
CICS® Family

Client/Server Programming

SC33-1435-04

IBM

CICS® Family

Client/Server Programming

SC33-1435-04

IBM

Note!
Before using this information and the product it supports, read the information under “Appendix D. Notices”
on page 207.

Fifth edition (September 1999)

This edition replaces SC33-1435-03.

© Copyright International Business Machines Corporation 1989, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

Summary of changes xi
Changes to the fifth edition xi

About this book xiii
Who should read this book. xiii
Conventions and terminology used in this
book xiii
Prerequisite and related information . . . xiii

General xiii
Setting up client-server systems xiv
Client application programming xiv
Application programming on CICS
servers xiv
Miscellaneous xiv

How to send your comments xv
Obtaining books from IBM xvi

Chapter 1. Introducing the external access
interfaces 1
Overview 1
External call interface 3
External presentation interface 4
External security interface 5
Using the external access interfaces 6
ECI and EPI exits 6

Chapter 2. External call interface 7
Overview 7

ECI function 7
Types of ECI calls 8

Program link calls 9
Managing logical units of work 9
Security in the ECI 12

Status information calls 13
How status information is supplied and
used 13

Reply solicitation calls 15
CICS_ExternalCall 16
ECI_SYNC call type 19
ECI_ASYNC call type 27

ECI_STATE_SYNC call type 35
ECI_STATE_ASYNC call type 39
ECI_GET_REPLY call type 44
ECI_GET_REPLY_WAIT call type 48
ECI_GET_SPECIFIC_REPLY call type . . 49
ECI_GET_SPECIFIC_REPLY_WAIT call
type. 53

ECI status block. 54
CICS_EciListSystems 55

Chapter 3. External presentation interface 57
Overview 57
How to use the EPI 58

Initialization and termination 58
Listing the configured servers 59
Adding terminal resources 59
Deleting terminal resources 61
Authentication and authorization 61
Starting transactions 62
Events and callbacks 63
Processing the events 64
Sending and receiving data 65
Managing pseudoconversations 65
Security in the EPI 66

EPI constants and data structures 67
EPI constants 68
EPI data structures 68

EPI versions 77
EPI functions. 77

CICS_EpiInitialize 82
CICS_EpiTerminate 83
CICS_EpiListSystems 84
CICS_EpiAddTerminal 86
CICS_EpiAddExTerminal. 91
CICS_EpiInquireSystem 96
CICS_EpiDelTerminal 97
CICS_EpiPurgeTerminal 98
CICS_EpiSetSecurity 99
CICS_EpiStartTran 101
CICS_EpiReply 104
CICS_EpiATIState 106
CICS_EpiSenseCode 108
CICS_EpiGetEvent 110
CICS_EpiGetSysError 112

EPI events 114
CICS_EPI_ADD_TERM 115

© Copyright IBM Corp. 1989, 1999 iii

||

||
||
||

||

||

||

||
||

||

CICS_EPI_EVENT_SEND 116
CICS_EPI_EVENT_CONVERSE 117
CICS_EPI_EVENT_END_TRAN 118
CICS_EPI_EVENT_START_ATI 119
CICS_EPI_EVENT_END_TERM 120

3270 data streams for the EPI 121
Inbound data streams (EPI to CICS). . . 121
Outbound data streams (CICS to EPI) . . 122
3270 order codes 123

Microsoft Windows 3.1 considerations . . . 125

Chapter 4. Creating ECI and EPI
application programs 127
Writing the non-CICS applications 127
Making ECI calls 128

CICS_ExternalCall 129
Callback routines 130
CICS_EciListSystems 130
Debugging with REXX 131

Making EPI calls 132
EPI functions 132
Callback routines 133

Compiling and linking applications 133
IBM CICS Client for DOS Version 2 . . . 133
IBM CICS Client for Windows Version 2 134
IBM CICS Clients for Windows NT and
Windows 95 Version 2 134
IBM CICS Client for OS/2 Version 2 . . 135
IBM CICS Universal Clients for Windows
NT and Windows 98 Version 3 138
IBM CICS Universal Client for OS/2
Version 3. 139
IBM CICS Universal Client for AIX
Version 3. 140
IBM CICS Universal Client for Solaris
Version 3. 140
CICS for OS/2 Version 3 server
implementation 141

Chapter 5. External security interface . . 143
Overview 143
Benefits of APPC PEM 144
Benefits of the ESI 144
ESI constants and data structures 144

ESI constants 145
ESI data structures 145

ESI functions 149
CICS_VerifyPassword 150
CICS_ChangePassword 153
CICS_SetDefaultSecurity 156

Appendix A. ECI extensions that are
environment-dependent 159
Call type extensions 159

Asynchronous program link call, with
notification by message
(ECI_ASYNC_NOTIFY_MSG) 159
Asynchronous program link call, with
notification by semaphore
(ECI_ASYNC_NOTIFY_SEM) 160
Asynchronous status call, with
notification by message
(ECI_STATE_ASYNC_MSG) 160
Asynchronous status call, with
notification by semaphore
(ECI_STATE_ASYNC_SEM) 161

Time-outs 161
Fields to support ECI extensions 162
Reply message formats 164
ECI return notification 164
Summary of input parameter requirements 165

Appendix B. CICS Universal Client
Programming Samples 167

Appendix C. ECI and EPI exits 169
Installing the exits 169
Exit routine environment 170
How the exit routines are described in the
reference sections 171
ECI exits reference 171

Identification token 172
EPI exits reference 184

CICS_EpiInitializeExit 186
CICS_EpiTerminateExit 187
CICS_EpiAddTerminalExit 188
CICS_EpiTermIdExit 191
CICS_EpiTermIdInfoExit 192
CICS_EpiStartTranExit 193
CICS_EpiReplyExit 194
CICS_EpiDelTerminalExit 195
CICS_EpiGetEventExit 196
CICS_EpiSystemIdExit 197
CICS_EpiTranFailedExit 199

Diagnostic information 201
CICSTERM, CICSPRNT and the EPI exits 201

Appendix D. Notices 207
Programming interface information 209
Trademarks 209

iv CICS Family: Client/Server Programming

||

|
||

||

Index 211

Contents v

vi CICS Family: Client/Server Programming

Figures

1. External access interfaces in CICS
client/server configurations 2

2. Server implementation of the external
interfaces. 2

3. External call interface illustrated 3

4. External presentation interface 4
5. Asynchronous program link calls with

message qualifiers and LUW tokens . . 12
6. Using terminal indexes. 60

© Copyright IBM Corp. 1989, 1999 vii

||

viii CICS Family: Client/Server Programming

Tables

1. Logical units of work in the ECI . . . 10
2. Status enquiries with CICS_ExternalCall 14
3. Summary of EPI functions 78
4. Order codes occurring in 3270 data

streams 123
5. CICS_ExternalCall return codes —

environment-dependent extensions . . 164

6. Input parameters for CICS_ExternalCall
— environment-dependent extensions . 166

7. ECI and EPI exits 169
8. Summary of ECI exits. 171
9. Summary of EPI exits 184

© Copyright IBM Corp. 1989, 1999 ix

x CICS Family: Client/Server Programming

Summary of changes

The following are the changes since the previous edition of this book.

Changes to the fifth edition

Information has been added about:
v Adding and deleting terminal resources, (in the External presentation

interface chapter).
v The CICS_EpiAddExTerminal function.
v The CICS_EpiPurgeTerminal function.
v The CICS_EpiSetSecurity function.
v The CICS_EPI_EVENT_ADD_TERM event.
v The CICS_EpiAttributes_t structure.
v The System TermId and SignonCapability fields in the CICS_EpiDetails_t

structure.
v The MapName and MapSetName fields in the CICS_EpiEventData_t

structure.
v The CICS_SetDefaultSecurity function.
v The ECI exit CICS_EciSetProgramAliasExit.
v The EPI exit CICS_EpiTermidInfoExit.
v The programming samples supplied with CICS Universal Clients.

Information about CICS on Open Systems has been removed.

Various minor technical corrections have been made.

© Copyright IBM Corp. 1989, 1999 xi

|

|
|

|

|
|

|

|

|

|

|

|
|

|
|

|

|

|

|

|

|

xii CICS Family: Client/Server Programming

About this book

This book is about the CICS Family programming interfaces to enable
non-CICS applications to use CICS facilities in a client-server environment.
The interfaces described are:
v External call interface (ECI)
v External presentation interface (EPI).
v External security interface (ESI).

Who should read this book

This book is for application designers and application programmers in a
client-server environment.

You should have a good knowledge of:
v CICS, and the CICS servers that the applications will use
v The concepts of client/server programming
v The programming language in which the applications will be written
v The programming environment in which the programs will operate.

Conventions and terminology used in this book

The presentation of names of program elements is as follows:
1. When a program element is in lowercase, or mixed case, it is always

written in this book in a bold face: eci_userid, CICS_EpiAddTerminal.
2. When a program element is in uppercase, it is always written in this book

in a normal face: ECI_ERR_LUW_TOKEN,
CICS_EPI_EVENT_END_TERM.

“CICS on System/390®” is used to refer to:
v CICS/VSE®

v CICS/MVS®

v CICS/ESA®

v CICS Transaction Server for OS/390®

Prerequisite and related information

General
v CICS Family: Interproduct Communication, SC33-0824

© Copyright IBM Corp. 1989, 1999 xiii

Setting up client-server systems
v CICS Clients Administration

– SC33-1792 for CICS Clients Version 2
– SC34-5450 for CICS Universal Client for OS/2® Version 3
– SC34-5449 for CICS Universal Client for Windows™ Version 3
– SC34-5448 for CICS Universal Client for AIX® Version 3
– SC34-5451 for CICS Universal Client for Solaris Version 3

v CICS for OS/2 Customization, SC33-1581
v CICS for OS/2 Intercommunication, SC33-1583
v IBM Transaction Server for Windows NT™ Version 4 Quick Beginnings,

GC33-1879
v IBM Transaction Server for Windows NT Version 4 Administration Guide,

GC33-1881
v IBM Transaction Server for Windows NT Version 4 Administration Reference

(CICS), GC33-1885
v CICS/400® Administration and Operations Guide, SC33-1387
v CICS/400 Intercommunication, SC33-1388
v CICS Transaction Server for OS/390 Resource Definition Guide, SC33-1684
v CICS Transaction Server for OS/390 Customization Guide, SC33-1683
v CICS/VSE Resource Definition, SC33-0708
v CICS/VSE Customization Guide, SC33-0707

You may need to consult other publications relevant to your client and server
systems.

Client application programming

For information about application programming on client systems, please
consult the publications for the client systems.

Application programming on CICS servers

Application programming on CICS servers is described in publications in the
library for each server environment.

Miscellaneous
v An Introduction to the IBM 3270 Information Display System, GA27-2739
v IBM 3270 Information Display System Data Stream Programmer’s Reference,

GA23-0059
v Guide to Writing DCE Applications, by John Shirley, published by O’Reilly

Associates, Sebastopol, CA, USA, ISBN 1-56592-004-X

xiv CICS Family: Client/Server Programming

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book, or any
other CICS documentation:
v Visit our Web site at:

http://www.ibm.com/software/ts/cics/

and follow the library link to our feedback form.

Here you will find the feedback page where you can enter and submit your
comments.

v Send your comments by e-mail to idrcf@hursley.ibm.com
v Fax your comments to:

+44-1962-870229 (if you are outside the UK)
01962-870229 (if you are in the UK)

v Mail your comments to:

Information Development
Mail Point 095
IBM United Kingdom Laboratories
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

Whichever method you use, ensure that you include:
v The name of the book
v The form number of the book
v If applicable, the version of the product
v The specific location of the text you are commenting on, for example, a

page number or table number.

When you send information to IBM, you grant IBM a non-exclusive right to
use or distribute the information in any way it believes appropriate without
incurring any obligation to you.

About this book xv

Obtaining books from IBM

For information on books you can download, visit our Web site at:
http://www.ibm.com/software/ts/cics/

and follow the library link.

You can order hardcopy books:
v Through your IBM representative or the IBM branch office serving your

locality.
v By calling 1-800-879-2755 in the United States.
v From the Web site at:

http://www.elink.ibmlink.ibm.com/pbl/pbl

xvi CICS Family: Client/Server Programming

Chapter 1. Introducing the external access interfaces

This chapter introduces CICS Family Client/Server Programming, which
comprises two application programming interfaces (APIs) that provide
external access to CICS facilities:
v External call interface (ECI)
v External presentation interface (EPI)
v External security interface (ESI)

The chapter is organized as follows:
“Overview”

“External call interface” on page 3

“External presentation interface” on page 4

“External security interface” on page 5

“Using the external access interfaces” on page 6

“ECI and EPI exits” on page 6

Overview

The ECI and EPI allow your non-CICS applications to gain access to CICS
facilities and data.

Figure 1 on page 2 illustrates the use of the external interfaces by a non-CICS
application in a client system. This application is using the facilities of CICS in
a server system. The CICS client software processes the application’s ECI and
EPI requests, and transmits them to the server system using an appropriate
communication protocol. Although the figure shows the client system and
server system as separate workstations, it is possible for the whole
configuration to be on a single workstation.

© Copyright IBM Corp. 1989, 1999 1

|

Some members of the CICS family provide the external interfaces to non-CICS
applications without the use of a CICS client. The non-CICS application must
be on the same workstation as the server, and is not able to communicate with
other servers. This is illustrated in Figure 2. In this case the application is
using the server implementation of the external interfaces.

The following can be client systems that can connect to any CICS server. In
these systems an appropriate CICS client must be installed. See the
appropriate CICS Clients Administration manual.

v OS/2 — IBM CICS Client for OS/2 Version 2 and IBM CICS Universal
Client for OS/2 Version 3

v DOS — IBM CICS Client for DOS Version 2
v Microsoft™ Windows — IBM CICS Client for Windows Version 2
v Microsoft Windows NT — IBM CICS Client for Windows NT Version 2 and

IBM CICS Universal Client for Windows NT Version 3
v Microsoft Windows 95 — IBM CICS Client for Windows 95 Version 2
v IBM CICS Universal Client for Windows 98 Version 3
v IBM CICS Universal Client for AIX Version 3
v IBM CICS Universal Client for Solaris Version 3

C l i e n t s y s t e m S e r v e r s y s t e m

C I C SA p p l i c a t i o n
C I C S

C l i e n t

E C I

E P I

Figure 1. External access interfaces in CICS client/server configurations

S e r v e r s y s t e m

A p p l i c a t i o n
E C I

E P I

C I C S

Figure 2. Server implementation of the external interfaces

Introduction

2 CICS Family: Client/Server Programming

The following server systems provide a server implementation of the external
interfaces:
v IBM CICS for OS/2
v IBM Transaction Server for OS/2 Warp

Any member of the CICS family can be a server, though CICS on System/390
servers before CICS for MVS/ESA Version 4 Release 1 with PTF UN90142
support only the ECI.

External call interface

The ECI allows a non-CICS application to call a CICS program in a CICS
server. The application can be connected to several servers at the same time,
and it can have several program calls outstanding at the same time.

The CICS program cannot perform terminal I/O, but can access and update
all other CICS resources.

Figure 3 shows that the same CICS program can be called by a non-CICS
application using the external call interface, or by a CICS program using
EXEC CICS LINK. Data is exchanged between the two programs by means of
a COMMAREA, in a similar way to CICS interprogram communication.

Calls may be made synchronously or asynchronously. Synchronous calls
return control when the called program completes, and the information
returned is immediately available. Asynchronous calls return control without

CICS program

CICS

CICS

CICS programsApplication
Data

ECI

EXEC CICS LINK ...

Figure 3. External call interface illustrated

Introduction

Chapter 1. Introducing the external access interfaces 3

reference to the completion of the called program, and the application can ask
to be notified when the information becomes available.

Calls may also be extended. That is, a single logical unit of work may cover
two or more successive calls, though only one call can be active for each
logical unit of work at any time. The application can manage many logical
units of work concurrently if it uses asynchronous calls.

The called program can update resources on its own system, it can use
distributed program link (DPL) to call CICS programs on other systems, and
it can access resources on other CICS systems by function shipping, by
distributed transaction processing (DTP), or (in the CICS/MVS and CICS/ESA
environments) by the front end programming interface (FEPI).

External presentation interface

The EPI allows a non-CICS application program to be viewed as a 3270
terminal by a CICS server system to which it is connected. Figure 4 shows
how both an EPI application and a CICS terminal can schedule transactions in
a CICS server.

The application can be using the facilities of several servers at the same time,
and can act as if it were many different 3270 terminals.

C I C S

C I C S t r a n s a c t i o n sA p p l i c a t i o n

D a t a

E P I

Figure 4. External presentation interface

Introduction

4 CICS Family: Client/Server Programming

The application can schedule CICS transactions, and for these transactions it is
the principal facility.

With CICS servers that support access through the EPI, other CICS
transactions running in the server can use the CICS START command to
schedule transactions that use the non-CICS application as their initiating
terminal.

When a non-CICS application uses the EPI to start a transaction in a CICS
server, 3270 data streams and events are passed between the server and the
application. The application can present the contents of the terminal I/O to its
user in any manner appropriate to the application’s operating environment.

Transactions can be routed to other CICS systems by standard transaction
routing. Resources on other CICS systems can be accessed by function
shipping.

Note that server transactions can be existing transactions that use 3270 input
and output (with some restrictions).

External security interface

The ESI allows a non-CICS application to invoke services provided by
advanced program-to-program communication (APPC) password expiration
management (PEM).

APPC PEM with CICS provides support for an APPC architected sign-on
transaction that signs on userids to a CICS server, and processes requests for a
password change by:
v Identifying a user and authenticating that user’s identification
v Notifying specific users during the authentication that their passwords have

expired
v Letting users change their passwords when (or before) the passwords expire
v Telling users how long their current passwords will remain valid
v Providing information about unauthorized attempts to access the server

using a particular user identifier

ESI calls can be included within your ECI or EPI applications.

Introduction

Chapter 1. Introducing the external access interfaces 5

Using the external access interfaces

The external interfaces allow non-CICS applications to access and update
CICS resources by initiating CICS transactions or calling CICS programs.
When used in conjunction with the CICS communication facilities, they enable
non-CICS programs to access and update resources on any CICS system. This
supports such activities as:
1. Developing graphical user interface (GUI) front ends for CICS

applications, using Presentation Manager® or other presentation systems
2. Connecting external devices such as bar-code readers to CICS systems
3. Allowing the integration of CICS systems and non-CICS systems.

The EPI allows you to develop GUIs, either for existing CICS systems or for
new applications. It is particularly useful for developing new GUI front ends
for existing CICS transactions, which need not be changed. The application
can use the EPI to communicate with a CICS transaction, and can exploit the
presentation facilities of the client system to communicate with the end user.

If you attach an external device such as a bar code reader, the application can
deal with device input and output, and can use the EPI to start a transaction,
perhaps one already written to deal with the kind of data that the external
device produces. The application converts the input from the external device
into a 3270 data stream to start the transaction and pass the data to it. Output
from the transaction, in the form of a 3270 data stream, is then converted into
the signals and data streams that operate the external device.

The integration of CICS and non-CICS systems usually involves passing
user-defined data between the programs of the non-CICS system and a CICS
program, and the ECI can be used for this.

In any of these cases, the choice between EPI and ECI is not always clear-cut,
because both interfaces can be used to pass data between a non-CICS
application and a CICS program. However, the mechanism is different in the
two cases: 3270 data streams for EPI; application-defined formats in a
COMMAREA for ECI.

ECI and EPI exits

For CICS Clients Version 2, and CICS Universal Clients, the operation of the
EPI and ECI can be customized by the user exits described in “Appendix C.
ECI and EPI exits” on page 169.

Introduction

6 CICS Family: Client/Server Programming

|
|
|

Chapter 2. External call interface

This chapter provides reference information about the external call interface
(ECI).

The interface is described here in a language-independent manner, though the
names chosen for the elements of the interface—functions, parameters, data
structures, fields, constants, and so on—are similar to those provided for
programming. Language-dependent information is in “Chapter 4. Creating
ECI and EPI application programs” on page 127.

On some platforms, the ECI provides facilities that are not part of CICS
Family Client/Server Programming, and these are summarized in
“Appendix A. ECI extensions that are environment-dependent” on page 159.

The chapter is organized as follows:

“Overview”

“Program link calls” on page 9

“Status information calls” on page 13

“Reply solicitation calls” on page 15

“CICS_ExternalCall” on page 16

“ECI status block” on page 54

“CICS_EciListSystems” on page 55.

Overview

ECI function

The ECI allows a non-CICS application program to call a CICS program in a
CICS server. The non-CICS application does not issue any CICS commands
itself; the CICS commands are issued by the called program running in the
server. The called program thus appears to have been called by EXEC CICS
LINK with the COMMAREA option. An ECI application can make use of
existing CICS programs that obey the rules for distributed program link, or
new CICS programs can be written to be called by ECI applications. The
called programs must follow the rules for CICS programs called by DPL.

© Copyright IBM Corp. 1989, 1999 7

In some circumstances it is possible for the application to be running more
than one CICS program concurrently, and these programs might be
distributed across several CICS servers.

The function provided by the ECI is packaged in two parts as follows:

CICS_ExternalCall
Provides most of the function of the ECI. It has a single parameter, the
ECI parameter block, in which various fields describe the function to
be performed and the inputs and outputs. Most of the following
sections are concerned with the use of CICS_ExternalCall.

CICS_EciListSystems
Used to find out about available servers to which CICS_ExternalCall
requests can be directed. It is described in “CICS_EciListSystems” on
page 55.

Types of ECI calls

The calls to CICS_ExternalCall are of three types:
v Program link calls
v Status information calls
v Reply solicitation calls.

The type of call to CICS_ExternalCall is controlled by the setting of the
eci_call_type parameter in the ECI parameter block.

Restrictions on call type for particular operating environments are discussed
in the descriptions of each call type.

Program link calls

Program link calls cause a CICS program to be executed on a CICS server.
These calls can be:
v Synchronous — the application waits until the called program has finished.

Returned information is immediately available.
v Asynchronous — the application gets control back without reference to the

completion of the called program. The application can ask to be notified
later when the information is available. It must use a reply solicitation call
to determine the outcome of the asynchronous request.

Status information calls

Status information calls retrieve status information about the type of system
on which the application is running and its status. These calls can be:

External call interface

8 CICS Family: Client/Server Programming

v Synchronous — the application waits until the information has been made
available.

v Asynchronous — the application gets control back while the information is
being retrieved. The application can ask to be notified later when the
information is available. It must use a reply solicitation call to determine
the outcome of the asynchronous request.

Reply solicitation calls

Reply solicitation calls get information back after asynchronous program link
or asynchronous status information calls. Reply solicitation calls can be:
v General — retrieving any piece of outstanding information
v Specific — retrieving information for a named asynchronous request.

An application that uses the asynchronous method of calling may have
several program link and status information calls outstanding at any time.
The eci_message_qualifier parameter in the ECI parameter block can be used
on an asynchronous call to provide a user-defined identifier for the call. The
use of different identifiers for different asynchronous calls within a single
application is the programmer’s responsibility. When a general reply
solicitation call is made, the ECI uses the eci_message_qualifier field to return
the name of the call to which the reply belongs. When a specific reply
solicitation call is made, you must supply a value in the
eci_message_qualifier field to identify the asynchronous call about which
information is begin sought.

Program link calls

Program link calls can be either synchronous or asynchronous. For
asynchronous calls, it is the responsibility of the calling application to solicit
the reply using one of the reply solicitation calls. (See “Reply solicitation calls”
on page 15.)

Managing logical units of work

An ECI application is often concerned with updating recoverable resources on
the server, and the application programmer needs to understand the facilities
that the ECI provides for managing logical units of work. A logical unit of
work is all the processing in the server that is needed to establish a set of
updates to recoverable resources. When the logical unit of work ends
normally, the changes will all be committed. When the logical unit of work
ends abnormally, for instance because a program abends, the changes are all
backed out. You can use the ECI to start and end logical units of work on the
server.

External call interface

Chapter 2. External call interface 9

The changes to recoverable resources in a logical unit of work might be
effected by:
v A single program link call, or
v A sequence of program link calls.

On successful return from the first of a sequence of calls for a logical unit of
work, the eci_luw_token field in the control block contains a token that
should be used for all later calls related to the same logical unit of work. All
program link calls for the same logical unit of work will be sent to the same
server.

Attention: You should be careful when extending a logical unit of work across
multiple program link calls that may span a long time (for example, over user
think time). The reason is that the logical unit of work holds various locks
and other CICS resources on the server, and this may cause delays to other
users who are waiting for those same locks and resources.

When a logical unit of work ends, the CICS server attempts to commit the
changes. The last, or only, program link call of a logical unit of work is
advised whether the attempt was successful.

Only one program link call per logical unit of work can be outstanding at any
time. (An asynchronous program link call is outstanding until a reply
solicitation call has processed the reply.)

Table 1 shows how you can use combinations of eci_extend_mode,
eci_program_name, and eci_luw_token parameter values to perform tasks
associated with managing logical units of work through the ECI. In each case
you must also store appropriate values in other fields for the call type you
have chosen.

Table 1. Logical units of work in the ECI

Task to perform Parameters to use

Call a program that is to be the only program of a
logical unit of work.

Set up the parameters as follows:

v eci_extend_mode: ECI_NO_EXTEND
v eci_program_name: provide it
v eci_luw_token: zero

Call a program that is to start a new logical unit of
work that is to be extended.

Set up the parameters as follows:
v eci_extend_mode: ECI_EXTENDED
v eci_program_name: provide it
v eci_luw_token: zero

Afterwards, save the token from eci_luw_token.

External call interface

10 CICS Family: Client/Server Programming

Table 1. Logical units of work in the ECI (continued)

Task to perform Parameters to use

Call a program that is to continue an existing
logical unit of work.

Set up the parameters as follows:
v eci_extend_mode: ECI_EXTENDED
v eci_program_name: provide it
v eci_luw_token: provide it

Call a program that is to be the last program of an
existing logical unit of work, and commit the
changes.

Set up the parameters as follows:
v eci_extend_mode: ECI_NO_EXTEND
v eci_program_name: provide it
v eci_luw_token: provide it

End an existing logical unit of work, without
calling another program, and commit changes to
recoverable resources.

Set up the parameters as follows:
v eci_extend_mode: ECI_COMMIT
v eci_program_name: null
v eci_luw_token: provide it

End an existing logical unit of work, without
calling another program, and back out changes to
recoverable resources.

Set up the parameters as follows:
v eci_extend_mode: ECI_BACKOUT
v eci_program_name: null
v eci_luw_token: provide it

If an error occurs in one of the calls of an extended logical unit of work, you
can use the eci_luw_token field to see if the changes made so far have been
backed out, or are still pending. See the description of the eci_luw_token field
in “ECI_SYNC call type” on page 19 and “ECI_ASYNC call type” on page 27
for more information. If the changes are still pending, you should end the
logical unit of work with another program link call, either committing or
backing out the changes.

Each logical unit of work ties up one CICS non-facility task for the duration
of its execution. This means that you must define enough free tasks in the
CICS server to service the maximum expected number of concurrent calls.

Figure 5 on page 12 shows an application program using asynchronous
program calls. The program has two calls outstanding in one server and one
call in another. To keep track of its requests, the program is using message
qualifiers that it has generated itself, and LUW tokens returned in the
eci_luw_token field.

External call interface

Chapter 2. External call interface 11

For more details of the program link calls, you should study the descriptions
of the individual call types:

“ECI_SYNC call type” on page 19 for a synchronous program link call
“ECI_ASYNC call type” on page 27 for an asynchronous program link call.

Security in the ECI

The ECI_SYNC and ECI_ASYNC calls are implemented as a set of intersystem
conversations between a CICS client and server; a conversation is allocated for
each unit of work created by the client application.

A userid and password may be required for each intersystem conversation;
the requirement is determined by the way in which the CICS client and CICS
server have been configured.

The client application can specify the userid and password in the eci_userid
(or eci_userid2) and eci_password (or eci_password2) in the ECI parameter
block for the first or only call in the unit of work.

The client application can pass the userid and password to the
CICS_SetDefaultSecurity function. The values are server-specific and are

S e r v e r 1

M e s s a g e q u a l i f i e r s

A p p l i c a t i o n

S e r v e r 2

C I C S p r o g r a m s C I C S p r o g r a m

L U W t o k e n s

Figure 5. Asynchronous program link calls with message qualifiers and LUW tokens

External call interface

12 CICS Family: Client/Server Programming

|
|
|

|
|
|

|
|
|

|
|

used whenever the values have been omitted from the ECI parameter block.
The values can be changed at any time by the CICS_SetDefaultSecurity
function.

If the userid and password are required for intersystem conversations and
have not been set by the CICS_SetDefaultSecurity function then the CICS
client may use other methods, for example via a pop-up window, to
determine the values. (Note that pop-up windows are not supported on AIX
and Solaris.)

DCE protocol considerations

The operator might need DCE authorization to use the ECI application,
depending on the local configuration. If the ECI application runs for a long
time, for example longer than thirty minutes, you must make sure that the
credential lifetime and renewable lifetime of the DCE principal are long
enough to cover the maximum allowed duration of the ECI application.

Status information calls

Status information calls can be either synchronous or asynchronous. For
asynchronous calls, it is the responsibility of the calling application to obtain
the reply using a reply solicitation call (see “Reply solicitation calls” on
page 15).

How status information is supplied and used

Status information is supplied in the ECI status block, which is passed across
the interface in the eci_commarea parameter.

The following status information is held in the ECI status block. For a more
detailed description, see “ECI status block” on page 54.
v The type of connection (whether the ECI program is locally connected to a

CICS server, a CICS client, or nothing)
v The state of the CICS server (available, unavailable, or unknown)
v The state of the CICS client (available, not applicable, or unknown).

The status information calls allow you to perform three tasks:
v Enquire on the type of system the application is running on, and its connection

with a given server. For this you need to provide a COMMAREA in which
the status is returned.

v Set up a request to be notified when the status changes from some specified value.
For this you need to provide a COMMAREA in which the specified status

External call interface

Chapter 2. External call interface 13

|
|
|

|
|
|
|
|

|

|
|
|
|
|

is described. When the status is different from the status specified, you are
notified of the new status. Only asynchronous calls can be used for this
purpose.

v Cancel a request for notification of status change. For this no COMMAREA is
required.

Table 2 shows how you can use combinations of eci_extend_mode,
eci_commarea, eci_commarea_length, and eci_luw_token parameter values to
perform tasks associated with status enquiries. In each case you must also
store appropriate values in other fields for the call type you have chosen.

Table 2. Status enquiries with CICS_ExternalCall

Task to perform Parameters to use

Find the current status. Set up the parameters as follows:

v eci_commarea: nulls
v eci_commarea_length: length of ECI_STATUS
v eci_extend_mode: ECI_STATE_IMMEDIATE

Afterwards, consult the contents of the
COMMAREA to find the status.

Set up a request to find out about status change. Set up the parameters as follows:
v eci_commarea: specified status
v eci_commarea_length: length of ECI_STATUS
v eci_extend_mode: ECI_STATE_CHANGED
v eci_luw_token: zero

Afterwards, save the token from eci_luw_token so
that you can cancel the request later.

Cancel a request to find out about status change. Set up the parameters as follows:
v eci_commarea: none
v eci_commarea_length: zero
v eci_extend_mode: ECI_STATE_CANCEL
v eci_luw_token: provide it

For more details of the status information calls, you should study the
descriptions of the individual call types:

“ECI_STATE_SYNC call type” on page 35 for a synchronous status
information call
“ECI_STATE_ASYNC call type” on page 39 for an asynchronous status
information call.

External call interface

14 CICS Family: Client/Server Programming

Reply solicitation calls

After an asynchronous program link call or asynchronous status information
call, it is the responsibility of the calling application to solicit the reply. All
calls return any outstanding reply that meets the selection criteria specified in
the call.

For more details of the reply solicitation calls, you should study the
descriptions of the individual call types:

“ECI_GET_REPLY call type” on page 44 for a reply solicitation call that
gets any outstanding reply for any asynchronous call, if any reply is
available.
“ECI_GET_REPLY_WAIT call type” on page 48 for a reply solicitation call
that gets any outstanding reply for any asynchronous call, waiting if no
replies are available.
“ECI_GET_SPECIFIC_REPLY call type” on page 49 for a reply solicitation
call that gets any outstanding reply for a given asynchronous call, if any
reply is available.
“ECI_GET_SPECIFIC_REPLY_WAIT call type” on page 53 for a reply
solicitation call that gets any outstanding reply for a given asynchronous
call, waiting if no replies are available.

External call interface

Chapter 2. External call interface 15

CICS_ExternalCall

CICS_ExternalCall ECI_Parms

Purpose

CICS_ExternalCall gives access to the program link calls, status information
calls, and reply solicitation calls described above. The function performed is
controlled by the eci_call_type field in the ECI parameter block.

Parameters

ECI_Parms
A pointer to the ECI parameter block. The parameter block must be set to
nulls before use. The parameter block fields that are used as input and
output are described in detail for each call type in the following
sections. A brief summary of the fields is given next:

eci_call_type
An integer field defining the type of call being made. For
details of the functions provided, see “Types of ECI calls” on
page 8.

eci_program_name
The name of a program to be called.

eci_userid
User ID for security checking.

eci_password
Password for security checking.

eci_transid
A transaction identifier.

eci_abend_code
Abend code for a failed program.

eci_commarea
A COMMAREA for use by a called program, or for returned
status information.

eci_commarea_length
The length of the COMMAREA. The size of the COMMAREA
must be set to the largest size of the input or output data. If
the input data is less than the length of the COMMAREA, the
COMMAREA should be padded with nulls. The CICS client
strips off the null padding and only sends the data on the ECI
request to the CICS server.

External call interface

16 CICS Family: Client/Server Programming

|
|
|
|
|
|
|

eci_timeout
The time to wait for a response from the CICS server. For
more information on the ECI time-out support, refer to
“Time-outs” on page 161.

reserved1
A return code giving more information about an unexpected
error.

This field was previously eci_system_ return_code. In CICS
Universal Clients Version 3.1, and higher, this field is reserved
for backward compatibility. No information is returned in this
field; all system errors are written to the clients error log.

eci_extend_mode
A field that qualifies the function to be performed in various
ways.

eci_message_qualifier
A user-provided reference to an asynchronous call.

eci_luw_token
An identifier for a logical unit of work.

eci_sysid
Reserved for future use, leave null.

eci_version
The version of the ECI for which the application is coded. You
may use the values ECI_VERSION_1 or ECI_VERSION_1A.
All the facilities of version 1 are available in version 1A.
Facilities available only in version 1A are noted where they
occur. The use of the value ECI_VERSION_0 is confined to
programs migrated from previous versions of the ECI.

eci_system_name
The name of a CICS server.

eci_callback
A pointer to a callback routine for an asynchronous request.

eci_userid2
User ID for security checking.

eci_password2
Password for security checking.

eci_tpn
A transaction identifier for a mirror transaction. This field is
available only when eci_version has the value
ECI_VERSION_1A.

External call interface

Chapter 2. External call interface 17

|
|
|

|
|
|
|

Return codes

In addition to the return codes described for each call type in the following
sections, the following return codes are possible.

ECI_ERR_INVALID_CALL_TYPE
The call type was not one of the valid call types.

ECI_ERR_CALL_FROM_CALLBACK
The call was made from a callback routine.

ECI_ERR_SYSTEM_ERROR
An internal system error occurred. The error might have been in the
client or in the server. The programmer should save the information
returned in the eci_sys_return_code field, as this will help service
personnel to diagnose the error.

ECI_ERR_INVALID_VERSION
The value supplied for eci_version was invalid.

ECI_ERR_REQUEST_TIMEOUT
The value in the eci_timeout field of the ECI parameter block is
negative.

In some implementations, some of the return codes documented here and for
each call type will never be returned.

The mapping of actual return code values to the symbolic names is contained
in the following files for CICS Universal Client for OS/2 and CICS Universal
Client for Windows:

COBOL \copybook\cicseci.cbl

C \include\cics_eci.h

PL/I \plihdr\cics_eci.inc

and in the following files for CICS Universal Client for AIX and CICS
Universal Client for Solaris:

COBOL /include/CICSECI

C /include/cics_eci.h

External call interface

18 CICS Family: Client/Server Programming

|
|
|

||

||

||

|
|

||

||

|

ECI_SYNC call type

Environment

The ECI_SYNC call type is available in all environments.

Purpose

The ECI_SYNC call type provides a synchronous program link call to start,
continue, or end a logical unit of work. The calling application does not get
control back until the called CICS program has run to completion.

ECI parameter block fields

The ECI parameter block should be set to nulls before setting the input
parameter fields.

eci_call_type
Required input parameter.

Must be set to ECI_SYNC.

eci_program_name
Input parameter, required except when eci_extend_mode is
ECI_COMMIT or ECI_BACKOUT. (See Table 1 on page 10.)

An 8-character field containing the name of the program to be called.
Unused characters should be padded with spaces. This field is
transmitted to the server without conversion to uppercase.

The characters used are translated from the client’s code page to an
EBCDIC code page before transmission. If the server uses an ASCII
code page, they will be retranslated. The only characters guaranteed
to be invariant under these translations are the uppercase characters A
to Z, and the numeric characters 0 to 9. Some EBCDIC servers
(Katakana and Hebrew character set A) do not use the standard
representations of the lowercase alphabetic characters, so these should
be used with care when communicating with such servers.

eci_userid
Required input parameter.

An 8-character field containing a user ID. Unused characters should
be padded with spaces.

You should consult the documentation for the client and the server to
check whether this field is converted to upper case before being
transmitted to the server. (If a user ID or password longer than 8
characters is required, eci_version must not be ECI_VERSION_0; and

External call interface

Chapter 2. External call interface 19

|
|
|
|

eci_userid and eci_password must be set to nulls, and the fields
eci_userid2 and eci_password2 used instead.)

If a user ID is supplied, then the server uses the user ID and any
supplied password to authenticate the user. The supplied user ID and
password are used in subsequent security checking in the server.

eci_password
Required input parameter.

An 8-character field containing a password. Unused characters should
be padded with spaces.

You should consult the documentation for the client and the server to
check whether this field is converted to upper case before being
transmitted to the server. (If a user ID or password longer than 8
characters is required, this field and eci_userid must be set to nulls,
and the fields eci_userid2 and eci_password2 used instead.)

eci_transid
Optional input parameter

A 4-character field optionally containing the ID of a CICS transaction.
Unused characters should be padded with spaces. This field is
ignored if eci_tpn is used. This field is transmitted to the server
without conversion to uppercase. The use of this parameter depends
on the client from which the request is sent.

The called program runs under the mirror transaction CPMI, but is
linked to under the eci_transid transaction name. This name is
available to the called program for querying the transaction ID. Some
servers use the transaction ID to determine security and performance
attributes for the called program. In those servers, you are
recommended to use this parameter to control the processing of your
called programs.

If the ECI request is extended (see the description of
eci_extend_mode), the eci_transid parameter has a meaning only for
the first call in the unit of work.

If the field is all nulls, and eci_tpn is not specified, the default server
transaction ID is used.

eci_abend_code
Output parameter.

A 4-character field in which a CICS abend code is returned if the
transaction that executes the called program abends. Unused
characters are padded with spaces.

eci_commarea
Optional input parameter.

External call interface

20 CICS Family: Client/Server Programming

|
|

|
|
|
|
|

A pointer to the data to be passed to the called CICS program as its
COMMAREA. The COMMAREA will be used by the called program
to return information to the application.

If no COMMAREA is required, supply a null pointer and set the
length (specified in eci_commarea_length) to zero.

If the code page of the application is different from the code page of
the server, data conversion must be performed at the server. To do
this, you need to make use of CICS-supplied resource conversion
capabilities, such as the DFHCNV macro definitions.

eci_commarea_length
Optional input parameter.

The length of the COMMAREA in bytes. This value may not exceed
32 500. (Some client-server combinations may allow larger
COMMAREAs, but this is not guaranteed to work as part of CICS
Family Client/Server Programming.)

If no COMMAREA is required, set this field to zero and supply a null
pointer in eci_commarea.

eci_timeout
The time in seconds to wait for a response from the CICS server. A
value of 0 means that no limit is set.

If timeout occurs, the conversation is abended.

reserved1
Output parameter.

An integer field containing additional information when the return
code is ECI_ERR_SYSTEM_ERROR. The meaning of this information
depends on the software and hardware platform. You should save this
information, as it will help service personnel to diagnose the error.

This field was previously eci_system_ return_code. In CICS Universal
Clients Version 3.1, and higher, this field is reserved for backward
compatibility. No information is returned in this field; all system
errors are written to the clients error log.

eci_extend_mode
Required input parameter.

An integer field determining whether a logical unit of work is
terminated at the end of this call.) (See Table 1 on page 10.)

The values for this field (shown by their symbolic names) are as
follows:

ECI_NO_EXTEND

External call interface

Chapter 2. External call interface 21

|
|
|

|

|
|
|
|

1. If the input eci_luw_token field is zero, this is the only
call for a logical unit of work.

2. If the input eci_luw_token field is not zero, this is the last
call for the specified logical unit of work.

In either case, changes to recoverable resources are committed
by a CICS end-of-task syncpoint, and the logical unit of work
ends.

ECI_EXTENDED

1. If the input eci_luw_token field is zero, this is the first call
for a logical unit of work that is to be continued.

2. If the input eci_luw_token field is not zero, this call is
intended to continue the specified logical unit of work.

In either case the logical unit of work continues after the
called program completes successfully, and changes to
recoverable resources remain uncommitted.

ECI_COMMIT
Terminate the current logical unit of work, identified by the
input eci_luw_token field, and commit all changes made to
recoverable resources.

ECI_BACKOUT
Terminate the logical unit of work identified by the input
eci_luw_token field, and back out all changes made to
recoverable resources.

eci_luw_token
Required input and output parameter.

An integer field used for identifying the logical unit of work to which
a call belongs. It must be set to zero at the start of a logical unit of
work (regardless of whether the logical unit of work is going to be
extended). If the logical unit of work is to be extended, the ECI
updates eci_luw_token with a valid value on the first call of the
logical unit of work, and this value should be used as input to all
later calls related to the same logical unit of work. (See Table 1 on
page 10.)

If the return code is not ECI_NO_ERROR, and the call was continuing
or ending an existing logical unit of work, this field is used as output
to report the condition of the logical unit of work. If it is set to zero,
the logical unit of work has ended, and its updates have been backed
out. If it is nonzero, it is the same as the input value, the logical unit
of work is continuing, and its updates are still pending.

eci_sysid
Required input parameter.

External call interface

22 CICS Family: Client/Server Programming

Reserved for future use, but this field should be initialized with nulls
before the start of each logical unit of work.

eci_version
Required input parameter.

The version of the ECI for which the application is coded. You may
use the values ECI_VERSION_1 or ECI_VERSION_1A. All the
facilities of version 1 are available in version 1A. Facilities available
only in version 1A are noted where they occur. (ECI_VERSION_0 is
provided to allow applications written for previous versions of the
ECI to continue to execute, but many of the facilities of CICS
Client/Server Programming are not available if eci_version has this
value.)

eci_system_name
Optional input parameter.

An 8-character field that specifies the name of the server to which the
ECI request is to be directed. Unused characters should be padded
with spaces. If supplied, it should be one of the server names
returned by CICS_EciListSystems. The value may be supplied
whenever eci_luw_token is set to zero. (If it is supplied when
eci_luw_token is not zero, it is ignored, because the server was
established at the start of the logical unit of work.)

If the field is set to nulls, then a server, currently the default server, is
selected; the name of the chosen server is returned in this field, and
must be used in subsequent related ECI requests. If ECI requests
made in different logical units of work must be directed to the same
server, then eci_system_name must identify that server by name.

eci_userid2
Optional input parameter.

If the eci_userid field is set to nulls, then the eci_userid2 field
specifies the user ID (if any) to be used at the server for any authority
validation. The user ID can be up to 16 characters. eci_version must
not be ECI_VERSION_0.

See the description of the eci_userid field for information about how
the user ID is used.

eci_password2
Optional input parameter.

If the eci_password field is set to nulls, the eci_password2 field
specifies the password (if any) to be used at the server for any
authority validation. The password can be up to 16 characters.
eci_version must not be ECI_VERSION_0.

External call interface

Chapter 2. External call interface 23

See the description of the eci_password field for information about
how the password is used.

eci_tpn
Optional input parameter. Available only if the value of eci_version is
ECI_VERSION_1A.

A 4-character field that specifies the transaction ID of the transaction
that will be used in the server to process the ECI request. This
transaction must be defined in the server as a CICS mirror transaction.
If the field is not set, the default mirror transaction CPMI is used.

If the ECI request is extended (see the description of
eci_extend_mode), this parameter has a meaning only for the first
request.

If this field is used, the contents of eci_transid are ignored.

Return codes

See also the general list of return codes for CICS_ExternalCall in
“CICS_ExternalCall” on page 16.

ECI_NO_ERROR
The call completed successfully.

ECI_ERR_INVALID_DATA_LENGTH
The value in eci_commarea_length field is outside the valid range, or
is inconsistent with the value in eci_commarea, being zero for a
non-null eci_commarea pointer, or non-zero for a null eci_commarea
pointer.

ECI_ERR_INVALID_EXTEND_MODE
The value in eci_extend_mode field is not valid.

ECI_ERR_NO_CICS
The client is unavailable, or the server implementation is unavailable,
or a logical unit of work was to be begun, but the CICS server
specified in eci_system_name is not available. No resources have been
updated.

ECI_ERR_CICS_DIED
A logical unit of work was to be begun or continued, but the CICS
server was no longer available. If eci_extend_mode was
ECI_EXTENDED, the changes are backed out, and the logical unit of
work ends. If eci_extend_mode was ECI_NO_EXTEND,
ECI_COMMIT, or ECI_BACKOUT, the application cannot determine
whether the changes have been committed or backed out, and must
log this condition to aid future manual recovery.

External call interface

24 CICS Family: Client/Server Programming

ECI_ERR_TRANSACTION_ABEND
The CICS transaction that executed the requested program abended.
The abend code will be found in eci_abend_code. For information
about abend codes and their meaning, you should consult the
documentation for the server system to which the request was
directed.

ECI_ERR_LUW_TOKEN
The value supplied in eci_luw_token is invalid.

ECI_ERR_ALREADY_ACTIVE
An attempt was made to continue an existing logical unit of work, but
there was an outstanding asynchronous call for the same logical unit
of work.

ECI_ERR_RESOURCE_SHORTAGE
The server implementation or the client did not have enough
resources to complete the request.

ECI_ERR_NO_SESSIONS
A new logical unit of work was being created, but the application
already has as many outstanding logical units of work as the
configuration will support.

ECI_ERR_INVALID_DATA_AREA
Either the pointer to the ECI parameter block is invalid, or the pointer
supplied in eci_commarea is invalid.

ECI_ERR_ROLLEDBACK
An attempt was made to commit a logical unit of work, but the server
was unable to commit the changes, and backed them out instead.

ECI_ERR_UNKNOWN_SERVER
The requested server could not be located. Only servers returned by
CICS_EciListSystems are acceptable.

ECI_ERR_INVALID_TRANSID
A logical unit of work was being extended, but the value supplied in
eci_transid differed from the value used when the logical unit of
work was started.

ECI_ERR_MAX_SESSIONS
There were not enough communication resources to satisfy the
request. You should consult the documentation for your client or
server to see how to control communication resources.

ECI_ERR_MAX_SYSTEMS
You attempted to start requests to more servers than your
configuration allows. You should consult the documentation for your
client or server to see how to control the number of servers you can
use.

External call interface

Chapter 2. External call interface 25

ECI_ERR_SECURITY_ERROR
You did not supply a valid combination of user ID and password,
though the server expects it.

External call interface

26 CICS Family: Client/Server Programming

ECI_ASYNC call type

Environment

The ECI_ASYNC call type is available in all environments except DOS.

Purpose

The ECI_ASYNC call type provides an asynchronous program link call to
start, continue, or end a logical unit of work. The calling application gets
control back when the ECI has accepted the request. At this point the
parameters have been validated; however, the request might still be queued
for later processing.

If no callback routine is provided, the application must use a reply solicitation
call to determine that the request has ended and what the outcome was.

If a callback routine is provided, the callback routine eci_callback is invoked
when a response is available.

Note: Some compilers do not support the use of callback routines. Consult
your compiler documentation for more information.

When the callback routine is called, it is passed a single parameter—the value
specified in eci_message_qualifier. Use of this parameter enables the callback
routine to identify the asynchronous call that is completing. Note the
following guidelines on the use of the callback routine:
1. The minimum possible processing should be performed within the

callback routine.
2. ECI functions cannot be invoked from within the callback routine.
3. The callback routine should indicate to the main body of the application

that the reply is available using an appropriate technique for the operating
system upon which the ECI application is executing. For example, in a
multithreaded environment like OS/2, the callback routine might post a
semaphore to signal another thread that an event has occurred. In a
Presentation Manager environment, it might post a message to a window
to indicate to the window procedure that an event has occurred. Other
actions would be appropriate for other environments.

4. The application, not the callback routine, must use a reply solicitation call
to receive the actual response.

ECI parameter block fields

The ECI parameter block should be set to nulls before setting the input
parameter fields.

External call interface

Chapter 2. External call interface 27

eci_call_type
Required input parameter.

Must be set to ECI_ASYNC.

eci_program_name
Input only, required parameter except when eci_extend_mode is
ECI_COMMIT or ECI_BACKOUT. (See Table 1 on page 10.)

An 8-character field containing the name of the program to be called.
Unused characters should be padded with spaces. This field is
transmitted to the server without conversion to uppercase.

The characters used are translated from the client’s code page to an
EBCDIC code page before transmission. If the server uses an ASCII
code page, they will be retranslated. The only characters guaranteed
to be invariant under these translations are the uppercase characters A
to Z, and the numeric characters 0 to 9. Some EBCDIC servers
(Katakana and Hebrew character set A) do not use the standard
representations of the lowercase alphabetic characters, so these should
be used with care when communicating with such servers.

eci_userid
Required input parameter.

An 8-character field containing a user ID. Unused characters should
be padded with spaces.

You should consult the documentation for the client and the server to
check whether this field is converted to upper case before being
transmitted to the server. (If a user ID or password longer than 8
characters is required, eci_version must not be ECI_VERSION_0; and
eci_userid and eci_password must be set to nulls, and the fields
eci_userid2 and eci_password2 used instead.)

If a user ID is supplied, then the user ID and any supplied password
will be used by the server to validate the authority of the user to
execute the ECI request. The form of this validation is defined by the
server.

eci_password
Required input parameter.

An 8-character field containing a password. Unused characters should
be padded with spaces.

You should consult the documentation for the client and the server to
check whether this field is converted to upper case before being
transmitted to the server. (If a user ID or password longer than 8
characters is required, this field and eci_userid must be set to nulls,
and the fields eci_userid2 and eci_password2 used instead.)

External call interface

28 CICS Family: Client/Server Programming

eci_transid
Optional input parameter.

A 4-character field optionally containing a CICS transaction ID.
Unused characters should be padded with spaces. This field is
ignored if eci_tpn is used. This field is transmitted to the server
without conversion to uppercase. The use of this parameter depends
on the client from which the request is sent.

The called program runs under the mirror transaction CPMI, but is
linked to under the eci_transid transaction name. This name is
available to the called program for querying the transaction ID. Some
servers use the transaction ID to determine security and performance
attributes for the called program. In those servers, you are
recommended to use this parameter to control the processing of your
called programs.

If the ECI request is extended (see the description of
eci_extend_mode), the eci_transid parameter has a meaning only for
the first call in the unit of work.

If the field is all nulls, and eci_tpn is not specified, the default server
transaction ID is used.

eci_commarea
Required input parameter.

A pointer to the data to be passed to the called CICS program as its
COMMAREA.

If no COMMAREA is required, supply a null pointer and set the
length (specified in eci_commarea_length) to zero.

If the code page of the application is different from the code page of
the server, data conversion must be performed at the server. To do
this, you need to make use of CICS-supplied resource conversion
capabilities, such as the DFHCNV macro definitions.

eci_commarea_length
Required input parameter.

The length of the COMMAREA in bytes. This value may not exceed
32 500. (Some client-server combinations may allow larger
COMMAREAs, but this is not guaranteed to work as part of CICS
Family Client/Server Programming.)

If no COMMAREA is required, set this field to zero and supply a null
pointer in eci_commarea.

eci_timeout
The time in seconds to wait for a response from the CICS server. A
value of 0 means that no limit is set.

External call interface

Chapter 2. External call interface 29

|
|
|
|
|
|
|

|
|
|

If timeout occurs, the conversation is abended.

reserved1
Output parameter.

An integer field containing additional information when the return
code is ECI_ERR_SYSTEM_ERROR. The meaning of this information
depends on the software and hardware platform. You should save this
information, as it will help service personnel to diagnose the error.

This field was previously eci_system_ return_code. In CICS Universal
Clients Version 3.1, and higher, this field is reserved for backward
compatibility. No information is returned in this field; all system
errors are written to the clients error log.

eci_extend_mode
Required input parameter.

An integer field determining whether a logical unit of work is
terminated at the end of this call. (See Table 1 on page 10.)

Values (shown by their symbolic names) for this field are as follows:

ECI_NO_EXTEND

1. If the input eci_luw_token field is zero, this is the only
call for a logical unit of work.

2. If the input eci_luw_token field is not zero, this is the last
call for the specified logical unit of work.

In either case, changes to recoverable resources are committed
by a CICS end-of-task syncpoint, and the logical unit of work
ends.

ECI_EXTENDED

1. If the input eci_luw_token field is zero, this is the first call
for a logical unit of work that is to be continued.

2. If the input eci_luw_token field is not zero, this call is
intended to continue the specified logical unit of work.

In either case the logical unit of work continues after the
called program completes, and changes to recoverable
resources remain uncommitted.

ECI_COMMIT
Terminate the current logical unit of work, identified by the
input eci_luw_token field, and commit all changes made to
recoverable resources.

External call interface

30 CICS Family: Client/Server Programming

|

|
|
|
|

ECI_BACKOUT
Terminate the logical unit of work identified by the input
eci_luw_token field, and back out all changes made to
recoverable resources.

eci_message_qualifier
Optional input parameter.

An integer field allowing the application to identify each
asynchronous call if it is making more than one. If a callback routine
is specified, the value in this field is returned to the callback routine
during the notification process.

eci_luw_token
Required input and output parameter.

An integer field used for identifying the logical unit of work to which
a call belongs. It must be set to zero at the start of a logical unit of
work (regardless of whether the logical unit of work is going to be
extended), and the ECI updates it with a valid value on the first or
only call of the logical unit of work. If the logical unit of work is to be
extended, this value should be used as input to all later calls related
to the same logical unit of work. (See Table 1 on page 10.)

If the return code is not ECI_NO_ERROR, and the call was continuing
or ending an existing logical unit of work, this field is used as output
to report the condition of the logical unit of work. If it is set to zero,
the logical unit of work has ended, and its updates have been backed
out. If it is nonzero, it is the same as the input value, the logical unit
of work is continuing, and its updates are still pending.

eci_sysid
Required input parameter.

Reserved for future use, but this field should be initialized with nulls
before the start of each logical unit of work.

eci_version
Required input parameter.

The version of the ECI for which the application is coded. You may
use the values ECI_VERSION_1 or ECI_VERSION_1A. All the
facilities of version 1 are available in version 1A. Facilities available
only in version 1A are noted where they occur. (ECI_VERSION_0 is
provided to allow applications written for previous versions of the
ECI to continue to execute, but many of the facilities of CICS
Client/Server Programming are not available if eci_version has this
value.)

eci_system_name
Optional input parameter.

External call interface

Chapter 2. External call interface 31

An 8-character field that specifies the name of the server to which the
ECI request is to be directed. Unused characters should be padded
with spaces. The value may be supplied whenever eci_luw_token is
set to zero. (If it is supplied when eci_luw_token is not zero, it is
ignored, because the server was established at the start of the logical
unit of work.)

If the field is set to nulls, then a server, currently the default server, is
selected. You can obtain the name of the chosen server from the
eci_system_name field of the reply solicitation call you use to get the
result of this asynchronous request. (If later ECI requests made in
different logical units of work must be directed to the same server as
this request, then eci_system_name in those requests must identify
that server by name.)

eci_callback
Optional input parameter.

A pointer to the routine to be called when the asynchronous request
completes. (The callback routine will be called only if the return code
is ECI_NO_ERROR, and the pointer is not null.)

eci_userid2
Optional input parameter.

If the eci_userid field is set to nulls, then the eci_userid2 field
specifies the user ID (if any) to be used at the server for any authority
validation. The user ID can be up to 16 characters. eci_version must
not be ECI_VERSION_0.

See the description of the eci_userid field for information about how
the user ID is used.

eci_password2
Optional input parameter.

If the eci_password field is set to nulls, the eci_password2 field
specifies the password (if any) to be used at the server for any
authority validation. The password can be up to 16 characters.
eci_version must not be ECI_VERSION_0.

See the description of the eci_password field for information about
how the password is used.

eci_tpn
Optional input parameter. Available only if the value of eci_version is
ECI_VERSION_1A.

A 4-character field that specifies the transaction ID of the transaction
that will be used in the server to process the ECI request. This

External call interface

32 CICS Family: Client/Server Programming

transaction must be defined in the server as a CICS mirror transaction.
If the field is not set, the default mirror transaction CPMI is used.

If the ECI request is extended (see the description of
eci_extend_mode), this parameter has a meaning only for the first
request.

If this field is used, the contents of eci_transid are ignored.

Return codes

See also the general list of return codes for CICS_ExternalCall in
“CICS_ExternalCall” on page 16.

If the return code is not ECI_NO_ERROR, the callback routine will not be
called, and there will be no asynchronous reply for this request.

ECI_NO_ERROR
The call to the ECI completed successfully. No errors have yet been
detected. The callback routine will be called when the request
completes.

ECI_ERR_INVALID_DATA_LENGTH
The value in eci_commarea_length field is outside the valid range, or
is inconsistent with the value in eci_commarea, being zero for a
non-null eci_commarea pointer, or non-zero for a null eci_commarea
pointer.

ECI_ERR_INVALID_EXTEND_MODE
The value in eci_extend_mode field is not valid.

ECI_ERR_NO_CICS
Either the client or the server implementation is not available.

ECI_ERR_LUW_TOKEN
The value supplied in eci_luw_token is invalid.

ECI_ERR_THREAD_CREATE_ERROR
The server implementation or the client failed to create a thread to
process the request.

ECI_ERR_ALREADY_ACTIVE
An attempt was made to continue an existing logical unit of work, but
there was an outstanding asynchronous call for the same logical unit
of work.

ECI_ERR_RESOURCE_SHORTAGE
The server implementation or the client did not have enough
resources to complete the request.

External call interface

Chapter 2. External call interface 33

ECI_ERR_NO_SESSIONS
A new logical unit of work was being created, but the application
already has as many outstanding logical units of work as the
configuration will support.

ECI_ERR_INVALID_DATA_AREA
Either the pointer to the ECI parameter block is invalid, or the pointer
supplied in eci_commarea is invalid.

ECI_ERR_INVALID_TRANSID
A logical unit of work was being extended, but the value supplied in
eci_transid differed from the value used when the logical unit of
work was started.

External call interface

34 CICS Family: Client/Server Programming

ECI_STATE_SYNC call type

Environment

The ECI_STATE_SYNC call type is available in all environments.

Purpose

The ECI_STATE_SYNC call type provides a synchronous status information
call.

ECI parameter block fields

The ECI parameter block should be set to nulls before setting the input
parameter fields.

eci_call_type
Required input parameter.

Must be set to ECI_STATE_SYNC.

eci_commarea
Input parameter, required except when eci_extend_mode has the
value ECI_STATE_CANCEL.

A pointer to the area of storage where the application receives the
returned COMMAREA containing status information (see “Status
information calls” on page 13 and “ECI status block” on page 54 for
more details).

If eci_extend_mode has the value ECI_STATE_CANCEL, supply a
null pointer and set the length (specified in eci_commarea_length) to
zero.

eci_commarea_length
Required input and output parameter, except when eci_extend_mode
has the value ECI_STATE_CANCEL.

The length of the COMMAREA in bytes, which must be the length of
the ECI_STATUS structure that gives the layout of the status
information COMMAREA (see “Status information calls” on page 13
and “ECI status block” on page 54 for more details).

If no COMMAREA is required, set this field to zero and supply a null
pointer in eci_commarea.

reserved1
Output parameter.

An integer field containing additional information when the return
code is ECI_ERR_SYSTEM_ERROR. The meaning of this information

External call interface

Chapter 2. External call interface 35

depends on the software and hardware platform. You should save this
information, as it will help service personnel to diagnose the error.

This field was previously eci_system_ return_code. In CICS Universal
Clients Version 3.1, and higher, this field is reserved for backward
compatibility. No information is returned in this field; all system
errors are written to the clients error log.

eci_extend_mode
Required input parameter.

An integer field further qualifying the call type. (See Table 2 on
page 14.) The values for this field (shown by their symbolic names)
are as follows:

ECI_STATE_IMMEDIATE
Force a status reply to be sent immediately it is available. The
layout of the returned COMMAREA is defined in the
ECI_STATUS structure (see “Status information calls” on
page 13 and “ECI status block” on page 54).

ECI_STATE_CHANGED
Force a status reply to be sent only when the status changes.
The supplied COMMAREA must contain the status as
perceived by the application. A reply is sent only when there
is a change from the status that the application supplied. The
layout of the COMMAREA is defined in the ECI_STATUS
structure (see “Status information calls” on page 13 and “ECI
status block” on page 54 for more details). The eci_luw_token
field that is returned on the immediate response provides a
token to identify the request.

ECI_STATE_CANCEL
Cancel an ECI_STATE_CHANGED type of operation. No
COMMAREA is required for this request. The eci_luw_token
field must contain the token that was received during the
ECI_STATE_CHANGED call.

eci_luw_token
Optional input and output parameter.

When a deferred status request is being set up (eci_extend_mode set
to ECI_STATE_CHANGED), the token identifying the request is
returned in the eci_luw_token field.

When a deferred status request is being cancelled (eci_extend_mode
set to ECI_STATE_CANCEL), the eci_luw_token field must contain
the token that was received during the ECI_STATE_CHANGED call.

This field is not used when other values of eci_extend_mode are
specified.

External call interface

36 CICS Family: Client/Server Programming

|
|
|
|

eci_sysid
Required input parameter.

Reserved for future use, but this field should be initialized with nulls
before the start of each logical unit of work.

eci_version
Required input parameter.

The version of the ECI for which the application is coded. You may
use the values ECI_VERSION_1 or ECI_VERSION_1A. All the
facilities of version 1 are available in version 1A. Facilities available
only in version 1A are noted where they occur. (ECI_VERSION_0 is
provided to allow applications written for previous versions of the
ECI to continue to execute, but many of the facilities of CICS
Client/Server Programming are not available if eci_version has this
value.)

eci_system_name
Optional input parameter.

An 8-character field that specifies the name of the server for which
status information is required. Unused characters should be padded
with spaces. If supplied, it should be one of the server names
returned by CICS_EciListSystems. The value may be supplied
whenever eci_luw_token is set to zero.

If the field is set to nulls, then a server, currently the default server, is
selected; the name of the chosen server is returned in this

Return codes

See also the general list of return codes for CICS_ExternalCall in
“CICS_ExternalCall” on page 16.

ECI_NO_ERROR
The call completed successfully.

ECI_ERR_INVALID_DATA_LENGTH
The value in eci_commarea_length field is outside the valid range, or
is inconsistent with the value in eci_commarea, being zero for a
non-null eci_commarea pointer, or non-zero for a null eci_commarea
pointer.

ECI_ERR_INVALID_EXTEND_MODE
The value in eci_extend_mode field is not valid.

ECI_ERR_LUW_TOKEN
The value supplied in eci_luw_token is invalid.

External call interface

Chapter 2. External call interface 37

ECI_ERR_INVALID_DATA_AREA
Either the pointer to the ECI parameter block is invalid, or the pointer
supplied in eci_commarea is invalid.

ECI_ERR_UNKNOWN_SERVER
The requested server could not be located. Only servers returned by
CICS_EciListSystems are acceptable.

External call interface

38 CICS Family: Client/Server Programming

ECI_STATE_ASYNC call type

Environment

The ECI_STATE_ASYNC call type is available in all environments except DOS.

Purpose

The ECI_STATE_ASYNC call type provides an asynchronous status
information call. The calling application gets control back when the ECI
accepts the request. At this point the parameters have been validated;
however, the request might still be queued for later processing.

If no callback routine is provided, the application must use a reply solicitation
call to determine that the request has ended and what the outcome was.

If a callback routine is provided, the callback routine eci_callback is invoked
when a response is available.

Note: Some compilers do not support the use of callback routines. Consult
your compiler documentation for more information.

When the callback routine is called, it is passed a single parameter—the value
specified in eci_message_qualifier. Use of this parameter enables the callback
routine to identify the asynchronous call that is completing. Note the
following guidelines on the use of the callback routine:
1. The minimum possible processing should be performed within the

callback routine.
2. ECI functions cannot be invoked from within the callback routine.
3. The callback routine should indicate to the main body of the application

that the reply is available using an appropriate technique for the operating
system upon which the ECI application is executing. For example, in a
multithreaded environment like OS/2, the callback routine might post a
semaphore to signal another thread that an event has occurred. In a
Presentation Manager environment, it might post a message to a window
to indicate to the window procedure that an event has occurred. Other
actions would be appropriate for other environments.

4. The application, not the callback routine, must use a reply solicitation call
to receive the actual response.

ECI parameter block fields

The ECI parameter block should be set to nulls before setting the input
parameter fields.

External call interface

Chapter 2. External call interface 39

eci_call_type
Required input parameter.

Must be set to ECI_STATE_ASYNC.

eci_commarea
Input parameter, required except when eci_extend_mode has the
value ECI_STATE_CANCEL.

A pointer to the area of storage where the application receives the
returned COMMAREA containing status information (see “Status
information calls” on page 13 and “ECI status block” on page 54 for
more details).

If eci_extend_mode has the value ECI_STATE_CANCEL, supply a
null pointer and set the length (specified in eci_commarea_length) to
zero.

eci_commarea_length
Required input parameter, except when eci_extend_mode has the
value ECI_STATE_CANCEL.

The length of the COMMAREA in bytes, which must be the length of
the ECI_STATUS structure that gives the layout of the status
information COMMAREA (see “Status information calls” on page 13
and “ECI status block” on page 54 for more details).

If no COMMAREA is required, set this field to zero and supply a null
pointer in eci_commarea.

reserved1
Output parameter.

An integer field containing additional information when the return
code is ECI_ERR_SYSTEM_ERROR. The meaning of this information
depends on the software and hardware platform. You should save this
information, as it will help service personnel to diagnose the error.

This field was previously eci_system_ return_code. In CICS Universal
Clients Version 3.1, and higher, this field is reserved for backward
compatibility. No information is returned in this field; all system
errors are written to the clients error log.

eci_extend_mode
Required input parameter.

An integer field further qualifying the call type. (See Table 2 on
page 14.) The values for this field (shown by their symbolic names)
are as follows:

ECI_STATE_IMMEDIATE
Force a status reply to be sent immediately it is available. The

External call interface

40 CICS Family: Client/Server Programming

|
|
|
|

layout of the returned COMMAREA is defined in the
ECI_STATUS structure (see “Status information calls” on
page 13 and “ECI status block” on page 54

ECI_STATE_CHANGED
Force a status reply to be sent only when the status changes.
The supplied COMMAREA must contain the status as
perceived by the application. A reply is sent only when there
is a change from the status that the application supplied. The
layout of the COMMAREA is defined in the ECI_STATUS
structure (see “Status information calls” on page 13 and “ECI
status block” on page 54 for more details). The eci_luw_token
field that is returned on the immediate response identifies the
logical unit of work to which this call belongs.

ECI_STATE_CANCEL
Cancel an ECI_STATE_CHANGED type of operation. No
COMMAREA is required for this request. The eci_luw_token
field must contain the token that was received during the
ECI_STATE_CHANGED call.

eci_message_qualifier
Optional input parameter.

An integer field allowing you to identify each asynchronous call if
you are making more than one. If a callback routine is specified, the
value in this field is returned to the callback routine during the
notification process.

eci_luw_token
Optional input and output parameter.

When a deferred status request is being set up (eci_extend_mode set
to ECI_STATE_CHANGED), the token identifying the request is
returned in the eci_luw_token field.

When a deferred status request is being cancelled (eci_extend_mode
set to ECI_STATE_CANCEL), the eci_luw_token field must contain
the token that was received during the ECI_STATE_CHANGED call.

This field is not used when other values of eci_extend_mode are
specified.

eci_sysid
Required input parameter.

Reserved for future use, but this field should be initialized with nulls
before the start of each logical unit of work.

eci_version
Required input parameter.

External call interface

Chapter 2. External call interface 41

The version of the ECI for which the application is coded. You may
use the values ECI_VERSION_1 or ECI_VERSION_1A. All the
facilities of version 1 are available in version 1A. Facilities available
only in version 1A are noted where they occur. (ECI_VERSION_0 is
provided to allow applications written for previous versions of the
ECI to continue to execute, but many of the facilities of CICS
Client/Server Programming are not available if eci_version has this
value.)

eci_system_name
Optional input parameter.

An 8-character field that specifies the name of the server for which
status information is requested. Unused characters should be padded
with spaces. If supplied, it should be one of the server names
returned by CICS_EciListSystems. The value may be supplied
whenever eci_luw_token is set to zero.

If the field is set to nulls, then a server, currently the default server, is
selected. You can find out the name of the server from the
eci_system_name field of the reply solicitation call you use to get the
result of this asynchronous request. field.

eci_callback
Optional input parameter.

A pointer to the routine to be called when the asynchronous request
completes. (The callback routine will be called only if the return code
is ECI_NO_ERROR, and the pointer is not null.)

Return codes

See also the general list of return codes for CICS_ExternalCall in
“CICS_ExternalCall” on page 16.

If the return code is not ECI_NO_ERROR, the callback routine will not be
called, and there will be no asynchronous reply for this request.

ECI_NO_ERROR
The call completed successfully.

ECI_ERR_INVALID_DATA_LENGTH
The value in eci_commarea_length field is outside the valid range, or
is inconsistent with the value in eci_commarea, being zero for a
non-null eci_commarea pointer, or non-zero for a null eci_commarea
pointer.

ECI_ERR_INVALID_EXTEND_MODE
The value in eci_extend_mode field is not valid.

External call interface

42 CICS Family: Client/Server Programming

ECI_ERR_LUW_TOKEN
The value supplied in eci_luw_token is invalid.

ECI_ERR_INVALID_DATA_AREA
Either the pointer to the ECI parameter block is invalid, or the pointer
supplied in eci_commarea is invalid.

External call interface

Chapter 2. External call interface 43

ECI_GET_REPLY call type

Environment

The ECI_GET_REPLY call type is available in all environments except DOS.

Purpose

The ECI_GET_REPLY call type provides a reply solicitation call to return
information appropriate to any outstanding reply for any asynchronous
request. If there is no such reply, ECI_ERR_NO_REPLY is returned. (To cause
the application to wait until a reply is available, you should use call type
ECI_GET_REPLY_WAIT instead.)

ECI parameter block fields

The ECI parameter block should be set to nulls before setting the input
parameter fields.

The following fields are the fields of the ECI parameter block that might be
supplied as input.

In the course of an ECI_GET_REPLY call, the ECI parameter block is updated
as follows:
1. All the outputs from the reply, some of which overwrite input fields, are

added. These fields are those that are output from the corresponding
synchronous version of the asynchronous request.

2. The eci_message_qualifier value supplied as input to the asynchronous
request to which this reply relates is restored.

3. Any inputs that are not updated become undefined, except the pointer to
the COMMAREA. You should not use the contents of these fields again.

eci_call_type
Required input parameter.

Must be set to ECI_GET_REPLY.

eci_commarea
Optional input parameter.

A pointer to the area of storage where the application receives the
returned COMMAREA. The contents of the returned commarea
depend on the type of asynchronous call to which a reply is being
sought. For a program link call, it is the COMMAREA expected to be
returned from the called program, if any. For a status information call,
except when eci_extend_mode has the value ECI_STATE_CANCEL, it

External call interface

44 CICS Family: Client/Server Programming

is a COMMAREA containing status information (see “Status
information calls” on page 13 and “ECI status block” on page 54 for
more details).

If no COMMAREA is required, supply a null pointer and set the
length (specified in eci_commarea_length) to zero.

If the code page of the application is different from the code page of
the server, data conversion must be performed at the server. To do
this, you need to make use of CICS-supplied resource conversion
capabilities, such as the DFHCNV macro definitions.

eci_commarea_length
Required input parameter.

The length of the COMMAREA in bytes. This value may not exceed
32 500. (Some client-server combinations may allow larger
COMMAREAs, but this is not guaranteed to work as part of CICS
Family Client/Server Programming.)

If no COMMAREA is required, set this field to zero and supply a null
pointer in eci_commarea.

eci_sysid
Required input parameter.

Reserved for future use, but this field should be initialized with nulls
before the start of each logical unit of work.

eci_version
Required input parameter.

The version of the ECI for which the application is coded. You may
use the values ECI_VERSION_1 or ECI_VERSION_1A. All the
facilities of version 1 are available in version 1A. Facilities available
only in version 1A are noted where they occur. (ECI_VERSION_0 is
provided to allow applications written for previous versions of the
ECI to continue to execute, but many of the facilities of CICS
Client/Server Programming are not available if eci_version has this
value.)

Return codes

See also the general list of return codes for CICS_ExternalCall in
“CICS_ExternalCall” on page 16.

ECI_NO_ERROR
The asynchronous request to which this reply relates completed
successfully.

External call interface

Chapter 2. External call interface 45

ECI_ERR_INVALID_DATA_LENGTH
The value in eci_commarea_length field is unacceptable for one of the
following reasons:
v It is outside the valid range.
v It is inconsistent with the value in eci_commarea, being zero for a

non-null eci_commarea pointer, or non-zero for a null
eci_commarea pointer.

v It is not large enough for the output COMMAREA from the
asynchronous request to which this reply relates.

In the last case, you can use the output eci_commarea_length to
allocate more storage for the COMMAREA, and then use the output
eci_message_qualifier (if it identifies the asynchronous request
uniquely) with an ECI_GET_SPECIFIC_REPLY call type to retrieve the
reply.

ECI_ERR_NO_CICS
The CICS server specified in eci_system_name in the asynchronous
request to which this reply relates is not available. No resources have
been updated.

ECI_ERR_CICS_DIED
A logical unit of work was to be begun or continued by the
asynchronous request to which this reply relates, but the CICS server
was no longer available. If eci_extend_mode was ECI_EXTENDED,
the changes are backed out, and the logical unit of work ends. If
eci_extend_mode was ECI_NO_EXTEND, ECI_COMMIT, or
ECI_BACKOUT, the application cannot determine whether the
changes have been committed or backed out, and must log this
condition to aid future manual recovery.

ECI_ERR_NO_REPLY
There was no outstanding reply.

ECI_ERR_TRANSACTION_ABEND
The asynchronous request to which this reply relates caused a
program to be executed in the server, but the CICS transaction that
executed the requested program abended. The abend code will be
found in eci_abend_code. For information about abend codes and
their meaning, you should consult the documentation for the server
system to which the request was directed.

ECI_ERR_THREAD_CREATE_ERROR
The CICS server or client failed to create the thread to process the
asynchronous call to which this reply relates.

ECI_ERR_RESOURCE_SHORTAGE
The server implementation or client did not have enough resources to
complete the asynchronous request to which this reply relates.

External call interface

46 CICS Family: Client/Server Programming

ECI_ERR_INVALID_DATA_AREA
Either the pointer to the ECI parameter block is invalid, or the pointer
supplied in eci_commarea is invalid.

ECI_ERR_ROLLEDBACK
The asynchronous request to which this reply relates attempted to
commit a logical unit of work, but the server was unable to commit
the changes, and backed them out instead.

ECI_ERR_UNKNOWN_SERVER
The asynchronous request to which this reply relates specified a
server that could not be located. Only servers returned by
CICS_EciListSystems are acceptable.

ECI_ERR_MAX_SESSIONS
There were not enough communication resources to satisfy the
asynchronous request to which this reply relates. You should consult
the documentation for your client or server to see how to control
communication resources.

ECI_ERR_MAX_SYSTEMS
The asynchronous request to which this reply relates attempted to
start requests to more servers than your configuration allows. You
should consult the documentation for your client or server to see how
to control the number of servers you can use.

ECI_ERR_SECURITY_ERROR
You did not supply a valid combination of userid and password on
the asynchronous request to which this reply relates, though the
server expects it.

External call interface

Chapter 2. External call interface 47

ECI_GET_REPLY_WAIT call type

Environment

The ECI_GET_REPLY_WAIT call type is available in all environments except
DOS.

Purpose

The ECI_GET_REPLY_WAIT call type provides a reply solicitation call to
return information appropriate to any outstanding reply for any asynchronous
request. If there is no such reply, the application waits until there is. (In all
environments except DOS, you can get an indication that no reply is available
by using call type ECI_GET_REPLY instead.)

ECI parameter block fields

Same as for ECI_GET_REPLY, but eci_call_type must be set to
ECI_GET_REPLY_WAIT.

Return codes

Same as for ECI_GET_REPLY, except that ECI_ERR_NO_REPLY cannot be
returned.

External call interface

48 CICS Family: Client/Server Programming

ECI_GET_SPECIFIC_REPLY call type

Environment

The ECI_GET_SPECIFIC_REPLY call type is available in all environments
except DOS.

Purpose

The ECI_GET_SPECIFIC_REPLY call type provides a reply solicitation call to
return information appropriate to any outstanding reply that matches the
eci_message_qualifier input. If there is no such reply, ECI_ERR_NO_REPLY is
returned. (To cause the application to wait until a reply is available, you
should use call type ECI_GET_REPLY_WAIT instead.)

ECI parameter block fields

The ECI parameter block should be set to nulls before setting the input
parameter fields.

The following fields are the fields of the ECI parameter block that might be
supplied as input.

In the course of an ECI_GET_REPLY call, the ECI parameter block is updated
as follows:
1. All the outputs from the reply, some of which overwrite input fields, are

added. These fields are those that are output from the corresponding
synchronous version of the asynchronous request.

2. Any inputs that are not updated become undefined, except the pointer to
the COMMAREA and the input eci_message_qualifier. You should not
use the contents of these fields again.

eci_call_type
Required input parameter.

Must be set to ECI_GET_SPECIFIC_REPLY.

eci_commarea
Optional input parameter.

A pointer to the area of storage where the application receives the
returned COMMAREA. The contents of the returned commarea
depend on the type of asynchronous call to which a reply is being
sought. For a program link call, it is the COMMAREA expected to be
returned from the called program, if any. For a status information call,
except one in which eci_extend_mode had the value
ECI_STATE_CANCEL, it is a COMMAREA containing status

External call interface

Chapter 2. External call interface 49

information (see “Status information calls” on page 13 and “ECI status
block” on page 54 for more details).

If the code page of the application is different from the code page of
the server, data conversion must be performed at the server. To do
this, you need to make use of CICS-supplied resource conversion
capabilities, such as the DFHCNV macro definitions.

eci_commarea_length
Required input parameter.

The length of the COMMAREA in bytes. This value may not exceed
32 500. (Some client-server combinations may allow larger
COMMAREAs, but this is not guaranteed to work as part of CICS
Family Client/Server Programming.)

eci_message_qualifier
Required input parameter.

An integer field that identifies the asynchronous call for which a reply
is being solicited.

eci_sysid
Required input parameter.

Reserved for future use, but this field should be initialized with nulls
before the start of each logical unit of work.

eci_version
Required input parameter.

The version of the ECI for which the application is coded. You may
use the values ECI_VERSION_1 or ECI_VERSION_1A. All the
facilities of version 1 are available in version 1A. Facilities available
only in version 1A are noted where they occur. (ECI_VERSION_0 is
provided to allow applications written for previous versions of the
ECI to continue to execute, but many of the facilities of CICS
Client/Server Programming are not available if eci_version has this
value.)

Return codes

See also the general list of return codes for CICS_ExternalCall in
“CICS_ExternalCall” on page 16.

ECI_NO_ERROR
The call completed successfully.

ECI_ERR_INVALID_DATA_LENGTH
The value in eci_commarea_length field is unacceptable for one of the
following reasons:

External call interface

50 CICS Family: Client/Server Programming

v It is outside the valid range.
v It is inconsistent with the value in eci_commarea, being zero for a

non-null eci_commarea pointer, or non-zero for a null
eci_commarea pointer.

v It is not large enough for the output COMMAREA from the
asynchronous request to which this reply relates.

In the last case, you can use the output eci_commarea_length to
allocate more storage for the COMMAREA, and then retry the
ECI_GET_SPECIFIC_REPLY call.

ECI_ERR_NO_CICS
The CICS server specified in eci_system_name in the asynchronous
request to which this reply relates is not available. No resources have
been updated.

ECI_ERR_CICS_DIED
A logical unit of work was to be begun or continued by the
asynchronous request to which this reply relates, but the CICS server
was no longer available. If eci_extend_mode was ECI_EXTENDED,
the changes are backed out, and the logical unit of work ends. If
eci_extend_mode was ECI_NO_EXTEND, ECI_COMMIT, or
ECI_BACKOUT, the application cannot determine whether the
changes have been committed or backed out, and must log this
condition to aid future manual recovery.

ECI_ERR_NO_REPLY
There was no outstanding reply that matched the input
eci_message_qualifier.

ECI_ERR_TRANSACTION_ABEND
The asynchronous request to which this reply relates caused a
program to be executed in the server, but the CICS transaction that
executed the requested program abended. The abend code will be
found in eci_abend_code. For information about abend codes and
their meaning, you should consult the documentation for the server
system to which the request was directed.

ECI_ERR_THREAD_CREATE_ERROR
The CICS server or client failed to create the thread to process the
asynchronous request to which this reply relates.

ECI_ERR_RESOURCE_SHORTAGE
The CICS server or client did not have enough resources to complete
the asynchronous request to which this reply relates.

ECI_ERR_INVALID_DATA_AREA
Either the pointer to the ECI parameter block is invalid, or the pointer
supplied in eci_commarea is invalid.

External call interface

Chapter 2. External call interface 51

ECI_ERR_ROLLEDBACK
The asynchronous request to which this reply relates attempted to
commit a logical unit of work, but the server was unable to commit
the changes, and backed them out instead.

ECI_ERR_UNKNOWN_SERVER
The asynchronous request to which this reply relates specified a
server that could not be located. Only servers returned by
CICS_EciListSystems are acceptable.

ECI_ERR_MAX_SESSIONS
There were not enough communication resources to satisfy the
asynchronous request to which this reply relates. You should consult
the documentation for your client or server to see how to control
communication resources.

ECI_ERR_MAX_SYSTEMS
The asynchronous request to which this reply relates attempted to
start requests to more servers than your configuration allows. You
should consult the documentation for your client or server to see how
to control the number of servers you can use.

ECI_ERR_SECURITY_ERROR
You did not supply a valid combination of userid and password on
the asynchronous request to which this reply relates, though the
server expects it.

External call interface

52 CICS Family: Client/Server Programming

ECI_GET_SPECIFIC_REPLY_WAIT call type

Environment

The ECI_GET_SPECIFIC_REPLY_WAIT call type is available in all
environments except DOS.

Purpose

The ECI_GET_SPECIFIC_REPLY_WAIT call type provides a reply solicitation
call to return information appropriate to any outstanding reply that matches
the input eci_message_qualifier. If there is no such reply, the application
waits until there is. (In all environments except DOS, you can get an
indication that no reply is available by using call type
ECI_GET_SPECIFIC_REPLY instead.)

ECI parameter block fields

Same as for ECI_GET_SPECIFIC_REPLY, but eci_call_type must be set to
ECI_GET_SPECIFIC_REPLY_WAIT.

Return codes

Same as for ECI_GET_SPECIFIC_REPLY, except that ECI_ERR_NO_REPLY
cannot be returned.

External call interface

Chapter 2. External call interface 53

Note: If you issue an ECI_GET_SPECIFIC_REPLY_WAIT call against an
outstanding ECI_STATE_AYSNC call with eci_extend mode set to
ECI_STATE_CHANGED, no response will ever be received if an
ECI_STATE_ASYNC call with eci_extend_mode set to
ECI_STATE_CANCEL is issued.

ECI status block

The ECI status block is used in status information calls to pass information to
and from the ECI. It contains the following fields:

ConnectionType
An integer field specifying the type of system on which the
application is running, with the following possible values:

ECI_CONNECTED_NOWHERE
Application is not connected to anything.

ECI_CONNECTED_TO_CLIENT
Application is running on a client system.

ECI_CONNECTED_TO_SERVER
Application is using a server implementation of the ECI.

CicsServerStatus
An integer field specifying the state of the CICS server, with the
following possible values:

ECI_SERVERSTATE_UNKNOWN
The CICS server state could not be determined.

ECI_SERVERSTATE_UP
The CICS server is available to run programs.

ECI_SERVERSTATE_DOWN
The CICS server is not available to run programs.

CicsClientStatus
An integer field specifying the state of the client, with the following
possible values:

ECI_CLIENTSTATE_UNKNOWN
The client state could not be determined.

ECI_CLIENTSTATE_UP
The client is available to receive ECI calls.

ECI_CLIENTSTATE_INAPPLICABLE
The application is using a server implementation of the ECI.

External call interface

54 CICS Family: Client/Server Programming

CICS_EciListSystems

CICS_EciListSystems NameSpace
Systems
List

Purpose

The CICS_EciListSystems function provides a list of CICS servers to which
CICS_ExternalCall requests may be directed. There is no guarantee that a
communications link exists between the client and any server in the list, or
that any of the servers is available to process requests.

The list of servers is returned as an array of system information structures,
one element for each CICS server. The structure is called CICS_EciSystem_t,
and it defines the following fields.

SystemName
A pointer to a null-terminated string specifying the name of a CICS
server. If the name is shorter than CICS_ECI_SYSTEM_MAX, it is
padded with nulls to a length of CICS_ECI_SYSTEM_MAX + 1.

Description
A pointer to a null-terminated string that provides a description of the
system, if one is available. If the description is shorter than
CICS_ECI_DESCRIPTION_MAX characters, it is padded with nulls to
a length of CICS_ECI_DESCRIPTION_MAX + 1.

Parameters

NameSpace
A pointer reserved for future use. Ensure that this is a null pointer.

Systems
On entry to the function, this parameter specifies the number of
elements in the array provided in the List parameter. On return it
contains the actual number of systems found.

List An array of CICS_EciSystem_t structures that are filled in and
returned by the function. The application must provide the storage for
the array, and must set the Systems parameter to indicate the number
of elements in the array. The first name in the list is the default server.
However, the way in which the default is defined is operating system
dependent.

ECI status block

Chapter 2. External call interface 55

Return Codes

ECI_NO_ERROR
The function completed successfully. The number of systems found is
at least one, and does not exceed the value supplied as input in the
Systems parameter.

ECI_ERR_MORE_SYSTEMS
There was not enough space in the List array to store the information.
The supplied array has been filled, and the Systems parameter has
been updated to contain the total number of systems found, so that
you can reallocate an array of suitable size and try the function again.

ECI_ERR_NO_SYSTEMS
No CICS servers can be located. In this case, the value returned in
Systems is zero.

ECI_ERR_NO_CICS
The client is not active.

ECI_ERR_INVALID_DATA _LENGTH
The value specified in the Systems parameter is so large that the
length of storage for the List parameter exceeds 32 767.

ECI_ERR_CALL_FROM_CALLBACK
The call was made from a callback routine.

ECI_ERR_SYSTEM_ERROR
An internal system error occurred.

ECI status block

56 CICS Family: Client/Server Programming

Chapter 3. External presentation interface

This chapter provides reference information about the external presentation
interface (EPI).

The interface is described here in a language-independent manner, though the
names chosen for the elements of the interface—functions, parameters, data
structures, fields, constants, and so on—are similar to those provided for
programming. For language-dependent information, see “Chapter 4. Creating
ECI and EPI application programs” on page 127.

Any restrictions applicable to particular operating environments are identified
under the functions to which they apply.

The chapter is organized as follows:

“Overview”

“How to use the EPI” on page 58

“EPI constants and data structures” on page 67

“EPI functions” on page 77

“EPI events” on page 114

“3270 data streams for the EPI” on page 121

“Microsoft Windows 3.1 considerations” on page 125.

Overview

The EPI allows a non-CICS application program to have access to one or more
CICS servers. In each CICS server, the application can establish one or more
terminal resources. The application acts as the operator of these terminal
resources, starting CICS transactions, and sending and receiving standard 3270
data streams associated with those transactions.

The following points should be borne in mind when designing client/server
implementations using the EPI.
1. A CICS transaction that sends data to an EPI application must not use

basic mapping support (BMS) paging.
2. The EPI application can use the EPI to determine the default screen size of

the terminal resource definition, but not the alternate screen size.

© Copyright IBM Corp. 1989, 1999 57

3. The EPI application cannot use the EPI to determine whether it is to send
or receive double byte character set (DBCS) data streams to or from the
CICS transaction.

4. The 3270 data streams produced by CICS transactions must not contain
structured fields.

5. For EPI terminals on CICS Universal Clients, the maximum screen size is
27 rows by 132 columns. This is because CICS Universal Clients support
the ASCII-7 subset of the 3270 data stream architecture, which only
supports 12 bit addressing. For more information, see “3270 data streams
for the EPI” on page 121.

6. If a CICS transaction is run with execution diagnostic facility (EDF)
enabled at an EPI application’s terminal resource, the events reported to
the EPI application are different from those reported when EDF is not
enabled.

7. If a CICS transaction uses EXEC CICS START with the DELAY option to
schedule transactions to a terminal resource autoinstalled by an EPI
application, the EPI application should exercise caution in deleting the
terminal resource, or delayed ATI requests might be lost. You should
consult your server documentation to determine the effects of deleting a
terminal resource when delayed ATI requests are outstanding.

The application is responsible for the presentation of the 3270 data received.
The application may present the data in the normal way by emulating a 3270
terminal, or it may present a very different view. For example:
v An OS/2 application may use the OS/2 graphical user interface.
v A Windows NT application may use the Windows NT graphical user

interface.
v A SunOS or Solaris application may use Open Look.

How to use the EPI

The EPI provides a separate function name for each of its functions.

Initialization and termination

Any application requiring to use the EPI must call the CICS_EpiInitialize
function to initialize the EPI. Until this call is made, no other EPI function is
allowed. The CICS_EpiInitialize function takes a parameter indicating the
version of the EPI for which the application was coded. This is to ensure that
existing applications continue to execute without change if the EPI is
extended.

Before an EPI application ends, it should call the CICS_EpiTerminate function
to terminate the EPI cleanly.

External presentation interface

58 CICS Family: Client/Server Programming

|
|
|
|
|

Listing the configured servers

After calling CICS_EpiInitialize successfully, the application should call
CICS_EpiListSystems to check which CICS servers are configured for use by
the application.

Adding terminal resources

The primary purpose of the EPI is to allow an application to appear to a CICS
server as one or more 3270 terminals.

Terminal resources are added by invoking either the CICS_EpiAddTerminal
or CICS_EpiAddExTerminal function.

The application may specify the server in which the terminal resource is to be
installed; if it does not, a server, currently the default server, is selected.

The application may specify the terminal resource to be installed by supplying
one of the following:
v The netname of an existing terminal resource in the server. This terminal

resource should be one that is not currently in use.
v The name of a model terminal definition. In this case, the server generates a

netname and autoinstalls a terminal resource with that netname, using the
specified model terminal definition.

v Nothing. In this case the server generates a netname and autoinstalls a
terminal resource with that name, using a default model terminal definition.

Once an application has installed a terminal resource, no other application can
use that terminal resource until the first application deletes it.

The CICS_EpiAddTerminal and CICS_EpiAddExTerminal functions return a
terminal index, which must be passed on subsequent EPI function calls to
indicate the terminal resource to which the function is to apply. Each index
identifies a combination of server and terminal resource. The terminal index
supplied is the first available integer starting from 0. This allows the
application to maintain a mapping between terminal indexes and terminal
resource information, using array lookup.

Terminal indexes are unique within an application, but not across
applications, so each application gets terminal index zero for the first terminal
it installs, and so on.

Figure 6 on page 60 shows an application with three terminal resources, one in
one server and two in another. The application uses the terminal indexes to
operate the terminal resources, sending and receiving 3270 data streams. The

External presentation interface

Chapter 3. External presentation interface 59

|

|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

order of the indexes shows the order in which the terminal resources were
installed.

Terminal attributes

Most attributes are determined by the server when the terminal resource is
installed; a subset are returned to the application in the CICS_EpiDetails_t
structure passed to the CICS_EpiAddTerminal and CICS_AddExTerminal
functions.

Some attributes may be determined by the application. These attributes are
specified in the CICS_EpiAttributes_t structure passed to the
CICS_EpiAddExTerminal function. For example the character set and
encoding scheme to be used for 3270 data is specified in the CCSID field in
the CICS_EpiAttributes_t structure.

Timeout

Execution of the CICS_EpiAddTerminal function is synchronous; execution of
the CICS_EpiAddExTerminal function may be synchronous. Control is not
returned to the invoking application until a response, for example, that the
terminal resource has been installed, is available

S e r v e r 1

T e r m i n a l i n d e x e s

T e r m i n a l r e s o u r c e s

A p p l i c a t i o n

S e r v e r 2

T e r m i n a l r e s o u r c e

0 1 2

Figure 6. Using terminal indexes

External presentation interface

60 CICS Family: Client/Server Programming

|
|
|

|

|
|
|
|

|
|
|
|
|

|

|
|
|
|

The response time depends on a number of factors; for example:
v Network parameters and traffic
v Server parameters and transaction load

The application is able to limit the length of time that it is prepared to wait
for a response; the limit is specified in the InstallTimeOut field in the
CICS_EpiAttributes_t structure passed to the CICS_EpiAddExTerminal
function.

If the client does not receive a response from the server within the specified
interval, control will be returned to the invoking application with the return
code set to CICS_EPI_ERR_RESPONSE_TIMEOUT.

If the client is subsequently notified that the terminal resource has been
installed in the server, the client will delete the terminal resource. Note that
this action has the effect of increasing the network traffic and the transaction
load on the server.

Deleting terminal resources

If a terminal resource is no longer required, it can be deleted by invoking
either the CICS_EpiDelTerminal or CICS_EpiPurgeTerminal function.

The CICS_EpiDelTerminal function is used when the terminal resource is to
be deleted in a controlled manner. The call succeeds only if no transaction is
running against the terminal resource and there are no unprocessed events for
the terminal resource; if a transaction is in progress or there are unprocessed
events, the call returns an error code.

The CICS_EpiPurgeTerminal function is used when the terminal resource is
to be deleted without regard to a transaction that may be running against the
terminal or unprocessed events for the terminal resource.

When the terminal resource has been deleted the terminal index value
becomes free and can be reused when another terminal resource is added. The
server deletes the terminal resource if it was autoinstalled.

Authentication and authorization

When an application has defined a terminal resource, it can start transactions
from that terminal resource. The server may have to:
v Authenticate the userid and password for the terminal ″operator″

v Grant authority, based on the authenticated userid, to access the resources
required for the execution of each transaction.

External presentation interface

Chapter 3. External presentation interface 61

|

|

|

|
|
|
|

|
|
|

|
|
|
|

|

|
|

|
|
|
|
|

|
|
|

|
|
|

|

|
|

|

|
|

The frequency with which the userid and password are authenticated by the
server depends on another attribute specified in the SignOnCapability field
in the CICS_EpiAttributes_t structure passed to the CICS_EpiAddExTerminal
function.

Signon capable terminals

If the terminal resource is installed as signon capable, the application is
responsible for starting a signon transaction, for example the CICS supplied
CESN transaction; the userid and password being embedded in the 3270 data.
Transactions started before the signon transaction will execute with the
authorities granted to a default userid. Transactions started after the signon
transaction will execute with the authorities granted to the authenticated
userid.

A consequence of installing a terminal as signon capable is that the
application must be prepared to cope with the ″operator″ being signed off if
the terminal resource remains idle for longer than a server defined limit.

Signon incapable terminals

If the terminal resource is installed as signon incapable, the userid and
password are authenticated for each transaction started for the terminal
resource. The initial userid and password for the terminal resource may be
specified in the UserId and Password fields in the CICS_EpiAttributes_t
structure passed to the CICS_EpiAddExTerminal function.

The userid and password may be changed at any time by invoking the
CICS_EpiSetSecurity function.

If the userid and password are required and are not provided by the
application, the CICS client may use, for example, a pop-up window to obtain
the userid and password (Note that pop-up windows are not supported on
AIX and Solaris).

Starting transactions

When an application has defined a terminal resource, it can start a transaction
from that terminal resource. To the CICS server it appears as if a terminal user
had typed a transaction code on the screen and pressed an AID key. To start a
transaction, the CICS_EpiStartTran function is called. There are two ways of
specifying the transaction to be started and the data to be associated with it.
1. Supply the transaction identifier as a parameter to the call (TransId), and

supply any transaction data in the Data parameter.
2. Combine a transaction identifier and transaction data into a 3270 data

stream, and supply the data stream as a parameter to the call (Data).

External presentation interface

62 CICS Family: Client/Server Programming

|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|

|
|
|
|

Events and callbacks

When an application has defined a terminal resource, several events can
happen to it because of actions in the CICS server, rather than actions of the
application. The application cannot predict when those events may happen,
but it is the responsibility of the application to collect and process the events
as appropriate. Events are held by the EPI in a first-in-first-out queue until
they are collected, one by one, by the application making calls to the
CICS_EpiGetEvent function. During such a call, the EPI puts information in a
CICS_EpiEventData_t structure to indicate the event that occurred and any
associated data. It also indicates whether there are more events still waiting in
the queue.

The application can synchronize the processing of these events with its other
activities in one of three ways:
v Polling
v Blocking
v Callback notification.

Polling

The CICS_EpiGetEvent call can be made in a polling mode by specifying
CICS_EPI_NOWAIT for the Wait parameter. If no event is waiting to be
collected, the function returns immediately with an error code. This is the
mechanism that you would have to adopt in a single-user single-threaded
environment, such as DOS, where the application might alternately poll the
keyboard for user activity and poll the EPI for event activity.

Blocking

The CICS_EpiGetEvent call can be made in a blocking mode by specifying
CICS_EPI_WAIT for the Wait parameter. If no event is waiting to be collected,
the function waits and does not return until an event becomes available. You
could use this mechanism in a multithreaded environment, where a secondary
thread could be dedicated to event processing. It could also be used after a
notification by callback, because the event information is known to be
available.

Callback notification

When the terminal resource is defined with the CICS_EpiAddTerminal or
CICS_EpiAddExTerminal call, the optional parameter NotifyFn may be used
to provide the address of a callback routine that the EPI calls whenever an
event occurs against that terminal resource. Callback notification is not

External presentation interface

Chapter 3. External presentation interface 63

|
|
|
|

supported under DOS and Microsoft Windows. Under DOS and Microsoft
Windows the parameter can be specified, but it is ignored, and the application
must poll for events.

Note: Some compilers do not support the use of callback routines. Consult
your compiler documentation for more information.

An application should carry out the minimum of processing in its callback
routine, and never block in the specified routine before returning to the EPI.
The routine itself cannot make EPI calls. You decide what it should do when
the notification is received. For example, in a multithreaded environment like
OS/2, it might post a semaphore to signal another thread that an event has
occurred. In a Presentation Manager environment, it might post a message to
a window to indicate to the window procedure that an event has occurred.
Other actions will be appropriate for other environments.

When the callback routine is called, it is passed a single parameter—the
terminal index of the terminal resource against which the event occurred. This
allows the same callback routine to be used for more than one terminal
resource.

Processing the events

On return from the CICS_EpiGetEvent function, the CICS_EpiEventData_t
structure contains the details of the event that occurred. The Event field in
this structure indicates the event, and can take one of the following values:
v CICS_EPI_EVENT_SEND
v CICS_EPI_EVENT_CONVERSE
v CICS_EPI_EVENT_END_TRAN
v CICS_EPI_EVENT_START_ATI
v CICS_EPI_EVENT_ADD_TERM
v CICS_EPI_EVENT_END_TERM

The application should attempt to process events as quickly as possible,
because some events describe the state of the terminal resource. If these events
are not processed, the application may receive unexpected error return codes
when it tries to issue EPI functions, because the state maintained inside the
EPI might not match the state maintained in the application. For example, an
application can start a transaction only if the terminal resource is not currently
running another transaction. The CICS_EPI_EVENT_END_TRAN event
signals the end of a transaction, and so the application and the EPI enter a
state in which new transactions can be started for that terminal resource. The
CICS_EPI_EVENT_START_ATI event indicates that an ATI transaction has
started at the terminal resource, and therefore that the terminal resource has
entered a state in which the starting of transactions is no longer allowed. If
the application calls CICS_EpiStartTran after the

External presentation interface

64 CICS Family: Client/Server Programming

|
|
|

|

CICS_EPI_EVENT_START_ATI event has been notified, but before the event
has been retrieved, the CICS_EpiStartTran call fails, even though, to the
application, it may appear that it is still in a state in which it should succeed.

When a client application is driven with an event or callback, it should issue a
CICS_EpiGetEvent to get the associated event. In certain timing conditions,
the CICS_EPI_EVENT_START_ATI may already have been notified from a
previous CICS_EpiGetEvent. The CICS_EpiGetEvent issued after the callback
can receive CICS_EPI_ERR_NO_EVENT (if CICS_EPI_NOWAIT is specified
for the Wait parameter) or wait until a subsequent event is received (if
CICS_EPI_NOWAIT is specified for the Wait parameter). Note that this can
happen after a CICS_EPI_EVENT_START_ATI is received.

Sending and receiving data

When a transaction sends data to a terminal resource, the EPI generates either
a CICS_EPI_EVENT_SEND event or a CICS_EPI_EVENT_CONVERSE event.

The data sent might be data from the transaction, or it might be messages
produced by the server, including error messages. You should consult your
server documentation to see what messages are possible. An EPI application
should analyze the data stream to see if an error has occurred.

The CICS_EPI_EVENT_SEND event indicates that data was sent but that no
reply is required. Typically this would result from an EXEC CICS SEND
command, but in some servers it would result from an EXEC CICS
CONVERSE command. (In the latter case, a CICS_EPI_EVENT_CONVERSE
event occurs later to tell the application to send a data stream back to the
transaction in the server.)

The CICS_EPI_EVENT_CONVERSE event indicates that a reply is required,
and would typically result from an EXEC CICS RECEIVE or EXEC CICS
CONVERSE command. The application should respond to this event by
issuing a CICS_EpiReply call to provide the response data. The
CICS_EpiReply function should be issued only to respond to a
CICS_EPI_EVENT_CONVERSE event; if it is issued at any other time, an
error is returned.

Managing pseudoconversations

CICS transactions can operate in a pseudoconversational mode. The
conversation between a terminal resource and a server is broken up into a
number of segments, each of which is a separate transaction. As each
transaction ends, it provides the name of the transaction to be run to process
the next input from the terminal resource. (It uses EXEC CICS RETURN with
the TRANSID option to do this.) The CICS_EPI_EVENT_END_TRAN event
tells the application whether the transaction just ended has specified a

External presentation interface

Chapter 3. External presentation interface 65

transaction to process the next input, and which transaction has been
specified. The application must not attempt to start a different transaction, but
must use CICS_EpiStartTran to start the transaction specified by the
CICS_EPI_EVENT_END_TRAN event.

Security in the EPI

The EPI is implemented as a set of intersystem conversations between CICS
client and server; for example, a conversation is allocated for:
v Each terminal resource that is installed; refer to the CICS_EpiAddTerminal

and CICS_EpiAddExTerminal functions.
v Each transaction that is started; refer to the CICS_EpiStartTran function.
v Each terminal resource that is deleted from the server; refer to the

CICS_EpiDelTerminal function.

A userid and password may be required for each intersystem conversation;
the requirement is determined by the way in which CICS client and CICS
server have been configured.

The client application can specify the userid and password in the
CICS_EpiAttributes_t structure passed to the CICS_EpiAddExTerminal
function. The values are terminal specific and are passed to the server in the
intersystem conversation allocated to install the terminal and in subsequent
intersystem conversations relating to the installed terminal. The values can be
changed at any time by the CICS_EpiSetSecurity function.

The client application can pass the userid and password to the
CICS_SetDefaultSecurity function. The values are server-specific and are
used whenever the terminal-specific values are not available. The values can
be changed at any time by the CICS_SetDefaultSecurity function.

If the userid and password are required for intersystem conversations and
have not been set by the CICS_EpiAddExTerminal or CICS_EpiSetSecurity
or CICS_SetDefaultSecurity functions then the CICS client may use other
methods, for example, via a pop-up window, to determine the values. (Note
that pop-up windows are not supported on AIX and Solaris).

Signon incapable terminals

The userid determined by the CICS client is authenticated by the server for
each transaction started at a signon incapable terminal. The transaction is
executed in the server with the authorities assigned to the authenticated
userid.

If no userid is passed by the CICS client, then the transaction is executed in
the server with the authorities assigned to the default userid.

External presentation interface

66 CICS Family: Client/Server Programming

|

|

|
|

|
|

|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|

Signon capable terminals

The userid, if any, determined by the CICS client may be authenticated by the
CICS server for each transaction started at a signon capable terminal. Such
transactions are executed in the CICS server with the authorities assigned to a
userid determined by the client application or to the default userid.

The first transaction(s) to be started at the terminal are executed with the
authorities assigned to the default userid.

Signon transactions are CICS-supplied or user-written. In both cases, the
userid and password are determined by the client application and are
embedded in the 3270 data stream passed to the CICS_EpiStartTran or
CICS_EpiReply functions. If the userid is authenticated then subsequent
transactions started at the terminal are executed in the CICS server with the
authorities assigned to the authenticated userid.

The client application may start a signoff transaction at the terminal. The
userid may be signed off by the server following a predefined period of
inactivity. In either case, subsequent transactions started at the terminal are
executed with the authorities assigned to the default userid.

Note: A CICS server may reject an attempt to install a signon capable
terminal. This would be the case for CICS for OS/400 where all
authentication is managed by the operating system.

DCE protocol considerations

The operator might need DCE authorization to use the EPI application,
depending on the local configuration. If the EPI program runs for a long time,
for example longer than thirty minutes, you must make sure that the
credential lifetime and renewable lifetime of the DCE principal are long
enough to cover the maximum allowed duration of the EPI program. If an
application’s DCE credentials expire, all terminal connections are lost, and the
next EPI call returns CICS_EPI_ERR_NOT_INIT.

Whether userids and passwords are encrypted depends on the
communications protocol being used between client and server.

EPI constants and data structures

This section describes the constants and data structures that you will need to
use the EPI. They are referred to in “EPI functions” on page 77.

External presentation interface

Chapter 3. External presentation interface 67

|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|
|

EPI constants

The following constants are referred to symbolically in the descriptions of the
EPI data structures, functions, and events in this chapter. Their values are
given here to help you understand the descriptions. However, your code
should always use the symbolic names of EPI constants provided for the
programming language you are using.

Lengths of fields
v CICS_EPI_SYSTEM_MAX (8)
v CICS_EPI_DESCRIPTION_MAX (60)
v CICS_EPI_NETNAME_MAX (8)
v CICS_EPI_TRANSID_MAX (4)
v CICS_EPI_ABEND_MAX (4)
v CICS_EPI_DEVTYPE_MAX (16)
v CICS_EPI_ERROR_MAX (60).
v CICS_EPI_PASSWORD_MAX (10)
v CICS_EPI_USERID_MAX (10)
v CICS_EPI_MAPNAME_MAX (7)
v CICS_EPI_MAPSETNAME_MAX (8)
v CICS_EPI_TERMID_MAX (4)

Relating to TermIndex
v CICS_EPI_TERM_INDEX_NONE 0xFFFF.

Version numbers (See “EPI versions” on page 77)

v CICS_EPI_VERSION_100
v CICS_EPI_VERSION_101.
v CICS_EPI_VERSION_200.

EPI data structures

The following data structures are available for use with the EPI.
v CICS_EpiSystem_t
v CICS_EpiAttributes_t
v CICS_EpiDetails_t
v CICS_EpiEventData_t
v CICS_EpiSysError_t.

In the descriptions of the fields in the data structures, fields described as
strings are null-terminated strings.

EPI constants and data structures

68 CICS Family: Client/Server Programming

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

CICS_EpiSystem_t

Purpose: The CICS_EpiSystem_t structure contains the name and
description of a CICS server. An array of these structures is returned from the
CICS_EpiListSystems function.

Fields:

SystemName
A string naming the CICS server. It can be passed as a parameter to
the CICS_EpiAddTerminal and CICS_EpiAddExTerminal functions,
to identify the CICS server in which the terminal resource should be
installed. If the name is shorter than CICS_EPI_SYSTEM_MAX
characters, it is padded with nulls to a length of
CICS_EPI_SYSTEM_MAX + 1.

Description
A string giving a brief description of the server. If the description is
shorter than CICS_EPI_DESCRIPTION_MAX, it is padded with nulls
to a length of CICS_EPI_DESCRIPTION_MAX + 1.

EPI constants and data structures

Chapter 3. External presentation interface 69

CICS_EpiAttributes_t

Purpose: The CICS_EpiAttributes_t structure holds information about the
attributes to be associated with a terminal resource installed by the
CICS_EpiAddExTerminal function.

This data structure is only supported for CICS_EPI_VERSION_200.

Fields:

EpiAddType
An indication of whether or not the application is prepared to wait
until the request to install the terminal is complete. One of the
following values should be used:

CICS_EPI_ADD_ASYNC
The calling application gets control back when the request to
install the terminal resource has been accepted; at this point
the parameters have been validated.

Assuming valid parameters, the
CICS_EPI_EVENT_ADD_TERM event is generated when the
request to install the terminal has completed.

The TermIndex is returned for use with the
CICS_EpiGetEvent function.

CICS_EPI_ADD_SYNC
The calling application gets control back when the request to
install the terminal resource has completed. Returned
information is immediately available.

InstallTimeOut
A value in the range 0 through 3600, specifying the maximum time in
seconds that installation of the terminal resource is allowed to take; a
value of 0 means that no limit is set.

A value of 3600 is assumed if a larger value is specified.

ReadTimeOut
A value in the range 0 through 3600, specifying the maximum time in
seconds that is allowed between notification of a
CICS_EPI_EVENT_CONVERSE event for the terminal resource and
the following invocation of the CICS_EpiReply; a value of 0 means
that no limit is set.

A value of 3600 is assumed if a larger value is specified.

EPI constants and data structures

70 CICS Family: Client/Server Programming

|

|
|
|

|

|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|

If time-out occurs, the conversation is abended. This results in a
CICS_EPI_EVENT_END_TRAN event being generated; the
EndReason field is set to CICS_EPI_READTIMEOUT_EXPIRED; the
AbendCode field is not set.

SignonCapability
An indication of whether or not the application may start
server-provided signon and signoff transactions from the terminal
resource. One of the following values should be used:

CICS_EPI_SIGNON_CAPABLE
The terminal resource is to be installed as signon capable.

CICS_EPI_SIGNON_INCAPABLE
The resource is to be installed as signon incapable.

CCSId
A value in the range 1 through 65536 specifying the coded character
set identifier (CCSID) that identifies the coded graphic character set
used by the client application for data passed between the terminal
resource and CICS transactions.

A value of 0 means that a default CCSID is used.

UserId
A string specifying the userid to be associated with the terminal
resource. If the userid is shorter than CICS_EPI_USERID_MAX, it
must be padded with nulls to a length of CICS_EPI_USERID_MAX+1.

Password
A string specifying the password to be associated with the terminal
resource. If the password is shorter than CICS_EPI_PASSWORD_MAX
characters, it must be padded with nulls to a length of
CICS_EPI_PASSWORD_MAX+1.

EPI constants and data structures

Chapter 3. External presentation interface 71

|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|

|

CICS_EpiDetails_t

Purpose: The CICS_EpiDetails_t structure holds information about a
terminal resource installed by the CICS_EpiAddTerminal or the
CICS_EpiAddExTerminal function.

Fields:

NetName
A string specifying the VTAM-style netname of the terminal resource.
If the name is shorter than CICS_EPI_NETNAME_MAX characters, it
is padded with nulls to a length of CICS_EPI_NETNAME_MAX + 1.

NumLines
The number of rows supported by the terminal resource.

NumColumns
The number of columns supported by the terminal resource.

MaxData
The maximum size of data that can be sent to this terminal resource
from a CICS transaction, and the maximum size of data that can be
sent from this terminal resource to a CICS transaction by a
CICS_EpiStartTran call or CICS_EpiReply call.

The maximum size may be defined in the model terminal definition
specified by the DevType parameter on the CICS_EpiAddTerminal
call that installed the terminal resource in the server. If the value
either is not or can not be specified in the model terminal definition, a
default value of 12000 is assumed.

ErrLastLine
1 if the terminal resource should display error messages on its last
row, 0 otherwise.

ErrIntensify
1 if the terminal resource should display error messages intensified, 0
otherwise.

ErrColor
The 3270 attribute defining the color to be used to display error
messages.

ErrHilight
The 3270 attribute defining the highlight value to be used to display
error messages.

Hilight
1 if the terminal resource is defined to support extended highlighting,
0 otherwise.

Color 1 if the terminal resource is defined to support color, 0 otherwise.

EPI constants and data structures

72 CICS Family: Client/Server Programming

System
A string specifying the name of the server in which the terminal
resource has been installed. If the name is shorter than
CICS_EPI_SYSTEM_MAX characters, it is padded with nulls to a
length of CICS_EPI_SYSTEM_MAX + 1.

This field is only supported for CICS_EPI_VERSION_200.

TermId
A string specifying the name of the terminal resource. If the name is
shorter than CICS_EPI_TERMID_MAX characters, it is padded with
nulls to a length of CICS_EPI_TERMID_MAX + 1.

This field is only supported for CICS_EPI_VERSION_200.

SignonCapability
The signon capability assigned by the server to the terminal resource:

CICS_EPI_SIGNON_CAPABLE
if the application may start server-provided signon and
signoff transactions at the terminal resource.

CICS_EPI_SIGNON_INCAPABLE
if the application may not start server-provided signon and
signoff transactions at the terminal resource.

CICS_EPI_SIGNON_UNKNOWN
if the CICS_EpiAddTerminal function was used to add the
terminal resource. (This value is also returned if the
CICS_EpiAddExTerminal function was used to add the
terminal resource and prerequisite changes have not been
applied to the server.)

This field is only supported for CICS_EPI_VERSION_200.

EPI constants and data structures

Chapter 3. External presentation interface 73

|
|
|
|
|

|

|
|
|
|

|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

CICS_EpiEventData_t

Purpose: The CICS_EpiEventData_t structure holds details of a
terminal-related event. Not all fields are valid for all events, and fields that
are not valid are set to nulls. This structure is an output from
CICS_EpiGetEvent.

Fields:

TermIndex
The terminal index for the terminal resource against which this event
occurred.

Event The event indicator; that is, one of the event codes listed in “EPI
events” on page 114.

EndReason
The reason for termination, if the event is a
CICS_EPI_EVENT_END_TERM or CICS_EPI_EVENT_END_TRAN
event.

TransId
A string specifying a transaction name. If the name is shorter than
CICS_EPI_TRANSID_MAX characters, it is padded with spaces to this
length, followed by a single null character.

Reserved1
A reserved field.

Prior to CICS Universal Clients Version 3.1, this field was called
AbendCode.

Data A pointer to a buffer that is updated with any terminal data stream
associated with the event.

On input the Data parameter should be set to point to a
CICS_EpiDetails_t structure on the first invocation of
CICS_EpiGetEvent for a terminal being added asynchronously. The
details structure is updated on return from CICS_EpiGetEvent.

Size The maximum size of the buffer addressed by Data. On return from
the CICS_EpiGetEvent call, this contains the actual length of data
returned.

EndReturnCode
The CICS_EPI_returncode.

This field is only supported for CICS_EPI_VERSION_200.

MapName
A string specifying the name of the map that was most recently
referenced in the MAP option of a SEND MAP command processed

EPI constants and data structures

74 CICS Family: Client/Server Programming

|
|
|
|

|
|

|
|

|
|
|
|

|
|

|

|
|
|

for the terminal resource, if the event is a CICS_EPI_EVENT_SEND or
a CICS_EPI_EVENT_CONVERSE event. If the terminal resource is not
supported by BMS, or the server has no record of any map being sent,
the value returned is spaces. If the name is shorter than
CICS_EPI_MAPNAME_MAX characters, it is padded with spaces to
this length, followed by a single null character.

This field is only supported for CICS_EPI_VERSION_200.

MapSetName
A string specifying the name of the mapset that was most recently
referenced in the MAPSET option of a SEND MAP command
processed for the terminal resource, if the event is a
CICS_EPI_EVENT_SEND or a CICS_EPI_EVENT_CONVERSE event.
If the MAPSET option was not specified on the most recent request,
BMS used the map name as the mapset name. In both cases, the
mapset name used may have been suffixed by a terminal suffix. If the
terminal resource is not supported by BMS, or the server has no
record of any mapset being sent, the value returned is spaces. If the
name is shorter than CICS_EPI_MAPSETNAME_MAX characters, it is
padded with spaces to this length, followed by a single null character.

This field is only supported for CICS_EPI_VERSION_200.

Note: The Data and Size fields should be set before the call to
CICS_EpiGetEvent is made.

EPI constants and data structures

Chapter 3. External presentation interface 75

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

CICS_EpiSysError_t

Purpose: The CICS_EpiSysError_t structure holds system error information.
It is an output of CICS_EpiGetSysError.

This data structure is not supported for CICS_EPI_VERSION_200.

All error information is written to the client log file.

Fields:

Cause A value, specific to the operating environment, indicating the cause of
the last error.

Value A value, specific to the operating environment, indicating the nature
of the last error.

Msg A text message, specific to the operating environment, describing the
last error. If the message is shorter than CICS_EPI_ERROR_MAX, it is
padded with nulls to a length of CICS_EPI_ERROR_MAX + 1.

EPI constants and data structures

76 CICS Family: Client/Server Programming

|

|

EPI versions

The following descriptions of EPI functions embrace three versions of the EPI.
You should consult the documentation for your client or server environment
to determine which versions of the EPI they provide. You establish the version
of the EPI that you need by using the Version parameter on the
CICS_EpiInitialize function.

The function described in the following sections is the function for versions
up to CICS_EPI_VERSION_200. The following functions and data structures
are only supported for CICS_EPI_VERSION_200:
v CICS_EpiAddExTerminal

v CICS_EpiPurgeTerminal

v CICS_EpiSetSecurity

v CICS_EpiAttributes_t

v The MapName, MapSetName,System, TermID, and SignonCapability
fields in the CICS_EpiDetails_t data structure

The following are not supported for CICS_EPI_VERSION_200:
v CICS_EpiGetSysError

v CICS_EpiSysError_t

In addition, if you initialize the EPI with CICS_EPI_VERSION_100, the
following restrictions apply:
v The CICS_EpiInquireSystem function is not supported.
v The return codes EPI_ERR_IN_CALLBACK, EPI_ERR_NULL_PARM, and

EPI_ERR_SECURITY are not supported. EPI_ERR_FAILED will be returned
instead.

v The System parameter of CICS_EpiAddTerminal must specify a non-null
string, as the mechanism for finding a default server is not supported. (If a
null string is specified, CICS_EPI_ERR_SYSTEM is returned.)

EPI functions

This section describes the functions provided by the EPI that can be called
from an application program:
v CICS_EpiInitialize
v CICS_EpiTerminate
v CICS_EpiListSystems
v CICS_EpiAddTerminal
v CICS_EpiAddExTerminal
v CICS_EpiInquireSystem

EPI versions

Chapter 3. External presentation interface 77

|
|

|
|
|
|
|

|
|
|

|

|

|

|

|
|

|

|

|

|
|

|

|
|
|

|
|
|

|

|

v CICS_EpiDelTerminal
v CICS_EpiPurgeTerminal
v CICS_EpiSetSecurity
v CICS_EpiStartTran
v CICS_EpiReply
v CICS_EpiATIState
v CICS_EpiSenseCode
v CICS_EpiGetEvent
v CICS_EpiGetSysError.

Table 3 summarizes the functions of the interface, the parameters passed to
each function, and the possible return codes from each function.

The mapping of actual return code values to the symbolic names is contained
in the following files for CICS Universal Client for OS/2 and CICS Universal
Client for Windows:

COBOL \copybook\cicsepi.cbl

C \include\cics_epi.h

PL/I \plihdr\cics_epi.inc

and in the following files for CICS Universal Client for AIX and CICS
Universal Client for Solaris:

COBOL /include/CICSEPI

C /include/cics_epi.h

Table 3. Summary of EPI functions

Function name Parameters Return codes: CICS_EPI_

CICS_EpiInitialize Version ERR_FAILED
ERR_IS_INIT
ERR_VERSION
NORMAL

CICS_EpiTerminate none ERR_FAILED
ERR_NOT_INIT
ERR_IN_CALLBACK
NORMAL

CICS_EpiListSystems NameSpace
Systems
List

ERR_FAILED
ERR_MORE_SYSTEMS
ERR_NO_SYSTEMS
ERR_NOT_INIT
ERR_NULL_PARM
ERR_IN_CALLBACK
NORMAL

EPI functions

78 CICS Family: Client/Server Programming

|
|

|
|
|

||

||

||

|
|

||

||

|

Table 3. Summary of EPI functions (continued)

Function name Parameters Return codes: CICS_EPI_

CICS_EpiAddTerminal NameSpace
System
Netname
DevType
NotifyFn
Details
TermIndex

ERR_FAILED
ERR_MAX_TERMS
ERR_NOT_INIT
ERR_SYSTEM
ERR_SECURITY
ERR_NULL_PARM
ERR_IN_CALLBACK
ERR_SERVER_DOWN
NORMAL

For CICS_EPI_VERSION_200
only:
ERR_TERMID_INVALID
ERR_MODELID_INVALID
ERR_NOT_3270_DEVICE
ERR_ALREADY_INSTALLED
ERR_CCSID_INVALID
ERR_SERVER_BUSY
ERR_RESOURCE_SHORTAGE
ERR_MAX_SESSIONS
ERR_MAX_SYSTEMS

CICS_EpiAddExTerminal System
Netname
DevType
NotifyFn
Details
TermIndex
Attributes

ERR_FAILED
ERR_NOT_INIT
ERR_SYSTEM
ERR_SECURITY
ERR_VERSION
ERR_IN_CALLBACK
ERR_SERVER_DOWN
ERR_RESPONSE_TIMEOUT
ERR_SIGNON_NOT_POSS
ERR_PASSWORD_INVALID
ERR_ADDTYPE_INVALID
ERR_SIGNONCAP_INVALID
ERR_USERID_INVALID
ERR_TERMID_INVALID
ERR_MODELID_INVALID
ERR_NOT_3270_DEVICE
ERR_ALREADY_INSTALLED
ERR_CCSID_INVALID
ERR_SERVER_BUSY
ERR_RESOURCE_SHORTAGE
ERR_MAX_SESSIONS
ERR_MAX_SYSTEMS
NORMAL

EPI functions

Chapter 3. External presentation interface 79

|
|
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 3. Summary of EPI functions (continued)

Function name Parameters Return codes: CICS_EPI_

CICS_EpiInquireSystem TermIndex
System

ERR_BAD_INDEX
ERR_FAILED
ERR_NOT_INIT
ERR_NULL_PARM
ERR_IN_CALLBACK
NORMAL

CICS_EpiDelTerminal TermIndex ERR_BAD_INDEX
ERR_FAILED
ERR_NOT_INIT
ERR_TRAN_ACTIVE
ERR_IN_CALLBACK
NORMAL

CICS_EpiPurgeTerminal TermIndex ERR_BAD_INDEX
ERR_FAILED
ERR_NOT_INIT
ERR_IN_CALLBACK
ERR_VERSION
NORMAL

CICS_EpiSetSecurity TermIndex
UserId
Password

ERR_NOT_INIT
ERR_BAD_INDEX
ERR_IN_CALLBACK
ERR_SYSTEM_ERROR
ERR_VERSION
ERR_PASSWORD_INVALID
ERR_USERID_INVALID
ERR_NULL_PASSWORD
ERR_NULL_USERID
NORMAL

CICS_EpiStartTran TermIndex
TransId
Data
Size

ERR_ATI_ACTIVE
ERR_BAD_INDEX
ERR_FAILED
ERR_NO_DATA
ERR_NOT_INIT
ERR_TTI_ACTIVE
ERR_IN_CALLBACK
ERR_SERVER_DOWN
ERR_RESOURCE_SHORTAGE
(v 200 only)
ERR_MAX_SESSIONS
(v 200 only)
NORMAL

EPI functions

80 CICS Family: Client/Server Programming

|||
|
|
|
|
|

||
|
|

|
|
|
|
|
|
|
|
|
|

Table 3. Summary of EPI functions (continued)

Function name Parameters Return codes: CICS_EPI_

CICS_EpiReply TermIndex
Data
Size

ERR_BAD_INDEX
ERR_FAILED
ERR_NO_CONVERSE
ERR_NO_DATA
ERR_NOT_INIT
ERR_IN_CALLBACK
ERR_ABENDED (v 200 only)
ERR_SERVER_DOWN
NORMAL

CICS_EpiATIState TermIndex
ATIState

ERR_ATI_STATE
ERR_BAD_INDEX
ERR_FAILED
ERR_NOT_INIT
ERR_IN_CALLBACK
ERR_NULL_PARAM
NORMAL

CICS_EpiSenseCode TermIndex
SenseCode

ERR_BAD_INDEX
ERR_FAILED
ERR_NOT_INIT
ERR_SENSE_CODE
ERR_IN_CALLBACK
ERR_VERSION
NORMAL

CICS_EpiGetEvent TermIndex
Wait

ERR_BAD_INDEX
ERR_FAILED
ERR_MORE_DATA
ERR_MORE_EVENTS
ERR_NO_EVENT
ERR_NOT_INIT
ERR_WAIT
ERR_NULL_PARAM
ERR_IN_CALLBACK
NORMAL

CICS_GetSysError TermIndex
SysErr

ERR_NOT_INIT
ERR_BAD_INDEX
ERR_FAILED
ERR_NULL_PARAM
ERR_VERSION
NORMAL

Refer to the definitions of the functions to discover the types and usage of the
parameters, the data structures used by the functions, and the meanings of the
return codes.

EPI functions

Chapter 3. External presentation interface 81

CICS_EpiInitialize

CICS_EpiInitialize Version

Purpose

The CICS_EpiInitialize function initializes the EPI. All other EPI calls from
this application are invalid before this call is made.

Microsoft Windows 3.1 only: See “Microsoft Windows 3.1 considerations” on
page 125 for further details of the use of this
function in a Microsoft Windows 3.1
environment.

Parameters

Version
The version of the EPI for which this application is coded. This makes
it possible for old applications to remain compatible with future
versions of the EPI. The version described here is
CICS_EPI_VERSION_200. (See “EPI versions” on page 77 for more
information.)

The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_IS_INIT
The EPI is already initialized.

CICS_EPI_ERR_VERSION
The EPI cannot support the version requested.

CICS_EPI_NORMAL
The function completed successfully.

EPI functions

82 CICS Family: Client/Server Programming

CICS_EpiTerminate

CICS_EpiTerminate

Purpose

The CICS_EpiTerminate function ends the application’s use of the EPI,
typically just before the application terminates. All other EPI calls (except for
CICS_EpiInitialize) are invalid when this call has completed.

The application should issue CICS_EpiDelTerminal calls before terminating,
to ensure that any terminal resources are deleted.

Parameters

None.

Return codes

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_NORMAL
The function completed successfully.

EPI functions

Chapter 3. External presentation interface 83

CICS_EpiListSystems

CICS_EpiListSystems NameSpace
Systems
List

Purpose

The CICS_EpiListSystems function returns a list of CICS servers that are
candidates to act as servers for EPI requests. There is no guarantee that a
communications link exists between the client and any server in the list, or
that any of the servers is available to process requests.

The list is returned as an array of system information structures, one element
for each CICS server. See “CICS_EpiSystem_t” on page 69 for the contents of
the structure.

EPI applications should call this function immediately after each
CICS_EpiInitialize call made to determine which CICS servers are available.

Parameters

NameSpace
A pointer reserved for future use. Ensure that this is a null pointer.

Systems
A pointer to a number. On entry to the function, this number specifies
the number of elements in the array specified in the List parameter.
This value should accurately reflect the amount of storage that is
available to the EPI to store the result. On return, it contains the
actual number of servers found.

The EPI uses this parameter for both input and output.

List An array of CICS_EpiSystem_t structures that are filled in and
returned by the function. The application should provide the storage
for the array and must set the Systems parameter to indicate the
number of elements in the array. The first name in the list is the
default server. However, the way in which the default is defined is
operating system dependent.

The EPI uses this parameter only for output.

Return codes

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_MORE_SYSTEMS
There was not enough space in the List array to store the details of all

EPI functions

84 CICS Family: Client/Server Programming

the CICS servers found. The supplied array has been filled, and the
Systems parameter has been updated to contain the total number of
servers found, thus allowing you to reallocate an array of suitable size
and try the function again.

CICS_EPI_ERR_NO_SYSTEMS
No CICS servers can be located. In this case, the value returned in
Systems is zero.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_NULL_PARM
Systems is a null pointer.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_NORMAL
The function completed successfully. The number of systems found is
at least one, and does not exceed the value supplied as input in the
Systems parameter.

EPI functions

Chapter 3. External presentation interface 85

CICS_EpiAddTerminal

CICS_EpiAddTerminal NameSpace
System
NetName
DevType
NotifyFn
Details
TermIndex

Purpose

The CICS_EpiAddTerminal function installs a new terminal resource, or
reserves an existing terminal resource, for the application’s use. It provides a
terminal index, which should be used to identify the terminal resource on all
further EPI calls. It also provides the information defined in the
CICS_EpiDetails_t data structure.

There is a limit on the number of terminals you can add with this operation:
The maximum varies according to the resources available on the client system.

Microsoft Windows 3.1 only: See “Microsoft Windows 3.1 considerations” on
page 125 for further details of the use of this
function in a Microsoft Windows 3.1
environment.

Note: The CICS_EpiAddTerminal function adds terminal resources whose
signon capability is dependant upon the server in which the terminal
resource is installed, For example, they would be signon incapable on
CICS Transaction Server for OS/390 servers.

Parameters

NameSpace
A pointer reserved for future use. Ensure that this is a null pointer.

System
A pointer to a null-terminated string that specifies the name of the
server in which the terminal resource is to be installed or reserved. If
the name is shorter than CICS_EPI_SYSTEM_MAX characters, it must
be padded with nulls to a length of CICS_EPI_SYSTEM_MAX + 1.

If the string is all nulls, then a server, currently the default server, is
selected by the EPI. To determine the name of the server chosen, use
CICS_EpiInquireSystem. (Specifying a null string is allowed only if
the EPI was initialized with EPI_VERSION_101, or greater.)

The EPI uses this parameter only for input.

EPI functions

86 CICS Family: Client/Server Programming

|
|

|
|
|
|

|

NetName
A pointer to a null-terminated string that specifies the name of the
terminal resource to be installed or reserved, or null. The
interpretation of this name is server-dependent.

If a string is supplied that is shorter than
CICS_EPI_NETNAME_MAX, it must be padded with nulls to a length
of CICS_EPI_NETNAME_MAX + 1.

The string is transmitted to the server without conversion to
uppercase.

The characters used are translated from the client’s code page to an
EBCDIC code page before transmission. If the server uses an ASCII
code page, they will be retranslated. The only characters guaranteed
to be invariant under these translations are the uppercase characters A
to Z, and the numeric characters 0 to 9. Some EBCDIC servers
(Katakana and Hebrew character set A) do not use the standard
representations of the lowercase alphabetic characters, so these should
be used with care when communicating with such servers.

The use of NetName is as follows:
1. If a name is supplied using the NetName, and it matches the

name of an existing terminal resource in the server, the server
attempts to reserve that terminal resource.

2. If a name is supplied, but it does not match the name of an
existing terminal resource in the server, the server installs a
terminal resource using the model terminal definition specified by
the DevType parameter described below, and gives it the input
name. (If DevType is a null pointer, CICS_EPI_ERR_FAILED is
returned.)

3. If NetName is a null pointer, then a terminal resource is installed
using the model terminal definition specified in DevType. If
DevType is a null pointer, the selected terminal type is not
predictable, so you are advised to use DevType to ensure
consistent results. The name of the terminal resource is returned in
the NetName field of the CICS_EpiDetails_t structure.

The EPI uses this parameter only for input.

DevType
A pointer to a null-terminated string that is used in the server to
select a model terminal definition from which a terminal resource
definition is generated, or a null pointer.

If a string is supplied that is shorter than CICS_EPI_DEVTYPE_MAX
characters, it should be padded with nulls to a length of
CICS_EPI_DEVTYPE_MAX + 1.

EPI functions

Chapter 3. External presentation interface 87

The string is transmitted to the server without conversion to
uppercase.

The characters used are translated from the client’s code page to an
EBCDIC code page before transmission. If the server uses an ASCII
code page, they will be retranslated. The only characters guaranteed
to be invariant under these translations are the uppercase characters A
to Z, and the numeric characters 0 to 9. Some EBCDIC servers
(Katakana and Hebrew character set A) do not use the standard
representations of the lowercase alphabetic characters, so these should
be used with care when communicating with such servers.

The EPI uses this parameter only for input.

NotifyFn
A pointer to a callback routine that is called whenever an event occurs
for the terminal resource, such as the arrival of an ATI request. If a
callback routine is not required, this parameter should be set to null.

The EPI uses this parameter only for input.

DOS and Microsoft Windows 3.1: The function is ignored and never
called even if specified.

Details
A pointer to the CICS_EpiDetails_t structure that on return contains
various details about the terminal resource that was installed or
reserved.

The EPI uses the fields in this structure only for output.

TermIndex
A pointer to a terminal index for the terminal resource just installed or
reserved. The returned terminal index must be used as input to all
further EPI function calls to identify the terminal resource to which
the function is directed. The terminal index supplied is the first
available integer starting from 0.

The EPI uses this parameter only for output.

Return codes

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_MAX_TERMS
The maximum number of terminal resources supported by the EPI for
this process has been reached.

This return code applies for Windows 3.1 only.

EPI functions

88 CICS Family: Client/Server Programming

|

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_SYSTEM
The specified server is not known to the client.

CICS_EPI_ERR_SECURITY
The server rejected the attempt for security reasons.

CICS_EPI_ERR_NULL_PARM
TermIndex was a null pointer.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_ERR_SERVER_DOWN
The function failed because the server was down.

CICS_EPI_ERR_TERMID_INVALID
The function failed because an invalid TermId was supplied.

This is supported for CICS_EPI_VERSION_200 only.

CICS_EPI_ERR_MODELID_INVALID
The function failed because an invalid Model terminal definition was
supplied.

This is supported for CICS_EPI_VERSION_200 only.

CICS_EPI_ERR_NOT_3270_DEVICE
The function failed because the device type supplied was not for a
3270 device.

This is supported for CICS_EPI_VERSION_200 only.

CICS_EPI_ERR_ALREADY_INSTALLED
The function failed because the terminal was already installed.

This is supported for CICS_EPI_VERSION_200 only.

CICS_EPI_ERR_CCSID_INVALID
The function failed because an invalid CCSID was supplied.

This is supported for CICS_EPI_VERSION_200 only.

CICS_EPI_ERR_SERVER_BUSY
The function failed because the server was busy.

This is supported for CICS_EPI_VERSION_200 only.

CICS_EPI_ERR_RESOURCE_SHORTAGE
The CICS server or client did not have enough resources to complete
the terminal install.

EPI functions

Chapter 3. External presentation interface 89

|
|

|
|

|

|
|
|

|

|
|
|

|

|
|

|

|
|

|

|
|

|

|
|
|

CICS_EPI_ERR_MAX_SESSIONS
There were not enough communication resources to satisfy this
request.

CICS_EPI_ERR_MAX_SYSTEMS
An attempt was made to start connections to more servers than your
configuration allows.

CICS_EPI_NORMAL
The function completed successfully.

EPI functions

90 CICS Family: Client/Server Programming

|
|
|

|
|
|

CICS_EpiAddExTerminal

CICS_EpiAddExTerminal System
NetName
DevType
NotifyFn
Details
TermIndex
Attributes

Purpose

Supported only for EPI Version 2 or later.

The CICS_EpiAddExTerminal function installs a new terminal resource, or
reserves an existing terminal resource, for the application’s use. It provides a
terminal index, which should be used to identify the terminal resource on all
further EPI calls. It also provides the information defined in the
CICS_EpiDetails_t data structure.

Some attributes, for example the character set and encoding scheme to be
used for 3270 data and the signon capability, may be determined by the
application. These attributes are specified in the CCSID and
SignonCapability fields in the CICS_EpiAttributes_t structure.

Parameters

System
A pointer to a null-terminated string that specifies the name of the
server in which the terminal resource is to be installed or reserved. If
the name is shorter than CICS_EPI_SYSTEM_MAX characters, it must
be padded with nulls to a length of CICS_EPI_SYSTEM_MAX + 1.

If the string is all nulls, then a server, currently the default server, is
selected by the EPI. To determine the name of the server chosen, use
CICS_EpiInquireSystem.

The EPI uses this parameter only for input.

NetName
A pointer to a null-terminated string that specifies the name of the
terminal resource to be installed or reserved, or null. The
interpretation of this name is server-dependent.

If a string is supplied that is shorter than
CICS_EPI_NETNAME_MAX, it must be padded with nulls to a length
of CICS_EPI_NETNAME_MAX + 1.

The string is transmitted to the server without conversion to
uppercase.

EPI functions

Chapter 3. External presentation interface 91

|

|||
|
|
|
|
|
|

|

|

|
|
|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|

The characters used are translated from the client’s code page to an
EBCDIC code page before transmission. If the server uses an ASCII
code page, they will be retranslated. The only characters guaranteed
to be invariant under these translations are the uppercase characters A
to Z, and the numeric characters 0 to 9. Some EBCDIC servers
(Katakana and Hebrew character set A) do not use the standard
representations of the lowercase alphabetic characters, so these should
be used with care when communicating with such servers.

The use of NetName is as follows:
1. If a name is supplied using the NetName, and it matches the

name of an existing terminal resource in the server, the server
attempts to reserve that terminal resource.

2. If a name is supplied, but it does not match the name of an
existing terminal resource in the server, the server installs a
terminal resource using the model terminal definition specified by
the DevType parameter described below, and gives it the input
name. (If DevType is a null pointer, CICS_EPI_ERR_FAILED is
returned.)

3. If NetName is a null pointer, then a terminal resource is installed
using the model terminal definition specified in DevType. If
DevType is a null pointer, the selected terminal type is not
predictable, so you are advised to use DevType to ensure
consistent results. The name of the terminal resource is returned in
the NetName field of the CICS_EpiDetails_t structure.

The EPI uses this parameter only for input.

DevType
A pointer to a null-terminated string that is used in the server to
select a model terminal definition from which a terminal resource
definition is generated, or a null pointer.

If a string is supplied that is shorter than CICS_EPI_DEVTYPE_MAX
characters, it should be padded with nulls to a length of
CICS_EPI_DEVTYPE_MAX + 1.

The string is transmitted to the server without conversion to
uppercase.

The characters used are translated from the client’s code page to an
EBCDIC code page before transmission. If the server uses an ASCII
code page, they will be retranslated. The only characters guaranteed
to be invariant under these translations are the uppercase characters A
to Z, and the numeric characters 0 to 9. Some EBCDIC servers
(Katakana and Hebrew character set A) do not use the standard
representations of the lowercase alphabetic characters, so these should
be used with care when communicating with such servers.

EPI functions

92 CICS Family: Client/Server Programming

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

The EPI uses this parameter only for input.

NotifyFn
A pointer to a callback routine that is called whenever an event occurs
for the terminal resource, such as the arrival of an ATI request. If a
callback routine is not required, this parameter should be set to null.

The EPI uses this parameter only for input.

Details
A pointer to the CICS_EpiDetails_t structure that on return contains
various details about the terminal resource that was installed or
reserved. For asynchronous calls, the Details parameter should be set
to NULL. If the pointer is not set to nulls, the details are added to the
structure when the request to install the terminal resource has
completed. For asynchronous calls this is done when the
CICS_EPI_EVENT_ADD_TERM event occurs.

The EPI uses the fields in this structure only for output.

TermIndex
A pointer to a terminal index for the terminal resource just installed or
reserved. The returned terminal index must be used as input to all
further EPI function calls to identify the terminal resource to which
the function is directed. The terminal index supplied is the first
available integer starting from 0.

The EPI uses this parameter only for output.

Attributes
A pointer to the CICS_EpiAttributes_t structure that specifies
attributes definable by the client application for the terminal resource
that is to be installed The structure must be set to nulls before use.

Default attributes are assumed if the pointer is set to null.

The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_SYSTEM
The specified server is not known to the client.

CICS_EPI_ERR_SECURITY
The server rejected the attempt for security reasons.

EPI functions

Chapter 3. External presentation interface 93

|

|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|

|

|

|

|
|

|
|

|
|

|
|

CICS_EPI_ERR_NULL_PARM
TermIndex was a null pointer.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_ERR_RESPONSE_TIMEOUT
No response was received from the server within the specified
interval.

CICS_EPI_ERR_SIGNON_NOT_POSS
The server does not allow terminal resources to be installed as signon
capable.

CICS_EPI_ERR_SERVER_DOWN
The function failed because the server was down.

CICS_EPI_ERR_PASSWORD_INVALID
The length of the password exceeds CICS_EPI_PASSWORD_MAX.

CICS_EPI_ERR_ADDTYPE_INVALID
The value assigned to the EpiAddType field in the
CICS_EpiAttributes_t structure is neither CICS_EPI_ADD_ASYNC
nor CICS_EPI_ADD_SYNC.

CICS_EPI_ERR_SIGNONCAP_INVALID
The value assigned to the SignonCapability field in the
CICS_EpiAttributes_t structure is neither
CICS_EPI_SIGNON_CAPABLE nor CICS_EPI_SIGNON_INCAPABLE.

CICS_EPI_ERR_USERID_INVALID
The length of the userid exceeds CICS_EPI_USERID_MAX.

CICS_EPI_ERR_TERMID_INVALID
The function failed because an invalid TermId was supplied.

This is supported for CICS_EPI_VERSION_200 only.

CICS_EPI_ERR_MODELID_INVALID
The function failed because an invalid Model terminal definition was
supplied.

This is supported for CICS_EPI_VERSION_200 only.

CICS_EPI_ERR_NOT_3270_DEVICE
The function failed because the device type supplied was not for a
3270 device.

This is supported for CICS_EPI_VERSION_200 only.

CICS_EPI_ERR_ALREADY_INSTALLED
The function failed because the terminal was already installed.

This is supported for CICS_EPI_VERSION_200 only.

EPI functions

94 CICS Family: Client/Server Programming

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|

|
|

|

|
|
|

|

|
|
|

|

|
|

|

CICS_EPI_ERR_CCSID_INVALID
The function failed because an invalid CCSID was supplied.

This is supported for CICS_EPI_VERSION_200 only.

CICS_EPI_ERR_SERVER_BUSY
The function failed because the server was busy.

This is supported for CICS_EPI_VERSION_200 only.

CICS_EPI_ERR_VERSION
The function is not supported for the version at which the EPI was
initialized.

CICS_EPI_ERR_RESOURCE_SHORTAGE
The CICS server or client did not have enough resources to complete
the terminal install.

CICS_EPI_ERR_MAX_SESSIONS
There were not enough communication resources to satisfy this
request.

CICS_EPI_ERR_MAX_SYSTEMS
An attempt was made to start connections to more servers than your
configuration allows.

CICS_EPI_NORMAL
The function completed successfully.

EPI functions

Chapter 3. External presentation interface 95

|
|

|

|
|

|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|

CICS_EpiInquireSystem

CICS_EpiInquireSystem TermIndex
System

Purpose

The CICS_EpiInquireSystem function returns the name of the server on
which a given terminal resource (identified by its terminal index) is installed.

Parameters

TermIndex
The terminal index of the terminal resource whose location is to be
determined.

The EPI uses this parameter only for input.

System
A pointer to a string of length CICS_ECI_SYSTEM_MAX + 1 in which
the name of the server will be returned.

The EPI uses this parameter only for output.

Return codes

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_NULL_PARM
System was a null pointer.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_NORMAL
The function completed successfully. The name of the server is
returned in the System parameter padded with nulls to a length of
CICS_EPI_SYSTEM_MAX +1.

EPI functions

96 CICS Family: Client/Server Programming

CICS_EpiDelTerminal

CICS_EpiDelTerminal TermIndex

Purpose

The CICS_EpiDelTerminal function deletes a previously added terminal
resource. The application should not consider the deletion complete until it
receives the corresponding CICS_EPI_EVENT_END_TERM event. The
terminal index remains allocated until a CICS_EpiGetEvent call retrieves the
CICS_EPI_EVENT_END_TERM event. A call to this function fails if the
terminal resource is currently running a transaction. To ensure that a terminal
resource is deleted, the application must wait until the current transaction
finishes and process all outstanding events before issuing the
CICS_EpiDelTerminal call.

If the terminal resource was autoinstalled, its definition is deleted from the
server. When a CICS_EpiDelTerminal call has completed successfully for a
terminal resource, use of the terminal index is restricted to CICS_EpiGetEvent
and CICS_EpiGetSysError calls until the application has received the
corresponding CICS_EPI_EVENT_END_TERM event.

Parameters

TermIndex
The terminal index of the terminal resource to be deleted.

The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_TRAN_ACTIVE
A transaction is currently running against the terminal resource, or
there are unprocessed events for the terminal resource.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_NORMAL
The function completed successfully.

EPI functions

Chapter 3. External presentation interface 97

CICS_EpiPurgeTerminal

CICS_EpiPurgeTerminal TermIndex

Purpose

Supported only for EPI Version 2 or later.

The CICS_EpiPurgeTerminal function purges a previously added terminal
resource. The application should not consider the deletion complete until it
receives the corresponding CICS_EPI_EVENT_END_TERM event.

The CICS_EpiPurgeTerminal call differs from the CICS_EpiDelTerminal call
in that the application does not have to wait until the current transaction
finishes or process all outstanding events before issuing the call.

If the terminal resource was autoinstalled, its definition is deleted from the
server.

Parameters

TermIndex
The terminal index of the terminal resource to be deleted.

The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_ERR_VERSION
The function is not supported for the version at which the EPI was
initialized.

CICS_EPI_NORMAL
The function completed successfully.

EPI functions

98 CICS Family: Client/Server Programming

|

|||

|

|

|
|
|

|
|
|

|
|

|

|
|

|

|

|
|

|
|

|
|

|
|

|
|
|

|
|

|

CICS_EpiSetSecurity

Purpose

CICS_EpiSetSecurity TermIndex
UserId
Password

Supported only for EPI Version 2 or later.

The CICS_EpiSetSecurity function allows a client application to specify a
userid and password to be associated with a terminal resource previously
installed as signon incapable.

The CICS_EpiSetSecurity function may be invoked at any time; the userid
and password will be used as further transactions are started for the terminal
resource. A client-determined userid and password will be used if the function
either has not been invoked for the terminal resource or has been invoked and
has set the userid, and by implication the password, to nulls.

Note that the client application is responsible for verifying the userid and
password.

Parameters

TermIndex
The terminal index of the terminal.

The EPI uses this parameter only for input.

UserId
A pointer to a null-terminated string that specifies the userid. If the
userid is shorter than CICS_EPI_USERID_MAX characters, it must be
padded with nulls to a length of CICS_EPI_USERID_MAX+1.

The EPI uses this parameter only for input.

Password
A pointer to a null-terminated string that specifies the password. If
the password is shorter than CICS_EPI_PASSWORD_MAX characters,
it must be padded with nulls to a length of
CICS_EPI_PASSWORD_MAX+1.

The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

EPI functions

Chapter 3. External presentation interface 99

|

|

|||
|
|

|

|
|
|

|
|
|
|
|

|
|

|

|
|

|

|
|
|
|

|

|
|
|
|
|

|

|

|
|

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_ERR_SYSTEM_ERROR
An internal system error occurred.

CICS_EPI_ERR_VERSION
The function is not supported for the version at which the EPI was
initialized.

CICS_EPI_ERR_NULL_PASSWORD
Password was a null pointer.

CICS_EPI_ERR_NULL_USERID
Userid was a null pointer.

CICS_EPI_ERR_PASSWORD_INVALID
The length of the password exceeds CICS_EPI_PASSWORD_MAX.

CICS_EPI_ERR_USERID_INVALID
The length of the userid exceeds CICS_EPI_USERID_MAX.

CICS_EPI_NORMAL
The function completed successfully.

EPI functions

100 CICS Family: Client/Server Programming

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|

CICS_EpiStartTran

Purpose

CICS_EpiStartTran TermIndex
TransId
Data
Size

The CICS_EpiStartTran function starts a new transaction from a terminal
resource, or continues a pseudoconversation.
v Starting a new transaction—do this after CICS_EpiAddTerminal, or after a

CICS_EPI_EVENT_END_TRAN event indicated that the previous
transaction did not specify a transaction to process the next input from the
terminal resource.

v Continuing a pseudoconversation—do this after a
CICS_EPI_EVENT_END_TRAN event that indicated that the previous
transaction specified did specify a transaction to process the next input
from the terminal resource.

If the call is successful, no further start requests can be issued for this terminal
resource until the transaction ends; this is indicated by the
CICS_EPI_EVENT_END_TRAN event.

Parameters

TermIndex
The terminal index of the terminal resource that is to run the
transaction.

The EPI uses this parameter only for input.

TransId
A pointer to a string specifying the transaction to be run, or the null
pointer. If a new transaction is being started, and this input is the null
pointer, the name of the transaction is extracted from the data stream
supplied in the Data parameter. If a pseudoconversation is being
continued, and the pointer is not null, the string must be the name of
the transaction returned in the preceding
CICS_EPI_EVENT_END_TRAN event for this terminal resource. If the
pointer is not null, and the string is shorter than
CICS_EPI_TRANSID_MAX characters, it should be padded with
spaces to this length.

The EPI uses this parameter only for input.

Data A pointer to the 3270 data stream to be associated with the
transaction. This parameter must not be a null pointer, because the
data stream must contain at least an AID byte.

EPI functions

Chapter 3. External presentation interface 101

If a new transaction is being started, and the TransId parameter is the
null pointer, the data stream must be at least 4 bytes long, must
contain the name of the transaction to be started, and might contain
data to be supplied to the transaction on its first EXEC CICS RECEIVE
command.

If a new transaction is being started, and the TransId parameter is not
the null pointer, the data stream might be only one byte (an AID
byte), or 3 bytes (an AID byte and a cursor address), or longer than 3
bytes (an AID byte, a cursor address, and data and SBA commands).
In the last case, the data is supplied to the transaction program on the
first EXEC CICS RECEIVE command.

If a pseudoconversation is being continued, the data stream might be
only one byte (an AID byte), or 3 bytes (an AID byte and a cursor
address), or longer than 3 bytes (an AID byte, a cursor address, and
data and SBA commands). In the last case the data is supplied to the
transaction program on the first EXEC CICS RECEIVE command.

The details of the format of 3270 data streams for CICS are described
in “3270 data streams for the EPI” on page 121.

The length of the 3270 data stream must not exceed the value that
was returned in MaxData in CICS_EpiDetails_t when the terminal
resource was installed with CICS_EpiAddTerminal.

The EPI uses this parameter only for input.

Size The size in bytes of the initial data to be passed to the transaction.

The EPI uses this parameter only for input.

Note: The application might expect a terminal resource to be free to start a
transaction and yet get an unexpected return code of
CICS_EPI_ERR_ATI_ACTIVE from a call to CICS_EpiStartTran. If this
happens, it means that the EPI has started an ATI request against the
terminal resource and issued the corresponding
CICS_EPI_EVENT_START_ATI event, but the application has not yet
retrieved the event by issuing a CICS_EpiGetEvent call.

Return codes

CICS_EPI_ERR_ATI_ACTIVE
An ATI transaction is active for this terminal resource.

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

EPI functions

102 CICS Family: Client/Server Programming

CICS_EPI_ERR_NO_DATA
No initial data was supplied.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_TTI_ACTIVE
A transaction started from the EPI is already active for this terminal
resource.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_ERR_SERVER_DOWN
The function failed because the server was down.

CICS_EPI_ERR_RESOURCE_SHORTAGE
The CICS server or client did not have enough resources to complete
the terminal install.

This is supported for CICS_EPI_VERSION_200 only.

CICS_EPI_ERR_MAX_SESSIONS
There were not enough communication resources to satisfy this
request.

This is supported for CICS_EPI_VERSION_200 only.

CICS_EPI_NORMAL
The function completed successfully.

EPI functions

Chapter 3. External presentation interface 103

|
|

|
|
|

|

|
|
|

|

CICS_EpiReply

CICS_EpiReply TermIndex
Data
Size

Purpose

The CICS_EpiReply function sends data from a terminal resource to a CICS
transaction. It should only be issued in response to a
CICS_EPI_EVENT_CONVERSE event.

Parameters

TermIndex
The terminal index of the terminal resource from which the data is
being sent.

The EPI uses this parameter only for input.

Data A pointer to the 3270 data stream to be sent to the transaction. This
parameter must not be a null pointer, because the data stream must
contain at least an AID byte. The data stream might be one byte (an
AID byte), 3 bytes (an AID byte and a cursor address), or more than 3
bytes (an AID byte, a cursor address, and data and SBA commands).
In the last case, what follows the cursor address is supplied to the
transaction program on the first EXEC CICS RECEIVE command.

The length of the 3270 data stream must not exceed the value that
was returned in MaxData in CICS_EpiDetails_t when the terminal
resource was installed with CICS_EpiAddTerminal.

The EPI uses this parameter only for input.

Size The size of the data in bytes.

The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_NO_CONVERSE
No reply is expected by the terminal resource.

CICS_EPI_ERR_NO_DATA
No reply data was supplied.

EPI functions

104 CICS Family: Client/Server Programming

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_ERR_SERVER_DOWN
The function failed because the server was down.

CICS_EPI_ERR_ABENDED
The read timeout period has expired and the conversation has
abended, but the CICS_EPI_EVENT_END_TRAN event has not yet
been received by the application.

This is supported for CICS_EPI_VERSION_200 only.

CICS_EPI_NORMAL
The function completed successfully.

EPI functions

Chapter 3. External presentation interface 105

|
|

|
|
|
|

|

CICS_EpiATIState

CICS_EpiATIState TermIndex
ATIState

Purpose

The CICS_EpiATIState function allows the calling application to query and
alter the way in which ATI requests for a terminal resource are handled. If
ATI requests are enabled (CICS_EPI_ATI_ON) and an ATI request is issued in
the server, the request is started when the terminal resource becomes free. If
ATI requests are held (CICS_EPI_ATI_HOLD), any ATI requests issued are
queued, and started when ATI requests are next enabled.

The state for ATI requests after a CICS_EpiAddTerminal call is
CICS_EPI_ATI_HOLD. The EPI application may change the state to
CICS_EPI_ATI_ON when it is ready to allow ATI requests to be processed.
(The server also maintains a ATI state for terminal resources, which is
independent of the ATI state maintained in the EPI. Changes to the ATI state
on the server do not affect the ATI status in the EPI.)

Parameters

TermIndex
The terminal index of the terminal resource whose ATI state is
required.

The EPI uses this parameter only for input.

ATIState
The EPI uses this parameter for both input and output depending on
the input value as follows:

CICS_EPI_ATI_ON
Enable ATI requests, and return the previous ATI state in this
parameter.

CICS_EPI_ATI_HOLD
Hold ATI requests until they are next enabled, and return the
previous ATI state in this parameter.

CICS_EPI_ATI_QUERY
Do not change the ATI state; just return the current state in
this parameter.

Return codes

CICS_EPI_ERR_ATI_STATE
An invalid ATIState value was provided.

EPI functions

106 CICS Family: Client/Server Programming

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_NULL_PARAM
ATIState was a null pointer.

CICS_EPI_NORMAL
The function completed successfully.

EPI functions

Chapter 3. External presentation interface 107

|
|

CICS_EpiSenseCode

CICS_EpiSenseCode TermIndex
SenseCode

Purpose

Not supported for EPI Version 2.

This function allows the calling application to inform the EPI of any errors in
the 3270 data sent by a transaction.

The function has no effect for CICS Clients.

Parameters

TermIndex
The terminal index of the terminal resource for which the error is to
be raised.

The EPI uses this parameter only for input.

SenseCode
The sense code failure reason, which can be one of the following
values:

CICS_EPI_SENSE_OPCHECK
Errors were detected in the 3270 data stream.

CICS_EPI_SENSE_REJECT
Invalid 3270 commands were received.

The EPI uses this parameter only for input.

Return codes

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_SENSE_CODE
An invalid sense code was provided.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

EPI functions

108 CICS Family: Client/Server Programming

CICS_EPI_VERSION
The function is not supported for the version at which the EPI was
initialized.

CICS_EPI_NORMAL
The function completed successfully.

EPI functions

Chapter 3. External presentation interface 109

|
|
|

CICS_EpiGetEvent

CICS_EpiGetEvent TermIndex
Wait
Event

Purpose

The CICS_EpiGetEvent function obtains information about an event that has
occurred for a terminal resource.

Remember that this call may be attempted only from the application, not from
the callback routine.

Microsoft Windows 3.1 only: In a Microsoft Windows 3.1 environment, the
application should call this function after
receiving a message with wParamset to
CICS_EPI_WIN_EVENT. See “Microsoft
Windows 3.1 considerations” on page 125 for
further details of the use of this function in a
Microsoft Windows 3.1 environment, including
the format of Windows messages posted by the
EPI.

Parameters

TermIndex
The terminal index of the terminal resource for which to obtain an
event. This can be set to the constant CICS_EPI_TERM_INDEX_NONE
to indicate that the next event for any terminal resource used by this
application is to be returned. The application can examine the
TermIndex field in the returned CICS_EpiEventData_t structure to
determine the terminal resource against which the event was
generated.

The EPI uses this parameter for both input and output.

Wait An indication of what should happen if no event has been generated
for the terminal resource. One of the following values should be used:

CICS_EPI_WAIT
Do not return until the next event occurs. (This value should
not be used in the Microsoft Windows or DOS environments.)

CICS_EPI_NOWAIT
Return immediately with an error code. This option is used if
the application elects to poll for events.

The EPI uses this parameter only for input.

EPI functions

110 CICS Family: Client/Server Programming

Event A pointer to a CICS_EpiEventData_t structure that on return contains
the details of the event that occurred. The Data field in the structure
should be set to point to the data buffer that is updated with any
terminal data stream associated with the event. The Size field should
be set to indicate the maximum size of this buffer, and is updated to
contain the actual length of data returned.

Return codes

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_MORE_DATA
The supplied data buffer was not large enough to contain the terminal
data; the data has been truncated.

CICS_EPI_ERR_MORE_EVENTS
An event was successfully obtained, but there are more events
outstanding against this terminal resource.

CICS_EPI_ERR_NO_EVENT
No events are outstanding for this terminal resource.

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has not been executed.

CICS_EPI_ERR_WAIT
The Wait parameter is not valid.

CICS_EPI_ERR_NULL_PARM
Event is a null pointer.

CICS_EPI_ERR_IN_CALLBACK
The function was called from a callback routine.

CICS_EPI_NORMAL
The function completed successfully, and there are no more events.

EPI functions

Chapter 3. External presentation interface 111

CICS_EpiGetSysError

CICS_EpiGetSysError TermIndex
SysErr

Purpose

Not supported for EPI Version 2.

The CICS_EpiGetSysError function obtains detailed information describing
the last error that occurred when the CICS_EPI_ERR_FAILED return code was
generated. The values returned in the Cause and Value fields in the supplied
SysErr parameter can be used to further qualify the return code from any
other EPI function. These values are environment-dependent. You might need
to consult documentation for your client environment, and the documentation
for the appropriate CICS server.

The Msg field in the supplied SysErr parameter may return a message,
specific to the operating environment, describing the error that occurred. If no
message is available, this field is set to nulls.

Note: In CICS Universal Clients Version 3.1, this function is reserved for
backward compatibility. No information is returned by this function; all
system errors are written to the clients error log.

Parameters

TermIndex
The terminal index of the terminal resource for which to obtain the
detailed error code. This parameter may be set to the constant
CICS_EPI_TERM_INDEX_NONE, if further error information
associated with a CICS_EpiInitialize, CICS_EpiTerminate,
CICS_EpiListSystems, or CICS_EpiAddTerminal call is required.

The EPI uses this parameter only for input.

SysErr
A pointer to a CICS_EpiSysError_t structure that on return contains
the system error information.

The EPI uses the structure only for output.

Return codes

CICS_EPI_ERR_NOT_INIT
CICS_EpiInitialize has never been called. (If a CICS_EpiInitialize call
is made and fails, CICS_EpiGetSysError will still succeed.)

CICS_EPI_ERR_BAD_INDEX
The TermIndex value is not a valid terminal index.

EPI functions

112 CICS Family: Client/Server Programming

|

|
|
|

|

CICS_EPI_ERR_FAILED
The function failed for an unexpected reason.

CICS_EPI_ERR_NULL_PARM
SysErr is a null pointer.

CICS_EPI_VERSION
The funcion is not supported for the version at which the EPI was
initialized.

CICS_EPI_NORMAL
The function completed successfully.

EPI functions

Chapter 3. External presentation interface 113

|
|
|

EPI events

EPI events occur when CICS has data to pass to the EPI application. The
application can handle EPI events in a variety of ways. (See “Events and
callbacks” on page 63.) Whichever mechanism is used, the data from CICS is
obtained by calling CICS_EpiGetEvent.

EPI events

114 CICS Family: Client/Server Programming

CICS_EPI_ADD_TERM

Purpose

The CICS_EPI_EVENT_ADD_TERM event indicates that an asynchronous
request to install a terminal resource has completed. If the terminal resource
was installed details will have been placed in the CICS_EpiDetails_t
structure, pointed to by Data.

Fields completed

Event The CICS_EPI_ADD_TERM event code.

EndReturnCode
The reason for termination. Refer to the CICS_EpiAddExTerminal
function for details of return codes.

Data A pointer to the CICS_EpiDetails_t structure that is updated with the
terminal details, if the EndReturnCode is CICS_EPI_NORMAL.

EPI events

Chapter 3. External presentation interface 115

|

|

|
|
|
|

|

||

|
|
|

||
|

|

CICS_EPI_EVENT_SEND

Purpose

The CICS_EPI_EVENT_SEND event indicates that a transaction has sent some
3270 data to a terminal resource, typically as a result of an EXEC CICS SEND
command. No reply is expected, and none should be attempted.

Fields completed

Event The CICS_EPI_EVENT_SEND event code.

Data A pointer to the buffer that is updated to contain the data sent by the
transaction. See “3270 data streams for the EPI” on page 121 for details
of the data stream format.

Size The length of the data in the Data buffer.

EPI events

116 CICS Family: Client/Server Programming

CICS_EPI_EVENT_CONVERSE

Purpose

The CICS_EPI_EVENT_CONVERSE event indicates that a transaction is
expecting a reply as a result of either an EXEC CICS RECEIVE command, or
an EXEC CICS CONVERSE command.

The application should issue a CICS_EpiReply call to return the data to CICS,
as follows:
v If the transaction has issued an EXEC CICS RECEIVE command without

specifying the BUFFER option, the buffer might contain data sent from the
transaction, or it might be empty. If there is data to process, you should
deal with it before replying. The reply should be sent when the data to be
sent is available.

v If the transaction has issued an EXEC CICS RECEIVE BUFFER command,
the data buffer contains the 3270 Read Buffer command and the Size field
is set to 1. The reply should be sent immediately.

Fields completed

Event The CICS_EPI_EVENT_CONVERSE event code.

Data A pointer to the buffer that is updated to contain the data sent by the
transaction, as defined above.

Size The length of the data in the buffer. This may be set to zero to
indicate that no data was sent, but a reply is still expected.

EPI events

Chapter 3. External presentation interface 117

CICS_EPI_EVENT_END_TRAN

Purpose

The CICS_EPI_EVENT_END_TRAN event indicates the end of a transaction
that was running against a terminal resource. If the transaction failed, the
EndReason and EndReturnCode specify the cause. If the transaction
completed normally, the EndReason field is set to
CICS_EPI_TRAN_NO_ERROR and EndReturnCode is set to
CICS_EPI_NORMAL. If the transaction was pseudoconversational, the
TransId field contains the name of the next transaction required. The
application should start this transaction by issuing a CICS_EpiStartTran call.

The CICS_EPI_EVENT_END_TRAN event occurs when a transaction running
against a terminal resource abends or ends following execution of a RETURN
command for which the IMMEDIATE option was not specified.

Fields completed

Event The CICS_EPI_EVENT_END_TRAN event code.

EndReason
An indication of what caused the end transaction event. It can be one
of the following values:

CICS_EPI_TRAN_NO_ERROR
Normal transaction termination.

CICS_EPI_TRAN_NOT_STARTED
The transaction failed to start.

CICS_EPI_TRAN_STATE_UNKNOWN
The transaction failed to complete.

CICS_EPI_READTIMEOUT_EXPIRED
The read timout expired.

TransId
The name of the next transaction to start, if the previous transaction
was pseudoconversational. This name is 4 characters long and
null-terminated. If there is no next transaction, the field is set to nulls.

EndReturnCode
Contains the CICS_EPI_returncode.

EPI events

118 CICS Family: Client/Server Programming

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|

|
|

CICS_EPI_EVENT_START_ATI

Purpose

The CICS_EPI_EVENT_START_ATI event indicates that an ATI transaction has
been started against the terminal resource. If the terminal resource receives an
ATI request while it is running another transaction, the request is held until
the transaction ends. The transaction is then started on behalf of the terminal
resource, and the CICS_EPI_EVENT_START_ATI event is generated to inform
the application.

Fields completed

Event The CICS_EPI_EVENT_START_ATI event code.

TransId
The name of the transaction that was started. This name is 4
characters long and null-terminated.

EPI events

Chapter 3. External presentation interface 119

CICS_EPI_EVENT_END_TERM

Purpose

The CICS_EPI_EVENT_END_TERM event indicates that a terminal resource
no longer exists. After this event, the terminal index that was previously used
for the terminal resource is not valid. If the EPI detects that a CICS server has
shut down, CICS_EPI_EVENT_END_TERM events are generated for all
terminal resources that the application has installed in that server and not
subsequently deleted.

Fields completed

Event The CICS_EPI_EVENT_END_TERM event code.

EndReason
An indication of why the terminal resource was deleted. It can be one
of the following values:

CICS_EPI_END_SIGNOFF
The terminal resource was signed off. This can be as a result
of running the CESF transaction or of calling the
CICS_EpiDelTerminal function.

CICS_EPI_END_SHUTDOWN
The CICS server is shutting down.

CICS_EPI_END_OUTSERVICE
The terminal resource has been switched out of service.

CICS_EPI_END_UNKNOWN
An unexpected error has occurred.

CICS_EPI_END_FAILED
An attempt to delete a terminal resource failed.

EPI events

120 CICS Family: Client/Server Programming

3270 data streams for the EPI

The data streams implemented for the EPI follow those defined in the 3270
Data Stream Programmer’s Reference. All data flows for the EPI are in ASCII
format, and structured fields are not supported. Data flows are defined under
the following topics in the 3270 Data Stream Programmer’s Reference:
v Introduction to the 3270 data stream (excluding structured fields)
v 3270 data stream commands
v Character sets, orders and attributes
v Keyboard and printer operations.

The use of 3270 data streams within the EPI, and some nonstandard orders
and attributes, are defined here.

The supplied C header file CICS3270.H, COBOL copybook CICS3270.CBL, and
PL/I include file CICS3270.INC contain constants and conversion tables that
you will find useful in handling 3270 data streams.

Note that if a CICS user transaction issues EXEC CICS SEND and EXEC CICS
RECEIVE commands, CICS does not process the data (after the initial control
bytes) that is passed between the EPI application and the CICS transaction. In
this case, the data buffer may be used to pass user-specified data between the
programs. Be aware that the contents of the data buffer may be code-page
converted if the buffer is passed between CICS systems, in which case the
data should be limited to ASCII and EBCDIC characters.

If a CICS transaction issues EXEC CICS SEND MAP and EXEC CICS
RECEIVE MAP commands, CICS converts the data from the BMS structure to
a 3270 data stream. In this case, the application receives 3270 data from CICS
and should return valid 3270 data to be converted for the transaction.

The distributed CICS products (that is, CICS Universal Clients, CICS for
OS/2) support the ASCII-7 subset of the 3270 data stream architecture. This
precludes the use of 14- and 16- bit addresses and/or structured fields, and
means that only 12-bit SBA addressing is supported. Because of this
restriction, the maximum screen size for EPI terminals is 27 rows by 132
columns. The CICS/390 and CICS/400 products support the EBCDIC 3270
data stream architecture. However transactions on these servers must avoid
the use of 14- and 16- bit addresses and/or structured fields if these are to be
started from one of the distributed CICS products.

Inbound data streams (EPI to CICS)

AID
(1 byte)

Cursor address
(2 bytes)

Data buffer
(variable length)

EPI applications send 3270 data to CICS on calls to the following functions:

3270 data streams

Chapter 3. External presentation interface 121

|
|
|
|
|
|
|
|
|

v CICS_EpiStartTran
v CICS_EpiReply.

The format in both cases is the same. The data stream must be a minimum of
3 non-null bytes, representing the AID and cursor address; the sole exception
to this is if the AID represents the CLEAR key or a PA key, when the data
stream may consist of the AID only. These fields are passed to the CICS
transaction in the EIBAID and EIBCPOSN fields of the EIB.

The contents of the data buffer consist of:
v ASCII displayable characters with embedded 3270 control characters, when

it is passed to an EXEC CICS RECEIVE MAP command.
v User-specified data, when it is passed to an EXEC CICS RECEIVE

command.

On starting a transaction, the transaction ID is extracted from the start of the
data buffer as follows:
v If a set buffer address (SBA) order is present at the start of the data buffer,

the transaction ID is extracted from the 4th through 7th bytes of the buffer.
v If an SBA is not present at the start of the data buffer, the transaction ID is

extracted from the 1st through 4th bytes of the buffer.

In either case, the transaction ID may be shorter than 4 bytes, being delimited
by either another SBA, an ASCII space, or the end of the string.

The contents of the data buffer passed on the start of a CICS transaction are
available to the transaction in response to an initial EXEC CICS RECEIVE
command.

When the application replies, the contents of the data buffer are available in
an unconverted form in response to an EXEC CICS RECEIVE command or
converted to a BMS structure in response to an EXEC CICS RECEIVE MAP
command.

Note: It is the EPI programmer’s responsibility in the latter case to ensure that
the data is formatted correctly so that the conversion succeeds.

Outbound data streams (CICS to EPI)

Command
(1 byte)

Write control
character
(1 byte)

Data buffer
(variable length)

The 3270 commands are either write or read commands, instructing the EPI to
process the data or to reply with data respectively.

3270 data streams

122 CICS Family: Client/Server Programming

On a CICS_EPI_EVENT_SEND event, the command is one of the following
3270 write commands:
v Write
v Erase/Write
v Erase/Write Alternate
v Erase All Unprotected.

The first three commands are followed by a write control character (WCC)
and data. An Erase All Unprotected command has neither WCC nor data. The
Write Structured Field command is not generated by CICS and is therefore not
supported for the EPI.

The contents of the data buffer consist of:
v ASCII displayable characters with embedded 3270 control characters, when

it is passed from an EXEC CICS SEND MAP command.
v User-specified data, when it is passed from an EXEC CICS SEND

command.

A CICS_EPI_EVENT_CONVERSE event specifies a read command. The
contents of the data stream vary with the source of the event, as follows:
v If the event is the result of an EXEC CICS RECEIVE command, the data

buffer might contain data sent by the transaction, or it might be empty. The
EPI program should reply when the data to be sent is available.

v If the event is the result of an EXEC CICS RECEIVE BUFFER command, the
data buffer contains the 3270 Read Buffer command. This should be
processed as described in the 3270 Data Stream Programmer’s Reference.

The Read Modified and Read Modified All commands are not generated by
CICS and are therefore not supported for the EPI.

3270 order codes

3270 orders are included in both inbound and outbound data streams to
provide additional control function. Table 4 on page 124 lists the order codes
that may occur in 3270 data streams, and shows whether they relate to
inbound or outbound data streams, or both.

3270 data streams

Chapter 3. External presentation interface 123

Table 4. Order codes occurring in 3270 data streams

Order code Inbound Outbound

Start field (SF) Yes Yes

Start field extended (SFE) Yes Yes

Set buffer address (SBA) Yes Yes

Set attribute (SA) Yes Yes

Modify field (MF) No Yes

Insert cursor (IC) No Yes

Program tab (TB) No Yes

Repeat to address (RA) No Yes

Erase unprotected to address (EUA) No Yes

Graphic escape (GE) No No

Note: The 3270 Data Stream Programmer’s Reference states that the SFE, SA, and
MF orders are not supported in ASCII. However, they do occur in 3270
data streams for the EPI, where they take the following values:
SFE X'10'
SA X'1F'
MF X'1A'

MF was formerly assigned the value X’1E’. However the Field Mark
format control order is assigned the same value. Without the change to
X’1A’, an EPI application would be unable to distinguish between MF
and FM.

Each of these orders is followed by one or more attribute type-value
pairs. The count of attribute pairs and the attribute type are both binary
values, and are thus as defined in the 3270 Data Stream Programmer’s
Reference. However, the contents of the attribute value field may vary
from those defined in the 3270 Data Stream Programmer’s Reference as
follows:
v If the attribute type is less than or equal to X'C0' (for example, a

color), the attribute value is defined as an EBCDIC value in the 3270
Data Stream Programmer’s Reference. The EPI uses the ASCII
equivalent of the EBCDIC value; for example, red is defined as X'F2'
in the 3270 Data Stream Programmer’s Reference, and should be defined
as X'32' in the EPI data stream.

v If the attribute type is greater than X'C0' (for example, field
outlining), the attribute value is a binary value. The EPI uses the
values defined in the 3270 Data Stream Programmer’s Reference.

3270 data streams

124 CICS Family: Client/Server Programming

Further details of 3270 orders and other control characters are supplied in the
files named in the following table.

Supplied file

COBOL copybook CICS3270.CBL

C header file CICS3270.H

PL/I include file CICS3270.INC

Microsoft Windows 3.1 considerations

Note: The following information applies only to the IBM CICS Client for
Windows.

The CICS_EpiInitialize function has two additional parameters:

hWnd
The handle of the Microsoft Windows window to which EPI messages
will be posted.

MsgId
The message identifier to be used for posting EPI messages to the
window specified in the hWnd parameter.

The EPI application is posted a Windows message (using the hWnd and
MsgId values) in any of the following situations:
v The CICS_EpiInitialize call has completed.
v The CICS_EpiAddTerminal call has completed.
v An incoming event for a terminal resource has been received.

(CICS_EpiGetEvent should be called to receive the event data.)

Values are assigned to the wParam and lParam parameters within these
messages as follows. In the case of lParam, the LOWORD of this parameter is
used.

3270 data streams

Chapter 3. External presentation interface 125

wParam

CICS_EPI_WIN_INITIALIZED
CICS_EpiInitialize complete

CICS_EPI_WIN_INSTALLED
CICS_EpiAddTerminal complete

CICS_EPI_WIN_EVENT
An incoming terminal event

lParam

X’0000’
CICS_EpiInitialize has completed.

Terminal index
Index number of the terminal resource installed by a
successful CICS_EpiAddTerminal, or of the terminal resource
to which an incoming event belongs.

X’FFFF’
CICS_EpiAddTerminal has completed, but terminal resource
installation failed.

After receiving a message with wParam set to CICS_EPI_WIN_INITIALIZED,
the application should call CICS_EpiGetSysError to check for any install
errors.

If lParam is set to X'FFFF' , CICS_EpiGetSysError should be called with the
TermIndex parameter set to CICS_EPI_TERM_INDEX_NONE. (A terminal
index will not have been allocated if the terminal resource install failed.)

If lParam is not set to X'FFFF' , CICS_EpiGetSysError should be called with
the TermIndex parameter set to the lParam value.

Under Microsoft Windows, the EPI functions CICS_EpiInitialize and
CICS_EpiAddTerminal are asynchronous (all other functions are
synchronous). This means that the application should wait for a message to be
posted before continuing after each of these two calls.

Microsoft Windows 3.1 considerations

126 CICS Family: Client/Server Programming

Chapter 4. Creating ECI and EPI application programs

This chapter contains language-dependent information about the external
access interfaces, and is organized as follows:

“Writing the non-CICS applications”

“Making ECI calls” on page 128

“Making EPI calls” on page 132

“Compiling and linking applications” on page 133

This chapter does not deal with testing or debugging ECI and EPI
applications. You should refer to the programming manuals for the
environment in which you are working.

Writing the non-CICS applications

ECI and EPI applications are standard stand-alone programs that can be run
on any of the client systems, and can use the server implementations of the
ECI and EPI on CICS for OS/2 servers. Programs that do not make
operating-system-specific calls are portable between these environments. The
sample programs and associated build files for your environment illustrate much of
what is discussed here.

An application program may use the facilities of both ECI and EPI.

An application must be constructed as a single process, though in
environments in which a process can generate several threads, an application
can be multi-threaded.

Applications may be written in C (or C++), COBOL, PL/I, or REXX, though
not all these languages are available in every environment.

The following table shows for each programming environment
v the names of the C header file, COBOL copybook, or PL/I include file for

the ECI
v the names of the C header file, COBOL copybook, or PL/I include file for

the EPI
v the names of the type definition files for either interface for C and PL/I

programs. (Type definition files are not used with COBOL.)

© Copyright IBM Corp. 1989, 1999 127

Use File

ECI: C programs CICS_ECI.H

ECI: COBOL programs CICSECI.CBL

ECI: PL/I programs CICS_ECI.INC

EPI: C programs CICS_EPI.H

EPI: COBOL programs CICSEPI.CBL

EPI: PL/I programs CICS_EPI.INC

Type definitions: C programs CICSTYPE.H

Type definitions: PL/I programs CICSTYPE.INC

Note: The file extension .CBL does not apply on AIX and Solaris.

You should study the contents of the file appropriate to the language you
intend to use. Each file contains the definitions of all the entry points, types,
data structures, and constants needed for writing programs for the
corresponding interface.

The naming conventions for the structures, fields, and constants of the
interfaces in the different languages are as follows:
v PL/I and C—the names are the same as the names used earlier in this book

to describe the interfaces.
v COBOL—the names are upper-case versions of the names used earlier in

this book to describe the interfaces with hyphens instead of underscores.

There are a few exceptions to this convention, and these are noted where they
occur.

When compiling C programs, you may need to ensure that the structures
passed to the CICS external facilities are packed. If this is necessary, the C
header files will contain the #pragma pack directive, which should not be
changed.

Making ECI calls

ECI functions are called in the manner described below.

COBOL applications must ensure that the ECI function calls are statically
linked at link time by using the system linkage convention.
v For IBM VisualAge® for COBOL for OS/2, you should use the default

CALLINTERFACE(System) linkage.

Creating applications

128 CICS Family: Client/Server Programming

|||

||

||

||

||

||

||

||

||

|

|

v For Micro Focus Object COBOL, you should use call-convention 8 for every
program call, or use the default call-convention 0 and compile using the
LITLINK compiler directive.

CICS_ExternalCall

The method of calling CICS_ExternalCall is shown here for COBOL, C, and
for PL/I. The ECI parameter block (ECI-PARMS for COBOL, ECI_PARMS for
C, and ECI_PARMS for PL/I) is used for passing parameters to the ECI. The
format of the call and associated declarations is as follows:

For C programs:
ECI_PARMS EciBlock;
cics_sshort_t Response;
.
.
.
Response = CICS_ExternalCall(&EciBlock);

For COBOL programs:
CALL 'CICSEXTERNALCALL'
USING BY REFERENCE ECI-PARMS
RETURNING ECI-RETURN-CODE.

The name '_CICS_ExternalCall' may also be used with the Micro Focus
Object COBOL compiler, but it is not recommended.

For PL/I programs:
dcl Response fixed bin(15);
dcl EciBlock type ECI_PARMS;
.
.
.
Response = CICS_ExternalCall(EciBlock);

For REXX programs:

Before using CICS_ExternalCall, the REXX program must add the function
for CICS_ExternalCall to its environment as follows:

Call RxFuncAdd 'CICS_ExternalCall', 'cclrxeci', 'RxCICS_ExternalCall'

Once the function has been added, the program may use it any number of
times.

The format of the call is as follows:
retcode = CICS_ExternalCall('ECI_PARMS.')

Creating applications

Chapter 4. Creating ECI and EPI application programs 129

|
|
|
|
|
|

where ECI_PARMS is the name chosen for the REXX stem representing the ECI
parameter block. Do not omit the period at the end of the name, or the single
quotation marks surrounding it.

The values for eci_call_type, eci_extend_mode, and eci_version in the ECI
parameter block, and for ConnectionType, CicsServerStatus, and
CicsClientStatus in the ECI status block are character literals that match the
names used earlier in this book. The following sample assignment statement
shows how, having chosen ECI_PARMS as the stem name, the eci_call_type
field in the ECI parameter block is set to ECI_SYNC.
ECI_PARMS.eci_call_type = 'ECI_SYNC'

The return code values ECI_NO_ERROR, and so on, are defined in the file
RXECI.MSG supplied with the samples.

Callback routines

Each callback routine has only one parameter. You should consult the sample
programs for examples of writing callback routines. Callback routines cannot
be used with REXX.

CICS_EciListSystems

The format of the call in the different programming languages is as follows:

For C programs:
#define MAX_SYS 5
cics_sshort_t Response;
cics_ushort_t Count;
CICS_EciSystem_t List[MAX_SYS];
.
Count = MAX_SYS;
.
Response = CICS_EciListSystems(NULL, &Count, List);

For COBOL programs:

The COBOL name of the system information structure is CICS-ECISYSTEM,
which is contrary to the naming convention stated earlier.

01 LIST-SIZE PIC 9(4) COMP-5.

CALL 'CICSECILISTSYSTEMS'
USING
BY REFERENCE NULL-PTR
BY REFERENCE LIST-SIZE
BY REFERENCE CICS-ECISYSTEM

RETURNING ECI-RETURN-CODE.

Creating applications

130 CICS Family: Client/Server Programming

The name '_CICS_EciListSystems' may also be used with the Micro Focus
Object COBOL compiler, but it is not recommended.

For PL/I programs:
dcl EciRetCode fixed bin(15);
dcl count fixed bin(15);
dcl list type CICS_EciSystem_t;
.
.
.
EciRetCode = CICS_EciListSystems(null(), count, list);

For REXX programs:

Before using CICS_EciListSystems, the REXX program must add the function
for CICS_EciListSystems to its environment as follows:
Call RxFuncAdd 'CICS_EciListSystems', 'cclrxeci', 'RxCICS_EciListSystems'

Once the function has been added, the program may use it any number of
times.

The format of the call is as follows:
retcode = CICS_EciListSystems(, 'count', 'LIST.')

No parameter need be supplied for NameSpace, count is the name of the
REXX variable chosen for Systems, and LIST is the name chosen for the REXX
stem representing List. Do not omit the period at the end of the name, or the
single quotation marks surrounding it.

On return from the call, the names LIST.1.SystemName, and
LIST.1.Description, are used to refer to the fields in the first array element,
and so on.

Debugging with REXX

Special debugging facilities are provided for ECI applications using REXX.

Setting the REXX variable DEBUG to any non-zero value will cause debug
information to be sent to a log file. The path name of the file can be specified
in the REXX variable DEBUGFILE, and the default is the file CCLRXECI.LOG
in the directory where CCLRXECI.DLL is executing. If the file exists already,
debug information is appended to it.

Creating applications

Chapter 4. Creating ECI and EPI application programs 131

Making EPI calls

EPI functions

EPI functions are called in a standard manner. Examples of calling the
CICS_EpiListSystems function follow.

COBOL applications must ensure that the EPI function calls are statically
linked at link time by using the system linkage convention.
v For IBM VisualAge for COBOL for OS/2, you should use the default

CALLINTERFACE(System) linkage.
v For Micro Focus Object COBOL, you should use call-convention 8 for every

program call, or use the default call-convention 0 and compile using the
LITLINK compiler directive.

For C programs:
#define MAX_SYS 5
CICS_EpiSystem_t System;
cics_ushort-t Count;
cics_sshort_t Response;
.
Count = MAX_SYS;
.
Response = CICS_EpiListSystems(NULL, &Count, &System);

For COBOL programs:

The following may be used:
01 COUNT PIC 9(4) COMP-5.
01 NAMESPACE POINTER.
.
.
.
CALL 'CICSEPILISTSYSTEMS'
USING BY VALUE NAMESPACE
BY REFERENCE COUNT
BY REFERENCE CICS-EPISYSTEM

RETURNING EPI-RETURN-CODE.

For PL/I programs:

The following may be used:
dcl System type CICS_EpiSystem_t,

Count fixed bin(15),
Response fixed bin(15);

.

.

.
Response = CICS_EpiListSystems(null(), Count, System);

Creating applications

132 CICS Family: Client/Server Programming

|

|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|

For REXX programs:

EPI functions are not available in REXX.

Callback routines

Each callback routine has only one parameter. You should consult the sample
programs for examples of writing callback routines.

Compiling and linking applications

This section gives some examples showing how to compile and link typical
ECI and EPI applications in the various client environments. These are
examples only, and may refer to specific compilers and linkers.

You should refer to the samples supplied with your environment for more
information about compiling and linking programs.

IBM CICS Client for DOS Version 2

For examples of programs that call the ECI and EPI, refer to the samples
supplied with the client in the following directories:
v \CICSCLI\SAMPLES\C
v \CICSCLI\SAMPLES\COBOL

For C programs:
cl /c /DCICS_DOS program.c

link program.obj,,,ccldos.lib;

Notes:
v Example compiler used is Microsoft C Optimizing Compiler Version 6.00A.
v The constant CICS_DOS must be defined to the compiler using the

/DCICS_DOS option.
v Programs may use any of the standard memory models.
v The application must be linked with the CCLDOS.LIB library in addition to

the standard C runtime libraries.
v Callback functions are not supported in DOS.

For COBOL programs:
cobol program,,,,

link program.obj,,,lcobol.lib+cobapi.lib+ccldos.lib;

Notes:

Creating applications

Chapter 4. Creating ECI and EPI application programs 133

|

v Example compiler used is Micro Focus COBOL Version 3.0.
v Programs should use the LARGE memory model.
v ECI and EPI function calls should be linked using call-convention 8.
v The application must be linked with the CCLDOS.LIB library and must use

the COBOL static link libraries.
v Callback functions are not supported in DOS or COBOL.

IBM CICS Client for Windows Version 2

For examples of programs that call the ECI and EPI, refer to the samples
supplied with the client in the following directory:
v \CICSCLI\SAMPLES\C

For C programs:
cl /c /Gsw /DCICS_WIN program.c

link program.obj,,,cclwin.lib,program.def

Notes:
v Example compiler used is Microsoft C/C++ Optimizing Compiler Version

7.00.
v The constant CICS_WIN must be defined to the compiler using the

/DCICS_WIN option.
v The /Gsw options are recommended for compiling Windows programs.
v Programs may use any of the standard memory models.
v The application must be linked with the CCLWIN.LIB library in addition to

the standard C runtime and Windows libraries.
v A STACKSIZE of at least 8K is recommended in the linker .DEF file.
v Callback functions must be declared using the CICSEXIT calling convention

and must be created using the Windows function MakeProcInstance()—see
samples for details.

v The Windows resource compiler will also be required to create a functional
Windows program, as normal.

IBM CICS Clients for Windows NT and Windows 95 Version 2

For examples of programs that call the ECI and EPI, refer to the samples
supplied with the client in the following directories:
v \CICSCLI\SAMPLES\C
v \CICSCLI\SAMPLES\COBOL

Creating applications

134 CICS Family: Client/Server Programming

For C programs:
cl /c /DWIN32 /D_WIN32 /D_X86_=1 /DCICS_W32 program.c

link program.obj cclwin32.lib

Notes:
v Example compiler used is Microsoft Visual C++ Version 2.0.
v The compiler options /DWIN32, /D_WIN32, and /D_X86_=1 are used to

select the correct Windows function when processing the windows.h header
file. These are standard Win32 options, and are not specific to the IBM CICS
clients.

v The compiler option /DCICS_W32 must be used to define the symbol
CICS_W32 to the compiler to ensure that the CICS header files are
processed correctly.

v The application must be linked with the CCLWIN32.LIB library in addition
to the standard C runtime and Windows libraries.

v Callback functions must be declared using the CICSEXIT calling
convention—see samples for details.

For COBOL programs:
cobol program;
cblnames -mPROGRAM program.obj
link ecicobnl.obj cbllds.obj /NOD cclwin32.lib mfrts32.lib msvcrt.lib kernel32.lib

Notes:
v Example compiler used is Micro Focus Object COBOL Version 4.
v ″program″ must be replaced by the name of the program, and ″PROGRAM″

must be replaced by the name of the program in upper case.
v It is important to used the correct calling convention when invoking the

ECI or EPI from COBOL. The sample programs use the ″SPECIAL-NAMES.
CALL CONVENTION 8 IS CICS.″ statements to achieve this.

v The application must be linked with the CCLWIN32.LIB library, in addition
to the standard COBOL libraries, because a 32-bit Windows application is
being generated.

v ECI or EPI callback functions are not supported in COBOL applications.

IBM CICS Client for OS/2 Version 2

For examples of programs that call the ECI and EPI, refer to the samples
supplied with the client in the following directories:
v \CICSCLI\SAMPLES\C
v \CICSCLI\SAMPLES\COBOL
v \CICSCLI\SAMPLES\PLI

Creating applications

Chapter 4. Creating ECI and EPI application programs 135

For 32-bit C programs:
icc /C /DCICS_OS2 program.c

link386 program.obj,,,cclos232.lib,program.def

Notes:
v Example compiler used is IBM C/Set++.
v The constant CICS_OS2 must be defined to the compiler using the

/DCICS_OS2 option.
v The application must be linked with the CCLOS232.LIB library (since it is a

32-bit application) in addition to the standard C runtime and OS/2
libraries.

v A STACKSIZE of at least 16K is recommended in the linker .DEF file.
v Callback functions must be declared using the CICSEXIT calling

convention—see samples for details.

For 16-bit C programs:
cl /c /Gs /DCICS_OS2 program.c

link program.obj,,,cclos2.lib,program.def

Notes:
v Example compiler used is Microsoft C Optimizing Compiler Version 6.00A.
v The constant CICS_OS2 must be defined to the compiler using the

/DCICS_OS2 option.
v The /Gs option is recommended if callback functions are to be used.
v The application must be linked with the CCLOS2.LIB library (since it is a

16-bit application) in addition to the standard C runtime and OS/2
libraries.

v A STACKSIZE of at least 16K is recommended in the linker .DEF file.
v Callback functions must be declared using the CICSEXIT calling

convention—see samples for details.

For 32-bit COBOL programs:

If you are using IBM VisualAge for COBOL for OS/2:
cob2 -c -qapost -qnosequence -qlib. prog.cbl

ilink /NOFREE /NOD /NOI /MAP prog.obj,,,OS2386 iwzrlib cclos232,prog.def

If you are using Micro Focus Object COBOL:

Creating applications

136 CICS Family: Client/Server Programming

cobol prog.cbl;

cblnames -mPROG -oPROG.CBJ prog

link386 /NOD /NOI prog.obj prog.cbj,,,OS2386 mfrts32 cclos232,prog.def

Notes:
v You must resolve ECI and EPI function calls at link time using the system

linkage convention. This is the default linkage for IBM VisualAge for
COBOL for OS/2. If you use Micro Focus Object COBOL, you must use
call-convention 8 on all ECI and EPI functions, or use the default
call-convention 0 and compile using the LITLINK compiler directive.

For 16-bit COBOL programs:
cobol program,,,,

link program.obj,,,coblib.lib+cclos2.lib,program.def

Notes:
v Example compiler used is Micro Focus COBOL Version 3.0.
v Programs should use the LARGE memory model.
v Programs must be compiled with the LITLINK compiler directive.
v The application must be linked with the CCLOS2.LIB library (since it is a

16-bit application) and may use either the COBOL static or dynamic link
libraries.

v A STACKSIZE of at least 16K is recommended in the linker .DEF file.
v Callback functions are not supported in COBOL.

For PL/I programs:
pli program

link386 program.obj,,,cclos232.lib,program.def

Notes:
v Example compiler used is IBM PL/I for OS/2 Version 1 Release 1.
v The application must be linked with the CCLOS232.LIB library (since it is a

32-bit application) in addition to the standard PL/I runtime and OS/2
libraries.

v A STACKSIZE of at least 16K is recommended in the linker .DEF file.
v Callback functions must be declared using the CICSEXIT calling

convention—see samples for details.

Creating applications

Chapter 4. Creating ECI and EPI application programs 137

IBM CICS Universal Clients for Windows NT and Windows 98 Version 3

For examples of programs that call the ECI and EPI, refer to the samples
supplied with the client in the following directories:
v \CICS Universal Client\SAMPLES\C
v \CICS Universal Client\SAMPLES\COBOL

For C programs:
cl /c /DWIN32 /D_WIN32 /D_X86_=1 /DCICS_W32 program.c

link program.obj cclwin32.lib

Notes:
v Example compiler used is Microsoft Visual C++ Version 2.0, and IBM

VisualAge for C++ Version 3.5
v The compiler options /DWIN32, /D_WIN32, and /D_X86_=1 are used to

select the correct Windows function when processing the windows.h header
file. These are standard Win32 options, and are not specific to the IBM CICS
clients.

v The compiler option /DCICS_W32 must be used to define the symbol
CICS_W32 to the compiler to ensure that the CICS header files are
processed correctly.

v The application must be linked with the CCLWIN32.LIB library in addition
to the standard C runtime and Windows libraries.

v Callback functions must be declared using the CICSEXIT calling
convention—see samples for details.

For COBOL programs:
cobol program;
cblnames -mPROGRAM program.obj
link ecicobnl.obj cbllds.obj /NOD cclwin32.lib mfrts32.lib msvcrt.lib kernel32.lib

Notes:
v Example compiler used is Micro Focus Object COBOL Version 4.
v ″program″ must be replaced by the name of the program, and ″PROGRAM″

must be replaced by the name of the program in upper case.
v It is important to used the correct calling convention when invoking the

ECI or EPI from COBOL. The sample programs use the ″SPECIAL-NAMES.
CALL CONVENTION 8 IS CICS.″ statements to achieve this.

v The application must be linked with the CCLWIN32.LIB library, in addition
to the standard COBOL libraries, because a 32-bit Windows application is
being generated.

v ECI or EPI callback functions are not supported in COBOL applications.

Creating applications

138 CICS Family: Client/Server Programming

IBM CICS Universal Client for OS/2 Version 3

For examples of programs that call the ECI and EPI, refer to the samples
supplied with the client in the following directories:
v \CICS Universal Client\SAMPLES\C
v \CICS Universal Client\SAMPLES\COBOL
v \CICS Universal Client\SAMPLES\PLI

For C programs:
icc /C /DCICS_OS2 program.c

link386 program.obj,,,cclos232.lib,program.def

Notes:
v Example compiler used is IBM C/Set++.
v The constant CICS_OS2 must be defined to the compiler using the

/DCICS_OS2 option.
v The application must be linked with the CCLOS232.LIB library (since it is a

32-bit application) in addition to the standard C runtime and OS/2
libraries.

v A STACKSIZE of at least 16K is recommended in the linker .DEF file.
v Callback functions must be declared using the CICSEXIT calling

convention—see samples for details.

For COBOL programs:

If you are using IBM VisualAge for COBOL for OS/2:
cob2 -c -qapost -qnosequence -qlib. prog.cbl

ilink /NOFREE /NOD /NOI /MAP prog.obj,,,OS2386 iwzrlib cclos232,prog.def

If you are using Micro Focus Object COBOL:
cobol prog.cbl;

cblnames -mPROG -oPROG.CBJ prog

link386 /NOD /NOI prog.obj prog.cbj,,,OS2386 mfrts32 cclos232,prog.def

Notes:
v You must resolve ECI and EPI function calls at link time using the system

linkage convention. This is the default linkage for IBM VisualAge for
COBOL for OS/2. If you use Micro Focus Object COBOL, you must use
call-convention 8 on all ECI and EPI functions, or use the default
call-convention 0 and compile using the LITLINK compiler directive.

Creating applications

Chapter 4. Creating ECI and EPI application programs 139

For PL/I programs:
pli program

link386 program.obj,,,cclos232.lib,program.def

Notes:
v Example compiler used is IBM PL/I for OS/2 Version 1 Release 1.
v The application must be linked with the CCLOS232.LIB library (since it is a

32-bit application) in addition to the standard PL/I runtime and OS/2
libraries.

v A STACKSIZE of at least 16K is recommended in the linker .DEF file.
v Callback functions must be declared using the CICSEXIT calling

convention—see samples for details.

IBM CICS Universal Client for AIX Version 3

For examples of programs that call the ECI and EPI, refer to the samples
supplied with the client in the following directories:
v /usr/lpp/cicscli/samples/c
v /usr/lpp/cicscli/samples/cobol

For C programs:
cc_r -c -DCICS_AIX -I/usr/lpp/cicscli/include program.c
cc_r -o program program.o -lpthreads -lc_r -lcclaix

Notes:
v Example compiler used is IBM C Set++ for AIX Version 3.1.4.
v The constant CICS_AIX must be defined to the compiler using the

-DCICS_AIX option.
v The application must be linked with the standard AIX libpthreads.a and

libc_r.a libraries, as well as the libcclaix.a library.

For COBOL programs:
cob2_r -c -qLIB -I/usr/lpp/cicscli/include program.cbl
xlc_r -o program program.o -lpthreads -lcob2_r -lcclaix

Notes:
v Example compiler used is IBM COBOL Set for AIX Compiler Version 1.1.
v The application must be linked with the standard AIX libpthreads.a and

libcob2_r.a libraries, as well as the libcclaix.a library.

IBM CICS Universal Client for Solaris Version 3

For examples of programs that call the ECI and EPI, refer to the samples
supplied with the client in the following directories:

Creating applications

140 CICS Family: Client/Server Programming

v /opt/cicscli/samples/c
v /opt/cicscli/samples/cobol

For C programs:
cc -c -DCICS_SOL -I/opt/cicscli/include program.c
cc -o program program.o -lpthread -lc -lcclsol

Notes:
v Example compiler used is Sun Workshop Compiler C/C++ Version 4.2
v The constant CICS_SOL must be defined to the compiler using the

-DCICS_SOL option.
v The application must be linked with the standard Solaris libpthread.so and

libc.so libraries, as well as the libcclsol.so library.

For COBOL programs:
cob -x program.cbl -o program -lcclsol -lpthread

Notes:
v Example compiler used is Micro Focus COBOL for Solaris Version 4.2.
v The application must be linked with the standard Solaris libpthread.so

library, as well as the libcclsol.so library.
v It may be necessary to set the environment variable COBCPY to pick up the

correct ECI and EPI COPY files:
export COBCPY=/opt/cicscli/include

CICS for OS/2 Version 3 server implementation

For examples of programs that call the ECI and EPI, refer to the samples
supplied with the CICS product. CICS for OS/2 V3.0 provides C, COBOL, and
PL/I source and makefile samples in the following directories:
v \CICS300\TOOLS\C\SAMPLES\SOURCE
v \CICS300\TOOLS\COBOL\SAMPLES\SOURCE
v \CICS300\TOOLS\PLI\SAMPLES\SOURCE

CICS for OS/2 Version 3.1 provides C, COBOL, and PL/I source and makefile
samples in the following directories:
v \CICS310\TOOLS\C\SAMPLES\SOURCE
v \CICS310\TOOLS\COBOL\SAMPLES\SOURCE
v \CICS310\TOOLS\PLI\SAMPLES\SOURCE

For 32-bit C programs:
icc /Gt+ prog.c faacic32.lib

For 16-bit C programs:
cl prog.c /Gs /link /stack:16384 faaclib

Creating applications

Chapter 4. Creating ECI and EPI application programs 141

|
|

|

|
|

For COBOL programs:

If you are using IBM VisualAge for COBOL for OS/2:
cob2 -c -qapost -qnosequence -qlib. prog.cbl

ilink /NOFREE /NOD /NOI /MAP prog.obj,,,OS2386 iwzrlib cclos232,prog.def

If you are using Micro Focus Object COBOL:
cobol prog.cbl;

cblnames -mPROG -oPROG.CBJ prog

link386 /NOD /NOI prog.obj prog.cbj,,,OS2386 mfrts32 cclos232,prog.def

Note:
v You must resolve ECI and EPI function calls at link time using the system

linkage convention. This is the default linkage for IBM VisualAge for
COBOL for OS/2. If you use Micro Focus Object COBOL, you must use
call-convention 8 on all ECI and EPI functions, or use the default
call-convention 0 and compile using the LITLINK compiler directive.

For PL/I programs:
pli prog.pli (tiled

link386 /NOD / NOI prog,,,faacic32 ibmlink ceelink os2386

Creating applications

142 CICS Family: Client/Server Programming

Chapter 5. External security interface

This chapter provides reference information about the external security
interface (ESI).

The interface is described here in a language-independent manner, though the
names chosen for the elements of the interface—functions, parameters, data
structures, fields, constants, and so on—are similar to those provided for
programming.

Any restrictions applicable to particular operating environments are identified
under the functions to which they apply.

The chapter is organized as follows:
“Overview”

“Benefits of APPC PEM” on page 144

“Benefits of the ESI” on page 144

“ESI constants and data structures” on page 144

“ESI functions” on page 149

Overview

The External security interface (ESI) allows a non-CICS application to invoke
services provided by advanced program-to-program communication (APPC)
password expiration management (PEM).

APPC PEM with CICS provides support for an APPC architected sign-on
transaction that signs on userids to a CICS server, and processes requests for a
password change by:
v Identifying a user and authenticating that user’s identification
v Notifying specific users during the authentication that their passwords have

expired
v Letting users change their passwords when (or before) the passwords expire
v Telling users how long their current passwords will remain valid
v Providing information about unauthorized attempts to access the server

using a particular user identifier

© Copyright IBM Corp. 1989, 1999 143

Benefits of APPC PEM

APPC PEM has the following benefits:
v It enables users to update passwords on APPC links.

This can be particularly useful in the case of expired passwords. On APPC
links that do not support APPC PEM, when users’ passwords expire on
remote systems, they are unable to update them from their own systems.
The only alternative on a non-APPC PEM system is to log on directly to the
remote system using a non-APPC link, such as an LU2 3270-emulation
session, to update the password.

v It provides APPC users with additional information regarding their sign-on
status; for example, the date and time at which they last signed on. It
informs users whether their userid is revoked, or the password has expired,
when they provide the correct password or PassTicket.

Benefits of the ESI

To use APPC PEM, you need a PEM client (requestor) and a PEM server
linked by an APPC session. An external security manager (ESM), such as
resource access control facility (RACF), or an equivalent ESM, must also be
available to the PEM server.

The ESI provides the following functions:
v The CICS_VerifyPassword function, which allows a client application to

verify that a password matches the password recorded by an ESM for a
specified userid.

v The CICS_ChangePassword function, which allows a client application to
change the password recorded by an ESM for a specified userid.

v The CICS_SetDefaultSecurity function, which allows a client application to
specify a default userid and password to be used for ECI and EPI request
to the server.

These functions allow a non-CICS application program to act as a PEM
requestor without the application programmer having to manage an APPC
conversation, which implies knowledge of the formats for PEM requests and
replies, and of the interface to the local PEM server.

ESI constants and data structures

This section describes the constants and data structures that you will need to
use the ESI. They are referred to in “ESI functions” on page 149.

External security interface

144 CICS Family: Client/Server Programming

|
|
|

ESI constants

The following constants are referred to symbolically in the descriptions of the
ESI data structures, and functions in this chapter. Their values are given here
to help you understand the descriptions. However, your code should always
use the symbolic names of ESI constants provided for the programming
language you are using.

Lengths of fields
v CICS_ESI_PASSWORD_MAX (10)
v CICS_ESI_SYSTEM_MAX (8)
v CICS_ESI_USERID_MAX (10)

ESI data structures

The following data structures are available for use with the ESI.
v CICS_EsiDate_t
v CICS_EsiTime_t
v CICS_EsiDetails_t

In the descriptions of the fields in the data structures, fields described as
strings are null-terminated strings.

ESI constants and data structures

Chapter 5. External security interface 145

CICS_EsiDate_t

Purpose: The CICS_EsiDate_t structure contains a date represented as year,
month, and day.

Fields:

Year 4-digit year held in cics_ushort_t format.

Month
Month held in cics_ushort_t format; values range from 1 to 12 with 1
representing January.

Day Day held in cics_ushort_t format; values range from 1 to 31 with 1
representing the first day of the month.

ESI constants and data structures

146 CICS Family: Client/Server Programming

|

||

|
|
|

||
|

CICS_EsiTime_t

Purpose: The CICS_EsiTime structure contains a time represented as hours,
minutes, seconds, and hundredths of a second.

Fields:

Hours Hours held in cics_ushort_t format; values range from 0 to 23.

Minutes Minutes held in cics_ushort_t format; values range from 0 to
59.

Seconds Seconds held in cics_ushort_t format; values range from 0 to
59.

Hundredths Hundredths of a second held in cics_ushort_t format; values
range from 0 to 99.

ESI constants and data structures

Chapter 5. External security interface 147

|

||

||
|

||
|

||
|

CICS_EsiDetails_t

Purpose: The CICS_EsiDetails_t structure contains information returned
from a successful invocation of either the CICS_VerifyPassword or the
CICS_ChangePassword functions.

Fields:

LastVerifiedDate
The date on which the password was last verified.

LastVerifiedTime
The time at which the password was last verified.

ExpiryDate
The date on which the password will expire.

ExpiryTime
The time at which the password will expire.

LastAccessDate
The date on which the userid was last accessed.

LastAccessTime
The time at which the userid was last accessed.

InvalidCount
The number of times that an invalid password has been entered for
the userid.

ESI constants and data structures

148 CICS Family: Client/Server Programming

ESI functions

This section describes the functions provided by the ESI that can be called
from an application program:
v CICS_VerifyPassword
v CICS_ChangePassword
v CICS_SetDefaultSecurity

ESI functions

Chapter 5. External security interface 149

|

CICS_VerifyPassword

CICS_VerifyPassword UserId
Password
System
Details

Purpose

The CICS_VerifyPassword function allows a client application to verify that a
password matches the password recorded by an external security manager for
a specified userid.

Note that the external security manager is assumed to be located in a server
to which the client is connected.

Parameters

UserId

A pointer to a null-terminated string that specifies the userid
whose password is to be verified. If the userid is shorter than
CICS_ESI_USERID_MAX characters, it must be padded with
nulls to a length of CICS_ESI_USERID_MAX+1.

The ESI uses this parameter only for input.

Password

A pointer to a null-terminated string that specifies the
password to be checked by the external security manager for
the specified userid. If the password is shorter than
CICS_ESI_PASSWORD_MAX characters, it must be padded
with nulls to a length of CICS_ESI_PASSWORD_MAX+1.

The ESI uses this parameter only for input.

System

A pointer to a null-terminated string that specifies the name of
the server in which the password is to be verified. If the name
is shorter than CICS_ESI_SYSTEM_MAX characters, it must be
padded with nulls to a length of CICS_ESI_SYSTEM_MAX+1.

If the string is all nulls, then a server, currently the default
server, is selected.

The ESI uses this parameter only for input.

ESI functions

150 CICS Family: Client/Server Programming

Details

A pointer to the CICS_EsiDetails_t structure that on return
contains further information returned by the external security
manager.

The ESI uses the fields in this structure only for output.

Return codes

CICS_ESI_NO_ERROR
The function completed successfully.

CICS_ESI_ERR_CALL_FROM_CALLBACK
The function was invoked from a callback routine.

CICS_ESI_ERR_SYSTEM_ERROR
An internal system error occurred.

CICS_ESI_ERR_NO_CICS
The client is unavailable, or the specified server is unavailable.

CICS_ESI_ERR_CICS_DIED
The specified server is no longer available.

CICS_ESI_ERR_RESOURCE_SHORTAGE
The client did not have enough resources to complete the request.

CICS_ESI_ERR_NO_SESSIONS
The application has as many outstanding ECI and EPI requests as the
configuration will support.

CICS_ESI_ERR_UNKNOWN_SERVER
The requested server could not be located. Only servers returned by
the CICS_EciListSystems and CICS_EpiListSystems functions are
acceptable.

CICS_ESI_ERR_MAX_SESSIONS
There were not enough communications resources to satisfy the
request. You should consult the documentation for your client or
server to see how to control the number of servers you can use.

CICS_ESI_ERR_MAX_SYSTEMS
You attempted to start requests to more servers than your
configuration allows. You should consult the documentation for your
client or server to see how to control the number of servers you can
use.

CICS_ESI_ERR_NULL_USERID
The userid is set to nulls.

CICS_ESI_ERR_NULL_PASSWORD
The password is set to nulls.

ESI functions

Chapter 5. External security interface 151

CICS_ESI_ERR_PEM_NOT_SUPPORTED
Password expiry managment is supported only for communications
with the requested server over SNA and TCP62.

CICS_ESI_ERR_PEM_NOT_ACTIVE
The requested server does not support password expiry management.

CICS_ESI_ERR_PASSWORD_EXPIRED
The password has expired.

CICS_ESI_ERR_PASSWORD_INVALID
The password is invalid.

CICS_ESI_ERR_USERID_INVALID
The userid is not known to the external security manager.

CICS_ESI_ERR_SECURITY_ERROR
An error has been detected by the external security manager. The
most likely explanation is that the userid has been revoked.

The mapping of actual return code values to the symbolic names is contained
in the following files for CICS Universal Client for OS/2 and CICS Universal
Client for Windows:

COBOL \copybook\cicsesi.cbl

C \include\cics_esi.h

PL/I \plihdr\cics_esi.inc

and in the following files for CICS Universal Client for AIX and CICS
Universal Client for Solaris:

COBOL /include/CICSESI

C /include/cics_esi.h

ESI functions

152 CICS Family: Client/Server Programming

|
|
|

||

||

||

|
|

||

||

|

CICS_ChangePassword

CICS_ChangePassword UserId
OldPassword
NewPassword
System
Details

Purpose

The CICS_ChangePassword function allows a client application to change the
password recorded by an external security manager for a specified userid.

Note that the external security manager is assumed to be located in a server
to which the client is connected.

Parameters

UserId

A pointer to a null-terminated string that specifies the userid
whose password is to be changed. If the userid is shorter than
CICS_ESI_USERID_MAX characters, it must be padded with
nulls to a length of CICS_ESI_USERID_MAX+1.

The ESI uses this parameter only for input.

OldPassword

A pointer to a null-terminated string that specifies the current
password for the specified userid. If the password is shorter
than CICS_ESI_PASSWORD_MAX characters, it must be
padded with nulls to a length of
CICS_ESI_PASSWORD_MAX+1.

The ESI uses this parameter only for input.

NewPassword

A pointer to a null-terminated string that specifies the new
password for the specified userid. If the password is shorter
than CICS_ESI_PASSWORD_MAX characters, it must be
padded with nulls to a length of
CICS_ESI_PASSWORD_MAX+1.

The password is changed only if the currently password is
correctly specified.

The ESI uses this parameter only for input.

ESI functions

Chapter 5. External security interface 153

System

A pointer to a null-terminated string that specifies the name of
the server in which the password is to be verified. If the name
is shorter than CICS_ESI_SYSTEM_MAX characters, it must be
padded with nulls to a length of CICS_ESI_SYSTEM_MAX+1.

If the string is all nulls, then a server, currently the default
server, is selected.

The ESI uses this parameter only for input.

Details

A pointer to the CICS_EsiDetails_t structure that on return
contains further information returned by the external security
manager.

The ESI uses the fields in this structure only for output.

Return codes

CICS_ESI_NO_ERROR
The function completed successfully.

CICS_ESI_ERR_CALL_FROM_CALLBACK
The function was invoked from a callback routine.

CICS_ESI_ERR_SYSTEM_ERROR
An internal system error occurred.

CICS_ESI_ERR_NO_CICS
The client is unavailable, or the specified server is unavailable.

CICS_ESI_ERR_CICS_DIED
The specified server is no longer available. To confirm that the
password has been changed, use the CICS_VerifyPassword function.

CICS_ESI_ERR_RESOURCE_SHORTAGE
The client did not have enough resources to complete the request.

CICS_ESI_ERR_NO_SESSIONS
The application has as many outstanding ECI and EPI requests as the
configuration will support.

CICS_ESI_ERR_UNKNOWN_SERVER
The requested server could not be located. Only servers returned by
the CICS_EciListSystems and CICS_EpiListSystems functions are
acceptable.

CICS_ESI_ERR_MAX_SESSIONS
There were not enough communications resources to satisfy the
request. You should consult the documentation for your client or
server to see how to control the number of servers you can use.

ESI functions

154 CICS Family: Client/Server Programming

CICS_ESI_ERR_MAX_SYSTEMS
You attempted to start requests to more servers than your
configuration allows. You should consult the documentation for your
client or server to see how to control the number of servers you can
use.

CICS_ESI_ERR_NULL_USERID
The userid is set to nulls.

CICS_ESI_ERR_NULL_OLDPASSWORD
The current password is set to nulls.

CICS_ESI_ERR_NULL_NEWPASSWORD
The new password is set to nulls.

CICS_ESI_ERR_PEM_NOT_SUPPORTED
Password expiry management is supported only for communications
with the requested server over SNA and TCP62.

CICS_ESI_ERR_PEM_NOT_ACTIVE
The requested server does not support password expiry management.

CICS_ESI_ERR_PASSWORD_INVALID
The password is invalid.

CICS_ESI_ERR_PASSWORD_REJECTED
The new password does not confirm to the standards defined for the
external security manager.

CICS_ESI_ERR_USERID_INVALID
The userid is not known to the external security manager.

CICS_ESI_ERR_SECURITY_ERROR
An error has been detected by the external security manager. The
most likely explanation is that the userid has been revoked.

The mapping of actual return code values to the symbolic names is contained
in the following files for CICS Universal Client for OS/2 and CICS Universal
Client for Windows:

COBOL \copybook\cicsesi.cbl

C \include\cics_esi.h

PL/I \plihdr\cics_esi.inc

and in the following files for CICS Universal Client for AIX and CICS
Universal Client for Solaris:

COBOL /include/CICSESI

C /include/cics_esi.h

ESI functions

Chapter 5. External security interface 155

|
|
|

||

||

||

|
|

||

||

CICS_SetDefaultSecurity

CICS_SetDefaultSecurity UserId
Password
System

Purpose

The CICS_SetDefaultSecurity function allows a client application to specify a
default userid and password to be used for ECI and EPI requests passed to
the server. The userid, and by implication the password, may be set to nulls.

The client application is responsible for verifying the userid and password.

Note that the userid and password, if required, may be obtained from any one
of several places. The assumption is that the CICS Universal Client uses the
following search order:
1. Either the ECI parameter block for the ECI or the terminal specific values

set by the CICS_EpiSetSecurity function.
2. The server specific values set by the CICS_SetDefaultSecurity function.
3. Defaults, for example the Windows NT userid, from the client’s pop up

window, and so on

Parameters

UserId

A pointer to a null-terminated string that specifies the userid
to be set. If the userid is shorter than
CICS_ESI_USERID_MAX characters, it must be padded with
nulls to a length of CICS_ESI_USERID_MAX+1.

The ESI uses this parameter only for input.

Password

A pointer to a null-terminated string that specifies the
password to be set for the specified userid. If the password is
shorter than CICS_ESI_PASSWORD_MAX characters, it must
be padded with nulls to a length of
CICS_ESI_PASSWORD_MAX+1.

The ESI uses this parameter only for input.

System

A pointer to a null-terminated string that specifies the name of
the server for which the password and userid are to be set. If

ESI functions

156 CICS Family: Client/Server Programming

|

|||
|
|

|

|
|
|

|

|
|
|

|
|

|

|
|

|

|

|
|
|
|

|

|

|
|
|
|
|

|

|

|
|

the name is shorter than CICS_ESI_SYSTEM_MAX characters,
it must be padded with nulls to a length of
CICS_ESI_SYSTEM_MAX+1.

If the string is all nulls, then a server, currently the default
server, is selected.

The ESI uses this parameter only for input.

Return codes

CICS_ESI_NO_ERROR
The function completed successfully.

CICS_ESI_ERR_CALL_FROM_CALLBACK
The function was invoked from a callback routine.

CICS_ESI_ERR_SYSTEM_ERROR
An internal system error occurred.

CICS_ESI_ERR_NO_CICS
The client is unavailable, or the specified server is unavailable.

CICS_ESI_ERR_UNKNOWN_SERVER
The requested server could not be located. Only servers returned by
the CICS_EciListSystems and CICS_EpiListSystems functions are
acceptable.

CICS_ESI_ERR_USERID_INVALID
The length of the userid exceeds CICS_ESI_USERID_MAX.

CICS_ESI_ERR_PASSWORD_INVALID
The length of the password exceeds CICS_ESI_PASSWORD_MAX.

The mapping of actual return code values to the symbolic names is contained
in the following files for CICS Universal Client for OS/2 and CICS Universal
Client for Windows:

COBOL \copybook\cicsesi.cbl

C \include\cics_esi.h

PL/I \plihdr\cics_esi.inc

and in the following files for CICS Universal Client for AIX and CICS
Universal Client for Solaris:

COBOL /include/CICSESI

C /include/cics_esi.h

ESI functions

Chapter 5. External security interface 157

|
|
|

|
|

|

|

|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

||

||

||

|
|

||

||

|

ESI functions

158 CICS Family: Client/Server Programming

Appendix A. ECI extensions that are environment-
dependent

This chapter describes extensions to the ECI that are supported in certain
environments. They are not part of CICS Family Client/Server Programming.

The chapter is organized as follows:
“Call type extensions”

“Time-outs” on page 161

“Fields to support ECI extensions” on page 162

“Reply message formats” on page 164

“ECI return notification” on page 164

“Summary of input parameter requirements” on page 165.

Call type extensions

The following call types are for asynchronous calls.

For more information about the program link calls, study Table 5 on page 164
in conjunction with “ECI_ASYNC call type” on page 27.

For more information about the status information calls, study Table 5 on
page 164 in conjunction with “ECI_STATE_ASYNC call type” on page 39.

Asynchronous program link call, with notification by message
(ECI_ASYNC_NOTIFY_MSG)

This call type is available only for programs running under OS/2 Presentation
Manager, Microsoft Windows, or Windows NT.

The calling application gets control back when the ECI accepts the request.
Note that this does not indicate that the program has started to run, merely
that the parameters have been validated. The request might be queued for
later processing.

The ECI sends a notification message to the specified window when the
response is available. (For details of the message format, see “Reply message

© Copyright IBM Corp. 1989, 1999 159

formats” on page 164.) On receipt of this notification, the calling application
should use ECI_GET_REPLY or ECI_GET_SPECIFIC_REPLY to receive the
actual response.

The following fields are required parameters for notification by message:
v Either eci_async_notify.window_handle (for OS/2 Presentation Manager or

Windows NT environment) or eci_async_notify.win_fields.hwnd (for
Microsoft Windows environment) identifies the window to be notified.

v eci_async_notify.win_fields.hinstance (for Microsoft Windows
environment) indicates the hInstance of the calling program.

v eci_message_id indicates the message type to be used in the notification
process.

eci_message_qualifier can be used as an input to provide a user-defined
name for the call. It is returned as part of the notification message for the
OS/2 Presentation Manager and Windows NT environments.

Asynchronous program link call, with notification by semaphore
(ECI_ASYNC_NOTIFY_SEM)

This call type is available only for programs running under OS/2 or Windows
NT.

The calling application gets control back when the ECI accepts the request.
Note that this does not indicate that the program has started to run, merely
that the parameters have been validated. The request might be queued for
later processing.

The ECI posts the specified semaphore when the response is available. On
receipt of this notification, the calling application should use ECI_GET_REPLY
or ECI_GET_SPECIFIC_REPLY to receive the actual response.

eci_message_qualifier can be used as an input to provide a user-defined
name for the call.

The following field is a required parameter for notification by semaphore:
v eci_async_notify.sem_handle refers to the semaphore.

Asynchronous status call, with notification by message
(ECI_STATE_ASYNC_MSG)

This call type is available only for programs running under OS/2 Presentation
Manager, Microsoft Windows, or Windows NT.

eci_message_qualifier can be used as an input to provide a user-defined
name for the call.

Environment-dependent extensions

160 CICS Family: Client/Server Programming

The ECI sends a notification message to the specified window when the
response is available. (For details of the message format, see “Reply message
formats” on page 164.) On receipt of this notification, the calling application
should use ECI_GET_REPLY or ECI_GET_SPECIFIC_REPLY to receive the
actual response.

For details of the additional parameters relating to notification by message,
see the description of the ECI_ASYNC_NOTIFY_MSG call type.

Asynchronous status call, with notification by semaphore
(ECI_STATE_ASYNC_SEM)

This call type is available only for programs running under OS/2 or Windows
NT.

eci_message_qualifier can be used as an input to provide a user-defined
name for the call.

The ECI posts the specified semaphore when the response is available. On
receipt of this notification, the calling application should use ECI_GET_REPLY
or ECI_GET_SPECIFIC_REPLY to receive the actual response.

The following field is a required parameter for notification by semaphore:
v eci_async_notify.sem_handle refers to the semaphore.

Time-outs

The support consists of a field eci_timeout in the ECI parameter block, and
two return codes: ECI_ERR_RESPONSE_TIMEOUT and
ECI_ERR_REQUEST_TIMEOUT.

In the processing of timeouts, there are two cases to consider.
v The time-out occurs before the request has been forwarded to the server. In

this case the response is ECI_ERR_REQUEST_TIMEOUT. The requested
program was not called, and no server resources have been updated. If the
call was intended to start, or be the whole of, a new logical unit of work,
the logical unit of work was not started, and no recoverable resources have
been updated. If the call was intended to continue an existing logical unit
of work, the logical unit of work was continued, but no recoverable
resources were updated, and the logical unit of work is still uncommitted.
If the call was intended to end an existing logical unit of work, the logical
unit of work was continued, no recoverable resources were updated, and
the logical unit of work is still uncommitted.

Environment-dependent extensions

Appendix A. ECI extensions that are environment-dependent 161

v The time-out occurs after the request has been forwarded to the server. In
this case the response is ECI_ERR_RESPONSE_TIMEOUT, and it could be
returned to a synchronous call, or to an asynchronous call, or to the reply
solicitation request that gets the reply to an asynchronous call.
– If the call was intended to be the only call of a new logical unit of work,

the logical unit of work was started, but it is not possible for the
application to determine whether updates were performed, and whether
they were committed or backed out.

– If the call was intended to end an existing logical unit of work by using
ECI_NO_EXTEND, the logical unit of work has ended, but it is not
possible for the application to determine whether updates were
performed, and whether they were committed or backed out.

– If the call was intended to continue or to end an existing logical unit of
work by using ECI_COMMIT, the logical unit of work persists, and
changes to recoverable resources are still pending.

Fields to support ECI extensions

The following fields in the ECI parameter block are to support
environment-dependent extensions.

eci_async_notify.window_handle
(OS/2 and Windows NT environments, ECI_ASYNC_NOTIFY_MSG
and ECI_STATE_ASYNC_MSG call types)

The handle of the window to which the reply message will be posted.

The ECI uses this field as input only.

Note: eci_window_handle is a synonym for this parameter.

eci_async_notify.sem_handle
(OS/2 and Windows NT environments, ECI_ASYNC_NOTIFY_SEM
and ECI_STATE_ASYNC_SEM call types)

A reference to an OS/2 semaphore. This semaphore is cleared when
the asynchronous response is ready for collection.
v 16-bit OS/2 applications should pass either a system semaphore

handle or the address of a RAM semaphore.
v 32-bit OS/2 applications should pass an event semaphore handle.
v Windows NT applications should pass an event object handle.

The ECI uses this field as input only.

eci_async_notify.win_fields.hwnd
(Microsoft Windows environment, ECI_ASYNC_NOTIFY_MSG and
ECI_STATE_ASYNC_MSG call types)

Environment-dependent extensions

162 CICS Family: Client/Server Programming

The handle of the Microsoft Windows window to which the reply
message will be posted.

The ECI uses this field as input only.

eci_async_notify.win_fields.hinstance
(Microsoft Windows environment, ECI_ASYNC_NOTIFY_MSG and
ECI_STATE_ASYNC_MSG call types)

The Microsoft Windows hInstance of the calling program as supplied
during program initialization.

The ECI uses this field as input only.

eci_sync_wait.hwnd
(Microsoft Windows environment, ECI_SYNC and ECI_STATE_SYNC
call types)

The handle of the window that is to be disabled during the
synchronous call.

The ECI uses this field as input only.

eci_message_id
(OS/2 Presentation Manager, Microsoft Windows, and Windows NT
environments, ECI_ASYNC_NOTIFY_MSG and
ECI_STATE_ASYNC_MSG call types)

The message identifier to be used for posting the reply message to the
window specified in the relevant window handle.

The ECI uses this field as input only.

eci_timeout
(Program link calls and status calls only)

An integer field specifying the maximum time in seconds that a
request from the application is allowed to take. A timeout occurs if the
servicing of a request takes longer than the specified time. The value
must be in the range 0 through 32767. A value of zero means that the
application sets no limit on the time to service a request.

The ECI uses this field as input only.

eci_extend_mode
There is an additional value for program link calls in CICS OS/2
Version 1.20— ECI_CANCEL. It has the same effect as ECI_COMMIT.

Environment-dependent extensions

Appendix A. ECI extensions that are environment-dependent 163

Reply message formats

When an application makes an asynchronous call requesting notification by
message, the ECI returns the result in a message to a window using the
specified window handle and message identifier.

For OS/2 Presentation Manager, the message is divided into two parameters,
as follows:

MPARAM1

High-order 16 bits
Specified message qualifier

Low-order 16 bits
Return code

MPARAM2
4-character abend code, if applicable

For Microsoft Windows, the message is divided into two parameters, as
follows:

wParam
Return code

lParam
4-character abend code, if applicable

For Windows NT, the message is divided into two parameters, as follows:

wParam

High-order 16 bits
Specified message qualifier

Low-order 16 bits
Return code

lParam
4-character abend code, if applicable

ECI return notification

Table 5. CICS_ExternalCall return codes — environment-dependent extensions

Return code Meaning

ECI_ERR_NULL_WIN_HANDLE An asynchronous call was specified with
the window handle set to 0.

Environment-dependent extensions

164 CICS Family: Client/Server Programming

Table 5. CICS_ExternalCall return codes — environment-dependent
extensions (continued)

Return code Meaning

ECI_ERR_NULL_MESSAGE_ID An asynchronous call was specified with
the message identifier set to 0.

ECI_ERR_NULL_SEM_HANDLE A null semaphore handle was passed
when a valid handle was required.

ECI_ERR_REQUEST_TIMEOUT The time-out interval expired before the
request could be processed, or the
specified interval was negative.

ECI_ERR_RESPONSE_TIMEOUT The time-out interval expired while the
program was running.

Summary of input parameter requirements

Table 6 on page 166 shows the input parameters for an ECI call, and, for each
call type, whether the parameters are required (R), optional (O), or not
applicable (-). Where a parameter is shown as optional or not-applicable an
initial field setting of nulls is recommended. An asterisk (*) immediately
following an R means that further details regarding applicability are given
under the description of the parameter.

The following abbreviations are used in the Parameter column:

AN async_notify

WF win_fields

SW sync_wait

Also, all named parameters have an eci_ prefix. Thus AN.WF.hwnd represents
the eci_async_notify.win_fields.hwnd parameter.

The following 3-character abbreviations are used for the call types in the
column headings of the table:

ANM ECI_ASYNC_NOTIFY_MSG

ANE ECI_ASYNC_NOTIFY_SEM

SAM ECI_STATE_ASYNC_MSG

SAE ECI_STATE_ASYNC_SEM

SYN ECI_SYNC

SSN ECI_STATE_SYNC

Environment-dependent extensions

Appendix A. ECI extensions that are environment-dependent 165

Table 6. Input parameters for CICS_ExternalCall — environment-dependent extensions

Parameter, eci_ ANM ANE SAM SAE SYN SSN

call_type R R R R R R

program_name R* R* - - R* -

userid R R - - R -

password R R - - R -

transid O O - - O -

commarea O O R* R* O R*

commarea_length O O R* R* O R*

timeout O O O O O O

extend_mode R R R R R R

AN.window_handle R* - R* - - -

AN.sem_handle - R - R - -

AN.WF.hwnd R* - R* - - -

AN.WF.hinstance R* - R* - - -

SW.hwnd - - - - R* R*

message_id R - R - - -

message_qualifier O O O O O O

luw_token R R R* R* R R*

version O O O O O O

system_name O O O O O O

Environment-dependent extensions

166 CICS Family: Client/Server Programming

Appendix B. CICS Universal Client Programming Samples

This chapter summarizes the samples provided for client/server programming
in the CICS Universal Clients. The samples are provided in the following
languages:
v C
v COBOL
v PL/I
v REXX

As far as possible the sample code adheres to the language standards, for
example, ANSI C. The samples are all driven from the command line to avoid
any dependence on platform-specific GUI code.

For each language, different levels of sample are provided. These include
v A simple sample to allow you to test that the Client is functioning and to

give you a feel for the basic requirements of a Client application.
v More complex samples that demonstrate some of the more advanced and

useful API features, and provides a more realistic example of a Client
application.

Samples are provided for the ECI, EPI, and ESI.

For information on the languages and compilers supported on each client
platform, refer to the appropriate CICS Client Administration book.

The samples are provided in the samples subdirectory of the product root
directory. Under the samples directory there is a subdirectory for each
programming language, for example, \samples\c.

The samples are described in detail, with compilation instructions and
information on compiler considerations, in the SAMPLES.TXT file located in
the samples directory.

© Copyright IBM Corp. 1989, 1999 167

|

|

|
|
|

|

|

|

|

|
|
|

|

|
|

|
|
|

|

|
|

|
|
|

|
|
|

168 CICS Family: Client/Server Programming

Appendix C. ECI and EPI exits

This chapter describes exits you can add to the EPI and ECI when using IBM
CICS Clients Version 2.0.3 and later. (CICS Client for DOS does support the
ECI and EPI exits.) The exits allow you to influence the processing of ECI and
EPI calls for certain application requests.

The chapter is organized as follows:
“Installing the exits”
“Exit routine environment” on page 170
“How the exit routines are described in the reference sections” on page 171
“ECI exits reference” on page 171
“Diagnostic information” on page 201
“CICSTERM, CICSPRNT and the EPI exits” on page 201

This chapter contains Product-sensitive Programming Interface and Associated
Guidance Information.

Installing the exits

During ECI and EPI initialization, the client attempts to load the objects
described in Table 7 from the CICS binary directory, and to call the
corresponding entry points.

Table 7. ECI and EPI exits
Object name Entry point name

ECI cicseciexit CICS_EciExitInit
EPI cicsepiexit CICS_EpiExitInit

Each entry point is passed a single parameter, a pointer to a structure that
contains a list of addresses. The initialization code of the program puts the
addresses of all the exits into the structure, and then the exits are called at
appropriate points in ECI and EPI processing. Since the exits are entered by
using the addresses supplied, you may give the exits any names you please,
but in this manual conventional names are used for the exits.

If the objects are not found, no exit processing occurs.

The following files are supplied with your CICS Clients to help with
programming the exits.

© Copyright IBM Corp. 1989, 1999 169

|
|
|
|

|
|

include\cicsecix.h
A header file that defines:
v inputs and outputs for each ECI exit
v the format of the list of addresses for calling ECI exits
v data structures used by ECI exits
v return code values for ECI exits.

samples\c\cicsecix.c
Skeleton code for cicsecix.

samples\c\cicsecix.def
Definition file for cicsecix.

samples\cicsecix.mak
A makefile to reconstruct cicsecix.

include\cicsepix.h
A header files that defines:
v inputs and outputs for each EPI exit
v the format of the list of addresses for calling EPI exits
v data structures used by EPI exits
v return code values for EPI exits.

samples\c\cicsepix.c
Skeleton code for cicsepix.

samples\c\cicsepix.def
Definition file for cicsepix.

samples\c\cicsepix.mak
A makefile to reconstruct cicsepix.

(On AIX and Solaris the pathnames follow the UNIX® conventions.)

Note: If you write a user-exit DLL, all exits must be included, apart from the
following exceptions:
v CICS_EciSetProgramAlias is optional.
v Either CICS_EpiTermIdExit or CICS_EpiTermIdInfoExit should be

included, however, any new DLLs should use
CICS_EpiTermIdInfoExit.

Exit routine environment

In your exits:
v You must not make EPI or ECI calls.

ECI and EPI exits

170 CICS Family: Client/Server Programming

|
|

|

|

|

|

|
|

|
|

|
|

|
|

|

|

|

|

|
|

|
|

|
|

|

|
|

|

|
|
|

|

v You should avoid waits or long-running code. (It is quite possible that the
exit is running on the applications user interface thread, and thus any
delays in returning could have a bad effect on the system’s responsiveness.)

v You must not register as an RPC server.
v You must follow the recommendations for multithreaded processes

contained in Chapter 6 of Guide to Writing DCE Applications.

How the exit routines are described in the reference sections

The exit routines are described under the following headings:
v Purpose—describes the kind of processing that the exit is intended to

perform.
v When called—describes where in ECI or EPI processing the exit is called.
v Parameters—describes the parameters supplied to the exit. Parameters are

classified as follows:
– Input—the exit may look at it, but must not change it.
– Output—the exit must not look at it, but must store a value in it.
– Input-output—the exit may look at it, and may store a value in it.

v Return codes—describes the possible values the exit can return to the ECI
or EPI. In each case the subsequent behavior of the ECI or EPI is described.

ECI exits reference

In this section the following exits are discussed:
v CICS_EciInitializeExit
v CICS_EciTerminateExit
v CICS_EciExternalCallExit1
v CICS_EciExternalCallExit2
v CICS_EciSystemIdExit
v CICS_EciDataSendExit
v CICS_EciDataReturnExit
v CICS_EciSetProgramAliasExit

Table 8 summarizes the exit names, the parameters passed to each exit, and
the possible return codes.

Table 8. Summary of ECI exits

Function name Parameters Return codes:

CICS_EciInitializeExit Version
Anchor

CICS_EXIT_OK
CICS_EXIT_NO_EXIT
CICS_EXIT_CANT_INIT_EXITS
user-defined

ECI and EPI exits

Appendix C. ECI and EPI exits 171

|

Table 8. Summary of ECI exits (continued)

Function name Parameters Return codes:

CICS_EciTerminateExit Anchor CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_STORAGE
user-defined

CICS_EciExternalCallExit1 Anchor
Token
ParmPtr

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user-defined

CICS_EciExternalCallExit2 Anchor
Token
ParmPtr

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user-defined

CICS_EciSystemIdExit Anchor
Token
ParmPtr
Reason

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
CICS_EXIT_GIVE_UP
user_defined

CICS_EciDataSendExit Anchor
Token

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user_defined

CICS_EciDataReturnExit Anchor
Token
ParmPtr

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user_defined

CICS_EciSetProgramAliasExit Anchor
EciParms
Program

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user_defined

Identification token

In order for the exits to be able to relate calls for the same ECI request, an
identification token is passed in as a parameter to all exits except
CICS_EciInitializeExit and CICS_EciTerminateExit. The token is the same for
CICS_EciExternalCallExit1 and CICS_EciExternalCallExit2 that relate to the
same call, and on intervening CICS_EciDataSendExit,
CICS_EciDataReturnExit, and CICS_EciSystemIdExit exits. (Note that
CICS_EciExternalCallExit1 and CICS_EciExternalCallExit2 are not called for
a reply solicitation request.)

ECI exits

172 CICS Family: Client/Server Programming

||
|
|

|
|
|
|

The token is unique within the operating system that initiated the request, for
the duration of the request. It may be reused once the last exit for the request
has been called.

In the case of an extended logical unit of work, the token may be different on
different requests within the logical unit of work. (Since we allow reuse of the
token, and a new program link call may not be made until the
ECI_GET_REPLY request for the previous asynchronous request has
completed, it may also be the same.)

The token is 8 bytes long. 8 null bytes is not a valid value for the token and is
not supplied to the exits.

Process model implementation

All exits that relate to a particular request (i.e. have the same identification
token) are called in the context of the application process.

ECI exits

Appendix C. ECI and EPI exits 173

CICS_EciInitializeExit

CICS_EciInitializeExit Version
Anchor

Purpose: To allow the user to set up an exit environment.

When called: On the first invocation of CICS_ExternalCall, for each process,
after parameter validation has occurred.

Parameters:

Version Input parameter. The version of the ECI under which the exit
is running.

Anchor Output parameter. A pointer to a pointer that will be passed
to the ECI exits. The second pointer is not used by the ECI; it
is passed to the exits as supplied. You can acquire storage in
this exit and pass its address to the other exits.

Return codes:

CICS_EXIT_OK
The ECI continues processing this request, calling the exits where
appropriate.

CICS_EXIT_NO_EXIT
The ECI continues processing this request, but does not call any more
exits.

CICS_EXIT_CANT_INIT_EXITS
The ECI writes a CICS client trace record, and then continues
processing this request, but does not call any more exits.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The ECI writes a CICS client trace record,
and then continues processing this request, but does not call any more
exits.

ECI exits

174 CICS Family: Client/Server Programming

CICS_EciTerminateExit

CICS_EciTerminateExit Anchor

Purpose: To allow the user to clean up the exit environment. Any storage
acquired by CICS_EciInitializeExit must be released in this exit.

CICS_EciTerminateExit is not called by the IBM CICS Clients.

When called: On termination of the process that issued the
CICS_EciInitializeExit.

Parameters:

Anchor
Input parameter. The pointer set up by CICS_EciInitializeExit.

Return codes:

CICS_EXIT_OK
Termination continues.

CICS_EXIT_BAD_ANCHOR
The ECI writes a CICS client trace record, and then continues with
termination.

CICS_EXIT_BAD_STORAGE
The ECI writes a CICS client trace record, and then continues with
termination.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The ECI writes a CICS client trace record,
and then continues with termination.

ECI exits

Appendix C. ECI and EPI exits 175

CICS_EciExternalCallExit1

CICS_EciExternalCallExit1 Anchor
Token
ParmPtr

Purpose: To allow the user to pick the best system to run the program. This
exit is called exactly once on each program link and each status information
call. It is not called on a reply solicitation call. Although the exit is called
when eci_luw_token is not zero, any change it makes to eci_system_name is
ignored, as the server was selected when the logical unit of work was started.

When called: On invocation of CICS_ExternalCall, for each program link
call and each status information call, after the ECI has validated the
parameters.

Parameters:

Anchor Input parameter. The pointer set up by
CICS_EciInitializeExit.

Token Input parameter. The identification token established by the
ECI for this request.

ParmPtr Input parameter. A pointer to the ECI parameter block. The
exit must treat all fields in the ECI parameter block as inputs,
except the eci_system_name field, which it may change.

Return codes:

CICS_EXIT_OK
The ECI continues to process the request with the eci_system_name
now specified in the ECI parameter block.

CICS_EXIT_BAD_ANCHOR
The ECI writes a CICS client trace record, and then continues to
process the request with the eci_system_name now specified in the
ECI parameter block.

CICS_EXIT_BAD_PARM
The ECI writes a CICS client trace record, and then continues to
process the request with the eci_system_name now specified in the
ECI parameter block.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The ECI writes a CICS client trace record,
and then continues to process the request with the eci_system_name
now specified in the ECI parameter block.

ECI exits

176 CICS Family: Client/Server Programming

Notes: There is a limited set of conditions under which the exit may select a
new system. The exit may select a system if the call is a program link or
status information call, and if a new logical unit of work is being started. In
other cases, the exit should return CICS_EXIT_OK.

If the calling application has put binary zeros as the system name in the
parameter block, then the application is expecting that the system will be
dynamically selected, and the exit may safely select the system.

If however the calling application has placed a system name in the parameter
block, or if the application is a version 0 application, then it may not be
expecting the target system to change, and application errors could result. In
this case the exit would generally return without specifying a replacement
system, with the result that the specified or default system name is to be used.
If the exit chooses to change the selected system in this situation, then it may
do so, but the following should be borne in mind.
v The exit routine must be sensitive to whether or not the modification of the

target system will cause errors in the ECI application running on the client.
v The exit routine must maintain a knowledge base, keyed on appropriate

data available to it, to enable it to determine whether this modification is
acceptable to the client application.

ECI exits

Appendix C. ECI and EPI exits 177

CICS_EciExternalCallExit2

CICS_EciExternalCallExit2 Anchor
Token
ParmPtr

Purpose: To allow the user to see the results of synchronous ECI calls for
information gathering purposes only. This exit is called exactly once on every
application program link or status information call. It is not called on reply
solicitation calls.

When called: Before the ECI call returns to the application, and after the
return data is filled into the ECI parameter block.

Parameters:

Anchor Input parameter. The pointer set up by
CICS_EciInitializeExit.

Token Input parameter. The identification token established by the
ECI for this request.

ParmPtr Input parameter. A pointer to the ECI parameter block. The
exit must treat all fields in the ECI parameter block as inputs.

Return codes:

CICS_EXIT_OK
The ECI returns control to the application that issued the
CICS_ExternalCall request.

CICS_EXIT_BAD_ANCHOR
The ECI writes a CICS client trace record, and then returns control to
the application that issued the CICS_ExternalCall request.

CICS_EXIT_BAD_PARM
The ECI writes a CICS client trace record, and then returns control to
the application that issued the CICS_ExternalCall request.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The ECI writes a CICS client trace record,
and then returns control to the application that issued the
CICS_ExternalCall request.

ECI exits

178 CICS Family: Client/Server Programming

CICS_EciSystemIdExit

CICS_EciSystemIdExit Anchor
Token
ParmPtr
Reason

Purpose: To allow the user to supply a new system name when the name
supplied in the ECI parameter block is not valid.

When called: This exit is called when an error occurs that may be corrected
by selection of a new system, userid, or password. This is when the ECI
would return a code of ECI_ERR_NO_CICS or
ECI_ERR_UNKNOWN_SERVER or ECI_ERR_SECURITY_ERROR. It may be
called when either when the client detects an error before data is sent to the
server, or after data returns from the server.

Parameters:

Anchor Input parameter. The pointer set up by
CICS_EciInitializeExit.

Token Input parameter. The identification token established by the
ECI for this request.

ParmPtr Input parameter. A pointer to the ECI parameter block. The
exit must treat all fields in the ECI parameter block as inputs,
except the following, which it may set:
v eci_system_name
v eci_userid
v eci_password.

Reason Input parameter. The reason code that explains why the
application request has not so far succeeded.

Return codes:

CICS_EXIT_OK
The ECI retries the application call using the new parameters in the
ECI parameter block. (The CICS program communication area
supplied by the application to the CICS_ExternalCall is preserved.)
The application callback routine will not be called, nor will
CICS_EciExternalCallExit2.

CICS_EXIT_BAD_ANCHOR
The ECI writes a CICS client trace record, and then returns to the
application that issued the CICS_ExternalCall request.

ECI exits

Appendix C. ECI and EPI exits 179

CICS_EXIT_BAD_PARM
The ECI writes a CICS client trace record, and then returns to the
application that issued the CICS_ExternalCall request.

CICS_EXIT_GIVE_UP
The ECI returns to the application that issued the CICS_ExternalCall
request.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The ECI writes a CICS client trace record,
and then retries the application call as described for CICS_EXIT_OK.

ECI exits

180 CICS Family: Client/Server Programming

CICS_EciDataSendExit

CICS_EciDataSendExit Anchor
Token

Purpose: To allow the user to time calls for performance analysis.

When called: As close as possible to the time that the request will be sent to
the server.

Parameters:

Anchor Input parameter. The pointer set up by
CICS_EciInitializeExit.

Token Input parameter. The identification token established by the
ECI for this request.

Return codes:

CICS_EXIT_OK
The ECI continues processing the request.

CICS_EXIT_BAD_ANCHOR
The ECI writes a client trace record, and then continues processing the
request.

CICS_EXIT_BAD_PARM
The ECI writes a client trace record, and then continues processing the
request.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The ECI writes a client trace record, and
then continues processing the request.

ECI exits

Appendix C. ECI and EPI exits 181

CICS_EciDataReturnExit

CICS_EciDataReturnExit Anchor
Token
ParmPtr

Purpose: To allow the user to time calls for performance analysis.

When called: As close as possible to the time that the response from the
server has been received, and the ECI block and commarea data for eventual
return to the application has been built. It is also called if there is a timeout
because of a lack of response from the server.

Parameters:

Anchor Input parameter. The pointer set up by
CICS_EciInitializeExit.

Token Input parameter. The identification token established by the
ECI for this request.

ParmPtr Input parameter. A pointer to the ECI parameter block. The
exit must treat all fields in the ECI parameter block as inputs.

Return codes:

CICS_EXIT_OK
The ECI continues processing the request.

CICS_EXIT_BAD_ANCHOR
The ECI writes a client trace record, and then continues processing the
request.

CICS_EXIT_BAD_PARM
The ECI writes a client trace record, and then continues processing the
request.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The ECI writes a client trace record, and
then continues processing the request.

ECI exits

182 CICS Family: Client/Server Programming

CICS_EciSetProgramAliasExit

CICS_EciSetProgramAliasExit Anchor
EciParms
Program

Purpose: To allow the user to change the program name that the WorkLoad
Manager of CICS Client for Windows NT uses for load balancing

This exit is only available when the WorkLoad Manager is enabled.

When called: Immediately before the WorkLoad Manager tries to select a
server for an ECI program to connect to.

Parameters:

Anchor Input parameter. The pointer set up by
CICS_EciInitializeExit.

ECIParms ECI parameter block.

Program The alias name of the ECI program that the WorkLoad
Manager will use for load balancing.

Return codes:

CICS_EXIT_OK
The ECI continues processing the request.

CICS_EXIT_BAD_ANCHOR
The ECI writes a client trace record, and then continues processing the
request.

CICS_EXIT_BAD_PARM
The ECI writes a client trace record, and then continues processing the
request.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The ECI writes a client trace record, and
then continues processing the request.

ECI exits

Appendix C. ECI and EPI exits 183

|

|||
|
|

|
|

|

|
|

|

||
|

||

||
|

|

|
|

|
|
|

|
|
|

|
|
|
|

|

EPI exits reference

In this section the following exits are discussed:
v CICS_EpiInitializeExit
v CICS_EpiTerminateExit
v CICS_EpiAddTerminalExit
v CICS_EpiTermIdExit
v CICS_EpiTermIdInfoExit
v CICS_EpiStartTranExit
v CICS_EpiReplyExit
v CICS_EpiDelTerminalExit
v CICS_EpiGetEventExit
v CICS_EpiSystemIdExit
v CICS_EpiTranFailedExit

Table 9 summarizes the exit names, the parameters passed to each exit, and
the possible return codes.

Table 9. Summary of EPI exits

Function name Parameters Return codes:

CICS_EpiInitializeExit Version
Anchor

CICS_EXIT_OK
CICS_EXIT_NO_EXIT
CICS_EXIT_CANT_INIT_EXITS
user-defined

CICS_EpiTerminateExit Anchor CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_STORAGE
user-defined

CICS_EpiAddTerminalExit Anchor
NameSpace
System
NetName
DevType

CICS_EXIT_OK
CICS_EXIT_DONT_ADD_TERMINAL
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user-defined

CICS_EpiTermIdExit Anchor
TermIndex
System

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user-defined

CICS_EpiTermIdInfoExit Anchor
Version
TermIndex
EpiDetails

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user-defined

CICS_EpiStartTranExit Anchor
TransId
Data
Size

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user-defined

EPI exits

184 CICS Family: Client/Server Programming

|

||
|
|
|

|
|
|
|

Table 9. Summary of EPI exits (continued)

Function name Parameters Return codes:

CICS_EpiReplyExit Anchor
TermIndex
Data
Size

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user_defined

CICS_EpiDelTerminalExit Anchor
TermIndex

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user_defined

CICS_EpiGetEventExit Anchor
TermIndex
Wait
Event

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user_defined

CICS_EpiSystemIdExit Anchor
NameSpace
System
NetName
DevType
FailedSystem
Reason
SubReason
UserId
PassWord

CICS_EXIT_OK
CICS_EXIT_DONT_ADD_TERMINAL
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user_defined

CICS_EpiTranFailedExit Anchor
TermIndex
Wait
Event

CICS_EXIT_OK
CICS_EXIT_BAD_ANCHOR
CICS_EXIT_BAD_PARM
user_defined

EPI exits

Appendix C. ECI and EPI exits 185

CICS_EpiInitializeExit

CICS_EpiInitializeExit Version
Anchor

Purpose

To allow the user to set up an exit environment.

When called

On each invocation of CICS_EpiInitialize, after the EPI has validated the
parameters.

Parameters

Version Input parameter. The version of the EPI under which the exit
is running.

Anchor Output parameter. A pointer to a pointer that will be passed
to the EPI exits. The second pointer is not used by the EPI; it
is passed to the exits as supplied. You can acquire storage in
this exit and pass its address to the other exits.

Return codes

CICS_EXIT_OK
The EPI continues processing this request, calling the exits where
appropriate.

CICS_EXIT_NO_EXIT
The EPI continues processing this request, but does not call any more
exits.

CICS_EXIT_CANT_INIT_EXITS
The EPI writes a client trace record, and then continues processing
this request, but does not call any more exits.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a client trace record, and
then continues processing this request, but does not call any more
exits.

EPI exits

186 CICS Family: Client/Server Programming

CICS_EpiTerminateExit

CICS_EpiTerminateExit Anchor

Purpose

To allow the user to clean up the exit environment. Any storage acquired by
CICS_EpiInitializeExit must be released in this exit.

When called

On each invocation of CICS_EpiTerminate, after the EPI has validated the
parameters.

Parameters

Anchor Input parameter. The pointer set up by
CICS_EpiInitializeExit.

Return codes

CICS_EXIT_OK
Termination continues.

CICS_EXIT_BAD_ANCHOR
The EPI writes a client trace record, and then continues with
termination.

CICS_EXIT_BAD_STORAGE
The EPI writes a client trace record, and then continues with
termination.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a client trace record, and
then continues with termination.

EPI exits

Appendix C. ECI and EPI exits 187

CICS_EpiAddTerminalExit

CICS_EpiAddTerminalExit Anchor
NameSpace
System
NetName
DevType

Purpose

To allow the user to select a server, or override the one passed to
CICS_EpiAddTerminal or CICS_EpiAddExTerminal in the System parameter.

When called

On each invocation of CICS_EpiAddTerminal or CICS_EpiAddExTerminal,
after the EPI has validated the parameters.

Parameters

Anchor Input parameter. The pointer storage set up by
CICS_EpiInitializeExit.

NameSpace Input-output parameter. On input, its value depends on the
value supplied for the NameSpace parameter of the
CICS_EpiAddTerminal or CICS_EpiAddExTerminal call to
which this exit relates:
v If a null pointer was supplied, this input is a pointer to a

null string.
v If a non-null pointer was supplied, the Namespace input

parameter points to a copy of this data.

On output, it will be used by the EPI in the same way as the
value specified on the call would have been used.

System Input-output parameter. On input, it is the value supplied for
the System parameter of the CICS_EpiAddTerminal or
CICS_EpiAddExTerminal call to which this exit relates. On
output, it will be used by the EPI in the same way as the
value specified on the call would have been used.

NetName Input-output parameter. On input, it is the value supplied for
the NetName parameter of the CICS_EpiAddTerminal or
CICS_EpiAddExTerminal call to which this exit relates. On
output, it will be used by the EPI in the same way as the
value specified on the call would have been used.

DevType Input-output parameter. On input, it is the value supplied for
the DevType parameter of the CICS_EpiAddTerminal or

EPI exits

188 CICS Family: Client/Server Programming

|
|

CICS_EpiAddExTerminal call to which this exit relates. On
output, it will be used by the EPI in the same way as the
value specified on the call would have been used.

Return codes

CICS_EXIT_OK
Processing continues with the output values of NameSpace, System,
NetName, and DevType.

CICS_EXIT_DONT_ADD_TERMINAL
The CICS_EpiAddTerminal or CICS_EpiAddExTerminal is ended
with a return code of CICS_EPI_ERR_FAILED. If the application uses
CICS_EpiGetSysError, the value 109 is returned in the Cause field of
the CICS_EpiSysError_t structure.

CICS_EXIT_BAD_ANCHOR
The EPI writes a client trace record, and then continues as for
CICS_EXIT_OK.

CICS_EXIT_BAD_PARM
The EPI writes a client trace record, and then continues as for
CICS_EXIT_OK.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a client trace record, and
then continues as for CICS_EXIT_OK.

Notes

Note on selection of systems:

If the calling application does not specify system name in its parameter list,
then it is expecting that the system will be dynamically selected, and the exit
may safely select the system.

If however the calling application specifies a system name, then it may not be
expecting the target system to change and application errors could result. In
this case the exit would generally not specify a replacement system, with the
result that the specified or default system name, device type, etc. is to be
used. If the exit chooses to change the selected system in this situation, then it
may do so, but the following should be borne in mind.
v The exit routine must be sensitive to whether or not the modification of the

target system will cause errors in the EPI application running on the client.
v The exit routine must maintain a knowledge base, keyed on appropriate

data available to it, to enable it to determine whether this modification is
acceptable to the client application.

EPI exits

Appendix C. ECI and EPI exits 189

CICS_EpiAddTerminalExit and CICS_EpiSystemIdExit:

The relationship between these exits is as follows. The exits will get multiple
chances to make a selection of the system. The first chance will always occur
on the CICS_EpiAddTerminalExit. This exit will only receive the parameters
passed by the application to CICS_EpiAddTerminal or
CICS_EpiAddExTerminal. If an error occurs when CICS tries to add the
terminal (whether or not the exit has made a selection) then
CICS_EpiSystemIdExit will be called. CICS_EpiSystemIdExit will
additionally be passed the error that occurred on the attempt to add the
terminal, and will get a chance to correct the error. This continues to occur
until either a terminal is successfully added, or until CICS_EpiSystemIdExit
signals to give up.

If no error occurs on the attempt to add the terminal, then
CICS_EpiSystemIdExit will not be called.

EPI exits

190 CICS Family: Client/Server Programming

CICS_EpiTermIdExit

CICS_EpiTermIdExit Anchor
TermIndex
System

Purpose

To allow the user to know the terminal index allocated after a successfull call
to CICS_EpiAddTerminal.

CICS_EpiTermIdExit is provided for compatibility with older applications
only. All new applications that use the EPI exits should use
CICS_EpiTermIdInfoExit instead.

When called

On each invocation of CICS_EpiAddTerminal, after the server has allocated
the terminal.

Parameters

Anchor Input parameter. The pointer set up by
CICS_EpiInitializeExit.

TermIndex Input parameter. This is the terminal index for the terminal
resource just reserved or installed.

System Input parameter. A pointer to a null-terminated string that
specifies the name of the server in which the terminal resource
has been reserved or installed.

Return codes

CICS_EXIT_OK
Processing continues.

CICS_EXIT_BAD_ANCHOR
The EPI writes a client trace record, and then continues as for
CICS_EXIT_OK.

CICS_EXIT_BAD_PARM
The EPI writes a client trace record, and then continues as for
CICS_EXIT_OK.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a client trace record, and
then continues as for CICS_EXIT_OK.

EPI exits

Appendix C. ECI and EPI exits 191

|
|
|

|
|

CICS_EpiTermIdInfoExit

CICS_EpiTermIdInfoExit Anchor
Version
TermIndex
EpiDetails

Purpose

To allow the user to retrieve information about the current terminal.

When called

Immediately after a CICS terminal has been installed

Parameters

Anchor Input parameter. The pointer set up by
CICS_EpiInitializeExit.

Version Input parameter. The EPI version.

TermIndex Input parameter. The index of the terminal being installed.

EpiDetails Input parameter. A pointer to the CICS_EpiDetails_t
structure, containing details about the terminal being installed.

Return codes

CICS_EXIT_OK
Processing continues.

CICS_EXIT_BAD_ANCHOR
The EPI writes a client trace record, and then continues as for
CICS_EXIT_OK.

CICS_EXIT_BAD_PARM
The EPI writes a client trace record, and then continues as for
CICS_EXIT_OK.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a client trace record, and
then continues as for CICS_EXIT_OK.

EPI exits

192 CICS Family: Client/Server Programming

|

|||
|
|
|

|

|

|

|

|

||
|

||

||

||
|

|

|
|

|
|
|

|
|
|

|
|
|
|

|

CICS_EpiStartTranExit

CICS_EpiStartTranExit Anchor
TransId
Data
Size

Purpose

To allow the user to see when a transaction is started, for information
gathering purposes. This exit will not select a system, and has no return data.

When called

On invocation of CICS_EpiStartTran, after the EPI has validated the
parameters.

Parameters

Anchor Input parameter. The pointer set up by
CICS_EpiInitializeExit.

TransId Input parameter. The value supplied for the TransId
parameter of the CICS_EpiStartTran call to which this exit
relates.

Data Input parameter. The value supplied for the Data parameter
of the CICS_EpiStartTran call to which this exit relates.

Size Input parameter. The value supplied for the Size parameter of
the CICS_EpiStartTran call to which this exit relates.

Return codes

CICS_EXIT_OK
Processing of the CICS_EpiStartTran call continues.

CICS_EXIT_BAD_ANCHOR
The EPI writes a client trace record, and then processing of the
CICS_EpiStartTran call continues.

CICS_EXIT_BAD_PARM
The EPI writes a client trace record, and then processing of the
CICS_EpiStartTran call continues.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a client trace record, and
then processing of the CICS_EpiStartTran call continues.

EPI exits

Appendix C. ECI and EPI exits 193

CICS_EpiReplyExit

CICS_EpiReplyExit Anchor
TermIndex
Data
Size

Purpose

To allow the user to see when a transaction is replied to, for information
gathering purposes.

When called

On invocation of CICS_EpiReply, after the EPI has validated the parameters.

Parameters

Anchor Input parameter. The pointer set up by
CICS_EpiInitializeExit.

TermIndex Input parameter. The value supplied for the TermIndex
parameter of the CICS_EpiReply call to which this exit
relates.

Data Input parameter. The value supplied for the Data parameter
of the CICS_EpiReply call to which this exit relates.

Size Input parameter. The value supplied for the Size parameter of
the CICS_EpiReply call to which this exit relates.

Return codes

CICS_EXIT_OK
Processing of the CICS_EpiReply call continues.

CICS_EXIT_BAD_ANCHOR
The EPI writes a client trace record, and then processing of the
CICS_EpiReply call continues.

CICS_EXIT_BAD_PARM
The EPI writes a client trace record, and then processing of the
CICS_EpiReply call continues.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a client trace record, and
then processing of the CICS_EpiReply call continues.

EPI exits

194 CICS Family: Client/Server Programming

CICS_EpiDelTerminalExit

CICS_EpiDelTerminalExit Anchor
TermIndex

Purpose

To allow the user to clean up any terminal-related data structures.

When called

On invocation of CICS_EpiDelTerminal or CICS_EpiPurgeTerminal, after the
EPI has validated the parameters. To allow the user to clean up any
terminal-related data structures.

Parameters

Anchor Input parameter. The pointer set up by
CICS_EpiInitializeExit.

TermIndex Input parameter. The value supplied for the TermIndex
parameter of the CICS_EpiDelTerminal or
CICS_EpiPurgeTerminal call to which this exit relates.

Return codes

CICS_EXIT_OK
Processing of the CICS_EpiDelTerminalor CICS_EpiPurgeTerminal
call continues.

CICS_EXIT_BAD_ANCHOR
The EPI writes a client trace record, and then processing of the
CICS_EpiDelTerminal or CICS_EpiPurgeTerminal call continues.

CICS_EXIT_BAD_PARM
The EPI writes a client trace record, and then processing of the
CICS_EpiDelTerminal or CICS_EpiPurgeTerminal call continues.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a client trace record, and
then processing of the CICS_EpiDelTerminal or
CICS_EpiPurgeTerminal call continues.

EPI exits

Appendix C. ECI and EPI exits 195

|
|
|

CICS_EpiGetEventExit

CICS_EpiGetEventExit Anchor
TermIndex
Wait
Event

Purpose

To allow the user to collect data relating to the event that has arrived.

When called

Immediately before CICS_EpiGetEvent returns to the caller. The exit can then
examine the data returned, time the response from the system, etc.

Parameters

Anchor Input parameter. The pointer set up by
CICS_EpiInitializeExit.

TermIndex Input parameter. The value to be returned to the application
in the TermIndex parameter of the CICS_EpiGetEvent call to
which this exit relates.

Wait Input parameter. The value supplied for the Wait parameter of
the CICS_EpiGetEvent call to which this exit relates.

Event Input parameter. The value to be returned to the application
in the Event parameter of the CICS_EpiGetEvent call to
which this exit relates.

Return codes

CICS_EXIT_OK
Processing of the CICS_EpiGetEvent call continues.

CICS_EXIT_BAD_ANCHOR
The EPI writes a client trace record, and then processing of the
CICS_EpiGetEvent call continues.

CICS_EXIT_BAD_PARM
The EPI writes a client trace record, and then processing of the
CICS_EpiGetEvent call continues.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a client trace record, and
then processing of the CICS_EpiGetEvent call continues.

EPI exits

196 CICS Family: Client/Server Programming

CICS_EpiSystemIdExit

CICS_EpiSystemIdExit Anchor
NameSpace
System
NetName
DevType
FailedSystem
Reason
SubReason
UserId
PassWord

Purpose

To allow the user to supply a new system name when the value supplied for
CICS_Epi_AddTerminal or CICS_EpiAddExTerminal was invalid.

When called

Immediately before CICS_EpiAddTerminal or CICS_EpiAddExTerminal
returns to the application when an error occurred while trying to add the
terminal. The error can be CICS_EPI_ERR_SYSTEM, CICS_EPI_ERR_FAILED,
or CICS_EPI_ERR_SERVER_DOWN. It occurs whether or not
CICS_EpiAddTerminalExit or CICS_EpiAddExTerminal has been called
previously.

Note: On some systems the completion of CICS_EpiAddTerminal or
CICS_EpiAddExTerminal is returned to the application
asynchronously, and in this case this exit will be called asynchronously.

Parameters

Anchor Input parameter. The pointer set up by
CICS_EpiInitializeExit.

NameSpace Input-output parameter. The NameSpace parameter used in
the failed CICS_EpiAddTerminal or
CICS_EpiAddExTerminal.

System Input-output parameter. The System parameter used in the
failed CICS_EpiAddTerminal or CICS_EpiAddExTerminal.

NetName Input-output parameter. The NetName parameter used in the
failed CICS_EpiAddTerminal or CICS_EpiAddExTerminal.

DevType Input-output parameter. The DevType parameter used in the
failed CICS_EpiAddTerminal or CICS_EpiAddExTerminal.

EPI exits

Appendix C. ECI and EPI exits 197

|
|

|
|
|
|
|
|

FailedSystem Input parameter. The identifier of the system on which the
failure occurred.

Reason Input parameter. The reason for the failure:.
CICS_EPI_ERR_SYSTEM or CICS_EPI_ERR_FAILED.

SubReason Input parameter. More about the failure. If the reason is
CICS_EPI_ERR_FAILED, this is the value that appears in the
Cause field of the CICS_EpiSysError_t structure.

UserId Output parameter. Not used.

PassWord Output parameter. Not used.

Return codes

CICS_EXIT_OK
The EPI will retry the CICS_EpiAddTerminal or
CICS_EpiAddExTerminal call using the values specified as output of
this exit. Note that in this case the considerations described in
“CICS_EpiAddTerminalExit” on page 188 apply.

CICS_EXIT_DONT_ADD_TERMINAL
The CICS_EpiAddTerminal or CICS_EpiAddExTerminal is ended
with a return code of CICS_EPI_ERR_FAILED. If the application uses
CICS_EpiGetSysError, the value 109 is returned in the Cause field of
the CICS_EpiSysError_t structure.

CICS_EXIT_BAD_ANCHOR
The EPI writes a client trace record, and then the error that caused the
exit to be called is returned to the application.

CICS_EXIT_BAD_PARM
The EPI writes a client trace record, and then the error that caused the
exit to be called is returned to the application.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a client trace record, and
then the error that caused the exit to be called is returned to the
application.

EPI exits

198 CICS Family: Client/Server Programming

CICS_EpiTranFailedExit

CICS_EpiTranFailedExit Anchor
TermIndex
Wait
Event

Purpose

To allow the user to collect data when a transaction abends or a terminal fails.

When called

Immediately before CICS_EpiGetEvent returns to the caller, with or without
GetEventExit, when the event is CICS_EPI_EVENT_END_TRAN, and the
AbendCode field is not blank.

Note that there are some failures on remote systems that can occur and will
simply cause the presentation of a 3270 data stream with an error message
and no abend code in the CICS_EPI_EVENT_END_TRAN. This error message
may not even occur on the same event as the CICS_EPI_EVENT_END_TRAN.
If the exit requires to handle this situation, it may monitor it through
CICS_EpiGetEventExit and scan the appropriate 3270 data streams.

Parameters

Anchor Input parameter. The pointer set up by
CICS_EpiInitializeExit.

TermIndex Input parameter. The value to be returned to the application
in the TermIndex parameter of the CICS_EpiGetEvent call to
which this exit relates.

Wait Input parameter. The value supplied for the Wait parameter of
the CICS_EpiGetEvent call to which this exit relates.

Event Input parameter. The value to be returned to the application
in the Event parameter of the CICS_EpiGetEvent call to
which this exit relates.

Return codes

CICS_EXIT_OK
Processing of the CICS_EpiGetEvent call continues.

CICS_EXIT_BAD_ANCHOR
The EPI writes a client trace record, and then processing of the
CICS_EpiGetEvent call continues.

EPI exits

Appendix C. ECI and EPI exits 199

CICS_EXIT_BAD_PARM
The EPI writes a client trace record, and then processing of the
CICS_EpiGetEvent call continues.

user-defined
User-defined return codes must have a value not less than
CICS_EXIT_USER_BASE. The EPI writes a client trace record, and
then processing of the CICS_EpiGetEvent call continues.

EPI exits

200 CICS Family: Client/Server Programming

Diagnostic information

The CICS client traces the input parameters to the exits immediately before
they are called, and the output of the exit when the exit returns. CICS tracing
is not available for use within the exit.

CICSTERM, CICSPRNT and the EPI exits

With the CICS Universal Clients Version 3, the CICSTERM and CICSPRNT
commands can be used to drive the EPI user exits. This can be used to
provide similar load balancing functionality to the Load Manager of CICS
Universal Clients for Windows 98 and Windows NT (see the CICS Universal
Client for Windows Administration book).

To use the EPI exits, you supply a CICS_EPIEXITINIT function in a DLL
called cicsepix.dll (cicsepix.a on UNIX platforms.) When a CICSTERM or
CICSPRNT session is started, the CICS Universal Client looks for a cicsepix.dll
(cicsepix.a) in its bin directory. If no DLL is found, no exit processing occurs.

The CICS_EPIEXITINIT function sets an ExitList structure to point to the
addresses of all the exit functions, which are also contained in cicsepix.dll.
The sample CICS_EPIEXITINIT is as follows:
void CICSEXIT CICS_EPIEXITINIT(CICS_EpiExitList_t *ExitList)

{
ExitList->InitializeExit = &CICS_EpiInitializeExit;
ExitList->TerminateExit = &CICS_EpiTerminateExit;
ExitList->AddTerminalExit = &CICS_EpiAddTerminalExit;
ExitList->StartTranExit = &CICS_EpiStartTranExit;
ExitList->ReplyExit = &CICS_EpiReplyExit;
ExitList->DelTerminalExit = &CICS_EpiDelTerminalExit;
ExitList->GetEventExit = &CICS_EpiGetEventExit;
ExitList->TranFailedExit = &CICS_EpiTranFailedExit;
ExitList->SystemIdExit = &CICS_EpiSystemIdExit;
ExitList->TermIdExit = &CICS_EpiTermIdExit;
ExitList->TermIdInfoExit = &CICS_EpiTermIdInfoExit;

}

As the exits are entered by using the addresses supplied, you can give them
any name you want, as long as their function signature is exactly the same as
the CICS_Epi* functions. Therefore, the ExitList-> exits could be considered as
generic terminal control exits.

Initializeexit is passed a version number of X'FF000000' when driven by
CICSTERM or CICSPRNT. This enables user programs to be able to
differentiate between CICSTERM and CICSPRNT user exits, and EPI user
exits if they wish to do so.

Diagnostic information

Appendix C. ECI and EPI exits 201

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

CICSTERM and CICSPRNT also drive the EPI tracepoints.

The following describes the subset of the EPI exits that are available for
CICSTERM and CICSPRNT and how they are implemented. How they affect
the CICS Clients terminal emulator behavior is described.

EPI: CICS_EpiInitializeExit
This EPI exit does not affect the running of the calling EPI program,
but it does allow the user to switch the user exits on or off for the
process that calls it. It is called once per process that uses the EPI. It is
called before any other EPI calls take place, and is called at the end of
a successful CICS_EpiInitialize.

CICSTERM: InitializeExit
It is important that this exit is called once only for each CICSTERM
session that is created, because each CICSTERM runs in a separate
process. The version number passed is X'FF000000'.

EPI: CICS_EpiTerminateExit
Called by CICS_EpiTerminate, this is always the last EPI call in a
particular process. It does not affect the running of the calling EPI
program. It is called after checking that the EPI was initialized, and
that there is not an active notify thread, but just before EPI is actually
terminated. The EPI exit DLL is unloaded immediately following the
user exit call.

CICSTERM: TerminateExit
Only called once during CICSTERM termination.

EPI: CICS_EpiAddTerminalExit
Allows the user to select a server, change the server parameters
passed to the EPI call, and refuse to add a terminal to a server. This
all happens from within the EPI call. The EPI program subsequently
refers to the server by an index number, therefore the program does
not need to know what server it is actually connected to. If the user
exit refuses to connect a server, then CICS_EpiSystemIDExit is not
called (see below for further details). CICS_EpiAddTerminalExit is
called after CICS_EpiAddTerminal or CICS_EpiAddExTerminal has
verified that the EPI has been successfully initialized, and that there is
a free session. It is called before the CICS_EpiAddTerminal or
CICS_EpiAddExTerminal call actually sends the terminal definition to
the server.

CICSTERM: AddTerminalExit
The /s or /r parameters of CICSTERM allow the user to specify that
the CICS Universal Client can connect to:
v The first server defined in the client configuration file.
v A server chosen by the user from a list of available servers
v A server specified by the /s or /r parameter.

Diagnostic information

202 CICS Family: Client/Server Programming

|
|
|
|
|
|
|
|
|
|
|
|

AddTerminalExit receives the system name as a parameter, and can
specify a different server if required, or reject the server and cause the
terminal emulator to terminate. If AddTerminalExit rejects the install,
CICSTERM displays an error to the effect that the server is
unavailable.

EPI: CICS_EpiSystemIdExit
Allows the user to re-select a server if a CICS_EpiAddTerminal or
CICS_EpiAddExTerminal fails. This user exit is called if a
CICS_EpiAddTerminal fails (but not if the
CICS_EpiAddTerminalExit causes the failure). If it returns
CICS_EXIT_OK, CICS_EpiAddTerminal or CICS_EpiAddExTerminal
tries to add the terminal again. The server parameters can be changed
by this exit between retries.

CICS_EpiSystemIdExit can be called asynchronously or
synchronously by EPI programs. CICS_EpiSystemIdExit can be
presented with:
v A CICS_EPI_ERR_SYSTEM error, meaning the server is unknown,

or,
v A CICS_EPI_ERR_SERVER_DOWN error, meaning the server has

failed, or,
v A CICS_EPI_ERR_SECURITY error, for a security failure, or,
v A CICS_EPI_ERR_FAILED error for any other type of failure.

It is also passed a parameter that is the same as the cics_syserr_t data
structure cause field. This value further specifies the error and is a
value specific to the operating environment

CICSTERM: SystemIdExit
If a CICSTERM CICS_EpiAddTerminal or CICS_EpiAddExTerminal
call fails due to the client requester not having enough sessions free
(governed by the Maximum Requsts parameter in the client
configuration file) then SystemIdExit is called with
CICS_EPI_ERR_FAILED as the primary reason code and 7046 as the
secondary reason code. The secondary reason code number is the
same as the client trace number for a resource shortage (CCL7046E).
In all other cases of CICS_EPI_ERR_FAILED, CICSTERM passes a
secondary reason code of 0.

If no user exits are active, then CICSTERM retries a terminal install if
it fails due to there not being enough available sessions. (This allows
terminals to wait for free sessions before being installed.) If there are
user exits available, then any retry behavior is controlled completely
by the exit.

Diagnostic information

Appendix C. ECI and EPI exits 203

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

CICS_EpiSystemId is always called synchronously from the terminal
thread, that is, the terminal install response is sent, it waits for a reply,
and then drives SystemIdExit if the response is bad.

EPI: CICS_EpiTermIdExit
Allows the user to know what EPI Termid an added terminal is given.
This is only called after a terminal has been successfully installed on a
server. It does not affect the running of the EPI program. EPI Termid
numbers are local to each process the EPI program runs under.

CICSTERM: TermIdExit
As only one CICSTERM runs per process, the Termid number is
hardcoded to 1.

EPI: CICS_EpiTermIdInfoExit
Allows the user to know details about a terminal. This is called after a
terminal has been successfully installed on a server.

CICSTERM: TermIdInfoExit
As only one CICSTERM runs per process, the Termid number is
hardcoded to 1.

EPI: CICS_EpiDelTerminalExit
Allows the user to clean up terminal code. It is called when
CICS_EpiDelTerminal is issued. It does not affect the running of the
EPI program.

CICSTERM: DelTerminalExit
As only one CICSTERM runs per process, the Termid number is
hardcoded to 1. It is called just before TerminateExit when the
terminal is ended. When the server fails the AddTerminalExit is
called again when it is restarted. However the DelTerminalExit is not
called when the server fails.

EPI: CICS_EpiStartTranExit
Allows a user to see that a transaction has been started, and to see the
Transid & 3270 data sent to it. It does not affect the running of the EPI
program. CICS_EpiStartTranExit; is called after the EPI state has been
verified, and just before the CICS_EpiStartTran is called.

Note that a pseudo-conversational transaction causes the
CICS_EpiStartTranExit; to be called because in this case an EPI
program would have to start a transaction again.

CICSTERM: StartTranExit:
If a a non-ATI transaction is being started, then StartTranExit is called,
sending a blank in the Transid field and the TIOA (terminal input
output area) for the Data field. The Transid is either the first four
characters of the TIOA data, or it will follow a 3270 Set Buffer

Diagnostic information

204 CICS Family: Client/Server Programming

|
|
|

|
|
|

|
|
|

Address (SBA) command (which begins X'11'). In the latter case, it will
start on the 4th byte of the TIOA (as a SBA command takes up a total
of three bytes).

StartTranExit is not driven for ATI transactions. This is because the
exit is normally driven by the CICS_EpiStartTran API call, and this
call is not made to start ATI transactions. However
pseudo-conversational transactions will drive StartTranExit. This is
because in an EPI program, the user would have to call
CICS_EpiStartTran to start the pseudo-conversational transaction. In
the case of pseudo-conversational transactions, the transaction id is
put in the transid parameter block and the TIOA passed in the data
block does not contain the transaction id.

StartTranExit is not called as a result of an EXEC CICS RETURN
TRANSIDname IMMEDIATE command issued by an application from
a CICSTERM session.

EPI: CICS_EpiReplyExit
Allows the user to see when an application is replied to. It does not
affect the running of the EPI program.

CICSTERM ReplyExit
Activated when the client is sending data and a transaction is
currently active. The Termid number is hard coded to 1. The terminal
TIOA is passed to ReplyExit

ReplyExit is not called as a result of an EXEC CICS RETURN
TRANSIDname IMMEDIATE command issued by an application from
a CICSTERM session.

The GetEventExit and TranFailedExit exits are not implemented for
CICSTERM and CICSPRNT

Diagnostic information

Appendix C. ECI and EPI exits 205

|
|
|

|
|
|

206 CICS Family: Client/Server Programming

Appendix D. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

© Copyright IBM Corp. 1989, 1999 207

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the information. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM United
Kingdom Laboratories, MP151, Hursley Park, Winchester, Hampshire,
England, SO21 2JN. Such information may be available, subject to appropriate
terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. You may copy, modify, and distribute these sample
programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs
conforming to IBM’s application programming interfaces.

208 CICS Family: Client/Server Programming

Programming interface information

This book is intended to help you to write application programs that use the
features provided by various members of the CICS family. This book
documents General-use Programming Interface and Associated Guidance
Information provided by various members of the CICS family.

General-use programming interfaces allow the customer to write programs
that obtain the services of various members of the CICS family.

This book also documents Product-sensitive Programming Interface and
Associated Guidance Information provided by various members of the CICS
family.

Product-sensitive programming interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring,
or tuning of CICS. Use of such interfaces creates dependencies on the detailed
design or implementation of the IBM software product. Product-sensitive
programming interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to
be expected that programs written to such interfaces may need to be changed
in order to run with new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance
Information is identified where it occurs, by an introductory statement to a
chapter or section.

Trademarks

The following terms, used in this publication, are trademarks or service marks
of IBM Corporation in the United States, or other countries, or both:

AIX CICS CICS/ESA
CICS/MVS CICS OS/2 CICS/VSE
CICS/400 IBM OS/2
OS/390 OS/400 Presentation Manager
VisualAge System/390

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Appendix D. Notices 209

Other company, product, and service names may be trademarks or service
marks of others.

210 CICS Family: Client/Server Programming

Index

A
asynchronous calls 3
ATIState parameter

CICS_EpiATIState function 106
Attributes parameter

CICS_EpiAddExTerminal
function 93

autoinstall 59

B
BMS paging 57

C
callback routine

ECI 27, 32, 39, 42
EPI 63, 64, 88, 93

CICS_ChangePassword function
definition 153

CICS_ECI_DESCRIPTION_MAX 55
CICS_ECI_SYSTEM_MAX 55
CICS_EciDataReturnExit 182
CICS_EciDataSendExit 181
CICS_EciExitInit entry point 169
CICS_EciExternalCallExit1 176
CICS_EciExternalCallExit2 178
CICS_EciInitializeExit 174
CICS_EciListSystems function 8, 55

ECI_ERR_INVALID_DATA
_LENGTH 56

ECI_ERR_MORE_SYSTEMS 56
ECI_ERR_NO_CICS 56
ECI_ERR_NO_SYSTEMS 56
ECI_ERR_SYSTEM_ERROR 56
ECI_NO_ERROR 56

CICS_EciSetProgramAliasExit 183
CICS_EciSystem_t data structure

definition 55
use 55

CICS_EciSystemIdExit 179
CICS_EciTerminateExit 175
CICS_EPI_ADD_TERM event

definition 115
CICS_EPI_ATI_HOLD 106
CICS_EPI_ATI_ON 106
CICS_EPI_ATI_QUERY 106
CICS_EPI_DESCRIPTION_MAX, 69
CICS_EPI_DEVTYPE_MAX 87, 92
CICS_EPI_END_FAILED 120
CICS_EPI_END_OUTSERVICE 120
CICS_EPI_END_SHUTDOWN 120

CICS_EPI_END_SIGNOFF 120
CICS_EPI_END_UNKNOWN 120
CICS_EPI_ERR_ABENDED return

code
CICS_EpiReply function 105

CICS_EPI_ERR_ADDTYPE_INVALID
return code

CICS_EpiAddExTerminal
function 94

CICS_EPI_ERR_ALREADY_INSTALLED
return code

CICS_EpiAddExTerminal
function 94

CICS_EpiAddTerminal
function 89

CICS_EPI_ERR_ATI_ACTIVE return
code

CICS_EpiStartTran function 102
CICS_EPI_ERR_ATI_STATE return

code
CICS_EpiATIState function 106

CICS_EPI_ERR_BAD_INDEX return
code

CICS_EpiATIState function 107
CICS_EpiDelTerminal

function 97
CICS_EpiGetEvent function 111
CICS_EpiGetSysError

function 112
CICS_EpiInquireSystem

function 96
CICS_EpiPurgeTerminal

function 98
CICS_EpiReply function 104
CICS_EpiSenseCode

function 108
CICS_EpiSetSecurity function 99
CICS_EpiStartTran function 102

CICS_EPI_ERR_CCSID_INVALID
return code

CICS_EpiAddExTerminal
function 95

CICS_EpiAddTerminal
function 89

CICS_EPI_ERR_FAILED return code
CICS_EpiAddExTerminal

function 93
CICS_EpiAddTerminal

function 88

CICS_EPI_ERR_FAILED return
code (continued)

CICS_EpiATIState function 107
CICS_EpiDelTerminal

function 97
CICS_EpiGetEvent function 111
CICS_EpiGetSysError

function 112, 113
CICS_EpiInitialize function 82
CICS_EpiInquireSystem

function 96
CICS_EpiListSystems

function 84
CICS_EpiPurgeTerminal

function 98
CICS_EpiReply function 104
CICS_EpiSenseCode

function 108
CICS_EpiStartTran function 102
CICS_EpiTerminate function 83

CICS_EPI_ERR_IN_CALLBACK
return code

CICS_EpiAddExTerminal
function 94

CICS_EpiAddTerminal
function 89

CICS_EpiATIState function 107
CICS_EpiDelTerminal

function 97
CICS_EpiGetEvent function 111
CICS_EpiInquireSystem

function 96
CICS_EpiListSystems

function 85
CICS_EpiPurgeTerminal

function 98
CICS_EpiReply function 105
CICS_EpiSenseCode

function 108
CICS_EpiSetSecurity

function 100
CICS_EpiStartTran function 103
CICS_EpiTerminate function 83

CICS_EPI_ERR_IS_INIT return code
CICS_EpiInitialize function 82

CICS_EPI_ERR_MAX_SESSIONS
return code

CICS_EpiAddExTerminal
function 95

© Copyright IBM Corp. 1989, 1999 211

CICS_EPI_ERR_MAX_SESSIONS
return code (continued)

CICS_EpiAddTerminal
function 90

CICS_EpiStartTran function 103
CICS_EPI_ERR_MAX_SYSTEMS

return code
CICS_EpiAddExTerminal

function 95
CICS_EpiAddTerminal

function 90
CICS_EPI_ERR_MAX_TERMS return

code
CICS_EpiAddTerminal

function 88
CICS_EPI_ERR_MODEL_INVALID

return code
CICS_EpiAddExTerminal

function 94
CICS_EpiAddTerminal

function 89
CICS_EPI_ERR_MORE_DATA return

code
CICS_EpiGetEvent function 111

CICS_EPI_ERR_MORE_EVENTS
return code

CICS_EpiGetEvent function 111
CICS_EPI_ERR_MORE_SYSTEMS

return code
CICS_EpiListSystems

function 84
CICS_EPI_ERR_NO_CONVERSE

return code
CICS_EpiReply function 104

CICS_EPI_ERR_NO_DATA return
code

CICS_EpiReply function 104
CICS_EpiStartTran function 103

CICS_EPI_ERR_NO_EVENT return
code

CICS_EpiGetEvent function 111
CICS_EPI_ERR_NO_SYSTEMS

return code
CICS_EpiListSystems

function 85
CICS_EPI_ERR_NOT_3270_DEVICE

return code
CICS_EpiAddExTerminal

function 94
CICS_EpiAddTerminal

function 89
CICS_EPI_ERR_NOT_INIT return

code 67
CICS_EpiAddExTerminal

function 93

CICS_EPI_ERR_NOT_INIT return
code 67 (continued)

CICS_EpiAddTerminal
function 89

CICS_EpiATIState function 107
CICS_EpiDelTerminal

function 97
CICS_EpiGetEvent function 111
CICS_EpiGetSysError

function 112
CICS_EpiInquireSystem

function 96
CICS_EpiListSystems

function 85
CICS_EpiPurgeTerminal

function 98
CICS_EpiReply function 105
CICS_EpiSenseCode

function 108
CICS_EpiSetSecurity

function 100
CICS_EpiStartTran function 103
CICS_EpiTerminate function 83

CICS_EPI_ERR_NULL_PARM return
code

CICS_EpiAddExTerminal
function 94

CICS_EpiAddTerminal
function 89

CICS_EpiGetEvent function 111
CICS_EpiGetSysError

function 113
CICS_EpiInquireSystem

function 96
CICS_EpiListSystems

function 85
CICS_EPI_ERR_NULL_PASSWORD

return code
CICS_EpiSetSecurity

function 100
CICS_EPI_ERR_NULL_USERID

return code
CICS_EpiSetSecurity

function 100
CICS_EPI_ERR_PASSWORD_INVALID

return code
CICS_EpiAddExTerminal

function 94
CICS_EpiSetSecurity

function 100
CICS_EPI_ERR_RESOURCE

_SHORTAGE return code
CICS_EpiAddExTerminal

function 95

CICS_EPI_ERR_RESOURCE
_SHORTAGE return code
(continued)

CICS_EpiAddTerminal
function 89

CICS_EpiStartTran function 103
CICS_EPI_ERR_RESPONSE_TIMEOUT

return code
CICS_EpiAddExTerminal

function 94
CICS_EPI_ERR_SECURITY return

code
CICS_EpiAddExTerminal

function 93
CICS_EpiAddTerminal

function 89
CICS_EPI_ERR_SENSE_CODE

return code
CICS_EpiSenseCode

function 108
CICS_EPI_ERR_SERVER_BUSY

return code
CICS_EpiAddExTerminal

function 95
CICS_EpiAddTerminal

function 89
CICS_EPI_ERR_SERVER_DOWN

return code
CICS_EpiAddExTerminal

function 94
CICS_EpiAddTerminal

function 89
CICS_EpiReply function 105
CICS_EpiStartTran function 103

CICS_EPI_ERR_SIGNON_NOT_POSS
return code

CICS_EpiAddExTerminal
function 94

CICS_EPI_ERR_SIGNONCAP_INVALID
return code

CICS_EpiAddExTerminal
function 94

CICS_EPI_ERR_SYSTEM_ERROR
return code

CICS_EpiSetSecurity
function 100

CICS_EPI_ERR_SYSTEM return code
CICS_EpiAddExTerminal

function 93
CICS_EpiAddTerminal

function 89
CICS_EPI_ERR_TERMID_INVALID

return code
CICS_EpiAddExTerminal

function 94

212 CICS Family: Client/Server Programming

CICS_EPI_ERR_TERMID_INVALID
return code (continued)

CICS_EpiAddTerminal
function 89

CICS_EPI_ERR_TRAN_ACTIVE
return code

CICS_EpiDelTerminal
function 97

CICS_EPI_ERR_TTI_ACTIVE return
code

CICS_EpiStartTran function 103
CICS_EPI_ERR_USERID_INVALID

return code
CICS_EpiAddExTerminal

function 94
CICS_EpiSetSecurity

function 100
CICS_EPI_ERR_VERSION return

code
CICS_EpiAddExTerminal

function 95
CICS_EpiInitialize function 82
CICS_EpiPurgeTerminal

function 98
CICS_EpiSetSecurity

function 100
CICS_EPI_ERR_WAIT return code

CICS_EpiGetEvent function 111
CICS_EPI_ERROR_MAX 76
CICS_EPI_EVENT_ADD_TERM

event
use 64

CICS_EPI_EVENT_CONVERSE
event

definition 117
use 64, 65, 104, 117, 123

CICS_EPI_EVENT_END_TERM
event

definition 120
use 64, 74, 97, 98

CICS_EPI_EVENT_END_TRAN
event

definition 118
use 64, 74, 101

CICS_EPI_EVENT_SEND event
definition 116
use 64, 65, 123

CICS_EPI_EVENT_START_ATI event
definition 119
use 64, 65, 102

CICS_EPI_NETNAME_MAX 72, 87,
91

CICS_EPI_NORMAL return code
CICS_EpiAddExTerminal

function 95

CICS_EPI_NORMAL return code
(continued)

CICS_EpiAddTerminal
function 90

CICS_EpiATIState function 107
CICS_EpiDelTerminal

function 97
CICS_EpiGetEvent function 111
CICS_EpiGetSysError

function 113
CICS_EpiInitialize function 82
CICS_EpiInquireSystem

function 96
CICS_EpiListSystems

function 85
CICS_EpiPurgeTerminal

function 98
CICS_EpiReply function 105
CICS_EpiSenseCode

function 109
CICS_EpiSetSecurity

function 100
CICS_EpiStartTran function 103
CICS_EpiTerminate function 83

CICS_EPI_NOWAIT 63, 110
CICS_EPI_NULL_PARAM return

code
CICS_EpiATIState function 107

CICS_EPI_READTIMEOUT
_EXPIRED 118

CICS_EPI_SENSE_OPCHECK 108
CICS_EPI_SENSE_REJECT 108
CICS_EPI_SYSTEM_MAX 69, 86, 91
CICS_EPI_TERM_INDEX_NONE 110
CICS_EPI_TRAN_NO_ERROR 118
CICS_EPI_TRAN_NOT_STARTED 118
CICS_EPI_TRAN_STATE

_UNKNOWN 118
CICS_EPI_TRANSID_MAX 74, 101
CICS_EPI_VERSION_200 82
CICS_EPI_VERSION return code

CICS_EpiGetSysError
function 113

CICS_EpiSenseCode
function 109

CICS_EPI_WAIT 63, 110
CICS_EpiAddExTerminal function

definition 91
use 59, 63, 69, 70, 72

CICS_EpiAddTerminal function
definition 86
use 59, 63, 69, 72, 101, 106, 112,

125, 126
CICS_EpiAddTerminalExit 188

CICS_EpiATIState function
definition 106

CICS_EpiAttributes_t data structure
definition 70

CICS_EpiDelTerminal function
definition 97
use 61, 83, 97, 120

CICS_EpiDelTerminalExit 195
CICS_EpiDetails_t data structure

definition 72
use 86, 88, 91, 93

CICS_EpiEventData_t data structure
definition 74
use 63, 64, 110, 111

CICS_EpiExitInit entry point 169
CICS_EpiGetEvent function

definition 110
use 63, 64, 74, 75, 97, 102, 125

CICS_EpiGetEventExit 196
CICS_EpiGetSysError function

definition 112
use 76, 126

CICS_EpiInitialize function
definition 82
for Microsoft Windows

environment 125
use 58, 59, 83, 84, 112, 126

CICS_EpiInitializeExit 186
CICS_EpiInquireSystem function

definition 96
CICS_EpiListSystems function

definition 84
use 59, 69, 112, 132

CICS_EpiPurgeTerminal function
definition 98
use 61

CICS_EpiReply function
definition 104
use 65, 117, 122

CICS_EpiReplyExit 194
CICS_EpiSenseCode function

definition 108
CICS_EpiSetSecurity function

definition 99
CICS_EpiStartTran function

definition 101
use 62, 64, 65, 66, 102, 118, 122

CICS_EpiStartTranExit 193
CICS_EpiSysError_t data structure

definition 76
use 112

CICS_EpiSystem_t data structure
definition 69
use 84, 132

CICS_EpiSystemIdExit 197

Index 213

CICS_EpiTermIdExit 191
CICS_EpiTermIdInfoExit 192
CICS_EpiTerminate function

definition 83
use 58, 112

CICS_EpiTerminateExit 187
CICS_EpiTranFailedExit 199
CICS_ESI_ERR_CALL_

FROM_CALLBACK return code
CICS_ChangePassword

function 154
CICS_SetDefaultSecurity

function 157
CICS_VerifyPassword

function 151
CICS_ESI_ERR_CICS_DIED return

code
CICS_ChangePassword

function 154
CICS_VerifyPassword

function 151
CICS_ESI_ERR_MAX_SESSIONS

return code
CICS_ChangePassword

function 154
CICS_VerifyPassword

function 151
CICS_ESI_ERR_MAX_SYSTEMS

return code
CICS_ChangePassword

function 155
CICS_VerifyPassword

function 151
CICS_ESI_ERR_NO_CICS return

code
CICS_ChangePassword

function 154
CICS_SetDefaultSecurity

function 157
CICS_VerifyPassword

function 151
CICS_ESI_ERR_NO_SESSIONS

return code
CICS_ChangePassword

function 154
CICS_VerifyPassword

function 151
CICS_ESI_ERR_NULL_

NEWPASSWORD return code
CICS_ChangePassword

function 155
CICS_ESI_ERR_NULL_

OLDPASSWORD return code
CICS_ChangePassword

function 155

CICS_ESI_ERR_NULL_PASSWORD
return code

CICS_VerifyPassword
function 151

CICS_ESI_ERR_NULL_USERID
return code

CICS_ChangePassword
function 155

CICS_VerifyPassword
function 151

CICS_ESI_ERR_PASSWORD
_REJECTED return code

CICS_ChangePassword
function 155

CICS_ESI_ERR_PASSWORD_EXPIRED
return code

CICS_VerifyPassword
function 152

CICS_ESI_ERR_PASSWORD_INVALID
return code

CICS_ChangePassword
function 155

CICS_SetDefaultSecurity
function 157

CICS_VerifyPassword
function 152

CICS_ESI_ERR_PEM_NOT
_SUPPORTED return code

CICS_ChangePassword
function 155

CICS_VerifyPassword
function 152

CICS_ESI_ERR_PEM_NOT_ACTIVE
return code

CICS_ChangePassword
function 155

CICS_VerifyPassword
function 152

CICS_ESI_ERR_RESOURCE_SHORTAGE
return code

CICS_ChangePassword
function 154

CICS_VerifyPassword
function 151

CICS_ESI_ERR_SECURITY_ERROR
return code

CICS_ChangePassword
function 155

CICS_VerifyPassword
function 152

CICS_ESI_ERR_SYSTEM_ERROR
return code

CICS_ChangePassword
function 154

CICS_ESI_ERR_SYSTEM_ERROR
return code (continued)

CICS_SetDefaultSecurity
function 157

CICS_VerifyPassword
function 151

CICS_ESI_ERR_UNKNOWN_SERVER
return code

CICS_ChangePassword
function 154

CICS_SetDefaultSecurity
function 157

CICS_VerifyPassword
function 151

CICS_ESI_ERR_USERID_INVALID
return code

CICS_ChangePassword
function 155

CICS_SetDefaultSecurity
function 157

CICS_VerifyPassword
function 152

CICS_ESI_NO_ERROR return code
CICS_ChangePassword

function 154
CICS_SetDefaultSecurity

function 157
CICS_VerifyPassword

function 151
CICS_EsiDate_t data structure

definition 146
CICS_EsiDetails_t data structure

definition 148
CICS_EsiTime_t data structure

definition 147
CICS_EXIT_BAD_ANCHOR return

code
CICS_EciDataReturnExit 182
CICS_EciDataSendExit 181
CICS_EciExternalCallExit1 176
CICS_EciExternalCallExit2 178
CICS_EciSetProgramAliasExit 183
CICS_EciSystemIdExit 179
CICS_EciTerminateExit 175
CICS_EpiAddTerminalExit 189
CICS_EpiDelTerminalExit 195
CICS_EpiGetEventExit 196
CICS_EpiReplyExit 194
CICS_EpiStartTranExit 193
CICS_EpiSystemIdExit 198
CICS_EpiTermIdExit 191
CICS_EpiTermIdInfoExit 192
CICS_EpiTerminateExit 187
CICS_EpiTranFailedExit 199

214 CICS Family: Client/Server Programming

CICS_EXIT_BAD_PARM return code
CICS_EciDataReturnExit 182
CICS_EciDataSendExit 181
CICS_EciExternalCallExit1 176
CICS_EciExternalCallExit2 178
CICS_EciSetProgramAliasExit 183
CICS_EciSystemIdExit 180
CICS_EpiAddTerminalExit 189
CICS_EpiDelTerminalExit 195
CICS_EpiGetEventExit 196
CICS_EpiReplyExit 194
CICS_EpiStartTranExit 193
CICS_EpiSystemIdExit 198
CICS_EpiTermIdExit 191
CICS_EpiTermIdInfoExit 192
CICS_EpiTranFailedExit 200

CICS_EXIT_BAD_STORAGE return
code

CICS_EciTerminateExit 175
CICS_EpiTerminateExit 187

CICS_EXIT_CANT_INIT_EXITS
return code

CICS_EciInitializeExit 174
CICS_EpiInitializeExit 186

CICS_EXIT_DONT_ADD_TERMINAL
return code

CICS_EpiAddTerminalExit 189
CICS_EpiSystemIdExit 198

CICS_EXIT_GIVE_UP return code
CICS_EciSystemIdExit 180

CICS_EXIT_NO_EXIT return code
CICS_EciInitializeExit 174
CICS_EpiInitializeExit 186

CICS_EXIT_OK return code
CICS_EciDataReturnExit 182
CICS_EciDataSendExit 181
CICS_EciExternalCallExit1 176
CICS_EciExternalCallExit2 178
CICS_EciInitializeExit 174
CICS_EciSetProgramAliasExit 183
CICS_EciSystemIdExit 179
CICS_EciTerminateExit 175
CICS_EpiAddTerminalExit 189
CICS_EpiDelTerminalExit 195
CICS_EpiGetEventExit 196
CICS_EpiInitializeExit 186
CICS_EpiReplyExit 194
CICS_EpiStartTranExit 193
CICS_EpiSystemIdExit 198
CICS_EpiTermIdExit 191
CICS_EpiTermIdInfoExit 192
CICS_EpiTerminateExit 187
CICS_EpiTranFailedExit 199

CICS_ExternalCall 8, 55

CICS_SetDefaultSecurity function
definition 156

CICS_VerifyPassword function
definition 150

CICS3270.CBL copybook 121
CICS3270.H header file 121
CICS3270.INC include file 121
CicsClientStatus 54
cicseciexit 169
cicsepiexit 169
CICSEPIEXITINIT function 201
cicsepix.dll 201
CICSPRNT 201
CicsServerStatus 54
CICSTERM 201
client 1
code page 21, 29, 45, 50
ConnectionType 54

D
data conversion 21, 29, 45, 50
Data parameter

CICS_EpiReply function 104
CICS_EpiStartTran function 62,

101
DBCS 58
DCE authorization

ECI 13
EPI 67

DCE credentials
ECI 13
EPI 67

Description
CICS_EciListSystems 55

Details parameter
CICS_ChangePassword

function 154
CICS_EpiAddExTerminal

function 93
CICS_EpiAddTerminal

function 88
CICS_VerifyPassword

function 151
DevType parameter

CICS_EpiAddExTerminal
function 92

CICS_EpiAddTerminal
function 87

DFHCNV macro 21, 29, 45, 50
distributed program link 4, 7
distributed transaction processing 4

E
ECI 3, 7
eci_abend_code

field in ECI parameter block 16

eci_abend_code (continued)
with ECI_SYNC call type 20

ECI_ASYNC call type
definition 27

ECI_ASYNC_NOTIFY_MSG call
type

definition 159
use 162, 163

ECI_ASYNC_NOTIFY_SEM call type
definition 160
use 162

eci_async_notify.sem_handle 160,
161, 162

eci_async_notify.win_fields.hinstance 160
eci_async_notify.win_fields.hwnd 160
eci_async_notify.window_handle 160
ECI_BACKOUT 19, 22, 28, 31
eci_call_type 8, 16

field in ECI parameter block 16
with ECI_ASYNC call type 28
with ECI_GET_REPLY call

type 44
with ECI_GET_REPLY_WAIT call

type 48
with ECI_GET_SPECIFIC_REPLY

call type 49
with

ECI_GET_SPECIFIC_REPLY_WAIT
call type 53

with ECI_STATE_ASYNC call
type 40

with ECI_STATE_SYNC call
type 35

with ECI_SYNC call type 19
eci_callback 27, 39

field in ECI parameter block 17
with ECI_ASYNC call type 32
with ECI_STATE_ASYNC call

type 42
ECI_CANCEL 163
ECI_CLIENTSTATE_INAPPLICABLE 54
ECI_CLIENTSTATE_UNKNOWN 54
ECI_CLIENTSTATE_UP 54
eci_commarea

field in ECI parameter block 16
with ECI_ASYNC call type 29
with ECI_GET_REPLY call

type 44
with ECI_GET_SPECIFIC_REPLY

call type 49
with ECI_STATE_ASYNC call

type 40
with ECI_STATE_SYNC call

type 35
with ECI_SYNC call type 20

Index 215

eci_commarea_length
field in ECI parameter block 16
with ECI_ASYNC call type 29
with ECI_GET_REPLY call

type 45
with ECI_GET_SPECIFIC_REPLY

call type 50
with ECI_STATE_ASYNC call

type 40
with ECI_STATE_SYNC call

type 35
with ECI_SYNC call type 21

ECI_COMMIT 19, 22, 28, 30
ECI_CONNECTED_NOWHERE 54
ECI_CONNECTED_TO_CLIENT 54
ECI_CONNECTED_TO_SEVER 54
ECI_ERR_ALREADY_ACTIVE 25,

33
ECI_ERR_CALL_FROM

_CALLBACK 18, 56
ECI_ERR_CICS_DIED 24, 46, 51
ECI_ERR_INVALID_CALL_TYPE 18
ECI_ERR_INVALID_DATA

_LENGTH 24, 33, 37, 42, 46, 50,
56

ECI_ERR_INVALID_DATA_AREA 25,
34, 38, 43, 47, 51

ECI_ERR_INVALID_EXTEND
_MODE 24, 33, 37, 42

ECI_ERR_INVALID_TRANSID 25,
34

ECI_ERR_INVALID_VERSION 18
ECI_ERR_LUW_TOKEN 25, 33, 37,

43
ECI_ERR_MAX_SESSIONS 25, 47,

52
ECI_ERR_MAX_SYSTEMS 25, 47,

52
ECI_ERR_MORE_SYSTEMS 56
ECI_ERR_NO_CICS 24, 33, 46, 51,

56
ECI_ERR_NO_REPLY 46, 51
ECI_ERR_NO_SESSIONS 25, 34
ECI_ERR_NO_SYSTEMS 56
ECI_ERR_NULL_MESSAGE_ID 165
ECI_ERR_NULL_SEM_HANDLE 165
ECI_ERR_NULL_WIN_HANDLE 164
ECI_ERR_REQUEST_TIMEOUT 18,

165
ECI_ERR_RESOURCE_SHORTAGE 25,

33, 46, 51
ECI_ERR_RESPONSE_TIMEOUT 165
ECI_ERR_ROLLEDBACK 25, 47, 52
ECI_ERR_SECURITY_ERROR 26,

47, 52

ECI_ERR_SYSTEM_ERROR 18, 56
ECI_ERR_THREAD_CREATE

_ERROR 33, 46, 51
ECI_ERR_TRANSACTION

_ABEND 25, 46
ECI_ERR_TRANSACTION_ABEND 51
ECI_ERR_UNKNOWN_SERVER 25,

38, 47, 52
ECI exits 171
eci_extend_mode 10, 14, 19, 20, 24,

28, 29, 33, 35, 36, 40, 41, 44, 49
field in ECI parameter block 17
with ECI_ASYNC call type 30
with ECI_STATE_ASYNC call

type 40
with ECI_STATE_SYNC call

type 36
with ECI_SYNC call type 21

ECI_EXTENDED 22, 30
ECI_GET_REPLY call type

definition 44
use 160, 161

ECI_GET_REPLY_WAIT call type
definition 48

ECI_GET_SPECIFIC_REPLY call type
definition 49
use 160, 161

ECI_GET_SPECIFIC_REPLY_WAIT
call type

definition 53
eci_luw_token 10, 11, 14

field in ECI parameter block 17
with ECI_ASYNC call type 31
with ECI_STATE_ASYNC call

type 41
with ECI_STATE_SYNC call

type 36
with ECI_SYNC call type 22

eci_message_id 160, 163
eci_message_qualifier 9

field in ECI parameter block 17
with ECI_ASYNC call type 27,

31
with ECI_ASYNC_NOTIFY_MSG

call type 160
with ECI_ASYNC_NOTIFY_SEM

call type 160
with ECI_GET_SPECIFIC_REPLY

call type 49, 50
with ECI_STATE_ASYNC call

type 39, 41
with ECI_STATE_ASYNC_MSG

call type 160
with ECI_STATE_ASYNC_SEM

call type 161

ECI_NO_ERROR 24, 33, 37, 42, 45,
50, 56

ECI_NO_EXTEND 21, 30
ECI parameter block 8, 16, 129, 162
eci_password 20, 23, 24, 28, 32

field in ECI parameter block 16
with ECI_ASYNC call type 28
with ECI_SYNC call type 20

eci_password2 20, 28
field in ECI parameter block 17
with ECI_ASYNC call type 32
with ECI_SYNC call type 23

eci_program_name 10
field in ECI parameter block 16
with ECI_ASYNC call type 28
with ECI_SYNC call type 19

ECI_SERVERSTATE_DOWN 54
ECI_SERVERSTATE_UNKNOWN 54
ECI_SERVERSTATE_UP 54
ECI_STATE_ASYNC call type

definition 39
ECI_STATE_ASYNC_MSG call type

definition 160
use 162, 163

ECI_STATE_ASYNC_SEM call type
definition 161
use 162

ECI_STATE_CANCEL 35, 36, 40,
41, 44, 49

ECI_STATE_CHANGED 36, 41
ECI_STATE_IMMEDIATE 36, 40
ECI_STATE_SYNC call type

definition 35
use 163

ECI_STATUS 54
ECI status block 13, 54
ECI_SYNC call type

definition 19
use 163

eci_sys_return_code 18
eci_sysid

field in ECI parameter block 17
with ECI_ASYNC call type 31
with ECI_GET_REPLY call

type 45
with ECI_GET_SPECIFIC_REPLY

call type 50
with ECI_STATE_ASYNC call

type 41
with ECI_STATE_SYNC call

type 37
with ECI_SYNC call type 22

eci_system_name
field in ECI parameter block 17
with ECI_ASYNC call type 31

216 CICS Family: Client/Server Programming

eci_system_name (continued)
with ECI_STATE_ASYNC call

type 42
with ECI_STATE_SYNC call

type 37
with ECI_SYNC call type 23

eci_timeout 163
field in ECI parameter block 17
with ECI_SYNC call type 21, 29

eci_tpn
field in ECI parameter block 17
with ECI_ASYNC call type 32
with ECI_SYNC call type 24

eci_transid
field in ECI parameter block 16
with ECI_ASYNC call type 29
with ECI_SYNC call type 20

eci_userid 20, 23, 28, 32
field in ECI parameter block 16
with ECI_ASYNC call type 28
with ECI_SYNC call type 19

eci_userid2 20, 28
field in ECI parameter block 17
with ECI_ASYNC call type 32
with ECI_SYNC call type 23

eci_version 19
field in ECI parameter block 17
with ECI_ASYNC call type 31
with ECI_GET_REPLY call

type 45
with ECI_GET_SPECIFIC_REPLY

call type 50
with ECI_STATE_ASYNC call

type 41
with ECI_STATE_SYNC call

type 37
with ECI_SYNC call type 23

ECI_VERSION_0 17, 23, 31, 37, 42,
45, 50

ECI_VERSION_1 17, 23, 31, 37, 42,
45, 50

ECI_VERSION_1A 17, 23, 24, 31,
32, 37, 42, 45, 50

eci_window_handle 162
EDF 58
EPI 4, 57

3270 data streams 121
3270 order codes 123
constants 68
data structures 68
events 114
functions 77
Microsoft Windows

considerations 125
EPI exits 184

ESI 5, 143
benefits 144
constants 145
data structures 145
functions 149
overview 143

Event parameter
CICS_EpiGetEvent function 111

EXEC CICS CONVERSE 65, 117
EXEC CICS LINK 7
EXEC CICS RECEIVE 65, 102, 104,

117, 121, 122, 123
EXEC CICS RECEIVE BUFFER 117,

123
EXEC CICS RECEIVE MAP 121,

122
EXEC CICS RETURN

TRANSID option 65
EXEC CICS SEND 65, 116, 121
EXEC CICS SEND MAP 121
EXEC CICS START

DELAY option 58
extended calls 4

F
front end programming interface 4

H
hWnd parameter

CICS_EpiInitialize function 125

L
List parameter 56

CICS_EciListSystems 55
CICS_EpiListSystems

function 84
LITLINK compiler directive 129,

132, 137, 139, 142
load balancing 201
logical unit of work 9

M
MsgId parameter

CICS_EpiInitialize function 125

N
NameSpace parameter

CICS_EciListSystems 55
CICS_EpiAddTerminal

function 86
CICS_EpiListSystems

function 84
NetName parameter

CICS_EpiAddExTerminal
function 91

CICS_EpiAddTerminal
function 87

NewPassword parameter
CICS_ChangePassword

function 153
NotifyFn parameter

CICS_EpiAddExTerminal
function 93

CICS_EpiAddTerminal
function 63, 88

O
OldPassword parameter

CICS_ChangePassword
function 153

P
password expiration management

(PEM) 5, 143
Password parameter

CICS_EpiSetSecurity function 99
CICS_SetDefaultSecurity

function 156
CICS_VerifyPassword

function 150
PEM (password expiration

management) 5, 143
program link calls 9

R
reserved1

field in ECI parameter block 17
with ECI_ASYNC call type 30
with ECI_STATE_ASYNC call

type 40
with ECI_STATE_SYNC call

type 35
with ECI_SYNC call type 21

REXX 127, 129, 130, 131, 133

S
screen size 57
security considerations

ECI 12
EPI 66

semaphore 160, 161
SenseCode parameter

CICS_EpiSenseCode
function 108

server implementation 2
signon capable 67
signon incapable 66
Size parameter

CICS_EpiReply function 104
CICS_EpiStartTran function 102

structured fields 58
synchronous calls 3

Index 217

SysErr parameter
CICS_EpiGetSysError

function 112
system information structure 55, 84,

130
System parameter

CICS_ChangePassword
function 154

CICS_EpiAddExTerminal
function 91

CICS_EpiAddTerminal
function 86

CICS_SetDefaultSecurity
function 156

CICS_VerifyPassword
function 150

SystemName parameter
CICS_EciListSystems 55

Systems parameter 56
CICS_EciListSystems 55
CICS_EpiListSystems

function 84

T
terminal, signon capable 67
terminal, signon incapable 66
terminal index 59, 86, 91
TermIndex parameter

CICS_EpiAddExTerminal
function 93

CICS_EpiAddTerminal
function 88

CICS_EpiATIState function 106
CICS_EpiDelTerminal

function 97
CICS_EpiGetEvent function 110
CICS_EpiGetSysError

function 112
CICS_EpiInquireSystem

function 96
CICS_EpiPurgeTerminal

function 98
CICS_EpiReply function 104
CICS_EpiSenseCode

function 108
CICS_EpiSetSecurity function 99
CICS_EpiStartTran function 101

time-out 161
TransId parameter

CICS_EpiStartTran function 62,
101

U
user-defined

CICS_EpiSystemIdExit 198

user-defined (continued)
CICS_EpiTerminateExit 187

user-defined return code

CICS_EciDataReturnExit 182
CICS_EciDataSendExit 181
CICS_EciExternalCallExit1 176
CICS_EciExternalCallExit2 178
CICS_EciInitializeExit 174
CICS_EciSetProgramAliasExit 183
CICS_EciSystemIdExit 180
CICS_EciTerminateExit 175
CICS_EpiAddTerminalExit 189
CICS_EpiDelTerminalExit 195
CICS_EpiGetEventExit 196
CICS_EpiInitializeExit 186
CICS_EpiReplyExit 194
CICS_EpiStartTranExit 193
CICS_EpiTermIdExit 191
CICS_EpiTermIdInfoExit 192
CICS_EpiTranFailedExit 200

UserId parameter

CICS_ChangePassword
function 153

CICS_EpiSetSecurity function 99
CICS_SetDefaultSecurity

function 156
CICS_VerifyPassword

function 150

V
Version parameter

CICS_EpiInitialize function 77,
82

W
Wait parameter

CICS_EpiGetEvent 63
CICS_EpiGetEvent function 110

WorkLoad Manager 183

218 CICS Family: Client/Server Programming

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1435-04

	Contents
	Figures
	Tables
	Summary of changes
	Changes to the fifth edition

	About this book
	Who should read this book
	Conventions and terminology used in this book
	Prerequisite and related information
	General
	Setting up client-server systems
	Client application programming
	Application programming on CICS servers
	Miscellaneous

	How to send your comments
	Obtaining books from IBM

	Chapter 1. Introducing the external access interfaces
	Overview
	External call interface
	External presentation interface
	External security interface
	Using the external access interfaces
	ECI and EPI exits

	Chapter 2. External call interface
	Overview
	ECI function
	Types of ECI calls
	Program link calls
	Status information calls
	Reply solicitation calls

	Program link calls
	Managing logical units of work
	Security in the ECI
	DCE protocol considerations

	Status information calls
	How status information is supplied and used

	Reply solicitation calls
	CICS_ExternalCall
	ECI_SYNC call type
	ECI_ASYNC call type
	ECI_STATE_SYNC call type
	ECI_STATE_ASYNC call type
	ECI_GET_REPLY call type
	ECI_GET_REPLY_WAIT call type
	ECI_GET_SPECIFIC_REPLY call type
	ECI_GET_SPECIFIC_REPLY_WAIT call type

	ECI status block
	CICS_EciListSystems

	Chapter 3. External presentation interface
	Overview
	How to use the EPI
	Initialization and termination
	Listing the configured servers
	Adding terminal resources
	Terminal attributes
	Timeout

	Deleting terminal resources
	Authentication and authorization
	Signon capable terminals
	Signon incapable terminals

	Starting transactions
	Events and callbacks
	Polling
	Blocking
	Callback notification

	Processing the events
	Sending and receiving data
	Managing pseudoconversations
	Security in the EPI
	Signon incapable terminals
	Signon capable terminals
	DCE protocol considerations

	EPI constants and data structures
	EPI constants
	EPI data structures
	CICS_EpiSystem_t
	CICS_EpiAttributes_t
	CICS_EpiDetails_t
	CICS_EpiEventData_t
	CICS_EpiSysError_t

	EPI versions
	EPI functions
	CICS_EpiInitialize
	CICS_EpiTerminate
	CICS_EpiListSystems
	CICS_EpiAddTerminal
	CICS_EpiAddExTerminal
	CICS_EpiInquireSystem
	CICS_EpiDelTerminal
	CICS_EpiPurgeTerminal
	CICS_EpiSetSecurity
	CICS_EpiStartTran
	CICS_EpiReply
	CICS_EpiATIState
	CICS_EpiSenseCode
	CICS_EpiGetEvent
	CICS_EpiGetSysError

	EPI events
	CICS_EPI_ADD_TERM
	CICS_EPI_EVENT_SEND
	CICS_EPI_EVENT_CONVERSE
	CICS_EPI_EVENT_END_TRAN
	CICS_EPI_EVENT_START_ATI
	CICS_EPI_EVENT_END_TERM

	3270 data streams for the EPI
	Inbound data streams (EPI to CICS)
	Outbound data streams (CICS to EPI)
	3270 order codes

	Microsoft Windows 3.1 considerations

	Chapter 4. Creating ECI and EPI application programs
	Writing the non-CICS applications
	Making ECI calls
	CICS_ExternalCall
	For C programs:
	For COBOL programs:
	For PL/I programs:
	For REXX programs:

	Callback routines
	CICS_EciListSystems
	For C programs:
	For COBOL programs:
	For PL/I programs:
	For REXX programs:

	Debugging with REXX

	Making EPI calls
	EPI functions
	For C programs:
	For COBOL programs:
	For PL/I programs:
	For REXX programs:

	Callback routines

	Compiling and linking applications
	IBM CICS Client for DOS Version 2
	For C programs:
	For COBOL programs:

	IBM CICS Client for Windows Version 2
	For C programs:

	IBM CICS Clients for Windows NT and Windows 95 Version 2
	For C programs:
	For COBOL programs:

	IBM CICS Client for OS/2 Version 2
	For 32-bit C programs:
	For 16-bit C programs:
	For 32-bit COBOL programs:
	For 16-bit COBOL programs:
	For PL/I programs:

	IBM CICS Universal Clients for Windows NT and Windows 98 Version 3
	For C programs:
	For COBOL programs:

	IBM CICS Universal Client for OS/2 Version 3
	For C programs:
	For COBOL programs:
	For PL/I programs:

	IBM CICS Universal Client for AIX Version 3
	For C programs:
	For COBOL programs:

	IBM CICS Universal Client for Solaris Version 3
	For C programs:
	For COBOL programs:

	CICS for OS/2 Version 3 server implementation
	For 32-bit C programs:
	For 16-bit C programs:
	For COBOL programs:
	For PL/I programs:

	Chapter 5. External security interface
	Overview
	Benefits of APPC PEM
	Benefits of the ESI
	ESI constants and data structures
	ESI constants
	ESI data structures
	CICS_EsiDate_t
	CICS_EsiTime_t
	CICS_EsiDetails_t

	ESI functions
	CICS_VerifyPassword
	CICS_ChangePassword
	CICS_SetDefaultSecurity

	Appendix A. ECI extensions that are environment-dependent
	Call type extensions
	Asynchronous program link call, with notification by message(ECI_ASYNC_NOTIFY_MSG)
	Asynchronous program link call, with notification by semaphore(ECI_ASYNC_NOTIFY_SEM)
	Asynchronous status call, with notification by message(ECI_STATE_ASYNC_MSG)
	Asynchronous status call, with notification by semaphore(ECI_STATE_ASYNC_SEM)

	Time-outs
	Fields to support ECI extensions
	Reply message formats
	ECI return notification
	Summary of input parameter requirements

	Appendix B. CICS Universal Client Programming Samples
	Appendix C. ECI and EPI exits
	Installing the exits
	Exit routine environment
	How the exit routines are described in the reference sections
	ECI exits reference
	Identification token
	Process model implementation
	CICS_EciInitializeExit
	CICS_EciTerminateExit
	CICS_EciExternalCallExit1
	CICS_EciExternalCallExit2
	CICS_EciSystemIdExit
	CICS_EciDataSendExit
	CICS_EciDataReturnExit
	CICS_EciSetProgramAliasExit

	EPI exits reference
	CICS_EpiInitializeExit
	CICS_EpiTerminateExit
	CICS_EpiAddTerminalExit
	CICS_EpiTermIdExit
	CICS_EpiTermIdInfoExit
	CICS_EpiStartTranExit
	CICS_EpiReplyExit
	CICS_EpiDelTerminalExit
	CICS_EpiGetEventExit
	CICS_EpiSystemIdExit
	CICS_EpiTranFailedExit

	Diagnostic information
	CICSTERM, CICSPRNT and the EPI exits

	Appendix D. Notices
	Programming interface information
	Trademarks

	Index

