
IBM eServerJ iSeriesJ

8 Copyright IBM Corporation, 2003. All Rights Reserved.
This publication may refer to products that are not currently
available in your country. IBM makes no commitment to
make available any products referred to herein.

Session:

Performance analysis tools for
WebSphere applications on iSeries

SP01

Gottfried Schimunek

3605 Highway 52 North
Rochester, MN 55901

Tel 507-253-2367
Tel 845-491-2347 (FAX)

schimu@us.ibm.com

Gottfried Schimunek

Consulting IT Architect
Application Design
Technical Review Board
Program Manager

iSeries Solution
Enablement

ITSO iSeries Technical Forum

F03SP01.prz 1
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Acknowledgement

This presentation was produced with the help of Eric Barsness of the
IBM WebSphere development lab in Rochester,MN

F03SP01.prz 2
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

 Agenda

iSeries V5R2 Java™ Performance

Performance analysis tools

Key Tuning Tips and Techniques
WebSphere
Java
Java Database Connectivity (JDBC)

Resolving Common WebSphere and Java Problems

F03SP01.prz 3
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

iSeries V5R2 Java Performance

F03SP01.prz 4
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Misc. Java/JVM improvements

Improvements to Java commands

Just In Time (JIT) compiler performance improvements

Support for JVM Profiler Interface (JVMPI)

Performance Explorer (PEX) changes for Java

POWER4 hardware allows greater scalability

V5R2 Java Performance
What's New?

F03SP01.prz 5
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

JDK 1.4 support added (1.1.6 and 1.1.7 removed)

Java locking improvements
Lock deflation

Pathlength improvements

Object allocation pathlength improvements

Garbage Collector enhancements
Heap compaction allows the Java heap to shrink in size

User classloader cache
Avoids bytecode verification if class already loaded by User classloader

Avoids recreation of JVAPGMs, when class has already been loaded

The os400.define.class.cache.file property enables this option

Misc. Java/JVM Improvements

F03SP01.prz 6
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

CRTJVAPGM
now multithreaded for quicker Direct Execution compiles

ANZJVM
New for V5R2

Can be used to help resolve object leaks

Java Command Improvements

F03SP01.prz 7
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Stronger
As a general rule of thumb, JIT outperforms Direct Execution by 15% in V5R2, once the
system "warms up"

Smarter
Register allocation looks at entire method to minimize load and store operations.

Model dependent code generation
Resulting JIT code will be different for a POWER4 iSeries then a sStar iSeries

More flexible
A new execution mode, Mixed Mode Interpreter (MMI) is introduced

 Quicker startup time then standard JIT (but still worse than fully DE'd code)
Java class is interpreted until the JVM determines that it is a common path within the code, then will run the JIT
Code executed only on startup will probably be interpreted

Can be tuned with the property os400.jit.mmi.threshold

The JIT Compiler has become...

F03SP01.prz 8
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

DE JIT JIT MMI
0

1

2

3

4

5

R
el

at
iv

e
T

im
e

in
 S

ec
on

ds

Startup

1

1.14 1.14

DE JIT JIT MMI
0

0.2

0.4

0.6

0.8

1

1.2

R
el

at
iv

e
T

ra
n

sa
ct

io
n

s
p

er
 S

ec
o

n
d

Throughput
JIT Startup vs. Throughput (for a large Java application)

F03SP01.prz 9
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

834

1334

2180

834

1068

1810

1 Instance 2 Instances 4 Instances
0

500

1000

1500

2000

2500

M
em

or
y

in
 M

B

DE
JIT MMI

JIT Memory Consumption (for a large Java application)

F03SP01.prz 10
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Java Virtual Machine Profiler Interface (JVMPI) is new for V5R2 on iSeries
JVMPI by itself is not exciting to the end user

JVMPI is an API that can be used to build profilers

Instructions on how to invoke the profiler
In QSH, java -XrunMyProfiler MyApp, where MyProfiler is the profiler (J-Probe,
Optimizeit, JProf, etc.

From CL, JAVA CLASS(MyApp) PROP((os400.xrun.option MyProfiler))

JVM
running
MyApp

JVMPI
MyProfiler

JVMPI
profiler

Profiler
front-end

JVM Process

JVMPI events

Controls

Wire
Protocol

JVMPI - Overview

F03SP01.prz 11
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

The profile agent sends a request to the JVM through a JVMPI defined interface
The profile agent wants to be notified asynchronously when an event happens

EnableEvent(), DisableEvent(), RequestEvent(), etc

The profile agent wants the JVM to execute something
DisableGC(), EnableGC(), RunGC(), etc

The profile agent wants the JVM to perform an action
SuspendThread(), ResumeThread(), etc

The profile agent wants information about the JVM
GetCurrentThreadCpuTime(), GetThreadStatus(), GetThreadLocalStorage, etc

JVMPI - Profile Agent sends controls to JVM

F03SP01.prz 12
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

A list of events that the JVM can send to the profile agent
method enter and exit
object alloc, move, and free
heap arena create and delete
GC start and finish
JNI global reference alloc and free
JNI weak global reference alloc and free
compiled method load and unload
thread start and end
class file data ready for instrumentation
class load and unload
contended Java monitor wait to enter , entered, and exit
contended raw monitor wait to enter, entered, and exit
Java monitor wait and waited
monitor dump
heap dump
object dump
request to dump or reset profiling data
Java virtual machine initialization and shutdown

JVMPI - JVM sends events to the profile agent

F03SP01.prz 13
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Database tables have been changed
Some old queries will need to be rewritten (if you run them manually)

Must use new PTDV to access V5R2 data

New or updated event types
Native JDBC <-> CLI events added (*DBSVRCNN, *DBSRVREQ)

Lock / unlock events use *LCKSTR and *UNLCK

Thread create, start events report parent, child thread id

Class load/unload events contain class loader and optimization level

Wait/notify/notifyAll events contain class information

Filtering support has been added for Java methods

Many Java events now contain five levels of stack information

Performance Explorer (PEX) Changes

F03SP01.prz 14
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

3.334

2.875

2.046
1.647

SPECjbb2000 VolanoMark Intentia Movex
0

1

2

3

4

co
m

pa
re

d
to

 V
4R

5
iS

ta
r

24
-w

ay
T

im
es

 Im
pr

ov
ed

V4R5 500 MHz iStar 24-way baseline
V5R1 600 MHz sStar 24-way
V5R2 1.3 GHz POWER4 32-way

POWER4 32-way Scalability
vs. 24-way iStar and sStar

POWER4 Hardware

F03SP01.prz 15
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

WebSphere and Java Related Performance Tools

F03SP01.prz 16
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

verboseGC

DMPJVM

ANZJVM

Performance Explorer (PEX)

Performance Trace Data Visualizer (PTDV)

WebSphere Resource Analyzer

Performance Tools

F03SP01.prz 17
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Simple way to monitor GC behavior, check for object leaks

Enable with -verboseGC option on Java command line, or via WAS GUI

Example output
GC 5: starting collection, threshold allocation reached.

GC 5: live objects 31739457; collected objects 33663346; collected(KB) 4177772.

GC 5: queued for finalization 0; total soft references 622; cleared soft references 5.

GC 5: current heap(KB) 9066464; current threshold(KB) 2097152.

GC 5: collect (milliseconds) 9232.

GC 5: current cycle allocation(KB) 950219; previous cycle allocation(KB) 4194338.

GC 5: total weak references 3987; cleared weak references 0.

GC 5: total final references 118763; cleared final references 2267.

GC 5: total phantom references 0; cleared phantom references 0.

GC 5: total old soft references 0; cleared old soft references 0.

GC 5: total JNI global weak references 0; cleared JNI global weak references 0.

verboseGC

Java and WebSphere Related Performance Tools

F03SP01.prz 18
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

DMPJVM (Dump Java Virtual Machine) is a standard OS/400 command
Dump information about the JVM for a specified job

The classpath
Heap information
Garbage collection information
Thread information
Class loader list
Current Object list

Use DMPJVM to debug problems "on the fly"
Real time lock information to detect deadlocks
Garbage collection statistics to detect memory leaks
Simple debug

May need to do CHGJOB JOB(*) DFTWAIT(300) before running DMPJVM on busy Java
jobs to avoid timeout.

DMPJVM

F03SP01.prz 19
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

DMPJVM

F03SP01.prz 20
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Dump information about the JVM for a specified job
The JDK level: java.version=1.3

The classpath used for the JVM

Heap information
Garbage collector parameters

Initial size: 1048576 K
Max size: 240000000 K

Current values
Heap size: 5645408 K
JIT heap size: 494896 K
JVM heap size: 716600 K

Garbage collection information
Garbage collections: 427
Last GC cycle time: 779 ms

DMPJVM - Spool File Data

F03SP01.prz 21
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Thread information
Thread: 00000002 Thread-0
TDE: B004300003235000
Thread priority: 5
Thread status: Waiting
Wait object: com/ibm/ejs/sm/server/ManagedServer
Thread group: main
Runnable: java/lang/Thread
Stack:

java/lang/Object.wait()V+1 (Object.java:420)
com/ibm/ws/runtime/Server.awaitShutdown()V+35 (Server.java:1687)
com/ibm/ejs/sm/server/ManagedServer.main([Ljava/lang/String;)V+38 (ManagedServer.java:172)
com/ibm/ws/bootstrap/WSLauncher.main([Ljava/lang/String;)V+713 (WSLauncher.java:158)
com/ibm/ws/bootstrap/WSLauncher.main([Ljava/lang/String;)V+713 (WSLauncher.java:158)

Locks:
None

DMPJVM - Spool File Data (continued)

F03SP01.prz 22
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Class loader list / Current Object list
0 Default class loader
Loader Objects Class name
------ ------- ----------
0 15623710 [C
0 756654 java/util/Vector
0 318020 java/util/Stack
0 14293745 java/lang/String
0 635734 [Ljava/util/Hashtable$Entry;
0 1192987 [Ljava/lang/Object;
0 498741 java/util/Hashtable
0 5 java/lang/ThreadGroup
0 6088 java/lang/Class

DMPJVM - Spool File Data (continued)

F03SP01.prz 23
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

ANZJVM (Analyze Java Virtual Machine) is a standard OS/400 command
New in V5R2

Dumps a report diagnosing the differences in the JVM over specified amount of time
Can automatically run the garbage collector before each snapshot
Groups statistics by object type
Sorts the report by either the number of allocated objects difference (for a leak of a lot of small objects) or
the size of the allocated objects difference(for a slow leak of large objects)

Generates a spool file with results

Use ANZJVM to debug problems on a live JVM
Its main use is to debug object leaks

ANZJVM

F03SP01.prz 24
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

ANZJVM

F03SP01.prz 25
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Mon Sep 23 13:42:09 2002
Job: 044252/QEJB/TRADESERVE
Interval: 60 (SEC)
Total garbage collection cycles prior to running: 0
Total garbage collection cycles after running: 0
GC forced: YES
TIME OF FORCED GC: Wed Dec 31 17:59:59 1969
TIME OF FORCED GC: Wed Dec 31 17:59:59 1969
..
. Class loader information .
..
0 Default class loader
1 com/ibm/ws/classloader/CompoundClassLoader
2 com/ibm/ws/bootstrap/ExtClassLoader
3 sun/misc/Launcher$AppClassLoader
4 sun/misc/Launcher$ExtClassLoader
..
. GC heap information .
..
Loader
| Number of pass one objects in the GC heap
| | Number of pass two objects in the GC heap
| | | Change in the number of objects in the GC heap
| | | | Pass one object size (K)
| | | | | Pass two object size (K)
| | | | | | Change in object size (K)
| | | | | | | In global registry
| | | | | | | | Class name
0 592340 593326 986 26062 26106 44 NO java/lang/String
0 1042837 1043791 954 147246 147303 57 YES [C
0 341041 341269 228 13641 13650 9 NO java/lang/StringBuffer
0 22457 22561 104 28060 28110 50 YES [B
2 145 248 103 7 12 5 NO com/ibm/ejs/util/am/_Alar

ANZJVM - Spool File Data (subset)

F03SP01.prz 26
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

The two most important uses of PEX with Java are
Collecting Trace Profile data to determine where CPU time is spent

Collect Java specific event data

PEX is part of OS/400

Performance Tools/400 (PT1) provides a capability to print reports for review and
manual interpretation. Required for creating Trace Profile report.

IBM makes a no-charge tool available at AlphaWorks named PTDV
(Performance Trace Data Visualizer). PTDV can analyze and visualize Java
specific events in a PEX trace.

http://www.alphaworks.ibm.com/tech/ptdv

Performance Explorer (PEX) and Java

F03SP01.prz 27
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

To create PEX definition for Trace Profile:
pre-V5R2: ADDPEXDFN DFN(TPROF5) TYPE(*TRACE) JOB(*ALL) TASK(*ALL)
MAXSTG(100000) INTERVAL(5) TRCTYPE(*SLTEVT) SLTEVT(*YES)
BASEVT((*PMCO))

V5R2: ADDPEXDFN DFN(TPROF5) TYPE(*PROFILE) PRFTYPE(*JOB) JOB(*ALL)
TASK(*ALL) MAXSTG(100000) INTERVAL(5)

To collect data:
STRPEX SSNID(mytprof) DFN(TPROF5)

ENDPEX SSNID(*SELECT) - wait until you have around 100,000 or more events

To create the report:
PRTPEXRPT MBR(mytprof) TYPE(*PROFILE) PROFILEOPT(*SAMPLECOUNT
*PROCEDURE)

PEX Trace Profile

F03SP01.prz 28
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

 Performance Explorer Report 9/23/02 15:22:3
 Profile Information Page 5
Library . . : QPEXSPEC
Member. . . : SJAS0908A
Description : *BLANK
 Histogram Hit Hit Cum Start Map Stmt Name
 Cnt % % Addr Flag Nbr
 -
 ** 4927 3.5 3.5 FFFFFFFFFE9D9BE0 ++ 0001E0 JAVADEEP/javaxresolveinterfacebla
 * 3060 2.2 5.7 FFFFFFFFB39D3250 ++ 005E30 JAVAGC/sweepReuseSegment__27JavaThreadS
 stemGCCollectorFP6JavaVMUlT2Uc
 * 2881 2.1 7.8 FFFFFFFFFE9C75F0 ++ 000030 JAVABLA/markOldNewGCStore__FP10JavaObje
 tPP10JavaObjectUc
 2159 1.6 9.4 FFFFFFFFB17539B0 ++ 002650 QUMUGA/pSpinWait__11QuMutexGateFv
 1339 1.0 10.3 FFFFFFFFB39CDB04 ++ 0006E4 JAVAGC/markGrayCollector__6JavaGCFP10Ja
 aObjectP10JavaThread
 1313 0.9 11.3 FFFFFFFFFEAEDED0 ++ 0007C0 JVAOBJLK/javalockmonitorenterweak
 1231 0.9 12.2 17A377697F01CD10 == 0 QSQROUTX/XTPROCES

PEX Trace Profile - example output (subset)

F03SP01.prz 29
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

PEX will create a record for particular events
Method entry/exit

Java Object Creates and Deletes

Java Locks

WebSphere Events

etc.

Some events (method entry/exit) require special "hooks"
If running Direct Execution, hooks can automatically be inserted, with the ENBPFRCOL
parameter on the CRTJVAPGM command

If running JIT, hooks can automatically be inserted with the Java property os400.enbpfrcol set
to '1'.

Can generate large amounts of data

Java Related PEX Trace Events

F03SP01.prz 30
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

New in V5R2

Filtering allows you to reduce the amount of PEX data collected

For Java, you can reduce the Java method entry/exit events in the PEX collection
Methods from one or more packages

Methods from one or more classes

Individual methods

Simplifies analysis by only containing information relevant to the Java methods
in question

or can exclude methods

Triggers not available for Java at this time

Performance Explorer Filtering - Overview

F03SP01.prz 31
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Performance Explorer Filtering - ADDPEXFTR

F03SP01.prz 32
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Performance Explorer Filtering - ADDPEXFTR

F03SP01.prz 33
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Performance Explorer Filtering - STRPEX

F03SP01.prz 34
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

SELECT count(*), varchar(n.qjvnam, 30), P.QPRPNM FROM qaypetidx i,
qaypejva j, qaypejvci c, qaypejvni n, qaypeproci p WHERE i.qrecn =
j.qrecn and j.qjvpca = c.QJVCKY and C.QJVCNI = N.QJVNMO and
j.QJVSkey3 = p.qprkey and varchar(n.qjvnam, 512) like '%TimeZone%'
GROUP BY varchar(n.qjvnam, 30), p.qprpnm

 COUNT (*) VARCHAR Procedure name
 148 java/util/SimpleTimeZone java-util-Calendar-getInstance()Ljava-util-Calendar;
 363 java/util/SimpleTimeZone LE_Create_Thread2__FP12crtth_parm_t
******** End of data ********
 COUNT (*) VARCHAR Procedure name
 148 java/util/SimpleTimeZone java-util-GregorianCalendar-<init>()V
 363 java/util/SimpleTimeZone startThread__FPv
******** End of data ********
 COUNT (*) VARCHAR Procedure name
 363 java/util/SimpleTimeZone #cfmir
 148 java/util/SimpleTimeZone java-util-TimeZone-getDefault()Ljava-util-TimeZone;
******** End of data ********
 COUNT (*) VARCHAR Procedure name
 148 java/util/SimpleTimeZone java-util-SimpleTimeZone-clone()Ljava-lang-Object;
 363 java/util/SimpleTimeZone javaattachthread
******** End of data ********
 COUNT (*) VARCHAR Procedure name
 148 java/util/SimpleTimeZone javadetointerpreter
 363 java/util/SimpleTimeZone startThread__27JavaThreadSystemGCCollectorFv
******** End of data ********

Five levels of stack in Java PEX data

F03SP01.prz 35
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Performance Trace Data Visualizer
Tool for visualizing PEX trace data

Designed for working with Java programs, but will work for all ILE languages

Runs in client-server mode, with data and logic residing on the iSeries and presentation on the
PC

Originally an internal Java performance team tool, but is now externally available with limited
support

http://www.alphaworks.ibm.com/tech/ptdv

Used for Low-level analysis of problems:
Path length

Java Object leaks

Excessive exception handling

Excessive Java locking

Functional problems/program understanding

Performance Trace Data Visualizer

F03SP01.prz 36
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

PTDV Screen Shot

F03SP01.prz 37
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Allows you to view all running jobs and threads and see which are doing the most
work

Shows you a call trace for each thread, and shows amount of time, and cycles used
by each method call

Summarizes information at trace, job, thread, and method level

Detailed information on objects -- e.g. number of creates, locking behavior,
lifetime

PTDV Detailed data

F03SP01.prz 38
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Resource Analyzer is a GUI performance monitor for WebSphere Application
Server

Available for WebSphere Application Server, Advanced Edition Version 4.0.x

Once the user turns on data collection
Data is collected continuously by the application server

The data is retrieved, as needed, by Resource Analyzer

The Resource Analyzer provides access to a wide range of performance data for
two kinds of resources

Application resources (for example, enterprise beans and Servlets)

WebSphere run-time resources (for example, Java Virtual Machine (JVM) memory, application
server thread pools, and database connection pools)

Resource Analyzer - Overview

F03SP01.prz 39
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Monitor real-time performance, such as response times for servlet requests
or enterprise bean methods

Detect trends by analyzing logs of data over time

Determine the efficiency of a configuration of resources (such as the
amount of allocated memory, the size of database connection pools, and
the size of a cache for enterprise bean objects)

Gauge the load on application servers and the average wait time for clients

Resource Analyzer is used for the following analysis:

F03SP01.prz 40
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

EJB information - Number of active beans, method statistics, cache and pool information

Database connection pools - Number of connections, average wait time, number of threads,
number of times connection used

System (IMS) - Number of physical connections, Number of connection handles

JVM run time - Total memory available to JVM, amount of free memory

Servlet session manager - Total number of HTTP sessions, average time to perform request,
average concurrent active HTTP sessions

Thread pools - Object Request Broker (ORB) pool, web container pools thread information

Transaction manager - Average number of active transactions, duration of transactions,
number of methods per transaction

Web applications - Number of loaded Servlets, average response time for requests, number of
requests for the Servlet

Resource Analyzer can monitor the following information

F03SP01.prz 41
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Enterprise beans. Data for this category reports load values, response times, and life cycle activities for enterprise beans. Examples include the average number
of active beans and the number of times bean data is loaded or written to the database. It reports information for enterprise bean methods, which are the remote
interfaces used by an enterprise bean. Examples include the number of times a method was called and the average response time for the method. It also reports
information on the size and usage of a cache of bean objects (enterprise bean object pools). Examples include the number of calls attempting to retrieve an object
from a pool and the number of times an object was found available in the pool.

Database connection pools. Data for this category reports usage information about connection pools for a database. Examples are the average size of the
connection pool (number of connections), the average number of threads waiting for a connection, the average wait time in milliseconds for a connection, and the
average time the connection was in use.

J2C Connectors. Data for this category reports usage information about the J2EE (Java 2 Enterprise Edition) Connector Architecture that enables enterprise beans
to connect and interact with procedural back-end systems, such as Customer Information Control System (CICS), and Information Management System (IMS).
Examples are the number of managed connections (physical connections) and the total number of connections (connection handles).

JVM run time. Data for this category reports memory used by a process as reported by the JVM. Examples are the total memory available and the amount of free
memory for the JVM.
JVMPI run time. In addition, the Resource Analyzer makes use of a Java Virtual Machine Profiler Interface (JVMPI) to enable a more comprehensive performance
analysis. This profiling tool enables the collection of information about the Java Virtual Machine (JVM) that runs the application server. See Enabling JVMPI data
reporting.

Servlet session manager. Data for this category reports usage information for HTTP sessions. Examples include the total number of sessions being accessed,
the average amount of time it takes for a session to perform a request, and the average number of concurrently active HTTP sessions.

Thread pools. Data for this category reports information about the pool of Object Request Broker (ORB) threads that an application server uses to process remote
methods and the Web container pools that are used to process HTTP requests coming into the application server. Examples include the number of threads created
and destroyed, the maximum number of pooled threads allowed, and the average number of active threads in the pool.

Transaction manager. Data for this category reports transaction information for the container. Examples include the average number of active transactions, the
average duration of transactions, and the average number of methods per transaction.

Web applications. Data for this category reports information for the selected server. Examples include the number of loaded servlets, the average response time
for completed requests, and the number of requests for the servlet.

Notes: The Analyzer collects and reports performance
data for the following resource categories:

F03SP01.prz 42
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Resource Analyzer - Screen Shot

F03SP01.prz 43
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

WebSphere Tuning Tips and Techniques

F03SP01.prz 44
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Use the latest version of WebSphere

Setting initial GC size

Configuring queues
HTTP Server

Web Container

Data Source

Configuring caches
Prepared Statement

EJB

Datasources and JDBC

WebSphere Tuning Tips and Techniques - Topics

F03SP01.prz 45
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

EJB JDBC
0

20

40

60

80

100

120

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

WebSphere 3.5.3 WebSphere 4.0 WebSphere 4.02 WAS 5.0

170-2385 252 MHz 1way

+57%

+46%

WebSphere Advanced 5.0 provides better performance than 4.0.x and 3.5.x

Load the latest WebSphere fix pack

Use the latest version of WebSphere

F03SP01.prz 46
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

. Results were measured on a 170/2385 system

. Trade2 JDBC and Trade2 EJB benchmarks

. WebSphere 3.0.2, 3.5.0, 3.5.1, and 3.5.2 were on a V4R5 system

. WebSphere 3.5.3 was measured on both V4R5 and V5R1

. WebSphere 4.0 AE was measured on V5R1

. WebSphere 4.0.3 AE on V5R2 was estimated via measurements with WAS 4.0.2 with software enhancements to be
included with WAS 4.0.3
. The IBM HTTP Server (powered by Apache) was used starting with the V5R2 measurements
. * - Results are projected from Trade2.7, which is 20% heavier then Trade 2.5
Notes/Disclaimers:
WebSphere Application Server Trade2 Results

Notes: Use the latest version of WebSphere

F03SP01.prz 47
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Set the initial GC size to:
64MB for 1-2 way systems

256MB for 4-8 way systems

512MB for 12 way and above
Rule of Thumb: set initial GC size to 64MB per processor, increase as needed

This is twice the recommended initial GC size for non-WebSphere applications.

Setting initial GC size (for WebSphere applications)

F03SP01.prz 48
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Web
Server

Web
Container

Data
Source

Clients Database

HTTP Server
Administration
- Use the
performance
tuner to change
Max Active
Threads

Use the Admin
Console to change
Web Container
Max Threads
(formerly known
as Max
Connections)

Use the Admin
Console to
change Maximum
Connections Pool
Size

Configuring Queues

F03SP01.prz 49
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

WebSphere Queues
Bigger doesn't necessarily mean better performance

Testing is the premier way to tune the queues

Tune from Back To Front
Data Source
Web Container
HTTP Server

Where able, restrict pool from dynamically growing

Guidelines
Set HTTP threads somewhat higher than the maximum application concurrency

Set the Servlets queue size to a lower value

Set the DataSource queue size to an even lower value

Excellent Whitepaper:

http://www.ibm.com/software/webservers/appserv/3steps_perf_tuning.pdf

Configuring Queues (cont.)

F03SP01.prz 50
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

When a database query is made, there are two phases
Prepare phase - Parse the SQL text and put in a format the database understands

Execute phase - Execute the query

WebSphere and DataSources
WebSphere handles statement caching for you with a Prepared Statement Cache

After closing a PreparedStatement allocated through DataSource, WebSphere will keep it open under the
covers in the Prepared Statement Cache
One prepared statement cache per DataSource

Two separate connections using the same DataSource will use the same prepared statement cache
One connection cannot use a prepared statement from a different connection

Rule of thumb: Set statementCacheSize to:
stmtCacheSize = (number of stmts per connection) * (max number of connections)

Prepared Statement Cache

F03SP01.prz 51
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Tune the cache settings (absolute and preferred limits, size, cleanup interval) to
avoid passivation of objects.

To estimate the required value for the absolute limit property,

multiply the number of entity beans active in any given transaction by the total
number of concurrent transactions expected.

Then add the number of active session bean instances.

Tip: remove stateful Session beans when finished with them
Instances of stateful session beans have affinity to specific clients.

Reduce Container cleanup by explicitly removing after use:
mySessionBean.remove();

EJB Cache

F03SP01.prz 52
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Java Tuning Tips and Techniques

F03SP01.prz 53
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

System level optimization

Initial heap size setting

Execution mode

Java Tuning Tips and Techniques - Topics

F03SP01.prz 54
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Set MAXACT for the *BASE pool
The maximum number of threads that can use the processor concurrently. If the activity level is too low,
the threads may transition to the ineligible condition. If the activity level is too high, excessive page
faulting may occur.

It is important to increase this value for systems that are executing a large number of threads. If set too low,
may slowdown or even hang the system. Note. The value applies to number of threads not jobs

Increasing this value will reduce or eliminate thread transitions into the ineligible state.
Initial choice of value should be (arbitrarily) high, then as implementation proceeds, monitor, and
decrease the value if necessary.
Consider a separate pool if non-Java work in *BASE

Can set and monitor via WRKSYSSTS ASTLVL(*INTERMED)

Apply the latest Java PTFs
Performance improvements may be included

System Level Optimization

F03SP01.prz 55
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Tuning the Initial Heap Size is the way to tune the Garbage Collector (GC) on
iSeries

When starting the JVM, the initial heap size is specified
-Xms option on Java command line (Ex: Java -Xms256m MyClass)

Initial Heap Size should be called "garbage collection threshold" on the iSeries
Everytime the JVM creates objects of this size, it will run the GC.

This value should be tuned for each application
If the value is too high

The heap will grow too large, resulting in a higher cache miss ratio and increased paging
The JVM would need a larger amount of memory to run
The GC would have to collect more objects and scan more memory every time it runs

If the value is too low
The GC will be kicked off too often, resulting in a lot of CPU cycles dedicated to the GC

Initial Heap Size Parameter

F03SP01.prz 56
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Measure GC efficiency by measuring the time spent performing GC
Get PEX trace profile, and print the report using *PROGRAM.

Look for JAVAGC program
Rule of thumb is less then 10 percent of total CPU time should be spent in JAVAGC.

<or> Run with the -verbosegc option on the JVM command line
Will dump out how long the GC ran during each collection

Rule of thumb for Initial Heap Size (Java programs)

Processors Initial Heap Size

1 32 MB

2 64 MB

4 256 MB

8 or more 512 MB

Initial Heap Size Parameter (continued)

F03SP01.prz 57
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Direct Execution (DE)
Java classes or jar files are compiled into hidden, static programs

Just in time compilation (JIT)
Performs all compiles dynamically as the classes are used

Mixed-Mode Interpreter (MMI) execution
Uses Direct Execution or Interpreter until a method is deemed a common path

JIT compile is then performed on the method

 Characteristic Direct execution (DE) Just-in-Time (JIT) Compiler Mixed-Mode Interpreter
(MMI)

Execution speed In V5R2, DE is slower then
JIT. Primarily due to
optimizations can not
extend past the class

Faster for most programs and
dynamic environments, once the
application warms up

Just about same as JIT
compiler

Bring up speed Fast if the code is
pre-compiled; slow if is not
pre-compiled

Slower then pre-compiled DE, due
to compilations being performed on
all methods dynamically

Somewhere between JIT and
DE, due to some (but not all)
methods being JIT compiled

Ease of use More user management Invisible to user Invisible to user

Execution Modes

F03SP01.prz 58
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

JDBC Tuning Tips and Techniques

F03SP01.prz 59
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

What is JDBC

Which driver to use with iSeries

Misc. Tips and Techniques
in Backup section

JDBC Tuning Tips and Techniques - Topics

F03SP01.prz 60
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

JDBC is Java's call-level interface for SQL data access
Based on X/Open SQL CLI (Call Level Interface)

DBMS-independent interface
Generic SQL database access framework which provides a uniform interface on top of a
variety of different database connectivity modules

Allows programmers to write to a single database interface

Enables DBMS-independent Java application development tools and products

Allows database connectivity vendors to provide a variety of different connectivity solutions

What is JDBC?

F03SP01.prz 61
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Toolbox
Driver

Developer Kit (Native)
Driver

Driver Type Network enabled,
Type 4

Direct access
Type 2

DB server QZDASOINIT
same as ODBC

QSQSRVR
Call Level Interface

Statement caching *SQLPKG System-wide statement
cache

Recommended
Usage

Use when database
does not reside on
same machine as client

Use when database
resides on same
machine as client, for
better performance

Which JDBC Driver to use?

F03SP01.prz 62
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Summary

More time available?
Goto - Resolving Common Java and WebSphere Performance Problems

F03SP01.prz 63
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

The JVM continues to be improved each release.

Starting in V5R2, running with the JIT will result in best performance.

Tools like ANZJVM continue to be added and improved to help resolve
performance problems. They are being added for good reason, so consider where
they may help you in the future.

PEX database files have changed for V5R2. You may need to update "manual"
queries and will need the latest version of PTDV from alphaWorks.

Five levels of stack in V5R2 Java PEX event data can be very useful to get "quick
and dirty" information.

Move to WebSphere Application Server 5.0 (or Express) for best WAS
performance

iSeries continues to demonstrate leadership in industry standard benchmarks.

Java and WebSphere Performance Summary - key points

F03SP01.prz 64
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

More Questions ?

F03SP01.prz 65
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Backup
JDBC Tips and Techniques

F03SP01.prz 66
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Native Driver for server Java to DB2 UDB for 400
Register/Load the Driver
java.sql.DriverManager.registerDriver(new
 com.ibm.db2.jdbc.app.DB2Driver());

Connect
Connection c = DriverManager.getConnection("jdbc:db2://mySystem",p);

Toolbox Driver for client Java to DB2 UDB for AS/400
Register/Load the Driver
java.sql.DriverManager.registerDriver(new
 com.ibm.as400.access.AS400JDBCDriver());

Set the properties
Properties p = new Properties();
p.put("extended dynamic", "true");

Connect
Connection c = DriverManager.getConnection("jdbc:as400://mySystem",p);

Code Examples for Selecting JDBC Driver

F03SP01.prz 67
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Increase the number of QSQSRVR initial jobs (Native JDBC)

Use a value equal to the approximate number of expected concurrent transactions, plus
something for the Application Server.

Used for Native JDBC, default 5

CHGPJE SBSD(QSYS/QSYSWRK) PGM(QSYS/QSQSRVR)

Increased number slightly increases overhead

Ensure maximum number of uses is at default (200)

Increase the number of QZDASOINIT initial jobs (Toolbox)

Used for Toolbox JDBC, default 1

CHGPJE SBSD(QSYS/QSERVER) PGM(QIWS/QZDASOINIT)

Same rules as above

JDBC Database Subsystem Settings

F03SP01.prz 68
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Utilize PreparedStatement objects
Especially for repetitive execution of SQL Statement (allows for re-use)

Cache prepared Statements for subsequent operations

Statement caching built-into WAS using DataSource object

Ensure you close all open statements, when the application has finished
processing them

Reuse and pool database connections
Creating and setting up a connection is expensive.

Database connection pooling is built-in to WAS 3.0 or later

Tips for Improving JDBC Performance

F03SP01.prz 69
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Select only columns needed for application
Do not specify "SELECT *", unless all columns are needed

Specify the ordinal number of the column instead of column name
Column name must be resolved before processing

Column number will not have any extra processing

Use blocked operations
When retrieving a large result set

When inserting multiple rows within a database table

Create character columns as UNICODE (CCSID 13488), if allowable
No conversion is needed between Java and database data

Tips for Improving JDBC Performance (continued)

F03SP01.prz 70
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Avoid the use of packed and zoned decimal
Best to use primitive types (int and double)

Minimizes object creates

Minimize the use of getString(), especially on objects that do not need to be
treated as strings

Performs an object instantiation

Use the appropriate commitment control level
Use the minimum acceptable to ensure data integrity of application

Higher levels require more processing and locking

Utilize stored procedures
Allows Java to call embedded SQL programs

Tips for Improving JDBC Performance (continued)

F03SP01.prz 71
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Use Batch Updates (part of JDBC 2.0 specification)

Sends a set of updates to DB to be executed at the same time.

Example:
dbConn.setAutoCommit(false);

Statement stmt = dbConn.createStatement();
stmt.addBatch("INSERT INTO test VALUES (10,'Text 1',1,2");
stmt.addBatch("INSERT INTO test VALUES (11,'Text 2',3,1");
stmt.addBatch("INSERT INTO test VALUES (12,'Text 3',2,2");

int[] updCnt = stmt.executeBatch();
dbConn.commit();

Tips for Improving JDBC Performance (continued)

F03SP01.prz 72
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

WebSphere Tips and Techniques

F03SP01.prz 73
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Reuse DataSources for JDBC connections
A DataSource is obtained through a JNDI naming lookup

Obtain the DataSource in the Servlet.init() method and cache it

Use JDBC connection pooling
Avoids acquiring and closing JDBC connections

Release JDBC resources when done
Failure to do this can cause long waits for connections

Ensure code is structured to close and release under all conditions (even in exceptions and
error conditions)

DataSources and JDBC

F03SP01.prz 74
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Using JDBC the right way:

public class GoodJDBCServlet extends HttpServlet {

 private javax.sql.DataSource ds = null; // For Caching the DataSource

 // Get the DataSource (Exception Handling removed for clarity)
 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 Context ctx = new InitialContext();
 // Store the DataSource for use by every instance
 ds = (javax.sql.DataSource)ctx.lookup("jdbc/SAMPLE");
 ctx.close();
 }

 // Get a pooled connection
 public void doGet(HttpServletRequest request, HttpServletResponse response) throws

ServletException, IOException {
 try { // Get connection and execute Query
 Connection conn = ds.getConnection(USERID,PASSWORD);
 PreparedStatement pStmt = conn.prepareStatement("select * from SCHEMA.SOMETABLE");
 ResultSet rs = pStmt.executeQuery();
 ...
 } finally { // Always close both the preparedStatement and the Connection
 if (pStmt!=null) pStmt.close(); // Note: Wrap this statement in try..catch
 if (conn!=null) conn.close(); // Note: Wrap this statement in try..catch
 }
 }
}

DataSource and JDBC Example

F03SP01.prz 75
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Resolving Common Java and WebSphere Performance
Problems

F03SP01.prz 76
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Object Leaks

High CPU consumption

Inactive CPU

Excessive Object Creates

Excessive Exception Processing

Excessive Locking

Preparing Statements in WebSphere Applications

Resolving Common Problems

F03SP01.prz 77
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Symptoms

Increasing paging rates as application runs

Degrading response times

Verification
Examine -verboseGC output for number of active objects and heap size

Collect *GBGCOLSWEEP PEX events and perform manual queries

Run DMPJVM multiple times and compare number of objects and heap size

Debug
Use ANZJVM to determine which objects may be leaking

Collect *OBJCRT PEX events and perform manual queries for object type and 5 levels of stack

Collect *JVAENTRY, *JVAEXIT, and *OBJCRT PEX events to use with PTDV for object
type and larger stack sizes

Object Leaks

F03SP01.prz 78
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Symptoms
System CPU utilization too high

Verification
Use WRKACTJOB to monitor JVM CPU utilization

Debug
Collect PEX Trace Profile data and view printed report for "inline" CPU consumption.
Improve performance of listed methods if they are in your application.

Collect *JVAENTRY, *JVAEXIT PEX events to use with PTDV for inline and cumulative
CPU analysis. Improve the performance of methods using the most CPU, or recode to avoid
calling expensive methods.

High CPU Consumption

F03SP01.prz 79
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Symptoms
As the amount of input is increased, the throughput stays about the same

The CPU seems to max out well below 100%

Debug
Use WRKSYSSTS to verify MAXACT is set high enough to avoid thread transitions to
Ineligible state

If running WebSphere, attempt to tune the WebSphere queues outlined earlier

Look at thread stacks reported by DMPJVM for waiting threads

Collect *LCKSTR PEX events for manual queries to determine objects being locked on and 5
levels of stack

Collect *JVAENTRY, *JVAEXIT, *LCKSTR, *UNLCK PEX events for use with PTDV to
determine objects being locked on, length of locks, and larger stack sizes

Collect *THDWAIT PEX events for manual queries

Collect *JVAENTRY, *JVAEXIT, *THDWAIT, *THDNFY, *THDNFYALL PEX events for
use with PTDV

Inactive CPU

F03SP01.prz 80
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Symptoms
Higher CPU than expected in JVM

Verification
Check if PEX Trace Profile shows > 10% of time in JAVAGC

Debug
Collect *OBJCRT PEX events for manual queries to determine most popular objects created
and 5 levels of stack. Try to reduce object creates through object re-use or other code
modifications.

Collect *JVAENTRY, *JVAEXIT, *OBJCRT PEX events for use with PTDV to determine
most popular objects created and more levels of stack.

Excessive Object Creates

F03SP01.prz 81
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Symptoms
Higher CPU than expected in JVM

Debug
Collect *OBJCRT PEX events for manual queries to determine objects created with names like
"XYZException" and 5 levels of stack.

Collect *JVAENTRY, *JVAEXIT, *OBJCRT PEX events for use with PTDV to determine
exception objects created and additional levels of stack information.

Excessive Exception Processing

F03SP01.prz 82
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Symptoms
High CPU in OS/400 spinWait routines

CPU not scaling with load

Detailed Debug
Look at thread stacks reported by DMPJVM for waiting threads

Collect *LCKSTR PEX events for manual queries to determine objects being locked on and 5
levels of stack

Collect *JVAENTRY, *JVAEXIT, *LCKSTR, *UNLCK PEX events for use with PTDV to
determine objects being locked on, length of locks, and larger stack sizes

Collect *THDWAIT PEX events for manual queries

Collect *JVAENTRY, *JVAEXIT, *THDWAIT, *THDNFY, *THDNFYALL PEX events for
use with PTDV

Excessive Locking

F03SP01.prz 83
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Symptoms
CPU in JVM greater than expected

CPU increases too much when additional load added

Verification
Routines doing parsing show up high in PEX trace profiles

Resource Analyzer Prepared Statement Cache monitoring shows discards

Debug
Increase size of cache until discards are gone. Allow room for growth if load may increase.

Preparing Statements in WebSphere Applications

F03SP01.prz 84
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

Tuning WebSphere Prepared Statement Cache -
Using Resource Analyzer to Detect Problem

F03SP01.prz 85
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

http://www.ibm.com/servers/eserver/iseries/education/

http://www.redbooks.ibm.com
http://www.ibm.com/servers/eserver/iseries/service/itc/educ.htm

http://www-1.ibm.com/servers/eserver/iseries/education/pie/

http://www.ibm.com/eserver/iseries/support

How to engage Technical Sales Support
External Support:

http://www.ibm.com/support
Sizing Tool - http://www.ibm.com/servlet/EstimatorServlet

http://www-1.ibm.com/servers/eserver/iseries/education/key.html

http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html

end-to-end Technical Support - the Key Links

F03SP01.prz 86
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

WebSphere Application Server for iSeries™ Performance Considerations
WebSphere 5.0 and WebSphere 5.0 Express

http://www-1.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/product/performancews50.html

WebSphere 4.0
http://www-1.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/product/performanceAE40.html

WebSphere 3.5.x
http://www-1.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/product/performanceAE35.html

iSeries Performance Capabilities Reference
V5R2

http://ca-web.rchland.ibm.com/perform/perfguideup/V5R21PerfGuide/V5R21PerfGuide.pdf
http://ca-web.rchland.ibm.com/perform/perfguideup/v5r2perfguide/v5r2perfguide.pdf

V5R1
http://ca-web.rchland.ibm.com/perform/perfguideup/v5r1perfguide/v5r1perfguide.pdf

WebSphere Application Server - Performance Home Page
http://www-3.ibm.com/software/webservers/appserv/performance.html

WebSphere Application Server Performance References

F03SP01.prz 87
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

WebSphere
iSeries

http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/

iSeries WebSphere Performance White Paper
http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/product/PerformanceConsiderations.html

PartnerWorld for Developers
http://www.iseries.ibm.com/developer/websphere

IBM WebSphere
http://www.software.ibm.com/webservers/
http://www.software.ibm.com/webservers/appserv

WebSphere White Papers
http://www.ibm.com/software/webservers/appserv/whitepapers.html

iSeries Performance Tools
http://www.ibm.com/servers/eserver/iseries/perfmgmt/

Redbooks/Redpapers/Redpieces
http://www.redbooks.ibm.com/

References

F03SP01.prz 88
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

iSeries 400
http://www.ibm.com/as400/infocenter

iSeries 400 Web Programming Technology
http://www.iseries.ibm.com/ebusiness/

WebSphere
http://www.iseries.ibm.com/websphere

http://www.iseries.ibm.com/developer/websphere

http://www.software.ibm.com/webservers/

http://www.software.ibm.com/webservers/appserv

VisualAge for Java
http://www.software.ibm.com/ad/vajava

Java
http://www.iseries.ibm.com/developer/java

References

F03SP01.prz 89
02/24/03

IBM eServer iSeries

© 2003 IBM Corporation

8 IBM Corporation 1994-2003. All rights reserved.

References in this document to IBM products or services do not imply that IBM intends to make them available in every country.
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

Lotus, Freelance Graphics, and Word Pro are registered trademarks of Lotus Development Corporation and/or IBM Corporation.
Domino is a trademark of Lotus Development Corporation and/or IBM Corporation.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other countries.
SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC.
SPECjbb®2000, SPECjAppServer®2001, SPECweb®99, and SPECweb®99_SSL are registered trademarks of the Standard Performance Evaluation Corporation (SPEC).
Other company, product and service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual environmental costs
and performance characteristics may vary by customer.

Information in this presentation concerning non-IBM products was obtained from a supplier of these products, published announcement material, or other publicly available sources and
does not constitute an endorsement of such products by IBM. Sources for non-IBM list prices and performance numbers are taken from publicly available information, including vendor
announcements and vendor worldwide homepages. IBM has not tested these products and cannot confirm the accuracy of performance, capability, or any other claims related to
non-IBM products. Questions on the capability of non-IBM products should be addressed to the supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Contact your local IBM office or IBM
authorized reseller for the full text of the specific Statement of Direction.

Some information in this presentation addresses anticipated future capabilities. Such information is not intended as a definitive statement of a commitment to specific levels of
performance, function or delivery schedules with respect to any future products. Such commitments are only made in IBM product announcements. The information is presented here to
communicate IBM's current investment and development activities as a good faith effort to help with our customers' future planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any user will experience
will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

Photographs shown are of engineering prototypes. Changes may be incorporated in production models.

AS/400 IBM(logo)
AS/400e iSeries
e (logo) business OS/400
IBM WebSphere

Trademarks and Disclaimers

F03SP01.prz 90
02/24/03

