
CICS® Transaction Gateway

Programming
Version 3.1

SC34-5594-00

IBM

CICS® Transaction Gateway

Programming
Version 3.1

SC34-5594-00

IBM

Note!
Before using this information and the product it supports, be sure to read the general information under
“Appendix B. Notices” on page 63.

First edition (September 1999)

This edition applies to Version 3.1 of CICS Transaction Gateway, program number 5648-B43.

Material that was not in the CICS Transaction Gateway Version 3.0 books is indicated by vertical lines to the left of
that material.

© Copyright International Business Machines Corporation 1996, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book v
Who should read this book v
Conventions and terminology used in this
book v
Prerequisite and related information v

IBM CICS Transaction Gateway publications v
How to send your comments v
Obtaining books from IBM vi

Chapter 1. CICS Transaction Gateway
programming interface overview 1

Chapter 2. Writing Java client programs . . 3
Flow of program control 3
Setting up the CLASSPATH 4
TestECI 5

Running TestECI as an application 5
Running TestECI as an applet 6

TestEPI 6
Running TestEPI 7

Using a browser and CICS Transaction
Gateway on the same workstation 8
Performance issues 8
Tracing in Java client programs 9

Chapter 3. CICS Transaction Gateway
security classes 11

Chapter 4. EPI support classes 15
Using the EPI support classes 17

Connecting to CICS and starting a
transaction 17
Accessing fields on CICS 3270 screens . . 17
Synchronization and sessions 18
Using Screen without Terminal. 20

Converting BMS maps and using the Map
class 20

Using Map classes 21
EPI samples 22

EPISample1 22
EPISample2 22

Using the EPIRequest class 22

Chapter 5. EPI beans 25

CICS Transaction Gateway EPI beans
Overview 25

Running EPIApplet 25
Using the beans 26

Getting started with VisualAge for Java . . . 29
Importing the CICS Transaction Gateway
classes into VisualAge for Java 29
The Demo applet 29
The Demo2 applet 31
Hints and Tips 33

Screen Handler beans 34
Generating screen handler beans 34
Customizing and writing Screen Handlers 35

EPI beans reference 36
EPITerminal bean 36
EPIBasicScreenHandler bean 38
EPIMonitor bean 39
EPIScreenButtons bean 40

Chapter 6. CICS Transaction Gateway
programming samples 41
EPI samples 41
Security samples 42
Terminal Servlet samples. 42
Test samples 43

Chapter 7. Using VisualAge for Java . . . 45
VisualAge for Java and the CICS Transaction
Gateway classes. 45
Building an EPI Applet 48

Creating an Applet. 48
Creating an EPI Terminal 48
Creating a Logon Button 49
Creating an EPI Basic Screen Handler . . 49
Connecting the Logon Button to EPI
Terminal 50
Creating EPI Screen Buttons. 50

Testing the Applet within VisualAge for Java 51
Exporting the Applet 51
Running the Applet 53

Chapter 8. Java class reference
information 55
Class/interface page 55
Use page 56

© Copyright IBM Corp. 1996, 1999 iii

||

|
||
||
||

|
||

||
||
|
||
||
||
||
|
||
||
||
||
||
||

||

|
||
||
||
||
|
||
||
||
||
||
||
||
||
||
||
||
||

|
||
||
||
||
||

||
|
||
||
||
||
||
||
|
||
||
||
||
||

|
||
||
||

Tree (Class Hierarchy). 56
Deprecated API 56
Index page 56

Appendix A. The CICS Transaction
Gateway and CICS Universal Clients
library 57
CICS Transaction Gateway books 57
CICS Universal Clients books 58
CICS Family publications 58
Book filenames 59

Sample configuration documents 59
Other publications 60
Viewing the online documentation 60

Viewing PDF books 61

Appendix B. Notices 63
Trademarks 65

Index 67

iv CICS Transaction Gateway Programming

||
||
||

|
|
||
||
||
||
||

||
||
||
||

About this book

This book provides an introduction to Java™ programming with the CICS
Transaction Gateway. It describes the Java classes, Java beans, and
programming samples that are provided, and also how to use VisualAge for
Java to develop applets for accessing CICS transactions.

Who should read this book

This book is intended for anyone involved with programming a CICS
Transaction Gateway.

It is assumed that you are familiar with the operating system under which
your CICS Transaction Gateway runs.

An understanding of Internet terminology would also be helpful.

Conventions and terminology used in this book

References to paths in this book use the OS/2® and Microsoft® Windows®

convention of a backslash (\) as delimiter, instead of the / delimiter used on
the AIX and Solaris platforms.

Prerequisite and related information

The following sections list books relevant to CICS Transaction Gateway.

IBM CICS Transaction Gateway publications

For information on the books in the CICS Transaction Gateway and CICS
Universal Clients library, refer to “Appendix A. The CICS Transaction
Gateway and CICS Universal Clients library” on page 57. That chapter also
gives details of how to view and print the softcopy books supplied with CICS
Universal Clients and how to order printed copies from IBM.

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book, or any
other CICS documentation:
v Visit our Web site at:

© Copyright IBM Corp. 1996, 1999 v

|
|
|
|
|

http://www.ibm.com/software/ts/cics/

and follow the Library link to our feedback form.

Here you will find the feedback page where you can enter and submit your
comments.

v Send your comments by e-mail to idrcf@hursley.ibm.com
v Fax your comments to:

+44-1962-870229 (if you are outside the UK)
01962-870229 (if you are in the UK)

v Mail your comments to:

Information Development
Mail Point 095
IBM United Kingdom Laboratories
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

Whichever method you use, ensure that you include:
v The name of the book
v The form number of the book
v If applicable, the version of the product
v The specific location of the text you are commenting on, for example, a

page number or table number.

When you send information to IBM, you grant IBM a non-exclusive right to
use or distribute the information in any way it believes appropriate without
incurring any obligation to you.

Obtaining books from IBM

For information on books you can download, visit our Web site at:
http://www.ibm.com/software/ts/cics/

and follow the Library link.

You can order hardcopy books:
v Through your IBM representative or the IBM branch office serving your

locality.
v By calling 1-800-879-2755 in the United States.

vi CICS Transaction Gateway Programming

v From the Web site at:
http://www.elink.ibmlink.ibm.com/pbl/pbl

About this book vii

viii CICS Transaction Gateway Programming

Chapter 1. CICS Transaction Gateway programming
interface overview

This chapter introduces the classes, interfaces, and Java Beans that make up
the public programming interface of CICS Transaction Gateway.
v Java client program classes

– com.ibm.ctg.client.JavaGateway
– com.ibm.ctg.client.ECIRequest
– com.ibm.ctg.client.EPIRequest
– com.ibm.ctg.client.ESIRequest
– com.ibm.ctg.client.CicsCpRequest
– com.ibm.ctg.client.Callbackable (interface)
– com.ibm.ctg.client.GatewayRequest

For more information, see “Chapter 2. Writing Java client programs” on
page 3.

v Interface definitions and certificate objects for writing Gateway security
classes
– com.ibm.ctg.security.ClientSecurity
– com.ibm.ctg.security.ServerSecurity
– com.ibm.ctg.security.SSLightServerSecurity
– com.ibm.sslight.SSLCert[]
– com.ibm.ctg.security.SystemSSLServerSecurity (OS/390 only)
– com.ibm.gskssl.SSLCertificate (OS/390 only)
– com.ibm.ctg.util.RACF.Userid (OS/390 only)

For more information, see “Chapter 3. CICS Transaction Gateway security
classes” on page 11

v CICS Transaction Gateway EPI support classes
– com.ibm.ctg.epi.AID
– com.ibm.ctg.epi.EPIGateway
– com.ibm.ctg.epi.Field
– com.ibm.ctg.epi.FieldData
– com.ibm.ctg.epi.Map
– com.ibm.ctg.epi.MapData
– com.ibm.ctg.epi.Screen
– com.ibm.ctg.epi.Terminal
– com.ibm.ctg.epi.TerminalSession (interface)
– com.ibm.ctg.epi.TerminalInterface
– com.ibm.ctg.epi.Session (interface)
– com.ibm.ctg.epi.EPIException

© Copyright IBM Corp. 1996, 1999 1

|

|
|
|
|
|
|
|
|
|

|
|

|
|

These classes are not available for CICS Transaction Gateway for OS/390.

For more information, see “Chapter 4. EPI support classes” on page 15.
v CICS Transaction Gateway EPI bean classes

– com.ibm.ctg.epi.EPIBasicScreenHandler Class
– com.ibm.ctg.epi.EPITerminal Class
– com.ibm.ctg.epi.ScreenEvent Class
– com.ibm.ctg.epi.ScreenEventListener interface
– com.ibm.ctg.epi.ScreenHandler Class
– com.ibm.ctg.epi.TerminalEvent Class
– com.ibm.ctg.epi.TerminalEventListener interface

These classes are not available for CICS Transaction Gateway for OS/390.

For more information, see “Chapter 5. EPI beans” on page 25.

Note: Although it may appear that there is a greater emphasis on EPI
programming (support classes, beans) compared to ECI programming
in CICS Transaction Gateway, this is a natural consequence of the
nature of these interfaces. For more information on the ECI and EPI see
the CICS Family: Client/Server Programming book.

Online information on CICS Transaction Gateway classes and interfaces is
provided in Hypertext Markup Language (HTML) format. For more
information, see “Chapter 8. Java class reference information” on page 55.

Programming interface overview

2 CICS Transaction Gateway Programming

|
|
|
|
|

|
|
|

Chapter 2. Writing Java client programs

This chapter provides an introduction to writing Java client programs for the
CICS Transaction Gateway.

The CICS Transaction Gateway provides the following basic classes for
writing Java client programs:

com.ibm.ctg.client.JavaGateway
This class represents the logical connection between a program and a
CICS Transaction Gateway. You need a JavaGateway object for each
CICS Transaction Gateway that you wish to talk to.

com.ibm.ctg.client.ECIRequest
This class contains the details of an ECI request to the Gateway.

com.ibm.ctg.client.EPIRequest
This class contains the details of an EPI request to the Gateway.

com.ibm.ctg.client.ESIRequest
This class contains the details of an ESI request to the Gateway.

com.ibm.ctg.client.CicsCpRequest
This class contains the details of the codepage used by the CICS
Universal Client.

com.ibm.ctg.client.Callbackable
The asynchronous model supported by the CICS Transaction Gateway
allows the use of callback objects. This interface defines the methods
that a Callbackable object must provide.

com.ibm.ctg.client.GatewayRequest
This is the root class that all the different types of Gateway request
are built from. A user program cannot create a GatewayRequest object.

Flow of program control

At the simplest level, the flow of program control needed to write a simple
CICS Transaction Gateway Java client program is as follows:
1. The Java program creates and opens an instance of an

com.ibm.ctg.client.JavaGateway object.
v The default JavaGateway constructor creates a blank JavaGateway

object. You must then set the correct properties in this object using the
relevant set.. methods. The JavaGateway is then opened by calling the
open method.

© Copyright IBM Corp. 1996, 1999 3

|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|

v Two other JavaGateway constructors exist that simplify the creation of a
JavaGateway by setting the relevant properties and implicitly calling the
open method for you. On return from a successful call to one of these
constructors, the resultant JavaGateway is open and connected to the
requested CICS Transaction Gateway.

2. The Java program creates an instance of one of the Gateway request
classes containing the request that it wishes to make, that is:
v A com.ibm.ctg.client.ECIRequest is created for an ECI request
v A com.ibm.ctg.client.EPIRequest is created for an EPI request
v A com.ibm.ctg.client.ESIRequest is created for an ESI request
v A com.ibm.ctg.client.CicsCpRequest is created for querying the codepage

of the CICS Universal Client it is connected through.
3. The Java program then flows the request to the CICS Transaction Gateway

using the flow method of the JavaGateway object.
4. The Java program checks the return code of the flow operation to see

whether the request was successful.
5. The program continues to create request objects and flow them through

the JavaGateway object, as appropriate.
6. The Java program then closes the JavaGateway object.

The CICS Transaction Gateway also provides a sample program TestECI, and
a sample applet TestEPI to illustrate the use of these classes.

Note: There is no TestESI sample.

Setting up the CLASSPATH

Before you write any Java client programs, you must update the CLASSPATH
environment variable to include the jar files supplied with the CICS
Transaction Gateway. You must include the path to the ctgclient.jar file, and
the ctgserver.jar file is required on the CLASSPATH statement if you are going
to use the local CICS Transaction Gateway. For example, for CICS Transaction
Gateway for Windows NT®:
CLASSPATH = C:\Program Files\IBM\CICS Transaction
Gateway\classes\ctgclient.jar;C:\Program Files\IBM\CICS
Transaction Gateway\classes\ctgserver.jar

For more information on setting CLASSPATH, see the CICS Transaction
Gateway Administration book for your platform.

Writing Java client programs

4 CICS Transaction Gateway Programming

|

|

|

|
|

|
|
|
|
|
|

|
|
|

|
|

TestECI

TestECI is a sample program that allows you to test the functionality of the
CICS Transaction Gateway. With TestECI you can connect to a Gateway and
then send one or more ECI requests to a CICS server. If you specify more than
one CICS program on the server, all the programs are run as one extended
Logical Unit of Work (LUW). You can run TestECI either as an application, or
as an applet.

The source for TestECI is provided in the directory:
samples\java\com\ibm\ctg\test

Running TestECI as an application

When running TestECI as an application, parameters are passed in via the
command line and output appears in the console.

The syntax is:
java com.ibm.ctg.test.TestECI [jgate=jgate_URL]

[jgateport=jgate_port]
[clientsecurity=client_security_class]
[serversecurity=server_security_class]
[server=cics_server]
[userid=cics_userid]
[password=cics_password]
[prog<0..9>=prog_name]
[commarea=comm_area]
[commarealength=comm_area_length]
[status]
[trace]

Where :
v jgate_URL is the URL of the Gateway to connect to.
v jgate_port is the TCP/IP port to connect to on jgate_server, if it was not

specified as part of the jgate_URL.
v client_security_class is the name of the class to use to provide client-side

security.
v server_security_class is the name of the class to use to provide server-side

security.
v cics_server is the name of the CICS server to receive ECI requests.
v cics_userid and cics_password are the userid and password.
v prog_name is the name of a CICS server program. You can specify up to ten

program names.
v comm_area is the initial value of the COMMAREA, if any.

Writing Java client programs

Chapter 2. Writing Java client programs 5

v comm_area_length is the length of the COMMAREA to send to each CICS
server program.

v status causes the program to query the status of all the known CICS
servers.

v trace causes tracing information to be produced.

For example:
java com.ibm.ctg.test.TestECI jgate=myjgate.here.com server=mycics
commarea="Hello World" prog0=testprog prog1=testprog2 status

Running TestECI as an applet

When running TestECI as an applet you pass in parameters via <param> tags
within the <applet> tag. Output appears in a text area on the browser running
the applet.

The parameters are the same as those used when running TestECI as an
application (see “Running TestECI as an application” on page 5).
<applet
.....
<param name="jgate" value="jgate_URL">
<param name="jgateport" value="jgate_port">
<param name="clientsecurity" value="client_security_class">
<param name="serversecurity" value="server_security_class">
<param name="server" value="cics_server">
<param name="userid" value="cics_userid">
<param name="password" value="cics_password">
<param name="progn" value=prog_name">
<param name="commarea" value="comm_area">
<param name="commarealength" value="comm_area_length">
<param name="status" value="yes">
<param name="trace" value="yes">
</applet>

If jgate_URL is not specified, the browser connects to the applet host.

Sample HTML to invoke TestECI as an applet is provided in testeci.html,
which is located with the TestECI source.

TestEPI

TestEPI is a sample applet that allows you to test the functionality of the CICS
Transaction Gateway. With TestEPI you can connect to a Gateway, and then
send one or more EPI requests to a CICS server.

TestEPI uses two other classes: RequestDetails and EPIStrings, which are also
provided.

Writing Java client programs

6 CICS Transaction Gateway Programming

The source for TestEPI, RequestDetails, EPIStrings, and testepi.html is
provided in the directory:
samples\java\com\ibm\ctg\test

Running TestEPI

As with other applets, TestEPI may be invoked from a web browser or an
appletviewer using its HTML file: testepi.html.

TestEPI has a scrolling list that contains two EPI requests:
v List CICS Servers
v Run Transaction CECI

The default is List CICS Servers.

Before pressing the Execute button, fill in the CICS Transaction Gateway
Host Name and the CICS Transaction Gateway Port Number.

If you are about to run the transaction CECI, and do not wish to use the CICS
client’s default server, you may fill in the CICS Server name. Before executing
the transaction CECI, you are recommended to fill in the CICS Server device
type; if you do not do so, the CICS server may select an inappropriate model.
To obtain the name of an appropriate CICS Server device type you should
contact your CICS server administrator.

When you press the Execute button, TestEPI starts a new thread on which to
service your request. This Thread traces its progress in the TextArea entitled:
EPI Request Execution Details. The latest thread to finish will display its
success or failure in the TextField entitled: Latest EPI Request Result

Each Thread started as a result of pressing the Execute button starts a new
JavaGateway connection, and closes it before ending.

TestEPI may be recompiled with Gateway tracing active, by changing the line
T.setOn(false);

to
T.setOn(true);

See “Tracing in Java client programs” on page 9 for more information.

Turning this tracing on affects the Java client only and does not affect tracing
on the CICS Transaction Gateway itself.

Writing Java client programs

Chapter 2. Writing Java client programs 7

|

|

|

|

|

|

Using a browser and CICS Transaction Gateway on the same workstation

If you intend to use a browser and CICS Transaction Gateway on the same
workstation, you must remove ctgclient.jar and ctgserver.jar from the
CLASSPATH setting. If you do not remove them, you are likely to receive the
following error when running TestECI and TestEPI as an applet:
ERROR: java.io.IOException:
CCL6664E: Unable to load relevant class to support the tcp protocol

The reason for the error is that Java searches the CLASSPATH environment
variable before downloading classes across the network. If the required class
is local, Java attempts to use it. However, using class files from the local file
system breaks Java applet security rules, therefore an exception is raised.

Performance issues

There are several performance issues to be considered when running Java
client applications. The Java Virtual Machine (JVM) allocates a fixed size of
stack space for each running thread in an application or applet. Hence, there
are two categories of space that Java allocates, and these are controlled by the
following options of java, the Java byte-code interpreter:

-ss The Native Stack Size, allocated when running native JIT
(Just-In-Time) compiled code.

-oss The Java Stack Size, allocated when running Java Bytecode

The Java virtual machine can allocate a varying size of heap space for each
running application or applet:

-ms The initial Java heap size

-mx The maximum Java heap size

It is recommended that in the case of a machine running many CICS Java
applications or applets, the Native Stack Size and Java Stack Size be restricted
to 32KB. Also, the inital heap size and maximum heap size should be
restricted to 32 KB and 64 KB respectively. To do this, you must specify the
following options to the java interpreter:
-ss 32k -os 32k -ms 32k -mx 64k

Writing Java client programs

8 CICS Transaction Gateway Programming

|
|

|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|

||
|

||

|
|

||

||

|
|
|
|
|

|

Tracing in Java client programs

You can control tracing in Java client programs using:
v calls to the com.ibm.ctg.client.T class
v Gateway.T system properties

For example:
java -DGateway.T=on com.ibm.ctg.test.TestECI

to specify full debug for TestECI. For more information on the use of
system properties, refer to your Java documentation.

The trace levels that you can specify for the two methods are:

Trace level com.ibm.ctg.client.T call System property

Product T.setOn (true/false) Gateway.T.trace=on

Full Debug T.setDebugOn (true/false) Gateway.T=on

Method entry T.setEntryOn (true/false) Gateway.T.entry=on

Method exit T.setExitOn (true/false) Gateway.T.exit=on

Arbitrary lines T.setLinesOn (true/false) Gateway.T.lines=on

Exception stacks T.setStackOn (true/false) Gateway.T.stack=on

Timing T.setTimingOn (true/false) Gateway.T.timing=on

Writing Java client programs

Chapter 2. Writing Java client programs 9

|
|

|

|

|

|

|

|
|

|

||||

|||

|||

|||

|||

|||

|||

|||

Writing Java client programs

10 CICS Transaction Gateway Programming

Chapter 3. CICS Transaction Gateway security classes

The CICS Transaction Gateway provides the following classes for
implementing security:

com.ibm.ctg.security.SSLightServerSecurity
All implementations of CICS Transaction Gateway server-side security
classes that require the exposure of SSL Client Certificates must
implement the SSLightServerSecurity interface.

Users of the pure Java (SSLight) protocol handlers should implement
this interface. SSLight is available on all CICS Transaction Gateway
platforms.

com.ibm.ctg.security.SystemSSLServerSecurity
All implementations of CICS Transaction Gateway server-side security
classes that require the exposure of SSL Client Certificates, and use
System SSL protocol handlers must implement the
SystemSSLServerSecurity interface.

Users of System SSL should implement this interface. System SSL is
only available for CICS Transaction Gateway for OS/390®.

com.ibm.ctg.security.ServerSecurity
Implementations of CICS Transaction Gateway server-side security
classes that do not require the exposure of SSL Client Certificates
should implement the ServerSecurity interface.

com.ibm.ctg.security.ClientSecurity
All implementations of CICS Transaction Gateway client-side security
classes must implement the ClientSecurity interface.

com.ibm.ctg.util.RACFUserid
This class attempts to map an X.509 client certificate to a RACF
userid. The certificate must already be associated with a valid RACF
userid.

The SSLightServerSecurity, SystemSSLServerSecurity, or ServerSecurity
interfaces and partner ClientSecurity interface define a simple yet flexible
model for providing security when using the CICS Transaction Gateway.
Implementations of the interfaces can be as simple or as robust as deemed
necessary; from simple XOR (eXclusive-OR) scrambling to use of the Java
Cryptography Architecture.

The SSLightServerSecurity or SystemSSLServerSecurity interfaces have been
designed to work in conjunction with the Secure Sockets Layer (SSL) protocol.
The interfaces will allow server-side security objects access to a Client

© Copyright IBM Corp. 1996, 1999 11

|

|

|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

Certificate passed during the initial SSL handshake. The exposure of the Client
Certificate is dependent on the the CICS Transaction Gateway being
configured to support Client Authentication.

An individual JavaGateway instance has an instance of a ClientSecurity class
associated with it, until the JavaGateway is closed. Similarly, an instance of
the partner SSLightServerSecurity, SystemSSLServerSecurity, or ServerSecurity
class is associated with the connected Java client, until the connection is
closed.

The basic model consists of:
v An initial handshake to exchange pertinent information. For example, this

handshake could involve the exchange of public keys. However, at the
interface level the flow consists of a simple byte-array, therefore an
implementation has complete control over the contents of its handshake
flows.

v The relevant ClientSecurity instance being called to encode outbound
requests, and decode inbound replies.

v In the CICS Transaction Gateway, the partner SSLightServerSecurity,
SystemSSLServerSecurity, or ServerSecurity instance being called to decode
inbound requests and to encode outbound replies. The inbound request,
and Client Certificate, is exposed via the afterDecode() method. For
SSLight, the afterDecode() method exposes the GatewayRequest object,
along with the com.ibm.sslight.SSLCert[] certificate chain object. For
System SSL, the afterDecode() method exposes the GatewayRequest object,
along with the com.ibm.gskssl.SSLCertificate certificate object.

ClientSecurity and SSLLightServerSecurity,SystemSSLServerSecurity, or
ServerSecurity class instances should maintain as data members sufficient
information from the initial handshake to correctly encode and decode the
flows.

An example implementation of the ClientSecurity interface is supplied in the
com.ibm.ctg.security.clientCompression.java file.

An example implementation of the SSLLightServerSecurity interface is
supplied in the com.ibm.ctg.security.SSLLightServerCompression.java file.

An example implementation of the SystemSSLServerSecurity interface is
supplied in the com.ibm.ctg.security.SystemSSLServerCompression.java file.

An example implementation of the ServerSecurity interface, which does not
expose an SSL client certificate, is supplied in the
com.ibm.ctg.security.ServerCompression.java file.

CICS Transaction Gateway security classes

12 CICS Transaction Gateway Programming

|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

You can find the source for all of these examples in the
\samples\java\com\ibm\ctg\security directory.

CICS Transaction Gateway security classes

Chapter 3. CICS Transaction Gateway security classes 13

|
|

14 CICS Transaction Gateway Programming

Chapter 4. EPI support classes

Many existing CICS server applications are written for 3270 terminal
interfaces and CICS has some powerful capabilities for dealing with these
data streams, including Basic Mapping Support (BMS).

The External Presentation Interface (EPI) provides a mechanism for CICS
Clients to communicate with transactions on a server and to handle 3270 data
streams. A CICS client using EPI connects to CICS as if it were a 3270
terminal, and must send and receive 3270 data streams.

The CICS Transaction Gateway EPI support classes make it simpler for a Java
programmer to access the facilities that the EPI provides:
v Connection of 3270 sessions to CICS servers
v Starting CICS transactions
v Sending and receiving 3270 data streams.

Furthermore, a detailed knowledge of 3270 data streams is not required. The
classes provide higher-level constructs for handling 3270 data streams as
follows:
v General purpose Java classes for handling 3270 data streams, such as fields

and attributes, and CICS transaction routing data, such as transaction ID.
v Generation of Java classes for specific CICS applications from BMS map

source files. These classes allow client applications to access data on 3270
panels, using the same field names as used in the CICS server BMS
application.

Note that these classes do not support Double Byte Character Set (DBCS)
fields in 3270 data streams.

The BMS conversion utility is a tool for statically producing Java class source
code from a CICS BMS mapset, see “Converting BMS maps and using the
Map class” on page 20.

The EPI support classes are based on the CICS Client C++ EPI classes. C++
programmers who have used the CICS Client classes will find that the Java
classes are very similar, apart from changes to class and method names.

The EPI support classes are as follows:

com.ibm.ctg.epi.AID
Represents an AID (attention identifier) character to be sent to CICS.

© Copyright IBM Corp. 1996, 1999 15

|

|

|
|
|

|
|
|
|

|
|

|

|

|

|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|
|

|

|
|

com.ibm.ctg.epi.EPIGateway
Connects to the CICS Transaction Gateway. This class also has
methods that obtain information on CICS servers accessible to the
client.

com.ibm.ctg.epi.Field
Supports a single field on a virtual screen and provides access to field
text and attributes.

com.ibm.ctg.epi.FieldData
Contains information about a single field, that is, its row and column
position and length.

com.ibm.ctg.epi.Map
Provides access to Field objects using BMS map information. The
BMSMapConvert utility generates classes derived from Map.

com.ibm.ctg.epi.MapData
Contains information about a BMS map, that is, its size, number of
fields and so on.

com.ibm.ctg.epi.Screen
Each terminal Terminal object has a virtual screen associated with it.
The Screen class contains a collection of Field objects and methods to
access these objects. It also has methods for general screen handling.

com.ibm.ctg.epi.Terminal
Controls a 3270 terminal connection to CICS. The Terminal class
handles CICS conversational, pseudo-conversational, and ATI
transactions. One application can create many Terminal objects.

com.ibm.ctg.epi.TerminalInterface
The Terminal class implements this interface.

com.ibm.ctg.epi.TerminalSession (interface)
Defines the behavior of a terminal in session, that is, a terminal with
an associated Session object. TerminalInterface extends this with
functions that allow the Session object to be changed.

com.ibm.ctg.epi.Session (interface)
Controls communication with the server in synchronous and
asynchronous modes. Application classes can implement the Session
interface to handle replies from the server.

com.ibm.ctg.epi.EPIException
This exception may be thrown by the EPI classes in some error
situations.

16 CICS Transaction Gateway Programming

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

Using the EPI support classes

This section describes how to use the EPI support classes. Samples of code are
given.

Connecting to CICS and starting a transaction

Before a terminal connection can be made to CICS, a connection to the CICS
Transaction Gateway must be started by creating a JavaGateway object. The
EPIGateway class provides methods to access information about CICS servers
that are accessible to the CICS Transaction Gateway and can be used instead
of the JavaGateway class if you wish.

To establish a 3270 terminal connection to CICS, a Terminal object is created.
To start a transaction on the CICS server, use the send method on the
Terminal object:

try {
// Connect to CICS server
Terminal terminal = new Terminal(jgate, "CICS1234", null, null);

terminal.send(null, "CESN", null);
...

} catch (EPIException exception) {
exception.printStackTrace();

}

Note the use of try and catch blocks to handle any exceptions thrown by the
CICS classes.

Accessing fields on CICS 3270 screens

When a terminal connection to CICS has been established, the Terminal,
Screen and Field objects are used to navigate through the screens presented by
the CICS server application, reading and updating screen data as required.

The Screen object is created by the Terminal object and is obtained via the
getScreen method on the Terminal object. It provides methods for obtaining
general information about the 3270 screen (for example, cursor position) and
for accessing individual fields (by row/column screen position or by index).
The following example prints out field contents, then ends the CESN
transaction by returning PF3:

Chapter 4. EPI support classes 17

|
|

|
|

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|

|
|
|
|
|
|

// Get access to the Screen object
Screen screen = terminal.getScreen();

for (int i=1; i <= screen.fieldCount(); i++) {
Field field = screen.field(i); // get field by index
if (field.textLength() > 0)

System.out.println("Field " + i + ": " + field.getText());
}

// Return PF3 to CICS
screen.setAID(AID.PF3);
terminal.send();

// Disconnect the terminal from CICS
terminal.disconnect();

The Field class provides access to the text and attributes of an individual 3270
field. You can use these in a variety of ways to locate and manipulate
information on a 3270 screen:

for (int i=1; i <= screen.fieldCount(); i++) {
Field field = screen.field(i); // get field by index

// Find unprotected (i.e. input) fields
if (field.inputProt() == Field.unprotect)

...
// Find fields the same as a specific text string

if (field.getText().equals("CICS Sign-on"))
...

// Find red fields
if (field.foregroundColor() == Field.red)

...
}

Synchronization and sessions

The EPI classes support synchronous (blocking) and asynchronous (callback)
protocols.

In the example above the default synchronization type (synchronous) is used.
To use asynchronous calls, create a class that implements Session. An object of
this type can be passed as the first parameter to the Terminal send method.
Terminal calls getSyncType on this object to determine the type of
synchronization required.

A synchronization type of sync means that the send method blocks until the
CICS server has finished sending data. When the reply is received, updates
are made to the Screen object according to the 3270 data stream received, then
control is returned to the calling program.

A synchronization type of async means that when the call is made to CICS
using the Terminal send method, control returns immediately to the client

18 CICS Transaction Gateway Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|

|
|

application without waiting for a reply from CICS. When the Terminal object
receives a reply from CICS, the handleReply method on the Session object is
invoked.

The implementation of the handleReply method can process the screen data
available in the Screen object, which will have been updated in line with the
3270 data stream sent from CICS:

void handleReply(Terminal term) {
// Check the state of the session
switch(term.getState()) {
case Terminal.client:
case Terminal.idle:

// Output data from the screen
for (int i=1; i <= screen.fieldCount(); i++) {

System.out.println("Field " + i + ": " + screen.field(i).toString());
screen.setAID(AID.PF3);
...

} // end switch
}

The handleReply method is called for each transmission received from CICS.
Depending on the design of the CICS server program, a Terminal send call
may result in one or more replies. The Terminal state property indicates
whether the server has finished sending replies:

Terminal.server
Indicates that the CICS server program is still running and has further
data to send. The client application can process the current screen
contents immediately, or simply wait for further replies. The
application can neither disconnect the terminal, send the screen to
CICS, nor start a new transaction.

Terminal.client
Indicates that the CICS server program is now waiting for a response.
The client application should process the screen contents and send a
reply. The application can neither disconnect the terminal, nor start a
new transaction.

Terminal.idle
Indicates that the CICS server program has completed. The client
program should process the screen contents and either disconnect the
terminal, or start a further transaction.

Most client applications will want to wait until the CICS server program has
finished sending data (that is, the Terminal state is client, or idle) before
processing the screen. However, some long-running server programs may
send intermediate results or progress information that can usefully be
accessed while the state is still server.

Chapter 4. EPI support classes 19

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

The implementation of the handleReply method can read and process data
from the Screen object, update fields as required, and set the cursor position
and AID key in preparation for the return transmission to CICS, then use the
Terminal send method to drive the server application.

Note that the handleReply method is run on a separate thread when
asynchronous calls are used.

Using Screen without Terminal

If you would like to use the Screen and Field classes to interpret 3270 data
streams but would prefer to continue using the EPIRequest class, then you
can do so:
1. Establish your session with CICS in the usual way and create a Screen

object of the required size.
2. Pass your data stream to the analyze method in Screen.
3. You can then access the fields of the screen, set the AID to return and so

on.
4. To prepare the data stream to return to CICS, call the format method in

Screen.

Converting BMS maps and using the Map class

A large proportion of existing CICS applications use BMS maps for 3270
screen output. This means that the server application can use data structures
corresponding to named fields in the BMS map rather than handling 3270
data streams directly. The EPI BMS conversion utility uses the information in
the BMS map source to generate classes specific to individual maps, which
allow fields to be accessed by their names.

The utility generates Java classes that applications can use to access the map
data as named fields within a map object. A class is defined for each map,
allowing field names and lengths to be known at compile time. The generated
classes extend the class Map, which provides general functions required by all
map classes.

Run the BMS map converter utility on the BMS source as follows:
java com.ibm.ctg.epi.BMSMapConvert -p package-name filename.BMS

The utility generates .java files containing the source for the map classes. Use
the -p parameter to specify the package to put the new files into. This saves
you having to edit the files to add the ″package″ statement.

20 CICS Transaction Gateway Programming

|
|
|
|

|
|

|

|
|
|

|
|

|

|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|

|

|
|
|

After you have used the EPI BMS utility to generate the map class, use the
base EPI classes to reach the required 3270 screens in the usual way. Then use
the map classes to access fields by their names in the BMS map. The map
classes are validated against the data in the current Screen object.

Using Map classes

The classes generated by the BMS Conversion Utility have the following
features:
v The class name is derived from the map name in the BMS source.
v The class extends Map.
v Two constructors are provided. One constructor takes a Screen parameter

and throws an EPIException, if the screen has not been produced by the
relevant BMS map. The no argument constructor creates a Map that can be
validated against a screen later by using the setScreen method.

v The method field provides access to fields in the map, using the BMS
source field names (provided as constants within the class).

To use the generated Map class, create a Terminal and start a transaction as
usual:

try {
JavaGateway epi = new JavaGateway("jgate", 2006);
// Connect to CICS server
Terminal terminal = new Terminal(epi, "CICS1234", null, null);
// Start transaction on CICS server
terminal.send(null, "EPIC", null);

In this example the server program uses a BMS map for its first panel, for
which a map class ″MAPINQ1Map″ has been generated. When the map object
is created, the constructor validates the screen contents with the fields defined
in the map. If validation is successful, fields can then be accessed using their
BMS field names instead of by index or position from the Screen object:

MAPINQ1Map map = new MAPINQ1Map(terminal.getScreen());
Field field;
// Output text from "PRODNAM" field
field = map.field(MAPINQ1Map.PRODNAM);
System.out.println("Product Name: " + field.getText());
// Output text from "APPLID" field
field = map.field(MAPINQ1Map.APPLID);
System.out.println("Applid : " + field.getText());

} catch (Exception exception) {
exception.printStackTrace();

}

BMS Map objects can also be used within the Session handleReply method.

Chapter 4. EPI support classes 21

|
|
|
|

|

|
|

|

|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

For validation to succeed, the entire BMS map must be available on the
current screen. A map class cannot therefore be used when some or all of the
BMS map has been overlaid by another map or by individual 3270 fields.

EPI samples

The following samples are provides for EPI programming:

EPISample1

EPISample1 is a sample application illustrating basic use of the EPI classes. It
connects to the CICS Transaction Gateway and creates a terminal, then starts
the CESN transaction. A list of the fields present on the screen is output, then
PF3 is sent back to the terminal to end the transaction. When the transaction
has ended, the terminal is disconnected.

To run the sample, issue the command:
java com.ibm.ctg.epi.EPISample1 ctg-address cics-server

where ctg-address is the TCP/IP address of the CICS Transaction Gateway, and
cics-server is the name of the CICS server to connect to.

The source for EPISample1 is in the
\samples\java\com\ibm\ctg\epi

directory.

EPISample2

EPISample2 is a simple applet that demonstrates:
v The use of the EPIGateway class to list all available servers
v the use of the Session interface for asynchronous calls.

To try the applet, use the applet viewer or a suitable browser to view the file
episamp2.html in the directory:
\samples\java\com\ibm\ctg\epi

The source for EPISample2 is also in that directory.

Using the EPIRequest class

It is recommended that you use EPI beans or the CICS Transaction Gateway
EPI support classes if you are writing programs using the EPI. However, if
you intend to use the EPIRequest class, you should read this section.

22 CICS Transaction Gateway Programming

|
|
|

|
|

|

|

|
|
|
|
|

|

|

|
|

|

|

|

|

|

|

|

|
|

|

|

|
|

|
|
|

When connecting to CICS using EPI, a Java application or applet is acting as a
terminal to CICS. It is, therefore, important to be aware of the 3270 data
streams that may flow from CICS, and the 3270 data streams that may be
expected in reply. After an event has been returned to a Java application or
applet, the EPIRequest object’s size field indicates the size of the data array
returned.

It is also important to be aware of the principles and restrictions governing
EPI programming, and the fact that there may be minor differences in the
working of the EPI code on different platforms. For example, if you are
running a CICS Client on Windows NT, you will probably need to send
Transaction identifiers in the data array of the EPIRequest object, rather than
in the EPIRequest object’s Transid field.

When getting events from CICS it is recommended that you use the
EPI_WAIT option, and ensure that the EPIRequest object’s size field is set to
the maximum size of the 3270 data stream that CICS may return.

Generally, EPI programs written using the CICS Transaction Gateway should:
1. Open a connection to the Gateway.
2. Add a terminal.
3. Start a transaction.
4. Get an event until, either, the event received is an end transaction or a

converse; or, the error received is severe.
5. If the event received is a converse, then send the reply and return to the

get event loop.
6. If the event received is an end transaction, then delete the terminal and do

a last get event to obtain the end terminal event.
7. Close the connection to the Gateway.

Chapter 4. EPI support classes 23

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|

|

|

|
|

|
|

|
|

|

24 CICS Transaction Gateway Programming

Chapter 5. EPI beans

This chapter describes the JavaBeans™ that you can use for EPI functions.

CICS Transaction Gateway EPI beans Overview

The CICS Transaction Gateway includes high-level EPI classes to allow you to
easily write Java programs that access data from existing CICS 3270
applications.

However, the EPI beans, based on this function, go one step further—you can
create applets and applications that access your existing CICS 3270 screens
without any programming at all. Using any of the large number of new visual
application builder tools, including VisualAge for Java, you can quickly and
easily create new Java front-ends that can connect to CICS, run transactions,
display data from 3270 screens, and send user input back to the server. Note
that the EPI beans do not support DBCS fields in 3270 data streams.

There are now a large number of visual development tools that allow you to
build Java applets and applications with JavaBeans. We have tested the EPI
beans with VisualAge for Java and Sun’s BDK Beanbox. The beans should
work with any tool that provides comparable function.

To use the beans with a visual development tool, you may need to import or
load the ctgclient.jar file into the tool. Refer to the tool’s documentation to
find out how to do this. Alternatively, you may need to include this file in the
CLASSPATH setting.

If you are using VisualAge for Java, the information in “Getting started with
VisualAge for Java” on page 29 may help.

Running EPIApplet

EPIApplet is a sample applet that uses the EPI beans. You may find it helpful
to run it to get a quick idea of what can be done with the beans.

To run EPIApplet:
v From the command line, change to the directory where the CICS

Transaction Gateway is installed.
v Enter the command:

cd samples\java\com\ibm\ctg\epi

© Copyright IBM Corp. 1996, 1999 25

|

|

|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|

|

|
|

|

|

for OS/2 and Windows, or
cd samples/java/com/ibm/ctg/epi

for AIX and Solaris.
v Edit the file epiapplet.html to set the parameters for the URL of the

Gateway and the name of your CICS server.
v Start the Gateway if is not running.
v Run the JDK appletviewer against the file epiapplet.html.
v When the applet starts, select the Connect button to connect to CICS.

The applet connects to CICS and tries to run the transaction CESN.
v A window should appear with a representation of the CICS terminal screen,

and there will also be a panel of buttons labelled Enter, Clear, PF1-PF24,
PA1-PA3.

You can enter text in the terminal window, and you can use the buttons to
drive the terminal.

v To disconnect from CICS, close the terminal window.

The source code for EPIApplet is supplied, and may be helpful if you want to
program with the EPI beans, rather than using them in a visual builder tool.

Using the beans

Once you have loaded the beans into a suitable visual development tool, you
are ready to start creating an applet that uses them.

Connecting to CICS

Before your applet can do anything else, it must connect to the CICS
Transaction Gateway install a terminal at the CICS server. To do this, you
need an EPITerminal bean. Set the properties of this bean to indicate the
address of the Gateway you want to connect to and the name of the CICS
server. To connect to CICS, you need to call the EPITerminal’s connect
method.

Starting a transaction

To start a transaction, you can call the EPITerminal’s startTran method, having
previously set the transaction property to the transaction ID you want to start.
Some tools, such as VisualAge for Java, allow you to call the setTransaction
method with a defined parameter when an event occurs. Alternatively, send
an ActionEvent to EPITerminal with the action command set to the transaction
ID that you want to start. The transaction property is set to that value and the
transaction is started as soon as possible. ActionEvents are generated by
buttons, menu items and entry fields (when you select Enter—the action
command is the text).

EPI beans

26 CICS Transaction Gateway Programming

|

|

|

|
|

|

|

|

|

|
|
|

|
|

|

|
|

|

|
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

Handling screens

Once you have started a transaction on the CICS server, CICS begins sending
data back to the EPITerminal bean. When EPITerminal receives data from
CICS, it sends a handleScreen event to all its registered event listeners. To
handle the data sent by CICS, you create beans called screen handlers and
connect them to the EPITerminal’s handleScreen event.

The EPIBasicScreenHandler bean is an example of a screen handler. It handles
screens by displaying the data in the form of text and entry fields that you
can type into. To see what it looks like, run EPIApplet.

To handle specific screens differently, you need to create screen handlers for
them. You can write your own or use one of the provided tools to generate
screen handler beans automatically. The automatically generated screen
handler beans give you access to some of the data in the screen in the form of
bound properties. You then create your own user interface (from other beans)
to allow those properties to be displayed and changed.

Sending data back to CICS

Once you have received a screen from CICS and viewed and edited it as
required, you must send it back to CICS to continue processing. If you are
using EPIBasicScreenhandler or an automatically generated bean, then this
means:
v setting the screen handlers AID property to the required AID value
v calling the send method of the screen handler or EPITerminal

Another way to achieve the same result is to send an ActionEvent to the
screen handler with the action command set to an AID value (for example:
enter, PF3). The AID is then set to that value and the screen is sent to CICS.
ActionEvents are generated by buttons, menu items and entry fields (when
you select Enter*mdash;the action command is the text).

Disconnecting from CICS

When your applet has finished, you should ensure that the EPITerminal’s
disconnect method is called to disconnect it from CICS. When you call the
disconnect method, EPITerminal tries to disconnect the terminal. If the
terminal is not in the right state to be disconnected, EPITerminal sends the
handleScreen event to its registered event listeners, requesting that they exit
any running transaction. The default behavior of EPIBasicScreenhandler and
the generated screen handlers is to send the AID PF3 to the CICS server. If
you know that this will not work for a particular transaction you are using,
you should generate a screen handler for the relevant screen and customize it
to ensure it can exit that screen.

EPI beans

Chapter 5. EPI beans 27

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|
|

|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

Example

This example demonstrates the basic principles involved in using the beans.
Following the steps below produces an applet similar to EPIApplet.
1. Using your preferred bean composer tool, create an EPITerminal, and look

at its properties. Set the URL property to the address of the Gateway, for
example: tcp://jbloggs.hursley.ibm.com:2006. The terminal settings
property allows you to set further terminal settings, such as the name of
your CICS server.

2. Create two buttons labelled Connect and Disconnect. Connect the
Connect button’s actionPerformed event to the connect method on
EPITerminal. Similarly, connect the Disconnect button to the EPITerminal’s
disconnect method. You can now connect to the CICS server and
disconnect again.

3. Create an EPIBasicScreenHandler. This is a visual part that is able to
display data sent from CICS. Connect the EPITerminal’s handleScreen
event to the EPIBasicScreenHandler’s handleScreen method. Depending on
the tool you are using, check that the event data is passed to
EPIBasicScreenHandler.

4. Connect the Connect buttons actionPerformed event to the startTran
method on EPITerminal. Look at EPITerminal’s properties and check that
the transaction property is set to a transaction that you can run on the
CICS server.

5. Create an EPIScreenButtons. This is a simple set of buttons that you can
use to drive the terminal. Connect the EPIScreenButton’s actionPerformed
event to the EPIBasicScreenHandler’s actionPerformed method. Depending
on the tool you are using, check that the event data is passed to
EPIBasicScreenHandler.

6. You should now be able to connect to CICS and run a transaction. The
EPIBasicScreenHandler displays data sent from CICS and accepts user
input. When you select one of the buttons, the screen is sent back to CICS.
The screen is also sent if you select Enter while a text field has the input
focus. Make sure you disconnect the terminal when you have finished
with it.

Generating screen handler beans

You can automatically generate screen handler beans, from BMS definition
files, see “Screen Handler beans” on page 34. These screen handler beans
define bound properties for each labelled field in the corresponding BMS map
so that you can easily map between data from CICS and user interface
components.

To use the generated screen handlers you connect them to the EPITerminal’s
handleScreen event as above. Any number of screen handlers can be

EPI beans

28 CICS Transaction Gateway Programming

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|
|

connected to an EPITerminal. When the screen handler receives a new screen
from CICS, it decides whether the screen is displaying the corresponding BMS
map. If it recognizes the screen, it sends the screenHandled event. It also
updates its bound properties with the new data from CICS.

Getting started with VisualAge for Java

This is not a VisualAge for Java user’s guide—it should be helpful if you have
not used VisualAge for Java before, but you also need to refer to the
VisualAge for Java documentation.

Note: The examples given are for VisualAge for Java Version 2.0. There may
be differences for other versions of VisualAge for Java.

Importing the CICS Transaction Gateway classes into VisualAge for Java

To use the CICS Transaction Gateway classes in VisualAge for Java, they must
first be imported into the repository. From the Workbench menu, select
File—Import. Type in a project name, for example: CICS Transaction Gateway,
select JAR file, and select the Next > button. Select the file ctgclient.jar in the
CICS Transaction Gateway classes subdirectory and import it.

VisualAge for Java may report some errors, but you can safely ignore these.

Once the file has been imported into VisualAge, a dialog titled Add to Palette
appears. Select all the class names listed, then select OK. You are prompted to
type in a name for the new category folder —something like CICS
Transaction Gateway EPI beans. Select OK to continue.

The Demo applet

We supply two demonstration applets that you can also import into
VisualAge for Java. Select File—Import again, and type a new project name,
such as Demo. Select Interchange File. You must import the file vajdemo.dat
from the CICS Transaction Gateway samples\java\com\ibm\ctg\epi
subdirectory. The contents of the interchange file are imported into the
repository, not the Workbench. To add the Demo project to the Workbench, go
to the Projects page of the Workbench and select the Add project button on
the toolbar. Select Add project from the repository and Browse. Select the
project named Demo from the list. The Editions list should contain one
edition - select it and select >> to move it to the list of editions to add. Now
select OK and Finish to add the project to the Workbench.

Now you can have a look at the Demo applets. From the Projects page of the
Workbench, expand the Demo project and the demo package within it. There
are two applets, called Demo and Demo2. Right-click on Demo, select Open

EPI beans

Chapter 5. EPI beans 29

|
|
|
|

|
|

|
|
|

|
|

|

|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

To -> Visual Composition. The Visual Composition Editor starts, and you can
see how the Demo applet is assembled.

To run Demo, right-click on the EPITerminal bean in the display area, and
select Properties. The properties of a bean are the settings you can change to
alter its behavior. In this case, the EPITerminal bean must know how to
connect to the CICS Transaction Gateway and your CICS server. In the
Properties window, set the Gateway URL to the address of the CICS
Transaction Gateway. This is normally of the form tcp://<tcp/ip name>:2006.
Select the ... button by the label terminal settings and set the name of your
CICS server, as defined to the CICS Transaction Gateway. Check that the
transaction property is a valid transaction ID for your CICS server.

Now select the Test button on the toolbar—it is the first one. VisualAge for
Java generates the source code for the Demo applet, then another dialog
appears. Select OK, and the applet should start. Select the Connect button to
connect to CICS. You should see a CICS screen displayed. You can enter text,
and use the AID button panel to drive the terminal. Select Disconnect to
disconnect from CICS.

Figure 1. Demo applet

30 CICS Transaction Gateway Programming

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

Now go back to the Visual Composition Editor to see how the applet has been
put together. It uses the EPITerminal, EPIBasicScreenHandler and
EPIScreenButtons beans. The links between the beans are what make the
applet work. The important ones are:
v The Connect button’s actionPerformed event is connected to the connect

method on EPITerminal. This means that when you select the button,
EPITerminal connects to CICS.

v The Connect button’s actionPerformed event is also connected to the
startTran method on EPITerminal. This means that after connecting to CICS,
EPITerminal starts the transaction that is set as its transaction property.

v EPITerminal’s handleScreen event is connected to EPIBasicScreenHandler’s
handleScreen method. This means that when data arrives from the CICS
server, it is passed to EPIBasicScreenHandler, which displays it as you have
just seen.

v EPIScreenButton’s actionPerformed event is connected to the
actionPerformed method on EPIBasicScreenHandler. This means that when
you select one of the buttons, EPIBasicScreenHandler is told what AID to
send to CICS.

v Finally, the Disconnect button is connected to the disconnect method on
EPITerminal

The Demo2 applet

The EPIBasicScreenHandler bean can display any screen sent from CICS, and
allows you to edit fields, position the cursor, send different AID keys and so
on. But what if you want to design your own user interface? Demo2 shows
you the basic principles.

Figure 2. Demo applet running

Chapter 5. EPI beans 31

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|
|
|

Demo2 uses the EPIINQ sample transaction that comes with the CICS
Transaction Gateway. The source code for the transaction and the BMS map
definition file can be found in the CICS Transaction Gateway samples\server
subdirectory. You may want to compile this sample and set it up on your
CICS server. It also uses the bean MAPINQ1ScreenHandler that is included in
the Demo project. This was generated automatically from the EPIINQ.BMS
file, using the BMS Map Conversion utility.

In Demo2, EPITerminal is used as before. The Run Query button is connected
to the methods connect, startTran and disconnect on EPITerminal. The order
of the connections does matter! MAPINQ1ScreenHandler replaces
EPIBasicScreenHandler; it is connected to the handleScreen event from
EPITerminal in the same way. MAPINQ1ScreenHandler defines properties that
are in fact particular fields on the CICS screen —they are the named fields
from the MAPINQ1 BMS map. Each of the properties we want to see is
connected to the text property of an entry field.

When the screen created by the MAPINQ1 BMS map arrives from CICS, the
MAPINQ1ScreenHandler bean recognizes it, and the entry fields connected to
it are updated with the contents of the associated fields from the screen.

Figure 3. Demo2 applet

32 CICS Transaction Gateway Programming

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

Hints and Tips

This section provides some hints on how to make better use of EPI beans.

My applet does not work—and some of my connections are shown with
dotted lines

An event can be connected to a method simply in order to make something
happen, for example: connect to CICS when a button is selected. But
sometimes events are used to pass information between two beans, for
example: the handleScreen event from EPITerminal passes the screen data
received from CICS to the EPIBasicScreenHandler—or
MAPINQ1ScreenHandler. When you connect an event to a method, VisualAge
for Java assumes you do not want to pass the event data to the method. If the
method could be passed some data, the connection is shown with a dotted
line. To make VisualAge for Java pass the event data to the method,
right-click on the connection and select Properties. In the Event-to-Method
Properties dialog, make sure the checkbox labelled Pass event data is checked.
Now the connection should be shown with a solid line.

How do I set a Screen Handler property with an entry field ?

The text property of an entry field is not a bound property, so you cannot just
connect it to the Screen Handler property. Instead, you must call the setXXX
method on the Screen handler when you want the field to be set. Use an
actionPerformed event as the trigger (from a button or the entry field itself).
Connect the actionPerformed event to the Screen Handler’s setXXX method.

Figure 4. Demo2 applet running

Chapter 5. EPI beans 33

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

Now connect the text property on the entry field to the connection you have
just made. A menu should pop up with one item in it—the parameter to the
method setXXX. Select it, and there should be a link from the entry field to
the connection.

Adding generated Screen Handler beans to the Visual Composition Editor

First, import the generated files into VisualAge for Java—both the Map and
ScreenHandler classes. You should have created the files in a package (using
the -p parameter to BMSMapConvert). If you forgot, copy the files into a
package (not the Default package!) Now, from the Visual Composition Editor
menu, select Options—Add bean. Type in the first few letters of your beans
name—you do not have to specify the package name. Select Browse, and
from the list of classes select your new bean class. Select OK, and you can
now drop the bean onto the display area.

Screen Handler beans

A screen handler bean is a Java class that can:
v Recognize a CICS screen
v Make information from the screen available as bean properties
v Exit the screen

Screen handlers can be used with the EPI beans to create Java front-ends to
existing CICS 3270 applications. They are also used by the CICS Transaction
Gateway Terminal Servlet both to exit transactions and to allow fields on the
screen to be accessed by symbolic names.

You do not have to write screen handler classes—they can be generated
automatically from BMS map definitions.

Generating screen handler beans

To generate screen handler classes, you use the BMS Map Conversion utility
supplied with the CICS Transaction Gateway. For example, to generate beans
for the screens defined by the BMS map file called TEST1.BMS, you use the
command:
java com.ibm.ctg.epi.BMSMapConvert
-b test1.bms

The parameters you can supply to the BMS Map Conversion tool are (in any
order):

-b to generate screen handler beans. The default is not to generate beans.

34 CICS Transaction Gateway Programming

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|

|

|

|

|

|
|
|
|

|
|

|

|
|
|
|

|
|

|
|

||

-p package name
to generate the Java source code with the statement package package
name, for example -p testing.beans. The default is not to add a
package statement.

-k exit to set the key that the screen handler will use to exit the screen, for
example, -k clear. The default is PF3.

BMS map definition filenames
to select the BMS files to convert. Use your platform’s standard
filename conventions. Files are assumed to have the filetype .BMS if
you do not give the full filename.

The BMS Map Conversion tool generates two Java source files for
each map defined in a BMS file:
v A Map class
v A ScreenHandler class

The names of the source files are derived from the map name, for
example, if a map called MAP1 is defined in the BMS file, then Java
source files called MAP1Map.java and MAP1ScreenHandler.java
would be produced.

The ScreenHandler class uses the Map class, so keep these files together.

If you are going to load the files into VisualAge for Java generate them with
package names, otherwise they may not be recognized as beans.

Customizing and writing Screen Handlers

You should customize the generated ScreenHandler classes if:
v The screen handler cannot exit the screen it is associated with simply by

sending an AID, such as PF3, to CICS. In this case, you will need to change
the exitScreen method to do whatever is appropriate.

v You want to change the way the screen handler recognizes the screen it is
associated with. Normally, it checks that the screen contains the same fields
that were defined by the BMS map.

If you want to write your own screen handlers for some reason, you should
bear the following points in mind:
v They must be Java beans. In general, this means they should have a

constructor that takes no arguments, and they should implement the
java.io.Serializable interface.

v Generated screen handlers extend the class ScreenHandler. This is not
necessary; in fact for use with the EPI beans, screen handlers need only
provide a method that accepts a TerminalEvent parameter.

Chapter 5. EPI beans 35

|
|
|
|

||
|

|
|
|
|

|
|

|

|

|
|
|
|

|

|
|

|

|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

For use with the Terminal Servlet, screen handlers should implement the
TerminalEventListener interface and should use the TerminalEvent
isHandled method to signal that they have recognized a screen.

EPI beans reference

This section provides reference information on the EPI beans:

EPITerminal bean

This bean acts as a 3270 terminal connected to the CICS server through the
CICS Transaction Gateway.

To use this bean:
v Set the bean properties to appropriate values—you need to at least set the

URL of the CICS Transaction Gateway.
v Connect screen handler beans to the terminal handleScreen event.
v Call the connect method to make the terminal connect to CICS.
v Start a transaction by setting the transaction property to the transaction ID

then calling startTran.
v Make sure that the terminal is disconnected before your applet or

application ends, by calling disconnect or terminate.

Properties

Gateway URL
The URL of the CICS Transaction Gateway to connect to, for example:
setting the URL to: tcp://buster:2006 would result in the terminal
trying to connect to a CICS Transaction Gateway at the TCP/IP
address buster and the port number 2006.

Gateway Client Security class
The client security class that is used to connect to the CICS
Transaction Gateway. This is an expert property.

Gateway Server Security class
The server security class that is used by the CICS Transaction
Gateway. This is an expert property.

terminal settings
The terminal settings are: the name of the CICS server, the terminal
model definition, and the terminal netname. In general, you only need
to set the CICS server name. The default server is used if you do not
set the server name. Changing these values while the terminal is
connected to the server has no effect. You must disconnect and
reconnect the terminal to use different settings.

36 CICS Transaction Gateway Programming

|
|
|

|
|

|

|

|
|

|

|
|

|

|

|
|

|
|

|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

ATI enabled
Set this property to true if you want to allow the CICS server to start
transactions on the terminal.

transaction
A transaction ID. This is the transaction that is started when the
method startTran is called.

transactionData
Transaction parameters. When startTran is called this string is passed
as a parameter to the transaction, for example: if the transaction ID is
CESN and the transaction data is set to USERID=fred PS=pswd then the
effect of calling startTran would be the same as typing CESN
USERID=fred PS=pswd at a CICS terminal.

timeout
The terminal timeout interval in milliseconds. If the terminal is idle
(no data received from CICS) for longer than this period, the terminal
attempts to disconnect from CICS. You can set this value to 0 if you
do not want the terminal to time out. You should ensure that this
timeout value is less than the CICS Transaction Gateway connection
timeout value, otherwise the terminal may lose its connection to the
CICS Gateway for Java without being able to disconnect from CICS.

connected
This boolean value is set to true if the terminal is connected to CICS.

Events

TerminalEvent

terminalConnected
when the terminal has connected to CICS.

terminalDisconnected
when the terminal has disconnected from CICS.

handleScreen
when the terminal receives a screen from CICS.

exceptionOccurred
if an exception occurs.

Methods

connect()
Connects the terminal to the server, if not already connected.

startTran()
Starts a transaction on the terminal using the transaction ID and
transaction data already set.

Chapter 5. EPI beans 37

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|

|

|
|

|
|

|
|

|
|

|

|
|

|
|
|

send() Sends the current screen to CICS.

disconnect()
Disconnects the terminal from the server. The terminal cannot
disconnect from the server while a transaction is running. If a
transaction is running the terminal attempts to end it before
disconnecting. The terminal remains connected to the CICS
Transaction Gateway until the terminate method is called or the
application ends.

terminate()
Waits for the terminal to finish disconnecting, then closes the
connection to the CICS Transaction Gateway.

actionPerformed(ActionEvent e)
Sets the transaction ID to the event’s action command, then calls the
startTran method. Can be used to make a button push (or other
ActionEvent) trigger the starting of a transaction.

EPIBasicScreenHandler bean

This bean is a simple screen handler that can deal with any screen. It can:
v Display screens sent from CICS using Java user interface components
v Accept user input
v Send the screen back to CICS with the user’s changes
v Set the AID to be sent to CICS
v Set the screen cursor position.

To use this bean:
v Add it to your user interface—it can be treated like a Panel.
v Connect the terminal handleScreen event to the handleScreen method. If

you are using VisualAge, make sure that the event data is passed to this
method.

Properties

AID the AID key that is sent to CICS

exit AID
the AID key used to exit a running transaction

handling
true if the EPIBasicScreenHandler is handling the screen

minimum width
the minimum width of the screen panel

minimum height
the minimum height of the screen panel

38 CICS Transaction Gateway Programming

||

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|
|
|

|

||

|
|

|
|

|
|

|
|

Events

ScreenEvent

screenHandled
when the screen handler starts handling screens

screenUnhandled
when the screen handler stops handling screens

Methods

terminalConnected(TerminalEvent evt)
No action is taken when the terminal connected event is received

terminalDisconnected(TerminalEvent evt)
Clears the display

handleScreen(TerminalEvent evt)
Displays the screen

actionPerformed(ActionEvent evt)
If the source of the event is a button, the button action command is
mapped to the screen AID if possible, and the screen is sent to CICS.
If the source of the event is a TextField, the associated screen field is
updated, the AID is set to enter, and the screen is sent to CICS.

send()
Sends the screen to CICS

EPIMonitor bean

This bean is a simple status monitor for an EPITerminal. It handles terminal
events by displaying a status message. You may find it useful while
developing to keep track of what the terminal is doing.

To use this bean:
v Add it to your user interface.
v Connect the terminal events—terminalConnected, terminalDisconnected,

handleScreen and exceptionOccurred—to the appropriate EPIMonitor
methods; if you are using VisualAge, make sure that the event data is
passed.

Methods

terminalConnected(TerminalEvent evt)
Updates the status message.

terminalDisconnected(TerminalEvent evt)
Updates the status message.

Chapter 5. EPI beans 39

|

|

|
|

|
|

|

|
|

|
|

|
|

|
|
|
|
|

|
|

|

|
|
|

|

|

|
|
|
|

|

|
|

|
|

handleScreen(TerminalEvent evt)
Updates the status message.

exceptionOccurred(TerminalEvent evt)
Sets the status message to the exception text.

EPIScreenButtons bean

This bean is a set of buttons that can be used to send AIDs to the
EPIBasicScreenHandler. Each button’s action command is set to an AID value,
for example: the button labelled Enter has the action command enter. When
you select a button, the EPIScreenButtons bean forwards the button’s action
event to its own listeners.

To use this bean:
v Add it to your user interface.
v Connect the actionPerformed event to the EPIBasicScreenHandlers

actionPerformed method—if you are using VisualAge for Java, make sure
that the event data is passed.

Any screen handler based on ScreenHandler responds to action events from
EPIScreenButtons, but you can also use your own buttons—any button with
an action command equivalent to an AID value has the same effect.

Events

ActionEvent

actionPerformed
When a button is selected.

Methods

actionPerformed(ActionEvent evt)
Forwards the event to any registered listeners.

40 CICS Transaction Gateway Programming

|
|

|
|

|

|
|
|
|
|

|

|

|
|
|

|
|
|

|

|

|
|

|

|
|

Chapter 6. CICS Transaction Gateway programming
samples

This chapter summarizes the programming samples provided with CICS
Transaction Gateway

The samples listed in the following sections are provided on each platform.

EPI samples

The following samples are provided in the samples\java\com\ibm\ctg\epi
directory:

DefaultScreenHandler.java
A Default screen handler.

epiapplet.html
Applet to demonstrate use of EPI Beans, It performs simple terminal
emulation using the EPIBasicScreenHandler bean.

EPIApplet.java
Source code for the EPI Beans applet.

EPIMonitor.java
Demonstrates a simple way to generate a status message to tell the
user what the terminal is doing.

EPISample1.java
Demonstrates basic functions of the CICS Transaction Gateway EPI
support classes; namely how to connect to CICS Transaction Gateway,
create a terminal, run the CESN transaction, end the transaction, and
disconnect the terminal.

episamp2.html
Applet that demonstrates the use of the EPIGateway class to list all
available servers, and the use of the Session interface for
asynchronous calls.

EPISample2.java
The source code for the EPISample2 applet.

EPIScreenButtons.java
A simple “Control panel” that you can use to send appropriate
ActionEvents to a ScreenHandler such as EPIBasicScreenHandler.

vajdemo.dat
Interchange file for the Demo and Demo2 EPI bean applets.

© Copyright IBM Corp. 1996, 1999 41

|

|

|

|
|

|

|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|

Security samples

The following samples are provided in the
samples\java\com\ibm\ctg\security directory:

ClientCompression.java
Demonstrates compression of the client/server dataflows using the
java.util.zip package.

ServerCompression.java
Demonstrates compression of the client/server dataflows using the
java.util.zip package.

clientDesign.java
Demonstrates PublicKey cryptography.

SSLightServerCompression.java
Demonstrates compression of the client/server dataflows using the
java.util.zip package, and exposes an SSL client certificate. This
sample is for SSLight users.

SystemSSLServerCompression.java
Demonstrates compression of the client/server dataflows using the
java.util.zip package, and exposes an SSL client certificate. This
sample is for System SSL users (on OS/390 only)

serverDesign.java
Demonstrates PublicKey cryptography.

Terminal Servlet samples

The following samples are provided in the
samples\java\com\ibm\ctg\servlet directory:

epissam.html
Instructions on the use of the Terminal Servlet samples.

epissam1.shtml
Demonstrates how to use the servlet as a replacement for a CICS
terminal.

epissam2.shtml
Demonstrates how to use server-side includes to display information
from a CICS screen and to drive the terminal.

epissam3.html
Demonstrates how to use an HTML template file.

CICS Transaction Gateway programming samples

42 CICS Transaction Gateway Programming

|
|

|
|

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

epissam4.shtml
Demonstrates how to display information that might be useful to an
administrator.

servlet.properties
Sample properties file for the Terminal Servlet.

For more information about the Terminal Servlet, refer to the CICS Transaction
Gateway Administration book for your platform.

Test samples

The following samples are provided in the samples\java\com\ibm\ctg\test
directory:

EPIStrings.java
A class required by the TestEpi applet.

RequestDetails.java
A class required by the TestEpi applet.

testeci.html
An applet that demonstrates basic CICS Transaction Gateway
functionality. It allows connection to a Gateway, and sending of one or
more ECI requests to a CICS server.

TestECI.java
Source code for the TestEci applet.

testepi.html
An applet that demonstrates basic CICS Transaction Gateway
functionality. It allows connection to a Gateway, and sending of one or
more EPI requests to a CICS server.

TestEPI.java
Source code for the TestEpi applet.

For more information on TestECI and TestEPI see “Chapter 2. Writing Java
client programs” on page 3.

CICS Transaction Gateway programming samples

Chapter 6. CICS Transaction Gateway programming samples 43

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|

|
|

44 CICS Transaction Gateway Programming

Chapter 7. Using VisualAge for Java

This section describes how you can use VisualAge for Java to build a simple
applet for accessing CICS transactions. It describes how to set up VisualAge
for Java to use the CICS Transaction Gateway classes, how to use the
VisualAge for Java Visual Composition editor to construct an applet, and how
to use the applet outside the VisualAge for Java environment.

The examples given are for VisualAge for Java Version 2.0 Entry Version.
There may be differences for other versions of VisualAge for Java.

VisualAge for Java and the CICS Transaction Gateway classes

To build CICS applications or applets with VisualAge for Java, you must
import the class package, ctgclient.jar, that is included with the CICS
Transaction Gateway The package contains the Java classes and beans
necessary for building your applet.

To import the CICS Transaction Gateway class package into VisualAge for
Java:

1. Start VisualAge for Java and go to the workbench.
2. Select Import from the File menu.
3. Select the Jar file button in the SmartGuide Import dialog and select

Next.
4. In the SmartGuide import from jar/zip file dialog, select the Filename

Browse button and navigate to the directory containing the ctgclient.jar
file.

5. Select the ctgclient.jar file and select Open to return to the SmartGuide
import from jar/zip file dialog.

6. Ensure that the check boxes for .class and resource are checked.
7. In the Project field enter CICS Transaction Gateway. Figure 5 on page 46

shows the Smartguide import.

© Copyright IBM Corp. 1996, 1999 45

|

|

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|

|

|

|
|

|
|
|

|
|

|

|
|
|

8. Select Finish. A question box appears stating that the CICS Transaction
Gateway project does not exist and asks if you want to create it. Select
Yes.
The import of classes processing may report problems, but you may
safely ignore these. When processing is complete, the Modify Palette
dialog is displayed.

9. Select New Category and type CTG beans as name for the new category.

Figure 5. Importing CICS Transaction Gateway classes into VisualAge for Java

Figure 6. Modify Palette dialog

Using VisualAge for Java

46 CICS Transaction Gateway Programming

|
|
|

|
|
|
|

|

10. Ensure that all the available beans in the left panel are selected and that
the new category, CTG beans, is selected.

11. Select Add to Category. Figure 7 shows the Modify Palette dialog
including the CICS Transaction Gateway beans.

12. Select OK.

The CICS Transaction Gateway classes and beans are then imported and made
available for program development in VisualAge for Java.

The newly created VisualAge for Java project, CICS Transaction Gateway,
contains several samples with which you may want to experiment. See
“Chapter 6. CICS Transaction Gateway programming samples” on page 41 for
details on using the samples.

Note: If you are using the Enterprise edition of VisualAge for Java, you
should either remove the CICS Connector project from the workspace,
or import the CICS Transaction Gateway classes into that project
instead. This avoids having the same classes at different levels in
different projects in the workspace at the same time, which could cause
problems.

Figure 7. Modify Palette dialog and CICS Transaction Gateway beans

Using VisualAge for Java

Chapter 7. Using VisualAge for Java 47

|
|

|
|
|

|

|
|

|
|
|
|

|
|
|
|
|
|

Building an EPI Applet

To create an EPI applet, you can use the VisualAge for Java Quick Start
feature to generate the framework of your applet. You can then use the
VisualAge for Java Visual Composition editor to lay out an applet canvas, add
buttons and CICS Transaction Gateway beans, configure the bean properties,
and connect the buttons and beans.

Creating an Applet

To create a new applet:
1. From the File menu select Quick Start to display the Quick Start dialog.
2. In the left panel select Basic and in the right panel select Create Applet.
3. Select OK to open the SmartGuide Create Applet dialog.
4. In the Project field, enter a suitable name.
5. In the Applet name field, enter a name for your applet.
6. Select Finish.

When processing has completed, a blank applet canvas is displayed in the
VisualAge for Java Visual Composition editor.

Creating an EPI Terminal

To add an EPI Terminal bean to your applet and configure the bean to access
the CICS server:
1. Select CTG beans from the pull-down menu in the upper-left corner of the

Visual Composition editor screen.
2. Select the icon labeled EPI Terminal on the left of the screen. (Move the

mouse over the icons to display their labels.)
3. Move the mouse pointer to a position on the canvas that lies outside the

rectangular outline so that the cursor changes to crosshairs. Click with the
left mouse button to create an icon labeled EPITerminal1 at that position.

4. Select the newly created EPI Terminal icon with the right mouse button
and select Properties from the pop-up menu.

5. Modify the GatewayURL property to point to the host on which your
CICS Transaction Gateway is running, for example, tcp://dilbert:2006

6. Select the right of the terminal settings input field to pop up a Terminal
settings dialog. Type the name of your remote CICS server in the CICS
server name field and then select OK.

The EPI Terminal bean, EPITerminal1, is now configured.

Using VisualAge for Java

48 CICS Transaction Gateway Programming

|
|

|
|
|
|
|

|

|

|

|

|

|

|

|

|
|

|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|

Creating a Logon Button

To add a logon button bean to the applet and connect the button bean to the
EPI Terminal bean:
1. Select AWT from the pull-down menu in the upper left-corner of the

Visual Composition editor screen.
2. Select the icon labeled Button on the left of the screen. (Move the mouse

over the icons to display their labels.)
3. Move the mouse pointer to a position on the canvas that lies inside the

rectangular outline so that the cursor changes to crosshairs. Click with the
left mouse button to create a button bean labeled Button1 at that position.

4. Select the newly created button bean with the right mouse button and
select Properties from the pop-up menu.

5. Change the button bean label property to Logon and close the properties
dialog.

6. Select the newly created button bean (now labeled Logon) with the right
mouse button and select Connect and actionPerformed from the pop-up
menu. The cursor changes to a spider attached, with a dotted line, to the
Logon button.

7. Use the spider to select the EPI Terminal bean. Select Connectable
Features from the pop-up menu. This opens the End connection to dialog.

8. In the End connection to dialog, select the Method button, located near the
top of the display, select the connect() method in the panel, and select OK.

Creating an EPI Basic Screen Handler

To add an EPI Basic Screen Handler bean to the applet and connect it to the
EPI Terminal bean:
1. Select CTG beans from the pull down menu in the upper left corner of the

Visual Composition editor screen.
2. Select the icon labeled EPI Basic Screen Handler on the left of the screen.

(Move the mouse over the icons to display their labels.)
3. Move the mouse pointer to a position on the canvas that lies inside the

rectangular outline so that the cursor changes to crosshairs. Click near the
top left corner with the left mouse button to create a new rectangular
outline at the selected location. The rectangular outline represents the EPI
Basic Screen Handler bean.

4. Select the EPI Terminal bean with the right mouse button and select
Connect and Connectable Features from the pop-up menu. This opens the
Start connection from dialog.

5. In the Start connection from dialog, select Event near the top of the screen,
select handleScreen in the panel, and select OK.

Using VisualAge for Java

Chapter 7. Using VisualAge for Java 49

|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|

6. The cursor changes to a spider attached, with a dotted line, to the Logon
button. Use the spider to select the EPI Basic Screen Handler rectangle.
Select Connectable Features from the pop-up menu. This opens the End
connection to dialog.

7. In the End connection to dialog, select the Method button, located near the
top of the display, select the handleScreen(com.ibm.ctg.terminalEvent)
method in the panel, and select OK.

8. Using the right mouse button, select the dotted line between the EPI Basic
Screen Handler rectangle and the EPI Terminal bean to open the
Event-to-method connection - Properties dialog.

9. In the Event-to-method connection - Properties, select the checkbox Pass
event data and select OK.

Connecting the Logon Button to EPI Terminal

The Logon button bean requires a second connection to the EPI Terminal so
that the button can also start a transaction once a connection is established
with the CICS server.

To create a second Logon button connection:
1. Select the Logon button bean with the right mouse button and select

Connect and actionPerformed from the pop-up menu. The cursor changes
to a spider attached, with a dotted line, to the Logon button.

2. Use the spider to select the EPI Terminal bean. Select Connectable
Features from the pop-up menu. This opens the End connection to dialog.

3. In the End connection to dialog, select the Method button, located near the
top of the display, select the startTran() method in the panel, and select
OK.

Creating EPI Screen Buttons

To add an EPI Screen Buttons bean to your applet:
1. Select CTG Beans from the pull-down menu in the upper left corner of

the Visual Composition editor screen.
2. Select the icon labeled EPI Screen Buttons on the left of the screen. (Move

the mouse over the icons to display their labels.)
3. Move the mouse pointer to a position on the canvas that lies inside the

rectangular outline so that the cursor changes to crosshairs. Select near the
lower right corner with the left mouse button to create an EPI Screen
Buttons bean at the selected location.

4. Select the EPI Screen Buttons bean with the right mouse button and select
Connect and Connectable Features from the pop-up menu. This opens the
Start connection from dialog.

Using VisualAge for Java

50 CICS Transaction Gateway Programming

|
|
|
|

|
|
|

|
|
|

|
|

|

|
|
|

|

|
|
|

|
|

|
|
|

|

|

|
|

|
|

|
|
|
|

|
|
|

5. In the Start connection from dialog, select the Event button, located near
the top of the display, select actionPerformed in the panel, and select OK.

6. The cursor changes to a spider attached, with a dotted line, to the EPI
Screen Buttons bean. Use the spider to select the EPI Basic Screen
Handler rectangle. Select Connectable Features from the pop-up menu.
This opens the End connection to dialog.

7. In the End connection to dialog, select Method near the top of the screen,
select the actionPerformed(java.awt.event.ActionEvent) method in the
panel, and select OK.

8. Using the right mouse button, select the dotted line between the EPI Basic
Screen Handler rectangle and the EPI Screen Buttons bean to open the
Event-to-method connection - Properties dialog.

9. In the Event-to-method connection - Properties, select the checkbox Pass
event data and select OK.

Testing the Applet within VisualAge for Java

To test your applet from within VisualAge for Java:
1. Go to the workbench Bean menu and select Run and In Applet Viewer.
2. Resize the applet, by dragging the lower-left corner of the applet, until all

components are visible.
3. Select the applet Logon button. The CESN transaction runs on the CICS

server and the EPI Screen Handler applet displays the results.
4. Type in your Userid and Password for the CICS server and press Enter.
5. Select Clear to clear the screen and display a text input box.
6. Type in any CICS transaction name and operands and press Enter.
7. Resize the EPI Basic Screen Handler and rearrange the applet beans in the

Visual Composition editor by dragging them with the mouse to make all
the applet components visible in the Applet Viewer.

Exporting the Applet

When you have built the applet within VisualAge for Java, you must export it
to use it outside VisualAge for Java.

You may experience a problem using the VisualAge for Java export function.
The export function selects all of the CICS Transaction Gateway static classes
required by the applet but omits the dynamic classes. Selecting the required
dynamic classes by hand during export is one solution to this problem.

It is recommended that you export only your applet class, and copy the
applet class, the HTML file generated by VisualAge for Java, and the CICS

Using VisualAge for Java

Chapter 7. Using VisualAge for Java 51

|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

|

|

|
|

|
|

|

|

|

|
|
|

|
|

|
|

|
|
|
|

|
|

Transaction Gateway ctgclient.jar file to your server. Although you get an
applet distribution that is greater than 1 MB, you will be certain that any
required classes are present.

To export and distribute your applet:
1. Go to the VisualAge for Java workbench, select the Projects tab, and

navigate to the your applet class.
2. Select your applet class using the right mouse button. In the pop-up menu

select Export to open the SmartGuide Export dialog.
3. In the SmartGuide Export dialog, select Directory and then Next to open

the SmartGuide Export to a directory dialog (see Figure 8).

4. Now, select a suitable Directory, select .class and .html, and then select
Finish. When asked if you want to create the directory you have selected,
select Yes. VisualAge for Java then creates .class and .html files for your
applet, and places them in the directory you specified.

5. Open the .html file in an editor, modify the applet width and height tags,
and insert an archive tag in the applet tag. For example:

Figure 8. Export to a directory dialog

Using VisualAge for Java

52 CICS Transaction Gateway Programming

|
|
|

|

|
|

|
|

|
|
|

|
|
|
|

|
|

<HTML>
<HEAD>
<TITLE>MyApplet</TITLE>
</HEAD>
<BODY>
<H1>MyApplet</H1>
<APPLET CODE=MyApplet.class

ARCHIVE=ctgclient.jar
WIDTH=650
HEIGHT=500>

</APPLET>
</BODY>
</HTML>

6. Copy the ctgclient.jar file to the directory on the CICS Transaction
Gateway server you specified. This directory must be accessible by the
server for serving HTML documents.

Note: File ctgclient.jar does not necessarily need to be placed in the same
directory as the .class and .html files for your applet. This was shown
only for simplicity.

Running the Applet

You run the applet you have built by pointing your browser to the URL of the
.html file on your CICS Transaction Gateway server, for example:
http://azov.almaden.ibm.com/local/apache/share/htdocs/MyApplet.html

Using VisualAge for Java

Chapter 7. Using VisualAge for Java 53

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|

|

Using VisualAge for Java

54 CICS Transaction Gateway Programming

Chapter 8. Java class reference information

Online programming reference information is provided for the Java classes
and interfaces provided with CICS Transaction Gateway.

The reference information is in HTML format and is generated using the
Javadoc tool provided with the JDK.

To get to the reference information:
v On Windows and OS/2, select the Documentation icon.
v On AIX, Solaris, and OS/390, run the ctgdoc script.

and the library home page is displayed. You can then follow the links to the
reference information.

The following sections describe the different kinds of HTML pages that are
provided within the reference information.

Note: You may need to refer to the README file for the latest information on
using the programming reference information.

Class/interface page

In the reference pages, each class and interface has its own page. In each of
these pages, there are three sections:
1. Class/interface description:
v Class inheritance diagram
v Direct Subclasses
v All Known Subinterfaces
v All Known Implementing Classes
v Class/interface declaration
v Class/interface description

2. Summary tables:
v Inner Class Summary
v Field Summary
v Constructor Summary
v Method Summary

3. Class/interface description:
v Field Detail

© Copyright IBM Corp. 1996, 1999 55

|

|

|
|

|
|

|

|

|

|
|

|
|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v Constructor Detail
v Method Detail

Each summary entry contains the first sentence from the detailed description
for that item. The summary entries are alphabetical, while the detailed
descriptions are in the order they appear in the source code. This preserves
the logical groupings established by the programmer.

Use page

Each documented class and interface has its own Use page. This page
describes what packages, classes, methods, constructors and fields use any
part of the given class. The Use page for a package or interface A includes:
v Subclasses of A
v Fields declared as A
v Methods that return A
v Methods and constructors with parameters of type A.

You can access this page by first going to the class or interface, then clicking
on the Use link in the navigation bar.

Tree (Class Hierarchy)

When viewing a particular class or interface page, selecting Tree displays the
class and interface hierarchy for CICS Transaction Gateway.

Deprecated API

The Deprecated API page lists all of the API that have been deprecated. A
deprecated API is not recommended for use, generally due to improvements.
Deprecated APIs may be removed in future implementations.

Index page

The Index contains an alphabetic list of all classes, interfaces, constructors,
methods, and fields.

Java class reference information

56 CICS Transaction Gateway Programming

|

|

|
|
|
|

|
|

|
|
|

|

|

|

|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

Appendix A. The CICS Transaction Gateway and CICS
Universal Clients library

This chapter lists all the CICS Transaction Gateway, CICS Universal Clients,
and related books, and discusses the various forms in which they are
available.

The headings in this chapter are:
v “CICS Transaction Gateway books”
v “CICS Universal Clients books” on page 58
v “CICS Family publications” on page 58
v “Book filenames” on page 59
v “Sample configuration documents” on page 59
v “Other publications” on page 60
v “Viewing the online documentation” on page 60

CICS Transaction Gateway books

v CICS Transaction Gateway for OS/2 Administration, SC34-5590

This book describes the administration of the CICS Transaction Gateway for
OS/2.

v CICS Transaction Gateway for Windows Administration, SC34-5589

This book describes the administration of CICS Transaction Gateway for
Windows 98 and CICS Transaction Gateway for Windows NT.

v CICS Transaction Gateway for AIX Administration, SC34-5591

This book describes the administration of the CICS Transaction Gateway for
AIX.

v CICS Transaction Gateway for Solaris Administration, SC34-5592

This book describes the administration of the CICS Transaction Gateway for
Solaris.

v CICS Transaction Gateway for OS/390 Administration, SC34-5528

This book describes the administration of the CICS Transaction Gateway for
OS/390.

v CICS Transaction Gateway Messages

This online book lists and explains the error messages that can be generated
by CICS Transaction Gateway.
You cannot order this book.

© Copyright IBM Corp. 1996, 1999 57

|

|

|

|
|
|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

v CICS Transaction Gateway Programming, SC34-5594
This book provides an introduction to Java programming with the CICS
Transaction Gateway.
There are also additional HTML pages that contain programming reference
information.

CICS Universal Clients books

v CICS Universal Client for OS/2 Administration, SC34-5450

This book describes the administration of the CICS Universal Client for
OS/2.

v CICS Universal Client for Windows Administration, SC34-5449

This book describes the administration of the CICS Universal Client for
Windows 98 and CICS Universal Client for Windows NT.

v CICS Universal Client for AIX Administration, SC34-5348

This book describes the administration of the CICS Universal Client for
AIX.

v CICS Universal Client for Solaris Administration, SC34-5451

This book describes the administration of the CICS Universal Client for
Solaris.

v CICS Universal Clients Messages

This online book lists and explains the error and trace messages that can be
generated by CICS Universal Clients.
You cannot order this book.

v CICS Universal Clients C++ Programming, SC33-1923
This book describes how to write object oriented programs for the ECI and
EPI in the C++ language.

v CICS Universal Clients COM Automation Programming, SC33-1924
This book describes how to write object oriented programs for the ECI and
EPI according to the Component Object Model (COM) standard.

CICS Family publications

v CICS Family: Client/Server Programming, SC33-1435
This book describes the programming interfaces associated with CICS
client/server Programming— the External Call Interface (ECI), the External
Presentation Interface (EPI), and the External Security Interface (ESI). It is
intended for application designers and programmers who wish to develop
client applications to communicate with CICS server systems.

The CICS Transaction Gateway and CICS Universal Clients library

58 CICS Transaction Gateway Programming

|

|
|

|
|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|

|
|

|

|
|

|
|

|

|
|
|
|
|

Book filenames

Table 1 show the softcopy filenames of the CICS Transaction Gateway and
CICS Universal Client books.

Table 1. CICS Transaction Gateway and CICS Universal Clients books and file names

Book title File name

CICS Universal Clients Messages CCLHAB

CICS Universal Client for AIX Administration CCLHAD

CICS Universal Client for OS/2 Administration CCLHAE

CICS Universal Client for Windows Administration CCLHAF

CICS Universal Client for Solaris Administration CCLHAG

CICS Transaction Gateway for OS/390 Administration CCLHAI

CICS Transaction Gateway Messages CCLHAJ

CICS Transaction Gateway Programming CCLHAK

CICS Transaction Gateway for Windows Administration CCLHAL

CICS Transaction Gateway for OS/2 Administration CCLHAM

CICS Transaction Gateway for AIX Administration CCLHAN

CICS Transaction Gateway for Solaris Administration CCLHAO

CICS Universal Clients C++ Programming CCLHAP

CICS Universal Clients COM Automation Programming CCLHAQ

CICS Family: Client/Server Programming DFHZAD

Note: The File names in this table do not include the 2-digit suffix.

Sample configuration documents

A number of sample configuration documents are available in the Portable
Document Format (PDF) format.

These documents provide step-by-step guidance to help you, for example, in
configuring your CICS Universal Clients for communication with CICS
servers, using various protocols. They provide detailed instructions that
extend the information in the CICS Transaction Gateway and CICS Universal
Client libraries.

As more sample configuration documents become available, you can
download them from our Web site; go to:
http://www.ibm.com/software/ts/cics/

CICS Family publications

Appendix A. The CICS Transaction Gateway and CICS Universal Clients library 59

|
|

|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

|

|
|

|
|

|
|
|
|
|

|
|

|

http://www.ibm.com/software/ts/cics/

and follow the Library link.

Other publications

The following International Technical Support Organization (ITSO) Redbook
publication contains many examples of client/server configurations:
v Revealed! CICS Transaction Gateway with more CICS Clients Unmasked,

SG24-5277

This book supersedes the following book:
v CICS Clients Unmasked, GG24-2534

You can obtain ITSO Redbooks from a number of sources. For the latest
information, see:
http://www.ibm.com/redbooks/

You can find information on CICS products at:
http://www.ibm.com/software/ts/cics/

Viewing the online documentation

You can access all of the documentation provided with CICS Transaction
Gateway and CICS Universal Client in our online library. You need Adobe
Acrobat Reader and a suitable Web browser to use the online library (and you
may need to configure these).

To get to the online library:
v On Windows and OS/2, select the Documentation icon.
v On AIX and Solaris, run the ctgdoc script.

and the library home page is displayed.

The online library allows you to link to:
v CICS Transaction Gateway and CICS Universal Clients books in PDF

format.
v Programming reference documentation in HyperText Markup Language

(HTML) files (provided for CICS Transaction Gateway only).
v README files.
v Sample configuration documents in PDF format.
v Translated books in PDF format. (You may find that not all books are

translated for your language.)
v The CICS Web site.

Other publications

60 CICS Transaction Gateway Programming

|

|
|

|
|

|
|

|

|

|
|

|

|

|

|
|

|
|
|
|

|

|

|

|

|

|
|

|
|

|

|

|
|

|

http://www.ibm.com/redbooks/
http://www.ibm.com/software/ts/cics/

Guidance information on using Acrobat Reader is also provided.

Updated versions of the books may be provided from time to time, check our
Web site at:
http://www.ibm.com/software/ts/cics/

and follow the Library link.

Viewing PDF books

The PDF information provides powerful functions for:
v Navigating through the information. There are hypertext links within PDF

documents, and to other PDF documents and Web pages.
v Searching for specific information.
v Printing all or part of PDF documents on a PostScript printer.

You can find out more about Acrobat Reader at the Adobe Web site:
http://www.adobe.com/acrobat/

Viewing the online documentation

Appendix A. The CICS Transaction Gateway and CICS Universal Clients library 61

|

|
|

|

|

|

|

|
|

|

|

|

|

http://www.ibm.com/software/ts/cics/
http://www.adobe.com/acrobat/

Viewing the online documentation

62 CICS Transaction Gateway Programming

Appendix B. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

© Copyright IBM Corp. 1996, 1999 63

|

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the information. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM United
Kingdom Laboratories, MP151, Hursley Park, Winchester, Hampshire,
England, SO21 2JN. Such information may be available, subject to appropriate
terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. You may copy, modify, and distribute these sample
programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs
conforming to IBM’s application programming interfaces.

64 CICS Transaction Gateway Programming

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX CICS
IBM OS/2
OS/390
VisualAge

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java, and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, or other countries, or both.

Other company, product, and service names may be trademarks or service
marks of others.

Appendix B. Notices 65

66 CICS Transaction Gateway Programming

Index

B
BMS Map Conversion utility 20, 34
BMSMapConvert 34
books 57

CICS Transaction Gateway and
CICS Universal Clients
library 57

online 60
PDF 61
printed 61

C
CLASSPATH environment

variable 4, 8
com.ibm.ctg.client.T class 9
ctgclient.jar 4, 8, 25, 45
ctgserver.jar 4, 8

D
Demo applet 29
Demo2 applet 29
documentation 57

HTML 60
PDF 61

E
EPI beans 25
EPI Java Beans

EPIBasicScreenHandler 27, 31,
38

EPIMonitor 39
EPIScreenButtons 31, 40
EPITerminal 26, 36
screen handler beans 28, 34
using 26

EPI support classes 15

H
handling screens 27
hardcopy books 61
HTML (HyperText Markup

Language) 60
HTML documentation, viewing 60
HyperText Markup Language

(HTML) 60

J
Java

client programs 3
Java beans, EPI 25

Java options 8
Java stack size (Java -oss option) 8
Javadoc 55

N
native stack size (Java -ss option) 8

O
online books, PDF 61
online documenatation, HTML 60

P
PDF (Portable Document

Format) 61
PDF books, viewing 61
Portable Document Format

(PDF) 61
PostScript books 61
programming

EPI programming 15
EPI support classes 15
Java classes 1
Java client programs 3
programming interface 1
TestECI 5
TestEPI 6

programming reference 55
publications, CICS Transaction

Gateway and CICS Universal
Clients library 57

S
sample programs

Demo applet 29
Demo2 applet 29
EPIApplet 25
provided by CICS Transaction

Gateway 41
TestECI 5
TestEPI 6
vajdemo.dat 29

screen handlers 27
security classes 11
softcopy books, PDF 61
stack size 8
system properties, Java 9

T
tracing 9

V
vajdemo.dat 29
viewing online documentation 60
VisualAge for Java 29, 45

© Copyright IBM Corp. 1996, 1999 67

68 CICS Transaction Gateway Programming

IBMR

Program Number: 5648-B43

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5594-00

	Contents
	About this book
	Who should read this book
	Conventions and terminology used in this book
	Prerequisite and related information
	IBM CICS Transaction Gateway publications
	How to send your comments
	Obtaining books from IBM

	Chapter 1. CICS Transaction Gateway programminginterface overview
	Chapter 2. Writing Java client programs
	Flow of program control
	Setting up the CLASSPATH
	TestECI
	Running TestECI as an application
	Running TestECI as an applet

	TestEPI
	Running TestEPI

	Using a browser and CICS Transaction Gateway on the same workstation
	Performance issues
	Tracing in Java client programs

	Chapter 3. CICS Transaction Gateway security classes
	Chapter 4. EPI support classes
	Using the EPI support classes
	Connecting to CICS and starting a transaction
	Accessing fields on CICS 3270 screens
	Synchronization and sessions
	Using Screen without Terminal

	Converting BMS maps and using the Map class
	Using Map classes

	EPI samples
	EPISample1
	EPISample2

	Using the EPIRequest class

	Chapter 5. EPI beans
	CICS Transaction Gateway EPI beans Overview
	Running EPIApplet
	Using the beans
	Connecting to CICS
	Starting a transaction
	Handling screens
	Sending data back to CICS
	Disconnecting from CICS
	Example
	Generating screen handler beans

	Getting started with VisualAge for Java
	Importing the CICS Transaction Gateway classes into VisualAge for Java
	The Demo applet
	The Demo2 applet
	Hints and Tips
	My applet does not work—and some of my connections are shown withdotted lines
	How do I set a Screen Handler property with an entry field ?
	Adding generated Screen Handler beans to the Visual Composition Editor

	Screen Handler beans
	Generating screen handler beans
	Customizing and writing Screen Handlers

	EPI beans reference
	EPITerminal bean
	Properties
	Events
	Methods

	EPIBasicScreenHandler bean
	Properties
	Events
	Methods

	EPIMonitor bean
	Methods

	EPIScreenButtons bean
	Events
	Methods

	Chapter 6. CICS Transaction Gateway programmingsamples
	EPI samples
	Security samples
	Terminal Servlet samples
	Test samples

	Chapter 7. Using VisualAge for Java
	VisualAge for Java and the CICS Transaction Gateway classes
	Building an EPI Applet
	Creating an Applet
	Creating an EPI Terminal
	Creating a Logon Button
	Creating an EPI Basic Screen Handler
	Connecting the Logon Button to EPI Terminal
	Creating EPI Screen Buttons

	Testing the Applet within VisualAge for Java
	Exporting the Applet
	Running the Applet

	Chapter 8. Java class reference information
	Class/interface page
	Use page
	Tree (Class Hierarchy)
	Deprecated API
	Index page

	Appendix A. The CICS Transaction Gateway and CICSUniversal Clients library
	CICS Transaction Gateway books
	CICS Universal Clients books
	CICS Family publications
	Book filenames
	Sample configuration documents
	Other publications
	Viewing the online documentation
	Viewing PDF books

	Appendix B. Notices
	Trademarks

	Index

