

Experiences using IBM Rational Software Modeler at Credit Suisse IT Private Banking

IBM Software Rational Developer Platform Event, Zürich

Date: 16.09.2009 Produced by: Karl Holik, Credit Suisse

Personal Introduction: Karl Holik

"I decide with which mood I go to work"

CREDIT SUISSE

Personal data

- Age: 34 years
- Single
- Languages: German, English, French, Spanish, Czech

Education

March 2001: MSc ETH Physics

Professional life

- Jun 01 Aug 04: Accenture (IT Consultant)
- Sep 04 Mar 07: Helsana (Chief of Staff IT, IT Project Manager, Program Manager)
- Since May 07: Credit Suisse
 - Head of Development Support / SW Architects DWH
 - Process Manager Solution Engineering
 - Process Manager Client Account Mgmt. / IT Product & Service Mgmt.

My leisure time

- Travelling, Diving, Horse Riding, Hiking
- Dancing (Salsa), Gourmet stuff

Agenda

1. Credit Suisse IT Switzerland Organization and Key Figures

ess	Shared Services						Credit Suisse IT PB
Busin		Investment Banking	Asset Management	Private Banking		Number of servers	6,750 Servers (Windows, UNIX, z/OS)
	n Delivery ervices	belivery ices	belivery	belivery		Number of applications	~ 800 applications (highly integrated)
	Solutio & Si	Solution [& Serv	Solution I & Serv	Solution [& Servi	/	Lines of Code	Java: ~ 11 Mio. PL/1: ~ 32 Mio.
witzerland	IT Corporate	IT Investment	IT Asset	IT Private Banking	e Banking	Payment transactions	~ 250 Mio. / year
	Technology Infrastructure Services				Printed pages	~ 224 Mio. / year	
の EM	EA					Emails	~ 339 Mio. / year
ß	Americas					Employees	~ 4'000

One Bank Credit Suisse

 Credit Suisse IT has one client, its Business → Banking (Private Banking, Investment Banking, ...) and Shared Services (Human Resources, Risk Management, Legal & Compliance, ...)

1. The Swiss Banking IT Platform (SBIP) – Technologies and Integration

- Applications are deployed on 5 standardized Application Platforms
- The IT PB application landscape is highly integrated
- Most of applications run on Mainframe (PL/1) and JAP (Java)

1. Development Process Lifecycle Models at Credit Suisse IT PB CH

1. Software Design in context of the Credit Suisse IT PB CH Solution Delivery Process

1. A Standard Tool Chain is one Element in bringing Processes alive and making Processes practicable

Note: Arrow directions document integration dependencies, not necessarily navigation/information flow.

Agenda

2. The Case for UML

2. The Case for the Software Architecture Document (SAD)

2. Software Architecture: The way from the paper-based System Specification to the model-centric Software Architecture Document (SAD)

Abbreviations: RSM = Rational Software Modeler, RSA = Rational Software Architect, SoDA = Rational SoDA

2. Motivation for the Software Architecture Document: Pains and Common Questions regarding the System Specification from our IT Community

Feedback from our Software Engineers and Software Architects community:

- I don't know where to find current documentation for my application do l have to create a full system specification for this little change in my project?"
- "Why do I have to include the same information in several documents for review purposes?"
- "Why is there no common software engineering / visual modeling tool for specification and documentation?"
- "Using UML for software design is only suitable for object oriented programming languages such as Java and not for structured programming such as PL/1. I want to stay with Jackson!"

2. Purpose of the Software Architecture Document (SAD)

Record the architectural and design decisions for an application

- structure: components, data models (logical/physical)
- behavior: interfaces/services required & implemented, user interface concept/design
- deployment: technical architecture (platform, nodes)

Focus on architecturally significant requirements

- essential functionality
- non-functional requirements such as quality, reliability, performance, security, maintainability, configurability etc.

It is a product document (1 application = 1 SAD)

- required document as per IT PV milestones (initialization, system design, deployment)
- not part of project documentation (e.g. project plan)

2. Goals of the Software Architecture Document (SAD)

2. Multiple Views – Separate Concerns

Overview:

Introduction and placement in application landscape

Structural View:

Which components and data make up the application?

Behavioral View:

How do the components work together to realize the use cases?

Deployment View:

Where are the components deployed, on which platforms?

Development View:

Description of development environment

2. Design follows Credit Suisse Application Structure

2. Common Building Blocks speed up Design Tasks

- A set of "building blocks" are made available to assist the Software Architect and Software Engineer to compose the design
- The building blocks can be copy/pasted into the UML model and provide a default structure that can be filled-in and completed

Platform-specific

building blocks support

the solution architect to

Viewtypes define

🚊 🚾 sad_viewtypes i

required information by stakeholders

2. Example of Platform-specific Building Blocks

Example for PL/1 (structured programming)

- A PL/I module for example, can be represented as a UML component, only exhibiting one operation and no data elements.
- A PL/I data structure can be represented likewise as a class, but only showing the data elements.

Example for a Data Model (Entity-Relationship-Diagram style)

2. Common Design Elements: Capture detailed Information per Design Element

- Common design elements have pre-defined attributes.
- Attributes define the information that must/can be recorded (e.g. for an application, this would include the application domain name (application clustering), the unique CS application ID etc.; for a technical component it would include the application platform it depends on, the technical name etc.)

2. Software Architecture Document: View Definition and Generation

- The design model is used as input to the report generator
- The generator uses a view definition to create either a PDF report (e.g. for review purposes), or an HTML report to publish for project-internal documentation

Architecture View

2. Templates, Guidelines and Views integrated with Rational Software Modeler

SAD Process Asset (Deliverables)

- Deliverables will be importable to RSM
- Guidelines will include:
 - Setup modeling environment
 - Collaborate in team
 - Manage multiple releases
 - Define System Context
 - Define component model
 - Define service model
 - Define deployment model
 - Establish Traceability
 - Publish a SAD
 - Use RSM with SoDA
 - Define UI Concept & Model
 - Define PIM Service Model

🕮 cs_rsm_checklists	
@ cs_sad_template	RSM Model Template and UML Profile
🕮 uml_modeling_guideline	UML Modeling Guideline (update)
🕮 soda_view_templates	SoDA Templates for: SAD (including Security Design), IT DR Concept, IT Operations, Risk Profile

2. User Guidance and Reference Material available in **Rational Software Modeler**

RSM Help links to Credit Suisse internal standard

Checklists for step-by-step instructions

CREDIT SUISS

2. The Software Architecture Document (SAD) in a Complex Environment – Challenges

Migration to the Software Architecture Document

Multiple System Specifications: inconsistent documents in various repositories

 \rightarrow How to migrate from System Specification to SAD?

Parallel Development regarding SAD

- Configuration management and splitting the model is the solution in theory
- → But how does configuration management concretely work for versioning of packages, classes, etc.?
- \rightarrow How do we synchronize the SAD in the event of parallel development?
- → How do we handle SAD in the context of Global Distributed Development (GDD)?

2. Software Architecture Document: The Summary

- The Software Architecture Document is model-centric, is held under configuration management (like source code) and is an integral part of the application documentation.
- The implementation in Rational Software Modeler provides a professional workingenvironment with out-of-the box integrations to the Credit Suisse Standard Tool-Chain (e.g. Rational RequisitePro, Rational Clear Case, etc.).
 → Be compliant to standard processes (CMMI ML3) without thinking about it.
- The pre-defined building blocks (stereotypes with constraints) provide a minimal standard for documenting software architecture at Credit Suisse IT, but do not exaggerate modeling standardization (potential reason for failure due to change resistance by senior software architects).
- The automated generation of stakeholder reports at any time and the predefined SAD template in Rational Software Modeler increase staff motivation → Work on content instead of setting up the work environment.
- Guidelines, links to Credit Suisse internal standards and step-by-step instructions will be delivered by the Credit Suisse standard installation of Rational Software Modeler to the end-users. → No individual customization and installation needed.

2. Software Architecture Document: The real Summary From Mud-Wrestling to a Controlled Ride

Without Software Architecture Document (SAD)

With SAD

- → Managed application architecture under CM
- → Documentation corresponds to actual implementation
- → Professional working-environment with integration & automation

2. Software Architecture Document: Mountains of Paper for Documenting Applications are History

Agenda

3. CS Solution Engineering Strategy Roadmap: Component Reuse & Software Product Lines

3. CS Solution Engineering Strategy Roadmap: Model Driven Architecture (MDA)

2009		2010	2011	2012
Tool Basis RSM/RSA Rollout SAD Dev. IFMS – Integrate	RSM/RSA	Model Driven A	Architecture (MDA)	

Provide necessary infrastructure for MDA

Professional setup of RSM/RSA

• UML standards for design and

architecture documentation

Standardized and broadly applied generated SWE Standard Code Generator (enable MDA out of RSM/RSA)

Enhance standardized models and establish MDA-readiness

- 3. Long-term Concept for Model Driven Architecture at Credit Suisse IT for Java
- Long-term MDA concept (full integration of MDA tool needed)

- Models are sources and input to the build process
- MDA-based generation is conducted on the central build server
- MDA tool(s) are part of the QMB build tool and are integrated "headless" (without direct user interface and interaction)

3. Model Driven Architecture (MDA) Concept for Services with the Interface Management System (IFMS) at Credit Suisse

3. Model Driven Architecture for Services with IFMS: Generator Overview

3. Overview of future Rational Software Modeler Integration in the Context of the CS IT Tool-Landscape

SAD = Software Architecture Document, MDA = Model Driven Architecture, BOM = Business Objects Model CREDIT SUISSE Date: 11.09.2009 Slide 34

Agenda

4. Questions

Appendix

Abbreviations

аВОМ	Application Business Object Model
Appl.	Application
вом	Business Objects Model
СН	Switzerland
СМ	Configuration Management
CS	Credit Suisse
IDE	Integrated Development Environment
IDL	Interface Definition Language
IFMS	Interface Management System
MAF	Java Virtual Machine
MDA	Model Driven Architecture
ML3	Maturity Level 3
РВ	Private Banking
ЫМ	Platform Independent Model
RSA	Rational Software Architect
RSM	Rational Software Modeler
RUP	Rational Unified Process
QMB	QMBridge

SAD	Software Architecture Document
UI	User Interface
UML	Unified Modeling Language
WLS	WebLogic Server
WSDL	Web Service Definition Language

Definitions

QMBridge (QMB)	A tool used for creating, building, testing, and releasing Java J2EE applications on the Credit Suisse standard application platform JAP. [Credit Suisse IT]				
Model Driven Architecture (MDA)	 Standard defined by OMG (Object Management Group) Provides an open, vendor-neutral approach to the challenge of business and technology change Separates business and application logic from underlying platform technology Platform independent-models document the behavior of an application separated from the technology-specific code that implements it Platform-independent models of an application can be realized on different platforms Business and technical aspects of an application can each evolve at its own pace [OMG] 				
Business Object Model (BOM)	A Business Object Model is a conceptual model and is used for the communication between business and IT. The model captures all information need of the business by considering structural aspects and behavioral aspects. The model is expressed in the UML-Notation, e.g. class diagrams for the static structural modeling; state diagrams, sequence diagrams, activity diagrams etc. for the behavioral modeling. [Credit Suisse]				
Interface Management System (IFMS)	Credit Suisse in-house solution for managing, cataloguing and generating services such as WebServices, Corba-Services, etc. [Credit Suisse]				

