
CICS Transaction Gateway
Version 9 Release 0

CICS Transaction Gateway for z/OS:
Programming Guide

SC34-2833-02

���

CICS Transaction Gateway
Version 9 Release 0

CICS Transaction Gateway for z/OS:
Programming Guide

SC34-2833-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 117.

This edition applies to Version 9.0 of the CICS Transaction Gateway for z/OS program number 5655-Y20 and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2000, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Application programming
interfaces 1

Chapter 2. Client applications 3
Supported programming languages. 4
JEE applications 4

Chapter 3. External Call Interface (ECI) . 5
Introduction to channels and containers 5
The ECI request 6

External calls to CICS 6
I/O parameters on ECI calls 6
Program link calls 7
Status information calls 9
Retrieving replies from asynchronous ECI requests 9

ECI and CICS transaction IDs 10
Timeout of the ECI request 10

Request timeout 10
Response timeout 11

Security in the ECI 11
IPIC support for ECI 11
ECI performance considerations when using
COMMAREAs 12

Chapter 4. External Security Interface
(ESI) 15
ESI functions 15

I/O parameters on ESI calls 15
Using ESI to manage passwords 16

Chapter 5. Statistics APIs. 17
Statistical data overview 17

API and protocol version control 17
Statistics C API 19

Calling the C API 19
Statistics C API components 19
C API data types 21
Statistics C API trace levels 24
C API functions 24
Correlating results and error checking 32

Statistics Java API 32

Chapter 6. Programming in Java. . . . 35
Signing Applets and Web Start Applications . . . 35
Overview of the programming interface for Java . . 35

Writing Java client applications 36
SSL cipher suites in Java client applications. . . 36
JavaGateway security 37

Making ECI calls from a Java client program . . . 37
Linking to a CICS server program 38
Creating Java channels and containers for ECI
calls 38
Managing an LUW 39
Retrieving replies from asynchronous requests. . 39

ECI timeouts 40
ECI return codes and server errors 40
EXCI support 41

EPI and z/OS 41
Making ESI calls from a Java client program . . . 41

Verifying a password using ESI. 41
Changing a password using ESI 41

Compiling and running a Java client application . . 41
Setting stack and heap sizes 42
Setting up the CLASSPATH 42
Unable to load class that supports TCP/IP . . . 42

Problem determination for Java client programs . . 43
Tracing in Java client programs 43

Security for Java client programs 45
CICS Transaction Gateway security classes . . . 45
Using a Java 2 Security Manager 46

Chapter 7. Programming using the JEE
Connector Architecture 49
Overview of the JCA programming interface . . . 49

The Common Client Interface (CCI) 49
The programming interface model 49
Record objects 50
ECI resource adapter 50
Managed and nonmanaged environments . . . 51

The Common Client Interface 51
Generic CCI Classes 51
CICS-specific classes 51

Using the ECI resource adapter 52
The ECI resource adapter with channels and
containers 53
Connection to a CICS server using the ECI
resource adapter 54
Linking to a program on a CICS server 55
ECI resource adapter CICS-specific records using
the streamable interface 56
Transaction management 57
Samples 58

Using the resource adapters in a nonmanaged
environment 59

Creating the appropriate ConnectionFactory
object 59
Saving and reusing connection factories 59
Running the JEE resource adapters in a
nonmanaged environment 60

Compiling applications 60
Security credentials and the CICS resource adapters 61
JEE tracing 61

Tracing issues relating to serialized interfaces and
ConnectionFactory objects 61

Resource adapter samples 62
ECI COMMAREA sample 62
ECI channels and containers sample 63

Assistance in coding CCI applications 64
Connector specification API Javadoc 64

© Copyright IBM Corp. 2000, 2013 iii

||

||

JEE Connector Architecture API 64

Chapter 8. Programming in C 67
Overview of the programming interfaces for C . . 67
Making ECI V2 and ESI V2 calls from C programs 67

Making ECI calls from C programs 67
Making ESI calls from C programs 68
Multithreaded ECI V2 and ESI V2 applications 69
Establishing a connection to a Gateway daemon 69
Program link calls 70
Using channels and containers in ECI V2
applications 72
Tracing in ECI V2 and ESI V2 applications . . . 73
Security credentials in ECI V2 74

Compiling and linking C applications 74

Chapter 9. Programming using the
.NET Framework 77
Overview of the programming interface 77
Making ECI calls from .NET programs 77
Making ESI calls from .NET programs 78
Using channels and containers in .NET programs. . 78
Developing .NET applications 80
Problem determination for .NET client programs . . 80

Tracing for .NET client programs 81

Chapter 10. Creating a CICS request
exit 83
Writing a CICS request exit 84

Java CICS request exit samples 85
Using the CICS request exit samples 85

Chapter 11. Java request monitoring
exits 87
Correlation points available in the exits 90
Data available by FlowType and RequestEvent . . 91

Non-XA flows at RequestEntry 91
XA flows at RequestEntry 92
Non-XA flows at ResponseExit 93
XA flows at ResponseExit 95

Chapter 12. Creating a CICS request
exit 97
Writing a CICS request exit 98

Java CICS request exit samples 99
Using the CICS request exit samples 99

Chapter 13. Sample programs 101
UNIX System Services ctgtest script 101
COBOL samples 101
Java client samples 102

Compiled Java samples 102
Running the sample programs. 102
Connecting to CICS Transaction Gateway . . . 102
Java ECI base class samples 103
Java ESI base class samples. 105

JEE samples 105
JEE ECIDateTime sample 105
JEE EC03Channel sample 107

C ECI V2 and ESI V2 samples 108
C ctgesib1 sample 108
C ctgecib1 sample 109
C ctgecib2 sample 109
C ctgecib3 sample 110

C#/Visual Basic .NET samples. 110
C#/Visual Basic .NET EciB1 sample 110
C#/Visual Basic .NET EciB3 sample 110
C#/Visual Basic .NET EsiB1 sample 111

User exit samples 111
Java security exit data compression samples . . 111
Java request monitoring exit samples 112
Java CICS request exit samples 113

C/Java statistics API samples 114
C ctgstat1 statistics API sample 114
Java Ctgstat1 statistics API sample 114

SMF viewer sample program 114
Password Scrambler utility 115

Notices 117
Trademarks 118

Related literature 119

Accessibility 121

Glossary 123

Index 145

iv CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

|
||
||
||
||
||
||
||

||

Chapter 1. Application programming interfaces

The CICS® Transaction Gateway supports the integration of CICS servers and client
applications. There is a standard set of functions to allow user applications to call
CICS programs or perform password expiry management (PEM).

Two Application Programming Interfaces (APIs) are available to enable user
applications to access and update CICS facilities and data. These are the External
Call Interface (ECI) and the External Security Interface (ESI).

There are also statistical data APIs, which enable a user application to collect
statistical information about a running CICS Transaction Gateway.
Related information:
Chapter 3, “External Call Interface (ECI),” on page 5
The External Call Interface (ECI) enables a client application to call a CICS
program synchronously or asynchronously. It enables the design of new
applications to be optimized for client/server operation, with the business logic on
the server and the presentation logic on the client.
Chapter 4, “External Security Interface (ESI),” on page 15
The External Security Interface (ESI) enables user applications to perform
security-related tasks such as the viewing and updating of user IDs and passwords
held by an external security manager (ESM), or the setting of default security
credentials used on CICS server connections.
Chapter 5, “Statistics APIs,” on page 17
The statistics APIs enable user applications to obtain runtime statistics on the
Gateway daemon. To use the statistics APIs, the Gateway daemon must be
configured with a statistics API protocol handler.

© Copyright IBM Corp. 2000, 2013 1

2 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Chapter 2. Client applications

CICS Transaction Gateway supports client applications running in local or remote
mode topologies. Client applications enable access to CICS server transactions and
programs from the host machine.

The following figure shows client applications running in local and remote mode
on a z/OS® system.

Notes:

1. Java™ client applications use the Gateway classes to communicate with CICS
servers.

2. JCA client applications use the JEE CICS resource adapters to communicate
with CICS servers.

Figure 1. CICS Transaction Gateway for z/OS

© Copyright IBM Corp. 2000, 2013 3

Supported programming languages
This table shows which programming languages are supported for each platform
and each API in local mode and remote mode.

Table 1. CICS Transaction Gateway in local mode

API C Java JCA .NET

ECI U U

ESI U

Table 2. CICS Transaction Gateway in remote mode

API C Java JCA .NET

ECI U U U U

ESI U U

ESI requests are supported over CICS server connections that use IPIC, and if the
configured CICS server supports Password Expiration Management (PEM).

JEE applications
CICS Transaction Gateway implements the JCA by providing JEE resource
adapters.

These resource adapters support the JEE Common Client Interface (CCI) defined
by the JCA and are a middle-tier between JCA-compliant applications and CICS
Transaction Gateway. The JEE application server can run locally on the same
machine as CICS Transaction Gateway, or remotely.

JCA-compliant applications can be developed and deployed in a managed or
nonmanaged environment. In a managed environment, JCA applications can
exploit the quality of service provided by the JEE application server.

Figure 2. Topology with CICS Transaction Gateway and WebSphere Application Server in
remote mode

4 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Chapter 3. External Call Interface (ECI)

The External Call Interface (ECI) enables a client application to call a CICS
program synchronously or asynchronously. It enables the design of new
applications to be optimized for client/server operation, with the business logic on
the server and the presentation logic on the client.

The external interfaces allow non-CICS applications to access and update CICS
resources by calling CICS programs. When used in conjunction with CICS
communication, the external interfaces enable non-CICS programs to access and
update resources on any CICS server. This method of using the external interfaces
supports such activities as the development of graphical user interface (GUI) front
ends for CICS applications and it allows the integration of CICS servers and
non-CICS servers.

The application can connect to several CICS servers at the same time and have
several called CICS programs running concurrently. The CICS programs can
transfer information using COMMAREAs or channels.

CICS programs that are invoked by an ECI request must follow the rules for
distributed program link (DPL) requests. For information on DPL requests, refer to
your CICS server documentation.

Introduction to channels and containers
Channels and containers provide a method of transferring data between CICS
programs, in amounts that exceed the 32 KB limit that applies to communication
areas (COMMAREAs).

Each container is a named block of binary (BIT) or character (CHAR) data that is
not limited to 32 KB. Containers are grouped together in sets called channels.

The channel and container model has several advantages over the communication
areas (COMMAREAs) used by CICS programs to exchange data:
v Unlike COMMAREAs, channels are not limited in size. Any number of

containers can be added to a channel, and the size of individual containers is
limited only by the amount of storage that you have available. Consider the
amount of storage available to other applications when you create large
containers.

v Because a channel can consist of multiple containers, it can be used to pass data
in a more structured way, allowing you to partition your data into logical
entities. In contrast, a COMMAREA is a monolithic block of data.

v Unlike COMMAREAs, channels do not require the programs that use them to
keep track of the size of the data.

v CICS automatically destroys containers and their storage when they are no
longer required.

When you are using channels and containers in preference to COMMAREAs, note
that:
v A channel can use more storage than a COMMAREA to pass the same data.
v Container data can be held in more than one place.

© Copyright IBM Corp. 2000, 2013 5

v COMMAREAs are accessed by pointer, whereas the data in containers is copied
between programs.

For more information about using channels and containers see the following topics:
v Using channels and containers in the JCA framework, see “The ECI resource

adapter with channels and containers” on page 53.
v Using channels and containers with ECI calls for Java clients, see “Creating Java

channels and containers for ECI calls” on page 38.
v Using channels and containers with ECI V2 calls for C clients, see “Using

channels and containers in ECI V2 applications” on page 72
v Using channels and containers with ECI calls for .NET clients, see “Using

channels and containers in .NET programs” on page 78.

The ECI request

An ECI request can be used to make program link calls, status information calls
and reply solicitation calls.

External calls to CICS
An ECI request calls a CICS program on a CICS server. This is known as making
an external call to CICS and is the primary purpose of the ECI request. If no CICS
server is selected, the default CICS server is used.

The ECI request can make four different types of call:
v Program link calls
v Status information calls
v Reply solicitation calls
v Callbacks
Related information:
“I/O parameters on ECI calls”
Input parameters passed to the CICS server with an ECI call, and output
parameters returned to the user application following an ECI call.
“Program link calls” on page 7
An ECI request to call a program on a CICS server results in a program link call to
attach the CICS mirror transaction to run the server program.
“Status information calls” on page 9
Status information calls retrieve status information about the connection between
the client and server systems.
“Retrieving replies from asynchronous ECI requests” on page 9
Callbacks and reply solicitation calls can be used to retrieve replies from
asynchronous ECI requests

I/O parameters on ECI calls
Input parameters passed to the CICS server with an ECI call, and output
parameters returned to the user application following an ECI call.

Input parameters
Channel

A communication area used for passing containers to a server program.
COMMAREA

A communication area used for passing input to a server program.

6 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

|
|

ECI timeout
The maximum wait time for a response to an ECI request.

LUW control
The way in which a Logical Unit of Work (LUW) is started, continued and
ended.

LUW identifier
A token which identifies the ECI call as part of an LUW.

Message qualifier
For reply solicitation calls, a token that identifies the asynchronous request.

Password
The password or password phrase provided for security checking on an
ECI call.

Program name
The name of a program to be run on a CICS server.

Server name
The name of the CICS server that the ECI call is directed to. This can be a
logical CICS server or an actual CICS server name.

TPNName
The transaction ID of the CICS mirror program.

TranName
The transaction ID seen in the exec interface block (EIB) by the CICS
mirror program.

Userid
The user ID provided for security checking on an ECI call.

Output parameters
Abend code

The code returned when a server program has ended abnormally.
Channel

A communication area that holds containers passed from a server program.
COMMAREA

The communication area that contains output from a server program.
LUW identifier

A token which identifies the ECI call as part of an LUW.
Message qualifier

For asynchronous calls, a token that identifies the asynchronous request
and can be used to retrieve the response.

Program link calls
An ECI request to call a program on a CICS server results in a program link call to
attach the CICS mirror transaction to run the server program.

ECI request program link calls can be synchronous or asynchronous:

Synchronous
Synchronous calls are blocking calls. The user application is suspended
until the called server program has finished and a reply is received from
CICS. The received reply is immediately available.

Asynchronous
Asynchronous calls are nonblocking calls. The user application gets control
back without waiting for the called server program to finish. The reply
from CICS can be retrieved later using one of the reply solicitation calls or
a callback. See “Retrieving replies from asynchronous ECI requests” on
page 9. An asynchronous program link call is outstanding until a reply
solicitation call, or the callback, has retrieved the reply.

Chapter 3. External Call Interface (ECI) 7

|
|

|
|
|

Synchronous and asynchronous program link calls can be nonextended or
extended:

Nonextended
The CICS server program, not the user application, controls whether
recoverable resources are committed or backed out. Each program link call
corresponds to one CICS transaction. This is referred to as
SYNCONRETURN.

Extended
The user application controls whether recoverable resources are committed
or rolled back. Multiple calls are possible, allowing a logical unit of work
(LUW) to be extended across successive ECI requests to the same CICS
server. This is known as an extended logical unit of work (extended LUW).

CICS user applications are often concerned with updating recoverable
resources. An LUW is the processing that a CICS server program performs
between sync points. A sync point is the point at which all changes to
recoverable resources that were made by a task since its last sync point are
committed. LUW management is performed by the user application, using
the commit and rollback functions:

Commit
Ends the current LUW and any changes made to recoverable
resources are committed.

Rollback
Terminates the current LUW and backs out (rolls back) any
changes made to recoverable resources since the previous sync
point.

ECI-based communications between the CICS server and the CICS Transaction
Gateway are known as conversations. A nonextended program link ECI call is one
conversation. A series of extended ECI calls followed by a commit or rollback is
one conversation.

Managing logical units of work
On a successful return from the first of a sequence of extended ECI calls for an
LUW, the user application is returned an LUW identifier corresponding to an
instance of a CICS mirror transaction.

Specifying this LUW identifier in subsequent ECI calls means that these calls will
be processed by the same CICS mirror transaction. All program link calls for the
same LUW are sent to the same server.

When the user application makes an ECI commit or rollback call, the CICS server
attempts to commit or back out changes to recoverable resources. The user
application is advised whether or not the attempt was successful. If an LUW is
outstanding (incomplete), the user application issues an extended ECI commit or
rollback call to the CICS server. If the execution of a user application completes
without committing or rolling back an outstanding LUW, the CICS Transaction
Gateway attempts to back out the LUW.

If an extended ECI call fails, the user application must check if a nonzero LUW
identifier was returned. If so, this indicates that the LUW is still outstanding and
you must commit or rollback the LUW. If you do not, the unit of work remains
outstanding and prevents a normal shutdown of CICS Transaction Gateway.

8 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

An ECI user application using an extended LUW might cause other user
applications to be suspended waiting for CICS resources, which are held for the
duration of the LUW.

Status information calls
Status information calls retrieve status information about the connection between
the client and server systems.

The status of connected servers is updated as a result of requests being flowed and
protocol specific events. The status returned is the last known state of connected
servers, which might not be the same as the current state.

ECI request status link calls can be synchronous or asynchronous.

There are three types of status information call:

Immediate
Requests status information to be sent to the user application as soon as it
becomes available.

Change
Requests status information to be sent to the user application when the
status changes from some specified value. Change calls are always
asynchronous.

Cancel
Cancels an earlier change call.

Retrieving replies from asynchronous ECI requests
Callbacks and reply solicitation calls can be used to retrieve replies from
asynchronous ECI requests

Callbacks

Callbacks enable the CICS server to drive specific function provided by the user
application when an asynchronous program link call completes. Callbacks are not
available for all APIs.

Reply solicitation calls

User applications that issue asynchronous calls can have several ECI requests
outstanding at a time. Reply solicitation calls can be used by the calling application
to retrieve the replies for each outstanding request. There are two types of reply
solicitation call:

General
Retrieves all replies for any outstanding ECI request.

Specific
Retrieves a reply for a specific ECI request. A unique message qualifier is
used to identify the reply for that request. Depending on the API that the
application uses, message qualifiers are either automatically generated or a
they have to be manually assigned to each asynchronous call within a
single application.

If no reply is available, reply solicitation calls can either wait for a reply or return
control directly to the user application.

Chapter 3. External Call Interface (ECI) 9

|

|
|

|

|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|

|
|

Callbacks
Callbacks enable the CICS server to drive specific function provided by the user
application when an asynchronous program link call completes. This is the
recommended way of handling replies from ECI requests.

ECI and CICS transaction IDs
The transaction ID of the mirror transaction for an ECI call can be controlled
through the parameters TPNName and TranName.

Specify TPNName to change the name of the CICS mirror transaction that the
called program will run under. For example, you can specify TPNName if you
need a transaction definition with different attributes from those defined for the
default mirror transaction. This option is like the TRANSID option on an EXEC
CICS LINK command. The transaction ID is available to the server program in the
exec interface block (EIB). You must define a transaction on the CICS server for
this transaction ID that points to the DFHMIRS program. Note that TPNName
takes precedence if both TranName and TPNName are specified. If neither
TPNName nor TranName is specified, the ECI Program Link call is attached to the
default mirror transaction on the server. The default mirror transaction is CSMI.

If TranName is specified, the called program runs under the default mirror
transaction, but is linked to under the TranName transaction ID. This name is
available to the called program in the (EIB) for querying the transaction ID.

Table 3 shows the name of the CICS mirror transaction and the name stored in
EIBTRNID according to whether or not TPNName and TranName are specified.

Table 3. Specifying TPNName and TranName

TPNName specified TranName specified
Mirror transaction
name Name in EIBTRNID

Y Y TPNName TPNName

Y N TPNName TPNName

N Y default TranName

N N default default

Timeout of the ECI request
An ECI timeout is the time that the CICS Transaction Gateway will wait for a
response to an ECI request sent to a CICS server before returning a timeout error
to the Client application.

An ECI timeout can occur either before or after the ECI request has been sent to
the CICS server, so there are two timeout conditions, request timeout and response
timeout.

Request timeout
A request timeout occurs before the request has been forwarded to the CICS server.
The requested program was not called, and no server resources have been
updated.

This can happen for the following reasons:

10 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

|
|
|
|

|

v The call was intended to start, or be the whole of, a new LUW. The LUW is not
started, and no recoverable resources are updated.

v The call was intended to continue an existing LUW. The LUW continues, but no
recoverable resources are updated, and the LUW is still uncommitted.

v The call was intended to end an existing LUW. The LUW continues, no
recoverable resources are updated, and the LUW is still uncommitted.

Response timeout
A response timeout occurs after the request has been forwarded to the CICS server.
It can happen to a synchronous call, an asynchronous call, or to the reply
solicitation call that retrieves the reply from an asynchronous call.

This can happen for the following reasons:
v The call was intended to be the only call of a new LUW. The LUW was started,

but the user application cannot determine whether updates were performed, and
whether they were committed or backed out.

v The call was intended to end an existing LUW. The LUW has ended, but the
user application cannot determine whether updates were performed, and
whether they were committed or backed out.

v The call was intended to continue or to end an existing LUW. The LUW persists,
and changes to recoverable resources are still pending.

When an IPIC connection to CICS is used, the ECI timeout value can be set by the
client application or configured for the IPIC connection in the Gateway daemon.
When an EXCI connection to CICS is used, the ECI timeout value is controlled by
the TIMEOUT parameter in the EXCI options table DFHXCOPT.

Security in the ECI
The ECI uses conversation-level security based on the SNA LU 6.2 model.

ECI security involves authentication and authorization. During authentication,
checks are performed to ensure that the user ID and password or password phrase
information associated with an ECI call are valid. During authorization, a check is
performed on the CICS server to ensure that the authenticated user is allowed to
access the requested resource.

The user application can set the user ID and password or password phrase on an
ECI request for a conversation with a specific CICS server. These values override
any default values set for the CICS server connection.

IPIC support for ECI
IPIC connections do not support ECI State calls. If you are using local mode, IPIC
connections are not displayed in the list systems call. This is because the IPIC
information is passed using a URL and is not known in advance of the connection.
However, if you are using remote mode, you define your IPIC servers in the
configuration file (the URL function is not available for remote mode), and the
servers are displayed in the list systems call.

IPIC does not support the following ECI calls:
v ECI_STATE_ASYNC
v ECI_STATE_ASYNC_JAVA

Chapter 3. External Call Interface (ECI) 11

v ECI_STATE_CANCEL
v ECI_STATE_CHANGED
v ECI_STATE_IMMEDIATE
v ECI_STATE_SYNC
v ECI_STATE_SYNC_JAVA (deprecated)

ECI performance considerations when using COMMAREAs
The performance of ECI might be affected by the amount of data transmitted over
the network in the COMMAREA between the client application and the CICS
server.

To reduce the number of bytes transmitted over network protocols between the
Gateway daemon and the CICS server the CICS Transaction Gateway removes
trailing nulls from the COMMAREA before transmission and restores them again
after transmission, this is referred to as null stripping. Null stripping is transparent
to client application programs which always see the full-size COMMAREA.

The CICS server adds trailing nulls to the data received to extend it to the length
specified in Commarea_Length so that the server program always receives a full
COMMAREA. The CICS server also performs null stripping before transmitting the
COMMAREA back over the network.

To reduce the number of bytes transmitted between a Client application and the
Gateway daemon, functions are provided to set the length of data in the
COMMAREA that is to flowed to the CICS server, COMMAREA outbound length,
and to set the length of COMMAREA data returned from the Gateway daemon to
the client application, COMMAREA inbound length.

For JEE applications:
v the outbound COMMAREA length is set automatically by the CICS Transaction

Gateway to remove trailing nulls
v use the setReplyLength and getReplyLength methods of the ECIInteractionSpec

for the inbound COMMAREA length

For Java Client applications use the following methods:
v setCommareaOutboundLength
v setCommareaInboundLength
v getInboundDataLength

For ECI v2 applications use the CTG_ECI_PARMS parameter block fields:
v commarea_outbound_length
v commarea_inbound_length

For .NET applications use the EciRequest class fields:
v CommareaInboundLength
v CommareaOutboundLength

12 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Client
Application

CICS
TG on z/OS

CICS
Server

data nulls

data nulls

truncation to
COMMAREA
outbound length

COMMAREA
passed to
server application

COMMAREA
returned from
server application

null
padding

null
stripping

COMMAREA

EXCI

EXCI

Figure 3. COMMAREA data flow optimizations using EXCI

Chapter 3. External Call Interface (ECI) 13

Client
Application

CICS
TG

CICS
Server

data nulls

data nulls

truncation to
COMMAREA
outbound length

truncation to
COMMAREA
inbound length

COMMAREA
passed to
server application

COMMAREA
returned to
application

COMMAREA
returned from
server application

null
padding

null
padding

COMMAREA

null
stripping

null
stripping

Figure 4. COMMAREA data flow optimizations using IPIC

14 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Chapter 4. External Security Interface (ESI)

The External Security Interface (ESI) enables user applications to perform
security-related tasks such as the viewing and updating of user IDs and passwords
held by an external security manager (ESM), or the setting of default security
credentials used on CICS server connections.

ESI functions
The ESI allows a user application to call password management functions on an
attached CICS server.

I/O parameters on ESI calls
Information about the input and output parameters on ESI calls.

Input parameters

New password
The new password or password phrase for the specified user.

Current password
The current password or password phrase for the specified user.

Password
The password or password phrase to be set or verified for the specified
user

System
The name of a CICS server containing the user whose password or
password phrase is to be set, changed, or verified. If this value is not
specified the default CICS server is selected.

User ID
The ID of the user whose password or password phrase is to be set,
changed, or verified.

Output parameters

Expiry date
The date on which the password or password phrase will expire.

Expiry time
The time at which the password or password phrase will expire.

Invalid count
The number of times an invalid password or password phrase has been
entered for the specified user.

Last access date
The date on which the user ID was last accessed.

Last access time
The time at which the user ID was last accessed.

Last verify date
The date on which the password or password phrase was last verified.

© Copyright IBM Corp. 2000, 2013 15

Last verify time
The time at which the password or password phrase was last verified.

Using ESI to manage passwords
ESI provides a security management API which can be used to manage the user
IDs and passwords that the ECI uses.

The user application can perform the following functions:
v Verify that a password matches the password or password phrase recorded by

the CICS External Security Manager (ESM) for a specified user ID.
v Change the password or password phrase recorded by the CICS ESM for a

specified user ID.
v Determine if a user ID is revoked, or a password or password phrase has

expired.
v Obtain additional information about a verified user such as:

– When the password or password phrase is due to expire
– When the user ID was last accessed
– The date and time of the current verification
– How many unauthorized attempts there have been for this user since the last

valid access

To use the ESI interface, CICS Transaction Gateway must be connected to the CICS
server with IPIC. An ESM, such as Resource Access Control Facility (RACF®),
which is part of the z/OS Security Server, or an equivalent ESM, must also be
available to the CICS server.

16 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Chapter 5. Statistics APIs

The statistics APIs enable user applications to obtain runtime statistics on the
Gateway daemon. To use the statistics APIs, the Gateway daemon must be
configured with a statistics API protocol handler.

Statistical data overview
The statistics APIs allow a single-threaded or multithreaded user application to
access statistical data from one or more running Gateway daemons.

API functions

The APIs provide functions to:
v Connect to specific Gateway daemons.
v Disconnect from specific Gateway daemons.
v Obtain a set of statistical group IDs from a specific Gateway daemon.
v Obtain statistical IDs associated with one or more statistical group IDs from a

specific Gateway daemon.
v Obtain data for statistical IDs from a particular Gateway daemon.

The functions are grouped into five categories:
v Connection functions
v ID data retrieval functions
v Statistical data retrieval functions
v Result set manipulation functions
v Utility functions

API and protocol version control
The API version represents the programming interface available from the ctgstats
runtime library. The protocol version represents the set of responses that may be
returned by a connected Gateway daemon in response to a statistics API function
call. Comparison of compile time versus runtime values can be made to establish
compatibility.

A statistics API application, and the Gateway daemon providing the statistics,
might be from different versions of the CICS Transaction Gateway. API and
protocol version control helps ensure that a statistics API application can issue
meaningful requests to a CICS Transaction Gateway daemon, and get meaningful
responses in return. API and protocol versions have a format of four digits,
separated by the underscore character. For example: 1_0_0_0

Note: The API and protocol versions might look like the product version, but they
are not related. The statistics API can only be used to collect statistical data from
Gateway daemons at version 7.0 or higher.

A statistics API application can:
v Find the API version that it was compiled with by using the compile-time string

CTG_STAT_API_VERSION, defined in ctgstats.h.

© Copyright IBM Corp. 2000, 2013 17

v Find which API version is used at run time by a CICS Transaction Gateway
daemon, or Java statistics API by using the “getStatsAPIVersion” on page 30
function.

v Find the protocol version that it was compiled with by using the compile-time
string CTG_STAT_PROTOCOL_VER, defined in ctgstdat.h.

v Find which protocol version is used at run time by a CICS Transaction Gateway
daemon, by using the “openGatewayConnection” on page 25 or
“openRemoteGatewayConnection” on page 25 function.

API version

The major version number, first digit, of the statistics API version must match
between the application at compile time and ctgstats runtime library.

For example; if CTG_STAT_API_VERSION is 1_0_0_0 and the runtime function
getStatsAPIVersion returns 1_1_0_0 then the major version (1_x_x_x) matches.
Therefore the application is guaranteed to be runtime compatible with at least
those functions available for version 1_1_0_0.

If the major version numbers differ, runtime compatibility is not guaranteed and
API calls might fail.

Assuming that the major version number matches, then the minor version number
(second digit) of the statistics API version at application compile time must be the
lower than or equal to the ctgstats runtime library.

For example; if CTG_STAT_API_VERSION is 1_0_0_0 and the runtime function
getStatsAPIVersion returns 1_1_0_0 then the major version (1_x_x_x) matches, and
the minor version (x_0_x_x) used by the application is lower than the runtime
library. Therefore, the application is guaranteed to be runtime compatible because
it can only use those functions that are available at runtime version 1_0_0_0.

If the minor version number. second digit, of the statistics API version at
application compile time is greater than the ctgstats runtime library, then some
functions available at compile time will not be available at run time. The 3rd and
4th digits are reserved for IBM® service and maintenance usage.

Protocol version

The protocol version adheres to similar rules between compile time and run time
as the API Version. However, the protocol version represents the interface between
the compiled statistics application and the Gateway daemon connected at run time.

The major version number, first digit, of the protocol version must match between
the application at compile time and the connected Gateway daemon.

Assuming that the major version number matches, then the minor version number,
second digit, of the statistics API application at application compile time, must be
the greater than or equal to the minor version number returned by the connected
CICS Transaction Gateway daemon upon connection. If the minor version number
is lower than that of the connected Gateway daemon, then the statistics API
application might be unable to interpret all responses from function calls.

18 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Statistics C API
The statistics C API enables a C client application to request statistics.

Calling the C API
This section explains how applications call API functions.

Applications call C API functions defined in “C language header files,” and a
dynamic link library (DLL). Each function call returns an integer result code,
defined in the ctgstdat.h header file. A function that completes normally returns
the code CTG_STAT_OK. A function that needs to report a problem returns a negative
code, detailed in the ctgstdat.h header file.

The statistics C API does not provide logging messages. Runtime operation of the
C API functions can be monitored using trace facilities. Statistics C API tracing can
be enabled programatically with data written to stderr, or a specified file. C API
errors are reported to the calling application using an integer result code.

Statistics C API components
The statistics C API is made available to user applications by two C language
header files and a dynamic link library (DLL).

C language header files

Two platform-independent C language header files are provided for developing
user applications.

ctgstats.h defines the C API function calls and data types required to use the C
API functions.

ctgstdat.h defines the set of query return codes that might be seen by a statistical
user application. The set of query return codes can vary according to the statistics
protocol version provided by the CICS Transaction Gateway daemon.

Runtime DLL

The statistics C API runtime DLL is provided for each of the supported CICS
Transaction Gateway hardware platforms. It is supplied as a platform-specific DLL
or shared library. It must be available during the run time of the statistical user
application.

Sample code

A sample file ctgstat1.c is supplied. This provides a simple example for using the
statistics C API. For further details, see “C/Java statistics API samples” on page
114.

Runtime components
This section describes the runtime components.

Data set names and SMP/E types

On z/OS, the runtime DLL and header file are delivered by SMP/E. The details
are provided in the following table.

Chapter 5. Statistics APIs 19

Table 4. Data set names and SMP/E types

Deliverable Distribution Target Member Type

DLL hlq.ACTGMOD hlq.SCTGDLL CTGSTATS ++MOD

C Header hlq.ACTGINCL hlq.SCTGINCL CTGSTATS ++SRC

C Header hlq.ACTGINCL hlq.SCTGINCL CTGSTDAT ++SRC

C Sample hlq.ACTGSAMP hlq.SCTGSAMP CTGSTAT1 ++SRC

Sample JCL hlq.ACTGSAMP hlq.SCTGSAMP CTGSTJOB ++SRC

Sidedeck SMP/E generated hlq.SCTGSID CTGSTATS Not applicable

The DLL load module is link-edited during installation. When the SCTGDLL library
is added to the STEPLIB concatenation, user applications can use the statistics C
API. If the application uses implicit DLL loading, the sidedeck might be required
to complete the link-edit cycle.

Statistics C API program structure
Outline of a basic statistics C API program.

A basic statistics C API program typically has an outline similar to the example
later in this section.

Example

This pseudo-code program connects to a CICS Transaction Gateway daemon,
obtains the statistics IDs related to the "GD" resource group, obtains the current
values for the given "GD" related statistical IDs and finally iterates through the
returned values, writing out the details.

/* Create a connection to a local Gateway daemon */
openGatewayConnection(&gwyToken,port,&gwyProtocolVersPtr)

verify connected Gateway protocol level

/* Set the resource group id of interest */
queryString1="GD"

/* Obtain the list of associated statistical IDs */
getStatIdsByStatGroupId(gwyToken, queryString1, &resultSetToken)

/* Extract the returned IDs as a query string */
getIdQuery(resultSetToken,&queryString2)

/* Obtain the live statistical values for the given set IDs */
getStatsByStatId(gwyToken, queryString2, &resultSetToken)

/* Iterate over the result set, outputting */
/* the details of each result set element */

/* Obtain the first statistical result set element */
getFirstStat(resultSetToken, &statDataItem)

do
if statDataItem.queryElementRC == CTGSTATS_SUCCESSFUL_QUERY

/* output details of statDataItem */

20 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

endif
/* Obtain the next statistical result set element */
getNextStat(resultSetToken, &statDataItem)

until end-of-resultset

C API data types
Data types defined and used by the statistics API.

This information describes the main data types used by the statistics C API.

Gateway tokens
A Gateway token represents a single connection to a specific Gateway daemon.

When a connection to a Gateway daemon is made, all subsequent C API calls that
retrieve statistical data must include the Gateway token as a parameter.

The statistics C API handler in a Gateway daemon is restricted to five connection
threads. This means that a single Gateway daemon can only deal with five
connected statistics C API programs, or threads, at the same time.

A statistical C API program should avoid holding more than one connection to the
same Gateway daemon at the same time.

A statistical C API program can hold multiple Gateway tokens, but can only use
them on the thread that called the “openGatewayConnection” on page 25 or
“openRemoteGatewayConnection” on page 25 to retrieve the token.

A Gateway token type (CTG_GatewayToken_t) is defined in the “C language header
files” on page 19.

Query strings
A query string is an input parameter, specifying the statistical data to be retrieved.

A query string is an input parameter to statistical C API functions which provide a
result set token pointer. The string is a null-terminated, colon-separated list of IDs.
The IDs can be statistical group IDs, or statistical IDs. An empty query string "" is
interpreted as matching all IDs appropriate to the function call.

Query strings are of type (char *), and contain character data in the native
encoding. The null terminator is added implicitly when creating strings in C using
the "" characters.

The user application creates and manages the query string character buffer.

Where an C API function produces a data result set, the function “getIdQuery” on
page 28 can be used to obtain a query string suitable for input to another C API
call.

Example

A pseudo-code example showing the query string used to retrieve the Gateway
daemon status and all connection manager statistics is:
result = getStatsByStatId(gwyTok, "GD_CSTATUS:CM", &rsToken1;

Chapter 5. Statistics APIs 21

Result set tokens
A result set token is a reference to a set of results from a single statistics C API
function call.

If a statistics C API function calculates a set of data, the function provides a
reference to the result set. This reference is called a result set token. The result set
can contain either:
v ID data, including statistical group IDs or statistical IDs

or:
v Statistical data

A result set token is used to work with result set data. For example, a result set
token enables a user application to browse through the result set, or extract specific
details. The application can use functions such as “getFirstId” on page 28 or
“getNextStat” on page 29 to manipulate the result set data.

An “ID data” on page 23 type is populated by the “getFirstId” on page 28 and
“getNextId” on page 28 functions. A “Statistical data” on page 23 type is populated
by the “getFirstStat” on page 29 and “getNextStat” on page 29 functions. The data
types are used to access the data in the result sets, as described in “Correlating
results and error checking” on page 32.

Note: All ID data and statistical data is in character format, using the default
native string encoding.

Result set tokens returned by a statistics C API function are 'owned' by the C API.
The token is freed when either:
v The associated Gateway daemon connection is closed using the

“closeGatewayConnection” on page 26 function.

or
v The function “closeAllGatewayConnections” on page 26 is called.

The result set token returned by the “copyResultSet” on page 29 function is not
'owned' by the C API. The token can only be freed using the “freeResultSet” on
page 29 function.

Result set tokens 'owned' by the C API cannot be 'freed' using the “freeResultSet”
on page 29 function. The tokens must be freed using the
“closeGatewayConnection” on page 26 or “closeAllGatewayConnections” on page
26 functions.

Result sets which are C API-owned can only be manipulated on the thread which
obtained them. Result sets that were not created by C API calls can be manipulated
by any thread.

Working with multiple result sets:

Working with multiple result sets requires special attention.

Calling a statistics C API function produces a result set token. This token identifies
a result set owned by the statistics C API. The result set is also associated with the
Gateway identified by the gateway token used during the function call. This means
that each result set owned by the statistics C API is associated with a specific
Gateway connection. It is helpful to think of the gateway token and the
corresponding result set token as a pair.

22 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Tokens referring to C API-owned result sets can only be used by the thread which
created them. To create a result set token usable by any thread, call the
“copyResultSet” on page 29 function.

For example, an application using the same gateway token to make two separate C
API function calls will be given two logically different result set tokens. Since the
same gateway token was used for both calls, the different result set tokens will
iterate over the same result set. The result set will be the one returned by the last C
API function call.

This means that the result set identified by an result set token is only valid until
another C API call is made, specifying the same gateway token. The most recent C
API call overwrites the existing result set.

Use the “copyResultSet” on page 29 function to make a copy of a result set before
it is overwritten by another C API call. When the application finishes using the
copied result set, free the storage using the “freeResultSet” on page 29 function.

Example

In the following example code, two statistics C API calls are made. The same
Gateway token is used for both calls. Two separate addresses are supplied for the
result set tokens.
getStatsByStatGroupId(gwyTok, "", &rsTok1, "",);
/* Tasks after getStatsByStatGroupId function call. */
getStatsByStatId(gwyTok, "", &rsTok2, "",);
/* Tasks after getStatsByStatId function call. */

Using the same Gateway token both calls means that the result set pointed to by
&rsTok1 will be overwritten when the second C API call is made. The two separate
result set tokens &rsTok1 and &rsTok2 will iterate over the same result set.

If the result set obtained from the first C API call is still required later in the
application, take a copy of the result set by calling the “copyResultSet” on page 29
function.

ID data
An ID data structure maps an individual result returned from an ID C API
function.

The data type CTG_IdData_t is defined in the “C language header files” on page 19.
The data provides a name for individual results within statistical groups or
statistics.

Individual results can be accessed using the “getFirstId” on page 28 and
“getNextId” on page 28 functions.

CTG_IdData_t provides two fields, a character pointer and length, to enable access
to individual elements of an ID result set, as described in “Correlating results and
error checking” on page 32.

Statistical data
A statistical data structure maps an individual result returned from a statistics C
API function.

Chapter 5. Statistics APIs 23

The data type CTG_StatData_t is defined in the “C language header files” on page
19. The statistical data represents individual statistics, or name-value pairs.

Individual results can be accessed using the “getFirstStat” on page 29 and
“getNextStat” on page 29 functions.

CTG_StatData_t provides two fields, a character pointer and length, to enable
access to individual elements of a statistical result set. These elements are the
statistical ID and statistical value data, as described in “Correlating results and
error checking” on page 32.

Statistics C API trace levels
The CICS Transaction Gateway statistics C API provides several levels of
diagnostic trace information.

Trace levels

The CICS Transaction Gateway statistics C API can produce diagnostic trace
information, depending on the trace level setting.

Each level automatically includes all the detail provided by the lower levels. For
example, CTG_STAT_TRACE_LEVEL2 indicates that all events and exceptions will be
traced.

Table 5. Statistics C API Trace Levels

Trace level Output details

CTG_STAT_TRACE_LEVEL0 No trace output.

CTG_STAT_TRACE_LEVEL1 Exceptions only.

CTG_STAT_TRACE_LEVEL2 Events.

CTG_STAT_TRACE_LEVEL3 Entries and exits.

CTG_STAT_TRACE_LEVEL4 Debug information.

The default trace destination is stderr. Use the function “setAPITraceFile” on page
31 to choose a different trace destination.

C API functions
The statistics C API functions.

Many ID functions create a result set. A result set is over-written the next time an
ID function call is made using the same gateway token. This means an application
working with several result sets from the same Gateway connection at the same
time must take a local copy of each result set. To take a local copy of a result set,
use the “copyResultSet” on page 29 function.

For details of the return codes provided by the C API functions, see ctgstats.h in
the “C language header files” on page 19, or see the Statistics APIs.

Gateway daemon connection functions
This information describes the main functions provided in the statistics API for
connections to a Gateway daemon.

24 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/topic/com.ibm.cics.tg.doc/progde/statsapi.html

openGatewayConnection:

This function establishes a connection to a local Gateway daemon statistics
protocol handler, using the specified port number, a pointer to a gateway token,
and the address of a char pointer for the statistics C API protocol version.

Detail

This function is called with an integer for the target port number, a pointer to a
gateway token, and the address of a char pointer to hold a string describing the
version of the statistics C API protocol provided by the target gateway daemon.

The function creates a connection to a local Gateway daemon statistics protocol
handler using the specified port number.

When the call returns, the gateway token represents the connection to the specified
Gateway daemon. The token is required to interact with that Gateway daemon in
subsequent C API calls.

The char pointer points to a null-terminated character string. The C API owns the
storage for the protocol version character array, and the C API program does not
free this storage.

The user application must check that the version of the statistics C API protocol
provided by the target Gateway daemon is at least the same as major version
number in the compile-time string CTG_STAT_PROTOCOL_VER. This compile-time
string is defined in ctgstdat.h, described in the “C language header files” on page
19 section. The major version number is the first digit in the compile-time string.

openRemoteGatewayConnection:

This function establishes a connection to a remote Gateway daemon statistics
protocol handler, using the specified host name, port number, a pointer to a
gateway token, and the address of a char pointer for the statistics C API protocol
version.

Detail

This function is called with:
v A character pointer for the host name. This is a null terminated string containing

the IP address or host name of the machine running the Gateway daemon.
v An integer for the target port number.
v A pointer to a gateway token.
v The address of a char pointer to hold a string describing the version of the

statistics C API protocol provided by the target gateway daemon.

The function creates a connection to a remote Gateway daemon statistics protocol
handler using the specified port number.

When the call returns, the gateway token represents the connection to the specified
Gateway daemon. The token is required to interact with that Gateway daemon in
subsequent C API calls.

Chapter 5. Statistics APIs 25

The char pointer points to a null-terminated character string. The C API owns the
storage for the protocol version character array, and the C API program does not
free this storage.

The user application must check that the version of the statistics C API protocol
provided by the target Gateway daemon is at least the same as major version
number in the compile-time string CTG_STAT_PROTOCOL_VER. This compile-time
string is defined in ctgstdat.h, described in the “C language header files” on page
19 section. The major version number is the first digit in the compile-time string.

closeGatewayConnection:

This function closes a connection to a local Gateway daemon statistics protocol
handler, using the gateway token provided.

Detail

This function is called with a pointer to a gateway token. The function closes the
connection to the local or remote Gateway daemon statistics protocol handler
identified by the gateway token. Any resources associated with the connection,
including result sets, are freed, and result set tokens obtained with the specified
gateway token are no longer valid.

When the call returns, the gateway token pointer is set to null, showing that it is
no longer valid.

closeAllGatewayConnections:

This function releases all resources owned by the statistics C API, including any
open Gateway daemon connections.

Detail

An application can use this function as part of a typical shutdown. The function
can also be used in the event of a severe error, for example where some form of
controlled shutdown is required but references to gateway tokens have been lost.

Copied result sets are not be freed by this function, because the C API does not
own or maintain a record of copied result sets.

ID functions
This information describes the ID functions provided in the statistics C API.

getResourceGroupIds:

This function returns a result set token, representing the set of resource group IDs
currently available for the specified Gateway daemon.

Detail

This function is called with a gateway token and a result set token pointer. The
result set returned can be parsed with functions “getFirstId” on page 28 and
“getNextId” on page 28, or used to generate a query string with “getIdQuery” on
page 28.

26 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Depending on when “getResourceGroupIds” on page 26 is called, dynamic
resource groups for a specific CICS server might not be returned in the list. The
dynamic list of server resource group IDs can be obtained directly via the
appropriate resource group statistical ID.

getStatIds:

This function returns a result set token, representing the set of all statistical IDs
currently available for the specified Gateway daemon.

Detail

This function is called with a gateway token and a result set token pointer. The
result set created can be parsed with functions “getFirstId” on page 28 and
“getNextId” on page 28, or used to generate a query string with “getIdQuery” on
page 28.

getStatIdsByStatGroupId:

This function returns a set of statistical IDs associated with the statistical group IDs
supplied in the query string, for the specified Gateway daemon.

Detail

This function is called with a gateway token, a query string of statistical group IDs,
and a result set token pointer. The result set created can be parsed with functions
“getFirstId” on page 28 and “getNextId” on page 28, or used to generate a query
string with “getIdQuery” on page 28.

Retrieving statistical data functions
This information describes the data retrieval functions provided in the statistics C
API.

getStats:

This function creates a result set token representing the set of all available
statistical name-value pairs for the specified Gateway daemon.

Detail

This function is called with a gateway token and a result set token pointer. The
result set created can be parsed with functions “getFirstStat” on page 29 and
“getNextStat” on page 29, or used to generate a query string with “getIdQuery” on
page 28.

getStatsByStatId:

This function creates a result set token. The token represents the set of name-value
pairs that is generated when a query string of statistical IDs is applied to the
specified Gateway daemon.

Detail

This function is called with a gateway token, a query string of statistical IDs, and a
result set token pointer. The result set created can be parsed with functions

Chapter 5. Statistics APIs 27

“getFirstId” and “getNextId,” or used to generate a query string with
“getIdQuery.”

getStatsByStatGroupId:

This function creates a result set token. The token represents the set of name-value
pairs that is generated when a query string containing statistical group IDs is
applied to the specified Gateway daemon.

Detail

This function is called with a gateway token, a query string of statistical group IDs,
and a result set token pointer. The result set returned can be parsed with functions
“getFirstStat” on page 29 and “getNextStat” on page 29, or used to generate a
query string with “getIdQuery.”

Result set functions
This information describes the result set functions provided in the statistics C API.

getIdQuery:

This function provides a pointer to a character array, containing the ID result set.

Detail

This function is called with a result set token pointer, and the address of a
character pointer. The function sets the pointer to point to a character array. This
character array contains the ID result set, formatted for direct use as a query string.

The storage for the character array is created by the C API. The C API owns the
storage for the character array, and the C API program does not free this storage.

getFirstId:

This function populates a CTG_IdData_t variable with details of the first ID in a
result set.

Detail

This function is called with an ID result set token. The function populates a
CTG_IdData_t variable with details of the first ID in the result set. If there are no
further IDs in the result set, the CTG_IdData_t variable is unchanged.

For more information on the CTG_IdData_t data type, see “ID data” on page 23

getNextId:

This function populates a CTG_IdData_t variable with details of the next ID in a
result set.

Detail

This function is called with an ID result set token. The function populates a
CTG_IdData_t variable with details of the next ID in the result set. If there are no
further IDs in the result set, the CTG_IdData_t variable is unchanged.

28 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

For more information on the CTG_IdData_t data type, see “ID data” on page 23

getFirstStat:

This function populates a CTG_StatData_t variable with details of the first ID in a
result set.

Detail

This function is called with a statistical result set token. The function populates a
CTG_StatData_t variable with details of the first ID in the result set. If there are no
further IDs in the result set, the CTG_StatData_t variable is unchanged.

For more information on the CTG_StatData_t data type, see “Statistical data” on
page 23.

getNextStat:

This function populates a CTG_StatData_t variable with details of the next ID in a
result set.

Detail

This function is called with a statistical result set token. The function populates a
CTG_StatData_t variable with details of the next ID in the result set. If there are no
further IDs in the result set, the CTG_StatData_t variable is unchanged.

For more information on the CTG_StatData_t data type, see “Statistical data” on
page 23.

copyResultSet:

This function creates a copy of a result set. The copy is owned by the calling
application.

Detail

An application might need to make several C API calls on a result set. This is
useful because some C API calls overwrite an existing result set with new results.
A local copy of the result set is created using this function.

The copyResultSet function takes two result set tokens. The source token refers to
the original result set. The target token refers to a copy of the result set. The copy
is created by this function. The calling application owns the target result set.

There is no structural difference between the original and the target result sets.
“Result set functions” on page 28 work with C API-owned result sets or
application-owned result sets.

When the application finishes using the copied result set, free the storage using the
“freeResultSet” function.

freeResultSet:

This function frees the storage used by an application-owned result set.

Chapter 5. Statistics APIs 29

Detail

When an application finishes using a result set, the storage must be freed. This
function takes a pointer to a result set token, frees the storage, and sets the pointer
to null.

Use this function only for result sets created using the “copyResultSet” on page 29
function. If the result set is owned by the statistics C API, an attempt to free the
result set returns an error.

Utility functions
This information describes the utility functions provided in the statistics C API.

getStatsAPIVersion:

This function provides version information about the statistics C API.

Detail

This function takes the address of a character pointer to be modified. The function
modifies the character pointer to point to a null-terminated character array. The
string represents the version of the active statistics DLL. Version information is
described in “API and protocol version control” on page 17. The C API owns the
storage for the character array, and the C API program does not free this storage.

getAPITraceLevel:

This function provides information about the current trace status of the statistics C
API.

Detail

This function takes a pointer to a local int variable. The function sets the variable
to the current trace level of the statistics C API.

The levels are defined in the “C language header files” on page 19. Valid values
are:
v CTG_STAT_TRACE_LEVEL0

v CTG_STAT_TRACE_LEVEL1

v CTG_STAT_TRACE_LEVEL2

v CTG_STAT_TRACE_LEVEL3

v CTG_STAT_TRACE_LEVEL4

For further information on trace levels, see “Statistics C API trace levels” on page
24.

setAPITraceLevel:

This function sets the trace level of the statistics C API.

Detail

This function takes an int value. The function sets the trace level of the C API to
this value.

30 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

The default trace destination is stderr. Use the function “setAPITraceFile” to
choose a different trace destination.

The status values are defined in the “C language header files” on page 19. Valid
values are:
v CTG_STAT_TRACE_LEVEL0

v CTG_STAT_TRACE_LEVEL1

v CTG_STAT_TRACE_LEVEL2

v CTG_STAT_TRACE_LEVEL3

v CTG_STAT_TRACE_LEVEL4

For further information on trace levels, see “Statistics C API trace levels” on page
24.

setAPITraceFile:

This function sets the destination for statistics C API trace details.

Detail

This function takes a character pointer to a null-terminated string. The string is the
file name of the intended trace destination.

If the file name already exists, trace data is appended to the file.

If the file name cannot be opened for writing, trace data is sent to stderr.

Passing a null pointer to this function sets the trace destination back to stderr.

dumpResultSet:

This function outputs a result set in a printable form.

Detail

This function takes a result set token. The function writes the contents of the result
set to the trace destination, regardless of the current trace level. The contents are
written using printable characters.

This function is typically used for debug purposes.
Related reference:
“Statistics C API trace levels” on page 24
The CICS Transaction Gateway statistics C API provides several levels of
diagnostic trace information.

dumpState:

This function outputs internal information about the C API.

Detail

This function writes internal information about the C API to the trace destination.

This function is normally used for debug purposes.

Chapter 5. Statistics APIs 31

Correlating results and error checking
Individual results within a result set from a statistics C API function call can be
correlated back to the original query string data.

ID or statistical results within a result set from an C API call can be correlated back
to the original query string data using the struct elements queryElementPtr and
queryElementLen. The status of the result is given by queryElementRC. These return
codes are defined in the ctgstdat.h header file.

After a call to “getFirstId” on page 28 or “getNextId” on page 28, the CTG_IdData_t
elements query and queryLen represent the specific ID in the query string
associated with the result.

After a call to “getFirstStat” on page 29 or “getNextStat” on page 29, the
CTG_StatData_t elements query and queryLen represent the specific statistic in the
query string associated with the result.

If the specific ID in the query string is in error, the struct element queryElementRC
will have a non-zero value, defined in the ctgstdat.h header file.

Statistics Java API
The statistics Java API enables a Java-based client application to request statistics.

Calling the Java API

Applications can collect statistics from a Gateway daemon using the Java classes in
the com.ibm.ctg.client.stats package. The classes are supplied in a the ctgstats.jar
and can be used with Gateway daemons from V7.1 onwards. A sample file
Ctgstat1.java is supplied that provides a simple example for using the Java
statistics API.

Packaging restrictions with ctgstats.jar

If an application needs to use classes from both the com.ibm.ctg.client.stats
package provided by ctgstats.jar and another API package supplied in ctgclient.jar,
both jar files must be on the class path and must be from the same product version
and release. The implication is that such an application can only connect to a
Gateway daemon at the same version or higher for non-statistical requests.

The ctgstats.jar file can be used in isolation for standalone monitoring
applications. ctgstats.jar is compatible with ctgclient.jar provided both jar
files are from the same version of CICS TG. Mixing ctgstats.jar and
ctgclient.jar that are from different versions of CICS TG is not supported.

Sample code

A sample file ctgstat1.java is supplied that provides a simple example for using
the statistics API.

Java API classes

The Java API classes are responsible for connecting and making statistical requests
to a statistics port provided by the Gateway daemon. The constructors allow the
destination to be supplied by the application.

32 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

The statistic resource groups are available through the getResourceGroupIds method.
An IdResultSet object is returned that contains a collection of IdData objects that
hold the names of the resource groups. You can iterate over the IdResultSet to
search the resource groups available.

If the names of the available statistics are required use the getStatIds method. This
method returns an IdResultSet, functioning the same as getResourceGroupIds.

You can retrieve actual statistic values using the getStats method. This method
returns a StatResultSet object that contains a collection of StatData objects. These
StatData objects contain both the statistic names, and their current values. You can
iterate over the StatResultSet to search the statistics available from the request.

If a result set returned has the return code set you can map this to the reason
using the getReturnString method of the ResponseData class.

Tracing

You can enable statistics API tracing programmatically using the Java tracing
options, see “Tracing in Java client programs” on page 43. Java API errors are
reported to the calling application.
Related information:
Package com.ibm.ctg.client.stats

Chapter 5. Statistics APIs 33

34 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Chapter 6. Programming in Java

This information provides an introduction to writing Java client programs for the
CICS Transaction Gateway.

Signing Applets and Web Start Applications
All Applets and Web Start applications must be signed with a certificate from a
trusted authority to run in a Java 7 environment.

The default security configuration for Java 7 running in a browser changes
significantly in the January 2014 CPU (Oracle 7u51, IBM 7 SR6-FP1). When running
in these Java environments:
v All Applets and Web Start applications must be signed with a certificate from a

trusted authority. Self-signed certificates will not be accepted.
v All JARS are required to have the Permissions attribute set in the JAR Manifest.

The ctgclient.jar file shipped with APAR PM99430 (PTF UI11855) has the
Permissions attribute set and is signed with trusted CA certificates from Symantec:
v Symantec Root CA for all SSL and Code Signing products enrolled after October

10, 2010 https://knowledge.verisign.com/support/code-signing-support/
index?page=content&actp=CROSSLINK&id=AR1553.

v Symantec Intermediate CA Certificates: Code Signing Certificate
https://knowledge.verisign.com/support/code-signing-support/
index?page=content&id=AR1739.

Any other JARs running as part of Applets and Web Start applications will also
need to have the Permissions attribute set in the JAR Manifest and be signed with
a certificate from a trusted authority.

Overview of the programming interface for Java
The CICS Transaction Gateway enables Java client applications to communicate
with programs on a CICS server by providing base classes for the External Call
Interface (ECI) and the External Security Interface (ESI).

The following list of classes are the basic classes provided with the CICS
Transaction Gateway. For a full description of all the classes and methods
discussed in this section, see the Javadoc supplied with the CICS Transaction
Gateway.

com.ibm.ctg.client.JavaGateway
This class is the logical connection between a program and a CICS
Transaction Gateway. You need a JavaGateway object for each CICS
Transaction Gateway that you want to send requests to.

com.ibm.ctg.client.ECIRequest
This class contains the details of an ECI request to the CICS Transaction
Gateway.

com.ibm.ctg.client.ESIRequest
This class contains the details of an ESI request to the CICS Transaction
Gateway.

© Copyright IBM Corp. 2000, 2013 35

|

|
|

|
|
|

|
|

|

|
|

|
|
|

|
|
|

|
|
|

https://knowledge.verisign.com/support/code-signing-support/index?page=content&actp=CROSSLINK&id=AR1553
https://knowledge.verisign.com/support/code-signing-support/index?page=content&actp=CROSSLINK&id=AR1553
https://knowledge.verisign.com/support/code-signing-support/index?page=content&id=AR1739
https://knowledge.verisign.com/support/code-signing-support/index?page=content&id=AR1739

Writing Java client applications
Before a Java client application can send a request to the CICS server, it must
create and open a JavaGateway object. The JavaGateway object is a logical
connection between your application and the Gateway daemon when the
application is running in remote mode. If a Java client application is running in
local mode, the JavaGateway is a connection between the application and the CICS
server, bypassing the Gateway daemon.

When the JavaGateway is open, the Java client application can flow requests to the
CICS server using the flow method of the JavaGateway. When there are no more
requests for the CICS Transaction Gateway, the Java client application closes the
JavaGateway object.

Use one of the constructors provided to create a JavaGateway. You must specify
the protocol you are using, and the network address and port number of the
remote Gateway daemon. You can specify this information either by using the
setAddress, setProtocol and setPort methods, of the JavaGateway class, or by
providing all the information in URL form: Protocol://Address:Port. If you specify
a local connection, you must specify a URL of local: You can use the setURL
method or pass the URL into one of the JavaGateway constructors.

Note: The IP address can be in IPv6 format.

The JavaGateway supports the following protocols :
v TCP/IP
v SSL
v Local

There are several constructors available for creating a JavaGateway. The default
constructor creates a JavaGateway with no properties. You must then use the set
methods to set the required properties and the open method to open the Gateway.
There are other constructors which set different combinations of properties and
open the Gateway for you.

SSL cipher suites in Java client applications
Cipher suites define the key exchange, data encryption, and hash algorithms used
for an SSL session between a client and server.

Cipher suites define the key exchange, data encryption, and hash algorithms used
for an SSL session between a client and server. During the SSL handshake, both
sides present the cipher suites that they are able to support and the strongest one
common to both sides is selected. In this way, you can restrict the cipher suites
that a Java client application presents. CICS Transaction Gateway uses cipher suites
provided by the Java runtime environment for the SSL protocol. The cipher suites
available to be used are dependant on the Java version. See the documentation
supplied with your Java runtime environment for valid cipher suites.

Restricting cipher suites for a Java client application

To restrict the cipher suites used by a JavaGateway object, use the
setProtocolProperties() method to add the property
JavaGateway.SSL_PROP_CIPHER_SUITES to the properties object passed to it. The
value of the property must contain a comma-separated list of the cipher suites that
the application is restricted to using.

36 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

For example:
Properties sslProps = new Properties();
sslProps.setProperty(JavaGateway.SSL_PROP_KEYRING_CLASS, strSSLKeyring);
sslProps.setProperty(JavaGateway.SSL_PROP_KEYRING_PW, strSSLPassword);
sslProps.setProperty(JavaGateway.SSL_PROP_CIPHER_SUITES,

"SSL_RSA_WITH_NULL_SHA");
javaGatewayObject = new JavaGateway(strUrl, iPort, sslProps);

JavaGateway security
When you connect to a remote CICS Transaction Gateway, resources allocated to a
particular connection, and identifiers specified on the request objects on a
particular connection, are available only to that connection.

If you specify the local: protocol, all JavaGateways that are created in the same
JVM, that is, the same process, have access to each other's allocated resources or
specified identifiers.

Making ECI calls from a Java client program
This section describes how to run a program on a CICS server using ECI calls from
a Java client application.

Use the com.ibm.ctg.client.ECIRequest base class and the JavaGateway flow
method to pass details of an ECI request to CICS Transaction Gateway. The
following table shows Java objects corresponding to the ECI terms described in
“I/O parameters on ECI calls” on page 6.

Table 6. ECI terms and corresponding Java objects

ECI term Java object.field or object.method()

Abend code ECIRequest.Abend_Code

Channel ECIRequest.setChannel(channel)

See “Introduction to channels and
containers” on page 5.

COMMAREA ECIRequest.Commarea

See “ECI performance considerations when
using COMMAREAs” on page 12.

ECI timeout ECIRequest.setECITimeout(short)

See “Timeout of the ECI request” on page
10.

LUW control ECIRequest.Extend_Mode

See “Program link calls” on page 7.

LUW identifier ECIRequest.Luw_Token

See “Managing logical units of work” on
page 8.

Message qualifier ECIRequest.getMessageQualifier() and
ECIRequest.setMessageQualifier()

See “Retrieving replies from asynchronous
ECI requests” on page 9.

Chapter 6. Programming in Java 37

||
|

|
|

Table 6. ECI terms and corresponding Java objects (continued)

ECI term Java object.field or object.method()

Password or password phrase ECIRequest.Password

See “Security in the ECI” on page 11.

Program name ECIRequest.Program

Server name ECIRequest.Server

TPNName ECIRequest.Call_Type = ECI_SYNC_TPN or
ECI_ASYNC_TPN and ECIRequest.Transid

See “ECI and CICS transaction IDs” on page
10.

TranName ECIRequest.Call_Type = ECI_SYNC or
ECI_ASYNC and ECIRequest.Transid

See “ECI and CICS transaction IDs” on page
10.

User ID ECIRequest.Userid

See “Security in the ECI” on page 11.

Linking to a CICS server program
A link to a CICS program is made using an ECIRequest constructor to set the
required parameters for the ECI call.

You can either use the default constructor which sets all parameters to their default
values, or one of the other constructors which allow you to set different
combinations of parameters. Place any data to be passed to the server program in a
COMMAREA or container.

You can create ECI requests for synchronous program link calls by setting the
Call_Type field to ECI_SYNC or ECI_SYNC_TPN. You can create ECI requests for
asynchronous program link calls by setting the Call_Type field to ECI_ASYNC or
ECI_ASYNC_TPN. The ECI_SYNC and ECI_ASYNC call types cause the Transid field to be
used as TranName, and the ECI_SYNC_TPN and ECI_ASYNC_TPN call types cause the
Transid field to be used as TPNName.

If you use the ECI_ASYNC or ECI_ASYNC_TPN call type with CICS Transaction
Gateway for z/OS, you must use the Callbackable interface.

Creating Java channels and containers for ECI calls
You can use channels and containers when you connect to CICS using the IPIC
protocol. You must construct a channel before it can be used in an ECIRequest.
1. Add the following code to your application program, to construct a channel to

hold the containers:
Channel myChannel = new Channel("CHANNELNAME");

2. You can add containers with a data type of BIT or CHAR to your channel. Here
is a sample BIT container:

38 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

byte[] custNumber = new byte[]{0,1,2,3,4,5};
myChannel.createContainer("CUSTNO", custNumber);

And a sample CHAR container:
String company = "IBM";
myChannel.createContainer("COMPANY", company);

3. The channel and containers can now be used in an ECIRequest, as the example
shows:
ECIRequest eciReq = new ECIRequest("CICSA", "USERNAME", "PASSWORD",
"CHANPROG", channel, ECIRequest.ECI_NO_EXTEND, 0);
jgateway.flow(eciReq);

4. When the request has completed, you can retrieve the contents of the
containers in the channel by interpreting the type, for example:
Channel myChannel = eciReq.getChannel();

for(Container container: myChannel.getContainers()){
System.out.println(container.getName());

if (container.getType() == ContainerType.BIT){
byte[] data = container.getBITData();

}
if (container.getType() == ContainerType.CHAR){

String data = container.getCHARData();
}

}

Managing an LUW
Set the extend mode to ECI_EXTENDED if the ECI call is part of an extended
LUW. If the call is the last, or only call for the LUW, the extend mode must be
ECI_NO_EXTEND, ECI_COMMIT or ECI_BACKOUT.

Retrieving replies from asynchronous requests
Replies to asynchronous requests can be retrieved by using callbacks or reply
solicitation calls.

Callbacks
ECIRequest supports callback objects. A callback object, which must implement the
Callbackable interface, receives the results of the flow via the setResults method.
When the results have been applied, a new thread is started to execute the run
method.

If you specify a callback object for a synchronous call the results are passed to your
Callbackable object as well as to your ECIRequest object in the flow request.

Reply solicitation calls
You can retrieve asynchronous replies using message qualifiers and reply
solicitation calls.

Turn the feature on by invoking the method setAutoMsgQual(true) on your
ECIRequest object. This will assign a message qualifier that is unique on all
asynchronous requests (ECI_ASYNC, ECI_ASYNC_TPN, ECI_STATE_ASYNC,
ECI_STATE_ASYNC_JAVA), when the request is flowed. Use this message qualifier
to retrieve replies when you use the ECI_GET_SPECIFIC_REPLY and
ECI_GET_SPECIFIC_REPLY_WAIT call types.

For remote connections you cannot get replies on a different connection to the one
that flowed the original request with a message qualifier.

Chapter 6. Programming in Java 39

If you use ASYNC calls with message qualifiers, you might have to pass a user ID
and password when you retrieve the reply with one of the various GET_REPLY
call types. The user ID and password are not used to validate whether the reply
can be retrieved; they are passed to the Gateway to hold in case security is
required to clean up (BACKOUT) an LUW if the connection is lost while the server
program is still running.

For a local connection, the message qualifier must be unique for each request,
although this is not enforced. Provided the JavaGateways are within the same
JVM, any connection can get a message using a message qualifier, even if the
request was flowed over a different connection. However, it is recommended that
you use automatic message qualifier generation:
v To avoid problems resulting from reusing the same message qualifier
v To allow you to switch your application between local and remote connection

IPIC connections do not support asynchronous requests using message qualifiers
from Java clients. Java clients that perform asynchronous requests using IPIC
connections must use callbacks.

ECI timeouts
Java methods cannot be used for setting ECI timeout values in some situations.

When an EXCI connection to CICS is used by an ECI application either through a
Gateway daemon or in local mode, you cannot use the methods getECITimeout(),
or setECITimeout(). You can set the TIMEOUT parameter in the EXCI options table
DFHXCOPT.

See “Timeout of the ECI request” on page 10

ECI return codes and server errors
This section describes how the return codes from the EXCI are returned to the user
of the ECIRequest object.

The following table shows how EXCI return codes map to ECI return codes. The
EXCI return codes are documented in the CICS External Interfaces Guide.

Table 7. EXCI return codes and ECI return codes

EXCI return codes ECI symbolic names/return codes rc

201, 203 ECI_ERR_NO_CICS –3

202 ECI_ERR_RESOURCE_SHORTAGE –16

401, 402, 403, 404, 410, 411,
412, 413, 418, 419, 421

ECI_ERR_SYSTEM_ERROR –9

422 ECI_ERR_TRANSACTION_ABEND –7

423 ECI_ERR_SECURITY_ERROR –27

601, 602, 603, 604, 605, 606,
607, 608, 621, 622, 623, 627,
628

ECI_ERR_SYSTEM_ERROR –9

609 ECI_ERR_SECURITY_ERROR –27

624 ECI_ERR_REQUEST_TIMEOUT –5

40 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

EXCI support
Version 2 of the EXCI is supported, and it provides support for eci_transid and
resolves previous problems with ASCII/EBCDIC conversion.

If you use EXCI Version 2 and eci_tpn is specified on the ECI request, then the
definition of the user mirror transaction must now specify PROGRAM(DFHMIRS),
regardless of whether the transaction is defined as local or remote.

EPI and z/OS
The EPI classes are not available for z/OS. If you want to run transactions in the
manner of the EPI, use the ECI and set up a request for DFHWBTTA. This is
described in the CICS Internet Guide.

Making ESI calls from a Java client program
Use the ESIRequest base class for password management.

The following table shows Java objects corresponding to the ESI terms listed in
“I/O parameters on ESI calls” on page 15.

Table 8. ESI terms and corresponding Java objects

ESI term Java object

Current password ESIRequest.setCurrentPassword()

New password ESIRequest.setNewPassword()

Server name ESIRequest.setServer()

User ID ESIRequest.setUserid()

Verifying a password using ESI

Use the verifyPassword method, passing the current password, user ID and server
name to verify a password.

Changing a password using ESI

Use the changePassword method, passing the current password, new password,
user ID and server name to change a password.

Verifying a password using ESI
Use the verifyPassword method, passing the current password, user ID and server
name to verify a password.

Changing a password using ESI
Use the changePassword method, passing the current password, new password,
user ID and server name to change a password.

Compiling and running a Java client application
Issues to consider when compiling and running a Java client application include
performance, the Java class path and whether or not you are running a Web
browser on the same machine as CICS Transaction Gateway.

Chapter 6. Programming in Java 41

Setting stack and heap sizes
There are several memory allocation issues to consider when you run Java client
applications.

The Java Virtual Machine (JVM) allocates a fixed size of stack space for each
running thread in an application. You can usually control the amount of space that
Java allocates by setting limits on the following sizes:
v The native stack size, allocated when running native JIT (Just-In-Time) compiled

code.
v The Java stack size, allocated when running Java Bytecode.
v The initial Java heap size.
v The maximum Java heap size.

How you set these limits depends on your JVM. See your Java documentation for
more information.

For information on setting the Java heap size for the Gateway daemon see Setting
Gateway daemon JVM options.

Setting up the CLASSPATH
Before you write any Java client programs, update the CLASSPATH environment
variable to include the jar files supplied with CICS Transaction Gateway.
CLASSPATH = <install_path>/classes/ctgclient.jar;

<install_path>/classes/ctgserver.jar

The ctgserver.jar file is required in CLASSPATH only for JavaGateways using the
local URL.

Unable to load class that supports TCP/IP
If Java attempts to use class files from the local file system, this contravenes
security rules and generates an exception.

Symptom

The following error occurs when running applications:

java.io.IOException: CTG6664E Protocol tcp not supported

Probable cause

You are using a Web browser and CICS Transaction Gateway on the same
workstation, and the ctgclient.jar and ctgserver.jar are referenced in the
CLASSPATH setting.

Java searches the CLASSPATH environment variable before downloading classes
across the network. If the required class is local, Java attempts to use it. However,
use of class files from the local file system contravenes the application security
rules, and generates an exception.

Action

Edit the CLASSPATH setting to remove ctgclient.jar and ctgserver.jar.

42 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/topic/com.ibm.cics.tg.doc/ctgunx/set_jvm_options.html
http://pic.dhe.ibm.com/infocenter/cicstgmp/v9r0/topic/com.ibm.cics.tg.doc/ctgunx/set_jvm_options.html

Problem determination for Java client programs
Use tracing to help determine the cause of any problems when running Java
clients.

Tracing in Java client programs
You can control tracing in Java client programs by issuing various calls and by
setting properties. Ideally applications should implement an option that activates
trace.

Calling the com.ibm.ctg.client.T trace class

Here is an example of how to call this class from within a user application:
if (getParameter("trace") != null)
{

T.setOn(true);
}

where trace is a startup parameter that can be set on the user program.

Setting the gateway.T trace system property

Here is an example of how to set this property:
java -Dgateway.T=on com.usr.smp.test.testprog1

This example specifies full debug trace for testprog1.

For more information on the use of system properties see your Java
documentation.

Standard trace

This is the standard option for application tracing. By default, it displays only the
first 128 bytes of any data blocks (for example the commarea, or network flows).
This trace level is equivalent to the Gateway trace set by the ctgstart –trace
option.

com.ibm.ctg.client.T call: T.setOn (true/false)

System property: gateway.T.trace=on

Full debug trace

This is the debugging option for application tracing. By default, it traces out the
whole of any data blocks. The trace contains more information about the CICS
Transaction Gateway than the standard trace level. This trace level is equivalent to
the Gateway debug trace set by the ctgstart –x option.

com.ibm.ctg.client.T call: T.setDebugOn (true/false)

System property: gateway.T=on

Exception stack trace

This is the exception stack option for application tracing. It traces most Java
exceptions, including exceptions which are expected during typical operation of

Chapter 6. Programming in Java 43

the CICS Transaction Gateway. No other tracing is written. This trace level is
equivalent to the Gateway stack trace set by the ctgstart –stack option.

com.ibm.ctg.client.T call: T.setStackOn (true/false)

System property: gateway.T.stack=on

Additional options for configuring trace

You can also configure additional options for trace, including: output destination,
data block size, dump offset, and whether or not to include timestamps. Use these
options, in addition to one of the directives, to activate trace. For example, the
following command activates standard trace, and also sets the maximum size of
any data blocks to be dumped to 20 000 bytes:
java -Dgateway.T.trace=on -Dgateway.T.setTruncationSize=20000

Output destination

com.ibm.ctg.client.T call: T.setTFile(true,filename)
System property: gateway.T.setTFile=filename

Usage: The value filename specifies a file location for writing of trace output.
This is as an alternative to the default output on stderr. Long file names must
be nested within quotation marks, for example: "trace output file.log"
Example: java -Dgateway.T.trace=on -Dgateway.T.setTFile="trace output
file.log"

Data block size

com.ibm.ctg.client.T call: T.setTruncationSize(number)
System property: gateway.T.setTruncationSize=number

Usage: The value number specifies the maximum size of any data blocks that
will be written in the trace. Any positive integer is valid. If you specify a value
of 0, then no data blocks will be written in the trace. If a negative value is
assigned to this option the exception java.lang.IllegalArgumentException will be
raised.
Example: java -Dgateway.T.trace=on -Dgateway.T.setTruncationSize=20000

Dump offset

com.ibm.ctg.client.T call: T.setDumpOffset(number)
System property: gateway.T.setDumpOffset=number

Usage: The value number specifies the offset from which displays of any data
blocks will start. If the offset is greater than the total length of data to be
displayed, an offset of 0 will be used. If a negative value is assigned to this
option the exception java.lang.IllegalArgumentException will be raised.
Example: java -Dgateway.T.trace=on -Dgateway.T.setDumpOffset=100

Display timestamps

com.ibm.ctg.client.T call: T.setTimingOn (true/false)
System property: gateway.T.timing=on
Specifies whether or not to display timestamps in the trace.
Example: java -Dgateway.T.trace=on -Dgateway.T.setTimingOn="true"

44 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Security for Java client programs
CICS Transaction Gateway provides the Java classes for implementing security.
Java provides the Security Manager.

CICS Transaction Gateway security classes
The CICS Transaction Gateway provides the following classes (security exits) for
implementing security.

com.ibm.ctg.security.JSSEServerSecurity
Use this interface to allow the exposure of of X.509 Client Certificates when
using the JSSE protocol.

See your JSSE, or Java, documentation for information on using X.509
certificates.

com.ibm.ctg.security.ServerSecurity
Use this interface for server-side security classes that do not require the
exposure of SSL Client Certificates.

com.ibm.ctg.security.ClientSecurity
Use this interface for all client-side security classes.

com.ibm.ctg.util.RACFUserid
This class tries to map an X.509 Client Certificate to a RACF user ID. The
certificate must already be associated with a valid RACF user ID.

The JSSEServerSecurity and ServerSecurity interfaces and partner ClientSecurity
interface define a simple yet flexible model for providing security when using
CICS Transaction Gateway. Implementations of the interfaces can be as simple, or
as robust, as necessary; from simple XOR (exclusive-OR) scrambling to use of the
Java Cryptography Architecture.

The JSSEServerSecurity interface works in conjunction with the Secure Sockets
Layer (SSL) protocol. The interface allows server-side security objects access to a
Client Certificate passed during the initial SSL handshake. The exposure of the
Client Certificate depends on the the CICS Transaction Gateway being configured
to support Client Authentication.

An individual JavaGateway instance has an instance of a ClientSecurity class
associated with it, until the JavaGateway is closed. Similarly, an instance of the
partner JSSEServerSecurity or ServerSecurity class is associated with the connected
Java client, until the connection is closed.

The basic model consists of:
v An initial handshake to exchange pertinent information. For example, this

handshake could involve the exchange of public keys. However, at the interface
level, the flow consists of a simple byte-array, therefore an implementation has
complete control over the contents of its handshake flows.

v The relevant ClientSecurity instance being called to encode outbound requests,
and decode inbound replies.

v The partner JSSEServerSecurity or ServerSecurity instance, being called to
decode inbound requests and to encode outbound replies.
The inbound request, and Client Certificate, is exposed via the afterDecode()
method. For JSSE, the afterDecode() method exposes the GatewayRequest object,
along with the javax.security.cert.X509Certificate[] certificate chain object.

Chapter 6. Programming in Java 45

ClientSecurity, JSSEServerSecurity, or ServerSecurity class instances maintain as
data members sufficient information from the initial handshake to correctly encode
and decode the flows. At the server, each connected client has its own instance of
the ServerSecurity implementation class.

If you are implementing the security exits you must implement both a client-side
security class and server-side security class.

For applications using Java base classes, the security classes are specified using the
setSecurity method prior to opening the JavaGateway object. When using a JEE
application server, the security classes are specified using the clientSecurity and
serverSecurity connection factory properties. For non-managed JCA applications,
the security classes are specified using the setClientSecurity and setServerSecurity
methods.

The client-side security class must be available on the class path of the application
for Java base classes and non-managed JCA applications, or on the class path of
the resource adapter when using a JEE application server. The server-side security
class must be available on the class path of the Gateway daemon

To use the com.ibm.ctg.security.ClientSecurity security classes, you must
configure the requiresecurity configuration parameter available with the and
protocol handlers.

Using a Java 2 Security Manager
Java 2 provides a Security Manager system that controls access to Java resources.

The Security Manager restricts access to Java resources using a security policy.
Some examples of protected resources are: reading a file, and opening a network
socket. When a program tries to access a protected resource, the Java Security
Manager verifies that both the code trying to access the resource, and, possibly, the
caller of that code, have appropriate permissions. Without these permissions, the
program cannot run.

If you are using any of the CICS Transaction Gateway Java APIs under a Java 2
security environment (such as a JEE server), your application needs Java
permissions to run correctly. The only exception to this is if you are using the JEE
APIs in a managed environment.

Figure 5 on page 47 shows the minimum permissions that your application needs
to use Gateway Java APIs. It might need additional permissions to run correctly.

46 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

|
|
|

Permissions to access the file system
Depending on the functions performed by your program, the CICS Transaction
Gateway Java APIs might require access to the file system, for example to write
trace files.

The following permission statement gives permission for the CICS Transaction
Gateway to access and create an ibm/ctg subdirectory in the users' home directory
on the UNIX System Services file system:
permission java.io.FilePermission "${user.home}${file.separator}ibm
${file.separator}ctg${file.separator}-","read,write,delete";

The format of the permission might vary depending on the installation, and you
can specify alternative locations, or none at all. CICS Transaction Gateway classes
require access to the file system in the following cases:
v For writing trace information to a file
v For accessing key rings, if you are using JSSE for your SSL protocol

implementation
See the information about Network security management in the CICS Transaction
Gateway: z/OS Administration for information on how JSSE is selected as the
implementation.

For example, you can specify the following permission to allow access to the
directory /tmp/ibm and all subdirectories:
permission java.io.FilePermission "/tmp/ibm/",

"read,write,delete";

java.net.SocketPermission "*", "resolve";
java.util.PropertyPermission "*", "read";
java.io.FilePermission "${user.home}${file.separator}ibm${file.separator}

ctg${file.separator}-","read,write,delete";
java.lang.RuntimePermission "loadLibrary.*", "";
java.lang.RuntimePermission "shutdownHooks", "";
java.lang.RuntimePermission "modifyThread", "";
java.lang.RuntimePermission "modifyThreadGroup", "";
java.lang.RuntimePermission "readFileDescriptor", "";
java.lang.RuntimePermission "writeFileDescriptor", "";
java.security.SecurityPermission "putProviderProperty.IBMJSSE", "";
java.security.SecurityPermission "insertProvider.IBMJSSE", "";
java.security.SecurityPermission "putProviderProperty.IBMJCE", "";
java.security.SecurityPermission "insertProvider.IBMJCE", "";
javax.security.auth.PrivateCredentialPermission "* * \"*\"","read";
java.lang.RuntimePermission "accessClassInPackage.sun.io", "";

Figure 5. Required Java 2 Security Manager permissions

Chapter 6. Programming in Java 47

48 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Chapter 7. Programming using the JEE Connector
Architecture

How to program using the ECI resource adapter provided by the CICS Transaction
Gateway.

Overview of the JCA programming interface
JCA connects enterprise information systems such as CICS, to the JEE platform.
JCA supports the qualities of service provided by a JEE application server (security
credential management, connection pooling and transaction management).

Qualities of service are provided through system level contracts between a resource
adapter provided by CICS Transaction Gateway and the JEE application server.
There is often no need for any extra program code to be provided. The
programmer is therefore free to concentrate on writing business code and need not
be concerned with quality of service. For information about the provided qualities
of service and configuration guidance see the documentation for your JEE
application server.

JCA defines a programming interface called the Common Client Interface (CCI).
This interface can be used with minor changes to communicate with any enterprise
information system. CICS Transaction Gateway provides resource adapters which
implement the CCI for interactions with CICS.

The Common Client Interface (CCI)
The CCI is a high-level programming interface defined by the JEE Connector
Architecture (JCA).

The CCI is available to JEE developers who want to use the External Call Interface
(ECI) to enable client applications to communicate with programs running on a
CICS server.

The CCI has two class types:
v Generic CCI classes used for requesting a connection to an EIS such as CICS,

and for executing commands on that EIS, passing input and retrieving output.
These classes are generic because they do not pass information specific to a
particular EIS. Examples are Connection and ConnectionFactory.

v CICS-specific classes used for passing specific information between the Java
Client application and CICS. Examples are ECIInteractionSpec and
ECIConnectionSpec.

The programming interface model
Applications that use the CCI have a common structure for all enterprise
information systems. The JCA defines connections and connection factories that
represent the connection to the EIS. These connection objects allow a JEE
application server to manage the security, transaction context and connection pools
for the resource adapter.

An application must start by accessing a connection factory from which a
connection can be acquired. The properties of the connection can be overridden by

© Copyright IBM Corp. 2000, 2013 49

a ConnectionSpec object. The ConnectionSpec class is specific to CICS and can be
either an ECIConnectionSpec or an EPIConnectionSpec.

After a connection has been acquired, an interaction can be created from the
connection to make a particular request. The interaction, like the connection, can
have custom properties which are set by the InteractionSpec class
(ECIInteractionSpec or EPIInteractionSpec) which is specific to CICS. To perform
the interaction, call the execute() method and use record objects, which are specific
to CICS, to hold the data. For example:

/* Obtain a ConnectionFactory cf */
Connection c = cf.getConnection(ConnectionSpec)
Interaction i = c.createInteraction()
InteractionSpec is = newInteractionSpec();
i.execute(spec, input, output)

If you are using a JEE application server, you create the connection factory by
configuring it using an administration interface such as the WebSphere
administrative console. You set custom properties such as the Gateway daemon
connection URL. When you have created a connection factory, enterprise
applications can access it by looking it up in the JNDI (Java Naming Directory
Interface). This type of environment is called a managed environment, and allows
a JEE application server to manage the qualities of service of the connections. For
more information about managed environments see your JEE application server
documentation.

If you are not using a JEE application server, you must create a managed
connection factory and set its custom properties. You can then create a connection
factory from the managed connection factory. This type of environment is called a
nonmanaged environment and does not allow a JEE application server to manage
the qualities of service of connections.

Record objects
Record objects are used to represent data passing to and from the EIS.

This is a representation of a COMMAREA or channels and containers, and a
sample Record is provided for the ECI. It is recommended that application
development tools are used to generate these Records.

ECI resource adapter
The ECI resource adapter provides a high level CCI interface to the ECI for
sending ECI requests to CICS.

The ECI resource adapter is used to connect to CICS server programs and for
passing data to COMMAREAs or channels and containers. The resource adapter
can be deployed into a JEE application server to allow JEE enterprise applications
to access CICS. If JCA is used, connection pooling, security, and transaction context
are managed by the JEE application server, not by the application.

CICS Transaction Gateway includes the cicseci.rar resource adapter.

Use the cicseci.rar resource adapter for one-phase and two-phase commit
transactions over IPIC. For information about the transaction management models
that the resource adapter supports see “Transaction management” on page 57.

50 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Managed and nonmanaged environments
The connection, transaction and security qualities of service can either be managed
by the application server or they can be provided by the Java application.

In a managed environment, a JEE application server such as WebSphere®

Application Server manages the connections, transactions, and security. In this
situation, the application developer does not have to provide the code for these.

In a nonmanaged environment, the Java application uses the resource adapters
directly without the intervention of a JEE application server. In this situation the
application must contain code for the management of connections, transactions and
security.

The Common Client Interface
The Common Client Interface (CCI) of the JEE Connector Architecture provides a
standard interface that allows developers to communicate with any number of
Enterprise Information Systems (EISs) through their specific resource adapters,
using a generic programming style.

The CCI is closely modeled on the client interface used by Java Database
Connectivity (JDBC), and is similar in its idea of Connections and Interactions.

Generic CCI Classes
The generic CCI classes define the environment in which a JEE application can
send and receive data from an enterprise information system such as CICS.

When you are developing a JEE component you must complete these tasks:
1. Use the ConnectionFactory object to create a connection object.
2. Use the Connection object to create an interaction object.
3. Use the Interaction object to run commands on the enterprise information

system.
4. Close the interaction and the connection.

The following example shows the JEE CCI interfaces being used to run a command
on an enterprise information system:
ConnectionFactory cf = <Lookup from JNDI namespace>
Connection conn = cf.getConnection();
Interaction interaction = conn.createInteraction();
interaction.execute(<Input output data>);
interaction.close();
conn.close();

CICS-specific classes
The CICS Transaction Gateway resource adapters provide additional classes
specific to CICS. The following object types are used to define the ECI--specific
properties:
v InteractionSpec objects
v ConnectionSpec objects

Spec objects define the action that a resource adapter carries out, for example by
specifying the name of a program which is to be executed on CICS.

Chapter 7. Programming using the JEE Connector Architecture 51

Record objects store the input/output data that is used during an interaction with
an EIS, for example a byte array representing an ECI COMMAREA.

The following example shows a complete interaction with an EIS. In this example
input and output Record objects and Spec objects are used to define the specific
attributes of both the interaction and the connection. The example uses setters to
define any component-specific properties on the Spec objects before they are used.
ConnectionFactory cf = <Lookup from JNDI namespace>
ECIConnectionSpec cs = new ECIConnectionSpec();
cs.setXXX(); //Set any connection specific properties

Connection conn = cf.getConnection(cs);
Interaction interaction = conn.createInteraction();
ECIInteractionSpec is = new ECIInteractionSpec();
is.setXXX(); //Set any interaction specific properties

RecordImpl in = new RecordImpl();
RecordImpl out = new RecordImpl();

interaction.execute(is, in, out);
interaction.close();
conn.close();

The following sections cover the ECI implementations of the CCI classes in detail.

Using the ECI resource adapter
A JEE developer can use the ECI resource adapter to access CICS programs, using
COMMAREAs and channels, to pass information to and from the server.

The table below shows the JCA objects corresponding to the ECI terms listed in
“I/O parameters on ECI calls” on page 6. The CCI interfaces for CICS are in the
com.ibm.connector2.cics package.

Table 9. ECI terms and corresponding JCA objects

ECI term JCA object: property

Abend code CICSTxnAbendException

COMMAREA Record

Channel ECIChannelRecord. See “Introduction to
channels and containers” on page 5.

Container with a data type of BIT byte[]

Container with a data type of CHAR String

ECI timeout ECIInteractionSpec:ExecuteTimeout. See
“Timeout of the ECI request” on page 10.

LUW identifier JEE transaction

Password or password phrase ECIConnectionSpec:Password. See “Security
in the ECI” on page 11.

Program name ECIInteractionSpec:FunctionName

Server name ECIConnectionFactory:ServerName

SocketConnectTimeout ECIConnection:SocketConnectTimeout

TPNName ECIInteractionSpec:TPNName. See “ECI and
CICS transaction IDs” on page 10.

TranName ECIInteractionSpec:TranName. See “ECI and
CICS transaction IDs” on page 10.

52 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Table 9. ECI terms and corresponding JCA objects (continued)

ECI term JCA object: property

User ID ECIConnectionSpec:UserName. See “Security
in the ECI” on page 11.

The ECI resource adapter with channels and containers
To use channels and containers in the JEE Connector Architecture (JCA), use an
ECIChannelRecord to hold your data. When the ECIChannelRecord is passed to
the execute() method of ECIInteraction, the method uses the ECIChannelRecord
itself to create a channel and converts the entries inside the ECIChannelRecord into
containers before passing them to CICS.

The ECIChannelRecord allows multiple data records to pass over the same
interface to and from the execute() method of ECIInteraction. A container is created
for each entry in the channel. You can have a combination of container types in
one channel. The containers are of the following types:
v A container with a data type of BIT. This type of container is created when the

entry is a byte[], or implements the javax.resource.cci.Streamable interface.
No code page conversion takes place.

v A container with a data type of CHAR. This type of container is created when
you use a String to create the entry.

You can create your own data records, which must conform to existing JCA rules
(they must implement the javax.resource.cci.Streamable and
javax.resource.cci.Record interfaces). Any data records you create are treated as
containers with a data type of BIT.

You can also use an existing Record type, for example, JavaStringRecord, to create
a container with a data type of BIT.

The ECIChannelRecord.getRecordName method obtains the name of the channel.
When creating your Record, you must make sure that the name is not an empty
string. The record.getRecordName method retrieves the name of the containers.

The JCA resource adapter handles ECIChannelRecord and Records differently,
when it receives the data in the execute() method of ECIInteraction.
v When an ECIChannelRecord is received, the resource adapter uses a channel to

send the data.
v When a Record (that is not an ECIChannelRecord) is received, the resource

adapter uses a COMMAREA to send the data.

Chapter 7. Programming using the JEE Connector Architecture 53

Connection to a CICS server using the ECI resource adapter
Use the ConnectionFactory and Connection interfaces to establish a connection
with a CICS server. The ECI resource adapter provides implementations of the
connection interfaces, but you do not work directly with the ECI implementations.
Use the ECIConnectionSpec class directly to define the properties of the
connection.

The ECIConnectionSpec class allows the JEE component to override the user ID
and password set at deployment time. Here is an example of how to code to
obtain a connection using this class:
ConnectionFactory cf = <Lookup from JNDI namespace>
ECIConnectionSpec cs = new ECIConnectionSpec();
cs.setUserName("myuser");
cs.setPassword("mypass");
Connection conn = cf.getConnection(cs);

Figure 6. Data conversion by the execute() method of ECIInteraction, depending on whether it receives a Record or
ECIChannelRecord

54 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Linking to a program on a CICS server
Use the Interaction interface to link to a server program. The ECI resource adapter
provides an implementation of the Interaction interface but you do not use this
directly.

To define the properties of the interaction use the ECIInteractionSpec class directly.
1. Set the FunctionName property to the name of the CICS server program.
2. Set the InteractionVerb to SYNC_SEND for an asynchronous call or

SYNC_SEND_RECEIVE for a synchronous call. Use SYNC_RECEIVE to retrieve
a reply from a asynchronous call.

Note:

a. When a SYNC_SEND call has been issued with the execute() method of a
particular ECIInteraction object, that instance of ECIInteraction cannot issue
another SYNC_SEND, or SYNC_SEND_RECEIVE, until a SYNC_RECEIVE
has been run.

b. Simultaneous asynchronous calls to the same connection are permitted,
provided they do not result in two asynchronous calls being outstanding in
the same transaction scope. In that case an exception is thrown.

c. If you are using the adapter in local mode with IBM WebSphere Application
Server for z/OS, and you require transactional support, specify the
SYNC_SEND_RECEIVE interaction type. If you use SYNC_SEND and
SYNC_RECEIVE to issue asynchronous requests, the ECI requests are issued
with SYNCONRETURN, and are outside the scope of the current global
transaction. In remote mode, asynchronous calls work in the usual way.

3. If you are using channels and containers, the program receiving the data does
not need the exact size of the data returned. If you are using COMMAREAs,
set the CommareaLength property to the length of the COMMAREA being
passed to CICS. If it is not supplied, a default is used:

SYNC_SEND, SYNC_SEND_RECEIVE
Length of input record data

SYNC_RECEIVE
The value of ReplyLength

4. Set the ReplyLength property to the length of the data stream to be returned
from the Gateway daemon to the JCA application. This value can reduce the
data transmitted over the network if the data returned by CICS is less than the
full COMMAREA size, and you know the size of the data in advance.
The JCA application still receives a full COMMAREA of the size specified in
CommareaLength, but the amount of data sent over the network is reduced.
This method is equivalent to the setCommareaInboundLength() method
available for the ECIRequest class.
If you do not set ReplyLength, CICS Transaction Gateway automatically strips
trailing zeros from the COMMAREA sent from the Gateway daemon to the JCA
application, without needing the size of the data in advance.
For more information on COMMAREA stripping, see “ECI performance
considerations when using COMMAREAs” on page 12.

As with ECIConnectionSpec, you can set properties on the ECIInteractionSpec class
at either construction time or by using setters. Unlike ECIConnectionSpec, the
ECIInteractionSpec class behaves like a Java bean. So, in a managed environment,
your server might provide tools to allow you to define these properties using a
GUI without writing any code.

Chapter 7. Programming using the JEE Connector Architecture 55

To specify a value for ECI timeout, set the ExecuteTimeout property of the
ECIInteractionSpec class to the ECI Timeout value. Allowable values are:

0 No timeout default value.

A positive integer
Time in milliseconds.

ECI timeout restrictions
When an EXCI connection to CICS is used by an ECI resource adapter either in
remote mode through a Gateway daemon running on z/OS or in local mode on
z/OS, ECI timeout is not supported.

Any value set by the setExecuteTimeout method of the ECIInteractionSpec class is
ignored. If you are using EXCI, you can set the TIMEOUT parameter in the EXCI
options table DFHXCOPT. If you are using IPIC in remote mode, you can set the
CONNECTTIMEOUT parameter in the configuration file. If you are using IPIC in
local mode, you can set this in the JavaGateway.setSocketConnectTimeout()
method.
Related information:
Tuning JEE
Because of the overheads associated with XA transactions, the use of network and
processor resources is higher when using the XA transactional support provided by
cicseci.rar with the xasupport custom connection factory property set to on.

ECI resource adapter CICS-specific records using the
streamable interface

For input and output, the ECI resource adapter supports only records that
implement the javax.resource.cci.Streamable interface.

MappedRecords that are used to make up channels and containers also conform to
the javax.resource.cci.Streamable interface. This interface allows the ECI
resource adapter to read streams of bytes that make up the CICS COMMAREAs or
channels and containers directly from, and write them to, the Record objects
supplied to the execute() method of ECIInteraction.

The following example shows how to build a record for use as input by the ECI
resource adapter, using the method supplied in the
javax.resource.cci.Streamable interface.
Byte commarea[] = new byte[10];
ByteArrayInputStream stream = new ByteArrayInputStream(commarea);
Record in = new RecordImpl();
in.read(stream);
int.execute(..., in, ...);

To retrieve a byte array from the output record, use output records write() method
using a ByteArrayOutputStream object as the parameter to reverse the process
shown in the above example. The streams toByteArray() method then provides the
CICS COMMAREA or channel and container output in the form of a byte array. In
the above example a class called RecordImpl is used as the concrete
implementation class of the javax.resource.cci.Record interface. To provide more
function for your specific JEE components, you can write implementations of the
Record interface that allow you to set the contents of the record using the
constructor. In this way, you avoid the use of the ByteArrayInputStream used in
the above example. A managed environment might provide tools that allow you to

56 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

build implementations of the Record interface that are customized for your JEE
components needs without writing any code.

Transaction management
CICS Transaction Gateway includes a resource adapter that can provide
LocalTransaction support or XATransaction support.

The cicseci.rar resource adapter provides LocalTransaction support when deployed
on any supported JEE application server. It can also provide XATransaction
support when deployed with the custom property xasupport=on on any supported
JEE application server connecting to a remote CICS Transaction Gateway for z/OS.
It also provides global transaction support when using WebSphere Application
Server for z/OS with CICS Transaction Gateway on z/OS in local mode.

To provide for different transactional qualities of service for JEE applications, you
can deploy the CICS resource adapter into the JEE application server and create
multiple connection factories on it. Each of these connection factories can be
configured with a different quality of service.

See the information about Deploying CICS resource adapters in the CICS
Transaction Gateway: z/OS Administration for information about installing the
resource adapters.

If you are running multiple interactions with CICS using the ECI resource adapter,
you might want to group all actions together to ensure that they either all succeed
or all fail. The preferred way is to let the JEE application server manage the
transactions which are then known as container-managed transactions. However, to
do this yourself, use the LocalTransaction or UserTransaction interface. Such
transactions are known as bean-managed transactions. Bean-managed transactions
that use the LocalTransaction interface can group work performed only through
the resource adapter; the UserTransaction interface allows all transactional
resources in the application to be grouped.

The cicseci.rar resource adapter with xasupport enabled and with bean-managed
transactions supports the UserTransaction and LocalTransaction interfaces. The
cicseci.rar resource adapter with xasupport disabled and bean-managed
transactions supports the LocalTransaction interface.

Restrictions on WebSphere Application Server for z/OS

On WebSphere Application Server for z/OS, you cannot use the local transaction
interface if you have configured the ECI resource adapter to run in local mode. In
this environment, if you plan to connect to CICS using the local protocol, do not
attempt to get a LocalTransaction object from the connection (that is, do not call
the method getLocalTransaction() on your connection object). In managed mode,
attempts to call getLocalTransaction() result in a NotSupportedException being
thrown. In nonmanaged mode, the results are unpredictable.

Samples

JEE ECI sample programs are provided in the <install_path>\samples subdirectory
and as a deployable EAR file in the <install_path>\deployable subdirectory.

See “Resource adapter samples” on page 62, for more information.

Chapter 7. Programming using the JEE Connector Architecture 57

XA overview
A global transaction is a recoverable unit of work performed by one or more
resource managers in a distributed transaction processing environment,
coordinated by an external transaction manager.

The resources that are updated by the transaction can take many forms, such as a
database table, a messaging queue, or the resources updated by running a CICS
transaction. Each of these resources is managed by a resource manager. Where the
recoverable resources updated by the global transaction are all managed by the
same resource manager, a one-phase commit protocol is adequate to ensure that all
resources are updated in an atomic manner.

However, where the resources updated by a global transaction are managed by
multiple resource managers, a two-phase commit protocol is required. With this
protocol the atomic nature of the transaction is maintained by ensuring that all
resource managers update their resources in a consistent manner. The cicseci.rar
supports the two-phase commit XA protocol and enables JEE applications to
include CICS resources in such global transactions.

In both the one-phase commit and XA scenarios, a transaction manager is
responsible for controlling the running of the transaction and for coordinating the
resource managers to ensure that the transaction works in an atomic manner.

An example of where this behavior is required is an online flight booking, which
uses one resource manager to debit a customer's bank account and another to
reserve the customer a flight. The customer's account must be updated only if the
flight is booked; and vice versa.

If a timeout occurs during an XA transaction it is recommended that the EJB sets
the transaction to be rolled back.

For information on using XA transactions with JEE applications see Redpaper:
Transactions in J2EE (REDP-3659-00).

WebSphere optimizations

The following optimizations are supported:
v Last participant support
v Only-agent optimization

See the documentation supplied with WebSphere Application Server for more
details.

Samples
JCA ECI sample programs are provided in the samples directory of your CICS
Transaction Gateway installation or as a deployable EAR in the
<install_path>/deployable directory.

These are documented in “Resource adapter samples” on page 62.

58 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Using the resource adapters in a nonmanaged environment
You can use the resource adapters in a nonmanaged environment.

In this environment, you are responsible for:
v Defining the EIS connection
v Creating the ConnectionFactory object
v Providing your own connection pooling
v Supplying your log writer
v Managing transactions

Your nonmanaged environment can be either inside, or outside, a JEE server
environment. The resource adapters provide a default connection manager to
support execution within the nonmanaged environment.

Transaction management applies only to the ECI resource adapter. See “Transaction
management” on page 57 for information on managing transactions in a
nonmanaged environment.

Creating the appropriate ConnectionFactory object
Your application needs to get an appropriate ConnectionFactory object.

In the managed environment, the server or application does this for you, and you
can reference it using JNDI (see “Saving and reusing connection factories”). In the
nonmanaged environment, unless you have previously registered one that you can
access, you must create a ConnectionFactory object with the appropriate EIS
connection information.

Creating an ECI ConnectionFactory
You must first create an ECIManagedConnectionFactory and set the appropriate
properties on this object.

The properties are the same as the deployment parameters described in Deployment
parameters for the ECI resource adapters in the CICS Transaction Gateway: z/OS
Administration.

These are accessible using setter and getter methods. The JEE Programming
Reference documentation lists the setter and getter methods for the
ECIManagedConnectionFactory and shows the relationship between deployment
parameters and properties. The following example shows how to create a
ConnectionFactory for ECI:
ECIManagedConnectionFactory eciMgdCf = new ECIManagedConnectionFactory();
eciMgdCf.setConnectionURL("local:");
eciMgdCf.setPortNumber("0");
eciMgdCf.setServerName("tp600");
eciMgdCf.setLogWriter(new java.io.PrintWriter(System.err));
eciMgdCf.setUserName("myUser");
eciMgdCf.setPassword("myPass");
eciMgdCf.setTraceLevel(new

Integer(ECIManagedConnectionFactory.RAS_TRACE_ENTRY_EXIT));
ConnectionFactory cxf = (ConnectionFactory)eciMgdCf.createConnectionFactory();

Saving and reusing connection factories
When a connection factory has been created it can be saved and reused so that the
application does not have to create one.

Chapter 7. Programming using the JEE Connector Architecture 59

In a JEE application server environment, IBM recommends that you register your
connection factory object, which has links to your enterprise information system
connection information, in the JNDI (Java Naming Directory Interface) service. This
makes upgrade from nonmanaged to managed Java environments easier because
applications can acquire connection factory objects in the same way. However, this
might not be possible outside a JNDI environment unless either an LDAP server,
or an appropriate JNDI service provider is available within your environment.

Connection factories support the serializable and referenceable Java interfaces. This
means that you can decide how to register them in the JNDI. For more information
see the JEE Connector Architecture Specification.

If you plan to use serializable interfaces see “Tracing issues relating to serialized
interfaces and ConnectionFactory objects” on page 61 for more information on how
serialization and deserialization of connection factory objects affects the setting of
the LogWriter property.

Running the JEE resource adapters in a nonmanaged
environment

In a JEE environment all required Java libraries are available however, you might
need to ensure that your JEE server adds the jar files to the class path.

The jar files files are located in the <install_path>\classes subdirectory:
v cicsjee.jar
v ctgclient.jar
v ctgserver.jar (required only for local: protocol)
v ccf2.jar

Outside a JEE environment, you must ensure that, in addition to the above
libraries being listed in the class path, the following Java extensions are also
available:
v JCA 1.6 Connector class file (required for ECI resource adapter)
v Java Transaction API (required for XA transactions)

The JCA 1.6 Connector class file and the Java Transaction API (JTA) libraries are
available for download from the Oracle Java Web site.

Compiling applications
To enable Java applications to be compiled in a managed or nonmanaged
environment, the relevant .jar details must be added to the class path.

To compile supplied applications in both managed and nonmanaged environments,
include the following in the CLASSPATH:
v cicsjee.jar (required for access to Connection and Interaction Specs)
v ctgclient.jar (required for AIDkey objects)
v ccf2.jar (required for creating LogonLogoff classes)

The JCA 1.6 Connector class file library is also required, and is available for
download from the Oracle Java Web site at http://www.oracle.com/us/sun/
index.htm .

60 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

http://www.sun.com/
http://www.oracle.com/us/sun/index.htm
http://www.oracle.com/us/sun/index.htm

Security credentials and the CICS resource adapters
Security Credentials for accessing CICS can come from three different places.

These are the ConnectionSpec properties, the deployed security credentials, or the
server itself (for nonmanaged environments, the third option does not apply). The
precedence for these credentials is:
1. The Server Supplied Credentials (highest precedence)
2. The ConnectionSpec Supplied Credentials
3. The Deployed Security Credentials.

Managed enterprise applications can be deployed with "container" or "application"
as a security choice. If "container" is specified, the JEE application server will
provide the credentials by means of a user interface. If "application" is specified,
security is determined from the deployment properties and can be overridden by
the ConnectionSpec.

JEE tracing
In a nonmanaged environment where the default connection manager is used, the
application can set the LogWriter property on the class to define where trace
messages are sent.

If the connection factory is serialized for storage in a nonmanaged environment,
for the LogWriter to be used, it must be set after deserialization because it is not
restored automatically after deserialization. This process is shown in the following
example:
ECIManagedConnectionFactory MCF = new ECIManagedConnectionFactory();
MCF.setLogWriter(myLogWriter);

ECIConnectionFactory cf = MCF.createConnectionFactory();
objOutStream.write(cf);

ECIConnectionFactory cf2 = (ECIConnectionFactory) objInStream.read();
DefaultConnectionManager.setLogWriter(myLogWriter);

Tracing issues relating to serialized interfaces and
ConnectionFactory objects

If you use the serializable interface to store your ConnectionFactory objects, the
reference to your LogWriter is lost.

If you use a serializable interface to store your ConnectionFactory objects, when
you deserialize the interface the ConnectionFactory does not contain a reference to
the LogWriter. This is because LogWriters are not serializable.

In a nonmanaged environment, you can ensure that your LogWriters are stored on
any connections created from the ConnectionFactory object by configuring the
connection using the following code.
DefaultConnectionManager.setLogWriter(new java.io.PrintWriter(System.err));
Connection Conn = (Connection)cxf.getConnection();

The setLogWriter method on the DefaultConnectionManager, which is supplied
with the resource adapters, is a static method. The example defines that the log is
set to output to the System.err. Managed environments are unaffected because the
trace level applied to the ManagedConnectionFactory remains.

Chapter 7. Programming using the JEE Connector Architecture 61

Resource adapter samples
The resource adapter samples consist of ECI COMMAREA and channels and
containers samples.

The samples show you how to use the CICS resource adapters and how to write
custom records that implement the javax.resource.cci.Streamable interface. For
information on how to deploy the ECI resource adapter, see Deploying CICS
resource adapters in the CICS Transaction Gateway: z/OS Administration.

ECI COMMAREA sample
The ECI COMMAREA sample consists of a stateless session bean, a client
application, and a custom record that demonstrates using the Streamable interface.

The following files are part of the sample:

ECIDateTime.java
Enterprise bean remote interface

ECIDateTimeHome.java
Enterprise bean home interface

ECIDateTimeBean.java
Enterprise bean implementation

ECIDateTimeClient.java
Enterprise bean client program

JavaStringRecord.java
Custom record

Ejb-jar-eci-1.1.xml
Example of a deployment descriptor

The deployment descriptor is an example of an EJB 1.1–compliant deployment
descriptor for this enterprise bean. If you wish to package it up into a jar file,
rename it to Ejb-jar.xml and store it in the META-INF directory of the jar file. It
might require further entries if it is to be deployed into an EJB 2.0–compliant
environment.

See your JEE Server documentation for information on how to compile and deploy
the bean within your environment. However, you need to ensure that the
following jar files are also available on the CLASSPATH:
v cicsjee.jar
v connector.jar
v ctgclient.jar
v ccf2.jar

The enterprise bean looks for an ECI connection factory named java:comp/env/ECI.
The bean must refer to this resource when deployed. See your JEE Server
documentation on how to deploy the resource adapter with an entry in the JNDI
with this name. The client program looks for the ECIDateTime bean with a name
of ECIDateTimeBean1. See your JEE Server documentation for details of how to
setup the bean with this JNDI name.

62 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

You will need to install the server sample program EC01 on your CICS Server. This
file can be found in the samples\server subdirectory of your CICS Transaction
Gateway installation. Further details of this sample can be found in Chapter 13,
“Sample programs,” on page 101.

The bean is a simple bean that outputs the date and time as known to the CICS
Server, and can be deployed as a bean-managed transaction. The Custom record
takes a COMMAREA and converts it to a string. Ensure that the EC01 sample
program, which you installed on your CICS server, sends its results in ASCII, as
the COMMAREA is expected in ASCII. The JavaStringRecord does however allow
for the selection of other encodings, and is commented using JavaDoc. The Client
program takes no parameters. If your CICS server is running on z/OS, the EC01
sample program will return its results in EBCDIC rather than ASCII. To resolve
this, update the DFHCNV table by adding lines similar to the following:
*
* CTG Sample conversion
*
*

DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=EC01,USREXIT=NO, *
SRVERCP=037,CLINTCP=8859-1

DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=18, *

LAST=YES

ECI channels and containers sample
The ECI channels and containers sample uses JCA to send an ECI request to a
sample channel program in CICS called EC03. The CICS EC03 sample program
adds containers to the channel which is then returned.

The sample can call the CICS sample program EC03, either through the ECI
resource adapter, or through the ECI XA resource adapter. The sample includes a
client application that invokes an enterprise bean. The enterprise bean then issues
the ECI request to CICS.

The sample includes the following files:

EC03ChannelBean.java
The implementation of the EC03 Channel EJB

EC03Channel.java
The remote interface for the EC03 Channel EJB

EC03ChannelHome.java
The home interface for the EC03 Channel EJB

EC03ChannelClient.java
A basic client which calls the EC03 Channel EJB

Enterprise beans have a main body of code and two interfaces. The Remote
interface contains the business methods that the bean implements, in this case, the
execute() method. The Home interface handles the life cycle of the enterprise bean.

EC03ChannelClient looks up the enterprise bean as EC03ChannelHome in the
JNDI (Java Naming Directory Interface). It then locates an object using the remote
interface as a type-cast. When execute() is called on this interface, the method is
called remotely on the enterprise bean. The remote method then looks up the
resource adapter connection factory (an instance of the resource adapter) under the
name ECI. The method runs EC03 in CICS, passing in a channel with one
container. When the ECI call program returns, the containers returned from the

Chapter 7. Programming using the JEE Connector Architecture 63

program are enumerated and placed into a HashMap which is then returned back
to the client application that issued the call.

To use the sample:
1. Deploy the CICS ECI resource adapter (cicseci.rar); this is located in the

deployable directory of the CICS Transaction Gateway install path.
2. Create a connection factory with parameters to suit your CICS server

environment. .

Note: The connection factory must have a JNDI name of ECI for the sample to
work.

3. Deploy your enterprise bean. This automatically generates code that handles
remote method calls to your enterprise bean that are made by the enterprise
bean client. This process is specific to your JEE application server, but mainly
involves identifying the interfaces to the deployment tool, after setting any
properties you need. The properties you will be asked for might include:

Transaction Type
This can be set to container-managed, or bean-managed, and
determines whether you want to control transactions yourself. The JEE
application server manages Container managed transactions. If you are
prompted, select Container managed for the sample.

Enterprise bean Type
EC03Channel is a stateless session bean.

JNDI Name
The enterprise bean client uses JNDI to look up the name of the
enterprise bean in the naming directory.

Resource References
The enterprise bean refers to a connection factory. You must add the
connection factory (as defined in step 2) as a resource reference for this
enterprise bean.

4. Run the client application. You can run the client either from the command line
or with the launchClient utility (if you are using WebSphere Application
Server). The launchClient utility sets up the necessary parameters to
communicate with the JNDI directory in WebSphere to find the EC03Channel
enterprise bean. The application calls the bean, passes a text string to the EC03
program, and displays the contents of the container that the EC03 program
returns.

Assistance in coding CCI applications
When coding CCI applications, refer to the Javadoc and the specification for the
JEE Connector Architecture (JCA).

Connector specification API Javadoc
You can obtain the connector architecture API Javadoc from the Sun Web site, this
will assist in the coding of your CCI applications and provides information such as
the exceptions used by CCI implementations.

JEE Connector Architecture API
Refer to the JCA specification when coding CCI applications.

64 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

IBM recommends that you get the Java EE Connector Architecture Specification
document from Java EE Downloads, to help in coding your CCI applications. It
contains information such as the exceptions used in CCI applications.

Chapter 7. Programming using the JEE Connector Architecture 65

http://www.oracle.com/technetwork/java/javaee/downloads/index.html

66 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Chapter 8. Programming in C

This information describes the external access interfaces specific to C.

Overview of the programming interfaces for C
C interfaces are provided for the ECI and ESI for building 32-bit or 64-bit
applications that can be run in remote mode.

A user application must only use a single process to make API requests. However,
in environments in which a process can generate several threads, the user
application can be multithreaded and each thread can make API requests. On
UNIX and Linux, a child process, started from a parent application that has
already made a Client API request, cannot make subsequent Client API requests. A
child process that makes Client API requests must be started before the parent
application has made any Client API requests.

For remote mode, a C interface is provided for the ECI and ESI. For more
information see “Making ECI V2 and ESI V2 calls from C programs.” Local mode
C clients are not supported.

Making ECI V2 and ESI V2 calls from C programs
This section describes how to make ECI V2 and ESI V2 calls to a CICS server from
a 32-bit or 64-bit C application. ECI V2 and ESI V2 are supported only in remote
mode.

Making ECI calls from C programs
You can make ECI V2 calls to a CICS server from a C Client application in remote
mode.

Use the CTG_ECI_PARMS parameter block structure to communicate with a CICS
server. The parameter block fields are used for input and output. To communicate
with the CICS server using the Gateway daemon use the CTG_ECI_Execute
function. The Remote Client interface requires Version 2 of the ECI Parameter
block. Set the ECI parameter block to nulls before setting the input parameter
fields. For guidance on how to use the ECI to manage logical units See “Managing
logical units of work” on page 71.

The following table shows the field names in C data structures that correspond to
the ECI terms described in “I/O parameters on ECI calls” on page 6.

Table 10. ECI terms and corresponding fields in C in remote mode

ECI term C structure.field

Abend code CTG_ECI_PARMS.eci_abend_Code

Channel CTG_ECI_PARMS.channel. See “Introduction to channels
and containers” on page 5.

COMMAREA CTG_ECI_PARMS.eci_commarea

ECI timeout CTG_ECI_PARMS.eci_timeout. See “Timeout of the ECI
request” on page 10.

© Copyright IBM Corp. 2000, 2013 67

||
|

Table 10. ECI terms and corresponding fields in C in remote mode (continued)

ECI term C structure.field

LUW control CTG_ECI_PARMS.eci_extend_mode. See “Program link
calls” on page 7.

LUW identifier CTG_ECI_PARMS.eci_luw_token. See “Managing logical
units of work” on page 8.

Message qualifier CTG_ECI_PARMS.eci_message_qualifier. See “Retrieving
replies from asynchronous ECI requests” on page 9.

Password or password phrase CTG_ECI_PARMS.eci_password_ptr. See “Security in the
ECI” on page 11.

Program name CTG_ECI_PARMS.eci_program_name

Server name CTG_ECI_PARMS.eci_system_name

TPNName CTG_ECI_PARMS.eci_tpn. See “ECI and CICS
transaction IDs” on page 10.

TranName CTG_ECI_PARMS.eci_transid. See “ECI and CICS
transaction IDs” on page 10.

User ID CTG_ECI_PARMS.eci_userid_ptr. See “Security in the
ECI” on page 11.

Making ESI calls from C programs
You can make ESI V2 calls to a CICS server from a C Client application in remote
mode.

Verifying a password or password phrase

Use the CTG_ESI_verifyPassword function to verify a password or password phrase
in CICS. Pass in the user ID and password or password phrase to verify, and the
name of the CICS server to send the verify request to. If the password or password
phrase is verified successfully, information about the user ID is returned in the
ESI_DETAILS structure passed to the function. If information about the user ID is
not required, NULL can be passed to the function.
ESI_DETAILS Details;
int Response;

Response = CTG_ESI_verifyPassword(GatewayToken, Userid, Password,
CicsServer, &Details);

Changing a password or password phrase

Use the CTG_ESI_changePassword function to change a password or password
phrase in CICS. Pass in the user ID and current password or password phrase, the
new password or password phrase, and the name of the CICS server to send the
change request to. If the password or password phrase is changed successfully,
information about the user ID is returned in the ESI_DETAILS structure passed to
the function. If information about the user ID is not required, NULL can be passed
to the function.
ESI_DETAILS Details;
int Response;

Response = CTG_ESI_changePassword(GatewayToken, Userid, CurrentPassword,
NewPassword, CicsServer, &Details);

68 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

||
|

Multithreaded ECI V2 and ESI V2 applications
Considerations when using multithreaded ECI V2 and ESI V2 applications to
connect to CICS.

ECI calls using a COMMAREA

It is the responsibility of the application to ensure that application threads do not
read or update the contents of the COMMAREA while another thread is
performing an ECI call using the same COMMAREA. If applications use the same
COMMAREA for simultaneous ECI calls, unpredictable behavior could be
experienced.

ECI calls using a channel

For ECI_SYNC calls using a channel, the channel is locked for the duration of the
ECI call. For ECI_ASYNC calls using a channel, the channel is locked from the
start of the ECI call until the response is retrieved by a subsequent reply
solicitation call. While a channel is locked, other application threads block if they
attempt to read or update the channel or its containers, or perform further ECI
calls using the channel.

Establishing a connection to a Gateway daemon
To use client applications in C in remote mode, you must establish a connection to
the Gateway daemon Client protocol handler using the specified host name and
port number.

The following functions establish a remote Client connection to a Gateway
daemon:
int CTG_openRemoteGatewayConnection(

char * address,
int port,
CTG_ConnToken_t* gwTokPtr,
int connTimeout

)

int CTG_openRemoteGatewayConnectionApplid(
char * address,
int port,
CTG_ConnToken_t* gwTokPtr,
int connTimeout,
char * applid,
char * applidQualifier

)

Use CTG_openRemoteGatewayConnectionApplid in preference to
CTG_openRemoteGatewayConnection, as this allows a Client APPLID and APPLID
qualifier to be set enabling requests from the Client application to be tracked.

The connection to a Gateway daemon is established using the specified host name
and port number. If the connection is successful the Gateway token is returned in
the gwTokPtr parameter. The Gateway token is required to interact with that
Gateway daemon on further API calls.

The following functions close a remote Client connection to a Gateway daemon:
CTG_closeGatewayConnection(CTG_GatewayToken_t * gwTokPtr)

CTG_closeAllGatewayConnections()

Chapter 8. Programming in C 69

The CTG_closeGatewayConnection function frees a single Gateway connection
held by the API.

The CTG_closeAllGatewayConnections function attempts to free all resources
held by the API, including open Gateway daemon connections. This function is for
use in the event of a severe error because it enables some form of controlled
shutdown even if all gateway tokens (gwTokens) have been lost.

Setting the client APPLID and APPLID qualifier using
environment variables

The APPLID and APPLID qualifier of the client application can be overridden at
run time by setting the environment variables CTG_APPLID and
CTG_APPLIDQUALIFIER to the desired values. The environment variable values
override any values passed to the CTG_openRemoteGatewayConnectionApplid
function and are also available to existing ECI V2 and ESI V2 applications without
requiring the application to be recompiled.

Program link calls
For all program link calls, fill in the required fields in the ECI parameter block
(CTG_ECI_PARMS structure). All unused fields should be set to zero.

The eci_call_type field must be set to ECI_SYNC or ECI_ASYNC and the
eci_version field must be set to ECI_VERSION_2A. The constant ECI_VERSION_2
is provided for compatibility with existing applications only and should not be
used for new applications.

To specify a user ID and password or password phrase for the program link call,
set the eci_userid_ptr and eci_password_ptr fields.

Program links calls with a COMMAREA

When calling a COMMAREA-based CICS program, provide a pointer to the
COMMAREA data in the eci_commarea field and the COMMAREA length in the
eci_commarea_length field.

The commarea_outbound_length and commarea_inbound_length fields can be used
to limit the amount of data sent between the application and the CICS Transaction
Gateway. For example, if there is a large difference between the size of the data
that the CICS program reads from the COMMAREA and the size of the data that
the CICS program writes to the COMMAREA.

To perform the program link call, call the CTG_ECI_Execute function, passing a
Gateway token and a pointer to the CTG_ECI_PARMS structure:
int Response;
Response = CTG_ECI_Execute(gatewayToken, &EciBlock);

Program link calls with a channel

When calling a channel-based CICS program, create the channel and any required
containers and then set the channel field of the ECI parameter block. For more
information see “Using channels and containers in ECI V2 applications” on page
72.

70 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

To perform the program link call, call the CTG_ECI_Execute_Channel function,
passing a Gateway token and a pointer to the CTG_ECI_PARMS structure:
int Response;
Response = CTG_ECI_Execute_Channel(gatewayToken, &EciBlock);

All unused fields must be set to zero.

Managing logical units of work
To start a logical unit of work, set the eci_extend_mode parameter to
ECI_EXTENDED and the eci_luw_token parameter to zero, when making a
program link call.

When a transaction is started, an LUW identifier is generated and is returned in
the eci_luw_token field. This identifier must be input to all subsequent calls for
the same unit of work. To call the last program in an LUW, set the
eci_extend_mode parameter to ECI_NO_EXTEND. To end an LUW without linking
to a program, set the eci_extend_mode parameter to ECI_COMMIT or
ECI_BACKOUT to commit or back out changes to recoverable resources.

The following table shows how you can use combinations of eci_extend_mode,
eci_program_name, and eci_luw_token parameter values to perform tasks
associated with managing logical units of work through ECI. In each case you
must also store appropriate values in other fields for the call type you have chosen.

Table 11. Logical units of work in ECI

Task to perform Parameters to use

Call a program that is to be the only program of a logical
unit of work.

One request flows from client to server and a reply is
sent to the client only after all the changes made by the
specified program have been committed.

Set up the parameters as follows:

v eci_extend_mode: ECI_NO_EXTEND

v eci_program_name: provide it

v eci_luw_token: zero

Call a program that is to start an extended logical unit of
work.

Set up the parameters as follows:

v eci_extend_mode: ECI_EXTENDED

v eci_program_name: provide it

v eci_luw_token: zero

Then save the token from eci_luw_token.

Call a program that is to continue an existing logical unit
of work.

Set up the parameters as follows:

v eci_extend_mode: ECI_EXTENDED

v eci_program_name: provide it

v eci_luw_token: provide it

Call a program that is to be the last program of an
existing logical unit of work, and commit the changes.

Set up the parameters as follows:

v eci_extend_mode: ECI_NO_EXTEND

v eci_program_name: provide it

v eci_luw_token: provide it

End an existing logical unit of work, without calling
another program, and commit changes to recoverable
resources.

Set up the parameters as follows:

v eci_extend_mode: ECI_COMMIT

v eci_program_name: null

v eci_luw_token: provide it

Chapter 8. Programming in C 71

Table 11. Logical units of work in ECI (continued)

Task to perform Parameters to use

End an existing logical unit of work, without calling
another program, and back out changes to recoverable
resources.

Set up the parameters as follows:

v eci_extend_mode: ECI_BACKOUT

v eci_program_name: null

v eci_luw_token: provide it

If an error occurs in one of the calls of an extended logical unit of work and the
returned eci_luw_token is non-zero, the changes made so far are still pending. You
must end the logical unit of work with another program link call, either
committing or backing out the changes. If the returned eci_luw_token is zero, the
logical unit of work has ended.

ECI timeouts
Use the eci_timeout field in the ECI parameter block to specify the timeout value.
If a timeout occurs either the ECI_ERR_RESPONSE_TIMEOUT code or the
ECI_ERR_REQUEST_TIMEOUT code is returned.

See “Timeout of the ECI request” on page 10 for more information on ECI
timeouts.

Using channels and containers in ECI V2 applications
You can use channels and containers when you connect to CICS using the IPIC
protocol. You must create a channel before it can be used in an ECI request.
1. Add the following code to your application program, to create a channel:

ECI_ChannelToken_t chanToken;
createChannel(&chanToken);

2. You can add containers with a data type of BIT or CHAR to your channel. Here
is a sample BIT container:
char custNumber[] = {0,1,2,3,4,5};
rc = ECI_createContainer(chanToken, "CUSTNO", ECI_BIT, 0, custNumber,
sizeof(custNumber));

Here is a sample CHAR container that uses the CCSID of the channel:
char * company = "IBM";
rc = ECI_createContainer(chanToken, "COMPANY", ECI_CHAR, 0, company,
strlen(company));

3. The channel can now be used in an ECI request, as the example shows:
CTG_ECI_PARMS eciParms = {0};

eciParms.eci_version = ECI_VERSION_2A;
eciParms.eci_call_type = ECI_SYNC;
strncpy(eciParms.eci_system_name, "CICSA", ECI_SYSTEM_NAME_LENGTH);
eciParms.eci_userid_ptr = "USERNAME";
eciParms.eci_password_ptr = "PASSWORD";
strncpy(eciParms.eci_program_name, "CHANPROG", ECI_PROGRAM_NAME_LENGTH);
eciParms.eci_extend_mode = ECI_NO_EXTEND;
eciParms.channel = chanToken;

4. When the request is complete, you can retrieve the current state of the
containers in the channel, as the example shows:
ECI_CONTAINER_INFO contInfo;

rc = ECI_getFirstContainer(chanToken, &contInfo);

while (rc == ECI_NO_ERROR) {

72 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

printf("Container %s\n", contInfo.name);

if (contInfo.type == ECI_BIT) {
printf("Type BIT\n");

} else {
printf("Type CHAR\n");

}

/* Read block of data into buffer */
ECI_getContainerData(channelToken, contInfo.name, dataBuff,

sizeof(dataBuff), offset, &bytesRead);

rc = ECI_getNextContainer(chanToken, &contInfo);
}

Tracing in ECI V2 and ESI V2 applications
Applications should implement an option to enable trace. You can control tracing
in ECI and ESI Version 2 applications using the functions and environment
variables described here.

You can set trace level, file, data length and offset either by using a function call or
by setting an environment variable. Examples of each are shown below. To avoid
having to recompile applications, enable trace by setting the environment variable.

Trace level

You can set 5 trace levels:

CTG_TRACE_LEVEL0
Disables all tracing. This is the default setting.

CTG_TRACE_LEVEL1
Enables exception trace points. This level of tracing can be set on
permanently to provide an error log capability. Messages are written only
for system errors, socket errors, and other Gateway connection errors.

CTG_TRACE_LEVEL2
Enables event trace points and those from lower trace levels.

CTG_TRACE_LEVEL3
Enables function entry and exit trace points and those from lower trace
levels.

CTG_TRACE_LEVEL4
Enables debug trace points and those from lower trace levels.

Here is an example of the trace level function call:
CTG_setAPITraceLevel(CTG_TRACE_LEVEL1);

Here is an example of the trace level environment variable:
CTG_CLIENT_TRACE_LEVEL=1

Trace file

The default trace destination is the standard error stream.

Here is an example of the trace file function call:
CTG_setAPITraceFile("filename.trc");

Here is an example of the trace file environment variable:

Chapter 8. Programming in C 73

CTG_CLIENT_TRACE_FILE=filename.trc

If the trace file is not set, trace is written to the standard error stream (stderr).

Trace data length

The trace data length specifies the maximum amount of data that is written to
trace when communicating with CICS Transaction Gateway and the trace level is
set to CTG_TRACE_LEVEL4. The default setting is 128 bytes.

Here is an example of the trace data length function call:
CTG_setAPITraceDataLength(256);

Here is an example of the trace data length environment variable:
CTG_CLIENT_DATA_LENGTH=256

Trace data offset

The trace data offset specifies an offset into data where tracing begins. When
combined with the trace data length this allows a specific section of data to be
traced, for example a section of data in a COMMAREA. The default setting is zero.

Here is an example of the trace data offset function call:
CTG_setAPITraceDataOffset(40);

Here is an example of the trace data offset environment variable:
CTG_CLIENT_DATA_OFFSET=40

Security credentials in ECI V2
The application can specify the user ID and password or password phrase by
setting eci_userid_ptr and eci_password_ptr in the ECI V2 parameter block.

The fields eci_userid and eci_password are provided for compatibility with existing
applications. New applications must use eci_userid_ptr and eci_password_ptr.

The maximum length of a user ID and password or password phrase depends on
the CICS server version and communications protocol type. For more information
see your CICS server documentation.

Compiling and linking C applications
This section gives some examples showing how to compile and link typical ECI
applications in the various client environments.

The following table shows the C header files required depending on the API being
used and whether they can be used to build 32-bit and 64-bit applications:

Table 12. C header files

Use File 32-bit support 64-bit support

ECI V2 ctgclient_eci.h and
ctgclient.h

U U

ESI V2 ctgclient_esi.h and
ctgclient.h

U U

74 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

When compiling C programs, you might need to pass structures to the external
CICS interfaces in packed format. If this is the case, the C header files contain the
#pragma pack directive, which must not be changed.

Refer to the Chapter 13, “Sample programs,” on page 101 supplied with your
environment for examples of compiling and linking programs.

Chapter 8. Programming in C 75

76 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Chapter 9. Programming using the .NET Framework

The .NET Framework offers a number of advantages when developing remote
client applications.
v A consistent model, provided by the .NET class library, for all supported

programming languages.
v High levels of security for applications used in remote mode topologies;

method-level security using industry standard security technologies can be
explicitly defined.

v Separation of application logic from presentation logic for easier maintenance
and upgrade.

v Simplified debugging plus the availability of runtime diagnostics.
v Simpler application deployment.

Overview of the programming interface
The .NET classes are supported on all Windows platforms and can be used to
build 32-bit and 64-bit remote mode applications. The .NET classes are not
supported in local mode..

The GatewayConnection class represents a connection to CICS Transaction
Gateway. The connection is opened in the constructor and remains open until the
Close() method is invoked. The class provides two methods for interacting with
CICS Transaction Gateway: Flow(request) which flows an EciRequest to CICS
Transaction Gateway, and ListSystems() which returns a list of all CICS servers that
have been defined in CICS Transaction Gateway. Transaction tracking can be
enabled on the GatewayConnection class by setting the Applid and
ApplidQualifier properties.

The EciRequest class represents an ECI call to CICS, and allows data to be flowed
in either COMMAREAs or channels. The Channel and Container classes are used
to construct and manage channel and container data. If you specify both a channel
and a COMMAREA on an ECI call, the channel is flowed and the COMMAREA is
ignored.

The EsiVerifyRequest and EsiChangeRequest classes provide methods for
verifying security credentials and changing passwords and password phrases.

The Trace class provides methods for controlling tracing within the API.

Making ECI calls from .NET programs
Table showing how the .NET properties map to the component parts of an ECI
request.

Use the IBM.CTG.EciRequest class to pass details of an ECI request to CICS
Transaction Gateway. The following table shows the .NET class properties that
correspond to the ECI terms described in “I/O parameters on ECI calls” on page 6.
For more information see, the GatewayConnection information in the .NET section
of the Programming Reference.

© Copyright IBM Corp. 2000, 2013 77

ECI term .NET class property

Abend code EciRequest.AbendCode

Channel EciRequest.Channel. See “Introduction to channels and
containers” on page 5.

COMMAREA EciRequest.SetCommareaData

EciRequest.GetCommareaData

EciRequest.CommareaLength

ECI return code EciRequest.EciReturnCode

ECI timeout EciRequest.Timeout. See “Timeout of the ECI request” on page
10.

LUW control EciRequest.ExtendMode. See “Program link calls” on page 7.

LUW identifier EciRequest.LuwToken. See “Managing logical units of work” on
page 8.

Password or password
phrase

EciRequest.Password. See “Security in the ECI” on page 11.

Program name EciRequest.Program

Server name EciRequest.ServerName

TPNName EciRequest.MirrorTransId. See “ECI and CICS transaction IDs”
on page 10.

TranName EciRequest.TransId. See “ECI and CICS transaction IDs” on
page 10.

Userid EciRequest.UserId. See “Security in the ECI” on page 11.

Making ESI calls from .NET programs
Table showing how the .NET properties map to the component parts of an ESI
request.

Use the IBM.CTG.EsiVerifyRequest and IBM.CTG.EsiChangeRequest classes to pass
details of an ESI request to CICS Transaction Gateway. The following table shows
the .NET class properties that correspond to the ESI terms described in I/O
parameters on ESI calls(link). For more information see, and in the CICS
Transaction Gateway Programming Reference:

ESI term .NET class property

Current password or
password phrase

EsiVerifyRequest.Password

New password or
password phrase

EsiChangeRequest.NewPassword

Server name EsiVerifyRequest.ServerName

User ID EsiVerifyRequest.UserId

Using channels and containers in .NET programs
You can use channels and containers for connections to CICS over the IPIC
protocol. You must construct a channel before it can be used in an ECI request.

78 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

To construct a channel to hold containers add the following code to your
application program:
C#:

Channel myChannel = new Channel("CHANNELNAME");

VB.NET:

Dim myChannel As New Channel("CHANNELNAME")

You can add containers with a data type of BIT or CHAR to your channel. Here is
a sample BIT container:
C#:

byte [] custNumber = new byte []{1, 2, 3, 4, 5};
myChannel.CreateContainer("CUSTNO", custNumber);

VB.NET:

Dim custNumber() As Byte = {1, 2, 3, 4, 5}
myChannel.CreateContainer("CUSTNO", custNumber)

Here is a sample CHAR container:
C#:

String company = "IBM";
myChannel.CreateContainer("COMPANY", company);

VB.NET:

Dim company As String = "IBM"
myChannel.CreateContainer("COMPANY", company)

The channel and containers can now be used in an EciRequest, as the example
shows:
C#:

EciRequest eciReq = new EciRequest();
eciReq.ServerName = "CICSA";
eciReq.Program = "CHANPROG";
eciReq.ExtendMode = EciExtendMode.EciNoExtend;
eciReq.Channel = myChannel;

gwyConnection.Flow(eciReq);

VB.NET:

Dim eciReq As New EciRequest()
eciReq.ServerName = "CICSA"
eciReq.Program = "CHANPROG"
eciReq.ExtendMode = EciExtendMode.EciNoExtend
eciReq.Channel = myChannel

gwyConnection.Flow(eciReq)

When the request is complete, you can retrieve the contents of the containers in the
channel by interpreting the type, as this example shows:
C#:

Channel myChannel = eciReq.Channel;

foreach (Container aContainer in myChannel.GetContainers()) {

Chapter 9. Programming using the .NET Framework 79

Console.WriteLine(aContainer.Name);
if (aContainer.Type == ContainerType.BIT) {
byte[] data = aContainer.GetBitData();
} else if (aContainer.Type == ContainerType.CHAR){
String data = aContainer.GetCharData();
}
}
VB.NET:

Dim myChannel As Channel = eciReq.Channel

For Each aContainer In myChannel.GetContainers()
Console.WriteLine(aContainer.Name)
If (aContainer.Type = ContainerType.BIT) Then
Dim data() As Byte = aContainer.GetBitData()
ElseIf (aContainer.Type = ContainerType.CHAR) Then
Dim data As String = aContainer.GetCharData()
End If
Next aContainer

Developing .NET applications
How to develop ECI and ESI applications using the .NET Framework.

Developing using Microsoft Visual Studio

If you are developing using Microsoft Visual Studio, you must add a reference to
the IBM.CTG.Client.dll assembly.

When you have added the reference, the types in the IBM.CTG namespace can be
used to perform ECI and ESI calls to CICS. To avoid the need to fully qualify each
type, you can add the IBM.CTG namespace to the imports section of your code.

See Microsoft Visual Studio documentation for further information on creating and
building projects.

Compiling and linking from the command line

The .NET Framework provides command line tools for compiling and linking
.NET applications. Applications that are written in C# can be compiled and linked
using the csc tool:
csc /target:exe /out:"AppName.exe" /reference:"IBM.CTG.Client.dll"
"SourceFile.cs"

Applications that are written in Visual Basic.NET can be compiled and linked
using the vbc tool:
vbc /target:exe /out:"AppName.exe" /reference:"IBM.CTG.Client.dll"
"SourceFile.vb"

For more information on the csc and vbc command line tools see the Microsoft
documentation.

Problem determination for .NET client programs
Use tracing to help determine the cause of any problems when running .NET client
programs.

80 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Tracing for .NET client programs
Trace is activated for the IBM.CTG.Client.dll either by specifying it as an
application configuration file or by using the Trace class.

Trace levels

The following trace levels are available:

CtgTrcDisabled
disables tracing

CtgTrcLevel1
includes exception trace points but nothing else

CtgTrcLevel2
includes event trace points and all CtgTrcLevel1 trace points

CtgTrcLevel3
includes function entry and exit trace points and all CtgTrcLevel1 and
CtgTrcLevel2 trace points

CtgTrcLevel4
includes debug trace points and all CtgTrcLevel1, CtgTrcLevel2 and
CtgTrcLevel3 trace points (the most verbose tracing level)

Specifying trace in an application configuration file

Trace can be enabled using the CtgTrace trace switch in an application
configuration file (an XML file). The switch allows the trace to be specified as an
IBM.CTG.TraceLevel value, a System.Diagnostics.TraceLevel value, or an integer
between 0 and 4 inclusive. In the following example the switch
value="CtgTrcLevel4" specifies Level 4 tracing, with tracing of data blocks limited
to the first 128 bytes.
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.diagnostics>
<switches>
<add name="CtgTrace" value="CtgTrcLevel4" dataDumpOffset="0"

dataDumpLength="128"/>
</switches>
</system.diagnostics>
</configuration>

A sample trace configuration file called App.config is included in the ctgredist
package or in <install_path>\samples\csharp\eci and <install_path>\samples\vb\
eci on a Windows machine with CICS Transaction Gateway installed.

Using the Trace class

The Trace class includes the following members:

TraceLevel
gets or sets the trace level

DataDumpOffset
gets or sets the starting offset in each data blocks when tracing at
CtgTrcLevel4

DataDumpLength
gets or sets the maximum amount of data traced in each data block at
CtgTrcLevel4

Chapter 9. Programming using the .NET Framework 81

For more information see the Trace information in the .NET section of the
Programming Reference.

82 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Chapter 10. Creating a CICS request exit

The CICS request exit is called by CICS Transaction Gateway in remote mode, to
select a CICS server name for an ECI or ESI request. The CICS request exit can be
used for request retry, dynamic server selection and for rejecting non-valid
requests. If the server name returned by a CICS request exit is null, the request is
sent to the default CICS server if one is specified in the configuration file (ctg.ini).

Before you begin

If a request fails with a retryable error and the retry limit has not been reached, the
Gateway daemon calls the CICS request exit to select an alternative CICS server.
The following errors are retryable:
v The specified CICS server is no longer available (ECI_ERR_CICS_DIED or

ESI_ERR_CICS_DIED)
v A connectivity problem has occurred (ECI_ERR_RESOURCE_SHORTAGE or

ESI_ERR_RESOURCE_SHORTAGE)
v The specified CICS server is not available (ECI_ERR_NO_CICS or

ESI_ERR_NO_CICS)

For an XA transaction, if a request is retried using a CICS request exit, the retry
must use the same protocol as the original request. For example, a request that was
originally attempted over EXCI cannot be retried over IPIC. If, on retry, the exit
attempts to change the protocol used, the ERROR_EXIT_RETRY_INVALID return
code is returned to the Client application and message CTG8468E is written to the
error log.

You can pass a command to a CICS request exit dynamically using the CREXIT
administration option; for more information see the CICS Transaction Gateway for
z/OS: Administration Guide.

About this task

To configure and deploy a CICS request exit use the following steps:

Procedure
1. Create a Java class that implements the com.ibm.ctg.ha.CICSRequestExit

interface.
2. Compile the Java class and package it into a JAR file.
3. Copy the JAR file to a location in your HFS accessible by the Gateway daemon.
4. Update the CLASSPATH environment variable in the Gateway daemon

configuration to include the location of the JAR file containing your exit.
5. Specify the fully-qualified package name of your exit class by using the

cicsrequestexit parameter in the configuration file (ctg.ini). For example, to
deploy the sample RoundRobinCICSRequestExit, specify this:
cicsrequestexit=com.ibm.ctg.samples.ha.RoundRobinCICSRequestExit

6. Start the Gateway daemon.
Related information:
CICS request exit

© Copyright IBM Corp. 2000, 2013 83

Writing a CICS request exit
Methods implemented by the CICS request exit interface.

The CICS request exit must implement the com.ibm.ctg.ha.CICSRequestExit
interface. Two methods defined by the interface must be implemented by the class:
v getRetryCount
v getCICSServer

If the CICS request exit fails to load and then initialize, the Gateway daemon fails
to start. When the Gateway daemon loads the CICS request exit class, the default
constructor is called, enabling any setup information to be initialized before the
CICS request exit is used.

getRetryCount
If the initialization is successful; that is, no exceptions are thrown from the
default constructor, the getRetryCount method is called to determine how
many times a request for a new transaction can be retried following a
retryable error. The getRetryCount method is called once only, so the value
will be constant for the lifetime of the Gateway daemon and used for the
start of every transaction.

getCICSServer
The getCICSServer method is called by the Gateway daemon at the start of
each ECI unit of work and each ESI request to determine the CICS server
that the unit of work or request is sent to. A unit of work is started by a
SYNCONRETURN ECI request, the first ECI request in an extended LUW,
or the first ECI request in an XA transaction. If the request fails with a
retryable error and the maximum number of retries has not been reached,
the getCICSServer method is called again to allow a different CICS server
to be used. However, if the request fails and the maximum number of
retries has been reached the error from the last request is returned to the
Java client application. See RequestDetails for information on the request
data available to a getCICSServer method. The retryable errors are:
v ECI_ERR_NO_CICS
v ECI_ERR_CICS_DIED
v ECI_ERR_RESOURCE_SHORTAGE
v ESI_ERR_NO_CICS
v ESI_ERR_CICS_DIED
v ESI_ERR_RESOURCE_SHORTAGE

InvalidRequestException
If the getCICSServer method determines that the request is invalid it can
throw a com.ibm.ctg.ha.InvalidRequestException that stops the request
from being sent to CICS or from being retried. If the request is an ECI
request, ECI_ERR_INVALID_CALL_TYPE is returned to the caller. If the
request is an ESI request, ESI_ERR_PEM_NOT_ACTIVE is returned.

EventFired
The EventFired method is called if:
v The CICSRequestExit is disabled at shutdown of the Gateway daemon
v A Gateway daemon receives an administration request for the CICS

request exit that includes a command string.

This method is called for each defined ExitEvent. The CICS request exit
can selectively process these using the event parameter.

84 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

http://pic.dhe.ibm.com/infocenter/cicstgzo/v9r0/topic/com.ibm.cics.tg.zos.doc/hajavadoc/com/ibm/ctg/ha/RequestDetails.html

Related information:

http://pic.dhe.ibm.com/infocenter/cicstgzo/v9r0/topic/
com.ibm.cics.tg.zos.doc/hajavadoc/com/ibm/ctg/ha/package-summary.html
CICS request exit programming reference

Java CICS request exit samples
Two sample CICS request exits are provided. The first sample exit returns the CICS
server to use for an ECI or ESI request. The second sample exit supports workload
management using a round-robin algorithm.

Location of sample files

The source code for the CICS request exit samples is provided in the following
location:<install_path>/samples/java/com/ibm/ctg/samples/ha

BasicCICSRequestExit

This sample shows you how to implement a basic CICS request exit. The
getCICSServer method returns the CICS server to be used on an ECI or ESI
request, based on a predefined server mapping. If the CICS server on the ECI or
ESI request is defined in the server mapping, the actual CICS server that it maps to
is returned. If the CICS server on the ECI or ESI request is not defined in the
server mapping, the CICS server is returned unchanged.

RoundRobinCICSRequestExit

This sample shows you how to implement a CICS request exit to perform
workload management. Each time that the getCICSServer method is called, it
returns the next CICS server, in a threadsafe manner, from a predefined list. The
CICS server specified on the ECI or ESI request by the application is ignored. The
retry count is set so that each server in the list is called at most once for each
request.

Using the CICS request exit samples
Before using these samples modify the code so that the samples reference known
CICS servers.

When these changes have been made, compile the sample, for example by using
the javac command.

When configuring each sample exit for use in a specific environment refer to the
following information:

BasicCICSRequestExit

The constructor for this class populates a hash table with mappings between a
name that would be used by the Java client application and an actual CICS server.
Change the contents of the hash table so that there is a mapping between the CICS
server specified on the ECI or ESI request, by the Java client application, and an
actual CICS server.

Chapter 10. Creating a CICS request exit 85

http://pic.dhe.ibm.com/infocenter/cicstgzo/v9r0/topic/com.ibm.cics.tg.zos.doc/hajavadoc/com/ibm/ctg/ha/package-summary.html
http://pic.dhe.ibm.com/infocenter/cicstgzo/v9r0/topic/com.ibm.cics.tg.zos.doc/hajavadoc/com/ibm/ctg/ha/package-summary.html

RoundRobinCICSRequestExit

The list of available CICS servers is contained in the serverList array. Change the
values stored in this array to a list of actual CICS servers.

86 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Chapter 11. Java request monitoring exits

Request monitoring exits enable Java user exit code to obtain the details of requests
as they are processed by CICS Transaction Gateway and Java client applications.

The following flow topology diagrams show when the request monitoring time
stamps are generated depending on the CICS Transaction Gateway configuration.
In each diagram, points T1, T2, T3, and T4 show where time stamps are collected
for each request.

A request exit running inside the Gateway daemon can be called with the
following event types:

RequestEntry
When a request is received by the Gateway daemon.

RequestDetails
Before the request is sent to CICS and after any DSS routing decision has
been made.

ResponseExit
When the Gateway daemon sends the response back to the client
application.

A request exit running inside the Java API for both the RemoteClient and
LocalClient configurations can be called with the following event types:

RequestEntry
Before the request is sent to the Gateway daemon or CICS.

ResponseExit
After the response is received from the Gateway daemon or CICS.

Figure 7. Request flow through the Gateway daemon

© Copyright IBM Corp. 2000, 2013 87

|

|
|
|

|

|

|
|

|
|
|
|

|
|

|
|

|
|
|

|
|
|

|

|
|

|
|

|
|

Considerations for using request monitoring exits
v Request monitoring exits are configured independently in the Gateway daemon

and Java client applications.
v Multiple exits can be configured but the order in which they are called is not

defined.
v Exits running in the Gateway daemon are loaded at startup and remain active

until disabled using the systems management command or the Gateway daemon
is shut down.

v Exits running in a Java client application are loaded when the JavaGateway
object is opened and remain active until the JavaGateway object is closed.

Figure 8. Request flow through the Gateway classes in remote mode

Figure 9. Request flow through the Gateway classes in local mode

88 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

|

|
|
|
|

|
|
|

||

|

|
|

|
|

|
|
|

|
|

v Exits should be coded to have minimal impact on performance.
v An exit that throws a runtime exception or error is disabled.

Writing a monitoring application to use the exits

A request monitoring exit is a Java class that implements the
com.ibm.ctg.monitoring.RequestExit interface. When the exit is created the default
no argument constructor is called. At this point, the exit can create any resources it
needs when processing events from the Gateway daemon or Java client
application. The eventFired() method is called at each of the exit points; when a
systems management command is sent; or when the exit is shutdown. The
shutdown event should be used to release any resources obtained during the
lifetime of the exit.

Timestamps are taken during the flow at T1, T2, T3, and T4 on the diagrams.
v Timestamp T1 (RequestReceived) is generated as a request arrives at the

Gateway daemon or Gateway classes. This data is available when the request
event type is RequestEntry, RequestDetails, or ResponseExit.

v Timestamp T2 (RequestSent) is generated as the request leaves the Gateway
daemon or Gateway classes. This data is available when the request event type
is ResponseExit.

v Timestamp T3 (ResponseReceived) is generated when the reply arrives back in
the Gateway daemon or Gateway classes. This data is available when the request
event type is ResponseExit.

v Timestamp T4 (ResponseSent) is generated when the reply leaves the Gateway
daemon or Gateway classes. This data is available when the request event type
is ResponseExit.

When the exit is triggered, the eventFired() method is called and runs on the same
thread as the caller. When the eventFired() method returns, the thread continues
running as before. Processing performed by the exit on this thread affects
performance and must be kept to a minimum. An example exit
com.ibm.ctg.samples.requestexit.ThreadedMonitor shows you how to transfer this
processing to a separate thread to reduce the impact on performance.

Controlling request monitoring user exits dynamically

Request monitoring exits running in the Gateway daemon can be controlled
through the rmexit option of the the /F <jobname> command.

The enable and disable options allow you to enable or disable all the exits
running within the Gateway daemon. When exits are disabled they are not called
as part of the Gateway daemon processing.

The the /F <jobname> command allows you to send system management
commands to your request monitoring user exits so you can interact with the
request monitoring user exits, to perform tasks such as dynamically starting or
stopping a particular user exit.

When you issue a system management command with a RequestEvent of Command,
the eventFired() method is driven for all request monitoring user exits that are
active on the Gateway daemon. The input data is formed of a single entry in the
map, with RequestData key "CommandData". The value associated with this key is
a string representing the data provided via the system management command.

Chapter 11. Java request monitoring exits 89

|

|

|

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

Sample request monitoring user exits

A simple request monitoring user exit implementation of the RequestExit interface
is in the com.ibm.ctg.samples.requestexit.BasicMonitor class. The source code for
request monitoring user exits samples is located in /samples/java/com/ibm/ctg/
samples/requestexit.
Related information:
Request monitoring user exit API information

Correlation points available in the exits
Correlation points are available to identify the flow data available in the exits
between the exits and between flows. For all flows, the FlowType enumeration is
available. The enumeration defines the type of flow and has methods to determine
other key qualities about this flow.

You can use FlowTopology to distinguish between Gateway daemon flows and
flows in the Gateway classes, in both local and remote mode. The underlying
ECIRequest object is not accessible from the exits.

Flow correlators

Individual flows through the Gateway daemon or Gateway classes have a
CtgCorrelator. This correlator is a Java integer which is available at all
RequestEvents: RequestEntry to ResponseExit, and can take any value from
Integer.MinValue to Integer.MaxValue (values from -2,147,483,648 to 2,147,483,647).
Each Gateway daemon or JavaGateway object uses independent correlators.

The Gateway daemon or JavaGateway object of a Client application can be
identified if the APPLID and APPLID Qualifier are defined and are available as
CtgApplid and CtgApplidQualifier. These are Java Strings containing 1 to 8
characters.

In three-tier (or remote mode) topologies, the CtgCorrelator, CtgApplid, and
CtgApplidQualifier of the Client application flow are available in the exits in the
Gateway daemon as ClientCtgCorrelator, ClientCtgApplid, and
ClientCtgApplidQualifier.

For transactions that use IPIC, the origin data is available to associate the flow
from a Java application through to a CICS server.

For EXCI SYNCONRETURN flows from the Gateway daemon, the CtgApplid, and
CtgApplidQualifier are passed to CICS as a LU6.2 style UOWID. The format of
this UOWID is a byte array, and available as CicsCorrelator.

The CICS Network UOWID is a byte array used by CICS to uniquely identify a
unit of work. The encoding is binary for the integers and EBCDIC for the
characters. The format is shown in the following table.

Table 13. Format of CICS Network UOWID

Offset Length Description

0 1 Length of UOWID

1 1 Length of network ID

2 n = 3 to 17 Network ID - [APPLIIDQUALIFIER.] APPLID

90 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

|

|
|
|
|

|

|

|
|

|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

||

|||

|||

|||

|||

Table 13. Format of CICS Network UOWID (continued)

Offset Length Description

3+q+u 6 NETUOWSX

Access to any user correlation data in the COMMAREA is through the PayLoad
object, which is read-only, and available only during the eventFired() method.

Transaction correlators

For XA transactions the XID is available, and for transactions that use EXCI, where
the XID is unknown to CICS, the RRMS URID is also available as the URID object.

For extended mode ECI transactions, the LUW token is available after it has been
set; for example, on all exits except the RequestEntry of the first request of the
transaction.

Data available by FlowType and RequestEvent
For RequestEvent types of RequestEntry, RequestDetails, and ResponseExit, data is
available from several fields.

The RequestEvent type is passed with associated data on the eventFired method.
Data is represented by a Map object, whose keys are of type RequestData and
values are of type Object. The Map object can contain RequestData keys with
values of “null”.

The following tables cover the data available for each FlowType.

Non-XA flows at RequestEntry
Data available for non-XA flows at RequestEvent = RequestEntry.

Y indicates that the field data is available for a specific flow type, N indicates that
the field data is not available for the specific flow type.

Flow Type EciStatus EciSynconreturn ExtendedModeEci ExtendedModeCommit ExtendedModeRollback

Channel N Y Y N N

CicsAbendCode N N N N N

CicsReturnCode N N N N N

CicsServer N N N N N

ClientCtgApplid 8 on page
92

Y Y Y Y Y

ClientCtgApplidQualifier 8
on page 92

Y Y Y Y Y

ClientCtgCorrelator8 on
page 92

Y Y Y Y Y

ClientLocation 2 on page 92 Y Y Y Y Y

CtgApplid Y Y Y Y Y

CtgApplidQualifier Y Y Y Y Y

CtgCorrelator Y Y Y Y Y

CtgReturnCode N N N N N

DistributedIdentity N Y Y Y Y

FlowTopology Y Y Y Y Y

FlowType Y Y Y Y Y

GatewayUrl 6 on page 92 Y Y Y Y Y

Location 7 on page 92 Y Y Y Y Y

LUW Token N N Y Y Y

OriginData 3 on page 92 N N N N N

PayLoad N Y Y N N

Program N Y Y N N

RequestReceived Y Y Y Y Y

RequestSent 4 on page 92 N N N N N

Chapter 11. Java request monitoring exits 91

|

|||

|||
|

|
|

|

|
|

|
|
|

|
|

|
|

|
|
|
|

|

|

|

|
|

|
|
|||||

|
|
|||||

Flow Type EciStatus EciSynconreturn ExtendedModeEci ExtendedModeCommit ExtendedModeRollback

ResponseReceived 4 N N N N N

ResponseSent N N N N N

RetryCount N N N N N

Server 9 Y Y Y Y Y

TranName TpnName5 N Y Y Y Y

Urid1 N N N N N

Userid N Y Y Y Y

WireSize 2 Y Y Y Y Y

WorkerWaitTime2 N N N N N

XaReturnCode N N N N N

XctCurrent10 N Y Y N N

XctParent10 N Y Y N N

XctRoot10 N Y Y N N

Xid N N N N N

Note:

1. Urid is available only on non-IPIC flows.
2. ClientLocation, WorkerWaitTime and WireSize are available only when

FlowTopology=Gateway.
3. OriginData is available only for IPIC flows to CICS servers when

FlowTopology=Gateway and FlowTopology=LocalClient.
4. The timestamps from and to another system are set only if the flow goes to

another system. For EciStatus and for non-IPIC XA flows, except XaEci, this
will be when FlowTopology=RemoteClient only.

5. TranName and TpnName are mutually exclusive. Either might be set, but not
both.

6. GatewayUrl is available only when FlowTopology=RemoteClient.
7. Location is available exclusively when FlowTopology=Gateway and

FlowTopology=RemoteClient.
8. ClientCtgApplid, ClientCtgApplidQualifier, and ClientCtgCorrelator are

available to clients that support these data fields when
FlowTopology=Gateway. These data fields are supported by Java clients using
classes from CICS Transaction Gateway V7.1 and later, ECI V2, and .NET
clients using libraries from CICS Transaction Gateway V8.1 and later.

9. Server is only available if a server was specified on the request.
10. XCT data is only available if the cross-component trace (XCT) facility is

enabled in WebSphere Application Server.

XA flows at RequestEntry
Data available for XA flows at RequestEvent = RequestEntry.

Y indicates that the field data is available for a specific flow type, N indicates that
the field data is not available for the specific flow type.

Flow Type XaStart XaEci Xa1PhaseCommit XaPrepare XaCommit XaRollback XaForget XaRecover

Channel N Y N N N N N N

CicsAbendCode N N N N N N N N

CicsReturnCode N N N N N N N N

CicsServer N N N N N N N N

ClientCtgApplid 8 on page 93 Y Y Y Y Y Y Y Y

ClientCtgApplidQualifier 8 on
page 93

Y Y Y Y Y Y Y Y

ClientCtgCorrelator 8 on page
93

Y Y Y Y Y Y Y Y

ClientLocation 2 on page 93 Y Y Y Y Y Y Y Y

CtgApplid Y Y Y Y Y Y Y Y

CtgApplidQualifier Y Y Y Y Y Y Y Y

CtgCorrelator Y Y Y Y Y Y Y Y

92 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

|

|

|
|

|
|

|
|
|

|
|

|

|
|

|
|
|
|
|

|

|
|

|

|

|
|

|
|
||||||||

Flow Type XaStart XaEci Xa1PhaseCommit XaPrepare XaCommit XaRollback XaForget XaRecover

CtgReturnCode N N N N N N N N

DistributedIdentity N Y N N N N N N

FlowTopology Y Y Y Y Y Y Y Y

FlowType Y Y Y Y Y Y Y Y

GatewayUrl 6 Y Y Y Y Y Y Y Y

Location 7 Y Y Y Y Y Y Y Y

LUW Token N N N N N N N N

OriginData 3 N N N N N N N N

PayLoad N Y N N N N N N

Program N N N N N N N N

RequestReceived Y Y Y Y Y Y Y Y

RequestSent 4 N N N N N N N N

ResponseReceived 4 N N N N N N N N

ResponseSent N N N N N N N N

RetryCount N N N N N N N N

Server 9 Y Y Y Y Y Y Y Y

TranName TpnName 5 N Y N N N N N N

Urid 1 N N N N N N N N

Userid N Y N N N N N N

WireSize 2 Y Y Y Y Y Y Y Y

WorkerWaitTime 2 N N N N N N N N

XaReturnCode N N N N N N N N

XctCurrent N N N N N N N N

XctParent N N N N N N N N

XctRoot N N N N N N N N

Xid Y Y Y Y Y Y Y N

Note:

1. Urid is available only on non-IPIC flows.
2. ClientLocation, WorkerWaitTime and WireSize are available when

FlowTopology=Gateway.
3. OriginData is available only for IPIC flows to CICS servers when

FlowTopology=Gateway and FlowTopology=LocalClient.
4. The timestamps from and to another system are set if the flow goes to another

system. For EciStatus and for non-IPIC XA flows, except XaEci, this will be
when FlowTopology=RemoteClient only.

5. TranName and TpnName are mutually exclusive. Either TranName or
TpnName can be set, but not both.

6. GatewayUrl is available only when FlowTopology=RemoteClient.
7. Location is available exclusively when FlowTopology=Gateway and

FlowTopology=RemoteClient.
8. ClientCtgApplid, ClientCtgApplidQualifier, and ClientCtgCorrelator are

available to clients that support these data fields when FlowTopology=Gateway.
These data fields are supported by Java clients using classes from CICS
Transaction Gateway V7.1 and later, ECI V2, and .NET clients using libraries
from CICS Transaction Gateway V8.1 and later.

9. Server is only available if a server was specified on the request.

Non-XA flows at ResponseExit
Data available for non-XA flows at RequestEvent = ResponseExit.

Y indicates that the field data is available for a specific flow type, N indicates that
the field data is not available for the specific flow type.

Flow Type EciStatus EciSynconreturn ExtendedModeEci ExtendedModeCommit ExtendedModeRollback

Channel N Y Y N N

CicsAbendCode N Y Y N N

CicsReturnCode N Y Y Y Y

CicsServer 2 on page 94 N Y Y Y Y

Chapter 11. Java request monitoring exits 93

|

|

|
|

|
|

|
|
|

|
|

|

|
|

|
|
|
|
|

|

|

|

|
|

Flow Type EciStatus EciSynconreturn ExtendedModeEci ExtendedModeCommit ExtendedModeRollback

ClientCtgApplid 8 Y Y Y Y Y

ClientCtgApplidQualifier 8 Y Y Y Y Y

ClientCtgCorrelator 8 Y Y Y Y Y

ClientLocation 2 Y Y Y Y Y

CtgApplid Y Y Y Y Y

CtgApplidQualifier Y Y Y Y Y

CtgCorrelator Y Y Y Y Y

CtgReturnCode Y Y Y Y Y

DistributedIdentity N Y Y Y Y

FlowTopology Y Y Y Y Y

FlowType Y Y Y Y Y

GatewayUrl 6 Y Y Y Y Y

Location 7 Y Y Y Y Y

LUW Token N N Y Y Y

OriginData 3 N Y Y Y Y

PayLoad Y Y Y N N

Program N Y Y N N

RequestReceived Y Y Y Y Y

RequestSent 4 Y Y Y Y Y

ResponseReceived 4 Y Y Y Y Y

ResponseSent Y Y Y Y Y

RetryCount 2 N Y Y N N

Server 9 Y Y Y Y Y

TranName TpnName 5 N Y Y Y Y

Urid 1 N N N N N

Userid N Y Y Y Y

WireSize 2 Y Y Y Y Y

WorkerWaitTime 2 Y Y Y Y Y

XaReturnCode N N N N N

XctCurrent10 N Y Y N N

XctParent10 N Y Y N N

XctRoot10 N Y Y N N

Xid N N N N N

Note:

1. Urid is available only on non-IPIC flows.
2. CicsServer, ClientLocation, RetryCount, WorkerWaitTime and WireSize are

available only when FlowTopology=Gateway. CicsServer and RetryCount are
available only for the first request of the transaction.

3. OriginData is available only for IPIC flows to CICS servers when
FlowTopology=Gateway and FlowTopology=LocalClient.

4. The timestamps from and to another system are set only if the flow goes to
another system. For EciStatus and for non-IPIC XA flows, except XaEci, this
will be when FlowTopology=RemoteClient only.

5. TranName and TpnName are mutually exclusive. Either can be set, but not
both.

6. GatewayUrl is available exclusively when FlowTopology=RemoteClient.
7. Location is available only for FlowTopology=Gateway and

FlowTopology=RemoteClient.
8. ClientCtgApplid, ClientCtgApplidQualifier, and ClientCtgCorrelator are

available to clients that support these data fields when
FlowTopology=Gateway. These data fields are supported by Java clients using
classes from CICS Transaction Gateway V7.1 and later, ECI V2, and .NET
clients using libraries from CICS Transaction Gateway V8.1 and later.

9. Server is only available on EciStatus flows if one was specified on the request.
10. XCT data is only available if the cross-component trace (XCT) facility is

enabled in WebSphere Application Server.

94 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

|

|

|
|
|

|
|

|
|
|

|
|

|

|
|

|
|
|
|
|

|

|
|

XA flows at ResponseExit
Data available for XA flows at RequestEvent = ResponseExit.

Y indicates that the field data is available for a specific flow type, N indicates that
the field data is not available for the specific flow type.

Flow Type XaStart XaEci Xa1PhaseCommit XaPrepare XaCommit XaRollback XaForget XaRecover

Channel N Y N N N N N N

CicsAbendCode N Y N N N N N N

CicsReturnCode N Y N N N N N N

CicsServer 2 N Y Y Y Y Y Y N

ClientCtgApplid 8 on page 96 Y Y Y Y Y Y Y Y

ClientCtgApplidQualifier 8
on page 96

Y Y Y Y Y Y Y Y

ClientCtgCorrelator 8 on
page 96

Y Y Y Y Y Y Y Y

ClientLocation 2 Y Y Y Y Y Y Y Y

CtgApplid Y Y Y Y Y Y Y Y

CtgApplidQualifier Y Y Y Y Y Y Y Y

CtgCorrelator Y Y Y Y Y Y Y Y

CtgReturnCode Y Y Y Y Y Y Y Y

DistributedIdentity N Y N N N N N N

FlowTopology Y Y Y Y Y Y Y Y

FlowType Y Y Y Y Y Y Y Y

GatewayUrl 6 Y Y Y Y Y Y Y Y

Location 7 Y Y Y Y Y Y Y Y

LUW Token N N N N N N N N

OriginData 3 N Y N N N N N N

PayLoad N Y N N N N N N

Program N Y N N N N N N

RequestReceived Y Y Y Y Y Y Y Y

RequestSent 4 Y Y Y Y Y Y Y Y

ResponseReceived 4 Y Y Y Y Y Y Y Y

ResponseSent Y Y Y Y Y Y Y Y

RetryCount 2 N Y N N N N N N

Server9 on page 96 Y Y Y Y Y Y Y Y

TranName TpnName 5 N Y N N N N N N

Urid 1 Y N N N N N N N

Userid N Y N N N N N N

WireSize 2 Y Y Y Y Y Y Y Y

WorkerWaitTime 2 Y Y Y Y Y Y Y Y

XaReturnCode Y N Y Y Y Y Y Y

XctCurrent N N N N N N N N

XctParent N N N N N N N N

XctRoot N N N N N N N N

Xid Y Y Y Y Y Y Y N

Note:

1. Urid is available only on non-IPIC flows.
2. CicsServer, ClientLocation, RetryCount, WorkerWaitTime and WireSize are

available only when FlowTopology=Gateway. CicsServer and RetryCount are
available only for the first request of the transaction.

3. OriginData is available only for IPIC flows to CICS servers when
FlowTopology=Gateway and FlowTopology=LocalClient.

4. The timestamps from and to another system are set only if the flow goes to
another system. For non-IPIC XA flows, except XaEci, this will be when
FlowTopology=RemoteClient only.

5. TranName and TpnName are mutually exclusive. Either might be set, but not
both.

6. GatewayUrl is available only when FlowTopology=RemoteClient.
7. Location is available exclusively when FlowTopology=Gateway and

FlowTopology=RemoteClient.

Chapter 11. Java request monitoring exits 95

|

|

|
|

|
|
||||||||

|

|

|
|
|

|
|

|
|
|

|
|

|

|
|

8. ClientCtgApplid, ClientCtgApplidQualifier, and ClientCtgCorrelator are
available to clients that support these data fields when FlowTopology=Gateway.
These data fields are supported by Java clients using classes from CICS
Transaction Gateway V7.1 and later, ECI V2, and .NET clients using libraries
from CICS Transaction Gateway V8.1 and later.

9. Server is only available if a server was specified on the request.

96 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

|
|
|
|
|

|

Chapter 12. Creating a CICS request exit

The CICS request exit is called by CICS Transaction Gateway in remote mode, to
select a CICS server name for an ECI or ESI request. The CICS request exit can be
used for request retry, dynamic server selection and for rejecting non-valid
requests. If the server name returned by a CICS request exit is null, the request is
sent to the default CICS server if one is specified in the configuration file (ctg.ini).

Before you begin

If a request fails with a retryable error and the retry limit has not been reached, the
Gateway daemon calls the CICS request exit to select an alternative CICS server.
The following errors are retryable:
v The specified CICS server is no longer available (ECI_ERR_CICS_DIED or

ESI_ERR_CICS_DIED)
v A connectivity problem has occurred (ECI_ERR_RESOURCE_SHORTAGE or

ESI_ERR_RESOURCE_SHORTAGE)
v The specified CICS server is not available (ECI_ERR_NO_CICS or

ESI_ERR_NO_CICS)

For an XA transaction, if a request is retried using a CICS request exit, the retry
must use the same protocol as the original request. For example, a request that was
originally attempted over EXCI cannot be retried over IPIC. If, on retry, the exit
attempts to change the protocol used, the ERROR_EXIT_RETRY_INVALID return
code is returned to the Client application and message CTG8468E is written to the
error log.

You can pass a command to a CICS request exit dynamically using the CREXIT
administration option; for more information see the CICS Transaction Gateway for
z/OS: Administration Guide.

About this task

To configure and deploy a CICS request exit use the following steps:

Procedure
1. Create a Java class that implements the com.ibm.ctg.ha.CICSRequestExit

interface.
2. Compile the Java class and package it into a JAR file.
3. Copy the JAR file to a location in your HFS accessible by the Gateway daemon.
4. Update the CLASSPATH environment variable in the Gateway daemon

configuration to include the location of the JAR file containing your exit.
5. Specify the fully-qualified package name of your exit class by using the

cicsrequestexit parameter in the configuration file (ctg.ini). For example, to
deploy the sample RoundRobinCICSRequestExit, specify this:
cicsrequestexit=com.ibm.ctg.samples.ha.RoundRobinCICSRequestExit

6. Start the Gateway daemon.
Related information:
CICS request exit

© Copyright IBM Corp. 2000, 2013 97

|

Writing a CICS request exit
Methods implemented by the CICS request exit interface.

The CICS request exit must implement the com.ibm.ctg.ha.CICSRequestExit
interface. Two methods defined by the interface must be implemented by the class:
v getRetryCount
v getCICSServer

If the CICS request exit fails to load and then initialize, the Gateway daemon fails
to start. When the Gateway daemon loads the CICS request exit class, the default
constructor is called, enabling any setup information to be initialized before the
CICS request exit is used.

getRetryCount
If the initialization is successful; that is, no exceptions are thrown from the
default constructor, the getRetryCount method is called to determine how
many times a request for a new transaction can be retried following a
retryable error. The getRetryCount method is called once only, so the value
will be constant for the lifetime of the Gateway daemon and used for the
start of every transaction.

getCICSServer
The getCICSServer method is called by the Gateway daemon at the start of
each ECI unit of work and each ESI request to determine the CICS server
that the unit of work or request is sent to. A unit of work is started by a
SYNCONRETURN ECI request, the first ECI request in an extended LUW,
or the first ECI request in an XA transaction. If the request fails with a
retryable error and the maximum number of retries has not been reached,
the getCICSServer method is called again to allow a different CICS server
to be used. However, if the request fails and the maximum number of
retries has been reached the error from the last request is returned to the
Java client application. See RequestDetails for information on the request
data available to a getCICSServer method. The retryable errors are:
v ECI_ERR_NO_CICS
v ECI_ERR_CICS_DIED
v ECI_ERR_RESOURCE_SHORTAGE
v ESI_ERR_NO_CICS
v ESI_ERR_CICS_DIED
v ESI_ERR_RESOURCE_SHORTAGE

InvalidRequestException
If the getCICSServer method determines that the request is invalid it can
throw a com.ibm.ctg.ha.InvalidRequestException that stops the request
from being sent to CICS or from being retried. If the request is an ECI
request, ECI_ERR_INVALID_CALL_TYPE is returned to the caller. If the
request is an ESI request, ESI_ERR_PEM_NOT_ACTIVE is returned.

EventFired
The EventFired method is called if:
v The CICSRequestExit is disabled at shutdown of the Gateway daemon
v A Gateway daemon receives an administration request for the CICS

request exit that includes a command string.

This method is called for each defined ExitEvent. The CICS request exit
can selectively process these using the event parameter.

98 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

http://pic.dhe.ibm.com/infocenter/cicstgzo/v9r0/topic/com.ibm.cics.tg.zos.doc/hajavadoc/com/ibm/ctg/ha/RequestDetails.html

Related information:

http://pic.dhe.ibm.com/infocenter/cicstgzo/v9r0/topic/
com.ibm.cics.tg.zos.doc/hajavadoc/com/ibm/ctg/ha/package-summary.html
CICS request exit programming reference

Java CICS request exit samples
Two sample CICS request exits are provided. The first sample exit returns the CICS
server to use for an ECI or ESI request. The second sample exit supports workload
management using a round-robin algorithm.

Location of sample files

The source code for the CICS request exit samples is provided in the following
location:<install_path>/samples/java/com/ibm/ctg/samples/ha

BasicCICSRequestExit

This sample shows you how to implement a basic CICS request exit. The
getCICSServer method returns the CICS server to be used on an ECI or ESI
request, based on a predefined server mapping. If the CICS server on the ECI or
ESI request is defined in the server mapping, the actual CICS server that it maps to
is returned. If the CICS server on the ECI or ESI request is not defined in the
server mapping, the CICS server is returned unchanged.

RoundRobinCICSRequestExit

This sample shows you how to implement a CICS request exit to perform
workload management. Each time that the getCICSServer method is called, it
returns the next CICS server, in a threadsafe manner, from a predefined list. The
CICS server specified on the ECI or ESI request by the application is ignored. The
retry count is set so that each server in the list is called at most once for each
request.

Using the CICS request exit samples
Before using these samples modify the code so that the samples reference known
CICS servers.

When these changes have been made, compile the sample, for example by using
the javac command.

When configuring each sample exit for use in a specific environment refer to the
following information:

BasicCICSRequestExit

The constructor for this class populates a hash table with mappings between a
name that would be used by the Java client application and an actual CICS server.
Change the contents of the hash table so that there is a mapping between the CICS
server specified on the ECI or ESI request, by the Java client application, and an
actual CICS server.

Chapter 12. Creating a CICS request exit 99

http://pic.dhe.ibm.com/infocenter/cicstgzo/v9r0/topic/com.ibm.cics.tg.zos.doc/hajavadoc/com/ibm/ctg/ha/package-summary.html
http://pic.dhe.ibm.com/infocenter/cicstgzo/v9r0/topic/com.ibm.cics.tg.zos.doc/hajavadoc/com/ibm/ctg/ha/package-summary.html

RoundRobinCICSRequestExit

The list of available CICS servers is contained in the serverList array. Change the
values stored in this array to a list of actual CICS servers.

100 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Chapter 13. Sample programs

A wide selection of sample programs for the supported programming languages
are included with CICS Transaction Gateway.

The sample programs that run on z/OS are located under the UNIX System
Services product install samples directory, and in the product MVS™ dataset
SCTGSAMP. Each sample JCL job has comments that describe how to use and
customize the file. Make a copy of the SCTGSAMP library and customize the copy.
The sample programs that run on non-z/OS platforms, such as statistics, ECI V2,
ESI V2 and .NET, are included in the ctgredist package which is located in the <CTG
install location>/deployable directory.

UNIX System Services ctgtest script
This script tests CICS Transaction Gateway to ensure that the product is correctly
installed and configured.

UNIX System Services ctgtest script

The script is a UNIX System Services script that is supplied in samples/ctgtest.
You can use the sample JCL jobs CTGTESTL, and CTGTESTR to run the script, or
you can use the command line. The script uses the EciB2 sample program, which
requires the sample server program EC01 to be installed on the CICS server.

Sample JCL jobs

The CTGTESTL and CTGTESTR jobs from the SCTGSAMP library must be
customized, as indicated in the comments, to replace installation-dependent
variables and set the CTGTEST_OPTS environment variable.

CTGTESTR is used for testing a remote mode configuration.

CTGTESTL is used for testing a local mode configuration

Command Line

Before you run the ctgtest script from a command line, parameters for the EciB2
sample program must be set in the environment variable CTGTEST_OPTS, for
example,
export CTGTEST_OPTS="jgate=tcp://localhost jgateport=2006 server=myserver
prog0=EC01 commarea=mydata userid=myuid password=mypwd

COBOL samples
These samples are for running on a CICS server.

To run the sample programs, the correct server programs and transactions must be
built and available on your CICS server. These samples are in
<install_path>/samples/server.

EC01.CCP
This sample returns the current date and time in its COMMAREA.

© Copyright IBM Corp. 2000, 2013 101

EC02.CCP
This sample returns the number of times it has been run in a unit of work
in its COMMAREA.

EC03.CCP
This sample receives CHAR container INPUTDATA and performs CICS
GET CONTAINER commands to return the contents, length and CCSID of
the container. This program returns the length in a BIT container and the
CCSID in a CHAR container, plus the date and time on the CICS server
and a message containing the input data or a failure message.

For information about how to build and install these programs, refer to your CICS
server documentation.

Java client samples
These samples are for use with the ECI Request and security APIs.

To use these samples, you must ensure that the required server programs or
transactions are installed on your CICS server. These samples do not demonstrate
all the techniques required for a large application. They are not templates and
should not be used as the basis for developing production applications.

Compiled Java samples
These samples are already compiled and are provided together with their source
code.

The samples are in <install_path>/classes/ctgsamples.jar.

The source for these samples is in the <install_path>/samples/java directory
under the package structure, which is in the following form:
com.ibm.ctg.samples.type_of_sample

Running the sample programs
To run the sample programs, ensure that ctgsamples.jar and ctgclient.jar are
referenced in your class path. If running the sample in local mode, ctgserver.jar is
also required.

These files are in the classes directory.
CLASSPATH=<install_path>/classes/ctgsamples.jar
:<install_path>/classes/ctgclient.jar
:<install_path>/classes/ctgserver.jar

Alternatively you can run the sample programs by using the Java -classpath
option, specifying the same information.

When running a sample program, if you provide any command line parameters,
you must enter them in the order specified by the usage statement of the particular
sample program.

Connecting to CICS Transaction Gateway
You can provide a URL that specifies the location of the CICS Transaction Gateway
to which you want to connect.

102 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

This should be of the form protocol://address. For example, for a remote mode
connection using the SSL protocol to a Gateway daemon with address
“myserver.test.com”:
ssl://myserver.ibm.com

If you are using IPv6, you must enclose the address in square brackets. For
example, for a remote mode connection using the TCP/IP protocol to a Gateway
daemon with IPv6 address “2002:914:fc12:632:7:36:66:134”:
tcp://[2002:914:fc12:632:7:36:66:134]

If you want to use local mode, the URL is “local:”.

Java ECI base class samples
Samples demonstrating the use of the ECI Java base class API. These samples
include simple, intermediate, and advanced ECI Java base classes.

Java EciB1 sample
This sample lists the systems defined in the Gateway daemon configuration file
(ctg.ini) and allows you to choose the one to which an ECI request is sent. This
request is then sent, and the date and time are returned in ASCII by CICS program
EC01, alongside a representation in hexadecimal.

Usage:
java com.ibm.ctg.samples.eci.EciB1 [Gateway Url] [Gateway Port Number]
there [SSL Keyring] [SSL Password]

If translation of the date and time to ASCII is required, a conversion template
needs to be created for EC01 on the server. Refer to the information about
configuring data conversion in the CICS Transaction Gateway for z/OS Administration
Guide for further details on conversion templates.

Java EciB2 sample
This sample is used for testing ECI requests sent to CICS. It controls the
parameters values from the command line.

Usage:
java com.ibm.ctg.samples.eci.EciB2 [jgate=gateway_URL]

[jgateport=gateway_port]
[clientsecurity=client_security_class]
[serversecurity=server_security_class]
[server=cics_server_name or IPIC_url]
[userid=cics_userid]
[password=cics_password]
[prog<0..9>=prog_name]
[commarea=comm_area]
[commarealength=comm_area_length]
[status]
[trace]
[ascii | ebcdic | asis]

You can specify the Gateway URL and relevant ECI request parameters as input to
the application, and either call a single CICS program or call multiple CICS
programs within one extended LUW. You can control the code page of the
COMMAREA flowed on the ECI request as an input parameter.

Chapter 13. Sample programs 103

http://pic.dhe.ibm.com/infocenter/cicstgzo/v9r0/topic/com.ibm.cics.tg.zos.doc/progdezos/cclaoovw.ide2.html

Java EciB3 sample
This sample is for using with the channels and containers components of the CICS
Transaction Gateway API.

Usage:
java com.ibm.ctg.samples.eci.EciB3 [Gateway URL] [Gateway Port Number]
[SSL Keyring] [SSL Password]

When using remote mode, the sample program connects to a Gateway daemon
and obtains a list of available CICS servers. It then flows an ECI request for CICS
program EC03 to the selected server.

When using local mode, the sample program prompts for the URL of a CICS
TCPIPSERVICE listening for IPIC requests, before flowing an ECI request for CICS
program EC03 to that CICS server. This URL is of the form protocol://hostname:port,
where protocol is “tcp” or “ssl”.

Java EciI1 sample
This sample shows the use of the ECI Request classes with an asynchronous
extended request and a “callbackable” object.

Usage:
java com.ibm.ctg.samples.eci.EciI1 [Gateway URL] [Port]
[SSL keyring] [SSL password]

The sample queries the Gateway daemon for a list of servers, then runs transaction
EC02 on the selected server.

You can provide a gateway URL and port number, along with an SSL keyring and
SSL password as command-line parameters. If you do not provide a URL, the
sample programs default to local.

When you start the Gateway daemon, ensure that the ctgsamples.jar file is
referenced in the class path.

This sample program also illustrates the use of the ClientCompression and
ServerCompression samples. For more information, see “Java security exit data
compression samples” on page 111.

Java EciA1 sample
This sample shows the use of the ECI request classes within the framework of a
servlet.

To compile EciA1, the servlet packages (2.2) javax.servlet and javax.servlet.http
must be referenced in the class path or added to the <install_path>/samples/java
directory.

When the servlet is initialized, it reads values supplied for the Gateway URL, SSL
classname and SSL password if they have been specified as initialization
parameters. Otherwise the default URL is local. The initial page displays the URL
of the connected Gateway daemon and a number of areas for user input: Server,
Program, CommArea Size, User ID, and Password.
v Server is a combination box containing the names of all the servers listed in the

configuration file (ctg.ini).

104 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

v Program is a list limited to EC01 and EC02; these must be available on the CICS
Server.

v CommArea Size can be set for EC01 only; for EC02 the size is always 50.
v The user ID and password can be specified in the two remaining text areas.

The servlet takes the submitted data and runs the program, automatically backing
out if the transaction terminates abnormally, or committing if it runs successfully.
The results of the transaction are displayed on a new page.

You can use a servlet properties file to provide initialization parameters. The
sample servlet looks for the following case-sensitive parameters:
v GatewayURL
v SSLClassname
v SSLPassword

For example:
servlet.EciA1.initArgs=GatewayURL=tcp://localhost:2006

If your JEE application server requires Java 2 Security permissions, or if you have
enabled this facility on your server, you might have to give the permissions
described in “Using a Java 2 Security Manager” on page 46.

Refer to the documentation for your JEE application server on setting servlet
initialization parameters.

Java ESI base class samples
Samples demonstrating the use of the ESI Java base class API.

Java EsiB1 sample
This sample lists the systems defined in the Gateway daemon configuration file
(ctg.ini) and allows you to select one. Using the ESI API, you then enter a user ID
and password for verification on the selected CICS server. Information about the
account being used is displayed on the screen.

Usage: java com.ibm.ctg.samples.esi.EsiB1 [Gateway URL] [Gateway port number]
[SSL keyring] [SSL password]

JEE samples
These samples are based on the JEE (Java 2 Enterprise Edition) standard.

The JEE samples are in <install_path>/samples/java/com/ibm/ctg/samples/jee.

JEE ECIDateTime sample
This sample uses the ECI resource adapter, and calls the CICS program EC01. The
program uses an enterprise bean that makes CCI calls; a client to the enterprise
bean is also provided.

The ECIDateTime sample program includes the following files:

ECIDateTimeBean.java
The enterprise bean ECIDateTime implementation code

ECIDateTime.java
The enterprise bean Remote interface

Chapter 13. Sample programs 105

ECIDateTimeHome.java
The enterprise bean Home interface

JavaStringRecord.java
The sample program record interface that wraps an ECI COMMAREA

ECIDateTimeClient.java
The client for the enterprise bean

Enterprise beans have a main body of code and two interfaces. The Remote
interface contains the business methods that the bean implements (in this case, the
execute() method.) The Home interface manages the life cycle of the enterprise
bean.

ECIDateTimeClient looks up the enterprise bean as ECIDateTimeBean1 in Java
Naming Directory Interface (JNDI), and then narrows the search to a specific object
using the remote interface as a type-cast. When execute() is called on this interface,
the method is called remotely on the enterprise bean. This remote method in turn
looks up the resource adapter's connection factory (an instance of the resource
adapter) under the name ECI and runs EC01 in CICS and gets the date and time
back as a COMMAREA, which it then returns to the caller (the client application).

To use the sample program:
1. Deploy the CICS ECI resource adapter; this is a file called <install_path>/

deployable/cicseci.rar.
2. Create a connection factory with parameters that are valid for your CICS server

environment (on WebSphere Application Server, these settings are on the
Custom properties tab of the J2C connection factory settings), for more
information, see the information about deploying resource adapters in the CICS
Transaction Gateway Administration Guide. The connection factory must have a
JNDI name of ECI for the sample program to work.

3. Deploy the ECIDateTime sample. The sample is a file called ECIDateTime.ear
and is located in the <install_path>/deployable directory. The deployment
process is specific to your JEE application server, but mainly involves
identifying the interfaces to the deployment tool, after setting any properties
you need. The properties you are asked for might include:

Transaction type
This can be set to Container-managed or Bean-managed. This
determines whether you want to control transactions yourself. The JEE
application server manages Container-managed transactions; if
prompted, select this type for the sample program.

Enterprise bean type
ECIDateTime is a stateless session bean.

JNDI name
The enterprise bean client uses JNDI to look up the enterprise bean.
This allows you to find the name of the enterprise bean in the directory.
The ECIDateTimeClient requires this name to be set to
ECIDateTimeBean1.

Resource references
The enterprise bean refers to another resource, the ECI resource
adapter. To enable this to happen, you need to:
a. Deploy a ConnectionFactory for the ECI resource adapter with a

JNDI name of ECI.

106 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

b. List this ConnectionFactory as a resource reference for this
enterprise bean.

4. Run the Client application. You can run it from a command line, but if using
WebSphere, use the launchClient utility, which sets up the necessary parameters
to allow you to talk to the JNDI directory in WebSphere to find the
ECIDateTime enterprise bean. The application returns the current date and time
from CICS application EC01.

JEE EC03Channel sample
This sample calls the CICS program EC03 using the CICS ECI resource adapter.
The program uses an enterprise bean that makes ECI calls; a client to the
enterprise bean is provided.

The EC03Channel sample program includes the following files:

EC03ChannelBean.java
The implementation of the EC03 channel EJB

EC03Channel.java
The Remote interface for the EC03 channel EJB

EC03ChannelHome.java
The Home interface for the EC03 channel EJB

EC03ChannelClient.java
A basic client which calls the EC03 channel EJB

Enterprise beans have a main body of code and two interfaces. The Remote
interface contains the business methods that the bean implements (in this case, the
execute() method.) The Home interface manages the life cycle of the enterprise
bean.

EC03ChannelClient looks up the enterprise bean as EC03ChannelHome in Java
Naming Directory Interface (JNDI), and then narrows the search to a specific object
using the remote interface as a type-cast. When execute() is called on this interface,
the method is called remotely on the enterprise bean. This remote method in turn
looks up the resource adapter's connection factory (an instance of the resource
adapter) under the name ECI and runs EC03 in CICS, passing in a channel with
one container. When the ECI call program returns, the containers returned from the
program are enumerated and placed into a HashMap, which is then returned to
the client.

To use the sample program:
1. Deploy the CICS ECI resource adapter (cicseci.rar); this is located in the

deployable directory of the CICS Transaction Gateway install path.
2. Create a connection factory with parameters that are valid for your CICS server

environment (on WebSphere Application Server, these settings are on the
Custom properties tab of the J2C connection factory settings). See the
information about deploying resource adapters in the CICS Transaction Gateway
Administration Guide for more information. The connection factory must have a
JNDI name of “ECI” for the sample program to work.

3. Deploy the EC03Channel sample. The sample is a file called EC03Channel.ear
and is located in the <install_path>/deployable directory. The deployment
process is specific to your JEE application server, but mainly involves
identifying the interfaces to the deployment tool, after setting any properties
you need. The properties you are asked for might include:

Chapter 13. Sample programs 107

Transaction type
Can be set to container-managed or bean-managed. This determines
whether you want to control transactions yourself. The JEE application
server manages Container-managed transactions; if prompted, select
this type for the sample program.

Enterprise bean type
EC03Channel is a stateless session bean.

JNDI name
The enterprise bean client uses JNDI to look up the enterprise bean.
This allows the enterprise client to find the name of the enterprise bean
in the directory.

Resource references
The enterprise bean refers to a connection factory. To enabled this to
happen you need to add the connection factory defined in Step 2 on
page 107 as a resource reference for this enterprise bean.

4. Run the Client application. You can run it from a command line, but if using
WebSphere, use the launchClient utility, which sets up the necessary parameters
to allow the enterprise client to look up the bean in the JNDI directory in
WebSphere to find the EC03Channel enterprise bean. The application calls the
bean, passing a string of text to the EC03 program, and displays the contents of
the containers returned.

C ECI V2 and ESI V2 samples
These samples demonstrate the use of the ECI V2 and ESI V2 APIs.

The ECI V2 samples are written in C and can be found in the <install_path>/
samples/c/eci_v2 directory.

The ESI V2 sample is written in C and can be found in the <install_path>/
samples/c/esi_v2 directory.

The ECI V2 and ESI V2 samples can be built and run on any supported platform
other than z/OS, but can connect to a Gateway daemon running on z/OS.

C ctgesib1 sample
This sample lists the CICS servers defined on a remote CICS Transaction Gateway,
and allows you to select a server. You are prompted to input the user ID and
password or password phrase which are then verified on the chosen server using
the ESI V2 API. The last verified time of the user ID and the password expiry time
are displayed.

The ctgesib1 sample is written in C and is located in <install_path>/samples/c/
esi_v2

To build the sample, change to this directory and issue the following command:

Table 14. Commands used to build the sample on different platforms

Platform/compiler 32-bit sample 64-bit sample

UNIX and Linux make -f samp.mak make -f samp64.mak

Linux on POWER using IBM
XL C

make -f samp.mak
COMPILER=XL

make -f samp64.mak
COMPILER=XL

108 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Table 14. Commands used to build the sample on different platforms (continued)

Platform/compiler 32-bit sample 64-bit sample

Windows ctgesib1mak.cmd 32 ctgesib1mak.cmd 64

When compiled, the sample program can be executed using the following
command:
ctgesib1 [host name] [port number]

C ctgecib1 sample
This sample lists the CICS servers defined on a remote CICS Transaction Gateway,
and allows you to select the CICS server to which an ECI program call is made.
This call is then made and the date and time are returned by the CICS program
EC01.

The ctgecib1 sample is written in C and is in <install_path>/samples/c/eci_v2.

To build the sample, change to this directory and issue the following command:

Table 15. Commands used to build the sample on different platforms

Platform/compiler 32-bit sample 64-bit sample

UNIX and Linux make -f samp.mak make -f samp64.mak

Linux on POWER using IBM
XL C

make -f samp.mak
COMPILER=XL

make -f samp64.mak
COMPILER=XL

Windows ctgecib1mak.cmd 32 ctgecib1mak.cmd 64

Once compiled, the sample program can be executed using the following
command:
ctgecib1 [host name] [port number]

C ctgecib2 sample
This sample lists the CICS servers defined on a remote CICS Transaction Gateway,
and allows you to select the CICS server to which a number of asynchronous ECI
program calls are made. The CICS program EC01 returns the date and time on
each call. A separate thread retrieves the responses for the program calls and
displays the results of each call.

The ctgecib2 sample is written in C and is in <install_path>/samples/c/eci_v2.

To build the sample, change to this directory and issue the following command:

Table 16. Commands used to build the sample on different platforms

Platform/compiler 32-bit sample 64-bit sample

UNIX and Linux make -f samp.mak make -f samp64.mak

Linux on POWER using IBM
XL C

make -f samp.mak
COMPILER=XL

make -f samp64.mak
COMPILER=XL

Windows ctgecib2mak.cmd 32 ctgecib2mak.cmd 64

Once compiled, the sample program can be started using the following command:
ctgecib2 [host name] [port number] [num calls] [user id] [password]

Chapter 13. Sample programs 109

|

|
|
|
|
|

|

|

||

|||

|||

|
|
|
|
|
|

|||
|

|

|

C ctgecib3 sample
This sample lists the systems defined on a remote CICS Transaction Gateway, and
allows you to select the one to which an ECI program call is made. The supplied
CICS program EC03 is called with a channel and a single CHAR container. The
program updates the channel by adding new containers. The sample program lists
all the containers that are returned from the EC03 program.

The ctgecib3 sample is written in C and is in <install_path>/samples/c/eci_v2.

To build the sample, change to this directory and issue the following command:

Table 17. Commands used to build the sample on different platforms

Platform/compiler 32-bit sample 64-bit sample

UNIX and Linux make -f samp.mak make -f samp64.mak

Linux on POWER using IBM
XL C

make -f samp.mak
COMPILER=XL

make -f samp64.mak
COMPILER=XL

Windows ctgecib3mak.cmd 32 ctgecib3mak.cmd 64

Once compiled, the sample program can be started using the following command:
ctgecib3 [host name] [port number]

C#/Visual Basic .NET samples
These samples show how C# and Visual Basic .NET clients can make ECI and ESI
calls to CICS.

C#/Visual Basic .NET EciB1 sample
This sample lists the CICS servers defined on a CICS Transaction Gateway, and
allows you to select the CICS server to which an ECI program call is made. The
call is made and the date and time are returned by program EC01.

The sample is provided in C# and Visual Basic .NET. The C# sample is in
<install_path>/samples/csharp/eci, and the Visual Basic .NET sample is in
<install_path>/samples/vb/eci.

You can compile the sample using Microsoft Visual Studio or from a Windows
command prompt. A Microsoft Visual Studio project file is provided for each
language.

To build the sample program from a command prompt, change to the appropriate
directory and run the supplied command file EciB1mak.cmd. The file compiles the
program for Windows using the C# or Visual Basic .NET compiler which are
provided by the Microsoft .NET Framework.

When compiled, you can execute the sample program using the following
command:
EciB1 [host name] [port number]

C#/Visual Basic .NET EciB3 sample
This sample lists the systems defined on a CICS Transaction Gateway, and allows
you to select the one to which an ECI program call is made. The supplied CICS
program EC03 is called with a channel and a single CHAR container. The program

110 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

|

updates the channel by adding new containers. The sample program lists all the
containers that are returned from the EC03 program. The name, type and data
contained within the returned containers is displayed to the console.

The sample is provided in C# and Visual Basic .NET. The C# sample is in
<install_path>/samples/csharp/eci, and the Visual Basic .NET sample is in
<install_path>/samples/vb/eci.

You can compile the sample using Microsoft Visual Studio or from a Windows
command prompt. A Microsoft Visual Studio project file is provided for each
language.

To build the sample program from a command prompt, change to the appropriate
directory and run the supplied command file EciB3mak.cmd. The file compiles the
program for Windows using the C# or Visual Basic .NET compiler which are
provided by the Microsoft .NET Framework.

When compiled, you can execute the sample program using the following
command:
EciB3 [host name] [port number]

C#/Visual Basic .NET EsiB1 sample
This sample lists the CICS servers defined on a CICS Transaction Gateway and
allows you to select one. Using the ESI API, you then enter a user ID, and
password or password phrase, for verification on the selected CICS server.
Information about the account being used is displayed on the screen.

The sample is provided in C# and Visual Basic .NET. The C# sample is in
<install_path>/samples/csharp/esi, and the Visual Basic .NET sample is in
<install_path>/samples/vb/esi. You can compile the sample using Microsoft
Visual Studio or from a Windows command prompt. A Microsoft Visual Studio
project file is provided for each language.

To build the sample program from a command prompt, change to the appropriate
directory and run the supplied command file EsiB1mak.cmd. The file compiles the
program for Windows using the C# or Visual Basic .NET compiler which are
provided by the Microsoft .NET Framework.

When compiled, you can execute the sample program using the following
command:
EsiB1 [host name] [port number]

User exit samples
These samples illustrate the use of CICS Transaction Gateway user exits.

Java security exit data compression samples
These samples illustrate the use of the security exits principally to compress the
data stream between the client application and the Gateway daemon.
v ClientCompression implements ClientSecurity and demonstrates data

compression.
v ServerCompression implements ServerSecurity and demonstrates data

compression.

Chapter 13. Sample programs 111

v SSLServerCompression implements JSSEServerSecurity and demonstrates how to
expose an SSL client certificate.

The source for these samples is in <install_path>/samples/java/com/ibm/ctg/
samples/security.

Java request monitoring exit samples
These samples show basic and extended use of the CICS Transaction Gateway Java
request monitoring exits.

Java BasicMonitor request monitoring exit sample
This sample shows the basic use of the CICS Transaction Gateway request
monitoring exits. The sample program writes the data available at each exit point
to STDOUT or to a file specified by the Java property
com.ibm.ctg.samples.requestexit.out.

The class name for this sample is
com.ibm.ctg.samples.requestexit.BasicMonitor.java

To enable the sample program on the Gateway daemon you must do the following:
1. Add ctgsamples.jar to the class path used when starting the CICS Transaction

Gateway.
2. Set the requestexits value in the configuration file (ctg.ini) to

com.ibm.ctg.samples.requestexit.BasicMonitor.
3. Data is written to STDOUT by default. To capture data to a file use the Java

property com.ibm.ctg.samples.requestexit.out, for example:
CTGSTART_OPTS=-j-Dcom.ibm.ctg.samples.requestexit.out=/hfs.file

Java ThreadedMonitor request monitoring exit sample
This sample extends the BasicMonitor sample program. The sample uses a
background thread to reduce the overhead for each monitored request. The sample
program writes the data available at each exit point to STDOUT or to a file
specified by the Java property com.ibm.ctg.samples.requestexit.out. Errors are
logged to STDERR or to a file specified by the Java property
com.ibm.ctg.samples.requestexit.err.

The class name of this sample is
com.ibm.ctg.samples.requestexit.ThreadedMonitor.java.

To enable the sample program on the Gateway daemon you must do the following:
1. Add ctgsamples.jar to the class path used when starting CICS Transaction

Gateway.
2. Set the requestexits value in the configuration file to

com.ibm.ctg.samples.requestexit.ThreadedMonitor.
3. Data is written to STDOUT by default. To capture data to a file use the Java

property com.ibm.ctg.samples.requestexit.out, for example:
CTGSTART_OPTS=-j-Dcom.ibm.ctg.samples.requestexit.out=/hfs.file

4. Errors are written to STDERR by default. To capture data to a file use the Java
property com.ibm.ctg.samples.requestexit.err, for example:
CTGSTART_OPTS=-j-Dcom.ibm.ctg.samples.requestexit.err=/hfs.error.file

5. An alert is logged for any transactions that take longer than 15 seconds. To
change this time, use the Java property com.ibm.ctg.samples.requestexit.lrt, for
example:

112 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

CTGSTART_OPTS=-j-Dcom.ibm.ctg.samples.requestexit.lrt=5000

(time is in milliseconds).

The sample program code details additional optional parameters that can be set.

Java CICS request exit samples
Two sample CICS request exits are provided. The first sample exit returns the CICS
server to use for an ECI or ESI request. The second sample exit supports workload
management using a round-robin algorithm.

Location of sample files

The source code for the CICS request exit samples is provided in the following
location:<install_path>/samples/java/com/ibm/ctg/samples/ha

BasicCICSRequestExit

This sample shows you how to implement a basic CICS request exit. The
getCICSServer method returns the CICS server to be used on an ECI or ESI
request, based on a predefined server mapping. If the CICS server on the ECI or
ESI request is defined in the server mapping, the actual CICS server that it maps to
is returned. If the CICS server on the ECI or ESI request is not defined in the
server mapping, the CICS server is returned unchanged.

RoundRobinCICSRequestExit

This sample shows you how to implement a CICS request exit to perform
workload management. Each time that the getCICSServer method is called, it
returns the next CICS server, in a threadsafe manner, from a predefined list. The
CICS server specified on the ECI or ESI request by the application is ignored. The
retry count is set so that each server in the list is called at most once for each
request.

Using the CICS request exit samples
Before using these samples modify the code so that the samples reference known
CICS servers.

When these changes have been made, compile the sample, for example by using
the javac command.

When configuring each sample exit for use in a specific environment refer to the
following information:

BasicCICSRequestExit

The constructor for this class populates a hash table with mappings between a
name that would be used by the Java client application and an actual CICS server.
Change the contents of the hash table so that there is a mapping between the CICS
server specified on the ECI or ESI request, by the Java client application, and an
actual CICS server.

RoundRobinCICSRequestExit

The list of available CICS servers is contained in the serverList array. Change the
values stored in this array to a list of actual CICS servers.

Chapter 13. Sample programs 113

C/Java statistics API samples
These samples show use of the statistics API for C and Java clients.

C ctgstat1 statistics API sample
This sample shows how Gateway daemon statistics can be obtained by C clients.

The statistics sample program is written in C and can be found in the SCTGSAMP
library.

The CTGSTAT1 C sample program demonstrates the following functions:
1. Connecting to the statistical API port.
2. Querying running Gateway daemons for statistics in the connection manager

resource group.
3. Obtaining values for these statistics.
4. Retrieving and displaying information about the Gateway daemon running

time and the total number of requests made.

Sample JCL job SCTGSAMP(CTGSTJOB) is provided to compile, link, and run the
sample program. Instructions in the JCL explain how to customize it to run it
successfully.

Java Ctgstat1 statistics API sample
This sample shows how Gateway daemon statistics can be obtained by Java clients.

The statistics sample program is written in Java and is in samples/java/com/ibm/
ctg/samples/stats/Ctgstat1.java.

The ctgstat1 Java sample program demonstrates the following functions:
1. Connecting to the statistical API port.
2. Querying running Gateway daemons for statistics in the connection manager

resource group.
3. Obtaining values for these statistics.
4. Retrieving and displaying information about the Gateway daemon running

time and the total number of requests made.

A precompiled version of com.ibm.ctg.samples.stats.Ctgstat1 is included in the Java
archive file classes/ctgsamples.jar.

The ctgstats.jar file must be on the class path.

For information about the API see “Statistics Java API” on page 32.

SMF viewer sample program
The SMF viewer sample program is written in C and can be found in the library
member SCTGSAMP(CTGSMFRD).

The CTGSMFRD sample program demonstrates the formatting and basic filtering
of statistics information written to SMF by CICS Transaction Gateway. The sample
program can read and format combinations of SMF records that have been

114 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

|
|

generated by any release of CICS Transaction Gateway from V7.1 or later. The
sample program requires the that SMF records have been extracted into a dataset
by the IFASMFDP utility.

Sample JCL job SCTGSAMP(CTGSMFB) is provided to build and link the sample.
Sample JCL job SCTGSAMP(CTGSMFR) is provided to run the sample program
CTGSMFRD. Instructions are provided in each sample JCL job explaining the
customizations required.

Password Scrambler utility
The password scrambler utility provides a mechanism for masking the keyring
password that is stored in the configuration file.

The sample JCL CTGSSLPW provides an example of how to run this utility to
generate a keyringpw configuration line that can be copied into the configuration
file.

Chapter 13. Sample programs 115

|

116 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom

© Copyright IBM Corp. 2000, 2013 117

Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.
Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

118 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

http://www.ibm.com/legal/copytrade.shtml

Related literature

Other documentation relating to CICS Transaction Gateway.

IBM Redbooks® titles are available on a wide range of subjects relevant to CICS
Transaction Gateway programming, installation, operation and troubleshooting. See
the: IBM Redbooks site for more information.

Documentation for many IBM products is available online from the IBM
Publications Center.

© Copyright IBM Corp. 2000, 2013 119

http://www.ibm.com/redbooks/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

120 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Accessibility

Accessibility features help users with a physical disability, for example restricted
mobility or limited vision, to use information technology products successfully.
CICS Transaction gateway is compatible with the JAWS screen reader. CICS
Transaction Gateway provides accessibility by enabling keyboard-only operation.

For more information about the IBM commitment to accessibility, visit the IBM
Accessibility Center.

© Copyright IBM Corp. 2000, 2013 121

http://www.ibm.com/able
http://www.ibm.com/able

122 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Glossary

This glossary defines the terms and abbreviations used in CICS Transaction
Gateway and in the information centers.

A

abnormal end of task (abend)
The termination of a task, job, or subsystem because of an error condition
that recovery facilities cannot resolve.

Advanced program-to-program communication (APPC)
An implementation of the SNA/SDLC LU 6.2 protocol that allows
interconnected systems to communicate and share the processing of
programs. The Client daemon uses APPC to communicate with CICS
systems.

APAR See Authorized program analysis report.

API See application programming interface.

APPC See Advanced program-to-program communication.

application programming interface (API)
A functional interface that allows an application program that is written in
a high-level language to use specific data or functions of the operating
system or another program.

APPLID

1. On CICS Transaction Gateway: The application identifier that is used to
identify connections on the CICS server and tasks in a CICSplex. See
also APPLID qualifier and fully-qualified APPLID.

2. On CICS Transaction Server: The name by which a CICS system is
known in a network of interconnected CICS systems. CICS Transaction
Gateway application identifiers do not need to be defined in
SYS1.VTAMLST. The CICS APPLID is specified in the APPLID system
initialization parameter.

APPLID qualifier
Optionally used as a high-level qualifier for the APPLID to form a
fully-qualified APPLID. See also APPLID and fully-qualified APPLID.

ARM See automatic restart manager.

Authorized program analysis report (APAR)
A request for correction of a defect in a current release of an IBM-supplied
program.

ATI See automatic transaction initiation.

attach In SNA, the request unit that flows on a session to initiate a conversation.

Attach Manager
The component of APPC that matches attaches received from remote
computers to accepts issued by local programs.

autoinstall
A method of creating and installing resources dynamically as terminals log
on, and deleting them at logoff.

© Copyright IBM Corp. 2000, 2013 123

automatic restart manager (ARM)
A z/OS recovery function that can improve the availability of specific
batch jobs or started tasks, and therefore result in faster resumption of
productive work.

automatic transaction initiation (ATI)
The initiation of a CICS transaction by an internally generated request, for
example, the issue of an EXEC CICS START command or the reaching of a
transient data trigger level. CICS resource definition can associate a trigger
level and a transaction with a transient data destination. When the number
of records written to the destination reaches the trigger level, the specified
transaction is automatically initiated.

B

bean A definition or instance of a JavaBeans component. See also JavaBeans.

bean-managed transaction
A transaction where the JEE bean itself is responsible for administering
transaction tasks such as committal or rollback. See also container-managed
transaction.

BIND command
In SNA, a request to activate a session between two logical units (LUs).

business logic
The part of a distributed application that is concerned with the application
logic rather than the user interface of the application. Compare with
presentation logic.

C

CA See certificate authority.

CCIN The CCIN transaction is invoked by the Client daemon, for each TCP/IP
or SNA connection established. CCIN installs a Client connection on the
CICS server.

CCSID
Coded Character Set Identifier. A 16-bit number that includes a specific set
of encoding scheme identifiers, character set identifiers, code page
identifiers, and other information that uniquely identifies the coded
graphic-character representation.

CTIN The CTIN transaction is invoked by the Client daemon to install a Client
terminal definition on the CICS server.

callback
A way for one thread to notify another application thread that an event
has happened.

certificate authority (CA)
In computer security, an organization that issues certificates. The certificate
authority authenticates the certificate owner's identity and the services that
the owner is authorized to use. It issues new certificates and revokes
certificates from users who are no longer authorized to use them.

change-number-of-sessions (CNOS)
An internal transaction program that regulates the number of parallel
sessions between the partner LUs with specific characteristics.

124 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

channel
A channel is a set of containers, grouped together to pass data to CICS.
There is no limit to the number of containers that can be added to a
channel, and the size of individual containers is limited only by the
amount of storage that you have available.

CICS connectivity components
A generic reference to the Client daemon, EXCI, and the IPIC protocol.

CICS connectivity components
The Client daemon, the EXCI (External CICS Interface), and the IPIC (IP
Interconnectivity) protocol are collectively called the 'CICS connectivity
components'. The Client daemon handles the TCP/IP and the SNA
protocols.

CICS Request Exit
An exit that is invoked by the CICS Transaction Gateway for z/OS at run
time to determine which CICS server to use.

CICS server name
A defined server known to CICS Transaction Gateway.

CICS TS
Abbreviation of CICS Transaction Server.

class In object-oriented programming, a model or template that can be
instantiated to create objects with a common definition and therefore,
common properties, operations, and behavior. An object is an instance of a
class.

CLASSPATH
In the execution environment, an environment variable keyword that
specifies the directories in which to look for class and resource files.

Client API
The Client API is the interface used by Client applications to interact with
CICS using the Client daemon. See External Call Interface, External
Presentation Interface, and External Security Interface.

Client application
The client application is a user application written in a supported
programming language that uses one or more of the CICS Transaction
Gateways APIs.

Client daemon
The Client daemon manages TCP/IP and SNA connections to CICS servers
on UNIX, Linux, and Windows. It processes ECI, EPI, and ESI requests,
sending and receiving the appropriate flows to and from the CICS server
to satisfy Client application requests. It can support concurrent requests to
one or more CICS servers. The CICS Transaction Gateway initialization file
defines the operation of the Client daemon and the servers and protocols
used for communication.

client/server
Pertaining to the model of interaction in distributed data processing in
which a program on one computer sends a request to a program on
another computer and awaits a response. The requesting program is called
a client; the answering program is called a server.

CNOS See Change-Number-of-Sessions.

Glossary 125

code page
An assignment of hexadecimal identifiers (code points) to graphic
characters. Within a given code page, a code point can have only one
meaning.

color mapping file
A file that is used to customize the 3270 screen color attributes on client
workstations.

COMMAREA
See communication area.

commit phase
The second phase in a XA process. If all participants acknowledge that
they are prepared to commit , the transaction manager issues the commit
request. If any participant is not prepared to commit the transaction
manager issues a back-out request to all participants.

communication area (COMMAREA)
A communication area that is used for passing data both between
programs within a transaction and between transactions.

Configuration file
A file that specifies the characteristics of a program, system device, server
or network.

connection
In data communication, an association established between functional units
for conveying information.

In Open Systems Interconnection architecture, an association established by
a given layer between two or more entities of the next higher layer for the
purpose of data transfer.

In TCP/IP, the path between two protocol application that provides
reliable data stream delivery service.

In Internet, a connection extends from a TCP application on one system to
a TCP application on another system.

container
A container is a named block of data designed for passing information
between programs. A container is a "named COMMAREA" that is not
limited to 32KB. Containers are grouped together in sets called channels.

container-managed transaction
A transaction where the EJB container is responsible for administration of
tasks such as committal or rollback. See also bean-managed transaction.

control table
In CICS, a storage area used to describe or define the configuration or
operation of the system.

conversation
A connection between two programs over a session that allows them to
communicate with each other while processing a transaction.

conversation security
In APPC, a process that allows validation of a user ID or group ID and
password before establishing a connection.

D

126 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

daemon
A program that runs unattended to perform continuous or periodic
systemwide functions, such as network control. A daemon can be launched
automatically, such as when the operating system is started, or manually.

data link control (DLC)
A set of rules used by nodes on a data link (such as an SDLC link or a
token ring) to accomplish an orderly exchange of information.

DBCS See double-byte character set.

default CICS server
The CICS server that is used if a server name is not specified on an ECI,
EPI, or ESI request. The default CICS server name is defined as a product
wide setting in the configuration file (ctg.ini).

dependent logical unit
A logical unit that requires assistance from a system services control point
(SSCP) to instantiate an LU-to-LU session.

deprecated
Pertaining to an entity, such as a programming element or feature, that is
supported but no longer recommended, and that might become obsolete.

digital certificate
An electronic document used to identify an individual, server, company, or
some other entity, and to associate a public key with the entity. A digital
certificate is issued by a certificate authority and is digitally signed by that
authority.

digital signature
Information that is encrypted with an entity's private key and is appended
to a message to assure the recipient of the authenticity and integrity of the
message. The digital signature proves that the message was signed by the
entity that owns, or has access to, the private key or shared secret
symmetric key.

distinguished name
The name that uniquely identifies an entry in a directory. A distinguished
name is made up of attribute:value pairs, separated by commas. The
format of a distinguished name is defined by RFC4514. For more
information, see http://www.ietf.org/rfc/rfc4514.txt. See also realm
name and identity propagation.

distributed application
An application for which the component application programs are
distributed between two or more interconnected processors.

distributed identity
User identity information that originates from a remote system. The
distributed identity is created in one system and is passed to one or more
other systems over a network. See also distinguished name and realm name.

distributed processing
The processing of different parts of the same application in different
systems, on one or more processors.

distributed program link (DPL)
A link that enables an application program running on one CICS system to
link to another application program running in another CICS system.

DLC See data link control.

Glossary 127

DLL See dynamic link library.

domain
In the Internet, a part of a naming hierarchy in which the domain name
consists of a sequence of names (labels) separated by periods (dots).

domain name
In TCP/IP, a name of a host system in a network.

domain name server
In TCP/IP, a server program that supplies name-to-address translation by
mapping domain names to IP addresses. Synonymous with name server.

dotted decimal notation
The syntactical representation for a 32-bit integer that consists of four 8-bit
numbers written in base 10 with periods (dots) separating them. It is used
to represent IP addresses.

double-byte character set (DBCS)
A set of characters in which each character is represented by 2 bytes.
Languages such as Japanese, Chinese and Korean, which contain more
symbols than can be represented by 256 code points, require double-byte
character sets. Because each character requires 2 bytes, the typing, display,
and printing of DBCS characters requires hardware and programs that
support DBCS. Contrast with single-byte character set.

DPL See distributed program link.

dynamic link library (DLL)
A collection of runtime routines made available to applications as required.

dynamic server selection (DSS)
The mapping of a logical CICS server name to an actual CICS server name
at run time.

E

EBCDIC
See extended binary-coded decimal interchange code.

ECI See external call interface.

EJB See Enterprise JavaBeans.

emulation program
A program that allows a host system to communicate with a workstation
in the same way as it would with the emulated terminal.

emulator
A program that causes a computer to act as a workstation attached to
another system.

encryption
The process of transforming data into an unintelligible form in such a way
that the original data can be obtained only by using a decryption process.

enterprise bean
A Java component that can be combined with other resources to create JEE
applications. There are three types of enterprise beans: entity beans, session
beans, and message-driven beans.

Enterprise Information System (EIS)
The applications that comprise an enterprise's existing system for handling

128 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

company-wide information. An enterprise information system offers a
well-defined set of services that are exposed as local or remote interfaces or
both.

Enterprise JavaBeans (EJB)
A component architecture defined by Sun Microsystems for the
development and deployment of object-oriented, distributed,
enterprise-level applications (JEE).

environment variable
A variable that specifies the operating environment for a process. For
example, environment variables can describe the home directory, the
command search path, the terminal in use, and the current time zone.

EPI See external presentation interface.

ESI See external security interface.

Ethernet
A local area network that allows multiple stations to access the
transmission medium at will without prior coordination, avoids contention
by using carrier sense and deference, and resolves contention by using
collision detection and transmission. Ethernet uses carrier sense multiple
access with collision detection (CSMA/CD).

EXCI See external CICS interface.

extended binary-coded decimal interchange code (EBCDIC)
A coded character set of 256 8-bit characters developed for the
representation of textual data.

extended logical unit of work (extended LUW)
A logical unit of work that is extended across successive ECI requests to
the same CICS server.

external call interface (ECI)
A facility that allows a non CICS program to run a CICS program. Data is
exchanged in a COMMAREA or a channel as for usual CICS interprogram
communication.

external communications interface (EXCI)
An MVS application programming interface provided by CICS Transaction
Server for z/OS that enables a non-CICS program to call a CICS program
and to pass and receive data using a COMMAREA. The CICS application
program is started as if linked-to by another CICS application program.

external presentation interface (EPI)
A facility that allows a non CICS program to appear to CICS as one or
more standard 3270 terminals. 3270 data can be presented to the user by
emulating a 3270 terminal or by using a graphical user interface.

external security interface (ESI)
A facility that enables client applications to verify and change passwords
for user IDs on CICS servers.

External Security Manager (ESM)
A security manager that operates outside CICS. For example, RACF can be
used as an external security manager with CICS Transaction Server.

F

Glossary 129

firewall
A configuration of software that prevents unauthorized traffic between a
trusted network and an untrusted network.

FMH See function management header.

fully-qualified APPLID
Used to identify CICS Transaction Gateway connections on the CICS server
and tasks in a CICSplex. It is composed of an APPLID with an optional
network qualifier. See also APPLID and APPLID qualifier.

function management header (FMH)
One or more headers, optionally present in the leading request units (RUs)
of an RU chain, that allow one LU to (a) select a transaction program or
device at the session partner and control the way in which the end-user
data it sends is handled at the destination, (b) change the destination or
the characteristics of the data during the session, and (c) transmit between
session partners status or user information about the destination (for
example, a program or device). Function management headers can be used
with LU type 1, 4, and 6.2 protocols.

G

Gateway
A device or program used to connect two systems or networks.

Gateway classes
The Gateway classes provide APIs for ECI, EPI, and ESI that allow
communication between Java client applications and the Gateway daemon.

Gateway daemon
A long-running Java process that listens for network requests from remote
Client applications. It issues these requests to CICS servers using the CICS
connectivity components. The Gateway daemon on z/OS processes ECI
requests and on UNIX, Windows, and Linux platforms it process EPI and
ESI requests as well. The Gateway daemon uses the GATEWAY section of
ctg.ini for its configuration.

Gateway group
A set of Gateway daemons that share an APPLID qualifier, and where each
Gateway daemon has a unique APPLID within the Gateway group.

Gateway token
A token that represents a specific Gateway daemon, when a connection is
established successfully. Gateway tokens are used in the C language
statistics and ECI V2 APIs.

global transaction
A recoverable unit of work performed by one or more resource managers
in a distributed transaction processing environment and coordinated by an
external transaction manager.

H

HA group
See highly available Gateway group.

highly available Gateway group (HA group)
A Gateway group that utilizes TCP/IP load balancing, and can be viewed

130 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

as a single logical Gateway daemon. A Gateway daemon instance in a HA
group can recover indoubt XA transactions on behalf of another Gateway
daemon within the HA group

host A computer that is connected to a network (such as the Internet or an SNA
network) and provides an access point to that network. The host can be
any system; it does not have to be a mainframe.

host address
An IP address that is used to identify a host on a network.

host ID
In TCP/IP, that part of the IP address that defines the host on the network.
The length of the host ID depends on the type of network or network class
(A, B, or C).

host name
In the Internet suite of protocols, the name given to a computer.
Sometimes, host name is used to mean the fully qualified domain name;
other times, it is used to mean the most specific subname of a fully
qualified domain name. For example, if mycomputer.city.company.com is
the fully qualified domain name, either of the following can be considered
the host name: mycomputer.city.company.com, mycomputer.

hover help
Information that can be viewed by holding a mouse over an item such as
an icon in the user interface.

HTTP See Hypertext Transfer Protocol.

HTTPS
See Hypertext Transfer Protocol Secure.

Hypertext Transfer Protocol (HTTP)
In the Internet suite of protocols, the protocol that is used to transfer and
display hypertext and XML documents.

Hypertext Transfer Protocol Secure (HTTPS)
A TCP/IP protocol that is used by World Wide Web servers and Web
browsers to transfer and display hypermedia documents securely across
the Internet.

I

ID data
An ID data structure holds an individual result from a statistical API
function.

identity propagation
The concept of preserving a user's security identity information (the
distributed identity) independent of where the identity information has
been created, for use during authorization and for auditing purposes. The
distributed identity is carried with a request from the distributed client
application to the CICS server, and is incorporated in the access control of
the server as part of the authorization process, for example, using RACF.
CICS Transaction Gateway flows the distributed identity to CICS. See also
distributed identity.

identity propagation login module
A code component that provides support for identity propagation. The
identity propagation login module is included with the CICS Transaction

Glossary 131

Gateway ECI resource adapter (cicseci.rar), conforms to the JAAS
specification and is contained in a single Java class within the resource
adapter. See also identity propagation.

iKeyman
A tool for maintaining digital certificates for JSSE.

in doubt
The state of a transaction that has completed the prepare phase of the
two-phase commit process and is waiting to be completed.

in flight
The state of a transaction that has not yet completed the prepare phase of
the two-phase commit process.

independent logical unit
A logical unit (LU) that can both send and receive a BIND, and which
supports single, parallel, and multiple sessions. See BIND.

<install_path>
This term is used in file paths to represent the directory where you
installed the product. For more information, see File path terminology.

Internet Architecture Board
The technical body that oversees the development of the internet suite of
protocols known as TCP/IP.

Internet Protocol (IP)
In TCP/IP, a protocol that routes data from its source to its destination in
an Internet environment.

interoperability
The capability to communicate, run programs, or transfer data among
various functional units in a way that requires the user to have little or no
knowledge of the unique characteristics of those units.

IP Internet Protocol.

IPIC See IP interconnectivity.

IP address
A unique address for a device or logical unit on a network that uses the IP
standard.

IP interconnectivity (IPIC)
The IPIC protocol enables Distributed Program Link (DPL) access from a
non-CICS program to a CICS program over TCP/IP, using the External
Call Interface (ECI). IPIC passes and receives data using COMMAREAs, or
containers.

J

JEE (formerly J2EE)
See Java 2 Platform Enterprise Edition

JEE Connector architecture (JCA)
A standard architecture for connecting the JEE platform to heterogeneous
enterprise information systems (EIS).

Java An object-oriented programming language for portable interpretive code
that supports interaction among remote objects.

Java 2 Platform Enterprise Edition (JEE)
An environment for developing and deploying enterprise applications,

132 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

defined by Sun Microsystems Inc. The JEE platform consists of a set of
services, application programming interfaces (APIs), and protocols that
allow multi-tiered, Web-based applications to be developed.

JavaBeans
As defined for Java by Sun Microsystems, a portable, platform-
independent, reusable component model.

Java Client application
The Java client application is a user application written in Java, including
servlets and enterprise beans, that uses the Gateway classes.

Java Development Kit (JDK)
The name of the software development kit that Sun Microsystems provided
for the Java platform, up to and including v 1.1.x. Sometimes used
erroneously to mean the Java platform or as a generic term for any
software developer kits for Java.

JavaGateway
The URL of the CICS Transaction Gateway with which the Java Client
application communicates. The JavaGateway takes the form
protocol://address:port. These protocols are supported: tcp://, ssl://,
and local:. CICS Transaction Gateway runs with the default port value of
2006. This parameter is not relevant if you are using the protocol local:.
For example, you might specify a JavaGateway of tcp://
ctg.business.com:2006. If you specify the protocol as local: you will
connect directly to the CICS server, bypassing any CICS Transaction
Gateway servers.

Java Native Interface (JNI)
A programming interface that allows Java code running in a Java virtual
machine to work with functions that are written in other programming
languages.

Java Runtime Environment (JRE)
A subset of the Java Software Development Kit (SDK) that supports the
execution, but not the development, of Java applications. The JRE
comprises the Java Virtual Machine (JVM), the core classes, and supporting
files.

Java Secure Socket Extension (JSSE)
A Java package that enables secure Internet communications. It implements
a Java version of the Secure Sockets Layer (SSL) and Transport Layer
Security (TSL) protocols and supports data encryption, server
authentication, message integrity, and optionally client authentication.

Java virtual machine (JVM)
A software implementation of a processor that runs compiled Java code
(applets and applications).

JDK See Java development kit.

JCA See JEE Connector Architecture .

JNI See Java Native Interface.

JRE See Java Runtime Environment

JSSE See Java Secure Socket Extension.

JVM See Java Virtual Machine.

K

Glossary 133

keyboard mapping
A list that establishes a correspondence between keys on the keyboard and
characters displayed on a display screen, or action taken by a program,
when that key is pressed.

Keystore
In the JSSE protocol, a file that contains public keys, private keys, trusted
roots, and certificates.

L

local mode
Local mode describes the use of the CICS Transaction Gateway local
protocol. The Gateway daemon is not used in local mode.

local transaction
A recoverable unit of work managed by a resource manager and not
coordinated by an external transaction manager.

logical CICS server
An alias that can be passed on an ECI request when running in remote
mode to CICS Transaction Gateway for z/OS. The alias name is mapped to
an actual CICS server name by a dynamic server selection (DSS)
mechanism.

logical end of day
The local time of day on the 24-hour clock to which a Gateway daemon
aligns statistics intervals. If the statistics interval is 24 hours, this is the
local time at which interval statistics will be reset and, on z/OS, optionally
recorded to SMF. This time is set using the stateod parameter in the
configuration file (ctg.ini).

logical unit (LU)
In SNA, a port through which an end user accesses the SNA network to
communicate with another end user and through which the end user
accesses the functions provided by system services control points (SSCP).
An LU can support at least two sessions, one with an SSCP and one with
another LU, and might be capable of supporting many sessions with other
logical units. See also network addressable unit, primary logical unit, secondary
logical unit.

logical unit 6.2 (LU 6.2)
A type of logical unit that supports general communications between
programs in a distributed processing environment.

The LU type that supports sessions between two applications using APPC.

logical unit of work (LUW)
The processing that a program performs between synchronization points

LU See logical unit.

LU 6.2 See logical unit 6.2.

LU-LU session
In SNA, a session between two logical units (LUs) in an SNA network. It
provides communication between two end users, or between an end user
and an LU services component.

LU-LU session type 6.2
In SNA, a type of session for communication between peer systems.
Synonymous with APPC protocol.

134 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

LUW See logical unit of work.

M

managed mode
Describes an environment in which connections are obtained from
connection factories that the JEE server has set up. Such connections are
owned by the JEE server.

media access control (MAC) sublayer
One of two sublayers of the ISO Open Systems Interconnection data link
layer proposed for local area networks by the IEEE Project 802 Committee
on Local Area Networks and the European Computer Manufacturers
Association (ECMA). It provides functions that depend on the topology of
the network and uses services of the physical layer to provide services to
the logical link control (LLC) sublayer. The OSI data link layer corresponds
to the SNA data link control layer.

method
In object-oriented programming, an operation that an object can perform.
An object can have many methods.

mode In SNA, a set of parameters that defines the characteristics of a session
between two LUs.

N

name server
In TCP/IP, synonym for Domain Name Server. In Internet
communications, a host that translates symbolic names assigned to
networks and hosts into IP addresses.

NAU See network addressable unit.

network address
In SNA, an address, consisting of subarea and element fields, that
identifies a link, link station, or network addressable unit (NAU). Subarea
nodes use network addresses; peripheral nodes use local addresses. The
boundary function in the subarea node to which a peripheral node is
attached transforms local addresses to network addresses and vice versa.
See also network name.

network addressable unit (NAU)
In SNA, a logical unit, a physical unit, or a system services control point.
The NAU is the origin or the destination of information transmitted by the
path control network. See also logical unit, network address, network name.

network name
In SNA, the symbolic identifier by which end users refer to a network
addressable unit (NAU), link station, or link. See also network address.

node type
In SNA, a designation of a node according to the protocols it supports and
the network addressable units (NAUs) it can contain. Four types are
defined: 1, 2, 4, and 5. Type 1 and type 2 nodes are peripheral nodes; type
4 and type 5 nodes are subarea nodes.

nonextended logical unit of work
See SYNCONRETURN.

nonmanaged mode
An environment in which the application is responsible for generating and

Glossary 135

configuring connection factories. The JEE server does not own or know
about these connection factories and therefore provides no Quality of
Service facilities.

O

object In object-oriented programming, a concrete realization of a class that
consists of data and the operations associated with that data.

object-oriented (OO)
Describing a computer system or programming language that supports
objects.

one-phase commit
A protocol with a single commit phase, that is used for the coordination of
changes to recoverable resources when a single resource manager is
involved.

OO See object-oriented.

P

pacing
A technique by which a receiving station controls the rate of transmission
of a sending station to prevent overrun.

parallel session
In SNA, two or more concurrently active sessions between the same two
LUs using different pairs of network addresses. Each session can have
independent session parameters.

PING In Internet communications, a program used in TCP/IP networks to test
the ability to reach destinations by sending the destinations an Internet
Control Message Protocol (ICMP) echo request and waiting for a reply.

partner logical unit (PLU)
In SNA, the remote participant in a session.

partner transaction program
The transaction program engaged in an APPC conversation with a local
transaction program.

password phrase
A character string, between 9 and 100 characters in length, that is used for
authentication when a user signs on to CICS. Because a password phrase
can provide an exponentially greater number of possible combinations of
characters than a standard 8 character password, the use of password
phrases can enhance system security. Password phrases are verified by the
External Security Manager (ESM), and can contain alphanumeric
characters, and any of the other non alphanumeric characters that are
supported by the ESM. See also External Security Manager (ESM).

PLU See primary logical unit and partner logical unit.

policy-based dynamic server selection (DSS)
A selection mechanism that CICS transaction Gateway uses when deciding
which CICS servers will receive workload. Policy-based DSS ensures that
requests are sent to targeted groups of CICS servers, and that CICS servers
within the groups are selected for workload using a specified algorithm
(round robin or failover).

port An endpoint for communication between devices, generally referring to a

136 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

logical connection. A 16-bit number identifying a particular Transmission
Control Protocol (TCP) or User Datagram Protocol (UDP) resource within a
given TCP/IP node.

port sharing
A way of load balancing TCP/IP connections across a group of servers
running in the same z/OS image.

prepare phase
The first phase of a XA process in which all participants are requested to
confirm readiness to commit.

presentation logic
The part of a distributed application that is concerned with the user
interface of the application. Compare with business logic.

primary logical unit (PLU)
In SNA, the logical unit that contains the primary half-session for a
particular logical unit-to-logical unit (LU-to-LU) session. See also secondary
logical unit.

<product_data_path>
This term represents the directory used by the Windows CICS Transaction
Gateway for common application data. For more information, see File path
terminology.

protocol boundary
The signals and rules governing interactions between two components
within a node.

Q

Query strings
Query strings are used in the statistical data API. A query string is an
input parameter, specifying the statistical data to be retrieved.

R

RACF See Resource Access Control Facility.

realm A named collection of users and groups that can be used in a specific
security context. See also distinguished name and identity propagation.

Recoverable resource management services (RRMS)
The registration services, context services, and resource recovery services
provided by the z/OS sync point manager that enable consistent changes
to be made to multiple protected resources.

Resource Access Control Facility (RACF)
An IBM licensed program that provides access control by identifying users
to the system; verifying users of the system; authorizing access to protected
resources; logging detected unauthorized attempts to enter the system; and
logging detected accesses to protected resources.

region In workload management on CICS Transaction Gateway for Windows, an
instance of a CICS server.

remote mode
Remote mode describes the use of one of the supported CICS Transaction
Gateway network protocols to connect to the Gateway daemon.

Glossary 137

remote procedure call (RPC)
A protocol that allows a program on a client computer to run a program
on a server.

Request monitoring exits
Exits that provide information about individual requests as they are
processed by the CICS Transaction Gateway.

request unit (RU)
In SNA, a message unit that contains control information such as a request
code, or function management (FM) headers, end-user data, or both.

request/response unit
A generic term for a request unit or a response unit. See also request unit
and response unit.

response file
A file that contains predefined values that is used instead of someone
having to enter those values one at a time. See also CID methodology.

response unit (RU)
A message unit that acknowledges a request unit; it can contain prefix
information received in a request unit.

Resource adapter
A system-level software driver that is used by an EJB container or an
application client to connect to an enterprise information system (EIS). A
resource adapter plugs in to a container; the application components
deployed on the container then use the client API (exposed by adapter) or
tool-generated, high-level abstractions to access the underlying EIS.

resource group ID
A resource group ID is a logical grouping of resources, grouped for
statistical purposes. A resource group ID is associated with a number of
resource group statistics, each identified by a statistic ID.

resource ID
A resource ID refers to a specific resource. Information about the resource
is included in resource-specific statistics. Each statistic is identified by a
statistic ID.

resource manager
The participant in a transaction responsible for controlling access to
recoverable resources. In terms of the CICS resource adapters this is
represented by an instance of a ConnectionFactory.

Resource Recovery Services (RRS)
A z/OS facility that provides two-phase sync point support across
participating resource managers.

Result set
A result set is a set of data calculated or recorded by a statistical API
function.

Result set token
A result set token is a reference to the set of results returned by a statistical
API function.

rollback
An operation in a transaction that reverses all the changes made during the
unit of work. After the operation is complete, the unit of work is finished.
Also known as a backout.

138 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

RU See Request unit and Response unit.

RPC See remote procedure call.

RRMS
See Recoverable resource management services.

RRS See Resource Recovery Services.

S

SBCS See single-byte character set.

secondary logical unit (SLU)
In SNA, the logical unit (LU) that contains the secondary half-session for a
particular LU-LU session. Contrast with primary logical unit. See also
logical unit.

Secure Sockets Layer (SSL)
A security protocol that provides communication privacy. SSL enables
client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, and message forgery. SSL applies only
to internet protocols, and is not applicable to SNA.

server name remapping
See dynamic server selection.

servlet
A Java program that runs on a Web server and extends the server's
functionality by generating dynamic content in response to Web client
requests. Servlets are commonly used to connect databases to the Web.

session limit
In SNA, the maximum number of concurrently active logical unit to logical
unit (LU-to-LU) sessions that a particular logical unit (LU) can support.

silent installation
Installation that does not display messages or windows during its progress.
Silent installation is not a synonym of "unattended installation", although it
is often improperly used as such.

single-byte character set (SBCS)
A character set in which each character is represented by 1 byte. Contrast
with double-byte character set.

sign-on capable terminal
A sign-on capable terminal allows sign-on transactions that are either
supplied with CICS (CESN) or written by the user, to be run. Contrast with
sign-on incapable terminal.

SIT See system initialization table.

SLU See secondary logical unit.

SMF The z/OS System Management Facility (SMF) collects and records system
and job-related information that your z/OS installation can use for
reporting, billing, analysis, profiling, and maintaining system security.
CICS TG for z/OS writes statistical data to SMF.

SMIT See System Management Interface Tool.

SNA See Systems Network Architecture.

Glossary 139

SNA sense data
An SNA-defined encoding of error information In SNA, the data sent with
a negative response, indicating the reason for the response.

SNASVCMG mode name
The SNA service manager mode name. This is the architecturally-defined
mode name identifying sessions on which CNOS is exchanged. Most
APPC-providing products predefine SNASVCMG sessions.

socket A network communication concept, typically representing a point of
connection between a client and a server. A TCP/IP socket will normally
combine a host name or IP address, and a port number.

SSL See Secure Sockets Layer.

SSLight
An implementation of SSL, written in Java, and no longer supported by
CICS Transaction Gateway.

statistic data
A statistic data structure holds individual statistical result returned after
calling a statistical API function.

statistic group
A generic term for a collection of statistic IDs.

statistic ID
A label referring to a specific statistic. A statistic ID is used to retrieve
specific statistical data, and always has a direct relationship with a statistic
group.

standard error
In many workstation-based operating systems, the output stream to which
error messages or diagnostic messages are sent.

subnet
An interconnected, but independent segment of a network that is identified
by its Internet Protocol (IP) address.

subnet address
In Internet communications, an extension to the basic IP addressing scheme
where a portion of the host address is interpreted as the local network
address.

sync point
Synchronization point. During transaction processing, a reference point to
which protected resources can be restored if a failure occurs.

SYNCONRETURN
A request where the CICS server takes a sync point on successful
completion of the server program. Changes to recoverable resources made
by the server program are committed or rolled-back independently of
changes to recoverable resources made by the client program issuing the
ECI request, or changes made by the server in any subsequent ECI request.
Also referred to as a nonextended logical unit of work.

system initialization table (SIT)
A table containing parameters used to start a CICS control region.

System Management Command
An administrative request received by a Gateway daemon (or Gateway
daemon address space on z/OS) from the ctgadmin command (on UNIX,
Linux, or Windows) or the z/OS console. The request might be made to

140 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

retrieve information about the Gateway daemon, or to alter some aspect of
Gateway daemon behavior. Typically, a ctgadmin command in the form
ctgadmin <command string> is entered by an operator using the command
line interface, or a modify command in the form /F <job
name>,APPL=<command string> is entered by an operator on the z/OS
console.

System Management Interface Tool (SMIT)
An interface tool of the AIX® operating system for installing, maintaining,
configuring, and diagnosing tasks.

Systems Network Architecture (SNA)
An architecture that describes the logical structure, formats, protocols, and
operational sequences for transmitting information units through the
networks and also the operational sequences for controlling the
configuration and operation of networks.

System SSL
An implementation of SSL, no longer supported by CICS Transaction
Gateway on z/OS.

T

TCP/IP
See Transmission Control Protocol/Internet Protocol.

TCP/IP load balancing
The ability to distribute TCP/IP connections across target servers.

terminal emulation
The capability of a personal computer to operate as if it were a particular
type of terminal linked to a processing unit and to access data. See also
emulator, emulation program.

thread A stream of computer instructions that is in control of a process. In some
operating systems, a thread is the smallest unit of operation in a process.
Several threads can run concurrently, performing different jobs.

timeout
A time interval that is allotted for an event to occur or complete before
operation is interrupted.

TLS See Transport Layer Security.

token-ring network
A local area network that connects devices in a ring topology and allows
unidirectional data transmission between devices by a token-passing
procedure. A device must receive a token before it can transmit data.

trace A record of the processing of a computer program. It exhibits the
sequences in which the instructions were processed.

transaction manager
A software unit that coordinates the activities of resource managers by
managing global transactions and coordinating the decision to commit
them or roll them back.

transaction program
A program that uses the Advanced Program-to-Program Communications
(APPC) application programming interface (API) to communicate with a
partner application program on a remote system.

Glossary 141

Transmission Control Protocol/Internet Protocol (TCP/IP)
An industry-standard, nonproprietary set of communications protocols that
provide reliable end-to-end connections between applications over
interconnected networks of different types.

Transport Layer Security (TLS)
A security protocol that provides communication privacy. TLS enables
client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, and message forgery. TLS applies only
to internet protocols, and is not applicable to SNA. TLS is also known as
SSL 3.1.

Two-phase commit
A protocol with both a prepare and a commit phase, that is used for the
coordination of changes to recoverable resources when more than one
resource manager is used by a single transaction.

type 2.0 node
A node that attaches to a subarea network as a peripheral node and
provides a range of end-user services but no intermediate routing services.

type 2.1 node
An SNA node that can be configured as an endpoint or intermediate
routing node in a network, or as a peripheral node attached to a subarea
network.

U

unattended installation
Unattended installation is installation performed without user interaction
during its progress, or, with no user present at all, except for the initial
launch of the process. -

Uniform Resource Locator (URL)
A sequence of characters that represent information resources on a
computer or in a network such as the Internet. This sequence of characters
includes (a) the abbreviated name of the protocol used to access the
information resource and (b) the information used by the protocol to locate
the information resource.

unit of recovery (UR)
A defined package of work to be performed by the RRS.

unit of work (UOW)
A recoverable sequence of operations performed by an application between
two points of consistency. A unit of work begins when a transaction starts
or at a user-requested sync point. It ends either at a user-requested sync
point or at the end of a transaction.

UOW See unit of work.

UR See unit of recovery.

URL See Uniform Resource Locator.

user registry
The location where the distinguished name of a user is defined and
authenticated. See also distinguished name.

user session
Any APPC session other than a SNASVCMG session.

142 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

V

verb A reserved word that expresses an action to be taken by an application
programming interface (API), a compiler, or an object program.

In SNA, the general name for a transaction program's request for
communication services.

version string
A character string containing version information about the statistical data
API.

W

WAN See wide area network.

Web browser
A software program that sends requests to a Web server and displays the
information that the server returns.

Web server
A software program that responds to information requests generated by
Web browsers.

wide area network (WAN)
A network that provides communication services to a geographic area
larger than that served by a local area network or a metropolitan area
network, and that can use or provide public communication facilities.

Wrapping trace
On Windows, UNIX, and Linux, a configuration in which the Maximum
Client wrap size setting is greater than 0. The total size of Client daemon
binary trace files is limited to the value specified in the Maximum Client
wrap size setting. With standard I/O tracing, two files, called cicscli.bin
and cicscli.wrp, are used; each can be up to half the size of the
Maximum Client wrap size.

X

XA request
Any request sent or received by the CICS Transaction Gateway in support
of an XA transaction. These requests include the XA commands commit,
complete, end, forget, prepare, recover, rollback, and start.

XA transaction
A global transaction that adheres to the X/Open standard for distributed
transaction processing (DTP.)

Glossary 143

144 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Index

Special characters
.NET applications 80, 110, 111
.NET Basic - ctgecib1 110
.NET Basic - ctgecib3 111

A
accessibility 121
applets 35
Application Programming Interfaces 1

B
BasicCICSRequestExit 85, 99, 113
bean-managed transaction 57

C
C ctgecib3 sample 109, 110
ccf2.jar 60
CCI

CICS-specific classes 51
generic classes 51

channels and containers
introduction 5

Channels and containers for ECI,
Java 38

CICS request exit 83, 97
CICS request exits, sample 85, 99, 113
CICS-specific classes 51
cicseci.rar, transaction management 57
cicseciXA.rar, transaction

management 57
cicsj2ee.jar 60
CLASSPATH environment variable 42
client applications 3
closeAllGatewayConnections

Statistics C API function 26
closeGatewayConnection

Statistics C API function 26
com.ibm.ctg.client.T class 43
COMMAREA 5

null stripping 12
CommareaLength 55
Common Client Interface 51
Common Client Interface (CCI) 51

class types 49
compiling and linking C and COBOL

applications 74
compiling applications 60
Connection 54
ConnectionFactory 54
connector.jar 60
copyResultSet

multithreading 29
Statistics C API function 29

correlation points available in exits 90
CTG_ECI_Execute 70
ctgclient.jar 42, 60

ctgecib3 109, 110
ctgserver.jar 42
ctgtest 101

D
data available by FlowType and

RequestEvent 91
developing .NET applications 80
disability 121
documentation 119
dumpResultSet

Statistics C API function 31
dumpState

Statistical data C API function 31

E
ECI 5
ECI and ESI calls from C programs in

remote mode 67
ECI calls in remote mode 67
ECI channels and containers sample 63
ECI COMMAREA sampl 62
ECI connection interfaces 54
ECI I/O information 6
ECI interaction interfaces 55
ECI parameter block 70
ECI request 6

timeout 10
ECI resource adapter 50

CCI 52
ECI return codes and server errors 40
ECI security 11
ECI timeout restrictions on z/OS 56
eci_call_type 70
eci_extend_mode 71
eci_luw_token 71
eci_program_name 71
ECIConnectionSpec 54
EPI and z/OS 41
Error checking

Statistics C API 32
ESI

overview 15
ESI (External Security Interface) 15
ESI calls in remote mode 68
ESI I/O information 15
EXCI programming considerations 41
extended LUW 8
External Call Interface calls from a Java

client program 37
External Security Interface (ESI) 15

F
FlowType 91
freeResultSet

Statistics C API function 30

G
generic classes 51
getAPITraceLevel

Statistics C API function 30
getFirstId

Statistics C API function 28
getFirstStat

Statistics C API function 29
getIdQuery

Statistics C API function 28
getNextId

Statistics API function 28
getNextStat

Statistics C API function 29
getResourceGroupIds

Statistics C API function 26
getStatIds

Statistics C API function 27
getStatIdsByStatGroupId

Statistics C API function 27
getStats

Statistics C API function 27
getStatsAPIVersion

Statistics C API function 30
getStatsByStatId

Statistics C API function 27, 28
glossary of terms and abbreviations 123

H
heap size 42

I
input/output records 56
IPIC support for ECI 11

J
Java

client programs 35
heap size 42
stack size 42

Java 2 Security Manager 46
Java permissions 46
JavaGateway

security 37
JCA programming interface 49
JEE

applications 4
JEE Connector Architecture (JCA)

ConnectionFactory 49
JEE Tracing 61
JNDI 60
JSSE 45

© Copyright IBM Corp. 2000, 2013 145

L
location of sample files 85, 99, 113
logical unit of work 71

M
managed environment 57
Managed environment 51
multi-threading 21
multithreaded ECI V2 applications 69
multithreading 17, 22, 29

N
Non-managed environment 51
nonmanaged environment 57

using JEE CICS resource adapters
in 59

O
openGatewayConnection

Statistics C API function 25
openRemoteGatewayConnection

Statistics C API function 25

P
problem determination

unable to load class that supports
TCP/IP 42

program link calls 7, 38, 70
programming

Java client programs 35
programming in C and COBOL 67
programming interface C and COBOL,

overview 67
programming interface for Java,

overview 35
programming using the .NET

framework 81
programming using the .NET

Framework 77, 78, 79
programming using the JEE connector

architecture 49
publications 119

R
remote Client connection to a Gateway

daemon 69
reply solicitation calls 39
ReplyLength 55
request monitoring exits 87
RequestEvent 91
resource adapter samples 62
response timeout 11
restrictions on WebSphere Application

Server for z/OS 57
RoundRobinCICSRequestExit 85, 99, 113
Running the JEE CICS resource adapters

in a nonmanaged environment 60

S
sample CICS request exits 85, 99, 113
sample programs 101
screenable.jar 60
Security

Java security permissions 46
security classes 45
security considerations

ECI 74
security credentials 61
security exits 45
setAPITraceFile

Statistics C API function 31
setAPITraceLevel

Statistics C API function 30
signing 35
stack size 42
Statistical C API

multithreading 22
Result set tokens 22

Statistical data C API
dumpState 31

Statistics API
getNextId 28
multithreading 17
Overview 17
version control 17

Statistics APIs 17
Statistics C API

C language header files 19
ctgstats.h 19
ctgstdat.h 19

Calling the C API 19
closeAllGatewayConnections 26
closeGatewayConnection 26
copyResultSet 29
Correlating results 32
ctgstats.h 19
ctgstdat.h 19
data types 21
dumpResultSet 31
Error checking 32
Example C API program structure 20
freeResultSet 30
Gateway token 21
Gateway token type 21

CTG_GatewayToken_t 21
getAPITraceLevel 30
getFirstId 28
getFirstStat 29
getIdQuery 28
getNextStat 29
getResourceGroupIds 26
getStatIds 27
getStatIdsByStatGroupId 27
getStats 27
getStatsByStatId 27, 28
getStatsC APIVersion 30
ID data 23

CTG_IdData_t 23
ID functions 26
multi-threading 21
multithreading 22
openGatewayConnection 25
openRemoteGatewayConnection 25
Query strings 21
Result set functions 28

Statistics C API (continued)
Result set tokens

Ownership by C API 22
Relationship with gateway

token 22
Retrieving statistical data

functions 27
Runtime DLL 19

z/OS 19
Sample code 19
setAPITraceFile 31
setAPITraceLevel 30
Statistical data 24
trace levels 24
Utility functions 30

Statistics C API components 19
statistics Java API 32
streamable interface 56
supported programming languages 4
system properties, Java 43

T
time-out 72
timeout of the ECI request 10
TPNName

using 10
tracing 43
Tracing

JEE 61
trademarks 118
TranName

using 10
transaction management 57

U
using CICS request exit samples 85, 99,

113

W
web start applications 35
writing a CICS request exit 84, 98

X
XA

overview 58

146 CICS Transaction Gateway for z/OS V9.0: z/OS Programming Guide

Readers’ Comments — We'd Like to Hear from You

CICS Transaction Gateway
Version 9 Release 0
CICS Transaction Gateway for z/OS: Programming Guide

Publication No. SC34-2833-02

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44 1962 816151
v Send your comments via email to: idrcf@uk.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-2833-02

SC34-2833-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP095)
Hursley Park
Winchester
Hampshire
United Kingdom
SO21 2JN

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

SC34-2833-02

	Contents
	Chapter 1. Application programming interfaces
	Chapter 2. Client applications
	Supported programming languages
	JEE applications

	Chapter 3. External Call Interface (ECI)
	Introduction to channels and containers
	The ECI request
	External calls to CICS
	I/O parameters on ECI calls
	Program link calls
	Managing logical units of work

	Status information calls
	Retrieving replies from asynchronous ECI requests
	Callbacks

	ECI and CICS transaction IDs
	Timeout of the ECI request
	Request timeout
	Response timeout

	Security in the ECI
	IPIC support for ECI
	ECI performance considerations when using COMMAREAs

	Chapter 4. External Security Interface (ESI)
	ESI functions
	I/O parameters on ESI calls
	Using ESI to manage passwords

	Chapter 5. Statistics APIs
	Statistical data overview
	API and protocol version control

	Statistics C API
	Calling the C API
	Statistics C API components
	Runtime components
	Statistics C API program structure

	C API data types
	Gateway tokens
	Query strings
	Result set tokens
	ID data
	Statistical data

	Statistics C API trace levels
	C API functions
	Gateway daemon connection functions
	ID functions
	Retrieving statistical data functions
	Result set functions
	Utility functions

	Correlating results and error checking

	Statistics Java API

	Chapter 6. Programming in Java
	Signing Applets and Web Start Applications
	Overview of the programming interface for Java
	Writing Java client applications
	SSL cipher suites in Java client applications
	JavaGateway security

	Making ECI calls from a Java client program
	Linking to a CICS server program
	Creating Java channels and containers for ECI calls
	Managing an LUW
	Retrieving replies from asynchronous requests
	Callbacks
	Reply solicitation calls

	ECI timeouts
	ECI return codes and server errors
	EXCI support

	EPI and z/OS
	Making ESI calls from a Java client program
	Verifying a password using ESI
	Changing a password using ESI

	Compiling and running a Java client application
	Setting stack and heap sizes
	Setting up the CLASSPATH
	Unable to load class that supports TCP/IP

	Problem determination for Java client programs
	Tracing in Java client programs

	Security for Java client programs
	CICS Transaction Gateway security classes
	Using a Java 2 Security Manager
	Permissions to access the file system

	Chapter 7. Programming using the JEE Connector Architecture
	Overview of the JCA programming interface
	The Common Client Interface (CCI)
	The programming interface model
	Record objects
	ECI resource adapter
	Managed and nonmanaged environments

	The Common Client Interface
	Generic CCI Classes
	CICS-specific classes

	Using the ECI resource adapter
	The ECI resource adapter with channels and containers
	Connection to a CICS server using the ECI resource adapter
	Linking to a program on a CICS server
	ECI timeout restrictions

	ECI resource adapter CICS-specific records using the streamable interface
	Transaction management
	XA overview

	Samples

	Using the resource adapters in a nonmanaged environment
	Creating the appropriate ConnectionFactory object
	Creating an ECI ConnectionFactory

	Saving and reusing connection factories
	Running the JEE resource adapters in a nonmanaged environment

	Compiling applications
	Security credentials and the CICS resource adapters
	JEE tracing
	Tracing issues relating to serialized interfaces and ConnectionFactory objects

	Resource adapter samples
	ECI COMMAREA sample
	ECI channels and containers sample

	Assistance in coding CCI applications
	Connector specification API Javadoc
	JEE Connector Architecture API

	Chapter 8. Programming in C
	Overview of the programming interfaces for C
	Making ECI V2 and ESI V2 calls from C programs
	Making ECI calls from C programs
	Making ESI calls from C programs
	Multithreaded ECI V2 and ESI V2 applications
	Establishing a connection to a Gateway daemon
	Program link calls
	Managing logical units of work
	ECI timeouts

	Using channels and containers in ECI V2 applications
	Tracing in ECI V2 and ESI V2 applications
	Security credentials in ECI V2

	Compiling and linking C applications

	Chapter 9. Programming using the .NET Framework
	Overview of the programming interface
	Making ECI calls from .NET programs
	Making ESI calls from .NET programs
	Using channels and containers in .NET programs
	Developing .NET applications
	Problem determination for .NET client programs
	Tracing for .NET client programs

	Chapter 10. Creating a CICS request exit
	Writing a CICS request exit
	Java CICS request exit samples
	Using the CICS request exit samples

	Chapter 11. Java request monitoring exits
	Correlation points available in the exits
	Data available by FlowType and RequestEvent
	Non-XA flows at RequestEntry
	XA flows at RequestEntry
	Non-XA flows at ResponseExit
	XA flows at ResponseExit

	Chapter 12. Creating a CICS request exit
	Writing a CICS request exit
	Java CICS request exit samples
	Using the CICS request exit samples

	Chapter 13. Sample programs
	UNIX System Services ctgtest script
	COBOL samples
	Java client samples
	Compiled Java samples
	Running the sample programs
	Connecting to CICS Transaction Gateway
	Java ECI base class samples
	Java EciB1 sample
	Java EciB2 sample
	Java EciB3 sample
	Java EciI1 sample
	Java EciA1 sample

	Java ESI base class samples
	Java EsiB1 sample

	JEE samples
	JEE ECIDateTime sample
	JEE EC03Channel sample

	C ECI V2 and ESI V2 samples
	C ctgesib1 sample
	C ctgecib1 sample
	C ctgecib2 sample
	C ctgecib3 sample

	C#/Visual Basic .NET samples
	C#/Visual Basic .NET EciB1 sample
	C#/Visual Basic .NET EciB3 sample
	C#/Visual Basic .NET EsiB1 sample

	User exit samples
	Java security exit data compression samples
	Java request monitoring exit samples
	Java BasicMonitor request monitoring exit sample
	Java ThreadedMonitor request monitoring exit sample

	Java CICS request exit samples
	Using the CICS request exit samples

	C/Java statistics API samples
	C ctgstat1 statistics API sample
	Java Ctgstat1 statistics API sample

	SMF viewer sample program
	Password Scrambler utility

	Notices
	Trademarks

	Related literature
	Accessibility
	Glossary
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

	Readers’ Comments — We'd Like to Hear from You

