<|lI!

CICS Transaction Server for z/OS

CICS Application Programming Guide

Version 3 Release 1

SC34-6433-06

<|lI!

CICS Transaction Server for z/OS

CICS Application Programming Guide

Version 3 Release 1

SC34-6433-06

Note!
Before using this information and the product it supports, be sure to read the general information under

This edition applies to Version 3 Release 1 of CICS Transaction Server for z/OS, program number 5655-M15, and
to all subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

© Copyright IBM Corporation 1989, 2010.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface . . . D (D 4
What this book is about D (¢
Who should read this bookXX
Summary of changes. . . . Co XX
Changes for CICS Transaction Server for z/OS Ver3|on 3 Release 1 Coe XX
Changes for CICS Transaction Server for z/OS, Version 2 Release 3. xxi
Changes for CICS Transaction Server for z/OS, Version 2 Release 2. xxi
Changes for CICS Transaction Server for z/OS, Version 2 Release 1. xxi
Changes for CICS Transaction Server for 0S/390, Version 1 Release 3 . . . xXii
Part 1. Writing CICS Applications1
Chapter 1. What is a CICS application? . 3
CICS programs, transactions and tasks . 3
Chapter 2. CICS programming . .5
CICS programming commands .5
System programming commands. . 6
EXEC interface block (EIB) . 6
Translation 6
Translator Options . . 6
Testing for CICS. . .7
CICS programming roadmap . .7
Chapter 3. Language Environment9
Language Environment services . . . e [
Using Language Environment Abend- handlmg A T 2
User-written Language Environment condition handlers T 2
Managing Language Environment storage.13
Mixing languages in Language Environment13
Using Dynamic Link Libraries and Language Enwronment15
Defining runtime options for Language Environment 16
Runtime options in child enclaves18
CEEBXITA coding. . . . e £
Determining which options were used P P £
Writing a CEEBINT initialization exit for Language Enwronment T £
Chapter 4. ProgrammingincoBoL21
COBOL programming considerations.22
COBOL programming restrictions . . . 2
Language Environment CBLPSHPOP optlon e e e25
Using the DL/I CALL interface . . . e e e25
Considerations for VS COBOL Il programs e e . o 26
Using based addressingwithCOBOL27
Using WITH DEBUGGING MODE.28
Calling subprograms fromCOBOL.28
Rules for calling subprograms80
Flow of control between programs and subprograms P 724
Using the COBOL2 and COBOLS3 translator options 34
Literals intervening in blank lines35
Lower case characters . . . e e35
Sequence numbers containing any character N 1<)

© Copyright IBM Corp. 1989, 2010 iii

REPLACE statement. .3

Batch compilaton. .36
Nested programs .38
Reference modificaton .4
Global variables . . . e 24
Comma and semicolon as deI|m|ters e 2
Symbolic character definiton.42
Chapter 5. ProgramminginCandC++43
C and C++ programming considerations . . . Y
XPLink considerations for C and C++ programmlng -]
Passing argumentsinCorC++.49
Accessingthe EIB.50
Naming EIB fields. .50
Locale supportforCand C++51
ProgramminginC++. .51
Restrictions5
Chapter 6. Programming inPL/M1.53
PL/I programming restrictions58
Language Environment considerations for PL/I appllcanons54
Chapter 7. Programming in Assembler e Y4
Language Environment considerations for Assembler appllcat|ons58
Calling Assembler programs .60
Part 2. Preparing applicationstorun63
Chapter 8. Translation and compilation e < V4
The integrated CICS translator . . . e 74
Using the integrated CICS translator P 1
Specifying CICS translator options.68
The translation process. .69
The CICS-supplied translators . . . Y 424
Dynamic invocation of the separate translator e 424
Using a CICS translator .73
Defining translator options. .74
Translator options. .75
Translator options table. .85
Using COPY statements . . e e e e86
The CICS-supplied interface modules e e86
The EXEC interface modules. e86
The CPI Communications interface module e86
The SAA Resource Recovery interface module 86
Using the EXEC interface modules87
coBoL 88
P <1
CandC++89
Assembler language . . . T 10
EXAMPLE Assembler Ianguage PROGRAM usmg LEASM. P < 1)
Chapter 9. Installing application programs.99
Program installation roadmap99
Preparing for program installation . . . C e e e 100
Defining MVS residence and addressing modes e e e 100
Establishing a program’s addressingmode 101

iv CICS TS for z0OS: CICS Application Programming Guide

CICS address space considerations. 101

Making programs permanently resident 102
Running applications in the link pack area 102
Running application programs inthe RDSAs 108

Assembler .108

CandC/++.104

COBOL 104

[P (015
Using BMS map sets in apphcatron programs A105
Using the CICS-supplied procedures to install apphcatron programs 106

Installing programs in load library secondary extents 108
Including the CICS-supplied interface modules. 108
Installing assembler language application programs 109
Installing COBOL application programs . . e R ()

Sample JCL to install COBOL application programs e b b
Installing PL/I application programs . . . T

Sample JCL to install PL/I application programs T B

PL/l procedure with an integrated translator. 115
Installing C application programs e h V4

Sample JCL to install C application programs e R K
Using your own job streams120

Translator requirements 120

Online programs that use EXEC CICS or EXEC DLI commands120

Online programs that use the CALL DLI interface. 122

Batch or BMP programs that use EXEC DLI commands 123

Batch or BMP programs that use DL/I CALL commands 123
Chapter 10. Installing map sets and partitionsets 125
Instalingmapsets .. .126

Typesofmapsets .. .126

Installing physical map sets. . . . e et

Installing symbolic description map sets . co. . ..o 129

Installing physical and symbolic description maps together e 13t
Installing partition sets.133
Defining programs, map sets, and part|t|on sets to CICS 134

Part 3. Applicationdesign.135
Chapter 11. Application design. . . . P FC1e]
Pseudoconversational and conversational desrgn A F-X0]

Terminal interruptibility. .142
How tasks are started. .142
Which transaction? . . . I X
Separating business and presentatlon Iogrc .o 146
Multithreading: Reentrant, quasi-reentrant and threadsafe programs ... 147

Quasi-reentrant application programs 147

Threadsafe programs .149

OPENAPI programs183

Using the FORCEQR system |n|t|al|zat|on parameter . 1515)

Non-reentrant programs .155
Storing data within a transacton 156

Transaction work area (TWA) 156

User storage156

COMMAREA in LINK and XCTL commands T KoY 4

Channels in LINK and XCTLcommands 158

Program storage. .158

Contents V

Temporary storage . .
Intrapartition transient data .
GETMAIN SHARED command
Your own data sets . .
Lengths of areas passed to CICS commands .
LENGTH options.
Journal records .
Data set definitions .
Recommendation
Minimizing errors.
Protecting CICS from appllcat|on errors
Testing applications. .
Non-terminal transaction securlty

Chapter 12. Design for performance.
Program size .
Virtual storage. .
Reducing paging eﬁects .
Exclusive control of resources .
Operational control .
Operating system waits .
The NOSUSPEND option
Efficient data operations . .
Efficient database operations .
Efficient data set operations.
Efficient browsing (in non-RLS mode)
Efficient logging .
Efficient sequential data set access .
Efficient terminal operations.
Length of the data stream sent to the termmal
Basic mapping support considerations .
Page-building and routing operations
Requests for printed output .
Additional terminal control con3|derat|ons

Chapter 13. Sharing data across transactions .
Using the common work area (CWA)

Protecting the CWA.
Using the TCTTE user area (TCTUA) e
Using the COMMAREA in RETURN commands
Using a channel on RETURN commands.
Using the display screen to share data

Chapter 14. Enhanced inter-program data transfer: channels as
modern-day COMMAREAs. .
Channels: quick start .
Containers and channels.
Basic examples . .
Using channels: some typlcal scenarios .
One channel, one program .
One channel, several programs (a component)
Several channels, one component
Multiple interactive components
Creating a channel .
The current channel .
Current channel example, W|th LINK commands .

Vi CICS TS for /OS: CICS Application Programming Guide

. 158
. 160
. 160
. 160
. 162
. 162
. 162
. 162
. 162
. 163
. 163
. 163
. 164

. 165
. 165
. 166
. 167
. 169
. 170
171
171
. 172
. 172
. 172
. 174
. 175
. 175
. 176
. 176
. 176
. 179
. 181
. 181

. 183
. 183
. 184
. 186
. 187
. 187
. 188

. 189
. 189
. 189
. 190
. 192
. 192
. 193
. 193
. 194
. 195
. 196
. 196

Current channel example, with XCTL commands .
Current channel: START and RETURN commands .
The scope of a channel .
Scope example, with LINK commands
Scope example, with LINK and XCTL commands
Discovering which containers a program's been passed
Discovering which containers were returned from a link
CICS read only containers .
Designing a channel: best practices.
Constructing and using a channel: an example
Channels and BTS activities
Context .
Using channels from JCICS
Dynamic routing with channels
Data conversion .
Why is data conversion needed" .
Preparing for code page conversion with channels .
Data conversion with channels
Benefits of channels
Migrating from COMMAREAs to channels
Migration of existing functions .
Migration to the new function .

Chapter 15. Affinity
Types of affinity . .
Inter-transaction affinity
Transaction-system affinity .
Programming techniques and affinity
Safe techniques .
Unsafe techniques .
Suspect techniques.
Recommendations . .
Safe programming to avoid afflmty .
The COMMAREA
The TCTUA . . .
Using ENQ and DEQ commands W|th ENQMODEL resource def|n|t|ons
BTS containers
Unsafe programming for aff|n|ty .
Using the common work area .
Using GETMAIN SHARED storage . .
Using the LOAD PROGRAM HOLD command
Sharing task-lifetime storage
Using the WAIT EVENT command . . .
Using ENQ and DEQ commands without ENQMODEL resource deflnltlons
Suspect programming for affinity . e e e
Using temporary storage .
Using transient data . . .
Using the RETRIEVE WAIT and START commands
Using the START and CANCEL REQID commands .
Using the DELAY and CANCEL REQID commands .
Using the POST and CANCEL REQID commands
Detecting inter-transaction affinities . .
Inter-transaction affinities caused by appllcatlon generators .
Duration and scope of inter-transaction affinities .
Affinity transaction groups
Relations and lifetimes

Contents

. 198
. 199
. 200
. 200
. 202
. 204
. 204
. 204
. 205
. 206
. 207
. 208
. 209
. 209
. 210
. 210
. 210
. 212
. 215
. 216
. 216
. 216

. 221
. 222
. 222
. 222
. 223
. 223
. 223
. 224
. 224
. 224
. 225
. 226

228

. 229
. 229
. 229
. 230
. 231
. 232
. 234

235

. 236
. 236
. 239
. 240
. 241
. 243
. 244
. 246
. 246
. 246
. 247
. 247

Vii

Chapter 16. RecoverydeS|gn e e e e e e 255

Journaling 2L 15
Journal records . . . e e e e e ..o ... 255
Journal output synchronlzatlon 21 15

Syncpointing .. .0257

Chapter 17. Dealing with exception conditions 261

Default CICS exception handling. . . . e e e 261

Handling exception conditions by in-line code 2] 6724
How to use the RESP and RESP2 options 262
An example of exception handlinginC263
An example of exception handlinginCOBOL 264

Modifying default CICS exception handling 265

Using the HANDLE CONDITION command 267
RESP and NOHANDLE options268
How CICS keeps track of whattodoZ268

Using the HANDLE CONDITION ERROR command C e e o ..., 2689

Using the IGNORE CONDITION command269

Using the HANDLE ABEND command. . . e e 270

Using PUSH HANDLE and POP HANDLE commands e e e e s .2

Chapter 18. Abnormal termination recovery.273

Creating a program-level abendexit274

Retrying operations. .275

Trace e e e e e o278
Trace entry pomts N~ 4

Monitoring L L Lo oL s 2TT

Dump. L. ... 278

Chapter 19. The QUERY SECURITY command 281

Using the QUERY SECURITY command. 281
Security protection at the record or field level 281
CICS-defined resource identifiers.282
SEC system initialization parameter.282
Programming hints .282

Part 4. Data Management283

Chapter 20. An overview of filecontrol.287

VSAM data sets . . . 22 V4
Key-sequenced data set (KSDS) 2 < V4
Entry-sequenced dataset (ESDS)288
Relative record data set (RRDS)288
Empty datasets. .28
VSAM alternate indexes .289
Accessing flesinRLSmode289

BDAMdatasets. .. .29

CICS shared datatables. .29

Coupling facility data tables.29
Coupling facility data table models293

Techniques for sharing data. . . . 2 e 7

Using CICS commands to read records 2 [
Direct reading (using READ command)297
Sequential reading (browsing)298
Skip-sequential processing300

Using CICS commands to update records < [0 A

viii CICS TS for z/0S: CICS Application Programming Guide

Using CICS commands to delete records.
Deleting single records

Deleting groups of records (generlc delete) .

Read integrity .

Using CICS commands to add records
Adding to a KSDS .
Adding to an ESDS.
Adding to an RRDS.
Records that are already Iocked
Specifying record length .

Sequential adding of records (WRITE MASSINSERT command) .

File control command options .
The RIDFLD option. .
The INTO and SET options .
The FROM option .
The TOKEN option . . .

KEYLENGTH option for remote data sets
Transaction deadlocks. . . .
VSAM-detected deadlocks (RLS only)

Rules for avoiding deadlocks .

Chapter 21. File control—VSAM considerations .

VSAM record identification .
Key.

RLS Record level locking
Exclusive locks and shared Iocks
Conditional VSAM file update requests

File control implementation of NOSUSPEND

CICS locking for writing to ESDS.

Chapter 22. File control—BDAM considerations .

Identifying BDAM records

Block reference subfield .

Physical key subfield .

Deblocking argument subfield .
Browsing records from BDAM data sets .
Adding records to BDAM data sets .

Updating records from BDAM data sets

Chapter 23. Database control
DL/l databases
DB2 databases

Requests to DB2.

Chapter 24. CICS documents

Using the DOCUMENT programming mterface.

Creating a document .

Setting up document templates
Templates in a partitioned data set .
Templates in a CICS program .

Templates in CICS files, z/OS UNIX System Serwoes HFS flles temporary

storage, or transient data .
Creating templates in exit programs.

Relative byte address (RBA) and reIat|ve record number (RRN)
Locking of VSAM records in recoverable files . e
Update locks and delete locks (non-RLS mode only)

. 302
. 302
. 303
. 303
. 303
. 303
. 304
. 304
. 304
. 304
. 304
. 305
. 305
. 305
. 306
. 306
. 306
. 307
. 308
. 309

. 311
.31
.31
.31
. 312
. 312
. 313
. 313
. 316
. 316
. 316

. 319
. 319
. 319
. 319
. 319
. 320
. 321
. 322

. 323
. 323
. 323
. 323

. 325
. 325
. 325
. 326
. 326
. 327

. 327
. 328

ix

Programming with documents and document templates 329

Symbols and symbol lists32
Setting symbol values. .33
Embedded template commands33
Using templates in your applicaton 333
The lifespan of a document.334
Constructing a document.336
Using Bookmarks . . . G S 1<
Code page conversion for documents R 1)
Chapter 25. Named counterservers 341
The named counter fields .34
Named counterpools .342
Named counter options table342
Using the named counter EXEC interfface 343
Using the named counter CALL interface. 345
Application programming considerations 345
Syntax L L . L L34
Returncodes .355
Named counterrecovery. .358
Part 5. Data Communication. 361
Chapter 26. Terminal control.365
Terminal access method support. 366
Terminal control commands. 366
Send/receive mode. .367
Speakingoutof tun .368
Interrupting. .369
Terminal waits. . . . T e
Using data transmission commands N 740
What yougetonaRECEIVE370
Device control commands .37
Terminal device support .372
Finding out about your terminal e e375
EIB feedback on terminal control operatlons N Y
Using VTAM .3r8
Chaining inputdata. .378
Chaining outputdata .378
Handling logical records .379
Response protocol . . . R Y £°)
Using function management headers < 110
Preventing interruptions (bracket protocol) 380
Using sequential terminal support . . . e e e 38t
Coding considerations for sequential termmals. N 1< 2
Using TCAM e38
Coding for the TCAM/DCB mterface e e38
Using batch data interchange . . . e e383
Destination selection and |dent|f|cat|on e e e385
Definite response . . . G 1< 15
Waiting for function complet|on G 1< 15
Chapter 27. The 3270 family of terminals 387
History ofthe 3270 .387
Screenfields .38
Personal computers .388

X CICS TS for z/OS: CICS Application Programming Guide

The 3270 buffer .
The output datastream
3270 write commands .
3270 display fields .
Display characteristics.
3270 field attributes.
Protection
Modification
Intensity .
Base color .
Extended attributes .
Orders in the data stream
The start field order.
The modify field order .
The set buffer address order
The set attribute order.
Outbound data stream sample.
Input from a 3270 terminal .
Data keys .
Keyboard control keys
Attention keys.
Reading from a 3270 termmal
Inbound field format
Input data stream example .
Unformatted mode .

Chapter 28. CICS support for prmtlng
Formatting for CICS printers
CICS 3270 printers .
CICS 3270 printer options
PRINT option and print control b|t
ERASE option.

Line width options: L40, L64 L80 and HONEOM.

NLEOM option
FORMFEED . . .
PRINTERCOMP optlon

Non-3270 CICS printers .
SCS input .

Determining the characterlsncs of a CICS prlnter
BMS page size, 3270 printers .
Supporting multiple printer types .

Using CICS printers
Printing with a START command
Printing with transient data .
Printing with BMS routing

Using Non-CICS printers . .
Formatting for non-CICS prlnters
Non-CICS printers: Delivering the data.
Programming for non-CICS printers .
Notifying the print application .

Printing display screens .

CICS print key .

ISSUE PRINT and ISSUE COPY
Hardware print key .

BMS screen copy

. 390
. 390
. 390
. 392
. 392
. 392
. 393
. 393
. 394
. 394
. 394
. 395
. 395
. 396
. 397
. 398
. 398
. 400
. 400
. 401
. 401
. 403
. 403
. 404
. 404

. 407
. 407
. 408
. 409
. 409
. 410
. 410
. 410
.41
. 412
. 412
. 413
. 413
. 414
. 414
. 415
. 415
. 415
. 417
. 417
. 417
. 417
. 418
. 419
. 420
. 420
. 420
. 421
. 421

Contents

Xi

Chapter 29. CICS interface to JES . 423
Using the CICS interface to JES . . 425
Spool interface restrictions . . 425
Creating output spool files . . 425
Using the MVS internal reader. . 426
Reading input spool files . . 426
JES exits . . 427
Identifying spool files . . 427
Examples of SPOOL commands . 430
COBOL . . 430
PL/I . 431
c 431
ASSEMBLER . . 432
Chapter 30. CICS intercommunication . . 433
Design considerations . . 433
Programming language . 434
Transaction routing . . 434
Function shipping . 434
Distributed program link (DPL) . . 435
Using the distributed program link functlon . . 436
Examples of distributed program link . 437
Programming considerations for distributed program Imk . 442
Asynchronous processing . 446
Distributed transaction processmg (DTP) . . 446
Common Programming Interface Communications (CPI Commumcatlons) 446
External CICS interface (EXCI) . 447
Part 6. Basic Mapping Support (BMS) . . 449
Chapter 31. Basic mapping support . 453
BMS support levels. . . . 453
Minimum BMS . 453
Standard BMS . 453
Full BMS . . 454

A BMS output example . 455
Chapter 32. Creating the map . 459
Defining map fields: DFHMDF . . 459
Defining the map: DFHMDI 461
Defining the map set: DFHMSD . . 462
Writing BMS macros . . 463
Assembling the map . . 465
Physical and symbolic map sets . . 465
The SDF Il alternative . . 466
Grouping maps into map sets . . . 466
The Application Data Structure (ADS) . . 467
Using complex fields 467
Composite fields: the GRPNAME opt|on . . 468
Repeated fields: the OCCURS option . . 469
Block data . .o . 469
Support for non-3270 termmals . . 470
Output considerations for non-3270 dewces. . 470
Differences on input . 471
Special options for non-3270 termlnals . 472
Device-dependent maps . . 472

Xii

CICS TS for z/OS: CICS Application Programming Guide

Device dependent support: DDS .
Finding out about your terminal

Chapter 33. Sending BMS mapped output
Acquiring and defining storage for the maps.
BASE and STORAGE options .
Initializing the output map
Moving the variable data to the map
Setting the display characteristics
Changing the attributes . . .
Attribute value definitions: DFHBMSCA

Chapter 34. Using the SEND MAP command
SEND MAP control options . .
Other BMS SEND options: WAIT and LAST
Merging the symbolic and physical maps .
MAPONLY option .
DATAONLY option .
The SEND CONTROL command
Building the output screen
What you start with .
What is sent .
Where the values come from .
Outside the map . . .
Using GDDM and BMS
Positioning the cursor . .
Sending invalid data and other errors .
Output disposition options: TERMINAL, SET, and PAGING
Using SET .

Chapter 35. Receiving mapped data .
An input-output example . .
The symbolic input map .
Programming mapped input.
Using the RECEIVE MAP command
Getting storage for mapped input.
Formatted screen input
Modified data .
Upper case translation
Using the attention identifier
Using the HANDLE AID command .
Finding the cursor . .
Processing the mapped mput
Handling input errors .
Flagging errors
Saving the good input .
Rechecking.
Sending mapped output after mapped |nput
MAPFAIL and other exceptional conditions .
EOC condition.
Formatting other input .

Chapter 36. BMS logical messages .
Building logical messages

The SEND PAGE command

RETAIN and RELEASE .

Contents

. 473
. 475

. 477
. 477
. 478
. 478
. 479
. 479
. 480
. 481

. 483
. 483
. 484
. 484
. 484
. 485
. 485
. 485
. 486
. 486
. 486
. 487
. 488
. 488
. 489
. 489
. 490

. 493
. 493
. 495
. 496
. 496
. 497
. 497
. 498
. 499
. 499
. 499
. 500
. 500
. 501
. 501
. 502
. 502
. 503
. 504
. 504
. 505

. 507
. 507
. 508
. 508

xiii

The AUTOPAGE option e510

Terminal operator paging: the CSPG transactlon510
Logical message recovery .51
Chapter 37. Cumulative output — the ACCUM option 513
Floating maps: how BMS places maps using ACCUM 513
Page breaks: BMS overflow processingb514
Map placement rules e5bH15
ASSIGN options for cumulatlve processmg e 1 4
Input from a composite screen.b17
Performance considerations.517
Minimizing path length. .517
Reducing message lengthsb518
Chapter 38. Textoutput. .51
The SEND TEXT command.52
Text logical messages. .51
Textpagesb2
Text lines . . . O« Y2XC
Header and trailer formatb24
SEND TEXT MAPPED and SEND TEXT NOEDITb2s
Chapter 39. Messageroutingb27
Message destinatons .b27
Eligible terminals.b28
Destinations specified W|th OPCLASS onlyb28
OPCLASS and LIST omitted N Y24
Route list provided .b29
Route listformat. .530
Message delivery .53
Undeliverable messages.5b32
Recoverable messages .53
Message identification.533
Programming considerations with routlng e e eb34
Routing and page overflow53
Routing with SET N < X 15)
Interleaving a conversation W|th message routmg.53
Chapter 40. The MAPPINGDEYV facility537
SEND MAP with the MAPPINGDEV option537
RECEIVE MAP with the MAPPINGDEV option.538
Sample assembler MAPPINGDEV application 539
Chapter 41. Partition support54
Uses for partitioned screensb42
Scrolling.b4
Dataentry .b42
Lookaside .b42
Data comparison. .b4s
Errormessages .b43
Partition definiton .b43
3290 character size. .b4
Establishing partitioning . . . N o 12 22}
Partition options for BMS SEND commands O - 1)
Determining the active partiton . . . N S 1)
Partition options for BMS RECEIVE commands .«b4e

Xiv CICS TS for z/OS: CICS Application Programming Guide

ASSIGN options for partitonsbd6

Partitions and logical messagesb546
Partitions and routing . . . e e ebav
Attention identifiers and except|on condmons T T ¥ 4
Terminal sharing. .b48
Chapter 42. Support for special hardware 549
Logical device components O -
Defining logical device components - 7 1S
Sending data to a logical device component. 550
LDCs and logical messages5b0
LDCsandrouting .55
10/63 magnetic slotreader .55
Field selection features .bb51
Trigger field support .55
Cursor and pen-detectable fields.b5b2
Selectionfields .b553
Attention fields e553
BMS input from detectable flelds . eB553
Outboard formatting .bb4
Part 7. CICS management functionsb555
Chapter 43. Interval controlb557
Expiration times .bb8
Request identifiers .bh9
Chapter 44. Task control . . . e e e bet
Controlling sequence of access toresourcesb562
Chapter 45. Program control.b565
Program linking . . . e e e5b66
Application program Ioglcal Ievels eboo
Link to another program expecting return. 566
Passing data to other programsb67
COMMAREAbe7
Channels569
INPUTMSG. e
Using mixed addressing modes Y4
Using LINK to passdata. .5b72
Using RETURN topassdatab74
Chapter 46. Storage control N Y 44
Overview of CICS storage protection and transactlon |solat|onb78
Storage protection .578
Transaction isolation . . . e Y4
Defining the storage key for appllcatlons e e e580
System-wide storageareas.58
Task lifetime storage 581
Program working storage speC|f|caIIy for eX|t and PLT programs 581
Passing data by a COMMAREA 581
The GETMAIN command . . I o 1< 72
Selecting the execution and storage key . e58
User-key applications .b84
CICS-key applications. .bs
Using transaction isolaton .b87

Contents XV

MVS subspaces . . . e e e589

Subspaces and basespaces for transactlons e e e589
The common subspace and shared storage.590
Chapter 47. Transient datacontrol593
Intrapartition transient data queves 593
Extrapartition queues .bo
Indirect queues . . . N o1 |5
Automatic transaction |n|t|at|on (ATI) e e e e eb9%
Chapter 48. Temporary storage control 597
Temporary storage queues . . . e e .o by
Typical uses of temporary storage control . ebos
Part 8. Testing and debugging applications 601
Chapter 49. Testing applications603
Preparing the application for testing. 604
Preparing the system for testing604
Chapter 50. Execution diagnostic facmty (EDF) I o 0 V4
Restrictions when using EDF608
OPENTCBsandEDF. .610
Parameter list stacking .610
Security considerations .610
What does EDF display?. .61
The header.6M
Thebody612
Using EDF e e e0b18
Interrupting program execut|on e X)
Using EDF in single-screenmode620
Using EDF in dual-screenmode622
EDF and remote transactions622
EDF and non-terminal transactions622
EDF and DTP programs .623
StoppingEDF.624
Overtypingto makechanges624
EDFresponses0626
Using EDF menu functions .626
Chapter 51. Temporary storage browse (CEBR)633
Using the CEBR transactiono633
What does the CEBR transaction dlsplay’? I K15
The header. A < X 15
The commandarea. .635
Thebody63
The message line . . . T o X 15}
Using the CEBR function keys e e e63
Using the CEBR commands . . . e e837
Using the CEBR transaction with tran3|ent data e e8639
Chapter 52. Command-level interpreter (CECI) P < 78
What does CECI display? N < 72 8
The command line .. .64
The status line .642
Thebodyb46

XVi CICS TS for z/OS: CICS Application Programming Guide

The message line . . . e e0b46

CECI options on function keys eb4d6
UsingCECI. .6b48
Making changes . . . P X
Using the CECI function keys N 1510
Expandedarea .65
Variables. . . . N < 1e10)
The EXEC mterface block (EIB) e o 5724
Error messages display .652
Savingcommands .653
How CEClruns .65
CEClsessions65
Abends . . . e e e ebb4
Exception cond|t|ons e e e e65
Program control commands.655
Terminal sharing.0655
Shared storage: ENQ commands wrthout LENGTH optron655
Chapter 53. Using debuggers with CICS applications 657
Debugging profiles0b58
Using debugging profiles to select programs for debuggrng659
Using generic parameters in debugging profiles 661
Chapter 54. Debugging CICS applications from a workstation. 663
Preparing to debug applications from a workstation 663
Chapter 55. Using Debug Tool with CICS applications.665
About Debug Tool0665
Preparing to debug applrcatlons wrth Debug Tool665
Part9. Appendixes0667
Appendix A. Using the phonetic conversion subroutine DFHPHN 669
Appendix B. Migration for OS/VS COBOL programs 671
Conversion to Enterprise COBOL N 74
Based addressing67
Artificial assignments .673
Bibliography . . . S 74
The CICS Transaction Server for z/OS I|brary675
The entitlementset. e e675
PDF-onlybooks .675
Other CICSbooks .. .677
Books from related libraries.677
DU/I e eTT
DB2 . . . Y4 4
Screen def|n|t|on facrhty II (SDF II) P Y 4
Common programming interface678
Commonuseraccess. .678
Programming languages e0678
Teleprocessing Network Slmulator (TPNS) . e078
Language Environment: .678
Miscellaneous books . . . N V4
Determining if a publication is current N oY 4° |

Contents XVii

xviii

Accessibility .
Index .

Notices .
Trademarks.

Sending your comments to IBM

CICS TS for z/OS: CICS Application Programming Guide

. 681

. 683

. 701
. 702

. 703

Preface

What this book is about

This book gives guidance about the development of procedural application
programs that use the CICS® EXEC application programming interface to access
CICS services and resources; it complements the reference information in the
|CICS Application Programming Referencel manual. For guidance information on
debugging such CICS applications, see the|CICS Problem Determination Guide,
For guidance on developing application programs using the Java language, see
Java Applications in CICS| and for guidance on using the CICS OO classes, see
CICS C++ OO Class Libraries,

Who should read this book

This book is mainly for experienced application programmers. Those who are
relatively new to CICS should be able to understand it. If you are a system
programmer or system analyst, you should still find it useful.

What you need to know to understand this book

You must be able to program in COBOL, C, C++, PL/I, or assembler language, and
have a basic knowledge of CICS application programming, at the

|Programming CICS Applicationd level.

How to use this book

Read the parts covering what you need to know. (Each part has a full table of
contents to help you find what you want.) The book is a guide, not a reference
manual. On your first reading, it probably helps to work through any one part of it
more or less from start to finish.

Notes on terminology

API refers to the CICS command-level application programming interface unless
otherwise stated.

ASM is sometimes used as the abbreviation for assembler language.

MVS™ refers to the operating system, which can be either an element of zZ0S® ,
0S/390°, or MVS/Enterprise System Architecture System Product
(MVS/ESA SP).

VTAM®
refers to ACF/VTAM.

In the sample programs described in this book, the dollar symbol ($) is used as a
national currency symbol and is assumed to be assigned the EBCDIC code point
X'5B'. In some countries a different currency symbol, for example the pound symbol
(£), or the yen symbol (¥), is assigned the same EBCDIC code point. In these
countries, the appropriate currency symbol should be used instead of the dollar
symbol.

What is not covered in this book

Guidance for usage of the CICS Front End Programming Interface is not discussed
in this book. See the |CICS Front End Programming Interface User's Guidelfor
background information about |FEPI design considerations and programming
information about its[API|.

© Copyright IBM Corp. 1989, 2010 Xix

Guidance for usage of the EXEC CICS WEB commands is not discussed in this
book. See the [CICS Internet Guidelfor this information.

Guidance for the use of object oriented programming languages and techniques is
not included in this book. For guidance on developing application programs using

the Java language, see [Java Applications in CICS| and for guidance on using the

CICS 0O classes, see|CICS C++ OO Class Libraried

XX CICS TS for z/OS: CICS Application Programming Guide

Summary of changes

This book is based on the CICS Application Programming Guide for CICS
Transaction Server for z/OS, Version 2 Release 3. Changes from that edition are
marked by vertical bars in the left margin.

Changes for CICS Transaction Server for z/OS, Version 3 Release 1

The more significant changes for this edition are:
» Technical changes:

— [Enhanced inter-program data transfer: channels as modern-day COMMAREAS|
is a new chapter that describes how programs can use “channels” and
“containers” to exchange data.

Structural changes :

» The chapter “Writing Web-aware application programs” has been moved to the
CICS Internet Guide.

Changes for CICS Transaction Server for z/OS, Version 2 Release 3

The more significant changes for this edition are:
» Technical changes:

- [Chapter 53, “Using debuggers with CICS applications,” on page 657,
Chapter 54, “Debugging CICS applications from a workstation,” on page 663
and [Chapter 55, “Using Debug Tool with CICS applications,” on page 665|
have been added.

There are no significant structural changes.

Changes for CICS Transaction Server for z/OS, Version 2 Release 2

The more significant changes for this edition are:
» Technical changes:
— The use of Language Environment® is assumed in all programming guidance
information.
» Structural changes :

— Information in|“Creating a document” on page 325 describing the use of
document templates, has been expanded to incorporate information that was
previously in the CICS Internet Guide

Changes for CICS Transaction Server for z/OS, Version 2 Release 1

The following new function has been added:

» Support for an integrated translator. Some compilers can now interpret CICS
commands and translate them without the need for a separate translation step,
see [The integrated CICS translator’ on page 67|

Changes have been made to titles and headings throughout the book, to make
them more meaningful, particularly when the book is explored online in the CICS
Information Center. Links and cross references have been improved.

« Part 1, Writing CICS applications, has been expanded to include an introduction
to basic CICS concepts and an application development roadmap. See
|programming roadmap” on page 7.|

© Copyright IBM Corp. 1989, 2010 XXi

Part 2 in the previous edition, Object Oriented programming in CICS, has been
removed. For guidance on developing application programs using the Java
language, see the Java Applications in CICS component of the CICS Information
Center, and for guidance on using the CICS OO classes, see

Class Librarie

A new part 2 has been introduced, to bring together all information needed to
translate and compile CICS applications. Chapters describing the installation of
CICS programs and maps have been moved here from the CICS System
Definition Guide.

Part 3, Application design, now separates general application design concepts,
see |Chapter 11, “Application design,” on page 139, from application design for
performance, see [Chapter 12, “Design for performance,” on page 165.|

BMS has been restructured into separate chapters, to form a new Part 6.

The previous Appendix 1, mapping EXEC CICS commands to obsolete CICS
macros has been removed.

Changes for CICS Transaction Server for 0S/390, Version 1 Release 3

The following significant changes were made for this edition.

xXii

The addition of the JCICS Java classes to access CICS services from Java
application programs. Now moved to the Java Applications in CICS component of|
[the CICS Information Center]

Support for running CICS Java programs using the VisualAge® for Java,
Enterprise Edition for 0S/390. Now moved to [the Java Applications in CICSY
[component of the CICS Information Center|

Support for running CICS Java programs using the CICS Java Virtual Machine
(JVM). Now moved to [the Java Applications in CICS component of the CICS|
[Information Centen

The addition of sysplex-wide ENQ and DEQ. See [‘Using ENQ and DEQ|
[commands with ENQMODEL resource definitions” on page 228

The addition of support for coupling facility data tables (CFDT). See
[facility data tables” on page 292

Support for named counter servers. See [Chapter 25, “Named counter servers,]
on page 341.
Support for documents, and the EXEC CICS DOCUMENT commands. See
[Chapter 24, “CICS documents,” on page 325.|

The programming considerations section has been reorganized into separate
chapters for each supported language, including new chapters for OO and Java
support in CICS.

CICS TS for z/OS: CICS Application Programming Guide

Part 1. Writing CICS Applications

Chapter 1. What is a CICS application?
CICS programs, transactions and tasks

Chapter 2. CICS programming .

CICS programming commands
System programming commands.
EXEC interface block (EIB)

Translation . . .
Translator Options .

Testing for CICS. .

CICS programming roadmap .

Chapter 3. Language Environment
Language Environment services
Using Language Environment Abend- handhng .
User-written Language Environment condition handlers .
Managing Language Environment storage .
Mixing languages in Language Environment .
Using Dynamic Link Libraries and Language Enwronment
Defining runtime options for Language Environment .
Runtime options in child enclaves .
CEEBXITA coding.
Determining which options were used

Writing a CEEBINT initialization exit for Language Envrronment .

Chapter 4. Programming in COBOL
COBOL programming considerations .
COBOL programming restrictions .
Language Environment CBLPSHPOP optlon
Using the DL/I CALL interface . . .
Considerations for VS COBOL I programs
Using based addressing with COBOL
Using WITH DEBUGGING MODE .
Calling subprograms from COBOL.
Rules for calling subprograms
Translation
Compilation .
Link-editing .
CICS CSD entries W|thout program autornstall
Return from subprogram
Language of subprogram .
Contents of subprogram
Passing parameters to subprogram
Storage
CICS condition, AID and abend handlrng
Location of subprogram. . .
Flow of control between programs and subprograms .
Using the COBOL2 and COBOLS3 translator options .
Literals intervening in blank lines . .o
Lower case characters .
Sequence numbers containing any character
REPLACE statement.
Batch compilation .

© Copyright IBM Corp. 1989, 2010

W w

NNOOOo O OO;

Nested programs .
Integrated CICS translator
Translator action
Comments in translator |nput .
Nesting: what the application programmer must do
An example of a nested program .

Reference modification .

Global variables

Comma and semicolon as deI|m|ters

Symbolic character definition .

Chapter 5. Programming in C and C++ .
C and C++ programming considerations
XPLink considerations for C and C++ programmlng
XPLink, and the X8 and X9 TCBs .

Writing C and C++ programs, which are to be complled W|th the XPLINK

option, for the CICS environment .
Passing control between XPLink and non- XPLlnk objects .

Changing CICS definitions to obtain CICS support for objects complled

with the XPLINK option .

Global User exits and XPLink
Passing arguments in C or C++.
Accessing the EIB. .

Naming EIB fields .

Data types in EIB fields.
Locale support for C and C++
Programming in C++.

Restrictions .

Chapter 6. Programming in PL/I .
PL/l programming restrictions
Language Environment considerations for PL/I appllcat|ons

Chapter 7. Programming in Assembler .

Language Environment considerations for Assembler appllcanons .

Calling Assembler programs .

2 CICS TS for z/OS: CICS Application Programming Guide

. 38
. 38
. 38
. 39
. 39
. 39
.41
. 42
. 42
. 42

. 43
. 43
. 46
. 47

. 48
. 48

. 48
. 48
. 49
. 50
. 50
. 50
. 51
. 51
. 51

. 53
. 53
. 54

. 57
. 58
. 60

Chapter 1. What is a CICS application?

An application is a collection of related programs that together perform a business
operation, such as processing a product order or preparing a company payroll.
CICS applications execute under CICS control, using CICS services and interfaces
to access programs and files.

CICS is a transaction processing subsystem. That means that it provides services
for you to run applications online, by request, at the same time as many other users
are submitting requests to run the same applications, using the same files and
programs. CICS manages the sharing of resources; integrity of data and
prioritization of execution, with fast response.

CICS applications are traditionally run by submitting a transaction request.
Execution of the transaction consists of running one or more application programs
that implement the required function. In CICS documentation you may find CICS
application programs sometimes simply called programs, and sometimes the term
transaction is used to imply the processing done by the application programs.

CICS applications can also take the form of Enterprise JavaBeans. You can find out
more about this form of programming in |Java Applications in CICS in the CICS|
Information Center|

You should note that the term transaction is now used extensively in the IT
industry to describe a unit of recovery or what CICS calls a unit of work. This is
typically a complete operation that is recoverable; it can be committed or backed
out as an entirety as a result of programmed command or system failure. In many
cases the scope of a CICS transaction is also a single unit of work, but you should
be aware of the difference in meaning when reading CICS documentation.

CICS programs, transactions and tasks

To develop and run CICS applications, you need to understand the relationship
between CICS programs, transactions and tasks. These terms are used throughout
CICS documentation and appear in many commands.:

Transaction

A transaction is a piece of processing initiated by a single request. This is
usually from an end-user at a terminal, but may also be made from a Web
page, from a remote workstation program, from an application in another
CICS system or triggered automatically at a predefined time. TheCICS
and the [CICS External Interfaces Guide]describe different
ways of running CICS transactions.

A single transaction consists of one or more application programs that,
when run, carry out the processing needed.

However, the term transaction is used in CICS to mean both a single
event and all other transactions of the same type. You describe each
transaction type to CICS with a TRANSACTION resource definition. This
definition gives the transaction type a name (the transaction identifier, or
TRANSID) and tells CICS several things about the work to be done; such
as what program to invoke first, and what kind of authentication is required
throughout the execution of the transaction.

© Copyright IBM Corp. 1989, 2010 3

You run a transaction by submitting its TRANSID to CICS. CICS uses the
information recorded in the TRANSACTION definition to establish the
correct execution environment, and starts the first program.

The term transaction is now used extensively in the IT industry to describe
a unit of recovery or what CICS calls a unit of work. This is typically a
complete operation that is recoverable; it can be committed or backed out
as an entirety as a result of programmed command or system failure. In
many cases the scope of a CICS transaction is also a single unit of work,
but you should be aware of the difference in meaning when reading
non-CICS documentation.

Task You will also see the word task used extensively in CICS documentation.
This word also has a specific meaning in CICS. When CICS receives a
request to run a transaction, it starts a new task that is associated with this
one instance of the execution of the transaction. type. That is, one
execution of a transaction, with a particular set of data, usually on behalf of
a particular user at a particular terminal. You can also consider it as
analogous to a thread.. When the transaction completes, the task is
terminated.

4 CICS TS for z/OS: CICS Application Programming Guide

Chapter 2. CICS programming

You write a CICS program in much the same way as you write any other program.
You can use COBOL, C, C++, Java, PL/I, or assembler language to write CICS
application programs. Most of the processing logic is expressed in standard
language statements, but you use CICS commands, or the Java and C++ class
libraries to request CICS services.

This book describes the use of the CICS command level programming interface,
'EXEC CICS', that can be used in COBOL, C, C++, PL/I or assembler programs.
These commands are defined in detail in the CICS Application Programming
Reference.

Programming in Java with the JCICS class library is described in|the Java|
IApplications in CICS component of the CICS Information CenterI

Programming in C++ with the CICS C++ classes is described in the CICS C++ OO
Class Libraries documentation.

For information about writing Web applications to process HTTP/1.0 requests and
responses, see [the CICS Internet Guidg,

For further guidance on language use with CICS, see|Chapter 4, “Programming in|
COBOL,” on page 21,[[Chapter 5, “Programming in C and C++,” on page 43
Chapter 6, “Programming in PL/I,” on page 53

CICS allows you to use SQL statements, DLI requests, CPI statements, and the
CICS Front End Programming Interface (FEPI) commands in your program as well
as CICS commands. You need to consult additional manuals for information:

* SQL Reference manual and the Application Programming and SQL Guide (for
SQL)

* Application Programming:EXEC DLI Commands manual and the Application
Programming: DL/I Calls manual (for DL/I)

* IBM SAA: CPI Reference manual and the SAA Common Programming Interface
for Resource Recovery Reference manual (for CPI)

* CICS Front End Programming Interface User's Guide (for programming
information about FEPI commands)

CICS programming commands

The general format of a CICS command is EXECUTE CICS (or EXEC CICS)
followed by the name of the required command and possibly one or more options.

You can write many application programs using the CICS command-level interface
without any knowledge of, or reference to, the fields in the CICS control blocks and
storage areas. However, you might need to get information that is valid outside the
local environment of your application program.

You can use the ADDRESS and ASSIGN commands to access such information.
For programming information about these commands, see [the CICS Application|
|Programming Referencel manual.

When using the ADDRESS and ASSIGN commands, various fields can be read but
should not be set or used in any other way. This means that you should not use

© Copyright IBM Corp. 1989, 2010 5

any of the CICS fields as arguments in CICS commands, because these fields may
be altered by the EXEC interface modules.

System programming commands

The INQUIRE, SET, and PERFORM commands allow application programs to
access information about CICS resources. The application program can retrieve and
modify information for CICS data sets, terminals, system entries, mode names,
system attributes, programs, and transactions. These commands plus the spool
commands of the CICS interface to JES, are primarily for the use of the system
programmer. For programming information, see |the CICS System Programmind
|Reference manuall

EXEC interface block (EIB)

In addition to the usual CICS control blocks, each task in a command-level
environment has a control block known as the EXEC interface block (EIB)
associated with it. An application program can access all of the fields in the EIB by
name. The EIB contains information that is useful during the execution of an
application program, such as the transaction identifier, the time and date (initially
when the task is started, and subsequently, if updated by the application program
using ASKTIME), and the cursor position on a display device. The EIB also contains
information that is helpful when a dump is used to debug a program. For
programming information about EIB fields, see fthe CICS Application Programming{
|Reference manuall

Translation

Most compilers (and assemblers) cannot process CICS commands directly. This
means that an additional step is needed to convert your program into executable
code. This step is called translation, and consists of converting CICS commands
into the language in which the rest of the program is coded, so that the compiler (or
assembler) can understand them.

Some compilers now contain integrated translators that can interpret CICS
commands and convert them automatically to calls to CICS service routines. If you
use one of these compilers, you do not need to perform the translation tasks
described in[The translation process” on page 69.|

CICS provides a translator program for each of the languages in which you may
write, to handle both EXEC CICS and EXEC DLI statements.

Translator Options

You can specify a number of options for the translation process, and you may need
to do this for certain types of programs. If you are using EXEC DLI, for example,
you need to tell the translator this fact. [‘Using a CICS translator” on page 73
explains how to specify options, and |“Defining translator options” on page 74
defines the options available.

6 CICS TS for z/OS: CICS Application Programming Guide

Testing for CICS

Your program can determine whether it is running in CICS in two different ways:
iscics
If you are adapting an existing C language program or writing a new program
that is designed to run outside CICS as well as under CICS, the C language
iscics() function may prove useful. It returns a non-zero value if your program is

currently running under CICS, or zero otherwise. This function is an extension
to the C library.

DFH3QSS
Your program can call the DFH3QSS program to query the CICS environment
and API capability. Link DFH3QSS statically linked into your own application.
On return, register 15 addresses a result structure that consists of a half-word
length (that includes itself) followed by a reserved half-word (currently zero)
followed by a bit string:

Bit 0 When set to 1, this means that the caller is running in a CICS
environment (on a CICS-managed TCB or one of its
descendants).

Bit 1 When set to 1, this means that the CICS API is available to the

caller (in the current PSW key, ASC-mode, AMODE and
cross-memory environment).

The output structure remains accessible as long as the TCB under which the
request was issued has not terminated and DFH3QSS itself is still present in virtual
storage. Any change of execution state (such as PSW key, ASC-mode, AMODE or
cross-memory environment) might affect the availability of the CICS API. Registers
are preserved.

CICS programming roadmap

Follow these steps to develop a CICS application that uses the EXEC CICS
command level programming interface:

1. Design your application, identifying the CICS resources and services you will
use. See|Chapter 11, “Application design,” on page 139|and|Chapter 12
[‘Design for performance,” on page 165|for guidance on designing CICS
applications.

2. Write your program in the language of your choice, including EXEC CICS
commands to request CICS services. See|the CICS Application Programming
for a list of CICS commands.

3. If you are using a compiler that incorporates [‘The integrated CICS translator” on|
page 67,/you will only need to compile your program, and then install it in CICS,

using the process described in|“Program installation roadmap” on page 99.|
Otherwise, you will need to define translator options for your program, using the
process described in|“Using a CICS translator” on page 73,| and then translate
and compile your program, and install it in CICS, using the process described in
[‘Program installation roadmap” on page 99|

4. Define your program and related transaction to CICS with [PROGRAM resource
definitions| and TRANSACTION resource definitions| as described infthe CICS
Resource Definition Guide| .

5. Define any CICS resources that your program uses, such as files, queues or

terminals.

Chapter 2. CICS programming 7

6. Make the resources known to CICS using|the CEDA INSTALL command|
[described in the CICS Resource Definition Guide]

7. Run your program, by entering the transaction identifier at a CICS terminal, or
by using any of the methods described in fthe CICS External Interfaces Guidel
andthe CICS Internet Guidé,

8 CICS TS for z/OS: CICS Application Programming Guide

Chapter 3. Language Environment

Language Environment, supplied as an element of z/OS, is designed to provide a
common set of runtime libraries to replace the native runtime libraries that were
provided with older compilers such as VS COBOL I, OS PL/l and C/370™,

Before the introduction of Language Environment, each of the high-level languages
(HLLs) had to provide a separate runtime environment. With Language
Environment, you use one runtime environment for your applications, regardless of
the programming language or system resource needs, because most system
dependencies have been removed. This common environment offers two significant
advantages:

1. You can mix all the languages supported by CICS in a single program.

2. The same Language Environment callable services are available to all
programs. This means, for example, that:

* A linked-list created with storage obtained using Language Environment
callable services in a PL/I program can be processed later and the storage
freed using the callable services from a COBOL routine.

* The currency symbol to be used on a series of reports can be set in an
assembler routine, even though the reports themselves are produced by
COBOL programs.

» System messages from programs written in different languages are all sent to
the same output destination.

See the z/0OS: Language Environment Concepts Guide for more information.

Because of these advantages, high-level language support under CICS depends
upon Language Environment.

The CICS programming guidance documentation requires that your CICS system is
using the services of Language Environment, which provides a common runtime
environment for IBM® implementations of assembler and those high-level languages
(HLLs) supported by CICS, namely COBOL, PL/I, C, and C++.

CICS supports application programs compiled using most of the compilers that are
supported by Language Environment. For a list of compilers that are supported in
this release of CICS Transaction Server for z/OS, seelthe CICS Release Guide,

Most of the compilers supported by CICS and Language Environment are
Language Environment-conforming compilers, meaning that programs compiled by
these compilers can take advantage of all Language Environment facilities in a
CICS region. CICS and Language Environment also support programs compiled by
some pre-Language Environment compilers (which are not Language
Environment-conforming). However, CICS does not support all the pre-Language
Environment compilers which are supported by Language Environment. The
following pre-Language Environment compilers are supported by Language
Environment, but are unsupported in this release of CICS:

* OS PL/1 Versions 1 and 2

» C/370 V1 and V2

The following pre-Language Environment compilers are supported by Language
Environment and supported by CICS:

» AD/Cycle C/370 V1R1

© Copyright IBM Corp. 1989, 2010 9

*+ VS COBOL I

Note: Support for OS/VS COBOL programs is now withdrawn. These programs,
which had runtime support in CICS Transaction Server for z/OS Version 2,
cannot run under CICS Transaction Server for z/OS Version 3. OS/VS
COBOL programs must be upgraded to a supported level of COBOL, and
recompiled against a level of COBOL compiler supported by CICS.

See|Appendix B, “Migration for OS/VS COBOL programs,” on page 671|for
notes on converting OS/VS COBOL programs to Enterprise COBOL. The
Enterprise COBOL for z/OS: Compiler and Run-Time Migration Guide has
more detailed information about language differences, and describes facilities
to help with conversion.

Applications compiled and linked with pre-Language Environment compilers usually
execute successfully using the runtime support provided by Language Environment.
They do not usually have to be recompiled or re-link-edited. In some circumstances,
you might need to adjust Language Environment runtime options to enable these
applications to execute correctly. Refer to the Language Environment Run-Time
Application Migration Guide, and the Compiler and Run-Time Migration Guide for
the language in use, for further information. Because these compilers are not
Language Environment conforming, programs compiled by these compilers cannot
take advantage of all Language Environment facilities in a CICS region.

The native runtime libraries provided with pre-Language Environment compilers are
not supported. Language libraries, other than the Language Environment libraries,
should not be present in your CICS startup JCL. If, perhaps for commonality with
other CICS systems, the JCL for your CICS startup job includes other language
libraries, the Language Environment libraries must be above all the other language
libraries in the JCL concatenations of the CICS startup job for both STEPLIB and
DFHRPL. This ensures that the programs are processed by Language Environment.

When modifying existing application programs, or writing new programs, you must
use a compiler supported by Language Environment. This requires that your
application programs must be link-edited using the Language Environment
SCEELKED library, and this in turn means that the resulting application load module
can execute only under Language Environment.

CICS Transaction Server for z/OS Version 3 allows you to produce Language
Environment-conforming assembler MAIN programs. For more information about
assembler programs, see [Chapter 7, “Programming in Assembler,” on page 57.|

Language Environment services

The following points apply to all programs using Language Environment under
CICS.

Callable services
Language Environment provides callable services, which are classified in the
following categories:

Storage services
These allow you to allocate and free storage from the Language
Environment heaps.

10 CICS TS for /OS: CICS Application Programming Guide

Error handling services
These provide a common method of obtaining information to enable you to
process errors.

Message services
These provide a common method of handling and issuing messages.

Date and time
These allow you to read, calculate, and write values representing the date
and time. Language Environment offers unique pattern-matching capabilities
that let you process almost any date and time format contained in an input
record or produced by operating system services.

National language support
These allow you to customize Language Environment output (such as
messages, RPTOPTS reports, RPTSTG reports, and dumps) for a given
country.

Locale
These allow you to customize culturally-sensitive output for a given national
language, country, and codeset by specifying a locale name.

General
These are a set of callable services that are not directly related to a specific
Language Environment function, for example, dump.

Mathematical
These allow you to perform standard mathematical computations.

These services are normally only available to programs compiled with
Language Environment-conforming compilers. As an exception, VS COBOL II
programs can make dynamic calls to the date and time callable services, but
they cannot make any other dynamic calls or any static calls to Language
Environment callable services.

For further information about the details of these services, see the z/OS:
Language Environment Programming Guide. For information about the syntax
required to call any of the services, see the z/OS: Language Environment
Programming Reference.

CICS condition and AID handling

Language Environment condition handling does not alter the behavior of
applications that use CICS HANDLE CONDITION or HANDLE AID commands.
Language Environment is not involved in the handling of CICS-defined
exception conditions, which are raised and handled only by CICS. Similarly, AID
detection is a CICS function unaffected by Language Environment .

Abend handling

Language Environment Abend handling depends on the use of CICS HANDLE
ABEND. See |“Using Language Environment Abend-handling” on page 12|for
details.

Storage

Language Environment uses storage obtained from CICS for each run-unit. See
|"Managing Language Environment storage” on page 13| for information about
CICS parameters to control this.

Message and dump destinations

When the CEEMOUT (dispatch a message) and CEE3DMP (generate dump)
services are running under CICS, both the messages and dumps are sent to a
transient data queue called CESE, and not to their usual destinations. These

Chapter 3. Language Environment 11

usual destinations are the ddname specified in the MSGFILE runtime option for
messages and the ddname given in the fname argument of the CEE3DMP
service for dumps. CICS ignores both of these ddnames.

Using Language Environment Abend-handling

When a CICS application is running under Language Environment , the action taken
when a task is scheduled for abnormal termination depends on whether a CICS
HANDLE ABEND is active or not active.

When a HANDLE ABEND is active, Language Environment condition handling does
not gain control for any abends or program interrupts, and any user-written
condition handlers that have been established by CEEHDLR are ignored. Instead,
the action defined in the CICS HANDLE ABEND takes place.

When a CICS HANDLE ABEND is not active, Language Environment condition
handling does gain control for abends and program interrupts if the runtime option
TRAP(ON) is specified. Normal Language Environment condition handling is then
performed. If TRAP(OFF) is specified, no error handling takes place; the abend
proceeds. For details of the actions taken during normal Language Environment
condition handling, see the z/OS: Language Environment Programming Guide.

User-written Language Environment condition handlers

The runtime option USRHDLR allows you to register a user-written condition
handler at the highest level. At a lower level, for example after a subroutine CALL,
you can use the CEEHDLR service to register a condition handler for that level.
This lower level handler is automatically unregistered on return from the lower level.
If desired you can explicitly unregister it by using the CEEHDLU service. For an
explanation of stack levels and for details of the USRHDLR runtime option and the
CEEHDLR and CEEHDLU services, see the z/OS: Language Environment
Programming Guide.

If you write your own user-written Language Environment condition handler (other
than in COBOL), you can use most CICS commands, provided they are coded with
a NOHANDLE, RESP or RESP2 option, to prevent further conditions being raised
during execution of the condition handler. The only commands you cannot use are
the following, which must not appear in either the condition handler or any program
it calls:

* ABEND

« HANDLE ABEND

 HANDLE AID

« HANDLE CONDITION

* IGNORE CONDITION

+ POP HANDLE

 PUSH HANDLE

Unless you use the NOLINKAGE translator option (see |“NOLINKAGE” on page 80|),
do not use the CICS translator to translate a COBOL user-written condition handler
that you have registered for a routine using the CEEHDLR service. This is because
the CICS translator adds two extra arguments to the PROCEDURE DIVISION
header of the COBOL program, the EXEC Interface Block (EIB) and the
COMMAREA. These arguments do not match the arguments passed by Language
Environment. A COBOL condition handler cannot, therefore, contain any CICS
commands.

12 CICS TS for /OS: CICS Application Programming Guide

However, a user-written condition handler can call a subroutine to perform CICS
commands (and this could be a COBOL routine). If you need to pass arguments to
this subroutine, place two dummy arguments before them in the caller. The called
subroutine must issue EXEC CICS ADDRESS EIB(DFHEIPTR) before executing
any other CICS commands.

For full details of the required interface to any Language Environment condition
handling routine, see the z/OS: Language Environment Programming Guide.

Managing Language Environment storage

When each program is first used, Language Environment tells CICS how much
storage the run unit work area (RUWA) requires. The allocation of storage depends
on the setting of the CICS system initialization parameter, RUWAPOOL.

If you specify RUWAPOOL=NO, at the start of each CICS link level, CICS issues a
GETMAIN for this storage and passes it to Language Environment to use for its
control blocks and for storage areas such as STACK, LIBSTACK, and HEAP. The
storage is acquired in the default key specified on the transaction. The storage is
freed (using FREEMAIN) when the program terminates.

If you specify RUWAPOOL=YES, the first run of a transaction is the same as with
RUWAPOOL=NO, but CICS keeps a history of the total storage for RUWAs that is
requested to run the transaction. This means that when the transaction is run again,
CICS issues a single GETMAIN for the total storage (and a single FREEMAIN at
task end), creating a RUWAPOOL. If the transaction follows the same path, CICS
allocates the storage from the RUWAPOOL, and no further GETMAIN has to be
issued. If more storage is required for RUWAs because of different or extra CICS
links, CICS issues a GETMAIN and updates the history, so that next time the single
GETMAIN (and FREEMAIN) is for the larger amount. For transactions that issue a
large number of CICS LINK commands, the performance improvement can be
considerable.

If you specify AUTODST=YES, CICS indicates to Language Environment that it is
able to support dynamic storage tuning (see [the CICS System Definition Guide).

If a program specifies a runtime option of ALL31(OFF) and Language Environment
needs to use storage below the 16MB line, two areas of storage are allocated, one
below 16MB and one above the 16MB line.

If necessary, any application can obtain CICSDATAKEY or USERDATAKEY storage
by using a CICS GETMAIN command. However, a program with an EXECKEY of
USER cannot use CICSDATAKEY storage.

Mixing languages in Language Environment

This section tells you how to build an application that is composed of programs that
have been written in different high-level source languages.

Assembler subroutines called from an HLL program are fairly straightforward and
not uncommon. A subroutine called from one HLL but written in another needs
much more careful consideration and involves what is called interlanguage
communication (ILC). Language Environment defines an ILC application as one
built of two or more HLLs and, optionally, assembler. See z/OS Language
Environment Writing Interlanguage Communication Applications for full details on
this subject.

Chapter 3. Language Environment 13

Language Environment dictates that if there is any ILC within a run unit under
CICS, each compile unit must be compiled with a Language Environment-
conforming compiler. CICS supports three HLLs: C/C++, COBOL, and PL/I. We
consider the interfaces in pairs. If your application contains only two HLLs, consult
the appropriate section. If your application contains all three HLLs, consult those
sections corresponding to each of the interfaces within your application.

C/C++ and COBOL
The conditions under which Language Environment supports ILC between
routines written in C/C++ and COBOL depend on the following:

Whether the language is C or C++

Which COBOL compiler is being used and whether or not DLL is specified as
a compiler option

Whether the call is static or dynamic

Whether the function being invoked is within the module or exported from a
DLL

Whether or not the program is reentrant

What, if any, #pragma linkage statement you have in your C program
Whether your C program exports functions or variables

What, if any, extern statement you have in your C++ program

The results of all this are specified in five tables in zZOS Language Environment
Writing Interlanguage Communication Applications; you should consult this book
if your application mixes C/C++ and COBOL.

C/C++ and PL/I
Under CICS, if all the components of your C/C++ and PL/I application are
reentrant, Language Environment supports ILC between routines compiled by
0S/390 C/C++ and PL/I for MVS & VM or VisualAge PL/I for OS/390 as follows:

C/C++ routines can statically call PL/I routines and PL/I routines can statically
call C/C++ routines.

C/C++ routines can fetch() PL/I routines that have OPTIONS(FETCHABLE)
specified. If the called routine contains any CICS commands, then C/C++
must pass the EIB and the COMMAREA as the first two parameters on the
call statement.

PL/I routines can FETCH only those OS/390 C/C++ routines that have not
been processed by the CICS translator. This is because during the dynamic
call certain static fields created by the translator cannot be correctly set.

COBOL and PL/I
Under CICS, Language Environment supports ILC between routines compiled
with Language Environment-supported COBOL and PL/I compilers, as follows:

COBOL routines can statically call PL/I routines, and PL/I routines can
statically call COBOL routines.

COBOL programs can dynamically call PL/I routines that have
OPTIONS(FETCHABLE) specified and PL/I routines can FETCH COBOL
programs.

If the called routine contains any CICS commands then the calling routine must
pass the EIB and the COMMAREA as the first two parameters on the CALL
statement.

Assembler
The following rules apply:

14 CICS TS for /OS: CICS Application Programming Guide

* You can make static or dynamic calls from any Language
Environment-conforming HLL program to a Language Environment-
conforming assembler subroutine. Conversely, a Language
Environment-conforming assembler routine can make a static call to any
Language Environment-conforming routine, and can dynamically load another
routine, either assembler or HLL, by using either of the Language
Environment macros CEEFETCH or CEELOAD.

* You cannot delete (release) an ILC module that has been loaded using
CEELOAD.

* You can use the CEERELES macro to release an ILC module which has
been fetched using CEEFETCH.

» Use the language that fetched it to delete an assembler routine. This can
only be done from C/C++, COBOL, and PL/I, if there is no ILC with PL/I in
the module being released.

Additionally, you can make static calls from any Language Environment-
conforming HLL program or assembler subroutine to a non-conforming
assembler subroutine. However, a non-conforming assembler routine cannot
make a static call to any Language Environment-conforming routine, nor can it
fetch or load a conforming routine, since it cannot use the Language
Environment macros.

Note: For assembler to call C or C++, you must include the following

statement:
C #pragma linkage(,0S)
C++ extern "0S"

DL/I
If you are using DL/I in your ILC application under CICS, calls to DL/I, either by
an EXEC DLI statement or by a CALL xxxTDLI, can be made only in programs
with the same language as the main program.

Language Environment does not support CALL CEETDLI under CICS.

Using Dynamic Link Libraries and Language Environment

The z/OS dynamic link library (DLL) facility provides a mechanism for packaging
programs and data into load modules (DLLs) that can be accessed from other
separate load modules. A DLL can export symbols representing routines that can be
called from outside the DLL, and can import symbols representing routines or data
or both in other DLLs, avoiding the need to link the target routines into the same
load module as the referencing routine. When an application references a separate
DLL for the first time, the system automatically loads the DLL into memory.

You should define all potential DLL executable modules as PROGRAM resources to
CICS.

DLL support is available for applications under CICS where the code has been
compiled using any of the compilers listed in the zZOS Language Environment
Programming Guide. See that manual for more information on building and using
DLLs.

Chapter 3. Language Environment 15

Defining runtime options for Language Environment

Language Environment provides runtime options to control your program's
processing. Under CICS, exactly which options apply to the execution of a particular
program depends not only on the program, but also on how it is run. Java programs
and programs initiated from the Web or through CICS IIOP services use the
Language Environment preinitialization module, CEEPIPI. This has its own version
of the CEEDOPT CSECT and such programs get their runtime options from this
CSECT. For normal CICS tasks, such as those started from a terminal, use any of
the methods listed below to set the Language Environment runtime options. The
methods are shown in the order in which they are processed. Each setting could be
overridden by a following one. This is, in effect, a reverse order of precedence.

1. In the CEEDOPT CSECT, where the installation default options for CICS are
located. This CSECT is generated from the CEECOPT sample and is
incorporated into the CEECCICS load module.

2. In the CEEROPT CSECT, where the region-wide default options are located.
This CSECT is link-edited into a load module of the same name and placed in a
data set in the DFHRPL library concatenation for the CICS job.

3. The user replacable program DFHAPXPO (applies to XPLINK programs only).

4. In the CEEUOPT CSECT, where user-supplied application program-level
runtime options are located. This CSECT is linked with the application program
itself.

5. In the application source code using the programming language options
statements, as follows:

* In C programs, through the #pragma runopts statement in the program
source. For example:
#pragma runopts(rptstg(on))

* In PL/I programs, through the PLIXOPT declaration statement within the
program. For example:
DECLARE PLIXOPT CHARACTER(18) VARYING STATIC EXTERNAL INIT('RPTOPTS(ON) NOSTAE');

Note: There is no source code mechanism that allows the setting of runtime
options within COBOL programs or within C++ programs.

6. In the Language Environment options specified in a debugging profile. For more
information, see |“Debugging profiles” on page 658.|

In most installations, the first method in the list above is not available to application
programmers, and the second is often not available. However, application
programmer can use the last two methods. They are in effect equivalent (some of
the newer compilers make them equivalent by generating a CEEUOPT CSECT
when PLIXOPT is declared). Choose either methods 3 or method 4; do not attempt
to use both methods. For details of generating a CEEUOPT CSECT to link with
your application, see z/OS Language Environment Customization.

Notes:

1. Both CEEDOPT and CEEROPT are able to set any option so that it cannot be
overridden by a later specification.

2. Under CICS many of the Language Environment option settings are ignored.
These are all the Fortran-only options plus the following:

ABPERC AIXBLD CBLOPTS CBLQDA
DEBUG EXECOPS INTERRUPT LIBRARY
MSGFILE NONIPTSTACK PLITASKCOUNT POSIX

16 CICS TS for /OS: CICS Application Programming Guide

RTEREUS RTLS SIMVRD THREADHEAP
VERSION

3. CICS provides an environment variable called CICSVAR to allow the

CONCURRENCY and API program attributes to be closely associated with the
application program itself by using the ENVAR runtime option. Whilst it may be
used in a CEEDOPT CSECT to set an installation default, it is most useful to be
set in a CEEUOPT CSECT linkedited with an individual program, or set via a
#pragma statement in the source of a C or C++ program, or set via a PLIXOPT
statement in a PL/l program.

For example, when a program has been coded to threadsafe standards it can
be defined as such without having to change an PROGRAM resource definition,
or adhere to an installation defined naming standard to allow a program
autoinstall exit to install it with the correct attributes. CICSVAR can be used for
Language Environment conforming assembler, for PLI, for COBOL and for C
and C++ programs (both those compiled with the XPLINK option, and those
compiled without it) that have been compiled using a Language Environment
conforming compiler. CICSVAR cannot be used for assembler programs that are
not Language Environment conforming or for java programs.

Use of CICSVAR overrides the settings on a PROGRAM resource definition
installed via standard RDO interfaces, or via program autoinstall. Prior to the
program being run for the first time, an INQUIRE PROGRAM command shows
the keyword settings from the program definition. Once the application has been
run once, an INQUIRE PROGRAM command shows the settings with any
CICSVAR overrides applied. CICSVAR can take one of three values,
QUASIRENT, THREADSAFE or OPENAPI.

CICSVAR=QUASIRENT results in a program with attributes
CONCURRENCY(QUASIRENT) APIST(CICSAPI)

CICSVAR=THREADSAFE results in a program with attributes
CONCURRENCY(THREADSAFE) APIST(CICSAPI)

CICSVAR=0OPENAPI results in a program with attributes
CONCURRENCY(THREADSAFE) APIST(OPENAPI)

An example of ENVAR coded in a CEEUOPT CSECT is given below:

CEEUOPT CSECT

CEEUOPT AMODE ANY

CEEUOPT RMODE ANY
CEEXOPT ENVAR=('CICSVAR=THREADSAFE')
END

This can be assembled and linkedited into a into a load module and then the
CEEUOPT load module linkedited together with any language program
supported by Language Environment as explained above.

Alternatively for C and C++ programs, add the following statement at the start of
the program source before any other C statements:

#pragma runopts (ENVAR(CICSVAR=THREADSAFE))

For PL/I programs add the following statement following the PL/I MAIN
procedure statement:

DCL PLIXOPT CHAR(25) VAR STATIC EXTERNAL INIT('ENVAR(CICSVAR=THREADSAFE)');

Chapter 3. Language Environment 17

Finally, be aware that , after all the above changes, there are two exits that are
called in the following order and both of these can change some of the options as
follows:

1. By setting the CEEAUE_A_OPTION return parameter of the CEEBXITA
Language Environment user exit (apart from the LIBRARY, RTLS, STACK, and
VERSION options).

2. In the storage tuning user exit, CEECSTX, the options STACK, LIBSTACK,
HEAP, ANYHEAP, and BELOWHEAP can be set.

The storage tuning exit, like the CEEROPT CSECT, is region wide, but CEEBXITA
is linked into every program. Language Environment calls CEEBXITA the assembler
exit because, like CEECSTX, it is invoked before the environment is fully
established and must therefore be coded in assembler.

Language Environment supplies a sample source version of CEEBXITA in the
SCEESAMP library (it simply returns to its caller for whatever reason it is called).
You can use this as it is or modify it for use as the installation default version.
However, you can link-edit a specifically tailored version of CEEBXITA with any
application program and this version is then used instead of the installation default
version. Take great care if you choose this method since CEEBXITA is invoked for
up to five different reasons during the course of program execution, and an
application-specific version of CEEBXITA must be capable of handling all these
invocations.

For more details on both CEEBXITA and CEECSTX see z/OS Language
Environment Customization.

Runtime options in child enclaves

Under CICS the execution of a CICS LINK command creates what Language
Environment calls a Child Enclave. A new environment is initialized and the child
enclave gets its runtime options exactly as discussed above. These runtime options
are completely independent of those that existed in the creating enclave. Frequent
use of EXEC CICS LINK, and the individual setting of many runtime options could
affect performance (see also the CICS system initialization parameter RUWAPOOL
for CICS LINK performance considerations). A static or dynamic call does not incur
these overheads. If you need to use CEEUOPT to specify options, specifying only
those options that are different from the defaults will improve performance.

Something similar happens when a CICS XCTL command is executed. In this case
we do not get a child enclave, but the existing enclave is terminated and then
reinitialized with the runtime options determined for the new program. The same
performance considerations apply.

CEEBXITA coding

If you write your own version of CEEBXITA, you must write it in assembler. You can
use all CICS commands except the ones listed here, provided you specify the
NOHANDLE, RESP or RESP2 option, to prevent conditions being raised during the
execution of the exit. These are the commands that cannot be used within
CEEBXITA, or any routines called by CEEBXITA:

+ ABEND

« HANDLE ABEND

« HANDLE AID

« HANDLE CONDITION

* IGNORE CONDITION

18 CICS TS for /OS: CICS Application Programming Guide

+ POP HANDLE
* PUSH HANDLE

Determining which options were used

If you want to know which options were in effect when your program ran, specify
the option RPTOPTS(ON). When the program ends this produces a list of all the
runtime options used. The list is written to the CESE TD queue. The list contains
not only the actual settings of the options, but also their origin, that is, whether they
are the default for the installation or the region, or whether they were set by the
programmer or in one of the exits.

Note: Do not use RPTOPTS(ON) in a production environment - there is significant
overhead and it causes a large amount of data to be written to the CESE
queue.

For more information about how to specify Language Environment runtime options
and also for their meanings, see z/OS Language Environment Programming
Reference.

Writing a CEEBINT initialization exit for Language Environment

All programs running under Language Environment invoke a subroutine called
CEEBINT at program initialization time, just after invocation of the CEEBXITA and
CEECSTX exits. The runtime environment is fully operational at this point and
Language Environment calls this program the HLL user exit. Language Environment
provides a module containing this program in the SCEELKED library (it simply
returns to its caller) and this is, therefore, the installation default version. However,
you can also write and link-edit a tailored version in to any program to replace the
default.

Ordinary Language Environment coding rules apply to CEEBINT, and you can write
it in C, C++, PL/I, or Language Environment-conforming assembler. CEEBINT
applies to COBOL programs just as any others, but it cannot be written in COBOL
or call COBOL programs. If CEEBINT introduces a second HLL to a program, the
rules for mixing HLLs described in [‘Mixing languages in Language Environment” on|

apply.

For more information on the High Level Language user exit, CEEBINT, see the
z/OS Language Environment Programming Guide.

Chapter 3. Language Environment 19

20 CICS TS for z/0S: CICS Application Programming Guide

Chapter 4. Programming in COBOL

[The CICS Transaction Server for z/OS Release Guidellists the COBOL compilers
which are supported by CICS Transaction Server for z/OS, Version 3 Release 1,
with details of their service status and support in other CICS releases.

All references to COBOL in CICS Transaction Server for z/OS, Version 3 Release 1
documentation imply the use of a supported Language Environment-conforming
compiler such as Enterprise COBOL for z/OS, unless specifically stated otherwise.
Programs compiled by Language Environment-conforming compilers can take
advantage of all Language Environment facilities in a CICS region. The only
COBOL compiler which has runtime support in CICS Transaction Server for z/OS,
Version 3 Release 1, but is not Language Environment-conforming, is the VS
COBOL Il compiler.

Refer to the Enterprise COBOL for z/OS: Compiler and Run-Time Migration Guide
for information about migrating between COBOL compilers.

— Support for VS COBOL I

In CICS Transaction Server for z/OS, Version 3 Release 1, applications
compiled with a VS COBOL Il compiler execute using the Language
Environment runtime library routines. The native runtime library provided with
VS COBOL Il is not supported.

{‘Considerations for VS COBOL Il programs” on page 26| lists some restrictions
and considerations associated with programs compiled with the VS COBOL Il
compiler.

In some circumstances, you might need to adjust Language Environment
runtime options to enable these applications to execute correctly. The
Enterprise COBOL for z/OS: Compiler and Run-Time Migration Guide has
more information about executing VS COBOL Il programs within the Language
Environment runtime, and also about converting VS COBOL Il programs to
Enterprise COBOL.

© Copyright IBM Corp. 1989, 2010 21

FH I I

H o H H H H H

H o H H H*

— Support for OS/VS COBOL

In CICS Transaction Server for z/OS, Version 3 Release 1, runtime support for
OS/VS COBOL programs is withdrawn. If you attempt to use an OS/VS
COBOL program, the abend code ALIK is issued, and CICS abnormally
terminates the task and disables the program.

OS/VS COBOL programs must be upgraded to Language
Environment-conforming COBOL, and recompiled against a level of COBOL
compiler supported by CICS. Enterprise COBOL for z/OS Version 3 is the
recommended compiler.

See|Appendix B, “Migration for OS/VS COBOL programs,” on page 671|for
notes on converting OS/VS COBOL programs to Enterprise COBOL. The
Enterprise COBOL for z/OS: Compiler and Run-Time Migration Guide has
more detailed information about language differences, and describes facilities
to help with conversion.

— Support for OO COBOL

In CICS Transaction Server for z/OS, Version 3 Release 1, COBOL class
definitions and methods (object-oriented COBOL) cannot be used. This
restriction includes both Java classes and COBOL classes.

Modules compiled in earlier CICS releases with the OOCOBOL translator
option cannot execute in CICS Transaction Server for z/OS, Version 3 Release
1. The OOCOBOL translator option was used for the older SOM-based
(System Object Manager-based) OO COBOL, and runtime support for this
form of OO COBOL was withdrawn in z/OS V1.2. The newer Java-based OO
COBOL, which is used in Enterprise COBOL, is not supported by the CICS
translator.

If you have existing SOM-based OO COBOL programs, you should rewrite
your OO COBOL into procedural (non-O0) COBOL in order to use the
Enterprise COBOL compiler. Note that the newer Java-based OO COBOL is
not compatible with SOM-based OO COBOL programs, and is not intended as
a migration path for SOM-based OO COBOL programs.

This chapter describes:

* [‘COBOL programming considerations’
» |“Considerations for VS COBOL Il
* |“Using based addressing with COBOL” on page 27
 [“‘Calling subprograms from COBOL” on page 28
* |“Using the COBOL2 and COBOLS translator options” on page 34

COBOL programming considerations

Some features of COBOL that are of interest to the CICS programmer are:

« Simplified based addressing using cell pointer variables and the ADDRESS
special register.

22 CICS TS for z/0S: CICS Application Programming Guide

» The ability to use COBOL CALL statements to call assembler language, other
COBOL programs, and PL/I or C/C++ programs.

* The LENGTH special register, which CICS uses to deduce the length of data
items.

* The ability to use the RETURN-CODE special register in a CICS application
program. This register allows you to set and access return codes in COBOL
programs.

With compiler option DATA(24), the WORKING-STORAGE SECTION is allocated
below the 16MB line. With compiler option DATA(31), the WORKING-STORAGE
SECTION is allocated above the 16MB line.

COBOL programming restrictions

This section describes COBOL language elements that you cannot use under CICS,
or whose use is restricted or can cause problems under CICS.

By default, the CICS translator and the COBOL compiler do not detect the use of
COBOL words affected by the restrictions listed here. The use of a restricted word
in a CICS environment may cause a failure at execution time. However, COBOL
provides a reserved-word table, IGYCCICS, for CICS application programs. If you
specify the compiler option WORD(CICS), the compiler uses IGYCCICS, and
COBOL words that are not supported under CICS are flagged by the compiler with
an error message. (The COBOL words normally restricted by the default
IBM-supplied reserved-word table are also flagged.) See the Enterprise COBOL for
z/OS: Programming Guide for a current listing of the words which are restricted by
IGYCCICS.

The following restrictions apply to a COBOL program that is to be used as a CICS
application program. (See the appropriate COBOL programming guide for more
information about these functions.)

* If no IDENTIFICATION DIVISION is present, only the CICS commands are
expanded. If the IDENTIFICATION DIVISION only is present, only DFHEIVAR,
DFHEIBLK, and DFHCOMMAREA are produced.

+ Statements that produce variable-length areas, such as OCCURS DEPENDING
ON, should be used with caution within the WORKING-STORAGE SECTION.

 If you are running CICS applications written in COBOL under Language
Environment for the first time, you may need to review the Language
Environment runtime options in use at your installation. In particular, if your
applications are not coded to ensure that the WORKING-STORAGE SECTION is
properly initialized (for example, cleared with binary zeros before sending maps),
you should use the STORAGE runtime option. See z/OS Language Environment
Customization for information about customizing Language Environment runtime
options.

* You cannot use entry points in COBOL in CICS.

* When a debugging line is to be used as a comment, it must not contain any
unmatched quotation marks.

e Do not use EXEC CICS commands in a Declaratives Section.

* You must use CICS commands for most input and output processing. Therefore,
do not describe files or code any OPEN, CLOSE, READ, START, REWRITE,
WRITE, or DELETE statements. Instead, use CICS commands to retrieve,
update, insert, and delete data.

Chapter 4. Programming in COBOL 23

Do not use a format-1 ACCEPT statement in a CICS program. Format-2
ACCEPT statements are supported by Language Environment enabled
compilers.

Do not use DISPLAY ... UPON CONSOLE and DISPLAY ... UPON
SYSPUNCH. DISPLAY to the system logical output device (SYSOUT,
SYSLIST,SYSLST) is supported.

Do not use STOP “literal”.

There are restrictions on the use of the SORT statement. See the Enterprise
COBOL for z/OS: Programming Guide for information. Do not use MERGE.

Do not use:
— USE declaratives.

— ENVIRONMENT DIVISION and FILE SECTION entries associated with data
management, because CICS handles data management. (These can be used
when they are associated with the limited SORT facility referenced above.)

— User-specified parameters to the main program.

Do not use the following compiler options:
DYNAM (if program is to be translated)
NOLIB (if program is to be translated)
NORENT

You may use the DLL compiler option.

The use of the TEST(SYM,NOSEPARATE) compiler option results in a very large
increase in program size. Therefore, short-of-storage problems may occur when
using this option. You can achieve the same functionality with
TEST(SYM,SEPARATE) without an increase in program size. For more
information about the TEST compiler option, see the Enterprise COBOL for z/OS:
Programming Guide.

Use TRUNC(OPT) for handling binary data items if they conform to the PICTURE
definitions. Otherwise use TRUNC(OPT) as the compiler option, and USAGE
COMP-5 for items where the binary value might be larger than the PICTURE
clause would allow. TRUNC(BIN) inhibits runtime performance, so only use this
option if you have no control over binary data items (such as those created by a
code generator). (TRUNC(STD) is the default.)

For VS COBOL Il programs with Language Environment runtime, the following
limits apply to the length of WORKING-STORAGE:

— When the compiler option DATA(24) is used, the limit is the available space
below the 16MB line.

— When the compiler option DATA(31) is used, the limit is 128MB.

80 bytes are required for storage accounting and save areas, and this must be
included within the limits.

The use of the RMODE(24) compiler option means that the program always
resides below the 16MB line, so this is not recommended. RMODE(ANY) or
RMODE(AUTO) should be used instead. For more information about the RMODE
compiler option, see the Enterprise COBOL for z/OS: Programming Guide.

If the DLI option is specified and an ENTRY statement immediately follows the
PROCEDURE DIVISION header, you are recommended to change the
PROGRAM-ID name to the ENTRY statement literal, then delete the ENTRY
statement.

The following compiler options have no effect in a CICS environment:
ADV
AWO
EXPORTALL

24 CICS TS for z/0S: CICS Application Programming Guide

FASTSRT
NAME
O0COBOL
OuTDD
THREAD

* |If you use HANDLE CONDITION or HANDLE AID, you can avoid addressing
problems by using SET(ADDRESS OF A-DATA) or SET(A-POINTER) where
A-DATA is a structure in the LINKAGE SECTION and A-POINTER is defined with
the USAGE IS POINTER clause.

» For a COBOL program running above the 16MB line, these restrictions apply for
31-bit addressing:

— If the receiving program is link-edited with AMODE(31), addresses passed to it
must be 31-bits long (or 24-bits long with the left-most byte set to zeros).

— If the receiving program is link-edited with AMODE(24), addresses passed to it
must be 24-bits long.

Specify the DATA(24) compiler option for programs running in 31-bit addressing
mode that are passing data arguments to programs in 24-bit addressing mode.
This ensures that the data will be addressable by the called program.

Language Environment CBLPSHPOP option

The CBLPSHPOP runtime option controls whether Language Environment
automatically issues an EXEC CICS PUSH HANDLE command during initialization
and an EXEC CICS POP HANDLE command during termination whenever a
COBOL subroutine is called.

If your application makes many COBOL subroutine CALLs under CICS,
performance is better with CBLPSHPOP(OFF) than with CBLPSHPOP(ON). You
can set CBLPSHPOP on an individual transaction basis by using CEEUOPT, as
explained in [‘Defining runtime options for Language Environment” on page 16|
However, because condition handling has not been stacked, be aware that:

 If your called routine raises a condition that causes CICS to attempt to pass
control to a condition handler in the calling routine, this is an error and your
transaction will be abnormally terminated.

* If you use any of the PUSHable CICS commands, HANDLE ABEND, HANDLE
AID, HANDLE CONDITION, or IGNORE CONDITION, within the called routine,
you will be changing the settings of your caller and this could lead to later errors.

Using the DL/I CALL interface

If you have programs that use CALL DL/I, and you have not yet made the following

changes to them, you should now do so:

* Retain the user interface block (DLIUIB) declaration and at least one program
control block (PCB) declaration in the LINKAGE SECTION.

* Change the PCB call to specify the UIB directly, as follows:

CALL 'CBLTDLI' USING PCB-CALL
PSB-NAME
ADDRESS OF DLIUIB.

» Obtain the address of the required PCB from the address list in the UIB.

|Figure 1 on page 26|i||ustrates the whole of the above process. The example in the
figure assumes that you have three PCBs defined in the PSB and want to use the
second PCB in the database CALL. Therefore, when setting up the ADDRESS
special register of the LINKAGE SECTION group item PCB, the program uses 2 to
index the working-storage table, PCB-ADDRESS-LIST. To use the nth PCB, you

Chapter 4. Programming in COBOL 25

use the number n to index PCB-ADDRESS-LIST.

WORKING-STORAGE SECTION.

77 PCB-CALL PIC X(4) VALUE 'PCB '.
77 GET-HOLD-UNIQUE PIC X(4) VALUE 'GHU '.
77 PSB-NAME PIC X(8) VALUE 'CBLPSB'.
77 SSA1 PIC X(40) VALUE SPACES.
01 DLI-IO-AREA.

02 DLI-IO-AREA1 PIC X(99).

*

LINKAGE SECTION.
COPY DLIUIB.
01 OVERLAY-DLIUIB REDEFINES DLIUIB.
02 PCBADDR USAGE IS POINTER.
02 FILLER PIC XX.
01 PCB-ADDR-LIST.
02 PCB-ADDRESS-LIST USAGE IS POINTER
OCCURS 10 TIMES.

01 PCB.
02 PCB-DBD-NAME PIC X(8).
02 PCB-SEG-LEVEL PIC XX.

02 PCB-STATUS-CODE PIC XX.

*
PROCEDURE DIVISION.
*SCHEDULE THE PSB AND ADDRESS THE UIB

CALL 'CBLTDLI' USING PCB-CALL PSB-NAME ADDRESS OF DLIUIB.
*
*MOVE VALUE OF UIBPCBAL, ADDRESS OF PCB ADDRESS LIST (HELD IN UIB)
* (REDEFINED AS PCBADDR, A POINTER VARIABLE), TO
*ADDRESS SPECIAL REGISTER OF PCB-ADDR-LIST TO PCBADDR.

SET ADDRESS OF PCB-ADDR-LIST TO PCBADDR.
*MOVE VALUE OF SECOND ITEM IN PCB-ADDRESS-LIST TO ADDRESS SPECIAL
*REGISTER OF PCB, DEFINED IN LINKAGE SECTION.

SET ADDRESS OF PCB TO PCB-ADDRESS-LIST(2).
*PERFORM DATABASE CALLS

MOVE TO SSAL.

CALL 'CBLTDLI' USING GET-HOLD-UNIQUE PCB DLI-IO-AREA SSAL.
*CHECK SUCCESS OF CALLS

IF UIBFCTR IS NOT EQUAL LOW-VALUES THEN

...... error diagnostic code
IF PCB-STATUS-CODE IS NOT EQUAL SPACES THEN
...... error diagnostic code

Figure 1. Using the DL/I CALL interface

Considerations for VS COBOL Il programs

Language Environment provides support for the execution of programs compiled by
the VS COBOL Il compiler. The native runtime library for this compiler is not
supported. However, this compiler is not Language Environment-conforming (it is a
pre-Language Environment compiler), so there are some restrictions and
considerations associated with its use.

For detailed information on migrating VS COBOL Il programs to Language
Environment support, see the Enterprise COBOL for z/OS: Compiler and Run-Time
Migration Guide.

Language Environment callable services
Programs compiled by Language Environment-conforming COBOL compilers
can use all Language Environment callable services, either dynamically or
statically. However, for CICS applications, the CEEMOUT (dispatch a message)

26 CICS TS for z/0S: CICS Application Programming Guide

and CEE3DMP (generate dump) services differ, in that the messages and
dumps are sent to the CESE transient data queue rather than to the ddname
specified in the MSGFILE runtime option.

VS COBOL Il programs can make dynamic calls to the date and time callable
services, but no other calls, either static or dynamic, to Language Environment
callable services are supported for VS COBOL Il programs.

Re-Tlinking VS COBOL II programs
If object modules are not available for re-linking existing VS COBOL Il programs
to use the runtime support provided by Language Environment, a sample job
stream for performing the task is provided in the IGZWRLKA member of the
SCEESAMP sample library.

CICS stub
Although COBOL programs linked with the old CICS stub, DFHECI, run under
Language Environment, use of the DFHELII stub is recommended and is
essential in a mixed language environment. DFHECI has to be link-edited at the
top of your application, but DFHELII can be linked anywhere in the application.

Using CEEWUCHA
If you are adapting VS COBOL Il programs to use the runtime support provided
by Language Environment, the sample user condition handler, CEEWUCHA,
supplied by Language Environment in the SCEESAMP library, can be used to
advantage. It does the following:
|t provides compatibility with existing VS COBOL Il applications running
under CICS by allowing EXEC CICS HANDLE ABEND LABEL statements to
get control when a runtime detected error occurs.

* It converts all unhandled runtime detected errors to the corresponding user
1xxx abend issued by VS COBOL II.

It suppresses all IGZ0014W messages, which are generated when IGZETUN

or IGZEOPT is link-edited with a VS COBOL Il application. (Performance is
better if the programs are not link-edited with IGZETUN or IGZEOPT.)

Using based addressing with COBOL

CICS application programs need to access data dynamically when the data is in a

CICS internal area, and only the address is passed to the program. Examples are:

* CICS areas such as the CWA, TWA, and TCTTE user area (TCTUA), accessed
using the ADDRESS command

* Input data, obtained by EXEC CICS commands such as READ and RECEIVE
with the SET option

COBOL provides a simple method of obtaining addressability to the data areas
defined in the LINKAGE SECTION using pointer variables and the ADDRESS
special register. |Figure 2 on page 28|gives an example of this.

The ADDRESS special register holds the address of a record defined in the
LINKAGE SECTION with level 01 or 77. This register can be used in the SET
option of any command in ADDRESS mode. These commands include GETMAIN,
LOAD, READ, and READQ. For programming information, including a complete list
of these commands, see [the CICS Application Programming Reference manual),

[Figure 2 on page 28|shows the use of ADDRESS special registers in COBOL. If the
records in the READ or REWRITE commands are of fixed length, no LENGTH
option is required. This example assumes variable-length records. After the read,
you can get the length of the record from the field named in the LENGTH option

Chapter 4. Programming in COBOL 27

(here, LRECL-RECH1). In the REWRITE command, you must code a LENGTH
option if you want to replace the updated record with a record of a different length.

WORKING-STORAGE SECTION.

77 LRECL-RECI PIC S9(4) COMP.
LINKAGE SECTION.

01 REC-1.

02 FLAGL PIC X.

02 MAIN-DATA PIC X(5000).

02 OPTL-DATA PIC X(1000).

01 REC-2.

02 ...

PROCEDURE DIVISION.

EXEC CICS READ UPDATE...
SET(ADDRESS OF REC-1)
LENGTH(LRECL-REC1)
END-EXEC.

IF FLAGL EQUAL X'Y'

MOVE OPTL-DATA TO ...

EXEC CICS REWRITE...
FROM(REC-1)
END-EXEC.

Figure 2. Addressing CICS data areas in locate mode

Using WITH DEBUGGING MODE

If a “D” is placed in column seven of the first line of a COBOL EXEC CICS
command, that “D” is also found in the translated CALL statements. This translated
command is only executed if WITH DEBUGGING MODE is specified. A “D” placed
on any line other than the first line of the EXEC CICS statement is not required and
is ignored by the translator.

Calling subprograms from COBOL

In a CICS system, when control is transferred from the active program to an
external program, but the transferring program remains active and control can be
returned to it, the program to which control is transferred is called a subprogram.

There are three ways of transferring control to a subprogram:
EXEC CICS LINK
The calling program contains a command in one of these forms:

EXEC CICS LINK PROGRAM('subpgname')
EXEC CICS LINK PROGRAM(name)

In the first form, the called subprogram is specified as an alphanumeric literal.
In the second form, name refers to the COBOL data area with length equal to
that required for the name of the subprogram.

Static COBOL call
The calling program contains a COBOL statement of the form:

CALL 'subpgname'

The called subprogram is explicitly named as a literal string.

Dynamic COBOL call
The calling program contains a COBOL statement of the form:

CALL identifier

28 CICS TS for z/0S: CICS Application Programming Guide

The identifier is the name of a COBOL data area that must contain the name of
the called subprogram.

For information about the performance implications of using each of these methods
to call a subprogram, see the Enterprise COBOL for z/OS: Programming Guide,
and the IBM Enterprise COBOL Version 3 Release 1 Performance Tuning Paper.
The White Paper is available on the Web at www.ibm.com/software/ad/cobol/
library

COBOL programs can call any language programs statically or dynamically. LINK or
XCTL are not required for inter-language communication, unless you wish to use
CICS functions such as COMMAREA. See Language Environment Writing Inter
Language Communication Applications for guidance on mixing languages under
Language Environment control.

|“Ru|es for calling subprograms” on page 30| gives the rules governing the use of the
three ways to call a subprogram. This information refers to CICS application logical
levels. Each LINK command creates a new logical level, the called program being
at a level one lower than the level of the calling program (CICS is taken to be at
level 0). |Figure 3 on page 33 shows logical levels and the effect of RETURN
commands and CALL statements in linked and called programs.

The term run unit is used in [Figure 3 on page 33| A run unit is a running set of one
or more programs that communicate with each other by COBOL static or dynamic
CALL statements. In a CICS environment, a run unit is entered at the start of a
CICS task, or invoked by a LINK or XCTL command. A run unit can be defined as
the execution of a program defined by a PROGRAM resource definition, even
though for dynamic CALL, the subsequent PROGRAM definition is needed for the
called program. When control is passed by a XCTL command, the program
receiving control cannot return control to the calling program by a RETURN
command or a GOBACK statement, and is therefore not a subprogram.

The terms 'translator' and 'translation' in [‘Rules for calling subprograms” on page 30|
refer to the separate translator. This step is not required if a compiler with an
integrated translator is used.

Chapter 4. Programming in COBOL 29

Rules for calling subprograms

30

The following rules describe the requirements and behavior of called or linked
subprograms.

Translation

LINK
The linked subprogram must be translated if it, or any subprogram invoked from
it, contains CICS function.

Static and Dynamic COBOL CALL
The called subprogram must be translated if it contains CICS commands or
references to the EXEC interface block (DFHEIBLK) or to the CICS
communication area (DFHCOMMAREA).

Compilation

You must always use the NODYNAM compiler option (the default) when you
compile a COBOL program that is to run with CICS, even if the program issues
dynamic calls.

Link-editing

LINK
The linked subprogram must be compiled and link-edited as a separate
program.

Static COBOL CALL
The called subprogram must be link-edited with the calling program to form a
single load module (but the programs can be compiled separately). This can
produce large program modules, and it also stops two programs that call the
same program from sharing a copy of that program.

Dynamic COBOL CALL
The called subprogram must be compiled and link-edited as a separate load
module. It can reside in the link pack area or in a library that is shared with
other CICS and non-CICS regions at the same time.

CICS CSD entries without program autoinstall
(If you use program autoinstall, you do not need an entry in the CSD.)

LINK
The linked subprogram must be defined using RDO. If the linked subprogram is
unknown or unavailable, even though autoinstall is active, the LINK fails with
the PGMIDERR condition.

Static COBOL CALL
The calling program must be defined in the CSD. If program A calls program B
and then program B attempts to call program A, COBOL issues a message and
an abend(1015). The subprogram is part of the calling program so no CSD
entry is required.

Dynamic COBOL CALL
The calling program must be defined in the CSD. If program A calls program B
and then program B attempts to call program A, COBOL issues a message and
an abend(1015). The called subprogram must be defined in the CSD. If the
called subprogram cannot be loaded or is unavailable even though autoinstall is
active, COBOL issues a message and abends (1029).

CICS TS for z/OS: CICS Application Programming Guide

Return from subprogram

LINK
The linked subprogram must return using either RETURN or a native language
return command such as the COBOL statement GOBACK.

Static and Dynamic COBOL CALL
The called subprogram must return using a native language return statement
such as the COBOL statement GOBACK or EXIT PROGRAM. The use of
RETURN in the called subprogram terminates the calling program.

Language of subprogram

LINK, Static and Dynamic COBOL CALL
Any language supported by CICS.

Contents of subprogram

The contents of any called or linked subprogram can be any function supported by
CICS for the language (including calls to external databases, for example, DB2®
and DL/I) with the exception that an assembler language subprogram cannot CALL
a lower level subprogram.

Passing parameters to subprogram

Data can be passed by any of the standard CICS methods (COMMAREA, TWA,
TCTUA, TS queues) if the called or linked subprogram is processed by the CICS
translator.

LINK
If the COMMAREA is used, its address must be passed in the LINK command.
If the linked subprogram uses 24-bit addressing, and the COMMAREA is above
the 16MB line, CICS copies it to below the 16MB line, and recopies it on return.

Static COBOL CALL
The CALL statement may pass DFHEIBLK and DFHCOMMAREA as the first
two parameters, if the called program is to issue EXEC CICS requests, or the
called program can issue EXEC CICS ADDRESS commands. The COMMAREA
is optional but if other parameters are passed, a dummy COMMAREA must
also be passed. The rules for nested programs can be different. See
what the application programmer must do” on page 39

Dynamic COBOL CALL
The CALL statement may pass DFHEIBLK and DFHCOMMAREA as the first
two parameters, if the called program is to issue EXEC CICS requests, or the
called program can issue EXEC CICS ADDRESS commands. The COMMAREA
is optional but if other parameters are passed, a dummy COMMAREA must
also be passed. If the called subprogram uses 24-bit addressing and any
parameter is above the 16MB line, COBOL issues a message and
abends(1033) .

Storage

LINK
On each entry to the linked subprogram, a new initialized copy of its
WORKING-STORAGE SECTION is provided, and the run unit is reinitialized (in
some circumstances, this can cause a performance degradation).

Chapter 4. Programming in COBOL 31

Static and Dynamic COBOL CALL
On the first entry to the called subprogram within a CICS logical level, a new
initialized copy of its WORKING-STORAGE SECTION is provided. On
subsequent entries to the called subprogram at the same logical level, the same
WORKING STORAGE is provided in its last-used state, that is, no storage is
freed, acquired, or initialized. If performance is unsatisfactory with LINK
commands, COBOL calls may give improved results.

CICS condition, AID and abend handling

LINK
On entry to the called subprogram, no abend or condition handling is active.
Within the subprogram, the normal CICS rules apply. In order to establish an
abend or condition handling environment, that exists for the duration of the
subprogram, a new HANDLE command should be issued on entry to the
subprogram. The environment so created remains in effect until either a further
HANDLE command is issued, or the subprogram returns control to the caller.

Static and Dynamic COBOL CALL

If the dynamic COBOL CALL fails, CICS abend handling is not invoked, and
you may get a COBOL abend code (1013).If the dynamic COBOL CALL fails,
with Language Environment and CBLPSHPOP ON:

* On entry to the called subprogram, no abend or condition handling is active.
Within the subprogram, the normal CICS rules apply. On entry to the called
subprogram, COBOL issues a PUSH HANDLE to stack the calling program’s
condition or abend handlers. In order to establish an abend or condition
handling environment that exists for the duration of the subprogram, a new
HANDLE command should be issued on entry to the subprogram. The
environment that this creates remains in effect until either a further HANDLE
command is issued or the subprogram returns control to the caller. When
control is returned to the calling program from the subprogram, COBOL
unstacks the condition and abend handlers using a POP HANDLE.

If the dynamic COBOL CALL fails, with CBLPSHPOP OFF:
» The condition/AID and abend handling for the calling program remain in

effect.
Location of subprogram

LINK
Can be remote.

Static and Dynamic COBOL CALL
Must be local.

Flow of control between programs and subprograms

[Figure 3 on page 33|shows the possible flows between COBOL main and
subprograms (also known as run units).

A main, or level 1 program can use the COBOL GOBACK or STOP RUN
statements, or the CICS RETURN command to terminate and return to CICS. It can
use a COBOL CALL statement to call a subprogram at the same logical level (level
1), or a CICS LINK command to call a subprogram at a lower logical level. A called
subprogram at level 1 can return to the caller using the COBOL GOBACK
statement, or can terminate and return to CICS using EXEC CICS RETURN.

32 CICS TS for z/0S: CICS Application Programming Guide

A subprogram executing at level 2 can use the COBOL GOBACK or STOP RUN
statements, or the CICS RETURN command to terminate and return to the level 1
calling program. It can use a COBOL CALL statement or a CICS XCTL command to

call a subprogram at the same level (level 2). A subprogram called using the
COBOL CALL at level 2 can return to the caller (at level 2) using the COBOL

GOBACK statement, or can return to the level 1 calling program using EXEC CICS
RETURN. A subprogram called using XCTL at level 2 can only return to the level 1

calling program, using GOBACK, STOP RUN or EXEC CICS RETURN.

See r‘AppIication program logical levels” on page 566| for more information about

program logical levels.

Run
Unit
C

L

Figure 3. Flow of control between COBOL programs, run units, and CICS

CICS

Program U
GOBACK

A\ 4

STOP RUN

EXEC CICS RETURN
CALL

A 4

A 4

P

A 4

Program V
GOBACK

B |

EXEC CICS RETURN

A\ 4

EXEC CICS LINK

A 4

.. %

Program W

GOBACK
STOP RUN

A\ 4

EXEC CICS RETURN

A 4

o
<

A 4

CALL

P

A 4

Program X

B |

GOBACK
EXEC CICS RETURN

A\ 4

EXEC CICS XCTL

A 4

Program Y
CALL Program Z
< GOBACK
GOBACK > STOP RUN
STOP RUN > EXEC CICS RETURN

EXEC CICS RETURN

A\ 4

A\ 4

A\ 4

Level

Level

Level

Chapter 4. Programming in COBOL 33

H H H I

FH H H H H*

Using the COBOL2 and COBOLS3 translator options

For general information about translating your program and preparing it for
execution, see [Chapter 8, “Translation and compilation,” on page 67

The following CICS translator options for COBOL are available in CICS Transaction
Server for z/OS, Version 3 Release 1:

e COBOL2
+ COBOL3

The ANSI85 translator option ceased to be available in CICS Transaction Server for
z/OS, Version 2 Release 2.

Modules compiled in earlier CICS releases with the OOCOBOL translator option
cannot execute in CICS Transaction Server for z/OS, Version 3 Release 1. The
OOCOBOL translator option was used for the older SOM-based (System Object
Manager-based) OO COBOL, and runtime support for this form of OO COBOL was
withdrawn in z/OS V1.2. The newer Java-based OO COBOL, which is used in
Enterprise COBOL, is not supported by the CICS translator.

The COBOL2 option is the default. It does not have the same effect on the
translator as it did in CICS Transaction Server for z/OS, Version 2 Release 1 and
earlier releases. COBOL2 instructs the translator to translate as COBOLS, but in
addition to include declarations of temporary variables for use in EXEC CICS and
EXEC DLI requests.

Choose the COBOL2 option if you are re-translating old programs which were
written in such a way that they require the use of temporary variables. In particular,
note that the use of temporary variables might circumvent errors that would
normally occur when an argument value in a program is incorrectly defined. The
COBOL2 option in CICS Transaction Server for z/OS, Version 2 Release 1 and
earlier releases provided declarations of temporary variables. Because of this
feature, incorrect definitions of argument values might be present, but not
noticeable at runtime, in programs that were originally translated with the COBOL2
option in earlier releases of CICS Transaction Server. Translating these programs
with the COBOLS3 option can reveal these errors for the first time. To assist with
migration to the newer releases of CICS, you may use the new COBOL2 option to
continue to circumvent the errors in the programs, rather than correcting them.

If you are confident that your program do not need the translator's temporary
variables, you may use COBOLS3, which results in smaller working storage. The
COBOLS option includes all features of the older COBOL2 and ANSI85 translator
options, except for declarations of temporary variables.

The CICS translator support in CICS Transaction Server for z/OS, Version 2
Release 2 and later versions and releases does not support the use of the CMPR2
compiler option previously available with old COBOL compilers. For information on
upgrading these COBOL programs to the NOCMPR2 feature, see the Enterprise
COBOL for z/0OS: Compiler and Run-Time Migration Guide.

Note: COBOL2 and COBOL3 are mutually exclusive. If you specify both options by
different methods, the COBOLS3 option is always used, regardless of where
the two options have been specified. If this happens, the translator issues a
warning message.

34 CICS TS for z/0S: CICS Application Programming Guide

#
#

The following topics describe specific translator action that is taken when the
COBOLS option is used. Processing with the COBOL2 option is the same in all
respects, except for declarations of temporary variables.

Literals intervening in blank lines

Blank lines can appear anywhere in a COBOL source program. A blank line
contains nothing but spaces between columns 7 and 72 inclusive.

If blank lines occur within literals in a COBOL source program, the translator
eliminates them from the translated output but includes them in the translated
listing.

Lower case characters

Lower case characters can occur anywhere in any COBOL word, including
user-defined names, system names, and reserved words.

The translator listing and output preserve the case of COBOL text as entered.

In addition, the translator accepts mixed case in:

» Translator options

* EXEC CICS commands, both for keywords and for arguments to keywords
* CBL and PROCESS statements

» Compiler directives such as EJECT and SKIP1

The translator does not translate lower case text into upper case. Some names in
COBOL text, for example file names and transaction IDs, must match with
externally defined names. Such names must always be entered in the same case
as the external definition.

If you specify the LINKAGE translator option, or allow it to default, a mixed-case
version of the EIB structure (DFHEIBLC) is inserted into the LINKAGE SECTION.

Sequence numbers containing any character

In a COBOL source program, the sequence number field can contain any character
in the computer’s character set. The sequence number fields need not be in any
order and need not be unique.

REPLACE statement

COBOL programs can include the REPLACE statement, which allows the
replacement of identified text by defined substitution text. The text to be replaced
and inserted can be pseudo-text, an identifier, a literal, or a COBOL word.
REPLACE statements are processed after COPY statements.

If you process your COBOL source statements with the CICS-supplied translator,
the translator accepts REPLACE statements but does not translate text between
pseudo-text delimiters, with the exception of CICS built-in functions (DFHRESP and
DFHVALUE), which are translated wherever they occur. CICS commands should
not be placed between pseudo-text delimiters.

If you use the integrated translator, the translator accepts REPLACE statements

and does translate text between pseudo-text delimiters. CICS commands can be
placed between pseudo-text delimiters.

Chapter 4. Programming in COBOL 35

Batch compilation

Separate COBOL programs can be compiled together as one input file. An END
PROGRAM header statement terminates each program and is optional for the last
program in the batch.

The translator accepts separate COBOL programs in a single input file, and
interprets END PROGRAM header statements.

Translator options specified as parameters when invoking the translator are in effect
for the whole batch, but can be overridden for a unit of compilation by options
specified in the CBL or PROCESS card that initiates the unit.

The options for a unit of compilation are determined according to the following order
of priority:

1. Options fixed as installation non-user-modifiable options.

2. Options specified in the CBL or PROCESS card that initiates the unit.

3. Options specified when the translator is invoked.

4. Default options.

For more information about compilation, see [Chapter 9, “Installing application|
lbrograms,” on page 99|

If you are using batch compilation, you must take some additional action to ensure
that compilation and linkage editing are successful, as follows:

* Include the compiler NAME option as a parameter in the JCL statement that
invokes the compiler or in a CBL statement for each top-level (non-nested)
program. This causes the inclusion of a NAME statement at the end of each
program. See [Figure 4 on page 37 for more information.

» Edit the compiler output to add INCLUDE and ORDER statements for the CICS
COBOL stub to each object module. These statements cause the linkage editor
to include the stub at the start of each load module. These statements can be
anywhere in the module, though by convention they are at the start. You may find
it convenient to place them at the end of the module, immediately before each
NAME statement. [Figure 5 on page 37| shows the output from after
editing in this way.

For batch compilation you must vary the procedure described in the [Chapter 9,

[Installing application programs,” on page 99.| The following is a suggested method:

1. Split the supplied cataloged procedure DFHYITVL into two procedures; PROC1
containing the translate and compilation steps (TRN and COB), and PROC2
containing the linkage editor steps COPYLINK and LKED.

2. In PROC1, add the NAME option to the parameters in the EXEC statement for
the compiler, which then looks like this:

//COB EXEC PGM=IGYCRCTL,REGION=..,
// PARM="....,NAME,....",

3. In PROC1, change the name and disposition of the compiler output data set
&&LOADSET. At least remove the initial && from the data set name and change
the disposition to CATLG. The SYSLIN statement should then read:

//SYSLIN DD DSN=LOADSET,DISP=(NEW,CATLG),
// UNIT=&WORK,SPACE=(80, (250,100))

4. Run PROC1.

36 CICS TS for z/0S: CICS Application Programming Guide

NAME PROGC (R)

Figure 4. Compiler output before editing

5.

Edit the compiler output in the data set LOADSET to add the INCLUDE and
ORDER statements as shown in . If you use large numbers of programs
in batches, you should write a simple program or REXX EXEC to insert the
ORDER and INCLUDE statements.

In PROC2, add a DD statement for the library that includes the CICS stub. The
standard name of this library is CICSTS31.CICS.SDFHLOAD. The INCLUDE
statement for the stub refers to this library by the DD name. In , it is
assumed you have used the DD name SYSLIB (or concatenated this library to
SYSLIB). The suggested statement is:

//SYSLIB DD DSN=CICSTS31.CICS.SDFHLOAD,
// DISP=SHR

In PROC2, replace the SYSLIN concatenation with the single statement:

//SYSLIN DD DSN=LOADSET,
/! DISP=(0LD,DELETE)

In this statement it is assumed that you have renamed the compiler output data
set LOADSET.

Run PROC2.

....program a....

INCLUDE SYSLIB(DFHELII)
ORDER DFHELII
NAME PROGA (R)

INCLUDE SYSLIB(DFHELII)
ORDER DFHELII
NAME PROGB(R)

INCLUDE SYSLIB(DFHELITI)
ORDER DFHELII
NAME PROGC (R)

Figure 5. Linkage editor input

Note: You are recommended to use the DFHELII stub, but DFHECI is still supplied,

and can be used.

Chapter 4. Programming in COBOL 37

Nested programs
» COBOL programs can contain COBOL programs.

» Contained programs are included immediately before the END PROGRAM
statement of the containing program.

» A contained program can also be a containing program, that is, it can itself
contain other programs.

» Each contained or containing program is terminated by an END PROGRAM
statement.

For an explanation of valid calls to nested programs and of the COMMON attribute
of a nested program, see the Enterprise COBOL for z/OS Customization Guide.

Integrated CICS translator

When using the integrated CICS translator no action is necessary for nested
programs that contain EXEC CICS commands. The compiler, in effect, declares
DFHEIBLK and DFHCOMMAREA as global in the top-level program. This means
that explicit coding of EIB and COMMAREA on the USING phrases on CALL and
on the PROCEDURE DIVISION are not required, as described in

for the separate translator.

Existing or modified programs will require appropriate modification for use with the
CICS integrated translator. If modification is difficult the user should continue to use
separate translation and compilation.

Translator action
The CICS translator treats top-level and nested programs differently.

The translator translates a top-level program (a program that is not contained by
any other program) in the normal way, with one addition. The translator assigns the
GLOBAL attribute for all translator-generated variables in the WORKING-STORAGE
SECTION.

The translator translates nested or contained programs in a special way as follows:
* A DATA DIVISION and LINKAGE SECTION are added if they do not already
exist.

» Declarations for DFHEIBLK (EXEC interface block) and DFHCOMMAREA
(communication area) are inserted into the LINKAGE SECTION.

e EXEC CICS commands and CICS built-in functions are translated.
« The PROCEDURE DIVISION header is not modified.

* No translator-generated temporary variables, used for pre-call assignments, are
inserted in the WORKING-STORAGE SECTION.

The translator interprets that the input source starts with a top-level program if the
first non-comment record is any of the following:

+ IDENTIFICATION DIVISION statement

* CBL card

+ PROCESS card

If the first record is none of these, the translator treats the input as part of the
PROCEDURE DIVISION of a nested program. The first CBL or PROCESS card
indicates the start of a top-level program and of a new unit of compilation. Any
IDENTIFICATION DIVISION statements that are found before the first top-level
program indicate the start of a new nested program.

38 CICS TS for z/0S: CICS Application Programming Guide

The practical effect of these rules is that nested programs cannot be held in
separate files and translated separately. A top-level program and all its directly and
indirectly contained programs constitute a single unit of compilation and should be
submitted together to the translator.

Comments in translator input

The translator treats comments that follow an END PROGRAM statement as
belonging to the next program in the input source. Comments that precede an
IDENTIFICATION DIVISION statement appear in the listing after the
IDENTIFICATION DIVISION statement.

To avoid confusion always place comments:

« After the IDENTIFICATION DIVISION statement that initiates the program to
which they refer

and

» Before the END PROGRAM statement that terminates the program to which they
refer.

Nesting: what the application programmer must do

1. Submit a top-level containing program and all its directly and indirectly
contained programs as a single unit of compilation.

2. In each nested program that contains EXEC CICS commands, CICS built-in
functions, or references to the EIB or COMMAREA, code DFHEIBLK and
DFHCOMMAREA as the first two parameters of the PROCEDURE DIVISION
header as follows:

PROCEDURE DIVISION USING DFHEIBLK
DFHCOMMAREA PARM1 PARMZ ...

3. In every call to a nested program that contains EXEC CICS commands, CICS
built-in functions, or references to the EIB or COMMAREA, code DFHEIBLK and
DFHCOMMAREA as the first two parameters of the CALL statement as follows:
CALL 'PROGA' USING DFHEIBLK

DFHCOMMAREA PARM1 PARM2 ...

4. For every call that forms part of the control hierarchy between the top-level
program and a nested program that contains EXEC CICS commands, CICS
built-in functions, or references to the EIB or COMMAREA, code DFHEIBLK and
DFHCOMMAREA as the first two parameters of the CALL statement. In the
PROCEDURE DIVISION in the called programs code DFHEIBLK and
DFHCOMMAREA. This is necessary to allow addressability to the EIB and
COMMAREA to be passed to programs not directly contained by the top-level
program.

5. If it is not necessary to insert DFHEIBLK and DFHCOMMAREA in the
PROCEDURE DIVISION of a nested program for any of the reasons given
above (2, 3, and 4), calls to that program should not include DFHEIBLK and
COMMAREA in the parameter list of the CALL statement.

An example of a nested program
A unit of compilation (see |Figure 6 on page 4q) consists of a top-level program W
and three nested programs, X, Y, and Z, all directly contained by W.

Program W
During initialization and termination, calls Y and Z to do initial CICS
processing and non-CICS file access. Calls X to do main processing.

Program X
Calls Z for non-CICS file access and Y for CICS processing.

Chapter 4. Programming in COBOL 39

Program Y
Issues CICS commands. Calls Z for non-CICS file access.

Program Z
Accesses files in batch mode.

PROGRAM W

| |
PROGRAM X| |PROGRAM Y| |PROGRAM Z

Figure 6. Nested program example—nesting structure

Applying the rules:
* Y must be COMMON to enable a call from X.
* Z must be COMMON to enable calls from X and Y.
* Y issues CICS commands, therefore:
— All calls to Y must have DFHEIBLK and a COMMAREA as the first two
parameters.

— Y’s PROCEDURE DIVISION header must have DFHEIBLK and
DFHCOMMAREA as the first two parameters.

* Though X does not access the EIB or the communication area, it calls Y, which
issues CICS commands. Therefore the call to X must have DFHEIBLK and a
COMMAREA as the first two parameters and X’s PROCEDURE DIVISION
header must have DFHEIBLK and DFHCOMMAREA as its first two parameters.

Figure 7 on page 41|illustrates the points in ['Nesting: what the application|
programmer must do” on page 39.|

40 CICS TS for z/0S: CICS Application Programming Guide

IDENTIFICATION DIVISION.
PROGRAM-ID. W.

éROCEDURE DIVISION.
CALL Z.
CALL Y USING DFHEIBLK COMMAREA.
CALL X USING DFHEIBLK COMMAREA.

IDENTIFICATION DIVISION.
PROGRAM-ID. X.

PROCEDURE DIVISION USING DFHEIBLK DFHCOMMAREA
CALL Z.
CALL Y USING DFHEIBLK COMMAREA.

END PROGRAM X.
IDENTIFICATION DIVISION.
PROGRAM-ID. Y IS COMMON.

PROCEDURE DIVISION USING DFHEIBLK DFHCOMMAREA.
CALL Z.
EXEC CICS...

END PROGRAM Y.
IDENTIFICATION DIVISION.
PROGRAM-ID. Z IS COMMON.

PROCEDURE DIVISION.

END PROGRAM Z.
END PROGRAM W.

Figure 7. Nested program example: coding

Reference modification

Reference modification supports a method of referencing a substring of a character
data item by specifying the starting (leftmost) position of the substring in the data
item and, optionally, the length of the substring. The acceptable formats are:

data-name (lTeftmost-character-position:)
data-name (leftmost-character-position: length)

Chapter 4. Programming in COBOL 41

Data-name can be subscripted or qualified or both. Both leftmost-character-position
and length can be arithmetic expressions. For more information about reference
modification, qualification and subscripting, see the Enterprise COBOL for z/0OS
Language Reference, SC27-1408.

The translator accepts reference modification wherever the name of a character
variable is permitted in a COBOL program or in an EXEC CICS command.

Note: If a CICS command uses reference modification in defining a data value, it
should include a LENGTH option to specify the data length, unless the
NOLENGTH translator option is used. Otherwise the translator generates a
COBOL call with a LENGTH register reference in the form:

LENGTH OF (reference modification)

This is rejected by the compiler.

Global variables

The GLOBAL variable storage class is supported. A variable defined with the
GLOBAL variable storage class in a top-level program (see [‘Translator action” on|
can be referred to in any of its nested programs, whether directly or
indirectly contained.

The translator accepts the GLOBAL keyword.

Comma and semicolon as delimiters

A separator comma is a comma followed by a space. A separator semicolon is a
semicolon followed by a space. A separator comma or a separator semicolon can
be used as a separator wherever a space alone can be used.

The translator accepts the use in COBOL statements of a separator comma or a
separator semicolon wherever a space can be used. For example, the translator
accepts the statement:

IDENTIFICATION; DIVISION

The translator does not support the use of the separator comma and separator
semicolon as delimiters in EXEC CICS commands. The only acceptable word
delimiter in an EXEC CICS command continues to be a space.

Symbolic character definition

Symbolic characters can be defined in the SPECIAL-NAMES paragraph after the
ALPHABET clause. A symbolic character is a program-defined word that represents
a 1-character figurative constant.

The translator accepts the use of symbolic characters as specified in the standard.

Note: In general, the compiler does not accept the use of figurative constants and
symbolic characters as arguments in CALL statements. For this reason, do
not use figurative constants or symbolic constants in EXEC CICS
commands, which are converted into CALL statements by the translator.
There is one exception to this restriction: a figurative constant is acceptable
in an EXEC CICS command as an argument to pass a value if it is of the
correct data type. For example, a numeric figurative constant can be used in
the LENGTH option.

42 CICS TS for z/0S: CICS Application Programming Guide

Chapter 5. Programming in C and C++

CICS supports C and C++ programs that have been compiled by the supported
compilers listed inthe CICS Release Guide,

This chapter describes:

« [C and C++ programming considerations’|

« [*XPLink considerations for C and C++ programming” on page 46|
« [‘Passing arguments in C or C++” on page 49

« [‘Accessing the EIB” on page 50|

« [‘Locale support for C and C++” on page 51|

* [‘Programming in C++" on page 51|

C and C++ programming considerations
All the EXEC CICS commands available in COBOL, PL/I, and assembler language

applications are also supported in C and C++ applications, with the exception of
those commands related to nonstructured exception handling, see

lexception handling”| for more information.

C++ applications can also use the CICS C++ OO classes to access CICS services,
instead of the EXEC CICS interface. See the CICS C++ OO Class Libraries
manual, for more information about this interface.

Also note the following programming considerations:
Exception handling

nonstructured exception handling
The EXEC CICS commands related to nonstructured exception handling:
» HANDLE ABEND LABEL(label)
» HANDLE AID
* HANDLE CONDITION
* IGNORE CONDITION
* PUSH HANDLE
« POP HANDLE

are not supported in C and C++ applications. Use of these commands is
diagnosed by the translator.

Condition handling
In a C or C++ application, every EXEC CICS command is treated as if it
had the NOHANDLE or RESP option specified. This means that the set of
“system action” transaction abends that result from a condition occurring but
not being handled, is not possible in a C or C++ application. Control always
flows to the next instruction, and it is up to the application to test for a
normal response.

ABEND handling
HANDLE ABEND PROGRAM commands are allowed, but you cannot use
PUSH HANDLE or POP HANDLE.

COMMAREA
The address of the communication area is not passed as an argument to a C or
C++ main function. This means that C and C++ functions must use ADDRESS
COMMAREA to obtain the address of the communications area.

© Copyright IBM Corp. 1989, 2010 43

H*

44

EIB
The address of the EIB is not passed as an argument to a C or C++ main
function. This means that C and C++ functions must use ADDRESS EIB to
obtain the address of the EIB.

OVERFLOW conditions
If you want any OVERFLOW condition to be indicated in the RESP field on
return from a SEND MAP command with the ACCUM option, you should specify
the NOFLUSH option.

AMODE
All C and C++ language programs running under CICS must be link-edited with
the attributes, AMODE(31), RMODE(ANY). They may reside above the 16 MB
line.

Invoking CSP programs
Consequently, when passing parameters to a program produced by the
Cross-System Product (CSP) interactive application generator, you must
either:

» Pass parameters below 16MB, or
* Re-link the CSP load library with AMODE(31).

Working storage
In C and C++, working storage consists of the stack and the heap. The location
of the stack and heap, with respect to the 16MB line, is controlled by the
ANYWHERE and BELOW options on the stack and heap run time options. The
default is that both the stack and heap are located above the 16MB line.

Return value
If you terminate a C or C++ program with an exit() function or the return
statement, instead of a CICS RETURN command, the value passed through the
exit() function is saved in the EIBRESP2 field of the EIB on return from the
program.

Note: If a program uses DPL to link to a program in another CICS region,
EIBRESP2 values from the remote region are not returned to the
program doing the DPL.

Sample programs

A set of sample application programs is provided in|Table 1|to show how EXEC
CICS commands can be used in a program written in the C or C++ language.

Table 1. Sample programs

Sample program Map set Map source Transaction ID
DFH$DMNU Operator DFH$DGA DFH$DMA DMNU

instruction (3270)

DFHSDALL Update (3270) DFH$DGB DFH$DMB DINQ, DADD, DUPD
DFH$DBRW Browse (3270) DFH$DGC DFH$DMC DBRW

DFH$DREN Order entry DFH$DGK DFH$DMK DORD

(3270)

DFH$DCOM Order entry DFH$DGL DFH$DML DORQ

queue print (3270)

DFH$DREP Report (3270) DFH$DGD DFH$DMD DREP

The transaction and program definitions are provided in group DFH$DFLA in
the CSD and should be installed using the command:

CICS TS for z/OS: CICS Application Programming Guide

CEDA INSTALL GROUP(DFH$DFLA)

The following record description files are provided as C or C++ language
header files:

DFHS$DFIL—FILEA record descriptor

DFH$DL86—L860 record descriptor

Data declarations

The following data declarations are provided by CICS for C and C++:
» Execution interface block definitions (EIB)

« BMS screen attributes definitions: C and C++ versions of the DFHBMSCA,
DFHMSRCA, and DFHAID files are supplied by CICS, and may be included
by the application programmer when using BMS.

» DL/I support: a C language version of DFHDIB is included by the DLI
translator if the translator option has been specified. (You have to include
DLIUIB if the CALL DLI interface is used.)

The EIB declarations are enclosed in #ifndef and #endif lines, and are included
in all translated files. The C or C++ compiler ignores duplicated declarations.
The inserted code contains definitions of all the fields in the EIB, coded in C
and C++.

Fetch function
Language Environment-conforming programs support the fetch() and release()
functions. Modules to be fetched must be defined as PROGRAM resources to
CICS, either explicitly or implicitly through autoinstall.

System function
CICS does not support the system() function, but two CICS commands, LINK
and XCTL, provide equivalent function.

Macros
C and C++ do not support the use of CICS commands in macros.

Clock function
The clock() function returns a value (time_t) of -1.

Locale functions
All locale functions are supported for locales that have been defined in the
CSD. CSD definitions for the IBM-supplied locales are provided in member
CEECCSD of the SCEESAMP library. The setlocale() function returns NULL if
the locale is not defined.

Debugging functions
The dump functions csnap(), cdump(), and ctrace() are supported. The output is
sent to the CESE transient data queue. The dump cannot be written if the
queue does not have a sufficient record length (LRECL). An LRECL of at least
161 is recommended.

iscics function
If you are adapting an existing program or writing a new program that is
designed to run outside CICS as well as under CICS, the iscics() function may
prove useful. It returns a non-zero value if your program is currently running
under CICS, or zero otherwise. This function is an extension to the C library.

Restrictions
The following lists describe some of the restrictions that exist with C or C++
programs using Language Environment under CICS. You should check the
relevant language guide for more specific details about those that apply to your
installation:

Chapter 5. Programming in C and C++ 45

» CICS does not support extended precision floating point.

* C and C++ languages do not support packed decimal data. The application
has access to packed decimal data using the character string data type. No
C or C++ standard library functions are available to perform arithmetic on this
data, but you may write your own.

* You can easily use HOURS, MINUTES, and SECONDS options. You may
define expiration times using TIME or INTERVAL options if you provide
functions to handle them in your application.

* You can enter all CICS keywords in mixed case, except for CICS keywords
on #pragma directives, which must be in upper case only.

* If you do not specify the LENGTH option on commands that support
LENGTH (for example, READ, READNEXT, READPREV, and WRITE
commands), the translator does not supply a default value. In effect,
NOLENGTH is implicit for C programs.

* All native C and C++ functions are allowed in the source program, but the
following functions are not recommended. Some are not executable and
result in return codes or pointers indicating that the function has failed. Some
may work but impact the performance or execution of CICS.

— CDUMP

— CSNAP

— CTEST

- CTRACE

— CLOCK

— CTDLI

- SVC99

— SYSTEM

— SETLOCALE

For further information see the relevant User’s Guide. Native C or C++
functions are implemented in the C or C++ runtime library.

* Native C or C++ file operations operate only on files opened with
type=memory specified. 1/0 to CICS-supported access methods must use the
CICS API.

» The string handling functions in the C or C++ standard library use a null
character as an end-of-string marker. Because CICS does not recognize a
null as an end-of-string marker, you must take care when using C or C++
functions, for example strcmp, to operate on CICS data areas.

« Two arguments, argc and argv, are normally passed to a C or C++ main
function. argc denotes how many variables have been passed; argv is an
array of zero-terminated variable strings. In CICS, the value of argc is 1,
argv[0] is the transaction ID, and argv[1] is NULL.

* Where CICS expects a fixed-length character string such as a program
name, map name, or queue name, you must pad the literal with blanks up to
the required length if it is shorter than expected.

For EXEC DLI commands, the SEGMENT name is padded by the translator
if a literal is passed.

» Take care not to use field names, which, though acceptable to the assembler,
cause the C or C++ compiler to abend. These include $, #, and @.

XPLink considerations for C and C++ programming

I

| Extra Performance Linkage, (from here on it is abbreviated to XPLink), is a z/OS
| feature which provides high performance subroutine call and return mechanisms.
| This results in short and highly optimized execution path lengths.

46 CICS TS for z0S: CICS Application Programming Guide

Object Oriented programming is built upon the concept of sending 'messages' to
objects which result in that object performing some actions. The message sending
activity is implemented as a subroutine invocation. Subroutines, known as member
functions in C++ terminology, are normally small pieces of code. The characteristic
execution flow of a typical C++ program is of many subroutine invocations to small
pieces of code. Programs of this nature benefit from the XPLink optimization
technology.

MVS has a standard subroutine calling convention which can be traced back to the
early days of System/360. This convention was optimized for an environment in
which subroutines were more complex, there were relatively few of them, and they
were invoked relatively infrequently. Object oriented programming conventions have
changed this. Subroutines have become simpler but they are numerous, and the
frequency of subroutine invocations has increased by orders of magnitude. This
change in the size, numbers, and usage pattern, of subroutines made it desirable
that the system overhead involved be optimized. XPLink is the result of this
optimization.

— PLEASE NOTE!
For z/OS 1.4 and above, and CICS TS 3.1 and above, the advice here that
you CAN use the XPLINK compiler option with CICS application programs,
overrides advice in z/OS and Language Environment manuals to the contrary.

z/OS and Language Environment manuals for C and C++ advise you that the
XPLINK compiler option is not available to CICS application programs,
because that used to be the case. Although these manuals are now being
changed, you may be working with a copy of one of these manuals produced
before this change.

The following topics cover:

« [XPLink, and the X8 and X9 TCBs]

* |“Writing C and C++ programs, which are to be compiled with the XPLINK option,|
for the CICS environment” on page 48|

+ [‘Passing control between XPLink and non-XPLink objects” on page 48|

+ [‘Changing CICS definitions to obtain CICS support for objects compiled with the]
XPLINK option” on page 48|

[‘Global User exits and XPLink” on page 48]

XPLink, and the X8 and X9 TCBs

CICS provides support for C and C++ programs compiled with the XPLINK option
by using the multiple TCB feature in the CICS Open Transaction Environment
(OTE) technology. X8 and X9 mode TCBs are defined to support XPLink tasks in
CICS key and USER key. Each instance of an XPLink program uses one X8 or X9
TCB.

To use XPLink, your C or C++ application code must be re-entrant and threadsafe.
The same code instance can be executing on more than one MVS TCB and,
without threadsafe mechanisms to protect shared resources, the execution behavior
of application code is unpredictable. This cannot be too strongly emphasized.

Chapter 5. Programming in C and C++ 47

Writing C and C++ programs, which are to be compiled with the
XPLINK option, for the CICS environment

The application developer is expected to do the following to take advantage of
CICS XPLink support;

» Develop the code, strictly adhering to threadsafe programming principles and
techniques

* Compile the C or C++ program with the XPLINK option set on
* Indicate in the PROGRAM resource definition that the program is threadsafe

* Consider the use of CICSVAR in CEEUOPT or in #pragma, (see note 3 in
[‘Defining runtime options for Language Environment” on page 16| for details).

All programs using CICS XPLink support must be re-entrant and threadsafe. Only
the application developer can guarantee that the code for a particular application
satisfies these requirements.

Passing control between XPLink and non-XPLink objects

Each transfer of control from XPLink objects to non-XPLink objects, or the reverse,
causes a switch between the QR TCB and an open TCB, (either an X8 or an X9
TCB). In performance terms, TCB switching is costly, you must take this
performance overhead into account.

An XPLink object can invoke a non-XPLink object using either the EXEC CICS
interface or the Language Environment interface.

A non-XPLink object can only invoke an XPLink object using the EXEC CICS
interface. Use of the Language Environment interface for such invocations is not
supported.

Changing CICS definitions to obtain CICS support for objects
compiled with the XPLINK option

CICS support for programs compiled with the XPLINK option requires only that you
show in the PROGRAM resource definition that the program is threadsafe. This
indication, and the XPLink “signature” in the load module, are the only things
required to put the task on an X8 or X9 TCB.

In the selection of a suitable TCB for a particular program, XPLink takes
precedence over the existence of the OPENAPI value for the API attribute on the
PROGRAM resource definition.

Global User exits and XPLink

XPCFTCH
When the exit XPCFTCH is invoked for a C or C++ program that was
compiled with the XPLINK option, a flag is set indicating that any modified
entry point address, if specified by the exit, will be ignored.

XPCTA
When the exit XPCTA is invoked for a C or C++ program that was compiled
with the XPLINK option, a flag is set indicating that a resume address, if
specified by the exit, will be ignored.

Other Global User exits are unaffected by XPLink support.

48 CICS TS for z/0S: CICS Application Programming Guide

Passing arguments in C or C++

Arguments in C and C++ language are copied to the program stack at run time,
where they are read by the function. These arguments can either be values in their
own right, or they can be pointers to areas of memory that contain the data being
passed. Passing a pointer is also known as passing a value by reference.

Other languages, such as COBOL and PL/I, usually pass their arguments by
reference, which means that the compiler passes a list of addresses pointing to the
arguments to be passed. This is the call interface supported by CICS. To pass an
argument by reference, you prefix the variable name with &, unless it is already a
pointer, as in the case when an array is being passed.

As part of the build process, the compiler may convert arguments from one data
type to another. For example, an argument of type char may be converted to type
short or type long.

When you send values from a C or C++ program to CICS, the translator takes the
necessary action to generate code that results in an argument list of the correct
format being passed to CICS. The translator does not always have enough
information to enable it to do this, but in general, if the argument is a
single-character or halfword variable, the translator makes a precall assignment to a
variable of the correct data type and passes the address of this temporary variable
in the call.

When you receive data from CICS, the translator prefixes the receiving variable
name with &, which causes the C or C++ compiler to pass it values by reference
rather than by value (with the exception of a character string name, which is left
unchanged). Without the addition of &, the compiler would copy the receiving
variable and then pass the address of the copy to CICS. Any promotion occurring
during this copying could result in data returned by CICS being lost.

shows the rules that apply when passing values as arguments in EXEC
CICS commands.

Table 2. Rules for passing values as arguments in EXEC CICS commands

Data type Usage Coding the argument

Character literal Data-value (Sender) | The user must specify the character literal
directly. The translator takes care of any
required indirection.

Character variable Data-area (Receiver) | The user must specify a pointer to the

(char) variable, possibly by prefixing the variable
name with &.

Character variable Data-value (Sender) | The user must specify the character variable

(char) directly. The translator takes care of any

required indirection.

Character string literal | Name (Sender) The user can either code the string directly
as a literal string or use a pointer which
points to the first character of the string.

Character string Data-area (Receiver) | Whether receiving or sending, the argument
variable Name (Sender) should be the name of the character array
containing the string—the address of the
first element of the array.

Chapter 5. Programming in C and C++ 49

Table 2. Rules for passing values as arguments in EXEC CICS commands (continued)

Data type

Usage

Coding the argument

Integer variable
(short, long, or int)

Data-area (Receiver)

The user must specify a pointer to the
variable, possibly by prefixing the variable
name with &.

Integer variable
(short, long, or int)

Data-value (Sender)

The user must specify the name of the
variable. The translator looks after any
indirection that is required.

Integer constant
(short, long, or int)

Data-value (Sender)

The user must specify the integer constant
directly. The translator takes care of any
required indirection.

Structure or union

Data-area (Sender)
Data-area (Receiver)

The user must code the address of the start
of the structure or union, possibly by
prefixing its name with &.

Array (of anything)

Data-area (Receiver)
Data-value (Sender)

The translator does nothing. You must code
the address of the first member of the array.
This is normally done simply by coding the
name of the array, which the compiler
interprets as the address of the first
member.

Pointer (to anything)

Ptir-ref (Receiver)
Data-area (Sender)

Whether receiving or sending, the argument
should be the name of the variable that
denotes the address of interest. The
translator takes care of the extra level of
indirection that is necessary to allow CICS
to update the pointer.

passed to CICS.

Note: Receiver is where data is being received from CICS; Sender is where data is being

Accessing the EIB

The address of the exec interface block (EIB) is not passed as an argument to a C
or C++ main function. This means that C and C++ functions must use the
ADDRESS EIB command to obtain the address of the EIB.

Addressability is achieved by using the command:
EXEC CICS ADDRESS EIB(dfheiptr);

or by passing the EIB address or particular fields therein as arguments to the CALL
statement that invokes the external procedure.

If access to the EIB is required, an ADDRESS EIB command is required at the
beginning of each program.

Naming EIB fields

Within a C or C++ application program, fields in the EIB are referred to in lower
case and fully qualified as, for example, “dfheiptr->eibtrnid”.

Data types in EIB fields
The following mapping of data types is used:

» Halfword binary integers are defined as “short int”

* Fullword binary integers are defined as “long int”

» Single-character fields are defined as “unsigned char”

50 CICS TS for z/0S: CICS Application Programming Guide

I+ 3

H oH o H H H H H

#+ W H H

BT T T T

» Character strings are defined as “unsigned char” arrays

Locale support for C and C++

The CICS translator, by default, assumes that programs written in the C or C++
language have been edited with the EBCDIC Latin-1 code page IBM-1047.

If you have used an alternative code page, you can specify this in a pragma filetag
directive at the start of the application program. The pragma statement must be the
first non-comment statement in the program, and the filetag directive must be
specified before any other directive in the pragma statement. The CICS translator
scans for the presence of the filetag directive. The CICS translator only supports
the default code page IBM-1047, the Danish EBCDIC code page IBM-277, the
German EBCDIC code page IBM-273, and the Chinese EBCDIC code pages
IBM-935 and IBM-1388.

For example, if the program has been prepared with an editor using the German
EBCDIC code page, it should begin with the following directive:

??=pragma filetag ("IBM-273")

If your application program uses a mix of different code pages (for example, if you
are including header files edited in a code page different to that used for the
ordinary source files), all of the files must include the pragma filetag directive, even
if they are in the default code page IBM-1047.

Some older IBM C compilers which are no longer in service, but can still be used
with the CICS translator, might not support the use of the pragma filetag directive.
Check the documentation for your compiler if you are not sure whether your
compiler supports this. All the IBM C/C++ compilers that are listed in the topic
“High-level language support” in the CICS Transaction Server for z/OS Release
Guide which are still in service support the use of the pragma filetag directive.

Programming in C++

Restrictions

C++ supports object-oriented programming and you can use this language in the
same way as you would use the C language. You must specify that the translator is
to translate C++ using the CPP option.

C++ programs must also be defined with the LANGUAGE(LE370) option. See
[Chapter 3, “Language Environment,” on page 9 for information about this
environment.

C++ uses '/’ for single line comments. Do not put a comment in the middle of an
EXEC CICS command. For instance, this example does not work:
EXEC CICS SEND TEXT FROM(errmsg)

LENGTH(msglen) // Send error message to screen

RESP (rcode)
RESP2(rcode2);

These examples are valid:

EXEC CICS SEND TEXT FROM(errmsg)
LENGTH(msglen)
RESP(rcode)
RESP2(rcode2); //Send error message to screen

Chapter 5. Programming in C and C++ 51

EXEC CICS SEND TEXT FROM(errmsg)

LENGTH(msglen) /* Send error message to screen x/
RESP(rcode)
RESP2(rcode2);

52 CICS TS for z/0S: CICS Application Programming Guide

Chapter 6. Programming in PL/I

CICS supports PL/I programs that have been compiled by the supported compilers
listed in fthe CICS Release Guidg All PL/I programs are executed under the runtime
support provided by Language Environment.

Runtime options, if needed, can be specified in a plixopt character string. See
[‘Defining runtime options for Language Environment” on page 16| and the Language
Environment Customization manual or information about customizing runtime
options.

If you are converting a program that was previously compiled with a non-Language
Environment conforming compiler, you must ensure that neither NOSTAE nor
NOSPIE is specified in a plixopt string, because this will cause Language
Environment to set TRAP (OFF). TRAP (ON) must be in effect for applications to
run successfully.

If OPTIONS(MAIN) is specified in an application program, that program can be the
first program of a transaction, or control can be passed to it by means of a LINK or
XCTL command.

In application programs where OPTIONS(MAIN) is not specified, it cannot be the
first program in a transaction, nor can it have control passed to it by an LINK or
XCTL command, but it can be link-edited to a main program.

This chapter describes:
+ [‘PL/I programming restrictions’]
+ [‘Language Environment considerations for PL/I applications” on page 54

PL/lI programming restrictions

The following restrictions apply to a PL/I program that is to be used as a CICS
application program.

* You cannot use the multitasking built-in functions:

COMPLETION
PRIORITY
STATUS
* You cannot use the multitasking options:
EVENT
PRIORITY
TASK
* You should not use the PL/I statements:
CLOSE DELAY
DELETE DISPLAY
EXIT GET
HALT LOCATE
OPEN PUT
READ REWRITE
STOP WRITE
UNLOCK
The following commands are supported :
FETCH
RELEASE

© Copyright IBM Corp. 1989, 2010 53

H o H OH H H H H

You are provided with EXEC CICS commands for the storage and retrieval of
data, and for communication with terminals. (However, you can use CLOSE,
PUT, and OPEN, for SYSPRINT.)

* You cannot use PL/I Sort/Merge.
* You cannot use static storage (except for read-only data).

 If you declare a variable with the STATIC attribute and EXTERNAL attribute you
should also include the INITIAL attribute. If you do not, such a declaration
generates a common CSECT that cannot be handled by CICS.

* You cannot use the PL/I 48-character set option in EXEC CICS statements.

* Do not define variables or structures with variable names that are the same as
variable names generated by the translator. These begin with DFH. Care must be
taken with the LIKE keyword to avoid implicitly generating such variable names.

» All PROCEDURE statements must be in upper case, with the exception of the
PROCEDURE name, which may be in lower case.

* The suboptions of the XOPTS option of the “PROCESS statement must be in
upper case.

* If a CICS command uses the SUBSTR built-in function in defining a data value, it
should include a LENGTH option to specify the data length, unless the translator
option NOLENGTH is specified. If it does not, the translator generates a PL/I call
including an invocation of the CSTG built-in function in the form:
CSTG(SUBSTR(++yevs..))

This is rejected by the compiler.

» For Enterprise PL/I Version 3 Release 2 or later, specify either the

FLOAT(NOAFP) compiler option, or the FLOAT(AFP(VOLATILE)) compiler option.

— If your program makes use of floating-point sparingly, specify the
FLOAT(NOAFP) option. The application will only use the traditional 4 floating
point registers, and has less work to do when saving registers.

— If your program makes significant use of floating-point, specify the
FLOAT(AFP(VOLATILE)) option. The application will use all 16 floating point
registers, but will have more work to do when saving registers.

Language Environment considerations for PL/l applications

The advice and restrictions listed in[Chapter 6, “Programming in PL/l,” on page 53
apply to PL/I programs running under Language Environment.

Language Environment-conforming PL/I programs can CALL a program that
appears in a FETCH or RELEASE statement and can RELEASE it subsequently.

There are some restrictions on the PL/I for MVS & VM statements that can be used
in a fetched procedure. These restrictions are described in PL/I MVS & VM
Language Reference.. Many of the restrictions have been removed with VisualAge
PL/I. See the VisualAge PL/I for 0S/390 Compiler and Run-Time Migration Guide.

To enable a PL/I procedure to be fetched, code the option FETCHABLE in the
OPTIONS on the PROCEDURE statement. This option indicates that the procedure
can only be invoked dynamically. An OPTIONS(MAIN) procedure cannot be
fetched; FETCHABLE and MAIN are mutually exclusive options. Treat the
FETCHABLE procedure like a normal CICS program: that is, link-edited with any
required subroutines, placed in the CICS application program library, defined, and
installed as a program, either in the CSD or using program autoinstall.

54 CICS TS for z/0S: CICS Application Programming Guide

No special considerations apply to the use of FETCH when both the fetching and
the fetched programs have the same AMODE attribute. Language Environment,
however, also supports the fetching of a load module that has an AMODE attribute
different to the program issuing the FETCH. In this case, Language Environment
performs the AMODE switch, and the following constraints apply:

» If any fetched module is to execute in 24-bit addressing mode, the fetching
module must have the RMODE(24) attribute regardless of its AMODE attribute.

* Any variables passed to a fetched routine must be addressable in the AMODE of
the fetched procedure.

Communicating between modules compiled with different compilers
You can link-edit non-Language Environment-conforming PL/I subroutines with
a Language Environment-conforming main program. Static calls are supported
from any version of PL/I, but dynamic calls are supported only from Language
Environment-conforming procedures. Called subroutines can issue CICS
commands if the address of the EIB is available in the subroutine. You can
achieve this either by passing the address of the EIB to the subroutine, or by
coding EXEC CICS ADDRESS EIB(DFHEIPTR) in the subroutine before issuing
any other CICS commands.

Entry point

CEESTART is the only entry point for PL/I applications running under Language
Environment. This entry point is set for programs compiled using Language
Environment-conforming compilers. You can re-link object modules produced by
non-Language Environment-conforming compilers for running under Language
Environment by using the following linkage-editor statements:

INCLUDE SYSLIB(CEESTART)

INCLUDE SYSLIB(CEESGO10)

INCLUDE SYSLIB(DFHELII)

REPLACE PLISTART

CHANGE PLIMAIN(CEEMAIN)

INCLUDE mainprog

INCLUDE subprogl

ORDER CEESTART
ENTRY CEESTART
NAME progname (R)

The INCLUDE statement for the object modules must come immediately after
the CHANGE statement and there is also a requirement under Language
Environment that the main program must be included before any subroutines.
(This requirement did not exist for modules produced by non-conforming
compilers.) For Enterprise PL/I programs that are compiled with
OPTIONS(FETCHABLE), the binder ENTRY statement must be the name of the
PROCEDURE.

Re-Tlink utility for PL/I
If you have only the load module for a CICS program compiled by a
non-conforming compiler, there is a file of linkage editor input, IBMWRLKC,
specifically for CICS programs, located in the sample library SCEESAMP, to
replace OS PL/I library routines in a non-conforming executable program with
Language Environment routines. For more information about using IBMWRLKC,
see the PL/I MVS & VM V1R1.1 Compiler & Runtime Migration Guide.

Abend codes
If a CICS PL/I program abends under Language Environment , your CICS
abend handlers are given a Language Environment abend code, rather than a
PL/I abend code. To avoid changing your programs, you can modify the sample

Chapter 6. Programming in PL/l 55

user condition handler, CEEWUCHA, supplied by Language Environment in the
SCEESAMP library. This user condition handler can be made to return PL/I
abend codes instead of the Language Environment codes. Use the USRHDLR
runtime option to register it to do this. For details of this option see the zZ0OS
Language Environment Programming Guide.

56 CICS TS for z/0S: CICS Application Programming Guide

Chapter 7. Programming in Assembler

CICS supports assembler programs that have been compiled by the supported
compilers listed inthe CICS Release Guideg. All assembler programs are executed
under the runtime support provided by Language Environment.

Note the following Assembler language programming considerations:

Language restrictions

1. The following instructions cannot be used in an assembler language
program that is to be used as a CICS application program:

COoM Identify blank common control section.
ICTL Input format control.
OPSYN Equate operation code.

2. The following additional restrictions apply if an assembler language program
is to be translated with the LEASM option, see ['LEASM” on page 78

* Register 2 cannot be used as a code base register.

* Register 12 is reserved by Language Environment to point to the
Language Environment common anchor area (CAA) and so cannot be
used at all by the program without being saved and restored as
appropriate.

* Register 13 must be used as the one and only working storage base
register.

* The program cannot be a Global User Exit program (GLUE) or a
Task-Related User Exit program (TRUE).

* The program must not use, or depend on, any AMODE(24) code.

BAKR

When using BAKR instructions (branch and stack) to provide linkage between
assembler programs, take care that the linked-to program does not issue EXEC
CICS requests. If CICS receives control and performs a task switch before the
linked-to program returns by a PR instruction (program return), then other tasks
might be dispatched and issue further BAKR / PR calls. These modify the
linkage-stack and result in the wrong environment being restored when the
original task issues its PR instruction.

Working storage

Working storage is allocated either above or below the 16MB line, according to
the value of the DATALOCATION parameter on the PROGRAM definition in the
CSD.

HANDLE ABEND LABEL
CICS does not allow the use of HANDLE ABEND LABEL in Assembler
programs that do not use DFHEIENT and DFHEIRET. Assembler programs that
use the Language Environment stub CEESTART should either use HANDLE
ABEND PROGRAM or a Language Environment service such as CEEHDLR.

31-bit addressing

The following restriction applies to an assembler language application program
executing in 31-bit mode:

© Copyright IBM Corp. 1989, 2010 57

« The COMMAREA option is restricted in a mixed addressing mode transaction
environment. For a discussion of the restriction, see [‘Using mixed addressing|
[modes” on page 571

MVS restrictions

The following restrictions apply to an assembler language application program
that uses access registers to exploit the extended addressability of ESA/370
processors:

* You must be in primary addressing mode when invoking any CICS service.
The primary address-space must be the home address-space. All parameters
passed to CICS must reside in the primary address-space.

» CICS does not always preserve access registers. You must save them
before you invoke a CICS service, and restore them before using the access
registers again.

For more guidance information about using access registers, see the z/OS:
MVS Programming: Extended Addressability Guide.

64-bit registers

The following restriction applies to an assembler language application program
that uses 64—-bit registers to exploit 64—bit addressing mode or 64-bit binary
operations:

» CICS does not always preserve the high order words of 64—bit registers. You
must save them before you invoke a CICS service, and restore them before
using the 64-bit registers again.

For more guidance information about using 64—bit addressing mode and 64-bit
binary operations, see the z/OS: MVS Programming: Assembler Services
Guide.

HoH H H H H O H H H OH*

Language Environment considerations for Assembler applications

Like HLL programs, assembler programs are classified as either conforming or
non-conforming with respect to Language Environment. For assembler programs,
conformance depends on the linkage and register conventions observed, rather
than the assembler used. By definition, a Language Environment-conforming
assembler routine is defined as one coded using the CEEENTRY and associated
Language Environment macros.

Conformance governs the use of assembler programs by call from an HLL program.
Both conforming and non-conforming assembler subroutines may be called either
statically or dynamically from C or C++, COBOL or PL/I. However, there are
differences in register conventions and other requirements for the two types. These
are described below. Rules for mixing languages, including assembler, are
discussed in[“Mixing languages in Language Environment” on page 13|

Conforming MAIN programs
If you are coding a new assembler MAIN program that you want to conform to
the Language Environment interface or if your assembler routine calls
Language Environment services, observe the following:

|

|

|

|

I » Use the macros provided by Language Environment. For a list of these
| macros, see the z/OS Language Environment Programming Guide.

|
|

* Ensure that the CEEENTRY macro contains the option MAIN=YES. (
MAIN=YES is the default).

58 CICS TS for z/0S: CICS Application Programming Guide

» Translate your assembler routine with *ASM XOPTS(LEASM) or, if it
contains CICS commands, with *ASM XOPTS(LEASM NOPROLOG
NOEPILOG).

Conforming sub-routines programs

ATl

If you are coding a new assembler sub-routine that you want to conform to the
Language Environment interface or if your assembler routine calls Language
Environment services, observe the following:

* Use the macros provided by Language Environment. For a list of these
macros, see the z/OS Language Environment Programming Guide.

* Ensure that the CEEENTRY macro contains the option MAIN=NO. (
MAIN=YES is the default).

» Translate your assembler routine with *ASM XOPTS(NOPROLOG
NOEPILOG) if it contains CICS commands.

* Ensure that the CEEENTRY macro contains the option NAB=NO if your
routine is invoked by a static call from VS COBOL II. (NAB is Next Available
Byte (of storage). NAB=NO means that this field may not be available, so the
CEEENTRY macro generates code to find the available storage.)

conforming routines

To communicate properly with assembler routines, observe certain register
conventions on entry to the assembler routine, while it is running, and on exit
from the assembler routine.

Entry

On entry into a Language Environment-conforming assembler subroutine,
these registers must contain the following values when NAB=YES is
specified on the CEEENTRY macro:

RO Reserved

R1 Address of the parameter list, or zero
R12 Common anchor area (CAA) address
R13 Caller's dynamic storage area (DSA)
R14 Return address

R15 Entry point address

Language Environment-conforming HLLs generate code that follows these
register conventions, and the supplied macros do the same when you use
them to write your Language Environment-conforming assembler routine.
On entry to an assembler routine, CEEENTRY saves the caller's registers
(R14 through R12) in the DSA provided by the caller. It allocates a new
DSA and sets the NAB field correctly in this new DSA. The first half word of
the new DSA is set to binary zero and the back chain in the second word is
set to point to the caller's DSA.

While the subroutine is running

R13 must point to the routine's DSA at all times while the Language
Environment-conforming assembler routine is running.

At any point in your code where you CALL another program, R12 must
contain the common anchor area (CAA) address, except in the following
cases:

* When calling a COBOL program

Chapter 7. Programming in Assembler 59

* When calling an assembler routine that is not Language
Environment-conforming

* When calling a Language Environment-conforming assembler routine that
specifies NAB=NO on the CEEENTRY macro

Exit

On exit from a Language Environment-conforming assembler routine, RO,
R1, R14, and R15 are undefined. All the other registers must have the
contents they had upon entry.

The CEEENTRY macro automatically sets a module to AMODE (ANY) and
RMODE (ANY). If you are converting an existing assembler routine to be
Language Environment-conforming and the routine contains data
management macros coded using 24-bit addressing mode, then you should
change the macros to use 31-bit mode. If it is not possible to change all the
modules making up a program to use 31-bit addressing mode, and if none
of the modules explicitly sets RMODE (24), then you should set the
program to be RMODE (24) during the link-edit process.

Non-conforming routines
Observe the following conventions when running non-Language
Environment-conforming subroutines under Language Environment:

* R13 must contain the address of the executing routine's register save area.
» The first two bytes of the register save area must be binary zeros.

* The register save area back chain must be set to a valid 31-bit address (the
high-order byte must be zero if it is a 24-bit address).

If your assembler routine relies on C/C++, COBOL, or PL/I control blocks (for
example, a routine that tests flags or switches in these control blocks), check
that these control blocks have not changed under Language Environment . For
more information, see the appropriate Language Environment migration guide.

Non-conforming routines cannot use Language Environment callable services.

Note: CICS does not allow the use of HANDLE ABEND LABEL in Assembler
programs that do not use DFHEIENT and DFHEIRET. Assembler programs
that use the Language Environment stub CEESTART should either use
HANDLE ABEND PROGRAM or a Language Environment service such as
CEEHDLR. See|[‘Using Language Environment Abend-handling” on page 12|
for information about CEEHDLR.

For more information or for explanations of the terms used in this section see the
chapter on "Assembler Considerations" in the z/OS Language Environment
Programming Guide.

Calling Assembler programs

Assembler language application programs that contain commands can have their
own RDO program definition. Such programs can be invoked by COBOL, C or C++,
PL/I, or assembler language application programs using LINK or XCTL commands
(see |Chapter 45, “Program control,” on page 565b. However, because programs that
contain commands are invoked by a system standard call, they can also be invoked
by a COBOL, C, C++, or PL/I CALL statement or by an assembler language CALL
macro.

A single CICS application program, as defined in an RDO program definition, may
consist of separate CSECTs compiled or assembled separately, but linked together.

60 CICS TS for z/0S: CICS Application Programming Guide

An assembler language application program that contains commands can be linked
with other assembler language programs, or with programs written in one or more
high-level languages (COBOL, C, C++, or PL/I). For details of mixing languages in
an application load module, refer to zZOS Language Environment Writing
Interlanguage Communications Applications.

If an assembler language program (that is link edited separately) contains
command-level calls, and is called from a high-level language program, it requires
its own CICS interface stub. If the assembler program is link edited with the
high-level language program that calls it, then the assembler program does not
need a stub, but if you provide one, the message MSGIEWO024I is issued, but this
can be ignored.

Because assembler language application programs containing commands are
always passed the parameters EIB and COMMAREA when invoked, the CALL
statement or macro must pass these two parameters followed, optionally, by other
parameters.

For example, the PL/I program in file PLITEST PLI calls the assembler language
program ASMPROG, which is in file ASMTEST ASSEMBLE. The PL/I program
passes three parameters to the assembler language program, the EIB, the
COMMAREA, and a message string.

PLIPROG:PROC OPTIONS(MAIN);
DCL ASMPROG ENTRY EXTERNAL;
DCL COMA CHAR(20), MSG CHAR(14) INIT('HELLO FROM PLI');
CALL ASMPROG (DFHEIBLK,COMA,MSG) ;
EXEC CICS RETURN;
END;

Figure 8. PLITEST PLI

The assembler language program performs an EXEC CICS SEND TEXT command,
which displays the message string passed from the PL/I program.

DFHEISTG DSECT
MSG DS CL14
MYRESP DS F
ASMPROG CSECT
L 5,8(1)
L 5,0(5)
MVC MSG,0(5)
EXEC CICS SEND TEXT FROM(MSG) LENGTH(14) RESP(MYRESP)
END

Figure 9. ASMTEST ASSEMBLE

You can use JCL procedures supplied by CICS to compile and link the application,
as follows:

1. Assemble and link ASMTEST using the DFHEITAL procedure:

//ASMPROG EXEC DFHEITAL
//TRN.SYSIN DD =
. program source ...
/*
//LKED.SYSIN DD =*
NAME ASMTEST(R)
/*
2. Compile and link PLITEST using the DFHYITPL procedure, and provide linkage
editor control statements that include the ASMTEST load module created by the
DFHEITAL procedure:

Chapter 7. Programming in Assembler 61

H oH H H H H H

HH

//PLIPROG EXEC DFHYITPL
//TRN.SYSIN DD =
. program source ...

/*
//LKED.SYSIN DD =*

INCLUDE SYSLIB(ASMTEST)

ENTRY CEESTART

NAME PLITEST(R)
/*

Note: Step 2 assumes that the ASMTEST load module created by DFHEITAL was
stored in a library included in the SYSLIB dataset concatenation.

The load module created by the DFHYITPL procedure includes both the DFHEAI
stub (included by DFHEITAL) and the DFHELII stub (included by DFHYITPL). This
causes the linkage editor or binder program to issue a warning message because
both stubs contain an entry point named DFHEII. This message can be ignored.

The DFHEAI stub must be included at the beginning of the program in the output
from the link edit. To achieve this, ORDER and INCLUDE statements for DFHEAI
must be in the link-edit step of your JCL. When you use the CICS-supplied
assembler procedure DFHEITAL in the SDFHPROC library to translate, assemble,
and link-edit application programs written in assembler language, the COPYLINK
step of this procedure copies SDFHMAC(DFHEILIA). DFHEILIA contains the
following statements that must be included:

ORDER DFHEAI
INCLUDE SYSLIB(DFHEAI)

The statements are put into a temporary file that is concatenated before the
assembled application program in the LKED step of the procedure.

If you are writing your own JCL, you only need to include the DFHELII stub,
because this contains the entry points needed for all languages.

An assembler language application program that is called by another begins with
the DFHEIENT macro and ends with the DFHEIRET macro. The CICS translator
inserts these for you, so if the program contains EXEC CICS commands and is to
be passed to the translator, as in the example just given, you do not need to code
these macros.

62 CICS TS for z/0S: CICS Application Programming Guide

Part 2. Preparing applications to run

Chapter 8. Translation and compilation .
The integrated CICS translator . .
Using the integrated CICS translator .
Specifying CICS translator options.
The translation process. .o
The CICS-supplied translators .
Dynamic invocation of the separate translator
Translator option list .
Data definition (DD name) list
Using a CICS translator
Defining translator options.
Translator options .
APOST.
CBLCARD
cics . .
coBOL2 .
COBOLS .
CPP. .
CPSM .
DBCS .
DEBUG
DLI .
EDF. .
EPILOG
EXCI
FEPI.
FLAG (I, W, E, or S).
GDS. . . .
GRAPHIC.
LEASM. .
LENGTH . . .
LINECOUNT(n).
LINKAGE
MARGINS(m,n[,c])
NATLANG(EN or KA)
NOCBLCARD .
NOCPSM .
NODEBUG
NOEDF . .
NOEPILOG .
NOFEPI . .
NOLENGTH .
NOLINKAGE.
NONUM . . .
NOOPSEQUENCE
NOOPTIONS
NOPROLOG.
NOSEQ .
NOSEQUENCE
NOSOURCE.
NOSPIE .
NOVBREF
NUM

© Copyright IBM Corp. 1989, 2010

. 67
. 67
. 68
. 68
. 69
.72
.72
.72
.72
. 73
.74
. 75
. 75
. 75
. 75
. 75
. 75
. 76
. 76
. 76
. 76
. 76
. 76
. 76
. 76
.77
.77
.77
.77
. 78
. 78
. 78
. 78
. 78
.79
.79
. 79
. 79
. 80
. 80
. 80
. 80
. 80
. 80
. 80
. 81
. 81
. 81
. 81
. 81
. 81
. 81
. 81

63

OPMARGINS(m,n[,c])
OPSEQUENCE(m,n).
OPTIONS.
PROLOG .
QUOTE
SEQ.
SEQUENCE(m, n)
SOURCE .
SP . . .
SPACE(1 or 2 or 3)
SPIE . .
SYSEIB
VBREF.
Translator options table
Using COPY statements
The CICS-supplied interface modules
The EXEC interface modules.
The CPlI Communications interface module
The SAA Resource Recovery interface module .
Using the EXEC interface modules
COBOL e
PLI . . .
C and C++ .
Assembler language . . .
EXAMPLE Assembler Ianguage PROGRAM usmg LEASM.

Chapter 9. Installing application programs.
Program installation roadmap
Preparing for program installation .
Defining MVS residence and addressing modes .
Establishing a program’s addressing mode .
CICS address space considerations.
Making programs permanently resident
Running applications in the link pack area
Running application programs in the RDSAs
Assembler . e
C and C/++.
COBOL .
PL/I .
Using BMS map sets in appllcat|on programs .
Using the CICS-supplied procedures to install appI|cat|on programs
Installing programs in load library secondary extents
Including the CICS-supplied interface modules.
Installing assembler language application programs .
Installing COBOL application programs .
Sample JCL to install COBOL application programs .
Installing PL/I application programs . .
Sample JCL to install PL/I application programs
PL/l procedure with an integrated translator .
Installing C application programs . .
Sample JCL to install C application programs .
Including pre-translated code with your C source code
Using your own job streams
Translator requirements .

Online programs that use EXEC CICS or EXEC DLI commands .

Online programs that use the CALL DLI interface.

64 CICS TS for z/0S: CICS Application Programming Guide

. 82
. 82
. 82
. 82
. 82
. 83
. 83
. 83
. 83
. 83
. 83
. 83
. 84
. 85
. 86
. 86
. 86
. 86
. 86
. 87
. 88
. 88
. 89
. 89
. 89

. 99
.. 99
. 100
. 100
. 101
. 101
. 102
. 102
. 103
. 103
. 104
. 104
. 105
. 105
. 106
. 108
. 108
. 109
. 110
11
. 114
. 114
. 115
. 17
. 118
. 119
. 120
. 120
. 120
. 122

Batch or BMP programs that use EXEC DLI commands 123

Batch or BMP programs that use DL/I| CALL commands 123
Chapter 10. Installing map sets and partitionsets 125
Instalingmapsets .. .126

Types of map sets e e e 126

Defining the type of map set you requwe T e
Using extended data stream terminals.127

Installing physical map sets. . . . P P2t

Installing symbolic description map sets .. e o ..o 129

Installing physical and symbolic description maps together Co .13

Using the DFHMAPT procedure to install HTML templates from BMS
maps . . . P FC)
JCL to install phyS|caI and symbohc descrlptlon maps T 724
Adding a CSECT toyour map assembly 132
Installing partition sets.133
Defining programs, map sets, and part|t|on sets to CICS I e 73

Part 2. Preparing applications to run 65

66 CICS TS for zZ0S: CICS Application Programming Guide

— — 4 o —

Chapter 8. Translation and compilation

Most older compilers (and assemblers) cannot process CICS commands directly.
This means that an additional step is needed to convert your program into
executable code. This step is called translation, and consists of converting CICS
commands into the language in which the rest of the program is coded, so that the
compiler (or assembler) can understand them.

Modern compilers can use the integrated CICS translator approach, where the
compiler interfaces with CICS at compile time to interpret CICS commands and
convert them automatically to calls to CICS service routines. If you use the
integrated CICS translator approach then many of the translation tasks described in
[‘The translation process” on page 69 are done at compile time for you, and you do
not need to execute the additional translator step.

This section describes:

« [“The integrated CICS translator’]

« [“The translation process” on page 69|

» |“The CICS-supplied translators” on page 72|
 [‘Using a CICS translator’ on page 73|

» [‘Defining translator options” on page 74|

» [‘Using COPY statements” on page 86

* [‘The CICS-supplied interface modules” on page 86|
+ [‘Using the EXEC interface modules” on page 87|

The integrated CICS translator

In earlier CICS releases, CICS application programs had to be translated before
they could be compiled. The translators find EXEC CICS commands, make them
into comments, and generate CALLs appropriate to the language. The
CICS-supplied jobs for compiling user application programs all contain an initial job
step that invokes the translator appropriate to the compiler invoked in the following
job step.

The CICS-supplied separate translators change the line numbers in source
programs, which means that an intermediate listing, with the translator-generated
CALLs, which must be used when debugging an application program. With the
integrated translator, application development is made easier because there is only
one listing — the original source statements, and the CICS error messages are
included in the compiler listing. The process of translating and compiling is also less
error-prone because it is no longer necessary to translate included members
separately.

The Language Environment-conforming language compilers that support the
integrated CICS translator scan the application source and call the integrated CICS
translator at relevant points.

The releases of the COBOL and PL/I compilers which support the CICS integrated
translator are listed in fthe CICS Release Guide, The integrated translator is
supported in z/OS V1.7 XL C/C++ and later compilers. If you use any other
compiler, including Assembler, you will need to translate your program in the
traditional way described in [Chapter 8, “Translation and compilation.”|

© Copyright IBM Corp. 1989, 2010 67

H o H H H H

H+

Using the integrated CICS translator

The language compilers provide various procedures that you can use with the
integrated CICS translator. They are documented in the Programming Guides for
Enterprise PL/I for z/OS and for XL C/C++.

The procedure that you use needs to have CICSTS31.CICS.SDFHLOAD added to
the STEPLIB concatenation for the compile step and the link-edit step should
include the interface module DFHELII at the start of the step.

To use the integrated CICS translator for PL/I you must specify the compiler option
SYSTEM(CICS).

To use the integrated CICS translator for COBOL, the compiler options CICS, LIB,
NODYNAM, and RENT must be in effect. NODYNAM is not a restriction specific to
the integrated translator. DYNAM is not supported for code that is separately
translated and compiled. Do not use SIZE(MAX), because storage must be left in
the user region for integrated CICS translator services. Instead, use a value such
as SIZE(4000K), which should work for most programs.

If you are running DB2 Version 7 or later and preparing a COBOL program using a
compiler with integrated translator, the compiler also provides an SQL statement
coprocessor (which produces a DBRM), so you do not need to use a separate DB2
precompiler. Seethe CICS DB2 Guidd and the DB2 for 0S/390 and z/OS
Application Programming and SQL Guide for more information on using the SQL
statement coprocessor.

To use the integrated CICS translator for C and C++, use the CICS option.

Specifying CICS translator options

68

To specify CICS translator options when using the XL C/C++ compiler specify the
compiler option, CICS, with the translator options inside parentheses. For example:

CICS(optl opt2 optn ...)

To specify CICS translator options when using the PL/I compiler specify the
compiler option, PP(CICS), with the translator options enclosed in apostrophes and
inside parenthesis. For example:

PP(CICS('optl opt2 optn ...'))

For more information on specifying PL/I compiler options see the [Enterprise PL/I for
[z/0S and 0S/390 Programming Guide,

To specify CICS translator options when using the COBOL compiler specify the
compiler option, CICS, with the translator options enclosed in apostrophes and
inside parenthesis. For example:

CICS('optl opt2 optn ...")

Note: The XOPTS translator option must be changed to the CICS compiler option.
XOPTS is not accepted when using the integrated CICS translator.

For more information on specifying COBOL compiler options see the
|COBOL for z/0S and 0S/390: Programming Guide]|

For a description of all of the translator options see [‘Defining translator options” on|

CICS TS for z/OS: CICS Application Programming Guide

Many of the translator options, such as those associated with translator listings, do
not apply when using the integrated CICS translator. These options, if specified, are
ignored. The EXCI option is not supported, the CICS option is assumed.

The translator options that can be used effectively with the integrated CICS
translator are:

* APOST or QUOTE
 CPSM or NOCPSM

+ CICS

-« DBCS

 DEBUG or NODEBUG

e DLI

» EDF or NOEDF

* FEPI or NOFEPI

* GRAPHIC

* LENGTH or NOLENGTH
* LINKAGE or NOLINKAGE
* NATLANG

« SP

 SYSEIB

The translation process

For compilers without integrated translators, CICS provides a translator program for
each of the languages in which you may write, to handle both EXEC CICS and
EXEC DLI statements.

For compilers with integrated translators, the compilers interface with CICS to
handle both EXEC CICS and EXEC DLI statements.

A language translator reads your source program and creates a new one; most
normal language statements remain unchanged, but CICS commands are
translated into CALL statements of the form required by the language in which you
are coding. The calls invoke CICS-provided “EXEC” interface modules, which later
get link-edited into your load module, and these in turn invoke the requested
services at execution time.

There are three steps: translation, compilation (assembly), and link-edit. [Figure 10
on page 70|shows these 3 steps.

Chapter 8. Translation and compilation 69

CICS

Translation {

SYSIN
(source
program)

Command- SYSPRINT
level (translator
language listing)
translator
(translated
\ source
program)
\
High-level High-level
language language
Compilation compiler compiler (or
or assembler > assembler
(assembly) bl bl
listing
Object
module
A4
Link-editor
(| Link-editor listing
Link Edit 4
L
. Load
library

Figure 10. Preparing an application program

The translators for all languages use one input and two output files:

SYSIN (Translator input) is the file that contains your source program.

If the SYSIN file is defined as a fixed blocked data set, the maximum record
length that the data set can possess is 80 bytes. Passing a fixed blocked
data set with a record length of greater than 80 bytes to the translator
results in termination of translator execution. If the SYSIN file is defined as
a variable blocked data set, the maximum record length that the data set
can possess is 100 bytes. Passing a variable blocked data set with a record
length greater than 100 bytes to the translator causes the translator to stop
with an error.

SYSPUNCH

(Translated source) is the translated version of your source code, which
becomes the input to the compile (assemble) step. In this file, your source
has been changed as follows:

« The EXEC interface block (EIB) structure has been inserted.

 EXEC CICS, EXEC CPSM and EXEC DLI commands have been turned
into function call statements.

70 CICS TS for z/0S: CICS Application Programming Guide

* CICS DFHRESP, EYUVALUE, and DFHVALUE built-in functions have
been processed.

» A data interchange block (DIB) structure and initialization call have been
inserted if the program contains EXEC DLI statements.

The CICS commands that get translated still appear in the source, but as
comments only. Generally the non-CICS statements are unchanged. The
output from the translator always goes to an 80 byte fixed-record length
data set.

SYSPRINT
(Translator listing) shows the number of messages produced by the
translator, and the highest severity code associated with any message. The
options used in translating your program also appear, unless these have
been suppressed with the NOOPTIONS option.

For COBOL, C, C++, and PL/I programs, SYSPRINT also contains the
messages themselves. In addition, if you specify the SOURCE option of the
translator, you also get an annotated listing of the source in SYSPRINT.
This listing contains almost the same information as the subsequent
compilation listing, and therefore many installations elect to omit it (the
NOSOURCE option). One item you may need from this listing which is not
present in the compile listing, however, is the line numbers, if the translator
is assigning them. Line numbers are one way to indicate points in the code
when you debug with the execution diagnostic facility (EDF). If you specify
the VBREF option, you also get a list of the commands in your program,
cross-referenced by line number, and you can use this as an alternative to
the source listing for EDF purposes.

For assembler language programs, SYSPRINT contains only the translator
options, the message count and maximum severity code. The messages
themselves are inserted into the SYSPUNCH file as comments after the
related statement. This causes the assembler to copy them through to the
assembler listing, where you can check them. You may also see MNOTEs
that are generated by the assembler as the result of problems encountered
by the translator.

Note: If you use EXEC SQL, you need additional steps to translate the SQL
statements and bind; see the Application Programming and SQL Guide for
information about these extra steps.

CICS provides a procedure to execute these steps in sequence for each of the
languages it supports. ['Using the CICS-supplied procedures to install application|
[rograms” on page 106| describes how to use these procedures, and exactly what
they do.

You can control the translation process by specifying a number of options. For
example, if your program uses EXEC DLI calls, you need to tell the translator.

The translator may produce error messages, and it is as important to check these
messages as it is to check the messages produced by the compiler and link-editor.
See r‘The CICS-supplied translators” on page 72| for the location of these
messages.

EXEC commands are translated into CALL statements that invoke CICS interface
modules. These modules get incorporated into your object module in the link-edit
step, and you see them in your link-edit output listing. You can read more about
these modules in[“The CICS-supplied interface modules” on page 86.|

Chapter 8. Translation and compilaton 71

The CICS-supplied translators

The following CICS-supplied translators are installed in the
CICSTS31.CICS.SDFHLOAD library:

Assembler DFHEAP1$
C DFHEDP1$
COBOL DFHECP1$
PL/I DFHEPP1$

Dynamic invocation of the separate translator

You can invoke the command-level language translator dynamically from a batch
assembler-language program using an ATTACH, CALL, LINK, or XCTL macro; or
from a C, PL/I, or COBOL program using CALL. If you use ATTACH, LINK, or
XCTL, use the appropriate translator load module, DFHExP1$, where x=A for
assembler language, x=C for COBOL, x=D for C, or x=P for PL/I.

If you use CALL, specify PREPROC as the entry point name to call the translator.

In all cases, pass the following address parameters to the translator:
* The address of the translator option list
* The address of a list of DD names used by the translator (this is optional)

These addresses must be in adjacent fullwords, aligned on a fullword boundary.
Register 1 must point to the first address in the list, and the high-order bit of the last
address must be set to one, to indicate the end of the list. This is true for both one
or two addresses.

Translator option list

The translator option list must begin on a halfword boundary. The first two bytes
contain a binary count of the number of bytes in the list (excluding the count field).
The remainder of the list can contain any of the translator option keywords,
separated by commas, blanks, or both.

Data definition (DD name) list

The DD name list must begin on a halfword boundary. The first two bytes contain a
binary count of the number of bytes in the list (excluding the count field). Each entry
in the list must occupy an 8-byte field. The sequence of entries is:

Entry Standard Entry Standard Entry Standard
DD name DD name DD name
1 not applicable |3 not applicable |5 SYSIN
2 not applicable |4 not applicable |6 SYSPRINT
7 SYSPUNCH

If you omit an applicable entry, the translator uses the standard DD name. If you
use a DD name less than 8 bytes long, fill the field with blanks on the right. You can
omit an entry by placing X'FF' in the first byte. You can omit entries at the end of
the list entirely.

72 CICS TS for z/0S: CICS Application Programming Guide

Using a CICS translator

A language translator reads your source program and creates a new one; most
normal language statements remain unchanged, but CICS commands are
translated into CALL statements of the form required by the language in which you
are coding. The calls invoke CICS-provided “EXEC” interface modules, which later
get link-edited into your load module, and these in turn invoke the requested
services at execution time.

You can control the translation process by specifying translator options.

The translator options you can choose are listed in [‘Defining translator options” on|
page 74.You can specify your choices in one of two ways:

» List them as suboptions of the XOPTS option on the statement that the compiler
(assembler) provides for specifying options. These statements are:

Language Statement

COBOL CBL

COBOL PROCESS

Cc #pragma

C++ #pragma

PL/I * PROCESS
Assembler *ASM or *PROCESS!?

* List your options in the PARM operand of the EXEC job control statement for the
translate step. Most installations use catalogued procedures to translate, compile
(assemble) and link CICS programs, and therefore you specify this PARM field in
the EXEC job control statement that invokes the procedure.

For example, if the name of the procedure for COBOL programs is DFHYITVL,
and the name of the translate step within is TRN, you set translator options for a
COBOL program with a statement such as this one:

// EXEC DFHEITCL,PARM.TRN=(VBREF,QUOTE,SPACE(2),NOCBLCARD)

If you specify an option by one method and the same option or an option that
conflicts by the other method, the specifications in the language statement override
those in the EXEC statement. Similarly, if you specify multiple values for a single
option or options that conflict on either type of statement, the last setting takes
precedence. Except for COBOL programs, these statements must precede each
source program; there is no way to batch the processing of multiple programs in
other languages.

Translator options may appear in any order, separated by one or more blanks or by
a comma. If you specify them on the language statement for options, they must
appear in parentheses following the XOPTS parameter, because other options are
ignored by the translator and passed through to the compiler. The following COBOL
example shows both translator and compiler options being passed together:

CBL LIB XOPTS(QUOTE SPACE(2))

These examples show translator options being passed alone:

#pragma XOPTS(FLAG(W) SOURCE);
* PROCESS XOPTS(FLAG(W) SOURCE);
*ASM XOPTS (NOPROLOG NOEPILOG)

Chapter 8. Translation and compilation 73

If you use the PARM operand of the EXEC job control statement to specify options,
the XOPTS keyword is unnecessary, because the only options permitted here are
translator options. However, you may use XOPTS, with or without its associated
parentheses. If you use XOPTS with parentheses, be sure to enclose all of the
translator options. For example, the following forms are valid:

PARM=(opl op2 .. opn)

PARM=(XOPTS opl op2 .. opn)

PARM=XOPTS (opl op2 .. opn)

but the following is not valid:
PARM=(XOPTS(opl op2) opn)

(For compatibility with previous releases, the keyword CICS can be used as an
alternative to XOPTS, except when you are translating batch EXEC DLI programs.)
Remember, if you alter the default margins for C or C++ #pragma card processing
using the PARM operand, the sequence margins should be altered too. You can do
this using the NOSEQUENCE option.

Notes:

1. For assembler programs, *ASM statements contain translator options only. They
are treated as comments by the assembler. *PROCESS statements can contain
translator or assembler options for the High Level assembler, HLASM.

2. Translator and assembler options must not coexist on the same *PROCESS
statement.

3. *PROCESS and *ASM statements must be at the beginning of the input and no
assembler statements must appear before them. This includes comments and
statements such as “PRINT ON” and “EJECT”. Both *PROCESS and *ASM
statements can be included, in any order.

4. *PROCESS statements containing only translator options contain information for
the translator only and are not passed to the assembler

5. *PROCESS statements containing assembler options are placed in the
translated program.

Defining translator options

You can specify the translator options that apply to all languages except where
stated otherwise. [Table 3 on page 85| lists all the translator options, the program
languages that apply, and any valid abbreviations.

If your installation uses the CICS-provided procedures in the distributed form, the
default options are used. These are explicitly noted in the following option
descriptions. You can tell which options get used by default at your installation b
looking at the SYSPRINT translator listing output from the translate step (see
|CICS-suppIied translators” on page 72). If you want an option that is not the default,
you must specify it, as described in[‘Using a CICS translator” on page 73.|

74 CICS TS for z/0S: CICS Application Programming Guide

H o H H* 3

SIETS

Translator options

APOST
(COBOL only)

APOST indicates that literals are delineated by the apostrophe or single quote ().
QUOTE is the alternative, which indicates double quotes. The same value must be
specified for the translator step and the following compile step.

The CICS-supplied COBOL copybooks are generated with a single quote (APOST).
If you are using any CICS-supplied copybooks in your application to interface to a
CICS component, ensure the APOST option is in effect, not the QUOTE option.

CBLCARD
(COBOL only) Abbreviation: CBL

CBLCARD specifies that the translator is to generate a CBL statement. This is the
default—the alternative is NOCBLCARD.

CICS

CICS specifies that the translator is to process EXEC CICS commands. It is the
default specification in the translator. CICS is also an old name for the XOPTS
keyword for specifying translator options, which means that you can specify the
CICS option explicitly either by including it in your XOPTS list or by using it in place
of XOPTS to name the list. The only way to indicate that there are no CICS
commands is to use the XOPTS keyword without the option CICS. You must do this
in a batch DL/I program using EXEC DLI commands. For example, to translate a
batch DL/l program written in assembler language, specify:

*ASM XOPTS(DLI)

To translate a batch program written in COBOL, containing EXEC APl commands,
specify:
CBL XOPTS(EXCI)

COBOL2
(COBOL only) Abbreviation: CO2

COBOL2 specifies that the translator is to generate temporary variables for use in
the translated EXEC statements. In all other respects, the program is translated in
the same manner as with the FCOBOL3" option. COBOL2 and COBOL3 are
mutually exclusive. COBOL2 is the default for COBOL.

Note: If you specify COBOL2 and COBOLS by different methods, the COBOL3
option is always used, regardless of where the two options have been
specified. If this happens, the translator issues a warning message.

COBOL3
(COBOL only) Abbreviation: CO3

COBOLS specifies that the translator is to translate programs that are Language
Environment-conforming. COBOL3 and COBOL2 are mutually exclusive. |‘Using the
|COBOL2 and COBOLS3 translator options” on page 34| explains how the translator

treats specific coding situations. [Chapter 3, “Language Environment,” on page 9|
explains what Language Environment-conforming compilers are available.

Chapter 8. Translation and compilation 75

CPP

(C++ only)CPP specifies that the translator is to translate C++ programs for
compilation by a supported C++ compiler, such as IBM C/C++ for MVS.

CPSM
CPSM specifies that the translator is to process EXEC CPSM commands. The
alternative is NOCPSM, which is the default.

DBCS
(COBOL only)

DBCS specifies that the source program may contain double-byte characters. It
causes the translator to treat hexadecimal codes X'OE' and X'OF' as shift-out (SO)
and shift-in (SI) codes, respectively, wherever they appear in the program.

For more detailed information about how to program in COBOL using DBCS, see
the section on DBCS character strings in Enterprise COBOL for z/OS: Language
Reference.

DEBUG
(COBOL, C, C++, and PL/I only)

DEBUG instructs the translator to produce code that passes the line number
through to CICS for use by the execution diagnostic facility (EDF). DEBUG is the
default—NODEBUG is the alternative.

DLI
DLI specifies that the translator is to process EXEC DLI commands. You must
specify it with the XOPTS option, that is, XOPTS(DLI).

EDF
EDF specifies that the execution diagnostic facility is to apply to the program. EDF
is the default—the alternative is NOEDF.

EPILOG
(Assembler language only)

EPILOG specifies that the translator is to insert the macro DFHEIRET at the end of
the program being translated. DFHEIRET returns control from the issuing program
to the program which invoked it. If you want to use any of the options of the
RETURN command, you should use RETURN and specify NOEPILOG.

EPILOG is the default—the alternative, NOEPILOG, prevents the translator inserting
the macro DFHEIRET. (See [the CICS Application Programming Reference manual
for programming information about the DFHEIRET macro.)

EXCI

EXCI specifies that the translator is to process EXEC APl commands for the
External CICS Interface (EXCI). These commands must be used only in batch
programs, and so the EXCI translator option is mutually exclusive to the CICS
translator option, or any translator option that implies the CICS option. An error
message is produced if both CICS and EXCI are specified, or EXCI and a translator
option that implies CICS are specified.

76 CICS TS for z/0S: CICS Application Programming Guide

H*

The EXCI option is also mutually exclusive to the DLI option. EXEC API commands
for the External CICS Interface cannot be coded in batch programs using EXEC DLI
commands. An error message is produced if both EXCI and DLI translator
commands are specified.

EXCI cannot be used for COBOL programs compiled with the integrated translator,
but can be used with a separate translator step.

The EXCI translator option is specified by XOPTS, that is, XOPTS(EXCI).

FEPI

FEPI allows access to the FEPI APl commands of the CICS Front End
Programming Interface (FEPI). FEPI is only available if you have installed the CICS
Front End Programming Interface. The alternative is NOFEPI. [FEPI commands| and
are described in the [CICS Front End Programming Interface User's Guidel

FLAG (I, W, E, or S)
(COBOL, C, C++, and PL/I only) Abbreviation: F

FLAG specifies the minimum severity of error in the translation which requires a
message to be listed.

I All messages.
W (Default) All except information messages.
E All except warning and information messages.

S Only severe and unrecoverable error messages.

GDS

(C, C++, and assembler language only)

GDS specifies that the translator is to process CICS GDS (generalized data stream)
commands. For programming information about these commands, see fthe CICS
|Application Programming Reference manuall

GRAPHIC
(PL/I only)

GRAPHIC specifies that the source program may contain double-byte characters. It
causes the translator to treat hexadecimal codes X'OE' and X'OF' as shift-out (SO)
and shift-in (SI) codes, respectively, wherever they appear in the program.

It also prevents the translator from generating parameter lists that contain the
shift-out and shift-in values in hexadecimal form. Wherever these values would
ordinarily appear, the translator expresses them in binary form, so that there are no
unintended DBCS delimiters in the data stream that the compiler receives.

If the compiler you are using supports DBCS, you need to prevent unintended
shift-out and shift-in codes, even if you are not using double-byte characters. You
can do this by specifying the GRAPHIC option for the translator, so that it does not
create them, or by specifying NOGRAPHIC on the compile step, so that the
compiler does not interpret them as DBCS delimiters.

For more detailed information about how to program in PL/l using DBCS, see the
relevant language reference manual.

Chapter 8. Translation and compilaton 77

LEASM

(Assembler only)

LEASM instructs the translator to generate code for a Language
Environment-conforming assembler MAIN program.

If the LEASM option is specified, the DFHEISTG, DFHEIENT, DFHEIRET and
DFHEIEND macros expand differently to create a Language Environment-
conforming assembler MAIN program, instead of the form of macro expansion used
for assembler sub-routines in a CICS environment. This allows customer programs
that have used NOPROLOG and NOEPILOG and coded their own DFHEIENT and
other macros to take advantage of Language Environment support without changing
their program source. For example, all programs that require more than one code
base register fall into this category because the translator does not support multiple
code base registers.

For an example of an assembler program translated using the LEASM option see
FEXAMPLE Assembler language PROGRAM using LEASM” on page 89.

LENGTH
(COBOL, Assembler and PL/I only)

LENGTH instructs the translator to generate a default length if the LENGTH option
is omitted from a CICS command in the application program. The alternative is
NOLENGTH.

LINECOUNT(n)
Abbreviation: LC

LINECOUNT specifies the number of lines to be included in each page of translator
listing, including heading and blank lines. The value of “n” must be an integer in the
range 1 through 255; if “n” is less than 5, only the heading and one line of listing
are included on each page. The default is 60.

LINKAGE
(COBOL only) Abbreviation: LIN

LINKAGE requests the translator to modify the LINKAGE SECTION and
PROCEDURE DIVISION statements in top-level programs according to the existing
rules.

This means that the translator will insert a USING DFHEIBLK DFHCOMMAREA
statement in the PROCEDURE DIVISION, if one does not already exist, and will
ensure that the LINKAGE SECTION (creating one if necessary) contains definitions
for DFHEIBLK and DFHCOMMAREA.

LINKAGE is the default—the alternative is NOLINKAGE.

The LINKAGE option has no effect on the translation of classes and methods.

MARGINS(m,n[,c])
(C, C++, and PL/I only) Abbreviation: MAR

MARGINS specifies the columns of each line or record of input that contain
language or CICS statements. The translator does not process data that is outside
these limits, though it does include it in the source listings.

78 CICS TS for z/0S: CICS Application Programming Guide

The option can also specify the position of an American National Standard printer
control character to format the listing produced when the SOURCE option is
specified; otherwise, the input records are listed without any intervening blank lines.
The margin parameters are:

m Column number of left-hand margin.

n Column number of right-hand margin. It must be greater than m.

Note: When used as a C or C++ compiler option, the asterisk (*) is
allowable for the second argument on the MARGIN option. For the
translator, however, a numeric value between 1 and 100 inclusive
must be specified. When the input data set has fixed-length records,
the maximum value allowable for the right hand margin is 80. When
the input data set has variable-length records, the maximum value
allowable is 100.

c Column number of the American National Standard printer control character.
It must be outside the values specified for m and n. A zero value for ¢
means no printer control character. If ¢ is nonzero, only the following printer
control characters can appear in the source:

(blank)

Skip 1 line before printing.
0 Skip 2 lines before printing.
- Skip 3 lines before printing.
+ No skip before printing.
1 New page.

The default for C and C++ is MARGINS(1,72,0) for fixed-length records, and for
variable-length records it is the same as the record length (1,record length,0). The
default for PL/I is MARGINS(2,72,0) for fixed-length records, and
MARGINS(10,100,0) for variable-length records.

NATLANG(EN or KA)

NATLANG specifies what language is to be used for the translator message output:
EN (Default) English.

KA Kaniji.

(Take care not to confuse this option with the NATLANG API option.)

NOCBLCARD
(COBOL only)

NOCBLCARD specifies that the translator is not to generate a CBL statement. The
compiler options that CICS requires are specified by the DFHYITVL procedure. You
should ensure that RENT, NODYNAM, and LIB are specified..

NOCPSM

NOCPSM specifies that the translator is not to process EXEC CPSM commands.
This is the default—the alternative is CPSM.

NODEBUG
(COBOL, C, C++, and PL/I only)

NODEBUG instructs the translator not to produce code that passes the line number
through to CICS for use by the execution diagnostic facility (EDF).

Chapter 8. Translation and compilaton 79

80

NOEDF

NOEDF specifies that the execution diagnostic facility is not to apply to the
program. There is no performance advantage in specifying NOEDF, but the option
can be useful to prevent commands in well-debugged subprograms appearing on
EDF displays.

NOEPILOG

(Assembler language only)

NOEPILOG instructs the translator not to insert the macro DFHEIRET at the end of
the program being translated. DFHEIRET returns control from the issuing program
to the program which invoked it. If you want to use any of the options of the EXEC
CICS RETURN command, you should use EXEC CICS RETURN and specify
NOEPILOG. NOEPILOG prevents the translator inserting the macro DFHEIRET.
The alternative is EPILOG, which is the default. (See [the CICS Applicatior]
|Programming Reference manual| for programming information about the DFHEIRET
macro.)

NOFEPI
NOFEPI disallows access to the FEPI APl commands of the CICS Front End
Programming Interface (FEPI). NOFEPI is the default—the alternative is FEPI.

NOLENGTH
(COBOL, Assembler and PL/I only)

NOLENGTH instructs the translator not to generate a default length if the LENGTH
option is omitted from a CICS command in the application program. The default is
LENGTH.

NOLINKAGE
(COBOL only)

NOLINKAGE requests the translator not to modify the LINKAGE SECTION and
PROCEDURE DIVISION statements to supply missing DFHEIBLK and
DFHCOMMAREA statements, or insert a definition of the EIB structure in the
LINKAGE section..

This means that you can provide COBOL copybooks to define a COMMAREA and
use the EXEC CICS ADDRESS command.

LINKAGE is the default.

NONUM
(COBOL only)

NONUM instructs the translator not to use the line numbers appearing in columns
one through six of each line of the program as the line number in its diagnostic
messages and cross-reference listing, but to generate its own line numbers.
NONUM is the default—the alternative is NUM.

NOOPSEQUENCE
(C, C++, and PL/I only) Abbreviation: NOS

NOOPSEQUENCE specifies the position of the sequence field in the translator
output records. The default for C and C++ is OPSEQUENCE(73,80) for fixed-length

CICS TS for z/OS: CICS Application Programming Guide

records and NOOPSEQUENCE for variable-length records. For PL/I, the default is
OPSEQUENCE(73,80) for both types of records.

NOOPTIONS
Abbreviation: NOP

NOOPTIONS instructs the translator not to include a list of the options used during
this translation in its output listing.

NOPROLOG

(Assembler language only)

NOPROLOG instructs the translator not to insert the macros DFHEISTG,
DFHEIEND, and DFHEIENT into the program being assembled. These macros
define local program storage and execute at program entry. (See
|Application Programming Reference manual| for programming information about
these “prolog” macros.)

NOSEQ
(COBOL only)

NOSEQ instructs the translator not to check the sequence field of the source
statements, in columns 1-6. The alternative, SEQ, is the default. If SEQ is specified
and a statement is not in sequence, it is flagged.

NOSEQUENCE
(C, C++, and PL/I only) Abbreviation: NSEQ

NOSEQUENCE specifies that statements in the translator input are not sequence
numbered and that the translator must assign its own line numbers.

The default for fixed-length records is SEQUENCE(73,80). For variable-length
records in C and C++, the default is NOSEQUENCE and for variable-length records
in PL/I the default is SEQUENCE(1,8).

NOSOURCE

NOSOURCE instructs the translator not to include a listing of the translated source
program in the translator listing.

NOSPIE

NOSPIE prevents the translator from trapping irrecoverable errors; instead, a dump
is produced. You should use NOSPIE only when requested to do so by the IBM
support center.

NOVBREF
(COBOL, C, C++ and PL/I only)

NOVBREF instructs the translator not to include a cross-reference of commands
with line numbers in the translator listing. (NOVBREF used to be called NOXREF;
for compatibility, NOXREF is still accepted.) NOVBREF is the default—the
alternative is VBREF.

NUM
(COBOL only)

Chapter 8. Translation and compilaton 81

NUM instructs the translator to use the line numbers appearing in columns one
through six of each line of the program as the line number in its diagnostic
messages and cross-reference listing. The alternative is NONUM, which is the
default.

OPMARGINS(m,n[,c])
(C, C++ and PL/l only) Abbreviation: OM

OPMARGINS specifies the translator output margins, that is, the margins of the

input to the following compiler. Normally these are the same as the input margins
for the translator. For a definition of input margins and the meaning of “m”, “n”, and
“c”, see MARGINS. The default for C and C++ is OPMARGINS(1,72,0) and for PL/I,

the default is OPMARGINS(2,72,0).

The maximum “n” value allowable for the OPMARGINS option is 80. The output
from the translator is always of a fixed-length record format.

If the OPMARGINS option is used to set the output from the translator to a certain
format, it may be necessary to change the input margins for the compiler being
used. If the OPMARGINS value is allowed to default this is not necessary.

OPSEQUENCE(m,n)
(C, C++, and PL/I only) Abbreviation: OS

OPSEQUENCE specifies the position of the sequence field in the translator output
records. For the meaning of “m” and “n”, see SEQUENCE. The default for C and
C++ is OPSEQUENCE(73,80) for fixed-length records and NOOPSEQUENCE for
variable-length records. For PL/I, the default is OPSEQUENCE(73,80) for both
types of records.

OPTIONS
Abbreviation: OP

OPTIONS instructs the translator to include a list of the options used during this
translation in its output listing.

PROLOG

(Assembler language only)

PROLOG instructs the translator to insert the macros DFHEISTG, DFHEIEND, and
DFHEIENT into the program being assembled. These macros define local program
storage and execute at program entry. (See(the CICS Application Programming
[Reference manual|for programming information about these “prolog” macros.)
PROLOG is the default—the alternative is NOPROLOG.

QUOTE
(COBOL only) Abbreviation: Q

QUOTE indicates that literals are delineated by the double quotation mark (”). The
same value must be specified for the translator step and the following compiler
step.

The CICS-supplied COBOL copybooks are generated with a single quote (APOST).

If you are using any CICS-supplied copybooks in your application to interface to a
CICS component, ensure the APOST option is in effect, not the QUOTE option.

82 CICS TS for 2/0S: CICS Application Programming Guide

SEQ
(COBOL only)

SEQ instructs the translator to check the sequence field of the source statements,
in columns 1-6. SEQ is the default—the alternative is NOSEQ. If a statement is not
in sequence, it is flagged.

SEQUENCE(m,n)
(C, C++, and PL/I only) Abbreviation: SEQ

SEQUENCE specifies that statements in the translator input are sequence
numbered and the columns in each line or record that contain the sequence field.
The translator uses this number as the line number in error messages and
cross-reference listings. No attempt is made to sort the input lines or records into
sequence. If no sequence field is specified, the translator assigns its own line
numbers. The SEQUENCE parameters are:

m Leftmost sequence number column.

n Rightmost sequence number column.

The sequence number field must not exceed eight characters and must not overlap
the source program (as specified in the MARGINS option).

The default for fixed-length records is SEQUENCE(73,80). For variable-length
records in C and C++ the default is NOSEQUENCE and for variable-length records
in PL/I the default is SEQUENCE(1,8).

SOURCE
Abbreviation: S

SOURCE instructs the translator to include a listing of the translated source
program in the translator listing. SOURCE is the default—the alternative is
NOSOURCE.

SP

SP must be specified for application programs that contain special (SP) CICS
commands or they will be rejected at translate time. These commands are
ACQUIRE, COLLECT, CREATE, DISABLE, DISCARD, ENABLE, EXTRACT,
INQUIRE, PERFORM, RESYNC, and SET. They are generally used by system
programmers. For programming information about these commands, see [the CICQ
[System Programming Reference manual .

SPACE(1 or 2 or 3)
(COBOL only)

SPACE indicates the type of spacing to be used in the output listing: SPACE(1)
specifies single spacing, SPACE(2) double spacing, and SPACE(3) triple spacing.
SPACE(3) is the default.

SPIE
SPIE specifies that the translator is to trap irrecoverable errors. SPIE is the
default—the alternative is NOSPIE.

SYSEIB

SYSEIB indicates that the program is to use the system EIB instead of the
application EIB. The SYSEIB option allows programs to execute CICS commands

Chapter 8. Translation and compilation 83

without updating the application EIB, making that aspect of execution transparent to
the application. However, this option imposes restrictions on programs using it, and
should be used only in special situations. A program translated with the SYSEIB
option must:

* Execute in AMODE(31), as the system EIB is assumed to be located in
“TASKDATALOC(ANY)” storage.

* Obtain the address of the system EIB using the ADDRESS EIB command (if the
program is translated with the SYSEIB option, this command automatically
returns the address of the system EIB).

* Be aware that the use of the SYSEIB option implies the use of the NOHANDLE
option on all CICS commands issued by the program. (Commands should use
the RESP option as required.)

VBREF
(COBOL, C, C++, and PL/I only)

VBREF specifies whether the translator is to include a cross-reference of

commands with line numbers in the translator listing. (VBREF used to be called
XREF, and is still accepted.)

84 CICS TS for z/0S: CICS Application Programming Guide

Translator options table

Table 3. Translator options applicable to programming language

Translator option coBOL Cc C++ PL/l | Assembler
APOST or QUOTE X

CBLCARD or NOCBLCARD X

CICS X X X X X
COBOL2 X

COBOL3 X

CPP X

CPSM or NOCPSM X X X X X
DBCS X

DEBUG or NODEBUG X X X X

DLI X X X X X
EDF or NOEDF X X X X X
EPILOG or NOEPILOG X
EXCI X X X X X
FEPI or NOFEPI X X X X X
FLAG(l or W or E or S) X X X X

GDS X X X
GRAPHIC X

LEASM X
LENGTH or NOLENGTH X X X
LINECOUNT(n) X X X X X
LINKAGE or NOLINKAGE X

MARGINS(m,n) X X X

NATLANG X X X X X
NUM or NONUM X

OPMARGINS(m,n[,c]) X X X
OPSEQUENCE(m,n) or X X X
NOOPSEQUENCE

OPTIONS or NOOPTIONS X X X X X
PROLOG or NOPROLOG X
QUOTE or APOST X

SEQ or NOSEQ X

SEQUENCE(m,n) or NOSEQUENCE X X X

SOURCE or NOSOURCE X X X

SP X X X X X
SPACE(1 or 2 or 3) X

SPIE or NOSPIE X X X X X
SYSEIB X X X X X
VBREF or NOVBREF X X X X

Chapter 8. Translation and compilation 85

Using COPY statements

The compiler (or assembler) reads the translated version of your program as input,
rather than your original source. This affects what you see on your compiler
(assembiler) listing. It also means that COPY statements in your source code must
not bring in untranslated CICS commands, because it is too late for the translator to
convert them.

If you are using a separate translator and the source within any copybook contains
CICS commands, you must translate it separately before translation and compilation
of the program in which it will be included. If you are using the integrated CICS
translator and the source within any copybook contains CICS commands, you do
not have to translate it separately before compilation of the program in which it will
be included.

The external program must always be passed through the CICS translator, or
compiled with a compiler that has an integrated CICS translator, even if all the
CICS commands are in included copybooks.

The CICS-supplied interface modules

Each of your application programs to run under CICS requires one or more

interface modules (also known as stubs) to use the following facilities:

* The EXEC interface

* The CPI Communications facility

* The SAA Resource Recovery facility

+ The CICSPIlex® SM application programming interface (for information about
CICSPlex SM stubs, see|CICSPlex SM Application Programming Guide).

The EXEC interface modules

Each of your CICS application programs must contain an interface to CICS. This
takes the form of an EXEC interface module, used by the CICS high-level
programming interface. The module, installed in the CICSTS31.CICS.SDFHLOAD
library, must be link-edited with your application program to provide communication
between your code and the EXEC interface program, DFHEIP.

The CPlI Communications interface module

Each of your CICS application programs that uses the Common Programming
Interface for Communications (CPlI Communications) must contain an interface to
CPI Communications. This takes the form of an interface module, used by the CICS
high-level programming interface, common to all the programming languages. The
module, DFHCPLC, that is installed in the CICSTS31.CICS.SDFHLOAD library,
must be link-edited with each application program that uses CPI Communications.

The SAA Resource Recovery interface module

86

Each of your CICS application programs that uses SAA Resource Recovery must
contain an interface to SAA Resource Recovery. This takes the form of an interface
module, used by the CICS high-level programming interface, common to all the
programming languages. The module, DFHCPLRR, that is installed in the
CICSTS31.CICS.SDFHLOAD library, must be link-edited with each application
program that uses the SAA Resource Recovery facility.

CICS TS for z/OS: CICS Application Programming Guide

S T S

Using the EXEC interface modules

A language translator reads your source program and creates a new one; normal
language statements remain unchanged, but CICS commands are translated into
CALL statements of the form required by the language in which you are coding. The
calls invoke CICS-provided “EXEC” interface modules or stubs , which is a
function-dependent piece of code used by the CICS high-level programming
interface. The stub, provided in the SDFHLOAD library, must be link-edited with
your application program to provide communication between your code and the
CICS EXEC interface program, DFHEIP. These stubs are invoked during execution
of EXEC CICS and EXEC DLI commands.

There are stubs for each programming language.

Table 4. Interface modules

Language Interface module name
Assembler DFHELII and DFHEAIO
All HLL languages and Assembler MAIN DFHELII
programs using the LEASM option

The CICS-supplied stub routines work with an internal programming interface, the
CICS command-level interface, which is never changed in an incompatible way.
Consequently, these stub modules are upward and downward compatible, and
CICS application modules never need to be re-linked to include a later level of any
of these stubs.

With the exception of DFHEAIOQ, these stubs all provide the same function, which is
to provide a linkage from EXEC CICS commands to the required CICS service. The
stubs make this possible by providing various entry points that are called from the
translated EXEC CICS commands, and then executing a sequence of instructions
that pass control to the EXEC interface function of CICS.

DFHELII contains multiple entry points, most of which provide compatibility for very
old versions of the CICS PL/I translator. It contains the entries DFHEXEC (for C
and C++ application programs), DFHEI1 (for COBOL and assembler), and DFHEIO1
(for PL/1).

Each of these stubs begins with an 8 byte eyecatcher in the form DFHYxnnn,
where x indicates the language supported by the stub (for example, A represents
assembler, and | indicates that the stub is language independent), and nnn
indicates the CICS release from which the stub was included. The letter Y in the
eyecatcher indicates that the stub is read-only. Stubs supplied with very early
releases of CICS contained eyecatchers in the form DFHExxxx in which the letter E
denotes that the stub is not read-only.The eyecatcher for DFHELII in CICS
Transaction Server for z/OS, Version 3 Release 1 is DFHY1640.

The eyecatcher can be helpful if you are trying to determine the CICS release at
which a CICS application load module was most recently linked.

The DFHEAI stub must be included at the beginning of the program in the output
from the link edit. To achieve this, ORDER and INCLUDE statements for DFHEAI
must be in the link-edit step of your JCL. When you use the CICS-supplied
assembler procedure DFHEITAL in the SDFHPROC library to translate, assemble,
and link-edit application programs written in assembler language, the COPYLINK

Chapter 8. Translation and compilaton 87

I+

COBOL

PL/

step of this procedure copies SDFHMAC(DFHEILIA). DFHEILIA contains the
following statements that must be included:

ORDER DFHEAI
INCLUDE SYSLIB(DFHEAI)

The statements are put into a temporary file that is concatenated before the
assembled application program in the LKED step of the procedure.

Each EXEC command is translated into a COBOL CALL statement that refers to the
entry DFHEI1.

The following example shows the output generated by the translator when
processing a simple EXEC CICS RETURN command:
*EXEC CICS RETURN END-EXEC

Call 'DFHEI1' using by content x'0e0800000600001000'
end-call.

The reference to DFHEI1 is resolved by the inclusion of the DFHELII stub routine in
the linkage editor step of the CICS-supplied procedures such as DFHYITVL or
DFHZITCL.

When translating PL/I programs each EXEC command generates a call to the entry
point DFHEIO1. This is done using a variable entry point DFHEIO that is associated
with the entry DFHEIO1. The translator enables this by inserting the following
statements near the start of each translated program:

DCL DFHEI® ENTRY VARIABLE INIT(DFHEIO1) AUTO;
DCL DFHEIQ1 ENTRY OPTIONS(INTER ASSEMBLER);

The translator creates a unique entry name based on DFHEIO for each successfully
translated EXEC command. The following example shows the output generated by
the translator when processing a simple EXEC CICS RETURN command:

/* EXEC CICS RETURN TRANSID(NEXT) =/

DO;

DCL DFHENTRY_B62D3C38_296F2687 BASED(ADDR(DFHEIO)) OPTIONS(INTER ASSEM

BLER) ENTRY (*,CHAR(4));

CALL DFHENTRY_B62D3C38_296F2687 (' XXXXXXXXXXXXXXXXX' /* 'OFE 08 80 00 03

00 00 10 00 FO FO FO FO FO FO F1 FO 'X */, NEXT);

END;

In the example above, DFHENTRY_B62D3C38_296F2687 is based on the entry
variable DFHEIO that is associated with the real entry DFHEIO1. This technique
allows the translator to create a PL/I data descriptor list for each variable entry
name. The PL/I compiler can then check that variable names referenced in EXEC
commands are defined with attributes that are consistent with the attributes defined
by the translator in the data descriptor list. In this example, ENTRY (*,CHAR(4))
specifies that the variable (hamed NEXT) associated with the TRANSID option
should be a character string with a length of four.

The reference to DFHEIO1 is resolved by the inclusion of the DFHELII stub routine
in the linkage editor step of one of the CICS-supplied procedures such as
DFHYITPL.

88 CICS TS for z/0S: CICS Application Programming Guide

C and C++

In a C and C++, each EXEC CICS command is translated by the command
translator into a call to the function DFHEXEC. The translator enables this by
inserting the following statements near the start of each translated program:

#pragma linkage(DFHEXEC,O0S) /* force 0S linkage =*/
void DFHEXEC(); /* function to call CICS =/

The following example shows the output generated by the translator when
processing a simple EXEC CICS RETURN command:

/* EXEC CICS RETURN */

{

DFHEXEC("\XOE\x08\x00\x2F\x00\x00\x10\x00\xFO\xFO\xFO\xFO\XF1\xF8\xFO\xF0O") ;
}

The reference to DFHEXEC is resolved by the inclusion of the DFHELII stub routine
in the linkage editor step of one of the CICS-supplied procedures such as
DFHYITDL, DFHZITDL, DFHZITEL, DFHZITFL or DFHZITGL.

Assembler language
Each EXEC command is translated into an invocation of the DFHECALL macro.

The following example shows the output generated by the translator when
processing a simple EXEC CICS RETURN command:

* EXEC CICS RETURN
DFHECALL =X'0OE0800000800001000"

The assembly of the DFHECALL macro invocation shown above generates code
that builds a parameter list addressed by register 1, loads the address of entry
DFHEI1 in register 15, and issues a BALR instruction to call the stub routine.

DS OH

LA 1,DFHEITPL
LA 14,=x'0E08000008001000"

ST 14,0(,1)

oI 0(1),x'80"

L 15,=V(DFHEI1)
BALR 14,15

The reference to DFHEI1 is resolved by the inclusion of the DFHEAI stub routine in
the linkage editor step of one of the CICS-supplied procedures such as DFHEITAL.
The eyecatcher for DFHEAI in CICS Transaction Server for z/OS, Version 3
Release 1 is DFHYA640, with the release numbers indicating this stub was supplied
with CICS Transaction Server for z/OS, Version 3 Release 1.

The DFHEAIO stub for assembler application programs is included by the automatic
call facility of the linkage editor or binder utility. It is called by code generated by the
DFHEIENT and DFHEIRET macros to obtain and free, respectively, an assembler
application program's dynamic storage area. This stub is required only in assembler
application programs; there are no stubs required or supplied to provide an
equivalent function for programs written in the high level languages.

| EXAMPLE Assembler language PROGRAM using LEASM

I [Figure 11 on page 90| shows a simple CICS assembler program.
I

Chapter 8. Translation and compilation 89

*ASM XOPTS (LEASM)
DFHEISTG DSECT
OUTAREA DS CL200 DATA OUTPUT AREA
*
EIASM CSECT ,
MVC OUTAREA(40),MSG1
MVC OUTAREA(4),EIBTRMID
EXEC CICS SEND TEXT FROM(OUTAREA) LENGTH(43) FREEKB ERASE
EXEC CICS RECEIVE
MVC OUTAREA(13),MSG2
EXEC CICS SEND TEXT FROM(OUTAREA) LENGTH(13) FREEKB ERASE
EXEC CICS RETURN
*
MSG1 DC C'xxxx: ASM program invoked. ENTER TO END.'
MSG2 DC C'PROGRAM ENDED'
END

Figure 11. a simple CICS assembler program.

When translated and assembled, it expands to[Figure 12 on page 91}

90 CICS TS for z/0S: CICS Application Programming Guide

ASM XOPTS (LEASM)

DFHEIGBL ,,,LE INSERTED BY TRANSLATOR
*,4DFHEIDL; SETB O 1 MEANS EXEC DLI IN PROGRAM
+,8DFHEIDB; SETB 0 1 MEANS BATCH PROGRAM
*,4DFHEIRS; SETB 0 1 MEANS RSECT
*,8DFHEILE; SETB 1 1 MEANS LE MAIN
DFHEISTG DSECT

DFHEISTG INSERTED BY TRANSLATOR
hhkkhkhkhhhkhkhhhhhhhhhhhhhhhhhhhhrhhhhhhhhhdrhhrhhhhhhdhhdrhdhrhhhdhhdhrhdrhdx
* EXEC INTERFACE DYNAMIC STORAGE *
Jedkok ke ko ok ko ok ko ek keok ko ko ke ok ok ok ko B *kk
DFHEISTG DSECT EXEC INTERFACE STORAGE ©@BBAC81A

USING =,DFHEIPLR ESTABLISH ADDRESSABILITY @BBAC81A
*
kkhkkkkhkkhkkhkkhkkkhhkkhkhkkhhkkhhkhkhkkhkhkkhhkkhhkhkhhkhkhkkhhkhkhhkkhkkhkhkkhkhkhkkhhkhkhkkhkhkkhkkkhkkkk*x
* DYNAMIC STORAGE AREA (DSA) *
khkkkkhkkkhkkhkkkhhkkhhkkhkhkkhhkkhhhhhkkhhhkkhhhkkhhkhkhhkhhkkhhkhkhhkdhhkhhhkhhkhkhhkhhkkhhkkhkhkkhkkhkxkx
*

CEEDSA DS 0D Just keep the same label for formulae
*

CEEDSAFLAGS DS XL2 DSA flags

CEEDSALNGC EQU X'1000' C library DSA

CEEDSALNGP EQU X'0800' PL/I Tlibrary DSA
CEEDSAEXIT EQU X'0008' An Exit DSA

CEEDSAMEMD DS XL2 Member defined

CEEDSABKC DS
CEEDSAFWC DS
CEEDSAR14 DS
CEEDSAR15 DS
CEEDSARO DS
CEEDSAR1 DS
CEEDSAR2 DS
CEEDSAR3 DS
CEEDSAR4 DS
CEEDSAR5 DS
CEEDSAR6 DS

=

Addr of DSA of caller
A Addr of DSA of last called rtn
F Save area for register 14
F Save area for register 15
F Save area for register
F Save area for register
F Save area for register
F Save area for register
F Save area for register
F Save area for register
F Save area for register
CEEDSAR7 DS F Save area for register
CEEDSAR8 DS F Save area for register
CEEDSAR9 DS F Save area for register

F

F

F

A

A

A

4

0

A

A

A

OCOoONOUTREWN—O

CEEDSAR10 DS Save area for register 10
CEEDSAR11 DS Save area for register 11
CEEDSAR12 DS Save area for register 12
CEEDSALWS DS Addr of PL/I Language Working Space
CEEDSANAB DS Addr of next available byte
CEEDSAPNAB DS Addr of end-of-prolog NAB

DS
CEEDSATRAN DS
CEEDSARENT DS

=T

HPL TxArea or
Program reentry address-IPAT

CEEDSACILC DS C to Fortran ILC save area
CEEDSAMODE DS Return address of module that
* caused the Tast mode switch
DS 2F
CEEDSARMR DS A Addr of Tanguage specific
* exception handler
*
DS F Reserved
CEEDSAAUTO DS 0D Automatic storage starts here
CEEDSAEND DS 0D End of DSA

Figure 12. the Translated assembled version (Part 1 of 8)

Chapter 8. Translation and compilation

01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI

01-DFHEI
01-DFHEI

02-CEEDS

02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS
02-CEEDS

02-CEEDS
02-CEEDS

02-CEEDS
02-CEEDS
02-CEEDS

91

CEEDSASZ EQU CEEDSAEND-CEEDSA Size of DSA
CEEDSA_STDCEEDSA EQU X'0000' flag values of standard CEE DSA
*
*
*
DFHEISA DS 18F SAVE AREA R14-R12 AT 12 OFF @BBAC81A
DFHEILWS DS F RESERVED @BBAC81A
DFHEINAB DS F RESERVED ©@BBAC81A
DFHEIRSO DS F RESERVED @BBAC81A
DFHEIR13 DS F REGISTER 13 @BBAC81A
DFHEIRS1 DS F RESERVED ©@BBAC81A
DFHEIBP DS F EIB POINTER (NOT USED IF BATCH)
DFHEICAP DS F COMMAREA POINTER (NOT USED IF BATCH)
DFHEIVOO DS H HALFWORD TEMP USED BY DFHECALL
DFHEIRS2 DS H RESERVED ©@BBAC81A
DFHEIPL DS 13F PARAMETER LIST @05C
DS 51F ALLOW 64 PARAMETERS FOR DLI @L2A
* AND IN XA2 ON, FOR EXEC CICS ALSO
DFHEIRS3 DS F RESERVED @L2A
DFHEIRS4 DS F RESERVED OL2A
DFHEITP1 DS F TEMPORARY POINTER 1 @L2A
DFHEITP2 DS F TEMPORARY POINTER 2 @L2A
DFHEITP3 DS F TEMPORARY POINTER 3 @L2A
DFHEITP4 DS F TEMPORARY POINTER 4 @L2A
B R R R R R R R R R R R R R R R R S R S R S R R R R R R R R R R R R R S R T R S R R R R R R R S R
* START DEFINITION OF USER DYNAMIC STORAGE *
hkkhkhkhhkkhhhkkhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhrhhhrrhrdhhhhhkhhhddhhdhhdxkx
DFHEIUSR DS 0D ALIGN USER DYNAMIC STORAGE @BBAC81A
*
OUTAREA DS CL200 DATA OUTPUT AREA

*

TESTLE CSECT ,
DFHEIENT INSERTED BY TRANSLATOR

R R R R R R R R R R R R T TR TR R TR
CONTROL BLOCK NAME = DFHEIBLK

NAME OF MATCHING PL/AS CONTROL BLOCK = None
DESCRIPTIVE NAME = %PRODUCT EXEC Interface Block.

@BANNER_START 02
Licensed Materials - Property of IBM

"Restricted Materials of IBM"
5697-E93

(C) Copyright IBM Corp. 1990, 1993

@BANNER_END

STATUS = %XA20

EE I R R R I R I I
ECE R R R N I I I

Figure 12. the Translated assembled version (Part 2 of 8)

92 CICS TS for z/0S: CICS Application Programming Guide

02-CEEDS
02-CEEDS

01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI

01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI

01-DFHEI

* FUNCTION = EXEC Interface Block. *
* *
* The exec interface block contains information on the *
* transaction identifier, the time and date, and the cursor *
* position on a display device. Some of the other fields are =*
* set indicating the next action that a program should take *
* in certain circumstances. *
* DFHEIBLK also contains information that will be helpful *
* when a dump is being used to debug a program. *
* This control block is included automatically by an *
* application program using the command-Tevel interface. *
* EISEIBA in the EIS addresses the EIB. *
* *
* *
* *
* NOTES : *
* DEPENDENCIES = S/370 *
* MODULE TYPE = Control block definition *
* PROCESSOR = Assembler *
* *
K o *
* *
* CHANGE ACTIVITY : *
* $SEG(DFHEIBLK) ,COMP(COMMAND) ,PROD (%PRODUCT) : *
* *
* PN= REASON REL YYMMDD HDXXIII : REMARKS *
* $L1= 550 %0G 900515 HDFSPC : Add an EIB length equate *
* $D1= 105119 %B1 930226 HDDHDMA : Correct comments for date field *
* $P1= M60581 %BO 900116 HDAEGB : Change for PLXMAP to data areas =
* *
B R S
* EXEC INTERFACE BLOCK *
KA AA KR A R A AR AR A I I A h A h Ak hhhhhhhkhhkdkhhkhhhkhhhhdhhddhhhhhhhdhhdrhdhhrhdhxixsx
DFHEIBLK DSECT EXEC INTERFACE BLOCK ©OBBAC81A

USING *,DFHEIBR ©@BBAC81A
EIBTIME DS PL4 TIME IN OHHMMSS FORMAT @BBAC81A
EIBDATE DS PL4 DATE IN OCYYDDD+ FORMAT, @epicC
* where C is the century @GD1A
* indicator (0=1900, 1=2000), GD1A
* YY is the year, DDD is the @DIA
* day number and '+' is the GD1A
* sign byte (positive) @D1A
EIBTRNID DS CL4 TRANSACTION IDENTIFIER @BBAC81A
EIBTASKN DS PL4 TASK NUMBER ©@BBAC81A
EIBTRMID DS CL4 TERMINAL IDENTIFIER @BBAC81A
EIBRSVD1 DS H RESERVED ©OBBAC81A
EIBCPOSN DS H CURSOR POSITION @BBAC81A
EIBCALEN DS H COMMAREA LENGTH ©@BBAC81A
EIBAID DS CL1 ATTENTION IDENTIFIER ©@BBAC81A
EIBFN DS CL2 FUNCTION CODE @BBAC81A
EIBRCODE DS CL6 RESPONSE CODE ©@BBAC81A
EIBDS DS CL8 DATASET NAME @BBAC81A
EIBREQID DS CL8 REQUEST IDENTIFIER ©@BBAC81A
EIBRSRCE DS CL8 RESOURCE NAME @BBDIAOU
EIBSYNC DS C X'FF' SYNCPOINT REQUESTED @BBDIAGU
EIBFREE DS C X'FF' FREE REQUESTED @BBDIAOU
EIBRECV DS C X'FF' RECEIVE REQUIRED @BBDIAOU

Figure 12. the Translated assembled version (Part 3 of 8)

Chapter 8. Translation and compilation

01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI

01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI
01-DFHEI

93

EIBSEND DS C RESERVED @BM13417 01-DFHEI
EIBATT DS C X'FF' ATTACH RECEIVED @BBDIAOU 01-DFHEI
EIBEOC DS C X'FF' EOC RECEIVED @BBDIAOU 01-DFHEI
EIBFMH DS € X'FF' FMHS RECEIVED @BBDIAOU 01-DFHEI
EIBCOMPL DS C X'FF' DATA COMPLETE 01-DFHEI
EIBSIG DS C X'FF' SIGNAL RECEIVED 01-DFHEI
EIBCONF DS C X'FF' CONFIRM REQUESTED 01-DFHEI
EIBERR DS C X'FF' ERROR RECEIVED 01-DFHEI
EIBERRCD DS CL4 ERROR CODE RECEIVED 01-DFHEI
EIBSYNRB DS C X'FF' SYNC ROLLBACK REQ'D 01-DFHEI
EIBNODAT DS C X'FF' NO APPL DATA RECEIVED 01-DFHEI
EIBRESP DS F INTERNAL CONDITION NUMBER 01-DFHEI
EIBRESP2 DS F MORE DETAILS ON SOME RESPONSES 01-DFHEI
EIBRLDBK DS CLI ROLLED BACK 01-DFHEI
*
EIBLENG EQU -EIBTIME Length of EIB @L1A 01-DFHEI
dkhkkhkhkhkhkhkhkhkhkhkhhkhhhhhhhhhhhdhhhdhdhhdhhdhhdhhhhhhhhhhhhhhhhhkhhhhhhhkhkhkhkhkhkkhhxkx
* END OF EXEC INTERFACE BLOCK *
dhkkhkhkkhkhkhhhhhhhhhhhhhhhhhdhhdhhhdhhdhhhhhhhhhkhhhkhhhhhhhkhhhhdhhhhhhkhhkkhkdkx
DFHEIBR EQU 11 EIB REGISTER @BA02936 01-DFHEI
EE R
* PROLOG CODE FOR EXEC INTERFACE *
Axkhkhhhhkhhhhhhhhhhhkhkhkhk*k XK A KKk hkhhhhhhhhhhhhhhhhhhkhkhdhkx* ER R R R R R R R R R R R
*&DFHEICS; CEEENTRY PPA=DFHPPA,MAIN=YES,PLIST=0S,
* BASE=&CODEREG;,
* AUTO= (DFHEIEND-DFHEISTG)
TESTLE CSECT , 02-CEEEN
TESTLE RMODE ANY 02-CEEEN
TESTLE AMODE ANY 02-CEEEN
ENTRY TESTLE 02-CEEEN
PUSH USING 02-CEEEN
DROP @02A 02-CEEEN
USING *,15 02-CEEEN
B CEEZ0007 02-CEEEN
DC X'00C3C5C5' 02-CEEEN
CEEY0007 DC A((((DFHEIEND-DFHEISTG)+7)/8)*8) X02-CEEEN

. Size of automatic storage.
DC A(DFHPPA-TESTLE) . Address of PPA for this program 02-CEEEN

B 1(,15) 02-CEEEN
CEEZ000O7 EQU = 02-CEEEN
ST™M 14,12 ,CEEDSAR14-CEEDSA(13) 02-CEEEN
L 2,CEEINPLOOO7 5001D @01C 02-CEEEN
L 15,CEEINT0007 @01C 02-CEEEN
DROP 15 @01A 02-CEEEN
BALR 14,15 02-CEEEN
LR 2,1 02-CEEEN
L 14,752(,12) 02-CEEEN
0l 8(14),x'80" 02-CEEEN
BALR 3,0 @01A 02-CEEEN
USING *,3 ©@01A 02-CEEEN
L 3,CEEQEPV0007 @01A 02-CEEEN
POP USING @01A 02-CEEEN
USING TESTLE,3 @01A 02-CEEEN
L 1,CEEDSANAB-CEEDSA(,13) Get the current NAB 02-CEEEN
L 0,CEEY0007 02-CEEEN
ALR 0,1 Compute new value. 02-CEEEN
CL 0,CEECAAEQS-CEECAA(,12) Compare with EOS. 02-CEEEN

Figure 12. the Translated assembled version (Part 4 of 8)

94 CICS TS for z/0S: CICS Application Programming Guide

BNH CEEX0007 02-CEEEN
L 15,CEECAAGETS-CEECAA(,12) Get address overflow routine 02-CEEEN

BALR 14,15 Get another stack segment. 02-CEEEN

LR 1,15 02-CEEEN

B CEEX0007 Branch around statics @01A 02-CEEEN

CEEINPLOOO7 DC A(CEEINPL) @01A 02-CEEEN

CEEINT0007 DC V(CEEINT) @01A 02-CEEEN

CEEOEPV00OO7 DC A(TESTLE) @01A 02-CEEEN

CEEX0007 EQU * 02-CEEEN

ST 13,CEEDSABKC-CEEDSA(,1) Set back chain. 02-CEEEN

ST 0,CEEDSANAB-CEEDSA(,1) Set new NAB value 02-CEEEN

XC CEEDSAFLAGS-CEEDSA(,1),CEEDSAFLAGS-CEEDSA(1) . Clear 02-CEEEN

ST 1,CEEDSAFWC-CEEDSA(,13) Set forward chain. 02-CEEEN

LR 13,1 Set save area address 02-CEEEN

USING CEEDSA,13 Addresability to SF VIR2MO 02-CEEEN

MVC CEEDSALWS,CEECAALWS-CEECAA(12) Get LWS addr VIR2MO 02-CEEEN

LR 1,2 02-CEEEN

BAL 1,%+8 OL2A 01-DFHEI
* The following gives an assembler message if DFHEISTG is too big G@P7A

DS 0S((DFHEISTG+65264-DFHEIEND-4096)/4096) ©04C O1-DFHEI

DC AL2 (DFHEIEND-DFHEISTG) LENGTH OF STORAGE @L2A 01-DFHEI

DC H'O' Parameter Tist version number @P6C 01-DFHEI
Fkk Kk ok kK KA B B R *hkk Kk kKKK *kk
* ESTABLISH DATA ADDRESSIBILITY *
khhkhhkhhhkhhhhhhhhhhhhhhhhhhhhdhhhhhhhhhhdhhhrhhhhhhdhhdhrhdhrhhhdhhdhrhdhrdhdk

DFHEIPLR EQU 13 PARAMETER LIST REGISTER ©@BBAC81A 01-DFHEI

LR DFHEIPLR,15 @BBAC81A 01-DFHEI

USING DFHEISTG,13 ©@BBAC81A 01-DFHEI

MVC DFHEIBP(L'DFHEIBP+L'DFHEICAP),0(1) @D3AXO1-DFHEI
COPY EIB AND CA PTRS @D3A
dhkkhkkhkhkhkhhkhkhhhhhhhhhhhhhhdhhdhdhdhhdhdhhhhhhhhhhhhhhhhkhhhhkhhhkhhhhhhhhkhkkkkkkkkx
* ESTABLISH EIB ADDRESSIBILITY *
dhkhkhkkhhkhkhhhkhhhhhhhhhhdhhhhhddhhdhhhhhhhhhkhkhkhhkhkhhhhhhhkdhhkhdhhhdhdhhhhhkkhhkkx

L DFHEIBR,DFHEIBP ©@BBAC81A 01-DFHEI

USING DFHEIBLK,DFHEIBR ©@BBAC81A 01-DFHEI
khkkhkkhkhkhkhkhkhkhhhhhhhhhhhkhkhhkhhhdhdhhdhdhhhhhhdhhhhhhhhhhhhhhhhhkhkhhhkhhhkhhkhkkkkdkkx
* END OF PROLOG CODE FOR EXEC INTERFACE *

B R R R R R R o o e R T R T T T S S Tt L L L

MVC OUTAREA(40),MSG1
MVC OUTAREA(4),EIBTRMID

* EXEC CICS SEND TEXT FROM(OUTAREA) LENGTH(43) FREEKB ERASE

DFHECALL =X'180660000800C20000082204000020" , , (RF,OUTAREA*
), (FB_2,=Y(43))

B e Kok ok ok ok kKRR KKKk Kk kK Kk R T e R T T *kk
DS OH 01-DFHEC
LA 1,DFHEIPL 01-DFHEC
LA 14,=X'180660000800C20000082204000020' 01-DFHEC
SR 15,15 01-DFHEC
LA 0,0UTAREA 01-DFHEC
STM 14,0,0(1) 01-DFHEC
LA 14,=Y(43) 01-DFHEC
ST 14,12(,1) 01-DFHEC
0I 12(1),X'80" LAST ARGUMENT 01-DFHEC
L 15,=V(DFHEI1) 01-DFHEC
BALR 14,15 INVOKE EXEC INTERFACE 01-DFHEC

Khhkkhhkkhhkhkhhhhhhdhhhhhhhdhhhhhdrhhrhhhhhhdhhdrhhrhhhhhrdrhhxsk *khkkkkkhkhkxkhhkkk

* EXEC CICS RECEIVE

Figure 12. the Translated assembled version (Part 5 of 8)

Chapter 8. Translation and compilation

95

DFHECALL =X'040200000800000014000040000000'

B R R e e e T T T R e S R S L R S R S e L e e L R L e e

DS OH 01-DFHEC
LA 1,DFHEIPL 01-DFHEC
LA 14,=X'040200000800000014000040000000" 01-DFHEC
ST 14,0(,1) 01-DFHEC
oI 0(1),x'80" LAST ARGUMENT 01-DFHEC
L 15,=V(DFHEI1) 01-DFHEC
BALR 14,15 INVOKE EXEC INTERFACE 01-DFHEC
khkkhkhkhkhkhkhkhkhkhhhkhhhhhhhhhkhhdhhhdhdhhdhdhhhdhhhhhhhhhhhhhhhhhkhhhhhhhkhkhkhkkhhkkhhxkx
MVC OUTAREA(13),MSG2
* EXEC CICS SEND TEXT FROM(OUTAREA) LENGTH(13) FREEKB ERASE
DFHECALL =X'180660000800C20000082204000020", , (RF,OUTAREA*
), (FB_2,=Y(13))
khkkhkhkhkhkhkhkhkhkkhhhkhkhhhkhkhkhkhkhhhhhhhhhdhhhhdhhhhhhhhhhhhhhhhhkhhhhkhhhkhhhhkhhhkhkhhkik
DS OH 01-DFHEC
LA 1,DFHEIPL 01-DFHEC
LA 14,=X'180660000800C20000082204000020" 01-DFHEC
SR 15,15 01-DFHEC
LA 0,0UTAREA 01-DFHEC
STM 14,0,0(1) 01-DFHEC
LA 14,=Y(13) 01-DFHEC
ST 14,12(,1) 01-DFHEC
0I 12(1),X'80" LAST ARGUMENT 01-DFHEC
L 15,=V(DFHEI1) 01-DFHEC
BALR 14,15 INVOKE EXEC INTERFACE 01-DFHEC
khkkkkhkkkkkkkhhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhkhhhkhkhhkhkhkhkhkxk
* EXEC CICS RETURN
DFHECALL =X'0E0800000800001000"
R R T P P T T L Kk ok ok kR KR KEF KKK Kk kkkk kA Kkkkkhh kKKK KKK Kk
DS OH 01-DFHEC
LA 1,DFHEIPL 01-DFHEC
LA 14,=X'0OE0800000800001000" 01-DFHEC
ST 14,0(,1) 01-DFHEC
oI 0(1),x'80" LAST ARGUMENT 01-DFHEC
L 15,=V (DFHEI1) 01-DFHEC
BALR 14,15 INVOKE EXEC INTERFACE 01-DFHEC

EE R L R R R R R R
*

MSG1 DC C'xxxx: ASM program invoked. ENTER TO END.'

MSG2 DC C'PROGRAM ENDED'

DFHEIRET INSERTED BY TRANSLATOR
khkkhkhkhkhkhkhkhkkhkhhkhhhhhkhhkhkhhhdhhhdhdhhdhhdhhdhhhhhhhhhhhhhhhhhkhkhhhkhhhkhhhkkhhkkhhhkdkx
* EPILOG CODE FOR EXEC INTERFACE *
dhkkhkhkhkhkhkhhkhhhhkhhhhhhhhhhhdhhdhdhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhkkhkhkkhkxkx
DS OH ©@BBAC81A 01-DFHEI
LA 1,CEET0014 Get address of termination Tist 02-CEETE
L 15,=V(CEETREC) Get address of termination rtn 02-CEETE
BALR 14,15 Call termination routine. 02-CEETE
CEET0014 DC A(*+8) Parm 1 02-CEETE
DC A(*+8+X'80000000') Parm 2 02-CEETE
DC A(0) Enc_Modifier 02-CEETE
DC A(0) Return code. 02-CEETE
CEEMAIN CSECT 02-CEETE
CEEMAIN RMODE ANY 02-CEETE
CEEMAIN AMODE ANY 02-CEETE

Figure 12. the Translated assembled version (Part 6 of 8)

96 CICS TS for z/0S: CICS Application Programming Guide

DC A(TESTLE) ©04A
DC F'o!'
TESTLE CSECT
*kkhhkkhhkkhhkhkkx khkkkhhkhkrhhkhhhhkhrhhrk khkhkkkkhhkkhhkhhhhhhhhhhrhhhhhhhrhhxsk *k*k
* END OF EPILOG CODE FOR EXEC INTERFACE *
khhkhkkhkkhkhkhkhkhhhhhhkhkhhhkhkhkhkhhhkhkhhkhkhhhkhhhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkk*k
LTORG , @BBAC81A
=V (DFHEI1)
=V (CEETREC)
=Y (43)
=Y(13)
=X'180660000800C20000082204000020"
=X'040200000800000014000040000000'
=X'0E0800000800001000"
DS OH @F8E1S @L1C
DFHEISTG INSERTED BY TRANSLATOR
DFHEIEND INSERTED BY TRANSLATOR
*
KRR A R A A R A AR AR A AR A AR A AR A A A h Ak h A kA hhhkhhhhkh bk dhhdhhhhhhhdhhdrhdhhrhdxkx
* PROGRAM PROLOG AREA1 (PPAI) *
Ahkhkhkhkhhkhkhhhhhhkhhhhhhhhhhdrhhrhhhhhhdhhdrhdhhhhdhhdrhdhdrhhhhdhdhhdrhdx
*
PPA10018 DS 0F
DFHPPA DS OF
DC AL1(PPANLOO18-*) Offset to the entry name length
DC X'CE' LE/370 Indicator.
DC B'10100000" . PPA flags
* Bit @ 0 = Internal Procedure
* 1 = External Procedure
* Bit 1 0 = Primary Entry Point
* 1 = Secondary Entry Point
* Bit 2 0 = Block doesn't have a DSA
* 1 = Block has a DSA
* Bit 3 0 = compiled object
* 1 = library object
* Bit 4 0 = sampling interrupts to library
* 1 = sampling interrupts to code
* Bit 5 0 = not an exit DSA
* 1 = Exit DSA
* Bit 6 0 = own exception model
* 1 = inherited (callers) exception model
* Bit 7 Reserved
DC X'00' Member flags
DC A(PPA20018) Addr of Compile Unit Block (PPA2)
DC A(0)
DC A(0) Data Descriptors for this entry point
DS OH
PPANLOO18 DC AL2(6) . Length of Entry Point Name
DC CL6'TESTLE' . Entry Point Name
CEEINPL DS 0D
DC A(PPA2M0OO18)
DC A(CEEINPLSTST-CEEINPL)
CEEINPLSTST DS OF
DC X'00' Control Level @01A
DC X'00' ENCLAVE=NO @01A
DC X'00' @01A
DC X'07' Number of items. @01C

Figure 12. the Translated assembled version (Part 7 of 8)

Chapter 8. Translation and compilation

02-CEETE
02-CEETE
02-CEETE

01-DFHEI

01-DFHEI

02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP

02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP

97

DC A(PPA2M0OO18) . A of A(first entry point in comp unit)

DC V(CEESTART) . A(Address of CEESTART)

DC V(CEEBETBL)

DC A(15) . Memeber id

DC A(0)

DC XL4'00070000' . EXECOPS(ON), PLIST

DS OH
*
AR AR R AR R R A R Ak ko hhhhkk
* PROGRAM PROLOG AREAZ2 (PPA2) *
KXKRAKA KKKk hhkhhhhhhhhhhhhhhhhhkhks AXKXKA*A KAk hkhkhhhhhhhhhhhhkhk*k Ak khkkkhhhkhhkk
*

EXTRN CEESTART
PPA20018 DS OF

DC AL1(15) Member ID

DC AL1(0) Sub ID

DC AL1(0) Member defined

DC AL1(1) Level of PPAx control blocks
PPA2S0018 DC A(CEESTART) A(CEESTART for this Toad module)

DC A(0) A(Compile Debug Information (CDI))

DC A(CEETIMES-PPA20018) A(Offset to time stamp)
PPA2MOO18 DC A(TESTLE) . A(first entry point in comp. unit)
*
dhkkhkhkhkhkhkhkhkkhhhkhhhhhhhhhhhhhdhdhdhhdhdhdhhdhdhhhhhhhhhhhhhhhhkhhhhhhhkhhhkhkhkkkhkkx
* TIME STAMP *
dhkhkhkhkkhhkhkhhhhhhhhhhhhdhhhdhhdhhddhhhhdhhhhhhhhhkhhhhhhhdhhhhdhhhhdhhhhhhhhxkx
*
* Time Stamp
*,Time Stamp = 2004/06/17 08:51:00
*,Version 1 Release 1 Modification 0
CEETIMES DS OF

DC CL4'2004" Year

DC CL2'06' Month

DC cL2'17! Day

DC CL2'08" Hours

DC CL2'51" Minutes

DC CL2'00" Seconds

DC cL2'1! Version

DC cL2'1! Release

DC cL2'o! Modification
khkkkkhkhkhkhkhkkkhhhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhkkhkhhkkhkhkhikx
* COMMON ANCHOR AREA (CAA) *
khkkhkhkhkhkhkhkhkkhkhhkhhhhhkhhkhkhhhdhhhdhdhhdhhdhhdhhhhhhhhhhhhhhhhhkhkhhhkhhhkhhhkkhhkkhhhkdkx
"""""""""""""""""" AKX KR KA * kA hhhhhhhhhhhhhhhkhdhdhhdhdhdhdhdhdhdkdx*x
dhkkhkhkhkhkhkhhkhhhhkhhhhhhhhhhhdhhdhdhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhkkhkhkkhkxkx
LEPTRLEN EQU 4
*
CEECAA DSECT , CAA mapping

(Definition of LE CAA removed)

* TERMINATE DEFINITION OF DYNAMIC STORAGE *
DFHEISTG DSECT @BBAC8IA

ORG
DFHEIEND DS 0X END OF DYNAMIC STORAGE ©@BBAC81A

END

Figure 12. the Translated assembled version (Part 8 of 8)

98 CICS TS for z/0S: CICS Application Programming Guide

02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP

02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP

02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP
02-CEEPP

03-CEEDN

02-CEECA

01-DFHEI
01-DFHEI
01-DFHEI

Chapter 9. Installing application programs

This section describes what you have to do to install an application program to run
under CICS. Installation of a CICS application program involves translation and
compilation of the source statements, and link-edit of the resulting object modules
into CICS libraries.

An application program generally means any user program that uses the CICS
command-level application programming interface (API). Such programs can also
use:

+ SQL statements

* DLI requests

* Common programming interface (CPI) statements

» SAA Resource Recovery statements

» External CICS interface commands

Note: If you are developing application programs to use the CICS dynamic
transaction routing facility, use the CICS Interdependency Analyzer to detect
whether the programs are likely to cause intertransaction affinity. See
|Chapter 15, “Affinity,” on page 221| for a description of intertransaction
affinity.

This chapter includes:

+ [‘Program installation roadmap’]

+ [‘Defining MVS residence and addressing modes” on page 100|

+ [‘Running application programs in the RDSAs” on page 103]

+ [‘Using BMS map sets in application programs” on page 105

. “Usilng the CICS-supplied procedures to install application programs” on page]
106

+ [“Including the CICS-supplied interface modules” on page 108

+ [Installing assembler language application programs” on page 109
+ [“Installing COBOL application programs” on page 110

+ [“Installing PL/I application programs” on page 114

+ [“Installing C application programs” on page 117

+ [‘Using your own job streams” on page 120|

Program installation roadmap

The following steps are required to install application programs to run under CICS.
For detailed information about using the CICS-supplied procedures to install
application programs, see [‘Using the CICS-supplied procedures to install application

rograms” on page 106.|To use your own JCL to install application programs, see
‘Using your own job streams” on page 120

1. Compile your program source if you are using a compiler with an integrated
translator.

2. If your compiler does not translate CICS commands, you will need to translate
the program source code, turning CICS commands into calls that are
understood by the compiler, then compile or assemble the translator output to
produce object code.

Notes:

a. If your program does not use CICS commands and is only invoked by a
running transaction (and never directly by CICS task initiation), no translator
step is needed.

© Copyright IBM Corp. 1989, 2010 99

b. CICS command-level programs that access DL/l services through either the
DL/I CALL or EXEC DLI interfaces must also be translated. Applications that
access DB2 services using the EXEC SQL interface need an additional
precompilation step. For information about this step, see[the CICS DB4

3. Link-edit the object module to produce a load module, which you store in an
application load library that is concatenated to the DFHRPL DD statement of the

CICS startup job stream. Additional INCLUDE statements are required for

applications that access DB2 services using the EXEC SQL interface. For

information about these extra statements, see fthe CICS DB2 Guide,

4. Create resource definition entries, in the CSD, for any transaction that calls the
program, and install them.
5. Do one of the following:
* If you are using program autoinstall, ensure that the autoinstall
user-replaceable module can correctly install a resource definition for the
program.

» If you are not using program autoinstall, create a resource definition entry in
the CSD for the program, and install it.

References to the CSA or to the TCA are not allowed. You can specify YES for the
system initialization parameter DISMACP to cause CICS to disable any transaction
whose program invokes an obsolete CICS macro or references the CSA or the
TCA.

CICS provides a utility program, DFHMSCAN, to identify the macro-level programs
used by your CICS applications. For information about using the DFHMSCAN utility
to identify macro-level programs, see [the CICS Operations and Utilities Guidel

Preparing for program installation
Consider these points when installing application programs.

 If you want your application program to use CPl Communications or SAA
Resource Recovery, make the appropriate interface modules available to your
program. For information about the CPI Communications interface module and
the SAA Resource Recovery interface module, see[The CICS-supplied interface
[modules” on page 86

 If you want your application program to reside in the MVS link pack area (LPA),
specify appropriate options when installing your program. Options appropriate to
each language are given for the sample job streams in the following sections. For
information on preparing programs to run in the link pack area (LPA), see
[‘Running applications in the link pack area” on page 102,

For information on preparing programs to run in the read-only DSAs, see
|“Running application programs in the RDSAs” on page 103.|

 If you want your application program to use BMS maps, first prepare the map
sets. For more information, see |“Using BMS map sets in application programs”|

on page 105.

Defining MVS residence and addressing modes

This section describes the effect of the MVS residence and addressing modes on
application programs, how you can change the modes, and how you can make
application programs permanently resident. An application written to run on
MVS/370 can run on any MVS system, if it is link-edited with the AMODE(24) and
RMODE(24) options.

100 CICS TS for zZ0S: CICS Application Programming Guide

A command-level program can reside above 16MB, and address areas above
16MB. The program can contain EXEC CICS, EXEC DLI, and CALL DL/I
commands.

Establishing a program’s addressing mode

Every program that executes in MVS is assigned two attributes: an addressing
mode (AMODE), and a residency mode (RMODE). AMODE specifies the
addressing mode in which your program is designed to receive control. Generally,
your program is designed to execute in that mode, although you can switch modes
in the program, and have different AMODE attributes for different entry points within
a load module. The RMODE attribute indicates where in virtual storage your
program can reside. Valid AMODE and RMODE specifications are:

AMODE(24) Specifies 24-bit addressing mode.

AMODE(31) Specifies 31-bit addressing mode.

AMODE(ANY) Specifies either 24- or 31-bit addressing mode.

RMODE(24) Indicates that the module must reside in virtual storage below 16MB. You
can specify RMODE(24) for 31-bit programs that have 24-bit
dependencies.

RMODE(ANY) Indicates that the module can reside anywhere in virtual storage.

Note: C or C++ language programs must be link-edited with AMODE(31).

If you do not specify any AMODE or RMODE attributes for your program, MVS
assigns the system defaults AMODE(24) and RMODE(24). To override these
defaults, you can specify AMODE and RMODE in one or more of the following
places. Assignments in this list overwrite assignments later in the list.

1. On the link-edit MODE control statement:
MODE AMODE (31) ,RMODE (ANY)
2. Either of the following:
a. In the PARM string on the EXEC statement of the link-edit job step:
//LKED ~ EXEC PGM=IEWL,PARM='AMODE(31),RMODE (ANY),.."

b. On the LINK TSO command, which causes processing equivalent to that of
the EXEC statement in the link-edit step.

3. On AMODE or RMODE statements within the source code of an assembler
program. (You can also set these modes in COBOL by means of the compiler
options; for information about COBOL compiler options, see the relevant
application programming guide for your COBOL compiler.)

CICS address space considerations

gives the valid combinations of the AMODE and RMODE attributes and
their effects:

Table 5. Valid AMODE and RMODE specifications and their effects

AMODE RMODE |Residence Addressing
24 24 Below 16MB 24-bit mode
31 24 Below 16MB 31-bit mode

ANY 24 Below 16MB 31-bit mode
31 ANY Above 16MB 31-bit mode

Chapter 9. Installing application programs

101

The following example shows link-edit control statements for a program coded to
31-bit standards:
//LKED.SYSIN DD =*
MODE AMODE (31) ,RMODE (ANY)
NAME anyname (R) ("anyname" is your load module name)
/*
/1

Making programs permanently resident

If you define a program in the CSD with the resident attribute, RESIDENT(YES), it
is loaded on first reference. This applies to programs link-edited with either
RMODE(ANY) or RMODE(24). However, be aware that the storage compression
algorithm that CICS uses does not remove resident programs.

If there is not enough storage for a task to load a program, the task is suspended
until enough storage becomes available. If any of the DSAs get close to being short
on storage, CICS frees the storage occupied by programs that are not in use. (For
more information about the dynamic storage areas in CICS, see the CICS System
[Definition Guidd)

Instead of making RMODE(24) programs resident, you can make them non-resident
and use the library lookaside (LLA) function. The space occupied by such a
program is freed when its usage count reaches zero, making more virtual storage
available. LLA keeps its library directory in storage and stages (places) copies of
LLA-managed library modules in a data space managed by the virtual lookaside
facility (VLF). CICS locates a program module from LLA’s directory in storage,
rather than searching program directories on DASD. When CICS requests a staged
module, LLA gets it from storage without any I/O.

Running applications in the link pack area

Programs written in assembler language, C, COBOL, or PL/I , can reside in the link
pack area (LPA). To do so, they must be read-only and have been link-edited with
the RENT and REFR options. Other requirements are as follows:

Assembler
Use the RENT assembler option.

C Use the RENT compiler option.

COoBOL
Do not overwrite WORKING STORAGE. (The CICS translator generates a CBL
statement with the required compiler RENT option (unless you specify the
translator option NOCBLCARD).

PL/I
Do not overwrite STATIC storage. (The CICS translator inserts the required
REENTRANT option into the PROCEDURE statement.)

If you want CICS to use modules that you have written to these standards, and
installed in the LPA, specify USELPACOPY(YES) on the program resource
definitions in the CSD.

For information about installing CICS modules in the LPA, see [the CICS Transactior]
[Server for z/OS Installation Guide,.

102 CICS TS for zZ0S: CICS Application Programming Guide

Running application programs in the RDSAs

Assembler

Programs that are eligible to reside above 16MB, and are read-only, can reside in
the CICS extended read-only DSA (ERDSA). Therefore, to be eligible for the
ERDSA, programs must be:

» Properly written to read-only standards

» Written to 31-bit addressing standards

 Link-edited with the RENT attribute and the RMODE(ANY) residency attribute

Programs that are not eligible to reside above 16MB, and are read-only, can reside
in the CICS read-only DSA (RDSA) below 16MB. Therefore, to be eligible for the
RDSA, programs must be:

» Properly written to read-only standards

» Link-edited with the RENT attribute

Note: When you are running CICS with RENTPGM=PROTECT specified as a
system initialization parameter, the RDSAs are allocated from key-0
read-only storage.

Programs link-edited with RENT and RMODE(ANY) are automatically loaded by
CICS into the ERDSA.

ERDSA requirements for the specific languages are described as follows.

If you want CICS to load your assembler programs in the ERDSA, assemble and
link-edit them with the following options:

1. The RENT assembler option

2. The link-edit RENT attribute

3. The RMODE(ANY) residency mode

Note: If you specify these options, ensure that the program is truly read-only (that
is, does not modify itself in any way—for example, by writing to static
storage), otherwise storage exceptions occur. The program must also be
written to 31-bit addressing standards. See [the CICS Problem Determinatior]
for some possible causes of storage protection exceptions in
programs resident in the ERDSA.

The CICS-supplied procedure, DFHEITAL, has a LNKPARM parameter that
specifies the XREF and LIST options only. To link-edit an ERDSA-eligible program,
override LNKPARM from the calling job, specifying the RENT and RMODE(ANY)
options in addition to any others you require.

For example:

//ASMPROG JOB 1,user_name,MSGCLASS=A,CLASS=A,NOTIFY=userid
//EITAL EXEC DFHEITAL,

(other parameters as necessary)

// LNKPARM="LIST,XREF,RMODE (ANY) ,RENT"

Note: The CICS EXEC interface module for assembler programs (DFHEAI)
specifies AMODE(ANY) and RMODE(ANY). However, because the
assembler defaults your application to AMODE(24) and RMODE(24), the
resulting load module also becomes AMODE(24) and RMODE(24).

Chapter 9. Installing application programs 103

C and C/++

COBOL

If you want your application program link-edited as AMODE(31) and
RMODE(ANY), you are recommended to use appropriate statements in your
assembler program. For example:

MYPROG CSECT

MYPROG AMODE 31
MYPROG RMODE ANY

There are two ways of setting AMODE and RMODE:

* You can set the required AMODE and RMODE specification by using
link-edit (or binder) control information in the JCL PARM keyword. For
example:

//EITAL EXEC DFHEITAL,
LNKPARM="LIST,XREF,RENT,AMODE (31) ,RMODE (ANY) '

* Alternatively, you can use the MODE control statement in the SYSIN

dataset in the link-edit, or the binder step in your JCL.

When using the binder, you may see unexpected warning messages about
conflicting AMODE and RMODE specifications.

If you want CICS to load your C and C++ programs into the ERDSA, compile and
link-edit them with:
1. The RENT compiler option.

The CICS-supplied procedures DFHYITDL or DFHYITFL (for C) and DFHYITEL or
DFHYITGL (for C++) have a LNKPARM parameter that specifies a number of
link-edit options. To link-edit an ERDSA-eligible program, override this parameter
from the calling job, and add RENT to the other options you require. You do not
need to add the RMODE(ANY) option, because the CICS EXEC interface module
for C (DFHELI) is link-edited with AMODE(31) and RMODE(ANY). Therefore, your
program is link-edited as AMODE(31) and RMODE(ANY) automatically when you
include the CICS EXEC interface stub, see[The CICS-supplied interface modules’]

The following sample job statements show the LNKPARM parameter with the RENT
option added:

//CPROG JOB 1,user_name,MSGCLASS=A,CLASS=A,NOTIFY=userid
//YITDL EXEC DFHYITDL,

(other parameters as necessary)

// LNKPARM="LIST,MAP,LET,XREF,RENT'

If you use the integrated CICS translator then the compile requires the RENT
compiler option, so no CBL card needs to be added during translation. COBOL
programs that use a separate translation step are automatically eligible for the
ERDSA, because:

* The translator option, CBLCARD (the default), causes the required compiler
option, RENT, to be included automatically on the CBL statement generated by
the CICS translator. If you use the translator option, NOCBLCARD, you can
specify the RENT option either on the PARM statement of the compile job step,
or by using the COBOL macro IGYCOPT to set installation-defined options.

» The COBOL compiler automatically generates code that conforms to read-only
and 31-bit addressing standards.

104 CICS TS for zZ0S: CICS Application Programming Guide

* The CICS EXEC interface module for COBOL (DFHELII) is link-edited with
AMODE(31) and RMODE(ANY). Therefore, your program is link-edited as
AMODE(31) and RMODE(ANY) automatically when you include the CICS EXEC
interface interface stub, see [The CICS-supplied interface modules” on page 86

You also need to specify the reentrant attribute to link-edit. The CICS-supplied
procedure, DFHYITVL, has a LNKPARM parameter that specifies a number of
link-edit options. To link-edit an ERDSA-eligible program, override this parameter
from the calling job, and add RENT to any other options you require. For example:

//COBPROG JOB 1,user_name,MSGCLASS=A,CLASS=A,NOTIFY=userid
//YITVL EXEC DFHYITVL,

(other parameters as necessary)

// LNKPARM="LIST,XREF,RENT'

PL/

CICS PL/I programs are generally eligible for the ERDSA, provided they do not
change static storage. The following requirements are enforced, either by CICS or
PL/I:

* The required REENTRANT option is included automatically, by the CICS
translator, on the PL/I PROCEDURE statement.

* The PL/I compiler automatically generates code that conforms to 31-bit
addressing standards.

* The CICS EXEC interface module for PL/I (DFHELII) is link-edited with
AMODE(31) and RMODE(ANY). Therefore, your program is link-edited as
AMODE(31) and RMODE(ANY) automatically when you include the CICS EXEC
interface stub, see [‘The CICS-supplied interface modules” on page 86

You also need to specify the reentrant attribute to the link-edit. The CICS-supplied
procedure, DFHYITPL, has a LNKPARM parameter that specifies a number of
link-edit options. To link-edit an ERDSA-eligible program, override this parameter
from the calling job, and add RENT to any other options you require. For example:

//PLIPROG JOB 1,user_name,MSGCLASS=A,CLASS=A,NOTIFY=userid
//YITPL EXEC DFHYITPL,

(other parameters as necessary)

// LNKPARM="LIST,XREF,RENT'

Note: Do not specify the RENT attribute on the link-edit step unless you have
ensured the program is truly read-only (and does not, for example, write to
static storage), otherwise storage exceptions will occur. See
[Problem Determination Guide for some possible causes of storage protection
exceptions in programs resident in the ERDSA.

Using BMS map sets in application programs

This section describes what to do to use BMS map sets in application programs.

Before you install an application program to run under CICS:

» Create any BMS map sets used by the program, as described in |Chapter 10,
|“Insta||ing map sets and partition sets,” on page 125.|

* Include the physical map sets (used by BMS in its formatting activities) in a
library that is in the DFHRPL concatenation.

Chapter 9. Installing application programs 105

» Either include the symbolic map sets (copied into the application programs) in a
user copy library, or insert them directly into the application program source.

The DFHMAPS procedure writes the symbolic map set output to the library
specified on the DSCTLIB parameter, which defaults to the
CICSTS31.CICS.SDFHMAC library. If you want to include symbolic map sets in a
user copy library:

» Specify the library name by the DSCTLIB=name operand on the EXEC statement
for the DFHMAPS procedure used to install physical and symbolic map sets
together.

* Include a DD statement for the user copy library in the SYSLIB concatenation of
the job stream used to assemble and compile the application program.

If you choose to let the DFHMAPS procedure write the symbolic map sets to the
CICSTS31.CICS.SDFHMAC library (the default), include a DD statement for the
CICSTS31.CICS.SDFHMAC library in the SYSLIB concatenation of the job
stream used to compile the application program. This is not necessary for the
DFHEITAL procedure used to assemble assembler-language programs, because
these jobs already include a DD statement for the CICSTS31.CICS.SDFHMAC
library in the SYSLIB concatenation.

* For PL/I, specify a library that has a block size of 32760 bytes. This is necessary
to overcome the blocksize restriction on the PL/I compiler.

For more information about installing map sets, see [Chapter 10, “Installing map sets|
fand partition sets,” on page 125/ For information about writing programs to use
BMS services, segdChapter 31, “Basic mapping support,” on page 453

Using the CICS-supplied procedures to install application programs

CICS supplies job control statements (JCL) for the translate (if required), compile,
and link-edit steps, in separate cataloged procedures for each programming
language supported. After CICS is installed, you should copy these procedures,
installed in the CICSTS31.CICS.SDFHPROC library, into a procedure library.

Each procedure has a name of the form DFHwxTyL, where the variables w, x, and
y depend on the type of program (EXCI batch or CICS online), the type of compiler,
and the programming language. Using the preceding naming convention, the
procedure names are given in[Table 6 on page 107|

106 CICS TS for zZ0S: CICS Application Programming Guide

— T I I OHH

——EF EH*

HH O FH HF O OFH H OH H HH OFHHHHH HH OHF

Table 6. Procedures for installing application programs

Language |Language Environment-conforming non-Language

compilers Environment-conforming
compilers

Stand-alone |EXCI Integrated Stand-alone |EXCI
translator translator translator

Assembler |- - - DFHEITAL DFHEXTAL

C DFHYITDL DFHYXTDL |DFHZITDL - -
(see note[l) (see note[2)

C using the |DFHYITFL - DFHZITFL - -

XPLINK (see note [2) (see note[2)

compiler

option

C++ DFHYITEL DFHYXTEL |DFHZITEL - -
(see note (see note@)

C++ using | DFHYITGL - DFHZITGL - -

the XPLINK | (see note (see note

compiler

option

COBOL (see | DFHYITVL DFHYXTVL |DFHZITCL - -

note (see note@) (see note@)

PL/I (see DFHYITPL DFHYXTPL |DFHZITPL - -

note (see note (see note

Notes:

1. DFHYITEL may also be used for C as long as you specify the correct name of

the C compiler on the COMPILER parameter.
The output library for the generated module is a PDSE (not a PDS).

A separate translator step must be used for EXClI COBOL programs as
translator options are ignored when using the integrated CICS translator.

DFHZITCL is the recommended procedure for compiling COBOL modules,
because it uses the version of the Enterprise COBOL compiler which includes
the integrated CICS translator. However, if the COBOL program is intended for
batch processing using the EXCI option, then the integrated translator cannot be
used.

DFHZITPL is the recommended procedure for compiling PL/I modules as it uses
the version of the Enterprise PL/I compiler which includes the integrated CICS
translator. However, if the PL/I program is intended for batch processing using
the EXCI option, then the integrated translator cannot be used.

For programs that issue EXEC DLI commands in a batch environment under
Language Environment (IMS routines), use the following special procedures:

DFHYBTPL
PL/I application programs

DFHYBTVL
COBOL application programs

Chapter 9. Installing application programs 107

Installing programs in load library secondary extents

CICS supports load library secondary extents that are created while CICS is
running. If you define libraries in the DFHRPL concatenation with primary and
secondary extents, and secondary extents are added as a result of link-editing into
the DFHRPL library while CICS is running, the CICS loader detects the occurrence,
closes, and then reopens the library. This means that you can introduce new
versions using the CEMT NEWCOPY command, even if the new copy of the
program has caused a new library extent.

However, this can increase the search time when loading modules from the
secondary extents. You should avoid using secondary extents if possible.

Note: If you are using DFHXITPL, the SYSLMOD DD statement in the binder step
must refer to a PDSE (not a PDS as for the older PL/I compilers).

Including the CICS-supplied interface modules

The CICS-supplied procedures to install your online application programs in a CICS
library specify the CICS library member that contains the INCLUDE statement for
the appropriate language EXEC interface module. For example, the DFHYITVL
procedure uses the following statements:

//COPYLINK EXEC PGM=IEBGENER,COND=(7,LT,COB)

//SYSUT1 DD DSN=&INDEX..SDFHSAMP (&STUB),DISP=SHR

//SYSUT2 DD DSN=&©LINK,DISP=(NEW,PASS),

// DCB=(LRECL=80,BLKSIZE=400,RECFM=FB),

// UNIT=&WORK,SPACE=(400, (20,20))

//SYSPRINT DD SYSOUT=&0UTC

//SYSIN DD DUMMY

//SYSLIN DD DSN=&©LINK,DISP=(OLD,DELETE)
// DD DSN=&&LOADSET,DISP=(OLD,DELETE)
/] DD DDNAME=SYSIN

In this COBOL example, the symbolic parameter STUB defaults to DFHEILID. The
DFHEILID member contains the statement INCLUDE SYSLIB(DFHELII).

The supplied procedures for PL/I and C also refer to DFHEILID, which means that
the DFHELII stub is used.

If your application program is to use CPI Communications or the SAA Resource
Recovery facility, do one of the following:

* Add appropriate INCLUDE statements to the LKED.SYSIN override in the job
used to call the CICS-supplied procedure to install your application program. Add
the following INCLUDE statements:

— INCLUDE SYSLIB(DFHCPLC) if your program uses CPI Communications

— INCLUDE SYSLIB(DFHCPLRR) if your program uses SAA Resource
Recovery

Warning messages may appear during the link-edit step, indicating DUPLICATE
definitions for the DFHEI1 entry. You may ignore these messages.

For more information about link-edit requirements, see |“Using your own job|
lstreams” on page 120

108 CICS TS for zZ0S: CICS Application Programming Guide

Installing assembler language application programs

You can use the DFHEITAL or DFHEXTAL procedure to translate, assemble, and
link-edit application programs written in assembler language.

You can use the sample job control statements shown into process
application programs written in assembler language. In the procedure name, “x”
depends on whether your programs are CICS application programs or EXCI batch
rams. For the names of the CICS-supplied procedures, seelTabIe 6 on pagel
10

//jobname JOB accounting info,name,MSGLEVEL=1

/1 EXEC PROC=DFHEXTAL
//TRN.SYSIN DD *

*ASM XOPTS(translator options . . .) A

assembler-language source statements

/*
//LKED.SYSIN DD *
NAME anyname (R)
/*
//

where anyname is your load module name

Figure 13. Sample job control statements to call the DFHEXTAL procedures

Notes:

If you are installing a program into either of the read-only DSAs, see
pplication programs in the RDSAs” on page 103| for more details.

If you are installing a program that is to be used from the LPA, add:

* RENT to the PARM options in the EXEC statement for the ASM step of the
DFHEITAL procedure

* RENT and REFR options to the LNKPARM parameter on the call to the
DFHEITAL procedure

(See [‘Running applications in the link pack area” on page 102.)

H For information about the translator options you can include on the XOPTS
statement, see [‘Defining translator options” on page 74.|

[Figure 14 on page 110| shows the Assembler source program processed by the
command level translator to produce a translator listing and an output file. This
output file is then processed by the Assembler, with reference to CICS.SDFHMAC,
to produce an assembler listing and a further output file.This output file is then
processed by the linkage editor, with reference to CICS.SDFHLOAD to produce a
linkage editor listing and a load module that is stored in CICS.SDFHLOAD.

Chapter 9. Installing application programs 109

Assembler-language

source

Translator
Command-level listing

language translator

Intermediate
+ storage
Assembly

— Assembler listing

Intermediate
* storage

Linkage Editor
listing

Linkage Editor

CICS.
SDFHLOAD

CICS.
SDFHLOAD

Figure 14. Installing assembler language programs using the DFHEITAL procedure

Installing COBOL application programs

[Figure 15 on page 111|illustrates the flow of control in the cataloged procedures for
COBOL and PL/I programs that require a separate translator step. If you use an
integrated translator, there is no separate translator step. The high-level language
source and CICS.SDFHLOAD both input to the compiler, and a combined translator
and compiler listing is produced.

110 cCICS TS for /0S: CICS Application Programming Guide

CICS.
SDFHLOAD

High-levellanguage

source

Command-level
language translator

Translator

listing

CICS.
SDFHCOB
or SDFHPLA

CICS.
SDFHLOAD

SYS1.PLIBASE
orCOBLIB

Intermediate
+ storage

DFHBMSCA
DFHAID p | High-level
language compiler

Compiler
listing

DFHEILIC
DFHEILIP
’ Intermediate
+ + storage
DFHECI
DFHEPI Linkage Editor

Linkage Editor »

-

CICS.
SDFHLOAD

listing

DFHPL10I

Figure 15. Installing COBOL and PL/I programs

Sample JCL to install COBOL application programs

You can use the job control statements shown in|Figure 16 on page 112| to process
COBOL application programs with a separate translator. The procedure name
depends on whether it is a CICS application program or an EXCI batch program.
For the names of the CICS-supplied COBOL procedures, see |Tab|e 6 on page 107l

Chapter 9. Installing application programs 111

//jobname JOB accounting info,name,MSGLEVEL=1

// EXEC PROC=procname A
//TRN.SYSIN DD * 2
CBL XOPTS(Translator options . . .) 3

COBOL source statements

/*

//LKED.SYSIN DD * 4]
NAME anyname (R)

/*

//

where procname is the name of the procedure,
and anyname is your load module name.

Figure 16. Sample job control statements to call the DFHYITVL or DFHYXTVL procedures

To use the procedure DFHZITCL to invoke the integrated translator, you can use
the job control statements shown in :

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC DFHZITCL,PROGLIB=dsnname
//COBOL.SYSIN DD *

. COBOL source statements

/x
//LKED.SYSIN DD =
NAME anyname (R)
/*
//

where anyname is your load module name.

Figure 17. Sample job control statements to use the DFHZITCL procedure

Notes for installing COBOL programs
Translator options:

Specify the COBOL3 or COBOL2 translator option according to the version of the
COBOL functionality required in the compile step. See|‘Using the COBOL?2 and|
[COBOLS3 translator options” on page 34| for more information about these translator
options.

Compiler options:

To compile a COBOL program, you need the compiler options RENT, NODYNAM,
and LIB.

If you use the translator option, CBLCARD (the default), the CICS translator
automatically generates a CBL statement containing these options. You can prevent
the generation of a CBL or PROCESS card by specifying the translator option
NOCBLCARD.

The PARM statement of the COB step in the CICS-supplied COBOL procedures
specifies values for the compiler options. For example,

112 CICS TS for /0S: CICS Application Programming Guide

//COB EXEC PGM=IGYCRCTL,REGION=®,
// PARM="'NODYNAM, LIB,0BJECT,RENT,APOST ,MAP, XREF'

To compile a COBOL program with a compiler that has an integrated translator, you
also need to use the CICS compiler option to indicate that you want the compiler to
invoke the translator. The DFHZITCL procedure includes this compiler option:

CBLPARM="NODYNAM, LIB,MAP,CICS("''COBOL3"")"

Note: If you specify CICS translator options for the integrated translator in the
PARM string, you need double apostrophes as shown in this example. If,
however, you specify the options in your source program, you need single
apostrophes (for example, you might have CBL CICS('COBOL3,SP') APOST as
the CBL statement in your source program.

The CICS-supplied COBOL procedures do not specify values for the SIZE and BUF
options. The defaults are SIZE=MAX, and BUF=4K. SIZE defines the amount of
virtual storage available to the compiler, and BUF defines the amount of dynamic
storage to be allocated to each compiler buffer work file. You can change these
options with a PARM.COB parameter in the EXEC statement that invokes the
procedure. For example:

EXEC PROC=procname,PARM.COB='SIZE=512K,BUF=16K,.,.,."

You can change compiler options by using any of the following methods:

* By overriding the PARM statement defined on the COB step of the
CICS-supplied COBOL procedures.

If you specify a PARM statement in the job that calls the procedure, it overrides
all the options specified in the procedure JCL. Ensure that all the options you
want are specified in the override, or in a CBL statement.

» Specifying a CBL statement at the start of the source statements in the job
stream used to call the CICS-supplied COBOL procedures.

» The COBOL installation defaults macro, IGYCOPT. This is needed if you do not
use a CBL statement (that is, you have specified the translator option

NOCBLCARD).

For information about the translator option CBLCARDINOCBLCARD, see |“Defining|
translator options” on page 74/ If you choose to use the[NOCBLCARD| option, also
specify the COBOL compiler option ALOWCBL=NO to prevent an error message of
IGYOS4006-E being issued. For more information about the ALOWCBL compiler
option, see the relevant Installation and Customization manual for your version of
COBOL.

H 't you have no input for the translator, you can specify DD DUMMY instead of DD =.
However, if you specify DD DUMMY, also code a suitable DCB operand. (The
translator does not supply all the data control block information for the SYSIN data
set.)

Kl If the stand-alone translator supplied with CICS TS is used, the translator
options on the XOPTS statement override similar options in the CICS-supplied
COBOL procedures.

For information about the translator options you can include on the XOPTS
statement, see [‘Defining translator options” on page 74|

When the integrated CICS translator is used, the COBOL compiler recognizes only
the keyword CICS for defining translator options, not XOPTS.

Chapter 9. Installing application programs 113

B You can ignore weak external references unresolved by the link-edit.

The link-edit job step requires access to the libraries containing the
environment-specific modules for CICS, and the Language Environment link-edit
modules, as appropriate. Override or change the names of these libraries if the
modules and library subroutines are installed in libraries with different names.

If you are installing a program into either of the read-only DSAs, see
|app|ication programs in the RDSAS” on page 103| for more details.

If you are installing a program that is to be used from the LPA, add the RENT and
REFR options to the LNKPARM parameter on the call to the CICS-supplied COBOL
procedures. (See |“Running applications in the link pack area” on page 102.b

Installing PL/I application programs

Sample JCL to

114 CICS TS for z/0OS:

[Figure 15 on page 111]illustrates the flow of control in the cataloged procedures for
PL/l programs.

For more information about preparing PL/I programs, see the PL/I Programming
Guide.

install PL/I application programs

You can use the job control statements shown into process PL/I
application programs with a separate translator.

In the procedure name, the value of “x” depends on whether it is a CICS application
program or an EXCI batch program. For the names of the CICS-supplied
procedures, see [Table 6 on page 107}

//jobname JOB accounting info,name,MSGLEVEL=1

// EXEC PROC=DFHYXTPL 1

//TRN.SYSIN DD * 2

*PROCESS XOPTS(translator options...)PL/I compiler options...; [
PL/I source statements 4]

/* '

//LKED.SYSIN DD * B

NAME anyname (R)
/*
//

where anyname is your load module name

Figure 18. Sample job control statements to call the DFHYXTPL procedures

Notes for installing a PL/I program:

The PL/I COUNT runtime option is not supported by Language Environment.
The REPORT option is replaced by the RPTSTG and RPTUPTS Language
Environment options. See the z/OS Language Environment Migration Guide.

H ' you have no input for the translator, you can specify DD DUMMY instead of DD x.

However, if you specify DD DUMMY also code a suitable DCB operand. (The translator
does not supply all the data control block information for the SYSIN data set.)

CICS Application Programming Guide

El Translator and compiler options:

For information about the translator options you can include on the XOPTS
statement, see [‘Defining translator options” on page 74|

Ignore the message from the PL/I compiler: “IELO5481 PARAMETER TO MAIN
PROCEDURE NOT VARYING CHARACTER STRING”.

Warning messages may appear from the PL/I compiler stating that arguments and
parameters do not match for calls to procedure DFHxxxx. These messages indicate
that arguments specified in operands to CICS commands may not have the correct
data type. Carefully check all fields mentioned in these messages, especially
receiver fields.

B 'f you include the CALL PLIDUMP statement in an application program, output
goes to the CESE transient data destination. The CICS supplied resource definition
group, in the CSD, DFHDCTG, contains an entry for CESE.

B Link-edit considerations:

You can ignore weak external references unresolved by the link-edit.

If you are installing a program into either of the read-only DSAs, see
lapplication programs in the RDSAs” on page 103/ for more details.

If you are installing a program that is to be used from the LPA, add the RENT and
REFR options to the LNKPARM parameter on the call to the DFHYXTPL procedure.
(See [‘Running applications in the link pack area” on page 102|for more
information.)

PL/I procedure with an integrated translator

To use the new procedure DFHZITPL to invoke the integrated translator, you can
use the following sample JCL:

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC DFHZITPL,PROGLIB=dsnname
//PLI.SYSIN DD =

. PLI source statements

/x
//LKED.SYSIN DD =
NAME anyname (R)
/*
//

where anyname is your load module name.

Figure 19. Sample job control statements to use the DFHZITPL procedure

Notes for installing PLI programs with an integrated translator
Translator options:

The DFHZITPL procedure includes the following compiler options to indicate that
you want the compiler to invoke the translator:

PLIPARM=("'SOURCE,OPTIONS,SYSTEM(CICS),PP(CICS)")

Chapter 9. Installing application programs 115

Note: In this procedure, the SYSLMOD DD statement in the LKED step must refer
to a PDSE (not a PDS as for the older PL/I compilers).

116 CICS TS for /0S: CICS Application Programming Guide

Installing C application programs

shows the flow of control in the DFHYxXTzL cataloged procedures for C
command-level programs.

High-levellanguage

CICS.
SDFHLOAD

source

Command-level
language translator

Translator

listing

Intermediate
+ storage
High-level Compiler
EDC.V1R2MO DFHBMSCA language compiler listing
SEDCHDRS DFHAID
SEDCMSGS
(EDCMSGE)
Intermediate
m + storage
v Pre-linkage P(l;g-linkage
— N
EDC.V1R2MO editor > ﬁst'ltr?é
SEDCLINK
SEDCCOMP
SEDCMSGS
(EDCMSGE)
EDC.V2R2M1 Intermediate
SIBMLINK storage
DFHEILID
DFHELII
. . Linkage Editor
cles — Linkage Editor listing
. .

SDFHLOAD

N
N

~

EDC.V1R2MO0O

y
EDC.V2R2M1 CICS.
SIBMBASE SDFHLOAD

Figure 20. Installing C programs using the DFHYxTzL procedure

Chapter 9. Installing application programs

Sample JCL to

118 cCICS TS for z/0S:

There are translator, compiler, pre-linkage editor and linkage editor steps, each
producing a listing and an intermediate file that is passed to the next step. C
libraries are referenced in the compiler, pre linkage editor and linkage editor steps.

Note: When you choose the XPLINK compiler option, there is no pre-link step in
the diagram above.

Before you can install any C programs, you must have installed the C library and
compiler and generated CICS support for C. (See |the CICS Transaction Server fori
Iz/0S Installation Guidel)

install C application programs

You can use the job control statements shown into process C application
programs. In the procedure name, x depends on whether your program is a CICS
application program or an EXCI batch program. For the names of the
CICS-supplied procedures, see|Table 6 on page 107

//jobname JOB accounting info,name,MSGLEVEL=1

// EXEC PROC=DFHYxTzL 1
//TRN.SYSIN DD * 2
#pragma XOPTS(Translator options . . .) 3

C source statements

/*

//LKED.SYSIN DD * 4]
NAME anyname (R)

/*

//

where anyname is your load module name

Figure 21. Sample JCL to call the DFHYxTzL procedures

Notes for installing a C program:
Compiler options:

You can code compiler options by using the parameter override (PARM.C) in the
EXEC statement that invokes the procedure, or on a ~pragma options directive.

H It you have no input for the translator, you can specify DD DUMMY instead of DD .
However, if you specify DD DUMMY, also code a suitable DCB operand. (The
translator does not supply all the data control block information for the SYSIN data
set.)

E] Translator options: For information about the translator options you can
include on the XOPTS statement, see [‘Defining translator options” on page 74 .

If you are installing a program into either of the read-only DSAs, see [Running]
pplication programs in the RDSAs” on page 103| for more details.

If you are installing a program that is to be used from the LPA, add the RENT and
REFR options to the LNKPARM parameter on the call to the DFHYxTzL procedure.
(See [‘Running applications in the link pack area” on page 102|for more
information.)

CICS Application Programming Guide

HHHFHHFHFHFHFFHHHF H

H 3 HH B

FH* 3

HHHFHFHFHFHFHF I H H®

HH

I FH

H* 3

C language programs must be link-edited with AMODE(31), so the DFHYxTzL
procedures specify AMODE(31) by default.

To use the procedures to invoke the integrated translator for XL C, you can use the

job control statements shown in |Figure 22

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC DFHZITxL,PROGLIB=dsnname
//C.SYSIN DD =

. C source statements

//LKED.SYSIN DD =
NAME anyname (R)

/1

where anyname is your load module name.

Figure 22. Sample job control statements to invoke the integrated translator for XL C

Translator name:

Specify DFHZITDL for C programs without XPLINK or DFHZITFL for C programs
with XPLINK.

To use the procedures to invoke the integrated translator for XL C++, you can use
the job control statements shown in |Figure 23

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC DFHZITxL,PROGLIB=dsnname
//CPP.SYSIN DD =
. C++ source statements
//LKED.SYSIN DD =*
NAME anyname (R)

//

where anyname is your load module name.

Figure 23. Sample job control statements to invoke the integrated translator for XL C++

Translator name:

Specify DFHZITEL for C++ programs without XPLINK, or DFHZITGL for C++
programs with XPLINK.

Including pre-translated code with your C source code

The translator may generate dfhexec or DFHEXEC. If both versions are present in
your program, you will see error message |IEW2456E. There are two ways to
prevent this error.

1. Recompile the old code containing dfhexec.
2. Use the prelinker RENAME control statement in the job, as shown below.

Chapter 9. Installing application programs 119

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC PROC=DFHYxTzL

//TRN.SYSIN DD *

#pragma XOPTS(Translator options . . .)

C source statements

/*
//PLKED.SYSLIN DD *
RENAME dfhexec DFHEI1
//LKED.SYSLIN DD *
NAME anyname (R)
/*
//

where anyname is your load module name

Figure 24. Sample JCL to rename dfhexec

Using your own job streams

If you want to write your own JCL to translate, assemble (or compile), and link-edit
your application programs, you can use the supplied cataloged procedures as a
model. They are installed in the CICSTS31.CICS.SDFHPROC library.

The rest of this section summarizes the important points about the translator and
each of the main categories of program. For simplicity, the following discussion
states that you load programs into CICSTS31.CICS.SDFHLOAD or IMS™ .PGMLIB.
In fact, you can use any libraries, but only when they are either included in the
DFHRPL library concatenation in the CICS job stream, or included in the STEPLIB
library concatenation in the batch job stream (for a stand-alone IMS batch program).

Note: The IMS libraries referred to in the job streams are identified by IMS.libnam
(for example IMS.PGMLIB). If you use your own naming convention for IMS
libraries, please rename the IMS libraries accordingly.

Translator requirements

The CICS translator requires a minimum of 256KB of virtual storage. You may need
to use the translator options CICS and DLI.

Online programs that use EXEC CICS or EXEC DLI commands

1. Always use the translator option CICS. If the program issues EXEC DLI
commands, use the translator option DLI.

2. The link-edit input (defined by the SYSLIN DD statement) must include the
correct interface module before the object deck. Therefore, place an INCLUDE
statement for the interface module before the object deck. Also put ORDER
statements before the INCLUDE statements, and an ENTRY statement after all
the INCLUDE statements.

The interface modules are:

DFHEAI
Assembler

DFHELII
All HLL languages

120 CICS TS for zZ0S: CICS Application Programming Guide

In the CICS-supplied procedures, the input to the link-edit step (defined by the
SYSLIN DD statement) concatenates a library member with the object deck.
This member contains an INCLUDE statement for the required interface module.
For example, the DFHYITVL procedure concatenates the library member
DFHEILID, which contains the following INCLUDE statement:

INCLUDE SYSLIB(DFHELITI)

3. Place the load module output from the link-edit (defined by the SYSLMOD DD
statement) in CICSTS31.CICS.SDFHLOAD, or your own program library.

shows sample JCL and an inline procedure, based on the CICS-supplied
procedure DFHYITVL, that can be used to install COBOL application programs. The
procedure does not include the COPYLINK step and concatenation of the library
member DFHEILID that contains the INCLUDE statement for the required interface
module (as included in the DFHYITVL procedure). Instead, the JCL provides the
following INCLUDE statement:

INCLUDE SYSLIB(DFHELII)

If this statement was not provided, the link-edit would return an error message for
unresolved external references, and the program output would be marked as not
executable.

/1* The following JCL could be used to execute this procedure
/1%

//APPLPROG EXEC MYYITVL,

// INDEX="CICSTS31.CICS

// PROGLIB="CICSTS31.CICS.SDFHLOAD',

// DSCTLIB="'CICSTS31.CICS.SDFHCOB',

// INDEX2="user.qualif'

// OUTC=A, Class for print output
// REG=4M, Region size for all steps
// LNKPARM="LIST,XREF"', Link edit parameters

// WORK=SYSDA Unit for work datasets
//TRN.SYSIN DD =

/1%

/1* . Application program

/1%

/1%

//LKED.SYSIN DD =
INCLUDE SYSLIB(DFHELII)
NAME anyname (R)

/1%

//MYYITVL PROC SUFFIX=1%, Suffix for translator module

// INDEX="CICSTS31.CICS', Qualifier(s) for CICS Tibraries

// PROGLIB="CICSTS31.CICS.SDFHLOAD', Name of o/p Tibrary

// DSCTLIB="'CICSTS31.CICS.SDFHCOB', Private macro/dsect

// AD370HLQ="SYS1', Qualifier(s) for AD/Cycle compiler
// LE370HLQ="SYS1", Qualifier(s) for Language Environment libraries
// OUTC=A, Class for print output

// REG=4M, Region size for all steps

// LNKPARM="LIST,XREF", Link edit parameters

// WORK=SYSDA Unit for work datasets

/1*

Figure 25. Sample user-defined JCL to install a COBOL program (Part 1 of 2)

Chapter 9. Installing application programs 121

/1%

//* 1. Exec the COBOL translator (using the supplied suffix 1%)
/1% 2. Exec the COBOL compiler

//* 3. Linkedit the output into dataset &PROGLIB

//TRN EXEC PGM=DFHECP &SUFFIX,,

/] PARM="'COBOL3",

/] REGION=®

//STEPLIB DD DSN=&INDEX..SDFHLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=&0UTC

//SYSPUNCH DD DSN=&&SYSCIN,

/] DISP=(,PASS),UNIT=&WORK,

/! DCB=BLKSIZE=400,

/1l SPACE=(400, (400,100))

//*

//COB EXEC PGM=IGYCRCTL,REGION=®,

/] PARM="NODYNAM, LIB,0BJECT,RENT,APOST,MAP, XREF"
//STEPLIB DD DSN=&AD370HLQ..SIGYCOMP,DISP=SHR
//SYSLIB DD DSN=&DSCTLIB,DISP=SHR

/! DD DSN=&INDEX..SDFHCOB,DISP=SHR

/] DD DSN=&INDEX..SDFHMAC,DISP=SHR

/] DD DSN=&INDEX..SDFHSAMP,DISP=SHR
//SYSPRINT DD SYSOUT=80UTC

//SYSIN DD DSN=&&SYSCIN,DISP=(OLD,DELETE)
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),
/] UNIT=&WORK, SPACE= (80, (250,100))
//SYSUT1 DD UNIT=8WORK,SPACE=(460, (350,100))
//SYSUT2 DD UNIT=&WORK,SPACE= (460, (350,100))
//SYSUT3 DD UNIT=8WORK,SPACE=(460, (350,100))
//SYSUT4 DD UNIT=&WORK,SPACE=(460, (350,100))
//SYSUTS DD UNIT=&WORK,SPACE= (460, (350,100))
//SYSUT6 DD UNIT=&WORK,SPACE=(460, (350,100))
/1*

//LKED EXEC PGM=IEWL,REGION=®,

/! PARM="&LNKPARM' , COND=(5,LT,COB)
//SYSLIB DD DSN=&INDEX..SDFHLOAD,DISP=SHR
/] DD DSN=&LE370HLQ..SCEELKED,DISP=SHR
//SYSLMOD DD DSN=&PROGLIB,DISP=SHR

//SYSUTL DD UNIT=&WORK,DCB=BLKSIZE=1024,

/] SPACE=(1024, (200,20))

//SYSPRINT DD SYSOUT=&0UTC

//SYSLIN DD DSN=&©LINK,DISP=(OLD,DELETE)
// DD DSN=&&LOADSET,DISP=(OLD,DELETE)
/1l DD DDNAME=SYSIN

//PEND

/1%

This procedure contains 3 steps

Figure 25. Sample user-defined JCL to install a COBOL program (Part 2 of 2)

Online programs that use the CALL DLI interface
1. Specify the translator option CICS, but not the translator option DLI.

Note: For a program that does not use CICS commands and is only invoked by
a running transaction (and never directly by CICS task initiation), no
translator step is needed.

The interface module, DFHDLIAI, is automatically included by the link-edit. If
you use an INCLUDE statement in the link-edit input, place it after the object
deck.

Include copybook DLIUIB in your program.

122 CICS TS for z/0S: CICS Application Programming Guide

4. Place the load module output from the link-edit (defined by the SYSLMOD DD
statement) in CICSTS31.CICS.SDFHLOAD, or a user-defined application
program library.

Batch or BMP programs that use EXEC DLI commands

1. The translator option DLI is required. Do not specify the translator option CICS.

2. The INCLUDE statement for the interface module must follow the object deck
in the input to the link-edit (defined by the SYSLIN DD statement). The interface
module, DFSLIO00, which resides on IMS.RESLIB, is the same for all
programming languages. If you include CICSTS31.CICS.SDFHLOAD in the
input to the link-edit (defined by the SYSLIB DD statement), concatenate it after
IMS.RESLIB.

3. Place the load module output from the link-edit (defined by the SYSLMOD DD

statement) in IMS.PGMLIB, or a library concatenated in the STEPLIB DD
statement of the batch job stream.

Batch or BMP programs that use DL/I| CALL commands

If you want to prepare assembler, COBOL, or PL/I programs that use the DL/I CALL
interface, do not use any of the CICS-supplied procedures. Programs that contain
CALL ASMTDLI, CALL CBLTDLI, or CALL PLITDLI should be assembled or
compiled, and link-edited, as IMS applications, and are not subject to any CICS
requirements. See the relevant IMS manual for information about how to prepare
application programs that use the DL/I CALL interface.

Chapter 9. Installing application programs 123

124 CICS TS for z/0S: CICS Application Programming Guide

Chapter 10. Installing map sets and partition sets

This chapter describes how to assemble and link-edit map sets and partition sets
for use with the basic mapping (BMS) facility of CICS. It also describes how to
install HTML templates generated from BMS maps. See [‘Using the DFHMAPT|

rocedure to install HTML templates from BMS maps” on page 131|{and [the CICY
Internet Guidg for information about using HTML templates.

If your program uses BMS maps, you need to create the maps. The traditional
method for doing this is to code the map in BMS macros and assemble these
macros. You actually do the assembly twice, with different output options.

* One assembly creates a set of definitions. You copy these definitions into your
program using the appropriate language statement, and they allow you to refer to
the fields in the map by name.

* The second assembly creates an object module that is used when your program
actually executes.

The process is illustrated in the following diagram:.

BMS macro -
statements Type=

L Assembler ——»
defining DSECT Copy
map set library

Type= Assembler
MAP listing

Assembler

L »| Assembler ——» SO
listing

~N_

_ _ Link edit
Link Editor |— » listing

Object
module
library

~ N

CICS load
library

Figure 26. Preparing a map

Whatever way you produce maps, you need to create a map before you compile
(assemble) any program that uses it. In addition, if you change the map, you

© Copyright IBM Corp. 1989, 2010 125

usually need to recompile (reassemble) all programs that use it. Some changes
affect only the physical map and are not reflected in the corresponding symbolic
map used by the program. One of these is a change in field position that does not
alter the order of the fields. However, changes in data type, field length, field
sequence, and others do affect the symbolic map, and it is always safest to
recompile (reassemble).

CICS also supports the definition of BMS map sets and partition sets interactively
by using licensed programs such as the IBM Screen Definition Facility Il (SDF 1),
program number 5665-366. For more information about SDF II, see the Screen
Definition Facility Il Primer for CICS/BMS Programs and Screen Definition Facility I
General Information manuals.

For information about writing programs to use BMS services, see|Chapter 31,
['Basic mapping support,” on page 453

CICS loads BMS map sets and partition sets above the 16MB line if you specify the
residency mode for the map set or partition set as RMODE(ANY) in the link-edit
step. If you are using either map sets or partition sets from earlier releases of CICS,
you can load them above the 16MB line by link-editing them again with
RMODE(ANY). For examples of link-edit steps specifying RMODE(ANY), see the
sample job streams in this chapter.

This chapter includes:

+ [“Installing map sets’|

+ [“Installing partition sets” on page 133

+ [“Defining programs, map sets, and partition sets to CICS” on page 134]

Installing map sets

This section first describes the types of map sets, how you define them, and how
CICS recognizes them. This is followed by a description of how to prepare physical
map sets and symbolic description map sets separately. Finally, there is a
description of how to prepare both physical and symbolic description map sets in
one job. In these descriptions, it is assumed that the SYSPARM parameter is used
to distinguish the two types of map sets.

Types of map sets
To install a map set, you must actually prepare two types of map sets:

* A physical map set, used by BMS to translate data from the standard
device-independent form used by application programs to the device-dependent
form required by terminals.

* A symbolic description map set, used in the application program to define the
standard device-independent form of the user data. This is a DSECT in
assembler language, a data definition in COBOL, a BASED or AUTOMATIC
structure in PL/I, and a “struct” in C/370.

Physical map sets must be cataloged in the CICS load library. Symbolic description
map sets can be cataloged in a user copy library, or inserted directly into the
application program itself.

The map set definition macros are assembled twice; once to produce the physical

map set used by BMS in its formatting activities, and once to produce the symbolic
description map set that is copied into the application program.

126 CICS TS for zZ0S: CICS Application Programming Guide

Defining the type of map set you require
The two types of map set can be distinguished by either:

* The TYPE operand of the DFHMSD macro

* Use of the SYSPARM operand on the EXEC statement of the job used to
assemble the map set

If you use the SYSPARM operand for this purpose, the TYPE operand of the
DFHMSD macro is ignored. Using SYSPARM allows both the physical map set and
the symbolic description map set to be generated from the same unchanged set of
BMS map set definition macros.

Map sets can be assembled as either unaligned or aligned (an aligned map is one
in which the length field is aligned on a halfword boundary). Use unaligned maps
except in cases where an application package needs to use aligned maps.

The SYSPARM value alone determines whether the map set is aligned or
unaligned, and is specified on the EXEC PROC=DFHMAPS statement. The
SYSPARM operand can also be used to specify whether a physical map set or a
symbolic description map set (DSECT) is to be assembled, in which case it
overrides the TYPE operand. If neither operand is specified, an unaligned DSECT is
generated.

The TYPE operand of the DFHMSD macro can only define whether a physical or
symbolic description map set is required.

For the possible combinations of operands to generate the various types of map

set, see[Table 7]

Table 7. SYSPARM and DFHMSD operand combinations for map assembly

Type of map set SYSPARM operand of EXEC TYPE operand of
DFHMAPS statement DFHMSD macro

Aligned symbolic A Not specified
description map A DSECT
set (DSECT) ADSECT Any (takes SYSPARM)
Aligned A MAP
physical map set AMAP Any (takes SYSPARM)
Unaligned Not specified Not specified
symbolic Not specified DSECT
description map DSECT Any (takes SYSPARM)
set (DSECT)
Unaligned Not specified MAP
physical map set MAP Any (takes SYSPARM)

The physical map set indicates whether it was assembled for aligned or unaligned
maps. This information is tested at execution time, and the appropriate map
alignment used. Thus aligned and unaligned map sets can be mixed.

Using extended data stream terminals

Applications and maps designed for the 3270 Information Display System run
unchanged on devices supporting extensions to the 3270 data stream such as
color, extended highlighting, programmed symbols, and validation. To use fixed
extended attributes such as color, you only need to reassemble the physical map
set. If dynamic attribute modification by the application program is needed, you

Chapter 10. Installing map sets and partiton sets 127

must reassemble both the physical and symbolic description map sets, and you
must reassemble or recompile the application program.

Installing physical map sets

Figure 27|shows the the assembler and linkage editor steps for installing physical
map sets.

Macro statements
definingthe map set

D '

Assembler —

Assembly
listing

Linkage
Editor
input
(object)

'

Linkage Editor >

¢
D

CICS.
SDFHLOAD

Linkage Editor
listing

Figure 27. Installing physical map sets

gives an example job stream for the assembly and link-editing of physical
map sets.

//PREP JOB ‘'accounting information',CLASS=A,MSGLEVEL=1

//STEP1 EXEC PROC=DFHASMVS,PARM.ASSEM="'SYSPARM(MAP)"'
//SYSPUNCH DD DSN=&&TEMP,DCB=(RECFM=FB,BLKSIZE=2960),

// SPACE=(2960, (10,10)) ,UNIT=SYSDA,DISP=(NEW, PASS)

//SYSIN DD

Macro statements defining the map set

[

//STEP2 EXEC PROC=DFHLNKVS,PARM="'LIST,LET,XREF" 2]
//SYSLIN DD DSN=&&TEMP,DISP=(0OLD,DELETE)
// DD *
MODE RMODE (ANY |24)
NAME mapsetname(R) 4
/*
//

Figure 28. Assembling and link-editing a physical map set

128 CICS TS for zZ0S: CICS Application Programming Guide

Notes:

For halfword-aligned length fields, specify the option SYSPARM(AMAP) instead
of SYSPARM(MAP).

H Physical map sets are loaded into CICS-key storage, unless they are link-edited
with the RMODE(ANY) and RENT options. If they are link-edited with these options,
they are loaded into key-0 protected storage, provided that RENTPGM=PROTECT
is specified on the RENTPGM initialization parameter. However, it is recommended
that map sets (except for those that are only sent to 3270 or LU1 devices) should
not be link-edited with the RENT or the REFR options because, in some cases,
CICS modifies the map set. Generally, use the RENT or REFR options for map sets
that are only sent to 3270 or LU1 devices.For more information about the storage
protection facilities available in CICS, see fthe CICS System Definition Guidd

El The MODE statement specifies whether the map set is to be loaded above
(RMODE(ANY)) or below (RMODE(24)) the 16MB line. RMODE(ANY) indicates that
CICS can load the map set anywhere in virtual storage, but tries to load it above
the 16MB line, if possible.

[Use the NAME statement to specify the name of the physical map set that BMS
loads into storage. If the map set is device-dependent, derive the map set name by
appending the device suffix to the original 1- to 7-character map set name used in
the application program. The suffixes to be appended for the various terminals
supported by CICS BMS depend on the parameter specified in the TERM or
SUFFIX operand of the DFHMSD macros used to define the map set. For
programming information giving a complete list of map set suffixes, see
|Application Programming Reference manual.

To use a physical map set, you must define and install a resource definition for it.
You can do this either by using the program autoinstall function or by using the
CEDA DEFINE MAPSET and INSTALL commands. as described in[‘Defining]
lrograms, map sets, and partition sets to CICS” on page 134.|

Installing symbolic description map sets

Symbolic description map sets enable the application programmer to make symbolic
references to fields in the physical map set. shows the preparation of
symbolic description map sets for BMS.

definingthe
symbolic map

D '
Assembly

Assembler listing

'

SYSPUNCH

{ Macro statements

Figure 29. Installing symbolic description map sets using the DFHASMVS procedure

Chapter 10. Installing map sets and partition sets 129

To use a symbolic description map set in a program, you must assemble the source
statements for the map set and obtain a punched copy of the storage definition
through SYSPUNCH. The first time this is done, you can direct the SYSPUNCH
output to SYSOUT=A to get a listing of the symbolic description map set. If many
map sets are to be used at your installation, or there are multiple users of common
map sets, establish a private user copy library for each language that you use.

When a symbolic description is prepared under the same name for more than one
programming language, a separate copy of the symbolic description map set must
be placed in each user copy library. You must ensure that the user copy libraries
are correctly concatenated with SYSLIB.

You need only one symbolic description map set corresponding to all the different
suffixed versions of the physical map set. For example, to run the same application
on terminals with different screen sizes, you would:

1. Define two map sets each with the same fields, but positioned to suit the screen
sizes. Each map set has the same name but a different suffix, which would
match the suffix specified for the terminal.

2. Assemble and link-edit the different physical map sets separately, but create
only one symbolic description map set, because the symbolic description map
set would be the same for all physical map sets.

You can use the sample job stream in to obtain a listing of a symbolic
description map set. It applies to all the programming languages supported by
CICS.

//DSECT JOB ‘'accounting information',CLASS=A,MSGLEVEL=1
//ASM EXEC PROC=DFHASMVS,PARM.ASSEM="'SYSPARM(DSECT) "
//SYSPUNCH DD SYSOUT=A

//SYSIN DD =

Macro statements defining the map set

/e
//

Figure 30. Listing of a symbolic description map set

If you want to assemble symbolic description map sets in which length fields are
halfword-aligned, change the EXEC statement of the sample job in [Figure 30| to the

following:
//ASSEM EXEC PROC=DFHASMVS,PARM.ASSEM="'SYSPARM(ADSECT)"

To obtain a punched copy of a symbolic description map set, code the
//ISYSPUNCH statement in the above example to direct output to the punch data
stream. For example:

//SYSPUNCH DD SYSOUT=B

To store a symbolic description map set in a private copy library, use job control
statements similar to the following:

//SYSPUNCH DD DSN=USER.MAPLIB.ASM(map set name),DISP=0LD
//SYSPUNCH DD DSN=USER.MAPLIB.COB(map set name),DISP=0LD
//SYSPUNCH DD DSN=USER.MAPLIB.PLI(map set name),DISP=0LD

130 CICS TS for zZ0S: CICS Application Programming Guide

Installing physical and symbolic description maps together

Figure 31|shows the DFHMAPS procedure for installing physical and symbolic
description maps together. The DFHMAPS procedure consists of the following four

steps, shown in [Figure 31

1.

oy
Assembler

CICS.
SDFHLOAD

The BMS macros that you coded for the map set are added to a temporary
sequential data set.

The macros are assembled to create the physical map set. The MAP option is
coded in the SYSPARM global variable in the EXEC statement
(PARM='SYSPARM(MAP)").

The physical map set is link-edited to the CICS load library.

Finally, the macros are assembled again, this time to produce the symbolic
description map set. In this step, DSECT is coded in the SYSPARM global
variable in the EXEC statement (PARM='SYSPARM(DSECT)'). Output is
directed to the destination specified in the /SYSPUNCH DD statement. In the
DFHMAPS procedure, that destination is the CICSTS31.CICS.SDFHMAC
library.

1
Macro statements
definingthe map set

Assembly
listing

%

'

Linkage Editor

Linkage
Editor
input
(object)

Linkage Editor
listing

Macro statements
definingthe map set

: D
- Assembler I

Figure 31. Installing a physical map set and a symbolic description map set together

Using the DFHMAPT procedure to install HTML templates from
BMS maps

The DFHMAPT procedure is similar to DFHMAPS, with an additional step that
installs HTML templates generated from the BMS maps. In this step, TEMPLATE is
coded in the SYSPARM global variable in the EXEC statement
(PARM='SYSPARM(TEMPLATE)'). In the DFHMAPT procedure, the output is
directed to CICSTS31.CICS.SDFHHTML.

131

Chapter 10. Installing map sets and partition sets

If you wish to use your own macro to customize HTML templates, and you do not
wish to add your macro to the BMS source you should modify step ASMTEMPL.:

1. Change the PARM parameter of the EXEC statement to
PARM="'SYSPARM(TEMPLATE ,macro_name) ,DECK,NOOBJECT'
2. Add the library that contains your macro to the SYSLIB concatenation.

JCL to install physical and symbolic description maps

The load module from the assembly of the physical map set and the source
statements for the symbolic description map set can be produced in the same job
by using the sample job stream in |Figure SQI

//PREPARE JOB 'accounting information',CLASS=A,MSGLEVEL=1
//ASSEM EXEC PROC=DFHMAPS,MAPNAME=mapsetname,RMODE=ANY|24 (see note)
//SYSUTL DD =

Macro statements defining the map set

[
//

Figure 32. Installing physical and symbolic description maps together

Note: The RMODE statement specifies whether the map set is to be loaded above
(RMODE=ANY) or below (RMODE=24) the 16MB line. RMODE=ANY
indicates that CICS can load the map set anywhere in virtual storage, but
tries to load it above the 16MB line, if possible.

The DFHMAPS procedure produces map sets that are not halfword-aligned. If you
want the length fields in input maps to be halfword-aligned, you have to code A=A
on the EXEC statement. In the sample job in change the EXEC
statement to:

//ASSEM EXEC PROC=DFHMAPS,MAPNAME=mapsetname,A=A

This change results in the SYSPARM operands in the assembly steps being altered
to SYSPARM(AMAP) and SYSPARM(ADSECT) respectively.

The DFHMAPS procedure directs the symbolic description map set output
(SYSPUNCH) to the CICSTS31.CICS.SDFHMAC library. Override this by specifying
DSCTLIB=name on the EXEC statement, where “name” is the name of the chosen
user copy library.

Adding a CSECT to your map assembly

It is possible that you might need to generate your BMS maps with a CSECT. For
example, you might need to specify AMODE and RMODE options to ensure your
maps reside above 16MB, or you might need to use the DFSMS binder IDENTIFY
statement for reasons of change management. In this case, you need not only
include the appropriate CSECT at the front of your BMS macro statements, but also
add some conditional assembler statements to ensure that the CSECT statement is
not included in the symbolic description map. The following example shows how
you can add both a CSECT name and AMODE and RMODE statements:

132 CICS TS for zZ0S: CICS Application Programming Guide

//PREPARE JOB 'accounting information',CLASS=A,MSGLEVEL=1
//ASSEM EXEC PROC=DFHMAPS,MAPNAME=mapsetname,RMODE=ANY |24
//SYSUT1 DD =

AIF ('&SYSPARM' EQ 'DSECT').SKIPSD

AIF ('&SYSPARM' EQ 'ADSECT').SKIPSD

ANYNAME CSECT Binder IDENTIFY requires CSECT name
ANYNAME ~ AMODE 31

ANYNAME RMODE ANY

.SKIPSD ANOP ,

DFHOSTM DFHMSD TYPE=DSECT,MODE=INOUT,CTRL=FREEKB,LANG=COBOL, C
TIOAPFX=YES,TERM=3270-2,MAPATTS=(COLOR,HILIGHT), C
DSATTS=(COLOR,HILIGHT)

SPACE

DFHOSTM DFHMDI SIZE=(24,80)

SPACE
DFHMSD TYPE=FINAL
END

»
/1

Figure 33. Adding a CSECT to the map assembly

Installing partition sets

Partition sets are installed in the same way as physical map sets (as illustrated in
[Figure 27 on page 128). There is no concept of a symbolic description partition set.
The job stream in |Figure 34| is an example of the assembly and link-edit of partition
sefts.

//PREP JOB ‘'accounting information',CLASS=A,MSGLEVEL=1
//STEP1 EXEC PROC=DFHASMVS

//SYSPUNCH DD DSN=&&TEMP,DCB=(RECFM=FB,BLKSIZE=2960),

// SPACE=(2960, (10,10)) ,UNIT=SYSDA,DISP=(NEW,PASS)
//SYSIN DD =

Macro statements defining the partition set

/*

//STEP2 EXEC PROC=DFHLNKVS,PARM="'LIST,LET,XREF'

//SYSLIN DD DSN=&&TEMP,DISP=(0OLD,DELETE)

// DD =
MODE RMODE (ANY |24) E
NAME partitionsetname(R)

/*

//

Figure 34. Assembling and link-editing a partition set

Chapter 10. Installing map sets and partition sets 133

Notes:

A partition set is loaded into CICS-key storage, unless it is link-edited with the
RMODE(ANY) and RENT options. If it is link-edited with these options, it is loaded
into key-0 protected storage, provided that RENTPGM=PROTECT is specified on

the RENTPGM initialization parameter.

For more information about the storage protection facilities available in CICS, see
the CICS System Definition Guide,

H The MODE statement specifies whether the partition set is to be loaded above
(RMODE(ANY)) or below (RMODE(24)) the 16MB line. RMODE(ANY) indicates that
CICS can load the partition set anywhere in virtual storage, but tries to load it above
the 16MB line, if possible.

El Use the NAME statement to specify the name of the partition set which BMS
loads into storage. If the partition set is device-dependent, derive the partition set
name by appending the device suffix to the original 1- to 7-character partition set
name used in the application program. The suffixes that BMS appends for the
various terminals depend on the parameter specified in the SUFFIX operand of the
DFHPSD macro that defined the partition set.

For programming information giving a complete list of partition-set suffixes, see
|CICS Application Programming Guide,

To use a partition set, you must define and install a resource definition for it. You

can do this either by using the program autoinstall function or by using the CEDA
DEFINE PARTITIONSET and INSTALL commands, as described in|the CICS

[Resource Definition Guide,

Defining programs, map sets, and partition sets to CICS

To be able to use a program that you have installed in one of the load libraries
specified in your CICS startup JCL, the program, and any map sets and partition
sets that it uses, must be defined to CICS. To do this, CICS uses the resource
definitions MAPSET (for map sets), PARTITIONSET (for partition sets), and
PROGRAM (for programs). You can create and install such resource definitions in
any of the following ways:

* CICS can dynamically create, install, and catalog a definition for the program,
map set, or partition set when it is first loaded, by using the autoinstall for
programs function.

* You can create a specific resource definition for the program, map set, or
partition set and install that resource definition in your CICS region.

You can install resource definitions in either of the following ways:

— At CICS initialization, by including the resource definition group in the group
list specified on the GRPLIST system initialization parameter.

— While CICS is running, by the CEDA INSTALL command.

For information about defining programs to CICS, see fthe CICS Resource Definitior]

(Guicd,

134 CICS TS for zZ0S: CICS Application Programming Guide

Part 3. Application design

Chapter 11. Application design. . . . Coe e e o189
Pseudoconversational and conversational de3|gn A X0
Terminal interruptibility. .142
How tasks are started. .142
Which transaction? . . . e e e eo.148
Separating business and presentatlon Iog|c .o 146
Multithreading: Reentrant, quasi-reentrant and threadsafe programs ... 147
Quasi-reentrant application programs 147
Threadsafe programs 149
Threadsafe considerations for statlcally or dynamlcally caIIed routlnes 153
OPENAPI programs . . . e e153
Obligations of OPENAPI programs R O 7
Using the FORCEQR system initialization parameter .o« 155
Non-reentrant programs . 155
Storing data within a transacton 156
Transaction work area (TWA) 156
User storage156
COMMAREA in LINK and XCTL commands e F5Y4
Channels in LINK and XCTLcommands 158
Program storage. 158
Temporary storage .158
Intrapartition transientdata 160
GETMAIN SHARED command 160
Your own data sets. . . . e [610)
Lengths of areas passed to CICS commands e (674
LENGTH options. .162
Journalrecords162
Data set definitons .162
Recommendation .162
Minimizing errors. . . . T (X
Protecting CICS from appI|cat|on errors163
Testing applications. . . . e [X
Non-terminal transaction secunty e (o7
Chapter 12. Design for performance. 165
Programsize .165
Virtual storage. . . e K¢ 1¢)
Reducing paging effects e (o4
Locality of reference .167
Workingset .168
Referenceset. .168
Exclusive control of resources.169
Operational control .170
Operating system waits .17
The NOSUSPEND option .17
Efficient data operations 0172
Efficient database operations 172
Efficient data set operations. 172
VSAMdatasets. .173
BDAM data sets O L)
Efficient browsing (in non-RLS mode) e !
Efficient logging . . . e V4S)
Efficient sequential data set access.«75

© Copyright IBM Corp. 1989, 2010 135

Efficient terminal operations.

Length of the data stream sent to the termlnal

Basic mapping support considerations .

Avoid turning on modified data tags (MDTs) unnecessarlly
Use FRSET to reduce inbound traffic .

Do not send blank fields to the screen.

Address CICS areas correctly . .

Use the MAPONLY option when possnble

Send only changed fields to an existing screen

Design data entry operations to reduce line traffic
Compress data sent to the screen

Use nulls instead of blanks .

Use methods that avoid the need for nuIIs or blanks

Page-building and routing operations
Sending multipage output
Sending messages to destinations other than the |nput termlnal
Sending pages built from multiple maps .

Using the BMS page-copy facility.

Requests for printed output .

Additional terminal control conS|derat|ons . .
Use only one physical SEND command per screen .
Use the CONVERSE command . .

Limit the use of message integrity options .
Avoid using the DEFRESP option on SEND commands
Avoid using unnecessary transactions . .o
Send unformatted data without maps .

Chapter 13. Sharing data across transactions .
Using the common work area (CWA)

Protecting the CWA. . . .
Using the TCTTE user area (TCTUA) .
Using the COMMAREA in RETURN commands
Using a channel on RETURN commands.
Using the display screen to share data

Chapter 14. Enhanced inter-program data transfer: channels as
modern-day COMMAREAs.

Channels: quick start .

Containers and channels.
Basic examples . .
Using channels: some typlcal scenarios .
One channel, one program .
One channel, several programs (a component)
Several channels, one component
Multiple interactive components

Creating a channel .

The current channel .
Current channel example, W|th LINK commands .
Current channel example, with XCTL commands .
Current channel: START and RETURN commands .

The scope of a channel .

Scope example, with LINK commands
Scope example, with LINK and XCTL commands

Discovering which containers a program's been passed

Discovering which containers were returned from a link

CICS read only containers .

136 CICS TS for zZ0S: CICS Application Programming Guide

. 176
. 176
. 176
. 176
177
177
177
177
177
. 178
. 178
. 178
. 179
. 179
. 179
. 180
. 180
. 180
. 181
. 181
. 181
. 181
. 181
. 182
. 182
. 182

. 183
. 183
. 184
. 186
. 187
. 187
. 188

. 189
. 189
. 189
. 190
. 192
. 192
. 193
. 193
. 194
. 195
. 196
. 196
. 198
. 199
. 200
. 200
. 202
. 204
. 204
. 204

Designing a channel: best practices.
Constructing and using a channel: an example
Channels and BTS activities
Context .
Using channels from JCICS
Dynamic routing with channels
Data conversion .
Why is data conversion needed'7 .
Preparing for code page conversion with channels .
Data conversion with channels
How to cause CICS to convert character data automatrcally
Using containers to do code page conversion .
A SOAP example
Benefits of channels . . .
Migrating from COMMAREAs to channels
Migration of existing functions .
Migration to the new function . . .
Migrating LINK commands that pass COMMAREAs
Migrating XCTL commands that pass COMMAREAs
Migrating pseudoconversational COMMAREAs on RETURN commands
Migrating START data . e
Migrating programs that use temporary storage to pass data
Migrating dynamically-routed applications.

Chapter 15. Affinity
Types of affinity . .

Inter-transaction affinity

Transaction-system affinity . .

Using INQUIRE and SET commands and gIobaI user exrts .
Programming techniques and affinity e

Safe techniques .

Unsafe techniques .

Suspect techniques.

Recommendations . .

Safe programming to avoid affrnlty .

The COMMAREA

The TCTUA
Using the TCTUA in an unsafe way .

Using ENQ and DEQ commands with ENQMODEL resource deflnltlons
Overview of sysplex enqueue and dequeue . Coe e
Benefits .

BTS containers .

Unsafe programming for aff|n|ty .

Using the common work area . . .

Using GETMAIN SHARED storage . .

Using the LOAD PROGRAM HOLD command

Sharing task-lifetime storage

Using the WAIT EVENT command . . .

Using ENQ and DEQ commands without ENQMODEL resource def|n|t|ons

Suspect programming for affinity . e e e

Using temporary storage . .

Naming conventions for remote queues
Exception conditions for globally accessible queues

Using transient data
Exception conditions for gIobaIIy accessrble queues

Using the RETRIEVE WAIT and START commands .

Part 3. Application design

. 205
. 206
. 207
. 208
. 209
. 209
. 210
. 210
. 210
. 212
. 213
. 214
. 214
. 215
. 216
. 216
. 216
. 217
. 217

218

. 218
. 218
. 219

. 221
. 222
. 222
. 222
. 222
. 223
. 223
. 223
. 224
. 224
. 224
. 225
. 226
. 227

228

. 228
. 229
. 229
. 229
. 229
. 230
. 231
. 232
. 234

235

. 236
. 236
. 237
. 238
. 239
. 239
. 240

137

Using the START and CANCEL REQID commands 241

Using the DELAY and CANCEL REQID commands 243
Using the POST and CANCEL REQID commands 244
Detecting inter-transaction affinities 246
Inter-transaction affinities caused by appllcatlon generators 246
Duration and scope of inter-transaction affinites 246
Affinity transaction groups247
Relations and lifetimes .247
The global relation .247

The LUname (terminal) relation 248

The userid relation .250

The BAPPL relation. .251
Chapter 16. Recovery deS|gn e e e e255
Journaling 24515
Journal records . . . 26515
Journal output synchronlzatlon e e e255
Syncpointing257
Chapter 17. Dealing with exception conditions 261
Default CICS exception handling e e e e oo 261
Handling exception conditions by in-line code e e ... 262
How to use the RESP and RESP2 options . . . = (6 7
Use of RESP and DFHRESP in COBOL and PL/I e e e ... L2682

Use of RESP and DFHRESPinCand C++. 263

Use of DFHRESP in assembler263

An example of exception handlinginC263
An example of exception handlinginCOBOL 264
Modifying default CICS exception handling 265
Using the HANDLE CONDITION command 267
RESP and NOHANDLE options268
How CICS keeps track of whattodoZ2068
Using the HANDLE CONDITION ERROR command C e e o 2689
Using the IGNORE CONDITION command269
Using the HANDLE ABEND command. . . e 270
Using PUSH HANDLE and POP HANDLE commands e e e .2
Chapter 18. Abnormal termination recovery.273
Creating a program-level abend exit274
Retrying operations. .275
Trace e e e e e o278
Trace entry pomts .o Y
System trace entry pomts - 4
User trace entry points277
Exception trace entry points.277
User exception trace entry points.277
Monitoring L L2277
Dump. L 278
Chapter 19. The QUERY SECURITY command 281
Using the QUERY SECURITY command. 281
Security protection at the record or field level 281
CICS-defined resource identifiers.282
SEC system initialization parameter.282
Programming hints .282

138 CICS TS for zZ0S: CICS Application Programming Guide

Chapter 11. Application design

This chapter introduces some basic concepts to help you design CICS applications.
Changes are suggested that can improve performance and efficiency, but further
guidance on programming for efficiency is provided in [Chapter 12, “Design foi
[performance,” on page 165

The programming models implemented in CICS are inherited from those designed
for 3270s, and exhibit many of the characteristics of conversational,
terminal-oriented applications. There are basically three styles of programming
model:

» Terminal-initiated, that is, the conversational model
 Distributed program link (DPL), or the RPC model
» START, that is, the queuing model.

Once initiated, the applications typically use these and other methods of continuing
and distributing themselves, for example, with pseudoconversations, RETURN
IMMEDIATE or DTP. The main difference between these models is in the way that
they maintain state (for example, security), and hence state becomes an integral
part of the application design. This presents the biggest problem when you attempt
to convert to another application model.

A pseudoconversational model is mostly associated with terminal-initiated
transactions and was developed as an efficient implementation of the
conversational model. With increased use of 1-in and 1-out protocols such as
HTTP, it is becoming necessary to add the pseudoconversational characteristic to
the DPL or RPC model.

+ [‘Pseudoconversational and conversational design” on page 140|

+ [‘How tasks are started” on page 142

* [‘Which transaction?” on page 143

+ [“Separating business and presentation logic” on page 146

. “Mulltithreading: Reentrant, quasi-reentrant and threadsafe programs” on page|
147

+ [‘Storing data within a transaction” on page 156

+ [‘Lengths of areas passed to CICS commands” on page 162|

+ [‘Minimizing errors” on page 163

+ [‘Non-terminal transaction security” on page 164

© Copyright IBM Corp. 1989, 2010 139

Pseudoconversational and conversational design

In a conversational transaction, the length of time spent in processing each of a
user’s responses is extremely short when compared to the amount of time waiting
for the input. A conversational transaction is one that involves more than one input
from the terminal, so that the transaction and the user enter into a conversation. A
nonconversational transaction has only one input (the one that causes the
transaction to be invoked). It processes that input, responds to the terminal and
terminates.

Processor speeds, even allowing for accessing data sets, are considerably faster
than terminal transmission times, which are considerably faster than user response
times. This is especially true if users have to think about the entry or have to enter
many characters of input. Consequently, conversational transactions tie up storage
and other resources for much longer than nonconversational transactions.

A pseudoconversational transaction sequence contains a series of
nonconversational transactions that look to the user like a single conversational
transaction involving several screens of input. Each transaction in the sequence
handles one input, sends back the response, and terminates.

Before a pseudoconversational transaction terminates, it can pass data forward to
be used by the next transaction initiated from the same terminal, whenever that
transaction arrives. A pseudoconversational transaction can specify what the next
transaction is to be, using the TRANSID option of the command,
However, you should be aware that if another transaction is started for that device,
it may interrupt the pseudoconversational chain you have designed, unless you
specify the IMMEDIATE option on the RETURN command. In this case, the
transaction specified by the TRANSID command is attached regardless of any other
transactions queued for this terminal.

The RETURN command is described in[the CICS Application Programming
|Reference manual

No transaction exists for the terminal from the time a response is written until the
user sends the next input and CICS starts the next transaction to respond to it.
Information that would normally be stored in the program between inputs is passed
from one transaction in the sequence to the next using the COMMAREA or one of
the other facilities that CICS provides for this purpose. (See [Chapter 13, “Sharing|
(data across transactions,” on page 183|for details.)

There are two major issues to consider in choosing between conversational and
pseudoconversational programming.

» The effect of the transaction on contention resources, such as storage and
processor usage. Storage is required for control blocks, data areas, and
programs that make up a transaction, and the processor is required to start,
process, and terminate tasks. Conversational programs have a very high impact
on storage, because they last so long, relative to the sum of the transactions that
make up an equivalent pseudoconversational sequence. However, there is less
processor overhead, because only one transaction is initiated instead of one for
every input.

» The effect on exclusive-use resources, such as records in recoverable data
sets, recoverable transient data queues, enqueue items, and so on. Again, a
conversational transaction holds on to these resources for much longer than the
corresponding sequence of nonconversational transactions. From this point of

140 CICS TS for zZ0S: CICS Application Programming Guide

view, pseudoconversational transactions are better for quick responses, but
recovery and integrity implications may mean that you prefer to use
conversational transactions.

To summarize, although conversational tasks may be easier to write, they have
serious disadvantages—both in performance (especially the need for virtual
storage) and in their effect on the overall operability of the CICS systems containing
them. Processors are now larger, with more real storage and more power than in
the past, and this makes conversational tasks less painful in small amounts; but if
you use conversational applications, you may rapidly run into virtual storage
constraint. If you run application programs above the line, you will probably
encounter ENQ problems before running into virtual storage constraints.

CICS ensures that changes to recoverable resources (such as data sets, transient
data, and temporary storage) made by a unit of work (UOW) are made completely
or not at all. A UOW is equivalent to a transaction, unless that transaction issues
SYNCPOINT commands, in which case a UOW lasts between syncpoints. For a
more detailed description of syncpoints and UOWs, see [the CICS Recovery and

Restart Guide

When a transaction makes a change to a recoverable resource, CICS makes that
resource unavailable to any other transaction that wants to change it until the
original transaction has completed. In the case of a conversational transaction, the
resources in question may be unavailable to other terminals for relatively long
periods.

For example, if one user tries to update a particular record in a recoverable data
set, and another user tries to do so before the first one finishes, the second user’s
transaction is suspended. This has advantages and disadvantages. You would not
want the second user to begin updating the record while the first user is changing it,
because one of them is working from what is about to become an obsolete version
of the record, and these changes erase the other user’s changes. On the other
hand, you also do not want the second user to experience the long, unexplained
wait that occurs when that transaction attempts to READ for UPDATE the record
that is being changed.

If you use pseudoconversational transactions, however, the resources are only very
briefly unavailable (that is, during the short component transactions). However,
unless all recoverable resources can be updated in just one of these transactions,
recovery is impossible because UOWSs cannot extend across transactions. So, if
you cannot isolate updates to recoverable resources in this way, you must use
conversational transactions.

The previous example poses a further problem for pseudoconversational
transactions. Although you could confine all updating to the final transaction of the
sequence, there is nothing to prevent a second user from beginning an update
transaction against the same record while the first user is still entering changes.
This means that you need additional application logic to ensure integrity. You can
use some form of enqueuing, or you can have the transaction compare the original
version of the record with the current version before actually applying the update.

Chapter 11. Application design 141

Terminal interruptibility

When a conversational task is running, CICS allows nothing else to send messages
to that task’s terminal. This has advantages and disadvantages. The advantage is
that unexpected messages (for example, broadcasts) cannot interrupt the
user-machine dialogue and, worse, corrupt the formatted screen. The disadvantage
is that the end user cannot then be informed of important information, such as the
intention of the control operator to shut down CICS after 10 minutes. More
importantly, the unwitting failure of the end user to terminate the conversation may
in fact prevent or delay a normal CICS shutdown.

Pseudoconversational applications can allow messages to come through between
message pairs of a conversation. This means that notices like shutdown warnings
can be delivered. This might disturb the display screen contents, and can
sometimes interfere with transaction sequences controlled by the RETURN
command with the TRANSID option. However, this can be prevented by using the
IMMEDIATE option, or by forcing the terminal into NOATI status during the middle
of a linked sequence of interactions.

How tasks are started

Work is started in CICS—that is, tasks are initiated—in one of two ways:
1. From unsolicited input
2. By automatic task initiation (ATI)

Automatic task initiation occurs when:

» An existing task asks CICS to create another one. The START command, the
IMMEDIATE option on a RETURN command (discussed in FRETURN|
IMMEDIATE” on page 367), and the SEND PAGE command (in [The SEND|
PAGE command” on page 508) all do this.

+ CICS creates a task to process a transient data queue (see
[transaction initiation (AT1)” on page 595).

» CICS creates a task to deliver a message sent by a BMS ROUTE request (see
[Chapter 39, “Message routing,” on page 527). The CSPG tasks you see after
using the CICS-supplied transaction CMSG are an example of this. CMSG uses
a ROUTE command which creates a CSPG transaction for each target terminal
in your destination list.

The primary mechanism for initiating tasks, however, is unsolicited input. When a
user transmits input from a terminal which is not the principal facility of an existing
task, CICS creates a task to process it. The terminal that sent the input becomes
the principal facility of the new task.

Principal facility
CICS allows a task to communicate directly with only one terminal, namely
its principal facility. CICS assigns the principal facility when it initiates the
task, and the task “owns” the facility for its duration. No other task can use
that terminal until the owning task ends. If a task needs to communicate
with a terminal other than its principal facility, it must do so indirectly, by
creating another task that has the terminal as its principal facility. This
requirement arises most commonly in connection with printing, and how you
can create such a task is explained in|“Using CICS printers” on page 415.|

Notes:

1. You can specify a terminal destination other than your principal facility in
a SEND command if the destination is under TCAM control, an apparent

142 CICS TS for zZ0S: CICS Application Programming Guide

exception to this rule. This is possible because communications with
TCAM terminals are always queued. Thus your task does not write
directly to the destination terminal, but instead writes to a queue that will
be delivered to it subsequently by TCAM (see [‘Using TCAM” on page|

383[-2 . BMS routing, described in [Chapter 39, “Message routing,” on

page 527 |is another form of indirect access to other terminals by
queues.

2. In CICS TS 3.1, local TCAM terminals are not supported. The only
TCAM terminals supported are remote terminals connected to a
pre-CICS TS 3.1 terminal-owning region by the DCB (not ACB) interface
of TCAM.

Unsolicited inputs from other systems are handled in the same way: CICS creates a
task to process the input, and assigns the conversation over which the input arrived
as the principal facility. (Thus a conversation with another system may be either a
principal or alternate facility. In the case where a task in one CICS region initiates a
conversation with another CICS region, the conversation is an alternate facility of
the initiating task, but the principal facility of the partner task created by the
receiving system. By contrast, a terminal is always the principal facility.)

Alternate facility
Although a task may communicate directly with only one terminal, it can
also establish communications with one or more remote systems. It does
this by asking CICS to assign a conversation with that system to it as an
alternate facility. The task “owns” its alternate facilities in the same way
that it owns its principal facility. Ownership lasts from the point of
assignment until task end or until the task releases the facility.

Not all tasks have a principal facility. Tasks that result from unsolicited input always
do, by definition, but a task that comes about from automatic task initiation may or
may not need one. When it does, CICS waits to initiate the task until the requested
facility is available for assignment to the task.

Which transaction?

Having received an unsolicited input, how does CICS decide what to do with it?
That is, what transaction should the task created to process it execute? The short
answer is that the previous task with the same principal facility usually tells CICS
what transaction to execute next just before it ends, by the TRANSID option on its
final RETURN. This is almost always the case in a pseudoconversational
transaction sequence, and usually in menu-driven applications as well. Failing that,
and in any case to get a sequence started, CICS interprets the first few characters
of the input as a transaction code. However, it is more complicated than that; the
exact process goes as follows. The step numbers indicate the order in which the
tests are made and refer to|Figure 35 on page 144|, a diagram of this logic.

Chapter 11. Application design 143

144

Terminal
defined as to
be queried?

termin

3270
print request
key?

Terminal
supported by
paging?

Yes

Has query
been run to this

al?

Initiate printing

Transaction
specified by

Transaction
specified by
TRANSID of
RETURN?

Attach
FMH present?

Yes

Yes

Paging
command
entered?

Initiate specified
| transaction

Initiate specified

transaction

Initiate

transaction

specified

attach FMH

in

PA, PF,

or OPID?

LPA,

Yes

Initiate CQRY

Initiate CSPG

Initiate
TASKREQ= transaction
specified? specified by

term input AID

Terminal
input begins
with tranid?

Send

"invalid tranid"
message

to terminal

Figure 35. Determining which transaction to execute

Yes

Initiate

specified
terminal

| transaction

by
input

* Global user exit XZCATT in
module DFHZATT is invoked
at these points.

0. On the very first input from a terminal, CICS sometimes schedules a
preliminary task before creating one to process the input. This task
executes the CICS-supplied “query” transaction, CQRY, which causes the

CICS TS for z/OS: CICS Application Programming Guide

terminal to transmit an encoded description of some of its hardware
characteristics—extended attributes, character sets, and so on.

CQRY allows the system programmer to simplify maintenance of the
terminal network by omitting these particulars from the terminal definitions.
It occurs only if the terminal definition so specifies, and has no effect on the
subsequent determination of what transaction to use to process the input,
which goes as follows.

1. If the terminal is a 3270 and the input is the “print request key”, the
CICS-supplied transaction that prints the contents of the screen, CSPP, is
initiated. See [‘CICS print key” on page 420| for more information about this
feature. For this purpose, a “3270 logical unit” or any other device that
accepts the 3270 data stream counts as a 3270.

2. If full BMS support is present, the terminal is of a type supported by BMS
terminal paging, and the input is a paging command, the CICS-supplied
transaction CSPG s initiated to process the request. BMS support levels
are explained in|["BMS support levels” on page 453, and the same section
contains a list of the terminals that BMS supports. The PGRET, SKRxxxx,
PGCHAIN, PGCOPY, and PGPURGE options in the system initialization
table define the paging commands. As paging requires full BMS, this step is
skipped if the CICS system contains less than that level.

3. If the terminal definition indicates that a specific transaction should be used
to process all unsolicited inputs from that terminal, the indicated transaction
is executed. (If present, this information appears in the TRANSACTION
attribute of the TERMINAL definition.)

4. If the previous task at the terminal specified the TRANSID option of the
RETURN command that ended it, the transaction named is executed.

5. If an attach function management header is present in the input, the attach
names in the header are converted to a 4-character CICS transaction
identifier, and that transaction is executed.

6. If the terminal is a 3270, and the attention identifier is defined as a
transaction, that transaction is executed. [‘Attention keys” on page 401|
explains attention identifiers. You define one as a transaction identifier with
the TASKREQ attribute of the corresponding TRANSACTION definition.

7. If all of the preceding tests fail, the initial characters of the input are used to
identify the transaction to be executed. The characters used are the first
ones (up to four) after any control information in the data stream and before
the first field separator character or the next 3270 Control Character (X'00'
to X'3F'). Field separators are defined in the FLDSEP option of the system
initialization table (the default is a blank).

If there are no such characters in the input, as occurs when you use the
CLEAR key, for example, or if there is no transaction definition that matches
the input, CICS cannot determine what transaction to execute and sends an
“‘invalid transaction identification” message to the terminal.

Note: This logic for deciding which transaction to execute applies only to tasks
initiated to process unsolicited inputs. For automatic transaction initiation, the
transaction is always known. You specify it in the TRANSID option when you
create a task with a START or RETURN IMMEDIATE. Similarly, you specify
what transaction should be used to process a transient data queue in the
queue definition. Tasks created to route messages always execute the
CICS-supplied transaction CSPG.

Chapter 11. Application design 145

Separating business and presentation logic

In general, it is good practice to split applications into a part containing the business
code that is reusable, and a part responsible for presentation to the client. This
technigue enables you to improve performance by optimizing the parts separately,
and allows you to reuse your business logic with different forms of presentation.

When separating the business and presentation logic, you need to consider the
following:

* Avoid affinities between the two parts of the application.
+ Be aware of the DPL-restricted API; see |CICS Application Programming|

for details.

* Be aware of hidden presentation dependencies, such as EIBTRMID usage.

illustrates a simple CICS application that accepts data from an end user,
updates a record in a file, and sends a response back to the end user. The
transaction that runs this program is the second in a pseudoconversation. The first
transaction has sent a BMS map to the end user’s terminal, and the second
transaction reads the data with the EXEC CICS RECEIVE MAP command, updates
the record in the file, and sends the response with the EXEC CICS SEND MAP
command.

The EXEC CICS RECEIVE and EXEC CICS SEND MAP commands are part of the
transaction’s presentation logic, while the EXEC CICS READ UPDATE and EXEC
CICS REWRITE commands are part of the business logic.

EXEC CICS RECEIVE MAP
EXEC CICS READ UPDATE
EXEC CICS REWRITE

I::).(EC CICS SEND MAP

Figure 36. CICS functions in a single application program

A sound principle of modular programming in CICS application design is to separate
the presentation logic from the business logic, and to use a communication area
and the EXEC CICS LINK command to make them into a single transaction.

[Figure 37|and [Figure 38 on page 147jllustrate this approach to application design.

I:Z).(EC CICS RECEIVE MAP
I:I).(EC CICS LINK..

IZZ).(EC CICS SEND MAP

Figure 37. Presentation logic

146 CICS TS for zZ0S: CICS Application Programming Guide

I::).(EC CICS ADDRESS COMMAREA
I:Z).(EC CICS READ UPDATE

IZZ).(EC CICS REWRITE

IZZ).(EC CICS RETURN..

Figure 38. Business logic

Once the business logic of a transaction has been isolated from the presentation
logic and given a communication area interface, it is available for reuse with
different presentation methods. For example, you could use Distributed Program
Link (DPL) to implement a two-tier model, or CICS Web support with the CICS
business logic interface, where the presentation logic is HTTP-based.

Multithreading: Reentrant, quasi-reentrant and threadsafe programs

Multithreading is a technique that allows a single copy of an application program to
be processed by several transactions concurrently. For example, one transaction
may begin to execute an application program. When an EXEC CICS command is
reached, causing a CICS WAIT and call to the dispatcher, another transaction may
then execute the same copy of the application program. (Compare this with
single-threading, which is the execution of a program to completion: processing of
the program by one transaction is completed before another transaction can use it.)

Multithreading requires that all CICS application programs be quasi- reentrant; that
is, they must be serially reusable between entry and exit points. CICS application
programs using the EXEC CICS interface obey this rule automatically. For COBOL,
C, and C++ programs, reentrancy is ensured by a fresh copy of working storage
being obtained each time the program is invoked. You should always use the RENT
option on the compile or pre-link utility even for C and C++ programs that do not
have writable statics and are naturally reentrant. Temporary variables and
DFHEIPTR fields inserted by the CICS translator are usually defined as writable
static variables and require the RENT option. For these programs to stay reentrant,
variable data should not appear as static storage in PL/I, or as a DC in the program
CSECT in assembler language.

As well as requiring that your application programs are compiled and link-edited as
reentrant, CICS also identifies programs as being either quasi-reentrant or
threadsafe. These attributes are discussed in the following sections.

Quasi-reentrant application programs

CICS runs user programs under a CICS-managed task control block (TCB). If your
programs are defined as quasi-reentrant (on the CONCURRENCY attribute of the
program resource definition), CICS always invokes them under the CICS
quasi-reentrant (QR) TCB. The requirements for a quasi-reentrant program in a
multithreading context are less stringent than if the program were to execute
concurrently on multiple TCBs.

CICS requires that an application program is reentrant so that it guarantees
consistent conditions. In practice, an application program may not be truly reentrant;
CICS expects “quasi-reentrancy”. This means that the application program should
be in a consistent state when control is passed to it, both on entry, and before and
after each EXEC CICS command. Such quasi-reentrancy guarantees that each

Chapter 11. Application design 147

invocation of an application program is unaffected by previous runs, or by
concurrent multi-threading through the program by multiple CICS tasks.

For example, application programs could modify their executable code, or the
variables defined within the program storage, but these changes must be undone,
or the code and variables reinitialized, before there is any possibility of the task
losing control and another task executing the same program.

CICS quasi-reentrant user programs (application programs, user-replaceable
modules, global user exits, and task-related user exits) are given control by the
CICS dispatcher under the QR TCB. When running under this TCB, a program can
be sure that no other quasi-reentrant program can run until it relinquishes control
during a CICS request, at which point the user task is suspended, leaving the
program still “in use”.The same program can then be reinvoked for another task,
which means the application program can be in use concurrently by more than one
task, although only one task at a time can actually be executing.

To ensure that programs cannot interfere with each others working storage, CICS
obtains a separate copy of working storage for each execution of an application
program. Thus, if a user application program is in use by 11 user tasks, there are
11 copies of working storage in the appropriate dynamic storage area (DSA).

Quasi-reentrancy allows programs to access globally shared resources—for
example, the CICS common work area (CWA)—without the need to protect those
resources from concurrent access by other programs. Such resources are
effectively locked exclusively to the running program, until it issues its next CICS
request. Thus, for example, an application can update a field in the CWA without
using compare and swap (CS) instructions or locking (enqueuing on) the resource.

Note: The CICS QR TCB provides protection through exclusive control of global
resources only if all user tasks that access those resources run under the
QR TCB. It does not provide automatic protection from other tasks that
execute concurrently under another (open) TCB.

Take care if a program involves lengthy calculations: because an application
program retains control from one EXEC CICS command to the next, the processing
of other transactions on the QR TCB is completely excluded. However, you can use
the task-control SUSPEND command to allow other transaction processing to
proceed; see [Chapter 44, “Task control,” on page 561|for details. Note that runaway
task time interval is controlled by the transaction definition and the system
initialization parameter ICVR. CICS purges a task that does not return control
before expiry of the IVCR-specified interval.

148 CICS TS for zZ0S: CICS Application Programming Guide

Threadsafe programs

In the CICS open transaction environment (OTE), when application programs,
task-related user exits (TRUES), global user exit programs, and user-replaceable
modules are defined to CICS as threadsafe, they can run concurrently on open
TCBs. Because of this, they cannot rely on quasi-reentrancy to protect shared
resources from concurrent access by another program. Furthermore,
quasi-reentrant programs might also be placed at risk if they access shared
resources that can also be accessed by a user task running concurrently under an
open TCB. The techniques used by user programs to access shared resources
must therefore take into account the possibility of simultaneous access by other
programs. To gain the performance benefits of the open transaction environment
while maintaining the integrity of shared resources, serialization techniques must be
used to prohibit concurrent access to shared resources. Programs that use
appropriate serialization techniques when accessing shared resources are
described as threadsafe. (The term fully reentrant is also used sometimes, but this
can be misunderstood, hence threadsafe is the preferred term.)

The performance benefits of being threadsafe can only be gained by applications
that involve a task-related user exit (TRUE) enabled using the OPENAPI option on
the ENABLE PROGRAM command. Task-related user exits like this are known as
open APl TRUEs. An open API TRUE will be given control under an L8 mode open
TCB, and can use non-CICS APIs without having to create, manage and switch
between subtask TCBs. The CICS DB2 task-related user exit that is used by the
CICS DB2 attachment facility operates as an open APl TRUE when CICS is
connected to DB2 Version 6 or later, which means that CICS DB2 applications can
gain performance benefits from being threadsafe (as explained in ['SQL, threadsafe]
and other programming considerations for CICS DB2 applications” in the CICS DB4

G uidgb .

The goal of making programs threadsafe is to enable them to remain on an open
TCB, rather than switching back and forth between the open TCB and the QR TCB.
When CICS is connected to DB2 Version 6 or later, TCB switching occurs in the
following circumstances:

* When a program that is not defined as threadsafe makes a DB2 request, CICS
switches from the QR TCB (where the program is executing) to an open TCB,
and back to the QR TCB again when the DB2 request is complete.

* When a user exit program that is not defined as threadsafe is used in the course
of a DB2 request, CICS switches from the open TCB (where the DB2 request is
executing) to the QR TCB. The user exit program is executed on the QR TCB,
and then the task is switched back to the open TCB to complete the DB2
request. For example, the XRMIIN and XRMIOUT global user exits might be
invoked in the course of the DB2 request. If the exit programs are not defined as
threadsafe, this TCB switching occurs. If the exit programs are defined as
threadsafe, processing will continue throughout on the open TCB.

* When a program that is defined as threadsafe and is executing on an open TCB
invokes any EXEC CICS commands which are not threadsafe, CICS switches
back from the open TCB to the QR TCB to execute the non-threadsafe code.
The program then continues to execute on the QR TCB. If the program does not
make any further DB2 requests, then the switch back to the QR TCB is only a
disadvantage because it increases the usage of your QR TCB for the time taken
to run any remaining application code. However, if the program makes any
further DB2 requests, CICS must switch back again to the open TCB.

* When a program that is defined as threadsafe and is executing on an open TCB
invokes a task-related user exit program which is not defined as threadsafe,

Chapter 11. Application design 149

H o o H H H H H H

CICS switches back to the QR TCB and gives control to the task-related user
exit program. When the task-related user exit program completes processing, the
application program continues to execute on the QR TCB, in the same way as it
would after issuing a non-threadsafe EXEC CICS command.

* When a program that is defined as threadsafe and is executing on an open TCB
invokes a threadsafe CICS command, it is possible for a global user exit to be
invoked as part of executing the command. If a global user exit program is used
which is not defined as threadsafe, CICS switches back to the QR TCB and
gives control to the global user exit program. When the user exit program
completes processing, CICS switches back to the open TCB to continue
processing the threadsafe CICS command.

* When a program that is defined as threadsafe and is executing on an open TCB
completes, CICS switches back to the QR TCB for task termination. This switch
is always necessary.

The maximum TCB switching for a CICS DB2 application would occur if your
program used a non-threadsafe user exit program and a non-threadsafe EXEC
CICS command after every DB2 request. In particular, the use of a non-threadsafe
exit program on the CICS-DB2 mainline path (for example, a program that is
enabled at XRMIIN or XRMIOUT) causes more TCB switching than what is
experienced when CICS is connected to Version 5 or earlier.

If you want to make an application program remain on an open TCB:

1. Ensure that the program's logic is threadsafe. That is, the native language
code in between the EXEC CICS commands must be threadsafe. If you define
a program to CICS as threadsafe but include application logic that is not
threadsafe, the results are unpredictable, and CICS is not able to protect you
from the possible consequences. Later in this topic, we have more information
about producing threadsafe application logic.

2. Ensure that the program uses only threadsafe EXEC CICS commands. The
commands that are threadsafe are indicated in the command syntax diagrams
inlthe CICS Application Programming Referenceland fthe CICS Systen
[Programming Referencd with the statement "This command is threadsafe", and
are listed in ['Threadsafe command list" in the CICS Application Programming
[Reference and|Appendix D of the CICS System Programming Reference If you
include a non-threadsafe EXEC CICS command in a program which is running
on an open TCB, CICS switches back from the open TCB to the QR TCB to
ensure that the command is processed safely. The TCB switching could be
detrimental to the application's performance.

As well as checking EXEC CICS commands that you code explicitly, be aware
of high-level language constructs or Language Environment callable services
used by you