. The iSeries Webserver Search Engine is available
at no charge with IBM HTTP Server for iSeries (5769-DG1 or 5722-DG1) starting at OS/400 V4R4. You can control what options are available
to the user and how the search results are displayed through customizable Net.Data macros.
Some of the features of the Webserver Search Engine include:

Indexes documents for fast searching:
The iSeries Webserver Search Engine indexes HTML or text files into a format that allows a large number of documents to be searched quickly. Multiple indexes
can be created, and documents from multiple directories can be placed in a single index.

Exact word indexing:
The Webserver Search Engine uses an exact word indexing scheme rather than a keyword indexing scheme used by many search engines. All words are
indexed; nothing is left out. Exact word indexing provides for faster index building and more precise searching than keyword indexing, but requires additional disk
space. Documents are searched using consecutive character matching, which is essential for proper support of double-byte languages.

Advanced search functions:
The AS/400 Webserver Search Engine supports advanced search capabilities such as exact search, fuzzy search, wild card search, proximity search, English
word stemming, case-sensitive search, boolean search, and document ranking.

Customizable search forms:
The search forms and search results form are completely customizable by the end user using the Net.Data scripting language. This gives the user the ability to
specify the type of search to be done and how the results are to be displayed. The information that can optionally be displayed on the results page includes the
number of documents satisfying the search, number of occurrences of the search term, number of documents returned on this page, the URL associated with
each document, the document's ranking, and the last modified date and size. Any and all of this information can be displayed however the user chooses.

Web-based administration:
Administration of the search indexes is handled as part of the IBM HTTP Server Configuration and Administration Web pages. The search administration forms
allow you to create and delete search indexes, update search indexes when documents are modified, and view the status of an index.

Multiple language support:
The Webserver Search Engine supports multiple national languages including double-byte languages Chinese, Japanese, and Korean.

On the iSeries the search engine comes in two logical pieces that are Webserver Search Engine and Webserver Search Engine Web
Crawler. And they are related to each other.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

4
0

© 2003 IBM Corporation

Notes

Web-based Distributed Authoring and Versioning (WebDAV)- WebDAV provides a network protocol for creating interoperable,
collaborative applications. Major features of the protocol include:
Locking (concurrency control):
Long-duration exclusive and shared write locks prevent the problem of overwriting, where two or more collaborators write to the same
resource without first merging changes. To achieve robust Internet-scale collaboration, where network connections may be disconnected
arbitrarily, and for scalability, since each open connection consumes server resources, the duration of DAV locks is independent of any
individual network connection.
Properties:
XML properties provide storage for arbitrary metadata, such as a list of authors on Web resources. These properties can be efficiently set,
deleted, and retrieved using the DAV protocol. The DAV Searching and Locating (DASL) protocol provides searches based on property values
to locate Web resources.
Namespace manipulation:
Since resources may need to be copied or moved as a Web site evolves, DAV supports copy and move operations. Collections, similar to file
system directories, may be created and listed.
For more information about WebDAV, refer to: http://www.webdav.org/

Access log reporting and Web usage mining- The HTTP Server (original) provides the log reporting and Web usage mining function. If you
are using powered by Apache, you can obtain the IBM WebSphere Site Analyzer to provide a similar function.

Platform for Internet Content Selection (PICS)- PICS support enables labels (metadata) to be associated with Internet content. Originally
designed to help parents and teachers control what children access on the Internet, it also facilitates other uses for labels, including code
signing and privacy.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

4
1

© 2003 IBM Corporation

Notes

Collection Services- is adding support in V5R2 for user defined categories and probes. This support will allow IBM products and customer
applications to capture application unique performance data along with the system data already provided by collection services.

The IBM HTTP Server (powered by Apache) iis going to use this support to provide performance data specific to the server. This will not be
done with the original server.

Log Rollover- The Original IBM HTTP server supports daily log files only. When a server instance is started, all of the log files configured for
that server instance are opened. By default, the server will not create any logs - the proper directives must be configured by the web
administrator in order to cause the HTTP server to log. Web server instances may not share log files.

The Apache code as shipped from ASF has no automatic rollover capability. If the user wants the current log rolled, the support must be
implemented via a user program.

In V5R2 the iSeries will extend the HTTP Server (powered by Apache) code to include log rollover support. This will be in the form of the
HTTP Server (original) support, and then extended by allowing the user to specify one of the following values: "Off" "Hourly", "Daily", "Weekly",
"Monthly". The directive that provides log rollover support is "LogCycle". If a daily log cycle is desired, that would be achieved with by placing
the following directive in the configuration file:

LogCycle Daily

Values of "Daily", "Weekly" and "Monthly" will cause the logs to rollover at midnight of the respective time period. A value of "Hourly" will cause
the logs to rollover at the top of each hour".

Note: log file formats are not changing in V5R2.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

4
2

© 2003 IBM Corporation

Notes

and Maintenance- in V5R2 for the HTTP Server (powered by Apache) provides log maintenance support similar to the HTTP Server (original).
This will provide log maintenance mechanisms similar to those for HTTP server, including deletion of files based on both age and aggregate
size variables. Log Maintenance within the Apache Server will happen at midnight. The maintenance job will be started up each midnight by
the main server (after a timer pops) and see whether any maintenance needs to be done. If maintenance is required it will be performed at this
time. If it is not required, the maintenance job will end.

The Original HTTP Server has the ability to remove log files after the logs reach a certain size or age. This is controlled through server
configuration directives.

Apache currently does not have a built-in capability to do log removal. Traditionally on Apache, archiving was done by shutting Apache down,
moving the logs elsewhere, and then restarting Apache. There is a program called rotatelogs, which can be found in the Apache support
subdirectory. It closes the log periodically and starts a new one, and is useful for long-term archiving and log processing.

We plan to improve on the support provided by the Original HTTP Server by generalizing and expanding some of the existing directives so that
they may be used more generically for multiple log files, rather than using specific directives for each active log file.
Log maintenance can be configured with the new LogMaint directive.

When log maintenance is done on a file, it is purged from the system. Candidates are determined by looking at the appropriate variations of
the filename given on the LogMaint directive. These variations will have extensions and names containing the format Qcyymmddhh. The
server will generate names of this format as long as the log cycle function is active via the LogCycle directive.

Log files may be purged when they reach a user-defined age in days or when the overall size of log files exceeds a user-defined limit. Values
for both size and age can be specified on the LogMaint directive.

Files that are currently in use (currently open) by the server instance are not eligible to be removed.

If non-zero values have been configured for both age and size limit, files which have exceeded the age limit are deleted first. After aged files
have been deleted, the server calculates the size of all remaining files. If the user-defined size limit is still exceeded, the server will continue to
purge log files until either the aggregate size of remaining log files is within the size limit or all eligible files have been deleted.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

4
3

© 2003 IBM Corporation

Notes
URL rewriting: allows the rewriting of URLs to URLs, URLs to filenames, and filenames to filenames. This uses the mod_rewrite engine that
is part of every Apache server. For example say that you want to prevent a particular user agent called Webcrawler from accessing any
pages on the server. To do this you would include the following directives in your configuration:

RewriteEngine on
RewriteCond %{HTTP_USER_AGENT} ^Webcrawler
RewriteRule ^.*$ - [F,L]

The first line enables the rewrite engine. The second line provides a test that returns true if the HTTP_USER_AGENT string starts with the
letters Webcrawler. If the second line is true, then the third line takes any URL string and returns a forbidden message to the client.

Header Control (expires, etc.): The HTTP Responses form provides tabs that allow you to configure an HTTP server for maintaining how
server error messages are handled, configuring response header attributes, specifying the expiration parameters for cached files, and
configuring meta file processing.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

4
4

© 2003 IBM Corporation

Notes
NLS translated GUI: The V5R2 HTTP Server (powered by Apache) has been fully translated for all 51 languages. PTFs should be coming
soon to roll similar MRI PTFs into V5R1 near the months of Sept or October 2002.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

4
5

© 2003 IBM Corporation

Notes
Not on the list:

Translation and serving of OS/400 Spoolfiles: Neither the original nor the HTTP Server (powered by Apache) can directly serve OS/400
spoolfiles.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

4
6

Getting Started

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

4
7

© 2003 IBM Corporation

Get the Redbook!

HTTP Server (powered by
Apache), SG24-6716

Redbook, published
April-3-2002, last updated
April-10-2002

Know the Web site:
www.iseries.ibm.com/http

Signup for 'Friends of...'
During the break

Update the Redbook!
Six week residency: IS-3302
Starts April 28th; Rochester

Goto: ibm.com/redbooks

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

4
8

© 2003 IBM Corporation

Mandatory Product or option
number

 IBM HTTP Server for iSeries 5722-DG1
 TCP/IP Conectivity Utilities 5722-TC1
 Java Developer Kit 1.2 5722-JV1 *Base and

option 3

Recommended

 WebSphere develpment ToolSet 5722-WDS and option 51
(Compiler ILE C)

 Triggered Cache Manager Option 1 of 5722-DG1

Security

 Digital Certificate Manager (DCM) Option 34 of OS/400
 Cryptographic Access Provider 5722-AC2 or 5722-AC3

Servlet & JSP Programming

WebSphere Application Server Standard Edition or
WebSphere Application Server Advanced Edition

5733-AS3 or 5733-WA3

Toolbox for Java 5722-JC1
Java Developer Kit 5722-JV1 options
Qshell Interpreter option 30 of OS/400

Software
F

0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

4
9

© 2003 IBM Corporation

Notes

 Mandatory
 IBM HTTP Server for iSeries 5722-DG1 The LPP is IBM HTTP Server for

iSeries, which contains the
component HTTP Server (powered
by Apache).

 TCP/IP Conectivity Utilities 5722-TC1 Very useful collection of TCP/IP
applications including Telnet, FTP
and others.

 Java Developer Kit 1.2 5722-JV1 *Base and
option 3

Your HTTP Server (powered by
Apache) requires this LPP.

Recommended (but optional)
 WebSphere develpment ToolSet 5722-WDS and option 51

(Compiler ILE C)
Needed if you will be doing any
application development in ILE
languages.

 Triggered Cache Manager Option 1 of 5722-DG1 Needed only if you will be working
with Triggered Cache Manager
(TCM).

Security (optional)
 Digital Certificate Manager (DCM) Option 34 of OS/400 Optional: to support the handling of

digital certificates used by SSL/TLS
for secure Web serving.

 Cryptographic Access Provider 5722-AC2 or 5722-AC3 If you want to use SSL or TLS you
must install one of the IBM
Cryptographic Access Provider
products. The availability of these
products is subject to USA export
regulations and can order them as a
separate no-charge LPP.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

5
0

© 2003 IBM Corporation

Notes

Servlet & JSP Programming (optional)
WebSphere Application Server Standard Edition or
WebSphere Application Server Advanced Edition

5733-AS3 or 5733-WA3 The Standard Edition with its support of
servlets and JSPs at version 3.5 is all you
really need to compare and contrast with
the Apache Software Foundation’s Jakarta
Tomcat.

 Toolbox for Java 5722-JC1 If you will be programming in Java this is
recommended.

 Java Developer Kit 5722-JV1 options Your HTTP Server (powered by Apache)
requires this LPP *Base and Option 3
(Java Developer Kit (JDK) 1.2). If you will
be programming in Java you might need
some other options for other levels of the
JDK.

Qshell Interpreter option 30 of OS/400 Useful for working with WebSphere
Application Server.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

5
1

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

5
2

© 2003 IBM Corporation

 Name of component Option number
 HTTP Server (original) *base
 HTTP Server (powered by Apache) *base
 Net.Data *base
 AS/400 Webserver Search Engine *base
 Apache Software Foundation’s Jakarta Tomcat *base
 Highly Available HTTP Server *base
 Triggered Cache Manager Option 1 of 5722-DG1

Product PTF description
 IBM HTTP Server for iSeries (5722-DG1) (V5R2) Group PTF SF99098
 IBM HTTP Server for iSeries (5722-DG1) (V5R1) Group PTF SF99156
 IBM HTTP Server for iSeries (5769-DG1) (V4R5) Group PTF SF99035

Components and PTFs

Components of 5722-DG1

Group PTFs

Goto: http://www.ibm.com/servers/eserver/iseries/software/http/ and click PTFs

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

5
3

© 2003 IBM Corporation

Name of component Option number Comment
 HTTP Server (original) *base
 HTTP Server (powered by Apache) *base in V4R5 as group PTF SF99035
 Net.Data *base
 AS/400 Webserver Search Engine *base
 Apache Software Foundation’s Jakarta Tomcat *base A Java servlet and JSP application server
 Highly Available HTTP Server *base A V5R1 enhancement only
 Triggered Cache Manager Option 1 of 5722-DG1

Product PTF description Comments
 IBM HTTP Server for iSeries (5722-DG1) (V5R1) Group PTF SF99156 The current version of this V5R1 group

PTF can be displayed on the iSeries by
running the following command:
DSPDTAARA QHTTPSVR/SF99156

 IBM HTTP Server for iSeries (5769-DG1) (V4R5) Group PTF SF99035 The current version of this V4R5 group
PTF can be displayed on the iSeries by
running the following command:
DSPDTAARA QHTTPSVR/SF99035

Since the HTTP Server (powered by Apache) is so new and ever-changing it is mandatory that you install the latest and greatest fixes for
IBM HTTP Server for iSeries (5722-DG1) and other related products. Table below shows us the products and PTFs that you must install on
your iSeries server:

LPP IBM HTTP Server for iSeries (5722-DG1) contains these components. That is, when you install 5722-DG1 on your iSeries server you
will also be able to make use of:

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

5
4

© 2003 IBM Corporation

User Profile Authorities

Your user profile must have
*IOSYSCFG authority

*CHANGE authority to the library QUSRSYS

Objects require *ALL authority
 QUSRSYS/QATMHINSTA

 QUSRSYS/QATMHINSTC

Commands require *USE authority
 CRTVLDL

 STRTCPSVR

 ENDTCPSVR

Web browser Needs to support
 HTTP 1.0 or 1.1 protocol

 Frames

 Java Script

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

5
5

© 2003 IBM Corporation

Notes

To use the GUI configuration and administration requires a valid iSeries user profile and password. You must have the following authorities to
perform configuration and administration tasks:

Tip: Do not use QSECOFR as this user profile will not work with the HTTP server’s Configuration and the Administration forms. You can,
however, use a user profile that has a user class of *SECOFR.

Your user profile must have *IOSYSCFG authority.
Your user profile must have *CHANGE authority to the library object QUSRSYS.

The following file objects require *ALL authority:
QUSRSYS/QATMHINSTA
QUSRSYS/QATMHINSTC

The following command objects require *USE authority:
CRTVLDL
STRTCPSVR
ENDTCPSVR

QTMHHTTP is the default user profile of the HTTP Server. QTMHHTP1 is the default profile that the HTTP Server uses when running CGI
programs. The HTTP Server profile must have *RWX authority to the directory path where the HTTP Server (powered by Apache)
configuration files are stored. The default path is /www/servername/. Where servername is the name of the HTTP server instance.
The HTTP Server profile must have access to the directory path where the log files are stored. The security of the log files should be fully
considered. The path of the log files should only be accessible by the appropriate user profiles.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

5
6

© 2003 IBM Corporation

Notes

The HTTP Server (powered by Apache) is configured using a client Web browser. To use the Configuration and Administration forms you
need a Web browser that supports:

HTTP 1.0 or 1.1 protocol
Frames
Java Script

Browsers such as Microsoft’s Internet Explorer 5.5 or later, and Netscape Navigator 4.75 will work with the Configuration and Administration
forms.

Tip: Due to some cookie caching problems, we advise you to use the Microsoft’s Internet Explorer.

In order to view the log reports generated by the HTTP Server, you must use a browser which supports JVM 1.1.5 or later.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

5
7

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

5
8

© 2003 IBM Corporation

Test the Installation of HTTP Server

Using iSeries Navigator
 Start Instance -> APACHEDFT

or
Type command

 STRTCPSVR SERVER(*HTTP) HTTPSVR(APACHEDFT)

From your Web browser
 http://your.server.name/

Do not copy directives in

APACHEDFT

to your own server configuration!

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

5
9

© 2003 IBM Corporation

Notes

One very good and quick way to see if your iSeries server has all the pieces to run an HTTP Server (powered by Apache) is to start the
APACHEDFT server that comes with the installation of IBM HTTP Server for iSeries (5722-DG1).

Tip: Do not use (for example, by copy and paste) the configuration directives found in the APACHEDFT server for your own server. The
reason is that the Port directive used within has been deprecated. The directive Listen should be used instead.
The best way to create a new Web server configuration is via the wizard.

To test your installation, do the following:
1. Verify that the iSeries TCP/IP is started.
2. Verify that the host name and the domain name for your iSeries server is specified and matches an entry in the local host table.
3. Verify that you will not have any IP address and port conflicts with other HTTP Server (original) and HTTP Server (powered by Apache) Web

servers. This is important as the APACHEDFT server is configured to bind to all IP addresses and TCP/IP port 80 which is the default port for
Web applications.

4. Start the APACHEDFT server instance
Using Operations Navigator expand Network -> Servers -> TCP/IP and right-click HTTP Administration. Then click Start Instance -> APACHEDFT.
Or, from the iSeries command line:
STRTCPSVR SERVER(*HTTP) HTTPSVR(APACHEDFT)
This will start the APACHEDFT server instance listening on all active IP interfaces on TCP/IP port 80. Starting this server instance will only allow read access
 to files located in the directory /www/apachedft/htdocs (and all sub-directories).

5. Open your Web browser and enter;
http://your .server.name/
where your.server.name is the name or the IP address of your iSeries server.

If everything is correctly setup and configured you should see the default welcome page (physically located in the iSeries IFS at
/www/apachedft/htdocs/index.html) as shown above.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

6
0

© 2003 IBM Corporation

Enhanced GUI for configuration using the "Admin" server
Port 2001 (http://myserver:2001) for iSeries Tasks page
Wizard based configuration for common and complicated tasks

Start/stop via GUI

Apache Configuration GUI
F

0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

6
1

© 2003 IBM Corporation

Notes

Enhanced graphical configuration & administration - Enhanced Graphical User Interface for configuration using the "Admin" server.
Wizard based configuration for common and complicated tasks. Start and stop server via GUI. Simplifies the configuration Process.

The "look and feel" of the iSeries Tasks page is the same from V4R5 to V5R2. So far nothing really has changed.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

6
2

© 2003 IBM Corporation

GUI Setup

HTTP Server
Creation:

Create new HTTP,
WAS Express and
Tomcat servers;
migrate Original to
Apache

Global Settings:
Global attributes

Internet Users and
Groups:

Define who can
access server
resources

Search Engine
SetupF

0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

6
3

© 2003 IBM Corporation

Notes

Setup
The setup options allow you to create and manage HTTP servers. The navigation menu in the left-hand frame provides the following choices:

Tasks and Wizards: Allows you to create new HTTP, WAS Express, and ASF Tomcat servers with a wizard. The wizard provides a
streamlined process for quickly creating HTTP servers. You can also “migrate” or create a new HTTP Server (powered by Apache) based
upon an existing HTTP Server (original) without changing the existing configuration.

Internet Users and Groups: Allows you to define who can access resources on the server.

Search Engine Setup: Allows you to setup the Webserver Search Engine.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

6
4

© 2003 IBM Corporation

Notes

Global Settings: This section allows you to configure the global server attributes (the rules and configuration settings for all servers) such as
autostart, number of threads to use, and specific mapping tables.

Autostart: specifies if all servers should automatically start when TCP/IP starts.

Number of threads: specifies the minimum and maximum number of threads to use for all servers.

Minimum: specifies the minimum number of threads the servers keep open. From 1 to 9999 threads can be specified. *DFT specifies that the
default value of 10 is used. This parameter is not used by HTTP Server (powered by Apache).
Maximum: specifies the maximum number of threads the servers open. From 1 to 9999 threads can be specified. *NOMAX specifies that
there is no limit to the number of threads the server can open. *DFT specifies that the default value of 40 is used.
Coded character set identifier: specifies the five digit number from 00001 through 65533 that represents the coded character set identifier
(CCSID) all servers should use. The servers use the CCSID to translate documents from EBCDIC to ASCII. The servers use this value when
a character set and page are not identified in the MIME header from the web browser. *DFT specifies that the default value of 00819 is used.
For a list of CCSID values see the Globalization topic in the iSeries Information Center.

Server mapping tables: specifies the tables that you want the servers to use to convert EBCIDIC to ASCII and ASCII to EBCIDIC.

Outgoing EBCDIC/ASCII table: specifies the table that you want the servers to use for EBCDIC to ASCII character conversion for outgoing
documents. *CCSID specifies the CCSID value for determining outgoing mapping. *GLOBAL specifies that the outgoing mapping defined in
the Global Server settings is used.
Library: specifies the library name where the table is located. The library name is required when specifying a specific outgoing table. The
library name is not a required when *GLOBAL or *CCSID is specified for the outgoing table.
Incoming ASCII/EBCDIC table: specifies the table that you want the servers to use for ASCII to EBCIDIC character conversion for incoming
documents. *CCSID specifies the CCSID value for determining incoming mapping. *GLOBAL specifies that the incoming mapping defined in
the Global Server settings is used.
Library: specifies the library name where the table is located. The library name is required when specifying a specific incoming table. The
library name is not a required when *GLOBAL or *CCSID is specified for the incoming table.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

6
5

© 2003 IBM Corporation

Notes

Access Control Administration: allows you to define who can access resources on your
server.

A validation list is an AS/400 object of type *VLDL that stores user names and passwords
for use in access control. Validation lists are case-sensitive. Validation lists reside in
AS/400 libraries and are required when adding a user unless you are adding the user to a
group file. If you enter a validation list that does not exist, the system will create it for you.
Note: Enter the validation list name in the format somelib/somelist. In this example, somelib
is an existing library in the QSYS file system (up to 10 characters long). somelist is the
name of a validation list (up to 10 characters long) that exists in that library.

Enter an existing Group file directory with a fully-qualified path name in the integrated file
system followed by the group file name (in the format /somedir/group1.grp). A group file
contains information about which users belong to which groups. A group file will be created
if it does not already exist. This entry is required only if you are adding a user to a group file
instead of a validation list. Group file names can be case-sensitive, depending on which file
system they are located in, and cannot contain any blank characters.
Note: Group files are supported only in the Integrated File System.

Enter the Group within the group file in which to add the user. A group is a collection of
users who require common access control to a directory or file. This might, for example, be
a collection of people in the same department. If you enter a group that does not already
exist in the group file, then it will be created for you. A group must be specified when adding
a user to a group file. A group cannot contain blank characters.
Note: when adding an Internet user to a group file, if a group is specified, then the user will
be added directly into that group.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

6
6

© 2003 IBM Corporation

Notes

At a high level, these are some of the things you could say about the GUI administration:
Enhanced Graphical User Interface for configuration using the "Admin" server
Wizard based configuration for common and complicated tasks
Migration of original HTTP server configurations to Apache via Wizard
Start/Stop/Restart server instances
Display status of all instances
Written in Java, runs as a servlet
Provides default directives which make configurations "secure by default" and adds common directives you will want
Provides API's for programmatic access and updates to configuration files
Simplifies the configuration process

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

6
7

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

6
8

© 2003 IBM Corporation

Create new Original or Apache

Merged path with migration of Original to Apache wizard
either explicit down a Migrate from Original to Apache wizard
or Create a 'new' Apache based upon an Original

HTTP Server Creation
F

0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

6
9

© 2003 IBM Corporation

Notes
Merged path with migration of Original to Apache wizard: Either by selecting to migrate the Original HTTP server to Apache directly, or by
creating a new Apache server and asking that it be based upon an Original HTTP server configuration. Upper left panel shows the panel
during the Create HTTP server (Apache) wizard that allows you to base it upon an Original configuration. Lower right is the first panel of the
Migrate Original Server to Apache wizard.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

7
0

© 2003 IBM Corporation

Here are the variables you must know to complete the wizard:

HTTP Server Creation Worksheet

Create HTTP Server wizard
question

Options Answer example

HTTP server type HTTP server (powered by
Apache) or HTTP server
(original)

HTTP Server (powered
by Apache)

HTTP server name name ITSO88
Migrate Original server
configuration?

(Yes/No) If Yes, name
the Original HTTP server
instance

No

Server root default: /www/webserver /ITSO/ITSO88
Document root default:

/www/webserver/htdocs
/ITSO/ITSO88/ITSOco

Listen on IP address and Port default: All IP addresses
default: Port 80

All IP addresses
8088

Logging Do you want your new
server to use an access
log?

Yes. Note: The Apache
server always has an
error log.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

7
1

© 2003 IBM Corporation

Notes

HTTP Server type: The IBM HTTP Server for iSeries gives you the ability to create two different types of web servers
The HTTP server (powered by Apache) which is based on the popular Apache web server implementation. This is the strategic code base for
the IBM HTTP Server for iSeries.
The HTTP server (original) which is the same web server that has been available since V3R2 and is based on a CERN web server
implementation.

HTTP server name: This name will be used later to configure and administer your server. The name must begin with an alphabetic
character. The name can have up to nine additional alphanumeric characters. It may not contain any blanks or special characters.

Migrate Original server configuration: Yes, configure based on an existing Original server. Note: This involves a migration of the original
server configuration to an Apache configuration. This in no way alters or destroys the existing server or its configuration.

Server root: The server root is the base directory for your HTTP server. Within this directory, the wizard will create subdirectories for your
logs, and configuration information. Note: If the server root does not exist, the wizard will create it for you.

Document root: The document root is the directory from which your documents will be served by your HTTP server. Note: If the document
root does not exist, the wizard will create it for you.

Listen on IP address and Port: Your server may listen for requests on specific IP addresses or on all IP addresses of the system. Note:
Most browsers make requests on port 80 by default. The wizard gives you a pull-down of valid IP addresses already configured on your
iSeries.

Logging: Your HTTP server can keep a log of activity on your site. The HTTP Server (powered by Apache) will always have an error log (by
default). If you specify Yes, a second activity log will be created and will contain information on access requests, and both the Referrer and
UserAgent headers from incoming requests.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

7
2

© 2003 IBM Corporation

Notes
This is the configuration file generated by the parameters in the worksheet.

Configuration originally created by Apache Setup Wizard Thu Jan 30 16:42:20 UTC 2003
Listen *:8088
DocumentRoot /itso/itso88/itsoco
ServerRoot /itso/itso88
DefaultType text/plain
Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes -IncludesNoExec -Indexes
-MultiViews
ErrorLog logs/error_log
LogLevel Warn
DirectoryIndex index.html
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%{Cookie}n \"%r\" %t" cookie
LogFormat "%{User-agent}i" agent
LogFormat "%{Referer}i -> %U" referer
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log combined
SetEnvIf "User-Agent" "Mozilla/2" nokeepalive
SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0
SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0
SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0
SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive
SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0
<Directory />
 Order Deny,Allow
 Deny From all
</Directory>
<Directory /itso/itso88/itsoco>
 Order Allow,Deny
 Allow From all
</Directory>

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

7
3

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

7
4

© 2003 IBM Corporation

Migration Wizard

V5R2 enhanced to now migrate additional original server
directives:

Highly Available

Log rollover and archiving
Proxy

Protection setups
Virtual hosting
Server Side Include (SSI)

Adding a new request routing directive, Map, to eliminate
ordering problems with request routing differences

Also adding a decision point
Do you want the migration wizard to migrate request routing directives

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

7
5

© 2003 IBM Corporation

Notes

Adding a new request routing directive, Map: By using a specially coded rewrite rule via mod_rewrite we can finally properly migrate the
original Map directive to something that works the same in Apache. This will eliminate ordering problems with request routing differences.
Map was one of the last request routing directives from the Original server to now be migrated to the HTTP Server (powered by Apache).

HTTP Server News
At http://www.ibm.com/servers/eserver/iseries/software/http/news/sitenews.html the Rochester Apache developers are looking for your
source original configuration files to help verify the changes they have made to the migration wizard:

May 20, 2002 IBM Rochester Accepting Sample Configuration Files

IBM Rochester would like some real world, working server configuration files for both the "original" IBM HTTP Server and IBM HTTP Server
(powered by Apache) to determine whether they can offer more complex coverage for their migration wizard and GUI interfaces. IBM may
benefit in helping improve their test suites and you may benefit in improved quality. There may be some commonalities across the
configuration files that could potentially result in future articles or product enhancements if IBM sees some common concerns in multiple user
configuration files.

If you would like to participate, send an email to rchapach@us.ibm.com stating you wish to participate. You will receive a return email
explaining the terms and conditions under which IBM can accept your configuration file.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

7
6

© 2003 IBM Corporation

Select Manage tab -> All servers (or specific server)
Select server from list
List can be sorted by column
Stop, Start, Restart, Delete, Rename - depending on status of server
Jump straight to configuration with Manage Details
At bottom of list (not shown) are for the optional startup parameters

Manage: Servers
F

0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

7
7

© 2003 IBM Corporation

Notes

Manage HTTP Servers
The Manage HTTP Servers form allows you to view the current status, start, stop, restart, rename, monitor, delete, and configure your
servers. Select the server that you want to work with by clicking the radio button to the left of the server name.

To view the current status of a server, find the server that you want to work with under the HTTP Server column of the table. The Type column
specifies if the server is a HTTP Server (original) or a HTTP Server (powered by Apache) type. The Status column indicates if the server is
running or stopped.

The Refresh button allows you to refresh the status.

To start or restart a server do the following:
Select the server that you want to start or restart.
Optionally specify any startup parameters in the Server startup parameters: field.

The following parameters are valid for the HTTP Server (powered by Apache):
-netccsid [nnn] Overrides the DefaultNetCCSID directive
-fsccsid [nnn] Overrides the default DefaultFsCCSID directive
-d [serverroot] Set the initial value for the ServerRoot variable to serverroot. This can be overridden by the ServerRoot directive.
-f [configuration] Use the values in the configuration on startup. If the configuration does not begin with a /, then it is treated as a path relative
to the ServerRoot.
-C [directive] Process the given directive just as if it had been part of the configuration.
-c [directive] Process the given directive after reading all the regular configuration files.
-vv Enable verbose level service tracing. The -vv parm is ignored on a restart and does not toggle on/off tracing.
-vi Enable informational level service tracing.
-ve Enable error level service tracing.
-V Display the base version of the server, build date, and a list of compile time settings, then exit.
-l Display a list of all modules compiled.
-t Test the configuration file syntax but do not start the server. This command checks to see if all DocumentRoot entries exist and are
directories.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

7
8

© 2003 IBM Corporation

Notes

Click the Start or Restart button. Starting the server issues the STRTCPSVR CL command. Restarting the server issues the STRTCPSVR
CL command with the RESTART parameter.

To stop a server do the following:
Select the server that you want to stop. Click the Stop button. Stopping the server issues the ENDTCPSVR CL command.

To rename a server do the following:
Select the server that you want to rename. Click the Rename button.

To monitor a server do the following:
Make sure that you have enabled monitoring in the server configuration that you want to monitor. Select the server that you want to monitor.

Click the Monitor button. You will see a display of several server statistics such as the number of active threads.

To delete a server do the following:
Select the server that you want to delete. Click the Delete button. For HTTP Server (powered by Apache) the server is deleted, but the server
root directory and anything in orunder that directory (like the configuration file) is not deleted. For HTTP Server (original) the server is
deleted, but the associated server configuration is not deleted.

To change the configuration of a server do the following:
Select the server that you want to configure. Click the Configure button.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

7
9

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

8
0

A Quick Guide to Apache
Contexts and Request Routing

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

8
1

© 2003 IBM Corporation

Notes

This part shows you the basic concepts of configuration and request routing with your HTTP Server (powered by Apache). We will then
show you how to apply what you've learned by stepping you through a simple configuration scenario using the administration GUI.

In-context configuration
How context works
Apache server request routing
Apache request processing
Configuration recommendations

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

8
2

© 2003 IBM Corporation

In-context Configuration

A mechanism to subset the configuration file into logical entities
The entire configuration is considered to be the "Server Config"
context
Other contexts provide ways to subset your configuration to have
different behavior based on the "context" that directive is located in.

Contexts include:
Directory - uses the physical path the URL of the request maps to: <Directory
/mydir/>
Files - within Directory context, allows further definition based on physical file
names: <Files abc.html>
Location - uses the URL of the request: <Location /www/>

VirtualHost - uses the virtual host of the request: <VirtualHost 1.2.30.40>

Allows you to do your custom configuration
Some directives only work in the "Server Config"

Look at the directive documentation to learn if it is valid within a
context

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

8
3

© 2003 IBM Corporation

Notes

You can think of context as containers of settings and it allows us to devide the configuration file into some logical entries.
The entire server configuration is itself considered to be a context called the global context or the server config context. Other contexts can
have their own set of directives to behave differently. We can use several types of context as follows:

Directory
Directory Match
Files
Files Match
Include
LDAP Include
Limit
Limit Except
Location
Location Match
Virtual Host

Each context must be defined in a certain upper level context. For exsample, Directory context must be defined in server config or virtual
hosts context. Virtual host context can be contained only in server config context.
The contexts that you'll use most often are Directory and Files. Directory contexts define configuration settings for an entire directory, and
Files contexts define settings for files matching a particular name pattern.
Other context types serve special purposes, and you'll probably need to use them less frequently. The Location context specifies the URL of a
request to further refine or override settings. Another powerful context is VirtualHost. In the same way that the Directory context defines how
the Apache server treats a group of files (and files located in all subdirectories), the VirtualHost context defines settings based on the IP
address and port that a client uses to access your iSeries server. When the server receives a request for a document on a particular virtual
host (defined by IP address and port), the VirtualHost context (for example, VirtualHost 1.2.30.40:port) supplies the configuration directives
used by the server.
Directives within a Directory context let users retrieve the contents of files in the directory exactly as those files appear on disk. VirtualHost
contexts let you change this behavior to force file retrieval through a specific data filter, such as encryption. You can define a VirtualHost
context with a specific IP address and port (for example, the default Secure Sockets Layer (SSL) and Transport Layer Security (TLS) port
443) to force the file to transfer via an SSL/TLS encryption session.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

8
4

© 2003 IBM Corporation

URL from Web browser

http://as20/downloads/downloads.html

HTTP server : ITSOCO
...
Document root /itso/itso99/itsoco
...
<Directory />
 AllowOverride None
 order deny,allow
 deny from all
</Directory>
<Directory /itso/itso99/itsoco/downloads>
 order deny,allow
 allow from 10.10.0.0/255.255.0.0
 deny from all
 AlwaysDirectoryIndex On
 DirectoryIndex index.html
 Options +Indexes
</Directory>
<Directory /itso/itso99/itsoco>
 order allow,deny
 allow from all
</Directory>

How Context Works

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

8
5

© 2003 IBM Corporation

Notes

If you are familiar with the HTTP Server (original) you'll find configuring the HTTP Server (powered by Apache) a little different. Apache server
configurations generally deal directly with files in physical directories. This differs from the HTTP Server (original) method, which relies on URL
mapping and deals only indirectly with physical file locations. URL mapping lets you hide the physical location of Web objects, which is a
security advantage. However, the thinking in the Apache world is that a simpler approach to configuration reduces errors that might otherwise
compromise security.
Because it's unlikely that you'd want to protect all the files on your iSeries server in the same manner, the Apache server provides a
mechanism for subsetting the configuration file into logical entities. Apache's configuration subsets are called contexts; you can think of a
context as a container for settings.
For example, the configuration structure of the server ITSOco might look like this:

ITSOCO global settings
Directory /
Directory /itso/itso99/itsoco
Directory /itso/itso99/itsoco/downloads

The entire ITSOco configuration is itself considered a context - the global context. Apache subdivides that context into subcontexts in the
same way subdirectories divide the root directory in a hierarchical file system. In fact, the global context is bound to the document root
directory of the ITSOco server. Apache defines all contexts in relation to the document root.
In the ITSOco configuration structure, the first context within the global context is of type Directory; this context defines settings for the
document root directory and all its subdirectories. Similarly, the context Directory /itso/itso99/itsoco is a directory context that defines settings
for the /itso/itso99/itsoco document directory and all its subdirectories. The context Directory /itso/itso99/itsoco/downloads further defines or
overrides settings.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

8
6

© 2003 IBM Corporation

Apache Server Request Routing

URL mapping to file name is done with mod_alias directives
This is configuration file order driven
Includes Alias(Match), ScriptAlias(Match), and Redirect(Match |
Temp | Permanent) directives

After mod_rewrite and mod_alias, "Directory walk" is done
This step builds up the directives by "walking" the contexts which are
hierarchically processed (presented from low to high)

1. Server Config (overridden by .htaccess and other containers)
2. Directory
3. File
4. Location

5. Sections in Virtual Hosts are applied after corresponding sections outside.

Sub-directories and sub-locations inherit directive settings
Directives found in more specific contexts override

Directives in the last container overwrite those in the first

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

8
7

© 2003 IBM Corporation

Notes

Both the HTTP Server (original) and the new HTTP Server (powered by Apache) filter incoming URL requests by applying certain access
rules and configuration values specified in the server configuration. This process is called request routing. The HTTP Server (original)
processes directives sequentially; when a certain Pass or Exec matches the incoming URL, the configuration directive is applied and rule
processing stops.
Similarly, the HTTP Server (powered by Apache) can map a URL to a directory or file with the mod_alias directives, which are processed
sequentially. These directives include Alias(Match), ScriptAlias(Match), Redirect(Match | Temp | Permanent), and Rewrite. ScriptAlias lets you
map to programs residing outside the DocumentRoot; for example, you could use ScriptAlias to map /cgi-bin/ to
/QSYS.LIB/yourlib.lib/db2www.pgm. Note that, by default, Apache configuration is not case sensitive.
However, most Apache request processing uses a procedure called a directory walk, in which the server reads contexts in a specific order
and merges the settings of specified by the directives in those contexts. In the ITSOco configuration structure, for example, the server first
reads all directives within the global context, then those within Directory / (the root directory), then those within /itso/itso99/itsoco, then those
within /itso/itso99/itsoco/downloads, all the while merging the settings of the directives that it finds. This is a more powerful mechanism than
the HTTP Server (original) Pass/Exec syntax because it lets you organize directives hierarchically (the same way you organize Web content)
and apply directives more consistently to groups of similar files.
The directory walk merges directives from contexts in the following order:

Tip: The Directory context (number 1) is the weakest and is more likely to be overridden by stronger contexts such as the Files (number 3)
and sections inside of the VirtualHost context (number 5).

1. Directory contexts (except those containing regular expressions) and .htaccess files are merged simultaneously (with .htaccess files
overriding Directory). Regular expressions are a Unix shorthand method of expressing ranges of objects - you can think of these as an
advanced version of DOS's pattern-matching characters.

2. DirectoryMatch contexts and Directory contexts containing regular expressions are merged.
3. Files and FilesMatch contexts are merged simultaneously.
4. Location and LocationMatch contexts are merged simultaneously.
5. Sections (that is, nested Directory, Files, Location, and Limit contexts) inside VirtualHost contexts are applied merged after the corresponding

sections outside the virtual host definition. This lets virtual hosts override the main server configuration.

In the merging process, lower-level contexts that occur later in the sequence can inherit or replace settings from contexts that occur earlier
higher-level contexts. Or they can override those settings. Directives that apply to subdirectories can override those for parent directories.
If there are two sets of directives that apply to the same directories, the last set read may override the others.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

8
8

© 2003 IBM Corporation

Apache Request Processing (1 of 4)

STEP 1:

<Directory />
 AllowOverride None
 order deny,allow
 deny from all
</Directory>
<Directory /itso/itso99/itsoco/downloads>
 order deny,allow
 allow from 10.10.0.0/255.255.0.0
 deny from all
 AlwaysDirectoryIndex On
 DirectoryIndex index.html
 Options +Indexes
</Directory>
<Directory /itso/itso99/itsoco>
 order allow,deny
 allow from all
</Directory>

http://as20/itso/itso99/itsoco/downloads/downloads.html

Server reads first part of URL - "/"
This matches the first <Directory />
container in the configuration.
There are no other "/" directives in the
file, so the conditions in this container
apply to "/" and all of its subdirectories.
The directive deny from all protects all
directories from any accesses.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

8
9

© 2003 IBM Corporation

Notes

Let's say a client request for the URL /itso/itso99/itsoco/downloads/downloads.html. arrives from IP address 10.10.1.2. The first Directory
match, because it's the shortest, is "/" (the root directory). The directive AllowOverride None tells the server not to look for the .htaccess file in
this directory (or any subdirectory) unless there's a specific override. This directive improves performance and sets an important security
precedent.
The order directive defines the order in which Apache evaluates the list of clients to which you deny or allow access. (No top-down processing
here!) Specifically, order deny,allow means that the default is to allow access, but this is overridden by the next directive, deny from all. At the
top of this configuration hierarchy we allow no access unless we override at a lower level. This approach secures the server by default.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

9
0

© 2003 IBM Corporation

Apache Request Processing (2 of 4)

STEP 2:

<Directory />
 AllowOverride None
 order deny,allow
 deny from all
</Directory>
<Directory /itso/itso99/itsoco/downloads>
 order deny,allow
 allow from 10.10.0.0/255.255.0.0
 deny from all
 AlwaysDirectoryIndex On
 DirectoryIndex index.html
 Options +Indexes
</Directory>
<Directory /itso/itso99/itsoco>
 order allow,deny
 allow from all
</Directory>

http://as20/itso/itso99/itsoco/downloads/downloads.html

Next some portions of the URL are read.
This matches the <Directory
/itso/itso99/itsoco> container.
The directives in this container allow
access to everything in the
"/itso/itso99/itsoco" directory and all of its
subdirectories.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

9
1

© 2003 IBM Corporation

Notes

Next, the request routing process examines Directory /itso/itso99/itsoco. We want to allow open access to DocumentRoot (which contains
our ITSOco server's home page), so we override and reverse the directive that we gave in the previous directory (order deny,allow) with the
directive order allow,deny. This directive establishes deny as the default, but lets the next directive (allow from all) override denial of access.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

9
2

© 2003 IBM Corporation

Apache Request Processing (3 of 4)

STEP 2:

<Directory />
 AllowOverride None
 order deny,allow
 deny from all
</Directory>
<Directory /itso/itso99/itsoco/downloads>
 order deny,allow
 allow from 10.10.0.0/255.255.0.0
 deny from all
 AlwaysDirectoryIndex On
 DirectoryIndex index.html
 Options +Indexes
</Directory>
<Directory /itso/itso99/itsoco>
 order allow,deny
 allow from all
</Directory>

http://as20/itso/itso99/itsoco/downloads/downloads.html

Finally, the rest of the URL is read.
This matches the <Directory> container
that has the longest directory definition.
The directives in this container will
override the settings to deny access
from all clients except
10.10.0.0/255.255.0.0.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

9
3

© 2003 IBM Corporation

Notes

The final context (because it is the longest) is Directory /itso/itso99/itsoco/downloads. Here again we override the settings for the order
directive by issuing the directive order deny,allow. This directive sets allow as the default, but the next directive deny from all, which excludes
all clients, overrides it. The last directive to apply is allow from 10.10.0.0/255.255.0.0 (we will ignore the final three directives in this Directory
here). This directive allows access only to those clients with IP addresses within the 10.10.0.0 subnet and denies all others, which receive
error message 403 "Forbidden by Rule".

Tips: In order to process requests, web servers must decipher the URL sent in the browser's request, in order to determine which resource
is being requested. The server does this by comparing the URL to the directives in the configuration file(s).
The AS/400's original HTTP server reads the URL, and then steps through the configuration file a directive at a time, until it finds one that
matches the URL. Once it finds the first match, the original server processes the request and goes no further in the configuration file.
The Apache server also reads the URL and compares it to the configuration file. But, it does not stop at the first match. Instead, it looks for all
matches, and prioritizes them from least specific to most specific ("shortest directory component to longest").

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

9
4

© 2003 IBM Corporation

Apache Request Processing (4 of 4)
Here are the directives that apply to the file "downloads.html" after each step:

STEP 1:
/itso/itso99/itsoco/downloads/downloads.html

<Directory />
 AllowOverride None
 order deny,allow
 deny from all
</Directory>
<Directory /itso/itso99/itsoco/downloads>
 order deny,allow
 allow from 10.10.0.0/255.255.0.0
 deny from all
 AlwaysDirectoryIndex On
 DirectoryIndex index.html
 Options +Indexes
</Directory>
<Directory /itso/itso99/itsoco>
 order allow,deny
 allow from all
</Directory>

STEP 3:
/itso/itso99/itsoco/downloads/downloads.html

STEP 2:
/itso/itso99/itsoco/downloads/downloads.html

AllowOverride None
order deny,allow
deny from all

AllowOverride None
 order deny,allow
 deny from all
order allow,deny
 allow from all

AllowOverride None
 order deny,allow
 deny from all
order allow,deny
 allow from all
order deny,allow
 allow from 10.10.0.0/255.255.0.0
 deny from all

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

9
5

© 2003 IBM Corporation

Notes

This chart summarizes the way that directives are applied and then overridden.

The 'order' directive is sometime confusing to new Apache students. It is worth spending the time reading the Apache text books, web sites,
or help via the iSeries Apache server to understand how it works ahead of time - because the students *will* ask!

If the configuration is:

order deny,allow
 deny from all
 allow from somehost

This means (in order of precedence):
1) allow is the default and would rule the day if no deny or allow was specified.
2) To deny, you must explicitly specify the clients you wish to deny. In this example, we are saying we want to deny all clients (by IP address)
3) Lastly, allow will override the denied clients. In this case the client coming from the IP address behind somehost would be the only client
allowed to this directory.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

9
6

© 2003 IBM Corporation

Configuration Recommendations

Do not use <Location> sections at all (unless truly
necessary)

Almost everything can be done with <Directory> sections.

• Use <Files> sections only when you really need them.
In most cases, a solution can be found by putting all these files into a
separate directory and using a <Directory> section.

• Keep the number of sections in the configuration file at
minimum.

Sometimes rearrangement of the directory structure helps.

Use .htaccess files only when you need to have distributed
administration and configuration.

Avoid using several .htaccess files in one directory path (for example,
/www/.htaccess and /www/html/.htaccess).

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

9
7

© 2003 IBM Corporation

Notes

Nested contexts and configuration directives can be confusing. Here are a few simple rules to help you keep track of how the server
processes them:

Don't use Location sections unless you really must do so. There are times when they are unavoidable - for example, when you're configuring
servlets with Tomcat - but you can use Directory sections for almost everything you need to do.
Use Files sections only when you really need them. You can solve most problems by putting files into a separate directory and using a
Directory section.
Minimize the number of sections in the configuration file. Rearranging the directory structure can help you accomplish this.

You can use a special file with the default name .htaccess to override settings in a specific Directory context. However, overuse of this file can
impair performance and widen security holes. You should limit your use of .htaccess files to those situations in which you need distributed
administration and configuration. Avoid using several .htaccess files in the same directory path (for example, /www/.htaccess and
/www/html/.htaccess).
You can avoid using .htaccess file by putting Options FollowSymlinks directive in a <Directory> container like:
 <Directory />
 Options FollowSymLinks
 AllowOverride None
 </Directory>

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

9
8

Virtual Hosts

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

9
9

© 2003 IBM Corporation

Notes

In this part, we will show you the concept of virtual host, and describe three different ways of implementation.

Virtual host concept
One server vs multiple server
Virtual host implementation
IP based implementation
IP based: Problem scenario
IP based: Solution
Name based implementation
Name based: Problem scenario
Name based: Solution
Mass dynamic implementation
Mass dynamic: Problem scenario
Mass dynamic: Solution

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
0
0

© 2003 IBM Corporation

Virtual Host Concept

Client with web browser

iSeries

www.itso01.com
www.itso02.com
www.itso03.com

HTTP server 1

Server n
www.itso0n.com

Server 2
www.itso02.com

Server 1
www.itso01.com

HTTP server 2 HTTP server n

TCP/IP

Multiple HTTP servers
HTTP server

www.itso0n.comwww.itso02.comwww.itso01.com

TCP/IP

One HTTP server

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
0
1

© 2003 IBM Corporation

Notes

The concept of virtual host in terms of Web serving, refers to the practice of maintaining more than one domain in a single server. The way
the domains are primary differentiated is by their host name or IP address. Thus, client request are routed to the correct domain by IP
address or by host name contained in the URL header. Traditionally the virtual host implementation requires as many HTTP servers running
simultaneously as domains the system is going to serve.

One of the most important features of the HTTP Server (powered by Apache) is the way this concept is implemented. The HTTP Server
(powered by Apache) allows us to use one HTTP server to host as many domains as the environment requires.
The virtual host concept is primary used by ISPs (Internet Server Provider), content providers or companies who need to manage multiples
domains, but they do not want to use a different server for each domain they want to serve. For example if two companies want to establish
presence on the Internet without buying, building and maintaining their own Web site, they can ask a ISP to host and publish their Web pages.
The ISP then setup the virtual host implementation in a way that each site looks like runs in a different server. Each one of this servers is
called a virtual host as they are running on the same server.

The HTTP server can be configure to host:
Multiple domains using one HTTP server
Multiple domains using multiple HTTP servers, one for each domain
Or a combination of both

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
0
2

© 2003 IBM Corporation

One Server vs Multiple Server

Configuration comparison
Number of files and directories

 Configuration file
 Log files
 Document root directories

IP address or domain name to serve the request

Directives to handle each domain

Environment comparison
Configuration file, process, service directives

Number of processes
User profile to run the domains

Impact of failure

Both can work properly, but less resources for "one server"

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
0
3

© 2003 IBM Corporation

Notes

The HTTP configuration is different if the domains are served using one or from multiple HTTP servers, as each approach requires different
process and is based on different server directives, as explained in the table below.

One HTTP server Multiple HTTP servers

One configuration file shared by all the domains. Multiple configuration files, one for each domain.

One or many access log and error log files. Each configuration file include its access and
error log files.

One or many document root directories. Many document root directories, one per
configuration file.

One or multiple IP addresses and ports within the
server instance.

One or multiple IP addresses and ports per
configuration file.

The HTTP server process uses the IP address or
the domain to serve the request.

The HTTP server process uses the IP address or
the domain name to serve the request.

Specific HTTP server directives to handle the
each domain.

No specific server directives as each domain has
his own configuration file.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
0
4

© 2003 IBM Corporation

Notes

The runtime environment of each approach also differs, as illustrated in this table.

One HTTP Server Multiple HTTP Servers
All domains run under the same environment:
configuration file, process and some service
directives.

Each domain runs under his own environment:
configuration file, process and server directives.

One process is started as there is only one HTTP
server.

Many process are started as there are more than
one HTTP server.

All the domains run under the same user profile,
as there is only one server process.However each
one can be configured under a different security
mechanism. Refer to Chapter 5, “Defending the
IFS” on page 89 for more information.

Each domain can run under his own user profile,
as there are one process per domain. You can
change the user profile the server instance runs
on, using the ServerUserID directive.

If you have problems with one domain, and the
recovery procedure implies the HTTP server
restart, all the domains serve by the HTTP will be
restarted.

If you have problems with one domain, the HTTP
server associated with the domain can be
restarted without affect any other domain.

The information provide on these tables allow us to identify the differences between the two approaches. According to those tables, both
HTTP server process the visitor request correctly. Usually deciding between running under one or multiple HTTP servers depends more of the
system resources, like memory and CPU, and security issues, like independency between domains, than of any HTTP server directive
limitation that could be used with any approach.
Unless, the multiple HTTP server approach allows you to achieve any specific requirement, we recommend you to use one HTTP server to
host the domains, as you only must create and maintain one configuration file; and the iSeries server has only one HTTP server to process
the request, saving memory and CPU resources for other system activities.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
0
5

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
0
6

© 2003 IBM Corporation

Virtual Host Implementation

IP based
Uses the IP address to serve the domain

Client Web browser can be HTTP 1.0
Needs multiple IP addresses configured

Name based
Uses the domain name in the URL header to serve
Can share a single IP address

Client Web browser must support HTTP 1.1

Mass dynamic based
Uses the domain name to serve the request
Can share the contexts among multiple domains

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
0
7

© 2003 IBM Corporation

Notes

IP based- The HTTP server uses the IP address to handle the visitors request. Can be used with HTTP 1.0.
Name based- The HTTP server uses the domain name include into the URL header to handle the visitors request. This implementation
requires HTTP 1.1.
Mass dynamic based- The HTTP Server retrieves the domain name provide in the URL header to process the data requested by the client.
The differences here is that this is done dynamically, which means, the domains does not have to be registered using any <VirtualHost>
context in the HTTP configuration.

The client submits a request. Based on information found in the header the HTTP server will process the request. The HTTP server can use
the domain name provided in the header or the translated IP address, depending on:

How many IP addresses your system has.
The way your IP addresses are used by the system. The iSeries server can host intranet and Internet domains. If the iSeries server is used as
a Web server in the Internet, you have to register every domain the system will use, which means more cost associated with the HTTP
implementation.
The version of the HTTP protocol supported in the environment as there are HTTP version 1.0 and HTTP version 1.1. The HTTP Server
(powered by Apache) and most of the Web client browsers support HTTP 1.1 protocol. The differences between the protocols are:

With the HTTP 1.0 protocol, the HTTP server relies on the DNS server to translate the domain name into the IP address. The HTTP Server, then, uses the IP
address to process the visitor request.
With the HTTP 1.1 protocol, the domain name is include in the visitor request (as a header) thus the HTTP server receives the domain name and can process the
request according to the HTTP directives include into the configuration file.

As not all the client browsers support the HTTP version 1.1 protocol, the HTTP server must be configure in a way that no matter what
limitations the environment has, each client request will be handle correctly. To accomplish this, the HTTP Server (powered by Apache)
supports three different virtual host implementations.

When you configure the IP based virtual hosts, your iSeries server must have multiple IP addresses in one of two ways.
Multiple IP addresses over one physical connection
Multiple IP addresses over multiple physical connections

Your iSeries server can be configured as a multi-homed server with multiple IP interfaces or virtual IP addresses. Any of those IP addresses
can be used with the HTTP server to handle multiple domains in one iSeries server.
For your virtual host configuration you will need to identify the IP address, port and domain name for each domain.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
0
8

© 2003 IBM Corporation

IP Based Implementation

Different IP address for each
virtual host
Web browser can be HTTP 1.0

Good approach for domains in
different network

<VirtualHost 10.5.92.14:8002>
ServerName www.itso01.com
...
</VirtualHost>

<VirtualHost 10.5.92.28:8002>
ServerName www.itso02.com
...
</VirtualHost>

Listen 10.5.92.14:8002

Listen 10.5.92.28:8002

TCP/IP

www.itso01.com
www.itso02.com

HTTP Server

www.itso02.com

Client with web browser
HTTP 1.0 or 1.1

www.itso01.com

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
0
9

© 2003 IBM Corporation

Notes

As the term IP based indicates, the IP virtual host implementation is based on the way the HTTP server uses the IP address to serve the
domain. If you want to serve multiple domains using this implementation, the server must have a different IP address or port for each IP based
virtual host. This can be done by either having multiple physical network connections or having multiple IP addresses. The TCP/IP
implementation on the iSeries server support multiple IP addresses implementation.

Once you have identified the IP address for each domain, you just tell the HTTP Server (powered by Apache) how to handle it using the
<VirtualHost> directive. The IP based implementation works very well but requires a dedicated IP address for every virtual host the system is
going to serve and usually this means more cost especially if you must purchase these additional IP addresses and domains from an Internet
Service Provider (ISP).
The IP based virtual host implementation provide an immediate solution for any browser as the implementation does not rely on any specific
browser funtionality and therefore tends to be the preferred method for many sites to implement virtual hosting. From the browser point of
view, there is no difference between a virtual host and a real host. Both have their own server name and associated IP address, as show in
the figure.

The IP based implementation supports multiple domains using a different IP addresses. This is a good implementation approach if you want
to have each domain running in a different network using his own IP address.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
1
0

© 2003 IBM Corporation

IP Based: Problem Scenario

Situation
Need to host two different domains

Web browsers do not all support HTTP 1.1

www.itso01.com
10.5.92.14:8002

www.itso02.com
10.5.92.28:8002

iSeries

Client with browser
HTTP 1.0

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
1
1

© 2003 IBM Corporation

Notes

Your company needs to host two different domains, www.itso01.com and www.itso02.com using one iSeries server. As your iSeries server
has two available IP addresses and the Web browser clients do not all support the HTTP 1.1 protocol, you have decided to create an IP based
virtual host implementation.

In order to configure the HTTP Server (powered by Apache) to handle the client requests, we have to identify some of the basic resources
used by the HTTP server to route and serve those domains. The following table shows some of the basic resources used by HTTP server.

Resource ITSO01 ITSO02

ServerName www.itso01.com www.itso02.com

Welcome page index.html index.html

IP address 10.5.92.14:8002 10.5.92.28:8002

DocumentRoot /itso/itso01/itsoco /itso/itso02/itsoco

ErrorLog /itso/itso01/logs/error_log /itso/itso02/logs/error_log

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
1
2

© 2003 IBM Corporation

IP Based: Solution

www.itso01.com
10.5.92.14:8002

www.itso02.com
10.5.92.28:8002

2 Listen 10.5.92.28:8002

3 Listen 10.5.92.14:8002
...
24 <VirtualHost 10.5.92.14:8002>
25 DocumentRoot /itso/itso01/itsoco
26 ServerName www.itso01.com
...
29 ErrorLog /itso/itso01/logs/error_log
30 LogLevel error
31 <Directory /itso/itso01/itsoco>
...
35 </Directory>
36 Alias /itso01/ /itso/itso01/itsoco/
37 </VirtualHost>

38 <VirtualHost 10.5.92.28:8002>
39 DocumentRoot /itso/itso02/itsoco
40 ServerName www.itso02.com
...
43 ErrorLog /itso/itso02/logs/error_log
44 LogLevel error
45 <Directory /itso/itso02/itsoco>
46 AllowOverride None
...
49 </Directory>
50 Alias /itso02/ /itso/itso02/itsoco/
51 </VirtualHost>

itso
 itso01
 itsoco
 xxxx.html

 logs
 error_log

 itso02
 itsoco
 xxxx.html

 logs
 error_log

Configuration file

Directory tree in IFS

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
1
3

© 2003 IBM Corporation

Notes

Listen - This directive tells the server to listen for request on more than one IP
address or port. In this example, we define 2 different IP addresses for each virtual
host.

<VirtualHost>- This directive introduces a virtual host context. When you use IP
based virtual host, you should set different IP address in this directive for each
virtual host. In this example, we have 2 virtual host contexts for serving 2 domains.
VirtualHost context ends with the directive </VirtualHost>.
VirtualHost context includes directives that provide individual environment for each
virtual host. These directive includes DocumentRoot, ServerName, ErrorLog,
<Directory>, and so on.

DocumentRoot- This directive sets the directory from which the virtual host
serves files. In this example, one domain uses /itso/itso01/itsoco and the other
one uses /itso/itso02/itsoco directory.
ServerName- This directive sets the host name of the server and used when
creating redirection URLs. In this example, one domain has www.itso01.com, and
the other one has www.itso02.com as the hostname.
ErrorLog- This directive sets the name of the file to which the server will log any
errors it may encounter.
LogLevel- This directive adjusts the verbosity of the messages recorded in the
error logs.
<Directory>- The directory context can be included in the virtual host context
and take effect inside the virtual host.
Alias- This directive allows documents to be stored in the local filesystem other
than under the DocumentRoot.

1 # Configuration originally created by
2 Listen 10.5.92.28:8002
3 Listen 10.5.92.14:8002
...
24 <VirtualHost 10.5.92.14:8002>
25 DocumentRoot /itso/itso01/itsoco
26 ServerName www.itso01.com
27 UseCanonicalName Off
28 HostNameLookups off
29 ErrorLog /itso/itso01/logs/error_log
30 LogLevel error
31 <Directory /itso/itso01/itsoco>
32 AllowOverride None
33 order allow,deny
34 allow from all
35 </Directory>
36 Alias /itso01/ /itso/itso01/itsoco/
37 </VirtualHost>
38 <VirtualHost 10.5.92.28:8002>
39 DocumentRoot /itso/itso02/itsoco
40 ServerName www.itso02.com
41 UseCanonicalName Off
42 HostNameLookups off
43 ErrorLog /itso/itso02/logs/error_log
44 LogLevel error
45 <Directory /itso/itso02/itsoco>
46 AllowOverride None
47 order allow,deny
48 allow from all
49 </Directory>
50 Alias /itso02/ /itso/itso02/itsoco/
51 </VirtualHost>
52 ...

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
1
4

© 2003 IBM Corporation

Name Based Implementation

No additional IP addresses
needed
Simple configuration

Web browsers must support
HTTP 1.1

Client with web browser
HTTP 1.1

<VirtualHost 10.5.92.28:8002>
ServerName www.itso01.com
...
</VirtualHost>

<VirtualHost 10.5.92.28:8002>
ServerName www.itso02.com
...
</VirtualHost>

NameVirtualHost 10.5.92.28:8002
Listen 10.5.92.28:8002

TCP/IP

HTTP Server

www.itso02.com
www.itso01.com

www.itso01.com www.itso02.com

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
1
5

© 2003 IBM Corporation

Notes

The named based virtual host implementation allows one IP address and TCP/IP port to host more than one domain. The benefits of using the
name based virtual hosts implementation is a practically unlimited domains, ease of configuration and use, and it requires no additional
hardware or software resources.

Opposite to the IP based virtual host implementation the name based virtual hosts rely on the client Web browsers supported of the HTTP
Version 1.1 protocol. Specifically, the hostname information header. For name based virtual hosting, then, all the Web clients must support
HTTP 1.1 (or HTTP 1.0 with 1.1 extensions). The latest versions of most browsers do support HTTP 1.1.

Simply put, name based virtual hosting requires that the clients request, which are being routed to the same physical interface with the same
IP address, carry the hostname in the HTTP headers so the HTTP server can distinguish between virtual hosts.

Besides the <VirtualHost> directive used by IP based implementation, the name based uses the NameVirtualHost directive. This directive
specifies an IP address (or hostname that is mapped to an IP address) that should be used as a target for name based virtual hosts as shown
on the figure below. Although www.itso.com can be hostname it is recommended that you always use an IP address for performance
reasons. Any additional directive can (and should) be placed into the <VirtualHost> context. The HTTP Server configuration name based will
look like the following:

Listen 10.5.92.28:8002
NameVirtualHost 10.5.92.28:8002
<VirtualHost 10.5.92.28:8002>
ServerName www.itso01.com
DocumentRoot /itso/itso01/itsoco
ErrorLog /itso/isto01/logs/error_log
</VirtualHost>
<VirtualHost 10.5.92.28:8002>
ServerName www.itso02.com
DocumentRoot /itso/itso02/itsoco
ErrorLog /itso/itso02/logs/error_log
</VirtualHost>

NameVirtualHost
 directive

NameVirtualHost
uses the same IP address

With the name based virtual host configuration you
have to make sure the DNS or the static host tables are
configured to have one or more domains point to the
same IP address. Otherwise, the requests will be
rejected.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
1
6

© 2003 IBM Corporation

Name Based: Problem Scenario

Situation
Need to host two different domains

Only one IP address is allowed

Consideration
All Web browser clients must support HTTP 1.1

www.itso01.com
10.5.92.28:8002

www.itso02.com
10.5.92.28:8002

10.5.92.28:8002

iSeries

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
1
7

© 2003 IBM Corporation

Notes

This time, your company needs to host two different domains, www.itso01.com and www.itso02.com sites but your iSeries server only has
one IP address to serve the incoming requests. As the system only has one IP address, we decided to serve both domains using the name
based virtual host implementation. This will allow the HTTP server to handle the client request based on the domain name as shown in the
figure. Note, all the Web browser clients must support the HTTP 1.1 protocol.
In order to configure the HTTP Server (powered by Apache) to handle the visitors request, we have to identify information related to the
domain configuration as shown in the table below. With that information we can create the name virtual host configuration for our site. The
Web server resources are the same as the one we used for the IP based implementation but now your iSeries server only has one IP
address for all incoming client requests.

Resource ITSO01 ITSO02

ServerName www.itso01.com www.itso02.com

Welcome page index.html index.html

IP address 10.5.92.28:8002 10.5.92.28:8002

DocumentRoot /itso/itso01/itsoco /itso/itso02/itsoco

ErrorLog /itso/itso01/logs/error_log /itso/itso02/logs/error_log

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
1
8

© 2003 IBM Corporation

Name Based: Solution

www.itso01.com
10.5.92.28:8002

www.itso02.com
10.5.92.28:8002

2 Listen 10.5.92.28:8002
...
18 NameVirtualHost 10.5.92.28:8002
19 <VirtualHost 10.5.92.28:8002>
20 DocumentRoot /itso/itso01/itsoco
21 ServerName www.itso01.com
...
24 ErrorLog /itso/itso01/logs/error_log
25 LogLevel error
26 <Directory /itso/itso01/itsoco>
...
30 </Directory>
31 Alias /itso01/ /itso/itso01/itsoco/
32 </VirtualHost>

33 <VirtualHost 10.5.92.28:8002>
34 DocumentRoot /itso/itso02/htdocs
35 ServerName www.itso02.com
...
38 ErrorLog /itso/itso02/logs/error_log
39 LogLevel error
40 <Directory /itso/itso02/itsoco>
...
44 </Directory>
45 Alias /itso02/ /itso/itso02/itsoco/
46 </VirtualHost>
...

itso
 itso01
 itsoco
 xxxx.html

 logs
 error_log

 itso02
 itsoco
 xxxx.html

 logs
 error_log

Configuration file

Directory tree in IFS

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
1
9

© 2003 IBM Corporation

Notes

Listen - For name based virtual host, you don't need to have multiple IP adderrses.
In this example, we specify this single IP address.

NameVirtualHost- This directive is a required directive if you want to configure
name based virtual hosts.
The notable difference between IP based and name-based virtual host
configurations is this NameVirtualHost directive. The directive specifies an IP
address and should be used as a target for name-based virtual hosts.
Although hostname can be specified in this directive, it is recommended that you
always use an IP address.
When your request arrives at this IP address, matching <VirtualHost> context is
searched and the one hostname mathces ServerName is selected.
<VirtualHost>- For name based virtual host, every <VirtualHost> directive has
the same IP address.
You can specify several directives inside the virtual host context in the same way
as IP based virtual host.

1 # Configuration originally created by
2 Listen 10.5.92.28:8002
...
18 NameVirtualHost 10.5.92.28:8002
19 <VirtualHost 10.5.92.28:8002>
20 DocumentRoot /itso/itso01/itsoco
21 ServerName www.itso01.com
22 UseCanonicalName Off
23 HostNameLookups off
24 ErrorLog /itso/itso01/logs/error_log
25 LogLevel error
26 <Directory /itso/itso01/itsoco>
27 AllowOverride None
28 order allow,deny
29 allow from all
30 </Directory>
31 Alias /itso01/ /itso/itso01/itsoco/
32 </VirtualHost>
33 <VirtualHost 10.5.92.28:8002>
34 DocumentRoot /itso/itso02/htdocs
35 ServerName www.itso02.com
36 UseCanonicalName Off
37 HostNameLookups off
38 ErrorLog /itso/itso02/logs/error_log
39 LogLevel error
40 <Directory /itso/itso02/itsoco>
41 AllowOverride None
42 order allow,deny
43 allow from all
44 </Directory>
45 Alias /itso02/ /itso/itso02/itsoco/
46 </VirtualHost>

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
2
0

© 2003 IBM Corporation

Mass Dynamic Implementation

Dynamically changes the document root
Host name in URL is used

Eliminates many <VirtualHost> sections

Client with web browser
with HTTP 1.1 support

iSeries

www.itso03.com

www.itso01.com

www.itso02.com

www.itso0n.com

/itso/itso01/itsoco

/itso/itso02/itsoco

/itso/itso03/itsoco
...

Document root

VirtualDocumentRoot /itso/%2/itsoco

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
2
1

© 2003 IBM Corporation

Notes

The mass dynamic virtual host implementation allows us to add dynamically domains (host names) by adding directories of content. This
approach is based on automatically inserting the IP address (or host name) and the content of the Host header into the path name of the file
that is used to satisfy the request. This means, using the host name provide in the URL requested by the client, the HTTP server process the
request as show in the figure.

The mass dynamic virtual host implementation differs from the IP based or the name based in the mechanism used to determine the location
of the files you want to serve. Here, the HTTP server uses the content of Host provide in the URL to serve the visitors request. Basically, the
mass dynamic virtual host uses like a variable path name (based on the header) to find into the file system structure the static data the site is
going to server. Using a mapping mechanism and the mass dynamic virtual host the HTTP server converts:

http://www.itso01.com into /itso/itso01/itsoco
http://www.itso02.com into /itso/itso02/itsoco

The conversion process is supported by specifiers inspired by the UNIX command printf which has a number of formats as shown in this
table.

N and M are used to specify substrings of the name. N selects from the dot-separate component of the name, and M selects characters within
whatever N has selected. M is optional and defaults to zero if it is not present; the dot must be present if and only if M is present.

Variable Value

%% insert a %

%p insert the port number of the virtual host

%N.M insert (part of) the name

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
2
2

© 2003 IBM Corporation

Notes

The client request is processed based on the URL. Which part retrieves the HTTP server depends on the value you write in the mass
dynamic virtual host directives using the information in this table.

Using the specifiers in the Table 4-11 and the values in the Table 4-12, the mass dynamic performs the interpretation process, called
Directory name interpolation. The interpolation process requires that the interpolated directory exists into the file system as the web server
name will be translated into physical path names in the iSeries Integrated File System (IFS). For example, if the domain name
www.itso01.com is interpolated into /itso/itso01/itsoco, the directory /itso/itso01/itsoco must exists in the IFS. Otherwise, the request will fail.
The mass dynamic implementation is supported by the mod_vhost_alias module. This module supports the server directives associated with
the mass dynamic host implementation. The directives are:

VirtualDocumentRoot allows you to determine where the server look for the document root based on the value of the server name.
VirtualDocumentRootIP allows you to determine where the server look for the document root based on the IP address.
VirtualScriptAlias allows you to specify the directory path where the server look for CGI scripts based on the value of the server name.
VirtualScripAliasIPallows you to specify the directory path where the server look for CGI scripts based on the IP address.

Value Description

0 the whole name

1 the first part

2 the second part

-1 the last part

-2 the next to the last part

2+ the second and all subsequent parts

-2+ the next to last part and all preceding parts

1+ and -1+ the same as 0

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
2
3

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
2
4

© 2003 IBM Corporation

Mass Dynamic: Problem Scenario

Situation
Using one HTTP server to host multiple domains
Configuration file has many <VirtualHost> and inefficient

Listen 10.5.92.28:8002
NameVirtualHost 10.5.92.28:8002

<VirtualHost 10.5.92.28:8002>
 ServerName www.itso-01.com
 DocumentRoot /itso/www.itso-01.com/itsoco
 ScriptAlias /cgi-bin/ /itso/www.itso-01.com/itsoco/cgi-bin
</VirtualHost>

<VirtualHost 10.5.92.28:8002>
 ServerName www.itso-02.com
 DocumentRoot /itso/www.itso-02.com/itsoco
 ScriptAlias /cgi-bin/ /itso/www.itso-02.com/itsoco/cgi-bin
</VirtualHost>
and so on...
<VirtualHost 10.5.92.28:8002>
 ServerName www.itso-0n.com
 DocumentRoot /itso/www.itso-0n.com/itsoco
 ScriptAlias /cgi-bin/ /itso/www.itso-0n.com/cgi-bin
</VirtualHost>

Listen 10.5.92.28:8002
NameVirtualHost 10.5.92.28:8002
UseCanonicalName Off
...
VirtualDocumentRoot /www/%2/itsoco
VirtualScriptAlias /itso/%0/itsoco/cgi-bin

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
2
5

© 2003 IBM Corporation

Notes

Using one HTTP server to host multiple domains becomes inefficient if the HTTP configuration file contains many <VirtualHost> contexts that
are substantially the same. The example in the presentation illustrates this situation:

This HTTP server is hosting multiple domains using the name based implementation. Here, every <VirtualHost> context has a DocumentRoot
and ScriptAlias related to the value in the ServerName directive. Taking the advantages of the mass dynamic virtual host we are going to
interpret the domain name. Based on the interpretation, the HTTP server will process the request. Using this new implementation, the HTTP
configuration file looks like the figure on the left side of the presentation.

In the new configuration file, there is no ServerName directive, as this ServerName is provided by the URL received in the client request. The
way the HTTP server identifies the ServerName provide in the header is based on the value configured to the UseCanonicalName directive as
show in the table below.

The advantages of the mass dynamic implementation are:
Add domains dynamically.
You do not need to restart the HTTP server in order to serve a new domain.

The disadvantages of this implementation:
No individual logs when used with IP or named virtual host implementations.
No tailoring of individuals domains with use of other directives in a virtual host context.

UseCanonicalName value Use

Off The HTTP server will form a self-referential URL using the
hostname and port supplied by the client.

DNS The HTTP server does a reverse DNS lookup on the server IP
address that the client connected to in order to work out a
self-referential URL.

On The HTTP server will use the ServerName and Port directives
to construct a canonical name for the server.

Not include The HTTP server uses the TCP/IP Domain of the server.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
2
6

© 2003 IBM Corporation

Mass Dynamic: Solution

www.itso01.com
10.5.92.14:8004

www.itso02.com
10.5.92.14:8004

itso
 itso04

 itso01
 xxxx.html

 itso02
 xxxx.html

 logs
 error_log

Directory tree in IFS
2 LoadModule vhost_alias_module
/QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM
3 Listen 10.5.92.14:8004
...
9 UseCanonicalName Off
...
22 VirtualDocumentRoot /itso/itso04/%2
23 <Directory />
24 AllowOverride None
25 order deny,allow
26 deny from all
27 </Directory>
28 <Directory /itso/itso04>
29 AllowOverride None
30 order allow,deny
31 allow from all
32 </Directory>

Configuration file

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
2
7

© 2003 IBM Corporation

Notes

To understand the advantages of the mass dynamic virtual host, we are going to act as a Internet Server Provider (ISP). Using the iSeries
server and the HTTP Server (powered by Apache) we are going to create an HTTP server required to host domains dynamically. What we
need to do is include the mass dynamic directives that allow us to process the request for the following domain names:

www.itso01.com
www.itso02.com
www.itso0n.com

We need to find the appropiate interpolation value that allows to use the header provided in the URL, retrieve the host name and process the
request. What we need to do is:
Retrieve the second part of the host name provided in the URL. In our case this will be the host name.
Interpolate the host name into some directory that exists in the iSeries IFS.
Serve the documents from that IFS directory.
In our example, the second part itsoXX, is part of the document root directive as shown in the figure below.

Using the interpolation values and the mass dynamic directives we must include the following directive in the HTTP configuration.
VirtualDocumenRoot /itso/itso04/%2
Where:
/itso/itso04 is the document root of the HTTP server.
/%2 Retrieves the second part of the URL request. It is the directory used to process the requests. The place where the HTML
code, images and so on are located.

www.itso02.com

/itso/itso04/itso02

www.itso01.com

/itso/itso04/itso01

www.itso0n.com

/itso/itso04/itso0n

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
2
8

Security

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
2
9

© 2003 IBM Corporation

Notes

In this part, we will show you how to protect your server using user authentication, access control and encryption provided by the HTTP
Server (powered by Apache) and the functions of OS/400.

Security
Basic authentication
Basic authentication configuration
Enabling SSL
Client side digital certificates
Proxy server

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
3
0

© 2003 IBM Corporation

Security

iSeries security in the network environment

Client

iSeries server

Network security
layers:

Firewalls
Routers
IP filtering
Proxies
Network
Address
Translation
...

Apache security
directives

Authentication

Encryption

O
S

/4
00

db
Network

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
3
1

© 2003 IBM Corporation

Notes

Security is always one of the main concerns on the mind of a web server administrator. Even though your server will only run on a private
intranet you should not underestimate the importance of security planning. Private networks are not exempt from security exposures, as
recent waves of Internet worms making their way into intranets have repeatedly proved.
Security comes from a set of constantly updated rules and practices, specifically designed to protect the availability of your server and the
integrity of your data. This figure presents a high level overview of iSeries server security in a network environment. A network security layer,
encompassing both physical devices and software filters, is the outer bastion of your iSeries fortress.

Once inside, all requests are filtered by Apache server security: data is protected through user authentication, access control and encryption.
Authentication is the process of verifying a user’s identity through some sort of credentials. This can either be done through userid and
password combinations or through an exchange of digital keys (or certificates).
Access control (specifically, at this point we are discussing access control from the Apache HTTP server’s point of view - above the access
control that OS/400 also enforces) is enforced through a set of policies that define who can access your data, what kind of authority they will
be granted, and what actions they will be allowed to perform on them. A server-wide access control policy is enforced on the document root
and propagated upon lower level contexts unless overridden by local directives or local configuration files. In addition to that, the server never
tries to access system resources for which explicit access has not been configured.
Encryption is a mathematical process used to disguise data in order to keep unauthorized parties from gaining access to sensitive
information. Data is encrypted into a ciphertext using a unique key and a set of operations that define an algorithm. Strength and
effectiveness of encryption techniques depend on three factors: complexity of the algorithm, length of the encryption key, overall strength of
the key itself. A compromised key could easily render the strongest encryption techniques completely useless.

At the core of your system, the renowned strength of OS/400 security is the ultimate defender of your database and all objects on your server.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
3
2

© 2003 IBM Corporation

Basic Authentication

Web
browser

get as20:2001

iSeries

UserName
Password

Web content

Authentication via:
OS/400 Userid and
password
LDAP entry
Validation list of
Internet Users

401
3

1

2

4

5

6

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
3
3

© 2003 IBM Corporation

Notes

Basic authentication is a very popular means of verifying a user’s identity before granting access to a protected resource, or realm. The figure
above illustrates the authentication process, consisting of the following steps:
1 The client request access to a protected resource.
2 The server replies with HTTP status code 401 and a special header, WWW-Authenticate, containing the name of the protection realm.
3 The client interprets the WWW-Authenticate and presents the user with a login prompt, requesting valid credentials for the realm.
4 The user’s credentials are sent back to the server for validation.
5 Depending on the method you have chosen, those credentials are then checked against OS/400 user profiles, a validation list or LDAP

entries.
6 If the user’s credentials can be verified the client is granted access to the protected resource; otherwise an error message is returned in the

browser window.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
3
4

© 2003 IBM Corporation

Basic Authentication Configuration

OS/400 user profiles

Validation lists

LDAP

34 <Directory /ITSO/itso06/itsoco/Projects/Archives>
35 AllowOverride None
36 AuthName MyRealm
37 Profile Token off
38 AuthType Basic
39 order allow,deny
40 allow from all
41

42 require valid-user
43 </Directory>

PasswdFile %%SYSTEM%%

PasswdFile %%LDAP%%

PasswdFile qgpl/itso06

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
3
5

© 2003 IBM Corporation

Notes

Although there are three different authentication methods, such as OS/400 user profiles, validation lists, and LDAP,these methods actually
share more in common than have differences. This figure demonstrates this. This table reads top-down. By following your goals you can use
the GUI configuration steps to create the Apache final configuration file directives as listed.
You must have the directives on lines 34, 36, 38 and 42. Your choices within these configuration directive lines are common no matter which
basic authentication goal you choose. That is, you can change the name of the realm defined by AuthName to something other than MyRealm,
but this does not affect your goal of basic authentication.
The PasswdFile directive on line 41 is where you can make a choice as to a user access policy and a user validation policy.

Authentication by OS/400 user profiles- OS/400 user profiles can be used for authentication. The main advantage of this implementation is
not requiring additional configuration steps or maintaining a separate user database. User profiles with limited capabilities and no signon
access can be used for this purpose, as well as *SECOFR class users (though this practice is highly discouraged).
Tip: Access validation through OS/400 user profiles is the simplest and least secure way of restricting access to your data. While acceptable
in non-critical environments, this kind of authentication alone is not recommended on public networks such as the Internet, where its simple
Base64 encoding and the use of actual user profiles and passwords could easily compromise the security of your system. A good choice for
protecting your data would be SSL or TLS.

Authentication by validation lists- Protection by validation lists does not require use of actual OS/400 profiles and passwords, reducing risk
to your iSeries server in the event a userid is compromised. As with all other forms of basic authentication, passwords are sent Base64
encoded. That is, sent in the clear.

Authentication by LDAP entries- The Lightweight Directory Access Protocol (LDAP) provides access to a centralized X.500 directory where
information about users, networks and systems (actually any kind of information) is stored. Starting with V5R1M0 Directory Services (shipped
as option 32 of the Operating System) are automatically installed with OS/400.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
3
6

© 2003 IBM Corporation

Notes

In association with user authentication, you can specify a user profile that is used for giving an authorization to access the resources on
iSeries.
This is specified by UserID directive. Though you can specify three types of values in this directive, the type of value you can specify depends
on what value you have in PasswdFile directive.
The following table shows the relation between UserID and PasswdFile directives.

PasswdFile
directive

UserID:
%%SERVER%%

UserID:
%%CLIENT%%

UserID:Specific
userID of OS/400

%%SYSTEM%% QTMHHTTP Authenticated user Specified user

File name of
validation list

QTMHHTTP n/a Specified user*

%%LDAP%% QTMHHTTP n/a Specified user*

When you specify %%SERVER%% in the UserID directive, you can use any of those three kind of password files. At that time, the user ID
QTMHHTTP is used for authorization of the resources in iSeries.

When you specify %%CLIENT%% in the UserID directive, you can only use OS/400 user profile as the password file specifying
%%SYSTEM%% in the PasswdFile directive. Because, in this case, the user ID authenticated by OS/400 security system is used for
authorization of the resources in iSeries. This means that the user ID must be one of the OS/400 user profiles because any user IDs in LDAP
or validation list cannot be recognized by OS/400 security system.

When you specify a specific user ID in the UserID directive, you can use any of those three kind of password files. In this case, the specified
user ID must be one of the OS/400 user profiles so that it can be used for authorization of the resources in iSeries. Meanwhile, user
authentication is executed using specified password file. This means that if you use LDAP or validation list, you must have the same user ID in
your LDAP server or validation list as you specified in the UserID directive.

Each data indicates the user ID that is used for
resource authorization in iSeries.
"n/a" means that combination isn't allowed.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
3
7

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
3
8

© 2003 IBM Corporation

Enabling SSL/TLS

add for enabling SSL

HTTP server: ITSO06 global settings
 General Settings
 Server IP address and port to listen on:
 All 8006
 All 44306

 Virtual Host context: IP address *:44306
 SSL General Settings
 Enable SSL
 Application name: QIBM_HTTP_SERVER_ITSO06

Certificate Common name

SG24-6716 as20b.itsoroch.ibm.com

CA managed by DCM
assign to digital certificate

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
3
9

© 2003 IBM Corporation

Notes

The figure above is an overview of the settings necessary for enabling SSL/TLS in your HTTP Server (powered by Apache). You can see the
description of these settings in the table below. It lists a series of goals on the left. The first three are handled by the adminstration GUI of the
HTTP Server (powered by Apache) and will result in new directives in your configuration file. The rest are dependant upon configuration steps
necessary with the Digital Certificate Manager (DCM).
Tip: Since you need to add HTTPS as a new protocol for your server you must create a virtual host context in order to manage your
SSL-secured communications.

Goal GUI configuration steps Apache final configuration file

Add a new port for SSL-secured
communications

In your server’s global settings
panel select General Settings
and add the new port number.

Listen 44306

Create a virtual host context that
will contain the SSL directives

Through the Context
Management menu add a Virtual
Host context listening on the
new port.

33 <VirtualHost *:44306>

Enable SSL for the virtual host Select the new virtual host as
the active context.
Select SSL General Settings
and check the Enable SSL box.

2 LoadModule ibm_ssl_module
/QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM...
35 SSLAppName QIBM_HTTP_SERVER_ITSO06
36 SSLEnable
37 SSLCacheDisable
38 </VirtualHost>

Assign a digital certificate to the
server

In the Digital Certificate Manager GUI open the *SYSTEM certificate store. Under Fast Path
select Work with server applications and select your server from the list on the right. Assign a
valid certificate and make sure that the CA is in marked as trusted in the CA Trust List. No
change is made to the HTTP configuration file.

Install the local CA on the client
PC

Select Install Local CA Certificate on Your PC

Restart the server and test your
SSL configuration

Point your browser to https://servername:SSLport.
Remember that our virtual host can only be accessed through the HTTPS protocol now.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
4
0

© 2003 IBM Corporation

Notes

Enabling SSL for the ADMIN instance
Enabling SSL support for the configuration GUI requires some additional considerations. First, you will have to add the following lines to the
ADMIN customization include that is located in /QIBM/UserData/HTTPA/admin/conf/admin-cust.conf
LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM
Listen 2001
Listen 2010
SetEnv HTTPS_PORT 2010
<VirtualHost *:2010>
SSLEnable
SSLAppName QIBM_HTTP_SERVER_ADMIN
</VirtualHost>
Then issue the CL command:
CALL QHTTPSVR/QZHAPREG PARM('RegisterAppName' 'QIBM_HTTP_SERVER_ADMIN')
to register the ADMIN instance within the DCM environment.
You can now access the Digital Certificate Manager GUI and assign a server certificate to the QIBM_HTTP_SERVER_ADMIN application you
have just registered.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
4
1

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
4
2

© 2003 IBM Corporation

TLS Upgrade

Allows client to request an upgrade to TLS encryption on an
unencrypted port

New applications only need 1 port for both normal and SSL traffic

Primary user is Internet Print Protocol (IPP)
Web browsers do not yet support this... but when they do:

Internet

http://myhost.../servlet/page.jsp

426 Upgrade Required

http://myhost.../servlet/page.jsp
Upgrade: TLS/1.0

TLS Handshake

page.html

http://myhost.../servlet/page.jsp

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
4
3

© 2003 IBM Corporation

Notes
A new feature in V5R2 of the HTTP Server (powered by Apache) is the ability to allow clients to request an upgrade to TLS encryption on an
unencrypted port. This allows new applications to only need 1 port for both normal and SSL traffic. Right now the primary user is Internet
Print Protocol (IPP).

Refer to RFC 2817: Upgrading to TLS Within HTTP/1.1. An excerpt:

The historical practice of deploying HTTP over SSL3 has distinguished the combination from HTTP alone by a unique URI scheme and the
TCP port number. The scheme 'http' meant the HTTP protocol alone on port 80, while 'https' meant the HTTP protocol over SSL on port 443.
Parallel well-known port numbers have similarly been requested -- and in some cases, granted -- to distinguish between secured and
unsecured use of other application protocols (e.g. snews, ftps). This approach effectively halves the number of available well known ports.

At the Washington DC IETF meeting in December 1997, the Applications Area Directors and the IESG reaffirmed that the practice of issuing
parallel "secure" port numbers should be deprecated. The HTTP/1.1 Upgrade mechanism can apply Transport Layer Security [6] to an open
HTTP connection.

In the nearly two years since, there has been broad acceptance of the concept behind this proposal, but little interest in implementing
alternatives to port 443 for generic Web browsing. In fact, nothing in this memo affects the current interpretation of https: URIs. However, new
application protocols built atop HTTP, such as the Internet Printing Protocol, call for just such a mechanism in order to move ahead in the IETF
standards process.

The Upgrade mechanism also solves the "virtual hosting" problem. Rather than allocating multiple IP addresses to a single host, an HTTP/1.1
server will use the Host: header to disambiguate the intended web service. As HTTP/1.1 usage has grown more prevalent, more ISPs are
offering name-based virtual hosting, thus delaying IP address space exhaustion.

TLS (and SSL) have been hobbled by the same limitation as earlier versions of HTTP: the initial handshake does not specify the intended
hostname, relying exclusively on the IP address. Using a cleartext HTTP/1.1 Upgrade: preamble to the TLS handshake -- choosing the
certificates based on the initial Host: header -- will allow ISPs to provide secure name-based virtual hosting as well.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
4
4

© 2003 IBM Corporation

Client Side Digital Certificates

HTTP server: ITSO06 global settings
 Virtual Host context: IP address *:44306
 SSL Client Authentication
 Require valid certificate for connection

 Directory /ITSO/itso06/itsoco/Projects/Project_3
 Basic Authentication
 User name to process requests: %%CLIENT%%
 User authentication method to validate passwords: Use user profile
 SSL Client Authentication
 Use SSL client authentication
 Require valid client certificate for accessing this resource

Client certificate

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
4
5

© 2003 IBM Corporation

Notes

Client side digital certificate is an advanced means of user authentication. A user certificate issued by the server is installed in the browser
and used to verify the end user’s identity.
This figure is an overview of definition example. The folder we want to protect will be served by a Directory directive inside our virtual host
context.
This configuration requires a valid client certificate for access to the new folder, but also forces the server to access protected data as the
user for whom that certificate has been issued. This powerful capability of the Apache server, also known as profile swapping, is yet another
proof of the granularity and versatility of Apache security.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
4
6

© 2003 IBM Corporation

Proxy Server

Private
intranet

http://www.webco.com

cache

Client

Public Network
(Internet)

Forward
proxy

get http://www.webco.com

get
http://www.webco.com

index.html

index.html

2 1
3

5

4

Forward (shown)
Reverse

FRCA

Proxy Chaining

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
4
7

© 2003 IBM Corporation

Notes

Proxy servers are deployed on a network for two key purposes: security and performance. A proxy can be used to monitor and filter inbound
and outbound requests, or as a single point of access for communications with un-trusted networks. Proxies can also dramatically improve
HTTP response times by serving documents from a local cache, effectively cutting down network traffic, bandwidth occupation and CPU load
(depending on the type of request being served).
There are two mainstream proxy implementations: the forward proxy and the reverse proxy. Both can be implemented as virtual hosts or
standalone servers. Apache proxy can also be configured as part of a proxy chain by specifying which server the requests will be relayed to.
Forward Proxy- A forward proxy fetches content from another server, allowing clients to reach a network they wouldn’t otherwise have
access to. Above figure demonstrates the role of a forward proxy in an environment where clients on a private intranet do not have direct
access to the Internet.

In this configuration the clients send all outbound HTTP requests to the forward proxy (1). The proxy checks the request against security
restrictions, then looks for a valid copy of the requested document in the local cache. If the document can be retrieved from the cache the
proxy poses as the destination server itself, and serves it to the client. Otherwise the proxy establishes a connection to the www.webco.com
server (2)and retrieves an updated copy of the document (3). The document is (optionally) stored in the local cache (4) and sent to the
requestor (5). Note that from the client’s point of view the proxy is the Web sever itself, and no other system appears to be involved in the
transaction.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
4
8

© 2003 IBM Corporation

Notes

Reverse proxy- Two other forms of proxy support are available with the HTTP Server (powered by Apache). One is reverse proxy which is
the same as a forward proxy except that requests from outside of the firewall to the proxy are allowed. The other is proxy chaining which
requires two or more proxy servers and can be used to balance server workloads or network traffic.

Another reverse proxy is available with your HTTP Server (powered by Apache) and that is FRCA. FRCA will be covered later in this
presentation.

A reverse proxy is another common form of a proxy server and is generally used to pass requests from the Internet, through a firewall to
isolated, private networks. It is used to prevent Internet clients from having direct, unmonitored access to sensitive data residing on content
servers on an isolated network, or intranet. If caching is enabled, a reverse proxy can also lessen network traffic by serving cached
information rather than passing all requests to actual content servers. Reverse proxy servers may also balance workload by spreading
requests across a number of content servers. One advantage of using a reverse proxy is that Internet clients do not know their requests are
being sent to and handled by a reverse proxy server. This allows a reverse proxy to redirect or reject requests without making Internet clients
aware of the actual content server (or servers) on a protected network.

A reverse proxy server will first check to make sure a request is valid. If a request is not valid, or not allowed (blocked by the proxy), it will not
continue to process the request resulting in the client receiving an error or a redirect. If a request is valid, a reverse proxy may check if the
requested information is cached. If it is, the reverse proxy serves the cached information. If it is not, the reverse proxy will request the
information from the content server and serve it to the requesting client. It also caches the information for future requests.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
4
9

© 2003 IBM Corporation

Notes

Proxy Chaining- A proxy chain uses two or more proxy servers to assist in server and protocol performance and network security. Proxy
chaining is not a type of proxy, but a use of reverse and forward proxy servers across multiple networks. In addition to the benefits to security
and performance, proxy chaining allows requests from different protocols to be fulfilled in cases where, without chaining, such requests would
not be possible or permitted. For example, a request using HTTP is sent to a server that can only handle FTP requests. In order for the
request to be processed, it must pass through a server that can handle both protocols. This can be accomplished by making use of proxy
chaining which allows the request to be passed from a server that is not able to fulfill such a request (perhaps due to security or networking
issues, or its own limited capabilities) to a server that can fulfill such a request.

The first proxy server in a chain will check to make sure a request is valid. If a request is not valid, or not allowed (blocked by the proxy), it will
reject the request resulting in the client receiving an error or a redirect. If a request is valid, the proxy may check if the requested information is
cached and simply serve it from there. If the requested information is not in cache, the proxy will pass the request on to the next proxy server
in the chain. This server also has the ability to fulfill, forward, redirect, or reject the request. If it acts to forward the request then it too passes
the request on to yet another proxy server. This process is repeated until the request reaches the last proxy server in the chain. The last
server in the chain is required to handle the request by contacting the content server, using whatever protocol is required, to obtain the
information. The information is then relayed back through the chain until it reaches the requesting client. Each proxy server in the chain may
cache the information for future requests.

Reasons for passing requests through a proxy chain vary. For example, proxy chaining may be used to get information to pass through
multiple networks where a client on one network cannot communicate directly with a proxy server on a different network and needs a second
proxy to relay its requests. It may also be used to cause information to be cached in multiple locations or to allow certain protocols to be used
outside a firewall which cannot be allowed through a firewall.

For more information about proxy support by the HTTP Server (powered by Apache) see the Documentation Center. Go to
http://www.ibm.com/eserver/iseries/software/http and then select Documentation.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
5
0

Serving Dynamic Data

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
5
1

© 2003 IBM Corporation

Notes

The IBM HTTP Server (powered by Apache) supports the most popular techniques generally available for this purpose such as Server-Side
Includes (SSI), Net.Data, Common Gateway Interface (CGI).
In this part , we will briefly describe how to implement these functions the IBM HTTP Server (powered by Apache) .

Server Side Includes (SSI)
Net.Data
CGI

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
5
2

© 2003 IBM Corporation

Server Side Includes (SSI)

GET homepage.html

<HTML>
<HEAD>
<TITLE>My homepage</TITLE>
</HEAD>
<BODY>
<CENTER>
<!--#echo var="DATE_LOCAL"-->
</CENTER>
<H1>This is my home page</H1>
</HTML>

Homepage.html

HTTP

<HTML>
<HEAD>
<TITLE>My homepage</TITLE>
</HEAD>
<BODY>
<CENTER>
Wednesday, 14-Nov-2001 16:47:37
</CENTER>
<H1>This is my home page</H1>
</HTML>

DATE_LOCAL= Wednesday, 14-Nov-2001 16:47:37
Client (browser)

iSeries HTTP server

You can test SSI by adding a simple directive to your
HTML file like:
<center><!--#echo var="DATE_LOCAL"--></center>

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
5
3

© 2003 IBM Corporation

Notes
Server-side includes (SSI) are the simplest way of adding dynamic content to a web site. A set of directives are embedded in the HTML code and
are interpreted by the server before the document is sent to a client. SSI can be used to trigger a CGI program, return information about
documents, or the value of environment variables, as shown in the figure.
In a simple sense SSI allows for character substitution from within an HTML document.
SSI also supports the execution of simple conditional statements, thus providing a reasonably flexible programming environment. The syntax used
for SSI directives is <--#command parameter="value" -->. This syntax allows SSI directives to remain hidden when the server is not configured for
SSI support.
Tip: Special characters inside SSI directives will have to be preceded by a backslash (\).

This table lists the SSI commands available on iSeries and their respective parameters. Additional information is provided in the Reference section
of the HTTP Documentation Center that can be found at http://publib.boulder.ibm.com/pubs/html/iseries_http/v5r1/index.htm

Command Description Valid parameters

config Controls various output formats. errmsg, sizefmt, timefmt

echo Prints one of the SSI or API variables. Dates are printed using
config timefmt.

var, encoding

exec Calls a CGI program.

Note: shell command execution is not allowed in the OS/400
environment.

cgi

fsize Prints the size of the specified file according to config sizefmt. file, virtual

flastmod Prints the last modification date of the specified file according to
config timefmt.

file, virtual

global Same as the set command. var, value

include Inserts the text of another file. Included files can be nested. (file path)

printenv Prints all existing environment variables and their values. There
are no attributes.

(var name)

set Sets the value of an environment variable. var, value

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
5
4

© 2003 IBM Corporation

Net.Data

 ...
 20 ScriptAlias /cgi-bin/ /QSYS.LIB/ITSOAPACHE.LIB/DB2WWW.PGM/
...
 31 <Directory /QSYS.LIB/ITSOAPACHE.LIB/>
 32 allow from all
 33 order allow,deny
 34 UseCanonicalName Off
 35 HostNameLookups off
 36 Options +ExecCGI
 37 </Directory>

httpd.conf

Copy

URL
http://as20/cgi-bin/MACRO1/run

Library : QHTTPSVR

DB2WWW.PGM

Library : ITSOAPACHE

DB2WWW.PGM

QNETDATA
.FILE

MACRO1
.MBR

INI.FILE

DB

HTML
(Result)

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
5
5

© 2003 IBM Corporation

Notes

Net.Data is an easy to use scripting language developed by IBM and bundled with the IBM HTTP server . Net.Data macros are fed to a CGI
interpreter (DB2WWW) that generates HTML output. The Net.Data macro language allows you to generate a wide range of dynamic content
through imbedded dynamic SQL invocations and program calls.

A Net.Data environment is made of the macro processor, a configuration file (known as initialization or INI file) and the user code.

The first thing you will do is create a user library to have a place to keep these files. In this figure of example, we created library ITSOAPACHE
using the Create Library (CRTLIB) command.

Next, you should copy the original macro processor program DB2WWW from library QHTTPSVR to your library using the Create Duplicate
Object (CRTDUPOBJ) CL command. The primary reason you should do this is to move the DB2WWW CGI program into a library that you
can protect from both the OS/400 point of view and through HTTP server configuration directives.

The next step will be the creation of the Net.Data initialization file, which will reside in the same library as the macro processor. Use the Create
Source Physical File (CRTSRCPF) CL command to create file INI with a DB2WWW member. Note that since all the statements in the INI file
will have to be on single lines, 240 is the recommended record length value.

The initialization file will contain server your default environment settings like the path where macros are stored, environment variables, logging
and tracing preferences, and much more. Use Start PDM (STRPDM) to modify the INI file.
See the Net.Data Administration and Programming Guide for OS/400 and Net.Data Reference manuals at
http://www-1.ibm.com/servers/eserver/iseries/software/netdata/docs/doc.htm for additional information on environment settings.

Macros can be stored on the iSeries as members of a source physical file in a library or as stream files (usually with .d2w or .ndm extension)
inside the IFS. The two solutions are equivalent. Choose one and change the MACRO_PATH statement in your configuration file to reflect
your choice.

To make the HTTP server (powered by Apache) available for Net.Data, you need to define ScriptAlias directive and directory context for the
library which has DB2WWW program and INI file. In this directory context, you have to have Options +ExecCGI for enabling CGI.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
5
6

© 2003 IBM Corporation

CGI

The HTTP Server (owered by Apache) provides CGI support
for:

C/C++, (Perl), Java, REXX, RPG and COBOL
Note: Perl scripts will work but Perl is not supported by IBM

CGI programs in PASE

Persistent Connections
allows multiple objects to be served over a single connection
reduces overhead of starting new connections
allows complete transactions to be done with a single connection

Prestart and reuse jobs for CGI
Multithread capable CGI support
CGI Environment Variables

JavaClassPath
LibraryList

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
5
7

© 2003 IBM Corporation

Notes
Common Gateway Interface (CGI) is a set of programming specifications used to design programs that produce dynamic content. CGI
programs process user input submitted through a POST or GET method, returning output to the browser window. CGI programs for the
iSeries HTTP server can be written in C++, Rexx, Java, ILE C, ILE RPG, or ILE COBOL.
The iSeries can even run a CGI application that has been written and compiled for AIX. The binary output of the compiler is moved to the
iSeries and can run from the Portable Application Solution Environment (PASE).
CGIs come into play whenever a significant processing load has to be employed to generate dynamic output.
Persistent connections allow multiple sequential HTTP requests to be made by a client over the same connection if the client indicates that it
is capable of doing so. If a page contains many parts, such as individual graphics, this allows them to be sent over a single connection instead
of incurring the overhead of opening multiple connections. This also allows a much more rapid dialog between the server and the client in CGI
applications by maintaining active database transactions and persistent data across multiple HTTP requests.

In generic Apache implementations, a persistent connection ties up the server process until the connection is ended, usually through the
timeout set with the KeepAliveTimeout directive. For iSeries, a new asynchronous I/O model allows support for persistent connections
without tying up the server threads. This should provide a much faster response in busy servers.
Persistent connections are set with the KeepAlive directive, which defaults to On. Most Internet browsers support persistent connections, but
some older browsers do not. The configuration shipped with generic Apache, and those created with iSeries' wizards contain Browsermatch
directives that cause the server to revert to non-persistent HTTP 1.0 connections when one of the problem browsers is detected.

The StartCGI and StartThreadedCGI directives can be used to designate an initial number of CGI jobs to start at server startup time.
Prestarting these jobs will eliminate the overhead of creating new ones as required.

New server functions allow setting of the JavaClassPath and the Library List for CGI jobs. This will allow users to easily configure test
environments by allowing easier substitution of test libraries and Java Classes.

The best implementation guide for CGI programming both with the HTTP Server (original) and HTTP Server (powered by Apache) can be
found in the HTTP Server for iSeries Web Programming Guide (Version 5 December, 2001 - GC41-5435) found at
http://www.ibm.com/eserver/iseries/software/http/docs/doc.htm

Information about the unsupported version of Perl for the iSeries can be found in a Technical Studio article
http://www.iseries.ibm.com/tstudio/workshop/tiptools/perl.htm for a freeware version of Perl that has been ported to the iSeries.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
5
8

© 2003 IBM Corporation

PHP scripts as a CGI

Hypertext Preprocessor (PHP)
Powerful scripting language (think: "If
Net.Data was open source")
Apache based
Two runtime engines:

As an Apache module
As a CGI

Redpaper: Bring PHP to Your
iSeries Server, REDP3639

published January-29-2003
Demonstrates: download, compile,
configuration and test of PHP script
OS/400 V5R2 (V5R1 OK too)

PHP runtime engine is PHP as a CGI
running in PASE

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
5
9

© 2003 IBM Corporation

Notes
Hypertext Preprocessor (PHP) is a powerful server-side scripting language for the Apache
Web server. PHP is popular for its ability to process database information and create dynamic
Web pages. Server-side refers to the fact that PHP language statements, which are included
directly in your HTML, are processed by the Web server. Scripting language means that PHP
is not compiled. Since the results of processing PHP language statements is standard HTML,
PHP-generated Web pages are quick to display and are compatible with most all Web
browsers and platforms. PHP is for the open source Apache community as Net.Data is for the
IBM community.

To “run” PHP scripts with your HTTP Server (powered by Apache), a PHP engine is required
on your IBM iSeries server. The PHP engine is an open source product, so this IBM
Redpaper demonstrates the process to download, compile, install, and then configure PHP
on your iSeries. It explains how to install versions 4.3.0 and the older version 4.2.2 of PHP.

The PHP engine is available both as an Apache module and a CGI-BIN. Support for PHP as
a module is not yet available for OS/400. The step-by-step implementation discussed in this
redpaper involves the CGI version of PHP running in OS/400's Portable Application Solutions
Environment (PASE). This allows you to run AIX binaries directly on an iSeries. It includes the
necessary patches for the minor modifications needed to the PHP source code.

If you want to advertise this Redbook to your Customers and other Business Partners send them too:

IBM intranet: http://w3.itso.ibm.com/abstracts/redp3639.html
Internet: http://www.redbooks.ibm.com/abstracts/redp3639.html

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
6
0

Web Application Serving

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
6
1

© 2003 IBM Corporation

Notes

The HTTP Server (powered by Apache) includes an industry-standard Java servlet and Java Server Pages (JSP) engine based on technology
from the Apache Software Foundation's Jakarta Tomcat (ASF Tomcat) open source code base. Lightweight and easy-to-use software
extends the HTTP Server (powered by Apache).

This part shows you an outline of ASF Tomcat and also shows you some configuration related information.

Web application serving
ASF Tomcat on iSeries
When to use ASF Tomcat
ASF Tomcat directory structure
ASF Tomcat directives
ASF Tomcat authorities
ASF Tomcat log files

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
6
2

© 2003 IBM Corporation

Web Application Serving

DB2 UDB
SSL /TLS

IFS

Telnet
FTP

RouteD(RIP)
VPN

Web servers, Domino and third party
IBM HTTP Server for iSeries

Original
powered by Apache

TCP/IP suite and networking protocols
LDAP
DHCP

Base OS/400 servers
NetServer
Network Printing Support

Domino native HTTP server

Data access
CGI (ILE RPG, COBOL,
C, CL, Java)
Net.Data

Web application servers
WebSphere Application Server
ASF Tomcat
Domino for iSeries

Web-to-host integration
Host On-Demand
Host Publisher
WebFacing Tool

Business application
RPG, COBOL, C, CL and Java

IFS
files

Web
DB

LOB
DB

co
nn

ec
to

rs

Browser

connectors

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
6
3

© 2003 IBM Corporation

Notes

As you can see, there are many options to create, serve and manage
one e-business application using the iSeries system. The iSeries
aggressively supports the transformation of business applications to an
e-business model, while also minimizing disruption within the enterprise
environment. It has business-proven values (reliability, security,
scalability, low cost of ownership) that supports the latest enabling
technologies for e-business. In combination, these two qualities make
iSeries an excellent choice for not only extending existing applications
but also for deployment of new solutions.

LOB
db

 iSeries

Base OS/400 servers

TCP/IP suite and networking protocols

Integrated File System (IFS) provides access to
not only OS/400 objects through QSYS.LIB but
also NFS, QDLS, QFileSvr.400, QLANSrv,
QNetWare, QNTC, QOpenSys, QOPT, "root",
and UDFS

LDAP
BOOTP
RADIUS
DHCP
Dynamic DNS

SMTP
Telnet
FTP
TFTP
REXEC

RouteD (RIP)
Quality of Service
(QoS)
SNMP
SNTP

VPN
WorkStation Gateway
LPD
IPP

Web servers, Domino and third party
IBM HTTP Server for iSeries (5722-DG1)

HTTP Server (original)
HTTP Server (powered by Apache)

Domino native HTTP server
Third party HTTP servers

WebSphere Host Integration
Host On-Demand
Host Publisher

WebSphere Development Tools
WebFacing Tool

Third party solutions

Web-to-Host Integration
WebSphere Application Server
Apache Software Foundation's
Jakarta Tomcat
Domino for iSeries
WebSphere Commerce Suite
Third party solutions

Web Application ServersData Access
CGI-bin (supports ILE RPG,
COBOL, C, CL and Java)
Net.Data
WebSphere Host Int: Host
Access LIbrary
Third party solutions

Browser

Business Application
ILE RPG, COBOL, C, CL and Java

web
dbco

nn
ec

to
rs

NetServer: Windows based file/app serving
Network Printing Support
Integrated DB2 UDB for iSeries to provide
native, SQL, ODBC and JDBC db support
Built in security (SSL and TLS)

IFS
files

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
6
4

© 2003 IBM Corporation

ASF Tomcat on iSeries

Apache Software Foundation Jakarta Tomcat (ASF Tomcat)
Servlet engine container

Supports servlets, JSP, WAR files
Integrated in IBM HTTP Server for iSeries (5722-DG1) base code

Run in two process modes
In-process

Run in the same process of the HTTP Server
Communicate through Java Native Interface

Out-of-process
Run in separate process from the HTTP Server
Communicate through TCP/IP

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
6
5

© 2003 IBM Corporation

Notes

Apache Software Foundation Jakarta Tomcat (ASF Tomcat) is a servlet engine container that supports servlets, JavaServer Pages (JSP) and
Web Application Archive (WAR) files. This servlet engine is developed and released under the Apache Software Foundation license. It is
integrated in the iSeries system by the IBM HTTP Server for iSeries base code and not by a new option or License Program Product. ASF
Tomcat requires a Java Runtime Environment that has conformity with JRE 1.1 or later, including any Java2 platform system.
The iSeries server supports ASF Tomcat version 3.2.4 on V5R1 and 3.2.1 on V4R5.
For ASF Tomcat to work with the HTTP Server (powered by Apache) needs an “agent” that resides in the HTTP server and send him servlet
request. This “agent” is the Web server plug-in, jk_module. This module allows the communication between the HTTP Server (powered by
Apache) and the ASF Tomcat servlet engine and must be included in the HTTP configuration file with the LoadModule directive.

LoadModule jk_module /QSYS.LIB/QHTTPSVR.LIB/QZTCJK.SRVPGM

Although the ASF Tomcat servlet engine is integrated into the HTTP Server (powered by Apache), this does not means that the servlet engine
needs to run in the same process as the HTTP server. ASF Tomcat can be configured to run:
In-process ASF Tomcat and the HTTP Server (powered by Apache) run in the same process and communicate through a Java Native
Interface (JNI).
Out-of-process ASF Tomcat and the HTTP Server (powered by Apache) run in separate process (even on separate systems) and
communicate through TCP/IP sockets. The ASF Tomcat server process runs in the QSYSWRK subsystem.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
6
6

© 2003 IBM Corporation

Notes

Running in-process or out-of-process implies some differences, as shown in this table.

In-process Out-of-process

Uses the jk_module module with Java invocation API to
communicate with the HTTP server

Uses the jk_module to communicate with the HTTP server.

The HTTP server and ASF Tomcat servlet engine communicate
through a JNI

The HTTP server and ASF Tomcat communicate through TCP/IP
sockets

Does not require a new protocol Does require a new protocol to communicate (ajp12 and ajp13)
ASF Tomcat server runs in the same JVM as the HTTP server ASF Tomcat server runs in its own JVM
Uses the same security implementation configure by the HTTP
server

Uses his own container managed security implementation

Works with the SSL configuration of the HTTP server The communication between the HTTP server and ASF Tomcat does
not support SSL

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
6
7

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
6
8

© 2003 IBM Corporation

When to Use ASF Tomcat

When the customer's application uses
Servlets, JSP and XML files

and does not require
EJB support
DB connection management
SSL or other security mechanism between he HTTP server and the
application server

Load balancing implementation
Scalability

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
6
9

© 2003 IBM Corporation

Notes

Some iSeries customers want a basic, no-cost Web application server that supports Servlets and JavaServer Pages. Relying on IBM's HTTP
Server (powered by Apache) as its web server, the Apache Software Foundation's Jakarta Tomcat provides a basic web application server for
iSeries customers. You can use ASF Tomcat:

When your application is based on servlets, JSP and XML files.
When your application does not require EJB support.
When your application does not require any database connection manager mechanism.
When your application does not require any specific security mechanism, for example SSL, between the HTTP server and the application
server. (This restriction is only applied to the "out-of-process" mode.)
When your e-business solution does not require a load balancing implementation.
When your e-business solution does not require scalability.

ASF Tomcat is the newest component in the e-business solution provide by the iSeries server. In the following section we will learn more
about this new member. If you want to learn more about WebSphere Application Server, refer to:
http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
7
0

© 2003 IBM Corporation

ASF Tomcat Directory Structure

Located in root or QOpenSys in IFS

Home directory

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
7
1

© 2003 IBM Corporation

Notes

This servlet engine, runs under his own directory structure. This directory structure is used by the HTTP server as it is include into the HTTP
configuration file. The directory structure can be located in the root or QOpenSys file systems. The fpllowing table shows you the directory
structure used by ASF Tomcat.

ASF Tomcat directory Description

tomcat_home The tomcat_home directory is the base directory for ASF Tomcat. The
tomcat_home directory can be located in the root or QOpenSys file
systems. For an in-process ASF Tomcat configuration, the default
tomcat_home directory is set to the HTTP server director

tomcat_home/webapps This directory contains WAR files if you have them. All WAR files are
expanded and subdirectories are added as contexts

tomcat_home/webapps/ROOT This directory is required by ASF Tomcat. This directory is required to
support the servlet 1.1 specification.

tomcat_home/webapps/app1 This directory is known as a document base directory. You may have
several document base directories under the webapps directory.
These represent and map a directory structure to a servlet or JSP
application. The subdirectory app1 is your application dire

tomcat_home/webapps/app1/WEB-INF This directory contains the web.xml file for the application. The web.xml
file contains the URL patterns and attributes for your servlets.

tomcat_home/webapps/app1/WEB-INF/classes This directory contains any Java class files and associated resources
that are required for your application. This directory is searched prior to
the tomcat_home/webapps/app1/WEB-INF/lib directory for any servlet
.class file that is specified in the URL.

tomcat_home/webapps/app1/WEB-INF/lib This directory contains any JAR files and associated resources that are
required for your application.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
7
2

© 2003 IBM Corporation

Notes

ASF Tomcat directory Description

tomcat_home/conf This directory contains the server.xml and workers.properties
configuration files.

tomcat_home/logs This directory contains all log files.
tomcat_home/work This directory is automatically generated by ASF Tomcat as a place

to store intermediate files.

java/lib This directory is created as a place to put .jar and .class files. that
you want to add to the class path.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
7
3

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
7
4

© 2003 IBM Corporation

ASF Tomcat Directives

HTTP server: ITSO08
...
2 LoadModule jk_module /QSYS.LIB/QHTTPSVR.LIB/QZTCJK.SRVPGM
3 Listen 10.5.92.14:8008
4 DocumentRoot /itso/itso08/itsoco
...
21 JKMount /orderentry/* remote
22 JkAsfTomcat On
23 JkWorkersFile /itso/itso08/conf/workers.properties
24 JkLogFile /itso/itso08/logs/jk.log
25 JkLogLevel error
...

worker.list=remote

worker.remote.type=ajp13
worker.remote.host=10.5.92.14
worker.remote.port=8009

ASF Tomcat and HTTP configuration file (out-of-process)

workers.properties file

Servlet engine

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
7
5

© 2003 IBM Corporation

Notes

ASF Tomcat directives
The ASF Tomcat directives are used by the HTTP server to redirect the request of servlets, JSP and WAR files to the servlet engine. Before
using any of these directives, the jk_module module must be loaded. The directives are:
JkAsfTomcat- This directive allows ASF Tomcat to be turned off without deleting particular ASF Tomcat directives from the HTTP Server
(powered by Apache) configuration file. When this directive is set to Off, it appears to the user as if ASF Tomcat was never enabled.
JkLogFile- The JkLogFile directive is used to describe the full path name of the jk_module log file. The log file describes the flows of header
and data between the HTTP Server (powered by Apache) and the ASF Tomcat servlet engine. It does not contain information relative to what
happens after a request is forwarded to the servlet engine. The specified log file is never purged or wrapped. The file may need to be
periodically purged by the administrator.
JkLogLevel- The JkLogLevel directive is used to describe what detail of logging should occur to the log file defined by JkLogFile. This possible
values for this directive are:

debug
info
error
emerg

JkMount- The JkMount directive specifies which URI contexts are sent to a ASF Tomcat worker.
JkMountCopy- The JkMountCopy directive indicates whether the base server mount points should be copied to the virtual server. Any mount
points defined outside <VirtualHost> </VirtualHost> are inherited by the virtual host.
JkWorkersFile- The JkWorkersFile directive is used to define the name of a file that contains configuration information (that describes how
jk_module attaches to the ASF Tomcat servlet engine). There is no default; this directive must be specified or ASF Tomcat will not function.
The typical file name is workers.properties.

These directives are added into the HTTP configuration file when the ASF Tomcat configuration is created. The directives may look like the
following:
LoadModule jk_module /QSYS.LIB/QHTTPSVR.LIB/QZTCJK.SRVPGM
...
JkWorkersFile /tomcat_home/conf/workers.properties
JkLogFile /http_serverhome/logs/jk.log
JkLogLevel error
JkMount /orderentry/* remote

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
7
6

© 2003 IBM Corporation

Notes

The workers.properties file
The worker is the ASF Tomcat instance that runs to serve servlets and JSP request coming from the web server, in our case, coming from
the HTTP Server (powered by Apache). This worker can run In-process or out-of process. This worker is specified in the JkWorkersFile
directive and tells to the HTTP Server (powered by Apache) how the ASF Tomcat instance runs. This file contains entries of the following
form:

worker.list=<a comma or space separated list of worker name>, for example:
worker.list=local, remote
or
worker.list=local remote

When starting up, the web server plug-in (jk_module) will instantiate the workers whose names appears in the worker.list property. Each
named worker should also have a few entries to provide additional information. Such things as the worker type, port and other related
information to the ASF Tomcat process. The available workers types are:

ajp12 This worker knows how to forward request to out-of-process ASF Tomcat process using the ajpv12 protocol.
ajp13 This worker knows how to forward request to the out-of-process ASF Tomcat process using the ajpv13 protocol.
jni This worker knows how to forward request to the in-process ASF Tomcat process using Java Native Interface (JNI).

The differences between the ajp12 and ajp13 protocols are:
The ajp13 protocol is a binary protocol and it will attempt to compress some of the requested data.
The ajp13 protocol reuse open sockets and leaves them open for future requests.
The ajp13 protocol has special treatment for SSL information.

Defining workers of certain type should be done with the following property format:
worker.<worker name>.type=<worker type>, for example
worker.local.type=jni, for ASF Tomcat in-process mode, where local is the name of this worker.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
7
7

© 2003 IBM Corporation

Notes

Each one of these workers has its own group of properties which define the ASF Tomcat attributes like: ports, hostnames, classpaths, and so
on. The attributes are different if running in-process or out-of-process and if using ajp12 or ajp13 types. Depending of your ASF Tomcat run
mode, the workers.properties file should have entries like the following:

worker.list=local
worker.local.type=jni
worker.local.cmd_line=-config
worker.local.cmd_line=/itso/itso07/conf/server.xml
worker.local.sysprops=java.version=1.2
worker.local.sysprops=tomcat.home=/itso/itso07
worker.inprocess.stdout=/itso/itso07/logs/jvmstdout.txt
worker.inprocess.stderr=/itso/itso07/logs/jvmstderr.txt
worker.local.class_path=/QIBM/ProdData/HTTPA/java/lib/webserver.jar

This workers.property file specify: in-process mode, with Java 1.2 and Tomcat home directory /itso/itso07.

worker.list=remote
worker.remote.type=ajp13
worker.remote.port=8009
worker.remote.host=localhost

This workers.property file specify: out-of-process using ajp13 protocol, on port 8009 and running in the local in the iSeries server.

When you create the ASF Tomcat servlet engine using the ASF Tomcat wizard provide with the HTTP Server (powered by Apache) server,
those entries are created in the workers.properties file for you. So, at this point this information is only supply as a reference.

If you want to learn more about the workers.property file and his properties refer to:
Tomcat Workers How To at the Apache Software Foundation’s Web site:
http://jakarta.apache.org/tomcat/tomcat-3.2-doc/Tomcat-Workers-HowTo.html

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
7
8

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
7
9

© 2003 IBM Corporation

Notes

A fantastic example of the power of the open source community is the newly released module jk. jk is a replacement to the elderly mod_jserv.
It was a completely new Tomcat-Apache plug-in that handles the communication between Tomcat and Apache.

The newest jk2 is a rewrite of jk. The native part has been completly restructured and the configuration has been simplified a lot.

Why should you use the jk?
jk was develop to overcome many limitations of its ancestor, mod_jserv.
mod_jserv was too complex and because it was ported from Apache/JServ, it brought with it lots of JServ specific bits that aren't needed by
Apache.
Where mod_jserv supported only Apache webservers on Unix OS, jk supports much more web servers and operating systems through via a
compatibility layer named the jk library . The layered approach provided by the jk library makes it easier to support many different webservers
and OS.
jk offer better support for SSL, that's was a problem with mod_jserv which couldn't reliably identify whether a request was made via HTTP or
HTTPS.
jk can, using the newer Ajpv13 protocol which relay many SSL informations required by servlet 2.2 and 2.3 specs.
jk offers a lot of different and flexible communications between a Web Server and the Tomcat Servlet Engine and could be used today with all
of the ASF Tomcat Engines, 3.2.x , 3.3.x , 4.0.x , 4.1.x and 5.x

Supported Configuration: The mod_jk module was developed and tested on:

Linux, FreeBSD, AIX, HP-UX, MacOS X, and should works on major Unixes platforms supporting Apache 1.3 and/or 2.0
WinNT4.0-i386 SP4/SP5/SP6a (should be able to work with other service packs), Win2K and WinXP and Win98
Cygwin (until you have an apache server and autoconf/automake support tools)
Netware
iSeries V5R1 and V5R2 with Apache 2.0.39. Be sure to have the latest Apache PTF installed.
Tomcat 3.2.x, Tomcat 3.3.x, Tomcat 4.0.x, Tomcat 4.1.x and Tomcat 5

For more information and directions on where to download the source and how to compile and configure the jk see It will be included in
Tomcat 4.1 official documentation: http://jakarta.apache.org/tomcat/tomcat-4.1-doc/jk2/index.html (as of 9/9/2002 the documentation is not
there yet - should be by the end of September).

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
8
0

© 2003 IBM Corporation

ASF Tomcat Authorities

Considerations for out-of-process

The user profile to configure Tomcat must have
*JOBCTL authority
*ALL authority to the file QUSRSYS/QATMHASFT
*CHANGE authority to the library object QUSRSYS

The user profile to start Tomcat must have
*USE authority to the file QUSRSYS/QATMHASFT
*USE authority to the profile associated with the server user profile
*IOSYSCFG special authority

The user profile Tomcat runs under must have
*USE authority to the file QUSRSYS/QATMHASFT
Must not have

*SECADM authority

*ALLOBJ authority

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
8
1

© 2003 IBM Corporation

Notes

Out-of-process ASF Tomcat configurations have the following authority considerations:

The user profile configuring the out-of-process ASF Tomcat is the owner of the configuration files that are created. This user profile must have:
*JOBCTL authority
*ALL authority to the file QUSRSYS/QATMHASFT
*CHANGE authority to the library object QUSRSYS

In addition the configuration process creates the tomcat_home directory with public execute authority. The default out-of-process
tomcat_home directory is /ASFTomcat/tomcat_server_name. If any of these directories existed prior to the ASF Tomcat configuration
process, then the previous authorities are left unchanged.

The user profile used to start the out-of-process ASF Tomcat must have:
*USE authority to the file QUSRSYS/QATMHASFT
 *USE authority to the profile associated with the server user profile (this is QTMHHTTP by default).
*IOSYSCFG special authority

By default the user profile that the out-of-process ASF Tomcat runs under is the QTMHHTTP user profile, but you can configure this to be
another user profile.

This user profile must have *USE authority to the file QUSRSYS/QATMHASFT.
 This user profile must NOT have:

*SECADM authority
*ALLOBJ authority (if the system is at security level 30 or greater).

In-process ASF Tomcat configurations have the following authority considerations:

When running JSPs on an in-process ASF Tomcat, in order to assure that the .java and .class files resulting from the compilation process of a
JSP are owned by the configured profile for that server, the JSPs should be precompiled by the server administrator under that configured
profile. This will assure users swapped to by the HTTP Server are not the first to cause the JSP to be compiled and thus become the owners
of the .java and .class files that result.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
8
2

© 2003 IBM Corporation

ASF Tomcat log files

The log files are all based on the configuration in the server.xml file
The default location is in the /logs directory under the tomcat_home
directory
The log files include:

jasper.log
servlet.log
tomcat.log
jvmstderr.txt
jvmstdout.txt

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
8
3

© 2003 IBM Corporation

Notes

ASF Tomcat has its own set of logs files used to track day-by-day operations and error messages for problem determination. Each time the
ASF Tomcat servlet engine is started, a set of log files is generated. These log files are all specified on the configuration file server.xml. Those
files are located in /logs directory under the tomcat_home directory by default. Under this directory structure you will find the files shown in
following table.

Log file Description
jasper.log This log file contains messages resulting from trying to start or run

JSPs.

servlet.log This log file contains messages generated as a result of a servlet
running in the ASF Tomcat servlet engine. When a servlet is initialized
a ServletConfig object is provided to the servlet. Contained within the
ServletConfig object is a ServletContext obj

tomcat.log This log file contains ASF Tomcat servlet engine messages.

jvmstderr.txt This log file can contain messages from any Java code that does a
System.err.println()

jvmstdout.txt This log file can contain messages from any Java code that does a
System.out.println()

jk.log This file contains messages generated by jk_module

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
8
4

Performance

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
8
5

© 2003 IBM Corporation

Notes

There are several things that affect web server performance. The HTTP Server (powered by Apache) has some performance related values,
functions that provide cache mechanisms and cache manager. We will introdude these values and functions to you in this part.

Web performance components
Web server performance
Global performance values
Specific perfromance values
Local cache
Triggered Cache Manager (TCM)
FRCA: Features
FRCA: "Normal" and local cache
FRCA: Cache miss scenario
FRCA: Cache hit scenario
FRCA: Limitations
FRCA: Configuration
FRCA: Collection service

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
8
6

© 2003 IBM Corporation

Web Performance Components

Client with a
Web browser

Network

Security Features

Web Server

Application Server

Database Server

Network
Routers
LAN topology
Link speeds
Packet filters
Proxy and Proxy caching
Socks servers

Client
Processor speed
Memory
Hardware
Browser

Server
Web server
Application server
Database server
Security features
Caching

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
8
7

© 2003 IBM Corporation

Notes

There are three major components of a Web server environment, each one with its own performance requirement and limitations.
Those web components identify:
Client- The client with a Web browser represents the client component. Usually you do not have direct control over this component.
Network- The network is where routers, proxy caching, communications components and so on, play an important role. This could
represent the Internet, your own intranet, or both.
Server- The iSeries Server represents the server. Here, the performance of the iSeries Server (hardware and OS/400), the HTTP
server, and optionally the Web application server and the Web all work together to determine the overall server behavior in terms of
performance.

A problem in any of these areas may impact the performance of your Web application.
Our focus here is on the iSeries Server. The client and network components do directly impact the Web server performance and we will
provide a brief description of each component’s impact the overall performance.

The client
The client typically contributes up to 25% of the end-to-end Web application response time. The client performance relies on the following
resources:
Processor speed- Slower clients may experience performance degradation when the Web site requires image, forms and Java applet
download and execution.
Memory- Memory is an important factor inside the client as many Web-related tasks use large amounts of memory to be complete. If the
client does not have enough memory, the user could perceive performance problems because of the client configuration.
Hardware- Every piece of hardware is important. Hard disk and communication adapters are important when the performance is an issue.
Keep in mind that clients not are updated as fast as the IT technologies change.
Browser- Since Web browsers are the main interface in Web server, browsers must be updated frequently. Some Web servers,
customer applications and Web application servers rely on browser capabilities.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
8
8

© 2003 IBM Corporation

Notes

The network
Usually the network has more impact on overall performance. The network usually contributes up to 50% of the total response time. This is
because a wide variety of factors such as network traffic, bandwidth and speed of communication lines. These factors can be understood in
more detail if we identify some network components:

Routers
LAN topology
Link speeds
Packet filters
Proxy and Proxy caching
Socks servers

As there are many components involved, you can spend a lot of time trying to get a better network response time using tools to measure the
behavior and never come up with an exact value. This is because the components involved in a network are dynamic components from which
you can only expect average measurement and not exact values. Even more, many of those components could be completely outside your
zone of responsibility (for example, the Internet).

The server
The server behavior is impacted by several factors including application, resources and database components. Each scenario has his own
components. You should do your best to create a Web application with the most current information technologies. The database access
should be done with the most up to date utilities to data access. The Web application server and the Web server itself should be configured
using the best performance practices. The figure above shows server components involved in most of the e-business implementations.
These components can all impact server performance as most of the time a client request requires processing in each one of those
components.
Other iSeries internal features (for example memory, bus, and disk) must be analyzed for your Web application too because if the iSeries
server itself does not has the internal resources to handle the requirements performance will be impacted.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
8
9

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
9
0

© 2003 IBM Corporation

Static Page (IFS, non-cached 1.92 1.51 1.52 0.69

Static Page (cached) 3.10 2.05 2.23 0.82

Static Page (FRCA) 15.29 not available not applicable not applicable

CGI - new activation 0.06 0.08 0.06 0.08

CGI - named activation 0.43 0.40 0.41 0.31

Persistent CGI 0.33 0.32 0.30 0.26

Net.Data 0.19 0.22 0.18 0.20

WebSphere Servlet 0.77 0.49 0.37 0.34

User Module 3.03 1.21 2.23 0.62

Transaction Type Non Secure
Trans/sec per CPW

Non Secure
Trans/sec per CPW

Secure
Trans/sec per CPW

Secure
Trans/sec per CPW

V5R2 V5R1 V5R2 V5R1

IBM HTTP Server Powered by Apache or iSeries
V5R2: WebSphere Application Server 4.0.2; 100 Mbps Ethernet
V5R1: WebSphere Application Server 3.5.3; 100 Mbps Ethernet

Based on 270 with moderate web server load measurements
Data assumes no access logging, no name server interactions, Keep Alive ON, LiveLocalCache OFF
Secure testing: 128-bit RC4 symmetric cipher and MD5 message digest with 1024-bit RSA public/private keys
CPWs are "Relative System Performance Metrics" used to rate AS/400 and iSeries servers
Web server capacities are base on total CPU available. Capacities may not necessarily scale by CPW. Actual results may differ significantly.
Transactions using more complex programs or serving very large files (pages) will have lower capacities shown in this table

Test Results: Hits per Second (est)

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
9
1

© 2003 IBM Corporation

Notes
This table is an excerpt from the V5R2 Performance Capabilities Reference manual. This manual discusses the internal IBM benchmarks
(CGI program, Net.Data and so forth transaction processing and also has some test results showing how larger file (web page) sizes can
further lower the CPW multiplier. Other Performance Capabilities Reference manual information also shows an alternate way of estimating
hits per second capacities of an iSeries - CPW required per transaction per second estimated values.

Review the notes and disclaimers on this foils. The numbers shown assume the entire processor (CPW capacity) is available for web
serving.

Important considerations include:
V5R2 test results showed mostly improved (higher CPW number the more hits per second estimated) CPW multipliers for static (read only,
no program processing) and WebSphere servlet and User Module (uses Apache APIs) transaction types.
Use of V5R2 Fast Response Cache Accelerator for unsecured static (not changed) data shows a significantly higher CPW
multiplier rating. Please note that FRCA does not apply to SSL data.
Examples using this table are:

Assume a 270 of Processor CPW rating 1070 (# 2432) with 100 percent of the processor rating is available for HTTP web servings. Assuming your application is
similar to the IFS, non-cached transaction tested, yo u multiply 1.92 times 1070 and get an estimated number of hits per second value of 2054 transactions (hits)
per second.
Assuming the same full processor rating of 1070 and same non-cached transaction, but with only 20% of the system available for web serving, you multiply 1.92
by 1070 by .20 to get 410 transactions per second.

Follow the performance tips in the Performance Capabilities Reference manual for optimal performance.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
9
2

© 2003 IBM Corporation

Benchmark iSeries Results Status Significance

VolanoMark
(Java)

1st Overall
283, 000
iSeries 890 32-way

Pubished
6/16/2002

Re-establishes iSeries as leading Java server. Denonstrates
scalability of i890 in Java - over twice the throughput of
iSeries 840 running V5R1

Intentia Movex
(Java)

1st Overall
2.38M trans/hr
iSeries 890 32-way
2X Improv

Pubished
6/16/2002

Demonstrates iSeries 890 transaction processing scalability
through dominance in this leading ISV Java application
benchmark. Once again, 2X improvement over iSeries 840
running V5R1

Notesbench-Mail 1st Overall
150,000 Users
iSeries 890 32-way

Published
8/29/2002

Puts iSeries back in the lead of this key industry benchmark,
besting previous best of breed by 40%. Demonstrates
leadership performance for the non-Intel marketshare leader,
iSeries.

SPECweb99
(e-Commerce)

1st Apache
 (3rd overall)
12,900 hits/sec
iSeries 890 16-way

Published
9/03/2002

1st time iSeries has ever appeared in this critical industry
benchmark, and in a leadership position as the only
Apache-based webserver in the list. Demonstrates
tremendous performance improvement in V5R2 web serving
capability and puts iSeries on the web serving map.

SPECweb99SSL
(secure e-Commerce)

1st Overall
3,600 hits/sec
iSeries 890 16-way

Published
9/03/2002

iSeries LEADS in this industry benchmark, asserting its
unparalleled SECURE ebusiness scalability. Results are
over two times better previous best of breed, and
demonstrate that iSeries is the best webserver for iSeries
customers to use.

2002 iSeries Benchmark Results

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
9
3

© 2003 IBM Corporation

Notes

The comment to be made is 'wow'. As we should expect the iSeries leads the way with fantastic performance.

Also, the other competitors in the SPECweb99 space are using not the Apache server, but other smaller Web servers that are maybe better
tuned to SPECweb99 than to actually serving real customer environment. This is why we make the point that the iSeries is tops in the
Apache server.

Other non-Apache servers that the competitors might use would be Zeus and TUX. Of course, IIS and Red Hat Content Accelerator would
also be seen in the charts.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
9
4

© 2003 IBM Corporation

FRCA

Web Server Performance

IFS
files

Web application

appl
cache

LOB
DB

Browser

Specific performance values
Local cache options

Copy into memory
Keep file descriptor open
Memory map of file

Global performance values
Time-outs
TCP buffers
Denial of Service

HostNameLookups
Logging
CGI settings

local
cache

HTTP Server (powered by Apache)

Local cache
Reverse proxy
cache

Triggered Cache Manager

MI

File

Network File Cache FRCA TCP/IPFRCA

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
9
5

© 2003 IBM Corporation

Notes
There are several things that affect your server’s performance. The HTTP Server (powered by Apache) include a set of internal components
that allow us to improve the Web server performance to process the client request in a fast and reliable way. Those server components can
be used with any type of data served by the HTTP server.
Using the HTTP Server (powered by Apache) we can improve the Web server performance at two different levels:

Using global parameters that allow us to configure the attributes used by all the HTTP servers in your iSeries server.
Using specific parameters based on the type of data the client is requesting. These specific parameters generally revolve around the concept
of a local cache, proxy cache, or the FRCA (Fast Response Cache Accelerator) used by the HTTP Server (powered by Apache).

In addition, using a Triggered Cache Manager (TCM) server can dramatically improve the performance of your Web application by being
proactive in creating dynamic web content and placing it in the iSeries Integrated File System (IFS) to be served at static document speeds.

Also, directly related to the performance of a Web server is its scalability. That is, your Web application’s ability to handle large volumes of
traffic. To this end the iSeries provides a set of APIs as seen in the part of “High Availability” .
The figure above shows the Web server components available to improve the performance using the HTTP Server (powered by Apache).
When the client sends the request, configured global performance values are used to optimize the work performed by the HTTP Server
(powered by Apache) Web server. The Web server then tries to process the request either using data cached in the local cache (memory) or
to serve the file from the IFS.
If the content is to be dynamically generated, control is passed to a Web application that can optionally access Line of Business (LOB)
databases to reactively create content.
Changes to the LOB database or other ‘triggering’ mechanism can cause the Web application to be proactive in the update of pages directly in
the iSeries IFS. In this way, even before the first client request arrives at the iSeries Server the content (a web page with dynamic data pulled
from the LOB database) can be generated and stored in the IFS as a ‘static’ document to be quickly served by the HTTP server.
Clearly, the sooner cached data can be used during client request the fewer resources and time that is needed for the entire end-to-end
transaction between client and server.

FRCA (Fast Response Cache Accelerator): is an IBM research cache based on a software architecture (AFPA) that dramatically improves
the capacity/performance of Web and other TCP servers. FRCA, in V5R2 (only), is used for the HTTP Server (powered by Apache) only. The
architecture includes a network file cache that serves non-secure static (via a local cache option) and dynamic (via reverse proxy) content
directly from beneath the MI. More on FRCA later in this presentation.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
9
6

© 2003 IBM Corporation

Global Performance Values

Threads and asynchronous I/O

Process control: HotBackup

Logging

HostNameLookups

KeepAliveTimeout

TCP buffer size

Denial of service

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
9
7

© 2003 IBM Corporation

Notes

Global parameters are the parameters that determine the behavior of the Web server in general. These parameters are checked each time
the server receives a client request. Some of these global parameters directly impact your Web server performance. Others are attributes of
the Web server itself.
Each time the Web server receives a client request the setting of these global configuration parameters can affect how the request is
processed.

Threads and asynchronous I/O
The HTTP Server (powered by Apache) has its own multi-process model. Each HTTP server starts two (or three) processes under
QHTTPSVR subsystem.

The manager process
The primary process
The backup process, when configured with the HotBackup directive.

Each child process maintains its own thread pool independently.
This setting is one of the most important attributes of the HTTP Server (powered by Apache). This setting allows you to specify how many
threads each child process is allowed to use. The default value is the same as the value for maximum number of threads found on the Global
Server Settings form. Directive: ThreadsPerChild.
You can set this parameter at the Global Server Setting to be the default value at start up for all your Web Servers (original and powered by
Apache). Then, you have the option of overriding this Global Server Setting for each HTTP Server (powered by Apache).
You can only configure the maximum number of threads the server opens at start up. The HTTP Server (powered by Apache) will always start
with the maximum number of configured threads. The HTTP Server (powered by Apache) implementation does not use the minimum thread
value.
When there are no available threads the Web server response time, from the client point of view, is impacted as the request takes longer
because the lack of available threads. Setting this number too low impacts the server performance as the client request can not be process
until the Web server finds an available thread. But setting the maximum number of threads too high in general requires more system
resources to keep those threads available for use. There is no optimum value for this setting.
With the HTTP Server (powered by Apache) implementation, the HTTP Server processes communications requests asynchronously. In this
asynchronous I/O model, threads are only involved in processing when there is work to be done. Threads are dispatched to perform work as
required and when not performing work, the threads are returned to a pool of available threads making the server process more efficient and
improving performance by better utilizing the thread resources. Asynchronous I/O also makes the server more scalable to support a high
number of users especially when combined with persistent connections. We recommend you keep the default value of on (or enabled).
Directive: AsyncIO.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
9
8

© 2003 IBM Corporation

Notes

Tip: Asynchronous I/O is one of many enhancements to the standard Apache server as delivered to IBM Rochester by the Apache Software
Foundation. This is just one of the many reasons that the parenthetical (powered by Apache) means integration.

Process control: HotBackup
The HotBackup directive is used to specify whether or not a hot backup server should be started at server startup time. With the hot backup
server active, if the primary server job abnormally terminates, the hot backup will immediately take over and act as the primary and continue
servicing requests. A new hot backup is automatically created, in the background, within one minute.
If the primary server process failure is not due to the network, all user connections remain active during the hot backup take over and the end
users do not detect the loss of server. However, some HTTP requests in transient may be lost. If the failure is due to the loss of network, the
server must be restarted. With HotBackup off, only one multi-threaded server child process is started.
This setting can be configured using Process Control in the admin GUI.

Tip: An example of a loss of network might be if one of two interfaces on the iSeries fail. The routes bound to the failing interface would cause
all the connections across that interface to also fail.
An elegant solution to this potential problem would be to configure a virtual IP address (or a circuitless connection) which is an IP interface that
is defined on the system without being associated with a physical hardware adapter. These addresses can always be active on the system. If,
for example, one of two physical interfaces fail then all network traffic can be re-routed through the active interface and the applications and
HTTP server will never know of the problem. For more information about using virtual IP addresses see V4 TCP/IP for AS/400: More Cool
Things Than Ever, SG24-5190.

Logging
Logging is another setting that impacts server performance. Logging here applies to the Error Log only.
Simply put, as you request a higher logging level, greater load is placed on the server to write more information in the log file. For example, if
the logging level is set to Debug and the Web server experiences a problem, messages written to the error log file will increase and the Web
server performance (may) decrease.
This parameter can be configure for every HTTP server and for each virtual context within the the HTTP server. If the HTTP server has a
different Error Log file for every virtual host context, you should consider that a file descriptor is opened for each log file. Opening too many
descriptors can impact system performance.
This setting can be configured using Error Logs in the admin GUI.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

1
9
9

© 2003 IBM Corporation

Notes

HostNameLookups
The HostNameLookups directive enables Domain Name System (DNS) lookups so the host names can be logged (and passed to
Common Gateway Interface (CGI) and Server Side Include (SSI) in the REMOTE_HOST environment variable). That is, it causes your HTTP
server to do a reverse lookup to convert an IP address into a host name and domain. This might make it easier to track the usage of your web
site (by geography, for example) or determine problems.
The default for this directive is off to save on the network traffic for those sites that do not truly need the reverse lookup. Heavily loaded sites
should leave this directive set to off, since DNS lookups can take considerable amounts of time and resource.
This setting can be configured using the HostNameLookups directive.

KeepAliveTimeout
This setting is used to control whether or not the Web server works with persistent connections. Persistent connections enables a single TCP
connection to be used for multiple HTTP requests. Normally, each HTTP request is made over a separate connection. Reusing a connection
reduces the overhead, thereby improving performance for that client. When the server runs with persistent connections, the
KeepAliveTimeout setting determines the number of seconds the server waits for subsequent requests before closing the connection. If this
value is too low, the server could be impacted in terms of performance as connections could be closed frequently. If this value is too high, the
Web server could have many connections open and the server could run out of resources. In this case the use of asynchronous I/O can
alleviate (but not eliminate) the problem of running out of resources.
This value applies to each client request. If the Web server you are working with is used in Internet, keep in mind that as this is a
communication setting, the value you select here could be correct for some environment but not for others. We recommend leave the default
value unless you have studied your environment and have reason to make a change. One might be if you know that persistent connections
are not supported all the way between the client and your server.
This setting can be configured using HTTP Connections in the admin GUI.

TCP buffer size
The TCP buffer size attribute provides a limit on the number of outgoing bytes that are buffered by TCP. Once this limit is reached, attempts to
send additional bytes may result in the application blocking until the number of outgoing buffered bytes drops below this limit causing a
negative impact in the Web server performance. The default value for this setting is zero, which means, the Web server uses the TCP value
configured in the iSeries server for the TCP send buffer size (TCPSNDBUF) parameter in the Change TCP/IP Attributes (CHGTCPA)
command. The default value for TCPSNDBUF is 102400.
This setting can be configured with the SendBufferSize directive or using Performance in the admin GUI.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
0
0

© 2003 IBM Corporation

Notes

Denial of service
The denial of service attribute is equally a performance setting as well as a security setting. This setting allow us to identify, based on the data
frame size, the possibility of an attack. The HTTP server may identify an attack because the frame size differs to the one it expects. Although
this setting impacts the server performance as each request is tracked, it allow you to prevent a more dangerous performance degradation
when dealing with a type of attack that may intentionally slow down or even completely paralyze your server. The HTTP Server (powered by
Apache) include the following attributes to prevent a denial of service attack:
Maximum message body size- Allows you to limit the size of an HTTP request message body within the context the directive is given
(server, per-directory, per-file or per-location). The default value is zero (0) which indicates there is no maximum size specified. Directive:
LimitRequestBody.
Maximum XML message body size- Allows you to limit the size of an XML-based request body. The default value is 1000000 bytes.
Directive: LimitXMLRequestBody.
Maximum header fields- Allows you to modify the limit on the number of request header fields allowed in an HTTP request. The default value
is 100. Directive: LimitRequestFields.
Maximum header field size- Allows you to limit the size for an HTTP request header field below the default size compiled with the server.
The default value is 8190. Directive: LimitRequestFieldSize.
Maximum HTTP request-line- Allows you to limit the size for a client's HTTP request-line below the default size compiled with the server.
The default value is 8190. Directives: LimitRequestLine.
The denial of service settings can be configured using Denial of Service in the admin GUI.

Tip: This built in protection against various denial of service attacks is one of the many integrated extensions to the standard Apache Web
server. Again, it is one of the reasons for the (powered by Apache) parenthetical in the HTTP Server (powered by Apache) formal name of the
server on the iSeries.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
0
1

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
0
2

© 2003 IBM Corporation

Specific Performance Values

Local cache

Triggered Cache Manager (TCM)

Fast Response Cache Accelerator (FRCA)

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
0
3

© 2003 IBM Corporation

Notes

Specific performance values are the settings that you can use to improve Web server performance based on the type of data the server is
going to serve.
From a lifetime point of view, all data is dynamic. It is just that some data is more dynamic than others.
To illustrate this point you might declare that your home page is static. After all, it is made up of just HTML, a bit of Java script and GIFs. But
even your home page will change from time-to-time. And when it does, you want it (and all the other popular places in your Web site) to be
cached for the best performance. All Web content is dynamic, in this sense.
But, to ease our understanding we do need to define content that is not changing all that often is considered static and that content that is
changing based upon database information and user input is considered dynamic.
In the end, however, the best way any Web server can improve its performance is by caching the content before it is requested. For this
purpose, the HTTP Server (powered by Apache) supports three caching mechanisms:

Local cache
Triggered Cache Manager (TCM)
Fast Response Cache Accelerator (FRCA)

Tip: The TCM is not a cache but a cache manager. In effect the TCM will help you to be proactive in the update of HTML Web pages that you
traditionally thought to be dynamic and place them where your HTTP Server (powered by Apache) will serve them from the IFS like static
content.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
0
4

© 2003 IBM Corporation

Local Cache

Local cache implementation
Define the memory size for the files to be cached

Define the cache method

Cache methods:
Copy into memory
Keep file descriptor open

Memory map of file

Directives for cache option
LiveLocalCache

Dynamically invalidate local cached files when they are updated in the IFS

DynamicCache

Dynamically add new files to the local cache

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
0
5

© 2003 IBM Corporation

Notes

The local cache is used to cache data in system memory that is more static in nature. Static, in this case, means the content is not changing
based on the user input or database information. In general, static content includes image files, HTML pages and so on. By keeping this data
loaded in the server’s memory, you can improve server response time for files because the server can handle the request far more quickly
than if it had to read from the file system. The HTTP Server (powered by Apache) allows you to configure which files will be pre-loaded in the
server’s memory at server start up and the amount of memory used for this purpose.
The local cache implementation is a two stage process:

1. You define the memory size for the files to be cached.
2. And then you define the cache method.

The local cache implementation uses one main storage space for all the local cache files, so the memory size you define is used for all the
cache files. This includes both the files that are cached at server start up time and any changed or new files cached due to dynamic caching .
The server directive to identify the memory size is CacheLocalSizeLimit.
The files can be cached at server startup using any of these three methods:

Copy into memory
Keep file descriptor open
Memory map of file

Copy into memory
The copy into memory method allow us to define the file or files that will be pre-load in the iSeries memory, in the memory pool used by the
HTTP server at Web server start up. The memory size can be setup according to your application requirements. There is no limit for the
memory size used to pre-load the files. The limitation relies on the iSeries memory capabilities.
The server directive used to cache files using this method is CacheLocalFile.
Keep file descriptor open
The keep the file descriptor open method allow us to define ASCII file or files whose descriptors are cached at server start up. Here, files are
not copied into memory (they do not allocate large amount of memory) and yet provide similar performance. Files cached with this method
remain open, shared read, while the server is active.
The server directive used to cache files using this method is CacheLocalFD.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
0
6

© 2003 IBM Corporation

Notes

Memory map of file
The memory map of file method is similar to the Copy into memory method, but the difference here is that this method uses a memory pointer
to specify files that should be cached at start up, which means that files are not copied into memory.
The server directive used to cache files using this method is CacheLocalFileMmap.

What to cache?
A very powerful pair of options gives your HTTP Server (powered by Apache) server the ability to:

Dynamically update the (static) files that were placed in the local cache at server start up time. The default value is on (or enabled)
This directive (LiveLocalCache) will check to see if the file has been updated in the Integrated File System (IFS) each time it is requested. If not,
the file is served from the cache. If it has, then the entry for this file in the local cache is marked invalid and the file is served from the IFS for all
subsequent requests. You would have to restart your server to cause it to be loaded back in the local cache.
If LiveLocalCache is off then your HTTP Server (powered by Apache) server will not check to see if the file has changed in the IFS.
Clearly, LiveLocalCache off gives you the best performance for your Web server at the expense of denying you the ability to update a

particular
 file. LiveLocalCache off would be very useful in a directory of all GIFs, for example, that rarely change.
Dynamically add new (static) files to the local cache based upon demand. The default value is off (or disabled).
This directive (DynamicCache) allows dynamic caching of (static) files. Because of the overhead involved in determining if a file being served
 should be added to the cache impacts all the files being served from your Web server - we would recommend using this directive for sites that
 generally have less than 1000 files.
Or, maybe to put this another way, is that if you have less than a 1000 static files to serve and you have not done an analysis as to which files

to
 populate your local cache at server start up time - then you may try DynamicCache on. But, it will always be better to identify all the files you
 want to add to the local cache at server start up time as this is far more efficient.
The dynamic cache will only add files to the local cache as long as there is still room as defined by the directive CacheLocalSizeLimit. If the

local
 cache is full no more files will be added to the cache.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
0
7

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
0
8

© 2003 IBM Corporation

Triggered Cache Manager (TCM)

TCM server

Application

Server A
Cache

HTTP

Cache update

Cache target:
HTTP-CGI
ECCP

Data source
IFS
HTTP Server

Client with
Web browser

Server B Server A

Cache target:
Local IFS

LOB
db

1

2

4

3

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
0
9

© 2003 IBM Corporation

Notes

The Triggered Cache Manager (TCM) is a component in the iSeries server that was created exactly for this purpose. This component is
packaged in the IBM HTTP Server for iSeries, 5722-DG1, option 1.
The TCM is a new TCP server. This server may be used in conjunction with web servers and web document caching agents to keep web
sites running at peak performance.

The Triggered Cache Manager:
Is a cache manager, not a cache or cache server.
Works based on trigger messages, which means you have to set up application triggers for the server to work.
Is a stand-alone server that can work with multiple types of caching mechanisms, for example caching routers, proxy caches, and so on. It is
useful in the environment we have described here for the HTTP Server (powered by Apache) but could be used for the HTTP Server (original)
or a Domino environment as well.

What TCM does is to be proactive (based upon updates to a LOB db) in the update of Web content that looks static to the Web server. The
TCM is most effective for a Web site that has a large number of requests for content that is somewhat constant, but changes frequently. An
example of this might be a Web site that serves an on-line catalog which contains price and inventory information.
One of IBM's first uses of the TCM concept was to drive the 1996 Summer Olympic Games Web site. Think of a ‘results page’ that is
composed of hundreds of dynamic items including names, times, scores, and so on for a particular event. If, for every request of that page,
the application server (Server B) had to re-run all the db queuries to dynamically calculate the content that would likely bog down the server
with many repetitive actions. On the other hand, if only when the application LOB data (see Figure 8-14) was updated with new results then
the application server would update a standard ‘results page’ to be served from a ‘static’ portion of your web site (Server A) - that would cause
a tremendous reduction in the burdon on the application server (Server B).

Important: In the figure, it should be noted that Server B and Server A can be the same iSeries server - if and only if the mechanism to update
the cache target used is the local IFS or CGI. That is, the iSeries server does not support being a cache target using the External Cache
Control Protocol (ECCP). The iSeries server also does not provide a CGI application to handle the cache update requests. You may, however,
create your own CGI application to handle cache update requests sent from the TCM.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
1
0

© 2003 IBM Corporation

Notes

Here are some components we should identify in the figure:
1.The Web server where the data is located. In our case an iSeries server.
2.The mechanism used to retrieve the data.
3.The server used to cache the data. Server A could be the same server as the iSeries Server B.
4.The mechanism used to update the cache data. Three are identified. Local IFS allows the TCM server running on your iSeries to directly

update files in the IFS. To update servers that are network connected to the TCM server you must use either HTTP with a special CGI
program or ECCP. ECCP is used to update web document caches on IBM model 2212 and 2216 network routers.

For example, the application running on Server B uses as the LOB db a table of items. This table includes the item code, item description and
item price. One of the most common request, is an HTML Web page that contains the entire item catalog.
As this information is accessed so frequently, we decide to proactively generate this document and copy it into the IFS on Server B.
When the item table in Server B is updated with a new item, either a database trigger or the application sends a trigger message to the TCM
server. The TCM server then identifies what content must be updated and updates the document as necessary.
Identifying the content that should be cached requires a good knowledge of the application. Because of the nature of some applications, for
example, a banking application, the information requested by each client is different and there might not be a reason to cache some data.

How TCM works
There are three basic steps involved before and during the TCM process:

1. Monitor for data changes.
2. Send a trigger message to the TCM server with the information about the data that was changed.
3. Allow TCM to request the dynamic page from the application server
4. Allow TCM to update the dynamic page content stored in the IFS or other cache targets.

The way TCM determines which pages need to be updated, is consulting an Object Dependency Graph (ODG). This ODG is a data repository
used to store dependency relationships for the pages the server handle. Thus, when the data changes, TCM find out what pages are
dependant on the changed data. Once all of the pages that are affected by the change are located, they are removed from cache and restored
with the newly updated content. This allow then, the dynamic update of the caching without any server restart.

There are multiple scenarios where you can use TCM. One for example could be an HTTP server with one TCM server, other could be
multiple HTTP servers with multiple TCM servers. Or any other combination between HTTP and TCM servers.

1
2
3
4

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
1
1

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
1
2

© 2003 IBM Corporation

Fast Response Cache Accelerator

A software architecture that dramatically improves capacity of
web servers

Adaptive Fast Path Architecture

Industry leading Web server performance
iSeries and pSeries currently leading SPECweb99 using FRCA
technology

Core technologies
In-memory Cache

Reverse split-connection proxy
Layer-7 (application level) router

Built in kernel (SLIC) for performance

Implemented across IBM platforms

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
1
3

© 2003 IBM Corporation

Notes

Implementations:
Windows 2000

First implementation of AFPA by IBM Watson Research
z/OS (OS/390)
AIX (pSeries)

world record in SPECweb99 benchmark (21,000 simultaneous connections)
Linux

Plan Open Source release
iSeries 400

V5R2 HTTP Server (powered by Apache) only

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
1
4

© 2003 IBM Corporation

Notes
Layer-4 versus Layer-7 Routing:

Layer Four Routing Layer Seven Routing
Layer: Transport (TCP) Application (HTTP)
Information: Source, destination HTTP headers (URL,
 IP address, TCP port method, "Host:", etc.)
Connection: One connection from Two connections, client-
 client to server router, router-server
Servers: All content, function Can partition content,
 on all servers function across servers
Advantages: Efficiency, routes all Flexibility, can separate
 applications (HTTP, static, dynamic content
 FTP, telnet, etc.)

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
1
5

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
1
6

© 2003 IBM Corporation

FRCA: Features

Two new components that work together
Fast Response Cache Accelerator (FRCA)

Provides system API set and framework for socket applications
Accelerates file serving performance for the HTTP server
The one V5R2 example is the HTTP Server (powered by Apache)

Network File Cache (NFC)
Provides SLIC level cache

Configurable by new FRCA directives in Apache server config
Can be enabled for each listen port

Local cache: Specify file name (with wild cards) for "static" content
caching

When content is updated NFC automatically uses new file

Reverse proxy cache: Specify URI for "dynamic" or remote content
caching

Timer used to determine when cached items are stale

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
1
7

© 2003 IBM Corporation

Notes
Responding to the growing need for improved speed and performance of Web servers, IBM research has defined the Adaptive Fast Path
Architecture (AFPA). AFPA has been implemented on several server platforms including Windows NT and Windows 2000, OS/390, AIX and
most recently Linux. The external product name is most commonly known as Fast Response Cache Accelerator (FRCA).

AFPA is a software architecture that dramatically improves the capacity of Web and other TCP servers. The architecture defines interfaces
that allow these generic mechanisms to be exploited to accelerate a variety of application protocols, with the focus on HTTP. The architecture
is general purpose and applicable to many TCP servers, including FTP, NFS, DNS and Domino.

For OS/400 V5R2, this architecture is impletented as the FRCA feature with the HTTP Server (powered by Apache).

Since, the iSeries TCP stack runs in a SLIC router task and not a software interrupt, the FRCA code also executes in a SLIC router task
context. The SLIC based implementation eliminates the overhead of switching from a SLIC router task to a user-level server thread. FRCA
provides system APIs that can be used by system applications, at this time, the HTTP Server (powered by Apache). HTTP Server (powered
by Apache) uses this APIs to work with SLIC FRCA code and Network File Cache (NFC) for serving contents.

The AFPA architecture includes a network file cache that serves non-secure static content. This architecture is implemented as the Network
File Cache (NFC) with FRCA feature for the HTTP Server (powered by Apache). NFC provides the capability to effiency store and retrieve
cached entries of file data and user data.

FRCA directives are provided to the HTTP Server (powered by Apache) that enables your HTTP server to use FRCA cache.
FRCA cache can be enabled for each listen port in the server configuration. This allows us to make choice if you use FRCA cache or not for
each Listen on a specific <IP address:port>.

Static content can be cached by specifying file name using certain directives. The loading to the cache occurs during starting up of the HTTP
server or the first access to that file, and this depends on which directive is used. You can use an asterisk (*) as a wild card character on the
file names. Then you can specify the directory name with the asterisk to make FRCA cache for some temporary files like the ones created by
TCM.

Dynamic content such as result of CGI or servlet can be cached by specifying URI of the request and cache life time. This is a reverse proxy
cache support that allows you to access an HTTP server either on this same iSeries or anywhere on your intranet or Internet.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
1
8

© 2003 IBM Corporation

Notes

Forward vs. Reverse Proxy Caches:

 Forward Proxy Cache Reverse Proxy Cache
Location: Close to clients Close to servers
Design: Optimized to cache Optimized to cache
 "entire Internet" specific web servers
Browser: Browser may be Reverse proxy is
 configd. to use proxy transparent
Scenario: ISP wants to reduceISP wants increase
 bandwidth required capacity of servers
 to support N clientshosting web sites
 browsing Internet

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
1
9

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
2
0

© 2003 IBM Corporation

FRCA: Local File Serving before FRCA

MI

TCP/IP

SLIC Sockets

Socket API

Apache

HTTP
request

open

Network Web
browser

response

File

IFS

send

read

copy close
or

1

2

3 4
5

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
2
1

© 2003 IBM Corporation

Notes

Now we will see how the FRCA works.

First of all, we will show you the "Normal" behavior of file serving performed by HTTP server without the influence of FRCA. At this time a local
cache may be used.

The processes are as follows:
1 An HTTP request is received by TCP and passed to the Apache Web Server using sockets interfaces.
2 The Apache Web Server parses the HTTP request and maps the URL to an IFS file and opens it.
3 The Apache Web Server reads the file to build the HTTP response and calls Sockets send() to send the HTTP response.
4 After sending all the data, the Apache Web Server closes the file.
5 When the file is found in the local cache, the action of open, read and close are eliminated from the steps and the copy of that file from the

cache is sent using Sockets send().

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
2
2

© 2003 IBM Corporation

FRCA: Local Cache Miss Scenario

MI

TCP/IP

FRCA

SLIC Sockets

Socket API

Apache

Network File Cache

File

HTTP
request

lookup
& fail

open

Network Web
browser

response

SLIC HTTP Server Code
Hash Table

Handle

File

FRCA SPI

IFS

FrcaLoadFile()send

read

close

1

2

6

5

3

4

7

copy
or

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
2
3

© 2003 IBM Corporation

Notes

Next, we will show you the behavior how the FRCA loads the file into the NFC when it misses the file in the NFC cache. That is, the cache
miss scenario.

The steps are as follows:
1 An HTTP request is received by TCP and passed to the FRCA.
2 The FRCA intercepts the HTTP request and passes it to the SLIC HTTP Server code.
3 The SLIC HTTP Server code parses the HTTP request and uses the URL as a search key into the HTTP logical cache (Hash table, one per

server instance).
4 When the HTTP logical cache lookup fails, the HTTP request is punted (redirected) to the Apache Web Server using normal sockets

interfaces.
5 The HTTP Server (powered by Apache) parses the HTTP request, maps the URL to an IFS file, builds the HTTP response from the IFS file

and calls Sockets send() to send the HTTP response. This is business as usual for the HTTP Server (powered by Apache).
6 After sending the HTTP response, the FrcaLoadFile() SPI is called to load the file in the NFC. Note, the Apache Server ensures that only

files with public access are loaded. Parameters supplied on the FrcaLoadFile call include, file descriptor (file must be open), URL search key and
HTTP header information. The FrcaLoadFile is passed through the control pipe to the FRCA code.
7 The FRCA calls NFC to load a single copy of the file in the Network File Cache. A NFC handle returned by NFC, the URL search key and

HTTP header information is passed to the SLIC HTTP Server code and added to the HTTP logical cache. Note, only a NFC handle is cached by
the SLIC HTTP Server, and not the entire file data; a single copy of the file is managed by NFC.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
2
4

© 2003 IBM Corporation

FRCA: Local Cache Hit Scenario

MI

TCP/IP

FRCA

SLIC Sockets

Socket API

Apache

Network File Cache

File

HTTP
request

lookup
& hit!

locate

send

Network Web
browser

response

SLIC HTTP Server Code
Hash Table

Handle

File

FRCA SPI

IFS

FrcaLoadFile()

6
5

2 3
4

1

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
2
5

© 2003 IBM Corporation

Notes

The figure above shows the scenario when the file is found in the FRCA cache. That is, the cache hit scenario.

The steps from request through response are as follows.
1 An HTTP request received by TCP and passed to the FRCA.
2 The FRCA intercepts the HTTP request and passes it to the SLIC HTTP Server code.
3 The SLIC HTTP Server code parses the HTTP request and uses the URL as a search key into the HTTP logical cache (Hash table).
4 When the HTTP logical cache lookup is successful, Network File Cache (NFC) is called to locate the file data using the NFC handle found

in the hash table.
5 NFC finds the file using the handle, and returns it to the SLIC HTTP Server code.
6 The SLIC HTTP Server code builds the HTTP response header and links the file data to it, and sends it as a response through TCP/IP.

The above path can result in a sizable performance (of a single transacation) and capacity (allowing more transactions per unit time)
improvement due to:

Never having to go above the MI. This results in:
No task switches to the threaded job model above the MI
Could (depending on a variety of things) save 2 copies of the data. FRCA will not copy the data it finds in the NFC. FRCA will directly send the data to the TCP/IP
stack in the iSeries SLIC.

Code path length should be shorter which will result in CPU utilization for cache hits to be lower.

Details from the V5R2 Performance Capabilities Reference are coming up later in this section.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
2
6

© 2003 IBM Corporation

FRCA: Content Scenario

MI

TCP/IP

FRCA

SLIC Sockets

Socket API

Apache

Network Proxy Cache

Proxy
Cache

HTTP
request

URI
IS NOT
Config'd

Network Web
browser

response

SLIC HTTP Server Code
Hash Table

Handle

send

1

3
5

2

4

CGI/WAS
Process

CGI/WAS
Plugin

5

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
2
7

© 2003 IBM Corporation

Notes

The figure above shows the a general dynamic content scenario. That is, when the HTTP Server (powered by Apache) needs to get some
dynamic content from some content server. This is the basis for FRCA's reverse proxy caching.

The steps from request through response are as follows.
1 An HTTP request is received by TCP and passed to the FRCA. FRCA sees that the incoming URI is not configured for reverse proxy

cache.
2 When the HTTP logical cache lookup fails, the HTTP request is punted (redirected) to the Apache Web Server using normal sockets

interfaces.
3 The HTTP Server (powered by Apache) parses the HTTP request and evokes the configured plug-in. This is business as usual for the

HTTP Server (powered by Apache).
4 The dynamic content server is called.
5 The dynamic content server returns the content that is sent back to the browser.

Note: You will notice that the NFC has been replaced in the graphics associated with FRCA reverse proxy caching with a new term Network
Proxy Cache. Our current understanding is that the SLIC HTTP Server Code, to improve performance even more, decided not to use the
NFC to store the content from the Origin Server - but its own space we are calling the Network Proxy Cache. In the end, maybe it is not so
important of a detail. But, we just wanted to be accurate.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
2
8

© 2003 IBM Corporation

FRCA: Reverse Proxy Miss Scenario

MI

TCP/IP

FRCA

SLIC Sockets

Socket API

Apache

Network Proxy Cache
Proxy
Cache

HTTP
request

lookup &
miss!

send

Network Web
browser

response

SLIC HTTP Server Code
Hash Table

Handle

CGI/WAS
Process

6
52

3

4

1

CGI/WAS
Plug in

Origin
Server

http://server/

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
2
9

© 2003 IBM Corporation

Notes

The figure above shows the FRCA reverse proxy miss scenario. That is, when FRCA recognizes that content for an incoming URI should be
cached in the NFC but is not.

The steps from request through response are as follows.
1 An HTTP request is received by TCP and passed to the FRCA.
2 FRCA sees that the incoming URI is configured for reverse proxy cache.
3 FRCA uses the URI as part of the handle to see if this dynamic content has been cached in the NFC. It has not (miss!).
4 As part of the configuration of the FRCA reverse proxy caching a new HTTP request is sent to the configured URL (for this URI). This

dynamic content server (called an Orgin Server) is contact via TCP/IP. This Origin Server could be located on the same iSeries server or
anyplace connected via TCP/IP.
5 The Origin Server returns the content.
6 FRCA caches the content and updates the Hash Table (for the next time). The content is sent back to the web browser.

Note: You will notice that the NFC has been replaced in the graphics associated with FRCA reverse proxy caching with a new term Network
Proxy Cache. Our current understanding is that the SLIC HTTP Server Code, to improve performance even more, decided not to use the
NFC to store the content from the Origin Server - but its own space we are calling the Network Proxy Cache. In the end, maybe it is not so
important of a detail. But, we just wanted to be accurate.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
3
0

© 2003 IBM Corporation

FRCA: Reverse Proxy Hit Scenario

MI

TCP/IP

FRCA

SLIC Sockets

Socket API

Apache

Network Proxy Cache
Proxy
Cache

HTTP
request

lookup &
hit!

send

Network Web
browser

response

SLIC HTTP Server Code
Hash Table

Handle

CGI/WAS
Process

5
2

3

4

1

CGI/WAS
Plug in

Origin
Server

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
3
1

© 2003 IBM Corporation

Notes

The figure above shows the FRCA reverse proxy hit scenario.

The steps from request through response are as follows.
1 An HTTP request is received by TCP and passed to the FRCA.
2 FRCA sees that the incoming URI is configured for reverse proxy cache.
3 FRCA uses the URI as part of the handle to see if this dynamic content has been cached in the NFC. It has (hit!).
4 FRCA reads the content in the NFC.
5 FRCA sends the content back to the web browser.

Note: You will notice that the NFC has been replaced in the graphics associated with FRCA reverse proxy caching with a new term Network
Proxy Cache. Our current understanding is that the SLIC HTTP Server Code, to improve performance even more, decided not to use the
NFC to store the content from the Origin Server - but its own space we are calling the Network Proxy Cache. In the end, maybe it is not so
important of a detail. But, we just wanted to be accurate.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
3
2

© 2003 IBM Corporation

FRCA: Limitations

No SSL/TLS supported for the FRCA enabled sessions/ports

No authentication protection for the file in FRCA (NFC)
Contents should be for public access under FRCA

No NLS code page conversion performed
IFS files are read in binary and loaded into the NFC cache as is

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
3
3

© 2003 IBM Corporation

Notes

FRCA does not support SSL and/or TLS, therefore you cannot enable FRCA cache for the sessions or ports with SSL/TLS. The reason is
because SSL and TLS works above MI while FRCA works below MI.

Since you can enable FRCA cache for each listen port, the ports with SSL and without SSL can coexist in the same server and can access
them as a different server using virtual host.

Once the file loaded into the NFC, it can be accessed by any users accessing files in the same server instance. Entries in the NFC are keyed
by instance so there is some protection between server instances that happen to be serving the same file (the file will actually be placed in the
NFC twice in this case). This is because authorization check is also performed above MI. When a request for the file that is already in the NFC
comes, the file will be served without authorization check since FRCA has no way to do it. For this reason, you should enable the FRCA
cache only for the contents that can be public.

Similarly, since the code conversion is also performed above MI, code conversion is not supported. IFS files are read in binary and loaded into
the cache as is. Generally, we don't need any code conversion for the files in the IFS to be served by the HTTP server. So this limitation
should have no impacts. Even if you have the same contents in different language, they must be in different files, or if they have the same
name, they must be in different directory. So, each file can be cached and served independently.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
3
4

© 2003 IBM Corporation

Notes
The presents of any of the following headers in an HTTP request will force FRCA to pass the request directly to Apache without checking the
cache:

authorization
allow
cache-control
content-base
content-encoding
content-language
content-location
content-md5
content-range
date
etag
expires
if-match
if-none-match
if-range
last-modified
max-forwards
proxy-authorization
public
protocol-request
range
retryafter
transfer-encoding
upgrade
vary
wwwauthenticate
warning

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
3
5

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
3
6

© 2003 IBM Corporation

FRCA: Configuration: Enablement

FRCA cache can be enabled for each separate Listen
Listen [IP address:]port-number <optional parameter>

The <optional parameter> is "FRCA" and is used to enable FRCA cache
Examples:
Listen 10.5.5.5:80 FRCA
Listen 10.5.5.5:443

Two directives to turn on/off other FRCA directives
To give you the ability to turn off FRCA without having to comment out
numerous local cache or reverve proxy cache directives.

Local cache:
FRCAEnableFileCache On/Off
Enables/disables FRCA local cache for this server instance (server context)

Reverse proxy cache:
FRCAEnableProxy On/Off
Enables/disables FRCA reverse proxy cache for this server instance (server
context) and VirtualHost context

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
3
7

© 2003 IBM Corporation

Notes

Directive to enable configuration and use of a specific IPaddr: port for FRCA

iSeries Apache Directive Description Syntax Default Context
Listen To enable or disable using of the FRCA caching

support for this IP Address:port
Listen
IPaddr:port
FRCA

off (FRCA
parameter
is blank)

Server Config

You can use this option on the Listen directive to enable or disable using of the FRCA caching support for this IP address and port. This
directive can be used only in server config context.
Example:

Listen 10.5.5.5:80 FRCA
Listen 10.5.5.5:443

This example enables use of FRCA cache for this server instance on port 80. Any request that comes in for port 443 (assume that port 443 is
SSL/TLS traffic) is not cached by FRCA.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
3
8

© 2003 IBM Corporation

Notes

Two directives to turn on/off other FRCA directives
To give you the ability to turn off FRCA without having to comment out numerous local cache or reverve proxy cache directives you can use
these two 'switch' like directives.

The local cache 'switch' FRCAEnableFileCache On/Off works only within the Server Context and will enable or disable FRCA local
caching for the entire server instance. That is, If FRCAEnableFileCache is off, all other FRCA file cache related directives in the configuration
file are ignored.

The default is off, so if you will be using FRCA local cache you should explicitly turn this feature on with the directive
FRCAEnableFileCache on

iSeries Apache Directive Description Syntax Default Context
FRCAEnableFileCache To enable or disable using of the FRCA local caching

support for this server instance.
 on/off off Server Config

FRCAEnableProxy To enable or disable using of the FRCA reverse proxy
caching support for this server instance or VirtualHost
context.

 on/off off Server Config,
VirtualHost

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
3
9

© 2003 IBM Corporation

Notes

The reverse proxy cache 'switch' FRCAEnableProxy On/Off works within the Server Context and any VirtualHost contexts and will
enable or disable FRCA reverse proxy caching. That is, If FRCAEnableProxy is off, all other FRCA reverse proxy cache related directives in
the configuration file are ignored (within the context - see the notes below for an explaination of this).

The default is off, so if you will be using FRCA reverse proxy cache you should explicitly turn this feature on with the directive
FRCAEnableProxy on

Example 1: FRCAEnableProxy on
This example enables use of FRCA proxy for the server config section for the server instance.

Example 2:
<virtualhost 1.2.3.4>
FRCAEnableProxy on
</virtualhost>
This example enables use of FRCA proxy for the virtual host 1.2.3.4 section for the server instance.

Notes:
Virtual host do not inherit the FRCAEnableProxy setting from the server config.
If FRCAEnableProxy is set to off in the server config section, only FRCA directives in server config section are ignored.
If FRCAEnableProxy is set to off in a virtual host section, only FRCA directives in that virtual host section are ignored.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
4
0

© 2003 IBM Corporation

FRCA: Configuration: Local Cache

Limiting the size of the Local Cache and files
FRCACacheLocalSizeLimit nnn

Use this directive to specify the maximum amount of storage, in Kilobytes,
that you want to allow for FRCA local caching for this server instance.

FRCACacheLocalFileSizeLimit nnn
Use this directive to specify the maximum file size, in bytes, that you want to
allow for file caching.

Defining when and what files are to be cached in the NFC
FRCACacheLocalFileStartUp ../dir/*.gif

Specify file name (wild cards) to be loaded into NFC during intance startup
Multiple FRCACacheLocalFileStartUp directives can be specified
Does not operate recursively through sub-directories

FRCACacheLocalFileRunTime /dir*
Similar to FRCACacheLocalFileStartUp but now the file(s) will not be cached
in the NFC until after the first time they are requested

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
4
1

© 2003 IBM Corporation

Notes

Limiting the size of the Local Cache and files
Both of these directives can be used to control the size and the number of files that are placed in the NFC by the FRCA local cache.

FRCACacheLocalSizeLimit nnn
Use this directive to specify the maximum amount of storage, in Kilobytes, that you want to allow for FRCA local caching for this server
instance. Example:
FRCACacheLocalSizeLimit 5000
This example caches as many files while the accumulated size is less than 5 million bytes.

Notes:
The value specified here it the upper limit, the actual amount of storage allocated will be the accumulated size of the files that are cached.
FRCACacheLocalSizeLimit can help limit your cache size when you are using wild card character to specify the files on the
FRCACacheLocalFileStartUp or the FRCACacheLocalFileRunTime directives.
If the specified size for this directive is greater than the amount of storage available in the Network File Cache (NFC), then only as many files
will be cached that the NFC has space for. More information about the NFC is coming up in this presentation.

FRCACacheLocalFileSizeLimit nnn
Use this directive to specify the maximum file size, in bytes, that you want to allow for file caching.

Note:
FRCACacheLocalFileSizeLimit can help to use the cache storage for a greater number of smaller files when you are using the wild card
character to specify the files on the FRCACacheLocalFileStartUp or the FRCACacheLocalFileRunTime directives.

iSeries Apache Directive Description Syntax Default Context
FRCACacheLocalSizeLimit Maximum storage (in kilobytes) used per server

instance for caching FRCA Local Cache.
nnn Kbytes 2000 (2

Mbytes)
Server Config

FRCACacheLocalFileSizeLimit Maximum file size (in bytes) which will be cached nnn bytes 92160
(bytes)

Server Config

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
4
2

© 2003 IBM Corporation

Notes

Defining when and what files are to be cached in the NFC

FRCACacheLocalFileStartUp
Example 1: FRCACacheLocalFileStartUp /www/html/index.html

This example caches a specific file
Example 2: FRCACacheLocalFileStartUp /www/images/*.gif

This example caches all .gif files in the /www/images directory.

Notes:
Use this directive to specify the name of a file that you want to load into the NFC each time you start the server instance. You can
have multiple occurrences of this directive in the configuration file.
You can use an asterisk (*) as a wild card character on the file names. File name matching is not recursive through sub directories.
The server will only cache files in the specified directory. No files in sub directories are affected.
If directory name begins with / then it is absolute, otherwise it is relative to the server document root
For caching files at the server start up, only specify the path name of the files that are intended for public viewing. That is, do not
specify/configure file names containing sensitive information which is not intended for general users. Files cached in the NFC are
served without performing any authentication or authorization checking

FRCACacheLocalFileRunTime
Similar to FRCACacheLocalFileStartUp but now the file(s) will not be cached in the NFC until after the first time they are requested.

iSeries Apache Directive Description Syntax Default Context
FRCACacheLocalFileStartUp Path name of one or more files to cache at server

start up.
path/file None Server Config

FRCACacheLocalFileRunTime Directory name to dynamically cache files from
during server run time based on file usage.

path/file None Server Config

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
4
3

© 2003 IBM Corporation

Notes

Note: After server start up, the first request always goes up to Apache. This is how FRCA key (URL) and the file name is correlated. You
really need to get a -vv trace of Apache to see how it took two requests. The distinction between FrcaCacheLocalFileStartup and ...Runtime
is when the file is actually loaded in the NFC. However, in both cases the first request is always served by Apache and the subsequent ones
by FRCA, if it is cached. In -vv trace you should see the first GET has a FRCA header added to the request representing the KEY.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
4
4

© 2003 IBM Corporation

FRCA: Configuration: Reverse Proxy

Directive for FRCA reverse proxy caching
FRCAProxyPass /URIpath URL

Specify the URI part of the dynamic HTTP request to be cached
Can specify the URL (protocol:host:port:URI) that serves the request

could be on the same iSeries or any other TCP/IP connected system

Controlling Expiry and Refresh intervals
FRCAProxyCacheExpiryLimit nnn

Set the HTTP expire header to this value (see notes)

FRCAProxyCacheRefreshInterval <path> <time>
Defines how long the cached item is kept in the cache before becoming stale

Limiting the size of the Reverse Proxy Cache and files
FRCAProxyCacheSizeLimit nnn

Specify maximum storage for reverse proxy caching in this server instance.

FRCAProxyCacheEntitySizeLimit nnn
Specify maximum reverse proxy reponse entity size that will be cached

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
4
5

© 2003 IBM Corporation

Notes
Directive for FRCA reverse proxy caching

Example:
Suppose the local server has address http://some.org/, then

FRCAProxyPass /mirror/foo/ http://foo.com/
will cause a local request for the http://some.org/mirror/foo/bar to be converted into a proxy request to http://foo.com/bar.

Once the entity is cached, the subsequent requests for the same entity will be served from the cache until the cache entity becomes stale.
Any subsequent request that is not served from the cache will result in a new dynamic content to be cached. In order that multiple
simultaneous requests with the same URI do not result in generating the same dynamic content multiple times, the FRCA HTTP server will
provide a queuing mechanism to allow the first of multiple requests to build the cache while the others will be kept in the waiting queue. You
can have multiple occurrences of this directive in the configuration file.

Notes:
The URI part of the dynamic HTTP request(s) that you want to be cached is a required parameter. Note: A URL is made up of the protocol, a
resource location (host:port) and resource id (path and object). URI is the resource ID part of the URL.
This directive allows remote servers to be mapped into the space of the local server; the local server does not act as a proxy in the
conventional sense, but appears to be a mirror of the remote server.
FRCA Reverse Proxy does not perform authentication or authorization checking. Therefore, do not specify/configure paths or URLs that
would result in responses with sensitive informaion which is not intended for public viewing.
Can specify the host name and port number that serves the request. The URL could be on the same iSeries or any other connected (via
intranet or Internet) system.
If FRCAProxyPass is specified multiple times with URIs values ranging from general to more specific, then only the FRCAProxyPass directive
with the most specific URI value is used.
The value specified for the first parameter may be a static content URI, however from the SLIC HTTP server point of view it is considered
dynamic since it has no way of knowing how the response is generated.
FRCAProxyPass should only be used to specify URI for dynamically created content that is intended for public viewing. That is, do not specify
URIs that results in dynamic generation of sensitive information which is not intended for general users.

iSeries Apache Directive Description Syntax Default Context
FRCAProxyPass This directive allows remote servers to be mapped

into the space of the local server
<URI path>
<URL>

None Server,
VirtualHost

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
4
6

© 2003 IBM Corporation

Notes
Controlling Expiry and Refresh intervals

FRCAProxyCacheExpiryLimit
Example:
FRCAProxyCacheExpiryLimit 3600

Note:
Expiry time for FRCA reverse proxy cacheable HTTP documents will be set to at most nnn number of seconds into the future. FRCA reverse
proxy cacheable HTTP documents can be at most nnn seconds out of date. If the expire header is present with the document in the response,
then the lower of the two values is used.

FRCAProxyCacheRefreshInterval
<path> is the uri part of the request.
<time> is number of seconds.

Examples:
Suppose the requested URL is http://some.org/mirror/foo/bar then

FRCAProxyCacheRefreshInterval /mirror/foo/bar 30
will refresh any proxy cache entity having URI /mirror/foo/bar every 30 seconds.

FRCAProxyCacheRefreshInterval /mirror/foo/* 30
will refresh any proxy cache entity starting with URI /mirror/foo/ every 30 seconds.

Note: If the second parameter, time to live, is zero, the request will be proxied but the response content will not be cached

iSeries Apache Directive Description Syntax Default Context
FRCAProxyCacheExpiryLimit Expiry time for FRCA proxy cacheable http

documents will be set to at most nnn number of
seconds into the future.

nnn 862000
(about 10
days)

Server,
VirtualHost

FRCAProxyCacheRefreshInterval The time period (in seconds) to use each FRCA proxy
cached entity, for the specified path, before being
re-cached.

<path>
<time>

none Server,
VirtualHost

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
4
7

© 2003 IBM Corporation

Notes

Limiting the size of the Reverse Proxy Cache and files

FRCAProxyCacheSizeLimit
Use this directive to specify the maximum amount of storage, in Kilobytes, that you want to allow for FRCA reverse proxy caching for this
server instance.
Example:

 FRCAProxyCacheSizeLimit 5000
This example caches as many reverse proxy response entities while the accumulated size is less than 5 million bytes.

Notes:
The value specified here it the upper limit, the actual amount of storage allocated will be the accumulated size of the proxy entities that are
cached.
FRCAProxyCacheSizeLimit can help limit your FRCA reverse proxy cache size.
If the specified size for this directive is greater than the amount of storage available in the Network File Cache (NFC), then only as many files
will be cached that the NFC has space for. More information about the NFC is coming up in this presentation.

FRCAProxyCacheEntitySizeLimit
Use this directive to specify the maximum proxy reponse entity size, in bytes, that you want to allow for FRCA to cache.
note: FRCAProxyCacheEntitySizeLimit can help to use the FRCA cache storage for more number of average size proxy responses.
Example:

FRCAProxyCacheEntitySizeLimit 8000
This example allows only caching of the proxy reponses that are equal or less than 8000 bytes in size.

iSeries Apache Directive Description Syntax Default Context
FRCAProxyCacheSizeLimit Specify maximum storage, in kilobytes, for reverse

proxy caching in this server instance.
nnn
(Kbytes)

2000
(2 Mbytes)

Server

FRCAProxyCacheEntitySizeLimit Specify maximum reverse proxy reponse entity size,
in bytes, that will be cached.

nnn (bytes) 92160
(bytes)

Server

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
4
8

© 2003 IBM Corporation

FRCA: Configuration: Miscellaneous

Controlling internal behavior:
FRCACustomLog

FRCA can define custom log formats much like the HTTP server
Default is the 'normal' log style

FRCAMaxCommTime
max time before sending internal logs and performance data to HTTP server

FRCAMaxCommBufferSize
Sets the communication buffer size in FRCA for performance

Controlling Specific 'uber'-dynamic Content Scenarios
FRCACookieAware

Include the client cookie as part of the hash table key to the NFC

FRCAEndofURLMarker
Used to cut off the client specific parameters from the URI

FRCARandomizeResponse
Used to dynamically serve random files to the remote clients

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
4
9

© 2003 IBM Corporation

Notes

Controlling internal behavior:
FRCACustomLog file-or-pipe format-or-nickname [env=[!]environment-variable]
The FRCACustomLog directive is used to log FRCA requests to the server. A log format is specified, and the logging can optionally be made
conditional on request characteristics using environment variables.

The first argument is the filename to which log records should be written. It is either a full path or relative to the current server root. If a pipe is
specified, it would be the name of a program that would receive the log file information on standard in. A pipe is specified by using the pipe
character "|" followed by a path to the program name (no space between them). The program name can be either a path to a QSYS program
object or an IFS path to a symbolic link. The symbolic link would then link to a QSYS program. Note that data written to the pipe from the
server will be in the FSCCSID that is in use by the server.

The second argument can be either a format argument or a nickname. If it is a format, it specifies a format for each line of the log file. The
options available for the format are exactly the same as for the argument of the LogFormat directive. If the format includes any spaces (which
it will do in almost all cases) they should be enclosed in double quotes. If the argument is a nickname, that nickname will tie back to a
LogFormat directive with the same nickname specified.

The third argument is optional and allows the decision on whether or not to log a particular request to be based on the presence or absence of
a particular variable in the server environment. If the specified environment variable is set for the request (or is not set, in the case of a
'env=!name' clause), then the request will be logged.

Note: One thing that should be mentioned is that FRCA will collect logging data down in SLIC based upon FRCAMaxCommTime and
FRCAMaxCommBufferSize. When it does send the data to the HTTP server (above the MI) this data comes as a 'chunk'. The log files
entries could be out-of order and might be more difficult to read. All the log data will be there - just not in the same order as it was received.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
5
0

© 2003 IBM Corporation

Notes

FRCAMaxCommTime
Example:

FRCAMaxCommTime 240

Sets the maximum number of seconds to wait before the data buffer is sent from FRCA to Apache. The data being sent to Apache consists
of log data, message data, and collection services data. Once the time limit has been reached, the data will be transmitted to Apache for
processing.

FRCAMaxCommBufferSize
Example:

FRCAMaxCommBufferSize 4000000

Sets the communication buffer size (in bytes) in FRCA for performance. The data being sent to Apache consists of log data, message data,
and collection services data. FRCA will buffer the size of data specified until the buffer is full. Once the buffer is full, the data will be
transmitted to Apache for processing.

Controlling Specific 'uber'-dynamic Content Scenarios
FRCACookieAware
Example:

FRCACookieAware /some_path_segment

This FRCA directive indicates URL prefix for which the cookie should be included in cache lookup.
This directive makes it possible to serve a cached entity only for the requests with the same cookie. This will allow content that is intended for
specific individuals to be cached separately.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
5
1

© 2003 IBM Corporation

Notes
FRCAEndofURLMarker
Example:

FRCAEndofURLMarker ###"
FRCA support can identify the end of the original URL (link) before it was modified/padded by the client.

Specify the unique string that identifies the end of URLs. Suppose a link in an HTML page is:

"http://some.org/some_path/some_parms###." Before client send this request to the server it may pad the URL with some data such as:
"client_padded_data." So the some.org server will receive the path "/some_path/some_parms###client_padded_data"

By specifying the folllowing directive:
"FRCAEndofURLMarker ###"

FRCA support can identify the end of the original URL (link) before it was modified/padded by the client.

FRCARandomizeResponse <pathi> <string> <nnn> <mmm>
<path> - valid paths in the form of: "/some_path_segment/some_partial_file_nameNNN.ext" where: "NNN" marker will be replaced with a
randomly generated number by FRCA before serving the response.
<string> - The replacement string marker ("NNN") in the path.
<nnn> - lower bound of random numbers (int)
<mmm> - upper bound of random numbers (int)

Examples:
FRCARandomizeResponse /some_path/fileNNN.html NNN 1 1000
FRCARandomizeResponse /some_path/fileXXX.html XXX 200 300

Specify the path template, the replacement string marker, and the random number range that you would like FRCA to use to randomly select
and serve files of that template.

For example, if you have 1000 "advertising" files with names: file1.html through file1000.html in your server document root, then by
configuring: "FRCARandomizeResponse /document_root_alias_path/fileNNN.html NNN 1 1000" and then requesting the URL:
http://some_host:port/dirpath/fileNNN.html, FRCA will randomly select and serve one of the 1000 files.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
5
2

© 2003 IBM Corporation

Network File Cache: Configuration

IPL
The initialization of NFC occurs during IPL.

Changes (via CHGTCPA) happen immediately

Configuration values in CHGTCPA command:
Enablement

Cached file timeout
Cache size

V5R2 defaults

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
5
3

© 2003 IBM Corporation

Notes

IPL
The initialization of the Network File Cache component will occur during the IPL when the other file servers are initialized.

Configuration values in Change TCP/IP Attributes (CHGTCPA)
Enablement

Specifies whether the Network File Cache (NFC) function will be enabled on this system.The default value is *YES.
When you specify *CLEAR for this parameter, it immediately clear the entire Network File Cache. After the cache is cleared, the
previous Network File Cache values will be retained.

Cached file timeout
Specifies the maximum amount of time, in seconds, that a file can be cached in the Network File Cache. This ensures that a file is
refreshed at a regular interval. A value of *NOMAX is available.
A cache time can be specified when NFC is not enabled.

Cache size
Specifies the maximum amount of storage that may be used by the NFC for the entire system. This is the accumulative storage used
by all TCP servers for loading files.
A cache size can be specified when NFC is not enabled.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
5
4

© 2003 IBM Corporation

FRCA: Configuration Examples

NFC Web
Application
Server

Servlet

DB

as21.itsoroch.ibm.com

DB

xxx.html
xxx.html

xxx.html

results

xxx.gif

results

3 4

5

as20.itsoroch.ibm.com IP address: 10.5.92.14 port: 8080 1

...
2 Listen 10.5.92.14:8080 FRCA
...
5 FRCAEnableFileCache On
...
11 FRCACacheLocalFileStartup /ITSO/itso99/ITSOco/Downloads/*.html
12 FRCACacheLocalFileRuntime /ITSO/itso99/ITSOco/People/*
...
15 FRCAEnableProxy On
16 FRCAProxyPass /servlet/ http://10.5.92.14:8080/servlet/
17 FRCAProxyCacheRefreshInterval /servlet/ 300
...
20 FRCAProxyPass /cgi-bin/ http://as21.itsoroch.ibm.com:9999/cgi-bin/
21 FRCAProxyCacheRefreshInterval /cgi-bin/ 180

1

4

5

3
2

2

Configuration file
HTTP server: ITSO99

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
5
5

© 2003 IBM Corporation

Notes

Here are descriptions of this example.

Listen 10.5.92.14:8080 FRCA
Specifying Listen directive with the parameter "FRCA" enables FRCA cache for this port.
FRCAEnableFileCache On
This directive enables FRCA cache for this server instance ITSO99. The other directives for specific settings of FRCA all depends on this
directive is on or off.
FRCACacheLocalFileStartUp /ITSO/itso99/ITSOco/Downloads/*.html
By specifying this directive, the files that have .html extention in the directory /ITSO/itso99/ITSOco /Download are all cached when you start the
server ITSO99.
FRCACacheLocalFileRunTime /ITSO/itso99/ITSOco/People/*
This directive makes all files in the directory /ITSO/itso99/ITSOco/People available to be cached when they are accessed.
In this example, the files in the subdirectory Employees are not cached because file name matching is not recursive.
FRCAEnableProxy On
This directive enables FRCA proxy.
FRCAProxyPass /servlet/ http://10.5.92.14:8080/servlet/
In this example, specifying /servlet in URI causes to run a servlet on the application server. By specifying the directive FRCAProxyPass like
this example, the result of the servlet can be cached in the NFC for certain period, that is specified by the directive
frcaproxycacherefreshinterval.
Note: In this directive of the example, the target URL has the same IP address and port as the ones this server listens.
In this case, FRCA should understand that this URL is of the same server, and passes the request to the correct route without any looping
problem.

FRCAProxyCacheRefreshInterval /servlet/ 300
As described above, this directive specifies the interval of refreshing cached data of FRCA proxy.
FRCAProxyPass /cgi-bin/ http://as21.itsoroch.ibm.com:9999 /cgi-bin/
By specifying this directive, the request for CGI program is rerouted to the target host as21.itsoroch.ibm.com:9999, that is different iSeries, and
the result is cached in the NFC in the source system.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
5
6

© 2003 IBM Corporation

Notes

Listen 3355
Listen 4455 FRCA
#*** frca local cache
frcaenablefilecache on
frcacachelocalsizelimit 4000
frcacachelocalfilesizelimit 10000
frcacachelocalfilestartup /tpcw/frcas*
frcacachelocalfileruntime /tpcw/frcar*
#*** frca proxy
#frcaenableproxy on
#frcaproxycachesizelimit 5000
#frcaproxycacheentitysizelimit 20000
#frcaproxypass /frca_proxg/ http://lpar147m:6655/
#frcaproxycacherefreshinterval /frca_proxg/ 120
#*** frca advance
#frcaendofurlmarker zzzz
#frcarandomizeresponse /frca_proxy/randomNNN NNN 1 100
#frcacookieaware /frca_proxg/
#*** frca data pipe
#frcamaxcommbuffersize 10000
#frcamaxcommtime 20
AsyncIO On
Addtype image/gif GIF
Addtype image/jpg JPG
AliasMatch ^/(.*)\.htm$ /tpcw/$1.htm
AliasMatch ^/(.*)\.html$ /tpcw/$1.html
ErrorLog logs/frca_err.log
LogLevel debug

(continued)
HostNameLookups off
ThreadsPerChild 4
RuleCaseSense off
#IconPath /QIBM/HTTPSVR/Icons/
MaxCGIJobs 1000
CGIMultiThreaded on
#MaxThreadedCGIJobs 100
CGIRecyclePersist off
LogFormat "%h %t \"%r\" %s %b" "TPC-W Required"
CustomLog logs/frca_acc.log "TPC-W Required"
#FRCACustomLog logs/frca_facc.log "TPC-W Required"
<Directory />
 Options None
 AllowOverride None
</Directory>
UseCanonicalName Off
KeepAlive ON
KeepAliveTimeout 600
#TimeOut 300
TimeOut 600
MaxKeepAliveRequests 9999
Options IncludesNOEXEC Indexes
ListenBacklog 5000
HotBackup Off
IdentityCheck off
LogTime LocalTime

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
5
7

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
5
8

© 2003 IBM Corporation

FRCA: Collection Service

How to know the files are cached
Communication trace

This tells us where the files are being served from

How to know the proxy cache works
WRKACTJOB option 12 for Work with Thread

You can see if the threads using CPU
For servlet or JSP, you have to find the thread first
Collection Services statistics

FRCA logs

Access logs

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
5
9

© 2003 IBM Corporation

Notes

How to know the files are cached
You can see if the files are served by FRCA or not in the communication trace. When the files are served by FRCA, the trace shows like:
HTTP/1.1 200 OK..DATE: MON, 25 MAR 2002 22:24:43 GMT..SERVER: APACHE/2.0.32(FRCA)..ACCEPT-RANGES:
BYTES..CONNECTION: CLOSE..LAST-MODIFIED: MON, 25 MAR 2002 22:14:31 GMT..CONTENT-TYPE: TEXT/HT
This is a downstream data comes from iSeries.

If the file is not served from FRCA cache, the trace shows like:
HTTP/1.1 200 OK..DATE: MON, 25 MAR 2002 22:25:13 GMT..SERVER: APACHE..LAST-MODIFIED: MON, 25 MAR 2002
22:04:13 GMT..ETAG: "BEC2-321-9DCFB140"..ACCEPT-RANGES: BYTES..CONTENT-LENGTH:801..KEEP-ALIVE:
TIMEOUT=15,MAX=100..CONNECTION: KEEP-ALIVE..CONTENT-TYPE: TEXT/HTML; CHARSET=WINDOWS-1252

How to know the proxy cache works
When you use FRCA proxy cache to serve servlets, CGI or other dynamic contents, the way to make sure if the cache is working is to watch
the CPU utilization of the job or threads.
But you have to find which thread you should watch. This can be difficlt when multiple threads are active at the same time to serve multiple
requests of CGI or servlet.

FRCA logs

Access logs

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
6
0

© 2003 IBM Corporation

Collection Services
Analyze HTTP server activity and transaction types

Types of information
Divided into categories

Examples: Server (static Web pages), CGI, WebSphere, Tomcat, Proxy, FRCA,
SSL

Number of requests, responses, error responses
Processing time
Responses served from a cache
Number of bytes sent and received

Performance Tools Reports
Information on the transactions processed by HTTP Server jobs

New V5R2 HTTP data collected
F

0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
6
1

© 2003 IBM Corporation

Notes

Web-based transaction processing and web-serving environments continue to grow in importance. We are enhancing the performance of
these environments by providing improvements to SSL, implementing Fast Response Cache Accelerator (FRCA), and continued work with
asynchronous I/O.

HTTP data collection category
to contain HTTP performance data for Collection Services. The HTTP performance data can then be queried to analyze HTTP server activity
and better understand what types of HTTP transactions are being processed by the iSeries (for example, static files, CGI, or Java Servlets).

Performance Tools for iSeries has been enhanced to generate reports based on the HTTP performance data. The reports contain
information on the transactions processed by HTTP Server jobs.

Refer to the 2002 ITSO Forum: Performance presentation for an overview of the report enhancements.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
6
2

© 2003 IBM Corporation

Offloads selected portions of cryptographic processing from host
processors

CRTDEVCRP DEVD(CRYACL) RSRCNAME(CMN002) PKAKEYFILE(*NONE)
DESKEYFILE(*NONE) TEXT('2058 (iSeries Feat #4805)')

iSeries SSL uses for SSL session "handshake" processing (just as
SSL can do for older 4758 (#4801/#4802 Cryptographic Coprocessor))

Single Cryptographic Accelerator can support up to 1000 full SSL
handshakes per second

Up to 4 Cryptographic Accelerators supported per system

V5R2 performance metric:
Collection Services counts SSL and non-SSL connections
Performance Tools for iSeries System Report shows connection counts

Cryptographic Accelerator - 2058-001
F

0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
6
3

© 2003 IBM Corporation

Notes

This new Cryptographic Accelerator "card" is used by the system on an SSL connection handshake process (negotiates the level of SSL
support and key exchange information to be used by an SSL session). You still use a digital certificate to perform the SSL processing and
define the application (HTTP serving, Management Central, Telnet, and so forth) to use SSL or not.

The older 4758 technology and the new technology 2058 are used for SSL handshaking and not for the actual data transmission encryption.
This is because the overhead of constantly passing data to the hardware to be encrypted on output and decrypted upon input negate the
benefits of having the hardware perform the function.

The V5R1 and V5R2 Performance Capabilities Reference manual has test results showing the handshaking performance improvements for
both the older 4758 technology and the new technology 2058. Note that the 4758 provides a broader range of encryption algorithms and
financial industry encryption capabilities that are not supported with the 2058.

The detailed Security presentation contains additional information. See V5R2 Information Center -> Security for the most complete coverage
of 4758 and 2058 capabilities.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
6
4

Search Engine

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
6
5

© 2003 IBM Corporation

Notes

On the iSeries the search engine comes in two logical pieces that are related to each other. They are “iSeries Webserver Search Engine”
and “iSeries Webserver Search Engine Web Crawler” .
In this part , we will briefly describe how these functions are inplemented on the HTP Server (powered by Apache).

Search Engine and Web Crawler

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
6
6

© 2003 IBM Corporation

Search Engine and Web Crawler

iSeries Webserver Search Engine
Makes your system to be a searchable site

Collect all documents into a single directory
Create a search index
Document list is created that contains the indexed documents
Customize your search forms with supplied HTML section
Set up your HTTP server correctly for the search forms
Keep your index up to date

iSeries Webserver Search Engine Web crawler
Program that crawls the URL you provide and download the Web page
Builds a document list using downloaded Web pages

The document list can be used to create a search index

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
6
7

© 2003 IBM Corporation

Notes

iSeries Webserver Search Engine
If you want to allow others to search through documents on your server, you will need to set up your system to be a searchable site. Doing
this is very easy with the new iSeries Webserver Search Engine. There are just a few administrative tasks you need to do.
These tasks can be summarized as follows:

First, collect all of the related documents into a single directory on your iSeries. You may use either the Root (/) directory of the IFS or the
QSYS.LIB file system. Using the IFS system allows you to easily port your files from a PC onto the iSeries.
Next you will need to create a search index. An index is the collection of all of the selected documents in your directory. They are stored in a
special indexed form. In the indexing process, the search engine takes each document provided in a document list, parses through it to
create keys that are used in searches. The Webserver Search Engine uses very short character string keys. This indexed form allows for
faster searching than could be done on documents that are not indexed.
The documents provided to the indexing function are contained in a document list that is automatically created when you create an index. A
list can also be created through administrative forms or by hand.
Once you have created the search index, you can test it from the search administration form. This will allow you to see all of the different
options available to select for a search, such as fuzzy or precise.
Now you are ready to set up the Webserver Search Engine to run on your Web site. A short HTML section has been supplied that can be
added to your web page as well as a Net.Data macro containing all of the HTML you will need. This allows you to customize your search and
search results forms. You may just use the short HTML form supplying a few values if you are not comfortable using Net.Data. However, you
must still copy the sample macro to your directory to make all of this work.
Once you have decided how you want to present your search forms, you will need to make sure the HTTP server you use contains the
correct directives in the configuration to run the Net.Data macro and to make sure users can view the documents found on a search. A
simple set of steps to do the necessary setup is provided for the HTTP Server (powered by Apache) and HTTP Server (original).
When all of this is completed, you are ready to do some searches!
It is important to keep your index up to date. If you modify your documents from time to time, you want to make sure your users are finding
the most current information. We have supplied a way for you to update your index. You can use the same document list you used when you
originally created your index. We will index any changed files that were previously indexed. You can also add a new set of documents to an
index that already exists as well as delete some of the documents from your index. This is just a matter of supplying different lists when you
update the index.

For more information about how to use the iSeries Webserver Search Engine see
http://www.ibm.com/servers/eserver/iseries/software/http/services/searchinfo.htm

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
6
8

© 2003 IBM Corporation

Notes

iSeries Webserver Search Engine Web Crawler
The Web crawler is a program that you can start from the same Search Setup forms that you use to set up your search engine. It works in
much the same way you do when you enter a URL on your browser and then click on various links to go to new Web pages.
The crawling program starts by finding the URL you provide. It downloads this Web page to your system and then continues to follow the links
it finds. Each Web page that it links to is also downloaded until there are no more links to follow or your timer expires.

The Web crawler extends the capability for building a document list. As each file is downloaded, the local path plus the original URL is added
to your document list. This document list can then be used to create a search index. Search results for this type of index will display the URL
where the document was originally found rather than the local copy. When you find one of these documents in your search results, you will be
taken to the actual page that was found during crawling.
When you select to build a document list by crawling Web sites, the session always runs as a background task whether it is initiated from the
browser or one of the search CL commands. It will take several minutes to run at a minimum, depending, of course, on the maximum time
you selected for the session to run, as well as other attributes you have specified.
The Web crawler has some special features. It can go to any web site, English or non-English, and process the downloaded files correctly for
indexing and searching. If a site requires authentication, you can provide the necessary setup. Since Web crawlers can run for quite a long
time and consume lots of your system storage, you can limit the time the crawler runs, the size of the files it can download, and the amount of
storage it can consume. Additionally you can stop, pause, and resume your crawling session.
All of these features are on the Search Setup forms that are part of the HTTP Server Configuration and Administration.

For more information about how to use the iSeries Webserver Search Engine Web Crawler see
http://www.ibm.com/servers/eserver/iseries/software/http/services/webcrawler.htm

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
6
9

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
7
0

Apache Modules

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
7
1

© 2003 IBM Corporation

Notes

This part introduce you the concept of Apache modules that can be used for extending the functionality of the HTTP server (powered for
Apache). And also shows you the concept of Apache Portable Runtime (APR).

Apache module design overview
Apache Portable Runtime (APR)

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
7
2

© 2003 IBM Corporation

Apache Module Design Overview

Modules extend the Apache HTTP server's core function

Used only when loaded with the LoadModule directive

You can write your own module to extend the function

Server core
functions

CGI
module

SSL
module

User
written
module

Cookies
module

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
7
3

© 2003 IBM Corporation

Notes

The design of the Apache HTTP server is one that defines modules. Modules are operating system objects that can be dynamically linked and
loaded to extend the nature of the Apache HTTP server. Depending on the operating system this is similar to:

Window's Dynamic Link Libraries (DLL)
UNIX's shared object libraries
OS/400's ILE Service Programs

In this way the Apache modules provide a way to extend a server's function. Functions commonly added by optional modules include.
Authentication
Encryption
Application Support
Logging
Support for different content types
Diagnostics

A very good example of a module that is shipped with your HTTP Server (powered by Apache) that extends the reach of the core Apache
server is

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

This service program is only loaded, linked and used when you need to encrypt your data using Secure Sockets Layer (SSL). The advantage
of this is that the core Apache program can stay relatively small and tight until a particular function (as provided by a plug-in module) is
needed. Then, with just a LoadModule directive and optionally some configuration directives, you can increase the functionality of your Web
server with a corresponding increase in the working set size.
Apache core functions are those available in a standard Apache installation with no nonstandard modules. iSeries Apache v2.0 supports about
137 directives. Of those, 53 are in the core functions. The remainder are in separate modules that have been compiled into the code. The
LoadModule directive must be used to activate the directives in these modules.
As shown in the figure above, the Apache HTTP server’s core functions are extended with a variety of different modules. In some cases (CGI
module and a Cookie module) the modules are ‘built in’ extensions to the server’s core functions and do not need an explicit LoadModule to
use. In other cases (for example the SSL module) the modules are provided with the HTTP Server (powered by Apache) product on the
iSeries but must be explicitly loaded with the LoadModule directive.
You can also write your own module to extend the core functionality of the HTTP Server (powered by Apache). This, in fact, is one of the
biggest drawing points to the Apache Web server and a good example of why it is a very popular HTTP server.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
7
4

© 2003 IBM Corporation

Apache Portable Runtime (APR)

APR provides a set of routines to write your own modules

The modules can extend the function of Apache
The source code can be cross-platform

HTTP server configuration file

...
LoadModule header_module /QSYS.LIB/ITSOAPACHE.LIB/MOD_HEADER.SRVPGM
...

source
code

APR
libraries

service program
 MOD_HEADER

compile&create

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
7
5

© 2003 IBM Corporation

Notes

The HTTP Server (powered by Apache) can extend its functionality in specific areas of your server using modules. For example, a
module could be configured to create a new type of authentication that is not available with the shipped HTTP Server (powered by
Apache). Before the module can be used by your HTTP Server (powered by Apache), it must be compiled and saved in the QSYS
directory. In addition, the LoadModule directive must be entered in your server configuration file along with any specific context
required information.

Using your own module, the data that was generated by an earlier module can be modified. This concept is called buckets and brigades as
seen in the figure below. The premise is that, after all is said and done, Web pages are nothing more than chunks of information.

Each chunk is stored in a bucket.
List of buckets form a brigade.
Lists of brigades can form a Web document.
Filters operate on one brigade at a time.

The C language implementation of the structure shown here is linked list of buckets.

As you now know the iSeries has integrated the 2.0 version of the Apache server with the IBM HTTP Server for iSeries. Much of the rest of the
world, however, is still back at current 1.3 version of the Apache server. One of the big differences between version 1.3 and 2.0 of the Apache
server is that the APR is new for version 2.0. To bring a module written to version 1.3 to the iSeries you should first update it to the new
version 2.0 APR module. Then, the port to the iSeries should be fairly easy.
The APR found with version 2.0 of the Apache server is actually independent of the Apache HTTP 2.0 server. Technically, APR is a separate
Apache product altogether and can exist alone. Users of APR can create there own applications using APR and not touch the Apache HTTP
2.0 server.

bucket Dbucket A bucket B bucket C

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
7
6

Problem Determination

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
7
7

© 2003 IBM Corporation

Notes

The HTTP Server (powered by Apache) provides several tools that help you to determine the problems which may occur in any part of your
server. This part shows you the tools that you can use for problem determination, and gives some descriptions how to use them.

Working with configuration files
Joblogs
Server logs: Access logs
Server logs: Error logs & script logs
HTTP server traces
Other startup parameters

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
7
8

© 2003 IBM Corporation

Working with Configuration Files

Creating by GUI is mandatory
Changing by GUI is recommended
GUI can highlight the error made by manual alteration (see below)

For Apache 'gurus' you can edit the directives directly
Edit Configuration File (from GUI)

Allows copy and paste
Edit File (EDTF) from green screen
Apache configuration files are created as unicode

copy and paste from GUI to PC 'wordpad' or other editor. Map the network drive...

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
7
9

© 2003 IBM Corporation

Notes

Manually editing the configuration file requires care, patience, knowledge of the configuration directives and finally a good backup of the original
file. Manually editing your httpd.conf is not recommended unless you really know what you are doing and you have a solid experience with the
Apache configuration directives.
The recommended way of changing or creating your HTTP Server (powered by Apache) configuration is using the Graphical User interface, or
GUI. The GUI also sports the best tools for displaying and editing configuration files.
From the main Configuration panel select the Display Configuration File option. This will bring up the content of your configuration file just like
the server sees it. This is really important if you have manually altered the configuration file using the green screen Edit File (EDTF) utility.
EDTF is a quick and handy tool for editing files on the iSeries, but it won’t provide the additional error highlighting that the GUI has.

Note: This check on the configuration file is similar to what the Apache native -t switch does.

For Apache 'gurus' you can edit the directives directly
Edit Configuration File (from GUI)

Allows copy and paste. Usefule once you have a <directory> or <VirtualHost>, for example, configuration all setup and tested. Then you can just copy and paste
the configuration and then change a few of the parameters rather than having to go through the GUI multiple times...

Edit File (EDTF) from green screen
Apache configuration files are created as unicode

copy and paste from GUI to PC 'wordpad' or other editor. Map the network drive...

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
8
0

© 2003 IBM Corporation

Joblogs

The first place to look for information

"Message logging" settings in the JOBD QHTTPSVR/QZHBHTTP
Produced under the user profile QTMHHTTP by default

 The user can be changed using ServerUserID directive

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
8
1

© 2003 IBM Corporation

Notes
HTTP server joblogs are the first place to look for information whenever an abnormal ending occurs. Their content can be more or less
detailed, depending on the message logging settings in the job description (JOBD) in use. The JOBD used by the HTTP Server (powered by
Apache) is QZHBHTTP in the QHTTPSVR library. Changing its message logging settings will always influence the content of your server
joblogs.
Changing the Text setting from *NOLIST to *MSG or *SECLVL can be extremely useful for debugging purposes. See the online help for the
Change Job Description (CHGJOBD) CL command for usage information. Also remember that *SECLVL will generate a highly verbose joblog
for every server job, and is therefore not to be chosen as a default setting.
Joblogs will always be produced under the default QTMHHTTP profile unless you choose to use a different one adding a ServerUserID
directive in your configuration file. The figure above shows you how you can change the default user using the GUI.

Messages in your server joblogs will often contain helpful hints for problem determination, like:
the name of a failing module
illegal configuration options
usage of a deprecated directive
the number of the line where an error was found

In order to determine where the problem lies, you can also look up the line number referred to in the message body with the Display
Configuration File menu option in the GUI.

HTP8006 Diagnostic 40 10/12/01 10:23:25 QZSRAPR QHTTPSVR *STMT QZSRCORE QHTTPSVR
 From module : QZSRSNDM
 From procedure : sendMessageToJobLog
 Statement : 11

 To module : HTTP_CONFI
 To procedure : ap_walk_config_sub
 Statement : 9

 Message : Directive not recognized.
 Cause : Directive AddModule is not a recognized HTTP server
 directive. The HTTP server did not start. Recovery . . . : Correct or
 remove the directive. Then start the HTTP server again. Technical

 description : See the HTTP server documentation on
 configuration and administration for more information.
 HTP8008 Escape 40 10/12/01 10:23:25 QZSRAPR QHTTPSVR *STMT QZHBHTTP QHTTPSVR
 From module : QZSRSNDM

 From procedure : sendEscapeWithMessageFile
 Statement : 2
 To module : HTDAEMON

 To procedure : BigSwitch__FiPPc
 Statement : 1066
 Message : HTTP Server Instance ITSOSRV1 failed during start-up.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
8
2

© 2003 IBM Corporation

First job is "parent" process

Then come jobs for logging
One per log file

Always an error log
possibly others... including access log

Then comes the primary "child" process

Followed by the hot backup "child" process

Followed by processes for CGI requests and/or
non-threadsafe file system access

Server jobs
F

0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
8
3

© 2003 IBM Corporation

Notes

Here is an example with a simple server BRSMITH04. Here is a portion of the Work with Active Jobs (WRKACTJOB) screen:

Opt Subsystem/Job User Type CPU % Function Status
 ADMIN QTMHHTTP BCH .0 PGM-QZHBHTTP SIGW
 ADMIN QTMHHTTP BCI .0 PGM-QZSRLOG SIGW
 ADMIN QTMHHTTP BCI .6 PGM-QZSRHTTP SIGW
 ADMIN QTMHHTTP BCI .0 PGM-QYUNLANG TIMW
 BRSMITH04 QTMHHTTP BCH .0 PGM-QZHBHTTP SIGW
 BRSMITH04 QTMHHTTP BCI .0 PGM-QZSRLOG SIGW
 BRSMITH04 QTMHHTTP BCI .0 PGM-QZSRLOG SIGW
 BRSMITH04 QTMHHTTP BCI .0 PGM-QZSRHTTP SIGW
 BRSMITH04 QTMHHTTP BCI .0 PGM-QZSRHTTP SIGW

You can take a look at the joblog for each of these jobs. At the start of the joblog the job will tell you what kind of Apache job this is:
1st: This is the manager job for HTTP Server instance BRSMITH04. That is, the "parent" process.
2nd: This is a logging job for HTTP Server BRSMITH04. Usually Error log (which is always present)
3rd: This is a logging job for HTTP Server BRSMITH04. Second log is usually Access log (if configured)
4th: This is the primary job for HTTP Server instance BRSMITH04. That is, the primary "child" process.
5th: This one does not tell you, but it is the hot backup "child" process.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
8
4

© 2003 IBM Corporation

Server Logs: Access Logs

Powerful tool for problem determination and performance tuning

Record every single request received by the server

10.1.62.20 - - [09/Nov/2001:14:04:33 -0600] "GET /Services_Np1.gif HTTP/1.1" 200 1753 "http://10.1.92.28:8002/" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:33 -0600] "GET /Projects_Np1.gif HTTP/1.1" 200 1753 "http://10.1.92.28:8002/" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:33 -0600] "GET /Downloads_Np1.gif HTTP/1.1" 200 1773 "http://10.1.92.28:8002/" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:33 -0600] "GET /SiteMap_Np1.gif HTTP/1.1" 200 1763 "http://10.1.92.28:8002/" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:33 -0600] "GET /BuiltByNOF.gif HTTP/1.1" 200 1641 "http://10.1.92.28:8002/" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:33 -0600] "GET /Home_NBanner.GIF HTTP/1.1" 200 2089 "http://10.1.92.28:8002/" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:33 -0600] "GET /Ss02043.JPG HTTP/1.1" 200 21705 "http://10.1.92.28:8002/" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:36 -0600] "GET /Products/products.html HTTP/1.1" 200 6643 "http://10.1.92.28:8002/" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:36 -0600] "GET /Home_Np1.gif HTTP/1.1" 200 1729 "http://10.1.92.28:8002/Products/products.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:36 -0600] "GET /Products_Hp3.gif HTTP/1.1" 200 1829 "http://10.1.92.28:8002/Products/products.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:36 -0600] "GET /Products_NBanner.GIF HTTP/1.1" 200 2219 "http://10.1.92.28:8002/Products/products.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:37 -0600] "GET /SiteMap/sitemap.html HTTP/1.1" 200 10674 "http://10.1.92.28:8002/Products/products.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:37 -0600] "GET /SiteMap_Hp3.gif HTTP/1.1" 200 1835 "http://10.1.92.28:8002/SiteMap/sitemap.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:37 -0600] "GET /SiteMap_NBanner.GIF HTTP/1.1" 200 2265 "http://10.1.92.28:8002/SiteMap/sitemap.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:37 -0600] "GET /SiteMap/a_Sitemap_Image.gif HTTP/1.1" 200 6761 "http://10.1.92.28:8002/SiteMap/sitemap.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:37 -0600] "GET /a_SatelliteDataIcon_4.gif HTTP/1.1" 200 1632 "http://10.1.92.28:8002/SiteMap/sitemap.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:38 -0600] "GET /Services/services.html HTTP/1.1" 200 14526 "http://10.1.92.28:8002/SiteMap/sitemap.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:38 -0600] "GET /Services_Hp3.gif HTTP/1.1" 200 1825 "http://10.1.92.28:8002/Services/services.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:38 -0600] "GET /Calendar_Ns1.gif HTTP/1.1" 200 1802 "http://10.1.92.28:8002/Services/services.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:38 -0600] "GET /Commuter_Ns1.gif HTTP/1.1" 200 1807 "http://10.1.92.28:8002/Services/services.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:38 -0600] "GET /Contacts_Ns1.gif HTTP/1.1" 200 1801 "http://10.1.92.28:8002/Services/services.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:39 -0600] "GET /Forms_Ns1.gif HTTP/1.1" 200 1787 "http://10.1.92.28:8002/Services/services.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:39 -0600] "GET /Policies_Ns1.gif HTTP/1.1" 200 1794 "http://10.1.92.28:8002/Services/services.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:39 -0600] "GET /Services_NBanner.GIF HTTP/1.1" 200 2243 "http://10.1.92.28:8002/Services/services.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:39 -0600] "GET /Postings_Ns1.gif HTTP/1.1" 200 1808 "http://10.1.92.28:8002/Services/services.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
10.1.62.20 - - [09/Nov/2001:14:04:39 -0600] "GET /Services/a_ArrowLine_6.gif HTTP/1.1" 200 1615 "http://10.1.92.28:8002/Services/services.html" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
8
5

© 2003 IBM Corporation

Notes

Server logs are most useful for monitoring server activity and keeping track of user access, and a valid aid in debugging as well. By carefully
examining these logs we can discover the reason behind the most common error messages and eventually point out configuration errors.

Access logs
Access logs can be an extremely powerful tool for both problem determination and performance tuning. They record every single request
received by the server and can also be customised through the creation of custom log formats. Look at the figure on the right, showing a
sample access log configuration. Each one of our log files is based on a different format. For now, let’s just notice that our access log will use
the combined format.

Let’s now see what kind of information will be stored in these three logs basing on the log format we have chosen. The following figure shows
us four user-defined formats and the type of information that we want them to collect. Each one of the case sensitive tokens we can use in a
format definition represents a different piece of information about the client, the request received or the status of client-server
communications.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
8
6

© 2003 IBM Corporation

Notes

We will now analyze an access log entry, looking for the data we included in the associated log format. Let’s say we want to access our
server’s sample homepage. Let’s open a browser window and just type in http://servername:port in the address bar.
The last line in our server’s access log will now look like the one in this figure.

For more information on customizing log formats see the log format article in the HTTP Server documentation center
(http://publib.boulder.ibm.com/pubs/html/iseries_http/v5r1/info/rzaie/rzaielogformat.htm) and the Worldwide Web Consortium (W3C) logfile
standards at http://www.w3.org.

 Browse : /qibmwww/itsosrv1/logs/access_log
 Record : 1 of 2 by 18 Column : 1 130 by 131
 Control :

....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+....0....
10.5.100.130 unknown - [14/Oct/2001:16:53:40 +0900] "GET / HTTP/1.0" 200 959 "-" "Mozilla/4.76 [en] (Win
10.5.100.58 unknown - [15/Oct/2001:10:48:47 +0900] "GET / HTTP/1.1" 200 959 "-" "Mozilla/4.0 (compatible
 ************End of Data********************

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
8
7

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
8
8

© 2003 IBM Corporation

Server Logs: Error Logs & Script Logs

Error Logs
Resides in the /logs
subdirectory of the
server root by default
Useful for debugging
configuration problem
Configuration change,
end/start, system
errors are recorded

Logging levels

Script Logs
All CGI parsed data is
recorded
Impacts on CGI
performance

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
8
9

© 2003 IBM Corporation

Notes

Error log
Servers created using the GUI wizard will always produce an error log by default. Look for error log files in the /logs subdirectory of your server
root. Basic error logs are most useful for debugging configuration problems, like when a document is not accessible or the URI (Universal
Resource Identifer, that is the path you add after the server address) you’re pointing to is not working as expected. Error logs will also keep
track of configuration changes, server end/restart and record some system errors. Be aware that any problem detected after server
initialization will most likely not be recorded in the server joblogs (unless a critical condition occurs), but in the error log.

Apache now requires that you have an error log running. The Create New HTTP Server wizard will not ask you if you want to create a
combined (access and error) log (V5R1) but will ask if you want to create an access log. This assumes that you must have the error log.

Logging level: adjusts the complexity for messages recorded in the error logs. The drop-down menu provides all valid error logging options.
When a particular level is specified, messages from all other levels of higher significance will be reported as well. For example, when Critical
is specified, then messages with log levels of Alert and Emergency will also be posted. Using a level of at least Critical is recommended. The
default level is Warning. This field is optional. Directive: LogLevel
The information located directly underneath the drop-down menu displays which logging options are currently active:

If Emergency, system is unusable messages ("Child cannot open lock file. Exiting.").
If Alert, action must be taken immediately messages ("getpwuid: couldn't determine user name from uid.").
If Critical, critical conditions messages ("Socket: Failed to get socket, exiting child.").
If Error, error conditions messages ("Premature end of script headers.").
If Warning, warning conditions messages ("Child process 1234 did not exit, sending another SIGHUP.").
If Notice, normal but significant conditions messages ("httpd: caught SIGBUS, attempting to dump core in...").
If Informational, informational messages ("Server seems busy, (you may need to increase StartServers or Min/MaxSpareServers)...").
If Debug, debug-level messages ("Opening config file...").

Script log
Script logs record all CGI parsed data, and can therefore have a significant impact on CGI performance. They should be used for debug
purposes only and not be kept active all the time. Being a mere debug tool they are not customizable, save for the maximum amount of data to
be collected.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
9
0

© 2003 IBM Corporation

V5R2 Logging Enhancements

Log rollover
Configure log files to be closed and new
log files opened

Hourly, Daily (default), Weekly, Monthly

Log maintenance (archival)
Configure directory where the server
does log file maintenance

Can maintain by 2 categories
Age
Size

Maximum log size
Server stops logging when the log file
size reaches the maximum

Logging to QSYS source physical
files

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
9
1

© 2003 IBM Corporation

Notes

General Settings
The Logging General Settings tab allows you to configure settings that apply to all server log files such as selecting which time format each
log entry time stamp will follow, controlling how often log files are closed and new log files created, and limiting the size of any defined log file.

Log entry time : allows you to select which time format each log entry time stamp will follow. The default value is local time. Directive:
LogTime

Inherit: indicates that the time format each log entry time stamp is inherited from a higher level context.
Use local time: each log entry is time stamped with the local server's time.
Use Greenwich Mean Time (GMT): each log entry is time stamped according to Greenwich Mean Time.

Log cycle: controls how often log files are closed and new log files created. You can select to have logs cycled hourly, daily, weekly, monthly,
or turn cycling off. The default value is daily, which means that at midnight each day, all log files will be closed and new log files created. Log
files cycle at midnight for all settings except hourly and off. This field is required. Directive: LogCycle

Notes: When this option is set to "off", the log will not rollover, and log maintenance will not occur. The "weekly" value may not be set correctly
if your server is not using the Gergorian calendar.

Maximum log file size: limits the size of any defined log file (in bytes, kilobytes, megabytes, or gigabytes). This value prevents unbounded log
file growth. If a log file exceeds this size, no more information will be written to it. Valid values include 0 through 2,147,483,647 (bytes). The
default value is 0 bytes, which means there is no log file size limit. If the default value of 0 bytes is used, the log files will grow without bound.
The first drop down menu provides the options Bytes, Kilobytes, Megabytes, Gigabytes. The second drop down menu provides the options
Minimum (1 byte), Maximum (2,147,483,647 bytes) and Unlimited (0 bytes). This field is optional. Directive: LogLength

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
9
2

© 2003 IBM Corporation

HTTP Server Trace

Traces information about server operation
Process management, URI interpretation etc.

Can be started by GUI and CL command

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
9
3

© 2003 IBM Corporation

Notes

An HTTP server trace provides additional information about server operations, from process management to URI interpretation. Server traces
can be activated from the GUI Manage HTTP Servers screen by starting the server with the lowercase -ve, -vi, -vv startup parameters. The
Start TCP/IP Server (STRTCPSVR) CL command also supports these startup options. The same data can also be collected when the server
is alrady active using the Trace TCP/IP Application (TRCTCPAPP) and Dump User Trace (DMPUSRTRC) commands. Be advised that this
tracing facility does not support concurrent tracing of multiple HTTP servers.

Note: the HTTP Server (powered by Apache) does not support the -vi, -ve, -vv switches on server restart. If you are unable to end all server
jobs use the Trace TCP/IP Application (TRCTCPAPP) command instead.

The HTTP server trace can be set to operate at three different levels called error, information, verbose. User trace data for both parent and
child helper jobs is automatically dumped as soon as a failure condition is detected. The Dump User Trace (DMPUSRTRC) command is
otherwise used to direct trace output to the same database file while server jobs are still active. Job name, number and user profile for each
one of your HTTP server jobs are required. Trace output will be dumped to file QAP0ZDMP in QTEMP in a member called QP0Znnnnnn
(where nnnnnn is the HTTP server job number you fed to the DMPUSRTRC command). The following table illustrates the usage and purpose
of this tracing facility.

Startup switch TRCTCPAPP Trace output

-ve *ERROR Server startup only. Nothing else is recorded unless an error occurs.

-vi *INFO Server startup and initialization, including directive processing, character conversion and
client request handling.

-vv *VERBOSE All the above plus API and module invocation, HTTP headers, error messages.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
9
4

© 2003 IBM Corporation

Other Startup Parameters

These options are available as server startup parameters
-netccsid [nnn]

-fsccsid [nnn]
-d [serverroot]
-f [configuration]

-C [directive]
-c [directive]

-V
-l

-t

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
9
5

© 2003 IBM Corporation

Notes

Server startup parameters can also be of aid in problem determination as well as in testing your sever configuration. In addition to the more
debug-oriented -ve, -vi, -vv startup parameters for “HTTP server trace”, the following options are available:

-netccsid [nnn] Overrides the DefaultNetCCSID directive.
-fsccsid [nnn] Overrides the default DefaultFsCCSID directive.
-d [serverroot] Set the initial value for the ServerRoot variable to serverroot. This can be overridden by the ServerRoot directive.
-f [configuration] Use the values in the configuration on startup. If the configuration does not begin with a /, then it is treated as a path
relative to the ServerRoot.
-C [directive] Process the given directive just as if it had been part of the configuration.
-c [directive] Process the given directive after reading all the regular configuration files.
-V Display the base version of the server, build date, and a list of compile time settings, then exit.
-l Display a list of all modules compiled.
-t Test the configuration file syntax but do not start the server. This command checks to see if all DocumentRoot entries exist and are
directories.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
9
6

Highly Available Web Server
Clusters

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
9
7

© 2003 IBM Corporation

Notes

This part covers these three Web server cluster models that are supported:

HA Web Server: Major Features
Primary/backup with takeover IP model
Primary/backup with a network dispatcher model
Peer model

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
9
8

© 2003 IBM Corporation

Makes the IBM HTTP Server (powered by Apache) highly
available across a cluster of iSeries nodes

Support for different models:
Availability

Primary/Backup with IP-Takeover
Primary/Backup with IBM's e-Network Dispatcher

Availability and Scalability
Peer with e-Network Dispatcher

Replication of HA CGI and Net.Data state data
CGI and Net.Data programs store Persistent CGI state in Web server
State is then available on other nodes in cluster

Integration with Cluster Resource Services to detect failures
High-Availability Business Partner (HABP) software is optional

Improved availability of individual Web servers!

HA Web Server: Major Features
F

0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

2
9
9

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
0
0

© 2003 IBM Corporation

When do you need HA Web Servers?

If Web serving is a critical aspect of your business
If you have periodic planned outages (e.g. for regular maintenance)

If you want reasonable protection from unplanned outages
If you want horizontal scalability of your web serving environment by
distributing client requests across a multitude of server nodes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
0
1

© 2003 IBM Corporation

Notes

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
0
2

© 2003 IBM Corporation

Takeover IP model

Client

iSeries Web
Server Cluster

Network

Clustered Hash
Table

State Replication
Mechanism

PrimaryBackup

Liveness
Monitor

Liveness
Monitor

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
0
3

© 2003 IBM Corporation

Notes

Primary/backup with takeover IP model
In this model, the Web server runs on the primary and all backup nodes. The backup node or nodes are in a idle state, ready to become the
primary Web server should the primary Web server fail (failover), or a switchover takes place. All client requests are always served by the
primary node.

Note: For all the models presented here the CGI application has some extra work. On a single iSeries server (and before this HA was
available) when a 'normal' persistant CGI application is done with one step of long-running session it and its static variables are held in a wait
state - waiting for the client to respond. When this new HTTP request comes into the system the iSeries server will attach to the same
persistant CGI job and away it will go (as it still knows about state due to the static variables that have not changed). - - - To operate in this HA
environment on two different iSeries servers one thing changes: the CGI application - right when it is done with one step of long-running
session - stores all its static variables (stores the state of the session) into the Clustered Hash Table. The Clustered Hash Table is then
automatically made available on all systems operating in the clustered HTTP servers. When the next HTTP request comes in from the client
the CGI job that is attached must read the static variables (retrieves the state of the session) from the Clustered Hash Table.

When the primary node fails (failover), or is brought down by the administrator, the failover/switchover process begins. The following steps
are performed during failover/switchover:
1.One of the backup servers becomes the primary (the first backup in the switchover order).
2.The client requests are redirected to the new primary node.
3.If the new primary receives a user request that belongs to a long-running-session (a CGI program that has been updated to be a highly

available CGI program), the server will restore the request's state. The new primary retrieves that highly available CGI program's state
information from the clustered hash table. The clustered hash table is part of the state replication mechanism.

4.After the failed node recovers, the highly available Web server instance can be restarted and it will become the backup system. If the
system administrator wants the failed node to become primary again, a manual switchover must be performed (this can be accomplished
with the IBM Simple Cluster Management interface available through Operations Navigator or a business partner tool).

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
0
4

© 2003 IBM Corporation

Network Dispatcher Model

Client

Network

Clustered Hash
Table

State Replication
Mechanism

PrimaryBackup

Liveness
Monitor

Liveness
Monitor

Network
Dispatcher

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
0
5

© 2003 IBM Corporation

Notes

Primary/backup with a network dispatcher model
In this model, just like the primary/backup with takeover IP model, the Web server runs on the primary and all backup nodes. The backup
nodes are in an idle state and all client requests are served by the primary node. A network dispatcher (for example the IBM WebSphere Edge
Server) sends client requests to the Web server.

When the primary node fails (failover), or a switchover takes place, the failover/switchover process begins. The following steps are performed
during failover/switchover:
1.One of the backup servers becomes the primary (the first backup in the switchover order).
2.The client requests are sent to the new primary node by the network dispatcher.
3.If the new primary receives a user request that belongs to a long-running-session, the server needs to restore the request's state. The new

primary searches for the state either locally or in the clustered hash table. The clustered hash table is part of the state replication
mechanism.

4.After the failed node recovers, the system administrator can restart the Web server instance and it will become a backup Web server. If the
system administrator wants the failed node to become primary again, a manual switchover must be performed.

Note: A node can join a recovery domain as primary only if the cluster resource group is in inactive mode.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
0
6

© 2003 IBM Corporation

Peer model

Client

Network

Clustered Hash
Table

State Replication
Mechanism

Server 2Server 1

Liveness
Monitor

Liveness
Monitor

Network
Dispatcher

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
0
7

© 2003 IBM Corporation

Notes

Peer model
In this model, there is no declared primary node. All nodes are in an active state and serve client requests. A network dispatcher (for example
the IBM WebSphere Edge Server) evenly distributes requests to different cluster nodes. This guarantees distribution of resources in case of
heavy load. Linear scalability is not guaranteed beyond a small number of nodes. After some number of nodes are added, scalability can
disappear, and the cluster performance can deteriorate.

In the event that one node fails (failover), the failed Web server traffic is routed to one of the other operational Web servers according to the
configuration of the network dispatcher.

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
0
8

© 2003 IBM Corporation

Related Publications

The publications listed in this section are considered particularly suitable for a more detailed discussion
 of the topics covered in this workshop.

International Technical Support Organization Publications
For information on ordering ITSO publications, visit us at http://www.redbooks.ibm.com (Internet Web site)

 or
http://w3.itso.ibm.com (intranet Web site)

For Technical Support see http://www.ibm.com/support and http://w3.ibm.com/support

Redbooks on CD-ROMs
Redbooks are available on CD-ROMs.

CD-ROM Title

System/390 Redbooks Collection
Networking and Systems Management Redbooks Collection
Transaction Processing and Data Management Redbook
AS/400 Redbooks Collection
RS/6000 Redbooks Collection (HTML, BkMgr)
RS/6000 Redbooks Collection (PostScript)
Application Development Redbooks Collection
Personal Systems Redbooks Collection

Collection Kit
Number

SK2T-2177
SK2T-6022
SK2T-8038
SK2T-2849
SK2T-8040
SK2T-8041
SK2T-8037
SK2T-8042

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
0
9

© 2003 IBM Corporation

Related Publications - Continued

Other Publications
These publications are also relevant as further information
sources:

Publication NumberTitle

http://www-1.ibm.com/servers/eserver/iseries/software/http/
APACHE SERVER UNLEASHED
PROFESSIONAL APACHE
APACHE SERVER ADMINISTRATOR's HANDBOOK
APACHE SERVER BIBLE
APACHE for DUMMIES
APACHE: THE DEFINITIVE GUIDE
IBM HTTP SERVER POWERED BY APACHE ON RS/6000
http://www-1.ibm.com/servers/eserver/iseries/education/

HTTP Server (powered by Apache) IBM iSeries
Integration at its Best (send a note to brsmith@us.ibm.com to be
added to a distribution list!)

Redpaper: Bring PHP to Your iSeries Server

iSeries HTTP servers home
by Bowen and Coar
by Peter Wainright
by Mohammed J. Kabir
by Mohammed J. Kabir
by Ken Coar
by Ben Laurie, Peter Laurie
SG24-5132 - IBM ITSO
This presentation

SG24-6716 - IBM ITSO

REDP3639 - IBM ITSO

F
0
3
E

P
0
1
v
5
r2

ip
b
A

.P
R

Z

3
1
0

