
SOAP

for

CICS

feature

User’s

Guide

SC34-6315-01

���

SOAP

for

CICS

feature

User’s

Guide

SC34-6315-01

���

Note!

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

53.

Second

edition

(July

2004)

This

edition

applies

to

the

SOAP

for

CICS

feature,

for

CICS

Transaction

Server

for

z/OS

Version

2

program

number

5697-E93,

and

to

all

subsequent

versions,

releases,

and

modifications

until

otherwise

indicated

in

new

editions.

Make

sure

you

are

using

the

correct

edition

for

the

level

of

the

product.

At

the

back

of

this

publication

is

a

page

entitled

“Sending

your

comments

to

IBM”.

If

you

wish

to

send

comments

by

mail,

please

address

them

to:

User

Technologies

Department

Mail

Point

095

IBM

United

Kingdom

Laboratories

Hursley

Park

WINCHESTER

Hampshire

SO21

2JN

United

Kingdom

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

2003,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

Chapter

1.

The

SOAP

for

CICS

feature

.

. 1

Where

to

find

more

information

.

.

.

.

.

.

.

. 1

What’s

in

this

feature?

.

.

.

.

.

.

.

.

.

.

. 2

Installing

and

using

the

SOAP

for

CICS

feature

.

.

. 4

Migrating

from

the

SOAP

for

CICS

SupportPac

.

.

. 4

BTS

commands

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Chapter

2.

Pipelines

and

the

SOAP

for

CICS

feature

.

.

.

.

.

.

.

.

.

.

.

.

. 7

What

is

a

pipeline?

.

.

.

.

.

.

.

.

.

.

.

. 7

How

SOAP

for

CICS

uses

pipelines

.

.

.

.

.

. 10

CICS

as

a

service

provider

.

.

.

.

.

.

.

. 10

CICS

as

a

service

requester

.

.

.

.

.

.

.

. 12

Chapter

3.

Containers

.

.

.

.

.

.

.

. 15

Containers

used

in

the

service

provider

pipeline

.

. 15

Containers

used

in

the

service

requester

pipeline

.

. 16

Containers

used

by

user-written

programs

.

.

.

. 16

Chapter

4.

Writing

message

adapters

19

Writing

a

message

adapter

for

the

service

provider

pipeline

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Changing

the

application

context

.

.

.

.

.

. 21

Writing

a

message

adapter

for

the

service

requester

pipeline

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Constructing

the

SOAP

request

.

.

.

.

.

.

. 22

Invoking

the

outbound

SOAP

router

program

.

. 23

Processing

the

SOAP

response

.

.

.

.

.

.

. 23

Handling

faults

in

the

message

adapter

.

.

.

. 24

Identifying

the

target

of

a

SOAP

message

.

.

. 25

Chapter

5.

Writing

your

own

pipeline

programs

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Writing

the

SOAP

message

handler

.

.

.

.

.

. 27

Writing

the

application

mapper

.

.

.

.

.

.

.

. 28

Passing

data

between

user-written

programs

.

.

. 29

Chapter

6.

Error

handling

in

SOAP

for

CICS

feature

.

.

.

.

.

.

.

.

.

.

.

. 31

Handling

errors

in

user-written

programs

.

.

.

. 31

Error

handling

in

the

service

provider

pipeline

.

. 31

Default

error

recovery

in

the

service

provider

pipeline

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

Performing

error

recovery

in

the

SOAP

message

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Error

handling

in

the

service

requester

pipeline

.

. 33

Performing

error

recovery

in

the

SOAP

message

handler

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Abend

codes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

AWSC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

AWSH

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

AWSL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

AWSN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

AWSP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

AWSQ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

AWSR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

AWSS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

AWST

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

AWSU

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Chapter

7.

Configuring

your

CICS

system

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Creating

the

BTS

repository

data

set

.

.

.

.

.

. 37

Defining

CICS

resources

.

.

.

.

.

.

.

.

.

. 37

Defining

the

repository

file

.

.

.

.

.

.

.

. 38

Defining

the

BTS

process

type

.

.

.

.

.

.

. 38

Defining

the

TCPIPSERVICE

.

.

.

.

.

.

. 39

Defining

CICS

resources

for

the

WebSphere

MQ

transport

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Defining

other

resources

.

.

.

.

.

.

.

.

. 40

Using

the

supplied

resource

definitions

.

.

.

.

. 40

Supplied

sample

CICS

resource

definitions

.

.

.

. 40

Language

Environment

run-time

options

.

.

.

. 42

Chapter

8.

Configuring

WebSphere

MQ

43

Security

considerations

for

the

WebSphere

MQ

transport

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

Security

for

the

SBOX

transaction

and

WebSphere

MQ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

Chapter

9.

The

sample

applications

.

. 45

Using

the

DFH$WSSB

sample

program

.

.

.

.

. 46

Accessibility

.

.

.

.

.

.

.

.

.

.

.

. 49

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

Sending

your

comments

to

IBM

.

.

.

. 55

©

Copyright

IBM

Corp.

2003,

2004

iii

|

|

|

|

|

|

|

|

iv

SOAP

for

CICS:

User’s

Guide

Chapter

1.

The

SOAP

for

CICS

feature

The

SOAP

for

CICS®

feature

provides

support

for

the

Simple

Object

Access

Protocol

(SOAP)

version

1.1

in

CICS

Transaction

Server

Version

2.

The

SOAP

for

CICS

feature

enables

existing

or

new

CICS

applications,

written

in

any

supported

programming

language,

to

communicate

outside

of

the

CICS

environment

using

the

Simple

Object

Access

Protocol

(SOAP).

The

feature

supports

inbound

and

outbound

SOAP

requests.

In

other

words:

v

A

SOAP

client

application

(or

service

requester)

can

call

a

CICS

application

program

v

A

CICS

application

can

call

a

SOAP

server

application

(or

service

provider)

A

user-written

program

known

as

a

message

adapter

provides

a

mapping

between

XML

and

the

CICS

communication

area

(COMMAREA)

used

by

an

application

program.

WebSphere®

Studio

Enterprise

Developer

(WSED)

provides

a

tool

to

generate

converter

routines

from

COBOL

copybooks,

which

can

perform

the

mapping.

You

can

also

develop

mappings

using

the

XML

parsing

function

provided

in

Enterprise

COBOL

V3

and

Enterprise

PL/I

V3.

The

feature

provides

two

message

transports:

Hypertext

Transfer

Protocol

(HTTP)

The

HTTP

transport

uses

CICS

Web

support,

and

includes

support

for

the

Secure

Sockets

layer

(SSL)

WebSphere

MQ

The

WebSphere

MQ

transport

uses

the

CICS

adapter

supplied

with

WebSphere

MQ

for

z/OS®

The

SOAP

for

CICS

feature

enables

a

user-written

application

layer

to

map

the

XML-based

SOAP

message

into

a

COMMAREA,

thus

enabling

access

to

COMMAREA-based

applications

using

SOAP

messages.

The

feature

supports

the

Simple

Object

Access

Protocol

(SOAP)

1.1

specification

(http://www.w3.org/TR/SOAP/).

It

implements

a

SOAP

processing

node

which,

by

default,

understands

no

SOAP

headers

(see

section

4.2

of

the

specification).

The

default

implementation:

v

ignores

optional

headers

v

rejects

requests

that

contain

mandatory

headers

However,

you

can

provide

your

own

code

to

process

SOAP

headers.

Where

to

find

more

information

To

use

this

feature

successfully,

you

need

some

knowledge

of

the

following

CICS

functions:

Business

Transaction

Services

(BTS)

User-written

code

in

the

feature

uses

a

small

subset

of

the

extensive

repertoire

of

BTS

commands.

They

are

described

in

“BTS

commands”

on

page

5.

For

general

information

about

BTS,

see

the

CICS

Business

Transaction

Services

manual.

©

Copyright

IBM

Corp.

2003,

2004

1

http://www.w3.org/TR/SOAP/

You

should

also

be

familiar

with

the

following:

Extended

Markup

Language

(XML)

The

formal

specification

of

XML

is

published

at

http://www.w3.org/XML.

Simple

Object

Access

Protocol

(SOAP)

The

formal

specification

of

SOAP

is

published

at

http://www.w3.org/TR/SOAP.

If

you

plan

to

build

Web

Services,

you

will

need

some

knowledge

of

the

following:

Web

Services

Description

Language

(WSDL)

The

formal

specification

of

WSDL

is

published

at

http://www.w3.org/TR/SOAP.

As

well

as

the

formal

specifications,

there

is

a

large

body

of

information

on

the

internet,

and

many

printed

books

that

provide

detailed

information

on

these

subjects.

If

you

plan

to

use

the

HTTP

transport,

you

should

be

familiar

with

the

following:

CICS

Web

support

For

more

information,

see

the

CICS

Internet

Guide.

Hypertext

Transfer

Protocol

(HTTP)

The

formal

specification

of

HTTP

is

published

at

http://www.w3.org/Protocols.

If

you

plan

to

use

the

WebSphere

MQ

transport,

you

should

be

familiar

with

using

the

CICS

adapter

function

of

WebSphere

MQ.

For

more

information,

see

WebSphere

MQ

for

z/OS

Concepts

and

Planning

Guide.

What’s

in

this

feature?

Load

modules

Library

SCAVLOAD

contains

the

following

load

modules:

DFHWSABE

The

abend

handler

program

for

the

service

provider

pipeline

DFHWSAMX

The

default

application

mapper

program

DFHWSDSH

The

service

provider

dispatcher

program

for

the

HTTP

transport

DFHWSDSQ

The

service

provider

dispatcher

program

for

the

WebSphere

MQ

transport

DFHWSHDX

The

default

SOAP

message

handler

program

DFHWSPMI

The

service

provider

pipeline

manager

DFHWSPMO

The

service

requester

pipeline

manager

DFHWSRDO

Resource

definitions

used

by

the

feature

2

SOAP

for

CICS:

User’s

Guide

http://www.w3.org/XML
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP
http://www.w3.org/Protocols

DFHWSRT

The

outbound

SOAP

router

program

DFHWSSH

The

SOAP

protocol

handler

DFHWSTIH

The

HTTP

transport

program

for

the

service

provider

pipeline

DFHWSTIQ

The

WebSphere

MQ

transport

program

for

the

service

provider

pipeline

DFHWSTOH

The

HTTP

transport

program

for

the

service

requester

pipeline

DFHWSTOQ

The

WebSphere

MQ

transport

program

for

the

service

requester

pipeline

DFH0SBM

Mapset

used

by

the

DFH$WSSB

sample

program

DFH$WSAP

Back-end

program

of

the

Web

Service

sample

application

DFH$WSBT

Document

template

used

by

the

DFH$WSSB

sample

program

DFH$WSDC

Front-end

program

of

the

Web

Service

sample

application

DFH$WSSB

The

main

program

of

the

DFH$WSSB

sample

DFH$WSSS

The

sample

service

provider

program

DFH$WSXL

The

sample

XML

tracing

program

Sample

programs

Library

SCAVSAMP

contains

the

following

sample

source

code:

DFH$WSAP

COBOL

source

for

the

back-end

program

of

the

Web

Service

sample

application

DFH$WSBT

Assembler

source

for

the

document

template

used

by

the

DFH$WSSB

sample

program

DFH$WSDC

COBOL

source

for

the

front-end

program

of

the

Web

Service

sample

application

DFH$WSDL

Web

Service

Definition

Language

(WSDL)

for

the

Web

Service

sample

application

DFH$WSSB

COBOL

source

for

the

sample

service

requester

program

DFH$WSSS

COBOL

source

for

the

sample

service

provider

program

Chapter

1.

The

SOAP

for

CICS

feature

3

DFH$WSXL

COBOL

source

for

the

sample

XML

tracing

program

DFHWSAMX

COBOL

source

for

the

default

application

mapper

program

DFHWSCSD

CSD

utility

program

commands

for

defining

resources

used

by

the

feature

DFHWSCNO

COBOL

copy

book

containing

constants

used

by

DFH$WSSB

and

DFH$WSSS

DFHWSHDX

COBOL

source

for

the

default

SOAP

message

handler

program

DFH0SBMP

Assembler

source

for

the

mapset

for

the

DFH$WSSB

sample

program

The

sample

programs

are

described

in

Chapter

9,

“The

sample

applications,”

on

page

45

Installing

and

using

the

SOAP

for

CICS

feature

1.

To

install

the

SOAP

for

CICS

feature,

follow

the

directions

in

the

SOAP

for

CICS

feature

Program

Directory.

2.

To

use

the

feature

in

your

CICS

system,

include

the

load

library

in

the

DFHRPL

concatenation

for

your

CICS

job.

Migrating

from

the

SOAP

for

CICS

SupportPac

If

you

have

previously

used

the

SOAP

for

CICS

SupportPac™

CA1M,

you

can

use

both

the

SupportPac

and

this

feature

in

the

same

region.

If

you

want

to

adapt

programs

and

operating

procedures

that

you

have

developed

for

use

with

the

SupportPac

with

this

feature,

you

should

be

aware

that

many

of

the

program

names

used

by

the

feature

are

not

the

same

as

those

in

the

SupportPac.

You

should

make

the

following

changes.

v

Rename

any

user

handlers

you

have

written.

1.

Rename

the

SOAP

message

handler

program.

Its

name

in

the

SupportPac

is

WSHANDLE;

its

name

in

the

SOAP

for

CICS

feature

is

DFHWSHDX.

2.

Rename

the

application

mapper

program.

Its

name

in

the

SupportPac

is

WSAPPMAP;

its

name

in

the

SOAP

for

CICS

feature

is

DFHWSAMX.
v

If

you

use

the

HTTP

transport,

change

any

references

to

the

HTTP

dispatcher

program.

Its

name

in

the

SupportPac

is

WSSOAPHT;

its

name

in

the

SOAP

for

CICS

feature

is

DFHWSDSH.

For

example,

if

you

use

the

default

analyzer,

the

URI

of

the

target

program

is

now:

http://host:port/CICS/CWBA/DFHWSDSH/program

where

program

is

the

name

of

the

target

program.

v

If

you

use

the

MQ

transport,

change

any

references

to

the

transport

transaction.

The

old

name

is

WSMQ;

the

new

name

is

CWSQ.

v

If

you

use

the

MQ

transport,

change

any

references

to

the

MQ

dispatcher

program.

The

old

name

is

WSSOAPMQ;

the

new

name

is

DFHWSDSQ.

For

example,

the

definition

of

transaction

CWSQ

(formerly

WSMQ)

must

specify

PROGRAM(DFHWSDSQ).

4

SOAP

for

CICS:

User’s

Guide

BTS

commands

The

sample

programs

provided

with

this

feature

use

a

small

subset

of

the

large

repertoire

of

BTS

commands.

You

can

use

the

feature

successfully

without

detailed

knowledge

of

all

BTS

capabilities.

If

you

base

your

programs

on

the

sample

programs

provided,

you

can

use

most

of

the

BTS

commands

in

the

samples

with

very

few

changes.

Most

of

your

changes

will

involve

using

BTS

containers

to

pass

data

between

the

pipeline

stages;

the

samples

contain

examples

showing

how

to

do

this.

For

more

information

about

BTS,

see

the

CICS

Business

Transaction

Services

manual.

The

BTS

commands

used

in

the

sample

programs

are:

CHECK

ACQPROCESS

Check

the

completion

status

of

a

process

CHECK

ACTIVITY

Check

the

completion

status

of

an

activity

DEFINE

ACTIVITY

Define

a

BTS

activity

DEFINE

INPUT

EVENT

Define

a

BTS

input

event

DEFINE

PROCESS

Define

a

BTS

process

GET

CONTAINER

Retrieve

data

from

a

named

data-container

LINK

ACQPROCESS

Execute

a

BTS

process

synchronously

without

context

switching

LINK

ACTIVITY

Execute

a

BTS

activity

synchronously

without

context

switching

MOVE

CONTAINER

Move

data

from

one

named

data-container

to

another

PUT

CONTAINER

Save

data

in

a

named

data-container

RETRIEVE

REATTACH

EVENT

Retrieve

the

name

of

an

event

that

caused

the

current

activity

to

be

reattached

RETURN

ENDACTIVITY

Return

program

control,

ensuring

that

a

BTS

activity

completes

Chapter

1.

The

SOAP

for

CICS

feature

5

6

SOAP

for

CICS:

User’s

Guide

Chapter

2.

Pipelines

and

the

SOAP

for

CICS

feature

The

SOAP

for

CICS

feature

consists

of

pipelines,

which

support

service

providers

and

service

requesters.

Definitions

Pipeline

A

sequence

of

programs

arranged

so

that

the

output

from

one

program

is

used

as

input

to

the

next.

Service

provider

pipeline

A

pipeline

of

user-provided

and

system-provided

programs

which

receives

an

inbound

SOAP

message,

processes

the

contents,

and

sends

a

response.

Service

requester

pipeline

A

pipeline

of

user-provided

and

system-provided

programs

which

sends

an

outbound

SOAP

message,

receives

the

response,

and

processes

the

contents

of

the

response.

What

is

a

pipeline?

A

pipeline

is

a

sequence

of

processes

arranged

so

that

the

output

from

one

process

is

used

as

input

to

the

next

process.

A

pipeline

is

a

useful

model

for

processing

messages

that

flow

between

a

client

and

a

server.

Figure

1

shows

a

simple

pipeline

with

three

processing

stages;

each

processing

stage

contributes

to

the

processing

of

an

input

to

produce

an

output:

1.

The

input

to

the

pipeline

passes

to

stage

1

of

the

pipeline

2.

The

output

from

stage

1

passes

to

stage

2

3.

The

output

from

stage

2

passes

to

stage

3

4.

The

output

from

the

final

processing

stage

is

the

output

from

the

pipeline

as

a

whole

In

a

real

system,

a

pipeline

may

be

more

complicated

than

this:

v

If

a

processing

stage

detects

an

error,

it

may

pass

control

to

a

special

error

handling

process,

rather

than

to

the

next

processing

stage.

v

Each

processing

stage

may

use

data

which

was

not

passed

from

the

previous

stage.

For

example,

a

processing

stage

might

receive

a

message

from

a

network.

v

Each

processing

stage

may

create

data

which

is

not

passed

to

the

next

stage.

For

example,

a

processing

stage

might

store

data

in

a

file.

v

Each

processing

stage

may

invoke

programs

which

are

not

part

of

the

pipeline,

using

a

call-and-return

mechanism.

For

example,

a

processing

stage

might

call

a

Stage 3Stage 2Stage 1
input inputoutput outputinputoutput

Figure

1.

A

pipeline

as

a

series

of

processes

©

Copyright

IBM

Corp.

2003,

2004

7

security

manager

to

authenticate

a

user.

Another

processing

stage

might

call

an

application

program

which

is

not

part

of

the

pipeline.

Using

a

pipeline

to

process

messages

Although

there

are

many

situations

in

which

a

pipeline

is

a

useful

programming

model

(as

well

as

many

where

it

is

not),

we

now

focus

on

the

particular

example

of

processing

messages

that

flow

between

a

client

and

a

server

application.

Typically,

such

messages

are

constructed

of

distinct

layers;

for

example,

one

layer

may

contain

information

used

by

the

target

application,

while

others

may

contain

information

used

by

the

server

middleware.

A

pipeline

can

effectively

process

this

sort

of

message

-

for

example,

on

input,

each

stage

in

the

pipeline

processes

one

layer,

before

removing

it

from

the

message,

and

passing

the

remaining

layers

to

the

next

stage:

Figure

2

shows

a

three-stage

pipeline

applied

to

processing

an

input

message

from

a

network.

The

message

is

structured

as

user

data

wrapped

in

two

layers

of

information

used

by

the

middleware

(Layers

A

and

B):

1.

Stage

1

receives

an

input

message

from

the

network,

and

passes

it

to

the

next

stage.

2.

Stage

2

processes

the

outer

layer

of

middleware

information

(Layer

B),

and

passes

the

remaining

layers

to

the

next

process.

3.

Process

3

processes

the

next

layer

of

middleware

information

(Layer

A).

The

output

from

this

stage,

and

from

the

pipeline

as

a

whole,

is

the

user

data.

On

output,

the

model

operates

in

reverse:

each

stage

in

the

pipeline

constructs

a

layer

and

adds

it

to

the

message:

The

pipeline

model

in

a

server

We

have

seen

how

separate

pipelines

can

process

an

input

message

and

an

output

message.

By

combining

an

input

pipeline

and

an

output

pipeline,

we

can

describe

a

server

using

the

pipeline

model:

Stage 3Stage 2Stage 1

User data

Layer A

Layer B

User data

Layer A

User dataInput
message

Figure

2.

A

pipeline

used

to

process

an

input

message

Stage 3Stage 2Stage 1

User data

Layer A

Layer B

User data

Layer A

User data Output
message

Figure

3.

A

pipeline

used

to

process

an

output

message

8

SOAP

for

CICS:

User’s

Guide

Figure

4

shows

a

five-stage

pipeline

which

combines

the

input

and

output

processing

functions,

and

which

calls

an

application

program.

1.

Stage

1

receives

an

input

message

from

the

client,

and

passes

it

to

the

next

stage.

The

input

message

contains

an

application

request,

with

two

layers

of

middleware

information.

2.

Stage

2

processes

the

outer

layer

(Layer

B),

and

passes

the

remaining

layers

to

the

next

stage.

3.

Stage

3

processes

the

next

layer

(Layer

A),

and

calls

the

application

program.

4.

The

application

program

processes

the

request,

and

returns

a

response.

5.

Stage

3

adds

the

inner

layer

of

middleware

information

(Layer

A),

and

passes

the

message

to

the

next

stage.

6.

Stage

4

adds

the

outer

layer

of

middleware

information

(Layer

B),

and

passes

the

message

to

the

next

stage.

7.

Stage

5

send

the

output

message

to

the

client.

In

this

model,

process

3

has

a

special

place:

it

is

the

point

at

which

processing

of

the

input

message

ends,

and

processing

of

an

output

message

starts.

It

is

also

the

point

at

which

the

pipeline

calls

the

target

application.

This

stage

in

the

pipeline

is

known

as

the

pivot

point.

The

pipeline

model

in

the

client

We

can

also

describe

a

client

using

the

pipeline

model,

by

concatenating

an

output

pipeline

and

an

input

pipeline.

In

this

model,

we

consider

the

work

done

by

the

server

as

a

single

processing

stage.

Stage 2Stage 1

Stage 4Stage 5

Stage 3
Server

application

request

Layer A

Layer B

request

Layer A

request

response

Layer A

response

Layer A

Layer B

response

request
message

response
message

ServerClient

Figure

4.

A

server

modeled

as

a

pipeline

Chapter

2.

Pipelines

and

the

SOAP

for

CICS

feature

9

Figure

5

shows:

v

a

client

application

program

v

three

output

stages

v

the

server,

which

-

in

this

view

-

can

be

considered

to

be

stage

in

the

pipeline

v

three

input

stages
1.

The

client

application

program

passes

the

request

to

the

first

stage

of

the

pipeline.

2.

Stage

1

takes

a

request,

adds

the

inner

layer

of

middleware

information

(Layer

A),

and

passes

the

message

to

the

next

stage.

3.

Stage

2

adds

the

outer

layer

of

middleware

information

(Layer

B),

and

passes

the

message

to

the

next

stage.

4.

Stage

3

send

the

message

to

the

server.

5.

The

server

(stage

4)

is

the

pivot

point

of

the

pipeline;

it

processes

the

request

message

and

returns

a

response

message.

6.

Stage

5

receives

the

response

message

from

the

server,

and

passes

it

to

the

next

stage.

7.

Stage

6

processes

the

outer

layer

(Layer

B),

and

passes

the

remaining

layers

to

the

next

stage.

8.

Stage

7

processes

the

next

layer

(Layer

A),

and

returns

the

response

to

the

client

application

program.

How

SOAP

for

CICS

uses

pipelines

The

SOAP

for

CICS

feature

is

implemented

using

two

pipelines.

The

pipelines

are

v

The

service

provider

pipeline

v

The

service

requester

pipeline

CICS

as

a

service

provider

Stage 2Stage 1

Stage 6Stage 7 Stage 5

Stage 3

request

response

request

Layer A

request

Layer A

Layer B

response

Layer A

response

Layer A

Layer B

request
message

response
message

Client
application

Client Server
(stage 4)

Figure

5.

A

client

modeled

as

a

pipeline

10

SOAP

for

CICS:

User’s

Guide

Figure

6

shows

the

pipeline

stages

which

CICS

uses

to

process

a

SOAP

request,

and

invoke

an

application

program:

v

Some

of

the

processing

stages

are

provided

with

this

feature,

and

you

cannot

change

them

v

Other

processing

stages

are

user-written

code,

which

you

may

change

to

suit

your

needs

(although

the

feature

provides

default

actions

for

these

stages).

The

processing

stages

in

this

pipeline

are:

The

service

provider

transport

stage

(inbound)

This

pipeline

stage

is

responsible

for

extracting

a

SOAP

request

from

an

incoming

message.

The

SOAP

for

CICS

feature

provides

a

service

provider

transport

program

for

the

HTTP

and

WebSphere

MQ

message

transports.

The

SOAP

message

handler

(user-written)

You

can

use

this

program

to

work

with

the

complete

SOAP

input

message.

For

example,

you

can

extract

information

from

the

message,

and

modify

its

contents.

For

more

information,

see

“Writing

the

SOAP

message

handler”

on

page

27.

The

SOAP

envelope

parser

This

pipeline

stage

extracts

information

from

the

SOAP

request

envelope,

and

removes

the

envelope

from

the

incoming

message.

The

application

mapper

(user-written)

Use

this

program

to

specify

the

name

of

the

message

adapter

program

which

is

to

be

invoked

for

an

inbound

SOAP

request.

For

more

information,

see

“Writing

the

application

mapper”

on

page

28.

The

message

adapter

(user-written)

The

message

adapter

is

the

interface

between

the

pipeline

and

the

business

logic.

The

program:

1.

Parses

the

SOAP

request

body

2.

Invokes

the

business

logic

(typically,

by

using

a

LINK

command

with

a

commarea)

3.

Constructs

the

SOAP

response

body

Message
adapter

Business
logic

CICS TS

response
message

SOAP
message
handler

SOAP
envelope
builder

SOAP
message
handler

Service
provider
transport

request
message SOAP

envelope
parser

Application
mapper

Service
requester

Service
provider
transport

Note:

In

this

figure,

italics

represent

user-written

code.

Figure

6.

The

CICS

SOAP

service

provider

modeled

as

a

pipeline

Chapter

2.

Pipelines

and

the

SOAP

for

CICS

feature

11

The

SOAP

envelope

builder

This

pipeline

stage

builds

the

SOAP

response

envelope,

and

adds

it

to

the

outgoing

message.

The

SOAP

message

handler

(user-written)

You

can

use

this

program

to

work

with

the

complete

SOAP

output

message.

For

example,

you

can

extract

information

from

the

message,

and

modify

its

contents.

For

more

information,

see

“Writing

the

SOAP

message

handler”

on

page

27.

The

service

provider

transport

stage

(outbound)

This

pipeline

stage

is

responsible

for

packaging

a

SOAP

response

within

an

outgoing

message.

The

SOAP

for

CICS

feature

provides

a

service

provider

transport

program

for

the

HTTP

and

WebSphere

MQ

message

transports.

CICS

as

a

service

requester

Figure

7

shows

the

pipeline

stages

which

CICS

create

a

SOAP

request,

and

invoke

a

service

provider:

v

Some

of

the

processing

stages

are

provided

with

this

feature,

and

you

cannot

change

them

v

Other

processing

stages

are

user-written

code,

which

you

may

change

to

suit

your

needs

(although

the

feature

provides

default

actions

for

these

stages).

The

processing

stages

for

a

service

requester

are:

The

business

logic

Links

to

the

message

adapter

The

message

adapter

(user-written)

The

message

adapter

is

the

interface

between

the

business

logic

and

the

pipeline.

This

program:

1.

Constructs

the

SOAP

request

body

2.

Invokes

the

outbound

router

program

3.

Parses

the

SOAP

response

body

request
message

response
message

Outbound
router

CICS TS Service
provider

SOAP
envelope
builder

SOAP
message
handler

SOAP
message
handler

SOAP
envelope

parser

Business
logic

Service
requester
transport

Service
requester
transport

Message
adapter

Note:

In

this

figure,

italics

represent

user-written

code.

Figure

7.

The

CICS

SOAP

service

requester

modeled

as

a

pipeline

12

SOAP

for

CICS:

User’s

Guide

The

outbound

router

program

The

outbound

router

program

passes

the

SOAP

request

body

into

the

service

requester

pipeline,

and

retrieves

the

SOAP

response

from

the

pipeline.

The

SOAP

envelope

builder

This

pipeline

stage

builds

the

SOAP

request

envelope,

and

adds

it

to

the

outgoing

message.

The

SOAP

message

handler

(user-written)

You

can

use

this

program

to

work

with

the

complete

SOAP

output

message.

For

example,

you

can

extract

information

from

the

message,

and

modify

its

contents.

For

more

information,

see

“Writing

the

SOAP

message

handler”

on

page

27.

The

service

requester

transport

stage

(outbound)

This

pipeline

stage

is

responsible

for

packaging

a

SOAP

request

within

an

outgoing

message.

The

SOAP

for

CICS

feature

provides

a

service

requester

transport

program

for

the

HTTP

and

WebSphere

MQ

message

transports.

The

service

provider

Receives

and

processes

the

SOAP

request,

and

returns

the

response.

The

service

requester

transport

stage

(inbound)

This

pipeline

stage

is

responsible

for

extracting

a

SOAP

response

from

an

incoming

message.

The

SOAP

for

CICS

feature

provides

a

service

requester

transport

program

for

the

HTTP

and

WebSphere

MQ

message

transports.

The

SOAP

message

handler

(user-written)

You

can

use

this

program

to

work

with

the

complete

SOAP

input

message.

For

example,

you

can

extract

information

from

the

message,

and

modify

its

contents.

For

more

information,

see

“Writing

the

SOAP

message

handler”

on

page

27.

The

SOAP

envelope

parser

This

pipeline

stage

extracts

information

from

the

SOAP

response

envelope,

and

removes

the

envelope

from

the

incoming

message.

Chapter

2.

Pipelines

and

the

SOAP

for

CICS

feature

13

14

SOAP

for

CICS:

User’s

Guide

Chapter

3.

Containers

The

SOAP

for

CICS

feature

uses

BTS

containers

to

pass

information

between

the

processing

stages

in

a

pipeline.

You

can

use

containers:

v

to

pass

information

from

one

user-written

processing

stage

to

another

v

to

pass

information

from

a

user-written

stage

and

a

CICS-supplied

stage

v

to

pass

information

from

a

CICS-supplied

stage

and

a

user-written

stage

Containers

used

by

the

feature

have

reserved

names;

you

may

not

use

these

names

for

your

own

containers.

Important:

The

containers

used

in

the

service

provider

and

service

requester

pipelines

observe

different

naming

conventions.

Containers

used

in

the

service

provider

pipeline

Container

name

Purpose

More

information

APP-HANDLER

Used

to

specify

the

name

of

the

message

adapter

program

“Writing

the

application

mapper”

on

page

28

INPUT

Used

to

pass

the

SOAP

request

or

response

body

to

the

message

handler

and

message

adapter

programs

“Writing

a

message

adapter

for

the

service

provider

pipeline”

on

page

19

NAMESPACES

Used

to

pass

namespace

information

from

the

inbound

SOAP

envelope

to

the

message

adapter

“Writing

a

message

adapter

for

the

service

provider

pipeline”

on

page

19

OUTPUT

Use

by

the

message

handler

and

message

adapter

programs

to

return

a

modified

SOAP

request

or

response

body

to

the

pipeline

“Writing

a

message

adapter

for

the

service

provider

pipeline”

on

page

19

PIPELINE-ERROR

The

presence

of

this

container

signals

the

existence

of

an

error,

and

changes

the

sequence

of

processing

of

the

pipeline.

In

user-written

pipeline

stages

it

can

also

be

used

to

contain

information

about

the

error

“Error

handling

in

the

service

provider

pipeline”

on

page

31

TARGET-TRANID

Specifies

the

transaction

ID

under

which

the

message

adapter,

and

the

application

program

should

run

“Changing

the

application

context”

on

page

21

TARGET-URI

Contains

the

URI

of

the

service

provider

TARGET-USERID

Specifies

the

user

ID

under

which

the

message

adapter,

and

the

application

program

should

run

“Changing

the

application

context”

on

page

21

USER-
CONTAINERS

Used

to

pass

data

between

user-written

pipeline

stages

“Passing

data

between

user-written

programs”

on

page

29

©

Copyright

IBM

Corp.

2003,

2004

15

Containers

used

in

the

service

requester

pipeline

Container

name

Purpose

More

information

APP-
NAMESPACES

Contains

namespace

information

that

is

to

be

added

to

the

outbound

SOAP

envelope

“Writing

a

message

adapter

for

the

service

requester

pipeline”

on

page

21

FAULT

Contains

a

SOAP

fault

which

is

constructed

by

the

service

requester

pipeline

“Handling

faults

in

the

message

adapter”

on

page

24

INPUT

Used

to

pass

the

SOAP

request

or

response

body

to

the

message

handler

“Writing

a

message

adapter

for

the

service

requester

pipeline”

on

page

21

OUTPUT

Use

by

the

message

handler

program

to

return

a

modified

SOAP

request

or

response

body

to

the

pipeline

“Writing

a

message

adapter

for

the

service

requester

pipeline”

on

page

21

PIPELINE-ERROR

The

presence

of

this

container

signals

the

existence

of

an

error,

and

changes

the

sequence

of

processing

of

the

pipeline.

In

user-written

pipeline

stages

it

can

also

be

used

to

contain

information

about

the

error

“Error

handling

in

the

service

requester

pipeline”

on

page

33

REQUEST-BODY

Contains

the

body

of

the

SOAP

request

that

is

to

be

passed

to

the

service

provider

“Writing

a

message

adapter

for

the

service

requester

pipeline”

on

page

21

RESPONSE-BODY

Contains

the

SOAP

response

body

that

is

returned

by

the

service

provider

“Writing

a

message

adapter

for

the

service

requester

pipeline”

on

page

21

SOAP-ACTION

For

the

HTTP

transport

only,

specifies

the

contents

of

the

HTTP

SOAPAction

header

“Writing

a

message

adapter

for

the

service

requester

pipeline”

on

page

21

TARGET-URI

Specifies

the

URI

of

the

target

service

provider

“Writing

a

message

adapter

for

the

service

requester

pipeline”

on

page

21

USER-
CONTAINERS

Used

to

pass

data

between

user-written

pipeline

stages

“Passing

data

between

user-written

programs”

on

page

29

Containers

used

by

user-written

programs

This

topic

explains

which

containers

are

available

to

each

of

the

user-written

programs

in

the

service

provider

and

service

requester

pipelines.

Notation

The

following

notation

is

used

in

this

topic:

Expected

input

The

container

exists

on

entry

to

the

user-written

program.

Possible

input

The

container

may

or

may

not

exist

on

entry

to

the

user-written

program.

The

program

should

test

whether

the

container

exists.

Required

output

The

container

must

exist

on

exit

from

the

user-written

program.

If

the

container

does

not

exist

on

entry,

the

program

must

create

it.

Optional

output

The

container

need

not

exist

on

exit

from

the

user-written

program.

If

the

container

exists

on

entry,

the

program

may

delete

it.

16

SOAP

for

CICS:

User’s

Guide

Not

available

The

container

is

not

available

to

the

user-written

program.

Containers

in

the

service

provider

pipeline

The

following

table

shows

which

containers

are

available

to

each

user-written

program

in

the

service

provider

pipeline.

Container

User-written

program

Message

handler

(inbound)

Application

mapper

Message

adapter

Message

handler

(outbound)

APP-HANDLER

Not

available

Expected

input

Optional

output

Not

available

Not

available

INPUT

Expected

input

Not

available

Expected

input

Expected

input

NAMESPACES

Not

available

Not

available

Possible

input

Optional

output

Not

available

OUTPUT

Optional

output

Not

available

Optional

output

Optional

output

PIPELINE-ERROR

Optional

output

Optional

output

Optional

output

Possible

input

TARGET-TRANID

Optional

output

Possible

input

Optional

output

Expected

input

Expected

input

TARGET-URI

Expected

input

Expected

input

Expected

input

Not

available

TARGET-USERID

Optional

output

Possible

input

Optional

output

Expected

input

Expected

input

USER-
CONTAINERS

Optional

output

Possible

input

Optional

output

Possible

input

Optional

output

Possible

input

Note:

On

input,

the

pipeline

uses

two

different

containers

to

carry

the

SOAP

request:

v

The

message

handler

receives

the

SOAP

request

in

container

INPUT;

if

the

handler

modifies

the

request,

it

returns

it

to

the

pipeline

in

container

OUTPUT.

v

The

message

adapter

receives

the

request

body

in

container

INPUT.

Likewise,

on

output

two

different

containers

are

used

to

carry

the

SOAP

response:

v

When

the

message

adapter

constructs

the

response

body,

it

passes

it

to

the

pipeline

in

container

OUTPUT.

v

The

message

handler

receives

the

SOAP

response

in

container

INPUT;

if

the

handler

modifies

the

response,

it

returns

it

to

the

pipeline

in

container

OUTPUT.

Containers

in

the

service

requester

pipeline

The

following

table

shows

which

containers

are

available

to

each

user-written

program

in

the

service

requester

pipeline.

Container

User-written

program

Message

adapter

(outbound)

Message

handler

(outbound)

Message

handler

(inbound)

Message

adapter

(inbound)

APP-
NAMESPACES

Optional

output

Optional

output

Possible

input

Possible

input

FAULT

Not

available

Not

available

Possible

input

Possible

input

INPUT

Not

available

Expected

input

Expected

input

Expected

input

Chapter

3.

Containers

17

Container

User-written

program

Message

adapter

(outbound)

Message

handler

(outbound)

Message

handler

(inbound)

Message

adapter

(inbound)

OUTPUT

Not

available

Optional

output

Optional

output

Not

available

PIPELINE-ERROR

Optional

output

Possible

input

Optional

output

Possible

input

Optional

output

Possible

input

REQUEST-BODY

Required

output

Not

available

Not

available

Not

available

RESPONSE-BODY

Not

available

Not

available

Not

available

Expected

input

SOAP-ACTION

Optional

output

Optional

output

Possible

input

Possible

input

TARGET-URI

Required

output

Optional

output

Not

available

Possible

input

USER-
CONTAINERS

Optional

output

Possible

input

Optional

output

Possible

input

Optional

output

Possible

input

Note:

On

output,

the

pipeline

uses

three

different

containers

to

carry

the

SOAP

request:

v

When

the

message

adapter

constructs

the

request

body,

it

passes

it

to

the

pipeline

in

container

REQUEST-BODY.

v

The

message

handler

receives

the

SOAP

request

in

container

INPUT;

if

the

handler

modifies

the

request,

it

returns

it

to

the

pipeline

in

container

OUTPUT.

Likewise,

on

input

three

different

containers

are

used

to

carry

the

SOAP

response:

v

The

message

handler

receives

the

SOAP

response

in

container

INPUT;

if

the

handler

modifies

the

response,

it

returns

it

to

the

pipeline

in

container

OUTPUT.

v

The

message

adapter

receives

the

response

body

in

container

RESPONSE-BODY.

18

SOAP

for

CICS:

User’s

Guide

Chapter

4.

Writing

message

adapters

A

message

adapter

is

the

interface

between

an

application’s

business

logic,

and

the

SOAP

pipeline.

v

In

a

service

provider,

the

message

adapter

calls

the

business

logic

v

In

a

service

requester,

the

business

logic

calls

the

message

adapter

It

is

advisable

to

have

the

message

adapter

and

business

logic

in

different

programs,

and

have

one

program

LINK

to

the

other.

Message

adapters

use

CICS

business

transaction

services

(BTS)

as

the

interface

with

the

SOAP

support

provided

by

this

feature.

For

example:

v

in

a

service

provider,

the

inbound

SOAP

request

body

is

passed

to

the

adapter

in

a

container,

and

the

adapter

returns

the

outbound

SOAP

response

body

in

another

container.

v

in

a

service

requester,

the

adapter

constructs

the

outbound

SOAP

request

body

in

a

container,

and

the

response

is

returned

to

the

adapter

in

another

container.

You

should

be

familiar

with

the

differences

between

BTS

applications

and

other

CICS

applications

before

you

write

a

SOAP

message

adapter.

See

the

CICS

Business

Transaction

Services

manual

for

more

information.

Restriction:

In

a

service

provider

pipeline

that

uses

the

WebSphere

MQ

transport,

neither

the

message

adapter,

nor

the

business

logic

which

the

adapter

invokes,

can

issue

the

EXEC

CICS

SYNCPOINT

command.

Writing

a

message

adapter

for

the

service

provider

pipeline

These

are

the

main

processing

steps

that

your

message

adapter

should

perform.

1.

Retrieve

the

attach

event,

with

the

RETRIEVE

REATTACH

EVENT

command.

The

adapter

program

is

a

BTS

activity

program,

which

is

attached

one

time

by

the

pipeline

manager.

All

BTS

activity

programs

must

deal

with

their

reattachment

events.

2.

Optional:

If

your

adapter

expects

the

inbound

SOAP

body

to

contain

namespace-qualified

element

and

attribute

names,

use

the

GET

CONTAINER

command

to

retrieve

the

namespace

information

from

the

NAMESPACES

container.

For

example:

EXEC

CICS

GET

CONTAINER(’NAMESPACES’)

SET(NSP-PTR)

FLENGTH(NSP-LEN)

The

namespace

information

consists

of

a

list

of

space-separated

namespace

definitions.

Each

definition

has

the

form

symbol="URI".

For

example

SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

svg="http://www.w3.org/2000/svg"

Note:

In

a

SOAP

message,

the

namespace

prefix

may

be

declared,

and

bound

to

a

namespace

URI,

in

the

SOAP

envelope,

or

in

the

SOAP

body.

Only

namespace

information

that

is

declared

in

the

SOAP

envelope

is

passed

to

the

adapter

program

in

the

NAMESPACES

container.

Your

adapter

is

responsible

for

detecting

namespace

information

that

is

declared

within

the

SOAP

body.

©

Copyright

IBM

Corp.

2003,

2004

19

3.

Use

the

GET

CONTAINER

command

to

retrieve

the

request

body

from

the

INPUT

container.

For

example:

EXEC

CICS

GET

CONTAINER(’INPUT’)

SET(BODY-PTR)

FLENGTH(BODY-LEN)

The

request

body

includes

the

<SOAP-ENV:body>

element.

For

example:

<SOAP-ENV:body>

<symbol>

XYZ

</symbol>

</SOAP-ENV:body>

4.

Parse

the

request

body.

You

can

use

the

language

statements

which

some

compilers

provide

for

parsing

XML,

you

can

LINK

to

a

parsing

program,

or

you

can

provide

your

own

parsing

code

in

the

body

of

your

program.

5.

Using

the

relevant

data

from

the

request

body,

invoke

the

business

logic.

It

is

advisable

to

keep

the

business

logic

and

the

manipulation

of

the

SOAP

message

separated.

To

do

this,

put

the

business

logic

in

a

separate

program,

and

LINK

to

it.

6.

Using

the

response

from

the

business

logic,

construct

the

body

of

the

SOAP

response.

For

example:

<SOAP-ENV:body>

<Quote>130</Quote>

<Date>12/31/03</Date>

<Time>10:43:21</Time>

</SOAP-ENV:body>

Tip:

You

can

use

the

CICS

DOCUMENT

API

to

construct

the

SOAP

body.

7.

Optional:

If

your

adapter

constructs

a

SOAP

body

that

contains

namespace-qualified

element

and

attribute

names,

and

you

want

the

namespace

prefix

to

be

declared,

and

bound

to

a

namespace

URI,

in

the

SOAP

envelope,

pass

the

information

in

the

NAMESPACES

container,

using

the

PUT

CONTAINER

command.

For

example:

EXEC

CICS

PUT

CONTAINER(’NAMESPACES’)

FROM(OUT-NSP)

FLENGTH(OUT-NSP-LEN)

The

namespace

information

consists

of

a

list

of

space-separated

namespace

definitions.

Each

definition

has

the

form

symbol="URI".

For

example:

SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

svg="http://www.w3.org/2000/svg"

Notes:

v

In

a

SOAP

message,

the

namespace

prefix

may

be

declared,

and

bound

to

a

namespace

URI,

in

the

SOAP

envelope,

or

in

the

SOAP

body.

If

you

do

not

declare

the

namespace

information

in

the

SOAP

envelope,

your

adapter

is

responsible

for

providing

the

namespace

information

within

the

SOAP

body.

v

Your

adapter

can

assume

that

the

prefix

SOAP-ENV

will

be

bound

to

http://schemas.xmlsoap.org/soap/envelope

in

the

outbound

SOAP

envelope;

you

do

not

need

to

pass

this

declaration

in

the

container.
8.

Return

the

response

body

to

the

pipeline

in

the

OUTPUT

container,

using

the

PUT

CONTAINER

command.

For

example:

EXEC

CICS

PUT

CONTAINER(’OUTPUT’)

FROM(OUT-BODY)

FLENGTH(OUT-BODY-LEN)

20

SOAP

for

CICS:

User’s

Guide

Changing

the

application

context

Optionally,

in

a

service

provider

pipeline,

you

can

specify

that

the

message

adapter,

and

the

application

program

that

it

calls,

should

run

in

a

different

context

to

the

rest

of

the

pipeline:

v

They

can

run

under

a

different

transaction

ID

v

They

can

run

under

a

different

user

ID.

v

They

can

run

under

a

different

transaction

ID

and

user

ID.

In

all

three

cases,

the

message

adapter

and

the

application

program

run

under

a

different

task.

Changing

the

transaction

ID

To

specify

a

different

transaction

ID,

code

the

following

steps

in

your

application

mapper

program

(recommended)

or

in

your

inbound

SOAP

message

handler.

1.

Create

a

container

called

TARGET-TRANID.

2.

Put

the

transaction

ID

of

the

target

transaction

in

the

TARGET-TRANID

container.

The

transaction

ID

should

be

in

the

first

four

characters

of

the

data.

If

you

supply

more

than

four

characters,

the

data

is

truncated;

if

you

supply

fewer

than

four,

the

data

is

padded

with

blanks.

Restriction:

The

target

transaction

must

be

a

local

transaction:

you

cannot

specify

the

name

of

a

remote

or

dynamically-routed

transaction.

The

message

adapter

and

the

application

program

will

run

in

a

new

task,

with

the

transaction

ID

specified.

Changing

the

user

ID

Before

you

can

change

the

user

ID,

you

must

specify

in

your

security

manager

that

the

original

user

ID

under

which

the

pipeline

runs

is

a

surrogate

of

the

target

user

ID

(the

user

ID

under

which

the

transaction

the

message

adapter

and

application

program

should

run).

For

more

information,

see

the

CICS

RACF

Security

Guide.

To

specify

a

different

user

ID,

code

the

following

steps

in

your

application

mapper

program

(recommended)

or

in

your

inbound

SOAP

message

handler.

1.

Create

a

container

called

TARGET-USERID.

2.

Put

the

user

ID

under

which

the

message

adapter

and

application

program

should

run

in

the

TARGET-USERID

container.

The

user

ID

should

be

in

the

first

eight

characters

of

the

data.

If

you

supply

more

than

eight

characters,

the

data

is

truncated;

if

you

supply

fewer

than

eight,

the

data

is

padded

with

blanks.

The

message

adapter

and

the

application

program

will

run

in

a

new

task,

under

the

user

ID

specified.

Writing

a

message

adapter

for

the

service

requester

pipeline

These

are

the

main

processing

steps

that

your

message

adapter

should

perform.

1.

Construct

the

outbound

SOAP

request

body

2.

Invoke

the

outbound

SOAP

router

program

3.

Process

the

inbound

SOAP

response

Chapter

4.

Writing

message

adapters

21

Constructing

the

SOAP

request

Depending

upon

the

requirements

of

your

adapter,

you

may

need

to

construct

a

root

activity,

and

child

activities.

The

steps

described

assume

that

you

will

perform

all

parts

of

your

adapter

in

the

root

activity.

1.

Use

the

DEFINE

PROCESS

command

to

add

a

new

CICS

business

transaction

services

(BTS)

process,

and

create

the

root

activity.

v

The

process

name

must

be

unique

within

the

scope

of

the

process

type.

v

Specify

the

name

of

the

outbound

SOAP

router

program

(DFHWSRT)

in

the

PROGRAM

option

of

the

command.

v

For

the

best

performance

when

using

the

HTTP

transport,

specify

the

NOCHECK

option.

You

can

also

specify

this

option

with

the

WebSphere

MQ

transport,

but

it

has

no

effect

on

performance.

For

example:

EXEC

CICS

DEFINE

PROCESS(PROCESS-NAME)

PROCESSTYPE(’SOAPHTTP’)

TRANSID(’CSAC’)

PROGRAM(’DFHWSRT’)

NOCHECK

2.

Pass

the

URI

of

the

target

service

provider

code

to

the

outbound

SOAP

router

program

in

container

TARGET-URI,

using

the

PUT

CONTAINER

command.

For

example:

EXEC

CICS

PUT

CONTAINER(’TARGET-URI’)

ACQACTIVITY

FROM(TARGET)

FLENGTH(TARGET-LEN)

v

For

the

HTTP

transport,

the

target

is

specified

as

the

URI

of

the

target

process.

For

example:

http://ip-address/CICS/CWBA/DFHWSDSH/DFH$WSSS

v

For

the

WebSphere

MQ

transport,

the

target

is

specified

in

the

following

form:

MQ://queuename/queue_manager

where

the

queue

manager

name

is

optional

if

the

queue

is

local,

or

a

remote

queue

definition

exists.

For

example:

MQ://SAMPLE.SOAP.QUEUE/QM39

3.

Using

information

obtained

from

the

business

logic,

construct

the

body

of

the

SOAP

request.

The

message

body

must

include

the

<SOAP-ENV:body>

element.

For

example:

<SOAP-ENV:body>

<symbol>

XYZ

</symbol

</SOAP-ENV:body>

4.

Pass

the

SOAP

request

body

to

the

outbound

SOAP

router

program

in

container

REQUEST-BODY,

using

the

PUT

CONTAINER

command.

For

example:

EXEC

CICS

PUT

CONTAINER(’REQUEST-BODY’)

ACQACTIVITY

FROM(OUT-BODY)

FLENGTH(OUT-BODY-LEN)

5.

Optional:

If

your

adapter

constructs

a

SOAP

request

body

that

contains

namespace-qualified

element

and

attribute

names,

and

you

want

the

namespace

prefix

to

be

declared,

and

bound

to

a

namespace

URI,

in

the

SOAP

22

SOAP

for

CICS:

User’s

Guide

envelope,

pass

the

namespace

information

to

the

outbound

SOAP

router

program

in

container

APP-NAMESPACES,

using

the

PUT

CONTAINER

command.

For

example:

EXEC

CICS

PUT

CONTAINER(’APP-NAMESPACES’)

ACQACTIVITY

FROM(OUT-NSP)

FLENGTH(OUT-NSP-LEN)

The

namespace

information

consists

of

a

list

of

space-separated

namespace

definitions.

Each

definition

has

the

form

symbol="URI".

For

example:

SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

svg="http://www.w3.org/2000/svg"

Notes:

v

In

a

SOAP

message,

the

namespace

prefix

may

be

declared,

and

bound

to

a

namespace

URI,

in

the

SOAP

envelope,

or

in

the

SOAP

body.

If

you

do

not

declare

the

namespace

information

in

the

SOAP

envelope,

your

adapter

is

responsible

for

providing

the

namespace

information

within

the

SOAP

body.

v

Your

adapter

can

assume

that

the

prefix

SOAP-ENV

will

be

bound

to

http://schemas.xmlsoap.org/soap/envelope

in

the

outbound

SOAP

envelope;

you

do

not

need

to

pass

this

declaration

in

the

container.
6.

Optional:

For

the

HTTP

transport,

pass

the

SOAPAction

header

to

the

outbound

SOAP

router

program

in

container

SOAP-ACTION,

using

the

PUT

CONTAINER

command.

For

example:

EXEC

CICS

PUT

CONTAINER(’SOAP-ACTION’)

ACQACTIVITY

FROM(ACTION-HEADER)

FLENGTH(ACTION_BODY-LEN)

You

can

specify

a

SOAPAction

header

of

up

to

256

characters

in

length.

If

you

do

not

specify

a

SOAPAction

header,

the

feature

creates

an

empty

header.

Invoking

the

outbound

SOAP

router

program

1.

Execute

the

SOAP

router

process

that

was

acquired

in

“Constructing

the

SOAP

request”

on

page

22.

Use

the

following

command

to

execute

the

process

synchronously:

EXEC

CICS

LINK

ACQPROCESS

2.

Use

the

CHECK

ACQPROCESS

command

to

determine

the

completion

status

of

the

process.

For

example:

EXEC

CICS

CHECK

ACQPROCESS

COMPSTATUS(PROCESS-STATUS)

ABCODE(PROCESS-ABCODE)

Processing

the

SOAP

response

If

the

SOAP

request

was

processed

successfully,

there

will

be

a

SOAP

response

body

to

process.

However,

if

the

request

was

not

processed

successfully,

there

may

be

a

SOAP

fault

to

process

instead.

1.

Process

any

fault

information

returned

in

the

FAULT

container.

For

more

information,

see

“Writing

a

message

adapter

for

the

service

requester

pipeline”

on

page

21

Chapter

4.

Writing

message

adapters

23

2.

If

your

adapter

expects

the

inbound

SOAP

response

body

to

contain

namespace-qualified

element

and

attribute

names,

retrieve

the

namespace

information

from

the

APP-NAMESPACES

container,

with

the

GET

CONTAINER

command.

For

example:

EXEC

CICS

GET

CONTAINER(’APP-NAMESPACES’)

SET(NSP-PTR)

FLENGTH(NSP-LEN)

Notes:

v

In

a

SOAP

message,

the

namespace

prefix

may

be

declared,

and

bound

to

a

namespace

URI,

in

the

SOAP

envelope,

or

in

the

SOAP

body.

Only

namespace

information

that

is

declared

in

the

SOAP

envelope

is

passed

to

the

adapter

program

in

the

container.

Your

adapter

is

responsible

for

detecting

namespace

information

that

is

declared

within

the

SOAP

body.

v

Your

adapter

can

assume

that

the

prefix

SOAP-ENV

is

bound

to

http://schemas.xmlsoap.org/soap/envelope.

If

this

is

the

only

namespace

of

interest

to

your

adapter,

you

do

not

need

to

retrieve

the

namespace

information

from

the

container.
3.

Retrieve

the

response

body

from

the

RESPONSE-BODY

container,

with

the

GET

CONTAINER

command.

For

example:

EXEC

CICS

GET

CONTAINER(’RESPONSE-BODY’)

SET(BODY-PTR)

FLENGTH(BODY-LEN)

The

response

body

includes

the

<SOAP-ENV:body>

element.

For

example:

<SOAP-ENV:body>

<Quote>130</Quote>

<Date>12/31/03</Date>

<Time>10:43:21</Time>

</SOAP-ENV:body>

4.

Parse

the

SOAP

response

body.

You

can

use

the

language

statements

which

some

compilers

provide

for

parsing

XML,

you

can

link

to

a

parsing

program,

or

you

can

provide

your

own

parsing

code

in

the

body

of

your

program.

5.

Using

the

relevant

data

from

the

response

body,

invoke

the

business

logic

to

process

the

response.

It

is

advisable

to

keep

the

business

logic

and

the

manipulation

of

the

SOAP

message

separated.

To

do

this,

put

the

business

logic

in

a

separate

program,

and

LINK

to

it.

Handling

faults

in

the

message

adapter

In

the

service

requester

pipeline,

SOAP

faults

can

be

returned

to

the

message

adapter

in

two

situations:

The

service

provider

returns

an

invalid

SOAP

response

In

this

case,

the

service

requester

pipeline

detects

the

error,

and

returns

the

fault

to

the

adapter

in

the

FAULT

container.

Because

the

SOAP

response

is

invalid,

the

RESPONSE-BODY

and

APP-NAMESPACES

containers

will

be

empty.

The

service

provider

returns

a

fault

In

this

case,

the

SOAP

fault

element

is

returned

to

the

service

requester

in

the

response

body.

Your

message

adapter

program

must

detect

the

fault

element,

and

process

it

if

necessary.

In

general,

you

should

write

your

message

adapter

to

deal

with

both

situations.

24

SOAP

for

CICS:

User’s

Guide

1.

Before

attempting

to

process

the

response

body,

retrieve

any

fault

information

from

the

FAULT

container,

with

the

GET

CONTAINER

command.

For

example:

EXEC

CICS

GET

CONTAINER(’FAULT’)

SET(FAULT-PTR)

FLENGTH(FAULT-LEN)

v

If

the

container

does

not

exist

(that

is,

the

command

returns

the

CONTAINERERR

condition),

the

SOAP

response

is

valid,

and

your

program

can

continue

by

processing

the

response

body.

v

If

the

container

is

empty

(that

is,

the

returned

length

is

zero),

the

SOAP

response

is

valid,

and

your

program

can

continue

by

processing

the

response

body.

v

If

the

container

is

not

empty,

there

is

fault

information

in

the

container,

in

a

<SOAP-ENV:Fault>

element.

In

this

case,

there

is

no

response

body

to

process,

and

the

length

of

the

RESPONSE-BODY

container

is

zero.
2.

When

your

program

parses

the

response

body

response,

it

should

detect

the

<SOAP-ENV:Fault>

element.

If

your

program

detects

a

fault,

of

either

sort,

it

can

parse

the

<SOAP-ENV:Fault>

element

to

extract

further

information

about

the

error,

and

take

appropriate

action.

Identifying

the

target

of

a

SOAP

message

When

an

application

sends

a

SOAP

request,

it

must

specify

where

the

request

will

be

processed,

and

the

name

of

the

program

that

will

process

it.

The

way

the

target

is

identified

depends

upon

the

transport

protocol

used.

Identifying

the

target

for

the

HTTP

transport

The

target

is

identified

using

an

HTTP

Universal

Resource

Identifier

(URI):

v

If

you

are

sending

a

SOAP

message

to

a

non-CICS

SOAP

server,

use

the

URI

of

the

target

in

that

server.

v

If

you

are

sending

a

SOAP

message

to

a

service

provider

application

in

a

CICS

region,

the

URI

is

interpreted

by

the

analyzer

program

used

by

CICS

Web

support.

Details

of

how

to

write

an

analyzer

program

are

given

in

the

CICS

Internet

Guide.

If

you

use

the

default

analyzer,

the

URI

has

the

following

form:

http://host:port/CICS/CWBA/DFHWSDSH/program

where

program

is

the

name

of

the

target

program.

Identifying

the

target

for

the

WebSphere

MQ

transport

The

target

is

identified

using

a

string

in

the

following

form:

MQ://queue_name/queue_manager

where

queue_name

is

the

name

of

a

queue

that

is

associated

with

a

trigger

process.

queue_manager

is

optional

if

the

queue

is

local,

or

if

a

remote

queue

definition

exists.

The

target

program

name

is

specified

in

the

trigger

data

of

the

target

queue.

Chapter

4.

Writing

message

adapters

25

26

SOAP

for

CICS:

User’s

Guide

Chapter

5.

Writing

your

own

pipeline

programs

The

pipelines

that

process

SOAP

messages

include

programs

in

which

you

can

provide

your

own

processing.

They

are:

The

SOAP

message

handler

(DFHWSHDX)

Use

this

program

to

work

with

the

complete

SOAP

input

or

output

message.

For

example,

you

could

use

this

program

to

process

SOAP

headers

that

the

SOAP

for

CICS

feature

code

does

not

process.

The

application

mapper

(DFHWSAMX)

Use

this

program

to

specify

the

name

of

the

message

adapter

program.

In

any

CICS

region,

there

is

just

one

SOAP

message

handler,

and

just

one

application

mapper.

Both

programs

are

always

invoked

at

the

appropriate

points

in

the

pipeline,

for

every

request.

Therefore

you

must

design

your

programs

accordingly:

v

Avoid

unnecessary

processing

in

the

programs

where

this

may

affect

all

your

SOAP

applications.

Design

your

programs

to

relinquish

control

as

quickly

as

possible

in

those

cases

where

no

processing

is

required.

v

Where

possible,

avoid

application-specific

processing

of

the

SOAP

message

in

the

programs.

For

service

providers,

it

is

advisable

to

use

the

message

adapter

for

this

purpose.

v

Where

application-specific

code

is

unavoidable,

structure

your

program

to

accommodate

code

for

all

applications

that

may

use

the

program.

Design

the

program

to

be

easily

extended.

The

feature

includes

sample

of

these

programs

which

do

nothing

other

than

return

control

to

the

pipeline

immediately.

Use

these

samples

if

you

do

not

need

to

write

your

own

code.

The

samples

are

provided

as

source

code

and

as

object

modules.

Writing

the

SOAP

message

handler

Use

the

SOAP

message

handler

(DFHWSHDX)

to

work

with

the

complete

SOAP

input

or

output

message.

For

example,

you

can

use

this

handler

to

extract

information

from

the

message,

and

to

modify

its

contents.

1.

Determine

at

which

stage

the

program

is

being

called.

The

SOAP

message

handler

is

invoked

at

the

following

points:

For

a

service

provider

application

v

When

the

SOAP

request

is

received

v

Before

the

SOAP

response

is

sent

For

a

service

requester

application

v

Before

the

SOAP

request

is

sent

v

When

the

SOAP

response

is

received

To

distinguish

between

these

cases,

check

the

BTS

activity

name,

and

the

input

event:

©

Copyright

IBM

Corp.

2003,

2004

27

Activity

name

Input

event

Service

provider

or

requester?

Type

of

message

USERHANDLER-IN

DFHINITIAL

Service

provider

SOAP

request

(input)

USERHANDLER-IN

SEND-RESPONSE

Service

provider

SOAP

response

(output)

USERHANDLER-
OUT

DFHINITIAL

Service

requester

SOAP

request

(output)

USERHANDLER-
OUT

RECEIVE-RESPONSE

Service

requester

SOAP

response

(input)

v

To

determine

the

activity

name,

use

the

ACTIVITY

option

of

the

ASSIGN

command.

For

example:

EXEC

CICS

ASSIGN

ACTIVITY(ACTIVITY-NAME)

v

To

determine

the

input

event,

use

the

RETRIEVE

REATTACH

EVENT

command.

For

example:

EXEC

CICS

RETRIEVE

REATTACH

EVENT(EVENT-NAME)

2.

The

first

time

the

message

handler

is

invoked

in

a

pipeline,

define

the

input

event

which

will

activate

the

message

handler

for

the

second

time.

To

define

the

input

event,

use

the

DEFINE

INPUT

EVENT

command.

v

For

a

service

provider

application,

the

input

event

is

SEND-RESPONSE

v

For

a

service

requester

application,

the

input

event

is

RECEIVE-RESPONSE

For

example:

EXEC

CICS

DEFINE

INPUT

EVENT(EVENT-NAME)

Do

not

issue

this

command

the

second

time

the

message

handler

is

invoked.

3.

Include

any

code

that

you

need

to

process

the

SOAP

request

or

response.

The

SOAP

message

is

in

container

INPUT.

4.

Determine

what

further

processing

is

required

for

this

request

or

response.

5.

Optional:

If

you

have

modified

the

SOAP

message,

return

it

to

the

pipeline

in

container

OUTPUT.

If

you

do

not

return

this

container,

the

pipeline

processes

the

original

message.

6.

Use

container

USER-CONTAINERS

to

pass

other

data

to

the

next

stage

in

the

pipeline.

7.

Return

control

to

CICS

v

The

first

time

the

program

is

invoked

in

a

pipeline,

use

EXEC

CICS

RETURN.

v

The

second

time

the

program

is

invoked,

use

EXEC

CICS

RETURN

ENDACTIVITY.

Writing

the

application

mapper

Use

the

application

mapper

(DFHWSAMX)

to

specify

the

name

of

the

message

adapter

that

is

to

be

invoked

by

the

service

provider

pipeline.

1.

Include

any

code

you

need

to

determine

the

name

of

the

target

message

adapter

program.

The

original

name

of

the

target

is

in

container

APP-HANDLER.

To

determine

the

name

of

the

target,

you

may

need

to

use

information

which

is

determined

at

an

earlier

stage

of

the

pipeline.

For

more

information,

see

“Passing

data

between

user-written

programs”

on

page

29.

You

can

also

fine

the

URI

of

the

original

request

in

container

TARGET-URI.

28

SOAP

for

CICS:

User’s

Guide

2.

Optional:

To

change

the

name

of

your

application

program,

return

the

new

name

to

the

pipeline

in

container

APP-HANDLER.

If

you

do

not

return

this

container,

the

pipeline

uses

the

original

name.

Passing

data

between

user-written

programs

In

some

situations,

you

will

want

to

pass

your

own

data

from

one

user-written

program

(the

data

source)

to

another

(the

data

target).

To

do

this,

use

one

or

more

BTS

containers.

The

feature

provides

another

container,

called

USER-CONTAINERS

in

which

you

specify

the

names

of

your

own

containers:

Important:

Do

not

attempt

to

use

a

different

way

of

sharing

container

names

between

programs

(such

as

hard-coding

the

container

names

in

the

application

program).

The

data

source

and

target

programs

may

run

under

different

BTS

activities,

and

the

feature

uses

the

contents

of

USER-CONTAINERS

to

create

containers

in

the

target

activity

that

have

the

same

names

(and

contents)

as

those

in

the

source.

1.

In

the

data

source,

use

the

PUT

CONTAINER

command

to

store

your

data

in

one

or

more

containers.

For

example:

EXEC

CICS

PUT

CONTAINER(’CLIENT_ADDRESS’)

FROM(CLIENT-ADDR)

FLENGTH(CLIENT-ADDR-LEN)

You

can

name

the

containers

to

suit

your

application

,

but

do

not

use

the

names

which

are

used

by

the

feature

for

its

containers.

2.

Construct

an

array

of

the

container

names

you

used

in

the

previous

step.

v

Each

element

in

the

array

must

be

exactly

16

bytes

in

length

v

Each

container

name

in

the

array

must

be

padded

on

the

right

with

blanks

to

a

length

of

16

bytes

v

Elements

in

the

array

that

do

not

contain

container

names

must

be

filled

with

blanks

For

example:

....+....1....+....2....+....3....+....4....+....

CLIENT_ADDRESS

INPUT_MESSAGE

CLIENT_NAME

CLIENT_ADDRESS INPUT_MESSAGE CLIENT_NAME

....+....1....+....2....+....3....+....4....+....

USER-CONTAINERS

CLIENT_ADDRESS

INPUT_MESSAGE

CLIENT_NAME

Figure

8.

Using

USER-CONTAINERS

to

pass

the

names

of

your

own

containers.

This

figure

illustrates

the

use

of

the

USER-CONTAINERS

container

to

pass

the

names

of

three

other

containers

(CLIENT_ADDRESS,

INPUT_MESSAGE,

and

CLIENT_NAME)

between

user-written

programs.

Chapter

5.

Writing

your

own

pipeline

programs

29

3.

Pass

the

list

of

container

names

to

the

pipeline

in

container

USER-CONTAINERS,

using

the

PUT

CONTAINER

command.

For

example:

EXEC

CICS

PUT

CONTAINER(’USER-CONTAINERS’)

FROM(CONTAINER-LIST)

FLENGTH(CONT-LIST-LEN)

4.

In

the

data

target,

use

the

GET

CONTAINER

command

to

retrieve

the

list

of

containers

from

the

container

USER-CONTAINERS.

For

example:

EXEC

CICS

GET

CONTAINER(’USER-CONTAINERS’)

INTO(CONTAINER-LIST)

Important:

The

feature

may

change

the

position

and

sequence

of

items

in

the

list

as

passes

from

one

program

to

the

next.

In

particular,

the

names

of

non-existent

containers

may

be

removed.

Therefore,

your

code

should

not

rely

on

the

position

of

an

item

in

the

list

in

any

way.

5.

Use

the

GET

CONTAINER

command

to

retrieve

your

data

from

a

named

container.

For

example:

EXEC

CICS

GET

CONTAINER(’CLIENT_ADDRESS’)

INTO(CLIENT-ADDR)

30

SOAP

for

CICS:

User’s

Guide

Chapter

6.

Error

handling

in

SOAP

for

CICS

feature

When

the

SOAP

for

CICS

feature

detects

an

error

in

a

processing

stage

of

a

pipeline,

and

it

is

not

possible

to

complete

normal

processing,

the

sequence

of

execution

of

the

pipeline

changes.

The

SOAP

for

CICS

feature

handles

errors

in

a

processing

stage

by

abending

the

task.

Subsequent

processing

proceeds

in

one

of

two

ways:

v

For

most

errors,

some

of

the

pipeline

processing

stages

are

omitted,

and

processing

continues

at

a

stage

where

recovery

action

can

be

sensibly

performed.

Depending

upon

where

in

the

pipeline

the

error

was

detected,

subsequent

processing

may

include

the

execution

of

user-written

programs:

–

If

a

user-written

program

is

invoked,

it

may

be

able

to

perform

some

recovery

processing

of

its

own.

–

If

a

user-written

program

is

not

invoked,

the

feature

performs

a

default

recovery

action.
v

For

some

errors

(specifically

those

abends

which

cannot

be

handled

in

the

normal

way),

pipeline

processing

terminates

immediately.

Handling

errors

in

user-written

programs

You

can

handle

errors

in

your

user-written

programs

in

the

following

ways.

1.

Make

sure

that

your

program

contains

HANDLE

ABEND

commands

that

will

deal

with

any

errors

that

may

occur

in

your

code.

If

you

do

not

do

so,

and

an

abend

occurs,

the

entire

pipeline

will

abend.

2.

If

your

program

cannot

recover

from

the

error

and

allow

the

pipeline

to

continue

normally,

create

a

container

called

PIPELINE-ERROR.

When

the

pipeline

detects

the

presence

of

this

container,

subsequent

processing

follows

the

error

path.

The

contents

of

the

container

are

not

used

by

the

pipeline,

but

you

can

use

it

to

pass

information

to

any

other

user-written

programs

on

the

error

path.

Error

handling

in

the

service

provider

pipeline

If

an

error

is

detected

in

the

service

provider

pipeline,

the

sequence

of

processing

follows

the

appropriate

error

path

shown

in

Figure

9

on

page

32.

For

example,

if

the

SOAP

envelope

parser

detects

an

error,

control

passes

directly

to

the

SOAP

envelope

builder,

bypassing

the

application

mapper,

the

message

adapter,

and

the

application

program.

The

outbound

SOAP

message

handler,

and

the

outbound

transport

program

are

invoked

in

the

normal

way.

©

Copyright

IBM

Corp.

2003,

2004

31

Pipeline

stage

in

which

error

occurred

Pipeline

stage

to

which

control

passes

Recovery

action

Inbound

service

provider

transport

Outbound

service

provider

transport

Default

error

recovery

Inbound

SOAP

message

handler

Outbound

SOAP

message

handler

Determined

by

the

user-written

SOAP

message

handler

SOAP

envelope

parser

SOAP

envelope

builder

Default

error

recovery.

However,

the

outbound

SOAP

message

handler

can

modify

the

SOAP

response

generated

by

the

default

recovery

action

Application

mapper

SOAP

envelope

builder

Normal

processing

continues,

but

there

is

no

SOAP

response

body

Default

error

recovery

in

the

service

provider

pipeline

In

the

absence

of

other

error

recovery

by

the

feature

or

by

user-written

programs,

the

outbound

transport

program

constructs

a

SOAP

response

which

contains

a

SOAP

<fault>

element,

and

sends

it

to

the

service

requester.

The

<fault>

element

contains

the

following

<detail>

element:

<detail>

<abend

xmlns="http://cts.software.ibm.com/cicsts/soap/">

<abcode>abcode</abcode>

<program>abprog</program>

</abend>

</detail>

where:

abcode

is

the

abend

code

which

caused

the

fault

abprog

is

the

name

of

the

CICS

program

which

abended

Message
adapter

Business
logic

CICS TS

response
message

SOAP
message
handler

SOAP
envelope
builder

SOAP
message
handler

request
message SOAP

envelope
parser

Application
mapper

error
path

error
path

error
path

error
path

Service
provider
transport

Service
provider
transport

Service
requester

Figure

9.

Error

handling

in

a

service

provider

32

SOAP

for

CICS:

User’s

Guide

When

the

transport

is

HTTP,

the

SOAP

response

is

accompanied

by

an

HTTP

status

code

of

500

Internal

Server

Error.

For

the

WebSphere

MQ

transport

only,

the

pipeline

transaction

abends

with

code

AWSB

on

completion

of

the

default

error

handling.

Performing

error

recovery

in

the

SOAP

message

handler

Depending

upon

where

in

the

service

provider

pipeline

an

error

occurred,

you

can

use

the

outbound

SOAP

message

handler

to

detect

and

handle

the

error.

1.

Determine

whether

an

error

has

occurred

in

the

pipeline.

When

an

error

occurs,

the

feature

creates

a

container

called

PIPELINE-ERROR.

To

detect

the

error,

use

the

INQUIRE

CONTAINER

command.

For

example:

EXEC

CICS

INQUIRE

CONTAINER(’PIPELINE-ERROR’)

If

the

command

completes

successfully,

the

container

exists,

indicating

that

a

previous

pipeline

stage

has

encountered

an

error.

If

the

command

returns

a

CONTAINERERR

condition,

the

container

does

not

exist,

indicating

that

all

previous

pipeline

stages

have

completed

normally.

2.

Construct

a

suitable

SOAP

response

body.

Depending

upon

where

in

the

pipeline

the

error

occurred,

container

INPUT

may

contain

the

default

SOAP

response

body

containing

a

<fault>

element.

3.

Optional:

Delete

container

PIPELINE-ERROR.

v

If

you

delete

the

container,

the

outbound

transport

program

completes

pipeline

processing

normally,

as

if

no

error

had

occurred.

In

this

case,

the

output

from

the

message

handler

must

be

a

valid

SOAP

response.

v

If

you

do

not

delete

the

container,

the

pipeline

ends

abnormally.

In

this

case,

the

output

from

the

message

handler

must

be

a

valid

SOAP

response

containing

a

<fault>

element.

Depending

upon

where

the

error

occurred,

container

INPUT

may

contain

a

suitable

SOAP

response.

If

it

does

not,

or

you

want

to

change

it,

return

your

response

in

container

OUTPUT.

Error

handling

in

the

service

requester

pipeline

If

an

error

is

detected

in

the

service

requester

pipeline,

the

sequence

of

processing

follows

the

appropriate

error

path

shown

in

Figure

10

on

page

34.

For

example,

if

the

outbound

SOAP

message

handler

detects

an

error,

control

passes

directly

to

inbound

SOAP

message

handler,

and

no

attempt

is

made

to

send

a

request

to

the

service

provider.

The

SOAP

envelope

parser

is

invoked

in

the

normal

way.

Chapter

6.

Error

handling

in

SOAP

for

CICS

feature

33

Pipeline

stage

in

which

error

occurred

Pipeline

stage

to

which

control

passes

Recovery

action

Outbound

SOAP

message

handler

Inbound

SOAP

message

handler

Determined

by

the

user-written

SOAP

message

handler

Performing

error

recovery

in

the

SOAP

message

handler

When

an

error

occurs

in

the

service

requester

pipeline,

you

can

use

the

inbound

SOAP

message

handler

to

detect

and

handle

the

error.

1.

Determine

whether

an

error

has

occurred

in

the

pipeline.

When

an

error

occurs,

the

outbound

SOAP

message

handler

creates

a

container

called

PIPELINE-ERROR.

To

detect

the

error,

use

the

INQUIRE

CONTAINER

command.

For

example:

EXEC

CICS

INQUIRE

CONTAINER(’PIPELINE-ERROR’)

If

the

command

completes

successfully,

the

container

exists,

indicating

that

the

outbound

SOAP

message

handler

has

encountered

an

error.

If

the

command

returns

a

CONTAINERERR

condition,

the

container

does

not

exist,

indicating

that

all

previous

pipeline

stages

have

completed

normally.

2.

Construct

a

suitable

SOAP

response

body.

Pass

the

response

body

to

the

next

pipeline

stage

in

container

RESPONSE-BODY.

Abend

codes

The

SOAP

for

CICS

feature

may

generate

the

following

abend

codes.

AWSC

Explanation

A

container

which

is

required

by

a

pipeline

stage

was

not

found.

User

action

Check

that

user-written

programs

in

earlier

pipeline

stages

use

the

correct

containers.

request
message

response
message

SOAP
server

CICS TS

error
path

error
path

Service
requester
transport

Service
requester
transport

Outbound
router

SOAP
envelope
builder

SOAP
message
handler

SOAP
message
handler

SOAP
envelope

parser

Business
logic

Message
adapter

Figure

10.

Error

handling

for

a

service

requester

34

SOAP

for

CICS:

User’s

Guide

AWSH

Explanation

A

pipeline

activity

is

in

the

wrong

state.

User

action

Check

that

user-written

programs

in

earlier

pipeline

stages

use

the

correct

BTS

protocols.

If

your

user-written

programs

are

correct,

contact

your

IBM

support

center.

AWSL

Explanation

The

SOAP

pipeline

manager

could

not

link

to

the

message

adapter.

User

action

Check

previous

CICS

messages

to

determine

why

the

message

adapter

could

not

be

linked

to.

AWSN

Explanation

An

error

occurred

when

using

a

named

counter

server:

an

EXEC

CICS

DEFINE

COUNTER

or

EXEC

CICS

GET

COUNTER

command

has

returned

a

bad

response.

User

action

v

Look

in

the

CICS

job

log

for

any

AXMSCnnnn

messages

v

Check

the

options

table

DFHNCOPT

for

possible

errors

AWSP

Explanation

The

SOAPAction

header

exceeds

256

bytes

in

length.

User

action

Check

that

user-written

programs

do

not

create

a

SOAPAction

header

longer

than

256

bytes.

AWSQ

Explanation

An

unhandled

abend

was

encountered

in

a

pipeline

started

by

the

MQ

Dispatcher.

This

is

normal

behavior

when

a

user

stage

of

the

pipeline

abends.

User

action

Correct

the

user

abend.

Chapter

6.

Error

handling

in

SOAP

for

CICS

feature

35

|

|

|

|

|
|

|

|

|
|

|

|

|

|

|

|
|

|

|

AWSR

Explanation

A

container

which

is

required

by

the

outbound

router

program

was

not

found.

User

action

Check

that

your

message

adapter

supplies

the

correct

containers.

AWSS

Explanation

The

service

provider

pipeline

was

not

able

to

change

the

application

context.

User

action

v

If

you

have

attempted

to

change

the

transaction

ID,

check

that

the

transaction

ID

that

you

specified

is

valid.

v

If

you

have

attempted

to

change

the

user

ID,

check

that

the

user

ID

that

you

specified

is

valid.

Check

also

that

the

original

user

ID

under

which

the

pipeline

runs

is

defined

as

a

surrogate

of

the

target

user

ID

(the

user

ID

under

which

the

transaction

the

message

adapter

and

application

program

should

run).

AWST

Explanation

There

has

been

an

input

or

output

error

in

the

HTTP

or

WebSphere

MQ

transport.

User

action

Use

CICS

or

WebSphere

MQ

messages

to

help

you

determine

the

cause

of

the

problem.

The

error

may

be

transient,

in

which

case

you

can

retry.

AWSU

Explanation

The

URI

used

to

specify

a

SOAP

service

provider

is

invalid.

User

action

Check

that

user-written

programs

construct

a

valid

URI.

36

SOAP

for

CICS:

User’s

Guide

Chapter

7.

Configuring

your

CICS

system

Before

you

can

run

SOAP

applications

in

CICS,

you

must

configure

your

CICS

system.

You

may

need

to

perform

each

of

the

following

tasks:

1.

Create

a

BTS

repository

data

set

2.

Define

and

install

CICS

resources

Creating

the

BTS

repository

data

set

You

will

need

to

create

a

BTS

repository

data

set

in

the

following

situations:

v

If

you

use

the

WebSphere

MQ

transport

v

If

you

use

HTTP

as

the

transport

in

a

service

requester

pipeline

and

do

not

use

the

recommended

NOCHECK

option

on

the

DEFINE

PROCESS

command.

Use

the

IDCAMS

utility

to

create

the

BTS

repository

data

set.

Use

the

following

JCL

to

create

the

data

set:

//jobname

JOB

accounting

information,name

//DEFDSN

EXEC

PGM=IDCAMS,REGION=6144K

//SYSPRINT

DD

SYSOUT=A

//AMSDUMP

DD

SYSOUT=A

//SYSIN

DD

*

DELETE

(’repository_data_set’)

PURGE

CLUSTER

SET

MAXCC=0

DEFINE

CLUSTER

(

-

NAME(

repository_data_set

)

-

LOG(UNDO)

-

CYL(2,1)

-

VOLUMES

(volume)

-

KEYS(

50

0

)

-

INDEXED

-

RECORDSIZE(

4096

10240

)

-

FREESPACE(

5

5

)

-

SHAREOPTIONS(

2

3

)

-

)

-

INDEX

(

-

NAME(

repository_data_set.INDEX

)

-

)

-

DATA

(

-

NAME(

repository_data_set.DATA

)

-

)

/*

repository_data_set

is

the

name

of

the

data

set.

Defining

CICS

resources

Before

you

can

use

this

feature,

you

must

define

and

install

the

following

CICS

resources:

v

A

FILE

definition

for

the

repository

data

set

v

A

PROCESSTYPE

definition

for

each

BTS

process

type

v

A

TCPIPSERVICE

definition

for

the

port

which

will

receive

inbound

SOAP

requests

©

Copyright

IBM

Corp.

2003,

2004

37

The

feature

includes

sample

resource

definitions

for

these

resources.

For

details,

see

“Supplied

sample

CICS

resource

definitions”

on

page

40

Defining

the

repository

file

Before

you

can

use

this

feature,

you

must

define

and

install

a

FILE

definition

for

the

BTS

repository

data

set.

Important:

You

must

do

this,

even

if

you

do

not

need

to

create

the

BTS

repository

data

set

itself.

1.

Create

a

FILE

definition

for

the

repository

data

set.

Use

the

following

command

to

define

the

FILE:

DEFINE

FILE(repository_file)

GROUP(group_name)

DSNAME(repository_data_set)

STRINGS(20)

DATABUFFERS(21)

INDEXBUFFERS(20)

ADD(YES)

BROWSE(YES)

DELETE(YES)

READ(YES)

UPDATE(YES)

repository_data_set

is

the

name

of

the

data

set

defined

in

“Creating

the

BTS

repository

data

set”

on

page

37.

The

sample

FILE

definition

supplied

with

the

feature

uses

the

name

CICSTS22.CICS.DFHWSBTS.

If

you

do

not

have

a

BTS

repository

data

set,

you

can

use

a

dummy

value

for

this

attribute.

You

can

specify

your

own

values,

or

use

the

default

values,

for

the

other

attributes.

Note:

v

If

your

VSAM

file

uses

local

shared

resources,

then

you

must

ensure

that

the

LSRPOOL

associated

with

the

file

is

defined

with

a

MAXKEYLENGTH

of

50

bytes

or

more.

To

ensure

that

this

is

the

case:

a.

Create

and

install

an

LSRPOOL

definition

which

specifies

MAXKEYLENGTH(50)

b.

Specify

the

LSRPOOLID

attribute

in

your

file

definition.

The

value

of

this

attribute

must

match

the

LSRPOOLID

attribute

specified

in

the

file

definition.

The

sample

FILE

definition

supplied

with

the

feature

specifies

LSRPOOL(NONE).
2.

Install

the

definition

in

your

CICS

system

3.

Enable

the

installed

FILE

definition

Defining

the

BTS

process

type

Before

you

can

use

this

feature,

you

must

define

and

install

PROCESSTYPE

definitions

that

point

to

the

repository

data

sets

used

by

your

applications.

v

Service

provider

applications

require

a

PROCESSTYPE

named

SOAPHTTP.

v

Service

requester

applications

that

contain

only

one

activity

(the

root

activity),

can

share

the

repository

data

set

with

service

provider

applications,

and

so

can

use

the

same

PROCESSTYPE.

38

SOAP

for

CICS:

User’s

Guide

1.

Create

a

PROCESSTYPE

definition.

Use

the

following

command

to

define

the

PROCESSTYPE:

DEFINE

PROCESSTYPE(SOAPHTTP)

GROUP(group_name)

FILE(repository_file)

repository_file

is

the

name

of

the

file

defined

in

“Defining

the

repository

file”

on

page

38

You

can

specify

your

own

values,

or

use

the

default

values,

for

the

other

attributes.

2.

Install

the

definition

in

your

CICS

system

3.

Enable

the

installed

PROCESSTYPE

definition

Defining

the

TCPIPSERVICE

Before

you

can

run

service

provider

application

programs,

you

must

define

and

install

a

TCPIPSERVICE

that

supports

the

HTTP

protocol.

1.

Create

a

TCPIPSERVICE

definition.

Use

the

following

command

to

create

the

TCPIPSERVICE:

DEFINE

TCPIPSERVICE(tcpip_service)

GROUP(group_name)

URM(DFHWBADX)

PORTNUMBER(port_number)

PROTOCOL(HTTP)

TRANSACTION(CWXN)

In

general,

you

can

specify

your

own

values,

or

use

the

default

values,

for

the

other

attributes.

Notes:

v

The

sample

TCPIPSERVICE

definition

supplied

with

the

feature

contains

a

dummy

value

for

the

PORT

attribute.

If

you

use

the

sample

you

must

change

this

attribute

to

a

suitable

value.

You

should

also

review

the

other

attributes

to

ensure

that

they

are

suitable

for

your

purposes.

v

You

should

not

specify

AUTHENTICATE(BASIC),

unless

the

client

supports

the

HTTP

basic

authentication

dialog.

In

particular,

you

should

not

specify

AUTHENTICATE(BASIC)

when

the

client

is

the

SBOX

transaction.
2.

Install

the

definition

in

your

CICS

system.

3.

Open

the

TCPIPSERVICE.

Defining

CICS

resources

for

the

WebSphere

MQ

transport

If

you

plan

to

use

the

WebSphere

MQ

transport,

you

must

define

and

install

a

PROCESSTYPE

definition

and

a

TRANSACTION

definition.

1.

Create

a

PROCESSTYPE

definition.

Use

the

following

command

to

create

the

PROCESSTYPE:

DEFINE

PROCESSTYPE(SOAPMQ)

GROUP(group_name)

FILE(repository_file)

2.

Create

a

TRANSACTION

definition.

Use

the

following

command

to

create

the

TRANSACTION:

Chapter

7.

Configuring

your

CICS

system

39

|
|

|
|
|
|

DEFINE

TRANSACTION(CWSQ)

GROUP(group_name)

PROGRAM(DFHWSDSQ)

TASKDATALOC(ANY)

If

you

use

a

transaction

ID

other

than

CWSQ,

it

must

match

the

transaction

ID

specified

in

the

definition

of

the

trigger

process.

See

Chapter

8,

“Configuring

WebSphere

MQ,”

on

page

43

for

more

information.

3.

Install

the

definitions

in

your

CICS

system

Defining

other

resources

You

may

need

to

define

other

resources

before

you

can

use

this

feature:

v

If

you

do

not

use

autoinstall

for

programs,

you

will

need

to

define

and

install

the

program

definitions

for

the

feature

code.

v

If

you

plan

to

use

the

sample

applications,

you

will

need

to

define

and

install

the

resources

used

by

the

samples.

The

feature

includes

sample

resource

definitions

for

these

other

resources.

For

details,

see

“Supplied

sample

CICS

resource

definitions”

Using

the

supplied

resource

definitions

Member

DFHWSCSD

in

library

SCAVSAMP

contains

commands

that

you

can

use

with

the

CSD

utility

program

(DFHCSDUP)

to

define

CICS

resources

for

the

feature.

It

contains:

v

An

UPGRADE

command

which

adds

resource

definitions

in

groups

DFHSOAP

and

DFH$SOAP

to

the

CSD.

Group

DFHSOAP

contains

definitions

which

are

required

for

the

feature

to

function,

and

which

you

do

not

need

to

change.

Group

DFH$SOAP

contains

definitions

for

the

supplied

sample

programs.

v

A

DEFINE

command

for

the

TCPIPSERVICE

which

is

required

for

a

service

provider

which

uses

the

HTTP

transport.

v

A

DEFINE

command

for

the

FILE

definition

for

the

BTS

repository

data

set.

v

ADD

commands,

which

add

all

the

resource

definitions

to

list

SOAPLIST
1.

Review

the

definitions

for

the

FILE

and

TCPIPSERVICE,

and

make

any

changes

may

be

needed

for

your

installation.

2.

Run

DFHCSDUP,

using

member

DFHWSCSD

as

input

to

the

job.

3.

Install

list

SOAPLIST

in

your

CICS

system

Supplied

sample

CICS

resource

definitions

The

following

CICS

resource

definitions

are

supplied

with

the

feature:

Group

Contents

SOAPUSER

Required

resource

definitions

that

may

need

to

be

modified

before

use

DFHSOAP

Required

resource

definitions

that

should

not

be

modified

before

use

DFH$SOAP

Resource

definitions

for

the

sample

programs

40

SOAP

for

CICS:

User’s

Guide

Resource

type

Resource

name

Group

Description

FILE

DFHWSBTS

SOAPUSER

BTS

Repository

file

TCPIPSERVICE

SOAP

SOAPUSER

HTTP

port

definition

PROCESSTYPE

SOAPHTTP

DFHSOAP

SOAP

processtype

for

HTTP

PROCESSTYPE

SOAPMQ

DFHSOAP

SOAP

processtype

for

MQ

PROGRAM

DFHWSABE

DFHSOAP

Abend

Handler

PROGRAM

DFHWSAMX

DFHSOAP

Sample

Application

Mapper

URM

PROGRAM

DFHWSDSH

DFHSOAP

SOAP

Dispatcher

for

HTTP

PROGRAM

DFHWSDSQ

DFHSOAP

SOAP

Dispatcher

for

MQ

PROGRAM

DFHWSHDX

DFHSOAP

Sample

User

Message

Handler

URM

PROGRAM

DFHWSPMI

DFHSOAP

Inbound

Pipeline

Manager

PROGRAM

DFHWSPMO

DFHSOAP

Outbound

Pipeline

Manager

PROGRAM

DFHWSRT

DFHSOAP

Outbound

Pipeline

Router

PROGRAM

DFHWSSH

DFHSOAP

SOAP

Service

Handler

PROGRAM

DFHWSTIH

DFHSOAP

HTTP

Inbound

Transport

PROGRAM

DFHWSTIQ

DFHSOAP

MQ

Inbound

Transport

PROGRAM

DFHWSTOH

DFHSOAP

HTTP

Outbound

Transport

PROGRAM

DFHWSTOQ

DFHSOAP

MQ

Outbound

Transport

TRANSACTION

SBOX

DFH$SOAP

Sample

SOAP

requester

transaction

PROGRAM

DFH$WSSB

DFH$SOAP

Sample

SOAP

requester

application

PROGRAM

DFH$WSBT

DFH$SOAP

Data-only

program

for

sample

template

MAPSET

DFH0SBM

DFH$SOAP

Sample

mapset

for

DFH$WSSB

program

DOCTEMPLATE

DFH$WSBT

DFH$SOAP

Sample

template

for

DFH$WSSB

program

PROGRAM

DFH$WSSS

DFH$SOAP

Sample

SOAP

provider

application

PROGRAM

DFH$WSAP

DFH$SOAP

Sample

Service

Backend

application

PROGRAM

DFH$WSDC

DFH$SOAP

Sample

Service

Requestor

Chapter

7.

Configuring

your

CICS

system

41

Resource

type

Resource

name

Group

Description

PROGRAM

DFH$WSXL

DFH$SOAP

Sample

XML

tracing

program

Language

Environment

run-time

options

Specify

the

following

Language

Environment

run-time

options

for

your

SOAP

applications:

ALL31(ON)

STACK(ANYWHERE)

If

you

need

to

specify

ALL31(OFF)

or

STACK(BELOW)

for

other

applications

in

your

CICS

region,

you

should

link

a

CEEUOPT

with

an

appropriate

setting

to

the

main

routines.

42

SOAP

for

CICS:

User’s

Guide

|

|
|

|

|

|
|
|

Chapter

8.

Configuring

WebSphere

MQ

If

you

plan

to

use

the

WebSphere

MQ

transport

with

this

feature,

you

must

define

the

following

objects:

v

A

QLOCAL

object

that

defines

the

local

queue

used

to

store

the

SOAP

messages

until

they

are

processed.

v

A

PROCESS

object

that

specifies

the

CICS

transaction

which

will

process

messages

from

the

local

queue.

The

feature

contains

sample

definitions

for

these

resources.

1.

Define

the

SOAP

input

queue.

For

example:

DEFINE

-

QLOCAL(’queuename’)

-

DESCR(’description’)

-

PROCESS(processname)

-

INITQ(’initqueue’)

-

TRIGGER

-

TRIGTYPE(FIRST)

-

TRIGDATA(’SOAP/target_program’)

-

BOTHRESH(nnn)

-

BOQNAME(’requeuename’)

where

queuename

is

the

name

of

the

local

queue

processname

is

the

name

of

the

process

instance

that

identifies

the

application

started

by

the

queue

manager

when

a

trigger

event

occurs.

The

name

should

match

the

name

of

the

process

specified

in

the

definition

of

the

SOAP

input

queue.

initqueue

is

the

name

of

the

initiation

queue

used

by

your

CICS

system.

target_program

is

the

name

of

the

target

program.

nnn

is

the

number

of

retries

that

will

be

attempted

before

the

message

is

considered

failed

requeuename

is

the

name

of

the

queue

to

which

failed

messages

will

be

sent.

This

attribute

is

optional.
2.

Define

a

trigger

process

for

inbound

SOAP

requests.

Use

the

following

command:

DEFINE

-

PROCESS(processname)

-

APPLTYPE(CICS)

-

APPLICID(CWSQ)

-

USERDATA(’options’)

where:

©

Copyright

IBM

Corp.

2003,

2004

43

processname

is

the

name

of

the

process.

The

name

must

match

the

PROCESS

parameter

in

the

definition

of

the

local

queue.

options

let

you

specify

how

processes

are

started:

AUTH=LOCAL

Processes

run

under

the

same

user

ID

as

the

CWSQ

transaction

AUTH=IDENTIFY

Processes

run

under

the

user

ID

specified

in

the

MQ

message

description

(MQMD)

of

the

incoming

message

WAIT=interval

Specifies

the

time

(in

milliseconds)

for

which

CWSQ

should

wait

for

more

messages

to

arrive.

The

default

is

60000

(one

minute).

If

no

more

messages

arrive

within

the

specified

interval,

CWSQ

terminates.

The

transaction

ID

specified

in

the

APPLICID

parameter

must

match

the

transaction

defined

in

“Defining

CICS

resources

for

the

WebSphere

MQ

transport”

on

page

39.

Security

considerations

for

the

WebSphere

MQ

transport

The

transport

transaction

(CWSQ)

will

be

started

by

the

trigger

monitor

using

the

same

user

ID

as

the

trigger

monitor.

This

user

ID

must

have

UPDATE

authority

to

the

input

queue,

the

backout

queue

(if

this

is

specified),

and

the

BTS

repository.

If

AUTH=IDENTIFY

is

specified,

then

the

user

ID

under

which

CWSQ

runs

must

have

surrogate

authority

to

allow

it

to

start

processes

on

behalf

of

the

user

IDs

in

the

messages.

The

process

user

IDs

must

have

UPDATE

authority

to

the

reply

queue,

and

to

the

BTS

repository.

The

reply

queue

has

the

prefix

yourmqs.WSSOAPMQ.*

where

yourmqs

is

the

subsystem

name

of

your

MQSeries

subsystem.

Security

for

the

SBOX

transaction

and

WebSphere

MQ

If

you

are

using

the

SBOX

transaction,

with

the

WebSphere

MQ

transport,

you

will

need

the

following

RACF

profiles:

Resource

class

name

Profile

Access

for

CICS

region

userid

Access

for

SBOX

user

MQQUEUE

yourmqs.SYSTEM.DEFAULT.MODEL.QUEUE

UPDATE

UPDATE

MQQUEUE

yourmqs.SYSTEM.DEFAULT.ALIAS.QUEUE

READ

READ

MQQUEUE

yourmqs.WSSOAPMQ.*

ALTER

UPDATE

MQPROC

yourmqs.SOAP*

READ

none

where:

yourmqs

is

the

subsystem

name

of

your

MQSeries

subsystem.

44

SOAP

for

CICS:

User’s

Guide

|
|

||

Chapter

9.

The

sample

applications

This

feature

includes

a

number

of

sample

application

programs.

DFH$WSSS

DFH$WSSS

is

a

COBOL

program

that

illustrates

how

to

write

a

service

provider

application.

The

program

contains

all

the

logic

needed

to

receive

a

SOAP

request

body

from

a

client,

parse

the

request

body,

and

return

a

response

to

the

client.

The

business

logic

of

the

sample

program

performs

an

elementary

lookup

of

a

fictitious

stock

quotation.

The

client

sends

a

body

containing

a

<symbol>

element

that

contains

a

stock

symbol.

DFH$WSSS

returns

a

<Quote>

element

that

contains

a

number

obtained

from

the

lookup,

accompanied

by

<Applid>,

<Date>

and

<Time>

elements.

The

Web

Service

sample

application

The

Web

Services

sample

application

comprises:

DFH$WSAP

and

DFH$WSDC

A

pair

of

COBOL

programs

which,

together,

are

functionally

equivalent

to

the

DFH$WSSS

sample.

The

sample

is

structured

such

that:

v

The

back-end

program,

DFH$WSAP,

constructs

the

core

of

the

response

document

v

The

front-end

program,

DFH$WSDC,

adds

the

appropriate

document

element

tag,

and

the

SOAP

body

As

provided,

the

programs

provide

a

document/literal

service;

that

is:

v

The

style

attribute

of

the

operation

provide

by

the

Web

Service

is

document,

indicating

that

SOAP

messages

contains

documents.

To

change

the

style

to

rpc,

modify

DFH$WSDC.

v

The

use

attribute

of

the

SOAP

body

is

literal,

indicating

that

the

element

tags

of

the

SOAP

messages

are

extended

with

a

schema

definition.

To

change

the

use

to

encoded,

modify

DFH$WSAP.

DFH$WSDL

Web

Services

Description

Language

(WSDL)

which

describes

the

Web

Service

provided

by

the

programs

as

a

document/literal

service.

You

can

use

the

WSDL

to

generate

client

bindings

for

the

Web

Service.

DFH$WSSB

DFH$WSSB

is

a

COBOL

program

that

illustrates

how

to

write

a

service

requester

application

in

CICS.

The

program

has

a

3270

based

user

interface

that

allows

you

to

submit

SOAP

requests

to

DFH$WSSS,

and

display

the

response.

The

DFH$WSSB

program

communicates

with

the

DFH$WSSS

application,

using

the

outbound

HTTP

support.

For

more

information,

see

“Using

the

DFH$WSSB

sample

program”

on

page

46.

©

Copyright

IBM

Corp.

2003,

2004

45

DFH$WSXL

DFH$WSXL

is

a

COBOL

program

that

illustrates

how

the

XML

PARSE

statement

processes

an

XML

document.

It

traces

the

XML

events

and

data

to

SYSOUT.

You

can

initiate

the

program

in

these

ways:

From

a

SOAP

client

Call

the

program

by

sending

an

HTTP

message

containing

a

SOAP

request,

in

the

following

form:

POST

/CICS/CWBA/DFH$WSXL

HTTP/1.1

Content-Type:

text/xml;

charset=utf-8

Content-Length:

nnn

Host:

host:port

SOAPAction:

SOAP

message

From

a

Web

browser

Call

the

program

by

entering

the

URI

(Universal

Resource

Identifier1)

in

a

browser.

For

example:

http://host:port/CICS/CWBA/DFH$WSXL

Type

in

the

XML

document

to

be

parsed

and

press

the

Submit

XML

document

button.

The

program

displays

information

in

the

browser

window

about

each

event

that

is

driven

by

the

COBOL

XML

parser.

From

a

non-Web

based

CICS

program

Construct

the

XML

document

in

the

Commarea,

and

LINK

to

program

DFH$WSXL.

The

program

displays

information

in

the

CICS

log

about

each

event

that

is

driven

by

the

XML

parser.

Note:

You

cannot

call

DFH$WSXL

in

this

way

from

another

program

that

is

part

of

the

SOAP

pipeline.

Using

the

DFH$WSSB

sample

program

DFH$WSSB

is

a

COBOL

program

that

illustrates

how

to

write

a

service

requester

application

in

CICS.

The

program

has

a

3270

based

user

interface

that

allows

you

to

submit

SOAP

requests

to

DFH$WSSS,

and

display

the

response.

It

is

invoked

by

the

SBOX

transaction,

in

which

the

target

URI

(Universal

Resource

Identifier)

is

supplied

as

the

operand

of

the

transaction

invocation.

1.

Install

a

TRANSACTION

and

a

DOCTEMPLATE

resource

definition:

a.

Install

a

TRANSACTION

resource

definition

for

transaction

SBOX,

that

points

to

program

DFH$WSSB.

b.

Install

a

DOCTEMPLATE

resource

definition.

The

DOCTEMPLATE

must

have

the

following

attributes:

TEMPLATENAME(SOAPBOXBODY)

PROGRAM(DFH$WSBT)

If

you

completed

the

task

described

in

“Using

the

supplied

resource

definitions”

on

page

40,

the

required

resource

definitions

are

already

defined

in

group

DFH$SOAP.

2.

Run

the

transaction,

specifying

the

target

as

an

operand.

For

example:

1. also

known

informally,

although

-

strictly

-

incorrectly

as

the

Universal

Resource

Locator,

or

URL

46

SOAP

for

CICS:

User’s

Guide

|

|

|

|
|

|

|
|

|
|

|
|

|
|
|

SBOX

http://host:port/CICS/CWBA/DFHWSDSH/DFH$WSSS

DFH$WSSB

displays

the

following

screen:

DFH$WSSB

-

CICS

SOAP

support

demonstration

Enter

the

destination

URI

for

the

Stock

Quote

web

service,

and

(optionally)

the

URL

of

a

proxy

server.

URI

.

.

.

.

.

Proxy

.

.

.

.

Enter

a

three-letter

symbol

for

the

stock

for

which

a

quotation

is

required.

(Hint

-

must

be

one

of:

ABC,

PQR,

XYZ)

Stock

symbol.

.

.

.

Quotation

price

.

.

870

Date

.

.

Time

.

.

3.

Complete

details

of

the

request

on

the

screen.

You

can

enter

data

in

the

following

fields:

URI

Specify

target

resource.

Initially,

the

field

displays

the

target

specified

in

the

original

transaction

request.

You

can

overtype

the

displayed

value.

v

For

the

HTTP

transport,

the

target

is

specified

as

the

URI

of

the

target

process.

For

example:

http://host:port/CICS/CWBA/DFHWSDSH/DFH$WSSS

The

URI

must

start

with

the

scheme

name

(http://

or

https://).

v

For

the

WebSphere

MQ

transport,

the

target

is

specified

in

the

following

form:

MQ://queuename/queue_manager

where

the

queue

manager

name

is

optional

if

the

queue

is

local,

or

a

remote

queue

definition

exists.

For

example:

MQ://SAMPLE.SOAP.QUEUE/QM39

Proxy

If

the

target

resource

is

outside

a

firewall,

specify

the

URI

of

a

proxy

server.

Initially,

the

field

displays

the

default

proxy

server,

which

is

specified

in

the

INITPARM

system

initialization

parameter.

For

example:

INITPARM=(DFHWBCLI=’PROXY="http://myproxy.mysite.my.com"’)

Stock

symbol

Specify

the

three

letter

symbol

of

the

stock

you

want

to

be

quoted.

DFH$WSSS

recognizes

the

following

values:

v

ABC

v

PQR

v

XYZ
4.

Press

ENTER

to

send

the

request.

The

following

information

is

displayed:

Quotation

price

Displays

the

stock

quotation

value

returned

by

the

DFH$WSSS

application

Date

Time

Displays

the

date

and

time

returned

by

the

DFH$WSSS

application

Chapter

9.

The

sample

applications

47

|

|

If

a

SOAP

fault

is

received,

the

transaction

displays

the

contents

of

the

fault

message.

48

SOAP

for

CICS:

User’s

Guide

Accessibility

Accessibility

features

help

a

user

who

has

a

physical

disability,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products

successfully.

You

can

perform

most

tasks

required

to

set

up,

run,

and

maintain

your

CICS

system

in

one

of

these

ways:

v

using

a

3270

emulator

logged

on

to

CICS

v

using

a

3270

emulator

logged

on

to

TSO

v

using

a

3270

emulator

as

an

MVS™

system

console

IBM®

Personal

Communications

(Version

5.0.1

for

Windows®

95,

Windows

98,

Windows

NT®

and

Windows

2000;

version

4.3

for

OS/2®)

provides

3270

emulation

with

accessibility

features

for

people

with

disabilities.

You

can

use

this

product

to

provide

the

accessibility

features

you

need

in

your

CICS

system.

©

Copyright

IBM

Corp.

2003,

2004

49

50

SOAP

for

CICS:

User’s

Guide

Index

A
abend

codes

34

APP-HANDLER

container

15,

17

APP-NAMESPACES

container

16,

17

application

context
changing

21

application

mapper

11

writing

your

own

28

B
BTS

commands

used

in

the

sample

programs

5

containers

15

where

to

find

more

information

1

BTS

process

type
defining

38

BTS

repository
FILE

definition

38

BTS

repository

data

set
creating

37

Business

Transaction

Services

(BTS)
where

to

find

more

information

1

C
CICS

configuring

37

CICS

resource

definitions
supplied

samples

40

CICS

resources
defining

37

CICS

Web

support
where

to

find

more

information

2

configuring

CICS

37

configuring

WebSphere

MQ

43

container
APP-HANDLER

15,

17

APP-NAMESPACES

16,

17

FAULT

16,

17

INPUT

15,

16,

17

NAMESPACES

15,

17

OUTPUT

15,

16,

17,

18

PIPELINE-ERROR

15,

16,

17,

18

REQUEST-BODY

16,

18

RESPONSE-BODY

16,

18

SOAP-ACTION

16,

18

TARGET-TRANID

15,

17

TARGET-URI

16,

18

TARGET-USERID

15,

17

USER-CONTAINERS

15,

16,

17,

18

containers

15

in

message

adapter

24

in

the

service

provider

pipeline

15

in

the

service

requester

pipeline

16

in

user-written

programs

16

context
changing

21

D
data

passing

between

user-written

programs

29

defining

CICS

resources

37

E
envelope

builder

12,

13

envelope

parser

11,

13

error

handling

31

in

a

service

requester

pipeline

33

in

service

provider

pipeline

31

in

user-written

programs

31

Extended

Markup

Language

(XML)
specification

2

F
FAULT

container

16,

17

faults
handling

in

the

message

adapter

24

I
INPUT

container

15,

16,

17

installing

the

SOAP

for

CICS

feature

4

L
load

modules

2

M
message

adapter

12,

13

handling

faults

24

service

provider

pipeline

19

service

requester

pipeline

21

message

handler

11,

12,

13

migrating

from

the

SOAP

for

CICS

SupportPac

4

N
NAMESPACES

container

15,

17

O
outbound

router

program

13

OUTPUT

container

15,

16,

17,

18

Overview
of

SOAP

for

CICS

feature

1

P
pipeline

defined

7

pipeline

(continued)
service

provider
containers

15

error

handling

31

service

requester
containers

16

error

handling

33

transport

stage

11,

12,

13

pipeline

programs
writing

your

own

27

pipeline

stages
envelope

builder

12,

13

envelope

parser

13

message

adapter

12,

13

message

handler

13

outbound

router

program

13

SOAP

application

mapper

11

SOAP

envelope

parser

11

SOAP

message

handler

11,

12

PIPELINE-ERROR

container

15,

16,

17,

18

pipelines
in

the

SOAP

for

CICS

feature

7

overview

7

service

provider

10

service

requester

12

used

for

SOAP

in

CICS

10

PROCESSTYPE
defining

38

R
repository

FILE

definition

38

repository

data

set
creating

37

REQUEST-BODY

container

16,

18

resource

definition

40

resources
defining

37

RESPONSE-BODY

container

16,

18

S
sample

applications

45

sample

programs

3

SCAVLOAD

library
contents

2

SCAVSAMP

library
contents

3

service

provider

pipeline

10

containers

15

defined

7

envelope

builder

12

error

handling

31

message

adapter

12

SOAP

application

mapper

11

SOAP

envelope

parser

11

SOAP

message

handler

11,

12

transport

stage

11,

12

©

Copyright

IBM

Corp.

2003,

2004

51

service

requester

pipeline

12

containers

16

defined

7

envelope

builder

13

envelope

parser

13

error

handling

33

message

adapter

13

message

handler

13

outbound

router

13

transport

pipeline

stage

13

Simple

Object

Access

Protocol

(SOAP)
specification

2

SOAP
specification

2

SOAP

application

mapper

11

SOAP

envelope

parser

11

SOAP

for

CICS

SupportPac
migrating

to

the

SOAP

for

CICS

feature

4

SOAP

message

handler

11,

12

error

handling

33,

34

writing

your

own

27

SOAP

messages
identifying

the

target

25

URI

for

HTTP

transport

25

URI

for

WebSphere

MQ

transport

25

SOAP-ACTION

container

16,

18

T
TARGET-TRANID

container

15,

17

TARGET-URI

container

16,

18

TARGET-USERID

container

15,

17

TCPIPSERVICE
defining

39

transport

pipeline

stage

11,

12,

13

U
URI

used

in

SOAP

messages

25

USER-CONTAINERS

container

15,

16,

17,

18

for

passing

data

between

programs

29

user-written

programs
containers

16

error

handling

31

passing

data

29

writing

message

adapters

19,

21

using

the

supplied

definitions

40

W
Web

Services

Description

Language

(WSDL)
specification

2

WebSphere

MQ
configuring

43

where

to

find

more

information

2

WebSphere

MQ

transport
defining

CICS

resources

39

security

considerations

44

writing

pipeline

programs

27

WSDL
specification

2

X
XML

specification

2

52

SOAP

for

CICS:

User’s

Guide

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

in

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY,

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore

this

statement

may

not

apply

to

you.

This

publication

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact

IBM

United

Kingdom

Laboratories,

MP151,

Hursley

Park,

Winchester,

Hampshire,

England,

SO21

2JN.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

©

Copyright

IBM

Corp.

2003,

2004

53

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Programming

License

Agreement,

or

any

equivalent

agreement

between

us.

Trademarks

The

following

terms

are

trademarks,

or

registered

trademarks,

of

International

Business

Machines

Corporation

in

the

United

States,

or

other

countries,

or

both:

SupportPac

z/OS

MVS

OS/390

CICS

WebSphere

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

54

SOAP

for

CICS:

User’s

Guide

Sending

your

comments

to

IBM

If

you

especially

like

or

dislike

anything

about

this

book,

please

use

one

of

the

methods

listed

below

to

send

your

comments

to

IBM.

Feel

free

to

comment

on

what

you

regard

as

specific

errors

or

omissions,

and

on

the

accuracy,

organization,

subject

matter,

or

completeness

of

this

book.

Please

limit

your

comments

to

the

information

in

this

book

and

the

way

in

which

the

information

is

presented.

To

ask

questions,

make

comments

about

the

functions

of

IBM

products

or

systems,

or

to

request

additional

publications,

contact

your

IBM

representative

or

your

IBM

authorized

remarketer.

When

you

send

comments

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

your

comments

in

any

way

it

believes

appropriate,

without

incurring

any

obligation

to

you.

You

can

send

your

comments

to

IBM

in

any

of

the

following

ways:

v

By

mail,

to

this

address:

User

Technologies

Department

(MP095)

IBM

United

Kingdom

Laboratories

Hursley

Park

WINCHESTER,

Hampshire

SO21

2JN

United

Kingdom
v

By

fax:

–

From

outside

the

U.K.,

after

your

international

access

code

use

44–1962–816151

–

From

within

the

U.K.,

use

01962–816151
v

Electronically,

use

the

appropriate

network

ID:

–

IBMLink™:

HURSLEY(IDRCF)

–

Internet:

idrcf@hursley.ibm.com

Whichever

you

use,

ensure

that

you

include:

v

The

publication

title

and

order

number

v

The

topic

to

which

your

comment

applies

v

Your

name

and

address/telephone

number/fax

number/network

ID.

©

Copyright

IBM

Corp.

2003,

2004

55

56

SOAP

for

CICS:

User’s

Guide

���

SC34-6315-01

	Contents
	Chapter 1. The SOAP for CICS feature
	Where to find more information
	What's in this feature?
	Installing and using the SOAP for CICS feature
	Migrating from the SOAP for CICS SupportPac
	BTS commands

	Chapter 2. Pipelines and the SOAP for CICS feature
	What is a pipeline?
	How SOAP for CICS uses pipelines
	CICS as a service provider
	CICS as a service requester

	Chapter 3. Containers
	Containers used in the service provider pipeline
	Containers used in the service requester pipeline
	Containers used by user-written programs

	Chapter 4. Writing message adapters
	Writing a message adapter for the service provider pipeline
	Changing the application context
	Changing the transaction ID
	Changing the user ID

	Writing a message adapter for the service requester pipeline
	Constructing the SOAP request
	Invoking the outbound SOAP router program
	Processing the SOAP response
	Handling faults in the message adapter
	Identifying the target of a SOAP message

	Chapter 5. Writing your own pipeline programs
	Writing the SOAP message handler
	Writing the application mapper
	Passing data between user-written programs

	Chapter 6. Error handling in SOAP for CICS feature
	Handling errors in user-written programs
	Error handling in the service provider pipeline
	Default error recovery in the service provider pipeline
	Performing error recovery in the SOAP message handler

	Error handling in the service requester pipeline
	Performing error recovery in the SOAP message handler

	Abend codes
	AWSC
	AWSH
	AWSL
	AWSN
	AWSP
	AWSQ
	AWSR
	AWSS
	AWST
	AWSU

	Chapter 7. Configuring your CICS system
	Creating the BTS repository data set
	Defining CICS resources
	Defining the repository file
	Defining the BTS process type
	Defining the TCPIPSERVICE
	Defining CICS resources for the WebSphere MQ transport
	Defining other resources

	Using the supplied resource definitions
	Supplied sample CICS resource definitions
	Language Environment run-time options

	Chapter 8. Configuring WebSphere MQ
	Security considerations for the WebSphere MQ transport
	Security for the SBOX transaction and WebSphere MQ

	Chapter 9. The sample applications
	Using the DFH$WSSB sample program

	Accessibility
	Index
	Notices
	Trademarks

	Sending your comments to IBM

