
CICS Transaction Server for z/OS

CICS Application Programming Guide
Version 3 Release 1

SC34-6433-06

���

CICS Transaction Server for z/OS

CICS Application Programming Guide
Version 3 Release 1

SC34-6433-06

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
701.

This edition applies to Version 3 Release 1 of CICS Transaction Server for z/OS, program number 5655-M15, and
to all subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

© Copyright IBM Corporation 1989, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface . xix
What this book is about . xix

Who should read this book xix

Summary of changes . xxi
Changes for CICS Transaction Server for z/OS, Version 3 Release 1 xxi
Changes for CICS Transaction Server for z/OS, Version 2 Release 3 xxi
Changes for CICS Transaction Server for z/OS, Version 2 Release 2 xxi
Changes for CICS Transaction Server for z/OS, Version 2 Release 1 xxi
Changes for CICS Transaction Server for OS/390, Version 1 Release 3 . . . xxii

Part 1. Writing CICS Applications . 1

Chapter 1. What is a CICS application? 3
CICS programs, transactions and tasks 3

Chapter 2. CICS programming 5
CICS programming commands 5

System programming commands. 6
EXEC interface block (EIB) . 6

Translation . 6
Translator Options . 6

Testing for CICS . 7
CICS programming roadmap . 7

Chapter 3. Language Environment 9
Language Environment services 10
Using Language Environment Abend-handling 12

User-written Language Environment condition handlers 12
Managing Language Environment storage 13
Mixing languages in Language Environment 13
Using Dynamic Link Libraries and Language Environment 15
Defining runtime options for Language Environment 16

Runtime options in child enclaves 18
CEEBXITA coding . 18
Determining which options were used 19

Writing a CEEBINT initialization exit for Language Environment 19

Chapter 4. Programming in COBOL 21
COBOL programming considerations 22

COBOL programming restrictions 23
Language Environment CBLPSHPOP option 25
Using the DL/I CALL interface 25

Considerations for VS COBOL II programs 26
Using based addressing with COBOL 27

Using WITH DEBUGGING MODE 28
Calling subprograms from COBOL. 28

Rules for calling subprograms 30
Flow of control between programs and subprograms 32

Using the COBOL2 and COBOL3 translator options 34
Literals intervening in blank lines 35
Lower case characters . 35
Sequence numbers containing any character 35

© Copyright IBM Corp. 1989, 2010 iii

REPLACE statement. 35
Batch compilation . 36
Nested programs . 38
Reference modification . 41
Global variables . 42
Comma and semicolon as delimiters 42
Symbolic character definition 42

Chapter 5. Programming in C and C++ 43
C and C++ programming considerations 43

XPLink considerations for C and C++ programming 46
Passing arguments in C or C++. 49
Accessing the EIB. 50

Naming EIB fields . 50
Locale support for C and C++ 51
Programming in C++. 51

Restrictions . 51

Chapter 6. Programming in PL/I 53
PL/I programming restrictions 53
Language Environment considerations for PL/I applications 54

Chapter 7. Programming in Assembler 57
Language Environment considerations for Assembler applications 58
Calling Assembler programs . 60

Part 2. Preparing applications to run . 63

Chapter 8. Translation and compilation 67
The integrated CICS translator 67

Using the integrated CICS translator 68
Specifying CICS translator options. 68

The translation process . 69
The CICS-supplied translators 72

Dynamic invocation of the separate translator 72
Using a CICS translator . 73
Defining translator options . 74

Translator options . 75
Translator options table . 85

Using COPY statements . 86
The CICS-supplied interface modules 86

The EXEC interface modules. 86
The CPI Communications interface module 86
The SAA Resource Recovery interface module 86

Using the EXEC interface modules 87
COBOL . 88
PL/I . 88
C and C++ . 89
Assembler language . 89
EXAMPLE Assembler language PROGRAM using LEASM 89

Chapter 9. Installing application programs 99
Program installation roadmap 99

Preparing for program installation 100
Defining MVS residence and addressing modes 100

Establishing a program’s addressing mode 101

iv CICS TS for z/OS: CICS Application Programming Guide

||

||

CICS address space considerations. 101
Making programs permanently resident 102

Running applications in the link pack area 102
Running application programs in the RDSAs 103

Assembler . 103
C and C/++. 104
COBOL . 104
PL/I . 105

Using BMS map sets in application programs 105
Using the CICS-supplied procedures to install application programs 106

Installing programs in load library secondary extents 108
Including the CICS-supplied interface modules 108
Installing assembler language application programs 109
Installing COBOL application programs 110

Sample JCL to install COBOL application programs 111
Installing PL/I application programs 114

Sample JCL to install PL/I application programs 114
PL/I procedure with an integrated translator 115

Installing C application programs 117
Sample JCL to install C application programs 118

Using your own job streams 120
Translator requirements . 120
Online programs that use EXEC CICS or EXEC DLI commands 120
Online programs that use the CALL DLI interface 122
Batch or BMP programs that use EXEC DLI commands 123
Batch or BMP programs that use DL/I CALL commands 123

Chapter 10. Installing map sets and partition sets 125
Installing map sets . 126

Types of map sets . 126
Installing physical map sets 128
Installing symbolic description map sets 129
Installing physical and symbolic description maps together 131

Installing partition sets. 133
Defining programs, map sets, and partition sets to CICS 134

Part 3. Application design . 135

Chapter 11. Application design 139
Pseudoconversational and conversational design 140

Terminal interruptibility . 142
How tasks are started . 142
Which transaction? . 143
Separating business and presentation logic 146
Multithreading: Reentrant, quasi-reentrant and threadsafe programs 147

Quasi-reentrant application programs 147
Threadsafe programs . 149
OPENAPI programs . 153
Using the FORCEQR system initialization parameter 155
Non-reentrant programs . 155

Storing data within a transaction 156
Transaction work area (TWA) 156
User storage . 156
COMMAREA in LINK and XCTL commands 157
Channels in LINK and XCTL commands 158
Program storage . 158

Contents v

||

||

Temporary storage . 158
Intrapartition transient data 160
GETMAIN SHARED command 160
Your own data sets . 160

Lengths of areas passed to CICS commands 162
LENGTH options. 162
Journal records . 162
Data set definitions . 162
Recommendation . 162

Minimizing errors. 163
Protecting CICS from application errors 163
Testing applications . 163

Non-terminal transaction security 164

Chapter 12. Design for performance 165
Program size . 165
Virtual storage. 166

Reducing paging effects . 167
Exclusive control of resources 169
Operational control . 170
Operating system waits . 171
The NOSUSPEND option . 171
Efficient data operations . 172

Efficient database operations 172
Efficient data set operations. 172
Efficient browsing (in non-RLS mode) 174
Efficient logging . 175
Efficient sequential data set access 175

Efficient terminal operations. 176
Length of the data stream sent to the terminal 176
Basic mapping support considerations 176
Page-building and routing operations 179
Requests for printed output 181
Additional terminal control considerations. 181

Chapter 13. Sharing data across transactions 183
Using the common work area (CWA) 183

Protecting the CWA. 184
Using the TCTTE user area (TCTUA) 186
Using the COMMAREA in RETURN commands 187
Using a channel on RETURN commands. 187
Using the display screen to share data 188

Chapter 14. Enhanced inter-program data transfer: channels as
modern-day COMMAREAs 189

Channels: quick start . 189
Containers and channels . 189
Basic examples . 190

Using channels: some typical scenarios 192
One channel, one program 192
One channel, several programs (a component) 193
Several channels, one component 193
Multiple interactive components 194

Creating a channel . 195
The current channel . 196

Current channel example, with LINK commands 196

vi CICS TS for z/OS: CICS Application Programming Guide

||

Current channel example, with XCTL commands 198
Current channel: START and RETURN commands 199

The scope of a channel . 200
Scope example, with LINK commands 200
Scope example, with LINK and XCTL commands 202

Discovering which containers a program's been passed 204
Discovering which containers were returned from a link 204
CICS read only containers . 204
Designing a channel: best practices. 205
Constructing and using a channel: an example. 206
Channels and BTS activities 207

Context . 208
Using channels from JCICS. 209
Dynamic routing with channels 209
Data conversion . 210

Why is data conversion needed? 210
Preparing for code page conversion with channels 210
Data conversion with channels 212

Benefits of channels . 215
Migrating from COMMAREAs to channels 216

Migration of existing functions 216
Migration to the new function 216

Chapter 15. Affinity . 221
Types of affinity . 222

Inter-transaction affinity . 222
Transaction-system affinity 222

Programming techniques and affinity 223
Safe techniques . 223
Unsafe techniques . 223
Suspect techniques . 224
Recommendations . 224

Safe programming to avoid affinity 224
The COMMAREA . 225
The TCTUA . 226
Using ENQ and DEQ commands with ENQMODEL resource definitions 228
BTS containers . 229

Unsafe programming for affinity 229
Using the common work area 229
Using GETMAIN SHARED storage 230
Using the LOAD PROGRAM HOLD command 231
Sharing task-lifetime storage 232
Using the WAIT EVENT command 234
Using ENQ and DEQ commands without ENQMODEL resource definitions 235

Suspect programming for affinity 236
Using temporary storage . 236
Using transient data . 239
Using the RETRIEVE WAIT and START commands 240
Using the START and CANCEL REQID commands 241
Using the DELAY and CANCEL REQID commands 243
Using the POST and CANCEL REQID commands 244

Detecting inter-transaction affinities 246
Inter-transaction affinities caused by application generators 246

Duration and scope of inter-transaction affinities 246
Affinity transaction groups 247
Relations and lifetimes . 247

Contents vii

Chapter 16. Recovery design 255
Journaling . 255

Journal records . 255
Journal output synchronization. 255

Syncpointing . 257

Chapter 17. Dealing with exception conditions 261
Default CICS exception handling 261
Handling exception conditions by in-line code 262

How to use the RESP and RESP2 options 262
An example of exception handling in C 263
An example of exception handling in COBOL 264

Modifying default CICS exception handling 265
Using the HANDLE CONDITION command 267

RESP and NOHANDLE options 268
How CICS keeps track of what to do 268

Using the HANDLE CONDITION ERROR command. 269
Using the IGNORE CONDITION command 269
Using the HANDLE ABEND command 270
Using PUSH HANDLE and POP HANDLE commands 271

Chapter 18. Abnormal termination recovery 273
Creating a program-level abend exit 274
Retrying operations . 275
Trace . 276

Trace entry points . 277
Monitoring . 277
Dump . 278

Chapter 19. The QUERY SECURITY command 281
Using the QUERY SECURITY command 281

Security protection at the record or field level 281
CICS-defined resource identifiers. 282
SEC system initialization parameter 282
Programming hints . 282

Part 4. Data Management . 283

Chapter 20. An overview of file control. 287
VSAM data sets . 287

Key-sequenced data set (KSDS) 287
Entry-sequenced data set (ESDS) 288
Relative record data set (RRDS) 288
Empty data sets . 289
VSAM alternate indexes . 289
Accessing files in RLS mode 289

BDAM data sets . 290
CICS shared data tables . 291
Coupling facility data tables . 292

Coupling facility data table models 293
Techniques for sharing data. 294
Using CICS commands to read records 296

Direct reading (using READ command) 297
Sequential reading (browsing) 298
Skip-sequential processing 300

Using CICS commands to update records 301

viii CICS TS for z/OS: CICS Application Programming Guide

Using CICS commands to delete records. 302
Deleting single records . 302
Deleting groups of records (generic delete) 303
Read integrity . 303

Using CICS commands to add records 303
Adding to a KSDS . 303
Adding to an ESDS. 304
Adding to an RRDS. 304
Records that are already locked 304
Specifying record length . 304
Sequential adding of records (WRITE MASSINSERT command) 304

File control command options 305
The RIDFLD option . 305
The INTO and SET options 305
The FROM option . 306
The TOKEN option . 306
KEYLENGTH option for remote data sets. 306

Transaction deadlocks. 307
VSAM-detected deadlocks (RLS only) 308
Rules for avoiding deadlocks 309

Chapter 21. File control—VSAM considerations 311
VSAM record identification . 311

Key. 311
Relative byte address (RBA) and relative record number (RRN) 311

Locking of VSAM records in recoverable files 312
Update locks and delete locks (non-RLS mode only) 312

RLS Record level locking . 313
Exclusive locks and shared locks. 313

Conditional VSAM file update requests 316
File control implementation of NOSUSPEND 316

CICS locking for writing to ESDS. 316

Chapter 22. File control—BDAM considerations 319
Identifying BDAM records . 319

Block reference subfield . 319
Physical key subfield . 319
Deblocking argument subfield 319

Browsing records from BDAM data sets 320
Adding records to BDAM data sets 321

Updating records from BDAM data sets 322

Chapter 23. Database control 323
DL/I databases . 323
DB2 databases . 323

Requests to DB2. 323

Chapter 24. CICS documents 325
Using the DOCUMENT programming interface 325

Creating a document . 325
Setting up document templates 326

Templates in a partitioned data set 326
Templates in a CICS program 327
Templates in CICS files, z/OS UNIX System Services HFS files, temporary

storage, or transient data 327
Creating templates in exit programs. 328

Contents ix

Programming with documents and document templates 329
Symbols and symbol lists 329
Setting symbol values . 330
Embedded template commands 332
Using templates in your application 333
The lifespan of a document 334
Constructing a document. 336
Using Bookmarks . 338
Code page conversion for documents 339

Chapter 25. Named counter servers 341
The named counter fields . 341
Named counter pools . 342

Named counter options table 342
Using the named counter EXEC interface 343
Using the named counter CALL interface 345

Application programming considerations 345
Syntax . 347
Return codes . 355

Named counter recovery . 358

Part 5. Data Communication. 361

Chapter 26. Terminal control 365
Terminal access method support 366
Terminal control commands . 366

Send/receive mode . 367
Speaking out of turn . 368
Interrupting . 369
Terminal waits . 369

Using data transmission commands. 370
What you get on a RECEIVE 370

Device control commands . 371
Terminal device support . 372
Finding out about your terminal 375

EIB feedback on terminal control operations. 377
Using VTAM . 378

Chaining input data . 378
Chaining output data . 378
Handling logical records . 379
Response protocol . 379
Using function management headers 380
Preventing interruptions (bracket protocol) 380

Using sequential terminal support 381
Coding considerations for sequential terminals 382

Using TCAM . 383
Coding for the TCAM/DCB interface. 383

Using batch data interchange 383
Destination selection and identification 385
Definite response . 385
Waiting for function completion 385

Chapter 27. The 3270 family of terminals 387
History of the 3270 . 387

Screen fields . 388
Personal computers . 388

x CICS TS for z/OS: CICS Application Programming Guide

||
||

The 3270 buffer . 390
The output datastream . 390

3270 write commands . 390
3270 display fields . 392

Display characteristics. 392
3270 field attributes. 392

Protection . 393
Modification . 393
Intensity . 394
Base color . 394
Extended attributes . 394

Orders in the data stream . 395
The start field order. 395
The modify field order . 396
The set buffer address order 397
The set attribute order. 398

Outbound data stream sample. 398
Input from a 3270 terminal . 400

Data keys . 400
Keyboard control keys. 401
Attention keys . 401

Reading from a 3270 terminal 403
Inbound field format . 403
Input data stream example . 404
Unformatted mode . 404

Chapter 28. CICS support for printing 407
Formatting for CICS printers 407
CICS 3270 printers . 408
CICS 3270 printer options . 409

PRINT option and print control bit 409
ERASE option. 410
Line width options: L40, L64, L80, and HONEOM. 410
NLEOM option . 410
FORMFEED . 411
PRINTERCOMP option . 412

Non-3270 CICS printers . 412
SCS input . 413

Determining the characteristics of a CICS printer 413
BMS page size, 3270 printers 414
Supporting multiple printer types 414

Using CICS printers . 415
Printing with a START command 415
Printing with transient data 415
Printing with BMS routing 417

Using Non-CICS printers . 417
Formatting for non-CICS printers 417
Non-CICS printers: Delivering the data. 417
Programming for non-CICS printers 418
Notifying the print application 419

Printing display screens . 420
CICS print key . 420
ISSUE PRINT and ISSUE COPY. 420
Hardware print key . 421
BMS screen copy . 421

Contents xi

Chapter 29. CICS interface to JES 423
Using the CICS interface to JES 425

Spool interface restrictions 425
Creating output spool files . 425

Using the MVS internal reader. 426
Reading input spool files . 426

JES exits . 427
Identifying spool files . 427
Examples of SPOOL commands 430

COBOL . 430
PL/I . 431
C . 431
ASSEMBLER . 432

Chapter 30. CICS intercommunication 433
Design considerations . 433

Programming language . 434
Transaction routing . 434
Function shipping . 434
Distributed program link (DPL). 435

Using the distributed program link function 436
Examples of distributed program link 437
Programming considerations for distributed program link 442

Asynchronous processing . 446
Distributed transaction processing (DTP) 446
Common Programming Interface Communications (CPI Communications) 446
External CICS interface (EXCI) 447

Part 6. Basic Mapping Support (BMS) . 449

Chapter 31. Basic mapping support 453
BMS support levels . 453

Minimum BMS . 453
Standard BMS . 453
Full BMS . 454

A BMS output example . 455

Chapter 32. Creating the map 459
Defining map fields: DFHMDF 459
Defining the map: DFHMDI . 461
Defining the map set: DFHMSD 462
Writing BMS macros . 463
Assembling the map . 465

Physical and symbolic map sets 465
The SDF II alternative . 466
Grouping maps into map sets 466
The Application Data Structure (ADS) 467

Using complex fields . 467
Composite fields: the GRPNAME option 468
Repeated fields: the OCCURS option 469

Block data . 469
Support for non-3270 terminals 470

Output considerations for non-3270 devices 470
Differences on input . 471
Special options for non-3270 terminals. 472

Device-dependent maps . 472

xii CICS TS for z/OS: CICS Application Programming Guide

Device dependent support: DDS 473
Finding out about your terminal 475

Chapter 33. Sending BMS mapped output 477
Acquiring and defining storage for the maps. 477

BASE and STORAGE options 478
Initializing the output map . 478
Moving the variable data to the map 479
Setting the display characteristics 479

Changing the attributes . 480
Attribute value definitions: DFHBMSCA 481

Chapter 34. Using the SEND MAP command 483
SEND MAP control options . 483

Other BMS SEND options: WAIT and LAST 484
Merging the symbolic and physical maps 484

MAPONLY option . 484
DATAONLY option . 485
The SEND CONTROL command 485

Building the output screen . 485
What you start with . 486
What is sent . 486
Where the values come from 486
Outside the map . 487
Using GDDM and BMS . 488

Positioning the cursor . 488
Sending invalid data and other errors 489
Output disposition options: TERMINAL, SET, and PAGING 489

Using SET . 490

Chapter 35. Receiving mapped data 493
An input-output example . 493

The symbolic input map . 495
Programming mapped input. 496
Using the RECEIVE MAP command 496
Getting storage for mapped input. 497
Formatted screen input . 497

Modified data . 498
Upper case translation . 499

Using the attention identifier 499
Using the HANDLE AID command 499

Finding the cursor . 500
Processing the mapped input 500
Handling input errors . 501

Flagging errors . 501
Saving the good input . 502
Rechecking. 502

Sending mapped output after mapped input 503
MAPFAIL and other exceptional conditions 504

EOC condition. 504
Formatting other input . 505

Chapter 36. BMS logical messages 507
Building logical messages . 507
The SEND PAGE command 508
RETAIN and RELEASE . 508

Contents xiii

The AUTOPAGE option . 510
Terminal operator paging: the CSPG transaction 510
Logical message recovery . 511

Chapter 37. Cumulative output — the ACCUM option 513
Floating maps: how BMS places maps using ACCUM 513
Page breaks: BMS overflow processing 514
Map placement rules . 515

ASSIGN options for cumulative processing 517
Input from a composite screen. 517
Performance considerations. 517

Minimizing path length. 517
Reducing message lengths 518

Chapter 38. Text output . 521
The SEND TEXT command. 521

Text logical messages . 521
Text pages . 522
Text lines . 523
Header and trailer format. 524
SEND TEXT MAPPED and SEND TEXT NOEDIT 525

Chapter 39. Message routing 527
Message destinations . 527

Eligible terminals. 528
Destinations specified with OPCLASS only 528
OPCLASS and LIST omitted 529
Route list provided . 529

Route list format . 530
Message delivery . 531

Undeliverable messages . 532
Recoverable messages . 532

Message identification . 533
Programming considerations with routing 534

Routing and page overflow 534
Routing with SET . 535
Interleaving a conversation with message routing 535

Chapter 40. The MAPPINGDEV facility 537
SEND MAP with the MAPPINGDEV option 537
RECEIVE MAP with the MAPPINGDEV option 538
Sample assembler MAPPINGDEV application 539

Chapter 41. Partition support 541
Uses for partitioned screens 542

Scrolling . 542
Data entry . 542
Lookaside . 542
Data comparison. 543
Error messages . 543

Partition definition . 543
3290 character size. 544

Establishing partitioning . 544
Partition options for BMS SEND commands 545

Determining the active partition 545
Partition options for BMS RECEIVE commands 546

xiv CICS TS for z/OS: CICS Application Programming Guide

ASSIGN options for partitions 546
Partitions and logical messages 546

Partitions and routing . 547
Attention identifiers and exception conditions 547
Terminal sharing . 548

Chapter 42. Support for special hardware 549
Logical device components . 549

Defining logical device components 549
Sending data to a logical device component. 550
LDCs and logical messages 550
LDCs and routing . 550

10/63 magnetic slot reader . 551
Field selection features . 551

Trigger field support . 551
Cursor and pen-detectable fields 552

Selection fields . 553
Attention fields . 553
BMS input from detectable fields 553

Outboard formatting . 554

Part 7. CICS management functions . 555

Chapter 43. Interval control 557
Expiration times . 558
Request identifiers . 559

Chapter 44. Task control . 561
Controlling sequence of access to resources 562

Chapter 45. Program control 565
Program linking . 566

Application program logical levels 566
Link to another program expecting return 566

Passing data to other programs 567
COMMAREA . 567
Channels . 569
INPUTMSG. 569

Using mixed addressing modes 571
Using LINK to pass data . 572
Using RETURN to pass data 574

Chapter 46. Storage control 577
Overview of CICS storage protection and transaction isolation 578

Storage protection . 578
Transaction isolation . 579

Defining the storage key for applications 580
System-wide storage areas 581
Task lifetime storage . 581
Program working storage specifically for exit and PLT programs 581
Passing data by a COMMAREA 581
The GETMAIN command 582

Selecting the execution and storage key 583
User-key applications . 584
CICS-key applications . 584

Using transaction isolation . 587

Contents xv

||

MVS subspaces . 589
Subspaces and basespaces for transactions 589
The common subspace and shared storage 590

Chapter 47. Transient data control 593
Intrapartition transient data queues 593
Extrapartition queues . 594
Indirect queues . 595
Automatic transaction initiation (ATI) 595

Chapter 48. Temporary storage control 597
Temporary storage queues . 597
Typical uses of temporary storage control 598

Part 8. Testing and debugging applications 601

Chapter 49. Testing applications 603
Preparing the application for testing 604
Preparing the system for testing 604

Chapter 50. Execution diagnostic facility (EDF) 607
Restrictions when using EDF 608

OPEN TCBs and EDF. 610
Parameter list stacking . 610
Security considerations . 610

What does EDF display? . 611
The header . 611
The body . 612

Using EDF . 618
Interrupting program execution 619
Using EDF in single-screen mode 620
Using EDF in dual-screen mode 622
EDF and remote transactions 622
EDF and non-terminal transactions 622
EDF and DTP programs . 623
Stopping EDF . 624

Overtyping to make changes 624
EDF responses . 626

Using EDF menu functions . 626

Chapter 51. Temporary storage browse (CEBR) 633
Using the CEBR transaction 633
What does the CEBR transaction display? 635

The header . 635
The command area . 635
The body . 635
The message line . 635

Using the CEBR function keys. 636
Using the CEBR commands 637
Using the CEBR transaction with transient data 639

Chapter 52. Command-level interpreter (CECI) 641
What does CECI display? . 641

The command line . 641
The status line . 642
The body . 646

xvi CICS TS for z/OS: CICS Application Programming Guide

##

The message line . 646
CECI options on function keys. 646

Using CECI. 648
Making changes . 649

Using the CECI function keys 650
Expanded area . 650
Variables. 650
The EXEC interface block (EIB) 652
Error messages display . 652

Saving commands . 653
How CECI runs . 654

CECI sessions . 654
Abends . 654
Exception conditions . 655
Program control commands. 655
Terminal sharing . 655
Shared storage: ENQ commands without LENGTH option 655

Chapter 53. Using debuggers with CICS applications 657
Debugging profiles . 658
Using debugging profiles to select programs for debugging 659
Using generic parameters in debugging profiles 661

Chapter 54. Debugging CICS applications from a workstation. 663
Preparing to debug applications from a workstation 663

Chapter 55. Using Debug Tool with CICS applications 665
About Debug Tool . 665
Preparing to debug applications with Debug Tool 665

Part 9. Appendixes . 667

Appendix A. Using the phonetic conversion subroutine DFHPHN 669

Appendix B. Migration for OS/VS COBOL programs 671
Conversion to Enterprise COBOL 671

Based addressing . 671
Artificial assignments . 673

Bibliography . 675
The CICS Transaction Server for z/OS library 675

The entitlement set . 675
PDF-only books . 675

Other CICS books . 677
Books from related libraries . 677

DL/I . 677
DB2 . 677
Screen definition facility II (SDF II) 677
Common programming interface 678
Common user access . 678
Programming languages . 678
Teleprocessing Network Simulator (TPNS) 678
Language Environment: . 678
Miscellaneous books . 679

Determining if a publication is current 679

Contents xvii

##

Accessibility . 681

Index . 683

Notices . 701
Trademarks. 702

Sending your comments to IBM 703

xviii CICS TS for z/OS: CICS Application Programming Guide

Preface

What this book is about
This book gives guidance about the development of procedural application
programs that use the CICS® EXEC application programming interface to access
CICS services and resources; it complements the reference information in the
CICS Application Programming Reference manual. For guidance information on
debugging such CICS applications, see the CICS Problem Determination Guide.
For guidance on developing application programs using the Java™ language, see
Java Applications in CICS, and for guidance on using the CICS OO classes, see
CICS C++ OO Class Libraries.

Who should read this book
This book is mainly for experienced application programmers. Those who are
relatively new to CICS should be able to understand it. If you are a system
programmer or system analyst, you should still find it useful.

What you need to know to understand this book
You must be able to program in COBOL, C, C++, PL/I, or assembler language, and
have a basic knowledge of CICS application programming, at the Designing and
Programming CICS Applications level.

How to use this book
Read the parts covering what you need to know. (Each part has a full table of
contents to help you find what you want.) The book is a guide, not a reference
manual. On your first reading, it probably helps to work through any one part of it
more or less from start to finish.

Notes on terminology
API refers to the CICS command-level application programming interface unless

otherwise stated.

ASM is sometimes used as the abbreviation for assembler language.

MVS™ refers to the operating system, which can be either an element of z/OS® ,
OS/390®, or MVS/Enterprise System Architecture System Product
(MVS/ESA SP).

VTAM®

refers to ACF/VTAM.

In the sample programs described in this book, the dollar symbol ($) is used as a
national currency symbol and is assumed to be assigned the EBCDIC code point
X'5B'. In some countries a different currency symbol, for example the pound symbol
(£), or the yen symbol (¥), is assigned the same EBCDIC code point. In these
countries, the appropriate currency symbol should be used instead of the dollar
symbol.

What is not covered in this book
Guidance for usage of the CICS Front End Programming Interface is not discussed
in this book. See the CICS Front End Programming Interface User's Guide for
background information about FEPI design considerations and programming
information about its API.

© Copyright IBM Corp. 1989, 2010 xix

Guidance for usage of the EXEC CICS WEB commands is not discussed in this
book. See the CICS Internet Guide for this information.

Guidance for the use of object oriented programming languages and techniques is
not included in this book. For guidance on developing application programs using
the Java language, see Java Applications in CICS, and for guidance on using the
CICS OO classes, see CICS C++ OO Class Libraries.

xx CICS TS for z/OS: CICS Application Programming Guide

Summary of changes

This book is based on the CICS Application Programming Guide for CICS
Transaction Server for z/OS, Version 2 Release 3. Changes from that edition are
marked by vertical bars in the left margin.

Changes for CICS Transaction Server for z/OS, Version 3 Release 1
The more significant changes for this edition are:

v Technical changes:

– Enhanced inter-program data transfer: channels as modern-day COMMAREAs
is a new chapter that describes how programs can use “channels” and
“containers” to exchange data.

Structural changes :

v The chapter “Writing Web-aware application programs” has been moved to the
CICS Internet Guide.

Changes for CICS Transaction Server for z/OS, Version 2 Release 3
The more significant changes for this edition are:

v Technical changes:

– Chapter 53, “Using debuggers with CICS applications,” on page 657,
Chapter 54, “Debugging CICS applications from a workstation,” on page 663
and Chapter 55, “Using Debug Tool with CICS applications,” on page 665
have been added.

There are no significant structural changes.

Changes for CICS Transaction Server for z/OS, Version 2 Release 2
The more significant changes for this edition are:

v Technical changes:

– The use of Language Environment® is assumed in all programming guidance
information.

v Structural changes :

– Information in “Creating a document” on page 325, describing the use of
document templates, has been expanded to incorporate information that was
previously in the CICS Internet Guide

Changes for CICS Transaction Server for z/OS, Version 2 Release 1
The following new function has been added:

v Support for an integrated translator. Some compilers can now interpret CICS
commands and translate them without the need for a separate translation step,
see “The integrated CICS translator” on page 67.

Changes have been made to titles and headings throughout the book, to make
them more meaningful, particularly when the book is explored online in the CICS
Information Center. Links and cross references have been improved.

v Part 1, Writing CICS applications, has been expanded to include an introduction
to basic CICS concepts and an application development roadmap. See “CICS
programming roadmap” on page 7.

© Copyright IBM Corp. 1989, 2010 xxi

v Part 2 in the previous edition, Object Oriented programming in CICS, has been
removed. For guidance on developing application programs using the Java
language, see the Java Applications in CICS component of the CICS Information
Center, and for guidance on using the CICS OO classes, see CICS C++ OO
Class Libraries.

v A new part 2 has been introduced, to bring together all information needed to
translate and compile CICS applications. Chapters describing the installation of
CICS programs and maps have been moved here from the CICS System
Definition Guide.

v Part 3, Application design, now separates general application design concepts,
see Chapter 11, “Application design,” on page 139, from application design for
performance, see Chapter 12, “Design for performance,” on page 165.

v BMS has been restructured into separate chapters, to form a new Part 6.

v The previous Appendix 1, mapping EXEC CICS commands to obsolete CICS
macros has been removed.

Changes for CICS Transaction Server for OS/390, Version 1 Release 3
The following significant changes were made for this edition.

v The addition of the JCICS Java classes to access CICS services from Java
application programs. Now moved to the Java Applications in CICS component of
the CICS Information Center

v Support for running CICS Java programs using the VisualAge® for Java,
Enterprise Edition for OS/390. Now moved to the Java Applications in CICS
component of the CICS Information Center.

v Support for running CICS Java programs using the CICS Java Virtual Machine
(JVM). Now moved to the Java Applications in CICS component of the CICS
Information Center.

v The addition of sysplex-wide ENQ and DEQ. See “Using ENQ and DEQ
commands with ENQMODEL resource definitions” on page 228.

v The addition of support for coupling facility data tables (CFDT). See “Coupling
facility data tables” on page 292.

v Support for named counter servers. See Chapter 25, “Named counter servers,”
on page 341.

v Support for documents, and the EXEC CICS DOCUMENT commands. See
Chapter 24, “CICS documents,” on page 325.

v The programming considerations section has been reorganized into separate
chapters for each supported language, including new chapters for OO and Java
support in CICS.

xxii CICS TS for z/OS: CICS Application Programming Guide

Part 1. Writing CICS Applications

Chapter 1. What is a CICS application? 3
CICS programs, transactions and tasks 3

Chapter 2. CICS programming 5
CICS programming commands 5

System programming commands. 6
EXEC interface block (EIB) . 6

Translation . 6
Translator Options . 6

Testing for CICS . 7
CICS programming roadmap . 7

Chapter 3. Language Environment 9
Language Environment services 10
Using Language Environment Abend-handling 12

User-written Language Environment condition handlers 12
Managing Language Environment storage 13
Mixing languages in Language Environment 13
Using Dynamic Link Libraries and Language Environment 15
Defining runtime options for Language Environment 16

Runtime options in child enclaves 18
CEEBXITA coding . 18
Determining which options were used 19

Writing a CEEBINT initialization exit for Language Environment 19

Chapter 4. Programming in COBOL 21
COBOL programming considerations 22

COBOL programming restrictions 23
Language Environment CBLPSHPOP option 25
Using the DL/I CALL interface 25

Considerations for VS COBOL II programs 26
Using based addressing with COBOL 27

Using WITH DEBUGGING MODE 28
Calling subprograms from COBOL. 28

Rules for calling subprograms 30
Translation . 30
Compilation . 30
Link-editing . 30
CICS CSD entries without program autoinstall 30
Return from subprogram 31
Language of subprogram 31
Contents of subprogram 31
Passing parameters to subprogram 31
Storage . 31
CICS condition, AID and abend handling 32
Location of subprogram. 32

Flow of control between programs and subprograms 32
Using the COBOL2 and COBOL3 translator options 34

Literals intervening in blank lines 35
Lower case characters . 35
Sequence numbers containing any character 35
REPLACE statement. 35
Batch compilation . 36

© Copyright IBM Corp. 1989, 2010 1

Nested programs . 38
Integrated CICS translator 38
Translator action . 38
Comments in translator input 39
Nesting: what the application programmer must do 39
An example of a nested program 39

Reference modification . 41
Global variables . 42
Comma and semicolon as delimiters 42
Symbolic character definition 42

Chapter 5. Programming in C and C++ 43
C and C++ programming considerations 43

XPLink considerations for C and C++ programming 46
XPLink, and the X8 and X9 TCBs 47
Writing C and C++ programs, which are to be compiled with the XPLINK

option, for the CICS environment 48
Passing control between XPLink and non-XPLink objects 48
Changing CICS definitions to obtain CICS support for objects compiled

with the XPLINK option 48
Global User exits and XPLink 48

Passing arguments in C or C++. 49
Accessing the EIB. 50

Naming EIB fields . 50
Data types in EIB fields. 50

Locale support for C and C++ 51
Programming in C++. 51

Restrictions . 51

Chapter 6. Programming in PL/I 53
PL/I programming restrictions 53
Language Environment considerations for PL/I applications 54

Chapter 7. Programming in Assembler 57
Language Environment considerations for Assembler applications 58
Calling Assembler programs . 60

2 CICS TS for z/OS: CICS Application Programming Guide

||
||
|
||
||
|
||
||

Chapter 1. What is a CICS application?

An application is a collection of related programs that together perform a business
operation, such as processing a product order or preparing a company payroll.
CICS applications execute under CICS control, using CICS services and interfaces
to access programs and files.

CICS is a transaction processing subsystem. That means that it provides services
for you to run applications online, by request, at the same time as many other users
are submitting requests to run the same applications, using the same files and
programs. CICS manages the sharing of resources; integrity of data and
prioritization of execution, with fast response.

CICS applications are traditionally run by submitting a transaction request.
Execution of the transaction consists of running one or more application programs
that implement the required function. In CICS documentation you may find CICS
application programs sometimes simply called programs, and sometimes the term
transaction is used to imply the processing done by the application programs.

CICS applications can also take the form of Enterprise JavaBeans. You can find out
more about this form of programming in Java Applications in CICS in the CICS
Information Center.

You should note that the term transaction is now used extensively in the IT
industry to describe a unit of recovery or what CICS calls a unit of work. This is
typically a complete operation that is recoverable; it can be committed or backed
out as an entirety as a result of programmed command or system failure. In many
cases the scope of a CICS transaction is also a single unit of work, but you should
be aware of the difference in meaning when reading CICS documentation.

CICS programs, transactions and tasks
To develop and run CICS applications, you need to understand the relationship
between CICS programs, transactions and tasks. These terms are used throughout
CICS documentation and appear in many commands.:

Transaction

A transaction is a piece of processing initiated by a single request. This is
usually from an end-user at a terminal, but may also be made from a Web
page, from a remote workstation program, from an application in another
CICS system or triggered automatically at a predefined time. TheCICS
Internet Guide and the CICS External Interfaces Guide describe different
ways of running CICS transactions.

A single transaction consists of one or more application programs that,
when run, carry out the processing needed.

However, the term transaction is used in CICS to mean both a single
event and all other transactions of the same type. You describe each
transaction type to CICS with a TRANSACTION resource definition. This
definition gives the transaction type a name (the transaction identifier, or
TRANSID) and tells CICS several things about the work to be done; such
as what program to invoke first, and what kind of authentication is required
throughout the execution of the transaction.

© Copyright IBM Corp. 1989, 2010 3

You run a transaction by submitting its TRANSID to CICS. CICS uses the
information recorded in the TRANSACTION definition to establish the
correct execution environment, and starts the first program.

The term transaction is now used extensively in the IT industry to describe
a unit of recovery or what CICS calls a unit of work. This is typically a
complete operation that is recoverable; it can be committed or backed out
as an entirety as a result of programmed command or system failure. In
many cases the scope of a CICS transaction is also a single unit of work,
but you should be aware of the difference in meaning when reading
non-CICS documentation.

Task You will also see the word task used extensively in CICS documentation.
This word also has a specific meaning in CICS. When CICS receives a
request to run a transaction, it starts a new task that is associated with this
one instance of the execution of the transaction. type. That is, one
execution of a transaction, with a particular set of data, usually on behalf of
a particular user at a particular terminal. You can also consider it as
analogous to a thread.. When the transaction completes, the task is
terminated.

4 CICS TS for z/OS: CICS Application Programming Guide

Chapter 2. CICS programming

You write a CICS program in much the same way as you write any other program.
You can use COBOL, C, C++, Java, PL/I, or assembler language to write CICS
application programs. Most of the processing logic is expressed in standard
language statements, but you use CICS commands, or the Java and C++ class
libraries to request CICS services.

This book describes the use of the CICS command level programming interface,
'EXEC CICS', that can be used in COBOL, C, C++, PL/I or assembler programs.
These commands are defined in detail in the CICS Application Programming
Reference.

Programming in Java with the JCICS class library is described in the Java
Applications in CICS component of the CICS Information Center.

Programming in C++ with the CICS C++ classes is described in the CICS C++ OO
Class Libraries documentation.

For information about writing Web applications to process HTTP/1.0 requests and
responses, see the CICS Internet Guide.

For further guidance on language use with CICS, see Chapter 4, “Programming in
COBOL,” on page 21, Chapter 5, “Programming in C and C++,” on page 43,
Chapter 6, “Programming in PL/I,” on page 53..

CICS allows you to use SQL statements, DLI requests, CPI statements, and the
CICS Front End Programming Interface (FEPI) commands in your program as well
as CICS commands. You need to consult additional manuals for information:

v SQL Reference manual and the Application Programming and SQL Guide (for
SQL)

v Application Programming:EXEC DLI Commands manual and the Application
Programming: DL/I Calls manual (for DL/I)

v IBM SAA: CPI Reference manual and the SAA Common Programming Interface
for Resource Recovery Reference manual (for CPI)

v CICS Front End Programming Interface User's Guide (for programming
information about FEPI commands)

CICS programming commands
The general format of a CICS command is EXECUTE CICS (or EXEC CICS)
followed by the name of the required command and possibly one or more options.

You can write many application programs using the CICS command-level interface
without any knowledge of, or reference to, the fields in the CICS control blocks and
storage areas. However, you might need to get information that is valid outside the
local environment of your application program.

You can use the ADDRESS and ASSIGN commands to access such information.
For programming information about these commands, see the CICS Application
Programming Reference manual.

When using the ADDRESS and ASSIGN commands, various fields can be read but
should not be set or used in any other way. This means that you should not use

© Copyright IBM Corp. 1989, 2010 5

any of the CICS fields as arguments in CICS commands, because these fields may
be altered by the EXEC interface modules.

System programming commands
The INQUIRE, SET, and PERFORM commands allow application programs to
access information about CICS resources. The application program can retrieve and
modify information for CICS data sets, terminals, system entries, mode names,
system attributes, programs, and transactions. These commands plus the spool
commands of the CICS interface to JES, are primarily for the use of the system
programmer. For programming information, see the CICS System Programming
Reference manual.

EXEC interface block (EIB)
In addition to the usual CICS control blocks, each task in a command-level
environment has a control block known as the EXEC interface block (EIB)
associated with it. An application program can access all of the fields in the EIB by
name. The EIB contains information that is useful during the execution of an
application program, such as the transaction identifier, the time and date (initially
when the task is started, and subsequently, if updated by the application program
using ASKTIME), and the cursor position on a display device. The EIB also contains
information that is helpful when a dump is used to debug a program. For
programming information about EIB fields, see the CICS Application Programming
Reference manual.

Translation
Most compilers (and assemblers) cannot process CICS commands directly. This
means that an additional step is needed to convert your program into executable
code. This step is called translation, and consists of converting CICS commands
into the language in which the rest of the program is coded, so that the compiler (or
assembler) can understand them.

Some compilers now contain integrated translators that can interpret CICS
commands and convert them automatically to calls to CICS service routines. If you
use one of these compilers, you do not need to perform the translation tasks
described in “The translation process” on page 69.

CICS provides a translator program for each of the languages in which you may
write, to handle both EXEC CICS and EXEC DLI statements.

Translator Options
You can specify a number of options for the translation process, and you may need
to do this for certain types of programs. If you are using EXEC DLI, for example,
you need to tell the translator this fact. “Using a CICS translator” on page 73
explains how to specify options, and “Defining translator options” on page 74
defines the options available.

6 CICS TS for z/OS: CICS Application Programming Guide

Testing for CICS
Your program can determine whether it is running in CICS in two different ways:

iscics
If you are adapting an existing C language program or writing a new program
that is designed to run outside CICS as well as under CICS, the C language
iscics() function may prove useful. It returns a non-zero value if your program is
currently running under CICS, or zero otherwise. This function is an extension
to the C library.

DFH3QSS
Your program can call the DFH3QSS program to query the CICS environment
and API capability. Link DFH3QSS statically linked into your own application.
On return, register 15 addresses a result structure that consists of a half-word
length (that includes itself) followed by a reserved half-word (currently zero)
followed by a bit string:

Bit 0 When set to 1, this means that the caller is running in a CICS
environment (on a CICS-managed TCB or one of its
descendants).

Bit 1 When set to 1, this means that the CICS API is available to the
caller (in the current PSW key, ASC-mode, AMODE and
cross-memory environment).

The output structure remains accessible as long as the TCB under which the
request was issued has not terminated and DFH3QSS itself is still present in virtual
storage. Any change of execution state (such as PSW key, ASC-mode, AMODE or
cross-memory environment) might affect the availability of the CICS API. Registers
are preserved.

CICS programming roadmap
Follow these steps to develop a CICS application that uses the EXEC CICS
command level programming interface:

1. Design your application, identifying the CICS resources and services you will
use. See Chapter 11, “Application design,” on page 139 and Chapter 12,
“Design for performance,” on page 165 for guidance on designing CICS
applications.

2. Write your program in the language of your choice, including EXEC CICS
commands to request CICS services. See the CICS Application Programming
Reference for a list of CICS commands.

3. If you are using a compiler that incorporates “The integrated CICS translator” on
page 67, you will only need to compile your program, and then install it in CICS,
using the process described in “Program installation roadmap” on page 99.
Otherwise, you will need to define translator options for your program, using the
process described in “Using a CICS translator” on page 73, and then translate
and compile your program, and install it in CICS, using the process described in
“Program installation roadmap” on page 99.

4. Define your program and related transaction to CICS with PROGRAM resource
definitions and TRANSACTION resource definitions as described in the CICS
Resource Definition Guide .

5. Define any CICS resources that your program uses, such as files, queues or
terminals.

Chapter 2. CICS programming 7

#

6. Make the resources known to CICS using the CEDA INSTALL command
described in the CICS Resource Definition Guide.

7. Run your program, by entering the transaction identifier at a CICS terminal, or
by using any of the methods described in the CICS External Interfaces Guide
and the CICS Internet Guide.

8 CICS TS for z/OS: CICS Application Programming Guide

Chapter 3. Language Environment

Language Environment, supplied as an element of z/OS, is designed to provide a
common set of runtime libraries to replace the native runtime libraries that were
provided with older compilers such as VS COBOL II, OS PL/I and C/370™.

Before the introduction of Language Environment, each of the high-level languages
(HLLs) had to provide a separate runtime environment. With Language
Environment, you use one runtime environment for your applications, regardless of
the programming language or system resource needs, because most system
dependencies have been removed. This common environment offers two significant
advantages:

1. You can mix all the languages supported by CICS in a single program.

2. The same Language Environment callable services are available to all
programs. This means, for example, that:

v A linked-list created with storage obtained using Language Environment
callable services in a PL/I program can be processed later and the storage
freed using the callable services from a COBOL routine.

v The currency symbol to be used on a series of reports can be set in an
assembler routine, even though the reports themselves are produced by
COBOL programs.

v System messages from programs written in different languages are all sent to
the same output destination.

See the z/OS: Language Environment Concepts Guide for more information.

Because of these advantages, high-level language support under CICS depends
upon Language Environment.

The CICS programming guidance documentation requires that your CICS system is
using the services of Language Environment, which provides a common runtime
environment for IBM® implementations of assembler and those high-level languages
(HLLs) supported by CICS, namely COBOL, PL/I, C, and C++.

CICS supports application programs compiled using most of the compilers that are
supported by Language Environment. For a list of compilers that are supported in
this release of CICS Transaction Server for z/OS, see the CICS Release Guide.

Most of the compilers supported by CICS and Language Environment are
Language Environment-conforming compilers, meaning that programs compiled by
these compilers can take advantage of all Language Environment facilities in a
CICS region. CICS and Language Environment also support programs compiled by
some pre-Language Environment compilers (which are not Language
Environment-conforming). However, CICS does not support all the pre-Language
Environment compilers which are supported by Language Environment. The
following pre-Language Environment compilers are supported by Language
Environment, but are unsupported in this release of CICS:

v OS PL/1 Versions 1 and 2

v C/370 V1 and V2

The following pre-Language Environment compilers are supported by Language
Environment and supported by CICS:

v AD/Cycle C/370 V1R1

© Copyright IBM Corp. 1989, 2010 9

|
|
|

v VS COBOL II

Note: Support for OS/VS COBOL programs is now withdrawn. These programs,
which had runtime support in CICS Transaction Server for z/OS Version 2,
cannot run under CICS Transaction Server for z/OS Version 3. OS/VS
COBOL programs must be upgraded to a supported level of COBOL, and
recompiled against a level of COBOL compiler supported by CICS.

See Appendix B, “Migration for OS/VS COBOL programs,” on page 671 for
notes on converting OS/VS COBOL programs to Enterprise COBOL. The
Enterprise COBOL for z/OS: Compiler and Run-Time Migration Guide has
more detailed information about language differences, and describes facilities
to help with conversion.

Applications compiled and linked with pre-Language Environment compilers usually
execute successfully using the runtime support provided by Language Environment.
They do not usually have to be recompiled or re-link-edited. In some circumstances,
you might need to adjust Language Environment runtime options to enable these
applications to execute correctly. Refer to the Language Environment Run-Time
Application Migration Guide, and the Compiler and Run-Time Migration Guide for
the language in use, for further information. Because these compilers are not
Language Environment conforming, programs compiled by these compilers cannot
take advantage of all Language Environment facilities in a CICS region.

The native runtime libraries provided with pre-Language Environment compilers are
not supported. Language libraries, other than the Language Environment libraries,
should not be present in your CICS startup JCL. If, perhaps for commonality with
other CICS systems, the JCL for your CICS startup job includes other language
libraries, the Language Environment libraries must be above all the other language
libraries in the JCL concatenations of the CICS startup job for both STEPLIB and
DFHRPL. This ensures that the programs are processed by Language Environment.

When modifying existing application programs, or writing new programs, you must
use a compiler supported by Language Environment. This requires that your
application programs must be link-edited using the Language Environment
SCEELKED library, and this in turn means that the resulting application load module
can execute only under Language Environment.

CICS Transaction Server for z/OS Version 3 allows you to produce Language
Environment-conforming assembler MAIN programs. For more information about
assembler programs, see Chapter 7, “Programming in Assembler,” on page 57.

Language Environment services
The following points apply to all programs using Language Environment under
CICS.

Callable services
Language Environment provides callable services, which are classified in the
following categories:

Storage services
These allow you to allocate and free storage from the Language
Environment heaps.

10 CICS TS for z/OS: CICS Application Programming Guide

|
|
|
|
|

|
|
|
|
|

|
|
|

Error handling services
These provide a common method of obtaining information to enable you to
process errors.

Message services
These provide a common method of handling and issuing messages.

Date and time
These allow you to read, calculate, and write values representing the date
and time. Language Environment offers unique pattern-matching capabilities
that let you process almost any date and time format contained in an input
record or produced by operating system services.

National language support
These allow you to customize Language Environment output (such as
messages, RPTOPTS reports, RPTSTG reports, and dumps) for a given
country.

Locale
These allow you to customize culturally-sensitive output for a given national
language, country, and codeset by specifying a locale name.

General
These are a set of callable services that are not directly related to a specific
Language Environment function, for example, dump.

Mathematical
These allow you to perform standard mathematical computations.

These services are normally only available to programs compiled with
Language Environment-conforming compilers. As an exception, VS COBOL II
programs can make dynamic calls to the date and time callable services, but
they cannot make any other dynamic calls or any static calls to Language
Environment callable services.

For further information about the details of these services, see the z/OS:
Language Environment Programming Guide. For information about the syntax
required to call any of the services, see the z/OS: Language Environment
Programming Reference.

CICS condition and AID handling
Language Environment condition handling does not alter the behavior of
applications that use CICS HANDLE CONDITION or HANDLE AID commands.
Language Environment is not involved in the handling of CICS-defined
exception conditions, which are raised and handled only by CICS. Similarly, AID
detection is a CICS function unaffected by Language Environment .

Abend handling
Language Environment Abend handling depends on the use of CICS HANDLE
ABEND. See “Using Language Environment Abend-handling” on page 12for
details.

Storage
Language Environment uses storage obtained from CICS for each run-unit. See
“Managing Language Environment storage” on page 13 for information about
CICS parameters to control this.

Message and dump destinations
When the CEEMOUT (dispatch a message) and CEE3DMP (generate dump)
services are running under CICS, both the messages and dumps are sent to a
transient data queue called CESE, and not to their usual destinations. These

Chapter 3. Language Environment 11

usual destinations are the ddname specified in the MSGFILE runtime option for
messages and the ddname given in the fname argument of the CEE3DMP
service for dumps. CICS ignores both of these ddnames.

Using Language Environment Abend-handling
When a CICS application is running under Language Environment , the action taken
when a task is scheduled for abnormal termination depends on whether a CICS
HANDLE ABEND is active or not active.

When a HANDLE ABEND is active, Language Environment condition handling does
not gain control for any abends or program interrupts, and any user-written
condition handlers that have been established by CEEHDLR are ignored. Instead,
the action defined in the CICS HANDLE ABEND takes place.

When a CICS HANDLE ABEND is not active, Language Environment condition
handling does gain control for abends and program interrupts if the runtime option
TRAP(ON) is specified. Normal Language Environment condition handling is then
performed. If TRAP(OFF) is specified, no error handling takes place; the abend
proceeds. For details of the actions taken during normal Language Environment
condition handling, see the z/OS: Language Environment Programming Guide.

User-written Language Environment condition handlers
The runtime option USRHDLR allows you to register a user-written condition
handler at the highest level. At a lower level, for example after a subroutine CALL,
you can use the CEEHDLR service to register a condition handler for that level.
This lower level handler is automatically unregistered on return from the lower level.
If desired you can explicitly unregister it by using the CEEHDLU service. For an
explanation of stack levels and for details of the USRHDLR runtime option and the
CEEHDLR and CEEHDLU services, see the z/OS: Language Environment
Programming Guide.

If you write your own user-written Language Environment condition handler (other
than in COBOL), you can use most CICS commands, provided they are coded with
a NOHANDLE, RESP or RESP2 option, to prevent further conditions being raised
during execution of the condition handler. The only commands you cannot use are
the following, which must not appear in either the condition handler or any program
it calls:
v ABEND
v HANDLE ABEND
v HANDLE AID
v HANDLE CONDITION
v IGNORE CONDITION
v POP HANDLE
v PUSH HANDLE

Unless you use the NOLINKAGE translator option (see “NOLINKAGE” on page 80),
do not use the CICS translator to translate a COBOL user-written condition handler
that you have registered for a routine using the CEEHDLR service. This is because
the CICS translator adds two extra arguments to the PROCEDURE DIVISION
header of the COBOL program, the EXEC Interface Block (EIB) and the
COMMAREA. These arguments do not match the arguments passed by Language
Environment. A COBOL condition handler cannot, therefore, contain any CICS
commands.

12 CICS TS for z/OS: CICS Application Programming Guide

However, a user-written condition handler can call a subroutine to perform CICS
commands (and this could be a COBOL routine). If you need to pass arguments to
this subroutine, place two dummy arguments before them in the caller. The called
subroutine must issue EXEC CICS ADDRESS EIB(DFHEIPTR) before executing
any other CICS commands.

For full details of the required interface to any Language Environment condition
handling routine, see the z/OS: Language Environment Programming Guide.

Managing Language Environment storage
When each program is first used, Language Environment tells CICS how much
storage the run unit work area (RUWA) requires. The allocation of storage depends
on the setting of the CICS system initialization parameter, RUWAPOOL.

If you specify RUWAPOOL=NO, at the start of each CICS link level, CICS issues a
GETMAIN for this storage and passes it to Language Environment to use for its
control blocks and for storage areas such as STACK, LIBSTACK, and HEAP. The
storage is acquired in the default key specified on the transaction. The storage is
freed (using FREEMAIN) when the program terminates.

If you specify RUWAPOOL=YES, the first run of a transaction is the same as with
RUWAPOOL=NO, but CICS keeps a history of the total storage for RUWAs that is
requested to run the transaction. This means that when the transaction is run again,
CICS issues a single GETMAIN for the total storage (and a single FREEMAIN at
task end), creating a RUWAPOOL. If the transaction follows the same path, CICS
allocates the storage from the RUWAPOOL, and no further GETMAIN has to be
issued. If more storage is required for RUWAs because of different or extra CICS
links, CICS issues a GETMAIN and updates the history, so that next time the single
GETMAIN (and FREEMAIN) is for the larger amount. For transactions that issue a
large number of CICS LINK commands, the performance improvement can be
considerable.

If you specify AUTODST=YES, CICS indicates to Language Environment that it is
able to support dynamic storage tuning (see the CICS System Definition Guide).

If a program specifies a runtime option of ALL31(OFF) and Language Environment
needs to use storage below the 16MB line, two areas of storage are allocated, one
below 16MB and one above the 16MB line.

If necessary, any application can obtain CICSDATAKEY or USERDATAKEY storage
by using a CICS GETMAIN command. However, a program with an EXECKEY of
USER cannot use CICSDATAKEY storage.

Mixing languages in Language Environment
This section tells you how to build an application that is composed of programs that
have been written in different high-level source languages.

Assembler subroutines called from an HLL program are fairly straightforward and
not uncommon. A subroutine called from one HLL but written in another needs
much more careful consideration and involves what is called interlanguage
communication (ILC). Language Environment defines an ILC application as one
built of two or more HLLs and, optionally, assembler. See z/OS Language
Environment Writing Interlanguage Communication Applications for full details on
this subject.

Chapter 3. Language Environment 13

Language Environment dictates that if there is any ILC within a run unit under
CICS, each compile unit must be compiled with a Language Environment-
conforming compiler. CICS supports three HLLs: C/C++, COBOL, and PL/I. We
consider the interfaces in pairs. If your application contains only two HLLs, consult
the appropriate section. If your application contains all three HLLs, consult those
sections corresponding to each of the interfaces within your application.

C/C++ and COBOL
The conditions under which Language Environment supports ILC between
routines written in C/C++ and COBOL depend on the following:

v Whether the language is C or C++

v Which COBOL compiler is being used and whether or not DLL is specified as
a compiler option

v Whether the call is static or dynamic

v Whether the function being invoked is within the module or exported from a
DLL

v Whether or not the program is reentrant

v What, if any, #pragma linkage statement you have in your C program

v Whether your C program exports functions or variables

v What, if any, extern statement you have in your C++ program

The results of all this are specified in five tables in z/OS Language Environment
Writing Interlanguage Communication Applications; you should consult this book
if your application mixes C/C++ and COBOL.

C/C++ and PL/I
Under CICS, if all the components of your C/C++ and PL/I application are
reentrant, Language Environment supports ILC between routines compiled by
OS/390 C/C++ and PL/I for MVS & VM or VisualAge PL/I for OS/390 as follows:

v C/C++ routines can statically call PL/I routines and PL/I routines can statically
call C/C++ routines.

v C/C++ routines can fetch() PL/I routines that have OPTIONS(FETCHABLE)
specified. If the called routine contains any CICS commands, then C/C++
must pass the EIB and the COMMAREA as the first two parameters on the
call statement.

v PL/I routines can FETCH only those OS/390 C/C++ routines that have not
been processed by the CICS translator. This is because during the dynamic
call certain static fields created by the translator cannot be correctly set.

COBOL and PL/I
Under CICS, Language Environment supports ILC between routines compiled
with Language Environment-supported COBOL and PL/I compilers, as follows:

v COBOL routines can statically call PL/I routines, and PL/I routines can
statically call COBOL routines.

v COBOL programs can dynamically call PL/I routines that have
OPTIONS(FETCHABLE) specified and PL/I routines can FETCH COBOL
programs.

If the called routine contains any CICS commands then the calling routine must
pass the EIB and the COMMAREA as the first two parameters on the CALL
statement.

Assembler
The following rules apply:

14 CICS TS for z/OS: CICS Application Programming Guide

v You can make static or dynamic calls from any Language
Environment-conforming HLL program to a Language Environment-
conforming assembler subroutine. Conversely, a Language
Environment-conforming assembler routine can make a static call to any
Language Environment-conforming routine, and can dynamically load another
routine, either assembler or HLL, by using either of the Language
Environment macros CEEFETCH or CEELOAD.

v You cannot delete (release) an ILC module that has been loaded using
CEELOAD.

v You can use the CEERELES macro to release an ILC module which has
been fetched using CEEFETCH.

v Use the language that fetched it to delete an assembler routine. This can
only be done from C/C++, COBOL, and PL/I, if there is no ILC with PL/I in
the module being released.

Additionally, you can make static calls from any Language Environment-
conforming HLL program or assembler subroutine to a non-conforming
assembler subroutine. However, a non-conforming assembler routine cannot
make a static call to any Language Environment-conforming routine, nor can it
fetch or load a conforming routine, since it cannot use the Language
Environment macros.

Note: For assembler to call C or C++, you must include the following
statement:

C #pragma linkage(,OS)

C++ extern "OS"

DL/I
If you are using DL/I in your ILC application under CICS, calls to DL/I, either by
an EXEC DLI statement or by a CALL xxxTDLI, can be made only in programs
with the same language as the main program.

Language Environment does not support CALL CEETDLI under CICS.

Using Dynamic Link Libraries and Language Environment
The z/OS dynamic link library (DLL) facility provides a mechanism for packaging
programs and data into load modules (DLLs) that can be accessed from other
separate load modules. A DLL can export symbols representing routines that can be
called from outside the DLL, and can import symbols representing routines or data
or both in other DLLs, avoiding the need to link the target routines into the same
load module as the referencing routine. When an application references a separate
DLL for the first time, the system automatically loads the DLL into memory.

You should define all potential DLL executable modules as PROGRAM resources to
CICS.

DLL support is available for applications under CICS where the code has been
compiled using any of the compilers listed in the z/OS Language Environment
Programming Guide. See that manual for more information on building and using
DLLs.

Chapter 3. Language Environment 15

Defining runtime options for Language Environment
Language Environment provides runtime options to control your program's
processing. Under CICS, exactly which options apply to the execution of a particular
program depends not only on the program, but also on how it is run. Java programs
and programs initiated from the Web or through CICS IIOP services use the
Language Environment preinitialization module, CEEPIPI. This has its own version
of the CEEDOPT CSECT and such programs get their runtime options from this
CSECT. For normal CICS tasks, such as those started from a terminal, use any of
the methods listed below to set the Language Environment runtime options. The
methods are shown in the order in which they are processed. Each setting could be
overridden by a following one. This is, in effect, a reverse order of precedence.

1. In the CEEDOPT CSECT, where the installation default options for CICS are
located. This CSECT is generated from the CEECOPT sample and is
incorporated into the CEECCICS load module.

2. In the CEEROPT CSECT, where the region-wide default options are located.
This CSECT is link-edited into a load module of the same name and placed in a
data set in the DFHRPL library concatenation for the CICS job.

3. The user replacable program DFHAPXPO (applies to XPLINK programs only).

4. In the CEEUOPT CSECT, where user-supplied application program-level
runtime options are located. This CSECT is linked with the application program
itself.

5. In the application source code using the programming language options
statements, as follows:

v In C programs, through the #pragma runopts statement in the program
source. For example:
#pragma runopts(rptstg(on))

v In PL/I programs, through the PLIXOPT declaration statement within the
program. For example:
DECLARE PLIXOPT CHARACTER(18) VARYING STATIC EXTERNAL INIT(’RPTOPTS(ON) NOSTAE’);

Note: There is no source code mechanism that allows the setting of runtime
options within COBOL programs or within C++ programs.

6. In the Language Environment options specified in a debugging profile. For more
information, see “Debugging profiles” on page 658.

In most installations, the first method in the list above is not available to application
programmers, and the second is often not available. However, application
programmer can use the last two methods. They are in effect equivalent (some of
the newer compilers make them equivalent by generating a CEEUOPT CSECT
when PLIXOPT is declared). Choose either methods 3 or method 4; do not attempt
to use both methods. For details of generating a CEEUOPT CSECT to link with
your application, see z/OS Language Environment Customization.

Notes:

1. Both CEEDOPT and CEEROPT are able to set any option so that it cannot be
overridden by a later specification.

2. Under CICS many of the Language Environment option settings are ignored.
These are all the Fortran-only options plus the following:

ABPERC AIXBLD CBLOPTS CBLQDA

DEBUG EXECOPS INTERRUPT LIBRARY

MSGFILE NONIPTSTACK PLITASKCOUNT POSIX

16 CICS TS for z/OS: CICS Application Programming Guide

|

RTEREUS RTLS SIMVRD THREADHEAP

VERSION

3. CICS provides an environment variable called CICSVAR to allow the
CONCURRENCY and API program attributes to be closely associated with the
application program itself by using the ENVAR runtime option. Whilst it may be
used in a CEEDOPT CSECT to set an installation default, it is most useful to be
set in a CEEUOPT CSECT linkedited with an individual program, or set via a
#pragma statement in the source of a C or C++ program, or set via a PLIXOPT
statement in a PL/I program.

For example, when a program has been coded to threadsafe standards it can
be defined as such without having to change an PROGRAM resource definition,
or adhere to an installation defined naming standard to allow a program
autoinstall exit to install it with the correct attributes. CICSVAR can be used for
Language Environment conforming assembler, for PLI, for COBOL and for C
and C++ programs (both those compiled with the XPLINK option, and those
compiled without it) that have been compiled using a Language Environment
conforming compiler. CICSVAR cannot be used for assembler programs that are
not Language Environment conforming or for java programs.

Use of CICSVAR overrides the settings on a PROGRAM resource definition
installed via standard RDO interfaces, or via program autoinstall. Prior to the
program being run for the first time, an INQUIRE PROGRAM command shows
the keyword settings from the program definition. Once the application has been
run once, an INQUIRE PROGRAM command shows the settings with any
CICSVAR overrides applied. CICSVAR can take one of three values,
QUASIRENT, THREADSAFE or OPENAPI.

CICSVAR=QUASIRENT results in a program with attributes
CONCURRENCY(QUASIRENT) APIST(CICSAPI)

CICSVAR=THREADSAFE results in a program with attributes
CONCURRENCY(THREADSAFE) APIST(CICSAPI)

CICSVAR=OPENAPI results in a program with attributes
CONCURRENCY(THREADSAFE) APIST(OPENAPI)

An example of ENVAR coded in a CEEUOPT CSECT is given below:
CEEUOPT CSECT
CEEUOPT AMODE ANY
CEEUOPT RMODE ANY

CEEXOPT ENVAR=(’CICSVAR=THREADSAFE’)
END

This can be assembled and linkedited into a into a load module and then the
CEEUOPT load module linkedited together with any language program
supported by Language Environment as explained above.

Alternatively for C and C++ programs, add the following statement at the start of
the program source before any other C statements:
#pragma runopts(ENVAR(CICSVAR=THREADSAFE))

For PL/I programs add the following statement following the PL/I MAIN
procedure statement:
DCL PLIXOPT CHAR(25) VAR STATIC EXTERNAL INIT(’ENVAR(CICSVAR=THREADSAFE)’);

Chapter 3. Language Environment 17

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|

|

|
|

|

Finally, be aware that , after all the above changes, there are two exits that are
called in the following order and both of these can change some of the options as
follows:

1. By setting the CEEAUE_A_OPTION return parameter of the CEEBXITA
Language Environment user exit (apart from the LIBRARY, RTLS, STACK, and
VERSION options).

2. In the storage tuning user exit, CEECSTX, the options STACK, LIBSTACK,
HEAP, ANYHEAP, and BELOWHEAP can be set.

The storage tuning exit, like the CEEROPT CSECT, is region wide, but CEEBXITA
is linked into every program. Language Environment calls CEEBXITA the assembler
exit because, like CEECSTX, it is invoked before the environment is fully
established and must therefore be coded in assembler.

Language Environment supplies a sample source version of CEEBXITA in the
SCEESAMP library (it simply returns to its caller for whatever reason it is called).
You can use this as it is or modify it for use as the installation default version.
However, you can link-edit a specifically tailored version of CEEBXITA with any
application program and this version is then used instead of the installation default
version. Take great care if you choose this method since CEEBXITA is invoked for
up to five different reasons during the course of program execution, and an
application-specific version of CEEBXITA must be capable of handling all these
invocations.

For more details on both CEEBXITA and CEECSTX see z/OS Language
Environment Customization.

Runtime options in child enclaves
Under CICS the execution of a CICS LINK command creates what Language
Environment calls a Child Enclave. A new environment is initialized and the child
enclave gets its runtime options exactly as discussed above. These runtime options
are completely independent of those that existed in the creating enclave. Frequent
use of EXEC CICS LINK, and the individual setting of many runtime options could
affect performance (see also the CICS system initialization parameter RUWAPOOL
for CICS LINK performance considerations). A static or dynamic call does not incur
these overheads. If you need to use CEEUOPT to specify options, specifying only
those options that are different from the defaults will improve performance.

Something similar happens when a CICS XCTL command is executed. In this case
we do not get a child enclave, but the existing enclave is terminated and then
reinitialized with the runtime options determined for the new program. The same
performance considerations apply.

CEEBXITA coding
If you write your own version of CEEBXITA, you must write it in assembler. You can
use all CICS commands except the ones listed here, provided you specify the
NOHANDLE, RESP or RESP2 option, to prevent conditions being raised during the
execution of the exit. These are the commands that cannot be used within
CEEBXITA, or any routines called by CEEBXITA:
v ABEND
v HANDLE ABEND
v HANDLE AID
v HANDLE CONDITION
v IGNORE CONDITION

18 CICS TS for z/OS: CICS Application Programming Guide

v POP HANDLE
v PUSH HANDLE

Determining which options were used
If you want to know which options were in effect when your program ran, specify
the option RPTOPTS(ON). When the program ends this produces a list of all the
runtime options used. The list is written to the CESE TD queue. The list contains
not only the actual settings of the options, but also their origin, that is, whether they
are the default for the installation or the region, or whether they were set by the
programmer or in one of the exits.

Note: Do not use RPTOPTS(ON) in a production environment - there is significant
overhead and it causes a large amount of data to be written to the CESE
queue.

For more information about how to specify Language Environment runtime options
and also for their meanings, see z/OS Language Environment Programming
Reference.

Writing a CEEBINT initialization exit for Language Environment
All programs running under Language Environment invoke a subroutine called
CEEBINT at program initialization time, just after invocation of the CEEBXITA and
CEECSTX exits. The runtime environment is fully operational at this point and
Language Environment calls this program the HLL user exit. Language Environment
provides a module containing this program in the SCEELKED library (it simply
returns to its caller) and this is, therefore, the installation default version. However,
you can also write and link-edit a tailored version in to any program to replace the
default.

Ordinary Language Environment coding rules apply to CEEBINT, and you can write
it in C, C++, PL/I, or Language Environment-conforming assembler. CEEBINT
applies to COBOL programs just as any others, but it cannot be written in COBOL
or call COBOL programs. If CEEBINT introduces a second HLL to a program, the
rules for mixing HLLs described in “Mixing languages in Language Environment” on
page 13 apply.

For more information on the High Level Language user exit, CEEBINT, see the
z/OS Language Environment Programming Guide.

Chapter 3. Language Environment 19

20 CICS TS for z/OS: CICS Application Programming Guide

Chapter 4. Programming in COBOL

The CICS Transaction Server for z/OS Release Guide lists the COBOL compilers
which are supported by CICS Transaction Server for z/OS, Version 3 Release 1,
with details of their service status and support in other CICS releases.

All references to COBOL in CICS Transaction Server for z/OS, Version 3 Release 1
documentation imply the use of a supported Language Environment-conforming
compiler such as Enterprise COBOL for z/OS, unless specifically stated otherwise.
Programs compiled by Language Environment-conforming compilers can take
advantage of all Language Environment facilities in a CICS region. The only
COBOL compiler which has runtime support in CICS Transaction Server for z/OS,
Version 3 Release 1, but is not Language Environment-conforming, is the VS
COBOL II compiler.

Refer to the Enterprise COBOL for z/OS: Compiler and Run-Time Migration Guide
for information about migrating between COBOL compilers.

Support for VS COBOL II

In CICS Transaction Server for z/OS, Version 3 Release 1, applications
compiled with a VS COBOL II compiler execute using the Language
Environment runtime library routines. The native runtime library provided with
VS COBOL II is not supported.

“Considerations for VS COBOL II programs” on page 26 lists some restrictions
and considerations associated with programs compiled with the VS COBOL II
compiler.

In some circumstances, you might need to adjust Language Environment
runtime options to enable these applications to execute correctly. The
Enterprise COBOL for z/OS: Compiler and Run-Time Migration Guide has
more information about executing VS COBOL II programs within the Language
Environment runtime, and also about converting VS COBOL II programs to
Enterprise COBOL.

© Copyright IBM Corp. 1989, 2010 21

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

Support for OS/VS COBOL

In CICS Transaction Server for z/OS, Version 3 Release 1, runtime support for
OS/VS COBOL programs is withdrawn. If you attempt to use an OS/VS
COBOL program, the abend code ALIK is issued, and CICS abnormally
terminates the task and disables the program.

OS/VS COBOL programs must be upgraded to Language
Environment-conforming COBOL, and recompiled against a level of COBOL
compiler supported by CICS. Enterprise COBOL for z/OS Version 3 is the
recommended compiler.

See Appendix B, “Migration for OS/VS COBOL programs,” on page 671 for
notes on converting OS/VS COBOL programs to Enterprise COBOL. The
Enterprise COBOL for z/OS: Compiler and Run-Time Migration Guide has
more detailed information about language differences, and describes facilities
to help with conversion.

Support for OO COBOL

In CICS Transaction Server for z/OS, Version 3 Release 1, COBOL class
definitions and methods (object-oriented COBOL) cannot be used. This
restriction includes both Java classes and COBOL classes.

Modules compiled in earlier CICS releases with the OOCOBOL translator
option cannot execute in CICS Transaction Server for z/OS, Version 3 Release
1. The OOCOBOL translator option was used for the older SOM-based
(System Object Manager-based) OO COBOL, and runtime support for this
form of OO COBOL was withdrawn in z/OS V1.2. The newer Java-based OO
COBOL, which is used in Enterprise COBOL, is not supported by the CICS
translator.

If you have existing SOM-based OO COBOL programs, you should rewrite
your OO COBOL into procedural (non-OO) COBOL in order to use the
Enterprise COBOL compiler. Note that the newer Java-based OO COBOL is
not compatible with SOM-based OO COBOL programs, and is not intended as
a migration path for SOM-based OO COBOL programs.

This chapter describes:
v “COBOL programming considerations”
v “Considerations for VS COBOL II programs” on page 26
v “Using based addressing with COBOL” on page 27
v “Calling subprograms from COBOL” on page 28
v “Using the COBOL2 and COBOL3 translator options” on page 34

COBOL programming considerations
Some features of COBOL that are of interest to the CICS programmer are:

v Simplified based addressing using cell pointer variables and the ADDRESS
special register.

22 CICS TS for z/OS: CICS Application Programming Guide

|
|
|
|

|
|
|
|

|
|
|
|
|

#
#
#

#
#
#
#
#
#
#

#
#
#
#
#

v The ability to use COBOL CALL statements to call assembler language, other
COBOL programs, and PL/I or C/C++ programs.

v The LENGTH special register, which CICS uses to deduce the length of data
items.

v The ability to use the RETURN-CODE special register in a CICS application
program. This register allows you to set and access return codes in COBOL
programs.

With compiler option DATA(24), the WORKING-STORAGE SECTION is allocated
below the 16MB line. With compiler option DATA(31), the WORKING-STORAGE
SECTION is allocated above the 16MB line.

COBOL programming restrictions
This section describes COBOL language elements that you cannot use under CICS,
or whose use is restricted or can cause problems under CICS.

By default, the CICS translator and the COBOL compiler do not detect the use of
COBOL words affected by the restrictions listed here. The use of a restricted word
in a CICS environment may cause a failure at execution time. However, COBOL
provides a reserved-word table, IGYCCICS, for CICS application programs. If you
specify the compiler option WORD(CICS), the compiler uses IGYCCICS, and
COBOL words that are not supported under CICS are flagged by the compiler with
an error message. (The COBOL words normally restricted by the default
IBM-supplied reserved-word table are also flagged.) See the Enterprise COBOL for
z/OS: Programming Guide for a current listing of the words which are restricted by
IGYCCICS.

The following restrictions apply to a COBOL program that is to be used as a CICS
application program. (See the appropriate COBOL programming guide for more
information about these functions.)

v If no IDENTIFICATION DIVISION is present, only the CICS commands are
expanded. If the IDENTIFICATION DIVISION only is present, only DFHEIVAR,
DFHEIBLK, and DFHCOMMAREA are produced.

v Statements that produce variable-length areas, such as OCCURS DEPENDING
ON, should be used with caution within the WORKING-STORAGE SECTION.

v If you are running CICS applications written in COBOL under Language
Environment for the first time, you may need to review the Language
Environment runtime options in use at your installation. In particular, if your
applications are not coded to ensure that the WORKING-STORAGE SECTION is
properly initialized (for example, cleared with binary zeros before sending maps),
you should use the STORAGE runtime option. See z/OS Language Environment
Customization for information about customizing Language Environment runtime
options.

v You cannot use entry points in COBOL in CICS.

v When a debugging line is to be used as a comment, it must not contain any
unmatched quotation marks.

v Do not use EXEC CICS commands in a Declaratives Section.

v You must use CICS commands for most input and output processing. Therefore,
do not describe files or code any OPEN, CLOSE, READ, START, REWRITE,
WRITE, or DELETE statements. Instead, use CICS commands to retrieve,
update, insert, and delete data.

Chapter 4. Programming in COBOL 23

v Do not use a format-1 ACCEPT statement in a CICS program. Format-2
ACCEPT statements are supported by Language Environment enabled
compilers.

v Do not use DISPLAY . . . UPON CONSOLE and DISPLAY . . . UPON
SYSPUNCH. DISPLAY to the system logical output device (SYSOUT,
SYSLIST,SYSLST) is supported.

v Do not use STOP “literal”.

v There are restrictions on the use of the SORT statement. See the Enterprise
COBOL for z/OS: Programming Guide for information. Do not use MERGE.

v Do not use:

– USE declaratives.

– ENVIRONMENT DIVISION and FILE SECTION entries associated with data
management, because CICS handles data management. (These can be used
when they are associated with the limited SORT facility referenced above.)

– User-specified parameters to the main program.

v Do not use the following compiler options:
DYNAM (if program is to be translated)
NOLIB (if program is to be translated)
NORENT

You may use the DLL compiler option.

v The use of the TEST(SYM,NOSEPARATE) compiler option results in a very large
increase in program size. Therefore, short-of-storage problems may occur when
using this option. You can achieve the same functionality with
TEST(SYM,SEPARATE) without an increase in program size. For more
information about the TEST compiler option, see the Enterprise COBOL for z/OS:
Programming Guide.

v Use TRUNC(OPT) for handling binary data items if they conform to the PICTURE
definitions. Otherwise use TRUNC(OPT) as the compiler option, and USAGE
COMP-5 for items where the binary value might be larger than the PICTURE
clause would allow. TRUNC(BIN) inhibits runtime performance, so only use this
option if you have no control over binary data items (such as those created by a
code generator). (TRUNC(STD) is the default.)

v For VS COBOL II programs with Language Environment runtime, the following
limits apply to the length of WORKING-STORAGE:

– When the compiler option DATA(24) is used, the limit is the available space
below the 16MB line.

– When the compiler option DATA(31) is used, the limit is 128MB.

80 bytes are required for storage accounting and save areas, and this must be
included within the limits.

v The use of the RMODE(24) compiler option means that the program always
resides below the 16MB line, so this is not recommended. RMODE(ANY) or
RMODE(AUTO) should be used instead. For more information about the RMODE
compiler option, see the Enterprise COBOL for z/OS: Programming Guide.

v If the DLI option is specified and an ENTRY statement immediately follows the
PROCEDURE DIVISION header, you are recommended to change the
PROGRAM-ID name to the ENTRY statement literal, then delete the ENTRY
statement.

v The following compiler options have no effect in a CICS environment:
ADV
AWO
EXPORTALL

24 CICS TS for z/OS: CICS Application Programming Guide

#
#
#

#

|
|
|
|
|
|

|
|
|
|

|
|

FASTSRT
NAME
OOCOBOL
OUTDD
THREAD

v If you use HANDLE CONDITION or HANDLE AID, you can avoid addressing
problems by using SET(ADDRESS OF A-DATA) or SET(A-POINTER) where
A-DATA is a structure in the LINKAGE SECTION and A-POINTER is defined with
the USAGE IS POINTER clause.

v For a COBOL program running above the 16MB line, these restrictions apply for
31-bit addressing:

– If the receiving program is link-edited with AMODE(31), addresses passed to it
must be 31-bits long (or 24-bits long with the left-most byte set to zeros).

– If the receiving program is link-edited with AMODE(24), addresses passed to it
must be 24-bits long.

Specify the DATA(24) compiler option for programs running in 31-bit addressing
mode that are passing data arguments to programs in 24-bit addressing mode.
This ensures that the data will be addressable by the called program.

Language Environment CBLPSHPOP option
The CBLPSHPOP runtime option controls whether Language Environment
automatically issues an EXEC CICS PUSH HANDLE command during initialization
and an EXEC CICS POP HANDLE command during termination whenever a
COBOL subroutine is called.

If your application makes many COBOL subroutine CALLs under CICS,
performance is better with CBLPSHPOP(OFF) than with CBLPSHPOP(ON). You
can set CBLPSHPOP on an individual transaction basis by using CEEUOPT, as
explained in “Defining runtime options for Language Environment” on page 16.
However, because condition handling has not been stacked, be aware that:

v If your called routine raises a condition that causes CICS to attempt to pass
control to a condition handler in the calling routine, this is an error and your
transaction will be abnormally terminated.

v If you use any of the PUSHable CICS commands, HANDLE ABEND, HANDLE
AID, HANDLE CONDITION, or IGNORE CONDITION, within the called routine,
you will be changing the settings of your caller and this could lead to later errors.

Using the DL/I CALL interface
If you have programs that use CALL DL/I, and you have not yet made the following
changes to them, you should now do so:

v Retain the user interface block (DLIUIB) declaration and at least one program
control block (PCB) declaration in the LINKAGE SECTION.

v Change the PCB call to specify the UIB directly, as follows:
CALL ’CBLTDLI’ USING PCB-CALL

PSB-NAME
ADDRESS OF DLIUIB.

v Obtain the address of the required PCB from the address list in the UIB.

Figure 1 on page 26 illustrates the whole of the above process. The example in the
figure assumes that you have three PCBs defined in the PSB and want to use the
second PCB in the database CALL. Therefore, when setting up the ADDRESS
special register of the LINKAGE SECTION group item PCB, the program uses 2 to
index the working-storage table, PCB-ADDRESS-LIST. To use the nth PCB, you

Chapter 4. Programming in COBOL 25

|
|

|

|
|
|

use the number n to index PCB-ADDRESS-LIST.

Considerations for VS COBOL II programs
Language Environment provides support for the execution of programs compiled by
the VS COBOL II compiler. The native runtime library for this compiler is not
supported. However, this compiler is not Language Environment-conforming (it is a
pre-Language Environment compiler), so there are some restrictions and
considerations associated with its use.

For detailed information on migrating VS COBOL II programs to Language
Environment support, see the Enterprise COBOL for z/OS: Compiler and Run-Time
Migration Guide.

Language Environment callable services
Programs compiled by Language Environment-conforming COBOL compilers
can use all Language Environment callable services, either dynamically or
statically. However, for CICS applications, the CEEMOUT (dispatch a message)

WORKING-STORAGE SECTION.
77 PCB-CALL PIC X(4) VALUE ’PCB ’.
77 GET-HOLD-UNIQUE PIC X(4) VALUE ’GHU ’.
77 PSB-NAME PIC X(8) VALUE ’CBLPSB’.
77 SSA1 PIC X(40) VALUE SPACES.
01 DLI-IO-AREA.

02 DLI-IO-AREA1 PIC X(99).
*
LINKAGE SECTION.

COPY DLIUIB.
01 OVERLAY-DLIUIB REDEFINES DLIUIB.

02 PCBADDR USAGE IS POINTER.
02 FILLER PIC XX.

01 PCB-ADDR-LIST.
02 PCB-ADDRESS-LIST USAGE IS POINTER

OCCURS 10 TIMES.
01 PCB.

02 PCB-DBD-NAME PIC X(8).
02 PCB-SEG-LEVEL PIC XX.
02 PCB-STATUS-CODE PIC XX.

*
PROCEDURE DIVISION.
*SCHEDULE THE PSB AND ADDRESS THE UIB

CALL ’CBLTDLI’ USING PCB-CALL PSB-NAME ADDRESS OF DLIUIB.
*
*MOVE VALUE OF UIBPCBAL, ADDRESS OF PCB ADDRESS LIST (HELD IN UIB)
*(REDEFINED AS PCBADDR, A POINTER VARIABLE), TO
*ADDRESS SPECIAL REGISTER OF PCB-ADDR-LIST TO PCBADDR.

SET ADDRESS OF PCB-ADDR-LIST TO PCBADDR.
*MOVE VALUE OF SECOND ITEM IN PCB-ADDRESS-LIST TO ADDRESS SPECIAL
*REGISTER OF PCB, DEFINED IN LINKAGE SECTION.

SET ADDRESS OF PCB TO PCB-ADDRESS-LIST(2).
*PERFORM DATABASE CALLS

........
MOVE TO SSA1.
CALL ’CBLTDLI’ USING GET-HOLD-UNIQUE PCB DLI-IO-AREA SSA1.

*CHECK SUCCESS OF CALLS
IF UIBFCTR IS NOT EQUAL LOW-VALUES THEN

...... error diagnostic code
........
IF PCB-STATUS-CODE IS NOT EQUAL SPACES THEN

...... error diagnostic code
........

Figure 1. Using the DL/I CALL interface

26 CICS TS for z/OS: CICS Application Programming Guide

and CEE3DMP (generate dump) services differ, in that the messages and
dumps are sent to the CESE transient data queue rather than to the ddname
specified in the MSGFILE runtime option.

VS COBOL II programs can make dynamic calls to the date and time callable
services, but no other calls, either static or dynamic, to Language Environment
callable services are supported for VS COBOL II programs.

Re-linking VS COBOL II programs
If object modules are not available for re-linking existing VS COBOL II programs
to use the runtime support provided by Language Environment, a sample job
stream for performing the task is provided in the IGZWRLKA member of the
SCEESAMP sample library.

CICS stub
Although COBOL programs linked with the old CICS stub, DFHECI, run under
Language Environment, use of the DFHELII stub is recommended and is
essential in a mixed language environment. DFHECI has to be link-edited at the
top of your application, but DFHELII can be linked anywhere in the application.

Using CEEWUCHA
If you are adapting VS COBOL II programs to use the runtime support provided
by Language Environment, the sample user condition handler, CEEWUCHA,
supplied by Language Environment in the SCEESAMP library, can be used to
advantage. It does the following:

v It provides compatibility with existing VS COBOL II applications running
under CICS by allowing EXEC CICS HANDLE ABEND LABEL statements to
get control when a runtime detected error occurs.

v It converts all unhandled runtime detected errors to the corresponding user
1xxx abend issued by VS COBOL II.

v It suppresses all IGZ0014W messages, which are generated when IGZETUN
or IGZEOPT is link-edited with a VS COBOL II application. (Performance is
better if the programs are not link-edited with IGZETUN or IGZEOPT.)

Using based addressing with COBOL
CICS application programs need to access data dynamically when the data is in a
CICS internal area, and only the address is passed to the program. Examples are:

v CICS areas such as the CWA, TWA, and TCTTE user area (TCTUA), accessed
using the ADDRESS command

v Input data, obtained by EXEC CICS commands such as READ and RECEIVE
with the SET option

COBOL provides a simple method of obtaining addressability to the data areas
defined in the LINKAGE SECTION using pointer variables and the ADDRESS
special register. Figure 2 on page 28 gives an example of this.

The ADDRESS special register holds the address of a record defined in the
LINKAGE SECTION with level 01 or 77. This register can be used in the SET
option of any command in ADDRESS mode. These commands include GETMAIN,
LOAD, READ, and READQ. For programming information, including a complete list
of these commands, see the CICS Application Programming Reference manual..

Figure 2 on page 28 shows the use of ADDRESS special registers in COBOL. If the
records in the READ or REWRITE commands are of fixed length, no LENGTH
option is required. This example assumes variable-length records. After the read,
you can get the length of the record from the field named in the LENGTH option

Chapter 4. Programming in COBOL 27

#
#

(here, LRECL-REC1). In the REWRITE command, you must code a LENGTH
option if you want to replace the updated record with a record of a different length.

Using WITH DEBUGGING MODE
If a “D” is placed in column seven of the first line of a COBOL EXEC CICS
command, that “D” is also found in the translated CALL statements. This translated
command is only executed if WITH DEBUGGING MODE is specified. A “D” placed
on any line other than the first line of the EXEC CICS statement is not required and
is ignored by the translator.

Calling subprograms from COBOL
In a CICS system, when control is transferred from the active program to an
external program, but the transferring program remains active and control can be
returned to it, the program to which control is transferred is called a subprogram.

There are three ways of transferring control to a subprogram:

EXEC CICS LINK
The calling program contains a command in one of these forms:
EXEC CICS LINK PROGRAM(’subpgname’)
EXEC CICS LINK PROGRAM(name)

In the first form, the called subprogram is specified as an alphanumeric literal.
In the second form, name refers to the COBOL data area with length equal to
that required for the name of the subprogram.

Static COBOL call
The calling program contains a COBOL statement of the form:
CALL ’subpgname’

The called subprogram is explicitly named as a literal string.

Dynamic COBOL call
The calling program contains a COBOL statement of the form:
CALL identifier

WORKING-STORAGE SECTION.
77 LRECL-REC1 PIC S9(4) COMP.
LINKAGE SECTION.
01 REC-1.

02 FLAG1 PIC X.
02 MAIN-DATA PIC X(5000).
02 OPTL-DATA PIC X(1000).

01 REC-2.
02 ...

PROCEDURE DIVISION.
EXEC CICS READ UPDATE...

SET(ADDRESS OF REC-1)
LENGTH(LRECL-REC1)
END-EXEC.

IF FLAG1 EQUAL X’Y’
MOVE OPTL-DATA TO
EXEC CICS REWRITE...

FROM(REC-1)
END-EXEC.

Figure 2. Addressing CICS data areas in locate mode

28 CICS TS for z/OS: CICS Application Programming Guide

The identifier is the name of a COBOL data area that must contain the name of
the called subprogram.

For information about the performance implications of using each of these methods
to call a subprogram, see the Enterprise COBOL for z/OS: Programming Guide,
and the IBM Enterprise COBOL Version 3 Release 1 Performance Tuning Paper.
The White Paper is available on the Web at www.ibm.com/software/ad/cobol/
library

COBOL programs can call any language programs statically or dynamically. LINK or
XCTL are not required for inter-language communication, unless you wish to use
CICS functions such as COMMAREA. See Language Environment Writing Inter
Language Communication Applications for guidance on mixing languages under
Language Environment control.

“Rules for calling subprograms” on page 30 gives the rules governing the use of the
three ways to call a subprogram. This information refers to CICS application logical
levels. Each LINK command creates a new logical level, the called program being
at a level one lower than the level of the calling program (CICS is taken to be at
level 0). Figure 3 on page 33 shows logical levels and the effect of RETURN
commands and CALL statements in linked and called programs.

The term run unit is used in Figure 3 on page 33. A run unit is a running set of one
or more programs that communicate with each other by COBOL static or dynamic
CALL statements. In a CICS environment, a run unit is entered at the start of a
CICS task, or invoked by a LINK or XCTL command. A run unit can be defined as
the execution of a program defined by a PROGRAM resource definition, even
though for dynamic CALL, the subsequent PROGRAM definition is needed for the
called program. When control is passed by a XCTL command, the program
receiving control cannot return control to the calling program by a RETURN
command or a GOBACK statement, and is therefore not a subprogram.

The terms 'translator' and 'translation' in “Rules for calling subprograms” on page 30
refer to the separate translator. This step is not required if a compiler with an
integrated translator is used.

Chapter 4. Programming in COBOL 29

Rules for calling subprograms
The following rules describe the requirements and behavior of called or linked
subprograms.

Translation
LINK

The linked subprogram must be translated if it, or any subprogram invoked from
it, contains CICS function.

Static and Dynamic COBOL CALL
The called subprogram must be translated if it contains CICS commands or
references to the EXEC interface block (DFHEIBLK) or to the CICS
communication area (DFHCOMMAREA).

Compilation
You must always use the NODYNAM compiler option (the default) when you
compile a COBOL program that is to run with CICS, even if the program issues
dynamic calls.

Link-editing
LINK

The linked subprogram must be compiled and link-edited as a separate
program.

Static COBOL CALL
The called subprogram must be link-edited with the calling program to form a
single load module (but the programs can be compiled separately). This can
produce large program modules, and it also stops two programs that call the
same program from sharing a copy of that program.

Dynamic COBOL CALL
The called subprogram must be compiled and link-edited as a separate load
module. It can reside in the link pack area or in a library that is shared with
other CICS and non-CICS regions at the same time.

CICS CSD entries without program autoinstall
(If you use program autoinstall, you do not need an entry in the CSD.)

LINK
The linked subprogram must be defined using RDO. If the linked subprogram is
unknown or unavailable, even though autoinstall is active, the LINK fails with
the PGMIDERR condition.

Static COBOL CALL
The calling program must be defined in the CSD. If program A calls program B
and then program B attempts to call program A, COBOL issues a message and
an abend(1015). The subprogram is part of the calling program so no CSD
entry is required.

Dynamic COBOL CALL
The calling program must be defined in the CSD. If program A calls program B
and then program B attempts to call program A, COBOL issues a message and
an abend(1015). The called subprogram must be defined in the CSD. If the
called subprogram cannot be loaded or is unavailable even though autoinstall is
active, COBOL issues a message and abends (1029).

30 CICS TS for z/OS: CICS Application Programming Guide

Return from subprogram
LINK

The linked subprogram must return using either RETURN or a native language
return command such as the COBOL statement GOBACK.

Static and Dynamic COBOL CALL
The called subprogram must return using a native language return statement
such as the COBOL statement GOBACK or EXIT PROGRAM. The use of
RETURN in the called subprogram terminates the calling program.

Language of subprogram
LINK, Static and Dynamic COBOL CALL

Any language supported by CICS.

Contents of subprogram
The contents of any called or linked subprogram can be any function supported by
CICS for the language (including calls to external databases, for example, DB2®

and DL/I) with the exception that an assembler language subprogram cannot CALL
a lower level subprogram.

Passing parameters to subprogram
Data can be passed by any of the standard CICS methods (COMMAREA, TWA,
TCTUA, TS queues) if the called or linked subprogram is processed by the CICS
translator.

LINK
If the COMMAREA is used, its address must be passed in the LINK command.
If the linked subprogram uses 24-bit addressing, and the COMMAREA is above
the 16MB line, CICS copies it to below the 16MB line, and recopies it on return.

Static COBOL CALL
The CALL statement may pass DFHEIBLK and DFHCOMMAREA as the first
two parameters, if the called program is to issue EXEC CICS requests, or the
called program can issue EXEC CICS ADDRESS commands. The COMMAREA
is optional but if other parameters are passed, a dummy COMMAREA must
also be passed. The rules for nested programs can be different. See “Nesting:
what the application programmer must do” on page 39

Dynamic COBOL CALL
The CALL statement may pass DFHEIBLK and DFHCOMMAREA as the first
two parameters, if the called program is to issue EXEC CICS requests, or the
called program can issue EXEC CICS ADDRESS commands. The COMMAREA
is optional but if other parameters are passed, a dummy COMMAREA must
also be passed. If the called subprogram uses 24-bit addressing and any
parameter is above the 16MB line, COBOL issues a message and
abends(1033) .

Storage
LINK

On each entry to the linked subprogram, a new initialized copy of its
WORKING-STORAGE SECTION is provided, and the run unit is reinitialized (in
some circumstances, this can cause a performance degradation).

Chapter 4. Programming in COBOL 31

Static and Dynamic COBOL CALL
On the first entry to the called subprogram within a CICS logical level, a new
initialized copy of its WORKING-STORAGE SECTION is provided. On
subsequent entries to the called subprogram at the same logical level, the same
WORKING STORAGE is provided in its last-used state, that is, no storage is
freed, acquired, or initialized. If performance is unsatisfactory with LINK
commands, COBOL calls may give improved results.

CICS condition, AID and abend handling
LINK

On entry to the called subprogram, no abend or condition handling is active.
Within the subprogram, the normal CICS rules apply. In order to establish an
abend or condition handling environment, that exists for the duration of the
subprogram, a new HANDLE command should be issued on entry to the
subprogram. The environment so created remains in effect until either a further
HANDLE command is issued, or the subprogram returns control to the caller.

Static and Dynamic COBOL CALL

If the dynamic COBOL CALL fails, CICS abend handling is not invoked, and
you may get a COBOL abend code (1013).If the dynamic COBOL CALL fails,
with Language Environment and CBLPSHPOP ON:

v On entry to the called subprogram, no abend or condition handling is active.
Within the subprogram, the normal CICS rules apply. On entry to the called
subprogram, COBOL issues a PUSH HANDLE to stack the calling program’s
condition or abend handlers. In order to establish an abend or condition
handling environment that exists for the duration of the subprogram, a new
HANDLE command should be issued on entry to the subprogram. The
environment that this creates remains in effect until either a further HANDLE
command is issued or the subprogram returns control to the caller. When
control is returned to the calling program from the subprogram, COBOL
unstacks the condition and abend handlers using a POP HANDLE.

If the dynamic COBOL CALL fails, with CBLPSHPOP OFF:

v The condition/AID and abend handling for the calling program remain in
effect.

Location of subprogram
LINK

Can be remote.

Static and Dynamic COBOL CALL
Must be local.

Flow of control between programs and subprograms
Figure 3 on page 33 shows the possible flows between COBOL main and
subprograms (also known as run units).

A main, or level 1 program can use the COBOL GOBACK or STOP RUN
statements, or the CICS RETURN command to terminate and return to CICS. It can
use a COBOL CALL statement to call a subprogram at the same logical level (level
1), or a CICS LINK command to call a subprogram at a lower logical level. A called
subprogram at level 1 can return to the caller using the COBOL GOBACK
statement, or can terminate and return to CICS using EXEC CICS RETURN.

32 CICS TS for z/OS: CICS Application Programming Guide

A subprogram executing at level 2 can use the COBOL GOBACK or STOP RUN
statements, or the CICS RETURN command to terminate and return to the level 1
calling program. It can use a COBOL CALL statement or a CICS XCTL command to
call a subprogram at the same level (level 2). A subprogram called using the
COBOL CALL at level 2 can return to the caller (at level 2) using the COBOL
GOBACK statement, or can return to the level 1 calling program using EXEC CICS
RETURN. A subprogram called using XCTL at level 2 can only return to the level 1
calling program, using GOBACK, STOP RUN or EXEC CICS RETURN.

See “Application program logical levels” on page 566 for more information about
program logical levels.

CICS Level
0

Program U
GOBACK
...
STOP RUN
...

EXEC CICS RETURN
Run ... Level
Unit CALL Program V 1
A ... GOBACK

... ...

... EXEC CICS RETURN
EXEC CICS LINK

...

Program W
GOBACK
...
STOP RUN

Run ...
Unit EXEC CICS RETURN
B ...

CALL Program X
... GOBACK
... ...
... EXEC CICS RETURN

EXEC CICS XCTL
... Level

2

Program Y
CALL Program Z
... GOBACK
... ...
GOBACK STOP RUN

Run
Unit STOP RUN EXEC CICS RETURN
C ...

EXEC CICS RETURN

Figure 3. Flow of control between COBOL programs, run units, and CICS

Chapter 4. Programming in COBOL 33

Using the COBOL2 and COBOL3 translator options
For general information about translating your program and preparing it for
execution, see Chapter 8, “Translation and compilation,” on page 67.

The following CICS translator options for COBOL are available in CICS Transaction
Server for z/OS, Version 3 Release 1:

v COBOL2

v COBOL3

The ANSI85 translator option ceased to be available in CICS Transaction Server for
z/OS, Version 2 Release 2.

Modules compiled in earlier CICS releases with the OOCOBOL translator option
cannot execute in CICS Transaction Server for z/OS, Version 3 Release 1. The
OOCOBOL translator option was used for the older SOM-based (System Object
Manager-based) OO COBOL, and runtime support for this form of OO COBOL was
withdrawn in z/OS V1.2. The newer Java-based OO COBOL, which is used in
Enterprise COBOL, is not supported by the CICS translator.

The COBOL2 option is the default. It does not have the same effect on the
translator as it did in CICS Transaction Server for z/OS, Version 2 Release 1 and
earlier releases. COBOL2 instructs the translator to translate as COBOL3, but in
addition to include declarations of temporary variables for use in EXEC CICS and
EXEC DLI requests.

Choose the COBOL2 option if you are re-translating old programs which were
written in such a way that they require the use of temporary variables. In particular,
note that the use of temporary variables might circumvent errors that would
normally occur when an argument value in a program is incorrectly defined. The
COBOL2 option in CICS Transaction Server for z/OS, Version 2 Release 1 and
earlier releases provided declarations of temporary variables. Because of this
feature, incorrect definitions of argument values might be present, but not
noticeable at runtime, in programs that were originally translated with the COBOL2
option in earlier releases of CICS Transaction Server. Translating these programs
with the COBOL3 option can reveal these errors for the first time. To assist with
migration to the newer releases of CICS, you may use the new COBOL2 option to
continue to circumvent the errors in the programs, rather than correcting them.

If you are confident that your program do not need the translator's temporary
variables, you may use COBOL3, which results in smaller working storage. The
COBOL3 option includes all features of the older COBOL2 and ANSI85 translator
options, except for declarations of temporary variables.

The CICS translator support in CICS Transaction Server for z/OS, Version 2
Release 2 and later versions and releases does not support the use of the CMPR2
compiler option previously available with old COBOL compilers. For information on
upgrading these COBOL programs to the NOCMPR2 feature, see the Enterprise
COBOL for z/OS: Compiler and Run-Time Migration Guide.

Note: COBOL2 and COBOL3 are mutually exclusive. If you specify both options by
different methods, the COBOL3 option is always used, regardless of where
the two options have been specified. If this happens, the translator issues a
warning message.

34 CICS TS for z/OS: CICS Application Programming Guide

#
#

#

#

#
#
#
#
#

|
|
|
|

The following topics describe specific translator action that is taken when the
COBOL3 option is used. Processing with the COBOL2 option is the same in all
respects, except for declarations of temporary variables.

Literals intervening in blank lines
Blank lines can appear anywhere in a COBOL source program. A blank line
contains nothing but spaces between columns 7 and 72 inclusive.

If blank lines occur within literals in a COBOL source program, the translator
eliminates them from the translated output but includes them in the translated
listing.

Lower case characters
Lower case characters can occur anywhere in any COBOL word, including
user-defined names, system names, and reserved words.

The translator listing and output preserve the case of COBOL text as entered.

In addition, the translator accepts mixed case in:
v Translator options
v EXEC CICS commands, both for keywords and for arguments to keywords
v CBL and PROCESS statements
v Compiler directives such as EJECT and SKIP1

The translator does not translate lower case text into upper case. Some names in
COBOL text, for example file names and transaction IDs, must match with
externally defined names. Such names must always be entered in the same case
as the external definition.

If you specify the LINKAGE translator option, or allow it to default, a mixed-case
version of the EIB structure (DFHEIBLC) is inserted into the LINKAGE SECTION.

Sequence numbers containing any character
In a COBOL source program, the sequence number field can contain any character
in the computer’s character set. The sequence number fields need not be in any
order and need not be unique.

REPLACE statement
COBOL programs can include the REPLACE statement, which allows the
replacement of identified text by defined substitution text. The text to be replaced
and inserted can be pseudo-text, an identifier, a literal, or a COBOL word.
REPLACE statements are processed after COPY statements.

If you process your COBOL source statements with the CICS-supplied translator,
the translator accepts REPLACE statements but does not translate text between
pseudo-text delimiters, with the exception of CICS built-in functions (DFHRESP and
DFHVALUE), which are translated wherever they occur. CICS commands should
not be placed between pseudo-text delimiters.

If you use the integrated translator, the translator accepts REPLACE statements
and does translate text between pseudo-text delimiters. CICS commands can be
placed between pseudo-text delimiters.

Chapter 4. Programming in COBOL 35

#
#

Batch compilation
Separate COBOL programs can be compiled together as one input file. An END
PROGRAM header statement terminates each program and is optional for the last
program in the batch.

The translator accepts separate COBOL programs in a single input file, and
interprets END PROGRAM header statements.

Translator options specified as parameters when invoking the translator are in effect
for the whole batch, but can be overridden for a unit of compilation by options
specified in the CBL or PROCESS card that initiates the unit.

The options for a unit of compilation are determined according to the following order
of priority:
1. Options fixed as installation non-user-modifiable options.
2. Options specified in the CBL or PROCESS card that initiates the unit.
3. Options specified when the translator is invoked.
4. Default options.

For more information about compilation, see Chapter 9, “Installing application
programs,” on page 99.

If you are using batch compilation, you must take some additional action to ensure
that compilation and linkage editing are successful, as follows:

v Include the compiler NAME option as a parameter in the JCL statement that
invokes the compiler or in a CBL statement for each top-level (non-nested)
program. This causes the inclusion of a NAME statement at the end of each
program. See Figure 4 on page 37 for more information.

v Edit the compiler output to add INCLUDE and ORDER statements for the CICS
COBOL stub to each object module. These statements cause the linkage editor
to include the stub at the start of each load module. These statements can be
anywhere in the module, though by convention they are at the start. You may find
it convenient to place them at the end of the module, immediately before each
NAME statement. Figure 5 on page 37 shows the output from Figure 4 after
editing in this way.

For batch compilation you must vary the procedure described in the Chapter 9,
“Installing application programs,” on page 99. The following is a suggested method:

1. Split the supplied cataloged procedure DFHYITVL into two procedures; PROC1
containing the translate and compilation steps (TRN and COB), and PROC2
containing the linkage editor steps COPYLINK and LKED.

2. In PROC1, add the NAME option to the parameters in the EXEC statement for
the compiler, which then looks like this:
//COB EXEC PGM=IGYCRCTL,REGION=..,
// PARM=’....,NAME,....’,

3. In PROC1, change the name and disposition of the compiler output data set
&&LOADSET. At least remove the initial && from the data set name and change
the disposition to CATLG. The SYSLIN statement should then read:
//SYSLIN DD DSN=LOADSET,DISP=(NEW,CATLG),
// UNIT=&WORK,SPACE=(80,(250,100))

4. Run PROC1.

36 CICS TS for z/OS: CICS Application Programming Guide

|

5. Edit the compiler output in the data set LOADSET to add the INCLUDE and
ORDER statements as shown in Figure 5. If you use large numbers of programs
in batches, you should write a simple program or REXX EXEC to insert the
ORDER and INCLUDE statements.

6. In PROC2, add a DD statement for the library that includes the CICS stub. The
standard name of this library is CICSTS31.CICS.SDFHLOAD. The INCLUDE
statement for the stub refers to this library by the DD name. In Figure 5, it is
assumed you have used the DD name SYSLIB (or concatenated this library to
SYSLIB). The suggested statement is:
//SYSLIB DD DSN=CICSTS31.CICS.SDFHLOAD,
// DISP=SHR

7. In PROC2, replace the SYSLIN concatenation with the single statement:
//SYSLIN DD DSN=LOADSET,
// DISP=(OLD,DELETE)

In this statement it is assumed that you have renamed the compiler output data
set LOADSET.

8. Run PROC2.

Note: You are recommended to use the DFHELII stub, but DFHECI is still supplied,
and can be used.

.................

....program a....

.................
NAME PROGA(R)

.................

.................

....program b....

.................

.................
NAME PROGB(R)

.................

....program c....

.................
NAME PROGC(R)

Figure 4. Compiler output before editing

....program a....

.................
INCLUDE SYSLIB(DFHELII)
ORDER DFHELII
NAME PROGA(R)

.................

.................

....program b....

.................

.................
INCLUDE SYSLIB(DFHELII)
ORDER DFHELII
NAME PROGB(R)

.................

....program c....

.................
INCLUDE SYSLIB(DFHELII)
ORDER DFHELII
NAME PROGC(R)

Figure 5. Linkage editor input

Chapter 4. Programming in COBOL 37

Nested programs
v COBOL programs can contain COBOL programs.

v Contained programs are included immediately before the END PROGRAM
statement of the containing program.

v A contained program can also be a containing program, that is, it can itself
contain other programs.

v Each contained or containing program is terminated by an END PROGRAM
statement.

For an explanation of valid calls to nested programs and of the COMMON attribute
of a nested program, see the Enterprise COBOL for z/OS Customization Guide.

Integrated CICS translator
When using the integrated CICS translator no action is necessary for nested
programs that contain EXEC CICS commands. The compiler, in effect, declares
DFHEIBLK and DFHCOMMAREA as global in the top-level program. This means
that explicit coding of EIB and COMMAREA on the USING phrases on CALL and
on the PROCEDURE DIVISION are not required, as described in “Translator
action,” for the separate translator.

Existing or modified programs will require appropriate modification for use with the
CICS integrated translator. If modification is difficult the user should continue to use
separate translation and compilation.

Translator action
The CICS translator treats top-level and nested programs differently.

The translator translates a top-level program (a program that is not contained by
any other program) in the normal way, with one addition. The translator assigns the
GLOBAL attribute for all translator-generated variables in the WORKING-STORAGE
SECTION.

The translator translates nested or contained programs in a special way as follows:

v A DATA DIVISION and LINKAGE SECTION are added if they do not already
exist.

v Declarations for DFHEIBLK (EXEC interface block) and DFHCOMMAREA
(communication area) are inserted into the LINKAGE SECTION.

v EXEC CICS commands and CICS built-in functions are translated.

v The PROCEDURE DIVISION header is not modified.

v No translator-generated temporary variables, used for pre-call assignments, are
inserted in the WORKING-STORAGE SECTION.

The translator interprets that the input source starts with a top-level program if the
first non-comment record is any of the following:
v IDENTIFICATION DIVISION statement
v CBL card
v PROCESS card

If the first record is none of these, the translator treats the input as part of the
PROCEDURE DIVISION of a nested program. The first CBL or PROCESS card
indicates the start of a top-level program and of a new unit of compilation. Any
IDENTIFICATION DIVISION statements that are found before the first top-level
program indicate the start of a new nested program.

38 CICS TS for z/OS: CICS Application Programming Guide

The practical effect of these rules is that nested programs cannot be held in
separate files and translated separately. A top-level program and all its directly and
indirectly contained programs constitute a single unit of compilation and should be
submitted together to the translator.

Comments in translator input
The translator treats comments that follow an END PROGRAM statement as
belonging to the next program in the input source. Comments that precede an
IDENTIFICATION DIVISION statement appear in the listing after the
IDENTIFICATION DIVISION statement.

To avoid confusion always place comments:

v After the IDENTIFICATION DIVISION statement that initiates the program to
which they refer

and

v Before the END PROGRAM statement that terminates the program to which they
refer.

Nesting: what the application programmer must do
1. Submit a top-level containing program and all its directly and indirectly

contained programs as a single unit of compilation.

2. In each nested program that contains EXEC CICS commands, CICS built-in
functions, or references to the EIB or COMMAREA, code DFHEIBLK and
DFHCOMMAREA as the first two parameters of the PROCEDURE DIVISION
header as follows:
PROCEDURE DIVISION USING DFHEIBLK

DFHCOMMAREA PARM1 PARM2 ...

3. In every call to a nested program that contains EXEC CICS commands, CICS
built-in functions, or references to the EIB or COMMAREA, code DFHEIBLK and
DFHCOMMAREA as the first two parameters of the CALL statement as follows:
CALL ’PROGA’ USING DFHEIBLK

DFHCOMMAREA PARM1 PARM2 ...

4. For every call that forms part of the control hierarchy between the top-level
program and a nested program that contains EXEC CICS commands, CICS
built-in functions, or references to the EIB or COMMAREA, code DFHEIBLK and
DFHCOMMAREA as the first two parameters of the CALL statement. In the
PROCEDURE DIVISION in the called programs code DFHEIBLK and
DFHCOMMAREA. This is necessary to allow addressability to the EIB and
COMMAREA to be passed to programs not directly contained by the top-level
program.

5. If it is not necessary to insert DFHEIBLK and DFHCOMMAREA in the
PROCEDURE DIVISION of a nested program for any of the reasons given
above (2, 3, and 4), calls to that program should not include DFHEIBLK and
COMMAREA in the parameter list of the CALL statement.

An example of a nested program
A unit of compilation (see Figure 6 on page 40) consists of a top-level program W
and three nested programs, X, Y, and Z, all directly contained by W.

Program W
During initialization and termination, calls Y and Z to do initial CICS
processing and non-CICS file access. Calls X to do main processing.

Program X
Calls Z for non-CICS file access and Y for CICS processing.

Chapter 4. Programming in COBOL 39

Program Y
Issues CICS commands. Calls Z for non-CICS file access.

Program Z
Accesses files in batch mode.

Applying the rules:

v Y must be COMMON to enable a call from X.

v Z must be COMMON to enable calls from X and Y.

v Y issues CICS commands, therefore:

– All calls to Y must have DFHEIBLK and a COMMAREA as the first two
parameters.

– Y’s PROCEDURE DIVISION header must have DFHEIBLK and
DFHCOMMAREA as the first two parameters.

v Though X does not access the EIB or the communication area, it calls Y, which
issues CICS commands. Therefore the call to X must have DFHEIBLK and a
COMMAREA as the first two parameters and X’s PROCEDURE DIVISION
header must have DFHEIBLK and DFHCOMMAREA as its first two parameters.

Figure 7 on page 41 illustrates the points in “Nesting: what the application
programmer must do” on page 39.

PROGRAM W

PROGRAM X PROGRAM Y PROGRAM Z

Figure 6. Nested program example—nesting structure

40 CICS TS for z/OS: CICS Application Programming Guide

Reference modification
Reference modification supports a method of referencing a substring of a character
data item by specifying the starting (leftmost) position of the substring in the data
item and, optionally, the length of the substring. The acceptable formats are:
data-name (leftmost-character-position:)
data-name (leftmost-character-position: length)

IDENTIFICATION DIVISION.
PROGRAM-ID. W.
.
.
PROCEDURE DIVISION.
.
.

CALL Z.
.
.

CALL Y USING DFHEIBLK COMMAREA.
.
.

CALL X USING DFHEIBLK COMMAREA.
.
.

IDENTIFICATION DIVISION.
PROGRAM-ID. X.

.

.
PROCEDURE DIVISION USING DFHEIBLK DFHCOMMAREA

.

.
CALL Z.

.

.
CALL Y USING DFHEIBLK COMMAREA.

.

.
END PROGRAM X.
IDENTIFICATION DIVISION.
PROGRAM-ID. Y IS COMMON.

.

.
PROCEDURE DIVISION USING DFHEIBLK DFHCOMMAREA.

.

.
CALL Z.

.

.
EXEC CICS...

.

.
END PROGRAM Y.
IDENTIFICATION DIVISION.
PROGRAM-ID. Z IS COMMON.

.

.
PROCEDURE DIVISION.

.

.
END PROGRAM Z.

END PROGRAM W.

Figure 7. Nested program example: coding

Chapter 4. Programming in COBOL 41

Data-name can be subscripted or qualified or both. Both leftmost-character-position
and length can be arithmetic expressions. For more information about reference
modification, qualification and subscripting, see the Enterprise COBOL for z/OS
Language Reference, SC27-1408.

The translator accepts reference modification wherever the name of a character
variable is permitted in a COBOL program or in an EXEC CICS command.

Note: If a CICS command uses reference modification in defining a data value, it
should include a LENGTH option to specify the data length, unless the
NOLENGTH translator option is used. Otherwise the translator generates a
COBOL call with a LENGTH register reference in the form:
LENGTH OF (reference modification)

This is rejected by the compiler.

Global variables
The GLOBAL variable storage class is supported. A variable defined with the
GLOBAL variable storage class in a top-level program (see “Translator action” on
page 38) can be referred to in any of its nested programs, whether directly or
indirectly contained.

The translator accepts the GLOBAL keyword.

Comma and semicolon as delimiters
A separator comma is a comma followed by a space. A separator semicolon is a
semicolon followed by a space. A separator comma or a separator semicolon can
be used as a separator wherever a space alone can be used.

The translator accepts the use in COBOL statements of a separator comma or a
separator semicolon wherever a space can be used. For example, the translator
accepts the statement:
IDENTIFICATION; DIVISION

The translator does not support the use of the separator comma and separator
semicolon as delimiters in EXEC CICS commands. The only acceptable word
delimiter in an EXEC CICS command continues to be a space.

Symbolic character definition
Symbolic characters can be defined in the SPECIAL-NAMES paragraph after the
ALPHABET clause. A symbolic character is a program-defined word that represents
a 1-character figurative constant.

The translator accepts the use of symbolic characters as specified in the standard.

Note: In general, the compiler does not accept the use of figurative constants and
symbolic characters as arguments in CALL statements. For this reason, do
not use figurative constants or symbolic constants in EXEC CICS
commands, which are converted into CALL statements by the translator.
There is one exception to this restriction: a figurative constant is acceptable
in an EXEC CICS command as an argument to pass a value if it is of the
correct data type. For example, a numeric figurative constant can be used in
the LENGTH option.

42 CICS TS for z/OS: CICS Application Programming Guide

Chapter 5. Programming in C and C++

CICS supports C and C++ programs that have been compiled by the supported
compilers listed in the CICS Release Guide.

This chapter describes:
v “C and C++ programming considerations”
v “XPLink considerations for C and C++ programming” on page 46
v “Passing arguments in C or C++” on page 49
v “Accessing the EIB” on page 50
v “Locale support for C and C++” on page 51
v “Programming in C++” on page 51

C and C++ programming considerations
All the EXEC CICS commands available in COBOL, PL/I, and assembler language
applications are also supported in C and C++ applications, with the exception of
those commands related to nonstructured exception handling, see “Nonstructured
exception handling” for more information.

C++ applications can also use the CICS C++ OO classes to access CICS services,
instead of the EXEC CICS interface. See the CICS C++ OO Class Libraries
manual, for more information about this interface.

Also note the following programming considerations:

Exception handling

nonstructured exception handling
The EXEC CICS commands related to nonstructured exception handling:
v HANDLE ABEND LABEL(label)
v HANDLE AID
v HANDLE CONDITION
v IGNORE CONDITION
v PUSH HANDLE
v POP HANDLE

are not supported in C and C++ applications. Use of these commands is
diagnosed by the translator.

Condition handling
In a C or C++ application, every EXEC CICS command is treated as if it
had the NOHANDLE or RESP option specified. This means that the set of
“system action” transaction abends that result from a condition occurring but
not being handled, is not possible in a C or C++ application. Control always
flows to the next instruction, and it is up to the application to test for a
normal response.

ABEND handling
HANDLE ABEND PROGRAM commands are allowed, but you cannot use
PUSH HANDLE or POP HANDLE.

COMMAREA
The address of the communication area is not passed as an argument to a C or
C++ main function. This means that C and C++ functions must use ADDRESS
COMMAREA to obtain the address of the communications area.

© Copyright IBM Corp. 1989, 2010 43

EIB
The address of the EIB is not passed as an argument to a C or C++ main
function. This means that C and C++ functions must use ADDRESS EIB to
obtain the address of the EIB.

OVERFLOW conditions
If you want any OVERFLOW condition to be indicated in the RESP field on
return from a SEND MAP command with the ACCUM option, you should specify
the NOFLUSH option.

AMODE
All C and C++ language programs running under CICS must be link-edited with
the attributes, AMODE(31), RMODE(ANY). They may reside above the 16MB
line.

Invoking CSP programs
Consequently, when passing parameters to a program produced by the
Cross-System Product (CSP) interactive application generator, you must
either:

v Pass parameters below 16MB, or

v Re-link the CSP load library with AMODE(31).

Working storage
In C and C++, working storage consists of the stack and the heap. The location
of the stack and heap, with respect to the 16MB line, is controlled by the
ANYWHERE and BELOW options on the stack and heap run time options. The
default is that both the stack and heap are located above the 16MB line.

Return value
If you terminate a C or C++ program with an exit() function or the return
statement, instead of a CICS RETURN command, the value passed through the
exit() function is saved in the EIBRESP2 field of the EIB on return from the
program.

Note: If a program uses DPL to link to a program in another CICS region,
EIBRESP2 values from the remote region are not returned to the
program doing the DPL.

Sample programs
A set of sample application programs is provided in Table 1 to show how EXEC
CICS commands can be used in a program written in the C or C++ language.

Table 1. Sample programs

Sample program Map set Map source Transaction ID

DFH$DMNU Operator
instruction (3270)

DFH$DGA DFH$DMA DMNU

DFH$DALL Update (3270) DFH$DGB DFH$DMB DINQ, DADD, DUPD

DFH$DBRW Browse (3270) DFH$DGC DFH$DMC DBRW

DFH$DREN Order entry
(3270)

DFH$DGK DFH$DMK DORD

DFH$DCOM Order entry
queue print (3270)

DFH$DGL DFH$DML DORQ

DFH$DREP Report (3270) DFH$DGD DFH$DMD DREP

The transaction and program definitions are provided in group DFH$DFLA in
the CSD and should be installed using the command:

44 CICS TS for z/OS: CICS Application Programming Guide

#
#
#

CEDA INSTALL GROUP(DFH$DFLA)

The following record description files are provided as C or C++ language
header files:

DFH$DFIL—FILEA record descriptor
DFH$DL86—L860 record descriptor

Data declarations

The following data declarations are provided by CICS for C and C++:

v Execution interface block definitions (EIB)

v BMS screen attributes definitions: C and C++ versions of the DFHBMSCA,
DFHMSRCA, and DFHAID files are supplied by CICS, and may be included
by the application programmer when using BMS.

v DL/I support: a C language version of DFHDIB is included by the DLI
translator if the translator option has been specified. (You have to include
DLIUIB if the CALL DLI interface is used.)

The EIB declarations are enclosed in #ifndef and #endif lines, and are included
in all translated files. The C or C++ compiler ignores duplicated declarations.
The inserted code contains definitions of all the fields in the EIB, coded in C
and C++.

Fetch function
Language Environment-conforming programs support the fetch() and release()
functions. Modules to be fetched must be defined as PROGRAM resources to
CICS, either explicitly or implicitly through autoinstall.

System function
CICS does not support the system() function, but two CICS commands, LINK
and XCTL, provide equivalent function.

Macros
C and C++ do not support the use of CICS commands in macros.

Clock function
The clock() function returns a value (time_t) of -1.

Locale functions
All locale functions are supported for locales that have been defined in the
CSD. CSD definitions for the IBM-supplied locales are provided in member
CEECCSD of the SCEESAMP library. The setlocale() function returns NULL if
the locale is not defined.

Debugging functions
The dump functions csnap(), cdump(), and ctrace() are supported. The output is
sent to the CESE transient data queue. The dump cannot be written if the
queue does not have a sufficient record length (LRECL). An LRECL of at least
161 is recommended.

iscics function
If you are adapting an existing program or writing a new program that is
designed to run outside CICS as well as under CICS, the iscics() function may
prove useful. It returns a non-zero value if your program is currently running
under CICS, or zero otherwise. This function is an extension to the C library.

Restrictions
The following lists describe some of the restrictions that exist with C or C++
programs using Language Environment under CICS. You should check the
relevant language guide for more specific details about those that apply to your
installation:

Chapter 5. Programming in C and C++ 45

v CICS does not support extended precision floating point.

v C and C++ languages do not support packed decimal data. The application
has access to packed decimal data using the character string data type. No
C or C++ standard library functions are available to perform arithmetic on this
data, but you may write your own.

v You can easily use HOURS, MINUTES, and SECONDS options. You may
define expiration times using TIME or INTERVAL options if you provide
functions to handle them in your application.

v You can enter all CICS keywords in mixed case, except for CICS keywords
on #pragma directives, which must be in upper case only.

v If you do not specify the LENGTH option on commands that support
LENGTH (for example, READ, READNEXT, READPREV, and WRITE
commands), the translator does not supply a default value. In effect,
NOLENGTH is implicit for C programs.

v All native C and C++ functions are allowed in the source program, but the
following functions are not recommended. Some are not executable and
result in return codes or pointers indicating that the function has failed. Some
may work but impact the performance or execution of CICS.
– CDUMP
– CSNAP
– CTEST
– CTRACE
– CLOCK
– CTDLI
– SVC99
– SYSTEM
– SETLOCALE

For further information see the relevant User’s Guide. Native C or C++
functions are implemented in the C or C++ runtime library.

v Native C or C++ file operations operate only on files opened with
type=memory specified. I/O to CICS-supported access methods must use the
CICS API.

v The string handling functions in the C or C++ standard library use a null
character as an end-of-string marker. Because CICS does not recognize a
null as an end-of-string marker, you must take care when using C or C++
functions, for example strcmp, to operate on CICS data areas.

v Two arguments, argc and argv, are normally passed to a C or C++ main
function. argc denotes how many variables have been passed; argv is an
array of zero-terminated variable strings. In CICS, the value of argc is 1,
argv[0] is the transaction ID, and argv[1] is NULL.

v Where CICS expects a fixed-length character string such as a program
name, map name, or queue name, you must pad the literal with blanks up to
the required length if it is shorter than expected.

For EXEC DLI commands, the SEGMENT name is padded by the translator
if a literal is passed.

v Take care not to use field names, which, though acceptable to the assembler,
cause the C or C++ compiler to abend. These include $, #, and @.

XPLink considerations for C and C++ programming
Extra Performance Linkage, (from here on it is abbreviated to XPLink), is a z/OS
feature which provides high performance subroutine call and return mechanisms.
This results in short and highly optimized execution path lengths.

46 CICS TS for z/OS: CICS Application Programming Guide

|

|
|
|

Object Oriented programming is built upon the concept of sending 'messages' to
objects which result in that object performing some actions. The message sending
activity is implemented as a subroutine invocation. Subroutines, known as member
functions in C++ terminology, are normally small pieces of code. The characteristic
execution flow of a typical C++ program is of many subroutine invocations to small
pieces of code. Programs of this nature benefit from the XPLink optimization
technology.

MVS has a standard subroutine calling convention which can be traced back to the
early days of System/360. This convention was optimized for an environment in
which subroutines were more complex, there were relatively few of them, and they
were invoked relatively infrequently. Object oriented programming conventions have
changed this. Subroutines have become simpler but they are numerous, and the
frequency of subroutine invocations has increased by orders of magnitude. This
change in the size, numbers, and usage pattern, of subroutines made it desirable
that the system overhead involved be optimized. XPLink is the result of this
optimization.

PLEASE NOTE!
For z/OS 1.4 and above, and CICS TS 3.1 and above, the advice here that
you CAN use the XPLINK compiler option with CICS application programs,
overrides advice in z/OS and Language Environment manuals to the contrary.

z/OS and Language Environment manuals for C and C++ advise you that the
XPLINK compiler option is not available to CICS application programs,
because that used to be the case. Although these manuals are now being
changed, you may be working with a copy of one of these manuals produced
before this change.

The following topics cover:

v “XPLink, and the X8 and X9 TCBs”

v “Writing C and C++ programs, which are to be compiled with the XPLINK option,
for the CICS environment” on page 48

v “Passing control between XPLink and non-XPLink objects” on page 48

v “Changing CICS definitions to obtain CICS support for objects compiled with the
XPLINK option” on page 48

v “Global User exits and XPLink” on page 48

XPLink, and the X8 and X9 TCBs
CICS provides support for C and C++ programs compiled with the XPLINK option
by using the multiple TCB feature in the CICS Open Transaction Environment
(OTE) technology. X8 and X9 mode TCBs are defined to support XPLink tasks in
CICS key and USER key. Each instance of an XPLink program uses one X8 or X9
TCB.

To use XPLink, your C or C++ application code must be re-entrant and threadsafe.
The same code instance can be executing on more than one MVS TCB and,
without threadsafe mechanisms to protect shared resources, the execution behavior
of application code is unpredictable. This cannot be too strongly emphasized.

Chapter 5. Programming in C and C++ 47

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
||||

|

|

|
|

|

|
|

|

|
|
|
|
|
|

|
|
|
|

Writing C and C++ programs, which are to be compiled with the
XPLINK option, for the CICS environment
The application developer is expected to do the following to take advantage of
CICS XPLink support;

v Develop the code, strictly adhering to threadsafe programming principles and
techniques

v Compile the C or C++ program with the XPLINK option set on

v Indicate in the PROGRAM resource definition that the program is threadsafe

v Consider the use of CICSVAR in CEEUOPT or in #pragma, (see note 3 in
“Defining runtime options for Language Environment” on page 16 for details).

All programs using CICS XPLink support must be re-entrant and threadsafe. Only
the application developer can guarantee that the code for a particular application
satisfies these requirements.

Passing control between XPLink and non-XPLink objects
Each transfer of control from XPLink objects to non-XPLink objects, or the reverse,
causes a switch between the QR TCB and an open TCB, (either an X8 or an X9
TCB). In performance terms, TCB switching is costly, you must take this
performance overhead into account.

An XPLink object can invoke a non-XPLink object using either the EXEC CICS
interface or the Language Environment interface.

A non-XPLink object can only invoke an XPLink object using the EXEC CICS
interface. Use of the Language Environment interface for such invocations is not
supported.

Changing CICS definitions to obtain CICS support for objects
compiled with the XPLINK option
CICS support for programs compiled with the XPLINK option requires only that you
show in the PROGRAM resource definition that the program is threadsafe. This
indication, and the XPLink “signature” in the load module, are the only things
required to put the task on an X8 or X9 TCB.

In the selection of a suitable TCB for a particular program, XPLink takes
precedence over the existence of the OPENAPI value for the API attribute on the
PROGRAM resource definition.

.

Global User exits and XPLink
XPCFTCH

When the exit XPCFTCH is invoked for a C or C++ program that was
compiled with the XPLINK option, a flag is set indicating that any modified
entry point address, if specified by the exit, will be ignored.

XPCTA
When the exit XPCTA is invoked for a C or C++ program that was compiled
with the XPLINK option, a flag is set indicating that a resume address, if
specified by the exit, will be ignored.

Other Global User exits are unaffected by XPLink support.

48 CICS TS for z/OS: CICS Application Programming Guide

|
|
|
|

|
|

|

|

|
|

|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|

|

|

|
|
|
|

|
|
|
|

|

Passing arguments in C or C++
Arguments in C and C++ language are copied to the program stack at run time,
where they are read by the function. These arguments can either be values in their
own right, or they can be pointers to areas of memory that contain the data being
passed. Passing a pointer is also known as passing a value by reference.

Other languages, such as COBOL and PL/I, usually pass their arguments by
reference, which means that the compiler passes a list of addresses pointing to the
arguments to be passed. This is the call interface supported by CICS. To pass an
argument by reference, you prefix the variable name with &, unless it is already a
pointer, as in the case when an array is being passed.

As part of the build process, the compiler may convert arguments from one data
type to another. For example, an argument of type char may be converted to type
short or type long.

When you send values from a C or C++ program to CICS, the translator takes the
necessary action to generate code that results in an argument list of the correct
format being passed to CICS. The translator does not always have enough
information to enable it to do this, but in general, if the argument is a
single-character or halfword variable, the translator makes a precall assignment to a
variable of the correct data type and passes the address of this temporary variable
in the call.

When you receive data from CICS, the translator prefixes the receiving variable
name with &, which causes the C or C++ compiler to pass it values by reference
rather than by value (with the exception of a character string name, which is left
unchanged). Without the addition of &, the compiler would copy the receiving
variable and then pass the address of the copy to CICS. Any promotion occurring
during this copying could result in data returned by CICS being lost.

Table 2 shows the rules that apply when passing values as arguments in EXEC
CICS commands.

Table 2. Rules for passing values as arguments in EXEC CICS commands

Data type Usage Coding the argument

Character literal Data-value (Sender) The user must specify the character literal
directly. The translator takes care of any
required indirection.

Character variable
(char)

Data-area (Receiver) The user must specify a pointer to the
variable, possibly by prefixing the variable
name with &.

Character variable
(char)

Data-value (Sender) The user must specify the character variable
directly. The translator takes care of any
required indirection.

Character string literal Name (Sender) The user can either code the string directly
as a literal string or use a pointer which
points to the first character of the string.

Character string
variable

Data-area (Receiver)
Name (Sender)

Whether receiving or sending, the argument
should be the name of the character array
containing the string—the address of the
first element of the array.

Chapter 5. Programming in C and C++ 49

Table 2. Rules for passing values as arguments in EXEC CICS commands (continued)

Data type Usage Coding the argument

Integer variable
(short, long, or int)

Data-area (Receiver) The user must specify a pointer to the
variable, possibly by prefixing the variable
name with &.

Integer variable
(short, long, or int)

Data-value (Sender) The user must specify the name of the
variable. The translator looks after any
indirection that is required.

Integer constant
(short, long, or int)

Data-value (Sender) The user must specify the integer constant
directly. The translator takes care of any
required indirection.

Structure or union Data-area (Sender)
Data-area (Receiver)

The user must code the address of the start
of the structure or union, possibly by
prefixing its name with &.

Array (of anything) Data-area (Receiver)
Data-value (Sender)

The translator does nothing. You must code
the address of the first member of the array.
This is normally done simply by coding the
name of the array, which the compiler
interprets as the address of the first
member.

Pointer (to anything) Ptr-ref (Receiver)
Data-area (Sender)

Whether receiving or sending, the argument
should be the name of the variable that
denotes the address of interest. The
translator takes care of the extra level of
indirection that is necessary to allow CICS
to update the pointer.

Note: Receiver is where data is being received from CICS; Sender is where data is being
passed to CICS.

Accessing the EIB
The address of the exec interface block (EIB) is not passed as an argument to a C
or C++ main function. This means that C and C++ functions must use the
ADDRESS EIB command to obtain the address of the EIB.

Addressability is achieved by using the command:
EXEC CICS ADDRESS EIB(dfheiptr);

or by passing the EIB address or particular fields therein as arguments to the CALL
statement that invokes the external procedure.

If access to the EIB is required, an ADDRESS EIB command is required at the
beginning of each program.

Naming EIB fields
Within a C or C++ application program, fields in the EIB are referred to in lower
case and fully qualified as, for example, “dfheiptr->eibtrnid”.

Data types in EIB fields
The following mapping of data types is used:
v Halfword binary integers are defined as “short int”
v Fullword binary integers are defined as “long int”
v Single-character fields are defined as “unsigned char”

50 CICS TS for z/OS: CICS Application Programming Guide

v Character strings are defined as “unsigned char” arrays

Locale support for C and C++
The CICS translator, by default, assumes that programs written in the C or C++
language have been edited with the EBCDIC Latin-1 code page IBM-1047.

If you have used an alternative code page, you can specify this in a pragma filetag
directive at the start of the application program. The pragma statement must be the
first non-comment statement in the program, and the filetag directive must be
specified before any other directive in the pragma statement. The CICS translator
scans for the presence of the filetag directive. The CICS translator only supports
the default code page IBM-1047, the Danish EBCDIC code page IBM-277, the
German EBCDIC code page IBM-273, and the Chinese EBCDIC code pages
IBM-935 and IBM-1388.

For example, if the program has been prepared with an editor using the German
EBCDIC code page, it should begin with the following directive:
??=pragma filetag ("IBM-273")

If your application program uses a mix of different code pages (for example, if you
are including header files edited in a code page different to that used for the
ordinary source files), all of the files must include the pragma filetag directive, even
if they are in the default code page IBM-1047.

Some older IBM C compilers which are no longer in service, but can still be used
with the CICS translator, might not support the use of the pragma filetag directive.
Check the documentation for your compiler if you are not sure whether your
compiler supports this. All the IBM C/C++ compilers that are listed in the topic
“High-level language support” in the CICS Transaction Server for z/OS Release
Guide which are still in service support the use of the pragma filetag directive.

Programming in C++
C++ supports object-oriented programming and you can use this language in the
same way as you would use the C language. You must specify that the translator is
to translate C++ using the CPP option.

C++ programs must also be defined with the LANGUAGE(LE370) option. See
Chapter 3, “Language Environment,” on page 9 for information about this
environment.

Restrictions
C++ uses ‘//’ for single line comments. Do not put a comment in the middle of an
EXEC CICS command. For instance, this example does not work:
EXEC CICS SEND TEXT FROM(errmsg)

LENGTH(msglen) // Send error message to screen
RESP(rcode)
RESP2(rcode2);

These examples are valid:
EXEC CICS SEND TEXT FROM(errmsg)

LENGTH(msglen)
RESP(rcode)
RESP2(rcode2); //Send error message to screen

Chapter 5. Programming in C and C++ 51

#
#

#
#
#
#
#
#
#
#

#
#
#
#

#
#
#
#
#
#

EXEC CICS SEND TEXT FROM(errmsg)
LENGTH(msglen) /* Send error message to screen */
RESP(rcode)
RESP2(rcode2);

52 CICS TS for z/OS: CICS Application Programming Guide

Chapter 6. Programming in PL/I

CICS supports PL/I programs that have been compiled by the supported compilers
listed in the CICS Release Guide. All PL/I programs are executed under the runtime
support provided by Language Environment.

Runtime options, if needed, can be specified in a plixopt character string. See
“Defining runtime options for Language Environment” on page 16 and the Language
Environment Customization manual or information about customizing runtime
options.

If you are converting a program that was previously compiled with a non-Language
Environment conforming compiler, you must ensure that neither NOSTAE nor
NOSPIE is specified in a plixopt string, because this will cause Language
Environment to set TRAP (OFF). TRAP (ON) must be in effect for applications to
run successfully.

If OPTIONS(MAIN) is specified in an application program, that program can be the
first program of a transaction, or control can be passed to it by means of a LINK or
XCTL command.

In application programs where OPTIONS(MAIN) is not specified, it cannot be the
first program in a transaction, nor can it have control passed to it by an LINK or
XCTL command, but it can be link-edited to a main program.

This chapter describes:
v “PL/I programming restrictions”
v “Language Environment considerations for PL/I applications” on page 54

PL/I programming restrictions
The following restrictions apply to a PL/I program that is to be used as a CICS
application program.

v You cannot use the multitasking built-in functions:
COMPLETION
PRIORITY
STATUS

v You cannot use the multitasking options:
EVENT
PRIORITY
TASK

v You should not use the PL/I statements:
CLOSE DELAY
DELETE DISPLAY
EXIT GET
HALT LOCATE
OPEN PUT
READ REWRITE
STOP WRITE
UNLOCK

The following commands are supported :
FETCH
RELEASE

© Copyright IBM Corp. 1989, 2010 53

|
|
|

You are provided with EXEC CICS commands for the storage and retrieval of
data, and for communication with terminals. (However, you can use CLOSE,
PUT, and OPEN, for SYSPRINT.)

v You cannot use PL/I Sort/Merge.

v You cannot use static storage (except for read-only data).

v If you declare a variable with the STATIC attribute and EXTERNAL attribute you
should also include the INITIAL attribute. If you do not, such a declaration
generates a common CSECT that cannot be handled by CICS.

v You cannot use the PL/I 48-character set option in EXEC CICS statements.

v Do not define variables or structures with variable names that are the same as
variable names generated by the translator. These begin with DFH. Care must be
taken with the LIKE keyword to avoid implicitly generating such variable names.

v All PROCEDURE statements must be in upper case, with the exception of the
PROCEDURE name, which may be in lower case.

v The suboptions of the XOPTS option of the *PROCESS statement must be in
upper case.

v If a CICS command uses the SUBSTR built-in function in defining a data value, it
should include a LENGTH option to specify the data length, unless the translator
option NOLENGTH is specified. If it does not, the translator generates a PL/I call
including an invocation of the CSTG built-in function in the form:
CSTG(SUBSTR(..,..,..))

This is rejected by the compiler.

v For Enterprise PL/I Version 3 Release 2 or later, specify either the
FLOAT(NOAFP) compiler option, or the FLOAT(AFP(VOLATILE)) compiler option.

– If your program makes use of floating-point sparingly, specify the
FLOAT(NOAFP) option. The application will only use the traditional 4 floating
point registers, and has less work to do when saving registers.

– If your program makes significant use of floating-point, specify the
FLOAT(AFP(VOLATILE)) option. The application will use all 16 floating point
registers, but will have more work to do when saving registers.

Language Environment considerations for PL/I applications
The advice and restrictions listed in Chapter 6, “Programming in PL/I,” on page 53
apply to PL/I programs running under Language Environment.

Language Environment-conforming PL/I programs can CALL a program that
appears in a FETCH or RELEASE statement and can RELEASE it subsequently.

There are some restrictions on the PL/I for MVS & VM statements that can be used
in a fetched procedure. These restrictions are described in PL/I MVS & VM
Language Reference.. Many of the restrictions have been removed with VisualAge
PL/I. See the VisualAge PL/I for OS/390 Compiler and Run-Time Migration Guide.

To enable a PL/I procedure to be fetched, code the option FETCHABLE in the
OPTIONS on the PROCEDURE statement. This option indicates that the procedure
can only be invoked dynamically. An OPTIONS(MAIN) procedure cannot be
fetched; FETCHABLE and MAIN are mutually exclusive options. Treat the
FETCHABLE procedure like a normal CICS program: that is, link-edited with any
required subroutines, placed in the CICS application program library, defined, and
installed as a program, either in the CSD or using program autoinstall.

54 CICS TS for z/OS: CICS Application Programming Guide

#
#

#
#
#

#
#
#

No special considerations apply to the use of FETCH when both the fetching and
the fetched programs have the same AMODE attribute. Language Environment,
however, also supports the fetching of a load module that has an AMODE attribute
different to the program issuing the FETCH. In this case, Language Environment
performs the AMODE switch, and the following constraints apply:

v If any fetched module is to execute in 24-bit addressing mode, the fetching
module must have the RMODE(24) attribute regardless of its AMODE attribute.

v Any variables passed to a fetched routine must be addressable in the AMODE of
the fetched procedure.

Communicating between modules compiled with different compilers
You can link-edit non-Language Environment-conforming PL/I subroutines with
a Language Environment-conforming main program. Static calls are supported
from any version of PL/I, but dynamic calls are supported only from Language
Environment-conforming procedures. Called subroutines can issue CICS
commands if the address of the EIB is available in the subroutine. You can
achieve this either by passing the address of the EIB to the subroutine, or by
coding EXEC CICS ADDRESS EIB(DFHEIPTR) in the subroutine before issuing
any other CICS commands.

Entry point
CEESTART is the only entry point for PL/I applications running under Language
Environment. This entry point is set for programs compiled using Language
Environment-conforming compilers. You can re-link object modules produced by
non-Language Environment-conforming compilers for running under Language
Environment by using the following linkage-editor statements:

INCLUDE SYSLIB(CEESTART)
INCLUDE SYSLIB(CEESG010)
INCLUDE SYSLIB(DFHELII)
REPLACE PLISTART
CHANGE PLIMAIN(CEEMAIN)
INCLUDE mainprog
INCLUDE subprog1
.......
.......
ORDER CEESTART
ENTRY CEESTART
NAME progname(R)

The INCLUDE statement for the object modules must come immediately after
the CHANGE statement and there is also a requirement under Language
Environment that the main program must be included before any subroutines.
(This requirement did not exist for modules produced by non-conforming
compilers.) For Enterprise PL/I programs that are compiled with
OPTIONS(FETCHABLE), the binder ENTRY statement must be the name of the
PROCEDURE.

Re-link utility for PL/I
If you have only the load module for a CICS program compiled by a
non-conforming compiler, there is a file of linkage editor input, IBMWRLKC,
specifically for CICS programs, located in the sample library SCEESAMP, to
replace OS PL/I library routines in a non-conforming executable program with
Language Environment routines. For more information about using IBMWRLKC,
see the PL/I MVS & VM V1R1.1 Compiler & Runtime Migration Guide.

Abend codes
If a CICS PL/I program abends under Language Environment , your CICS
abend handlers are given a Language Environment abend code, rather than a
PL/I abend code. To avoid changing your programs, you can modify the sample

Chapter 6. Programming in PL/I 55

user condition handler, CEEWUCHA, supplied by Language Environment in the
SCEESAMP library. This user condition handler can be made to return PL/I
abend codes instead of the Language Environment codes. Use the USRHDLR
runtime option to register it to do this. For details of this option see the z/OS
Language Environment Programming Guide.

56 CICS TS for z/OS: CICS Application Programming Guide

Chapter 7. Programming in Assembler

CICS supports assembler programs that have been compiled by the supported
compilers listed in the CICS Release Guide. All assembler programs are executed
under the runtime support provided by Language Environment.

Note the following Assembler language programming considerations:

Language restrictions

1. The following instructions cannot be used in an assembler language
program that is to be used as a CICS application program:
COM Identify blank common control section.
ICTL Input format control.
OPSYN Equate operation code.

2. The following additional restrictions apply if an assembler language program
is to be translated with the LEASM option, see “LEASM” on page 78.

v Register 2 cannot be used as a code base register.

v Register 12 is reserved by Language Environment to point to the
Language Environment common anchor area (CAA) and so cannot be
used at all by the program without being saved and restored as
appropriate.

v Register 13 must be used as the one and only working storage base
register.

v The program cannot be a Global User Exit program (GLUE) or a
Task-Related User Exit program (TRUE).

v The program must not use, or depend on, any AMODE(24) code.

BAKR

When using BAKR instructions (branch and stack) to provide linkage between
assembler programs, take care that the linked-to program does not issue EXEC
CICS requests. If CICS receives control and performs a task switch before the
linked-to program returns by a PR instruction (program return), then other tasks
might be dispatched and issue further BAKR / PR calls. These modify the
linkage-stack and result in the wrong environment being restored when the
original task issues its PR instruction.

Working storage

Working storage is allocated either above or below the 16MB line, according to
the value of the DATALOCATION parameter on the PROGRAM definition in the
CSD.

HANDLE ABEND LABEL
CICS does not allow the use of HANDLE ABEND LABEL in Assembler
programs that do not use DFHEIENT and DFHEIRET. Assembler programs that
use the Language Environment stub CEESTART should either use HANDLE
ABEND PROGRAM or a Language Environment service such as CEEHDLR.

31–bit addressing

The following restriction applies to an assembler language application program
executing in 31-bit mode:

© Copyright IBM Corp. 1989, 2010 57

|
|
|

|
|

|

|
|
|
|

|
|

|
|

|

v The COMMAREA option is restricted in a mixed addressing mode transaction
environment. For a discussion of the restriction, see “Using mixed addressing
modes” on page 571.

MVS restrictions

The following restrictions apply to an assembler language application program
that uses access registers to exploit the extended addressability of ESA/370
processors:

v You must be in primary addressing mode when invoking any CICS service.
The primary address-space must be the home address-space. All parameters
passed to CICS must reside in the primary address-space.

v CICS does not always preserve access registers. You must save them
before you invoke a CICS service, and restore them before using the access
registers again.

For more guidance information about using access registers, see the z/OS:
MVS Programming: Extended Addressability Guide.

64–bit registers

The following restriction applies to an assembler language application program
that uses 64–bit registers to exploit 64–bit addressing mode or 64–bit binary
operations:

v CICS does not always preserve the high order words of 64–bit registers. You
must save them before you invoke a CICS service, and restore them before
using the 64–bit registers again.

For more guidance information about using 64–bit addressing mode and 64–bit
binary operations, see the z/OS: MVS Programming: Assembler Services
Guide.

Language Environment considerations for Assembler applications
Like HLL programs, assembler programs are classified as either conforming or
non-conforming with respect to Language Environment. For assembler programs,
conformance depends on the linkage and register conventions observed, rather
than the assembler used. By definition, a Language Environment-conforming
assembler routine is defined as one coded using the CEEENTRY and associated
Language Environment macros.

Conformance governs the use of assembler programs by call from an HLL program.
Both conforming and non-conforming assembler subroutines may be called either
statically or dynamically from C or C++, COBOL or PL/I. However, there are
differences in register conventions and other requirements for the two types. These
are described below. Rules for mixing languages, including assembler, are
discussed in “Mixing languages in Language Environment” on page 13.

Conforming MAIN programs
If you are coding a new assembler MAIN program that you want to conform to
the Language Environment interface or if your assembler routine calls
Language Environment services, observe the following:

v Use the macros provided by Language Environment. For a list of these
macros, see the z/OS Language Environment Programming Guide.

v Ensure that the CEEENTRY macro contains the option MAIN=YES. (
MAIN=YES is the default).

58 CICS TS for z/OS: CICS Application Programming Guide

#

#
#
#

#
#
#

#
#
#

|
|
|
|

|
|

|
|

v Translate your assembler routine with *ASM XOPTS(LEASM) or, if it
contains CICS commands, with *ASM XOPTS(LEASM NOPROLOG
NOEPILOG).

Conforming sub-routines programs
If you are coding a new assembler sub-routine that you want to conform to the
Language Environment interface or if your assembler routine calls Language
Environment services, observe the following:

v Use the macros provided by Language Environment. For a list of these
macros, see the z/OS Language Environment Programming Guide.

v Ensure that the CEEENTRY macro contains the option MAIN=NO. (
MAIN=YES is the default).

v Translate your assembler routine with *ASM XOPTS(NOPROLOG
NOEPILOG) if it contains CICS commands.

v Ensure that the CEEENTRY macro contains the option NAB=NO if your
routine is invoked by a static call from VS COBOL II. (NAB is Next Available
Byte (of storage). NAB=NO means that this field may not be available, so the
CEEENTRY macro generates code to find the available storage.)

All conforming routines
To communicate properly with assembler routines, observe certain register
conventions on entry to the assembler routine, while it is running, and on exit
from the assembler routine.

Entry

On entry into a Language Environment-conforming assembler subroutine,
these registers must contain the following values when NAB=YES is
specified on the CEEENTRY macro:

R0 Reserved

R1 Address of the parameter list, or zero

R12 Common anchor area (CAA) address

R13 Caller's dynamic storage area (DSA)

R14 Return address

R15 Entry point address

Language Environment-conforming HLLs generate code that follows these
register conventions, and the supplied macros do the same when you use
them to write your Language Environment-conforming assembler routine.
On entry to an assembler routine, CEEENTRY saves the caller's registers
(R14 through R12) in the DSA provided by the caller. It allocates a new
DSA and sets the NAB field correctly in this new DSA. The first half word of
the new DSA is set to binary zero and the back chain in the second word is
set to point to the caller's DSA.

While the subroutine is running

R13 must point to the routine's DSA at all times while the Language
Environment-conforming assembler routine is running.

At any point in your code where you CALL another program, R12 must
contain the common anchor area (CAA) address, except in the following
cases:

v When calling a COBOL program

Chapter 7. Programming in Assembler 59

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|

|

v When calling an assembler routine that is not Language
Environment-conforming

v When calling a Language Environment-conforming assembler routine that
specifies NAB=NO on the CEEENTRY macro

Exit

On exit from a Language Environment-conforming assembler routine, R0,
R1, R14, and R15 are undefined. All the other registers must have the
contents they had upon entry.

The CEEENTRY macro automatically sets a module to AMODE (ANY) and
RMODE (ANY). If you are converting an existing assembler routine to be
Language Environment-conforming and the routine contains data
management macros coded using 24-bit addressing mode, then you should
change the macros to use 31-bit mode. If it is not possible to change all the
modules making up a program to use 31-bit addressing mode, and if none
of the modules explicitly sets RMODE (24), then you should set the
program to be RMODE (24) during the link-edit process.

Non-conforming routines
Observe the following conventions when running non-Language
Environment-conforming subroutines under Language Environment:

v R13 must contain the address of the executing routine's register save area.

v The first two bytes of the register save area must be binary zeros.

v The register save area back chain must be set to a valid 31-bit address (the
high-order byte must be zero if it is a 24-bit address).

If your assembler routine relies on C/C++, COBOL, or PL/I control blocks (for
example, a routine that tests flags or switches in these control blocks), check
that these control blocks have not changed under Language Environment . For
more information, see the appropriate Language Environment migration guide.

Non-conforming routines cannot use Language Environment callable services.

Note: CICS does not allow the use of HANDLE ABEND LABEL in Assembler
programs that do not use DFHEIENT and DFHEIRET. Assembler programs
that use the Language Environment stub CEESTART should either use
HANDLE ABEND PROGRAM or a Language Environment service such as
CEEHDLR. See “Using Language Environment Abend-handling” on page 12
for information about CEEHDLR.

For more information or for explanations of the terms used in this section see the
chapter on "Assembler Considerations" in the z/OS Language Environment
Programming Guide.

Calling Assembler programs
Assembler language application programs that contain commands can have their
own RDO program definition. Such programs can be invoked by COBOL, C or C++,
PL/I, or assembler language application programs using LINK or XCTL commands
(see Chapter 45, “Program control,” on page 565). However, because programs that
contain commands are invoked by a system standard call, they can also be invoked
by a COBOL, C, C++, or PL/I CALL statement or by an assembler language CALL
macro.

A single CICS application program, as defined in an RDO program definition, may
consist of separate CSECTs compiled or assembled separately, but linked together.

60 CICS TS for z/OS: CICS Application Programming Guide

An assembler language application program that contains commands can be linked
with other assembler language programs, or with programs written in one or more
high-level languages (COBOL, C, C++, or PL/I). For details of mixing languages in
an application load module, refer to z/OS Language Environment Writing
Interlanguage Communications Applications.

If an assembler language program (that is link edited separately) contains
command-level calls, and is called from a high-level language program, it requires
its own CICS interface stub. If the assembler program is link edited with the
high-level language program that calls it, then the assembler program does not
need a stub, but if you provide one, the message MSGIEW024I is issued, but this
can be ignored.

Because assembler language application programs containing commands are
always passed the parameters EIB and COMMAREA when invoked, the CALL
statement or macro must pass these two parameters followed, optionally, by other
parameters.

For example, the PL/I program in file PLITEST PLI calls the assembler language
program ASMPROG, which is in file ASMTEST ASSEMBLE. The PL/I program
passes three parameters to the assembler language program, the EIB, the
COMMAREA, and a message string.

The assembler language program performs an EXEC CICS SEND TEXT command,
which displays the message string passed from the PL/I program.

You can use JCL procedures supplied by CICS to compile and link the application,
as follows:

1. Assemble and link ASMTEST using the DFHEITAL procedure:
//ASMPROG EXEC DFHEITAL
//TRN.SYSIN DD *

.... program source ...
/*
//LKED.SYSIN DD *

NAME ASMTEST(R)
/*

2. Compile and link PLITEST using the DFHYITPL procedure, and provide linkage
editor control statements that include the ASMTEST load module created by the
DFHEITAL procedure:

PLIPROG:PROC OPTIONS(MAIN);
DCL ASMPROG ENTRY EXTERNAL;
DCL COMA CHAR(20), MSG CHAR(14) INIT(’HELLO FROM PLI’);
CALL ASMPROG(DFHEIBLK,COMA,MSG);
EXEC CICS RETURN;
END;

Figure 8. PLITEST PLI

DFHEISTG DSECT
MSG DS CL14
MYRESP DS F
ASMPROG CSECT

L 5,8(1)
L 5,0(5)
MVC MSG,0(5)
EXEC CICS SEND TEXT FROM(MSG) LENGTH(14) RESP(MYRESP)
END

Figure 9. ASMTEST ASSEMBLE

Chapter 7. Programming in Assembler 61

//PLIPROG EXEC DFHYITPL
//TRN.SYSIN DD *

.... program source ...
/*
//LKED.SYSIN DD *

INCLUDE SYSLIB(ASMTEST)
ENTRY CEESTART
NAME PLITEST(R)

/*

Note: Step 2 assumes that the ASMTEST load module created by DFHEITAL was
stored in a library included in the SYSLIB dataset concatenation.

The load module created by the DFHYITPL procedure includes both the DFHEAI
stub (included by DFHEITAL) and the DFHELII stub (included by DFHYITPL). This
causes the linkage editor or binder program to issue a warning message because
both stubs contain an entry point named DFHEII. This message can be ignored.

The DFHEAI stub must be included at the beginning of the program in the output
from the link edit. To achieve this, ORDER and INCLUDE statements for DFHEAI
must be in the link-edit step of your JCL. When you use the CICS-supplied
assembler procedure DFHEITAL in the SDFHPROC library to translate, assemble,
and link-edit application programs written in assembler language, the COPYLINK
step of this procedure copies SDFHMAC(DFHEILIA). DFHEILIA contains the
following statements that must be included:

ORDER DFHEAI
INCLUDE SYSLIB(DFHEAI)

The statements are put into a temporary file that is concatenated before the
assembled application program in the LKED step of the procedure.

If you are writing your own JCL, you only need to include the DFHELII stub,
because this contains the entry points needed for all languages.

An assembler language application program that is called by another begins with
the DFHEIENT macro and ends with the DFHEIRET macro. The CICS translator
inserts these for you, so if the program contains EXEC CICS commands and is to
be passed to the translator, as in the example just given, you do not need to code
these macros.

62 CICS TS for z/OS: CICS Application Programming Guide

#
#
#
#
#
#
#

#
#

#
#

Part 2. Preparing applications to run

Chapter 8. Translation and compilation 67
The integrated CICS translator 67

Using the integrated CICS translator 68
Specifying CICS translator options. 68

The translation process . 69
The CICS-supplied translators 72

Dynamic invocation of the separate translator 72
Translator option list . 72
Data definition (DD name) list 72

Using a CICS translator . 73
Defining translator options . 74

Translator options . 75
APOST. 75
CBLCARD . 75
CICS . 75
COBOL2 . 75
COBOL3 . 75
CPP . 76
CPSM . 76
DBCS . 76
DEBUG . 76
DLI . 76
EDF . 76
EPILOG . 76
EXCI . 76
FEPI. 77
FLAG (I, W, E, or S) . 77
GDS. 77
GRAPHIC. 77
LEASM. 78
LENGTH . 78
LINECOUNT(n). 78
LINKAGE . 78
MARGINS(m,n[,c]) . 78
NATLANG(EN or KA) . 79
NOCBLCARD . 79
NOCPSM . 79
NODEBUG . 79
NOEDF . 80
NOEPILOG . 80
NOFEPI . 80
NOLENGTH . 80
NOLINKAGE. 80
NONUM . 80
NOOPSEQUENCE . 80
NOOPTIONS . 81
NOPROLOG. 81
NOSEQ . 81
NOSEQUENCE . 81
NOSOURCE. 81
NOSPIE . 81
NOVBREF . 81
NUM . 81

© Copyright IBM Corp. 1989, 2010 63

##

||

OPMARGINS(m,n[,c]) . 82
OPSEQUENCE(m,n). 82
OPTIONS . 82
PROLOG . 82
QUOTE . 82
SEQ . 83
SEQUENCE(m,n) . 83
SOURCE . 83
SP . 83
SPACE(1 or 2 or 3) . 83
SPIE . 83
SYSEIB . 83
VBREF. 84

Translator options table . 85
Using COPY statements . 86
The CICS-supplied interface modules 86

The EXEC interface modules. 86
The CPI Communications interface module 86
The SAA Resource Recovery interface module 86

Using the EXEC interface modules 87
COBOL . 88
PL/I . 88
C and C++ . 89
Assembler language . 89
EXAMPLE Assembler language PROGRAM using LEASM 89

Chapter 9. Installing application programs 99
Program installation roadmap 99

Preparing for program installation 100
Defining MVS residence and addressing modes 100

Establishing a program’s addressing mode 101
CICS address space considerations. 101
Making programs permanently resident 102

Running applications in the link pack area 102
Running application programs in the RDSAs 103

Assembler . 103
C and C/++. 104
COBOL . 104
PL/I . 105

Using BMS map sets in application programs 105
Using the CICS-supplied procedures to install application programs 106

Installing programs in load library secondary extents 108
Including the CICS-supplied interface modules 108
Installing assembler language application programs 109
Installing COBOL application programs 110

Sample JCL to install COBOL application programs 111
Installing PL/I application programs 114

Sample JCL to install PL/I application programs 114
PL/I procedure with an integrated translator 115

Installing C application programs 117
Sample JCL to install C application programs 118

Including pre-translated code with your C source code 119
Using your own job streams 120

Translator requirements . 120
Online programs that use EXEC CICS or EXEC DLI commands 120
Online programs that use the CALL DLI interface 122

64 CICS TS for z/OS: CICS Application Programming Guide

||

Batch or BMP programs that use EXEC DLI commands 123
Batch or BMP programs that use DL/I CALL commands 123

Chapter 10. Installing map sets and partition sets 125
Installing map sets . 126

Types of map sets . 126
Defining the type of map set you require 127
Using extended data stream terminals 127

Installing physical map sets 128
Installing symbolic description map sets 129
Installing physical and symbolic description maps together 131

Using the DFHMAPT procedure to install HTML templates from BMS
maps . 131

JCL to install physical and symbolic description maps 132
Adding a CSECT to your map assembly 132

Installing partition sets. 133
Defining programs, map sets, and partition sets to CICS 134

Part 2. Preparing applications to run 65

66 CICS TS for z/OS: CICS Application Programming Guide

Chapter 8. Translation and compilation

Most older compilers (and assemblers) cannot process CICS commands directly.
This means that an additional step is needed to convert your program into
executable code. This step is called translation, and consists of converting CICS
commands into the language in which the rest of the program is coded, so that the
compiler (or assembler) can understand them.

Modern compilers can use the integrated CICS translator approach, where the
compiler interfaces with CICS at compile time to interpret CICS commands and
convert them automatically to calls to CICS service routines. If you use the
integrated CICS translator approach then many of the translation tasks described in
“The translation process” on page 69 are done at compile time for you, and you do
not need to execute the additional translator step.

This section describes:
v “The integrated CICS translator”
v “The translation process” on page 69
v “The CICS-supplied translators” on page 72
v “Using a CICS translator” on page 73
v “Defining translator options” on page 74
v “Using COPY statements” on page 86
v “The CICS-supplied interface modules” on page 86
v “Using the EXEC interface modules” on page 87

The integrated CICS translator
In earlier CICS releases, CICS application programs had to be translated before
they could be compiled. The translators find EXEC CICS commands, make them
into comments, and generate CALLs appropriate to the language. The
CICS-supplied jobs for compiling user application programs all contain an initial job
step that invokes the translator appropriate to the compiler invoked in the following
job step.

The CICS-supplied separate translators change the line numbers in source
programs, which means that an intermediate listing, with the translator-generated
CALLs, which must be used when debugging an application program. With the
integrated translator, application development is made easier because there is only
one listing — the original source statements, and the CICS error messages are
included in the compiler listing. The process of translating and compiling is also less
error-prone because it is no longer necessary to translate included members
separately.

The Language Environment-conforming language compilers that support the
integrated CICS translator scan the application source and call the integrated CICS
translator at relevant points.

The releases of the COBOL and PL/I compilers which support the CICS integrated
translator are listed in the CICS Release Guide. The integrated translator is
supported in z/OS V1.7 XL C/C++ and later compilers. If you use any other
compiler, including Assembler, you will need to translate your program in the
traditional way described in Chapter 8, “Translation and compilation.”

© Copyright IBM Corp. 1989, 2010 67

|
#
#
|
|

Using the integrated CICS translator
The language compilers provide various procedures that you can use with the
integrated CICS translator. They are documented in the Programming Guides for
Enterprise PL/I for z/OS and for XL C/C++.

The procedure that you use needs to have CICSTS31.CICS.SDFHLOAD added to
the STEPLIB concatenation for the compile step and the link-edit step should
include the interface module DFHELII at the start of the step.

To use the integrated CICS translator for PL/I you must specify the compiler option
SYSTEM(CICS).

To use the integrated CICS translator for COBOL, the compiler options CICS, LIB,
NODYNAM, and RENT must be in effect. NODYNAM is not a restriction specific to
the integrated translator. DYNAM is not supported for code that is separately
translated and compiled. Do not use SIZE(MAX), because storage must be left in
the user region for integrated CICS translator services. Instead, use a value such
as SIZE(4000K), which should work for most programs.

If you are running DB2 Version 7 or later and preparing a COBOL program using a
compiler with integrated translator, the compiler also provides an SQL statement
coprocessor (which produces a DBRM), so you do not need to use a separate DB2
precompiler. See the CICS DB2 Guide and the DB2 for OS/390 and z/OS
Application Programming and SQL Guide for more information on using the SQL
statement coprocessor.

To use the integrated CICS translator for C and C++, use the CICS option.

Specifying CICS translator options
To specify CICS translator options when using the XL C/C++ compiler specify the
compiler option, CICS, with the translator options inside parentheses. For example:
CICS(opt1 opt2 optn ...)

To specify CICS translator options when using the PL/I compiler specify the
compiler option, PP(CICS), with the translator options enclosed in apostrophes and
inside parenthesis. For example:
PP(CICS(’opt1 opt2 optn ...’))

For more information on specifying PL/I compiler options see the Enterprise PL/I for
z/OS and OS/390 Programming Guide.

To specify CICS translator options when using the COBOL compiler specify the
compiler option, CICS, with the translator options enclosed in apostrophes and
inside parenthesis. For example:
CICS(’opt1 opt2 optn ...’)

Note: The XOPTS translator option must be changed to the CICS compiler option.
XOPTS is not accepted when using the integrated CICS translator.

For more information on specifying COBOL compiler options see the Enterprise
COBOL for z/OS and OS/390: Programming Guide.

For a description of all of the translator options see “Defining translator options” on
page 74.

68 CICS TS for z/OS: CICS Application Programming Guide

#

#
#
#
#
#
#

#

#
#

#

Many of the translator options, such as those associated with translator listings, do
not apply when using the integrated CICS translator. These options, if specified, are
ignored. The EXCI option is not supported, the CICS option is assumed.

The translator options that can be used effectively with the integrated CICS
translator are:

v APOST or QUOTE

v CPSM or NOCPSM

v CICS

v DBCS

v DEBUG or NODEBUG

v DLI

v EDF or NOEDF

v FEPI or NOFEPI

v GRAPHIC

v LENGTH or NOLENGTH

v LINKAGE or NOLINKAGE

v NATLANG

v SP

v SYSEIB

The translation process
For compilers without integrated translators, CICS provides a translator program for
each of the languages in which you may write, to handle both EXEC CICS and
EXEC DLI statements.

For compilers with integrated translators, the compilers interface with CICS to
handle both EXEC CICS and EXEC DLI statements.

A language translator reads your source program and creates a new one; most
normal language statements remain unchanged, but CICS commands are
translated into CALL statements of the form required by the language in which you
are coding. The calls invoke CICS-provided “EXEC” interface modules, which later
get link-edited into your load module, and these in turn invoke the requested
services at execution time.

There are three steps: translation, compilation (assembly), and link-edit. Figure 10
on page 70 shows these 3 steps.

Chapter 8. Translation and compilation 69

The translators for all languages use one input and two output files:

SYSIN (Translator input) is the file that contains your source program.

If the SYSIN file is defined as a fixed blocked data set, the maximum record
length that the data set can possess is 80 bytes. Passing a fixed blocked
data set with a record length of greater than 80 bytes to the translator
results in termination of translator execution. If the SYSIN file is defined as
a variable blocked data set, the maximum record length that the data set
can possess is 100 bytes. Passing a variable blocked data set with a record
length greater than 100 bytes to the translator causes the translator to stop
with an error.

SYSPUNCH
(Translated source) is the translated version of your source code, which
becomes the input to the compile (assemble) step. In this file, your source
has been changed as follows:

v The EXEC interface block (EIB) structure has been inserted.

v EXEC CICS, EXEC CPSM and EXEC DLI commands have been turned
into function call statements.

SYSIN
(source
program)

Command-
level
language
translator SYSPUNCH

(translated
source
program)

Object
module

SYSPRINT
(translator
listing)

Load
library

CICS
Translation

Compilation
(assembly)

Link Edit

High-level
language
compiler
(or assembler)

High-level
language
compiler (or
assembler)
listing

Link-editor
Link-editor
listing

Figure 10. Preparing an application program

70 CICS TS for z/OS: CICS Application Programming Guide

v CICS DFHRESP, EYUVALUE, and DFHVALUE built-in functions have
been processed.

v A data interchange block (DIB) structure and initialization call have been
inserted if the program contains EXEC DLI statements.

The CICS commands that get translated still appear in the source, but as
comments only. Generally the non-CICS statements are unchanged. The
output from the translator always goes to an 80 byte fixed-record length
data set.

SYSPRINT
(Translator listing) shows the number of messages produced by the
translator, and the highest severity code associated with any message. The
options used in translating your program also appear, unless these have
been suppressed with the NOOPTIONS option.

For COBOL, C, C++, and PL/I programs, SYSPRINT also contains the
messages themselves. In addition, if you specify the SOURCE option of the
translator, you also get an annotated listing of the source in SYSPRINT.
This listing contains almost the same information as the subsequent
compilation listing, and therefore many installations elect to omit it (the
NOSOURCE option). One item you may need from this listing which is not
present in the compile listing, however, is the line numbers, if the translator
is assigning them. Line numbers are one way to indicate points in the code
when you debug with the execution diagnostic facility (EDF). If you specify
the VBREF option, you also get a list of the commands in your program,
cross-referenced by line number, and you can use this as an alternative to
the source listing for EDF purposes.

For assembler language programs, SYSPRINT contains only the translator
options, the message count and maximum severity code. The messages
themselves are inserted into the SYSPUNCH file as comments after the
related statement. This causes the assembler to copy them through to the
assembler listing, where you can check them. You may also see MNOTEs
that are generated by the assembler as the result of problems encountered
by the translator.

Note: If you use EXEC SQL, you need additional steps to translate the SQL
statements and bind; see the Application Programming and SQL Guide for
information about these extra steps.

CICS provides a procedure to execute these steps in sequence for each of the
languages it supports. “Using the CICS-supplied procedures to install application
programs” on page 106 describes how to use these procedures, and exactly what
they do.

You can control the translation process by specifying a number of options. For
example, if your program uses EXEC DLI calls, you need to tell the translator.

The translator may produce error messages, and it is as important to check these
messages as it is to check the messages produced by the compiler and link-editor.
See “The CICS-supplied translators” on page 72 for the location of these
messages.

EXEC commands are translated into CALL statements that invoke CICS interface
modules. These modules get incorporated into your object module in the link-edit
step, and you see them in your link-edit output listing. You can read more about
these modules in “The CICS-supplied interface modules” on page 86.

Chapter 8. Translation and compilation 71

The CICS-supplied translators
The following CICS-supplied translators are installed in the
CICSTS31.CICS.SDFHLOAD library:

Assembler DFHEAP1$
C DFHEDP1$
COBOL DFHECP1$
PL/I DFHEPP1$

Dynamic invocation of the separate translator
You can invoke the command-level language translator dynamically from a batch
assembler-language program using an ATTACH, CALL, LINK, or XCTL macro; or
from a C, PL/I, or COBOL program using CALL. If you use ATTACH, LINK, or
XCTL, use the appropriate translator load module, DFHExP1$, where x=A for
assembler language, x=C for COBOL, x=D for C, or x=P for PL/I.

If you use CALL, specify PREPROC as the entry point name to call the translator.

In all cases, pass the following address parameters to the translator:
v The address of the translator option list
v The address of a list of DD names used by the translator (this is optional)

These addresses must be in adjacent fullwords, aligned on a fullword boundary.
Register 1 must point to the first address in the list, and the high-order bit of the last
address must be set to one, to indicate the end of the list. This is true for both one
or two addresses.

Translator option list
The translator option list must begin on a halfword boundary. The first two bytes
contain a binary count of the number of bytes in the list (excluding the count field).
The remainder of the list can contain any of the translator option keywords,
separated by commas, blanks, or both.

Data definition (DD name) list
The DD name list must begin on a halfword boundary. The first two bytes contain a
binary count of the number of bytes in the list (excluding the count field). Each entry
in the list must occupy an 8-byte field. The sequence of entries is:

Entry Standard
DD name

Entry Standard
DD name

Entry Standard
DD name

1 not applicable 3 not applicable 5 SYSIN

2 not applicable 4 not applicable 6 SYSPRINT

7 SYSPUNCH

If you omit an applicable entry, the translator uses the standard DD name. If you
use a DD name less than 8 bytes long, fill the field with blanks on the right. You can
omit an entry by placing X'FF' in the first byte. You can omit entries at the end of
the list entirely.

72 CICS TS for z/OS: CICS Application Programming Guide

Using a CICS translator
A language translator reads your source program and creates a new one; most
normal language statements remain unchanged, but CICS commands are
translated into CALL statements of the form required by the language in which you
are coding. The calls invoke CICS-provided “EXEC” interface modules, which later
get link-edited into your load module, and these in turn invoke the requested
services at execution time.

You can control the translation process by specifying translator options.

The translator options you can choose are listed in “Defining translator options” on
page 74. You can specify your choices in one of two ways:

v List them as suboptions of the XOPTS option on the statement that the compiler
(assembler) provides for specifying options. These statements are:

Language Statement
COBOL CBL
COBOL PROCESS
C #pragma
C++ #pragma
PL/I * PROCESS
Assembler *ASM or *PROCESS¹

v List your options in the PARM operand of the EXEC job control statement for the
translate step. Most installations use catalogued procedures to translate, compile
(assemble) and link CICS programs, and therefore you specify this PARM field in
the EXEC job control statement that invokes the procedure.

For example, if the name of the procedure for COBOL programs is DFHYITVL,
and the name of the translate step within is TRN, you set translator options for a
COBOL program with a statement such as this one:
// EXEC DFHEITCL,PARM.TRN=(VBREF,QUOTE,SPACE(2),NOCBLCARD)

If you specify an option by one method and the same option or an option that
conflicts by the other method, the specifications in the language statement override
those in the EXEC statement. Similarly, if you specify multiple values for a single
option or options that conflict on either type of statement, the last setting takes
precedence. Except for COBOL programs, these statements must precede each
source program; there is no way to batch the processing of multiple programs in
other languages.

Translator options may appear in any order, separated by one or more blanks or by
a comma. If you specify them on the language statement for options, they must
appear in parentheses following the XOPTS parameter, because other options are
ignored by the translator and passed through to the compiler. The following COBOL
example shows both translator and compiler options being passed together:
CBL LIB XOPTS(QUOTE SPACE(2))

These examples show translator options being passed alone:
#pragma XOPTS(FLAG(W) SOURCE);
* PROCESS XOPTS(FLAG(W) SOURCE);
*ASM XOPTS(NOPROLOG NOEPILOG)

Chapter 8. Translation and compilation 73

If you use the PARM operand of the EXEC job control statement to specify options,
the XOPTS keyword is unnecessary, because the only options permitted here are
translator options. However, you may use XOPTS, with or without its associated
parentheses. If you use XOPTS with parentheses, be sure to enclose all of the
translator options. For example, the following forms are valid:
PARM=(op1 op2 .. opn)
PARM=(XOPTS op1 op2 .. opn)
PARM=XOPTS(op1 op2 .. opn)

but the following is not valid:
PARM=(XOPTS(op1 op2) opn)

(For compatibility with previous releases, the keyword CICS can be used as an
alternative to XOPTS, except when you are translating batch EXEC DLI programs.)
Remember, if you alter the default margins for C or C++ #pragma card processing
using the PARM operand, the sequence margins should be altered too. You can do
this using the NOSEQUENCE option.

Notes:

1. For assembler programs, *ASM statements contain translator options only. They
are treated as comments by the assembler. *PROCESS statements can contain
translator or assembler options for the High Level assembler, HLASM.

2. Translator and assembler options must not coexist on the same *PROCESS
statement.

3. *PROCESS and *ASM statements must be at the beginning of the input and no
assembler statements must appear before them. This includes comments and
statements such as “PRINT ON” and “EJECT”. Both *PROCESS and *ASM
statements can be included, in any order.

4. *PROCESS statements containing only translator options contain information for
the translator only and are not passed to the assembler

5. *PROCESS statements containing assembler options are placed in the
translated program.

Defining translator options
You can specify the translator options that apply to all languages except where
stated otherwise. Table 3 on page 85 lists all the translator options, the program
languages that apply, and any valid abbreviations.

If your installation uses the CICS-provided procedures in the distributed form, the
default options are used. These are explicitly noted in the following option
descriptions. You can tell which options get used by default at your installation by
looking at the SYSPRINT translator listing output from the translate step (see “The
CICS-supplied translators” on page 72). If you want an option that is not the default,
you must specify it, as described in “Using a CICS translator” on page 73.

74 CICS TS for z/OS: CICS Application Programming Guide

Translator options

APOST
(COBOL only)

APOST indicates that literals are delineated by the apostrophe or single quote (’).
QUOTE is the alternative, which indicates double quotes. The same value must be
specified for the translator step and the following compile step.

The CICS-supplied COBOL copybooks are generated with a single quote (APOST).
If you are using any CICS-supplied copybooks in your application to interface to a
CICS component, ensure the APOST option is in effect, not the QUOTE option.

CBLCARD
(COBOL only) Abbreviation: CBL

CBLCARD specifies that the translator is to generate a CBL statement. This is the
default—the alternative is NOCBLCARD.

CICS
CICS specifies that the translator is to process EXEC CICS commands. It is the
default specification in the translator. CICS is also an old name for the XOPTS
keyword for specifying translator options, which means that you can specify the
CICS option explicitly either by including it in your XOPTS list or by using it in place
of XOPTS to name the list. The only way to indicate that there are no CICS
commands is to use the XOPTS keyword without the option CICS. You must do this
in a batch DL/I program using EXEC DLI commands. For example, to translate a
batch DL/I program written in assembler language, specify:
*ASM XOPTS(DLI)

To translate a batch program written in COBOL, containing EXEC API commands,
specify:
CBL XOPTS(EXCI)

COBOL2
(COBOL only) Abbreviation: CO2

COBOL2 specifies that the translator is to generate temporary variables for use in
the translated EXEC statements. In all other respects, the program is translated in
the same manner as with the “COBOL3” option. COBOL2 and COBOL3 are
mutually exclusive. COBOL2 is the default for COBOL.

Note: If you specify COBOL2 and COBOL3 by different methods, the COBOL3
option is always used, regardless of where the two options have been
specified. If this happens, the translator issues a warning message.

COBOL3
(COBOL only) Abbreviation: CO3

COBOL3 specifies that the translator is to translate programs that are Language
Environment-conforming. COBOL3 and COBOL2 are mutually exclusive. “Using the
COBOL2 and COBOL3 translator options” on page 34 explains how the translator
treats specific coding situations. Chapter 3, “Language Environment,” on page 9
explains what Language Environment-conforming compilers are available.

Chapter 8. Translation and compilation 75

#
#
#

#
#

#
#
#
#

#
#
#

CPP
(C++ only)CPP specifies that the translator is to translate C++ programs for
compilation by a supported C++ compiler, such as IBM C/C++ for MVS.

CPSM
CPSM specifies that the translator is to process EXEC CPSM commands. The
alternative is NOCPSM, which is the default.

DBCS
(COBOL only)

DBCS specifies that the source program may contain double-byte characters. It
causes the translator to treat hexadecimal codes X'0E' and X'0F' as shift-out (SO)
and shift-in (SI) codes, respectively, wherever they appear in the program.

For more detailed information about how to program in COBOL using DBCS, see
the section on DBCS character strings in Enterprise COBOL for z/OS: Language
Reference.

DEBUG
(COBOL, C, C++, and PL/I only)

DEBUG instructs the translator to produce code that passes the line number
through to CICS for use by the execution diagnostic facility (EDF). DEBUG is the
default—NODEBUG is the alternative.

DLI
DLI specifies that the translator is to process EXEC DLI commands. You must
specify it with the XOPTS option, that is, XOPTS(DLI).

EDF
EDF specifies that the execution diagnostic facility is to apply to the program. EDF
is the default—the alternative is NOEDF.

EPILOG
(Assembler language only)

EPILOG specifies that the translator is to insert the macro DFHEIRET at the end of
the program being translated. DFHEIRET returns control from the issuing program
to the program which invoked it. If you want to use any of the options of the
RETURN command, you should use RETURN and specify NOEPILOG.

EPILOG is the default—the alternative, NOEPILOG, prevents the translator inserting
the macro DFHEIRET. (See the CICS Application Programming Reference manual
for programming information about the DFHEIRET macro.)

EXCI
EXCI specifies that the translator is to process EXEC API commands for the
External CICS Interface (EXCI). These commands must be used only in batch
programs, and so the EXCI translator option is mutually exclusive to the CICS
translator option, or any translator option that implies the CICS option. An error
message is produced if both CICS and EXCI are specified, or EXCI and a translator
option that implies CICS are specified.

76 CICS TS for z/OS: CICS Application Programming Guide

The EXCI option is also mutually exclusive to the DLI option. EXEC API commands
for the External CICS Interface cannot be coded in batch programs using EXEC DLI
commands. An error message is produced if both EXCI and DLI translator
commands are specified.

EXCI cannot be used for COBOL programs compiled with the integrated translator,
but can be used with a separate translator step.

The EXCI translator option is specified by XOPTS, that is, XOPTS(EXCI).

FEPI
FEPI allows access to the FEPI API commands of the CICS Front End
Programming Interface (FEPI). FEPI is only available if you have installed the CICS
Front End Programming Interface. The alternative is NOFEPI. FEPI commands and
design are described in the CICS Front End Programming Interface User's Guide.

FLAG (I, W, E, or S)
(COBOL, C, C++, and PL/I only) Abbreviation: F

FLAG specifies the minimum severity of error in the translation which requires a
message to be listed.

I All messages.

W (Default) All except information messages.

E All except warning and information messages.

S Only severe and unrecoverable error messages.

GDS
(C, C++, and assembler language only)

GDS specifies that the translator is to process CICS GDS (generalized data stream)
commands. For programming information about these commands, see the CICS
Application Programming Reference manual.

GRAPHIC
(PL/I only)

GRAPHIC specifies that the source program may contain double-byte characters. It
causes the translator to treat hexadecimal codes X'0E' and X'0F' as shift-out (SO)
and shift-in (SI) codes, respectively, wherever they appear in the program.

It also prevents the translator from generating parameter lists that contain the
shift-out and shift-in values in hexadecimal form. Wherever these values would
ordinarily appear, the translator expresses them in binary form, so that there are no
unintended DBCS delimiters in the data stream that the compiler receives.

If the compiler you are using supports DBCS, you need to prevent unintended
shift-out and shift-in codes, even if you are not using double-byte characters. You
can do this by specifying the GRAPHIC option for the translator, so that it does not
create them, or by specifying NOGRAPHIC on the compile step, so that the
compiler does not interpret them as DBCS delimiters.

For more detailed information about how to program in PL/I using DBCS, see the
relevant language reference manual.

Chapter 8. Translation and compilation 77

#
#

LEASM
(Assembler only)

LEASM instructs the translator to generate code for a Language
Environment-conforming assembler MAIN program.

If the LEASM option is specified, the DFHEISTG, DFHEIENT, DFHEIRET and
DFHEIEND macros expand differently to create a Language Environment-
conforming assembler MAIN program, instead of the form of macro expansion used
for assembler sub-routines in a CICS environment. This allows customer programs
that have used NOPROLOG and NOEPILOG and coded their own DFHEIENT and
other macros to take advantage of Language Environment support without changing
their program source. For example, all programs that require more than one code
base register fall into this category because the translator does not support multiple
code base registers.

For an example of an assembler program translated using the LEASM option see
“EXAMPLE Assembler language PROGRAM using LEASM” on page 89.

LENGTH
(COBOL, Assembler and PL/I only)

LENGTH instructs the translator to generate a default length if the LENGTH option
is omitted from a CICS command in the application program. The alternative is
NOLENGTH.

LINECOUNT(n)
Abbreviation: LC

LINECOUNT specifies the number of lines to be included in each page of translator
listing, including heading and blank lines. The value of “n” must be an integer in the
range 1 through 255; if “n” is less than 5, only the heading and one line of listing
are included on each page. The default is 60.

LINKAGE
(COBOL only) Abbreviation: LIN

LINKAGE requests the translator to modify the LINKAGE SECTION and
PROCEDURE DIVISION statements in top-level programs according to the existing
rules.

This means that the translator will insert a USING DFHEIBLK DFHCOMMAREA
statement in the PROCEDURE DIVISION, if one does not already exist, and will
ensure that the LINKAGE SECTION (creating one if necessary) contains definitions
for DFHEIBLK and DFHCOMMAREA.

LINKAGE is the default—the alternative is NOLINKAGE.

The LINKAGE option has no effect on the translation of classes and methods.

MARGINS(m,n[,c])
(C, C++, and PL/I only) Abbreviation: MAR

MARGINS specifies the columns of each line or record of input that contain
language or CICS statements. The translator does not process data that is outside
these limits, though it does include it in the source listings.

78 CICS TS for z/OS: CICS Application Programming Guide

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

The option can also specify the position of an American National Standard printer
control character to format the listing produced when the SOURCE option is
specified; otherwise, the input records are listed without any intervening blank lines.
The margin parameters are:

m Column number of left-hand margin.

n Column number of right-hand margin. It must be greater than m.

Note: When used as a C or C++ compiler option, the asterisk (*) is
allowable for the second argument on the MARGIN option. For the
translator, however, a numeric value between 1 and 100 inclusive
must be specified. When the input data set has fixed-length records,
the maximum value allowable for the right hand margin is 80. When
the input data set has variable-length records, the maximum value
allowable is 100.

c Column number of the American National Standard printer control character.
It must be outside the values specified for m and n. A zero value for c
means no printer control character. If c is nonzero, only the following printer
control characters can appear in the source:
(blank)

Skip 1 line before printing.
0 Skip 2 lines before printing.
− Skip 3 lines before printing.
+ No skip before printing.
1 New page.

The default for C and C++ is MARGINS(1,72,0) for fixed-length records, and for
variable-length records it is the same as the record length (1,record length,0). The
default for PL/I is MARGINS(2,72,0) for fixed-length records, and
MARGINS(10,100,0) for variable-length records.

NATLANG(EN or KA)
NATLANG specifies what language is to be used for the translator message output:

EN (Default) English.

KA Kanji.

(Take care not to confuse this option with the NATLANG API option.)

NOCBLCARD
(COBOL only)

NOCBLCARD specifies that the translator is not to generate a CBL statement. The
compiler options that CICS requires are specified by the DFHYITVL procedure. You
should ensure that RENT, NODYNAM, and LIB are specified..

NOCPSM
NOCPSM specifies that the translator is not to process EXEC CPSM commands.
This is the default—the alternative is CPSM.

NODEBUG
(COBOL, C, C++, and PL/I only)

NODEBUG instructs the translator not to produce code that passes the line number
through to CICS for use by the execution diagnostic facility (EDF).

Chapter 8. Translation and compilation 79

NOEDF
NOEDF specifies that the execution diagnostic facility is not to apply to the
program. There is no performance advantage in specifying NOEDF, but the option
can be useful to prevent commands in well-debugged subprograms appearing on
EDF displays.

NOEPILOG
(Assembler language only)

NOEPILOG instructs the translator not to insert the macro DFHEIRET at the end of
the program being translated. DFHEIRET returns control from the issuing program
to the program which invoked it. If you want to use any of the options of the EXEC
CICS RETURN command, you should use EXEC CICS RETURN and specify
NOEPILOG. NOEPILOG prevents the translator inserting the macro DFHEIRET.
The alternative is EPILOG, which is the default. (See the CICS Application
Programming Reference manual for programming information about the DFHEIRET
macro.)

NOFEPI
NOFEPI disallows access to the FEPI API commands of the CICS Front End
Programming Interface (FEPI). NOFEPI is the default—the alternative is FEPI.

NOLENGTH
(COBOL, Assembler and PL/I only)

NOLENGTH instructs the translator not to generate a default length if the LENGTH
option is omitted from a CICS command in the application program. The default is
LENGTH.

NOLINKAGE
(COBOL only)

NOLINKAGE requests the translator not to modify the LINKAGE SECTION and
PROCEDURE DIVISION statements to supply missing DFHEIBLK and
DFHCOMMAREA statements, or insert a definition of the EIB structure in the
LINKAGE section..

This means that you can provide COBOL copybooks to define a COMMAREA and
use the EXEC CICS ADDRESS command.

LINKAGE is the default.

NONUM
(COBOL only)

NONUM instructs the translator not to use the line numbers appearing in columns
one through six of each line of the program as the line number in its diagnostic
messages and cross-reference listing, but to generate its own line numbers.
NONUM is the default—the alternative is NUM.

NOOPSEQUENCE
(C, C++, and PL/I only) Abbreviation: NOS

NOOPSEQUENCE specifies the position of the sequence field in the translator
output records. The default for C and C++ is OPSEQUENCE(73,80) for fixed-length

80 CICS TS for z/OS: CICS Application Programming Guide

records and NOOPSEQUENCE for variable-length records. For PL/I, the default is
OPSEQUENCE(73,80) for both types of records.

NOOPTIONS
Abbreviation: NOP

NOOPTIONS instructs the translator not to include a list of the options used during
this translation in its output listing.

NOPROLOG
(Assembler language only)

NOPROLOG instructs the translator not to insert the macros DFHEISTG,
DFHEIEND, and DFHEIENT into the program being assembled. These macros
define local program storage and execute at program entry. (See the CICS
Application Programming Reference manual for programming information about
these “prolog” macros.)

NOSEQ
(COBOL only)

NOSEQ instructs the translator not to check the sequence field of the source
statements, in columns 1-6. The alternative, SEQ, is the default. If SEQ is specified
and a statement is not in sequence, it is flagged.

NOSEQUENCE
(C, C++, and PL/I only) Abbreviation: NSEQ

NOSEQUENCE specifies that statements in the translator input are not sequence
numbered and that the translator must assign its own line numbers.

The default for fixed-length records is SEQUENCE(73,80). For variable-length
records in C and C++, the default is NOSEQUENCE and for variable-length records
in PL/I the default is SEQUENCE(1,8).

NOSOURCE
NOSOURCE instructs the translator not to include a listing of the translated source
program in the translator listing.

NOSPIE
NOSPIE prevents the translator from trapping irrecoverable errors; instead, a dump
is produced. You should use NOSPIE only when requested to do so by the IBM
support center.

NOVBREF
(COBOL, C, C++ and PL/I only)

NOVBREF instructs the translator not to include a cross-reference of commands
with line numbers in the translator listing. (NOVBREF used to be called NOXREF;
for compatibility, NOXREF is still accepted.) NOVBREF is the default—the
alternative is VBREF.

NUM
(COBOL only)

Chapter 8. Translation and compilation 81

NUM instructs the translator to use the line numbers appearing in columns one
through six of each line of the program as the line number in its diagnostic
messages and cross-reference listing. The alternative is NONUM, which is the
default.

OPMARGINS(m,n[,c])
(C, C++ and PL/I only) Abbreviation: OM

OPMARGINS specifies the translator output margins, that is, the margins of the
input to the following compiler. Normally these are the same as the input margins
for the translator. For a definition of input margins and the meaning of “m”, “n”, and
“c”, see MARGINS. The default for C and C++ is OPMARGINS(1,72,0) and for PL/I,
the default is OPMARGINS(2,72,0).

The maximum “n” value allowable for the OPMARGINS option is 80. The output
from the translator is always of a fixed-length record format.

If the OPMARGINS option is used to set the output from the translator to a certain
format, it may be necessary to change the input margins for the compiler being
used. If the OPMARGINS value is allowed to default this is not necessary.

OPSEQUENCE(m,n)
(C, C++, and PL/I only) Abbreviation: OS

OPSEQUENCE specifies the position of the sequence field in the translator output
records. For the meaning of “m” and “n”, see SEQUENCE. The default for C and
C++ is OPSEQUENCE(73,80) for fixed-length records and NOOPSEQUENCE for
variable-length records. For PL/I, the default is OPSEQUENCE(73,80) for both
types of records.

OPTIONS
Abbreviation: OP

OPTIONS instructs the translator to include a list of the options used during this
translation in its output listing.

PROLOG
(Assembler language only)

PROLOG instructs the translator to insert the macros DFHEISTG, DFHEIEND, and
DFHEIENT into the program being assembled. These macros define local program
storage and execute at program entry. (See the CICS Application Programming
Reference manual for programming information about these “prolog” macros.)
PROLOG is the default—the alternative is NOPROLOG.

QUOTE
(COBOL only) Abbreviation: Q

QUOTE indicates that literals are delineated by the double quotation mark (”). The
same value must be specified for the translator step and the following compiler
step.

The CICS-supplied COBOL copybooks are generated with a single quote (APOST).
If you are using any CICS-supplied copybooks in your application to interface to a
CICS component, ensure the APOST option is in effect, not the QUOTE option.

82 CICS TS for z/OS: CICS Application Programming Guide

#
#
#

SEQ
(COBOL only)

SEQ instructs the translator to check the sequence field of the source statements,
in columns 1-6. SEQ is the default—the alternative is NOSEQ. If a statement is not
in sequence, it is flagged.

SEQUENCE(m,n)
(C, C++, and PL/I only) Abbreviation: SEQ

SEQUENCE specifies that statements in the translator input are sequence
numbered and the columns in each line or record that contain the sequence field.
The translator uses this number as the line number in error messages and
cross-reference listings. No attempt is made to sort the input lines or records into
sequence. If no sequence field is specified, the translator assigns its own line
numbers. The SEQUENCE parameters are:

m Leftmost sequence number column.

n Rightmost sequence number column.

The sequence number field must not exceed eight characters and must not overlap
the source program (as specified in the MARGINS option).

The default for fixed-length records is SEQUENCE(73,80). For variable-length
records in C and C++ the default is NOSEQUENCE and for variable-length records
in PL/I the default is SEQUENCE(1,8).

SOURCE
Abbreviation: S

SOURCE instructs the translator to include a listing of the translated source
program in the translator listing. SOURCE is the default—the alternative is
NOSOURCE.

SP
SP must be specified for application programs that contain special (SP) CICS
commands or they will be rejected at translate time. These commands are
ACQUIRE, COLLECT, CREATE, DISABLE, DISCARD, ENABLE, EXTRACT,
INQUIRE, PERFORM, RESYNC, and SET. They are generally used by system
programmers. For programming information about these commands, see the CICS
System Programming Reference manual .

SPACE(1 or 2 or 3)
(COBOL only)

SPACE indicates the type of spacing to be used in the output listing: SPACE(1)
specifies single spacing, SPACE(2) double spacing, and SPACE(3) triple spacing.
SPACE(3) is the default.

SPIE
SPIE specifies that the translator is to trap irrecoverable errors. SPIE is the
default—the alternative is NOSPIE.

SYSEIB
SYSEIB indicates that the program is to use the system EIB instead of the
application EIB. The SYSEIB option allows programs to execute CICS commands

Chapter 8. Translation and compilation 83

without updating the application EIB, making that aspect of execution transparent to
the application. However, this option imposes restrictions on programs using it, and
should be used only in special situations. A program translated with the SYSEIB
option must:

v Execute in AMODE(31), as the system EIB is assumed to be located in
“TASKDATALOC(ANY)” storage.

v Obtain the address of the system EIB using the ADDRESS EIB command (if the
program is translated with the SYSEIB option, this command automatically
returns the address of the system EIB).

v Be aware that the use of the SYSEIB option implies the use of the NOHANDLE
option on all CICS commands issued by the program. (Commands should use
the RESP option as required.)

VBREF
(COBOL, C, C++, and PL/I only)

VBREF specifies whether the translator is to include a cross-reference of
commands with line numbers in the translator listing. (VBREF used to be called
XREF, and is still accepted.)

84 CICS TS for z/OS: CICS Application Programming Guide

Translator options table
Table 3. Translator options applicable to programming language

Translator option COBOL C C++ PL/I Assembler

APOST or QUOTE X

CBLCARD or NOCBLCARD X

CICS X X X X X

COBOL2 X

COBOL3 X

CPP X

CPSM or NOCPSM X X X X X

DBCS X

DEBUG or NODEBUG X X X X

DLI X X X X X

EDF or NOEDF X X X X X

EPILOG or NOEPILOG X

EXCI X X X X X

FEPI or NOFEPI X X X X X

FLAG(I or W or E or S) X X X X

GDS X X X

GRAPHIC X

LEASM X

LENGTH or NOLENGTH X X X

LINECOUNT(n) X X X X X

LINKAGE or NOLINKAGE X

MARGINS(m,n) X X X

NATLANG X X X X X

NUM or NONUM X

OPMARGINS(m,n[,c]) X X X

OPSEQUENCE(m,n) or
NOOPSEQUENCE

X X X

OPTIONS or NOOPTIONS X X X X X

PROLOG or NOPROLOG X

QUOTE or APOST X

SEQ or NOSEQ X

SEQUENCE(m,n) or NOSEQUENCE X X X

SOURCE or NOSOURCE X X X

SP X X X X X

SPACE(1 or 2 or 3) X

SPIE or NOSPIE X X X X X

SYSEIB X X X X X

VBREF or NOVBREF X X X X

Chapter 8. Translation and compilation 85

######

||||||

Using COPY statements
The compiler (or assembler) reads the translated version of your program as input,
rather than your original source. This affects what you see on your compiler
(assembler) listing. It also means that COPY statements in your source code must
not bring in untranslated CICS commands, because it is too late for the translator to
convert them.

If you are using a separate translator and the source within any copybook contains
CICS commands, you must translate it separately before translation and compilation
of the program in which it will be included. If you are using the integrated CICS
translator and the source within any copybook contains CICS commands, you do
not have to translate it separately before compilation of the program in which it will
be included.

The external program must always be passed through the CICS translator, or
compiled with a compiler that has an integrated CICS translator, even if all the
CICS commands are in included copybooks.

The CICS-supplied interface modules
Each of your application programs to run under CICS requires one or more
interface modules (also known as stubs) to use the following facilities:
v The EXEC interface
v The CPI Communications facility
v The SAA Resource Recovery facility
v The CICSPlex® SM application programming interface (for information about

CICSPlex SM stubs, see CICSPlex SM Application Programming Guide).

The EXEC interface modules
Each of your CICS application programs must contain an interface to CICS. This
takes the form of an EXEC interface module, used by the CICS high-level
programming interface. The module, installed in the CICSTS31.CICS.SDFHLOAD
library, must be link-edited with your application program to provide communication
between your code and the EXEC interface program, DFHEIP.

The CPI Communications interface module
Each of your CICS application programs that uses the Common Programming
Interface for Communications (CPI Communications) must contain an interface to
CPI Communications. This takes the form of an interface module, used by the CICS
high-level programming interface, common to all the programming languages. The
module, DFHCPLC, that is installed in the CICSTS31.CICS.SDFHLOAD library,
must be link-edited with each application program that uses CPI Communications.

The SAA Resource Recovery interface module
Each of your CICS application programs that uses SAA Resource Recovery must
contain an interface to SAA Resource Recovery. This takes the form of an interface
module, used by the CICS high-level programming interface, common to all the
programming languages. The module, DFHCPLRR, that is installed in the
CICSTS31.CICS.SDFHLOAD library, must be link-edited with each application
program that uses the SAA Resource Recovery facility.

86 CICS TS for z/OS: CICS Application Programming Guide

Using the EXEC interface modules
A language translator reads your source program and creates a new one; normal
language statements remain unchanged, but CICS commands are translated into
CALL statements of the form required by the language in which you are coding. The
calls invoke CICS-provided “EXEC” interface modules or stubs , which is a
function-dependent piece of code used by the CICS high-level programming
interface. The stub, provided in the SDFHLOAD library, must be link-edited with
your application program to provide communication between your code and the
CICS EXEC interface program, DFHEIP. These stubs are invoked during execution
of EXEC CICS and EXEC DLI commands.

There are stubs for each programming language.

Table 4. Interface modules

Language Interface module name

Assembler DFHELII and DFHEAI0

All HLL languages and Assembler MAIN
programs using the LEASM option

DFHELII

The CICS-supplied stub routines work with an internal programming interface, the
CICS command-level interface, which is never changed in an incompatible way.
Consequently, these stub modules are upward and downward compatible, and
CICS application modules never need to be re-linked to include a later level of any
of these stubs.

With the exception of DFHEAI0, these stubs all provide the same function, which is
to provide a linkage from EXEC CICS commands to the required CICS service. The
stubs make this possible by providing various entry points that are called from the
translated EXEC CICS commands, and then executing a sequence of instructions
that pass control to the EXEC interface function of CICS.

DFHELII contains multiple entry points, most of which provide compatibility for very
old versions of the CICS PL/I translator. It contains the entries DFHEXEC (for C
and C++ application programs), DFHEI1 (for COBOL and assembler), and DFHEI01
(for PL/1).

Each of these stubs begins with an 8 byte eyecatcher in the form DFHYxnnn,
where x indicates the language supported by the stub (for example, A represents
assembler, and I indicates that the stub is language independent), and nnn
indicates the CICS release from which the stub was included. The letter Y in the
eyecatcher indicates that the stub is read-only. Stubs supplied with very early
releases of CICS contained eyecatchers in the form DFHExxxx in which the letter E
denotes that the stub is not read-only.The eyecatcher for DFHELII in CICS
Transaction Server for z/OS, Version 3 Release 1 is DFHYI640.

The eyecatcher can be helpful if you are trying to determine the CICS release at
which a CICS application load module was most recently linked.

The DFHEAI stub must be included at the beginning of the program in the output
from the link edit. To achieve this, ORDER and INCLUDE statements for DFHEAI
must be in the link-edit step of your JCL. When you use the CICS-supplied
assembler procedure DFHEITAL in the SDFHPROC library to translate, assemble,
and link-edit application programs written in assembler language, the COPYLINK

Chapter 8. Translation and compilation 87

||

#
#
#
#
#

step of this procedure copies SDFHMAC(DFHEILIA). DFHEILIA contains the
following statements that must be included:

ORDER DFHEAI
INCLUDE SYSLIB(DFHEAI)

The statements are put into a temporary file that is concatenated before the
assembled application program in the LKED step of the procedure.

COBOL
Each EXEC command is translated into a COBOL CALL statement that refers to the
entry DFHEI1.

The following example shows the output generated by the translator when
processing a simple EXEC CICS RETURN command:

*EXEC CICS RETURN END-EXEC
Call ’DFHEI1’ using by content x’0e0800000600001000’
end-call.

The reference to DFHEI1 is resolved by the inclusion of the DFHELII stub routine in
the linkage editor step of the CICS-supplied procedures such as DFHYITVL or
DFHZITCL.

PL/I
When translating PL/I programs each EXEC command generates a call to the entry
point DFHEI01. This is done using a variable entry point DFHEI0 that is associated
with the entry DFHEI01. The translator enables this by inserting the following
statements near the start of each translated program:

DCL DFHEI0 ENTRY VARIABLE INIT(DFHEI01) AUTO;
DCL DFHEI01 ENTRY OPTIONS(INTER ASSEMBLER);

The translator creates a unique entry name based on DFHEI0 for each successfully
translated EXEC command. The following example shows the output generated by
the translator when processing a simple EXEC CICS RETURN command:

/* EXEC CICS RETURN TRANSID(NEXT) */
DO;
DCL DFHENTRY_B62D3C38_296F2687 BASED(ADDR(DFHEI0)) OPTIONS(INTER ASSEM
BLER) ENTRY(*,CHAR(4));
CALL DFHENTRY_B62D3C38_296F2687(’xxxxxxxxxxxxxxxxx’ /* ’0E 08 80 00 03
00 00 10 00 F0 F0 F0 F0 F0 F0 F1 F0 ’X */, NEXT);
END;

In the example above, DFHENTRY_B62D3C38_296F2687 is based on the entry
variable DFHEI0 that is associated with the real entry DFHEI01. This technique
allows the translator to create a PL/I data descriptor list for each variable entry
name. The PL/I compiler can then check that variable names referenced in EXEC
commands are defined with attributes that are consistent with the attributes defined
by the translator in the data descriptor list. In this example, ENTRY(*,CHAR(4))
specifies that the variable (named NEXT) associated with the TRANSID option
should be a character string with a length of four.

The reference to DFHEI01 is resolved by the inclusion of the DFHELII stub routine
in the linkage editor step of one of the CICS-supplied procedures such as
DFHYITPL.

88 CICS TS for z/OS: CICS Application Programming Guide

#
#

#
#

#
#

C and C++
In a C and C++, each EXEC CICS command is translated by the command
translator into a call to the function DFHEXEC. The translator enables this by
inserting the following statements near the start of each translated program:
#pragma linkage(DFHEXEC,OS) /* force OS linkage */
void DFHEXEC(); /* function to call CICS */

The following example shows the output generated by the translator when
processing a simple EXEC CICS RETURN command:

/* EXEC CICS RETURN */
{
DFHEXEC("\x0E\x08\x00\x2F\x00\x00\x10\x00\xF0\xF0\xF0\xF0\xF1\xF8\xF0\xF0");
}

The reference to DFHEXEC is resolved by the inclusion of the DFHELII stub routine
in the linkage editor step of one of the CICS-supplied procedures such as
DFHYITDL, DFHZITDL, DFHZITEL, DFHZITFL or DFHZITGL.

Assembler language
Each EXEC command is translated into an invocation of the DFHECALL macro.

The following example shows the output generated by the translator when
processing a simple EXEC CICS RETURN command:
* EXEC CICS RETURN

DFHECALL =X’0E0800000800001000’

The assembly of the DFHECALL macro invocation shown above generates code
that builds a parameter list addressed by register 1, loads the address of entry
DFHEI1 in register 15, and issues a BALR instruction to call the stub routine.

DS 0H
LA 1,DFHEITPL
LA 14,=x’0E08000008001000’
ST 14,0(,1)
OI 0(1),x’80’
L 15,=V(DFHEI1)
BALR 14,15

The reference to DFHEI1 is resolved by the inclusion of the DFHEAI stub routine in
the linkage editor step of one of the CICS-supplied procedures such as DFHEITAL.
The eyecatcher for DFHEAI in CICS Transaction Server for z/OS, Version 3
Release 1 is DFHYA640, with the release numbers indicating this stub was supplied
with CICS Transaction Server for z/OS, Version 3 Release 1.

The DFHEAI0 stub for assembler application programs is included by the automatic
call facility of the linkage editor or binder utility. It is called by code generated by the
DFHEIENT and DFHEIRET macros to obtain and free, respectively, an assembler
application program's dynamic storage area. This stub is required only in assembler
application programs; there are no stubs required or supplied to provide an
equivalent function for programs written in the high level languages.

EXAMPLE Assembler language PROGRAM using LEASM
Figure 11 on page 90 shows a simple CICS assembler program.

Chapter 8. Translation and compilation 89

#
#
#

|

|
|

When translated and assembled, it expands to Figure 12 on page 91:

*ASM XOPTS(LEASM)
DFHEISTG DSECT
OUTAREA DS CL200 DATA OUTPUT AREA
*
EIASM CSECT ,

MVC OUTAREA(40),MSG1
MVC OUTAREA(4),EIBTRMID
EXEC CICS SEND TEXT FROM(OUTAREA) LENGTH(43) FREEKB ERASE
EXEC CICS RECEIVE
MVC OUTAREA(13),MSG2
EXEC CICS SEND TEXT FROM(OUTAREA) LENGTH(13) FREEKB ERASE
EXEC CICS RETURN

*
MSG1 DC C’xxxx: ASM program invoked. ENTER TO END.’
MSG2 DC C’PROGRAM ENDED’

END

Figure 11. a simple CICS assembler program.

90 CICS TS for z/OS: CICS Application Programming Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ASM XOPTS(LEASM)
DFHEIGBL ,,,LE INSERTED BY TRANSLATOR

*,&DFHEIDL; SETB 0 1 MEANS EXEC DLI IN PROGRAM 01-DFHEI
*,&DFHEIDB; SETB 0 1 MEANS BATCH PROGRAM 01-DFHEI
*,&DFHEIRS; SETB 0 1 MEANS RSECT 01-DFHEI
*,&DFHEILE; SETB 1 1 MEANS LE MAIN 01-DFHEI
DFHEISTG DSECT

DFHEISTG INSERTED BY TRANSLATOR

* EXEC INTERFACE DYNAMIC STORAGE *

DFHEISTG DSECT EXEC INTERFACE STORAGE @BBAC81A 01-DFHEI

USING *,DFHEIPLR ESTABLISH ADDRESSABILITY @BBAC81A 01-DFHEI
*
**
* D Y N A M I C S T O R A G E A R E A (D S A) *
**
*
CEEDSA DS 0D Just keep the same label for formulae 02-CEEDS
*
CEEDSAFLAGS DS XL2 DSA flags 02-CEEDS
CEEDSALNGC EQU X’1000’ C library DSA 02-CEEDS
CEEDSALNGP EQU X’0800’ PL/I library DSA 02-CEEDS
CEEDSAEXIT EQU X’0008’ An Exit DSA 02-CEEDS
CEEDSAMEMD DS XL2 Member defined 02-CEEDS
CEEDSABKC DS A Addr of DSA of caller 02-CEEDS
CEEDSAFWC DS A Addr of DSA of last called rtn 02-CEEDS
CEEDSAR14 DS F Save area for register 14 02-CEEDS
CEEDSAR15 DS F Save area for register 15 02-CEEDS
CEEDSAR0 DS F Save area for register 0 02-CEEDS
CEEDSAR1 DS F Save area for register 1 02-CEEDS
CEEDSAR2 DS F Save area for register 2 02-CEEDS
CEEDSAR3 DS F Save area for register 3 02-CEEDS
CEEDSAR4 DS F Save area for register 4 02-CEEDS
CEEDSAR5 DS F Save area for register 5 02-CEEDS
CEEDSAR6 DS F Save area for register 6 02-CEEDS
CEEDSAR7 DS F Save area for register 7 02-CEEDS
CEEDSAR8 DS F Save area for register 8 02-CEEDS
CEEDSAR9 DS F Save area for register 9 02-CEEDS
CEEDSAR10 DS F Save area for register 10 02-CEEDS
CEEDSAR11 DS F Save area for register 11 02-CEEDS
CEEDSAR12 DS F Save area for register 12 02-CEEDS
CEEDSALWS DS A Addr of PL/I Language Working Space 02-CEEDS
CEEDSANAB DS A Addr of next available byte 02-CEEDS
CEEDSAPNAB DS A Addr of end-of-prolog NAB 02-CEEDS

DS 4F 02-CEEDS
CEEDSATRAN DS 0A HPL TxArea or 02-CEEDS
CEEDSARENT DS A Program reentry address-IPAT 02-CEEDS
CEEDSACILC DS A C to Fortran ILC save area 02-CEEDS
CEEDSAMODE DS A Return address of module that 02-CEEDS
* caused the last mode switch

DS 2F 02-CEEDS
CEEDSARMR DS A Addr of language specific 02-CEEDS
* exception handler
*

DS F Reserved 02-CEEDS
CEEDSAAUTO DS 0D Automatic storage starts here 02-CEEDS
CEEDSAEND DS 0D End of DSA 02-CEEDS

Figure 12. the Translated assembled version (Part 1 of 8)

Chapter 8. Translation and compilation 91

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

CEEDSASZ EQU CEEDSAEND-CEEDSA Size of DSA 02-CEEDS
CEEDSA_STDCEEDSA EQU X’0000’ flag values of standard CEE DSA 02-CEEDS
*
*
*
DFHEISA DS 18F SAVE AREA R14-R12 AT 12 OFF @BBAC81A 01-DFHEI
DFHEILWS DS F RESERVED @BBAC81A 01-DFHEI
DFHEINAB DS F RESERVED @BBAC81A 01-DFHEI
DFHEIRS0 DS F RESERVED @BBAC81A 01-DFHEI
DFHEIR13 DS F REGISTER 13 @BBAC81A 01-DFHEI
DFHEIRS1 DS F RESERVED @BBAC81A 01-DFHEI
DFHEIBP DS F EIB POINTER (NOT USED IF BATCH) 01-DFHEI
DFHEICAP DS F COMMAREA POINTER (NOT USED IF BATCH) 01-DFHEI
DFHEIV00 DS H HALFWORD TEMP USED BY DFHECALL 01-DFHEI
DFHEIRS2 DS H RESERVED @BBAC81A 01-DFHEI
DFHEIPL DS 13F PARAMETER LIST @05C 01-DFHEI

DS 51F ALLOW 64 PARAMETERS FOR DLI @L2A 01-DFHEI
* AND IN XA2 ON, FOR EXEC CICS ALSO
DFHEIRS3 DS F RESERVED @L2A 01-DFHEI
DFHEIRS4 DS F RESERVED @L2A 01-DFHEI
DFHEITP1 DS F TEMPORARY POINTER 1 @L2A 01-DFHEI
DFHEITP2 DS F TEMPORARY POINTER 2 @L2A 01-DFHEI
DFHEITP3 DS F TEMPORARY POINTER 3 @L2A 01-DFHEI
DFHEITP4 DS F TEMPORARY POINTER 4 @L2A 01-DFHEI

* START DEFINITION OF USER DYNAMIC STORAGE *

DFHEIUSR DS 0D ALIGN USER DYNAMIC STORAGE @BBAC81A 01-DFHEI
*
OUTAREA DS CL200 DATA OUTPUT AREA
*
TESTLE CSECT ,

DFHEIENT INSERTED BY TRANSLATOR

* *
* CONTROL BLOCK NAME = DFHEIBLK *
* *
* NAME OF MATCHING PL/AS CONTROL BLOCK = None *
* *
* DESCRIPTIVE NAME = %PRODUCT EXEC Interface Block. *
* *
* @BANNER_START 02 *
* Licensed Materials - Property of IBM *
* *
* "Restricted Materials of IBM" *
* *
* 5697-E93 *
* *
* (C) Copyright IBM Corp. 1990, 1993 *
* *
* *
* *
* *
* @BANNER_END *
* *
* STATUS = %XA20 *
* *

Figure 12. the Translated assembled version (Part 2 of 8)

92 CICS TS for z/OS: CICS Application Programming Guide

|

* FUNCTION = EXEC Interface Block. *
* *
* The exec interface block contains information on the *
* transaction identifier, the time and date, and the cursor *
* position on a display device. Some of the other fields are *
* set indicating the next action that a program should take *
* in certain circumstances. *
* DFHEIBLK also contains information that will be helpful *
* when a dump is being used to debug a program. *
* This control block is included automatically by an *
* application program using the command-level interface. *
* EISEIBA in the EIS addresses the EIB. *
* *
* *
* *
* NOTES : *
* DEPENDENCIES = S/370 *
* MODULE TYPE = Control block definition *
* PROCESSOR = Assembler *
* *
*-- *
* *
* CHANGE ACTIVITY : *
* $SEG(DFHEIBLK),COMP(COMMAND),PROD(%PRODUCT) : *
* *
* PN= REASON REL YYMMDD HDXXIII : REMARKS *
* $L1= 550 %0G 900515 HDFSPC : Add an EIB length equate *
* $D1= I05119 %B1 930226 HDDHDMA : Correct comments for date field *
* $P1= M60581 %B0 900116 HDAEGB : Change for PLXMAP to data areas *
* *

* EXEC INTERFACE BLOCK *

DFHEIBLK DSECT EXEC INTERFACE BLOCK @BBAC81A 01-DFHEI

USING *,DFHEIBR @BBAC81A 01-DFHEI
EIBTIME DS PL4 TIME IN 0HHMMSS FORMAT @BBAC81A 01-DFHEI
EIBDATE DS PL4 DATE IN 0CYYDDD+ FORMAT, @D1C 01-DFHEI
* where C is the century @D1A
* indicator (0=1900, 1=2000), @D1A
* YY is the year, DDD is the @D1A
* day number and ’+’ is the @D1A
* sign byte (positive) @D1A
EIBTRNID DS CL4 TRANSACTION IDENTIFIER @BBAC81A 01-DFHEI
EIBTASKN DS PL4 TASK NUMBER @BBAC81A 01-DFHEI
EIBTRMID DS CL4 TERMINAL IDENTIFIER @BBAC81A 01-DFHEI
EIBRSVD1 DS H RESERVED @BBAC81A 01-DFHEI
EIBCPOSN DS H CURSOR POSITION @BBAC81A 01-DFHEI
EIBCALEN DS H COMMAREA LENGTH @BBAC81A 01-DFHEI
EIBAID DS CL1 ATTENTION IDENTIFIER @BBAC81A 01-DFHEI
EIBFN DS CL2 FUNCTION CODE @BBAC81A 01-DFHEI
EIBRCODE DS CL6 RESPONSE CODE @BBAC81A 01-DFHEI
EIBDS DS CL8 DATASET NAME @BBAC81A 01-DFHEI
EIBREQID DS CL8 REQUEST IDENTIFIER @BBAC81A 01-DFHEI
EIBRSRCE DS CL8 RESOURCE NAME @BBDIA0U 01-DFHEI
EIBSYNC DS C X’FF’ SYNCPOINT REQUESTED @BBDIA0U 01-DFHEI
EIBFREE DS C X’FF’ FREE REQUESTED @BBDIA0U 01-DFHEI
EIBRECV DS C X’FF’ RECEIVE REQUIRED @BBDIA0U 01-DFHEI

Figure 12. the Translated assembled version (Part 3 of 8)

Chapter 8. Translation and compilation 93

|

EIBSEND DS C RESERVED @BM13417 01-DFHEI
EIBATT DS C X’FF’ ATTACH RECEIVED @BBDIA0U 01-DFHEI
EIBEOC DS C X’FF’ EOC RECEIVED @BBDIA0U 01-DFHEI
EIBFMH DS C X’FF’ FMHS RECEIVED @BBDIA0U 01-DFHEI
EIBCOMPL DS C X’FF’ DATA COMPLETE 01-DFHEI
EIBSIG DS C X’FF’ SIGNAL RECEIVED 01-DFHEI
EIBCONF DS C X’FF’ CONFIRM REQUESTED 01-DFHEI
EIBERR DS C X’FF’ ERROR RECEIVED 01-DFHEI
EIBERRCD DS CL4 ERROR CODE RECEIVED 01-DFHEI
EIBSYNRB DS C X’FF’ SYNC ROLLBACK REQ’D 01-DFHEI
EIBNODAT DS C X’FF’ NO APPL DATA RECEIVED 01-DFHEI
EIBRESP DS F INTERNAL CONDITION NUMBER 01-DFHEI
EIBRESP2 DS F MORE DETAILS ON SOME RESPONSES 01-DFHEI
EIBRLDBK DS CL1 ROLLED BACK 01-DFHEI
*
EIBLENG EQU *-EIBTIME Length of EIB @L1A 01-DFHEI

* END OF EXEC INTERFACE BLOCK *

DFHEIBR EQU 11 EIB REGISTER @BA02936 01-DFHEI

* PROLOG CODE FOR EXEC INTERFACE *

*&DFHEICS; CEEENTRY PPA=DFHPPA,MAIN=YES,PLIST=OS,
* BASE=&CODEREG;,
* AUTO=(DFHEIEND-DFHEISTG)
TESTLE CSECT , 02-CEEEN
TESTLE RMODE ANY 02-CEEEN
TESTLE AMODE ANY 02-CEEEN

ENTRY TESTLE 02-CEEEN
PUSH USING 02-CEEEN
DROP , @02A 02-CEEEN
USING *,15 02-CEEEN
B CEEZ0007 02-CEEEN
DC X’00C3C5C5’ 02-CEEEN

CEEY0007 DC A((((DFHEIEND-DFHEISTG)+7)/8)*8) X02-CEEEN
. Size of automatic storage.

DC A(DFHPPA-TESTLE) . Address of PPA for this program 02-CEEEN
B 1(,15) 02-CEEEN

CEEZ0007 EQU * 02-CEEEN
STM 14,12,CEEDSAR14-CEEDSA(13) 02-CEEEN
L 2,CEEINPL0007 5@01D @01C 02-CEEEN
L 15,CEEINT0007 @01C 02-CEEEN
DROP 15 @01A 02-CEEEN
BALR 14,15 02-CEEEN
LR 2,1 02-CEEEN
L 14,752(,12) 02-CEEEN
OI 8(14),X’80’ 02-CEEEN
BALR 3,0 @01A 02-CEEEN
USING *,3 @01A 02-CEEEN
L 3,CEEOEPV0007 @01A 02-CEEEN
POP USING @01A 02-CEEEN
USING TESTLE,3 @01A 02-CEEEN
L 1,CEEDSANAB-CEEDSA(,13) Get the current NAB 02-CEEEN
L 0,CEEY0007 02-CEEEN
ALR 0,1 Compute new value. 02-CEEEN
CL 0,CEECAAEOS-CEECAA(,12) Compare with EOS. 02-CEEEN

Figure 12. the Translated assembled version (Part 4 of 8)

94 CICS TS for z/OS: CICS Application Programming Guide

|

BNH CEEX0007 02-CEEEN
L 15,CEECAAGETS-CEECAA(,12) Get address overflow routine 02-CEEEN
BALR 14,15 Get another stack segment. 02-CEEEN
LR 1,15 02-CEEEN
B CEEX0007 Branch around statics @01A 02-CEEEN

CEEINPL0007 DC A(CEEINPL) @01A 02-CEEEN
CEEINT0007 DC V(CEEINT) @01A 02-CEEEN
CEEOEPV0007 DC A(TESTLE) @01A 02-CEEEN
CEEX0007 EQU * 02-CEEEN

ST 13,CEEDSABKC-CEEDSA(,1) Set back chain. 02-CEEEN
ST 0,CEEDSANAB-CEEDSA(,1) Set new NAB value 02-CEEEN
XC CEEDSAFLAGS-CEEDSA(,1),CEEDSAFLAGS-CEEDSA(1) . Clear 02-CEEEN
ST 1,CEEDSAFWC-CEEDSA(,13) Set forward chain. 02-CEEEN
LR 13,1 Set save area address 02-CEEEN
USING CEEDSA,13 Addresability to SF V1R2M0 02-CEEEN
MVC CEEDSALWS,CEECAALWS-CEECAA(12) Get LWS addr V1R2M0 02-CEEEN
LR 1,2 02-CEEEN
BAL 1,*+8 @L2A 01-DFHEI

* The following gives an assembler message if DFHEISTG is too big @P7A
DS 0S((DFHEISTG+65264-DFHEIEND-4096)/4096) @04C 01-DFHEI
DC AL2(DFHEIEND-DFHEISTG) LENGTH OF STORAGE @L2A 01-DFHEI
DC H’0’ Parameter list version number @P6C 01-DFHEI

* ESTABLISH DATA ADDRESSIBILITY *

DFHEIPLR EQU 13 PARAMETER LIST REGISTER @BBAC81A 01-DFHEI

LR DFHEIPLR,15 @BBAC81A 01-DFHEI
USING DFHEISTG,13 @BBAC81A 01-DFHEI
MVC DFHEIBP(L’DFHEIBP+L’DFHEICAP),0(1) @D3AX01-DFHEI

COPY EIB AND CA PTRS @D3A

* ESTABLISH EIB ADDRESSIBILITY *

L DFHEIBR,DFHEIBP @BBAC81A 01-DFHEI
USING DFHEIBLK,DFHEIBR @BBAC81A 01-DFHEI

* END OF PROLOG CODE FOR EXEC INTERFACE *

MVC OUTAREA(40),MSG1
MVC OUTAREA(4),EIBTRMID

* EXEC CICS SEND TEXT FROM(OUTAREA) LENGTH(43) FREEKB ERASE
DFHECALL =X’180660000800C20000082204000020’,,(______RF,OUTAREA*

),(FB_2,=Y(43))

DS 0H 01-DFHEC
LA 1,DFHEIPL 01-DFHEC
LA 14,=X’180660000800C20000082204000020’ 01-DFHEC
SR 15,15 01-DFHEC
LA 0,OUTAREA 01-DFHEC
STM 14,0,0(1) 01-DFHEC
LA 14,=Y(43) 01-DFHEC
ST 14,12(,1) 01-DFHEC
OI 12(1),X’80’ LAST ARGUMENT 01-DFHEC
L 15,=V(DFHEI1) 01-DFHEC
BALR 14,15 INVOKE EXEC INTERFACE 01-DFHEC

* EXEC CICS RECEIVE

Figure 12. the Translated assembled version (Part 5 of 8)

Chapter 8. Translation and compilation 95

|

DFHECALL =X’040200000800000014000040000000’

DS 0H 01-DFHEC
LA 1,DFHEIPL 01-DFHEC
LA 14,=X’040200000800000014000040000000’ 01-DFHEC
ST 14,0(,1) 01-DFHEC
OI 0(1),X’80’ LAST ARGUMENT 01-DFHEC
L 15,=V(DFHEI1) 01-DFHEC
BALR 14,15 INVOKE EXEC INTERFACE 01-DFHEC

MVC OUTAREA(13),MSG2

* EXEC CICS SEND TEXT FROM(OUTAREA) LENGTH(13) FREEKB ERASE
DFHECALL =X’180660000800C20000082204000020’,,(______RF,OUTAREA*

),(FB_2,=Y(13))

DS 0H 01-DFHEC
LA 1,DFHEIPL 01-DFHEC
LA 14,=X’180660000800C20000082204000020’ 01-DFHEC
SR 15,15 01-DFHEC
LA 0,OUTAREA 01-DFHEC
STM 14,0,0(1) 01-DFHEC
LA 14,=Y(13) 01-DFHEC
ST 14,12(,1) 01-DFHEC
OI 12(1),X’80’ LAST ARGUMENT 01-DFHEC
L 15,=V(DFHEI1) 01-DFHEC
BALR 14,15 INVOKE EXEC INTERFACE 01-DFHEC

* EXEC CICS RETURN

DFHECALL =X’0E0800000800001000’

DS 0H 01-DFHEC
LA 1,DFHEIPL 01-DFHEC
LA 14,=X’0E0800000800001000’ 01-DFHEC
ST 14,0(,1) 01-DFHEC
OI 0(1),X’80’ LAST ARGUMENT 01-DFHEC
L 15,=V(DFHEI1) 01-DFHEC
BALR 14,15 INVOKE EXEC INTERFACE 01-DFHEC

*
MSG1 DC C’xxxx: ASM program invoked. ENTER TO END.’
MSG2 DC C’PROGRAM ENDED’

DFHEIRET INSERTED BY TRANSLATOR

* EPILOG CODE FOR EXEC INTERFACE *

DS 0H @BBAC81A 01-DFHEI
LA 1,CEET0014 Get address of termination list 02-CEETE
L 15,=V(CEETREC) Get address of termination rtn 02-CEETE
BALR 14,15 Call termination routine. 02-CEETE

CEET0014 DC A(*+8) Parm 1 02-CEETE
DC A(*+8+X’80000000’) Parm 2 02-CEETE
DC A(0) Enc_Modifier 02-CEETE
DC A(0) Return code. 02-CEETE

CEEMAIN CSECT 02-CEETE
CEEMAIN RMODE ANY 02-CEETE
CEEMAIN AMODE ANY 02-CEETE

Figure 12. the Translated assembled version (Part 6 of 8)

96 CICS TS for z/OS: CICS Application Programming Guide

|

DC A(TESTLE) @04A 02-CEETE
DC F’0’ 02-CEETE

TESTLE CSECT 02-CEETE

* END OF EPILOG CODE FOR EXEC INTERFACE *

LTORG , @BBAC81A 01-DFHEI
=V(DFHEI1)
=V(CEETREC)
=Y(43)
=Y(13)
=X’180660000800C20000082204000020’
=X’040200000800000014000040000000’
=X’0E0800000800001000’

DS 0H @F8E1S @L1C 01-DFHEI
DFHEISTG INSERTED BY TRANSLATOR
DFHEIEND INSERTED BY TRANSLATOR

*
**
* P R O G R A M P R O L O G A R E A 1 (P P A 1) *
**
*
PPA10018 DS 0F 02-CEEPP
DFHPPA DS 0F 02-CEEPP

DC AL1(PPANL0018-*) Offset to the entry name length 02-CEEPP
DC X’CE’ LE/370 Indicator. 02-CEEPP
DC B’10100000’ . PPA flags 02-CEEPP

* Bit 0 0 = Internal Procedure
* 1 = External Procedure
* Bit 1 0 = Primary Entry Point
* 1 = Secondary Entry Point
* Bit 2 0 = Block doesn’t have a DSA
* 1 = Block has a DSA
* Bit 3 0 = compiled object
* 1 = library object
* Bit 4 0 = sampling interrupts to library
* 1 = sampling interrupts to code
* Bit 5 0 = not an exit DSA
* 1 = Exit DSA
* Bit 6 0 = own exception model
* 1 = inherited (callers) exception model
* Bit 7 Reserved

DC X’00’ Member flags 02-CEEPP
DC A(PPA20018) Addr of Compile Unit Block (PPA2) 02-CEEPP
DC A(0) 02-CEEPP
DC A(0) Data Descriptors for this entry point 02-CEEPP
DS 0H 02-CEEPP

PPANL0018 DC AL2(6) . Length of Entry Point Name 02-CEEPP
DC CL6’TESTLE’ . Entry Point Name 02-CEEPP

CEEINPL DS 0D 02-CEEPP
DC A(PPA2M0018) 02-CEEPP
DC A(CEEINPLSTST-CEEINPL) 02-CEEPP

CEEINPLSTST DS 0F 02-CEEPP
DC X’00’ Control Level @01A 02-CEEPP
DC X’00’ ENCLAVE=NO @01A 02-CEEPP
DC X’00’ @01A 02-CEEPP
DC X’07’ Number of items. @01C 02-CEEPP

Figure 12. the Translated assembled version (Part 7 of 8)

Chapter 8. Translation and compilation 97

|

DC A(PPA2M0018) . A of A(first entry point in comp unit) 02-CEEPP
DC V(CEESTART) . A(Address of CEESTART) 02-CEEPP
DC V(CEEBETBL) 02-CEEPP
DC A(15) . Memeber id 02-CEEPP
DC A(0) 02-CEEPP
DC XL4’00070000’ . EXECOPS(ON), PLIST 02-CEEPP
DS 0H 02-CEEPP

*
**
* P R O G R A M P R O L O G A R E A 2 (P P A 2) *
**
*

EXTRN CEESTART 02-CEEPP
PPA20018 DS 0F 02-CEEPP

DC AL1(15) Member ID 02-CEEPP
DC AL1(0) Sub ID 02-CEEPP
DC AL1(0) Member defined 02-CEEPP
DC AL1(1) Level of PPAx control blocks 02-CEEPP

PPA2S0018 DC A(CEESTART) A(CEESTART for this load module) 02-CEEPP
DC A(0) A(Compile Debug Information (CDI)) 02-CEEPP
DC A(CEETIMES-PPA20018) A(Offset to time stamp) 02-CEEPP

PPA2M0018 DC A(TESTLE) . A(first entry point in comp. unit) 02-CEEPP
*
**
* T I M E S T A M P *
**
*
* Time Stamp
*,Time Stamp = 2004/06/17 08:51:00 02-CEEPP
*,Version 1 Release 1 Modification 0 02-CEEPP
CEETIMES DS 0F 02-CEEPP

DC CL4’2004’ Year 02-CEEPP
DC CL2’06’ Month 02-CEEPP
DC CL2’17’ Day 02-CEEPP
DC CL2’08’ Hours 02-CEEPP
DC CL2’51’ Minutes 02-CEEPP
DC CL2’00’ Seconds 02-CEEPP
DC CL2’1’ Version 02-CEEPP
DC CL2’1’ Release 02-CEEPP
DC CL2’0’ Modification 02-CEEPP

* C O M M O N A N C H O R A R E A (C A A) *

LEPTRLEN EQU 4 03-CEEDN
*
CEECAA DSECT , CAA mapping 02-CEECA

(Definition of LE CAA removed)

* TERMINATE DEFINITION OF DYNAMIC STORAGE *
DFHEISTG DSECT @BBAC81A 01-DFHEI

ORG 01-DFHEI
DFHEIEND DS 0X END OF DYNAMIC STORAGE @BBAC81A 01-DFHEI

END

Figure 12. the Translated assembled version (Part 8 of 8)

98 CICS TS for z/OS: CICS Application Programming Guide

|

Chapter 9. Installing application programs

This section describes what you have to do to install an application program to run
under CICS. Installation of a CICS application program involves translation and
compilation of the source statements, and link-edit of the resulting object modules
into CICS libraries.

An application program generally means any user program that uses the CICS
command-level application programming interface (API). Such programs can also
use:
v SQL statements
v DLI requests
v Common programming interface (CPI) statements
v SAA Resource Recovery statements
v External CICS interface commands

Note: If you are developing application programs to use the CICS dynamic
transaction routing facility, use the CICS Interdependency Analyzer to detect
whether the programs are likely to cause intertransaction affinity. See
Chapter 15, “Affinity,” on page 221 for a description of intertransaction
affinity.

This chapter includes:
v “Program installation roadmap”
v “Defining MVS residence and addressing modes” on page 100
v “Running application programs in the RDSAs” on page 103
v “Using BMS map sets in application programs” on page 105
v “Using the CICS-supplied procedures to install application programs” on page

106
v “Including the CICS-supplied interface modules” on page 108
v “Installing assembler language application programs” on page 109
v “Installing COBOL application programs” on page 110
v “Installing PL/I application programs” on page 114
v “Installing C application programs” on page 117
v “Using your own job streams” on page 120

Program installation roadmap
The following steps are required to install application programs to run under CICS.
For detailed information about using the CICS-supplied procedures to install
application programs, see “Using the CICS-supplied procedures to install application
programs” on page 106. To use your own JCL to install application programs, see
“Using your own job streams” on page 120.

1. Compile your program source if you are using a compiler with an integrated
translator.

2. If your compiler does not translate CICS commands, you will need to translate
the program source code, turning CICS commands into calls that are
understood by the compiler, then compile or assemble the translator output to
produce object code.

Notes:

a. If your program does not use CICS commands and is only invoked by a
running transaction (and never directly by CICS task initiation), no translator
step is needed.

© Copyright IBM Corp. 1989, 2010 99

|

b. CICS command-level programs that access DL/I services through either the
DL/I CALL or EXEC DLI interfaces must also be translated. Applications that
access DB2 services using the EXEC SQL interface need an additional
precompilation step. For information about this step, see the CICS DB2
Guide.

3. Link-edit the object module to produce a load module, which you store in an
application load library that is concatenated to the DFHRPL DD statement of the
CICS startup job stream. Additional INCLUDE statements are required for
applications that access DB2 services using the EXEC SQL interface. For
information about these extra statements, see the CICS DB2 Guide.

4. Create resource definition entries, in the CSD, for any transaction that calls the
program, and install them.

5. Do one of the following:

v If you are using program autoinstall, ensure that the autoinstall
user-replaceable module can correctly install a resource definition for the
program.

v If you are not using program autoinstall, create a resource definition entry in
the CSD for the program, and install it.

References to the CSA or to the TCA are not allowed. You can specify YES for the
system initialization parameter DISMACP to cause CICS to disable any transaction
whose program invokes an obsolete CICS macro or references the CSA or the
TCA.

CICS provides a utility program, DFHMSCAN, to identify the macro-level programs
used by your CICS applications. For information about using the DFHMSCAN utility
to identify macro-level programs, see theCICS Operations and Utilities Guide.

Preparing for program installation
Consider these points when installing application programs.

v If you want your application program to use CPI Communications or SAA
Resource Recovery, make the appropriate interface modules available to your
program. For information about the CPI Communications interface module and
the SAA Resource Recovery interface module, see “The CICS-supplied interface
modules” on page 86.

v If you want your application program to reside in the MVS link pack area (LPA),
specify appropriate options when installing your program. Options appropriate to
each language are given for the sample job streams in the following sections. For
information on preparing programs to run in the link pack area (LPA), see
“Running applications in the link pack area” on page 102.

For information on preparing programs to run in the read-only DSAs, see
“Running application programs in the RDSAs” on page 103.

v If you want your application program to use BMS maps, first prepare the map
sets. For more information, see “Using BMS map sets in application programs”
on page 105.

Defining MVS residence and addressing modes
This section describes the effect of the MVS residence and addressing modes on
application programs, how you can change the modes, and how you can make
application programs permanently resident. An application written to run on
MVS/370 can run on any MVS system, if it is link-edited with the AMODE(24) and
RMODE(24) options.

100 CICS TS for z/OS: CICS Application Programming Guide

A command-level program can reside above 16MB, and address areas above
16MB. The program can contain EXEC CICS, EXEC DLI, and CALL DL/I
commands.

Establishing a program’s addressing mode
Every program that executes in MVS is assigned two attributes: an addressing
mode (AMODE), and a residency mode (RMODE). AMODE specifies the
addressing mode in which your program is designed to receive control. Generally,
your program is designed to execute in that mode, although you can switch modes
in the program, and have different AMODE attributes for different entry points within
a load module. The RMODE attribute indicates where in virtual storage your
program can reside. Valid AMODE and RMODE specifications are:

AMODE(24) Specifies 24-bit addressing mode.
AMODE(31) Specifies 31-bit addressing mode.
AMODE(ANY) Specifies either 24- or 31-bit addressing mode.
RMODE(24) Indicates that the module must reside in virtual storage below 16MB. You

can specify RMODE(24) for 31-bit programs that have 24-bit
dependencies.

RMODE(ANY) Indicates that the module can reside anywhere in virtual storage.

Note: C or C++ language programs must be link-edited with AMODE(31).

If you do not specify any AMODE or RMODE attributes for your program, MVS
assigns the system defaults AMODE(24) and RMODE(24). To override these
defaults, you can specify AMODE and RMODE in one or more of the following
places. Assignments in this list overwrite assignments later in the list.

1. On the link-edit MODE control statement:
MODE AMODE(31),RMODE(ANY)

2. Either of the following:

a. In the PARM string on the EXEC statement of the link-edit job step:
//LKED EXEC PGM=IEWL,PARM=’AMODE(31),RMODE(ANY),..’

b. On the LINK TSO command, which causes processing equivalent to that of
the EXEC statement in the link-edit step.

3. On AMODE or RMODE statements within the source code of an assembler
program. (You can also set these modes in COBOL by means of the compiler
options; for information about COBOL compiler options, see the relevant
application programming guide for your COBOL compiler.)

CICS address space considerations
Table 5 gives the valid combinations of the AMODE and RMODE attributes and
their effects:

Table 5. Valid AMODE and RMODE specifications and their effects

AMODE RMODE Residence Addressing

24 24 Below 16MB 24-bit mode

31 24 Below 16MB 31-bit mode

ANY 24 Below 16MB 31-bit mode

31 ANY Above 16MB 31-bit mode

Chapter 9. Installing application programs 101

The following example shows link-edit control statements for a program coded to
31-bit standards:
//LKED.SYSIN DD *

MODE AMODE(31),RMODE(ANY)
NAME anyname(R) ("anyname" is your load module name)

/*
//

Making programs permanently resident
If you define a program in the CSD with the resident attribute, RESIDENT(YES), it
is loaded on first reference. This applies to programs link-edited with either
RMODE(ANY) or RMODE(24). However, be aware that the storage compression
algorithm that CICS uses does not remove resident programs.

If there is not enough storage for a task to load a program, the task is suspended
until enough storage becomes available. If any of the DSAs get close to being short
on storage, CICS frees the storage occupied by programs that are not in use. (For
more information about the dynamic storage areas in CICS, see the CICS System
Definition Guide.)

Instead of making RMODE(24) programs resident, you can make them non-resident
and use the library lookaside (LLA) function. The space occupied by such a
program is freed when its usage count reaches zero, making more virtual storage
available. LLA keeps its library directory in storage and stages (places) copies of
LLA-managed library modules in a data space managed by the virtual lookaside
facility (VLF). CICS locates a program module from LLA’s directory in storage,
rather than searching program directories on DASD. When CICS requests a staged
module, LLA gets it from storage without any I/O.

Running applications in the link pack area
Programs written in assembler language, C, COBOL, or PL/I , can reside in the link
pack area (LPA). To do so, they must be read-only and have been link-edited with
the RENT and REFR options. Other requirements are as follows:

Assembler
Use the RENT assembler option.

C Use the RENT compiler option.

COBOL
Do not overwrite WORKING STORAGE. (The CICS translator generates a CBL
statement with the required compiler RENT option (unless you specify the
translator option NOCBLCARD).

PL/I
Do not overwrite STATIC storage. (The CICS translator inserts the required
REENTRANT option into the PROCEDURE statement.)

If you want CICS to use modules that you have written to these standards, and
installed in the LPA, specify USELPACOPY(YES) on the program resource
definitions in the CSD.

For information about installing CICS modules in the LPA, see the CICS Transaction
Server for z/OS Installation Guide.

102 CICS TS for z/OS: CICS Application Programming Guide

Running application programs in the RDSAs
Programs that are eligible to reside above 16MB, and are read-only, can reside in
the CICS extended read-only DSA (ERDSA). Therefore, to be eligible for the
ERDSA, programs must be:
v Properly written to read-only standards
v Written to 31-bit addressing standards
v Link-edited with the RENT attribute and the RMODE(ANY) residency attribute

Programs that are not eligible to reside above 16MB, and are read-only, can reside
in the CICS read-only DSA (RDSA) below 16MB. Therefore, to be eligible for the
RDSA, programs must be:
v Properly written to read-only standards
v Link-edited with the RENT attribute

Note: When you are running CICS with RENTPGM=PROTECT specified as a
system initialization parameter, the RDSAs are allocated from key-0
read-only storage.

Programs link-edited with RENT and RMODE(ANY) are automatically loaded by
CICS into the ERDSA.

ERDSA requirements for the specific languages are described as follows.

Assembler
If you want CICS to load your assembler programs in the ERDSA, assemble and
link-edit them with the following options:
1. The RENT assembler option
2. The link-edit RENT attribute
3. The RMODE(ANY) residency mode

Note: If you specify these options, ensure that the program is truly read-only (that
is, does not modify itself in any way—for example, by writing to static
storage), otherwise storage exceptions occur. The program must also be
written to 31-bit addressing standards. See the CICS Problem Determination
Guide for some possible causes of storage protection exceptions in
programs resident in the ERDSA.

The CICS-supplied procedure, DFHEITAL, has a LNKPARM parameter that
specifies the XREF and LIST options only. To link-edit an ERDSA-eligible program,
override LNKPARM from the calling job, specifying the RENT and RMODE(ANY)
options in addition to any others you require.

For example:
//ASMPROG JOB 1,user_name,MSGCLASS=A,CLASS=A,NOTIFY=userid
//EITAL EXEC DFHEITAL,

.
(other parameters as necessary)
.

// LNKPARM=’LIST,XREF,RMODE(ANY),RENT’

Note: The CICS EXEC interface module for assembler programs (DFHEAI)
specifies AMODE(ANY) and RMODE(ANY). However, because the
assembler defaults your application to AMODE(24) and RMODE(24), the
resulting load module also becomes AMODE(24) and RMODE(24).

Chapter 9. Installing application programs 103

If you want your application program link-edited as AMODE(31) and
RMODE(ANY), you are recommended to use appropriate statements in your
assembler program. For example:
MYPROG CSECT
MYPROG AMODE 31
MYPROG RMODE ANY

There are two ways of setting AMODE and RMODE:

v You can set the required AMODE and RMODE specification by using
link-edit (or binder) control information in the JCL PARM keyword. For
example:
//EITAL EXEC DFHEITAL,

LNKPARM=’LIST,XREF,RENT,AMODE(31),RMODE(ANY)’

v Alternatively, you can use the MODE control statement in the SYSIN
dataset in the link-edit, or the binder step in your JCL.

When using the binder, you may see unexpected warning messages about
conflicting AMODE and RMODE specifications.

C and C/++
If you want CICS to load your C and C++ programs into the ERDSA, compile and
link-edit them with:
1. The RENT compiler option.

The CICS-supplied procedures DFHYITDL or DFHYITFL (for C) and DFHYITEL or
DFHYITGL (for C++) have a LNKPARM parameter that specifies a number of
link-edit options. To link-edit an ERDSA-eligible program, override this parameter
from the calling job, and add RENT to the other options you require. You do not
need to add the RMODE(ANY) option, because the CICS EXEC interface module
for C (DFHELII) is link-edited with AMODE(31) and RMODE(ANY). Therefore, your
program is link-edited as AMODE(31) and RMODE(ANY) automatically when you
include the CICS EXEC interface stub, see “The CICS-supplied interface modules”
on page 86.

The following sample job statements show the LNKPARM parameter with the RENT
option added:
//CPROG JOB 1,user_name,MSGCLASS=A,CLASS=A,NOTIFY=userid
//YITDL EXEC DFHYITDL,

.
(other parameters as necessary)
.

// LNKPARM=’LIST,MAP,LET,XREF,RENT’

COBOL
If you use the integrated CICS translator then the compile requires the RENT
compiler option, so no CBL card needs to be added during translation. COBOL
programs that use a separate translation step are automatically eligible for the
ERDSA, because:

v The translator option, CBLCARD (the default), causes the required compiler
option, RENT, to be included automatically on the CBL statement generated by
the CICS translator. If you use the translator option, NOCBLCARD, you can
specify the RENT option either on the PARM statement of the compile job step,
or by using the COBOL macro IGYCOPT to set installation-defined options.

v The COBOL compiler automatically generates code that conforms to read-only
and 31-bit addressing standards.

104 CICS TS for z/OS: CICS Application Programming Guide

|
|

v The CICS EXEC interface module for COBOL (DFHELII) is link-edited with
AMODE(31) and RMODE(ANY). Therefore, your program is link-edited as
AMODE(31) and RMODE(ANY) automatically when you include the CICS EXEC
interface interface stub, see “The CICS-supplied interface modules” on page 86.

You also need to specify the reentrant attribute to link-edit. The CICS-supplied
procedure, DFHYITVL, has a LNKPARM parameter that specifies a number of
link-edit options. To link-edit an ERDSA-eligible program, override this parameter
from the calling job, and add RENT to any other options you require. For example:
//COBPROG JOB 1,user_name,MSGCLASS=A,CLASS=A,NOTIFY=userid
//YITVL EXEC DFHYITVL,

.
(other parameters as necessary)
.

// LNKPARM=’LIST,XREF,RENT’

PL/I
CICS PL/I programs are generally eligible for the ERDSA, provided they do not
change static storage. The following requirements are enforced, either by CICS or
PL/I:

v The required REENTRANT option is included automatically, by the CICS
translator, on the PL/I PROCEDURE statement.

v The PL/I compiler automatically generates code that conforms to 31-bit
addressing standards.

v The CICS EXEC interface module for PL/I (DFHELII) is link-edited with
AMODE(31) and RMODE(ANY). Therefore, your program is link-edited as
AMODE(31) and RMODE(ANY) automatically when you include the CICS EXEC
interface stub, see “The CICS-supplied interface modules” on page 86.

You also need to specify the reentrant attribute to the link-edit. The CICS-supplied
procedure, DFHYITPL, has a LNKPARM parameter that specifies a number of
link-edit options. To link-edit an ERDSA-eligible program, override this parameter
from the calling job, and add RENT to any other options you require. For example:
//PLIPROG JOB 1,user_name,MSGCLASS=A,CLASS=A,NOTIFY=userid
//YITPL EXEC DFHYITPL,

.
(other parameters as necessary)
.

// LNKPARM=’LIST,XREF,RENT’

Note: Do not specify the RENT attribute on the link-edit step unless you have
ensured the program is truly read-only (and does not, for example, write to
static storage), otherwise storage exceptions will occur. See the CICS
Problem Determination Guide for some possible causes of storage protection
exceptions in programs resident in the ERDSA.

Using BMS map sets in application programs
This section describes what to do to use BMS map sets in application programs.

Before you install an application program to run under CICS:

v Create any BMS map sets used by the program, as described in Chapter 10,
“Installing map sets and partition sets,” on page 125.

v Include the physical map sets (used by BMS in its formatting activities) in a
library that is in the DFHRPL concatenation.

Chapter 9. Installing application programs 105

v Either include the symbolic map sets (copied into the application programs) in a
user copy library, or insert them directly into the application program source.

The DFHMAPS procedure writes the symbolic map set output to the library
specified on the DSCTLIB parameter, which defaults to the
CICSTS31.CICS.SDFHMAC library. If you want to include symbolic map sets in a
user copy library:

v Specify the library name by the DSCTLIB=name operand on the EXEC statement
for the DFHMAPS procedure used to install physical and symbolic map sets
together.

v Include a DD statement for the user copy library in the SYSLIB concatenation of
the job stream used to assemble and compile the application program.

If you choose to let the DFHMAPS procedure write the symbolic map sets to the
CICSTS31.CICS.SDFHMAC library (the default), include a DD statement for the
CICSTS31.CICS.SDFHMAC library in the SYSLIB concatenation of the job
stream used to compile the application program. This is not necessary for the
DFHEITAL procedure used to assemble assembler-language programs, because
these jobs already include a DD statement for the CICSTS31.CICS.SDFHMAC
library in the SYSLIB concatenation.

v For PL/I, specify a library that has a block size of 32760 bytes. This is necessary
to overcome the blocksize restriction on the PL/I compiler.

For more information about installing map sets, see Chapter 10, “Installing map sets
and partition sets,” on page 125. For information about writing programs to use
BMS services, seeChapter 31, “Basic mapping support,” on page 453.

Using the CICS-supplied procedures to install application programs
CICS supplies job control statements (JCL) for the translate (if required), compile,
and link-edit steps, in separate cataloged procedures for each programming
language supported. After CICS is installed, you should copy these procedures,
installed in the CICSTS31.CICS.SDFHPROC library, into a procedure library.

Each procedure has a name of the form DFHwxTyL, where the variables w, x, and
y depend on the type of program (EXCI batch or CICS online), the type of compiler,
and the programming language. Using the preceding naming convention, the
procedure names are given in Table 6 on page 107.

106 CICS TS for z/OS: CICS Application Programming Guide

Table 6. Procedures for installing application programs

Language Language Environment-conforming
compilers

non-Language
Environment-conforming
compilers

Stand-alone
translator

EXCI Integrated
translator

Stand-alone
translator

EXCI

Assembler - - - DFHEITAL DFHEXTAL

C DFHYITDL
(see note 1)

DFHYXTDL DFHZITDL
(see note 2)

- -

C using the
XPLINK
compiler
option

DFHYITFL
(see note 2)

- DFHZITFL
(see note 2)

- -

C++ DFHYITEL
(see note 1)

DFHYXTEL DFHZITEL
(see note 2)

- -

C++ using
the XPLINK
compiler
option

DFHYITGL
(see note 2)

- DFHZITGL
(see note 2)

- -

COBOL (see
note 4)

DFHYITVL DFHYXTVL
(see note 3)

DFHZITCL
(see note 2)

- -

PL/I (see
note 5)

DFHYITPL
(see note 2)

DFHYXTPL DFHZITPL
(see note 2)

- -

Notes:

1. DFHYITEL may also be used for C as long as you specify the correct name of
the C compiler on the COMPILER parameter.

2. The output library for the generated module is a PDSE (not a PDS).

3. A separate translator step must be used for EXCI COBOL programs as
translator options are ignored when using the integrated CICS translator.

4. DFHZITCL is the recommended procedure for compiling COBOL modules,
because it uses the version of the Enterprise COBOL compiler which includes
the integrated CICS translator. However, if the COBOL program is intended for
batch processing using the EXCI option, then the integrated translator cannot be
used.

5. DFHZITPL is the recommended procedure for compiling PL/I modules as it uses
the version of the Enterprise PL/I compiler which includes the integrated CICS
translator. However, if the PL/I program is intended for batch processing using
the EXCI option, then the integrated translator cannot be used.

6. For programs that issue EXEC DLI commands in a batch environment under
Language Environment (IMS routines), use the following special procedures:

DFHYBTPL
PL/I application programs

DFHYBTVL
COBOL application programs

Chapter 9. Installing application programs 107

#
#

|
|
|
|

|
|
|#
#
||

#
#

|
|
|
|

|
|
|#
#
||

#

#

#
#

#
#
#
#
#

#
#
#
#

#
#

#
#

#
#

Installing programs in load library secondary extents
CICS supports load library secondary extents that are created while CICS is
running. If you define libraries in the DFHRPL concatenation with primary and
secondary extents, and secondary extents are added as a result of link-editing into
the DFHRPL library while CICS is running, the CICS loader detects the occurrence,
closes, and then reopens the library. This means that you can introduce new
versions using the CEMT NEWCOPY command, even if the new copy of the
program has caused a new library extent.

However, this can increase the search time when loading modules from the
secondary extents. You should avoid using secondary extents if possible.

Note: If you are using DFHXITPL, the SYSLMOD DD statement in the binder step
must refer to a PDSE (not a PDS as for the older PL/I compilers).

Including the CICS-supplied interface modules
The CICS-supplied procedures to install your online application programs in a CICS
library specify the CICS library member that contains the INCLUDE statement for
the appropriate language EXEC interface module. For example, the DFHYITVL
procedure uses the following statements:
//COPYLINK EXEC PGM=IEBGENER,COND=(7,LT,COB)
//SYSUT1 DD DSN=&INDEX..SDFHSAMP(&STUB),DISP=SHR
//SYSUT2 DD DSN=&©LINK,DISP=(NEW,PASS),
// DCB=(LRECL=80,BLKSIZE=400,RECFM=FB),
// UNIT=&WORK,SPACE=(400,(20,20))
//SYSPRINT DD SYSOUT=&OUTC
//SYSIN DD DUMMY...
//SYSLIN DD DSN=&©LINK,DISP=(OLD,DELETE)
// DD DSN=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN

In this COBOL example, the symbolic parameter STUB defaults to DFHEILID. The
DFHEILID member contains the statement INCLUDE SYSLIB(DFHELII).

The supplied procedures for PL/I and C also refer to DFHEILID, which means that
the DFHELII stub is used.

If your application program is to use CPI Communications or the SAA Resource
Recovery facility, do one of the following:

v Add appropriate INCLUDE statements to the LKED.SYSIN override in the job
used to call the CICS-supplied procedure to install your application program. Add
the following INCLUDE statements:

– INCLUDE SYSLIB(DFHCPLC) if your program uses CPI Communications

– INCLUDE SYSLIB(DFHCPLRR) if your program uses SAA Resource
Recovery

Warning messages may appear during the link-edit step, indicating DUPLICATE
definitions for the DFHEI1 entry. You may ignore these messages.

For more information about link-edit requirements, see “Using your own job
streams” on page 120.

108 CICS TS for z/OS: CICS Application Programming Guide

Installing assembler language application programs
You can use the DFHEITAL or DFHEXTAL procedure to translate, assemble, and
link-edit application programs written in assembler language.

You can use the sample job control statements shown in Figure 13 to process
application programs written in assembler language. In the procedure name, “x”
depends on whether your programs are CICS application programs or EXCI batch
programs. For the names of the CICS-supplied procedures, see Table 6 on page
107

Notes:

�1� If you are installing a program into either of the read-only DSAs, see “Running
application programs in the RDSAs” on page 103 for more details.

If you are installing a program that is to be used from the LPA, add:

v RENT to the PARM options in the EXEC statement for the ASM step of the
DFHEITAL procedure

v RENT and REFR options to the LNKPARM parameter on the call to the
DFHEITAL procedure

(See “Running applications in the link pack area” on page 102.)

�2� For information about the translator options you can include on the XOPTS
statement, see “Defining translator options” on page 74.

Figure 14 on page 110 shows the Assembler source program processed by the
command level translator to produce a translator listing and an output file. This
output file is then processed by the Assembler, with reference to CICS.SDFHMAC,
to produce an assembler listing and a further output file.This output file is then
processed by the linkage editor, with reference to CICS.SDFHLOAD to produce a
linkage editor listing and a load module that is stored in CICS.SDFHLOAD.

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC PROC=DFHExTAL �1�
//TRN.SYSIN DD *
*ASM XOPTS(translator options . . .) �2�

.
assembler-language source statements
.

/*
//LKED.SYSIN DD *

NAME anyname(R)
/*
//

where anyname is your load module name

Figure 13. Sample job control statements to call the DFHExTAL procedures

Chapter 9. Installing application programs 109

Installing COBOL application programs
Figure 15 on page 111 illustrates the flow of control in the cataloged procedures for
COBOL and PL/I programs that require a separate translator step. If you use an
integrated translator, there is no separate translator step. The high-level language
source and CICS.SDFHLOAD both input to the compiler, and a combined translator
and compiler listing is produced.

Assembler-language
source

Command-level
language translator

Assembler

Linkage Editor

CICS.
SDFHLOAD

CICS.
SDFHLOAD

CICS.
SDFHMAC

Intermediate
storage

Intermediate
storage

Translator
listing

Assembly
listing

Linkage Editor
listing

Figure 14. Installing assembler language programs using the DFHEITAL procedure

110 CICS TS for z/OS: CICS Application Programming Guide

#

Sample JCL to install COBOL application programs
You can use the job control statements shown in Figure 16 on page 112 to process
COBOL application programs with a separate translator. The procedure name
depends on whether it is a CICS application program or an EXCI batch program.
For the names of the CICS-supplied COBOL procedures, see Table 6 on page 107.

High-level language
source

Command-level
language translator

High-level
language compiler

Linkage Editor

CICS.
SDFHLOAD

CICS.
SDFHLOAD

CICS.
SDFHLOAD

CICS.
SDFHCOB
or SDFHPL1

SYS1.PLIBASE
or COBLIB

Intermediate
storage

Intermediate
storage

Translator
listing

Compiler
listing

Linkage Editor
listing

DFHBMSCA
DFHAID

DFHEILIC
DFHEILIP

DFHECI
DFHEPI

DFHPL1OI

Figure 15. Installing COBOL and PL/I programs

Chapter 9. Installing application programs 111

To use the procedure DFHZITCL to invoke the integrated translator, you can use
the job control statements shown in Figure 17:

Notes for installing COBOL programs

�1� Translator options:

Specify the COBOL3 or COBOL2 translator option according to the version of the
COBOL functionality required in the compile step. See “Using the COBOL2 and
COBOL3 translator options” on page 34 for more information about these translator
options.

Compiler options:

To compile a COBOL program, you need the compiler options RENT, NODYNAM,
and LIB.

If you use the translator option, CBLCARD (the default), the CICS translator
automatically generates a CBL statement containing these options. You can prevent
the generation of a CBL or PROCESS card by specifying the translator option
NOCBLCARD.

The PARM statement of the COB step in the CICS-supplied COBOL procedures
specifies values for the compiler options. For example,

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC PROC=procname �1�
//TRN.SYSIN DD * �2�
CBL XOPTS(Translator options . . .) �3�

.
COBOL source statements
.

/*
//LKED.SYSIN DD * �4�

NAME anyname(R)
/*
//

where procname is the name of the procedure,
and anyname is your load module name.

Figure 16. Sample job control statements to call the DFHYITVL or DFHYXTVL procedures

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC DFHZITCL,PROGLIB=dsnname �1�
//COBOL.SYSIN DD *

.

. COBOL source statements

.
/*
//LKED.SYSIN DD *

NAME anyname(R)
/*
//

where anyname is your load module name.

Figure 17. Sample job control statements to use the DFHZITCL procedure

112 CICS TS for z/OS: CICS Application Programming Guide

//COB EXEC PGM=IGYCRCTL,REGION=®,
// PARM=’NODYNAM,LIB,OBJECT,RENT,APOST,MAP,XREF’

To compile a COBOL program with a compiler that has an integrated translator, you
also need to use the CICS compiler option to indicate that you want the compiler to
invoke the translator. The DFHZITCL procedure includes this compiler option:
CBLPARM=’NODYNAM,LIB,MAP,CICS(’’COBOL3’’)’

Note: If you specify CICS translator options for the integrated translator in the
PARM string, you need double apostrophes as shown in this example. If,
however, you specify the options in your source program, you need single
apostrophes (for example, you might have CBL CICS(’COBOL3,SP’) APOST as
the CBL statement in your source program.

The CICS-supplied COBOL procedures do not specify values for the SIZE and BUF
options. The defaults are SIZE=MAX, and BUF=4K. SIZE defines the amount of
virtual storage available to the compiler, and BUF defines the amount of dynamic
storage to be allocated to each compiler buffer work file. You can change these
options with a PARM.COB parameter in the EXEC statement that invokes the
procedure. For example:
EXEC PROC=procname,PARM.COB=’SIZE=512K,BUF=16K,.,.,.’

You can change compiler options by using any of the following methods:

v By overriding the PARM statement defined on the COB step of the
CICS-supplied COBOL procedures.

If you specify a PARM statement in the job that calls the procedure, it overrides
all the options specified in the procedure JCL. Ensure that all the options you
want are specified in the override, or in a CBL statement.

v Specifying a CBL statement at the start of the source statements in the job
stream used to call the CICS-supplied COBOL procedures.

v The COBOL installation defaults macro, IGYCOPT. This is needed if you do not
use a CBL statement (that is, you have specified the translator option
NOCBLCARD).

For information about the translator option CBLCARD|NOCBLCARD, see “Defining
translator options” on page 74. If you choose to use the NOCBLCARD option, also
specify the COBOL compiler option ALOWCBL=NO to prevent an error message of
IGYOS4006-E being issued. For more information about the ALOWCBL compiler
option, see the relevant Installation and Customization manual for your version of
COBOL.

�2� If you have no input for the translator, you can specify DD DUMMY instead of DD *.
However, if you specify DD DUMMY, also code a suitable DCB operand. (The
translator does not supply all the data control block information for the SYSIN data
set.)

�3� If the stand-alone translator supplied with CICS TS is used, the translator
options on the XOPTS statement override similar options in the CICS-supplied
COBOL procedures.

For information about the translator options you can include on the XOPTS
statement, see “Defining translator options” on page 74.

When the integrated CICS translator is used, the COBOL compiler recognizes only
the keyword CICS for defining translator options, not XOPTS.

Chapter 9. Installing application programs 113

�4� You can ignore weak external references unresolved by the link-edit.

The link-edit job step requires access to the libraries containing the
environment-specific modules for CICS, and the Language Environment link-edit
modules, as appropriate. Override or change the names of these libraries if the
modules and library subroutines are installed in libraries with different names.

If you are installing a program into either of the read-only DSAs, see “Running
application programs in the RDSAs” on page 103 for more details.

If you are installing a program that is to be used from the LPA, add the RENT and
REFR options to the LNKPARM parameter on the call to the CICS-supplied COBOL
procedures. (See “Running applications in the link pack area” on page 102.)

Installing PL/I application programs
Figure 15 on page 111 illustrates the flow of control in the cataloged procedures for
PL/I programs.

For more information about preparing PL/I programs, see the PL/I Programming
Guide.

Sample JCL to install PL/I application programs
You can use the job control statements shown in Figure 18 to process PL/I
application programs with a separate translator.

In the procedure name, the value of “x” depends on whether it is a CICS application
program or an EXCI batch program. For the names of the CICS-supplied
procedures, see Table 6 on page 107.

Notes for installing a PL/I program:

�1� The PL/I COUNT runtime option is not supported by Language Environment.
The REPORT option is replaced by the RPTSTG and RPTUPTS Language
Environment options. See the z/OS Language Environment Migration Guide.

�2� If you have no input for the translator, you can specify DD DUMMY instead of DD *.
However, if you specify DD DUMMY also code a suitable DCB operand. (The translator
does not supply all the data control block information for the SYSIN data set.)

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC PROC=DFHYxTPL �1�
//TRN.SYSIN DD * �2�
*PROCESS XOPTS(translator options...)PL/I compiler options...; �3�

.
PL/I source statements �4�

.
/*
//LKED.SYSIN DD * �5�

NAME anyname(R)
/*
//

where anyname is your load module name

Figure 18. Sample job control statements to call the DFHYxTPL procedures

114 CICS TS for z/OS: CICS Application Programming Guide

�3� Translator and compiler options:

For information about the translator options you can include on the XOPTS
statement, see “Defining translator options” on page 74.

Ignore the message from the PL/I compiler: “IEL0548I PARAMETER TO MAIN
PROCEDURE NOT VARYING CHARACTER STRING”.

Warning messages may appear from the PL/I compiler stating that arguments and
parameters do not match for calls to procedure DFHxxxx. These messages indicate
that arguments specified in operands to CICS commands may not have the correct
data type. Carefully check all fields mentioned in these messages, especially
receiver fields.

�4� If you include the CALL PLIDUMP statement in an application program, output
goes to the CESE transient data destination. The CICS supplied resource definition
group, in the CSD, DFHDCTG, contains an entry for CESE.

�5� Link-edit considerations:

You can ignore weak external references unresolved by the link-edit.

If you are installing a program into either of the read-only DSAs, see “Running
application programs in the RDSAs” on page 103 for more details.

If you are installing a program that is to be used from the LPA, add the RENT and
REFR options to the LNKPARM parameter on the call to the DFHYxTPL procedure.
(See “Running applications in the link pack area” on page 102 for more
information.)

PL/I procedure with an integrated translator
To use the new procedure DFHZITPL to invoke the integrated translator, you can
use the following sample JCL:

Notes for installing PLI programs with an integrated translator

�1� Translator options:

The DFHZITPL procedure includes the following compiler options to indicate that
you want the compiler to invoke the translator:
PLIPARM=(’SOURCE,OPTIONS,SYSTEM(CICS),PP(CICS)’)

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC DFHZITPL,PROGLIB=dsnname �1�
//PLI.SYSIN DD *

.

. PLI source statements

.
/*
//LKED.SYSIN DD *

NAME anyname(R)
/*
//

where anyname is your load module name.

Figure 19. Sample job control statements to use the DFHZITPL procedure

Chapter 9. Installing application programs 115

Note: In this procedure, the SYSLMOD DD statement in the LKED step must refer
to a PDSE (not a PDS as for the older PL/I compilers).

116 CICS TS for z/OS: CICS Application Programming Guide

Installing C application programs
Figure 20 shows the flow of control in the DFHYxTzL cataloged procedures for C
command-level programs.

High-level
language compiler

Pre-linkage
editor

Linkage Editor

EDC.V1R2M0
SEDCHDRS
SEDCMSGS
(EDCMSGE)

EDC.V1R2M0
SEDCLINK
SEDCCOMP
SEDCMSGS
(EDCMSGE)

EDC.V2R2M1
SIBMLINK

EDC.V2R2M1
SIBMBASE

Intermediate
storage

Intermediate
storage

Compiler
listing

Pre-linkage
editor
listing

Linkage Editor
listing

DFHBMSCA
DFHAID

DFHEILID
DFHELII

EDC.V1R2M0
SEDCBASE

High-level language
source

Command-level
language translator

Intermediate
storage

Translator
listing

CICS.
SDFHLOAD

CICS.
SDFHLOAD

CICS.
SDFHLOAD

Figure 20. Installing C programs using the DFHYxTzL procedure

Chapter 9. Installing application programs 117

There are translator, compiler, pre-linkage editor and linkage editor steps, each
producing a listing and an intermediate file that is passed to the next step. C
libraries are referenced in the compiler, pre linkage editor and linkage editor steps.

Note: When you choose the XPLINK compiler option, there is no pre-link step in
the diagram above.

Before you can install any C programs, you must have installed the C library and
compiler and generated CICS support for C. (See the CICS Transaction Server for
z/OS Installation Guide.)

Sample JCL to install C application programs

You can use the job control statements shown in Figure 21 to process C application
programs. In the procedure name, x depends on whether your program is a CICS
application program or an EXCI batch program. For the names of the
CICS-supplied procedures, see Table 6 on page 107.

Notes for installing a C program:

�1� Compiler options:

You can code compiler options by using the parameter override (PARM.C) in the
EXEC statement that invokes the procedure, or on a ~pragma options directive.

�2� If you have no input for the translator, you can specify DD DUMMY instead of DD *.
However, if you specify DD DUMMY, also code a suitable DCB operand. (The
translator does not supply all the data control block information for the SYSIN data
set.)

�3� Translator options: For information about the translator options you can
include on the XOPTS statement, see “Defining translator options” on page 74 .

�4� If you are installing a program into either of the read-only DSAs, see “Running
application programs in the RDSAs” on page 103 for more details.

If you are installing a program that is to be used from the LPA, add the RENT and
REFR options to the LNKPARM parameter on the call to the DFHYxTzL procedure.
(See “Running applications in the link pack area” on page 102 for more
information.)

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC PROC=DFHYxTzL �1�
//TRN.SYSIN DD * �2�
#pragma XOPTS(Translator options . . .) �3�

.
C source statements
.

/*
//LKED.SYSIN DD * �4�

NAME anyname(R)
/*
//

where anyname is your load module name

Figure 21. Sample JCL to call the DFHYxTzL procedures

118 CICS TS for z/OS: CICS Application Programming Guide

#
#

C language programs must be link-edited with AMODE(31), so the DFHYxTzL
procedures specify AMODE(31) by default.

To use the procedures to invoke the integrated translator for XL C, you can use the
job control statements shown in Figure 22:

�1� Translator name:

Specify DFHZITDL for C programs without XPLINK or DFHZITFL for C programs
with XPLINK.

To use the procedures to invoke the integrated translator for XL C++, you can use
the job control statements shown in Figure 23:

�1� Translator name:

Specify DFHZITEL for C++ programs without XPLINK, or DFHZITGL for C++
programs with XPLINK.

Including pre-translated code with your C source code
The translator may generate dfhexec or DFHEXEC. If both versions are present in
your program, you will see error message IEW2456E. There are two ways to
prevent this error.

1. Recompile the old code containing dfhexec.

2. Use the prelinker RENAME control statement in the job, as shown below.

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC DFHZITxL,PROGLIB=dsnname �1�
//C.SYSIN DD *

.

. C source statements

.

//LKED.SYSIN DD *
NAME anyname(R)

//

where anyname is your load module name.

Figure 22. Sample job control statements to invoke the integrated translator for XL C

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC DFHZITxL,PROGLIB=dsnname �1�
//CPP.SYSIN DD *

.

. C++ source statements

.

//LKED.SYSIN DD *
NAME anyname(R)

//

where anyname is your load module name.

Figure 23. Sample job control statements to invoke the integrated translator for XL C++

Chapter 9. Installing application programs 119

#
#
#
#
#
#
#
#
#
#
#

#

#
#
#

#
#
#
#
#
#
#
#
#
#
#

#

#
#
#

#
#
#

#

#
#

#
#
#

#

#
#

Using your own job streams
If you want to write your own JCL to translate, assemble (or compile), and link-edit
your application programs, you can use the supplied cataloged procedures as a
model. They are installed in the CICSTS31.CICS.SDFHPROC library.

The rest of this section summarizes the important points about the translator and
each of the main categories of program. For simplicity, the following discussion
states that you load programs into CICSTS31.CICS.SDFHLOAD or IMS™.PGMLIB.
In fact, you can use any libraries, but only when they are either included in the
DFHRPL library concatenation in the CICS job stream, or included in the STEPLIB
library concatenation in the batch job stream (for a stand-alone IMS batch program).

Note: The IMS libraries referred to in the job streams are identified by IMS.libnam
(for example IMS.PGMLIB). If you use your own naming convention for IMS
libraries, please rename the IMS libraries accordingly.

Translator requirements
The CICS translator requires a minimum of 256KB of virtual storage. You may need
to use the translator options CICS and DLI.

Online programs that use EXEC CICS or EXEC DLI commands
1. Always use the translator option CICS. If the program issues EXEC DLI

commands, use the translator option DLI.

2. The link-edit input (defined by the SYSLIN DD statement) must include the
correct interface module before the object deck. Therefore, place an INCLUDE
statement for the interface module before the object deck. Also put ORDER
statements before the INCLUDE statements, and an ENTRY statement after all
the INCLUDE statements.

The interface modules are:

DFHEAI
Assembler

DFHELII
All HLL languages

//jobname JOB accounting info,name,MSGLEVEL=1
// EXEC PROC=DFHYxTzL
//TRN.SYSIN DD *
#pragma XOPTS(Translator options . . .)

.
C source statements
.

/*
//PLKED.SYSLIN DD *

RENAME dfhexec DFHEI1
//LKED.SYSLIN DD *

NAME anyname(R)
/*
//

where anyname is your load module name

Figure 24. Sample JCL to rename dfhexec

120 CICS TS for z/OS: CICS Application Programming Guide

In the CICS-supplied procedures, the input to the link-edit step (defined by the
SYSLIN DD statement) concatenates a library member with the object deck.
This member contains an INCLUDE statement for the required interface module.
For example, the DFHYITVL procedure concatenates the library member
DFHEILID, which contains the following INCLUDE statement:

INCLUDE SYSLIB(DFHELII)

3. Place the load module output from the link-edit (defined by the SYSLMOD DD
statement) in CICSTS31.CICS.SDFHLOAD, or your own program library.

Figure 25 shows sample JCL and an inline procedure, based on the CICS-supplied
procedure DFHYITVL, that can be used to install COBOL application programs. The
procedure does not include the COPYLINK step and concatenation of the library
member DFHEILID that contains the INCLUDE statement for the required interface
module (as included in the DFHYITVL procedure). Instead, the JCL provides the
following INCLUDE statement:

INCLUDE SYSLIB(DFHELII)

If this statement was not provided, the link-edit would return an error message for
unresolved external references, and the program output would be marked as not
executable.

//* The following JCL could be used to execute this procedure
//*
//APPLPROG EXEC MYYITVL,
// INDEX=’CICSTS31.CICS
// PROGLIB=’CICSTS31.CICS.SDFHLOAD’,
// DSCTLIB=’CICSTS31.CICS.SDFHCOB’,
// INDEX2=’user.qualif’
// OUTC=A, Class for print output
// REG=4M, Region size for all steps
// LNKPARM=’LIST,XREF’, Link edit parameters
// WORK=SYSDA Unit for work datasets

//TRN.SYSIN DD *
//* .
//* . Application program
//* .
//*
//LKED.SYSIN DD *

INCLUDE SYSLIB(DFHELII)
NAME anyname(R)

//*
//MYYITVL PROC SUFFIX=1$, Suffix for translator module
// INDEX=’CICSTS31.CICS’, Qualifier(s) for CICS libraries
// PROGLIB=’CICSTS31.CICS.SDFHLOAD’, Name of o/p library
// DSCTLIB=’CICSTS31.CICS.SDFHCOB’, Private macro/dsect
// AD370HLQ=’SYS1’, Qualifier(s) for AD/Cycle compiler
// LE370HLQ=’SYS1’, Qualifier(s) for Language Environment libraries
// OUTC=A, Class for print output
// REG=4M, Region size for all steps
// LNKPARM=’LIST,XREF’, Link edit parameters
// WORK=SYSDA Unit for work datasets
//*

Figure 25. Sample user-defined JCL to install a COBOL program (Part 1 of 2)

Chapter 9. Installing application programs 121

Online programs that use the CALL DLI interface
1. Specify the translator option CICS, but not the translator option DLI.

Note: For a program that does not use CICS commands and is only invoked by
a running transaction (and never directly by CICS task initiation), no
translator step is needed.

2. The interface module, DFHDLIAI, is automatically included by the link-edit. If
you use an INCLUDE statement in the link-edit input, place it after the object
deck.

3. Include copybook DLIUIB in your program.

//* This procedure contains 3 steps
//* 1. Exec the COBOL translator (using the supplied suffix 1$)
//* 2. Exec the COBOL compiler
//* 3. Linkedit the output into dataset &PROGLIB

//TRN EXEC PGM=DFHECP &SUFFIX,,
// PARM=’COBOL3’,
// REGION=®

//STEPLIB DD DSN=&INDEX..SDFHLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=&OUTC
//SYSPUNCH DD DSN=&&SYSCIN,
// DISP=(,PASS),UNIT=&WORK,
// DCB=BLKSIZE=400,
// SPACE=(400,(400,100))
//*
//COB EXEC PGM=IGYCRCTL,REGION=®,
// PARM=’NODYNAM,LIB,OBJECT,RENT,APOST,MAP,XREF’
//STEPLIB DD DSN=&AD370HLQ..SIGYCOMP,DISP=SHR
//SYSLIB DD DSN=&DSCTLIB,DISP=SHR
// DD DSN=&INDEX..SDFHCOB,DISP=SHR
// DD DSN=&INDEX..SDFHMAC,DISP=SHR
// DD DSN=&INDEX..SDFHSAMP,DISP=SHR
//SYSPRINT DD SYSOUT=&OUTC
//SYSIN DD DSN=&&SYSCIN,DISP=(OLD,DELETE)
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),
// UNIT=&WORK,SPACE=(80,(250,100))
//SYSUT1 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT2 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT3 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT4 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT5 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT6 DD UNIT=&WORK,SPACE=(460,(350,100))
//*
//LKED EXEC PGM=IEWL,REGION=®,
// PARM=’&LNKPARM’,COND=(5,LT,COB)
//SYSLIB DD DSN=&INDEX..SDFHLOAD,DISP=SHR
// DD DSN=&LE370HLQ..SCEELKED,DISP=SHR
//SYSLMOD DD DSN=&PROGLIB,DISP=SHR
//SYSUT1 DD UNIT=&WORK,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=&OUTC
//SYSLIN DD DSN=&©LINK,DISP=(OLD,DELETE)
// DD DSN=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//PEND
//*

Figure 25. Sample user-defined JCL to install a COBOL program (Part 2 of 2)

122 CICS TS for z/OS: CICS Application Programming Guide

#

4. Place the load module output from the link-edit (defined by the SYSLMOD DD
statement) in CICSTS31.CICS.SDFHLOAD, or a user-defined application
program library.

Batch or BMP programs that use EXEC DLI commands
1. The translator option DLI is required. Do not specify the translator option CICS.

2. The INCLUDE statement for the interface module must follow the object deck
in the input to the link-edit (defined by the SYSLIN DD statement). The interface
module, DFSLI000, which resides on IMS.RESLIB, is the same for all
programming languages. If you include CICSTS31.CICS.SDFHLOAD in the
input to the link-edit (defined by the SYSLIB DD statement), concatenate it after
IMS.RESLIB.

3. Place the load module output from the link-edit (defined by the SYSLMOD DD
statement) in IMS.PGMLIB, or a library concatenated in the STEPLIB DD
statement of the batch job stream.

Batch or BMP programs that use DL/I CALL commands
If you want to prepare assembler, COBOL, or PL/I programs that use the DL/I CALL
interface, do not use any of the CICS-supplied procedures. Programs that contain
CALL ASMTDLI, CALL CBLTDLI, or CALL PLITDLI should be assembled or
compiled, and link-edited, as IMS applications, and are not subject to any CICS
requirements. See the relevant IMS manual for information about how to prepare
application programs that use the DL/I CALL interface.

Chapter 9. Installing application programs 123

124 CICS TS for z/OS: CICS Application Programming Guide

Chapter 10. Installing map sets and partition sets

This chapter describes how to assemble and link-edit map sets and partition sets
for use with the basic mapping (BMS) facility of CICS. It also describes how to
install HTML templates generated from BMS maps. See “Using the DFHMAPT
procedure to install HTML templates from BMS maps” on page 131 and the CICS
Internet Guide for information about using HTML templates.

If your program uses BMS maps, you need to create the maps. The traditional
method for doing this is to code the map in BMS macros and assemble these
macros. You actually do the assembly twice, with different output options.

v One assembly creates a set of definitions. You copy these definitions into your
program using the appropriate language statement, and they allow you to refer to
the fields in the map by name.

v The second assembly creates an object module that is used when your program
actually executes.

The process is illustrated in the following diagram:.

Whatever way you produce maps, you need to create a map before you compile
(assemble) any program that uses it. In addition, if you change the map, you

BMS macro
statements
defining
map set

Type=
MAP

Type=

DSECT
Assembler

Assembler

Link Editor

Copy
library

Assembler
listing

Link edit
listing

CICS load
library

Object
module
library

Assembler
listing

Figure 26. Preparing a map

© Copyright IBM Corp. 1989, 2010 125

usually need to recompile (reassemble) all programs that use it. Some changes
affect only the physical map and are not reflected in the corresponding symbolic
map used by the program. One of these is a change in field position that does not
alter the order of the fields. However, changes in data type, field length, field
sequence, and others do affect the symbolic map, and it is always safest to
recompile (reassemble).

CICS also supports the definition of BMS map sets and partition sets interactively
by using licensed programs such as the IBM Screen Definition Facility II (SDF II),
program number 5665-366. For more information about SDF II, see the Screen
Definition Facility II Primer for CICS/BMS Programs and Screen Definition Facility II
General Information manuals.

For information about writing programs to use BMS services, see Chapter 31,
“Basic mapping support,” on page 453.

CICS loads BMS map sets and partition sets above the 16MB line if you specify the
residency mode for the map set or partition set as RMODE(ANY) in the link-edit
step. If you are using either map sets or partition sets from earlier releases of CICS,
you can load them above the 16MB line by link-editing them again with
RMODE(ANY). For examples of link-edit steps specifying RMODE(ANY), see the
sample job streams in this chapter.

This chapter includes:
v “Installing map sets”
v “Installing partition sets” on page 133
v “Defining programs, map sets, and partition sets to CICS” on page 134

Installing map sets
This section first describes the types of map sets, how you define them, and how
CICS recognizes them. This is followed by a description of how to prepare physical
map sets and symbolic description map sets separately. Finally, there is a
description of how to prepare both physical and symbolic description map sets in
one job. In these descriptions, it is assumed that the SYSPARM parameter is used
to distinguish the two types of map sets.

Types of map sets
To install a map set, you must actually prepare two types of map sets:

v A physical map set, used by BMS to translate data from the standard
device-independent form used by application programs to the device-dependent
form required by terminals.

v A symbolic description map set, used in the application program to define the
standard device-independent form of the user data. This is a DSECT in
assembler language, a data definition in COBOL, a BASED or AUTOMATIC
structure in PL/I, and a “struct” in C/370.

Physical map sets must be cataloged in the CICS load library. Symbolic description
map sets can be cataloged in a user copy library, or inserted directly into the
application program itself.

The map set definition macros are assembled twice; once to produce the physical
map set used by BMS in its formatting activities, and once to produce the symbolic
description map set that is copied into the application program.

126 CICS TS for z/OS: CICS Application Programming Guide

Defining the type of map set you require
The two types of map set can be distinguished by either:

v The TYPE operand of the DFHMSD macro

v Use of the SYSPARM operand on the EXEC statement of the job used to
assemble the map set

If you use the SYSPARM operand for this purpose, the TYPE operand of the
DFHMSD macro is ignored. Using SYSPARM allows both the physical map set and
the symbolic description map set to be generated from the same unchanged set of
BMS map set definition macros.

Map sets can be assembled as either unaligned or aligned (an aligned map is one
in which the length field is aligned on a halfword boundary). Use unaligned maps
except in cases where an application package needs to use aligned maps.

The SYSPARM value alone determines whether the map set is aligned or
unaligned, and is specified on the EXEC PROC=DFHMAPS statement. The
SYSPARM operand can also be used to specify whether a physical map set or a
symbolic description map set (DSECT) is to be assembled, in which case it
overrides the TYPE operand. If neither operand is specified, an unaligned DSECT is
generated.

The TYPE operand of the DFHMSD macro can only define whether a physical or
symbolic description map set is required.

For the possible combinations of operands to generate the various types of map
set, see Table 7.

Table 7. SYSPARM and DFHMSD operand combinations for map assembly

Type of map set SYSPARM operand of EXEC
DFHMAPS statement

TYPE operand of
DFHMSD macro

Aligned symbolic
description map
set (DSECT)

A
A
ADSECT

Not specified
DSECT
Any (takes SYSPARM)

Aligned
physical map set

A
AMAP

MAP
Any (takes SYSPARM)

Unaligned
symbolic
description map
set (DSECT)

Not specified
Not specified
DSECT

Not specified
DSECT
Any (takes SYSPARM)

Unaligned
physical map set

Not specified
MAP

MAP
Any (takes SYSPARM)

The physical map set indicates whether it was assembled for aligned or unaligned
maps. This information is tested at execution time, and the appropriate map
alignment used. Thus aligned and unaligned map sets can be mixed.

Using extended data stream terminals
Applications and maps designed for the 3270 Information Display System run
unchanged on devices supporting extensions to the 3270 data stream such as
color, extended highlighting, programmed symbols, and validation. To use fixed
extended attributes such as color, you only need to reassemble the physical map
set. If dynamic attribute modification by the application program is needed, you

Chapter 10. Installing map sets and partition sets 127

must reassemble both the physical and symbolic description map sets, and you
must reassemble or recompile the application program.

Installing physical map sets
Figure 27 shows the the assembler and linkage editor steps for installing physical
map sets.

Figure 28 gives an example job stream for the assembly and link-editing of physical
map sets.

Macro statements
defining the map set

Assembler

Linkage Editor

CICS.
SDFHLOAD

CICS.
SDFHMAC

Assembly
listing

Linkage Editor
listing

Linkage
Editor
input
(object)

Figure 27. Installing physical map sets

//PREP JOB ’accounting information’,CLASS=A,MSGLEVEL=1
//STEP1 EXEC PROC=DFHASMVS,PARM.ASSEM=’SYSPARM(MAP)’ �1�
//SYSPUNCH DD DSN=&&TEMP,DCB=(RECFM=FB,BLKSIZE=2960),
// SPACE=(2960,(10,10)),UNIT=SYSDA,DISP=(NEW,PASS)
//SYSIN DD *...

Macro statements defining the map set...
/*
//STEP2 EXEC PROC=DFHLNKVS,PARM=’LIST,LET,XREF’ �2�
//SYSLIN DD DSN=&&TEMP,DISP=(OLD,DELETE)
// DD *

MODE RMODE(ANY|24) �3�
NAME mapsetname(R) �4�

/*
//

Figure 28. Assembling and link-editing a physical map set

128 CICS TS for z/OS: CICS Application Programming Guide

Notes:

�1� For halfword-aligned length fields, specify the option SYSPARM(AMAP) instead
of SYSPARM(MAP).

�2� Physical map sets are loaded into CICS-key storage, unless they are link-edited
with the RMODE(ANY) and RENT options. If they are link-edited with these options,
they are loaded into key-0 protected storage, provided that RENTPGM=PROTECT
is specified on the RENTPGM initialization parameter. However, it is recommended
that map sets (except for those that are only sent to 3270 or LU1 devices) should
not be link-edited with the RENT or the REFR options because, in some cases,
CICS modifies the map set. Generally, use the RENT or REFR options for map sets
that are only sent to 3270 or LU1 devices.For more information about the storage
protection facilities available in CICS, see the CICS System Definition Guide.

�3� The MODE statement specifies whether the map set is to be loaded above
(RMODE(ANY)) or below (RMODE(24)) the 16MB line. RMODE(ANY) indicates that
CICS can load the map set anywhere in virtual storage, but tries to load it above
the 16MB line, if possible.

�4� Use the NAME statement to specify the name of the physical map set that BMS
loads into storage. If the map set is device-dependent, derive the map set name by
appending the device suffix to the original 1- to 7-character map set name used in
the application program. The suffixes to be appended for the various terminals
supported by CICS BMS depend on the parameter specified in the TERM or
SUFFIX operand of the DFHMSD macros used to define the map set. For
programming information giving a complete list of map set suffixes, see the CICS
Application Programming Reference manual.

To use a physical map set, you must define and install a resource definition for it.
You can do this either by using the program autoinstall function or by using the
CEDA DEFINE MAPSET and INSTALL commands. as described in “Defining
programs, map sets, and partition sets to CICS” on page 134.

Installing symbolic description map sets
Symbolic description map sets enable the application programmer to make symbolic
references to fields in the physical map set. Figure 29 shows the preparation of
symbolic description map sets for BMS.

Macro statements
defining the
symbolic map

Assembler

SYSPUNCH

CICS.
SDFHMAC

Assembly
listing

Figure 29. Installing symbolic description map sets using the DFHASMVS procedure

Chapter 10. Installing map sets and partition sets 129

To use a symbolic description map set in a program, you must assemble the source
statements for the map set and obtain a punched copy of the storage definition
through SYSPUNCH. The first time this is done, you can direct the SYSPUNCH
output to SYSOUT=A to get a listing of the symbolic description map set. If many
map sets are to be used at your installation, or there are multiple users of common
map sets, establish a private user copy library for each language that you use.

When a symbolic description is prepared under the same name for more than one
programming language, a separate copy of the symbolic description map set must
be placed in each user copy library. You must ensure that the user copy libraries
are correctly concatenated with SYSLIB.

You need only one symbolic description map set corresponding to all the different
suffixed versions of the physical map set. For example, to run the same application
on terminals with different screen sizes, you would:

1. Define two map sets each with the same fields, but positioned to suit the screen
sizes. Each map set has the same name but a different suffix, which would
match the suffix specified for the terminal.

2. Assemble and link-edit the different physical map sets separately, but create
only one symbolic description map set, because the symbolic description map
set would be the same for all physical map sets.

You can use the sample job stream in Figure 30 to obtain a listing of a symbolic
description map set. It applies to all the programming languages supported by
CICS.

If you want to assemble symbolic description map sets in which length fields are
halfword-aligned, change the EXEC statement of the sample job in Figure 30 to the
following:
//ASSEM EXEC PROC=DFHASMVS,PARM.ASSEM=’SYSPARM(ADSECT)’

To obtain a punched copy of a symbolic description map set, code the
//SYSPUNCH statement in the above example to direct output to the punch data
stream. For example:
//SYSPUNCH DD SYSOUT=B

To store a symbolic description map set in a private copy library, use job control
statements similar to the following:
//SYSPUNCH DD DSN=USER.MAPLIB.ASM(map set name),DISP=OLD
//SYSPUNCH DD DSN=USER.MAPLIB.COB(map set name),DISP=OLD
//SYSPUNCH DD DSN=USER.MAPLIB.PLI(map set name),DISP=OLD

//DSECT JOB ’accounting information’,CLASS=A,MSGLEVEL=1
//ASM EXEC PROC=DFHASMVS,PARM.ASSEM=’SYSPARM(DSECT)’
//SYSPUNCH DD SYSOUT=A
//SYSIN DD *...

Macro statements defining the map set...
/*
//

Figure 30. Listing of a symbolic description map set

130 CICS TS for z/OS: CICS Application Programming Guide

Installing physical and symbolic description maps together
Figure 31 shows the DFHMAPS procedure for installing physical and symbolic
description maps together. The DFHMAPS procedure consists of the following four
steps, shown in Figure 31:

1. The BMS macros that you coded for the map set are added to a temporary
sequential data set.

2. The macros are assembled to create the physical map set. The MAP option is
coded in the SYSPARM global variable in the EXEC statement
(PARM='SYSPARM(MAP)').

3. The physical map set is link-edited to the CICS load library.

4. Finally, the macros are assembled again, this time to produce the symbolic
description map set. In this step, DSECT is coded in the SYSPARM global
variable in the EXEC statement (PARM='SYSPARM(DSECT)'). Output is
directed to the destination specified in the //SYSPUNCH DD statement. In the
DFHMAPS procedure, that destination is the CICSTS31.CICS.SDFHMAC
library.

Using the DFHMAPT procedure to install HTML templates from
BMS maps
The DFHMAPT procedure is similar to DFHMAPS, with an additional step that
installs HTML templates generated from the BMS maps. In this step, TEMPLATE is
coded in the SYSPARM global variable in the EXEC statement
(PARM='SYSPARM(TEMPLATE)'). In the DFHMAPT procedure, the output is
directed to CICSTS31.CICS.SDFHHTML.

Macro statements
defining the map set

Assembler

Linkage Editor

AssemblerMacro statements
defining the map set

CICS.
SDFHMAC

CICS.
SDFHMAC

CICS.
SDFHLOAD

Assembly
listing

Linkage Editor
listing

Linkage
Editor
input
(object)

1

2

3

4

Figure 31. Installing a physical map set and a symbolic description map set together

Chapter 10. Installing map sets and partition sets 131

If you wish to use your own macro to customize HTML templates, and you do not
wish to add your macro to the BMS source you should modify step ASMTEMPL:

1. Change the PARM parameter of the EXEC statement to
PARM=’SYSPARM(TEMPLATE,macro_name),DECK,NOOBJECT’

2. Add the library that contains your macro to the SYSLIB concatenation.

JCL to install physical and symbolic description maps
The load module from the assembly of the physical map set and the source
statements for the symbolic description map set can be produced in the same job
by using the sample job stream in Figure 32.

Note: The RMODE statement specifies whether the map set is to be loaded above
(RMODE=ANY) or below (RMODE=24) the 16MB line. RMODE=ANY
indicates that CICS can load the map set anywhere in virtual storage, but
tries to load it above the 16MB line, if possible.

The DFHMAPS procedure produces map sets that are not halfword-aligned. If you
want the length fields in input maps to be halfword-aligned, you have to code A=A
on the EXEC statement. In the sample job in Figure 32, change the EXEC
statement to:
//ASSEM EXEC PROC=DFHMAPS,MAPNAME=mapsetname,A=A

This change results in the SYSPARM operands in the assembly steps being altered
to SYSPARM(AMAP) and SYSPARM(ADSECT) respectively.

The DFHMAPS procedure directs the symbolic description map set output
(SYSPUNCH) to the CICSTS31.CICS.SDFHMAC library. Override this by specifying
DSCTLIB=name on the EXEC statement, where “name” is the name of the chosen
user copy library.

Adding a CSECT to your map assembly
It is possible that you might need to generate your BMS maps with a CSECT. For
example, you might need to specify AMODE and RMODE options to ensure your
maps reside above 16MB, or you might need to use the DFSMS binder IDENTIFY
statement for reasons of change management. In this case, you need not only
include the appropriate CSECT at the front of your BMS macro statements, but also
add some conditional assembler statements to ensure that the CSECT statement is
not included in the symbolic description map. The following example shows how
you can add both a CSECT name and AMODE and RMODE statements:

//PREPARE JOB ’accounting information’,CLASS=A,MSGLEVEL=1
//ASSEM EXEC PROC=DFHMAPS,MAPNAME=mapsetname,RMODE=ANY|24 (see note)
//SYSUT1 DD *...

Macro statements defining the map set...
/*
//

Figure 32. Installing physical and symbolic description maps together

132 CICS TS for z/OS: CICS Application Programming Guide

Installing partition sets
Partition sets are installed in the same way as physical map sets (as illustrated in
Figure 27 on page 128). There is no concept of a symbolic description partition set.
The job stream in Figure 34 is an example of the assembly and link-edit of partition
sets.

//PREPARE JOB ’accounting information’,CLASS=A,MSGLEVEL=1
//ASSEM EXEC PROC=DFHMAPS,MAPNAME=mapsetname,RMODE=ANY|24
//SYSUT1 DD *
.
AIF (’&SYSPARM’ EQ ’DSECT’).SKIPSD
AIF (’&SYSPARM’ EQ ’ADSECT’).SKIPSD
ANYNAME CSECT Binder IDENTIFY requires CSECT name
ANYNAME AMODE 31
ANYNAME RMODE ANY
.SKIPSD ANOP ,
DFH0STM DFHMSD TYPE=DSECT,MODE=INOUT,CTRL=FREEKB,LANG=COBOL, C

TIOAPFX=YES,TERM=3270-2,MAPATTS=(COLOR,HILIGHT), C
DSATTS=(COLOR,HILIGHT)

SPACE
DFH0STM DFHMDI SIZE=(24,80)
.
.
.
SPACE
DFHMSD TYPE=FINAL
END
.
/*
//

Figure 33. Adding a CSECT to the map assembly

//PREP JOB ’accounting information’,CLASS=A,MSGLEVEL=1
//STEP1 EXEC PROC=DFHASMVS
//SYSPUNCH DD DSN=&&TEMP,DCB=(RECFM=FB,BLKSIZE=2960),
// SPACE=(2960,(10,10)),UNIT=SYSDA,DISP=(NEW,PASS)
//SYSIN DD *
.

Macro statements defining the partition set
.
/*
//STEP2 EXEC PROC=DFHLNKVS,PARM=’LIST,LET,XREF’ �1�
//SYSLIN DD DSN=&&TEMP,DISP=(OLD,DELETE)
// DD *

MODE RMODE(ANY|24) �2�
NAME partitionsetname(R) �3�

/*
//

Figure 34. Assembling and link-editing a partition set

Chapter 10. Installing map sets and partition sets 133

Notes:

�1� A partition set is loaded into CICS-key storage, unless it is link-edited with the
RMODE(ANY) and RENT options. If it is link-edited with these options, it is loaded
into key-0 protected storage, provided that RENTPGM=PROTECT is specified on
the RENTPGM initialization parameter.

For more information about the storage protection facilities available in CICS, see
the CICS System Definition Guide.

�2� The MODE statement specifies whether the partition set is to be loaded above
(RMODE(ANY)) or below (RMODE(24)) the 16MB line. RMODE(ANY) indicates that
CICS can load the partition set anywhere in virtual storage, but tries to load it above
the 16MB line, if possible.

�3� Use the NAME statement to specify the name of the partition set which BMS
loads into storage. If the partition set is device-dependent, derive the partition set
name by appending the device suffix to the original 1- to 7-character partition set
name used in the application program. The suffixes that BMS appends for the
various terminals depend on the parameter specified in the SUFFIX operand of the
DFHPSD macro that defined the partition set.

For programming information giving a complete list of partition-set suffixes, see the
CICS Application Programming Guide.

To use a partition set, you must define and install a resource definition for it. You
can do this either by using the program autoinstall function or by using the CEDA
DEFINE PARTITIONSET and INSTALL commands, as described in the CICS
Resource Definition Guide.

Defining programs, map sets, and partition sets to CICS
To be able to use a program that you have installed in one of the load libraries
specified in your CICS startup JCL, the program, and any map sets and partition
sets that it uses, must be defined to CICS. To do this, CICS uses the resource
definitions MAPSET (for map sets), PARTITIONSET (for partition sets), and
PROGRAM (for programs). You can create and install such resource definitions in
any of the following ways:

v CICS can dynamically create, install, and catalog a definition for the program,
map set, or partition set when it is first loaded, by using the autoinstall for
programs function.

v You can create a specific resource definition for the program, map set, or
partition set and install that resource definition in your CICS region.

You can install resource definitions in either of the following ways:

– At CICS initialization, by including the resource definition group in the group
list specified on the GRPLIST system initialization parameter.

– While CICS is running, by the CEDA INSTALL command.

For information about defining programs to CICS, see the CICS Resource Definition
Guide.

134 CICS TS for z/OS: CICS Application Programming Guide

Part 3. Application design

Chapter 11. Application design 139
Pseudoconversational and conversational design 140

Terminal interruptibility . 142
How tasks are started . 142
Which transaction? . 143
Separating business and presentation logic 146
Multithreading: Reentrant, quasi-reentrant and threadsafe programs 147

Quasi-reentrant application programs 147
Threadsafe programs . 149

Threadsafe considerations for statically or dynamically called routines 153
OPENAPI programs . 153

Obligations of OPENAPI programs 154
Using the FORCEQR system initialization parameter 155
Non-reentrant programs . 155

Storing data within a transaction 156
Transaction work area (TWA) 156
User storage . 156
COMMAREA in LINK and XCTL commands 157
Channels in LINK and XCTL commands 158
Program storage . 158
Temporary storage . 158
Intrapartition transient data 160
GETMAIN SHARED command 160
Your own data sets . 160

Lengths of areas passed to CICS commands 162
LENGTH options. 162
Journal records . 162
Data set definitions . 162
Recommendation . 162

Minimizing errors. 163
Protecting CICS from application errors 163
Testing applications . 163

Non-terminal transaction security 164

Chapter 12. Design for performance 165
Program size . 165
Virtual storage. 166

Reducing paging effects . 167
Locality of reference . 167
Working set . 168
Reference set . 168

Exclusive control of resources 169
Operational control . 170
Operating system waits . 171
The NOSUSPEND option . 171
Efficient data operations . 172

Efficient database operations 172
Efficient data set operations. 172

VSAM data sets . 173
BDAM data sets . 174

Efficient browsing (in non-RLS mode) 174
Efficient logging . 175
Efficient sequential data set access 175

© Copyright IBM Corp. 1989, 2010 135

||
||

||

Efficient terminal operations. 176
Length of the data stream sent to the terminal 176
Basic mapping support considerations 176

Avoid turning on modified data tags (MDTs) unnecessarily 176
Use FRSET to reduce inbound traffic 177
Do not send blank fields to the screen 177
Address CICS areas correctly 177
Use the MAPONLY option when possible. 177
Send only changed fields to an existing screen 177
Design data entry operations to reduce line traffic 178
Compress data sent to the screen 178
Use nulls instead of blanks 178
Use methods that avoid the need for nulls or blanks. 179

Page-building and routing operations 179
Sending multipage output 179
Sending messages to destinations other than the input terminal 180
Sending pages built from multiple maps 180
Using the BMS page-copy facility. 180

Requests for printed output 181
Additional terminal control considerations. 181

Use only one physical SEND command per screen 181
Use the CONVERSE command 181
Limit the use of message integrity options 181
Avoid using the DEFRESP option on SEND commands 182
Avoid using unnecessary transactions 182
Send unformatted data without maps 182

Chapter 13. Sharing data across transactions 183
Using the common work area (CWA) 183

Protecting the CWA. 184
Using the TCTTE user area (TCTUA) 186
Using the COMMAREA in RETURN commands 187
Using a channel on RETURN commands. 187
Using the display screen to share data 188

Chapter 14. Enhanced inter-program data transfer: channels as
modern-day COMMAREAs 189

Channels: quick start . 189
Containers and channels . 189
Basic examples . 190

Using channels: some typical scenarios 192
One channel, one program 192
One channel, several programs (a component) 193
Several channels, one component 193
Multiple interactive components 194

Creating a channel . 195
The current channel . 196

Current channel example, with LINK commands 196
Current channel example, with XCTL commands 198
Current channel: START and RETURN commands 199

The scope of a channel . 200
Scope example, with LINK commands 200
Scope example, with LINK and XCTL commands 202

Discovering which containers a program's been passed 204
Discovering which containers were returned from a link 204
CICS read only containers . 204

136 CICS TS for z/OS: CICS Application Programming Guide

||

Designing a channel: best practices. 205
Constructing and using a channel: an example. 206
Channels and BTS activities 207

Context . 208
Using channels from JCICS. 209
Dynamic routing with channels 209
Data conversion . 210

Why is data conversion needed? 210
Preparing for code page conversion with channels 210
Data conversion with channels 212

How to cause CICS to convert character data automatically 213
Using containers to do code page conversion 214
A SOAP example . 214

Benefits of channels . 215
Migrating from COMMAREAs to channels 216

Migration of existing functions 216
Migration to the new function 216

Migrating LINK commands that pass COMMAREAs 217
Migrating XCTL commands that pass COMMAREAs 217
Migrating pseudoconversational COMMAREAs on RETURN commands 218
Migrating START data . 218
Migrating programs that use temporary storage to pass data 218
Migrating dynamically-routed applications. 219

Chapter 15. Affinity . 221
Types of affinity . 222

Inter-transaction affinity . 222
Transaction-system affinity 222

Using INQUIRE and SET commands and global user exits 222
Programming techniques and affinity 223

Safe techniques . 223
Unsafe techniques . 223
Suspect techniques . 224
Recommendations . 224

Safe programming to avoid affinity 224
The COMMAREA . 225
The TCTUA . 226

Using the TCTUA in an unsafe way 227
Using ENQ and DEQ commands with ENQMODEL resource definitions 228

Overview of sysplex enqueue and dequeue 228
Benefits . 229

BTS containers . 229
Unsafe programming for affinity 229

Using the common work area 229
Using GETMAIN SHARED storage 230
Using the LOAD PROGRAM HOLD command 231
Sharing task-lifetime storage 232
Using the WAIT EVENT command 234
Using ENQ and DEQ commands without ENQMODEL resource definitions 235

Suspect programming for affinity 236
Using temporary storage . 236

Naming conventions for remote queues 237
Exception conditions for globally accessible queues 238

Using transient data . 239
Exception conditions for globally accessible queues 239

Using the RETRIEVE WAIT and START commands 240

Part 3. Application design 137

##

Using the START and CANCEL REQID commands 241
Using the DELAY and CANCEL REQID commands 243
Using the POST and CANCEL REQID commands 244

Detecting inter-transaction affinities 246
Inter-transaction affinities caused by application generators 246

Duration and scope of inter-transaction affinities 246
Affinity transaction groups 247
Relations and lifetimes . 247

The global relation . 247
The LUname (terminal) relation 248
The userid relation . 250
The BAPPL relation. 251

Chapter 16. Recovery design 255
Journaling . 255

Journal records . 255
Journal output synchronization. 255

Syncpointing . 257

Chapter 17. Dealing with exception conditions 261
Default CICS exception handling 261
Handling exception conditions by in-line code 262

How to use the RESP and RESP2 options 262
Use of RESP and DFHRESP in COBOL and PL/I. 262
Use of RESP and DFHRESP in C and C++ 263
Use of DFHRESP in assembler 263

An example of exception handling in C 263
An example of exception handling in COBOL 264

Modifying default CICS exception handling 265
Using the HANDLE CONDITION command 267

RESP and NOHANDLE options 268
How CICS keeps track of what to do 268

Using the HANDLE CONDITION ERROR command. 269
Using the IGNORE CONDITION command 269
Using the HANDLE ABEND command 270
Using PUSH HANDLE and POP HANDLE commands 271

Chapter 18. Abnormal termination recovery 273
Creating a program-level abend exit 274
Retrying operations . 275
Trace . 276

Trace entry points . 277
System trace entry points 277
User trace entry points 277
Exception trace entry points. 277
User exception trace entry points. 277

Monitoring . 277
Dump . 278

Chapter 19. The QUERY SECURITY command 281
Using the QUERY SECURITY command 281

Security protection at the record or field level 281
CICS-defined resource identifiers. 282
SEC system initialization parameter 282
Programming hints . 282

138 CICS TS for z/OS: CICS Application Programming Guide

Chapter 11. Application design

This chapter introduces some basic concepts to help you design CICS applications.
Changes are suggested that can improve performance and efficiency, but further
guidance on programming for efficiency is provided in Chapter 12, “Design for
performance,” on page 165.

The programming models implemented in CICS are inherited from those designed
for 3270s, and exhibit many of the characteristics of conversational,
terminal-oriented applications. There are basically three styles of programming
model:

v Terminal-initiated, that is, the conversational model

v Distributed program link (DPL), or the RPC model

v START, that is, the queuing model.

Once initiated, the applications typically use these and other methods of continuing
and distributing themselves, for example, with pseudoconversations, RETURN
IMMEDIATE or DTP. The main difference between these models is in the way that
they maintain state (for example, security), and hence state becomes an integral
part of the application design. This presents the biggest problem when you attempt
to convert to another application model.

A pseudoconversational model is mostly associated with terminal-initiated
transactions and was developed as an efficient implementation of the
conversational model. With increased use of 1-in and 1-out protocols such as
HTTP, it is becoming necessary to add the pseudoconversational characteristic to
the DPL or RPC model.
v “Pseudoconversational and conversational design” on page 140
v “How tasks are started” on page 142
v “Which transaction?” on page 143
v “Separating business and presentation logic” on page 146
v “Multithreading: Reentrant, quasi-reentrant and threadsafe programs” on page

147
v “Storing data within a transaction” on page 156
v “Lengths of areas passed to CICS commands” on page 162
v “Minimizing errors” on page 163
v “Non-terminal transaction security” on page 164

© Copyright IBM Corp. 1989, 2010 139

Pseudoconversational and conversational design
In a conversational transaction, the length of time spent in processing each of a
user’s responses is extremely short when compared to the amount of time waiting
for the input. A conversational transaction is one that involves more than one input
from the terminal, so that the transaction and the user enter into a conversation. A
nonconversational transaction has only one input (the one that causes the
transaction to be invoked). It processes that input, responds to the terminal and
terminates.

Processor speeds, even allowing for accessing data sets, are considerably faster
than terminal transmission times, which are considerably faster than user response
times. This is especially true if users have to think about the entry or have to enter
many characters of input. Consequently, conversational transactions tie up storage
and other resources for much longer than nonconversational transactions.

A pseudoconversational transaction sequence contains a series of
nonconversational transactions that look to the user like a single conversational
transaction involving several screens of input. Each transaction in the sequence
handles one input, sends back the response, and terminates.

Before a pseudoconversational transaction terminates, it can pass data forward to
be used by the next transaction initiated from the same terminal, whenever that
transaction arrives. A pseudoconversational transaction can specify what the next
transaction is to be, using the TRANSID option of the RETURN command,
However, you should be aware that if another transaction is started for that device,
it may interrupt the pseudoconversational chain you have designed, unless you
specify the IMMEDIATE option on the RETURN command. In this case, the
transaction specified by the TRANSID command is attached regardless of any other
transactions queued for this terminal.

The RETURN command is described in the CICS Application Programming
Reference manual.

No transaction exists for the terminal from the time a response is written until the
user sends the next input and CICS starts the next transaction to respond to it.
Information that would normally be stored in the program between inputs is passed
from one transaction in the sequence to the next using the COMMAREA or one of
the other facilities that CICS provides for this purpose. (See Chapter 13, “Sharing
data across transactions,” on page 183 for details.)

There are two major issues to consider in choosing between conversational and
pseudoconversational programming.

v The effect of the transaction on contention resources, such as storage and
processor usage. Storage is required for control blocks, data areas, and
programs that make up a transaction, and the processor is required to start,
process, and terminate tasks. Conversational programs have a very high impact
on storage, because they last so long, relative to the sum of the transactions that
make up an equivalent pseudoconversational sequence. However, there is less
processor overhead, because only one transaction is initiated instead of one for
every input.

v The effect on exclusive-use resources, such as records in recoverable data
sets, recoverable transient data queues, enqueue items, and so on. Again, a
conversational transaction holds on to these resources for much longer than the
corresponding sequence of nonconversational transactions. From this point of

140 CICS TS for z/OS: CICS Application Programming Guide

view, pseudoconversational transactions are better for quick responses, but
recovery and integrity implications may mean that you prefer to use
conversational transactions.

To summarize, although conversational tasks may be easier to write, they have
serious disadvantages—both in performance (especially the need for virtual
storage) and in their effect on the overall operability of the CICS systems containing
them. Processors are now larger, with more real storage and more power than in
the past, and this makes conversational tasks less painful in small amounts; but if
you use conversational applications, you may rapidly run into virtual storage
constraint. If you run application programs above the line, you will probably
encounter ENQ problems before running into virtual storage constraints.

CICS ensures that changes to recoverable resources (such as data sets, transient
data, and temporary storage) made by a unit of work (UOW) are made completely
or not at all. A UOW is equivalent to a transaction, unless that transaction issues
SYNCPOINT commands, in which case a UOW lasts between syncpoints. For a
more detailed description of syncpoints and UOWs, see the CICS Recovery and
Restart Guide.

When a transaction makes a change to a recoverable resource, CICS makes that
resource unavailable to any other transaction that wants to change it until the
original transaction has completed. In the case of a conversational transaction, the
resources in question may be unavailable to other terminals for relatively long
periods.

For example, if one user tries to update a particular record in a recoverable data
set, and another user tries to do so before the first one finishes, the second user’s
transaction is suspended. This has advantages and disadvantages. You would not
want the second user to begin updating the record while the first user is changing it,
because one of them is working from what is about to become an obsolete version
of the record, and these changes erase the other user’s changes. On the other
hand, you also do not want the second user to experience the long, unexplained
wait that occurs when that transaction attempts to READ for UPDATE the record
that is being changed.

If you use pseudoconversational transactions, however, the resources are only very
briefly unavailable (that is, during the short component transactions). However,
unless all recoverable resources can be updated in just one of these transactions,
recovery is impossible because UOWs cannot extend across transactions. So, if
you cannot isolate updates to recoverable resources in this way, you must use
conversational transactions.

The previous example poses a further problem for pseudoconversational
transactions. Although you could confine all updating to the final transaction of the
sequence, there is nothing to prevent a second user from beginning an update
transaction against the same record while the first user is still entering changes.
This means that you need additional application logic to ensure integrity. You can
use some form of enqueuing, or you can have the transaction compare the original
version of the record with the current version before actually applying the update.

Chapter 11. Application design 141

Terminal interruptibility
When a conversational task is running, CICS allows nothing else to send messages
to that task’s terminal. This has advantages and disadvantages. The advantage is
that unexpected messages (for example, broadcasts) cannot interrupt the
user-machine dialogue and, worse, corrupt the formatted screen. The disadvantage
is that the end user cannot then be informed of important information, such as the
intention of the control operator to shut down CICS after 10 minutes. More
importantly, the unwitting failure of the end user to terminate the conversation may
in fact prevent or delay a normal CICS shutdown.

Pseudoconversational applications can allow messages to come through between
message pairs of a conversation. This means that notices like shutdown warnings
can be delivered. This might disturb the display screen contents, and can
sometimes interfere with transaction sequences controlled by the RETURN
command with the TRANSID option. However, this can be prevented by using the
IMMEDIATE option, or by forcing the terminal into NOATI status during the middle
of a linked sequence of interactions.

How tasks are started
Work is started in CICS—that is, tasks are initiated—in one of two ways:
1. From unsolicited input
2. By automatic task initiation (ATI)

Automatic task initiation occurs when:

v An existing task asks CICS to create another one. The START command, the
IMMEDIATE option on a RETURN command (discussed in “RETURN
IMMEDIATE” on page 367), and the SEND PAGE command (in “The SEND
PAGE command” on page 508) all do this.

v CICS creates a task to process a transient data queue (see “Automatic
transaction initiation (ATI)” on page 595).

v CICS creates a task to deliver a message sent by a BMS ROUTE request (see
Chapter 39, “Message routing,” on page 527). The CSPG tasks you see after
using the CICS-supplied transaction CMSG are an example of this. CMSG uses
a ROUTE command which creates a CSPG transaction for each target terminal
in your destination list.

The primary mechanism for initiating tasks, however, is unsolicited input. When a
user transmits input from a terminal which is not the principal facility of an existing
task, CICS creates a task to process it. The terminal that sent the input becomes
the principal facility of the new task.

Principal facility
CICS allows a task to communicate directly with only one terminal, namely
its principal facility. CICS assigns the principal facility when it initiates the
task, and the task “owns” the facility for its duration. No other task can use
that terminal until the owning task ends. If a task needs to communicate
with a terminal other than its principal facility, it must do so indirectly, by
creating another task that has the terminal as its principal facility. This
requirement arises most commonly in connection with printing, and how you
can create such a task is explained in “Using CICS printers” on page 415.

Notes:

1. You can specify a terminal destination other than your principal facility in
a SEND command if the destination is under TCAM control, an apparent

142 CICS TS for z/OS: CICS Application Programming Guide

exception to this rule. This is possible because communications with
TCAM terminals are always queued. Thus your task does not write
directly to the destination terminal, but instead writes to a queue that will
be delivered to it subsequently by TCAM (see “Using TCAM” on page
383) . BMS routing, described in Chapter 39, “Message routing,” on
page 527, is another form of indirect access to other terminals by
queues.

2. In CICS TS 3.1, local TCAM terminals are not supported. The only
TCAM terminals supported are remote terminals connected to a
pre-CICS TS 3.1 terminal-owning region by the DCB (not ACB) interface
of TCAM.

Unsolicited inputs from other systems are handled in the same way: CICS creates a
task to process the input, and assigns the conversation over which the input arrived
as the principal facility. (Thus a conversation with another system may be either a
principal or alternate facility. In the case where a task in one CICS region initiates a
conversation with another CICS region, the conversation is an alternate facility of
the initiating task, but the principal facility of the partner task created by the
receiving system. By contrast, a terminal is always the principal facility.)

Alternate facility
Although a task may communicate directly with only one terminal, it can
also establish communications with one or more remote systems. It does
this by asking CICS to assign a conversation with that system to it as an
alternate facility. The task “owns” its alternate facilities in the same way
that it owns its principal facility. Ownership lasts from the point of
assignment until task end or until the task releases the facility.

Not all tasks have a principal facility. Tasks that result from unsolicited input always
do, by definition, but a task that comes about from automatic task initiation may or
may not need one. When it does, CICS waits to initiate the task until the requested
facility is available for assignment to the task.

Which transaction?
Having received an unsolicited input, how does CICS decide what to do with it?
That is, what transaction should the task created to process it execute? The short
answer is that the previous task with the same principal facility usually tells CICS
what transaction to execute next just before it ends, by the TRANSID option on its
final RETURN. This is almost always the case in a pseudoconversational
transaction sequence, and usually in menu-driven applications as well. Failing that,
and in any case to get a sequence started, CICS interprets the first few characters
of the input as a transaction code. However, it is more complicated than that; the
exact process goes as follows. The step numbers indicate the order in which the
tests are made and refer to Figure 35 on page 144, a diagram of this logic.

Chapter 11. Application design 143

|
|
|
|

0. On the very first input from a terminal, CICS sometimes schedules a
preliminary task before creating one to process the input. This task
executes the CICS-supplied “query” transaction, CQRY, which causes the

3270
print request

key?

Terminal
supported by

paging?

Attach
FMH present?

Transaction
specified by
TRANSID of
RETURN?

3270?

Terminal
input begins
with tranid?

Paging
command
entered?

PA, PF, LPA,
or OPID?

TASKREQ=
specified?

Initiate printing

Initiate specified
transaction

Initiate
transaction
specified in
attach FMH

Initiate
transaction
specified by
terminal input

Initiate CSPG

Initiate
transaction
specified by
term input AID

Send
"invalid tranid"
message
to terminal

1

2

3

4

5

6

7

0
Terminal

defined as to
be queried?

Has query
been run to this

terminal?

Initiate CQRYYes

Yes

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes Yes

NoNoNo

No

No

No

No

No

No

No

Transaction
specified by

TCT
TRANSID?

Initiate specified
transaction

Global user exit XZCATT in
module DFHZATT is invoked
at these points.

*

*

*

*

*

*

*

*

*

*

Figure 35. Determining which transaction to execute

144 CICS TS for z/OS: CICS Application Programming Guide

terminal to transmit an encoded description of some of its hardware
characteristics—extended attributes, character sets, and so on.

CQRY allows the system programmer to simplify maintenance of the
terminal network by omitting these particulars from the terminal definitions.
It occurs only if the terminal definition so specifies, and has no effect on the
subsequent determination of what transaction to use to process the input,
which goes as follows.

1. If the terminal is a 3270 and the input is the “print request key”, the
CICS-supplied transaction that prints the contents of the screen, CSPP, is
initiated. See “CICS print key” on page 420 for more information about this
feature. For this purpose, a “3270 logical unit” or any other device that
accepts the 3270 data stream counts as a 3270.

2. If full BMS support is present, the terminal is of a type supported by BMS
terminal paging, and the input is a paging command, the CICS-supplied
transaction CSPG is initiated to process the request. BMS support levels
are explained in “BMS support levels” on page 453, and the same section
contains a list of the terminals that BMS supports. The PGRET, SKRxxxx,
PGCHAIN, PGCOPY, and PGPURGE options in the system initialization
table define the paging commands. As paging requires full BMS, this step is
skipped if the CICS system contains less than that level.

3. If the terminal definition indicates that a specific transaction should be used
to process all unsolicited inputs from that terminal, the indicated transaction
is executed. (If present, this information appears in the TRANSACTION
attribute of the TERMINAL definition.)

4. If the previous task at the terminal specified the TRANSID option of the
RETURN command that ended it, the transaction named is executed.

5. If an attach function management header is present in the input, the attach
names in the header are converted to a 4-character CICS transaction
identifier, and that transaction is executed.

6. If the terminal is a 3270, and the attention identifier is defined as a
transaction, that transaction is executed. “Attention keys” on page 401
explains attention identifiers. You define one as a transaction identifier with
the TASKREQ attribute of the corresponding TRANSACTION definition.

7. If all of the preceding tests fail, the initial characters of the input are used to
identify the transaction to be executed. The characters used are the first
ones (up to four) after any control information in the data stream and before
the first field separator character or the next 3270 Control Character (X'00'
to X'3F'). Field separators are defined in the FLDSEP option of the system
initialization table (the default is a blank).

If there are no such characters in the input, as occurs when you use the
CLEAR key, for example, or if there is no transaction definition that matches
the input, CICS cannot determine what transaction to execute and sends an
“invalid transaction identification” message to the terminal.

Note: This logic for deciding which transaction to execute applies only to tasks
initiated to process unsolicited inputs. For automatic transaction initiation, the
transaction is always known. You specify it in the TRANSID option when you
create a task with a START or RETURN IMMEDIATE. Similarly, you specify
what transaction should be used to process a transient data queue in the
queue definition. Tasks created to route messages always execute the
CICS-supplied transaction CSPG.

Chapter 11. Application design 145

Separating business and presentation logic
In general, it is good practice to split applications into a part containing the business
code that is reusable, and a part responsible for presentation to the client. This
technique enables you to improve performance by optimizing the parts separately,
and allows you to reuse your business logic with different forms of presentation.

When separating the business and presentation logic, you need to consider the
following:

v Avoid affinities between the two parts of the application.

v Be aware of the DPL-restricted API; see CICS Application Programming
Reference for details.

v Be aware of hidden presentation dependencies, such as EIBTRMID usage.

Figure 36 illustrates a simple CICS application that accepts data from an end user,
updates a record in a file, and sends a response back to the end user. The
transaction that runs this program is the second in a pseudoconversation. The first
transaction has sent a BMS map to the end user’s terminal, and the second
transaction reads the data with the EXEC CICS RECEIVE MAP command, updates
the record in the file, and sends the response with the EXEC CICS SEND MAP
command.

The EXEC CICS RECEIVE and EXEC CICS SEND MAP commands are part of the
transaction’s presentation logic, while the EXEC CICS READ UPDATE and EXEC
CICS REWRITE commands are part of the business logic.

A sound principle of modular programming in CICS application design is to separate
the presentation logic from the business logic, and to use a communication area
and the EXEC CICS LINK command to make them into a single transaction.
Figure 37 and Figure 38 on page 147illustrate this approach to application design.

..
EXEC CICS RECEIVE MAP
..
EXEC CICS READ UPDATE
..
EXEC CICS REWRITE
..
EXEC CICS SEND MAP
..

Figure 36. CICS functions in a single application program

..
EXEC CICS RECEIVE MAP
..
EXEC CICS LINK..
..
EXEC CICS SEND MAP
..

Figure 37. Presentation logic

146 CICS TS for z/OS: CICS Application Programming Guide

Once the business logic of a transaction has been isolated from the presentation
logic and given a communication area interface, it is available for reuse with
different presentation methods. For example, you could use Distributed Program
Link (DPL) to implement a two-tier model, or CICS Web support with the CICS
business logic interface, where the presentation logic is HTTP-based.

Multithreading: Reentrant, quasi-reentrant and threadsafe programs
Multithreading is a technique that allows a single copy of an application program to
be processed by several transactions concurrently. For example, one transaction
may begin to execute an application program. When an EXEC CICS command is
reached, causing a CICS WAIT and call to the dispatcher, another transaction may
then execute the same copy of the application program. (Compare this with
single-threading, which is the execution of a program to completion: processing of
the program by one transaction is completed before another transaction can use it.)

Multithreading requires that all CICS application programs be quasi- reentrant; that
is, they must be serially reusable between entry and exit points. CICS application
programs using the EXEC CICS interface obey this rule automatically. For COBOL,
C, and C++ programs, reentrancy is ensured by a fresh copy of working storage
being obtained each time the program is invoked. You should always use the RENT
option on the compile or pre-link utility even for C and C++ programs that do not
have writable statics and are naturally reentrant. Temporary variables and
DFHEIPTR fields inserted by the CICS translator are usually defined as writable
static variables and require the RENT option. For these programs to stay reentrant,
variable data should not appear as static storage in PL/I, or as a DC in the program
CSECT in assembler language.

As well as requiring that your application programs are compiled and link-edited as
reentrant, CICS also identifies programs as being either quasi-reentrant or
threadsafe. These attributes are discussed in the following sections.

Quasi-reentrant application programs
CICS runs user programs under a CICS-managed task control block (TCB). If your
programs are defined as quasi-reentrant (on the CONCURRENCY attribute of the
program resource definition), CICS always invokes them under the CICS
quasi-reentrant (QR) TCB. The requirements for a quasi-reentrant program in a
multithreading context are less stringent than if the program were to execute
concurrently on multiple TCBs.

CICS requires that an application program is reentrant so that it guarantees
consistent conditions. In practice, an application program may not be truly reentrant;
CICS expects “quasi-reentrancy”. This means that the application program should
be in a consistent state when control is passed to it, both on entry, and before and
after each EXEC CICS command. Such quasi-reentrancy guarantees that each

..
EXEC CICS ADDRESS COMMAREA
..
EXEC CICS READ UPDATE
..
EXEC CICS REWRITE
..
EXEC CICS RETURN..

Figure 38. Business logic

Chapter 11. Application design 147

invocation of an application program is unaffected by previous runs, or by
concurrent multi-threading through the program by multiple CICS tasks.

For example, application programs could modify their executable code, or the
variables defined within the program storage, but these changes must be undone,
or the code and variables reinitialized, before there is any possibility of the task
losing control and another task executing the same program.

CICS quasi-reentrant user programs (application programs, user-replaceable
modules, global user exits, and task-related user exits) are given control by the
CICS dispatcher under the QR TCB. When running under this TCB, a program can
be sure that no other quasi-reentrant program can run until it relinquishes control
during a CICS request, at which point the user task is suspended, leaving the
program still “in use”.The same program can then be reinvoked for another task,
which means the application program can be in use concurrently by more than one
task, although only one task at a time can actually be executing.

To ensure that programs cannot interfere with each others working storage, CICS
obtains a separate copy of working storage for each execution of an application
program. Thus, if a user application program is in use by 11 user tasks, there are
11 copies of working storage in the appropriate dynamic storage area (DSA).

Quasi-reentrancy allows programs to access globally shared resources—for
example, the CICS common work area (CWA)—without the need to protect those
resources from concurrent access by other programs. Such resources are
effectively locked exclusively to the running program, until it issues its next CICS
request. Thus, for example, an application can update a field in the CWA without
using compare and swap (CS) instructions or locking (enqueuing on) the resource.

Note: The CICS QR TCB provides protection through exclusive control of global
resources only if all user tasks that access those resources run under the
QR TCB. It does not provide automatic protection from other tasks that
execute concurrently under another (open) TCB.

Take care if a program involves lengthy calculations: because an application
program retains control from one EXEC CICS command to the next, the processing
of other transactions on the QR TCB is completely excluded. However, you can use
the task-control SUSPEND command to allow other transaction processing to
proceed; see Chapter 44, “Task control,” on page 561 for details. Note that runaway
task time interval is controlled by the transaction definition and the system
initialization parameter ICVR. CICS purges a task that does not return control
before expiry of the IVCR-specified interval.

148 CICS TS for z/OS: CICS Application Programming Guide

Threadsafe programs
In the CICS open transaction environment (OTE), when application programs,
task-related user exits (TRUEs), global user exit programs, and user-replaceable
modules are defined to CICS as threadsafe, they can run concurrently on open
TCBs. Because of this, they cannot rely on quasi-reentrancy to protect shared
resources from concurrent access by another program. Furthermore,
quasi-reentrant programs might also be placed at risk if they access shared
resources that can also be accessed by a user task running concurrently under an
open TCB. The techniques used by user programs to access shared resources
must therefore take into account the possibility of simultaneous access by other
programs. To gain the performance benefits of the open transaction environment
while maintaining the integrity of shared resources, serialization techniques must be
used to prohibit concurrent access to shared resources. Programs that use
appropriate serialization techniques when accessing shared resources are
described as threadsafe. (The term fully reentrant is also used sometimes, but this
can be misunderstood, hence threadsafe is the preferred term.)

The performance benefits of being threadsafe can only be gained by applications
that involve a task-related user exit (TRUE) enabled using the OPENAPI option on
the ENABLE PROGRAM command. Task-related user exits like this are known as
open API TRUEs. An open API TRUE will be given control under an L8 mode open
TCB, and can use non-CICS APIs without having to create, manage and switch
between subtask TCBs. The CICS DB2 task-related user exit that is used by the
CICS DB2 attachment facility operates as an open API TRUE when CICS is
connected to DB2 Version 6 or later, which means that CICS DB2 applications can
gain performance benefits from being threadsafe (as explained in “SQL, threadsafe
and other programming considerations for CICS DB2 applications” in the CICS DB2
Guide).

The goal of making programs threadsafe is to enable them to remain on an open
TCB, rather than switching back and forth between the open TCB and the QR TCB.
When CICS is connected to DB2 Version 6 or later, TCB switching occurs in the
following circumstances:

v When a program that is not defined as threadsafe makes a DB2 request, CICS
switches from the QR TCB (where the program is executing) to an open TCB,
and back to the QR TCB again when the DB2 request is complete.

v When a user exit program that is not defined as threadsafe is used in the course
of a DB2 request, CICS switches from the open TCB (where the DB2 request is
executing) to the QR TCB. The user exit program is executed on the QR TCB,
and then the task is switched back to the open TCB to complete the DB2
request. For example, the XRMIIN and XRMIOUT global user exits might be
invoked in the course of the DB2 request. If the exit programs are not defined as
threadsafe, this TCB switching occurs. If the exit programs are defined as
threadsafe, processing will continue throughout on the open TCB.

v When a program that is defined as threadsafe and is executing on an open TCB
invokes any EXEC CICS commands which are not threadsafe, CICS switches
back from the open TCB to the QR TCB to execute the non-threadsafe code.
The program then continues to execute on the QR TCB. If the program does not
make any further DB2 requests, then the switch back to the QR TCB is only a
disadvantage because it increases the usage of your QR TCB for the time taken
to run any remaining application code. However, if the program makes any
further DB2 requests, CICS must switch back again to the open TCB.

v When a program that is defined as threadsafe and is executing on an open TCB
invokes a task-related user exit program which is not defined as threadsafe,

Chapter 11. Application design 149

CICS switches back to the QR TCB and gives control to the task-related user
exit program. When the task-related user exit program completes processing, the
application program continues to execute on the QR TCB, in the same way as it
would after issuing a non-threadsafe EXEC CICS command.

v When a program that is defined as threadsafe and is executing on an open TCB
invokes a threadsafe CICS command, it is possible for a global user exit to be
invoked as part of executing the command. If a global user exit program is used
which is not defined as threadsafe, CICS switches back to the QR TCB and
gives control to the global user exit program. When the user exit program
completes processing, CICS switches back to the open TCB to continue
processing the threadsafe CICS command.

v When a program that is defined as threadsafe and is executing on an open TCB
completes, CICS switches back to the QR TCB for task termination. This switch
is always necessary.

The maximum TCB switching for a CICS DB2 application would occur if your
program used a non-threadsafe user exit program and a non-threadsafe EXEC
CICS command after every DB2 request. In particular, the use of a non-threadsafe
exit program on the CICS-DB2 mainline path (for example, a program that is
enabled at XRMIIN or XRMIOUT) causes more TCB switching than what is
experienced when CICS is connected to Version 5 or earlier.

If you want to make an application program remain on an open TCB:

1. Ensure that the program's logic is threadsafe. That is, the native language
code in between the EXEC CICS commands must be threadsafe. If you define
a program to CICS as threadsafe but include application logic that is not
threadsafe, the results are unpredictable, and CICS is not able to protect you
from the possible consequences. Later in this topic, we have more information
about producing threadsafe application logic.

2. Ensure that the program uses only threadsafe EXEC CICS commands. The
commands that are threadsafe are indicated in the command syntax diagrams
in the CICS Application Programming Reference and the CICS System
Programming Reference with the statement "This command is threadsafe", and
are listed in "Threadsafe command list" in the CICS Application Programming
Reference and Appendix D of the CICS System Programming Reference. If you
include a non-threadsafe EXEC CICS command in a program which is running
on an open TCB, CICS switches back from the open TCB to the QR TCB to
ensure that the command is processed safely. The TCB switching could be
detrimental to the application's performance.

As well as checking EXEC CICS commands that you code explicitly, be aware
of high-level language constructs or Language Environment callable services
used by your program that result in using CICS services. CICS services used in
this way might involve non-threadsafe CICS commands, and cause a switch
back to the QR TCB. In particular, the COBOL statement DISPLAY UPON
SYSOUT, some types of PL/I and C++ output, and the Language Environment
callable services CEEMOUT and CEE3DMP, write data to the Language
Environment transient data destinations CESE and CESO. This involves an
EXEC CICS WRITE TD command, which is not threadsafe.

3. Ensure that the program is defined to CICS as threadsafe. Use the
CONCURRENCY attribute of the program resource definition to do this. By
defining a program to CICS as threadsafe, you are only specifying that the
application logic is threadsafe, not that all the EXEC CICS commands included
in the program are threadsafe. CICS can ensure that EXEC CICS commands

150 CICS TS for z/OS: CICS Application Programming Guide

#
#
#
#
#
#
#
#
#

are processed safely by using TCB switching. In order to permit your program to
run on an open TCB, CICS needs you to guarantee that your application logic is
threadsafe.

4. Ensure that any user exit programs in the execution path used by the
program are coded to threadsafe standards and defined to CICS as
threadsafe. This might include dynamic plan exits, global user exits, or
task-related user exits. (Note for task-related user exits, enabling the exit
program using the OPENAPI option on the ENABLE PROGRAM command
means that CICS overrides the CONCURRENCY setting on the exit's program
definition with OPENAPI.) When CICS is connected to DB2 Version 6 or later,
the CICS DB2 task-related user exit DFHD2EX1 is threadsafe. “SQL, threadsafe
and other programming considerations for CICS DB2 applications” in the CICS
DB2 Guide has more information on other exits that are particularly important
for CICS DB2 requests. These exits include the default dynamic plan exit
DSNCUEXT (which is not defined as threadsafe), the alternative dynamic plan
exit DFHD2PXT (which is defined as threadsafe), and the global user exits
XRMIIN and XRMIOUT. Also be aware of the global user exits XEIIN and
XEIOUT, which are invoked before and after EXEC CICS commands, and
XPCFTCH, which is invoked before a PPT-defined program receives control. Be
sure that user exit programs supplied by any vendor software are coded to
threadsafe standards and defined to CICS as threadsafe.

5. If you are coding a user exit program (a global user exit or a task-related
user exit), you can define it as threadsafe so that it will be used on the same L8
TCB as a threadsafe application which calls it. Additionally, a task-related user
exit can be enabled using the OPENAPI option on the ENABLE PROGRAM
command so that it will be given control under an L8 TCB, use non-CICS APIs
without having to create and manage subtask TCBs, and exploit the open
transaction environment for itself. (Enabling the exit program using the
OPENAPI option on the ENABLE PROGRAM command means that CICS
overrides the CONCURRENCY setting on the exit's program definition with
OPENAPI.) Global user exit programs can be handled in the same way as an
ordinary application program—by using threadsafe application logic and
threadsafe EXEC CICS commands, and defining the program as threadsafe.
“Writing global user exit programs” in the CICS Customization Guide has
general information about writing this type of program. For task-related user exit
programs, see “Writing a task-related user exit program” in the CICS
Customization Guide for more detailed information about how this type of
program can exploit the open transaction environment safely. Note when you
enable an exit program using the OPENAPI option, this indicates to CICS that
the program's logic is threadsafe.

To make your program's application logic threadsafe, ensure that it uses appropriate
serialization techniques when accessing shared resources. For most resources,
such as files, transient data queues, temporary storage queues, and DB2 tables,
CICS processing automatically ensures access in a threadsafe manner. As
described above, some of the CICS commands that operate on these resources are
coded to use appropriate serialization techniques that allow them to execute on
open TCBs (that is, they are threadsafe commands). Where this is not the case,
CICS ensures threadsafe processing by forcing a switch to the QR TCB, so that
access to the resources is serialized regardless of the behaviour of the command.
However, for any other resources which are accessed directly by user programs,
such as shared storage, it is the responsibility of the user program to ensure
threadsafe processing.

Chapter 11. Application design 151

Typical examples of shared storage are the CICS CWA, the global work areas for
global user exits, and storage acquired explicitly by the application program with the
shared option. You can check whether your application programs use these types of
shared storage by looking for occurrences of the following EXEC CICS commands:

v ADDRESS CWA

v EXTRACT EXIT

v GETMAIN SHARED

Although some of these commands are themselves threadsafe, they all give access
to global storage areas, so the application logic that follows these commands and
uses the global storage areas has the potential to be non-threadsafe. To ensure it is
threadsafe, an application program must include the necessary synchronization
logic to guard against concurrent update.

The load module scanner utility includes a sample table, DFHEIDTH, to help you
identify whether the application logic in your existing application programs is
threadsafe. DFHEIDTH contains the filter set for CICS commands that give access
to shared storage. The use of these commands could make a program not
threadsafe, unless it has the necessary synchronization logic in place to ensure
serialization and prevent concurrent update.

Remember that DFHEIDTH, as supplied, is not testing the programs for
non-threadsafe CICS commands (that is, commands that cause a switch to the QR
TCB), but rather to determine if the application is using CICS commands which give
rise to the possibility that the application logic could be not threadsafe. You can
modify the supplied sample table to add any non-threadsafe CICS commands that
you want to detect. Another sample table, DFHEIDNT, is supplied to help identify
the CICS commands in your application which are non-threadsafe. For more
information on using the load module scanner, see the CICS Operations and
Utilities Guide.

Note: When identifying programs that use shared resources, you should also
include any program that modifies itself. Such a program is effectively
sharing storage and should be considered at risk.

Techniques that you can use to provide threadsafe processing when accessing a
shared resource are as follows:

v Retry access, if the resource has been changed concurrently by another
program, using the compare and swap instruction.

v Enqueue on the resource, to obtain exclusive control and ensure that no other
program can access the resource, using:

– An EXEC CICS ENQ command, in an application program

– An XPI ENQUEUE function call to the CICS enqueue (NQ) domain, in a
global user exit program

– An MVS service such as ENQ (in an open API task-related user exit only
when L8 TCBs are enabled for use). Note that the use of MVS services in an
application which can execute under the QR TCB might result in performance
degradation due to the TCB being placed in a wait.

v Perform accesses to shared resources only in a program that is defined as
quasi-reentrant, by linking to the quasi-reentrant program using the EXEC CICS
LINK command.

This technique applies to threadsafe application programs and open API
task-related user exits only. A linked-to program defined as quasi-reentrant runs
under the QR TCB and can take advantage of the serialization provided by CICS

152 CICS TS for z/OS: CICS Application Programming Guide

quasi-reentrancy. Note that even in quasi-reentrant mode, serialization is
provided only for as long as the program retains control and does not wait (see
“Quasi-reentrant application programs” on page 147 for more information).

v Place all transactions that access the shared resource into a restricted
transaction class (TRANCLASS), one that is defined with the number of active
tasks specified as MAXACTIVE(1).This last approach effectively provides a very
coarse locking mechanism, but may have a severe impact on performance.

Note: Although the term threadsafe is defined in the context of individual programs,
a user application as a whole can only be considered threadsafe if all the
application programs that access shared resources obey the rules. A
program that is written correctly to threadsafe standards cannot safely
update shared resources if another program that accesses the same
resources does not obey the threadsafe rules.

Threadsafe considerations for statically or dynamically called
routines
If you define a program with CONCURRENCY(THREADSAFE), all routines which
are statically or dynamically called from that program (for example, Cobol routines)
must also be coded to threadsafe standards.

When an EXEC CICS LINK command is used to link from one program to another,
the program link stack level is incremented. However, a routine that is statically
called, or dynamically called, does not involve passing through the CICS command
level interface, and so does not cause the program link stack level to be
incremented. With Cobol routines, for a static call, a simple branch and link is
involved to an address that is resolved at linkedit time. For a dynamic call, although
there is a program definition involved, this is required only to allow Language
Environment to load the program. After that, a simple branch and link is executed.
So when a routine is called by either of these methods, CICS does not regard this
as a change of program. The program that called the routine is still considered to
be executing, and so the program definition for that program is still considered to be
the current one.

If the program definition for the calling program states
CONCURRENCY(THREADSAFE), the called routine must also comply with this
specification. Programs with the CONCURRENCY(THREADSAFE) attribute remain
on an open TCB when they return from a DB2 call, and this is not appropriate for a
program that is not threadsafe. For example, consider the situation where the initial
program of a transaction, program A, issues a dynamic call to program B, which is
a Cobol routine. Because the CICS command level interface was not involved,
CICS is unaware of the call to program B, and considers the current program to be
program A. Program B issues a DB2 call. On return from the DB2 call, CICS needs
to determine whether the program can remain on the open TCB, or whether the
program has to switch back to the QR TCB to ensure threadsafe processing. To do
this, CICS examines the CONCURRENCY attribute of what it considers to be the
current program, which is program A. If program A is defined as
CONCURRENCY(THREADSAFE), then CICS allows processing to continue on the
open TCB. In fact program B is executing, so if processing is to continue safely,
program B must be coded to threadsafe standards.

OPENAPI programs
OPENAPI programs (that is, those defined in the resource definition with the
OPENAPI attribute) are invoked on an open L8 or L9 mode TCB (depending on the
EXECKEY attribute) instead of the main CICS QR TCB.

Chapter 11. Application design 153

|

|
|
|

Obligations of OPENAPI programs
An OPENAPI program, although freed from the constraints imposed by the QR
TCB, nevertheless does have obligations both to the CICS system as a whole and
to future users of the L8 or L9 TCB it is using. An L8 or L9 TCB is dedicated for use
by the CICS task to which it is allocated, but once the CICS task has completed,
the TCB is returned to the dispatcher-managed pool of such TCBs, provided it is
still in a "clean " state. (An unclean TCB in this context means that the task using
the L8 or L9 mode TCB suffered an unhandled abend in an OPENAPI program. It
does not mean that the program has broken the threadsafe restrictions, which CICS
would not detect.) Note that the TCB is not dedicated for use by a particular
OPENAPI program, but is used by all OPENAPI programs and OPENAPI TRUEs
invoked by the CICS task to which the L8 mode TCB is allocated. Also, if an
application program invoking an OPENAPI program is coded to threadsafe
standards, and defined to CICS as threadsafe, it continues to execute on the L8
mode TCB on return from the program.

Threadsafe restrictions: An OPENAPI program must not treat the executing
open TCB environment in such a way that it causes problems for:

v Application program logic that could run on the open TCB

v OPENAPI TRUEs called by the same task

v Future tasks that might use the open TCB

v CICS management code.

At your own risk, if your OPENAPI program decides to use other (non CICS) APIs,
you must be aware of the following:

v When invoking CICS services, or when returning to CICS, an OPENAPI program
must ensure it restores the MVS programming environment as it was on entry to
the program. This includes cross-memory mode, ASC mode, request block (RB)
level, linkage stack level, TCB dispatching priority, in addition to cancelling any
ESTAEs added.

v At CICS task termination, an OPENAPI program must ensure it leaves the open
TCB in a state suitable to be reused by another CICS transaction. In particular, it
must ensure that all non-CICS resources acquired specifically on behalf of the
terminating task are freed. Such resources might include:

– Dynamically allocated data sets

– Open ACBs or DCBs

– STIMERM requests

– MVS managed storage

– ENQ requests

– Attached subtasks

– Loaded modules

– Owned data spaces

– Added access list entries

– Name/token pairs

– Fixed pages

– Security settings (TCBSENV must be set to zero)

v An OPENAPI program must not use the following MVS system services that will
affect overall CICS operation:

– CHKPT

– ESPIE

– QEDIT

154 CICS TS for z/OS: CICS Application Programming Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|

|

|
|

|
|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

– SPIE

– STIMER

– TTIMER

– XCTL / XCTLX

– Any TSO/E services.

v An OPENAPI program must not invoke under the L8 or L9 mode TCB a
Language Environment program that is using MVS Language Environment
services, because L8 and L9 mode TCBs are initialized for Language
Environment using CICS services.

Using the FORCEQR system initialization parameter
If you are running applications with programs defined as threadsafe to exploit OTE
(for example, in CICS DB2 applications) problems could occur that indicate that one
or more programs is not actually threadsafe. If this happens, you can force all your
applications programs on to the QR TCB using the FORCEQR system initialization
parameter. This could be particularly useful in a production region, where you
cannot afford to have applications out of service while you investigate the problem.

The default for this parameter is FORCEQR=NO, which means that CICS honors
the CONCURRENCY attribute on your program resource definitions. As a
temporary measure, while you investigate and resolve problems connected with
threadsafe-defined programs, you can set FORCEQR=YES. Remember to change
this back to FORCEQR=NO when you are ready for your programs to resume use
of open TCBs under the OTE.

Non-reentrant programs
There is nothing to prevent non-reentrant application programs being executed by
CICS. However, such an application program would not provide consistent results in
a multi-threading environment.

To use non-reentrant application programs, or tables or control blocks that are
modifiable by the execution of associated application programs, specify the
RELOAD(YES) option on their resource definition. RELOAD(YES) results in a fresh
copy of the program or module being loaded into storage for each request. This
option ensures that multithreading tasks that access a non- reentrant program or
table each work from their own copy of the program, and are unaffected by
changes made to another version of the program by other concurrent tasks running
in the CICS region.

For information about RELOAD(YES), see the CICS Resource Definition Guide.

CICS/ESA loads any program link-edited with the RENT attributes into a CICS
read-only dynamic storage area (DSA). CICS uses the RDSA for RMODE(24)
programs, and the ERDSA for RMODE(ANY) programs.By default, the storage for
these DSAs is allocated from read-only key-0 protected storage, protecting any
modules loaded into them from all except programs running in key-zero or
supervisor state.(If CICS initializes with the RENTPGM=NOPROTECT system
initialization parameter, it does not use read-only key-0 storage, and use CICS-key
storage instead.)

If you want to execute a non-reentrant program or module, it must be loaded into a
non-read-only DSA. The SDSA and ESDSA are user-key storage areas for
non-reentrant user-key programs and modules.

Chapter 11. Application design 155

|

|

|

|

|

|
|
|
|

|

For more information about CICS DSAs, refer to the CICS System Definition Guide.

Storing data within a transaction
CICS provides a variety of facilities for storing data within and between
transactions. Each one differs according to how available it leaves data to other
programs within a transaction and to other transactions; in the way it is
implemented; and in its overhead, recovery, and enqueuing characteristics.

Storage facilities that exist for the lifetime of a transaction include:
v Transaction work area (TWA)
v User storage (by a GETMAIN command issued without the SHARED option)
v COMMAREA
v Program storage

All of these areas are main storage facilities and come from the same basic
source—the dynamic storage areas (DSAs) and extended dynamic storage areas
(EDSAs). None of them is recoverable, and none can be protected by resource
security keys. They differ, however, in accessibility and duration, and therefore each
meets a different set of storage needs.

Transaction work area (TWA)
The transaction work area (TWA) is allocated when a transaction is initiated, and is
initialized to binary zeroes. It lasts for the entire duration of the transaction, and is
accessible to all local programs in the transaction. Any remote programs that are
linked by a distributed program link command do not have access to the TWA of the
client transaction. The size of the TWA is determined by the TWASIZE option on the
transaction resource definition. If this size is nonzero, the TWA is always allocated.
See the CICS Resource Definition Guide for more information about determining
the TWASIZE.

Processor overhead associated with using the TWA is minimal. You do not need a
GETMAIN command to access it, and you address it using a single ADDRESS
command. The TASKDATAKEY option governs whether the TWA is obtained in
CICS-key or user-key storage. (See Chapter 46, “Storage control,” on page 577 for
a full explanation of CICS-key and user-key storage.) The TASKDATALOC option of
the transaction definition governs whether the acquired storage can be above the
16MB line or not.

The TWA is suitable for quite small data storage requirements and for larger
requirements that are both relatively fixed in size and are used more or less for the
duration of the transaction. Because the TWA exists for the entire transaction, a
large TWA size has much greater effect for conversational than for
nonconversational transactions.

User storage
User storage is available to all the programs in a transaction, but some effort is
required to pass it between programs using LINK or XCTL commands. Its size is
not fixed, and it can be obtained (using GETMAIN commands) just when the
transaction requires it and returned as soon as it is not needed. Therefore, user
storage is useful for large storage requirements that are variable in size or are
shorter-lived than the transaction.

156 CICS TS for z/OS: CICS Application Programming Guide

See Chapter 46, “Storage control,” on page 577 for information about how
USERDATAKEY and CICSDATAKEY override the TASKDATAKEY option of the
GETMAIN command.

The SHARED option of the GETMAIN command causes the acquired storage to be
retained after the end of the task. The storage can be passed in the communication
area from one task to the next at the same terminal. The first task returns the
address of the communication area in the COMMAREA option of the RETURN
command. The second task accesses the address in the COMMAREA option of the
ADDRESS command. You must use the SHARED option of the GETMAIN
command to ensure that your storage is in common storage.

The amount of processor overhead involved in a GETMAIN command means that
you should not use it for a small amount of storage. You should use the TWA for
the smaller amounts or group them together into a larger request. Although the
storage acquired by a GETMAIN command may be held somewhat longer when
using combined requests, the processor overhead and the reference set size are
both reduced.

COMMAREA in LINK and XCTL commands
A communication area (COMMAREA) is a facility used to transfer information
between two programs within a transaction or between two transactions from the
same terminal. For information about using COMMAREA between transactions, see
“Using the COMMAREA in RETURN commands” on page 187.

Information in COMMAREA is available only to the two participating programs,
unless those programs take explicit steps to make the data available to other
programs that may be invoked later in the transaction. When one program links to
another, the COMMAREA may be any data area to which the linking program has
access. It is often in the working storage or LINKAGE SECTION of that program. In
this area, the linking program can both pass data to the program it is invoking and
receive results from that program.

When a program transfers control (an XCTL command) to another, CICS may copy
the specified COMMAREA into a new area of storage, because the invoking
program and its control blocks may no longer be available after it transfers control.
In either case, the address of the area is passed to the program that is receiving
control, and the CICS command-level interface sets up addressability. See
Chapter 45, “Program control,” on page 565 for further information. When XCTL is
used, CICS ensures that any COMMAREA is addressable by the program that
receives it, by copying it below the 16MB line.

The COMMAREA is copied to USERKEY storage where necessary, depending on
the addressing mode and EXECKEY attributes of the receiving program. See
Chapter 46, “Storage control,” on page 577 for more information about EXECKEY.
EXECKEY

CICS contains algorithms designed to reduce the number of bytes to be
transmitted. The algorithms remove some trailing binary zeros from the
COMMAREA before transmission and restore them after transmission. The
operation of these algorithms is transparent to the application programs, which
always see the full-size COMMAREA.

Chapter 11. Application design 157

#
#
#

#
#
#
#

The overhead for using COMMAREA in an LINK command is minimal; it is slightly
more with the XCTL and RETURN commands, when CICS creates the
COMMAREA from a larger area of storage used by the program.

Channels in LINK and XCTL commands
Instead of using a communication area (COMMAREA), a more modern method of
transferring data between CICS programs is to use a channel. Channels have
several advantages over COMMAREAs—see Benefits of channels. To pass a
channel on a LINK or XCTL command, you use the CHANNEL option in place of
the COMMAREA option.

Channels are described in Enhanced inter-program data transfer: channels as
modern-day COMMAREAs.

Program storage
CICS creates a separate copy of the variable area of a CICS program for each
transaction using the program. This area is known as program storage. This area
is called the WORKING-STORAGE SECTION in COBOL, automatic storage in C,
C++, and PL/I, and the DFHEISTG section in assembler language. Like the TWA,
this area is of fixed size and is allocated by CICS without you having to issue a
GETMAIN command. The EXEC CICS interface sets up addressability
automatically. Unlike the TWA, however, this storage lasts only while the program is
being run, not for the duration of the transaction. This makes it useful for data areas
that are not required outside the program and that are either small or, if large, are
fixed in size and are required for all or most of the execution time of the program.

Temporary storage
Temporary storage is the primary CICS facility for storing data that must be
available to multiple transactions.

Data items in temporary storage are kept in queues whose names are assigned
dynamically by the program storing the data. A temporary storage queue containing
multiple items can be thought of as a small data set whose records can be
addressed either sequentially or directly, by item number. If a queue contains only a
single item, it can be thought of as a named scratch-pad area.

Temporary storage data sharing means that main or auxiliary storage can be
replaced by one or more temporary storage pools.

Temporary storage is implemented by the following methods:

v By using a particular queue that is determined by what is specified on the
command that creates the first item

v By specifying the MAIN option so that the queue is kept in main storage, in
space taken from the dynamic storage area

v By using the AUXILIARY option so that the queue is written to an
entry-sequenced VSAM data set

Whichever method you use, CICS maintains an index of items in main storage.

Note that if the QNAME option matches the prefix of an installed TSMODEL
resource definition, the MAIN or AUXILIARY value specified in the TSMODEL takes
precedence over that specified in the command.

158 CICS TS for z/OS: CICS Application Programming Guide

|

|
|
|
|
|

|
|

See the CICS Resource Definition Guide for more information about the use of
TSMODELs to define temporary storage queues.

The addition of temporary storage data sharing gives another type of temporary
storage queue that can be supported concurrently. These temporary storage queues
can be defined as local, remote, or shared, and they can be stored in TS pools in
the coupling facility.

These methods have characteristics that you should bear in mind:

v Main temporary storage requires much more virtual storage than auxiliary. In
general, you should use it only for small queues that have short lifetimes or are
accessed frequently. Auxiliary temporary storage is specifically designed for
relatively large amounts of data that have a relatively long lifetime or are
accessed infrequently. You may find it useful to establish a cutoff point of a
lifetime of one second to decide which queues should be in main storage and
which should be in auxiliary.

v You can make queues in auxiliary storage recoverable, but not queues in main
storage:

v Shared temporary storage applies only to non-recoverable queues.

– Only one transaction at a time can update a recoverable temporary storage
queue. So, if you choose to make queues recoverable, bear in mind the
probability of enqueues.

– You should ensure that there are enough buffers and VSAM strings to
eliminate as much contention as possible.

v If a task tries to write to temporary storage and there is no space available, CICS
normally suspends it, although the task can regain control in this situation by
using either a HANDLE CONDITION NOSPACE command, or the RESP or
NOHANDLE option on the WRITEQ TS command. If suspended, the task is not
resumed until some other task frees the necessary space in main storage or the
VSAM data set. This can produce unexplained response delays, especially if the
waiting task owns exclusive-use resources, in which case all other tasks needing
those resources must also wait.

v It can be more efficient to use main temporary storage exclusively in very
low-volume systems that have no need for recovery. You need to balance the
needs for additional main storage requirement for the VSAM access method and
a larger temporary storage program with the need for main storage for the
temporary storage records.

The following points apply to temporary storage in general:

v You must use an EXEC CICS command every time data is written to or read
from a temporary storage queue, and CICS must find or insert the data using its
internal index. This means that the overhead for using main temporary storage is
greater than for the CWA or TCTUA. With auxiliary storage, (often the most
frequently used), there is usually data set I/O as well, which increases overhead
even more.

v You need not allocate temporary storage until it is required; you need keep it only
as long as it is required, and the item size is not fixed until you issue the
command that creates it. This makes it a good choice for relatively high-volume
data and data that varies in length or duration.

v The fact that temporary storage queues can be named as they are created
provides a very powerful form of direct access to saved data. You can access
scratch-pad areas for terminals, data set records, and so on, simply by including
the terminal name or record key in the queue name.

Chapter 11. Application design 159

v Resource protection is available for temporary storage.

Intrapartition transient data
Intrapartition transient data has some characteristics in common with auxiliary
temporary storage. (See “Efficient sequential data set access” on page 175 for
information about extrapartition transient data.) Like temporary storage,
intrapartition transient data consists of queues of data, kept together in a single
data set, with an index that CICS maintains in main storage.

You can use transient data for many of the purposes for which you would use
auxiliary temporary storage, but there are some important differences.

v Transient data does not have the same dynamic characteristics as temporary
storage. Unlike temporary storage queues, transient data queues cannot be
created at the time data is written by an application program. However, transient
data queues can be defined and installed using RDO while CICS is running.

v Transient data queues must be read sequentially. Each item can be read only
once. After a transaction reads an item, that item is removed from the queue and
is not available to any other transaction. In contrast, items in temporary storage
queues may be read either sequentially or directly (by item number). They can
be read any number of times and are not removed from the queue until the entire
queue is purged.

These two characteristics make transient data inappropriate for scratch-pad data
but suitable for queued data such as audit trails and output to be printed. In fact,
for data that is read sequentially once, transient data is preferable to temporary
storage.

v Items in a temporary storage queue can be changed; items in transient data
queues cannot.

v Transient data queues are always written to a data set. (There is no form of
transient data that corresponds to main temporary storage.)

v You can define transient data queues so that writing items to the queue causes a
specific transaction to be initiated (for example, to process the queue).
Temporary storage has nothing that corresponds to this “trigger” mechanism,
although you may be able to use a START command to perform a similar
function.

v Transient data has more recovery options than temporary storage. Transient data
queues can be physically or logically recoverable.

v Because the commands for intrapartition and extrapartition transient data are
identical, you can switch between the two types of data set. To do this, change
only the transient data queue definitions and not your application programs
themselves. Temporary storage has no corresponding function of this kind.

GETMAIN SHARED command
Storage acquired using the SHARED option of the GETMAIN command is not
released when the acquiring task ends. This enables one task to leave data in
storage for use by another task. The storage is not released until a FREEMAIN
command is issued, either by the acquiring task or by another task.

Your own data sets
You can also use your own data sets to save data between transactions. This
method probably has the largest overhead in terms of instructions processed,
buffers, control blocks, and user programming requirements, but does provide extra
functions and flexibility. Not only can you define data sets as recoverable resources,

160 CICS TS for z/OS: CICS Application Programming Guide

but you can log changes to them for forward recovery. You can specify the number
of strings for the data set, (as well as on the temporary storage and transient data
sets), to ensure against access contention, and you can use resource security.

Chapter 11. Application design 161

Lengths of areas passed to CICS commands
When a CICS command includes a LENGTH option, it usually accepts the length as
a signed halfword binary value. This places a theoretical upper limit of 32KB on the
length. In practice, the limits are less than this and vary for each command. The
limits depend on data set definitions, recoverability requirements, buffer sizes, and
local networking characteristics.

LENGTH options
In COBOL, C, C++, PL/I, and assembler language, the translator deals with lengths.
See the CICS Application Programming Reference manual for programming
information, including details of when you need to specify the LENGTH option. You
should not let the length specified in CICS command options exceed 24KB, if
possible.

Many commands involve the transfer of data between the application program and
CICS. In all cases, the length of the data to be transferred must be provided by the
application program.

In most cases, the LENGTH option must be specified if the SET option is used; the
syntax of each command and its associated options show whether this rule applies.

There are options on the WAIT EXTERNAL command and a number of QUERY
SECURITY commands that give the resource status or definition. CICS supplies the
values associated with these options, hence the name, CICS-value data areas. The
options are shown in the syntax of the commands with the term “cvda” in
parentheses. For programming information about CVDAs, see the CICS Application
Programming Reference manual.

For journal commands, the restrictions apply to the sum of the LENGTH and
PFXLENG values. (See “Journaling” on page 255.)

Journal records
For journal records, the journal buffer size may impose a limit lower than 64KB.
Note that the limit applies to the sum of the LENGTH and PFXLENG values.

Data set definitions
For temporary storage, transient data, and file control, the data set definitions can
impose limits lower than 24KB. For details, see the CICS System Definition Guide
(for information about creating data sets) and the CICS Resource Definition Guide
(for information about resource definition for files).

Recommendation
For any command in any system, 32,000 bytes is a good working limit for
LENGTH specifications. Subject to user-specified record and buffer sizes, this limit
is unlikely either to cause an error or to place a constraint on applications.

You will probably not find a this limit too much of a hindrance; online programs do
not often handle such large amounts of data, for the sake of efficiency and
response time.

Note: The value in the LENGTH option must never exceed the length of the data
area addressed by the command.

162 CICS TS for z/OS: CICS Application Programming Guide

Minimizing errors
This section describes ways of making your applications error-free. Some of these
suggestions apply not only to programming, but also to operations and systems.

What often happens is that, when two application systems that run perfectly by
themselves are run together, performance goes down and you begin experiencing
“lockouts” or waits. The scope of each system has not been defined well enough.

The key points in a well-designed application system are:
v At all levels, each function is defined clearly with inputs and outputs well-stated
v Resources that the system uses are adequately-defined
v Interactions with other systems are known

Protecting CICS from application errors
There are various tools and techniques you can use to minimize errors in your
application programs. In general:

v You can use the storage protection facility to prevent CICS code and control
blocks from being overwritten accidentally by your application programs. You can
choose whether you want to use this facility by means of CICS system
initialization parameters. See the CICS System Definition Guide for more
information about this facility.

v Consider using standards that avoid problems that may be caused by techniques
such as the use of GETMAIN commands.

Testing applications
The following general rules apply to testing applications:

v Do not test on a production CICS system—use a test system, where you can
isolate errors without affecting “live” databases.

v Have the testing done by someone other than the application developer, if
possible.

v Document the data you use for testing.

v Test your applications several times. See Chapter 49, “Testing applications,” on
page 603 for more information about testing applications.

v Use the CEDF transaction for initial testing. See Chapter 50, “Execution
diagnostic facility (EDF),” on page 607 for more information about using CEDF.

v Use stress or volume testing to catch problems that may not arise in a
single-user environment. Teleprocessing Network Simulator (TPNS, licensed
program number 5740-XT4) is a good tool for doing this.

TPNS is a telecommunications testing package that enables you to test and
evaluate application programs before you install them. You can use TPNS for
testing logic, user exit routines, message logging, data encryption, and
device-dependencies, if these are used in application programs in your
organization. It is useful in investigating system performance and response times,
stress testing, and evaluating TP network design. For further information, see the
TPNS General Information manual.

v Test whether the application can handle correct data and incorrect data.

v Test against complete copies of the related databases.

v Consider using multiregion operation. (See the CICS Intercommunication Guide
for more information.)

v Before you move an application to the production system, it is a good idea to run
a final set of tests against a copy of the production database to catch any errors.

Chapter 11. Application design 163

In particular, look for destroyed storage chains.

Assembler language programs (if not addressing data areas properly) can be
harder to identify because they can alter something that affects (and abends)
another transaction.

For more information about solving a problem, see the CICS Problem Determination
Guide.

Non-terminal transaction security
CICS can now protect, against unauthorized use, resources used in transactions
that are not associated with a terminal. These transactions are of three types:

v Transactions that are started by a START command and that do not specify a
terminal ID.

v Transactions that are started, without a terminal, as a result of the trigger level
being reached for an intrapartition transient data queue.

v The CICS internal transaction (CPLT), which runs during CICS startup, to
execute programs specified in the program list table (PLT). This transaction
executes both first and second phases of PLTs.

Also, resource security checking can now be carried out for PLT programs that are
run during CICS shutdown. PLT shutdown programs execute as part of the
transaction that requests the shutdown, and therefore run under the authorization of
the user issuing the shutdown command.

The START command handles security for non-terminal transactions started by the
START command.

A surrogate user who is authorized to attach a transaction for another user, or
cause it to be attached, or who inherits all the resource access authorizations for
that transaction, can act for the user.

CICS can issue up to three surrogate user security checks on a single START
command, depending on the circumstances:

1. The userid of the transaction that issues the START command, if USERID is
specified

2. The userid of the CEDF transaction, if the transaction that issues the START
command is being run in CEDF dual-screen mode

3. The CICS region userid of the remote system, if the START command is
function shipped to another CICS system and link security is in effect.

A separate surrogate user security check is done for each of these userids, as
required, before the transaction is attached.

For programming information about the USERID option, USERIDERR condition,
and INVREQ, and NOTAUTH conditions, see the CICS Application Programming
Reference manual.

164 CICS TS for z/OS: CICS Application Programming Guide

Chapter 12. Design for performance

In this chapter, design changes are suggested that can improve performance and
efficiency without much change to the application program itself.
v “Program size”
v “Virtual storage” on page 166
v “Exclusive control of resources” on page 169
v “Operational control” on page 170
v “Operating system waits” on page 171
v “The NOSUSPEND option” on page 171
v “Efficient data operations” on page 172
v “Efficient terminal operations” on page 176

Other aspects of application design are addressed in Chapter 11, “Application
design,” on page 139

If you have a performance problem that applies in a particular situation, try to
isolate the changes you make so that their effects apply only in that situation. After
fixing the problem and testing the changes, use them in your most commonly-used
programs and transactions, where the effects on performance are most noticeable.

Program size
The early emphasis on small programs led CICS programmers to break up
programs into units that were as small as possible, and to transfer control using the
XCTL command, or link using the LINK command, between them. In current
systems, however, it is not always better to break up programs into such small
units, because there is CICS processing overhead for each transfer and, for LINK
commands, there is also storage overhead for the register save areas (RSAs).

For modestly-sized blocks of code that are processed sequentially, inline code is
most efficient. The exceptions to this rule are blocks of code that are:

v Fairly long and used independently at several different points in the application

v Subject to frequent change (in which case, you balance the overhead of LINK or
XCTL commands with ease of maintenance)

v Infrequently used, such as error recovery logic and code to handle uncommon
data combinations

If you have a block of code that for one of these reasons, has to be written as a
subroutine, the best way of dealing with this from a performance viewpoint is to use
a closed subroutine within the invoking program (for example, code that is dealt
with by a PERFORM command in COBOL). If it is needed by other programs, it
should be a separate program. A separate program can be called, with a CALL
statement (macro), or it can be kept separate and processed using an XCTL or a
LINK command. Execution overhead is least for a CALL, because no CICS services
are invoked; for example, the working storage of the program being called is not
copied. A called program, however, must be linked into the calling one and so
cannot be shared by other programs that need it unless you use special COBOL, C,
or PL/I facilities. A called subroutine is loaded as part of each program that CALLs it
and hence uses more storage. Thus, subsequent transactions using the program
may or may not have the changes in the working storage made to the called
program. This depends entirely on whether CICS has loaded a new copy of the
program into storage.

© Copyright IBM Corp. 1989, 2010 165

Overhead (but also flexibility) is highest with the XCTL and LINK commands. Both
processor and storage requirements are much greater for a LINK command than for
an XCTL command. Therefore, if the invoking program does not need to have
control returned to it after the invoked program is processed, it should use an XCTL
command.

The load module resulting from any application program can occupy up to two
gigabytes of main storage. Clearly, there is an extra cost associated with loading
and initializing very large load modules, and CICS dynamic storage limits (EDSA)
would need to be set correspondingly high. You should, if possible, avoid the use of
large load modules. However large applications written in an object-oriented
language, such as C++, can easily exceed 16M in size. Experience with C++
classes bound into a single DLL is that performance of the classes is degraded if
the single DLL is reorganized into two or more DLLs. This is due to the processing
required to resolve function references between multiple DLLs.

You may get an abend code of APCG if your program occupies all the available
storage in the dynamic storage area (DSA).

Virtual storage
A truly conversational CICS task is one that converses with the terminal user for
several or many interactions, by issuing a terminal read request after each write (for
example, using either a SEND command followed by a RECEIVE command, or a
CONVERSE command). This means that the task spends most of its extended life
waiting for the next input from the terminal user.

Any CICS task requires some virtual storage throughout its life and, in a
conversational task, some of this virtual storage is carried over the periods when
the task is waiting for terminal I/O. The storage areas involved include the TCA and
associated task control blocks (including EIS or EIB) and the storage required for all
programs that are in use when any terminal read request is issued. Also included
are the work areas (such as copies of COBOL working storage) associated with this
task’s use of those programs.

With careful design, you can sometimes arrange for only one very small program to
be retained during the period of the conversation. The storage needed could be
shared by other users. You must multiply the rest of the virtual storage requirement
by the number of concurrent conversational sessions using that code.

By contrast, a pseudoconversational sequence of tasks requires almost all of its
virtual storage only for the period actually spent processing message pairs.
Typically, this takes a period of 1-3 seconds in each minute (the rest being time
waiting for operator input). The overall requirement for multiple concurrent users is
thus perhaps five percent of that needed for conversational tasks. However, you
should allow for data areas that are passed from each task to the next. This may be
a COMMAREA of a few bytes or a large area of temporary storage. If it is the latter,
you are normally recommended to use temporary storage on disk rather than in
main storage, but that means adding extra temporary storage I/O overhead in a
pseudoconversational setup, which you do not need with conversational processing.

The extra virtual storage you need for conversational applications usually means
that you need a correspondingly greater amount of real storage. The paging you
need to control storage involves additional overhead and virtual storage. The

166 CICS TS for z/OS: CICS Application Programming Guide

adverse effects of paging increase as transaction rates go up, and so you should
minimize its use as much as possible. See Reducing paging effects for information
about doing so.

Reducing paging effects
Reducing paging effects is a technique used by CICS in a virtual-storage
environment. The key objective of programming in this environment is the reduction
of page faults. A page fault occurs when a program refers to instructions or data
that do not reside in real storage, in which case the page in virtual storage that
contains the instructions or data referred to must be paged into real storage. The
more paging required, the lower the overall system performance.

Although an application program may be able to communicate directly with the
operating system, the results of such action are unpredictable and can degrade
performance.

An understanding of the following terms is necessary for writing application
programs to be run in a virtual-storage environment:

Locality of reference
The consistent reference, during the execution of the application program,
to instructions and data within a relatively small number of pages
(compared to the total number of pages in a program) for relatively long
periods.

Working set
The number and combination of pages of a program needed during a given
period.

Reference set
Direct reference to the required pages, without intermediate storage
references that retrieve useless data.

Locality of reference
Keep the instructions processed and data used in a program within a relatively
small number of pages (4096-byte segments). This quality in a program is known
as “locality of reference”. You can do this by:

v Making the execution of the program as linear as possible.

v Keeping any subroutines you use in the normal execution sequence as close as
possible to the code that invokes them.

v Placing code inline, even if you have to repeat it, if you have a short subroutine
that is called from only a small number of places.

v Separating error-handling and other infrequently processed code from the main
flow of the program.

v Separating data used by such code from data used in normal execution.

v Defining data items (especially arrays and other large structures) in the order in
which they are referred to.

v Defining the elements within a data structure in the approximate order in which
they are referred to. For example, in PL/I, all the elements of one row are stored,
then the next row, and so on. You should define an array so that you can
process it by row rather than by column.

v Initializing data as close as possible to where it is first used.

v Avoiding COBOL variable MOVE operations because these expand into
subroutine calls.

Chapter 12. Design for performance 167

v Issuing as few GETMAIN commands as possible. It is generally better for the
program to add up its requirements and do one GETMAIN command than to do
several smaller ones, unless the durations of these requirements vary greatly.

v Avoiding use of the INITIMG option on a GETMAIN command, if possible. It
causes an immediate page reference to the storage that is obtained, which might
otherwise not occur until much later in the program, when there are other
references to the same area.

Note: Some of the suggestions above may conflict with your installation’s
programming standards if these are aimed at the readability and
maintainability of the code, rather than speed of execution in a
virtual-storage environment. Some structured programming methods, in
particular modular programming techniques, make extensive use of the
PERFORM command in COBOL (and the equivalent programming
techniques in C, PL/I, and assembler language) to make the structure of the
program clear. This may also result in more exceptions to sequential
processing than are found in a nonstructured program. Nevertheless, the
much greater productivity associated with structured code may be worth the
possible loss of locality of reference.

Working set
The working set is the number and combination of pages of a program needed
during a given period. To minimize the size of the working set, the amount of
storage that a program refers to in a given period should be as small as possible.
You can do this by:

v Writing modular programs and structuring the modules according to frequency
and anticipated time of reference. Do not modularize merely for the sake of size;
consider duplicate code inline as opposed to subroutines or separate modules.

v Using separate subprograms whenever the flow of the program suggests that
execution is not be sequential.

v Not tying up main storage awaiting a reply from a terminal user.

v Using command-level file control locate-mode input/output rather than
move-mode.

v In COBOL programs, specifying constants as literals in the PROCEDURE
DIVISION, rather than as data variables in the WORKING STORAGE section.

v In C, C++, and PL/I programs, using static storage for constant data.

v Avoiding the use of LINK commands where possible, because they generate
requests for main storage.

Reference set
Try to keep the overall number of pages that a program uses during normal
operation as small as possible. These pages are termed the reference set, and
they give an indication of the real storage requirement of the program. You can
reduce the reference set by:

v Specifying constants in COBOL programs as literals in the PROCEDURE
DIVISION, rather than as data variables in the WORKING STORAGE SECTION.
The reason for this is that there is a separate copy of working storage for every
task executing the program, whereas literals are considered part of the program
itself, of which only one copy is used in CICS.

v Using static storage in C, C++, and PL/I for data that is genuinely constant, for
the same reason as in the previous point.

v Reusing data areas in the program as much as possible. You can do this with the
REDEFINES clause in COBOL, the union clause in C and C++, based storage in

168 CICS TS for z/OS: CICS Application Programming Guide

PL/I, and ORG or equivalents in assembler language. In particular, if you have a
map set that uses only one map at a time, code the DFHMSD map set definition
without specifying either the STORAGE=AUTO or the BASE operand. This allows
the maps in the map set to redefine one another.

Refer to data directly by:

v Avoiding long searches for data in tables

v Using data structures that can be addressed directly, such as arrays, rather than
structures that must be searched, such as chains

v Avoiding methods that simulate indirect addressing

No attempt should be made to use overlays (paging techniques) in an application
program. System paging is provided automatically and has superior performance.
The design of an application program for a virtual-storage environment is similar to
that for a real environment. The system should have all modules resident so that
code on pages not referred to need not be paged in.

If the program is dynamic, the entire program must be loaded across adjacent
pages before execution begins. Dynamic programs can be purged from storage if
they are not being used and an unsatisfied storage request exists. Allowing
sufficient dynamic area to prevent purging is more expensive than making them
resident, because a dynamic program does not share unused space on a page with
another program.

Exclusive control of resources
The very fundamental and powerful recovery facilities that CICS provides have
performance implications. CICS serializes updates to recoverable resources so that
if a transaction fails, its changes to those resources can be backed out
independently of those made by any other transaction. Consequently, a transaction
updating a recoverable resource gets control of that resource until it terminates or
indicates that it wants to commit those changes with a SYNCPOINT command.
Other transactions requiring the same resource must wait until the first transaction
finishes with it.

The primary resources that produce these locking delays are data sets, DL/I
databases, temporary storage, and transient data queues. The unit where protection
is based is the individual record (key) for data sets, the program specification block
(PSB) for DL/I databases, and the queue name for temporary storage. For transient
data, the “read” end of the queue is considered a separate resource from the “write”
end (that is, one transaction can read from a queue while another is writing to it).

To reduce transaction delays from contention for resource ownership, the length of
time between the claiming of the resource and its release (the end of the UOW)
should be minimized. In particular, conversational transactions should not own a
critical resource across a terminal read.

Note: Even for nonrecoverable data sets, VSAM prevents two transactions from
reading the same record for update at the same time. This enqueue ends as
soon as the update is complete, however, rather than at the end of the
UOW. Even this protection for a BDAM data set, can be relinquished by
defining them with “no exclusive control” (SERVREQ=NOEXCTL) in the file
control table.

Chapter 12. Design for performance 169

This protection scheme can also produce deadlocks as well as delays, unless
specific conventions are observed. If two transactions update more than one
recoverable resource, they should always update the resources in the same order.
If they each update two data sets, for example, data set “A” should be updated
before data set “B” in all transactions. Similarly, if transactions update several
records in a single data set, they should always do so in some predictable order
(low key to high, or conversely). You might also consider including the TOKEN
keyword with each READ UPDATE command. See “The TOKEN option” on page
306 for information about the TOKEN keyword. Transient data, temporary storage,
and user journals must be included among such resources. The CICS Recovery
and Restart Guide contains further information on the extent of resource protection.

It may be appropriate here to note the difference between CICS data sets on a
VSAM control interval, and VSAM internal locks on the data set. Because CICS has
no information about VSAM enqueue, a SHARE OPTION 4 control interval that is
updated simultaneously from batch and CICS can result in, at best, reduced
performance and, at worst, an undetectable deadlock situation between batch and
CICS. You should avoid such simultaneous updates between batch and CICS. In
any case, if a data set is updated by both batch and CICS, CICS is unable to
ensure data integrity.

Operational control
The following operational techniques can be used to influence the performance and
efficiency of the CICS system:

MXT

The CICS system initialization parameter MXT specifies the maximum number
of user tasks that can exist in a CICS system at the same time. MXT is
invaluable for avoiding short-on-storage (SOS) conditions and for controlling
contention for resources in CICS systems. It works by delaying the creation of
user tasks to process input messages, if there are already too many activities in
the CICS system. In particular, the virtual storage occupied by a message
awaiting processing is usually much less than that needed for the task to
process it, so you save virtual storage by delaying the processing of the
message until you can do so quickly.

Transaction classes are useful in limiting the number of tasks of a particular
user-defined type, or class, if these are heavy resource users.

Runaway tasks

CICS only resets a task’s runaway time (ICVR) when a task is suspended. An
EXEC CICS command cannot be guaranteed to cause a task to suspend during
processing because of the unique nature of each CICS implementation. The
runaway time may be exceeded causing a task to abend AICA. This abend can
be prevented by coding an EXEC CICS SUSPEND command in the application
This causes the dispatcher to suspend the task that issued the request and
allow any task of higher priority to run. If there is no task ready to run, the
program that issued the suspend is resumed. For further information about
abend AICA, see the CICS Problem Determination Guide.

Auxiliary trace

Use auxiliary trace to review your application programs. For example, it can
show up any obviously unnecessary code, such as a data set browse from the
beginning of a data set instead of after a SETL, too many or too large

170 CICS TS for z/OS: CICS Application Programming Guide

GETMAIN commands, failure to release storage when it is no longer needed,
unintentional logic loops, and failure to unlock records held for exclusive control
that are no longer needed.

Operating system waits
You should avoid using facilities that cause operating system waits. All CICS activity
stops when one of these waits occurs, and all transactions suffer response delays.
The chief sources of such waits are:

v Extrapartition transient data sets. (See “Efficient sequential data set access” on
page 175.)

v Those COBOL, C, C++, and PL/I language facilities that you should not use in
CICS programs and for which CICS generally provides alternative facilities. For
guidance information about the language restrictions, see Chapter 4,
“Programming in COBOL,” on page 21, Chapter 5, “Programming in C and C++,”
on page 43, and Chapter 6, “Programming in PL/I,” on page 53.

v SVCs and assembler language macros that invoke operating system services,
such as write-to-operator (WTO).

The NOSUSPEND option
The default action for the ENQBUSY, NOJBUFSP, NOSPACE, NOSTG, QBUSY,
SESSBUSY, and SYSBUSY conditions is to suspend the execution of the
application until the required resource (for example, storage) becomes available,
and then resume processing the command. The commands that can give rise to
these conditions are: ALLOCATE, ENQ, GETMAIN, WRITE JOURNALNAME,
WRITE JOURNALNUM, READQ TD, and WRITEQ TS.

On these commands, you can use the NOSUSPEND option (also known as the
NOQUEUE option in the case of the ALLOCATE command) to inhibit this waiting
and cause an immediate return to the instruction in the application program
following the command.

CICS maintains a table of conditions referred to by the HANDLE CONDITION and
IGNORE CONDITION commands in a COBOL application program1. Execution of
these commands either updates the existing entry, or causes a new entry to be
made if the condition has not yet been the subject of such a command. Each entry
indicates one of the three states described below:

v A label is currently specified, as follows:
HANDLE CONDITION condition(label)

v The condition is to be ignored, as follows:
IGNORE CONDITION

v No label is currently specified, as follows:
HANDLE CONDITION

1. HANDLE CONDITION and IGNORE CONDITION commands are not supported for C and C++ programs.

Chapter 12. Design for performance 171

When the condition occurs, the following tests are made:

1. If the command has the NOHANDLE or RESP option, control returns to the next
instruction in the application program. Otherwise, the condition table is scanned
to see what to do.

2. If an entry for the condition exists, this determines the action.

3. If no entry exists and the default action for this condition is to suspend
execution:

v If the command has the NOSUSPEND or NOQUEUE option, control returns
to the next instruction.

v If the command does not have one of these options, the task is suspended.

4. If no entry exists and the default action for this condition is to abend, a second
search is made looking for the ERROR condition:
v If found, this entry determines the action.
v If ERROR is searched for and not found, the task is abended.

Efficient data operations
CICS supports:
v DL/I database operations
v VSAM and BDAM data set operations
v Browsing
v Logging
v Sequential data set access

Efficient database operations
The following recommendations apply to using DL/I with CICS:

v Use command codes with CALL level and keywords with command level to
reduce the number of requests whenever appropriate. See the CICS IMS
Database Control Guide for more information. For example, a DL/I path call is
more efficient than a number of individual DL/I calls. With individual DL/I calls,
the GN call gives the best performance. Although several DL/I calls may get their
information from the DL/I or VSAM buffers, some of the instructions have to be
processed within a DL/I call. You should, therefore, consider the number of DL/I
calls needed for the processing of a transaction.

v It is more efficient to use qualified segment-search areas (SSAs) than to check
on “segment found” in the application program.

v Scheduling calls should be issued at the latest possible time, so as to minimize
the time that the transaction has exclusive control of the PSB. (This control is
released at the end of the UOW, which occurs at the next TERM call, explicit
SYNCPOINT command, or the syncpoint implicit in task termination.)

v Be aware of the effects of explicit syncpointing on performance and recovery.

Efficient data set operations
The efficiency of database and data set operations is an important factor in the
performance of any CICS system. In VSAM, the main impact on efficiency, and thus
on response time, comes from contention for serial-use resources (record keys,
control intervals, and strings), and for storage use and processor overhead. As is
usual in these situations, any improvements you make in one area may be at the
expense of other areas.

172 CICS TS for z/OS: CICS Application Programming Guide

VSAM data sets
To minimize contention delays using VSAM data sets:

v Minimize the time that VSAM resources are reserved for exclusive use. The
exclusive use enqueue is the way CICS and VSAM prevent concurrent updates.

If you use VSAM record-level sharing, described in “Accessing files in RLS
mode” on page 289, VSAM locks a record that has been requested for update,
so that no other transaction can attempt to update the record at the same time. If
the file is recoverable, VSAM releases the lock at the next syncpoint. If the file is
not recoverable, VSAM releases the lock when the request is complete. The
recoverability of a file is defined in the integrated catalog facility (ICF) catalog.

If you do not use VSAM record-level sharing, CICS serializes update requests by
base cluster record key. The complete VSAM control interval (CI) containing the
requested record is held for exclusive use while an individual command (for
example, a READ command with the UPDATE option) is being executed on the
record. Once each command is complete, the control interval is released, and
only the requested record remains locked. For nonrecoverable data sets, both
the VSAM exclusive use and the CICS exclusive use of the record end when the
update request is complete in VSAM terms; for example, when the REWRITE
command has completed. For recoverable data sets, however, the CICS
exclusive use does not end until the task ends or issues a SYNCPOINT
command. Recoverability is specified in the data set resource definition. See the
CICS Resource Definition Guide for more information about the FILE resource
definitions.

v Hold position in a VSAM data set for as short a time as possible. Table 8 shows
which commands hold position and when the hold is released.

Table 8. Commands that hold position and when hold is released

Command Released by VSAM at

READ.. UPDATE REWRITE/DELETE/UNLOCK

WRITE.. MASSINSERT UNLOCK

STARTBR ENDBR

Each request in progress against a VSAM data set requires at least one string.
Requests that hold position tie up a string until a command is issued to release
the hold position. Requests that do not hold position release the string as soon
as that request is complete.

Chapter 12. Design for performance 173

To minimize processor overhead when using VSAM data sets:

v Use the MASSINSERT option if you are adding many records in sequence. This
improves performance by minimizing processor overheads and therefore
improves the response times. For ESDSs and KSDSs, adding records with
MASSINSERT causes CICS to use sequential VSAM processing. This changes
the way VSAM places records within control intervals when a split is required,
resulting in fewer splits and less unused space within the affected CIs.

v Use skip sequential processing if you are reading many records in sequence
whose keys are relatively close together but not necessarily adjacent. (Skip
sequential processing begins with a start browse (STARTBR command).) Each
record is retrieved with an READNEXT command, but the key feedback area
pointed to by RIDFLD is supplied with the key of the next requested record
before the READNEXT command is issued.

v Use the GENERIC option on the DELETE command when deleting a group of
records whose keys start with a common character string. CICS internally
optimizes a generic DELETE.

BDAM data sets
BDAM data sets are less efficient than VSAM because CICS has to do some
single-thread processing and issue some operating system waits to handle BDAM
data set requests. Therefore, if possible, you should use a relative record VSAM
data set or an entry-sequenced data set addressed by relative byte address (RBA)
in place of a BDAM data set.

If you are using BDAM data sets in update mode, you should be aware that
performance is affected dramatically by the means of data set integrity you choose.

If you specify exclusive control in file control table SERVREQ operands for a
BDAM data set, CICS requests the operating system to prevent concurrent updates.
However, this involves significant overhead.

Efficient browsing (in non-RLS mode)
A data set browse is often the source of the output in transactions that produce a
large number of output screens, which can monopolize system resources. A long
browse can put a severe load on the system, locking out other transactions and
increasing overall response time, in addition to the overhead needed for BMS, task
control, and terminals. This is because CICS control philosophy is based on the
assumption that the terminal operator initiates a transaction that accesses a few
data records, processes the information, and returns the results to the operator.
This process involves numerous waits that enable CICS to do multitasking.
However, CICS is not an interrupt-driven multitasking system, so tasks that involve
small amounts of I/O relative to processing can monopolize the system regardless
of priority. A browse of a data set with many records in a control interval is just such
a transaction.

You can prevent this by issuing DELAY or SUSPEND commands periodically, so
that other tasks can get control. If the browse produces paged output, you should
consider breaking the transaction up in one of the ways suggested in “Page-building
and routing operations” on page 179.

174 CICS TS for z/OS: CICS Application Programming Guide

Efficient logging
CICS provides options to log some or all types of activity against a data set.
Logging updates enables you to reconstruct data sets from backup copies, if
necessary. You may also want to log reads for security reasons. Again, you have to
balance the need for data integrity and security against the performance effects of
logging. These are the actual operations needed to do the logging and the possible
delays caused because of the exclusive control that logging implies.

Efficient sequential data set access
CICS provides a number of different sequential processing options. Temporary
storage and intrapartition transient data queues (already discussed in “Temporary
storage” on page 158 and in “Intrapartition transient data” on page 160) are the
most efficient to use, but they must be created and processed entirely within CICS.

Extrapartition transient data is the CICS way of handling standard sequential
(QSAM/BSAM) data sets. It is the least efficient of the three forms of sequential
support listed, because CICS has to issue operating system waits to process the
data sets, as it does when handling BDAM. Moreover, extrapartition transient data
sets are not recoverable. VSAM ESDSs, on the other hand, are recoverable within
limitations, and processing is more efficient. The recovery limitation is that records
added to an ESDS during an uncompleted UOW cannot be removed physically
during the backout process, because of VSAM restrictions. They can, however, be
flagged as deleted by a user exit routine.

CICS journals provide another good alternative to extrapartition transient data,
although only for output data sets. Journals are managed by the MVS system
logger, but flexible processing options permit very efficient processing. Each journal
command specifies operation characteristics, for example, synchronous or
asynchronous, whereas extrapartition operations are governed entirely by the
parameters in the transient data queue definition.

Transactions should journal asynchronously, if possible, to minimize task waits in
connection with journaling. However, if integrity considerations require that the
journal records be physically written before end of task, you must use a
synchronous write. If there are several journal writes, the transaction should use
asynchronous writes for all but the last logical record, so that the logical records for
the task are written with a minimum number of physical I/Os and only one wait.

You can use journals for input (in batch) as well as output (online) while CICS is
running. The supplied batch utility DFHJUP can be used for access to journal data,
for example, by printing or copying. Note that reading a journal in batch involves the
following restrictions:

v Access to MVS system logger log stream data is provided through a subsystem
interface, LOGR.

v Reading records from a journal is possible offline by means of a batch job only.

Chapter 12. Design for performance 175

Efficient terminal operations
There are some design factors, related to communicating with terminals, that may
affect performance.

Length of the data stream sent to the terminal
Good screen design and effective use of 3270 hardware features can significantly
affect the number of bytes transmitted on a teleprocessing link. It is particularly
important to keep the number of bytes as small as possible because, in most
cases, this is the slowest part of the path a transaction takes. The efficiency of the
data stream therefore affects both response time and line usage.

Basic mapping support considerations
When building a formatted data stream with basic mapping support (BMS), you
should bear in mind, the factors described in the following sections.

Avoid turning on modified data tags (MDTs) unnecessarily
The MDT is the bit in the attribute byte that determines whether a field should be
transmitted on a READ MODIFIED command (the command used by CICS for all
but copy operations).

The MDT for a field is normally turned on by the 3270 hardware when the user
enters data into a field. However, you can also turn the tag on when you send a
map to the screen, either by specifying FSET in the map or by sending an override
attribute byte that has the tag on. You should never set the tag on in this way for a
field that is constant in the map, or for a field that has no label (and is not sent to
the program that receives the map).

Also, you do not normally need to specify FSET for an ordinary input field. This is
because, as already mentioned, the MDT is turned on automatically in any field in
which the user enters data. This is then included in the next RECEIVE command.
These tags remain on, no matter how many times the screen is sent, until explicitly
turned off by the program (by the FRSET, ERASEAUP, or ERASE option, or by an
override attribute with the tag off).

You can store information, between inputs, that the user did not enter on the
screen. This is an intended reason for turning the MDT on by a program. However,
this storage technique is appropriate only to small amounts of data, and is more
suitable for local than for remote terminals, because of the transmission overhead
involved. For example, this technique is particularly useful for storing default values
for input fields. In some applications, the user must complete a screen in which
some fields already contain default values. A user who does not want to change a
default just skips that field. The program processing the input has to be informed
what these defaults are. If they are always the same, they can be supplied as
constants in the program. If they are variable, however, and depend on earlier
inputs, you can simply save them on the screen by turning the MDT on with FSET
in the map that writes the screen. The program reading the screen then receives
the default value from a user who does not change the field and the new value from
a user who does.

Note: The saved values are not returned to the screen if the CLEAR, PA1, PA2, or
PA3 key is pressed.

176 CICS TS for z/OS: CICS Application Programming Guide

Use FRSET to reduce inbound traffic
If you have a screen with many input fields, which you may have to read several
times, you can reduce the length of the input data stream by specifying FRSET
when you write back to the screen in preparation for the next read. FRSET turns off
the MDTs, so that fields entered before that write are not present unless the user
reenters them the next time. If you are dealing with a relatively full screen and a
process where there may be a number of error cycles (or repeat transmissions for
some other reason), this can be a substantial saving. However, because only
changed fields are sent on subsequent reads, the program must save input from
each cycle and merge the new data with the old. This is not necessary if you are
not using FRSET, because the MDTs remain on, and all fields are sent regardless
of when they were entered.

Do not send blank fields to the screen
Sending fields to the screen that consist entirely of blanks or that are filled out on
the right by trailing blanks usually wastes line capacity. The only case where BMS
requires you to do this is when you need to erase a field on the screen that
currently contains data, or to replace it with data shorter than that currently on the
screen, without changing the rest of the screen.

This is because, when BMS builds the data stream representing your map, it
includes blanks (X'40') but omits nulls (X'00'). This makes the output data stream
shorter. BMS omits any field whose first data character is null, regardless of
subsequent characters in the field.

BMS requires you to initialize to nulls any area to be used to build a map. This is
done by moving nulls (X'00') to the mapnameO field in the symbolic map structure.
See “Initializing the output map” on page 478 for more information. BMS uses nulls
in attribute positions and in the first position of data to indicate that no change is to
be made to the value in the map. If you are reusing a map area in a program or in
a TIOA, you should take special care to clear it in this way.

Address CICS areas correctly
There are several ways to check that CICS areas are addressed correctly. Ensure
that:

v Each COBOL program with a LINKAGE SECTION structure that exceeds 4KB
has the required definition and the setting of more than one contiguous BLL cell.

v Every BLL pointer points to an area that is a 01-level item.

v Call level DL/I is only used with PSBs that are correctly addressed.

Use the MAPONLY option when possible
The MAPONLY option sends only the constant data in a map, and does not merge
any variable data from the program. The resulting data stream is not always shorter,
but the operation has a shorter path length in BMS. When you send a skeleton
screen to be used for data entry, you can often use MAPONLY.

Send only changed fields to an existing screen
Sending only changed fields is important when, for example, a message is added to
the screen, or one or two fields on an input screen are highlighted to show errors.
In these situations, you should use the DATAONLY option to send a map that
consists of nulls except for the changed fields. For fields where the only the
attribute byte has changed, you need send only that byte, and send the remaining
fields as nulls. BMS uses this input to build a data stream consisting of only the
fields in question, and all other fields on the screen remain unchanged.

Chapter 12. Design for performance 177

It may be tempting to ignore this advice and send an unnecessarily long data
stream. For example, when a program that is checking an input screen for errors
finds one, there are two options.

v It can simply add the error information to the input map (highlighted attributes,
error messages, and so on) and resend it.

v It can build an entirely new screen, consisting of just the error and message
fields.

The former is slightly easier to code (you do not need to have two map areas or
move any fields), but it may result in very much longer transmissions because the
output data stream contains the correct input fields as well as the error and
message fields. In fact, it may even be longer than the original input stream
because, if there were empty or short fields in the input, BMS may have replaced
the missing characters with blanks or zeros.

With the 3270 hardware, if the input stream for a terminal exceeds 256 bytes, the
terminal control unit automatically breaks it up into separate transmissions of 256
bytes maximum. This means that a long input stream may require several physical
I/O operations. Although this is transparent to the application program, it does
cause additional line and processor overhead. The output stream is generally sent
in a single transmission.

Design data entry operations to reduce line traffic
Often, users are required to complete the same screen several times. Only the data
changes on each cycle; the titles, field labels, instructions, and so on remain
unchanged. In this situation, when an entry is accepted and processed, you can
respond with a SEND CONTROL ERASEAUP command (or a map that contains
only a short confirmation message and specifies the ERASEAUP option). This
causes all the unprotected fields on the screen (that is, all the input data from the
last entry) to be erased and to have their MDTs reset. The labels and other text,
which are in protected fields, are unchanged, the screen is ready for the next
data-entry cycle, and only the necessary data has been sent.

Compress data sent to the screen
When you send unformatted data to the screen, or create a formatted screen
outside BMS, you can compress the data further by inserting set buffer address
(SBA) and repeat-to-address (RA) orders into the data stream. SBA allows you to
position data on the screen, and RA causes the character following it to be
generated from the current point in the buffer until a specified ending address. SBA
is useful whenever there are substantial unused areas on the screen that are
followed by data. RA is useful when there are long sequences of the same
character, such as blanks or dashes, on the screen. However, you should note that
the speed with which RA processes is not uniform across all models of 3270 control
units. You should check how it applies to your configuration before use.

CICS provides an exit that is driven just before output is sent to a terminal (XTC
OUT). You may want to add SBA and RA substitutions to this exit to compress the
data stream using a general subroutine. This has the dual benefit of removing
compression logic from your application program and of applying to all output data
streams, whether they are produced by BMS or not.

Use nulls instead of blanks
You should note that, outside BMS, nulls have no special significance in an output
data stream. If you need a blank area on a screen, you can send either blanks or

178 CICS TS for z/OS: CICS Application Programming Guide

nulls to it; they take up the same space in the output stream. However, if the blank
field is likely to be changed by the user and subsequently read, use nulls, because
they are not transmitted back.

Use methods that avoid the need for nulls or blanks
For any large area of a screen that needs to be blank, you should consider
methods other than transmitting blanks or nulls; for example, when using BMS,
putting SBA and RA orders directly into the data stream, or using the ERASE and
ERASEAUP options.

Page-building and routing operations
BMS page-building facilities provide a powerful and flexible tool for building and
displaying long messages, sending messages to multiple destinations, and
formatting a single message for several devices with different physical
characteristics. However, as for any high-function tool, it requires a substantial
overhead, as mentioned in “Efficient browsing (in non-RLS mode)” on page 174.
You may need the page-building option (ACCUM) when:

v Sending messages whose length exceeds the capacity of the output device
(multipage output)

v Using destinations other than the input terminal

v Sending pages built from multiple maps

v Using the BMS page-copy facility

Sending multipage output
Transactions that produce very large output messages, consisting of many
screen-size pages, tend to tax system resources. First, all the pages have to be
created, which involves processor activity, execution of the CSPG transaction, and
data set I/O activity. The pages must then be saved in temporary storage. If the
terminal user looks at every page in a message, a large number of transactions are
run to process the paging requests, each of which needs line and processor
overhead. Obviously some overhead is caused by the size and complexity of the
transaction, and it may be unavoidable. Indeed, if several users are scrolling rapidly
through paged output at the same time, the transactions needed can monopolize a
system.

If users really need to see all the pages, and need to scroll backward and forward
frequently, it may be more efficient to produce all the pages at the same time and
present them using “traditional” CICS paging services. However, if users need only
a few of the pages, or can easily specify how far back or forward in the message
they would like to scroll, there are two choices:

1. First, construct a pseudoconversational transaction to produce just one screen
of output. The first time this transaction is run, it produces the first page of the
many-page output. The output screen contains space for users to indicate the
page they want next. The transaction always sets the next transaction identifier
to point to itself, so that it can display the requested page when it is next run.

You will probably want to give users some of the options that CICS provides
(such as one page forward, one page back, and skip to a selected page) and
some relevant to the application, such as a data set key at which to begin the
next page of output.

2. The alternative is to page-build a multipage output message with the ACCUM
option, but to limit the number of pages in the message (say to five). Users
page through the subset pages with the usual CICS page commands. On the
last screen of the output, you add an indication that there is more output and a
place for them to indicate whether they want to see the next segment. As in the

Chapter 12. Design for performance 179

first example, the next transaction identifier is set to the original transaction so
that, if CICS does not receive a paging command, it invokes that transaction.

Sending messages to destinations other than the input terminal
If you need to send a message to a terminal other than the input terminal
associated with a task, BMS routing may be the most efficient way of doing so. This
is especially so if the message must be sent to multiple destinations or if it involves
multiple pages. Routing is the recommended method if the message recipients
need CICS paging commands to access it.

However, if neither of the above conditions apply, you have a choice of two other
methods of delivering output to a terminal not associated with the transaction.

1. You can use a START command, with the TERMID option, to specify the
terminal to which you want to write and the FROM option to specify the data
you want to send. Your own transaction is the started transaction. It issues an
RETRIEVE command for the message and then sends it to its own terminal.
See the CICS Application Programming Reference manual for programming
information about the START command.

2. Similarly, you can put messages destined for a particular terminal on to an
intrapartition transient data queue. The definition for the transient data queue
must specify:
v The destination as a TERMINAL
v The terminal identifier
v A trigger level
v A transaction name

Your own transaction reads the transient data queue and sends the message to
its terminal. It repeats this sequence until the queue is empty, and then
terminates. The trigger level you specified means that it is invoked every time
the specified number of messages have been placed on the queue. The
CICS/ESA Sample Applications Guide describes the DFHœTDWT sample
program that performs this function.

Note: Because of the overhead associated with routing messages (by whatever
means), you should use facilities such as ROUTE=ALL with caution.

Sending pages built from multiple maps
Although you can easily build a screen gradually using different maps, you can
sometimes avoid considerable overhead by not using page-building operations,
especially where there is only one screen of output and no other need for paging.
An example of this is an application whose output consists of a header map,
followed by a variable number of detail segments, sent with a second map, and
finally a trailer map following the detail. Suppose the average output screen for
such an application contains eight (2-line) detail segments, plus header and trailer,
and all this fits on a single screen. Writing this screen with page-building requires 11
BMS calls (header, details, trailer, and page-out) whereas, if the program builds the
output screen internally, it only needs one call.

Using the BMS page-copy facility
Because the individual pages that make up an accumulated BMS message are
saved in temporary storage, BMS enables the terminal user to copy individual
pages to other terminals. However, if the ability to copy is the only reason for using
page-building, you should consider using either the 3274 control unit copy facilities
or the CICS copy key facility instead.

180 CICS TS for z/OS: CICS Application Programming Guide

The 3274 copy facilities require no participation from CICS and no transmission,
and are by far the most efficient method. The CICS copy key facility does have an
overhead (see “Requests for printed output”), although of a different type from the
BMS copy facility. It also has destination restrictions that do not apply to BMS
copying.

Requests for printed output
A CICS print request asks CICS to copy what is on the requesting screen to the
first available printer on the same control unit. The overhead involved depends on
whether a printer is available, and whether the requesting terminal is remote or
local to CICS.

If no printer is available, and the request is from a remote or a local device:

v CICS reads the buffer to the display terminal. This involves transmitting every
position on the screen, including nulls.

For requests from a local device, the READ BUFFER command takes place at
channel speeds, so that the large input message size does not increase
response time too much, and does not monopolize the line.

v An error task is generated so that the terminal error program can dispose of the
message. If a printer is available and the request is from a local device, this step
is not needed.

v The 3270 print task (CSPP) is attached to write the entire buffer to the printer
when it is available.

If a printer is available, and the request is from a remote device, CICS sends a very
short data stream to the control unit asking for a copy of the requesting device
buffer to be sent to the output device buffer.

Additional terminal control considerations
The following sections describe additional points to consider when using the CICS
terminal control services.

Use only one physical SEND command per screen
We mentioned earlier that it is usually more efficient to create a screen with a single
call to BMS, than to build the screen with a series of SEND MAP ACCUM
commands. It is important to send the screen in a single physical output to the
terminal. It is very inefficient to build a screen in parts and send each part with a
separate command, because of the additional processor overhead of using several
commands and the additional line and access method overhead.

Use the CONVERSE command
Use the CONVERSE command rather than the SEND and RECEIVE commands (or
a SEND, WAIT, RECEIVE command sequence if your program is conversational).
They are functionally equivalent, but the CONVERSE command crosses the CICS
services interface only once, which saves processor time.

Limit the use of message integrity options
Like specifying the WAIT option on the final SEND command of a transaction, the
MSGINTEG option of CEDA requires CICS to keep the transaction running until the
last message has been delivered successfully.

The PROTECT option of the PROFILE definition implies message integrity and
causes the system to log all input and output messages, which adds to I/O and
processor overhead.

Chapter 12. Design for performance 181

Avoid using the DEFRESP option on SEND commands
Avoid using the DEFRESP option on SEND commands, unless the transaction must
verify successful delivery of the output message. It delays termination of the
transaction in the same way as MSGINTEG.

Avoid using unnecessary transactions
Avoid situations that may cause users to enter an incorrect transaction or to use the
CLEAR key unnecessarily, thus adding to terminal input, task control processing,
terminal output, and overhead. Good screen design and standardized PF and PA
key assignments should minimize this.

Send unformatted data without maps
If your output to a terminal is entirely or even mostly unformatted, you can send it
using terminal control commands rather than BMS commands (that is, using a BMS
SEND command without the MAP or TEXT options).

182 CICS TS for z/OS: CICS Application Programming Guide

Chapter 13. Sharing data across transactions

CICS facilities for sharing data across transactions include:
v The Common Work Area (CWA)
v The TCTTE user area (TCTUA)
v The COMMAREA
v The display screen
v Channels and containers

Data stored in the TCTUA and the CWA is available to any transaction in the
system. Subject to resource security and storage protection restrictions, any
transaction may write to them and any transaction may read them.

The use of some of these facilities may cause inter-transaction affinities. See
Chapter 15, “Affinity,” on page 221 for more information about transaction affinities.

This chapter describes:
v “Using the common work area (CWA)”
v “Using the TCTTE user area (TCTUA)” on page 186
v “Using the COMMAREA in RETURN commands” on page 187
v “Using a channel on RETURN commands” on page 187
v “Using the display screen to share data” on page 188

Using the common work area (CWA)
The common work area (CWA) is a single control block that is allocated at system
startup time and exists for the duration of that CICS session. The size is fixed, as
specified in the system initialization parameter, WRKAREA. The CWA has the
following characteristics:

v There is almost no overhead in storing or retrieving data from the CWA.
Command-level programs must issue one ADDRESS command to get the
address of the area but, after that, they can access it directly.

v Data in the CWA is not recovered if a transaction or the system fails.

v It is not subject to resource security.

v CICS does not regulate use of the CWA. All programs in all applications that use
the CWA must follow the same rules for shared use. These are usually set down
by the system programmers, in cooperation with application developers, and
require all programs to use the same “copy” module to describe the layout of the
area.

You must not exceed the length of the CWA, because this causes a storage
violation. Furthermore, you must ensure that the data used in one transaction
does not overlay data used in another. One way to protect CWA data is to use
the storage protection facility that protects the CWA from being written to by
user-key applications. See “Protecting the CWA” on page 184 for more
information.

v The CWA is especially suitable for small amounts of data, such as status
information, that are read or updated frequently by multiple programs in an
application.

v The CWA is not suitable for large-volume or short-lived data because it is always
allocated.

© Copyright IBM Corp. 1989, 2010 183

|

|

Protecting the CWA
The CWAKEY system initialization parameter allows you to specify whether the
CWA is to be allocated from CICS-key or user-key storage. See the CICS System
Definition Guide for details about the CWAKEY parameter.

If you want to restrict write access to the CWA, you can specify CWAKEY=CICS.
This means that CICS allocates the CWA from CICS-key storage, restricting
application programs defined with EXECKEY(USER) to read-only access to the
CWA. The only programs allowed to write to a CWA allocated from CICS-key
storage are those you define with EXECKEY(CICS).

Because any program that executes in CICS key can also write to CICS storage,
you should ensure that such programs are thoroughly tested to make sure that they
do not overwrite CICS storage.

If you want to give preference to protecting CICS rather than the CWA, specify
CWAKEY=USER for the CWA, and EXECKEY(USER) for all programs that write to
the CWA. This ensures that if a program exceeds the length of the CWA it does not
overwrite CICS storage. For more information about storage protection, see
Chapter 46, “Storage control,” on page 577.

Figure 39 illustrates a particular use of the CWA where the CWA itself is protected
from user-key application programs by CWAKEY=CICS.

In this illustration, the CWA is not used directly to store application data and
constants. The CWA contains pairs of application identifiers and associated
addresses, with the address fields containing the addresses of data areas that hold
the application-related data. For protection, the CWA is defined with
CWAKEY=CICS, therefore the program which in this illustration is a program
defined in the program list table post initialization (PLTPI) list, and that loads the
CWA with addresses and application identifiers must be defined with
EXECKEY(CICS). Any application programs requiring access to the CWA should be

CWA
(defined with
CWAKEY=CICS)

appl1_id Application
Storage Area

ptr_ref1 (for appl1)
(obtained from

appl2_id CICS-key storage)

ptr_ref2
Application
Storage Area
(for appl2)
(obtained from
user-key storage)

The CWA is initialized by an AMODE(31) PLTPI program,
which obtains storage for application-related
tables, and stores the addresses of the GETMAINed
storage in the CWA.

Figure 39. Example of use of CWA in CICS-key storage. This illustrates how the CWA can be
used to reference storage that is obtained in user-key or CICS-key storage for use by
application programs, while the CWA itself is protected by being in CICS-key storage.

184 CICS TS for z/OS: CICS Application Programming Guide

defined with EXECKEY(USER), thereby ensuring the CWA is protected from
overwriting by application programs. In Figure 39 on page 184, one of the data
areas is obtained from CICS-key storage, while the other is obtained from user-key
storage.

In the sample code shown in Figure 40, the program list table post-initialization
(PLTPI) program is setting up the application data areas, with pointers to the data
stored in the CWA.

This example illustrates how to create global data for use by application programs,
with addresses of the data stored in the CWA—for example, by a PLTPI program.
The first data area is obtained from CICS-key storage, which is the default on a
GETMAIN command issued by a PLTPI program, the second from user-key storage
by specifying the USERDATAKEY option. The CWA itself is in CICS-key storage,
and PLTPROG is defined with EXECKEY(CICS).

ID DIVISION.
PROGRAM-ID. PLTPROG.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 APPLID PIC X(8) VALUE SPACES.
77 SYSID PIC X(4) VALUE SPACES.
01 COMM-DATA.

03 AREA-PTR USAGE IS POINTER.
03 AREA-LENGTH PIC S9(8) COMP.

LINKAGE SECTION.
01 COMMON-WORK-AREA.

03 APPL-1-ID PIC X(4).
03 APPL-1-PTR USAGE IS POINTER.
03 APPL-2-ID PIC X(4).
03 APPL-2-PTR USAGE IS POINTER.

PROCEDURE DIVISION.
MAIN-PROCESSING SECTION.
* Obtain APPLID and SYSID values

EXEC CICS ASSIGN APPLID(APPLID)
SYSID(SYSID)

END-EXEC.
* Set up addressability to the CWA

EXEC CICS ADDRESS
CWA(ADDRESS OF COMMON-WORK-AREA)

END-EXEC.
* Get 12KB of CICS-key storage for the first application (’APP1’)

MOVE 12288 TO AREA-LENGTH.
EXEC CICS GETMAIN SET(AREA-PTR)

FLENGTH(AREA-LENGTH)
SHARED

END-EXEC.
* Initialize CWA fields and link to load program
* for storage area 1.

MOVE ’APP1’ TO APPL-1-ID.
SET APPL-1-PTR TO AREA-PTR.
EXEC CICS LINK PROGRAM(’LOADTAB1’)

COMMAREA(COMM-DATA)
END-EXEC.

Figure 40. Sample code for loading the CWA (Part 1 of 2)

Chapter 13. Sharing data across transactions 185

Using the TCTTE user area (TCTUA)
The TCT user area (TCTUA) is an optional extension to the terminal control table
entry (TCTTE). Each entry in the TCT specifies whether this extension is present
and, if so, how long it is (by means of the USERAREALEN attribute of the
TYPETERM resource definition used for the terminal). See the CICS Resource
Definition Guide for more information about the TYPETERM resource definition.

The system initialization parameters TCTUALOC and TCTUAKEY specify the
location and storage key for all TCTUAs.

v TCTUALOC=BELOW or ANY specifies whether you want 24- or 31-bit
addressability to the TCTUAs, and whether TCTCUAs must be stored below the
16MB line or may be either above or below the line.

v TCTUAKEY=USER or CICS specifies whether you want the TCTUAs allocated
from user-key or CICS-key storage.

TCTUAs have the following characteristics in common with the CWA:
v Minimal processor overhead (only one ADDRESS command needed)
v No recovery
v No resource security
v No regulation of use by CICS
v Fixed length
v Unsuitability for large-volume or short-lived data

Unlike the CWA, however, the TCTUA for a particular terminal is usually shared
only among transactions using that terminal. It is therefore useful for storing small
amounts of data of fairly standard length between a series of transactions in a
pseudoconversational sequence. Another difference is that it is not necessarily
permanently allocated, because the TCTUA only exists while the TCTTE is set up.
For non-autoinstall terminals the TCTUA is allocated from system startup; for
autoinstall terminals the TCTUA is allocated when the TCTTE is generated.

Using the TCTUA in this way does not require special discipline among using
transactions, because data is always read by the transaction following the one that
wrote it. However, if you use TCTUAs to store longer-term data (for example,
terminal or operator information needed by an entire application), they require the
same care as the CWA to ensure that data used in one transaction does not

* Get 2KB of user-key storage for the second application (’APP2’)
MOVE 2048 TO AREA-LENGTH.
EXEC CICS GETMAIN SET(AREA-PTR)

FLENGTH(AREA-LENGTH)
SHARED
USERDATAKEY

END-EXEC.
* Initialize CWA fields and link to load program
* for storage area 2.

MOVE ’APP2’ TO APPL-2-ID.
SET APPL-2-PTR TO AREA-PTR.
EXEC CICS LINK PROGRAM(’LOADTAB2’)

COMMAREA(COMM-DATA)
END-EXEC.
EXEC CICS RETURN
END-EXEC.

MAIN-PROCESSING-EXIT.
GOBACK.

Figure 40. Sample code for loading the CWA (Part 2 of 2)

186 CICS TS for z/OS: CICS Application Programming Guide

overlay data used in another. You should not exceed the length of the allocated
TCTUA, because this produces a storage violation.

Using the COMMAREA in RETURN commands
The COMMAREA option of the RETURN command is designed specifically for
passing data between successive transactions in a pseudoconversational sequence.
It is implemented as a special form of user storage, although the EXEC interface,
rather than the application program, issues the GETMAIN and FREEMAIN requests.

The COMMAREA is allocated from the CICS shared subpool in main storage, and
is addressed by the TCTTE, between tasks of a pseudoconversational application.
The COMMAREA is freed unless it is passed to the next task.

The first program in the next task has automatic addressability to the passed
COMMAREA, as if the program had been invoked by either a LINK command or an
XCTL command (see “COMMAREA in LINK and XCTL commands” on page 157).
You can also use the COMMAREA option of the ADDRESS command to obtain the
address of the COMMAREA.

For a COMMAREA passed between successive transactions in a
pseudoconversational sequence in a distributed environment, VTAM imposes a limit
of 32KB on the size of the total data length. This limit applies to the entire
transmitted package, which includes control data added by VTAM. The amount of
control data increases if the transmission uses intermediate links.

To summarize:

v Processor overhead is low (equivalent to using COMMAREA with an XCTL
command and approximately equal to using main temporary storage).

v It is not recoverable.

v There is no resource security.

v It is not suitable for very large amounts of data (because main storage is used,
and it is held until the terminal user responds).

v As with using COMMAREA to transfer data between programs, it is available only
to the first program in a transaction, unless that program explicitly passes the
data or its address to succeeding programs.

Using a channel on RETURN commands
Instead of using a communication area (COMMAREA), a more modern method of
passing data to the next program in a pseudoconversation is to use a channel.
Channels have several advantages over COMMAREAs—see Benefits of channels.
To pass a channel on a RETURN command, you use the CHANNEL option in place
of the COMMAREA option.

Channels are described in Enhanced inter-program data transfer: channels as
modern-day COMMAREAs.

Chapter 13. Sharing data across transactions 187

|

|
|
|
|
|

|
|

Using the display screen to share data
You can also store data between pseudoconversational transactions from a 3270
display terminal on the display screen itself. For example, if users make errors in
data that they are asked to enter on a screen, the transaction processing the input
usually points out the errors on the screen (with highlights or messages), sets the
next transaction identifier to point to itself (so that it processes the corrected input),
and returns to CICS.

The transaction has two ways of using the valid data. It can save it (for example, in
COMMAREA), and pass it on for the next time it is run. In this case, the transaction
must merge the changed data on the screen with the data from previous entries.
Alternatively, it can save the data on the screen by not turning off the modified data
tags of the keyed fields.

Saving the data on the screen is very easy to code, but it is not very secure. You
are not recommended to save screens that contain large amounts of data as errors
may occur because of the additional network traffic needed to resend the
unchanged data. (This restriction does not apply to locally-attached terminals.)

Secondly, if the user presses the CLEAR key, the screen data is lost, and the
transaction must be able to recover from this. You can avoid this by defining the
CLEAR key to mean CANCEL or QUIT, if this is appropriate for the application
concerned.

Data other than keyed data may also be stored on the screen. This data can be
protected from changes (except those caused by CLEAR) and can be nondisplay, if
necessary.

188 CICS TS for z/OS: CICS Application Programming Guide

Chapter 14. Enhanced inter-program data transfer: channels
as modern-day COMMAREAs

Traditionally, CICS programs have used communication areas (COMMAREAs) to
exchange data. This topic describes an improved method of transferring data
between programs, in amounts that far exceed the 32KB limit that applies to
COMMAREAs.

This section contains:
v “Channels: quick start”
v “Using channels: some typical scenarios” on page 192
v “Creating a channel” on page 195
v “The current channel” on page 196
v “The scope of a channel” on page 200
v “Discovering which containers a program's been passed” on page 204
v “Discovering which containers were returned from a link” on page 204
v “CICS read only containers” on page 204
v “Designing a channel: best practices” on page 205
v “Constructing and using a channel: an example” on page 206
v “Channels and BTS activities” on page 207
v “Using channels from JCICS” on page 209
v “Dynamic routing with channels” on page 209
v “Data conversion” on page 210
v “Benefits of channels” on page 215
v “Migrating from COMMAREAs to channels” on page 216

Channels: quick start

Containers and channels
Containers are named blocks of data designed for passing information between
programs. You can think of them as “named communication areas (COMMAREAs)”.
Programs can pass any number of containers between each other. Containers are
grouped together in sets called channels. A channel is analogous to a parameter
list.

To create named containers and assign them to a channel, a program uses EXEC
CICS PUT CONTAINER(container-name) CHANNEL(channel-name) commands. It
can then pass the channel (and its containers) to a second program using the
CHANNEL(channel-name) option of the EXEC CICS LINK, XCTL, START, or
RETURN commands.

The second program can read containers passed to it using the EXEC CICS GET
CONTAINER(container-name) command. This command reads the named container
belonging to the channel that the program was invoked with.

If the second program is invoked by a LINK command, it can also return containers
to the calling program. It can do this by creating new containers, or by reusing
existing containers.

Channels and containers are visible only to the program that creates them and the
programs they are passed to. When these programs terminate, CICS automatically
destroys the containers and their storage.

© Copyright IBM Corp. 1989, 2010 189

Channel containers are not recoverable. If you need to use recoverable containers,
use CICS business transaction services (BTS) containers. The relationship between
channel and BTS containers is described in “Channels and BTS activities” on page
207.

Basic examples
Figure 41 on page 191 shows a COBOL program, CLIENT1, that:

1. Uses PUT CONTAINER(container-name) CHANNEL(channel-name) commands
to create a channel called inqcustrec and add two containers, custno and
branchno, to it; these contain a customer number and a branch number,
respectively.

2. Uses a LINK PROGRAM(program-name) CHANNEL(channel-name) command
to link to program SERVER1, passing the inqcustrec channel.

3. Uses a GET CONTAINER(container-name) CHANNEL(channel-name) command
to retrieve the customer record returned by SERVER1. The customer record is in
the custrec container of the inqcustrec channel.

Note that the same COBOL copybook, INQINTC, is used by both the client and
server programs. Line 3 and lines 5 through 7 of the copybook represent the
INQUIRY-CHANNEL and its containers. These lines are not strictly necessary to the
working of the programs, because containers and channels are created simply by
being named (on, for example, PUT CONTAINER commands); they do not have to
be defined. However, the inclusion of these lines in the copybook used by both
programs makes for easier maintenance; they record the names of the containers
used.

Recommendation

For ease of maintenance of a client/server application that uses a channel, create a
copybook that records the names of the containers used and defines the data fields
that map to the containers. Include the copybook in both the client and the server
program.

Note: This example shows two COBOL programs. The same techniques can be
used in any of the other languages supported by CICS. However, for COBOL
programs only, if the server program uses the SET option (instead of INTO)
on the EXEC CICS GET CONTAINER command, the structure of the storage
pointed to by SET must be defined in the LINKAGE section of the program.
This means that you will require two copybooks rather than one. The first, in
the WORKING-STORAGE section of the program, names the channel and
containers used. The second, in the LINKAGE section, defines the storage
structure.

190 CICS TS for z/OS: CICS Application Programming Guide

Figure 42 on page 192 shows the SERVER1 program linked to by CLIENT1. SERVER1
retrieves the data from the custno and branchno containers it has been passed, and
uses it to locate the full customer record in its database. It then creates a new
container, custrec, on the same channel, and returns the customer record in it.

Note that the programmer hasn't specified the CHANNEL keyword on the GET and PUT
commands in SERVER1: if the channel isn't specified explicitly, the current channel is
used—that is, the channel that the program was invoked with.

IDENTIFICATION DIVISION.
PROGRAM-ID. CLIENT1.

WORKING-STORAGE SECTION.

COPY INQINTC
* copybook INQINTC
* Channel name
* 01 INQUIRY-CHANNEL PIC X(16) VALUE ’inqcustrec’.
* Container names
* 01 CUSTOMER-NO PIC X(16) VALUE ’custno’.
* 01 BRANCH-NO PIC X(16) VALUE ’branchno’.
* 01 CUSTOMER-RECORD PIC X(16) VALUE ’custrec’.
* Define the data fields used by the program
* 01 CUSTNO PIC X(8).
* 01 BRANCHNO PIC X(5).
* 01 CREC.
* 02 CUSTNAME PIC X(80).
* 02 CUSTADDR1 PIC X(80).
* 02 CUSTADDR2 PIC X(80).
* 02 CUSTADDR3 PIC X(80).

PROCEDURE DIVISION.
MAIN-PROCESSING SECTION.

*
* INITIALISE CUSTOMER RECORD
*

... CREATE CUSTNO and BRANCHNO
*
* GET CUSTOMER RECORD
*

EXEC CICS PUT CONTAINER(CUSTOMER-NO) CHANNEL(INQUIRY-CHANNEL)
FROM(CUSTNO) FLENGTH(LENGTH OF CUSTNO)
END-EXEC

EXEC CICS PUT CONTAINER(BRANCH-NO) CHANNEL(INQUIRY-CHANNEL)
FROM(BRANCHNO) FLENGTH(LENGTH OF BRANCHNO)
END-EXEC

EXEC CICS LINK PROGRAM(’SERVER1’) CHANNEL(INQUIRY-CHANNEL) END-EXEC

EXEC CICS GET CONTAINER(CUSTOMER-RECORD) CHANNEL(INQUIRY-CHANNEL)
INTO(CREC) END-EXEC

*
* PROCESS CUSTOMER RECORD
*

... FURTHER PROCESSING USING CUSTNAME and CUSTADDR1 etc...

EXEC CICS RETURN END-EXEC

EXIT.

Figure 41. A simple example of a program that creates a channel and passes it to a second
program

Chapter 14. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 191

Using channels: some typical scenarios
Channels and containers provide a powerful way to pass data between programs.
This section contains some examples of how channels can be used.

One channel, one program
Figure 43 on page 193 shows the simplest scenario—a “standalone” program with a
single channel with which it can be invoked.

IDENTIFICATION DIVISION.
PROGRAM-ID. SERVER1.

WORKING-STORAGE SECTION.

COPY INQINTC
* copybook INQINTC
* Channel name
* 01 INQUIRY-CHANNEL PIC X(16) VALUE ’inqcustrec’.
* Container names
* 01 CUSTOMER-NO PIC X(16) VALUE ’custno’.
* 01 BRANCH-NO PIC X(16) VALUE ’branchno’.
* 01 CUSTOMER-RECORD PIC X(16) VALUE ’custrec’.
* Define the data fields used by the program
* 01 CUSTNO PIC X(8).
* 01 BRANCHNO PIC X(5).
* 01 CREC.
* 02 CUSTNAME PIC X(80).
* 02 CUSTADDR1 PIC X(80).
* 02 CUSTADDR2 PIC X(80).
* 02 CUSTADDR3 PIC X(80).

PROCEDURE DIVISION.
MAIN-PROCESSING SECTION.

EXEC CICS GET CONTAINER(CUSTOMER-NO)
INTO(CUSTNO) END-EXEC

EXEC CICS GET CONTAINER(BRANCH-NO)
INTO(BRANCHNO) END-EXEC

... USE CUSTNO AND BRANCHNO TO FIND CREC IN A DATABASE

EXEC CICS PUT CONTAINER(CUSTOMER-RECORD)
FROM(CREC)
FLENGTH(LENGTH OF CREC) END-EXEC

EXEC CICS RETURN END-EXEC

EXIT.

Figure 42. A simple example of a linked to program that retrieves data from the channel it
has been passed. This program is linked-to by program CLIENT1 shown in Figure 41 on
page 191.

192 CICS TS for z/OS: CICS Application Programming Guide

One channel, several programs (a component)
In Figure 44, there is a single channel to the top-level program in a set of
inter-related programs. The set of programs within the shaded area can be
regarded as a “component”. The client program “sees” only the external channel
and has no knowledge of the processing that takes place nor of the existence of the
back-end programs.

Inside the component, the programs can pass the channel between themselves.
Alternatively, a component program could, for example, pass a subset of the
original channel, by creating a new channel and adding one or more containers
from the original channel.

Several channels, one component
As in the previous example, we have a set of inter-related programs that can be
regarded as a component. However, this time there are two, alternative, external
channels with which the component can be invoked. The top-level program in the
component issues an EXEC CICS ASSIGN CHANNEL command to determine
which channel it has been invoked with, and tailors its processing accordingly.

EXEC CICS LINK PROGRAM('payr')

CHANNEL('payroll')

PAYR program

Figure 43. A standalone program with a single channel

EXEC CICS LINK PROGRAM('payr')

CHANNEL('payroll')

CH

CH

CH

Figure 44. A “component”—a set of related programs invoked through a single external channel. “CH” indicates that
the programs within the component can pass channels between themselves.

Chapter 14. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 193

The “loose coupling” between the client program and the component permits easy
evolution. That is, the client and the component can be upgraded at different times.
For example, first the component could be upgraded to handle a third channel,
consisting of a different set of containers from the first or second channels. Next,
the client program could be upgraded (or a new client written) to pass the third
channel.

Multiple interactive components
Figure 46 on page 195 shows a “Human resources” component and a “Payroll”
component, each with a channel with which it can be invoked. The Payroll
component is invoked from both a standalone program and the Human resources
component.

EXEC CICS LINK PROGRAM('payr')

CHANNEL('payroll)-2003'

EXEC CICS LINK PROGRAM('payr')

CHANNEL('payroll)-2004'

CH

CH
CH

EXEC CICS ASSIGN

CHANNEL(ch-name)

:

:

Figure 45. Multiple external channels to the same component. “CH” indicates that the programs within the component
may pass channels between themselves.

194 CICS TS for z/OS: CICS Application Programming Guide

Creating a channel
About this task

You create a channel by naming it on one of the following commands:
EXEC CICS LINK PROGRAM CHANNEL
EXEC CICS MOVE CONTAINER CHANNEL TOCHANNEL
EXEC CICS PUT CONTAINER CHANNEL
EXEC CICS RETURN TRANSID CHANNEL
EXEC CICS START TRANSID CHANNEL
EXEC CICS XCTL PROGRAM CHANNEL

If the channel doesn't already exist, within the current program scope, it is created.

The most straightforward way to create a channel, and populate it with containers of
data, is to issue a succession of EXEC CICS PUT CONTAINER(container-name)
CHANNEL(channel-name) FROM(data_area) commands. The first PUT command
creates the channel (if it doesn't already exist), and adds a container to it; the
subsequent commands add further containers to the channel. If the containers
already exist, their contents are overwritten by the new data.

An alternative way to add containers to a channel is to move them from another
channel. To do this, use the following command:
EXEC CICS MOVE CONTAINER(container-name) AS(container-new-name)

CHANNEL(channel-name1) TOCHANNEL(channel-name2)

Note:

EXEC CICS LINK PROGRAM('payr')

CHANNEL('payroll')

EXEC CICS PUT

CONTAINER...

EXEC CICS LINK

PROGRAM('payr')

CHANNEL('payroll')

Human resources component

Payroll component

CH

CHCH

CH

Containers

Containers

Figure 46. Multiple components which interact through their channels

Chapter 14. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 195

1. If the CHANNEL or TOCHANNEL option isn't specified, the current channel is
implied.

2. The source channel must be in program scope.

3. If the target channel doesn't already exist, within the current program
scope, it is created.

4. If the source container doesn't exist, an error occurs.

5. If the target container doesn't already exist, it is created; if it already
exists, its contents are overwritten.

You can use MOVE CONTAINER, instead of GET CONTAINER and PUT
CONTAINER, as a more efficient way of transferring data between channels.

If the channel named on the following commands doesn't already exist, within the
current program scope, an empty channel is created:
v EXEC CICS LINK PROGRAM CHANNEL(channel-name)
v EXEC CICS RETURN TRANSID CHANNEL(channel-name)
v EXEC CICS START TRANSID CHANNEL(channel-name)
v EXEC CICS XCTL PROGRAM CHANNEL(channel-name)

The current channel
A program's current channel is the channel (if any) with which it was invoked. The
program can create other channels. However, the current channel, for a particular
invocation of a particular program, does not change. It is analogous to a parameter
list.

Current channel example, with LINK commands

The following figure illustrates the origin of a program's current channel. It shows
five interactive programs. Program A is a top-level program started by, for example,
a terminal end-user. It isn't started by a program and doesn't have a current
channel.

B, C, D, and E are second-, third-, fourth-, and fifth-level programs, respectively.

Program B's current channel is X, passed by the CHANNEL option on the EXEC
CICS LINK command issued by program A. Program B modifies channel X by
adding one container and deleting another.

Program C's current channel is also X, passed by the CHANNEL option on the
EXEC CICS LINK command issued by program B.

Program D has no current channel, because C doesn't pass it one.

Program E's current channel is Y, passed by the CHANNEL option on the EXEC
CICS LINK command issued by D.

196 CICS TS for z/OS: CICS Application Programming Guide

The following table lists the name of the current channel (if any) of each of the five
programs shown in the previous figure.

LINK PROGRAM(E) INTERFACE(Y)

PROG A

Current CH: none

:

PUT CONTAINER(THREE) FROM(area-a)

DELETE CONTAINER(TWO)

LINK PROGRAM(C) CHANNEL(X)

:

:

RETURN

PROG B

Current CH: X

PROG D

:

PUT CONTAINER(first) CHANNEL(Y) FROM(a1)

PUT CONTAINER(second) CHANNEL(Y) FROM(a2)

LINK PROGRAM(E) CHANNEL(Y)

:

RETURN

Current CH: none

PROG C

Current CH: X

:

LINK PROGRAM(D)

:

:

RETURN

PROG E

Current CH: Y

:

:

RETURN

PUT CONTAINER(ONE) CHANNEL(X) FROM(area1)

PUT CONTAINER(TWO) CHANNEL(X) FROM(area2)

LINK PROGRAM(B) CHANNEL(X)

:

:

Figure 47. Current channel: example with LINK commands

Chapter 14. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 197

Table 9. The current channels of interactive programs—example with LINK commands

Prog. Current
CH

Issues commands Comments

A None

.
EXEC CICS PUT CONTAINER(ONE)

CHANNEL(X) FROM(area1)
EXEC CICS PUT CONTAINER(TWO)

CHANNEL(X) FROM(area2)
EXEC CICS LINK PROGRAM(B) CHANNEL(X)
.

Program A creates channel X and passes it to
program B.

Note that, by the time control is returned to
program A by program B, the X channel has
been modified—it doesn't contain the same set
of containers as when it was created by
program A. (Container TWO has been deleted
and container THREE added by program B.)

B X

.
EXEC CICS PUT CONTAINER(THREE)

FROM(area-a)
EXEC CICS DELETE CONTAINER(TWO)
EXEC CICS LINK PROGRAM(C) CHANNEL(X)
.
.
EXEC CICS RETURN

Program B modifies channel X (its current
channel) by adding and deleting containers, and
passes the modified channel to program C.

Program B doesn't need to specify the
CHANNEL option on the PUT CONTAINER and
DELETE CONTAINER commands; its current
channel is implied.

C X

.
EXEC CICS LINK PROGRAM(D)
.
.
EXEC CICS RETURN

Program C links to program D, but does not
pass it a channel.

D None

.
EXEC CICS PUT CONTAINER(first)

CHANNEL(Y) FROM(a1)
EXEC CICS PUT CONTAINER(second)

CHANNEL(Y) FROM(a2)
EXEC CICS LINK PROGRAM(E) CHANNEL(Y)
.
.
EXEC CICS RETURN

Program D creates a new channel, Y, which it
passes to program E.

E Y
.
RETURN
.

Program E performs some processing on the
data it's been passed and returns.

Current channel example, with XCTL commands
Figure 48 on page 199 shows four interactive programs. A1 is a top-level program
started by, for example, a terminal end-user. It isn't started by a program and
doesn't have a current channel. B1, B2, and B3 are all second-level programs.

B1's current channel is X, passed by the CHANNEL option on the EXEC CICS LINK
command issued by A1.

B2 has no current channel, because B1 doesn't pass it one.

B3's current channel is Y, passed by the CHANNEL option on the EXEC CICS
XCTL command issued by B2.

When B3 returns, channel Y and its containers are deleted by CICS.

198 CICS TS for z/OS: CICS Application Programming Guide

The following table lists the name of the current channel (if any) of each of the four
programs shown in Figure 48.

Table 10. The current channels of interactive programs—example

Program Current
channel

Issues command

A1 None
.
EXEC CICS LINK PROGRAM(B1) CHANNEL(X)
.

B1 X
.
EXEC CICS XCTL PROGRAM(B2)
.

B2 None
.
EXEC CICS XCTL PROGRAM(B3) CHANNEL(Y)
.

B3 Y
.
EXEC CICS RETURN
.

Current channel: START and RETURN commands
Besides EXEC CICS LINK and XCTL, two other commands can be used to invoke
a program and pass it a channel:

EXEC CICS START TRANSID(tranid) CHANNEL(channel-name)
The program that implements the started transaction (or the first program, if
there are more than one) is passed the channel, which becomes its current
channel.

PROG A1

Current CH: none

PROG B2

Current CH: none

PROG B3

Current CH: Y

LINK PROGRAM(B1) CHANNEL(X)

XCTL PROGRAM(B2)

XCTL PROGRAM(B3)

CHANNEL(Y)

RETURN

Current CH: X

PROG B1

Figure 48. Current channels—example, with XCTL commands

Chapter 14. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 199

EXEC CICS RETURN TRANSID(tranid) CHANNEL(channel-name)
The CHANNEL option is valid only:
v On pseudoconversational RETURNs—that is, on RETURN commands that

specify, on the TRANSID option, the next transaction to be run at the user
terminal.

v If issued by a program at the highest logical level—that is, a program that
returns control to CICS.

The program that implements the next transaction is passed the channel, which
becomes its current channel.

The scope of a channel
The scope of a channel is the code from which it can be accessed.

Scope example, with LINK commands

The following figure shows the same five interactive programs previously described
in “Current channel example, with LINK commands”.

The scope of the X channel—the code from which it can be accessed—is programs
A, B, and C.

The scope of the Y channel is programs D and E.

Note that, by the time control is returned to program A by program B, the X channel
has been modified—it doesn't contain the same set of containers as when it was
created by program A.

200 CICS TS for z/OS: CICS Application Programming Guide

The following table lists the name and scope of the current channel (if any) of each
of the five programs shown in the previous figure.

LINK PROGRAM(E) INTERFACE(Y)

PUT CONTAINER(ONE) CHANNEL(X) FROM(area1)

PUT CONTAINER(TWO) CHANNEL(X) FROM(area2)

LINK PROGRAM(B) CHANNEL(X)

:

:

PROG A

Current Channel: none

:

PUT CONTAINER(THREE) FROM(area-a)

DELETE CONTAINER(TWO)

LINK PROGRAM(C) CHANNEL(X)

:

:

RETURN

PROG B

Current Channel: X

PROG D

:

PUT CONTAINER(first) CHANNEL(Y) FROM(a1)

PUT CONTAINER(second) CHANNEL(Y) FROM(a2)

LINK PROGRAM(E) CHANNEL(Y)

:

RETURN

Current Channel: none

Scope of Channel X

Scope of Channel Y

PROG C

Current Channel: X

:

LINK PROGRAM(D)

:

:

RETURN

PROG E

Current Channel: Y

:

:

RETURN

Figure 49. The scope of a channel—example showing LINK commands

Chapter 14. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 201

Table 11. The scope of a channel—example with LINK commands

Program Current channel Scope of channel

A None Not applicable

B X A, B, C

C X A, B, C

D None Not applicable

E Y D, E

Scope example, with LINK and XCTL commands
Figure 50 on page 203 shows the same four interactive programs previously
described in “Current channel example, with XCTL commands”, plus a third-level
program, C1, that is invoked by an EXEC CICS LINK command from program B1.

The scope of the X channel is restricted to A1 and B1.

The scope of the Y channel is B2 and B3.

The scope of the Z channel is B1 and C1.

Note that, by the time control is returned to program A1 by program B3, it's possible
that the X channel may have been modified by program B1—it might not contain
the same set of containers as when it was created by A1.

202 CICS TS for z/OS: CICS Application Programming Guide

The following table lists the name and scope of the current channel (if any) of each
of the five programs shown in Figure 50.

Table 12. The scope of a channel—example with LINK and XCTL commands

Program Current channel Scope of channel

A1 None Not applicable

B1 X A1 and B1

B2 None Not applicable

B3 Y B2 and B3

C1 Z B1 and C1

PROG A1

Current CH: none

PROG B2

Current CH: none

PROG B3

Current CH: Y

LINK PROGRAM(B1) CHANNEL(X)

XCTL PROGRAM(B2)

LINK PROGRAM(C1) CHANNEL(Z)

XCTL PROGRAM(B3)

CHANNEL(Y)

RETURN

Current CH: Z

PROG C1

Channel X scope =

Channel Y scope =

Channel Z scope =

X and Z scope =

PROG B1

Current CH: X

Figure 50. The scope of a channel—example showing LINK and XCTL commands

Chapter 14. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 203

Discovering which containers a program's been passed
Typically, programs that exchange a channel are written to handle that channel.
That is, both client and server programs know the name of the channel, and the
names and number of the containers in the channel. However, if, for example, a
server program or component is written to handle more than one channel, on
invocation it must discover which of the possible channels it's been passed.

A program can discover its current channel—that is, the channel with which it was
invoked—by issuing an EXEC CICS ASSIGN CHANNEL command. (If there is no
current channel, the command returns blanks.)

The program can also (should it need to) get the names of the containers in its
current channel by browsing. Typically, this is not necessary. A program written to
handle several channels is often coded to be aware of the names and number of
the containers in each possible channel.

To get the names of the containers in the current channel, use the browse
commands:
v EXEC CICS STARTBROWSE CONTAINER BROWSETOKEN(data-area) .
v EXEC CICS GETNEXT CONTAINER(data-area) BROWSETOKEN(token).
v EXEC CICS ENDBROWSE CONTAINER BROWSETOKEN(token).

Having retrieved the name of its current channel and, if necessary, the names of
the containers in the channel, a server program can adjust its processing to suit the
kind of data that it's been passed.

Discovering which containers were returned from a link
A program creates a channel, which it passes to a second program by means of an
EXEC CICS LINK PROGRAM(program-name) CHANNEL(channel-name)
command. The second program performs some processing on the data it's been
passed, and returns the results in the same channel (its current channel).

On return, the first program knows the name of the channel which has been
returned, but not necessarily the names of the containers in the channel. (Does the
returned channel contain the same containers as the passed channel, or has the
second program deleted some or created others?) The first program can discover
the container-names by browsing. To do this, it uses the commands:
v EXEC CICS STARTBROWSE CONTAINER BROWSETOKEN(data-area)

CHANNEL(channel-name).
v EXEC CICS GETNEXT CONTAINER(data-area) BROWSETOKEN(token).
v EXEC CICS ENDBROWSE CONTAINER BROWSETOKEN(token).

CICS read only containers
CICS can create channels and containers for its own use, and pass them to user
programs. In some cases CICS marks these containers as read only, so that the
user program cannot modify data which CICS needs on return from the user
program.

User programs cannot create read only containers.

You cannot overwrite, move, or delete a read only container. Thus, if you specify a
read only container on a PUT CONTAINER, MOVE CONTAINER, or DELETE
CONTAINER command an INVREQ condition occurs.

204 CICS TS for z/OS: CICS Application Programming Guide

Designing a channel: best practices
About this task

It's possible to use containers to pass data in the same way as communication
areas (COMMAREAs) have traditionally been used. However, channels have
several advantages over COMMAREAs (see “Benefits of channels” on page 215)
and it pays to design your channels to make the most of these improvements.

At the end of a DPL call, input containers that have not been changed by the
server program are not returned to the client. Input containers whose contents
have been changed by the server program, and containers created by the server
program, are returned. Therefore, for optimal DPL performance:
v Use separate containers for input and output data.
v The server program, not the client, should create the output containers.
v Use separate containers for read-only and read-write data.
v If a structure is optional, make it a separate container.
v Use dedicated containers for error information.

Here are some general tips on designing a channel. They include and expand on
the recommendations for achieving optimal DPL performance.

v Use separate containers for input and output data. This leads to:

– Better encapsulation of the data, making your programs easier to maintain.

– Greater efficiency when a channel is passed on a DPL call, because smaller
containers flow in each direction.

v The server program, not the client, should create the output containers. If the
client creates them, empty containers will be sent to the server region.

v Use separate containers for read-only and read-write data. This leads to:

– A simplification of your copybook structure, making your programs easier to
understand.

– Avoidance of the problems with REORDER overlays.

– Greater transmission efficiency between CICS regions, because read-only
containers sent to a server region will not be returned.

v Use separate containers for each structure. This leads to:

– Better encapsulation of the data, making your programs easier to understand
and maintain.

– Greater ease in changing one of the structures, because you don't need to
recompile the entire component.

– The ability to pass a subset of the channel to sub-components, by using the
MOVE CONTAINER command to move containers between channels.

v If a structure is optional, make it a separate container. This leads to greater
efficiency, because the structure is passed only if the container is present.

v Use dedicated containers for error information. This leads to:

– Better documentation of what is error information.

– Greater efficiency, because:

1. The structure containing the error information is passed back only if an
error occurs.

2. It is more efficient to check for the presence of an error container by
issuing a GET CONTAINER(known-error-container-name) command (and
possibly receiving a NOTFOUND condition) than it is to initiate a browse
of the containers in the channel.

Chapter 14. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 205

v When you need to pass data of different types—for example, character data in
codepage1 and character data in codepage2—use separate containers for each
type, rather than one container with a complicated structure. This improves your
ability to move between different code pages.

v When you need to pass a large amount of data, split it between multiple
containers, rather than put it all into one container.

When a channel is passed to a remote program or transaction, passing a large
amount of data may affect performance. This is particularly true if the local and
remote regions are connected by an ISC, rather than MRO, connection.

CAUTION:
Take care not to create so many large containers that you limit the amount
of storage available to other applications.

For information about migrating programs that use COMMAREAs to use channels
instead, see “Migration to the new function” on page 216.

Constructing and using a channel: an example
Figure 51 shows a CICS client program that:

1. Uses EXEC CICS PUT CONTAINER commands to construct (and put data in) a
set of containers. The containers are all part of the same named
channel—“payroll-2004”.

2. Issues an EXEC CICS LINK command to invoke the PAYR server program,
passing it the payroll-2004 channel.

3. Issues an EXEC CICS GET CONTAINER command to retrieve the server's
program output, which it knows will be in the status container of the
payroll-2004 channel.

Figure 52 on page 207 shows part of the PAYR server program invoked by the client.
The server program:

1. Queries the channel with which it's been invoked.

2. Issues EXEC CICS GET CONTAINER commands to retrieve the input from the
employee and wage containers of the payroll-2004 channel.

3. Processes the input data.

4. Issues an EXEC CICS PUT CONTAINER command to return its output in the
status container of the payroll-2004 channel.

* create the employee container on the payroll-2004 channel
EXEC CICS PUT CONTAINER(’employee’) CHANNEL(’payroll-2004’) FROM(’John Doe’)

* create the wage container on the payroll-2004 channel
EXEC CICS PUT CONTAINER(’wage’) CHANNEL(’payroll-2004’) FROM(’100’)

* invoke the payroll service, passing the payroll-2004 channel
EXEC CICS LINK PROGRAM(’PAYR’) CHANNEL(’payroll-2004’)

* examine the status returned on the payroll-2004 channel
EXEC CICS GET CONTAINER(’status’) CHANNEL(’payroll-2004’) INTO(stat)

Figure 51. How a client program can construct a channel, pass it to a server program, and
retrieve the server's output

206 CICS TS for z/OS: CICS Application Programming Guide

#
#

#
#

Channels and BTS activities
The PUT, GET, MOVE, and DELETE CONTAINER commands used to build and
interact with a channel are similar to those used in CICS business transaction
services (BTS) applications. (For information about BTS, see the CICS Business
Transaction Services manual.) Thus, programmers with experience of BTS will find
it easy to use containers in non-BTS applications. Furthermore, server programs
that use containers can be called from both channel and BTS applications. An
example of this is shown in Figure 53 on page 208.

"PAYR", CICS COBOL server program

* discover which channel I’ve been invoked with
EXEC CICS ASSIGN CHANNEL(ch_name)
:
WHEN ch_name ’payroll-2004’

* my current channel is "payroll-2004"
* get the employee passed into this program
EXEC CICS GET CONTAINER(’employee’) INTO(emp)
* get the wage for this employee
EXEC CICS GET CONTAINER(’wage’) INTO(wge)
:
* process the input data
:
:
* return the status to the caller by creating the status container
* on the payroll channel and putting a value in it
EXEC CICS PUT CONTAINER(’status’) FROM(’OK’)
:
:

WHEN ch_name ’payroll-2005’
* my current channel is "payroll-2005"
:
:
:

Figure 52. How a server program can query the channel it's been passed, retrieve data from
the channel's containers, and return output to the caller

Chapter 14. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 207

Context
As shown in Figure 53, a program that issues container commands can be used,
without change, as part of a channel application or as part of a BTS activity.

For a program to be used in both a channel and a BTS context, the container
commands that it issues must not specify any options that identify them as either
channel or BTS commands. The options to be avoided on each of the container
commands are:

DELETE CONTAINER
ACQACTIVITY (BTS-specific)

* create the employee container

* on the payroll-2004 Channel

EXEC CICS PUT CONTAINER('employee')

CHANNEL('payroll-2004') FROM('John Doe')

* create the wage container

* on the payroll-2004 Channel

EXEC CICS PUT CONTAINER('wage')

CHANNEL('payroll-2004') FROM('100')

* invoke the payroll service,

* passing the payroll-2004 Channel

EXEC CICS LINK PROGRAM('PAYR')

CHANNEL('payroll-2004')

* examine the status returned on

* the payroll-2004 Channel

EXEC CICS GET CONTAINER('status')

CHANNEL('payroll-2004') INTO(stat)

CICS Channel program

* create the employee container

* on the payroll-2004 Channel

EXEC CICS PUT CONTAINER('employee')

ACTIVITY('payroll-2004') FROM('John Doe')

* create the wage container

* on the payroll-2004 Channel

EXEC CICS PUT CONTAINER('wage')

ACTIVITY('payroll-2004') FROM('100')

* invoke the payroll service,

* passing the payroll-2004 Channel

EXEC CICS LINK ACTIVITY('payroll-2004')

* examine the status returned on

* the payroll-2004 Channel

EXEC CICS GET CONTAINER('status')

ACTIVITY('payroll-2004') INTO(stat)

CICS BTS program

DEFINE ACTIVITY('payroll')

PROGRAM('payact')

Program PAYACT

EXEC CICS RETRIEVE EVENT(...

WHEN('....

EXEC CICS LINK PROGRAM('payr')

Program PAYR

* get the employee passed into this program

EXEC CICS GET CONTAINER('employee')

INTO(emp)

:

:

* return the status to the caller

EXEC CICS PUT CONTAINER('status')

FROM('OK')

BTS event-driven wrapper controls

a more sophisticated application

Simple client uses a Channel to

pass containers to the service

Container-aware programs can

be called from both Channel

and BTS applications

Figure 53. Channels and BTS activities

208 CICS TS for z/OS: CICS Application Programming Guide

ACQPROCESS (BTS-specific)
ACTIVITY (BTS-specific)
CHANNEL (channel-specific)
PROCESS (BTS-specific)

GET CONTAINER
ACQACTIVITY (BTS-specific)
ACQPROCESS (BTS-specific)
ACTIVITY (BTS-specific)
CHANNEL (channel-specific)
INTOCCSID (channel-specific)
PROCESS (BTS-specific)

MOVE CONTAINER
FROMACTIVITY (BTS-specific)
CHANNEL (channel-specific)
FROMPROCESS (BTS-specific)
TOACTIVITY (BTS-specific)
TOCHANNEL (channel-specific)
TOPROCESS (BTS-specific)

PUT CONTAINER
ACQACTIVITY (BTS-specific)
ACQPROCESS (BTS-specific)
ACTIVITY (BTS-specific)
CHANNEL (channel-specific)
DATATYPE (channel-specific)
FROMCCSID (channel-specific)
PROCESS (BTS-specific)

When a container command is executed, CICS analyzes the context (channel, BTS,
or neither) in which it occurs, in order to determine how to process the command.
To determine the context, CICS uses the following sequence of tests:

1. Channel: does the program have a current channel?

2. BTS: is the program part of a BTS activity?

3. None: the program has no current channel and is not part of a BTS activity. It
therefore has no context in which to execute container commands. The
command is rejected with an INVREQ condition and a RESP2 value of 4.

Using channels from JCICS
For information about using channels with JCICS, see Java Applications in CICS.

Dynamic routing with channels
EXEC CICS LINK and EXEC CICS START commands, which can pass either
COMMAREAs or channels, can be dynamically routed. Thus the following types of
channel-related request can be dynamically routed:
v Program-link (DPL) requests
v Transactions started by terminal-related START requests
v Non-terminal-related START requests

The routing program is passed, in the DYRCHANL field of its communication area,
the name of the channel, if any, associated with the program-link or START
command. The DYRCHANL field applies only to the three types of request listed
above. For other types of request, or if there is no channel associated with the
request, it contains blanks.

Chapter 14. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 209

Note: The routing program’s communication area is mapped by the DFHDYPDS
DSECT.

Note that the routing program is given the name of the channel, not its address,
and so is unable to use the DYRCHANL field to inspect or change the contents of
the containers.

When a LINK or START command passes a COMMAREA rather than a channel,
the routing program can, depending on the type of request, inspect or change the
COMMAREA’s contents. For LINK requests and transactions started by
terminal-related START requests (which are handled by the dynamic routing
program) but not for non-terminal-related START requests (which are handled by
the distributed routing program) the routing program is given, in the DYRACMAA
field of DFHDYPDS, the address of the application’s COMMAREA, and can inspect
and change its contents.

To give the routing program the same kind of functionality with channels, an
application that uses a channel can create, within the channel, a special container
named DFHROUTE. If the application issues a LINK or terminal-related START
request (but not a non-terminal-related START request) that is to be dynamically
routed, the dynamic routing program is given, in the DYRACMAA field of
DFHDYPDS, the address of the DFHROUTE container, and can inspect and
change its contents.

If you are migrating a program to pass a channel rather than a COMMAREA, you
could use its existing COMMAREA structure to map DFHROUTE.

Data conversion

Why is data conversion needed?
Here are some cases in which data conversion is necessary:

v When character data is passed between platforms that use different encoding
standards—for example, EBCDIC and ASCII.

v When you want to change the encoding of some character data from one Coded
Character Set Identifier (CCSID) to another.

Preparing for code page conversion with channels
About this task

The conversion of data to or from either UTF-8 or UTF-16 and EBCDIC and ASCII
codepages, depends on the selection of suitable conversion images. Conversion
between the UTF-8 and UTF-16 forms of Unicode is also supported.

Appendix F of the z/OS Support for Unicode: Using Conversion Services manual
-SA22 -7649 records those conversions which are supported though these services.
These are not limited to Unicode, but include the ability to convert between a broad
range of character encodings, including EBCDIC, ASCII and Unicode.

Note:

1. The conversion between 037 and 500, as used, for example, with the
MQ transport is an EBCDIC to EBCDIC conversion brought about by
small differences in the character encodings used by CICS and MQ.

210 CICS TS for z/OS: CICS Application Programming Guide

2. You need to be aware that not all points in each codepage have direct
counterparts in other codepages. The EBCDIC character NL is one such
example. Java and z/OS conversion services may differ in the
conversions that they perform. "Technotes", and other Internet
discussions may offer guidance on particular points. It is also worth
observing that programming communities are themselves divided on the
question of what is the more appropriate conversion in particular
circumstances.

CICS now supports any of these character conversions by making use of the z/OS
conversion services. However, those conversions that earlier releases of CICS
carried out using a set of tables, continue to be supported in that manner. It is only
if CICS TS 3.1 is asked to carry out a conversion between a pair of CCSIDs that
are unsupported via these tables, that it attempts the conversion using the z/OS
services.

Ensuring that required conversion images are available
Those CCSIDs used as part of CICS applications must be made known to
the System Programmers responsible for maintaining the z/OS Conversion
Image, so that specific conversions are available to the CICS regions where
these applications execute.

Handling CCSID 1200

CICS supports conversions involving UTF-16 data using any of the
following CCSID's: 1200, 1201, and 1202. The z/OS conversion services
permit CCSID 1200, in its big-endian form, to be used, but does not contain
support for the little-endian form or for CCSIDs 1201 or 1202. CICS
transforms any source data that is identified in any of these unsupported
forms to the big-endian form of 1200 before passing the data to z/OS for
conversion. If the target data is one of the unsupported forms then CICS
receives the data as the big-endian form of 1200 and transforms it to the
required CCSID. If the target CCSID is 1200 then CICS assumes the
encoding to be in big-endian form. If the conversion is between any of
these CCSIDs then CICS will carry out the transformation without calling
the z/OS conversion services.

When setting up the z/OS conversion image for conversions involving any
of these forms of UTF-16 then CCSID 1200 must be specified. CCSIDs
1201 and 1202 will not be recognised by z/OS when attempting to create a
conversion image.

CICS respects the byte order marker for inbound conversions, but is not
able to retain that information when handling a related outbound
conversion. All outbound data for CCSID 1200 is UTF16-BE. Application
programmers need to know about this and perform their own BE to LE
conversions if they so require.

Sharing a conversion image

v Unless the PTF for APAR OA05744 is applied, do not specify a search
order for those conversions, installed into the z/OS image which are
intended for use by CICS.

v If the same conversions are needed for COBOL you must define the
conversion image with two separate statements:

– one with no search order, and

– the other explicitly specifying a search order of 'RECLM'.

for example:.

Chapter 14. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 211

CONVERSION 850,037;
CONVERSION 850,037,RECLM;

With the APAR installed, CICS and COBOL can make use of those
supported conversions which specify the default search order implicitly or
explicitly, removing the need to provide two control statements in the image
generation file.

JAVA programs
Codepage conversion facilities exist within JAVA, So it is not neccessary to
duplicate these in CICS. The conversion facilities described here do not
extend to JAVA programs.

Data conversion with channels
Applications that use channels to exchange data use a simple data conversion
model. Frequently, no conversion is required and, when it is, a single programming
instruction can be used to tell CICS to handle it automatically.

Note the following:

v Usually, when a (non-Java) CICS TS program calls another (non-Java) CICS TS
program, no data conversion is required, because both programs use EBCDIC
encoding. For example, if a CICS TS C-language program calls a CICS TS
COBOL program, passing it some containers holding character data, the only
reason for using data conversion would be the unusual one of wanting to change
the CCSID of the data.

v The data conversion model used by channel applications is much simpler than
that used by COMMAREA applications. Applications that use COMMAREAs to
exchange data use the traditional data conversion model described in the CICS
Family: Communicating from CICS on System/390® manual. Conversion is done
under the control of the system programmer, using the DFHCNV conversion
table, the DFHCCNV conversion program and, optionally, the DFHUCNV
user-replaceable conversion program.

In contrast, the data in channel containers is converted under the control of the
application programmer, using API commands.

v The application programmer is responsible only for the conversion of user
data—that is, the data in containers created by his application programs. System
data is converted automatically by CICS, where necessary.

v The application programmer is concerned only with the conversion of character
data. The conversion of binary data (between big-endian and little-endian) is not
supported.

v Your applications can use the container API as a simple means of converting
character data from one code page to another—see “Using containers to do code
page conversion” on page 214.

For data conversion purposes, CICS recognizes two types of data:

CHAR Character data—that is, a text string. The data in the container is converted
(if necessary) to the code page of the application that retrieves it. If the
application that retrieves the data is a client on an ASCII-based system, this
will be an ASCII code page. If it is a CICS Transaction Server for z/OS
application, it will be an EBCDIC code page.

All the data in a container is converted as if it were a single character
string. For single-byte character set (SBCS) code pages, a structure
consisting of several character fields is equivalent to a single-byte character
string. However, for double-byte character set (DBCS) code pages this is

212 CICS TS for z/OS: CICS Application Programming Guide

not the case. If you use DBCS code pages, to ensure that data conversion
works correctly you must put each character string into a separate
container.

BIT All non-character data—that is, everything that is not designated as being of
type CHAR. The data in the container cannot be converted. This is the
default value.

The API commands used for data conversion are:
v

EXEC CICS PUT CONTAINER [CHANNEL] [DATATYPE] [FROMCCSID]
v

EXEC CICS GET CONTAINER [CHANNEL] [INTOCCSID]

How to cause CICS to convert character data automatically
About this task

Procedure
1. In the client program, use the DATATYPE(DFHVALUE(CHAR)) option of the

PUT CONTAINER command to specify that a container holds character data
and that the data is eligible for conversion. For example:
EXEC CICS PUT CONTAINER(cont_name) CHANNEL(’payroll’)

FROM(data1) DATATYPE(DFHVALUE(CHAR))

There is no need to specify the FROMCCSID option unless the data is not in
the default CCSID of the client platform. (For CICS TS regions, the default
CCSID is specified on the LOCALCCSID system initialization parameter.) The
default CCSID is implied.

2. In the server program, issue a GET CONTAINER command to retrieve the
data from the program's current channel:
EXEC CICS GET CONTAINER(cont_name) INTO(data_area1)

The data is returned in the default CCSID of the server platform. There is no
need to specify the INTOCCSID option unless you want the data to be
converted to a CCSID other than the default. If the client and server platforms
are different, data conversion takes place automatically.

3. In the server program, issue a PUT CONTAINER command to return a value
to the client:
EXEC CICS PUT CONTAINER(status) FROM(data_area2)

DATATYPE(DFHVALUE(CHAR))

The DATATYPE(DFHVALUE(CHAR)) option specifies that the container holds
character data and that the data is eligible for conversion. There is no need to
specify the FROMCCSID option unless the data is not in the default CCSID of
the server platform.

4. In the client program, issue a GET CONTAINER command to retrieve the
status returned by the server program:
EXEC CICS GET CONTAINER(status) CHANNEL(’payroll’)

INTO(status_area)

The status is returned in the default CCSID of the client platform. There is no
need to specify the INTOCCSID option unless you want the data to be
converted to a CCSID other than the default. If the client and server platforms
are different, data conversion takes place automatically.

Chapter 14. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 213

Results

Using containers to do code page conversion
About this task

Your applications can use the container API as a simple means of converting
character data from one code page to another. The following example converts data
from codepage1 to codepage2:
EXEC CICS PUT CONTAINER(temp) DATATYPE(DFHVALUE(CHAR))

FROMCCSID(codepage1) FROM(input-data)
EXEC CICS GET CONTAINER(temp) INTOCCSID(codepage2)

SET(data-ptr) FLENGTH(data-len)

The following example converts data from the region's default EBCDIC code page
to a specified UTF8 code page:
EXEC CICS PUT CONTAINER(temp) DATATYPE(DFHVALUE(CHAR))

FROM(ebcdic-data)
EXEC CICS GET CONTAINER(temp) INTOCCSID(utf8_ccsid)

SET(utf8-data-ptr) FLENGTH(utf8-data-len)

When using the container API in this way, bear the following in mind:

v On GET CONTAINER commands, use the SET option, rather than INTO, unless
the converted length is known. (You can retrieve the length of the converted data
by issuing a GET CONTAINER(cont_name) NODATA FLENGTH(len) command.)

v To avoid a storage overhead, after conversion copy the converted data and
delete the container.

v To avoid shipping the channel, use a temporary channel.

v All-to-all conversion is not possible. That is, a code page conversion error occurs
if a specified code page and the channel's code page are an unsupported
combination.

A SOAP example
A CICS TS SOAP application:

1. Retrieves a UTF8 or UTF16 message from a socket or MQ message queue.

2. Puts the message into a container, in UTF8 format.

3. Puts EBCDIC data structures into other containers on the same channel.

4. Makes a distributed program link (DPL) call to a handler program on a back-end
AOR, passing the channel.

The back-end handler program, also running on CICS TS, can use EXEC CICS
GET CONTAINER commands to retrieve the EBCDIC data structures or the
messages. It can get the messages in UTF8 or UTF16, or in its own or the region's
EBCDIC code page. Similarly, it can use EXEC CICS PUT CONTAINER commands
to place data into the containers, in UTF8, UTF16, or EBCDIC.

To retrieve one of the messages in the region's EBCDIC code page, the handler
can issue the command:
EXEC CICS GET CONTAINER(input_msg) INTO(msg)

Because the INTOCCSID option is not specified, the message data is automatically
converted to the region's EBCDIC code page. (This assumes that the PUT
CONTAINER command used to store the message data in the channel specified a
DATATYPE of CHAR; if it specified a DATATYPE of BIT, the default, no conversion
is possible.)

214 CICS TS for z/OS: CICS Application Programming Guide

To return some output in the region's EBCDIC code page, the handler can issue the
command:
EXEC CICS PUT CONTAINER(output) FROM(output_msg)

Because CHAR is not specified, no data conversion will be permitted. Because the
FROMCCSID option is not specified, the message data is taken to be in the
region's EBCDIC code page.

To retrieve one of the messages in UTF8, the handler can issue the command:
EXEC CICS GET CONTAINER(input_msg) INTO(msg) INTOCCSID(utf8)

The INTOCCSID option is necessary to prevent automatic conversion of the data to
the region's EBCDIC code page.

To return some output in UTF8, the server program can issue the command:
EXEC CICS PUT CONTAINER(output) FROM(output_msg) FROMCCSID(utf8)

The FROMCCSID option specifies that the message data is currently in UTF8
format. Because CHAR is not specified, no data conversion will be permitted.

Benefits of channels

The channel/container model has several advantages over the communication
areas (COMMAREAs) traditionally used by CICS programs to exchange data. For
example:

v Unlike COMMAREAs, channels are not limited in size to 32KB. There is no limit
to the number of containers that can be added to a channel, and the size of
individual containers is limited only by the amount of storage that you have
available.

Take care not to create so many large containers that you limit the amount of
storage available to other applications.

v Because a channel can comprise multiple containers, it can be used to pass data
in a more structured way. In contrast, a COMMAREA is a monolithic block of
data.

v Unlike COMMAREAs, channels don't require the programs that use them to know
the exact size of the data returned.

v A channel is a standard mechanism for exchanging data between CICS
programs. A channel can be passed on LINK, START, XCTL, and RETURN
commands. Distributed program link (DPL) is supported, and the transactions
started by START CHANNEL and RETURN TRANSID commands may be
remote.

v Channels can be used by CICS application programs written in any of the
CICS-supported languages. For example, a Java client program on one CICS
region can use a channel to exchange data with a COBOL server program on a
back-end AOR.

v A server program can be written to handle multiple channels. It can, for example:
1. Discover, dynamically, the channel that it was invoked with
2. Browse the containers in the channel
3. Vary its processing according to the channel it's been passed

v You can build “components” from sets of related programs invoked through one
or more channels.

v The loose coupling between clients and components permits easy evolution.
Clients and components can be upgraded at different times. For example, first a

Chapter 14. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 215

#
#

component could be upgraded to handle a new channel, then the client program
upgraded (or a new client written) to use the new channel.

v The programmer is relieved of storage management concerns. CICS
automatically destroys containers (and their storage) when they go out of scope.

v The data conversion model used by channel applications is much simpler than
that used by COMMAREA applications. Also, whereas in COMMAREA
applications data conversion is controlled by the system programmer, in channel
applications it is controlled by the application programmer, using simple API
commands.

v Programmers with experience of CICS business transaction services (BTS) will
find it easy to use containers in non-BTS applications.

v Programs that use containers can be called from both channel and BTS
applications.

v Non-BTS applications that use containers can be migrated into full BTS
applications. (They form a migration route to BTS.)

This topic has listed some of the many benefits of channels. However, channels
may not be the best solution in all cases. When designing an application, there are
one or two implications of using channels that you should be aware of:

v When a channel is to be passed to a remote program or transaction, passing a
large amount of data may affect performance. This is particularly true if the local
and remote regions are connected by an ISC, rather than MRO, connection.

v A channel may use more storage than a COMMAREA designed to pass the
same data. This is because:

1. Container data can be held in more than one place.

2. COMMAREAs are accessed by pointer, whereas the data in containers is
copied between programs.

Migrating from COMMAREAs to channels
About this task

Migration of existing functions
About this task
v CICS application programs that use traditional communications areas

(COMMAREAS) to exchange data continue to work as before.

v If you employ a user-written dynamic or distributed routing program for workload
management, rather than CICSPlex SM, you must modify your program to
handle the new values that it may be passed in the DYRTYPE field of the
DFHDYPDS communications area—see the Customization Guide.

Migration to the new function
About this task

This section describes how you can migrate several types of existing application to
use channels and containers rather than communication areas (COMMAREAs).

It’s possible to replace a COMMAREA by a channel with a single container. While
this may seem the simplest way to move from COMMAREAs to channels and
containers, it’s not good practice to do this.

216 CICS TS for z/OS: CICS Application Programming Guide

#
#
#

#
#
#

#
#

#

#
#

Also, be aware that a channel may use more storage than a COMMAREA designed
to pass the same data. (See “Benefits of channels” on page 215.)

Because you’re taking the time to change your application programs to exploit this
new function, you should implement the “best practices” for channels and
containers—see “Designing a channel: best practices” on page 205. Channels have
several advantages over COMMAREAs (see “Benefits of channels” on page 215)
and it pays to design your channels to make the most of these improvements.

Migrating LINK commands that pass COMMAREAs
About this task

To migrate two programs which use a COMMAREA on a LINK command to
exchange a structure, change the instructions shown in Table 13.

Table 13. Migrating LINK commands that pass COMMAREAs

Program Before After

PROG1 EXEC CICS LINK PROGRAM(PROG2)
COMMAREA(structure)

EXEC CICS PUT CONTAINER(structure-name)
CHANNEL(channel-name) FROM(structure)

EXEC CICS LINK PROGRAM(PROG2)
CHANNEL(channel-name)...

EXEC CICS GET CONTAINER(structure-name)
CHANNEL(channel-name) INTO(structure)

PROG2 EXEC CICS ADDRESS COMMAREA(structure-ptr)
...
RETURN

EXEC CICS GET CONTAINER(structure-name)
INTO(structure)

...
EXEC CICS PUT CONTAINER(structure-name)

FROM(structure)
RETURN

Note: In the COMMAREA example, PROG2, having put data in the COMMAREA,
has only to issue a RETURN command to return the data to PROG1. In the
channel example, to return data PROG2 must issue a PUT CONTAINER
command before the RETURN.

Migrating XCTL commands that pass COMMAREAs
About this task

To migrate two programs which use a COMMAREA on an XCTL command to pass
a structure, change the instructions shown in Table 14.

Table 14. Migrating XCTL commands that pass COMMAREAs

Program Before After

PROG1 EXEC CICS XCTL PROGRAM(PROG2)
COMMAREA(structure)

EXEC CICS PUT CONTAINER(structure-name)
CHANNEL(channel-name) FROM(structure)

EXEC CICS XCTL PROGRAM(PROG2)
CHANNEL(channel-name)...

PROG2 EXEC CICS ADDRESS COMMAREA(structure-ptr)
...

EXEC CICS GET CONTAINER(structure-name)
INTO(structure)

...

Chapter 14. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 217

#
#

Migrating pseudoconversational COMMAREAs on RETURN
commands
About this task

To migrate two programs which use COMMAREAs to exchange a structure as part
of a pseudoconversation, change the instructions shown in Table 15.

Table 15. Migrating pseudoconversational COMMAREAs on RETURN commands

Program Before After

PROG1 EXEC CICS RETURN TRANSID(PROG2)
COMMAREA(structure)

EXEC CICS PUT CONTAINER(structure-name)
CHANNEL(channel-name) FROM(structure)

EXEC CICS RETURN TRANSID(TRAN2)
CHANNEL(channel-name)

PROG2 EXEC CICS ADDRESS COMMAREA(structure-ptr) EXEC CICS GET CONTAINER(structure-name)
INTO(structure)

Migrating START data
About this task

To migrate two programs which use START data to exchange a structure, change
the instructions shown in Table 16.

Table 16. Migrating START data

Program Before After

PROG1 EXEC CICS START TRANSID(TRAN2)
FROM(structure)

EXEC CICS PUT CONTAINER(structure-name)
CHANNEL(channel-name) FROM(structure)

EXEC CICS START TRANSID(TRAN2)
CHANNEL(channel-name)

PROG2 EXEC CICS RETRIEVE INTO(structure) EXEC CICS GET CONTAINER(structure-name)
INTO(structure)

Note that the new version of PROG2 is the same as that in the
pseudoconversational example.

Migrating programs that use temporary storage to pass data
About this task

In previous releases, because the size of COMMAREAs is limited to 32K and
channels were not available, some applications used temporary storage queues
(TSQs) to pass more than 32K of data from one program to another. Typically, this
involved multiple writes to and reads from a TSQ.

If you migrate one of these applications to use channels, be aware that:

v If the TS queue used by your existing application is in main storage, the storage
requirements of the new, migrated, application are likely to be similar to those of
the existing application.

v If the TS queue used by your existing application is in auxiliary storage, the
storage requirements of the migrated application are likely to be greater than
those of the existing application. This is because container data is held in storage
rather than being written to disk.

218 CICS TS for z/OS: CICS Application Programming Guide

#
#

#
#
#
#

#

#
#
#

#
#
#
#

Migrating dynamically-routed applications
EXEC CICS LINK and EXEC CICS START commands, which can pass either
COMMAREAs or channels, can be dynamically routed.

When a LINK or START command passes a COMMAREA rather than a channel,
the routing program can, depending on the type of request, inspect or change the
COMMAREA’s contents. For LINK requests and transactions started by
terminal-related START requests (which are handled by the dynamic routing
program) but not for non-terminal-related START requests (which are handled by
the distributed routing program) the routing program is given, in the DYRACMAA
field of its communication area, the address of the application’s COMMAREA, and
can inspect and change its contents.

Note: The routing program’s communication area is mapped by the DFHDYPDS
DSECT.

If you migrate a dynamically-routed EXEC CICS LINK or START command to use a
channel rather than a COMMAREA, the routing program is passed, in the
DYRCHANL field of DFHDYPDS, the name of the channel. Note that the routing
program is given the name of the channel, not its address, and so is unable to use
the DYRCHANL field to inspect or change the contents of the channel’s containers.

To give the routing program the same kind of functionality with channels, an
application that uses a channel can create, within the channel, a special container
named DFHROUTE. If the application issues a LINK or terminal-related START
request (but not a non-terminal-related START request) that is to be dynamically
routed, the dynamic routing program is given, in the DYRACMAA field of
DFHDYPDS, the address of the DFHROUTE container, and can inspect and
change its contents.

If you are migrating a program to pass a channel rather than a COMMAREA, you
could use its existing COMMAREA structure to map DFHROUTE.

Chapter 14. Enhanced inter-program data transfer: channels as modern-day COMMAREAs 219

#

220 CICS TS for z/OS: CICS Application Programming Guide

Chapter 15. Affinity

CICS transactions and programs use many different techniques to pass data from
one to another. Some of these techniques require that the transactions or programs
exchanging data must execute in the same CICS region. This imposes restrictions
on the regions to which transactions and distributed program link (DPL) requests
can be dynamically routed. If transactions or programs exchange data in ways that
impose such restrictions, there is said to be an affinity among them.

Java
This guidance on affinity between transactions describes applications written
using the EXEC CICS API. However, many of the comments are equally valid
for Java applications and enterprise beans executing in a CICSplex. For
guidance on developing Java applications and enterprise beans, see Java
Applications in CICS.

Transactions, program-link requests, EXEC CICS START requests, CICS business
transaction services (BTS) activities, and enterprise bean method calls can all be
dynamically routed.

You can use a dynamic routing program to dynamically route:
v Transactions started from terminals
v Transactions started by eligible terminal-related EXEC CICS START commands
v Eligible CICS-to-CICS DPL requests
v Eligible program-link requests received from outside CICS.

You can use a distributed routing program to dynamically route:
v Eligible BTS processes and activities. (BTS is described in the CICS Business

Transaction Services manual.)
v Eligible non-terminal-related EXEC CICS START requests.

For detailed introductory information about dynamic and distributed routing, see the
CICS Intercommunication Guide.

Important
The following sections talk exclusively about affinities between transactions.
Keep in mind throughout the chapter that:

v Affinities can also exist between programs. (Although, strictly speaking, we
could say that it is the transactions associated with the programs that have
the affinity.) This may impose restrictions on the regions to which
program-link requests can be routed.

v The sections on safe, unsafe, and suspect programming techniques apply
to the routing of program-link and START requests, as well as to the routing
of transactions.

This chapter describes:
v “Types of affinity” on page 222
v “Programming techniques and affinity” on page 223
v “Safe programming to avoid affinity” on page 224
v “Unsafe programming for affinity” on page 229

© Copyright IBM Corp. 1989, 2010 221

v “Suspect programming for affinity” on page 236
v “Detecting inter-transaction affinities” on page 246
v “Duration and scope of inter-transaction affinities” on page 246

Types of affinity
There are two types of affinity that affect dynamic routing:
v Inter-transaction affinity
v Transaction-system affinity

Inter-transaction affinity
Transaction affinity among two or more CICS transactions is caused by the
transactions using techniques to pass information between one another, or to
synchronize activity between one another, in a way that requires the transactions to
execute in the same CICS region. This type of affinity is inter-transaction affinity,
where a set of transactions share a common resource and/or coordinate their
processing. Inter-transaction affinity, which imposes restrictions on the dynamic
routing of transactions, can occur in the following circumstances:

v One transaction terminates, leaving ‘state data’ in a place that a second
transaction can only access by running in the same CICS region as the first
transaction.

v One transaction creates data that a second transaction accesses while the first
transaction is still running. For this to work safely, the first transaction usually
waits on some event, which the second transaction posts when it has read the
data created by the first transaction. This technique requires that both
transactions are routed to the same CICS region.

v Two transactions synchronize, using an event control block (ECB) mechanism.
Because CICS has no function shipping support for this technique, this type of
affinity means the two transactions must be routed to the same CICS region.

Note: The same is true if two transactions synchronize, using an enqueue
(ENQ) mechanism, unless you have used appropriate ENQMODEL
resource definitions to give sysplex-wide scope to the ENQs. See the
CICS Resource Definition Guide .

Transaction-system affinity
There is another type of transaction affinity that is not an affinity among transactions
themselves. It is an affinity between a transaction and a particular CICS region,
where the transaction interrogates or changes the properties of that CICS
region—transaction-system affinity.

Transactions with affinity to a particular system, rather than another transaction, are
not eligible for dynamic routing. In general, they are transactions that use INQUIRE
and SET commands, or have some dependency on global user exit programs,
which also have an affinity with a particular CICS region.

Using INQUIRE and SET commands and global user exits
There is no remote (that is, function shipping) support for INQUIRE and SET
commands, nor is there a SYSID option on them, hence transactions using these
commands must be routed to the CICS regions that own the resources to which
they refer. In general, such transactions cannot be dynamically routed to any target
region, and therefore transactions that use INQUIRE and SET should be statically
routed.

222 CICS TS for z/OS: CICS Application Programming Guide

Global user exits running in different CICS regions cannot exchange data. It is
unlikely that user transactions pass data or parameters by means of user exits, but
if such transactions do exist, they must run in the same target region as the global
user exits.

Programming techniques and affinity
From the point of view of inter-transaction affinity in a dynamic or distributed routing
environment, the programming techniques used by your application programs can
be considered in three broad categories:
v Those techniques that are generally safe and do not cause inter-transaction

affinities
v Those techniques that are inherently unsafe
v Those techniques that are suspect in that they may, or may not, create affinities

depending on exactly how they are implemented

Safe techniques
The programming techniques in the generally safe category are:

v The use of the communication area (COMMAREA), supported by the CICS API
on a number of CICS commands. However, it is the COMMAREA option on the
CICS RETURN command only that is of interest in a dynamic or distributed
routing environment with regard to transaction affinity, because it is the
COMMAREA on a RETURN command that is passed to the next transaction in a
pseudoconversational transaction.

v The use of a TCT user area (TCTUA) that is optionally available for each
terminal defined to CICS.

v Synchronization or serialization of tasks using CICS commands:
– ENQ / DEQ,provided that you have used appropriate ENQMODEL resource

definitions to give sysplex-wide scope to the ENQs. See “Using ENQ and
DEQ commands with ENQMODEL resource definitions” on page 228 and the
CICS Resource Definition Guide for a description of ENQMODELs.

v The use of containers to pass data between CICS Business Transaction Services
(BTS) activities. Container data is saved in an RLS-enabled BTS VSAM file.

For more information about the COMMAREA and the TCTUA, see “Safe
programming to avoid affinity” on page 224.

Unsafe techniques
The programming techniques in the unsafe category are:

v The use of long-life shared storage:
– The common work area (CWA)
– GETMAIN SHARED storage
– Storage obtained by a LOAD PROGRAM HOLD

v The use of task-lifetime local storage shared by synchronized tasks

It is possible for one task to pass the address of some task-lifetime storage to
another task.

It may be safe for the receiving task to use the passed address, provided the
owning task does not terminate. It is possible, but ill-advised, to use a CICS
task-synchronization technique to allow the receiving task to prevent the sending
task from terminating (or freeing the storage in some other way) before the
receiver has finished with the address. However, such designs are not robust
because there is a danger of the sending task being purged by some outside
agency.

Chapter 15. Affinity 223

See “Sharing task-lifetime storage” on page 232 for more details.

v Synchronization or serialization of tasks using CICS commands:
– WAIT EVENT / WAIT EXTERNAL / WAITCICS
– ENQ / DEQ,unless you have used appropriate ENQMODEL resource

definitions to give sysplex-wide scope to the ENQs. See “Using ENQ and
DEQ commands with ENQMODEL resource definitions” on page 228 and the
CICS Resource Definition Guide for a description of ENQMODELs.

For more information about unsafe programming techniques, see “Unsafe
programming for affinity” on page 229.

Suspect techniques
Some programming techniques may, or may not, create affinity depending on
exactly how they are implemented. A good example is the use of temporary
storage. Application programs using techniques in this category must be checked to
determine whether they work without restrictions in a dynamic or distributed routing
environment. The programming techniques in the suspect category are:

v The use of temporary storage queues with restrictive naming conventions

v Transient data queues and the use of trigger levels

v Synchronization or serialization of tasks using CICS commands:
– RETRIEVE WAIT / START
– START / CANCEL REQID
– DELAY / CANCEL REQID
– POST / CANCEL REQID

v INQUIRE and SET commands and global user exits

For more information about suspect programming techniques, see “Suspect
programming for affinity” on page 236.

Recommendations
The best way to deal with inter-transaction affinity is to avoid creating
inter-transaction affinity in the first place.

Where it is not possible to avoid affinities, you should:

v Make the inter-transaction affinity easily recognizable, by using appropriate
naming conventions, and

v Keep the lifetime of the affinities as short as possible.

Even if you could avoid inter-transaction affinities by changing your application
programs, this is not absolutely necessary provided you include logic in your
dynamic and distributed routing programs to cope with the affinities. Finally, you can
statically route the affected transactions.

Safe programming to avoid affinity
Some techniques for passing data between transactions are generally safe in that
they do not create inter-transaction affinity. These involve the use of a
communication area (COMMAREA), a terminal control table user area (TCTUA), or
BTS containers.

However, to remain free from affinity, COMMAREAs, TCTUAs, and BTS containers
must not contain addresses. Generally the storage referenced by such addresses

224 CICS TS for z/OS: CICS Application Programming Guide

would have to be long-life storage, the use of which is an unsafe programming
technique in a dynamic transaction routing environment.

The COMMAREA
The use of the COMMAREA option on the RETURN command is the principal
example of a safe programming technique that you can use to pass data between
successive transactions in a CICS pseudoconversational transaction. CICS treats
the COMMAREA as a special form of user storage, even though it is CICS that
issues the GETMAIN and FREEMAIN requests for the storage, and not the
application program.

CICS ensures that the contents of the COMMAREA specified on a RETURN
command are always made available to the first program in the next transaction.
This is true even when the sending and receiving transactions execute in different
target regions. In a pseudoconversation, regardless of the target region to which a
dynamic routing program chooses to route the next transaction, CICS ensures the
COMMAREA specified on the previous RETURN command is made available in the
target region. This is illustrated in Figure 54 on page 226.

Some general characteristics of a COMMAREA are:

v Processor overhead is low.

v It is not recoverable.

v The length of a COMMAREA on a RETURN command can vary from transaction
to transaction, up to a theoretical upper limit of 32 763 bytes. (However to be
safe, you should not exceed 24KB (1KB = 1024 bytes), as recommended in the
Application Programming Reference manual, because of a number of factors that
can reduce the limit from the theoretical maximum.)

v CICS holds a COMMAREA in CICS main storage until the terminal user
responds with the next transaction. This may be an important consideration if you
are using large COMMAREAs, because the number of COMMAREAs held by
CICS relates to terminal usage, and not to the maximum number of tasks in a
region at any one time.

v A COMMAREA is available only to the first program in the next transaction,
unless that program explicitly passes the data to another program or a
succeeding transaction.

Chapter 15. Affinity 225

The COMMAREA used in a pseudoconversational transaction, as shown in
Figure 54, can be passed from transaction to transaction across a CICSplex, and,
provided the COMMAREA contains only data and not addresses of storage areas,
no inter-transaction affinity is created.

The TCTUA
The TCTUA is an optional extension to the terminal control table entry (TCTTE),
each entry specifying whether the extension is present, and its length. You specify
that you want a TCTUA associated with a terminal by defining its length on the
USERAREALEN parameter of a TYPETERM resource definition. This means that
the TCTUAs are of fixed length for all the terminals created using the same
TYPETERM definition.

A terminal control table user area (TCTUA) is safe to use in a dynamic transaction
routing environment as a means of passing data between successive transactions
in a pseudoconversational transaction. Like the COMMAREA, the TCTUA is always
accessible to transactions initiated at a user terminal, even when the transactions in
a pseudoconversation are routed to different target regions. This is illustrated in
Figure 55 on page 227. Some other general characteristics of TCTUAs are:

v Minimal processor overhead (only one CICS command is needed to obtain the
address).

v It is not recoverable.

v The length is fixed for the group of terminals associated with a given TYPETERM
definition. It is suitable only for small amounts of data, the maximum size allowed
being 255 bytes.

v If the terminal is autoinstalled, the TCTUA lasts as long as the TCTTE, the
retention of which is determined by the AILDELAY system initialization parameter.
The TCTTE, and therefore any associated TCTUA, is deleted when the
AILDELAY interval expires after a session between CICS and a terminal is
ended.

If the terminal is defined to CICS by an explicit terminal definition, the TCTTE
and its associated TCTUA are created when the terminal is installed and remain
until the next initial or cold start of CICS.

TOR1
(1) Using DTR,

routes TRN1
to AOR1.

(2) Using DTR,
routes TRN2
to AOR2

AOR1 AOR2

Executes TRN1 Executes TRN2

TRN1 terminates TRN2 has access
with to the COMMAREA

EXEC CICS RETURN data passed by
COMMAREA(DATA) TRN1
TRANSID(TRN2)

Figure 54. The use of a COMMAREA by a pseudoconversation in a dynamic transaction
routing environment

226 CICS TS for z/OS: CICS Application Programming Guide

Note that the TCTUA is available to a dynamic routing environment in the routing
region as well as application programs in the target region. It can be used store
information relating to the dynamic routing of a transaction. For example, you can
use the TCTUA to store the name of the selected target region to which a
transaction is routed.

Using the TCTUA in an unsafe way
The EXEC CICS ADDRESS TCTUA(ptr-ref) provides direct addressability to the
TCTUA, and this is how each task requiring access to a TCTUA should obtain the
TCTUA address. If tasks attempt to pass the address of their TCTUAs in some
other way, such as in a temporary storage queue, or to use the TCTUA itself to
pass addresses of other storage areas, the TCTUA ceases to provide a safe
programming technique for use in a dynamic transaction routing environment.

It is also possible for a task to obtain the TCTUA of a principal facility other than its
own, by issuing an INQUIRE TERMINAL command that names the terminal
associated with another task (the INQUIRE TERMINAL command returns the
TCTUA address of the specified terminal). Using the TCTUA address of a terminal
other than a task’s own principal facility is another example an unsafe use of the
TCTUA facility. Depending on the circumstances, particularly in a dynamic routing
environment , the TCTUA of a terminal that is not the inquiring task’s principal
facility could be deleted after the address has been obtained. For example, in an
target region, an INQUIRE TERMINAL command could return the TCTUA address
associated with a surrogate terminal that is running a dynamically routed
transaction. If the next transaction from the terminal is routed to a different target
region, the TCTUA address ceases to be valid.

TOR1
(1) Using DTR,

routes TRN1
to AOR1.

(2) Using DTR,
routes TRN2
to AOR2

AOR1 AOR2

Executes TRN1 Executes TRN2
which: which:

(1) Gets TCTUA (1) Gets address
address of the TCTUA

(2) Stores data
in TCTUA (2) Accesses the
for next data stored
transaction by TRN1.

(3) Ends with
EXEC CICS RETURN
TRANSID(TRN2)

Figure 55. The use of a TCTUA by a pseudoconversation in a dynamic routing environment

Chapter 15. Affinity 227

Using ENQ and DEQ commands with ENQMODEL resource definitions
The ENQ and DEQ commands are used to serialize access to a shared resource.
In earlier releases of CICS, these commands were limited to the scope of CICS
tasks running in the same region, and could not be used to serialize access to a
resource shared by tasks in different regions. Now, provided that the ENQs and
DEQs are supported by appropriate ENQMODEL resource definitions (see the CICS
Resource Definition Guide for a description of ENQMODELs) they can have
sysplex-wide scope.

This is primarily of interest to the system programmer who will determine
transaction routing decisions, but application programmers should be aware of the
advantages now available.

Overview of sysplex enqueue and dequeue
Changes to the CICS enqueue/dequeue function extend the CICS application
programming interface to provide an enqueue mechanism that serializes access to
a named resource across a specified set of CICS regions operating within a
sysplex. This applies equally to a CICSplex within a single MVS image and to a
CICSplex that resides in more than one MVS. (Note that sysplex-wide enqueue is
supported only for a resource, and not for an enqueue on an address.)

Local enqueues within a single CICS region are managed within the CICS address
space. Sysplex-wide enqueues that affect more than one CICS region are managed
by Global Resource Services (GRS). The main points of the changes to the CICS
enqueue/dequeue mechanism are as follows:

v Sysplex enqueue and dequeue expands the scope of an EXEC CICS ENQ|DEQ
command from region to sysplex, by introducing a new CICS resource definition
type, ENQMODEL, to define resource names that are to be sysplex-wide.

v ENQSCOPE, an attribute of the ENQMODEL resource definition, defines the set
of regions that share the same enqueue scope.

v When an EXEC CICS ENQ (or DEQ) command is issued for a resource whose
name matches that of an installed ENQMODEL resource definition, CICS checks
the value of the ENQSCOPE attribute to determine whether the scope is local or
sysplex-wide, as follows:

– If the ENQSCOPE attribute is left blank (the default value), CICS treats the
ENQ|DEQ as local to the issuing CICS region.

– If the ENQSCOPE is non-blank, CICS treats the ENQ|DEQ as sysplex-wide,
and passes a queue name and the resource name to GRS to manage the
enqueue. The resource name is as specified on the EXEC CICS ENQ|DEQ
command, and the queue name is made up by prefixing the 4-character
ENQSCOPE with the letters DFHE.

v The CICS regions that need to use sysplex-wide enqueue/dequeue function must
all have the required ENQMODELs defined and installed.

The recommended way to ensure this is for the CICS regions to share a CSD,
and for the initialization group lists to include the same ENQMODEL groups.

Existing applications can use sysplex enqueues simply by defining appropriate
ENQMODELs, without any change to the application programs.

228 CICS TS for z/OS: CICS Application Programming Guide

Benefits
Sysplex enqueue provides the following benefits:

v Eliminates one of the most common causes of inter-transaction affinity.

v Enables better exploitation of a parallel sysplex providing better
price/performance, capacity, and availability.

v Reduces the need for inter-transaction affinity rules in dynamic and distributed
routing programs thereby lowering the systems management cost of exploiting
parallel sysplex.

v Enables serialization of concurrent updates to shared temporary storage queues,
performed by multiple CICS tasks across the sysplex.

v Makes it possible to prevent interleaving of records written by concurrent tasks in
different CICS regions to a remote transient data queue.

v Allows the single-threading and synchronization of tasks across the sysplex. It is
not designed for the locking of recoverable resources.

BTS containers
A container is owned by a BTS activity. Containers cannot be used outside of an
activity; for more information, see the CICS Business Transaction Services manual .
A container may be used to pass data between BTS activities or between different
activations of the same activity. An activity uses GET and PUT container to update
the container's contents. CICS ensures that the appropriate containers are available
to an activity by saving all the information (including containers) associated with a
BTS activity in an RLS-enabled VSAM file. For this reason, note that a BTS
environment cannot extend outside a sysplex (see CICS Business Transaction
Services), but you can use dynamic routing within a sysplex passing data in
containers.

Some general characteristics of containers are:

v An activity may own any number of containers; you are not limited to one.

v There is no size restriction.

v They are recoverable.

v They exist in main storage only while the associated activity is executing.
Otherwise they are held on disk. Therefore, you do not need to be overly
concerned with their storage requirements, unlike terminal COMMAREAs.

Unsafe programming for affinity
Some CICS application programming techniques, notably those that pass, or obtain,
addresses to shared storage, create an affinity between transactions.

The programming techniques that are generally unsafe are described in the
following sections.

Using the common work area
The CWA in a CICS region is created (optionally) during CICS initialization, exists
until CICS terminates, and is not recovered on a CICS restart (warm or
emergency). The ADDRESS CWA(ptr-ref) command provides direct addressability
to the CWA.

Chapter 15. Affinity 229

A good example of how the use of long-life shared storage such as the CWA can
create affinity is when one task stores data in the CWA, and a later task reads the
data from it. Clearly, the task retrieving the data must run in the same target region
as the task that stored the data, or it references a completely different storage area
in a different address space. This restricts the workload balancing capability of the
dynamic or distributed routing program, as shown in Figure 56.

However, if the CWA contains read-only data, and this data is replicated in more
than one target region, it is possible to use the CWA and continue to have the full
benefits of dynamic routing. For example, you can run a program during the
post-initialization phase of CICS startup (a PLTPI program) that loads the CWA with
read-only data in each of a number of selected target regions. In this way, all
transactions routed to target regions loaded with the same CWA data have equal
access to the data, regardless of which of the target regions to which the
transactions are routed. With CICS subsystem storage protection, you can ensure
the read-only integrity of the CWA data by requesting the CWA from CICS-key
storage, and define all the programs that read the CWA to execute in user key.

Using GETMAIN SHARED storage
Shared storage is allocated by a GETMAIN SHARED command, and remains
allocated until explicitly freed by the same, or by a different, task. Shared storage
can be used to exchange data between any CICS tasks that run during the lifetime
of the shared storage. Transactions designed in this way must execute in the same
CICS region to work correctly. The dynamic or distributed routing program should
ensure that transactions using shared storage are routed to the same target region.

Figure 57 on page 231 illustrates the use of shared storage.

TOR
If the dynamic routing program

DTR routes TRN2 to AOR3 as shown,
program TRN2 will fail to access the

data stored for it by TRN1.

AOR1 AOR2 AOR3

CWA CWA CWA

TRN1 writes TRN2 fails
data to CWA to read the
intended TRN1 data
for TRN2 from the CWA

CWA

Figure 56. Illustration of inter-transaction affinity created by use of the CWA. The dynamic
routing program needs to be aware of this CWA affinity, and ensure it routes TRN2 to the
same target region as TRN1.

230 CICS TS for z/OS: CICS Application Programming Guide

If the two transactions shown in Figure 57 are parts of a pseudoconversational
transaction, the use of shared storage should be replaced by a COMMAREA
(provided that the amount of storage fits within the COMMAREA size limits).

Using the LOAD PROGRAM HOLD command
A program (or table) that CICS loads in response to a LOAD PROGRAM HOLD
command remains in directly addressable storage until explicitly released by the
same, or by a different, task. Any CICS tasks that run while the loaded program
(table) is held in storage can use the loaded program’s storage to exchange data,
provided that:
v The program is not loaded into read-only storage, or
v The program is not defined to CICS with RELOAD(YES)

Although you could use a temporary storage queue to make the address of the
loaded program’s storage available to other tasks, the more usual method would be
for other tasks to issue a LOAD PROGRAM command also, with the SET(ptr_ref)
option so that CICS can return the address of the held program.

The nature of the affinity caused by the use of the LOAD PROGRAM HOLD
command is virtually identical to that caused by the use of GETMAIN SHARED
storage (see Figure 57 and Figure 58 on page 232), and the same rule applies: to
preserve the application design, the dynamic or distributed routing program must
ensure that all transactions that use the address of the loaded program (or table)

TOR In this example, the TOR
must route TRN2 to AOR1,

DTR because it needs access
program to shared storage obtained

by TRN1 in that region.

AOR1 AOR2

Executes TRN1
which:

(1) GETMAINs some
SHARED storage

(2) Stores data in
shared storage

(3) WRITEs address
to a TS queue

Executes TRN2
Terminates which:

(leaving shared
storage still (1) READs address
allocated) from TS queue

(2) Reads data from
shared storage

(3) FREEMAINs the
shared storage

Terminates

Figure 57. Illustration of inter-transaction affinity created by use of shared storage. The
dynamic transaction routing program needs to be aware of this affinity, and ensure it routes
TRN2 to the same target region as TRN1.

Chapter 15. Affinity 231

are routed to the same target region.

Note: This rule applies also to programs defined with the RESIDENT option on the
resource definition for the loaded program (whether or not the HOLD option
is specified on the LOAD command). However, regardless of affinity
considerations, it is unsafe to use the RESIDENT option to enable
transactions to share data, because programs defined with RESIDENT are
subject to SET PROGRAM(program_name) NEWCOPY commands, and can
therefore be changed.

The rule also applies to a non-resident, non-held, loaded program where the
communicating tasks are synchronized.

Sharing task-lifetime storage
The use of any task-lifetime storage belonging to one task can be shared with
another task, provided the owning task can pass the address to the other task in
the same CICS address space. This technique creates an affinity among the
communicating tasks, and requires that any task retrieving and using the passed
address must execute in the same target region as the task owning the task-lifetime
storage.

For example, it is possible to use a temporary storage queue to pass the address of
a PL/I automatic variable, or the address of a COBOL working-storage structure

TOR
In this example, the TOR

DTR must route to AOR1 all other
program transactions that require

access to the program (table)
loaded by TRN1.

AOR1 AOR2

Executes TRN1
which:

(1) Issues LOAD
PROGRAM HOLD
command.

(2) Terminates. Executes other
transactions

that:

(1) Issue LOAD
PROGRAM with
SET option.

(2) Read data from
the loaded
program (table)

(3) Terminate.

Figure 58. Illustration of inter-transaction affinity created by use of LOAD PROGRAM HOLD.
The dynamic routing program needs to be aware of this affinity, and ensure it routes TRN2 to
the same target region as TRN1.

232 CICS TS for z/OS: CICS Application Programming Guide

(see Figure 59 for an example).

For two tasks to share task-lifetime storage belonging to one of them requires that
the tasks are synchronized in some way. See Table 17 for commands that provide
ways of suspending and resuming a task that passes the address of its local
storage.

Table 17. Methods for suspending and resuming (synchronizing) tasks

Suspending operation Resuming operation

WAIT EVENT, WAIT EXTERNAL, WAITCICS POST

RETRIEVE WAIT START

DELAY CANCEL

POST CANCEL

START CANCEL

ENQ DEQ

Some of these techniques themselves require that the transactions using them must
execute in the same target region, and these are discussed later in this chapter.
However, even in those cases where tasks running in different target regions can
be synchronized, it is not safe to pass the address of task-lifetime storage from one
to the other. Even without dynamic routing, designs that are based on the
synchronization techniques shown in Table 17 are fundamentally unsafe because it
is possible that the storage-owning task could be purged.

TOR

DTR
program

AOR

TRN1

1. Stores the address
of task-lifetime
storage (in TS
queue) for TRN2

2. Suspends until TRN2 TRN2
completes

. 1. Reads address from TS
(waiting) queue.

. 2. Accesses the storage.

. 3. Resumes TRN1.
3. Continues.

Figure 59. Illustration of inter-transaction affinity created by use of task-lifetime storage. TRN2
must execute in the same target region as TRN1. Also, TRN1 must not terminate until TRN2
has finished using its task-lifetime storage.

Chapter 15. Affinity 233

Notes:

1. Using synchronization techniques, such as RETRIEVE WAIT/START, to allow
sharing of task-lifetime storage is unsafe in CICS Version 2 because the task
issuing, for example, the RETRIEVE WAIT could be purged by a CEMT SET
TASK(...) PURGE command. In CICS/ESA Version 3 and later, the SPURGE
parameter on the transaction definition could be used to protect the first task,
but even so the design is not recommended.

2. No inter-transaction affinity is caused in those cases where the task sharing
another task’s task-lifetime storage is started by an START command, except
when the START command is function-shipped or routed to a remote system.

Using the WAIT EVENT command
The WAIT EVENT command is used to synchronize a task with the completion of
an event performed by some other CICS or MVS task.

The completion of the event is signalled (posted) by the setting of a bit pattern into
the event control block (ECB). Both the waiting task and the posting task must have
direct addressability to the ECB, hence both tasks must execute in the same target
region. The use of a temporary storage queue is one way that the waiting task can
pass the address of the ECB to another task.

This synchronization technique is illustrated in Figure 60.

If TRN2 shown in Figure 60 executed in a different target region from TRN1, the
value of ptr-ref would be invalid, the post operation would have unpredictable
results, and the waiting task would never be resumed. For this reason, a dynamic

TOR

DTR
program

AOR

TRN1

1. Stores the address
of ECB in temporary
storage queue for
TRN2

2. Suspends with WAIT TRN2
EVENT ECADDR(ptr-ref)

. 1. At end of processing,

. (completion of event)
(waiting) reads address of ECB

. from TS queue.

. 2. Posts ECB (by MVS POST

. or 'hand-posted')

. 3. Returns control to CICS
3. Resumed by CICS

Figure 60. Illustration of inter-transaction affinity created by use of WAIT EXTERNAL
command. TRN2 must execute in the same target region as TRN1.

234 CICS TS for z/OS: CICS Application Programming Guide

or distributed routing program must ensure that a posting task executes in the same
target region as the waiting task to preserve the application design. The same
considerations apply to the use of WAIT EXTERNAL and WAITCICS commands for
synchronizing tasks.

Using ENQ and DEQ commands without ENQMODEL resource
definitions

The ENQ and DEQ commands are used to serialize access to a shared resource.
These commands only work for CICS tasks running in the same region, and cannot
be used to serialize access to a resource shared by tasks in different regions,
unless they are supported by appropriate ENQMODEL resource definitions so that
they have sysplex-wide scope.See “Using ENQ and DEQ commands with
ENQMODEL resource definitions” on page 228 and the CICS Resource Definition
Guide for a description of ENQMODELs.

Note that any ENQ that does not specify the LENGTH option is treated as an
enqueue on an address and therefore has only local scope.The use of ENQ and
DEQ for serialization (without ENQMODEL definitions to give sysplex-wide scope) is
illustrated in Figure 61.

If TRN2 shown in Figure 61 executed in a different target region from TRN1, TRN2
would not be suspended while TRN1 accessed the shared resource. For this
reason, a dynamic or distributed routing program must ensure that all tasks that
enqueue on a given resource name must execute in the same target region to
preserve the application design. TRN2 would, of course, be serialized with other
CICS tasks that issue ENQ commands on the same resource name in its target
region.

TOR

DTR
program

AOR

TRN1

1. Issues ENQ command
on resource name TRN2
of shared resource

1. Issues ENQ command on
2. Modifies or uses resource name of shared

shared resource resource
.
. 2. Suspended by CICS while

resource in use by TRN1
3. Issues DEQ command

on shared resource. 3. Resumed by CICS when
resource free

Figure 61. Illustration of inter-transaction affinity created by use of ENQ/DEQ commands.
TRN2 must execute in the same target region as TRN1.

Chapter 15. Affinity 235

Suspect programming for affinity
Some CICS application programming techniques may create an affinity between
transactions depending on how they are implemented.

The programming techniques that may be suspect are described in the following
sections.

Using temporary storage
CICS application programs commonly use temporary storage (TS) queues to hold
temporary application data, and to act as scratch pads.

Sometimes a TS queue is used to pass data between application programs that
execute under one instance of a transaction (for example, between programs that
pass control by a LINK or XCTL command in a multi-program transaction). Such
use of a TS queue requires that the queue exists only for the lifetime of the
transaction instance, and therefore it does not need to be shared between different
target regions, because a transaction instance executes in one, and only one, target
region.

Note: This latter statement is not strictly true in the case of a multi-program
transaction, where one of the programs is linked by a distributed program
link command and the linked-to program resides in a remote system. In this
case, the program linked by a DPL command runs under another CICS task
in the remote region. The recommended method for passing data to a DPL
program is by a COMMAREA, but if a TS queue is used for passing data in
a DPL application, the queue must be shared between the two regions.

Sometimes a TS queue holds information that is specific to the target region, or
holds read-only data. In this case the TS queue can be replicated in each target
region, and no sharing of data between target regions is necessary.

However, in many cases a TS queue is used to pass data between transactions, in
which case the queue must be globally accessible to enable the transactions using
the queue to run in any dynamically selected target region. It is possible to make a
temporary storage queue globally accessible by function shipping TS requests to a
queue-owning region (QOR), provided the TS queue can be defined as remote.
Shared queues are defined by using a temporary storage pool in a coupling facility.
Shared temporary storage applies only to non-recoverable queues. You can make
queues in auxiliary storage recoverable, but not queues in main storage.

In a pseudoconversational transaction, you can change the program to use a
COMMAREA to pass data between the phases of the conversation. However, using
temporary storage data-sharing avoids inter-transaction affinity by being able to use
dynamic routing to any target region. Shared temporary storage queue requests for
specific SYSIDs are routed in the same way as remote queue requests. The SYSID
value defined to shared TS pools is TST TYPE=SHARED.

The methods for specifying TS pool make it easy to migrate queues from a QOR to
a TS data-sharing pool. You can use the temporary storage global user exit,
XTSEREQ, to modify the SYSID on a TS request so that it references a TS
data-sharing pool. Figure 62 shows four AORs that are using the same TST
(TST=XX). The SYSIDNT option on the TST TYPE=SHARED macro maps
temporary storage requests to a pool of shared TS queues called DFHXQTS1. You
should define DFHXQTS1 in the poolname parameter of the JCL to start up the TS

236 CICS TS for z/OS: CICS Application Programming Guide

data sharing server DFHXQMN. See the CICS System Definition Guide for more
information about setting up a data sharing server.

Naming conventions for remote queues
To define a queue as remote you must include an entry for the queue in a
temporary storage table (TST), or use an appropriate TSMODEL. TS queue names
are frequently generated dynamically, but they can also be unique fixed names.

v The TST naming convention allows for dynamic names by accepting generic
names formed by a constant prefix, to which a CICS application program can
add a variable suffix. (Generic names are formed from the leading characters of
the 8-character queue names and can be up to seven characters long. Names in
a TST entry using all eight characters specify unique TS queues.)

v The names of TS queues defined by TSMODEL resource definitions may have a
prefix of up to 16 characters (using a specified set of character) if defined by the
Prefix or Remoteprefix option, or of up to 32 characters (using any hexadecimal
string) if defined by the XPrefix or XRemoteprefix option. The CICS Resource
Definition Guide has more information about Prefix, Remoteprefix, XPrefix and
XRemoteprefix.

The usual convention is a 4-character prefix (for example, the transaction identifier)
followed by a 4-character terminal identifier as the suffix. This generates queue
names that are unique for a given terminal. Such generic queue names can be
defined easily as remote queues that are owned, for example, by:

v A QOR (thus avoiding transaction affinity problems)

v Shared queues residing in temporary storage data-sharing queue pools

v Remote queues that are owned by an target region, or in a temporary storage
data-sharing queue pool

TOR

DTR
program

DFHTSTXX

Prefix| Sysid

AAAA* CICQ
AOR1 AOR2 AOR3 AOR4 ABCD* CICQ

XXXX* CICQ
TST=XX TST=XX TST=XX TST=XX ZZZZ* CICQ

Sysid Pool

CICQ DFHXQTS1

DFHXQMN
TS Server

Coupling
Facility

Figure 62. Example of the use of the temporary storage data-sharing server

Chapter 15. Affinity 237

Remote queues and shared queues can be defined in the same way for application
programs, but requests for specific SYSIDs are routed to a temporary storage data
server by means of TST TYPE=SHARED. However, if the naming convention for
dynamically named queues does not conform to this rule, the queue cannot be
defined as remote, and all transactions that access the queue must be routed to the
target region where the queue was created. Furthermore, a TS queue name cannot
be changed from a local to a remote queue name using the global user exits for TS
requests.

See Figure 63 for an illustration of the use of a remote queue-owning region.

Exception conditions for globally accessible queues
When you eliminate inter-transaction affinity relating to TS queues by the use of a
global QOR, you must also take care to review exception condition handling. This is
because some exception conditions can occur that previously were not possible
when the transactions and the queue were local in the same region. This situation
arises because the target region and QOR can fail independently, causing
circumstances where:

v The queue already exists, because only the target region failed while the QOR
continued.

v The queue is not found, because only the QOR failed while the target region
continued.

TOR

DTR
program

DFHTSTXX

Prefix Sysid
AOR1 AOR2 AOR3 AOR4

AAAA* CICQ
TST=XX TST=XX TST=XX TST=XX ABCD* CICQ

XXXX* CICQ
ZZZZ* CICQ

ROR

Figure 63. Using remote queues to avoid inter-transaction affinity relating to temporary
storage. This example shows a combined file-owning and queue-owning region. Separate
regions can be used, but these require special care during recovery operations because of
‘in-doubt’ windows that can occur when recovering data managed independently by file
control and temporary storage control.

238 CICS TS for z/OS: CICS Application Programming Guide

Using transient data
Another form of data queue that CICS application programs commonly use is the
transient data queue (TD). The dynamic transaction routing considerations for TD
queues have much in common with those for temporary storage. To enable
transactions that use a TD queue that needs to be shared, to be dynamically routed
to an target region, you must ensure that the TD queues are globally accessible.

All transient data queues must be defined to CICS, and must be installed before the
resources become available to a CICS region. These definitions can be changed to
support a remote transient data queue-owning region (QOR).

However, there is a restriction for TD queues that use the trigger function. The
transaction to be invoked when the trigger level is reached must be defined as a
local transaction in the region where the queue resides (in the QOR). Thus the
trigger transaction must execute in the QOR. However, any terminal associated with
the queue need not be defined as a local terminal in the QOR. This does not create
an inter-transaction affinity.

Figure 64 illustrates the use of a remote transient data queue-owning region.

Exception conditions for globally accessible queues
When you eliminate inter-transaction affinity relating to TD queues by the use of a
global QOR, there should not be any new exception conditions (other than
SYSIDERR if there is a system definition error or failure).

TOR

DTR
program

TDQ defn.

Queue Syst.
AOR1 AOR2 AOR3 AOR4

AAAA CICQ
ABCD CICQ
XXXX CICQ
ZZZZ CICQ

TDQ definition

Queue Trig. Tran. Term.
FOR QOR

(CICQ) AAAA nn BBBB Tnnn
ABCD nn CCCC Pnnn
XXXX
ZZZZ

Figure 64. Using remote queues to avoid inter-transaction affinity relating to transient data.
The transient data queue definitions installed in the target regions are defined as owned by
the QOR (CICQ). All the transient data queue definitions installed in the QOR are local, some
with trigger levels.

Chapter 15. Affinity 239

Using the RETRIEVE WAIT and START commands
The use of some synchronization techniques permit the sharing of task-lifetime
storage between two synchronized tasks. For example, the RETRIEVE WAIT and
START commands could be used for this purpose, as illustrated in Figure 65.

In this example, TRN1 is designed to retrieve data from an asynchronous task,
TRN2, and therefore must wait until TRN2 makes the data available. Note that for
this mechanism to work, TRN1 must be a terminal-related transaction.

The steps are as follows:

1. TRN1 writes data to a TS queue, containing its TRANSID and TERMID.

2. To cause itself to suspend, TRN1 issues a RETRIEVE WAIT command, which
causes CICS to suspend the task until the RETRIEVE can be satisfied, which is
not until TRN2 issues a START command with data passed by the FROM
parameter.

3. However, TRN2 can only issue a START command to resume TRN1 if it knows
the TRANSID and TERMID of the suspended task (TRN1 in our example). Thus
it reads the TS queue to obtain the information written by TRN1. Using a
temporary storage queue is one way that this information can be passed by the
suspending task.

4. Using the information from the TS queue, TRN2 issues the START command for
TRN1, causing CICS to resume TRN1 by satisfying the outstanding RETRIEVE
WAIT.

TOR

DTR
program

AOR

TRN1

1. Stores its TRANSID
and TERMID in a TS
queue for TRN2

2. Suspends by issuing TRN2
a RETRIEVE WAIT

. 1. Reads TRANSID & TERMID

. of TRN1 from TS queue
(suspended) .

. (process)

. .
3. Resumes TRN1 by issuing

3. Resumes. START with FROM option.

Figure 65. Illustration of task synchronization using RETRIEVE WAIT and START commands

240 CICS TS for z/OS: CICS Application Programming Guide

In the example of task synchronization using RETRIEVE WAIT and START
commands shown in Figure 65 on page 240, the START command that satisfies the
RETRIEVE WAIT must:

v Be issued in same target region as the transaction (TRN1 in our example)
issuing the RETRIEVE WAIT command, or

v Specify the SYSID of the target region where the RETRIEVE WAIT command
was executed, or

v Specify a TRANSID (TRN1 in our example) that is defined as a remote
transaction residing on the target region that executed the RETRIEVE WAIT
command.

An application design based on the remote TRANSID technique only works for two
target regions. An application design using the SYSID option on the START
command only works for multiple target regions if all target regions have
connections to all other target regions (which may not be desirable). In either case,
the application programs need to be modified: there is no acceptable way to use
this programming technique in a dynamic or distributed routing program except by
imposing restrictions on the routing program. In general, this means that the
dynamic or distributed routing program has to ensure that TRN2 has to execute in
the same region as TRN1 to preserve the application design.

Using the START and CANCEL REQID commands
Using this CICS application programming technique, one transaction issues a
START command to start another transaction after a specified interval. Another
transaction (not the one requested on the START command) determines that it is no
longer necessary to run the requested transaction, (which is identified by the
REQID parameter) and cancels the START request. Note that the cancel is only
effective if the specified interval has not yet expired.

A temporary storage queue is one way that the REQID can be passed from task to
task.

Note: To use this technique, the CANCEL command must specify the REQID
option, but the START command need not. This is because, provided the
NOCHECK option is not specified on the START command, CICS generates
a REQID for the request and stores it in the EXEC interface block (EIB) in
field EIBREQID.

Figure 66 on page 242 illustrates this programming technique.

Chapter 15. Affinity 241

Using this application programming technique, the CANCEL command that cancels
the START request must:

v Be issued in same target region that the START command was executed in, or

v Specify the SYSID of the target region where the START command was
executed, or

v Specify a TRANSID (TRNX in our example) that is defined as a remote
transaction residing on the target region where the START command was
executed.

Note: A START command is not necessarily executed in the same region as the
application program issuing the command. It can be function shipped (or, in
the case of a non-terminal-related START, routed) and executed in a different
CICS region. The above rules apply to the region where the START
command is finally executed.

An application design based on the remote TRANSID technique only works for two
target regions. An application design using the SYSID option on the cancel
command only works for multiple target regions if all target regions have
connections to all other target regions. In either case, the application programs
need to be modified: there is no acceptable way to use this programming technique
in a dynamic or distributed routing program except by imposing restrictions on the
routing program.

In general, this means that the dynamic or distributed routing program has to
ensure that TRN2 executes in the same region as TRN1 to preserve the application
design, and also that TRNX is defined as a local transaction in the same region.

TOR

DTR
program

AOR

TRN1

1. Starts TRNX and
obtains the REQID

2. Writes the REQID for
the START request to
a TS queue

3. Terminates.
(suspended)

TRN2

1. Reads REQID from TS

2. Cancels TRNX using REQID

Figure 66. Illustration of the use of the START and CANCEL REQID commands

242 CICS TS for z/OS: CICS Application Programming Guide

Using the DELAY and CANCEL REQID commands
Using this CICS application programming technique, one task can resume another
task that has been suspended by a DELAY command.A DELAY request can only be
cancelled by a different task from the one issuing the DELAY command, and the
CANCEL command must specify the REQID associated with DELAY command.
Both the DELAY and CANCEL command must specify the REQID option to use this
technique.

The steps involved in this technique using a temporary storage queue to pass the
REQID are as follows:

1. A task (TRN1) writes a predefined DELAY REQID to a TS queue. For example:
EXEC CICS WRITEQ TS

QUEUE(’DELAYQUE’) FROM(reqid_value)

2. The task waits on another task by issuing a DELAY command, using the
reqid_value as the REQID. For example:
EXEC CICS DELAY

INTERVAL(1000) REQID(reqid_value)

3. Another task, TRN2, reads the REQID of the DELAY request from TS queue
called ‘DELAYQUE’.

4. TRN2 completes its processing, and resumes TRN1 by cancelling the DELAY
request.

The process using a TS queue is illustrated in Figure 67.

TOR

DTR
program

AOR

TRN1

1. Writes DELAY command
REQID to TS queue for
use by TRN2

2. Issues DELAY to wait TRN2
until TRN2 issues
CANCEL command 1. Reads REQID of DELAY

. from TS queue

. .
(suspended) (process)

. .

. 2. Completes processing

.

. 3. Resumes TRN1 by
3. Resumes. CANCELing the DELAY.

Figure 67. Illustration of the use of the DELAY and CANCEL REQID commands

Chapter 15. Affinity 243

Another way to pass the REQID when employing this technique would be for TRN1
to start TRN2 using the START command with the FROM and TERMID options.
TRN2 could then obtain the REQID with the RETRIEVE command, using the INTO
option.

Using this application programming technique, the CANCEL command that cancels
the DELAY request must:

v Be issued in same target region as the DELAY command was executed in, or

v Specify the SYSID of the target region where the DELAY command was
executed, or

v Specify a TRANSID (TRN1 in our example) that is defined as a remote
transaction residing on the target region where the DELAY command was
executed.

An application design based on the remote TRANSID technique only works for two
target regions. An application design using the SYSID option on the cancel
command only works for multiple target regions if all target regions have
connections to all other target regions. In either case, the application programs
need to be modified: there is no acceptable way to use this programming technique
in a dynamic or distributed routing environment except by imposing restrictions on
the routing program.

If the CANCEL command is issued by a transaction that is initiated from a terminal,
it is possible that the transaction could be dynamically routed to the wrong target
region.

Using the POST and CANCEL REQID commands
The CICS POST command is used to request notification that a specified time has
expired. Another transaction (TRN2) can force notification, as if the specified time
has expired, by issuing a CANCEL of the POST request.

The time limit is signalled (posted) by CICS by setting a bit pattern in the event
control block (ECB). To determine whether notification has been received, the
requesting transaction (TRN1) has either to test the ECB periodically, or to issue a
WAIT command on the ECB.

A TS storage queue is one way that can be used to pass the REQID of the POST
request from task to task.

Figure 68 on page 245 illustrates this technique.

244 CICS TS for z/OS: CICS Application Programming Guide

If this technique is used, the dynamic or distributed routing program has to ensure
that TRN2 executes in the same CICS region as TRN1 to preserve the application
design.

The CANCEL command that notifies the task that issued the POST must:

v Be issued in same target region that the POST command was executed in, or

v Specify the SYSID of the target region where the POST command was executed,
or

v Specify a TRANSID (TRN1 in our example) that is defined as a remote
transaction residing on the target region where the POST command was
executed.

An application design based on the remote TRANSID technique only works for two
target regions. An application design using the SYSID option on the cancel
command only works for multiple target regions if all target regions have
connections to all other target regions. In either case, the application programs
need to be modified: there is no acceptable way to use this programming technique
in a dynamic or distributed routing program except by imposing restrictions on the
routing program.

In general, this means that the dynamic or distributed routing program has to
ensure that TRN2 executes in the same region as TRN1 to preserve the application
design.

Clearly, there is no problem if the CANCEL is issued by the same task that issued
the POST. If a different task cancels the POST command, it must specify REQID to
identify the particular instance of that command. Hence the CANCEL command with

TOR

DTR
program

AOR

TRN1

1. Issues POST command
2. Stores REQID of POST

in TS queue for use TRN2
by TRN2

. 1. Reads REQID of POST
(process) request

. .

. (process)

. .
3. Periodically check 2. Completes processing

if posted 3. Resumes TRN1 by
4. Resumes when time CANCELing the POST.

expired, or when POST
cancelled by TRN2.

Figure 68. Illustration of the use of the POST command

Chapter 15. Affinity 245

REQID is indicative of an inter-transaction affinity problem. However, REQID need
not be specified on the POST command because CICS automatically generates a
REQID and pass it to the application in EIBREQID.

Detecting inter-transaction affinities
To manage transaction affinities in a dynamic routing environment, you must first
discover which transactions have affinities. How do you do this?

The recommended way is to use the CICS Interdependency Analyzer to detect
affinities. The CICS Interdependency Analyzer for z/OS User's Guide and Reference
describes the utility and how to use it.

Note: If you dynamically route program-link requests, you must discover which
programs (or their associated transactions) have affinities. You cannot use
the CICS Interdependency Analyzer to do this.

If you do not use the utility, you can use one of the following methods to detect
affinities, although you are strongly recommended to use the utility.

v Review application design, paying particular attention to the techniques used for
inter-transaction communication.

v Search the source of application programs, looking for instances of the EXEC
CICS commands that can give rise to inter-transaction affinity.

v Run a trace analysis program that can analyze CICS auxiliary trace. For
example, if you run the CICS trace utility program, DFHTUP, with the ABBREV
option to format CICS auxiliary trace output, you can analyze the resulting
abbreviated trace data to find instances of suspect commands.

Inter-transaction affinities caused by application generators
Application generators may give rise to particularly difficult problems of
inter-transaction affinity:

v The affinity may be hidden from the application programmer.

v The application generator may have a different concept of a transaction to CICS:
it is affinity among CICS transactions that is of concern, because these are the
entities that are dynamically routed.

v Some application generators use a single transaction code for all transactions
within an application, making it difficult for the router to select those instances of
transactions that have affinities.

Duration and scope of inter-transaction affinities
When planning your dynamic routing strategy, and planning how to manage
inter-transaction affinities, it is important to understand the concepts of affinity
relations and affinity lifetimes. The relations and lifetimes of inter-transaction
affinities must be taken into account when designing a dynamic or distributed
routing program, because they define the scope and duration of inter-transaction
affinities. Clearly, the ideal situation for a dynamic or distributed routing program is
for there to be no inter-transaction affinities at all, which means there are no
restrictions in the choice of available target regions for dynamic routing. However,
even when inter-transaction affinities do exist, there are limits to the scope of these
affinities, the scope of the affinity being determined by affinity relation and affinity
lifetime.

246 CICS TS for z/OS: CICS Application Programming Guide

|

|

Understanding the relations and lifetimes of transaction affinities is important in
deciding how to manage them in a dynamic routing environment.

Affinity transaction groups
In order to manage affinities within a dynamic routing environment, you must first
categorize transactions by their affinity. One way to do this is to place transactions
in groups, where a group is a set of transactions that have inter-transaction affinity.
Each affinity transaction group (or affinity group, for short) thus represents a group
of transactions that have an affinity with one another. Defining affinity groups is one
way that a dynamic or distributed routing program can determine to which target
region a transaction should be routed.

Clearly, the more inter-transaction affinity you have in a given CICS workload, the
less effective a dynamic routing program can be in balancing the workload across a
CICSplex. To minimize the impact of inter-transaction affinity, affinities within an
affinity group can characterized by their relation and lifetime. These relation and
lifetime attributes determine the scope and duration of an affinity.

Thus, ideally, an affinity transaction group consists of an affinity group identifier, a
set of transactions that constitute the affinity group, with the affinity relation and
affinity lifetime associated with the group.

Relations and lifetimes
When you create an affinity group, you should assign to the group the appropriate
affinity relation and affinity lifetime attributes. The relation determines how the
dynamic or distributed routing program is to select a target region for a transaction
instance associated with the affinity, and the lifetime determines when the affinity is
ended.

There are four possible affinity relations that you can assign to your affinity groups:
1. Global
2. LUname
3. Userid
4. BAPPL

These are described in the following sections, together with the permitted lifetimes
for each relation.

The global relation
A group of transactions whose affinity relation is defined as global is one where all
instances of all transactions in the group that are initiated from any terminal, by any
START command, or by any CICS BTS process, must execute in the same target
region for the lifetime of the affinity. The affinity lifetime for global relations can be
as follows:

System
The affinity lasts for as long as the target region exists, and ends whenever
the target region terminates (at a normal, immediate, or abnormal
termination).

Permanent
The affinity extends across all CICS restarts. This is the most restrictive of
all the inter-transaction affinities. If you are running CICSPlex SM, this
affinity lasts for as long as any CMAS involved in managing the CICSplex
using the workload is active.

Chapter 15. Affinity 247

An example of a global inter-transaction affinity with a lifetime of permanent is
where the transaction uses (reads and/or writes) a local, recoverable, temporary
storage queue, and where the TS queue name is not derived from the terminal.
(You can only specify that a TS queue is recoverable in the CICS region in which
the queue is local.)

Generally, transactions in this affinity category are not suitable candidates for
dynamic routing and you should consider making them statically routed
transactions.

An example of a global relation is illustrated in Figure 69.

In this example, the transaction GGGG is defined in a group with a permanent
global affinity relation. The first instance of transid GGGG, from any terminal, starts
a permanent-lifetime affinity. The first instance of GGGG can be routed to any
suitable target region. In this example, AOR2 is selected from the possible range
AOR1 through AOR6, but all other instances, from any terminal, must also be
routed to the same region, AOR2.

The LUname (terminal) relation
A group of transactions whose affinity relation is defined as LUname is one where
all instances of all transactions in the group that are associated with the same
terminal must execute in the same target region for the lifetime of the affinity. The
affinity lifetime for LUname relations can be as follows:

Pseudoconversation
The affinity lasts for the whole pseudoconversation, and ends when the
pseudoconversation ends at the terminal. Each transaction must end with
an EXEC CICS RETURN TRANSID, not with the pseudoconversation mode
of END.

Logon
The affinity lasts for as long as the terminal remains logged-on to CICS,
and ends when the terminal logs off.

Terminal

User TOR
enters
tranid Calls DTR DTR program Affinity group
GGGG program

1. Checks affinity Relation: GLOBAL
Routes GGGG groups for GGGG Lifetime: PERM
to AOR2 2. Start global

affinity for Transids: GGGG
transid GGGG

3. Select AOR from
candidate list

4. Records choice
of AOR (for
example, AOR2)
for this group. GGGG sent to AOR2

AOR1 AOR2 AOR3 AOR4 AOR5 AOR6
GGGG

Figure 69. Managing inter-transaction affinity with global relation and permanent lifetime

248 CICS TS for z/OS: CICS Application Programming Guide

System
The affinity lasts for as long as the target region exists, and ends whenever
the target region terminates (at a normal, immediate, or abnormal
termination).

Permanent
The affinity extends across all CICS restarts. If you are running
CICSPlex SM, this affinity lasts for as long as any CMAS involved in
managing the CICSplex using the workload is active.

Delimit
The affinity continues until a transaction with a pseudoconversation mode of
END is encountered.

A typical example of transactions that have an LUname relation are those that:

v Use a local TS queue to pass data between the transactions in a
pseudoconversation, and

v The TS queue name is derived, in part, from the terminal name (see “Naming
conventions for remote queues” on page 237 for information about TS queue
names).

These types of transaction can be placed in an affinity group with a relation of
terminal and lifetime of pseudoconversation. When the dynamic routing program
detects the first transaction in the pseudoconversation initiated by a specific
terminal (LUname), it is free to route the transaction to any target region that is a
valid candidate for that transaction. However, any subsequent transaction within the
affinity group that is initiated at the same terminal must be routed to the same
target region as the transaction that started the pseudoconversation. When the
affinity ends (at the end of the pseudoconversation on a given terminal), the
dynamic routing program is again free to route the first transaction to any candidate
target region.

This form of affinity is manageable and does not impose too severe a constraint on
dynamic transaction routing, and may occur commonly in many CICSplexes. It can
be managed easily by a dynamic routing program, and should not inhibit the use of
dynamic routing.

This example is illustrated in Figure 70 on page 250.

Chapter 15. Affinity 249

In this example, each instance of transid AAAA from a terminal starts a
pseudoconversational-lifetime affinity. AAAA can be routed to any suitable target
region (AOR1 through AOR6), but other transactions in the group, in the same
pseudoconversation with the same terminal (IGKS201 in this example) must be
routed to whichever target region is selected for AAAA.

The userid relation
A group of transactions whose affinity relation is defined as userid is one where all
instances of the transactions that are initiated from a terminal, by a START
command, or by a CICS BTS activity, and executed on behalf of the same userid,
must execute in the same target region for the lifetime of the affinity. The affinity
lifetime for userid relations can be as follows:

Pseudoconversation
The affinity lasts for the whole pseudoconversation, and ends when the
pseudoconversation ends for that userid. Each transaction must end with an
EXEC CICS RETURN TRANSID, not with the pseudoconversation mode of
END.

Signon
The affinity lasts for as long as the user is signed on, and ends when the
user signs off. Note this lifetime is only possible in those situations where
only one user per userid is permitted. Signon lifetime cannot be detected if
multiple users are permitted to be signed on with the same userid at the
same time (at different terminals).

System
The affinity lasts for as long as the target region exists, and ends whenever
the target region terminates (at a normal, immediate, or abnormal
termination).

Permanent
The affinity extends across all CICS restarts. If you are running
CICSPlex SM, this affinity lasts for as long as any CMAS involved in
managing the CICSplex using the workload is active.

LUNAME= TOR
IGKS201
User Calls DTR DTR program Affinity group
enters program
tranid 1. Checks affinity Relation: LUNAME
AAAA Routes AAAA groups for AAAA Lifetime: PCONV

to AOR4 2. Detects start
of pseudoconv. Transids: AAAA

3. Selects an AOR BBBB
from candidate .
list. .

4. Records choice ZZZZ
of AOR (for
example, AOR4)
for this group. AAAA on IGKS201

sent to AOR4

AOR1 AOR2 AOR3 AOR4 AOR5 AOR6

AAAA

Figure 70. Managing inter-transaction affinity with LUname relation and pseudoconversation
lifetime

250 CICS TS for z/OS: CICS Application Programming Guide

Delimit
The affinity continues until a transaction with a pseudoconversation mode of
END is encountered.

A typical example of transactions that have a userid relation is where the userid is
used dynamically to identify a resource, such as a TS queue. The least restrictive of
the affinities in this category is one that lasts only for as long as the user remains
signed on.

An example of an affinity group with the userid relation and a signon lifetime is
shown in Figure 71.

In this example, any instance of a transaction from a terminal starts a sign-on
lifetime affinity. It can be routed to any suitable target region (AOR1 through AOR6),
but other transactions in the group for the same user (ANOTHER in this example)
must be routed to whichever target region is selected for the first instance of a
transaction in the group.

The BAPPL relation
A group of transactions whose affinity relation is defined as BAPPL is one where all
instances of all transactions in the group that are associated with the same BTS
process are to be directed to the same target region. The affinity lifetimes for
BAPPL relations can be as follows:

Process
The affinity lasts for as long as the associated process exists.

Activity
The affinity lasts for as long as the associated activity exists.

System
The affinity lasts for as long as the target region exists, and ends whenever
the target region terminates (at a normal, immediate, or abnormal
termination).

Userid= TOR
ANOTHER
User Calls DTR DTR program Affinity group
enters program
tranid 1. Checks affinity Relation: USERID
WWWW Routes WWWW groups for WWWW Lifetime: SIGNON

to AOR4 2. Detects start
of pseudoconv. Transids: WWWW

3. Selects an AOR XXXX
from candidate .
list. .

4. Records choice YYYY
of AOR (for
example, AOR4)
for this group. WWWW sent to AOR4

for user=ANOTHER

AOR1 AOR2 AOR3 AOR4 AOR5 AOR6

WWWW

Figure 71. Managing inter-transaction affinity with userid relation and sign-on lifetime

Chapter 15. Affinity 251

Permanent
The affinity extends across all CICS restarts. If you are running
CICSPlex SM, this affinity lasts for as long as any CMAS involved in
managing the CICSplex using the workload is active.

A typical example of transactions that have a BAPPL relation is where a local
temporary storage queue is used to pass data between the transactions within a
BTS activity or process.

An example of an affinity group with the BAPPL relation is shown in Figure 72.

In this example, the first instance of BTS transaction BAP1 starts a BAPPL–activity
affinity. The first instance of BAP1 can be routed to any suitable target region
(AOR1 through AOR6), but all other instances of the activity must be routed to
whichever target region is selected for BAP1.

Although BTS itself does not introduce any affinities, and discourages programming
techniques that do, it does support existing code that may introduce affinities. You
must define such affinities to workload management. It is particularly important to
specify each affinity’s lifetime. Failure to do this may restrict unnecessarily the
workload management routing options.

It is important to note that a given activity can be run both synchronously and
asynchronously. Workload management is only able to honour invocations that are
made asynchronously. Furthermore, you are strongly encouraged not to create
these affinities, particularly activity and process affinities, because these affinities
are synchronized across the BTS-set. This could have serious performance impacts
on your systems.

You should also note that, with CICSPlex SM, the longest time that an affinity can
be maintained is while a CMAS involved in the workload is active; that is, an affinity

Dynamic routing
program

1. Checks affinity
groups for BAP1.

2. Start BAPPL
affinity for
transid BAP1

3. Select target
region from
candidate list

4. Record choice
of target
region (for
example, AOR4)
for this group.

AOR2 AOR3 AOR4 AOR5 AOR6

BAP1
Transid
started
activity
BAPPL

routing

AOR 1

dynamic
Calls

program

Routes BAP1
to AOR4

Affinity group

Relation: BAPPL
Lifetime: ACTIVITY

Transid : BAP1

Sent BAP1 to AOR4

Figure 72. Managing inter-transaction affinity with BAPPL relation and activity lifetime

252 CICS TS for z/OS: CICS Application Programming Guide

of PERMANENT. If there is a total system failure, or a planned shutdown, affinities
will be lost, but activities in CICS will be recovered from the BTS RLS data set.

Chapter 15. Affinity 253

254 CICS TS for z/OS: CICS Application Programming Guide

Chapter 16. Recovery design

CICS provides two techniques that can help you to recover or reconstruct events or
data changes during CICS execution:
v “Journaling”
v “Syncpointing” on page 257

Techniques for named counter recovery are described in “Named counter recovery”
on page 358.

Journaling
CICS provides facilities for creating and managing journals during CICS
processing. Journals may contain any and all data the user needs to facilitate
subsequent reconstruction of events or data changes. For example, a journal might
act as an audit trail, a change-file of database updates and additions, or a record of
transactions passing through the system (often referred to as a log). Each journal
can be written from any task.

Journal control commands are provided to allow the application programmer to:

v Create a journal record (WRITE JOURNALNAME or WRITE JOURNALNUM
command)

v Synchronize with (wait for completion of) journal output (WAIT JOURNALNAME
or WAIT JOURNALNUM command)

Exception conditions that occur during execution of a journal control command are
handled as described in Chapter 17, “Dealing with exception conditions,” on page
261. (The earlier JFILEID option is supported for compatibility purposes only.)

Journal records
Each journal is identified by a name or number known as the journal identifier. This
number may range from 1 through 99. The name DFHLOG is reserved for the
journal known as the system log.

When a journal record is built, the data is moved to the journal buffer area. All
buffer space and other work areas needed for journal operations are acquired and
managed by CICS. The user task supplies only the data to be written to the journal.
Log manager is designed so that the application programmer requesting output
services does not have to be concerned with the detailed layout and precise
contents of journal records. The programmer has to know only which journal to use,
what user data to specify, and which user-identifier to supply.

Journal output synchronization
When a synchronous journal record is created by issuing the WRITE
JOURNALNAME or WRITE JOURNALNUM command with the WAIT option, the
requesting task can wait until the output has been completed. By specifying that this
should happen, the application programmer ensures that the journal record is
written on the external storage device associated with the journal before processing
continues; the task is said to be synchronized with the output operation.

The application programmer can also request asynchronous journal output. This
causes a journal record to be created in the journal buffer area but allows the
requesting task to retain control and thus to continue with other processing. The

© Copyright IBM Corp. 1989, 2010 255

task may check and wait for output completion (that is, synchronize) later by issuing
the WAIT JOURNALNAME or WAIT JOURNALNUM command.

Note: In some cases, a SHUTDOWN IMMEDIATE can cause user journal records
to be lost, if they have been written to a log manager buffer but not to
external storage. This is also the case if the CICS shut-down assist
transaction (CESD) forces SHUTDOWN IMMEDIATE during a normal
shutdown, because normal shutdown is hanging. To avoid the risk of losing
journal records, you are recommended to issue CICS WAIT JOURNALNUM
requests periodically, and before ending your program.

Without WAIT, CICS does not write data to the log stream until it has a full buffer of
data, or until some other unrelated activity requests that the buffer be hardened,
thus reducing the number of I/O operations. Using WAIT makes it more difficult for
CICS to calculate accurately log structure buffer sizes. For CF log streams, this
could lead to inefficient use of storage in the coupling facility.

The basic process of building journal records in the CICS buffer space of a given
journal continues until one of the following events occurs:

v For system logs:

– Whenever the system requires it to ensure integrity and to permit a future
emergency restart

– The log stream buffer is filled

v For user journals:

– The log stream buffer is filled (or, if the journal resides on SMF, when the
journal buffer is filled)

– A request specifying the WAIT option is made (from any task) for output of a
journal record

– An EXEC CICS SET JOURNALNAME command is issued

– An EXEC CICS DISCARD JOURNALNAME command is issued

– Any of the above occurring for any other journal which maps onto the same
log stream

– On a normal shutdown

v For forward recovery logs:

– The log stream buffer is filled

– At syncpoint (first phase)

– On file closure

v For autojournals:

– The log stream buffer is filled

– A request specifying the WAIT option is made (from any task) for output of a
journal record

– On file closure

v For the log-of-logs (DFHLGLOG):

– On file OPEN and CLOSE requests

When any one of these occurs, all journal records present in the buffer, including
any deferred output resulting from asynchronous requests, are written to the log
stream as one block.

The advantages that may be gained by deferring journal output are:

v Transactions may get better response times by waiting less.

256 CICS TS for z/OS: CICS Application Programming Guide

v The load of physical I/O requests on the host system may be reduced.

v Log streams may contain fewer but larger blocks and so better utilize primary
storage.

However, these advantages are achievable only at the cost of greater programming
complexity. It is necessary to plan and program to control synchronizing with journal
output. Additional decisions that depend on the data content of the journal record
and how it is to be used must be made in the application program. In any case, the
full benefit of deferring journal output is obtained only when the load on the journal
is high.

If the journal buffer space available at the time of the request is not sufficient to
contain the journal record, the NOJBUFSP condition occurs. If no HANDLE
CONDITION command is active for this condition, the requesting task loses control,
the contents of the current buffer are written, and the journal record is built in the
resulting freed buffer space before control returns to the requesting task.

If the requesting task is not willing to lose control (for example, if some
housekeeping must be performed before other tasks get control), a HANDLE
CONDITION command should be issued. If the NOJBUFSP condition occurs, no
journal record is built for the request, and control is returned directly to the
requesting program at the location provided in the HANDLE CONDITION command.
The requesting program can perform any housekeeping needed before reissuing
the journal output request.

Journal commands can cause immediate or deferred output to the journal. System
log records are distinguished from all other records by specifying
JOURNALNAME(DFHLOG) on the request. User journal records are created using
some other JOURNALNAME or a JOURNALNUM. All records must include a
journal type identifier, (JTYPEID). If the user journaling is to the system log, the
journal type identifier (according to the setting of the high-order bit) also serves to
control the presentation of these to the global user exit XRCINPT at a warm or
emergency restart. Records are presented during the backward scan of the log as
follows:
v For in-flight or in-doubt tasks only (high-order bit off)
v For all records encountered until the scan is terminated (high-order bit on)

See the CICS Customization Guide for information about the format and structure of
journal records. See the section on emergency restart in the CICS Recovery and
Restart Guide for background information and a description of the recovery process.

Syncpointing
To facilitate recovery in the event of abnormal termination of a CICS task or of
failure of the CICS system, the system programmer can, during CICS table
generation, define specific resources (for example, files) as recoverable. If a task is
terminated abnormally, these resources are restored to the condition they were in at
the start of the task, and can then be rerun. The process of restoring the resources
associated with a task is termed backout.

If an individual task fails, backout is performed by the dynamic transaction backout
program. If the CICS system fails, backout is performed as part of the emergency
restart process. See the CICS Recovery and Restart Guide which describes these
facilities, which in general have no effect on the coding of application programs.

Chapter 16. Recovery design 257

However, for long-running programs, it may be undesirable to have a large number
of changes, accumulated over a period of time, exposed to the possibility of
backout in the event of task or system failure. This possibility can be avoided by
using the SYNCPOINT command to split the program into logically separate
sections known as units of work (UOWs); the end of an UOW is referred to as a
synchronization point (syncpoint). For more information about syncpoints, see the
CICS Recovery and Restart Guide.

If failure occurs after a syncpoint but before the task has been completed, only
changes made after the syncpoint are backed out.

Alternatively, you can use the SAA Resource Recovery interface instead of the
SYNCPOINT command. This provides an alternative API to existing CICS resource
recovery services. You may wish to use the SAA Resource Recovery interface in
networks that include multiple SAA platforms, where the consistency of a common
API is seen to be of benefit. In a CICS system, the SAA Resource Recovery
interface provides the same function as the EXEC CICS API.2

The SAA Resource Recovery interface is implemented as a call interface, having
two call types:

SRRCMIT
Commit—Equivalent to SYNCPOINT command.

SRRBACK
Backout—Equivalent to SYNCPOINT ROLLBACK command.

For further information about the SAA Resource Recovery interface, see SAA
Common Programming Interface for Resource Recovery Reference manual.

UOWs should be entirely logically independent, not merely with regard to protected
resources, but also with regard to execution flow. Typically, an UOW comprises a
complete conversational operation bounded by SEND and RECEIVE commands. A
browse is another example of an UOW; an ENDBR command must therefore
precede the syncpoint.

In addition to a DL/I termination call being considered to be a syncpoint, the
execution of a SYNCPOINT command causes CICS to issue a DL/I termination call.
If a DL/I PSB is required in a subsequent UOW, it must be rescheduled using a
program control block (PCB) call or a SCHEDULE command.

With distributed program link (DPL), it is possible to specify that a syncpoint is
taken in the server program, to commit the server resources before returning control
to the client. This is achieved by using the SYNCONRETURN option on the LINK
command. For programming information about the SYNCONRETURN option, see
"The SYNCONRETURN option for the server program" on page 5 on page 440 and
the CICS Application Programming Reference manual.

A BMS logical message, started but not completed when a SYNCPOINT command
is processed, is forced to completion by an implied SEND PAGE command.
However, you should not rely on this because a logical message whose first page is
incomplete is lost. You should also code an explicit SEND PAGE command before
the SYNCPOINT command or before termination of the transaction.

2. Full SAA Resource Recovery provides some return codes that are not supported in its CICS implementation. (See the CICS
appendix in the SAA Common Programming Interface for Resource Recovery Reference manual.)

258 CICS TS for z/OS: CICS Application Programming Guide

Consult your system programmer if syncpoints are to be issued in a transaction that
is eligible for transaction restart.

Chapter 16. Recovery design 259

260 CICS TS for z/OS: CICS Application Programming Guide

Chapter 17. Dealing with exception conditions

Every time you process an EXEC CICS command in one of your applications, CICS
automatically raises a condition, or return code, to tell you what happened. You can
choose to have this condition, which is usually NORMAL, passed back by the CICS
EXEC interface program to your application. It is sometimes called a RESP value,
because you may get hold of it by using the RESP option in your command.
Alternatively, you may obtain this value by reading it from the EXEC interface block
(EIB).

If something out of the ordinary happens, you get an exception condition, which
simply means a condition other than NORMAL. By testing this condition, you can
find out what has happened and, possibly, why.

Many exception conditions have an additional (RESP2) value associated with them,
which gives further information. You may obtain this RESP2 value either by using
the RESP2 option in your command in addition to the RESP option, or by reading it
from the EIB.

Not all conditions denote an error situation, even if they are not NORMAL. For
example, if you get an ENDFILE condition on a READNEXT command during a file
browse, it might be exactly what you expect. For information about all possible
conditions and the commands on which they can occur, see the CICS Application
Programming Reference manual.

This chapter describes:
v Default CICS exception handling
v “Handling exception conditions by in-line code” on page 262
v “Modifying default CICS exception handling” on page 265

Default CICS exception handling
If your application is written in a language other than C, C++, or Java and you do
not specify otherwise, CICS uses its built-in exception handling whenever an
exception condition occurs. If your application is written in C or C++, CICS itself
takes no action when an exception condition occurs and it is left to the application
to handle it. See “Handling exception conditions by in-line code” on page 262 for
information on handling exception conditions.

The most common action by CICS is to cause an abend of some type to happen.
The particular behaviors for each condition and for each command are detailed in
the CICS Application Programming Reference and CICS System Programming
Reference manuals.

Sometimes you will be satisfied with the CICS default exception handling, in which
case you need do nothing. More often you will prefer some other course of action.

These are the different ways of turning off the default CICS handling of exception
conditions.

v Turn off the default CICS handling of exception conditions on a particular EXEC
CICS command call by specifying the NOHANDLE option.

v Alternatively, turn off the default CICS handling of exception conditions by
specifying the RESP option on the command. This, of itself, switches off the
default CICS exception handling in the same way as NOHANDLE does. It also

© Copyright IBM Corp. 1989, 2010 261

causes the variable named by the argument of RESP to be updated with the
value of the condition returned by the command. This is described in more detail
in “Handling exception conditions by in-line code.”

v Write your application program in C or C++.

If the default CICS exception handling is turned off you should ensure that your
program copes with anything that may happen in the command call.

The traditional, but no longer recommended, way to specify some other course of
action is available only if you are programming in a language other than C or C++:
it is to use combinations of the HANDLE ABEND, HANDLE CONDITION, and
IGNORE CONDITION commands to modify the default CICS exception handling.
This is described in “Modifying default CICS exception handling” on page 265.

Handling exception conditions by in-line code
This section describes the method of handling exception conditions which is
recommended for new applications and is the only available choice if your programs
are in C or C++ language. If your program is not written in C or C++, it involves
either using the NOHANDLE option or specifying the RESP option on EXEC CICS
commands, which prevents CICS performing its default exception handling.
Additionally, the RESP option makes the value of the exception condition directly
available to your program, for it to take remedial action.

If your program is written in C or C++, in-line code is the only means you have of
handling exception conditions.

If you use the NOHANDLE or RESP option, you should ensure that your program
can cope with whatever condition may arise in the course of executing the
commands. The RESP value is available to enable your program to decide what to
do and more information which it may need to use is carried in the EXEC interface
block (EIB). In particular, the RESP2 value is contained in one of the fields of the
EIB. See the CICS Application Programming Reference manual for more
information on the EIB. Alternatively, if your program specifies RESP2 in the
command, the RESP2 value is returned by CICS directly.

The DFHRESP built-in translator function makes it very easy to test the RESP
value. It allows, you to examine RESP values symbolically. This is easier than
examining binary values that are less meaningful to someone reading the code.

How to use the RESP and RESP2 options
The argument of RESP is a user-defined fullword binary data area (long integer).
On return from the command, it contains a value corresponding to the condition that
may have been raised. Normally its value is DFHRESP(NORMAL).

Use of RESP and DFHRESP in COBOL and PL/I
Here is an example of an EXEC CICS call in COBOL which uses the RESP option.
A PL/I example would be similar, but would end in “;” instead of END-EXEC.
EXEC CICS WRITEQ TS FROM(abc)

QUEUE(qname)
NOSUSPEND
RESP(xxx)
END-EXEC.

An example of using DFHRESP to check the RESP value is:
IF xxx=DFHRESP(NOSPACE) THEN ...

262 CICS TS for z/OS: CICS Application Programming Guide

Use of RESP and DFHRESP in C and C++
Here is an example of an EXEC CICS call in C, which uses the RESP option,
including the declaration of the RESP variable:
long response;...
EXEC CICS WRITEQ TS FROM(abc)

QUEUE(qname)
NOSUSPEND
RESP(response);

An example of using DFHRESP to check the RESP value is:
if (response == DFHRESP(NOSPACE))
{...
}

Use of DFHRESP in assembler
An example of a test for the RESP value in assembler language is:

CLC xxx,DFHRESP(NOSPACE)
BE ...

An example of exception handling in C
The following example is a typical function which could be used to receive a BMS
map and to cope with exception conditions:

The ReadAccountMap function has two arguments:

1. mapname is the variable which contains the name of the map which is to be
received.

2. map is the address of the area in memory to which the map is to be written.

The RESP value will be returned in response. The declaration of response sets up
the appropriate type of automatic variable.

int ReadAccountMap(char *mapname, void *map)
{

long response;
int ExitKey;
EXEC CICS RECEIVE MAP(mapname)

MAPSET("ACCOUNT")
INTO(map)
RESP(response);

switch (response)
{
case DFHRESP(NORMAL):

ExitKey = dfheiptr->eibaid;
ModifyMap(map);
break;

case DFHRESP(MAPFAIL):
ExitKey = dfheiptr->eibaid;
break;

default:
ExitKey = DFHCLEAR;
break;

}
return ExitKey;

}

Figure 73. An example of exception handling in C

Chapter 17. Dealing with exception conditions 263

The EXEC CICS statement asks for a map of the name given by mapname, of the
mapset ACCOUNT, to be read into the area of memory to which the variable map
points, with the value of the condition being held by the variable response.

The condition handling can be done by using if statements. However, to improve
readability, it is often better, as here, to use a switch statement, instead of
compound if ... else statements. The effect on program execution time is negligible.

Specific cases for two conditions:

1. A condition of NORMAL is what is normally expected. If a condition of NORMAL
is detected in the example here, the function then finds out what key the user
pressed to return to CICS and this value is passed to ExitKey. The program
then makes some update to the map held in memory by the ModifyMap
function, which need not concern us further.

2. A condition of MAPFAIL, signifying that the user has made no updates to the
screen, is also fairly normal and is specifically dealt with here. In this case the
program again updates ExitKey but does not call ModifyMap.

In this example, any other condition is held to be an error. The example sets
ExitKey to DFHCLEAR—the same value that it would have set if the user had
cleared the screen—which it then returns to the calling program. By checking the
return code from ReadAccountMap, the calling program would know that the map
had not been updated and that some remedial action is required.

An example of exception handling in COBOL
The following example is a typical function which could be used to receive a BMS
map and to cope with exception conditions:

MAPNAME is the variable which contains the name of the map which is to be
received.

The RESP value is returned in RESPONSE. RESPONSE is declared as a fullword
binary variable in the data section.

03 RESPONSE PIC S9(8) BINARY.
03 EXITKEY PIC X....
EXEC CICS RECEIVE MAP(MAPNAME)

MAPSET(’ACCOUNT’)
INTO(MAP)
RESP(RESPONSE)
END-EXEC.

IF (RESPONSE NOT = DFHRESP(NORMAL)) AND
(RESPONSE NOT = DFHRESP(MAPFAIL))
MOVE DFHCLEAR TO EXITKEY

ELSE
MOVE EIBAID TO EXITKEY
IF RESPONSE = DFHRESP(NORMAL)

GO TO MODIFYMAP
END-IF

END-IF....
MODIFYMAP....

Figure 74. An example of exception handling in COBOL

264 CICS TS for z/OS: CICS Application Programming Guide

#
####
#
#
#
#
#
#
#
#
#
#
#
#
#
####
####
#
#
#

The EXEC CICS statement asks for a map of the name given by MAPNAME, of the
mapset ACCOUNT, to be read, with the value of the condition being held by the
variable RESPONSE.

The condition handling is done by using IF ... statements. If the condition is neither
NORMAL nor MAPFAIL the program behaves as if the user had cleared the screen.

If the condition is either NORMAL or MAPFAIL the program saves the value of the
key which the user pressed to exit the screen in EXITKEY. In addition, if the
condition is NORMAL, the program branches to MODIFYMAP to perform some
additional function.

Modifying default CICS exception handling
CICS provides the following EXEC CICS commands which modify the default CICS
exception handling and one which modifies the way CICS handles abends:

Note: These commands cannot be used in C, C++, or Java programs. The rest of
this chapter is not relevant for these languages.

HANDLE CONDITION
Specify the label to which control is to be passed if a condition occurs.

IGNORE CONDITION
Specify that no action is to be taken if a condition occurs.

HANDLE ABEND
Activate, cancel, or reactivate an exit for abnormal termination processing.

An abend is the commonest way in which CICS handles exception conditions.

The current effect of IGNORE CONDITION, HANDLE ABEND, and HANDLE
CONDITION may be suspended by using PUSH HANDLE and reinstated by using
POP HANDLE .

You have two ways of passing control to a specified label:

1. Use a HANDLE CONDITION condition(label) command, where condition is the
name of an exception condition

2. Use a HANDLE CONDITION ERROR(label) command

The HANDLE CONDITION command sets up some CICS code to name conditions
that interest you, and then uses this code to pass control to appropriate sections of
your application if those conditions arise. So with an active HANDLE CONDITION
command, control goes to whichever label you specified for that particular condition.

The same condition can arise, in some cases, on many different commands, and
for a variety of reasons. For example, you can get an IOERR condition during file
control operations, interval control operations, and others. One of your first tasks,
therefore, is to sort out which command has raised a particular condition; only
when you have discovered that, can you begin to investigate why it has happened.
This, for many programmers, is reason enough to start using the RESP option in
their new CICS applications. Although you need only one HANDLE CONDITION
command to set your error-handling for several conditions, it can sometimes be
awkward to pinpoint exactly which of several HANDLE CONDITION commands is
currently active when a CICS command fails somewhere in your code.

Chapter 17. Dealing with exception conditions 265

If a condition which you have not named arises, CICS takes the default action,
unless this is to abend the task, in which case it raises the ERROR condition. If you
name the condition but leave out its label, any HANDLE CONDITION command for
that condition is deactivated, and CICS reverts to taking the default action for it, if
and when it occurs.

The need to deal with all conditions is a common source of errors when using the
HANDLE CONDITION command. When using an unfamiliar command, you should
refer to the description of the command in the CICS Application Programming
Reference manual to find out which exception conditions are possible. Even if you
then issue HANDLE commands for all of these, you may not finish all the
error-handling code adequately. The outcome is sometimes an error-handling
routine that, by issuing a RETURN command, allows incomplete or incorrect data
changes to be committed.

The best approach is to use the HANDLE CONDITION command, but to let the
system default action take over if you cannot see an obvious way round a particular
problem.

Bearing in mind the distinction between an error condition, a condition that merely
causes a wait (see page “How CICS keeps track of what to do” on page 268 for
examples of conditions that cause a wait), and the special case of the SEND MAP
command overflow processing, a HANDLE CONDITION command is active after a
HANDLE CONDITION condition(label), or HANDLE CONDITION ERROR(label)
command has been run in your application.

If no HANDLE CONDITION command is active for a condition, but one is active for
ERROR, control passes to the label for ERROR, if the condition is an error, not a
wait.

If you use HANDLE CONDITION commands, or are maintaining an application that
uses them, do not include any commands in your error routine that can cause the
same condition that gave you the original branch to the routine, because you will
cause a loop.

Take special care not to cause a loop on the ERROR condition itself. You can avoid
a loop by reverting temporarily to the system default action for the ERROR
condition. Do this by coding a HANDLE CONDITION ERROR command with no
label specified. At the end of your error processing routine, you can reinstate your
error action by including a HANDLE CONDITION ERROR command with the
appropriate label. If you know the previous HANDLE CONDITION state, you can do
this explicitly. In a general subroutine, which might be called from several different
points in your code, the PUSH HANDLE and POP HANDLE command may be
useful—see “Using PUSH HANDLE and POP HANDLE commands” on page 271.

266 CICS TS for z/OS: CICS Application Programming Guide

Using the HANDLE CONDITION command
Use the HANDLE CONDITION command to specify the label to which control is to
be passed if a condition occurs. You must include the name of the condition and
you must ensure that the HANDLE CONDITION command is executed before the
command that may give rise to the associated condition.

You cannot include more than 16 conditions in the same command. You must
specify any additional conditions in further HANDLE CONDITION commands. You
can also use the ERROR condition within the same list to specify that all other
conditions are to cause control to be passed to the same label.

The HANDLE CONDITION command for a given condition applies only to the
program in which it is specified. The HANDLE CONDITION command:

v Remains active while the program is running, or until:

– An IGNORE CONDITION command for the same condition is met, in which
case the HANDLE CONDITION command is overridden

– Another HANDLE CONDITION command for the same condition is met, in
which case the new command overrides the previous one

v Is temporarily deactivated by the NOHANDLE or RESP option on a command

When control passes to another program, by a LINK or XCTL command, the
HANDLE CONDITION commands that were active in the calling program are
deactivated. When control returns to a program from a program at a lower logical
level, the HANDLE CONDITION commands that were active in the higher-level
program before control was transferred from it are reactivated, and those in the
lower-level program are deactivated. (Refer to “Application program logical levels”
on page 566 for information about logical levels.)

The following example shows you how to handle conditions, such as DUPREC,
LENGERR, and so on, that can occur when you use a WRITE command to add a
record to a data set. Suppose that you want DUPREC to be handled as a special
case; that you want standard system action (that is, to terminate the task
abnormally) to be taken for LENGERR; and that you want all other conditions to be
handled by the error routine ERRHANDL. You would code:

EXEC CICS HANDLE CONDITION
ERROR(ERRHANDL)
DUPREC(DUPRTN) LENGERR

END-EXEC.

In a PL/I application program, a branch to a label in an inactive procedure or in an
inactive begin block, caused by a condition, produces unpredictable results.

In an assembler language application program, when a branch to a label is caused
by a condition, the registers in the application program are restored to their values
in the program at the point where the command that caused the condition is issued.

Chapter 17. Dealing with exception conditions 267

#
#
#

RESP and NOHANDLE options
You can temporarily deactivate the effect of any HANDLE CONDITION command
by using the RESP or NOHANDLE option on a command. The way to use these
options is described in “Handling exception conditions by in-line code” on page 262.
If you do this, you lose the ability to use any system default action for that
command. In other words, you have to do your own “catch-all” error processing.

How CICS keeps track of what to do
CICS has a table of the conditions referred to by HANDLE CONDITION and
IGNORE CONDITION commands in your application. Each execution of one of
these commands either updates an existing entry in this table, or causes CICS to
make a new entry if this is the first time the condition has been quoted in such a
command. Each entry tells CICS what to do by indicating one of the three
exception-handling states your application can be in, namely:

1. Let the program continue, with control coming straight back from CICS to the
next instruction following the command that has failed in your program. You can
then find out what happened by testing, for example, the RESP value that CICS
returns after executing a command. The result of this test enables you decide
what to do next. For details, see “Handling exception conditions by in-line code”
on page 262.

This is the recommended method, which is the approach taken in the “File A”
sample programs referred to in the Sample Applications Guide and in the
COBOL sample application in the Designing and Programming CICS
Applications. It is also the recommended approach for any new CICS
applications. It lends itself to structured code and removes the need for implied
GOTOs that CICS required in the past.

2. Pass control to a specified label if a named condition arises. You do this by
using a HANDLE CONDITION command or HANDLE CONDITION ERROR
command to name both the condition and the label of a routine in your code to
deal with it. For details, see “Using the HANDLE CONDITION command” on
page 267 and “Using the HANDLE CONDITION ERROR command” on page
269.

3. Taking the CICS system default action, where for most conditions, this is to
terminate the task abnormally and means that you do nothing by way of testing
or handling conditions.

For the conditions ENQBUSY, NOJBUFSP, NOSTG, QBUSY, SESSBUSY, and
SYSBUSY, the normal default is to force the task to wait until the required resource
(for example, storage) becomes available, and then resume processing the
command. You can change this behavior to ignoring the condition by using the
NOSUSPEND option. For the condition NOSPACE, the normal default is to wait if
processing a WRITEQ TS command, but to abend the task if processing a WRITEQ
TD, WRITE, or REWRITE command. Coding the WRITEQ TS command with the
NOSUSPEND option makes it ignore any NOSPACE condition that arises. For more
information see the CICS Application Programming Reference manual.

CICS keeps a table of these conditions for each link level. Essentially, therefore,
each program level has its own HANDLE state table governing its own condition
handling.

This behavior is modified by HANDLE CONDITION ERROR and IGNORE
CONDITION.

268 CICS TS for z/OS: CICS Application Programming Guide

Using the HANDLE CONDITION ERROR command
Figure 75 shows the first of only two HANDLE CONDITION commands used in
program ACCT01:

It passes control to the paragraph at label OTHER-ERRORS if any condition arises
for a command that does not specify NOHANDLE or RESP.

The HANDLE CONDITION ERROR command is the first command executed in the
procedure division of this COBOL program. This is because a HANDLE
CONDITION command must be processed before any CICS command is processed
that can raise the condition being handled. Note, however, that your program does
not see the effects when it processes the HANDLE CONDITION command; it only
sees them later, if and when it issues a CICS command that actually raises one of
the named conditions.

In this, and the other ACCT programs, you generally use the RESP option. All the
commands specifying the RESP option have been written with a “catch-all” test (IF
RESPONSE NOT = DFHRESP(NORMAL) GO TO OTHER-ERRORS) after any
explicit tests for specific conditions So any exceptions, other than those you might
particularly “expect”, take control to the paragraph at OTHER-ERRORS in each
program. Those relatively few commands that do not have RESP on them take
control to exactly the same place if they result in any condition other than NORMAL
because of this HANDLE CONDITION ERROR command.

Using the IGNORE CONDITION command
Just as you can arrange for control to pass to a particular label for a specific
condition with a HANDLE CONDITION command, so you can have the program
continue when a specific condition occurs. You do this by setting up an IGNORE
CONDITION command to ignore one or more of the conditions that can potentially
arise on a command. The IGNORE CONDITION command means that no action is
to be taken if a condition occurs; control returns to the instruction following the
command and return codes are set in the EIB. The following example ignores the
MAPFAIL condition:

EXEC CICS IGNORE CONDITION MAPFAIL
END-EXEC.

While a single EXEC CICS command is being processed, it can raise several
conditions.3 CICS checks these and passes back to your application program the
first one that is not ignored (by your IGNORE CONDITION command). CICS
passes back only one exception condition at a time to your application program.

3. For example, you may have a file control command that is not only invalid but also applies to a file not defined in the file control
table.

PROCEDURE DIVISION.
*
* INITIALIZE.
* TRAP ANY UNEXPECTED ERRORS.

EXEC CICS HANDLE CONDITION
ERROR(OTHER-ERRORS)
END-EXEC.

*

Figure 75. Trapping the unexpected with the HANDLE CONDITION ERROR command

Chapter 17. Dealing with exception conditions 269

An IGNORE CONDITION command for a given condition applies only to the
program you put it in, and it remains active while the program is running, or until a
later HANDLE CONDITION command naming the same condition is met, in which
case the IGNORE CONDITION command is overridden.

You can choose an IGNORE CONDITION command if you have a program reading
records that are sometimes longer than the space you provided, but you do not
consider this an error and do not want anything done about it. You might, therefore,
code IGNORE CONDITION LENGERR before issuing READ commands.

You can also use an IGNORE CONDITION ERROR command to catch any
condition considered as an error for which there is no currently active HANDLE
CONDITION command that includes a label. When an error occurs, control is
passed to the next statement and it is up to the program to check for return codes
in the EIB. See page “How CICS keeps track of what to do” on page 268 for
examples of conditions that are not considered as errors.

You can also switch from ignoring a condition to handling it, or to using the system
default action. For example, you could code:
* MIXED ERROR PROCESSING

EXEC CICS IGNORE CONDITION LENGERR
END-EXEC....
EXEC CICS HANDLE CONDITION DUPREC(DUPRTN)

LENGERR
ERROR(ERRHANDL)
END-EXEC.

Because this code initially ignores condition LENGERR, nothing happens if the
program raises a LENGERR condition; the application simply continues its
processing. Of course, if the fact that LENGERR has arisen means that the
application cannot sensibly continue, you have a problem.

Later in the code, you can explicitly set condition LENGERR to the system default
action by naming it in a HANDLE CONDITION command without a label. When this
command has been executed, the program no longer ignores condition LENGERR,
and if it subsequently occurs, it now causes the system default action. The point
about mixing methods is that you can, and that each condition is treated separately.

You cannot code more than 16 conditions in the same command. You must specify
additional conditions in further IGNORE CONDITION commands.

Using the HANDLE ABEND command

Note to Java, C and C++ programmers
Handle ABEND is not applicable to Java programs. Although HANDLE ABEND
is supported in C and C++ when used with the PROGRAM option, it is not
helpful in the context of this chapter because exception conditions in C and
C++ programs do not cause abends.

The HANDLE ABEND command activates or reactivates a program-level abend exit
within your application program; you can also use this command to cancel a
previously activated exit. For more information see the CICS Application
Programming Reference manual .

270 CICS TS for z/OS: CICS Application Programming Guide

CICS does not allow the use of HANDLE ABEND LABEL in Assembler programs
that do not use DFHEIENT and DFHEIRET. Assembler programs that use the
Language Environment stub CEESTART should either use HANDLE ABEND
PROGRAM or a Language Environment service such as CEEHDLR.

HANDLE ABEND lets you supply your own code to be executed when an abend is
processed. This means that your application can cope with the abnormal situation in
an orderly manner and carry on executing. You provide the user exit programs and
rely on CICS calling them when required.

The flow of control during abend processing is shown in Figure 76 on page 276.

Using PUSH HANDLE and POP HANDLE commands
PUSH HANDLE

Suspends the current effect of HANDLE CONDITION, IGNORE
CONDITION, HANDLE ABEND and HANDLE AID commands.

POP HANDLE
Reinstates the effect of HANDLE CONDITION, IGNORE CONDITION,
HANDLE ABEND and HANDLE AID commands to what they were before
the previous PUSH HANDLE was called.

CICS also keeps a table of conditions for each PUSH HANDLE command which
has not been countermanded by a matching POP HANDLE command.

When each condition occurs, CICS performs the following sequence of tests:

1. If the command has the RESP or NOHANDLE option, control returns to the next
instruction in your application program. Otherwise, CICS scans the condition
table to see what to do.

2. If an entry for the condition exists, this determines the action.

3. If no entry exists and the default action for this condition is to suspend
execution:

a. If the command has the NOSUSPEND or NOQUEUE option, control returns
to the next instruction.

b. If the command does not have one of these options, the task is suspended.

4. If no entry exists and the default action for this condition is to abend, a second
search is made, this time for the ERROR condition:

a. If found, this entry determines the action.

b. If ERROR cannot be found, the task is abended. You can choose to handle
abends. For information about the HANDLE ABEND command, see the
CICS Application Programming Reference.

Note: The OVERFLOW condition on aSEND MAP command is an exception to the
above rules. See the CICS Application Programming Reference for more
information.

The commands ALLOCATE, ENQ, GETMAIN, WRITE JOURNALNAME, WRITE
JOURNALNUM, READQ TD, and WRITEQ TS can all raise conditions for which the
default action is to suspend your application program until the specified resource
becomes available. So, on these commands, you have the NOSUSPEND option to
inhibit this waiting and return immediately to the next instruction in your application
program.

Chapter 17. Dealing with exception conditions 271

Some conditions can occur during the execution of a number of unrelated
commands. If you want the same action for all occurrences, code a single HANDLE
CONDITION command at the start of your program.

Note: As using RESP implies NOHANDLE, be careful when using RESP with the
RECEIVE command, because it overrides the HANDLE AID command as
well as the HANDLE CONDITION command. This means that PF key
responses are ignored, and is the reason for testing them earlier in the
ACCT code. See “Using the HANDLE AID command” on page 499.

272 CICS TS for z/OS: CICS Application Programming Guide

Chapter 18. Abnormal termination recovery

CICS provides a program-level abend exit facility so that you can write exits of your
own which can receive control during abnormal termination of a task. The “cleanup”
of a program that has started but not completed normally is an example of a
function performed by such an abend exit.

Here are some causes of abnormal terminations:

v A user request by, for example:
EXEC CICS ABEND ABCODE(...)

v A CICS request as a result of an invalid user request. For example, an invalid
FREEMAIN request gives the transaction abend code ASCF.

v A program check, in which case the system recovery program (DFHSRP) is
driven, and the task abends with code ASRA.

v An operating system abend, in which case DFHSRP is driven, and the task
abends with code ASRB.

v A looping task, in which case DFHSRP is driven, and the task abends with code
AICA.

Note: If an ASRB or ASRA is detected in CICS code, CICS produces a dump
before calling your HANDLE ABEND exit.

See the CICS Problem Determination Guide for full details about fixing problems,
and see the CICS Messages and Codes for information about the transaction
abend codes for abnormal terminations that are initiated by CICS, their meanings,
and your responses.

The HANDLE ABEND command activates or reactivates a program-level abend exit
within your application program; you can also use this command to cancel a
previously activated exit.

When activating an exit, you must use the PROGRAM option to specify the name of
a program to receive control, or (except for C, C++, and PL/I programs) the LABEL
option to specify a routine label to which control branches when an abnormal
termination condition occurs. Using an ON ERROR block in PL/I is the equivalent of
using the HANDLE ABEND LABEL command.

A HANDLE ABEND command overrides any preceding such command in any
application program at the same logical level. Each application program of a
transaction can have its own abend exit, but only one abend exit at each logical
level can be active. (Logical levels are explained in Chapter 45, “Program control,”
on page 565.)

When a task terminates abnormally, CICS searches for an active abend exit,
starting at the logical level of the application program in which the abend occurred,
and proceeding to successively higher levels. The first active abend exit found, if
any, is given control. This procedure is shown in Figure 76 on page 276, which also
shows how subsequent abend processing is determined by the user-written abend
exit.

If CICS finds no abend exit, it passes control to the abnormal condition program to
terminate the task abnormally. This program invokes the user replaceable program

© Copyright IBM Corp. 1989, 2010 273

error program, DFHPEP. See the CICS Customization Guide for programming
information about how to customize DFHPEP.

CICS deactivates the exit upon entry to the exit routine or program to prevent
recursive abends in an abend exit. If you wish to retry the operation, you can
branch to a point in the program that was in control at the time of the abend and
issue a HANDLE ABEND RESET command to reactivate the abend exit. You can
also use this command to reactivate an abend exit (at the logical level of the issuing
program) that was canceled previously by a HANDLE ABEND CANCEL command.
You can suspend the HANDLE ABEND command by means of the PUSH HANDLE
and POP HANDLE commands as described in “Using PUSH HANDLE and POP
HANDLE commands” on page 271.

Note that when an abend is handled, the dynamic transaction backout program is
not be invoked. If you need the dynamic transaction backout program, you take an
implicit or explicit syncpoint or issue SYNCPOINT ROLLBACK or issue an ABEND
command.

Where the abend is the result of a failure in a transaction running in an
IRC-connected system, for example AZI2, the syncpoint processing may abend
ASP1 if it attempts to use the same IRC connection during its backout processing.

The HANDLE ABEND command cannot intercept ASPx or APSJ abend codes.

This chapter describes:
v “Creating a program-level abend exit”
v “Retrying operations” on page 275
v “Trace” on page 276
v “Monitoring” on page 277
v “Dump” on page 278

Creating a program-level abend exit
You can either define abend exits by using RDO or by using the program autoinstall
exit. If you use the autoinstall method, the program definition is not available at the
time of the HANDLE ABEND. This may mean that a program functions differently
the first time it is invoked. If the program is not defined at the time the HANDLE
ABEND is issued, and program autoinstall is active, the security check on the name
of the program is the only one which takes place. Other checks occur at the time
the abend program is invoked. If the autoinstall fails, the task abends APCT and
control is passed to the next higher level.

Abend exit programs can be coded in any supported language, but abend exit
routines must be coded in the same language as their program.

For abend exit routines, the addressing mode and execution key are set to the
addressing mode and execution key in which the HANDLE ABEND command has
been issued.

Upon entry to an abend exit program, no addressability can be assumed other than
that normally assumed for any application program coded in that language. There
are no register values for C, C++, or PL/I languages as these languages do not
support HANDLE ABEND label.

274 CICS TS for z/OS: CICS Application Programming Guide

Upon entry to an abend exit routine, the register values are:
COBOL

Control returns to the HANDLE ABEND command with the registers restored; a
COBOL GOTO is then executed.

Assembler
Reg 15

Abend label.
Reg 0-14

Contents at the time of the last CICS service request.

There are three means of terminating processing in an abend exit routine or
program, as listed below. It is recommended that when abend routines and
programs are called by CICS internal logic they should terminate with an abend
because further processing is likely to cause more problems.

1. Using a RETURN command to indicate that the task is to continue running with
control passed to the program on the next higher logical level. If no such
program exists, the task is terminated normally, and any recoverable resources
are committed.

2. Using an ABEND command to indicate that the task is to be abnormally
terminated with control passed either to an abend exit specified for a program
on a higher logical level or, if there is not one, to the abnormal condition
program for abnormal termination processing.

3. Branching to retry an operation. When you are using this method of retrying an
operation, and you want to reenter the original abend exit routine or program if
a second failure occurs, the abend exit routine or program should issue the
HANDLE ABEND RESET command before branching. This is because CICS
has disabled the exit routine or program to prevent it reentering the abend exit.

In the case of an abend caused by a timeout on an outstanding RECEIVE
command, it is important to let the CICS abend continue, so that CICS can cancel
the RECEIVE.

Retrying operations
If an abend occurs during the invocation of a CICS service, you should be aware
that issuing a further request for the same service may cause unpredictable
results, because the reinitialization of pointers and work areas, and the freeing of
storage areas in the exit routine, may not have been completed.

You should not try to recover from ATNI or ATND abends by attempting further I/O
operations. Either of these abends results in a TERMERR condition, requiring the
session to be terminated in all cases. You should not try to issue terminal control
commands while recovering from an AZCT abend, or an AZIG abend, as CICS has
not fully cleaned up from the RTIMOUT, and an indefinite wait can occur.

If intersystem communication is being used, an abend in the remote system might
cause a branch to the specified program or label, but subsequent requests to use
the same resource in the remote system might fail. If an abend occurs as a result of
a failure in the connection to the remote system, subsequent requests to use any
resources in the remote system might fail.

If an abend occurs as a result of a BMS command, control blocks are not tidied up
before control is returned to the BMS program, and results are unpredictable if the
command is retried.

Chapter 18. Abnormal termination recovery 275

Trace
CICS trace is a debugging aid for application programmers, system programmers,
and IBM field engineers. It produces trace entries in response to trace commands.
The trace entries can be sent to any trace destination that is currently active. The
destinations are:
v Internal trace table
v Auxiliary trace data set
v Generalized trace facility (GTF) data set

For information about trace destinations, see the CICS Problem Determination
Guide.

You can:

v Specify user trace entry points (ENTER TRACENUM). (The earlier ENTER
TRACEID command is supported for compatibility purposes. See the CICS for
MVS/ESA 4.1 Migration Guide for details.)

v Switch CICS internal trace on or off using the SET TRACEDEST, SET
TRACEFLAG, and SET TRACETYPE commands.

Task ABEND

Deactivate
the exit

Action taken in
exit program
or routine

Look at the next
higher level

Terminate the task
abnormally

Terminate the task
normally

Exit to program
at the next higher
level

ABEND

Is there
an exit active
at this level?

Is
application

program at highest
level?

Is
application

program at highest
level?

Yes

Yes

Yes

No

No

No

RETURN

Transfer control
to program or
branch to label

Figure 76. ABEND exit processing

276 CICS TS for z/OS: CICS Application Programming Guide

Trace entry points
The points at which trace entries are produced during CICS operation are of four
types: system trace entry points, user trace entry points, exception trace entry
points, and user exception trace entry points. See the CICS Problem Determination
Guide for more information about tracing.

System trace entry points
These are points within CICS at which trace control requests are made. The most
important system trace entry points for application programmers are for the EXEC
interface program. These produce entries in the trace table whenever a CICS
command is processed.

Two trace entries are made: the first when the command is issued, and the second
when CICS has performed the required function and is about to return control to
your application program. Between them, these two trace entries allow you to trace
the flow of control through an application, and to check which exception conditions,
if any, occurred during its execution. The ABEND, RETURN, TRACEFLAG, and
XCTL commands produce single entries only.

User trace entry points
These are additional points within your application program that you can include in
the trace table to allow complete program debugging. For example, you could
specify an entry for a program loop containing a counter value showing the number
of times that the loop had been entered.

A trace entry is produced wherever the ENTER TRACENUM command is run. Each
trace entry request, which can be given a unique identifier, causes data to be
placed in the trace table.

Exception trace entry points
These are additional points where CICS has detected an exception condition.
These are made from specific points in the CICS code, and data is taken from
areas that might provide some information about the cause. Exception trace entry
points do not have an associated “level” attribute; trace calls are only ever made
from them when exception conditions occur.

User exception trace entry points
These are trace entries that are always written to the internal trace table (even if
internal tracing is set off), but are written to other destinations only if they are
active. You can identify them by the character string *EXCU in any formatted trace
output produced by the CICS utility programs. See the CICS Problem Determination
Guide for general information about user exception trace entry points; programming
information is in the CICS Customization Guide.

Monitoring
CICS monitoring provides information about the performance of your application
transactions.

You should use the MONITOR command for user event monitoring points.

In addition to the monitoring data collected from a system defined elsewhere,
monitoring points (EMPs) within CICS, a user application program can contribute
data to user fields within the CICS monitoring records. You can do this by using the
MONITOR POINT command to invoke user-defined EMPs. At each of these EMPs,

Chapter 18. Abnormal termination recovery 277

you can add or change up to 4096 bytes of your own data in each performance
monitoring record. In those 4096 bytes, you can have any combination of the
following:
v In the range 0 through 256 counters
v In the range 0 through 256 clocks
v A single 8192-byte character string

For example, you could use these user EMPs to count the number of times a
certain event occurs, or to time the interval between two events. For programming
information about monitoring, see the CICS Customization Guide; for background
information, see the CICS Performance Guide.

Dump
CICS dump allows you to specify areas of main storage to be dumped, by means of
the DUMP TRANSACTION , onto a sequential data set, which can be either on disk
or tape.

The PERFORM DUMP command allows you to request a system dump. See the
CICS System Programming Reference manual for programming information about
PERFORM DUMP.

You can format the contents of the dump data set and you can print them offline
using the CICS dump utility program (DFHDU640) for transaction dumps or the
interactive problem control system (IPCS) for system dumps. Instructions on using
these programs are given in the CICS Operations and Utilities Guide.

Only one dump control command is processed at a time. If you issue additional
dump control commands, while another task is taking a transaction dump, activity
within the tasks associated with those commands is suspended until the dump is
completed. Remaining dump commands are processed in the order in which they
are made. Using the DUMP TRANSACTION command causes some fields (for
example, EIBFN and EIBRCODE) in the EIB and the TCA to be overwritten.See the
CICS Application Programming Reference manual for programming information
about DUMP TRANSACTION.

Options on the DUMP TRANSACTION command allow you to dump the following
areas of main storage in various combinations:

v Task-related storage areas: selected main storage areas related to the requesting
task. You would normally use a dump of these areas to test and debug your
application program. (CICS automatically provides this service if the related task
is terminated abnormally.)

v CICS control tables:
– File control table (FCT)
– Program control table (PCT)
– Processing program table (PPT)
– System initialization table (SIT)
– Terminal control table (TCT)

A dump of these tables is typically the first dump taken in a test in which the
base of the test must be established; subsequent dumps are usually of the
task-related storage type.

v It is sometimes appropriate during execution of a task to have a dump of both
task-related storage areas and CICS control tables. Specifying one CICS control
tables dump and a number of task-related storage dumps is generally more

278 CICS TS for z/OS: CICS Application Programming Guide

efficient than specifying a comparable number of complete dumps. However, you
should not use this facility excessively because CICS control tables are primarily
static areas.

v In addition, the DUMP TRANSACTION command used with the three options,
SEGMENTLIST, LENGTHLIST, and NUMSEGMENTS, allows you to dump a
series of task-related storage areas simultaneously.

Program storage is not dumped for programs defined with the attribute
RELOAD(YES).

You also get a list of the CICS nucleus modules and active PPT programs, indexed
by address, at the end of the printed dump.

Chapter 18. Abnormal termination recovery 279

280 CICS TS for z/OS: CICS Application Programming Guide

Chapter 19. The QUERY SECURITY command

QUERY SECURITY is effective with RACF® or any equivalent external security
manager (ESM). You can use this command to query whether the terminal user has
access to resources that are defined to the external security manager. These can
be:
v Resources in CICS resource classes
v Resources in user-defined resource classes

The terminal user in this context is the user invoking the transaction that contains
the QUERY SECURITY command.

Java and C++
The application programming interface described in this chapter is the EXEC
CICS API, which is not used in Java programs. For information about Java
programs using the JCICS classes to access security control services, see the
Java Applications in CICS component of the CICS Information Center and the
JCICS Javadoc html documentation. For information about C++ programs
using the CICS C++ classes, see the CICS C++ OO Class Libraries manual.

In response to a QUERY SECURITY command, CICS returns information about the
terminal user’s security authorizations. CICS obtains this information from the
external security manager. You can code the application to proceed in different
ways depending on the user’s permitted accesses.

You specify the type of resource that you are querying by the CICS resource type
name. For example, if you want to query a user’s authorization to access a file, you
can specify RESTYPE(‘FILE’). To identify a particular file within the type, you
specify the RESID parameter.

Using the QUERY SECURITY command
A typical use of the QUERY SECURITY command is to check whether a user is
authorized to use a particular transaction before displaying the transaction code in
a menu.

Security protection at the record or field level
Another use for QUERY SECURITY is to enable you to control access to data at
the record or field level. The normal CICS resource security checking for file
resources, for example, works only at the file level. To control access to individual
records, or even fields within records, you can use QUERY SECURITY. For this
purpose, your security administrator must define resource profile names, with
appropriate access authorizations, for the records or fields that you want to protect.
These profiles are defined in user resource classes defined by the administrator,
not in CICS resource classes.

To query these classes and resources, the QUERY SECURITY command uses the
RESCLASS and RESID options (RESCLASS and RESTYPE are mutually exclusive
options). You can use the CVDA values returned by QUERY SECURITY to
determine whether to access the record or field.

© Copyright IBM Corp. 1989, 2010 281

CICS-defined resource identifiers
In all cases except for the SPCOMMAND resource type, the resource identifiers are
user-defined. However, for the SPCOMMAND type, the identifiers are fixed by
CICS. The CICS RACF Security Guide details the possible RESID values for the
SPCOMMAND resource type.

SEC system initialization parameter
The setting of the SEC system initialization parameter affects the CVDA values
returned by the QUERY SECURITY command. The SEC system initialization
parameters are described in more detail in the CICS RACF Security Guide.

Programming hints
v A transaction can use the QUERY SECURITY command to query a number of

resources in order to prepare a list of resources to which the terminal user has
access. The use of this technique could generate up to four resource violation
messages for each query on a resource that the transaction is not authorized to
access. These messages appear on the system console, the CSCS TD queue,
and the SMF log data set. If you want to suppress these messages, code
NOLOG in the QUERY SECURITY command.

v If a transaction accesses the same resource many times in one execution, you
can probably improve performance by defining the transaction with RESSEC(NO)
in the transaction resource definition. You can then code the transaction to issue
a single QUERY SECURITY command, and to permit access to the resource
according to the CVDA values returned. For detailed guidance, see the CICS
RACF Security Guide.

282 CICS TS for z/OS: CICS Application Programming Guide

Part 4. Data Management

Chapter 20. An overview of file control. 287
VSAM data sets . 287

Key-sequenced data set (KSDS) 287
Entry-sequenced data set (ESDS) 288
Relative record data set (RRDS) 288
Empty data sets . 289
VSAM alternate indexes . 289
Accessing files in RLS mode 289

Some RLS limitations . 290
BDAM data sets . 290
CICS shared data tables . 291
Coupling facility data tables . 292

Coupling facility data table models 293
Techniques for sharing data. 294
Using CICS commands to read records 296

Direct reading (using READ command) 297
Direct reading from a KSDS 297
Direct reading from an ESDS 297
Direct reading from an RRDS 297
Direct reading by way of a path 297
Read integrity (in RLS mode) 298

Sequential reading (browsing) 298
Browsing through a KSDS 299
Browsing through an ESDS 300
Browsing through an RRDS. 300
Browsing using a path. 300
Browse integrity (in RLS mode) 300
Ending the browse . 300
Simultaneous browse operations 300

Skip-sequential processing 300
Using CICS commands to update records 301
Using CICS commands to delete records. 302

Deleting single records . 302
Updating and deleting records in a browse (VSAM RLS only) 302

Deleting groups of records (generic delete) 303
Read integrity . 303

Using CICS commands to add records 303
Adding to a KSDS . 303
Adding to an ESDS. 304
Adding to an RRDS. 304
Records that are already locked 304
Specifying record length . 304
Sequential adding of records (WRITE MASSINSERT command) 304

File control command options 305
The RIDFLD option . 305
The INTO and SET options 305
The FROM option . 306
The TOKEN option . 306
KEYLENGTH option for remote data sets. 306

Transaction deadlocks. 307
VSAM-detected deadlocks (RLS only) 308
Rules for avoiding deadlocks 309

© Copyright IBM Corp. 1989, 2010 283

Chapter 21. File control—VSAM considerations 311
VSAM record identification . 311

Key. 311
Relative byte address (RBA) and relative record number (RRN) 311

RBA . 311
RRN . 312

Locking of VSAM records in recoverable files 312
Update locks and delete locks (non-RLS mode only) 312

RLS Record level locking . 313
Exclusive locks and shared locks. 313

Exclusive locks . 314
Shared locks . 314
Lock duration . 314
Active and retained states for locks 315

Conditional VSAM file update requests 316
File control implementation of NOSUSPEND 316

CICS locking for writing to ESDS. 316

Chapter 22. File control—BDAM considerations 319
Identifying BDAM records . 319

Block reference subfield . 319
Physical key subfield . 319
Deblocking argument subfield 319

Browsing records from BDAM data sets 320
Adding records to BDAM data sets 321

Updating records from BDAM data sets 322

Chapter 23. Database control 323
DL/I databases . 323
DB2 databases . 323

Requests to DB2. 323

Chapter 24. CICS documents 325
Using the DOCUMENT programming interface 325

Creating a document . 325
The BINARY option. 325
The TEXT option. 325
The FROMDOC option 326

Setting up document templates 326
Templates in a partitioned data set 326
Templates in a CICS program 327
Templates in CICS files, z/OS UNIX System Services HFS files, temporary

storage, or transient data 327
Creating templates in exit programs. 328

Programming with documents and document templates 329
Symbols and symbol lists 329
Setting symbol values . 330
Embedded template commands 332
Using templates in your application 333
The lifespan of a document 334

Retrieving the document without control information 335
Constructing a document. 336
Using Bookmarks . 338

Replacing data in the document 339
Code page conversion for documents 339

284 CICS TS for z/OS: CICS Application Programming Guide

Chapter 25. Named counter servers 341
The named counter fields . 341
Named counter pools . 342

Named counter options table 342
Using the named counter EXEC interface 343
Using the named counter CALL interface 345

Application programming considerations 345
Syntax . 347

Checking for result overflow. 353
Example of DFHNCTR calls with null parameters 353

Return codes . 355
Named counter recovery . 358

Part 4. Data Management 285

286 CICS TS for z/OS: CICS Application Programming Guide

Chapter 20. An overview of file control

CICS data management services have traditionally been known as CICS file
control. CICS file control l offers you access to data sets that are managed by
either the virtual storage access method (VSAM) or the basic direct access method
(BDAM).

CICS file control lets you read, update, add, and browse data in VSAM and BDAM
data sets and delete data from VSAM data sets. You can also access CICS shared
data tables and coupling facility data tables using file control.

A CICS application program reads and writes its data in the form of individual
records. Each read or write request is made by a CICS command.

To access a record, the application program must identify both the record and the
data set that holds it. It must also specify the storage area into which the record is
to be read or from which it is to be written.

This chapter describes:
v “VSAM data sets”
v “BDAM data sets” on page 290
v “CICS shared data tables” on page 291
v “Coupling facility data tables” on page 292
v “Techniques for sharing data” on page 294
v “Using CICS commands to read records” on page 296
v “Using CICS commands to update records” on page 301
v “Using CICS commands to delete records” on page 302
v “Using CICS commands to add records” on page 303
v “File control command options” on page 305
v “Transaction deadlocks” on page 307

VSAM data sets
CICS supports access to the following types of data set:
v Key-sequenced data set (KSDS)
v Entry-sequenced data set (ESDS)
v Relative record data set (RRDS) (both fixed and variable record lengths)

VSAM data sets are held on direct access storage devices (DASD) auxiliary
storage. VSAM divides its data set storage into control areas (CA), which are
further divided into control intervals (CI). Control intervals are the unit of data
transmission between virtual and auxiliary storage. Each one is of fixed size and, in
general, contains a number of records. A KSDS or ESDS can have records that
extend over more than one control interval. These are called spanned records.

Key-sequenced data set (KSDS)
A key-sequenced data set has each of its records identified by a key. (The key of
each record is simply a field in a predefined position within the record.) Each key
must be unique in the data set.

When the data set is initially loaded with data, or when new records are added, the
logical order of the records depends on the collating sequence of the key field. This
also fixes the order in which you retrieve records when you browse through the
data set.

© Copyright IBM Corp. 1989, 2010 287

To find the physical location of a record in a KSDS, VSAM creates and maintains
an index. This relates the key of each record to the record’s relative location in the
data set. When you add or delete records, this index is updated accordingly.

With releases of DFSMS/MVS 1.4 and later, a data set can be greater than 4GB in
size if it is defined as extended format and extended addressability in the storage
class. CICS supports, in both RL and non-RLS mode, KSDS data sets that are
defined with these extended attributes.

Entry-sequenced data set (ESDS)
An entry-sequenced data set is one in which each record is identified by its
relative byte address (RBA).

Records are held in an ESDS in the order in which they were first loaded into the
data set. New records added to an ESDS always go after the last record in the data
set. You may not delete records or alter their lengths. After a record has been
stored in an ESDS, its RBA remains constant. When browsing, records are
retrieved in the order in which they were added to the data set.

With releases of DFSMS/MVS 1.5 and later, a data set can be greater than 4 GB in
size if it is defined as extended format and extended addressability in the storage
class. However, CICS does not support ESDS data sets that are defined with these
extended attributes. Attempts to open data sets defined with the extended attribute
fail with error message DFHFC0966, codes 8504, 0008, and 0068 for non-RLS
access and message DFHFC0905 for RLS access.

Relative record data set (RRDS)
A relative record data set has records that are identified by their relative record
number (RRN). The first record in the data set is RRN 1, the second is RRN 2, and
so on.

Records in an RRDS can be fixed or variable length records, and the way in which
VSAM handles the data depends on whether the data set is a fixed or variable
RRDS. A fixed RRDS has fixed-length slots predefined to VSAM, into which records
are stored. The length of a record on a fixed RRDS is always equal to the size of
the slot. VSAM locates records in a fixed RRDS by multiplying the slot size by the
RRN (which you supply on the file control request), to calculate the byte offset from
the start of the data set.

A variable RRDS, on the other hand, can accept records of any length up to the
maximum for the data set. In a variable RRDS VSAM locates the records by means
of an index.

A fixed RRDS generally offers better performance. A variable RRDS offers greater
function.

With releases of DFSMS/MVS 1.5 and later, a data set can be greater than 4 GB in
size if it is defined as extended format and extended addressability in the storage
class. CICS supports access to extended RRDS or VRRDS datasets if you use an
RRN that can be specified in a four-byte RRN field to access the records that
reside beyond the 4 GB boundary.

288 CICS TS for z/OS: CICS Application Programming Guide

#
#

#
#
#

Empty data sets
An empty data set is a data set that has not yet had any records written to it. VSAM
imposes several restrictions on an empty data set that is opened in non-RLS
access mode. However, CICS hides all these restrictions from you, allowing you to
use an empty data set in the same way as a data set that contains data, regardless
of the access mode.

VSAM alternate indexes
Sometimes you want to access the same set of records in different ways. For
example, you may have records in a personnel data set that have as their key an
employee number. No matter how many Smiths you have, each of them has a
unique employee number. Think of this as the primary key.

If you were producing a telephone directory from the data set, you would want to
list people by name rather than by employee number. You can identify records in a
data set with a secondary (alternate) key instead of the primary key described
above. So the primary key is the employee number, and the employee name is the
alternate key. Alternate keys are just like the primary key in a KSDS—fields of
fixed length and fixed position within the record. You can have any number of
alternate keys per base file and, unlike the primary or base key, alternate keys need
not be unique.

To continue the personnel example, the employee’s department code might be
defined as a further alternate key.

VSAM allows KSDS and ESDS (but not RRDS) data sets to have alternate keys.
When the data set is created, one secondary or alternate index is built for each
alternate key in the record and is related to the primary or base key. To access
records using an alternate key, you must define a further VSAM object, an
alternate index path. The path then behaves as if it were a KSDS in which records
are accessed using the alternate key.

When you update a record by way of a path, the corresponding alternate index is
updated to reflect the change. However, if you update the record directly by way of
the base, or by a different path, the alternate index is only updated if it has been
defined to VSAM (when created) to belong to the upgrade set of the base data set.
For most applications, you probably want your alternate index to be in the upgrade
set.

A CICS application program disregards whether the file it is accessing is a path or
the base. In a running CICS system, access to a single base data set can be made
by way of the base and by any of the paths defined to it, if each access route is
defined in the file control table (FCT).

It is also possible for a CICS application program to access a file that has been
directly defined as an alternate index rather than a path. This results in index data
being returned to the application program rather than file data. This operation is not
supported for files opened in record-level sharing (RLS) mode.

Accessing files in RLS mode
Record-level sharing (RLS) is a VSAM function, provided by DFSMS Version 1
Release 3 and later releases, that enables VSAM data to be shared, with full
update capability, between many applications running in many CICS regions.

Chapter 20. An overview of file control 289

With RLS, CICS regions that share VSAM data sets can reside in one or more MVS
images within an MVS parallel sysplex. RLS also provides some benefits when data
sets are being shared between CICS regions and batch jobs.

If you open a file in RLS mode, locking takes place at the record level instead of
the Control-Interval level, thus reducing the risk of deadlocks.

CICS supports record-level sharing (RLS) access to the following types of VSAM
data set:
v Key sequenced data sets (KSDS). Note that if you are using KSDS, you cannot

use the relative byte address (RBA) to access files.
v Entry sequenced data sets (ESDS). Note that although RLS access mode is

permitted for entry sequenced data sets (ESDS), it is not recommended, as it
can have a negative effect on the performance and availability of the data set
when you are adding records. (See the CICS Performance Guide).

v Relative record data sets (RRDS), for both fixed and variable length records.

Note: If you issue the SET FILE EMPTY command for a file that specifies RLS
mode, the request is accepted but is ignored all the time the file is opened in
RLS mode. If you close and switch the file to non-RLS mode, the data set is
then reset to empty (provided it is defined as reusable on its IDCAMS
definition).

Some RLS limitations
Most types of data set are eligible to participate in VSAM record level sharing and
most CICS applications can benefit from this mode of access. However, there are
some limitations that could affect some applications. The following types of file, data
set, or method of access are not supported in RLS mode:
v RBA access to a KSDS
v Key-range data sets
v Temporary data sets
v VSAM clusters with the IMBED attribute
v Direct opening of an alternate index
v Opening individual components of a cluster
v Access to catalogs or to VVDS data sets
v CICS-maintained data tables
v Hiperbatch

BDAM data sets
CICS supports access to keyed and nonkeyed BDAM data sets. BDAM support
uses the physical nature of a record on a DASD device. BDAM data sets consist of
unblocked records with the following format:

Keyed BDAM files have a physical key identifying the BDAM record. The count area
contains the physical key length, the physical data length, and the record’s data
location.

Physical
Count (recorded) Data

key

Physical record

Figure 77. Format of unblocked records in a BDAM data set

290 CICS TS for z/OS: CICS Application Programming Guide

CICS can define a further structure on top of BDAM data sets, introducing the
concept of blocked-data sets:

The data portion of the physical record is viewed as a block containing logical
records. CICS supports the retrieval of logical records from the data part of the
physical record. CICS also supports unblocked records (where the structure reverts
to the original BDAM concept of one logical record per physical record).

To retrieve data from a physical record in a BDAM file under CICS, a record
identification field (RIDFLD) has to be defined to specify how the physical record
should be retrieved. This may be done using the physical key, by relative address,
or by absolute address.

If the data set is defined to CICS as being blocked, individual records within the
block can be retrieved (deblocked) in two addressing modes: by key or by relative
record.

Deblocking by key uses the key of the logical record (that is, the key contained in
the logical record) to identify which record is required from the block. Deblocking by
relative record uses the record number in the block, relative to zero, of the record to
be retrieved.

You specify the key or relative record number used for deblocking in a subfield of
the RIDFLD option used when accessing CICS BDAM files. The addressing mode
for CICS BDAM files is set in the FCT using the RELTYPE keyword.

For more details about record identification and BDAM record access, see
Chapter 22, “File control—BDAM considerations,” on page 319.

CICS shared data tables
The file control commands can access shared data tables. Shared data tables offer
a method of constructing, maintaining, and gaining rapid access to data records
contained in tables held in virtual storage, above the 16MB line. Each shared data
table is associated with a VSAM KSDS, known as its source data set. For more
information about shared data tables, see the CICS Shared Data Tables Guide.

A table is defined using the CEDA DEFINE FILE panel. When a table is opened,
CICS builds it by extracting data from the table’s corresponding source data set and
loading it into virtual storage above the 16MB line.

CICS supports two types of shared data table, as follows:

CICS-maintained tables (CMTs)
This type of data table is kept in synchronization with its source data set by
CICS. All changes to the data table are reflected in the source data set.
Similarly all changes to the source data set are reflected in the data table.

Count Physical Data
key

logrec 1 logrec 2

Physical record

Figure 78. Blocked-data set

Chapter 20. An overview of file control 291

Note that the source for a CICS-maintained data table cannot be a file
opened in RLS access mode.

User-maintained tables (UMTs)
This type of data table is completely detached from its source data set after
it has been loaded. Changes to the table are not automatically reflected in
the source data set.

The full file control API appropriate to VSAM KSDS data sets is supported for
CICS-maintained data tables. Requests that cannot be satisfied by reference to the
data table result in calls to VSAM to access the source data set. Tables defined to
be recoverable are supported with full integrity.

A subset of the file control API is supported for user-maintained tables. For
programming information about the commands, you should see the CICS
Application Programming Reference manual where they are listed separately under
the file control command name, followed by UMT. For example, the information on
writing a record to a user-maintained table is given under WRITE(UMT). A table
defined as recoverable participates in dynamic transaction backout but is not
recovered at restart or XRF takeover.

Coupling facility data tables
The CICS file control commands can access coupling facility data tables (CFDTs).
Coupling facility data tables provide a method of file data sharing, without the need
for a file-owning region, and without the need for VSAM RLS support. CICS
coupling facility data table support is designed to provide rapid sharing of working
data across a sysplex, with update integrity. The data is held in a coupling facility, in
a table that is similar in many ways to a shared user-maintained data table. A
coupling facility data table is different from a UMT in one important respect in that
initial loading from a VSAM source data set is optional . You can specify LOAD(NO)
and load the table by writing data directly from a user application program. The API
used to store and retrieve the data is based on the file control API used for
user-maintained data tables. Read access and write access to CFDTs have similar
performance, making this form of table particularly useful for informal shared data.
Informal shared data is characterised as:

v Data that is relatively short-term in nature (it is either created as the application is
running, or is initially loaded from an external source)

v Data volumes that are not usually very large

v Data that needs to be accessed fast

v Data of which the occasional loss can be tolerated by user applications

v Data that commonly requires update integrity.

Typical uses might include sharing scratchpad data between CICS regions across a
sysplex, or sharing of files for which changes do not have to be permanently saved.
There are many different ways in which applications use informal shared data, and
most of these could be implemented using coupling facility data tables. Coupling
facility data tables are particularly useful for grouping data into different tables,
where the items can be identified and retrieved by their keys. For example, you
could use a record in a coupling facility data table to maintain the next free order
number for use by an order processing application. Other examples are:

v Look-up tables of telephone numbers or the numbers of stolen credit cards

v Working data consisting of a few items, such as a subset of customers from a
customer list

292 CICS TS for z/OS: CICS Application Programming Guide

v Information that is specific to the user of the application, or that relates to the
terminal from which the application is being run

v Data extracted from a larger file or database for further processing.

Coupling facility data tables allow various types of access to your informal data:
read-only, single updater, multiple updaters, sequential access, random access,
random insertion and deletion.

For many purposes, because it is global in scope, coupling facility data tables can
offer significant advantages over resources such as the CICS common work area
(CWA).

To an application program, a CFDT appears much like a sysplex-wide
user-maintained data table: a CFDT is accessed using the same subset of the API
as a UMT (that is, the full file control API except for the MASSINSERT and RBA
options). However, a CFDT is restricted to a maximum key-length of 16 bytes.

Note the following comparisons with user-maintained data tables:

v Updates to a CFDT, like updates to a UMT, are not reflected in the base VSAM
data set (if the table was initially loaded from one). Updates are made to the
CFDT only.

v A CFDT is loaded once only, when the table is first created in the coupling facility
data table, and remains in existence in the coupling facility, even when the last
file referring to the CFDT is closed (whereas a UMT is deleted each time the
owning region terminates). You can force a reload of a CFDT from the original
source data set only by first deleting the table from the CFDT pool, using a
CFDT server DELETE TABLE command. The first file opened against the CFDT
after the delete operation causes the server to reload the table.

Note: A coupling facility data table pool is defined as a coupling facility list
structure, and can hold more than one data table (see the CICS System
Definition Guide for information about creating a list structure for coupling
facility data tables).

v The access rules for a UMT that is in the course of loading allow any direct read
request to be satisfied either from the table (if the record has already been
loaded) or from the source data set, but reject any update request, or imprecise
read or browse request, with the LOADING condition. For a CFDT, any request is
allowed during loading, but requests succeed only for records that are within the
key range already loaded.

Coupling facility data table models
There are two models of coupling facility data table:

Contention model
This gives optimal performance, but requires programs that are written to
handle the situation where the data has been changed since it issued a
read-for-update request. The new CHANGED response can occur on a
REWRITE or DELETE command. There is also a new use for the existing
NOTFND response, which may be returned to indicate to the application
program that the record has been deleted since the program issued the
read-for-update request.

Note: It might be possible to use existing programs with the contention
model if you are sure they cannot receive the CHANGED or
NOTFND exceptions on a REWRITE or DELETE. An example of this

Chapter 20. An overview of file control 293

could be where an application program operates only on records that
relate to the user of the program, and therefore no other user could
be updating the same records.

Locking model
This model is API-compatible with existing programs that conform to the
UMT subset of the file control API. The locking model can be:

Non-recoverable
For updates to non-recoverable CFDTs, locks do not last until
syncpoint (they are released on completion of the file control
request) and updates are not backed out if a unit of work fails

Recoverable
CFDTs are recoverable in the event of a unit of work failure, and in
the event of a CICS region failure, a CFDT server failure, and an
MVS failure (updates made by units of work that were in-flight at
the time of the failure are backed out).

The recoverable locking model supports in-doubt and backout
failures: if a unit of work fails when backing out an update to the
CFDT, or if it fails in-doubt during syncpoint processing, the locks
are converted to retained locks and the unit of work is shunted.

CFDTs cannot be forward recoverable. A CFDT does not survive
the loss of the CF structure in which it resides.

You specify the update model you want for each table on its file resource definition,
enabling different tables to use different models.

Techniques for sharing data
This topic indicates when you should consider using a coupling facility data table by
comparing, in tabular form, the various CICS techniques that you can use for
different situations.

Table 18. Techniques for sharing scratchpad data

Constraints and factors Single Region Single MVS Sysplex

Technique no longer
recommended (too
restrictive)

TWA — —

Recommended method for
single area for each
transaction

COMMAREA or
channel

COMMAREA or
channel

COMMAREA or
channel

Existing application
programs use temporary
storage (TS) queues

Local TS queue Remote TS queue Shared TS queue

Existing programs use
UMT

Random insert and
delete required

Multiple types of
data stored

UMT Remote UMT
CFDT (contention

model)

In Table 18, different techniques are considered for passing scratchpad data
between phases of a transaction, where only one task is accessing the data at a
time, but the data may be passed from a task in one region to a task in another.

294 CICS TS for z/OS: CICS Application Programming Guide

|
|
|

|
|
|
|
|
|

Note that ‘remote UMT’ means a shared user-maintained data table that is
accessed from AORs either by function shipping where necessary (that is, for
update accesses) or by SDT cross-memory sharing for non-update accesses. The
table shows that, within a Parallel Sysplex®, a coupling facility data table is the best
solution for random insertion and deletion of data, and where multiple types of data
need to be stored. Without these constraints, shared TS queues are a more
appropriate choice if the application programs are already using temporary storage.

Table 19. Techniques for sharing queues of data

Constraints and factors Single Region Single MVS Sysplex

Read-only at head,
write-only at tail
Triggering required

Local transient
data (TD)

Remote TD Remote TD

Process batches of items
TS queue or UMT

Remote TS or remote
UMT

Shared TS or
CFDT

Delete each item after
processing. Random insert
and delete required.

UMT Remote UMT CFDT

In Table 19, different techniques for sharing queues of data are shown, where
information is stored in a specific sequence, to be processed by another application
program or task in the same sequence. The CICS transient data and temporary
storage queue facilities are recommended in the majority of cases, with a few
instances where data tables provide a more appropriate solution for handling
sequenced data.

Table 20. Techniques for sharing control records

Constraints and factors Single
Region

Single MVS Sysplex

Technique no longer
recommended

CWA MVS CSA —

Single updating region,
single record

TS queue or
UMT

Remote TS queue or
UMT

Shared TS queue or
CFDT (contention

model)

Multiple updating regions or
multiple records

UMT Remote UMT CFDT

In Table 20, different techniques for managing control records are shown. This
illustrates where a central control record is used to make information available to all
transactions. For example, this may contain the next unused order number, or
customer number, to make it easier for programs to create new records in a keyed
file or database. (For this type of application, you should also consider the named
counter function, which is also a sysplex-wide facility. See Chapter 25, “Named
counter servers,” on page 341 for details.)

The table shows that within an MVS image, if there is a single region that makes all
the updates to a single record, you can use a UMT without any function shipping
overheads.

Where there are multiple regions updating the control record, or there is more than
one control record to update, then a coupling facility data table is the only solution
within a Parallel Sysplex environment, and it could also be more effective than
function shipping the updates to a UMT within a single MVS.

Chapter 20. An overview of file control 295

Table 21. Techniques for sharing keyed data

Constraints and factors Single
Region

Single MVS Sysplex

Read-only or rarely updated UMT UMT Replicated UMT

Single updating region
UMT UMT

Replicated UMT or
CFDT

Multiple updating regions
Recoverable (backout only)

UMT
Remote UMT or

CFDT
CFDT

In Table 21, different techniques for sharing keyed data are shown. This covers
applications that use data similar in structure to a conventional keyed file, but where
the information does not need to be stored permanently, and the performance
benefits are sufficient to justify the use of main storage or coupling facility resources
to store the relevant data.

This kind of data is most appropriately accessed using the file control API, which
means that within a Parallel Sysplex, the solution is to use:

v A replicated user-maintained data table where the highest performance is
required, and where access is either read-only, or updates are rare and you can
arrange to make these from a single region and refresh the replicated UMT in
other regions

v A coupling facility data table.

Note that recovery support for UMTs is limited to transaction backout after a failure.
For coupling facility data tables, recovery is also provided for CICS and CFDT
server failures, and also for in-doubt failures,

Using CICS commands to read records
This section describes the facilities available to application programs for accessing
data sets. Although VSAM data sets, are discussed, most of the facilities apply
equally to BDAM. It describes:
v “Direct reading (using READ command)” on page 297
v “Sequential reading (browsing)” on page 298
v “Skip-sequential processing” on page 300

A file can be defined in the file definition as containing either fixed-length or
variable-length records. Fixed-length records should be defined only if:

v The definition of the VSAM data set (using access method services) specifies an
average record size that is equal to the maximum record size

v and All the records in the data set are of that length.

For direct reading and browsing, if the file contains fixed-length records, and if the
application program provides an area into which the record is to be read, that area
must be of the defined length. If the file contains variable-length records, the
command must also specify the length of the area provided to hold them (which
should normally be the maximum length of records in the file).

For fixed-length records and for records retrieved into storage provided by CICS
(when you use the SET option), you need not specify the LENGTH argument.
However, although the LENGTH argument is optional, you are recommended to
specify it when using the INTO option, because it causes CICS to check that the

296 CICS TS for z/OS: CICS Application Programming Guide

record being read is not too long for the available data area. If you specify
LENGTH, CICS uses the LENGTH field to return the actual length of the record
retrieved.

Direct reading (using READ command)
You read a record in the file with the READ command. This must identify the record
you want and say whether it is to be read into an area of storage provided by your
application program (READ INTO), or into CICS SET storage acquired by file
control (READ SET). If the latter, the address of the data in the CICS SET storage
is returned to your program.

CICS SET storage normally remains valid until the next syncpoint, or the end of the
task, or until next READ against the same file, whichever comes first.

Direct reading from a KSDS
When reading from a KSDS, you can identify the record you want uniquely by
specifying its full key, or you can retrieve the first (lowest key) record whose key
meets certain requirements. There are two options that qualify your key value;
GENERIC and GTEQ.

The GENERIC option indicates that you require a match on only a part of the key;
when you specify the GENERIC option, you also must specify the KEYLENGTH
option, to say how many positions of the key, starting from the left, must match. For
the READ command, CICS uses only the first KEYLENGTH option characters.

The GTEQ option indicates that you want the first record whose key is “greater than
or equal to” the key you have specified. You can use GTEQ with either a full or a
generic key.

The opposite of the GTEQ option is the EQUAL option (the default), which means
that you want only a record whose key matches exactly that portion (full or generic)
of the key that you have specified.

Direct reading from an ESDS
When reading from an ESDS, the individual record you want is identified by an
RBA. Because the RBA of a record in an ESDS cannot change, your application
program can keep track of the values of the RBAs corresponding to the records it
wants to access. An RBA must always point to the beginning of a record. There is
no equivalent to the GENERIC or GTEQ options that you can use to position
approximately in a KSDS.

Direct reading from an RRDS
When reading from an RRDS, the record to be retrieved is identified by its relative
record number. The application program must know the RRN values of the records
it wants. There is no equivalent to the GENERIC or GTEQ options that you can use
to position approximately in a KSDS.

Direct reading by way of a path
If a KSDS or an ESDS has an alternate index and an alternate index path (and an
appropriate entry in the FCT), you can retrieve a record in the file by using the
alternate key that you set up in the alternate index. The GENERIC option and the
GTEQ (greater than or equal to) option still work in the same way as for a read
from a KSDS using the primary key.

Chapter 20. An overview of file control 297

If the alternate key in a READ command is not unique, the first record in the file
with that key is read and you get the DUPKEY condition. To retrieve other records
with the same alternate key, you have to start a browse operation at this point.

Read integrity (in RLS mode)
CICS supports three options to control read integrity with RLS. You can specify
these options on the file control API. Alternatively, if the application request does not
specify any of the options (UNCOMMITTED, CONSISTENT, or REPEATABLE), the
value from the file resource definition is used. These options are:

UNCOMMITTED
There is no read integrity and shared locks are not used for read requests. (See
“RLS Record level locking” on page 313 for information about shared and
exclusive locks.) This is the default and is the way in which file control works for
files that are opened in non-RLS mode.

CONSISTENT
A request to read a record is queued if the record is being updated by another
task. The read completes only when the update is complete, and the updating
unit of work (UOW) relinquishes its exclusive lock. UOWs and syncpoints are
discussed in “Syncpointing” on page 257.

REPEATABLE
Processing of the read request is the same as for consistent read requests.
However, in this case, the reader holds on to its shared lock until syncpoint.
This applies to both recoverable and non-recoverable files. This ensures that a
record read in a UOW cannot be modified while the UOW makes further read
requests. It is particularly useful when you issue a series of related read
requests and you want to ensure that none of the records is modified before the
last record is read.

Note: Specify read integrity only when an application cannot tolerate ‘stale’ data.
This is because RLS uses locks to support read integrity, and as a result
your applications could encounter deadlocks that do not occur in releases of
CICS that do not support read integrity. This is particularly important if you
define read integrity on file resource definitions. The application programs
that reference these files may have been written for releases of CICS that do
not support read integrity, and are not designed to deal with deadlock
conditions on read-only file accesses.

If you specify either CONSISTENT or REPEATABLE, you can also specify the
NOSUSPEND option on a READ command to ensure that the request does not
wait if the record is locked by VSAM with an active lock. See “Active and retained
states for locks” on page 315 for more information about active locks.

Sequential reading (browsing)
You start a browse with the STARTBR command, identifying a particular record in
the same way as for a direct read. However, the STARTBR command only identifies
the starting position for the browse; it does not retrieve a record.

The READNEXT command reads records sequentially from this starting point. On
completion of each READNEXT command, CICS returns the full key of the record it
retrieved in the field specified in the RIDFLD option. (Be sure to provide a field as
long as the full key, even if you use a STARTBR command with a shorter generic
key.)

298 CICS TS for z/OS: CICS Application Programming Guide

As in the case of a direct read, the record may be read into an area supplied by the
application program (when you use the INTO option), or into storage provided by
CICS (when you use the SET option). In the latter case, the CICS storage
addressed by the SET pointer remains valid until the next operation in the browse,
or until the browse ends, syncpoint, or end of task, whichever occurs first.

You can also browse backwards in the file, by using READPREV commands
instead of READNEXT commands, and you can switch from one direction to the
other at any time. The READPREV command is like the READPREV command,
except that the records are read sequentially backward from the current position.
As you switch from one direction to the other, you retrieve the same record twice,
unless you reposition.

When the browse has started, you can change the current browse position either by
using a RESETBR command, or a READNEXT command, or a READPREV
command. The RESETBR command can also be used for other purposes, however.

For VSAM, but not for BDAM, you can reposition simply by varying the value in
RIDFLD when you issue the next READNEXT or READPREV command. When you
change RIDFLD, the record identifier must be in the same form as on the previous
STARTBR or RESETBR command (key, RBA, or RRN). In addition, you can change
the length of a generic key by specifying a KEYLENGTH in your READPREV
command, which is different from the current generic key length and not equal to
the full length. If you change the length of a generic key in this way, you reposition
to the generic key specified by RIDFLD option.

RESETBR command must be used to change the browse position in a BDAM file. If
you wish to change the form of the key from key to RBA or vice versa, you must
use a RESETBR command. You must also use a RESETBR command to switch
between generic and full keys or between “equal to” and “greater than or equal to”
searches. You can also only use X'FF' characters to point to the last record in the
file if you are using a RESETBR or STARTBR command.

Under certain conditions, CICS uses VSAM skip-sequential processing when you
change the key in this way, as explained in “Skip-sequential processing” on page
300.

Browsing through a KSDS
You can use a generic key on the STARTBR command when browsing through a
KSDS. However, the browse can only continue forward through the file. If you
process a READPREV command during such a browse, you get the INVREQ
condition.

You can use the options “key equal to” and “key greater than or equal to” on the
STARTBR command and they have the same meaning as on the READ command.
However, the STARTBR command assumes that you want to position at the key
specified or the first key greater if that key does not exist. That is, option GTEQ is
the default for the STARTBR command, whereas EQUAL is the default for the
READ command.

You can start a forward browse through a KSDS at the start of the file by specifying
a key of hexadecimal zeros, or by specifying options GENERIC, GTEQ, and
KEYLENGTH(0) on the STARTBR, RESETBR, READNEXT, or READPREV
command. (In the latter case, you need the RIDFLD keyword although its value is
not used and, after the command completes, CICS is using a generic key length of
one.)

Chapter 20. An overview of file control 299

You can start from the end of the data set by specifying a complete key of X'FF'
characters on the STARTBR or RESETBR command. This points to the last record
in the file ready for a backward browse.

A STARTBR, RESETBR , or READNEXT command having the option
KEYLENGTH(0) is always treated as if KEYLENGTH(1) and a partial key of one
byte of binary zeros have been specified.

Browsing through an ESDS
Positioning for a browse in an ESDS is identical to that for reading. If you want to
begin reading at the beginning of the data set, use an RBA of low values (X'00'),
and to begin at the end, use high values (X'FF').

Browsing through an RRDS
You can use the GTEQ option on a STARTBR command when browsing through an
RRDS. It is the default, even though on a direct READ this option has no effect. A
direct read command with the GTEQ option that specifies an RRN that does not
exist returns the NOTFND condition, because only the EQUAL option is taken.
However, a STARTBR GTEQ command using the same RRN completes
successfully, and sets a pointer to the relevant position in the data set for the start
of the browse. The first record in the file is identified using an RRN of 1, and the
last record by high values (X'FF').

Browsing using a path
Browsing can also use an alternate index path to a KSDS or an ESDS. The browse
is just like that for a KSDS, but using the alternate key. The records are retrieved in
alternate key order.

If the alternate key is not unique, the DUPKEY condition is raised for each retrieval
operation except the last occurrence of the duplicate key. For example, if there are
three records with the same alternate key, DUPKEY is raised on the first two, but
not the third. The order in which records with duplicate alternate keys are returned
is the order in which they were written to the data set. This is true whether you are
using a READNEXT or a READPREV command. For this reason, you cannot
retrieve records with the same alternate key in reverse order.

Browse integrity (in RLS mode)
The options UNCOMMITTED, CONSISTENT, REPEATABLE, and NOSUSPEND,
discussed in “Read integrity (in RLS mode)” on page 298, also apply to the CICS
browse commands.

Ending the browse
Trying to browse past the last record in a file raises the ENDFILE condition. Stop a
browse with the ENDBR command. You must issue the ENDBR command before
performing an update operation on the same file (a READ UPDATE, DELETE with
RIDFLD, or WRITE command). If you do not, you get unpredictable results, possibly
including deadlock within your own transaction.

Simultaneous browse operations
CICS allows a transaction to perform more than one browse on the same file at the
same time. You distinguish between browse operations by including the REQID
option on each browse command.

Skip-sequential processing
When possible, CICS uses VSAM “skip-sequential” processing to speed browsing.
Skip-sequential processing applies only to forward browsing of a file when RIDFLD

300 CICS TS for z/OS: CICS Application Programming Guide

is specified in key form. CICS uses it when you increase the key value in RIDFLD
on your READNEXT command and make no other key-related specification, such
as KEYLENGTH. In this situation, VSAM locates the next desired record by reading
forward through the index, rather than repositioning from scratch. This method is
faster if the records you are retrieving are relatively close to each other but not
necessarily adjacent; it can have the opposite effect if the records are very far apart
in a large file. If you know that the key you are repositioning to is much higher in
the file, and that you may incur a long index scan, you may wish to consider using
a RESETBR command which forces a reposition from scratch.

Using CICS commands to update records
To update a record, you must first retrieve it using one of the file control read
commands that specifies the UPDATE option. The record is identified in exactly the
same way as for a direct read. In a KSDS or ESDS, the record may (as with a
direct read) be accessed by way of a file definition that refers either to the base, or
to a path defined to it. For files opened in RLS mode you can specify the
NOSUSPEND option as well as the UPDATE option on an EXEC CICS command
to ensure that the request does not wait if the record is already locked by VSAM
with an active lock.

After modification by the application program, the record is written back to the data
set using the REWRITE command, which does not identify the record being
rewritten. Within a unit of work, each REWRITE command should be associated
with a previous READ UPDATE by a common keyword (TOKEN). You can have
one READ UPDATE without a TOKEN outstanding at any one time. Attempts to
perform multiple concurrent update requests within a unit of work, upon the same
data set without the use of TOKENS, are prevented by CICS. If you want to release
the string held by a READ UPDATE without rewriting or deleting the record, use the
UNLOCK command. The UNLOCK command releases any CICS storage acquired
for the READ command, and releases VSAM resources held by the READ
command. If TOKEN is specified with the UNLOCK command, CICS attempts to
match this with an outstanding READ UPDATE whose TOKEN has the same value.
(For more explanation about the TOKEN option, see “The TOKEN option” on page
306.)

For both update and non-update commands, you must identify the record to be
retrieved by the record identification field specified in the RIDFLD option.
Immediately on completion of a READ UPDATE command, the RIDFLD data area
is available for reuse by the application program.

A record retrieved as part of a browse operation can only be updated during the
browse if the file is opened in RLS mode (see “Updating and deleting records in a
browse (VSAM RLS only)” on page 302). For files opened in non-RLS mode, the
application program must end the browse, read the desired record with a READ
UPDATE command, and perform the update. Failure to end the browse before
issuing the READ UPDATE command may cause a deadlock.

The record to be updated may (as in the case of a direct read) be read into an area
of storage supplied by the application program or into storage set by CICS. For a
READ UPDATE command, CICS SET storage remains valid until the next
REWRITE, UNLOCK, DELETE without RIDFLD, or SYNCPOINT command,
whichever is encountered first.

For a KSDS, the base key in the record must not be altered when the record is
modified. Similarly, if the update is being made by way of a path, the alternate key

Chapter 20. An overview of file control 301

used to identify the record must not be altered either, although other alternate keys
may be altered. If the file definition allows variable-length records, the length of the
record may be changed.

The length of records in an ESDS, a fixed-length RRDS, or a fixed-length KSDS
must not be changed on update.

For a file defined to CICS as containing fixed-length records, the length of record
being rewritten must equal the original length. For variable-length records, you
must specify the LENGTH option with both the READ UPDATE and the REWRITE
commands. The length must not be greater than the maximum defined to VSAM.

Using CICS commands to delete records
Records can never be deleted from an ESDS.

Deleting single records
You delete a single record in a KSDS or RRDS in one of three ways:

1. Retrieve it for update with a READ UPDATE command, and then issue a
DELETE command without specifying the RIDFLD option.

2. Issue a DELETE command specifying the RIDFLD option.

3. For a file opened in RLS mode, retrieve the record with a READNEXT or
READPREV command with the UPDATE option, and then issue a DELETE
command. This method is described in “Updating and deleting records in a
browse (VSAM RLS only).”

If a full key is provided with the DELETE command, a single record with that key is
deleted. So, if the data set is being accessed by way of an alternate index path that
allows non-unique alternate keys, only the first record with that key is deleted. After
the deletion, you know whether further records exist with the same alternate key,
because you get the DUPKEY condition if they do.

Updating and deleting records in a browse (VSAM RLS only)
For files accessed in RLS mode, you can specify the UPDATE option on a
READNEXT or READPREV command and then update or delete the record by
issuing a DELETE or REWRITE command. If the browse command returns a
TOKEN, the TOKEN remains valid only until the next browse request. The TOKEN
is invalidated by REWRITE, DELETE, or UNLOCK commands, that specify the
same value for TOKEN or by the commands READNEXT, READPREV, or ENDBR
that specify the same REQID. If you issue many READNEXT commands with the
UPDATE and TOKEN options, the TOKENS invalidate each other and only the last
one will be usable. (For more explanation about the TOKEN option, see “The
TOKEN option” on page 306.)

Use of the UPDATE option in a browse is subject to the following rules:

v You can specify UPDATE within a browse only if the file is accessed in RLS
mode. If you specify UPDATE for a file accessed in non-RLS mode, CICS returns
an INVREQ condition.

v You can specify UPDATE only on the READNEXT and READPREV commands,
not on the STARTBR or RESETBR commands.

v CICS supports only one TOKEN in a browse sequence, and the TOKEN value on
each READNEXT or READPREV command overwrites the previous value.

v You can mix update and non-update requests within the same browse.

302 CICS TS for z/OS: CICS Application Programming Guide

v You must specify on the READNEXT, DELETE, or UNLOCK command the
TOKEN to be returned by the corresponding READNEXT or READPREV
command.

Locks for UPDATE: Specifying UPDATE on a READNEXT or READPREV
command acquires an exclusive lock. The duration of these exclusive locks within a
browse depends on the action your application program takes and on whether the
file is recoverable or not.

v If the file is recoverable and you decide to DELETE or REWRITE the last record
acquired by a read for update in a browse (using the associated token), the
VSAM exclusive lock remains active until completion of the UOW. That is, until
successful syncpoint or rollback.

v If the file is not recoverable and you decide to DELETE or REWRITE the last
record acquired, the lock is released either when you next issue an ENDBR
command or when you issue a subsequent READNEXT or READPREV
command. This is explained more fully in “RLS Record level locking” on page
313.

v If you decide not to update the last record read, CICS frees the exclusive lock
either when your program issues another READNEXT or READPREV command
in the browse, or ends the browse.

Note: An UNLOCK command does not free an RLS exclusive lock held by VSAM
against a record acquired during a browse operation. An UNLOCK within a
browse simply invalidates the TOKEN returned by the last request. Another
READNEXT or READPREV in the browse also invalidates the TOKEN for
the record read by the previous READNEXT or READPREV UPDATE
command. Therefore, it's not necessary to use UNLOCK in an application
program that decides not to update a particular record.

Deleting groups of records (generic delete)
You can use a generic key with the DELETE command. Then, instead of deleting a
single record, all the records in the file whose keys match the generic key are
deleted with the single command. However, this cannot be used if the KEYLENGTH
value is equal to the length of the whole key (even if duplicate keys are allowed).
The number of records deleted is returned to the application program if the
NUMREC option is included with the command. If access is by way of an alternate
index path, the records deleted are all those whose alternate keys match the
generic key.

Read integrity
The NOSUSPEND option discussed in “Read integrity (in RLS mode)” on page 298,
also applies to the CICS browse commands when you are using them to update a
file.

Using CICS commands to add records
Add new records to a file with the WRITE command. They must always be written
from an area provided by the application program.

Adding to a KSDS
When adding a record to a KSDS, the base key of the record identifies the position
in the data set where the record is to be inserted. Although the key is part of the
record, CICS also requires the application program to specify the key separately
using the RIDFLD option on the WRITE command.

Chapter 20. An overview of file control 303

A record added to a KSDS by way of an alternate index path is also inserted into
the data set in the position determined by the base key. However, the command
must also include the alternate index key as the record identifier.

Adding to an ESDS
A record added to an ESDS is always added to the end of the file. You cannot
insert a record in an ESDS between existing records. After the operation is
completed, the relative byte address in the file where the record was placed is
returned to the application program.

When adding a record to an ESDS by way of an alternate index path, the record is
also placed at the end of the data set. The command must include the alternate
index key in the same way as for a KSDS path.

Adding to an RRDS
To add a record to an RRDS, include the relative record number as a record
identifier on the WRITE command. The record is then stored in the file in the
position corresponding to the RRN.

Records that are already locked
The NOSUSPEND option, described in “Read integrity (in RLS mode)” on page 298
also applies to the WRITE command for a file opened in RLS mode.

Specifying record length
When writing to a fixed-length file, the record length must match the value specified
at the time the file was created. In this case, you need not include the length with
the command, although you may do so to check whether the length agrees with
that originally defined to VSAM. If the file is defined as containing variable-length
records, the command must always include the length of the record.

Sequential adding of records (WRITE MASSINSERT command)
MASSINSERT on a WRITE command offers potential improved performance where
there is more than one record to add to a KSDS, ESDS, or path. The performance
improvement is only obtained when the keys in successive WRITE MASSINSERT
requests are in ascending order.

A MASSINSERT is completed by the UNLOCK command. This ensures that all the
records are written to the file and the position is released. Always issue an
UNLOCK command before performing an update operation on the same data set
(read update, delete with RIDFLD, or write). If you do not, you may get
unpredictable results, possibly including a deadlock.

Without an UNLOCK command, the MASSINSERT is completed when a syncpoint
is issued, or at task termination.

Note: A READ command does not necessarily retrieve a record that has been
added by an incomplete MASSINSERT operation.

See “VSAM data sets” on page 173 for more information about MASSINSERT.

304 CICS TS for z/OS: CICS Application Programming Guide

File control command options
Some of the file control command options you may specify are:
v “The RIDFLD option”
v “The INTO and SET options”
v “The FROM option” on page 306
v “The TOKEN option” on page 306
v “KEYLENGTH option for remote data sets” on page 306

Use of the LENGTH option varies, depending on how you use the other options.

The RIDFLD option
Whatever you do to a record (read, add, delete, or start a browse), you identify the
record by the RIDFLD option, except when you have read the record for update
first. However, there is no RIDFLD for ENDBR, REWRITE, and UNLOCK
commands. Further, during a browse using READNEXT or READPREV commands,
you must include the RIDFLD option to give CICS a way to return the identifier of
each record retrieved.

The RIDFLD option identifies a field containing the record identification appropriate
to the access method and the type of file being accessed.

The RIDFLD option by itself is not always enough to identify a specific record in the
file. So, when retrieving records from a KSDS, or from a KSDS or ESDS by way of
an alternate index path, or when setting a starting position for a browse in this type
of data set, you can have one or both of the further options GTEQ and GENERIC
with your command.

With READNEXT or READPREV commands, the application program would not
usually set the RIDFLD field. After each command, CICS updates this field with the
actual identifier of the record retrieved. (You can alter the RIDFLD value to set a
new position from which to continue the browse.)

The INTO and SET options
With the READ, READNEXT or READPREV commands, the record is retrieved and
put in main storage according to your INTO and SET options.

The INTO option specifies the main storage area into which the record is to be put.

For fixed-length records, you need not include the LENGTH option. If you do, the
length specified must exactly match the defined length; otherwise, you get the
LENGERR condition.

For variable-length records, always specify (in the LENGTH option) the longest
record your application program accepts (which must correspond to the value
defined as the maximum record size when the data set was created); otherwise,
you get the LENGERR condition. LENGERR occurs if the record exceeds the
length specified, and the record is then truncated to that length. After the record
retrieval, if you include the LENGTH option, the data area specified in it is set to the
actual record length (before any truncation occurs).

The SET option specifies a pointer to the buffer in main storage acquired by CICS
to hold the record. When using the SET option, you need not include the LENGTH
option. If you do include it, the data area specified is set to the actual record length
after the record has been retrieved.

Chapter 20. An overview of file control 305

The FROM option
When you add records (using the EXEC CICS WRITE command), or update
records (using the REWRITE command), specify the record to be written with the
FROM option.

The FROM option specifies the main storage area that contains the record to be
written. In general, this area is part of the storage owned by your application
program. With the REWRITE command, the FROM area is usually (but not
necessarily) the same as the corresponding INTO area on the READ UPDATE
command. The length of the record can be changed when rewriting to a KSDS with
variable-length records.

Always include the LENGTH option when writing to a file with variable-length
records. If the value specified exceeds the maximum allowed in the cluster
definition, LENGERR is raised when the command is executed. LENGERR is also
raised if the LENGTH option is omitted when accessing a file with variable-length
records.

When writing to a file with fixed-length records, CICS uses the length specified in
the cluster definition as the length of the record to be written, so you need not have
the LENGTH option. If you do, its value is checked against the defined value and
you get a LENGERR condition if the values do not match.

The TOKEN option
The TOKEN option is a unique value within a task that is supplied by CICS on any
valid read for update command, and you return this to CICS with an associated
REWRITE, DELETE, or UNLOCK command. For each file that is being updated by
a task, at any one time you can have only one outstanding read request with the
UPDATE option that does not specify the TOKEN option.

You can perform multiple concurrent updates on the same data set using the same
task by including the TOKEN option with a read for update command, and
specifying the token on the associated REWRITE, DELETE, or the UNLOCK
command. Note that, for files accessed in non-RLS mode, a set of concurrent
updates fails if more than one record is being updated in the same CI, irrespective
of the TOKEN associated with the request. Also, only one token remains valid for a
given REQID on a browse, and that is the one returned on the last READNEXT or
READPREV command (see “Updating and deleting records in a browse (VSAM
RLS only)” on page 302).

You can function ship a read for update request containing the TOKEN option.
However, if you function ship a request specifying TOKEN to a member of the CICS
family of products that does not recognize this keyword, the request fails.

KEYLENGTH option for remote data sets
In general, file control commands need the RIDFLD and KEYLENGTH options. The
KEYLENGTH option can be specified explicitly in the command, or determined
implicitly from the file definition.

For remote files for which the SYSID option has been specified, the KEYLENGTH
option must be specified if the RIDFLD option is passing a key to file control. If the
remote file is being browsed, the KEYLENGTH option is not required for the
READNEXT or READPREV command.

306 CICS TS for z/OS: CICS Application Programming Guide

For a remote BDAM file, where the DEBKEY or DEBREC options have been
specified, KEYLENGTH (when specified explicitly) should be the total length of the
key (that is, all specified subfields).

Transaction deadlocks
Design your applications so as to avoid transaction deadlocks. A deadlock occurs if
each of two transactions (for example, A and B) needs exclusive use of some
resource (for example, a particular record in a data set) that the other already
holds. Transaction A waits for the resource to become available. However, if
transaction B is not in a position to release it because it, in turn, is waiting on some
resource held by A, both are deadlocked and the only way of breaking the deadlock
is to cancel one of the transactions, thus releasing its resources.

A transaction needs exclusive control of resources while executing file control
commands. For both VSAM and BDAM data sets, any record that is being modified
is held in exclusive control by CICS from the time when the modification begins (for
example, when a READ UPDATE command is issued to obtain control of the
record), to the time when it ends (for example, when a REWRITE command has
finished making a change to the record).

With VSAM files accessed in RLS mode, only the individual record is ever locked
during this process. With VSAM files accessed in non-RLS mode, when VSAM
receives a command that requires control of the record, it locks the complete
control interval containing the record. CICS then obtains an enqueue on the record
that it requires, and releases the control interval, leaving only the record locked.
The control interval lock is released after each command, and only the individual
record is locked for the whole of the modification process. (For more information
about how the control interval lock is released, see CICS Recovery and Restart
Guide.)

In releases prior to CICS Transaction Server for z/OS, Version 2 Release 2, the
access method would also hold its lock on the complete control interval between
the commands, from the time when the modification began, to the time when it
ended. This is no longer the case.

As well as CICS having exclusive control of a record during the modification
process, there is an extra locking period when a transaction modifies a record in a
recoverable file. In this situation, CICS (or VSAM if the file is accessed in RLS
mode) locks that record to the transaction even after the request that performed the
change has completed. The transaction can continue to access and modify the
same record; other transactions must wait until the transaction releases the lock,
either by terminating or by issuing a syncpoint request. For more information, see
“Syncpointing” on page 257.

Whether a deadlock actually occurs depends on the relative timing of the
acquisition and release of the resources by different concurrent transactions.
Application programs may continue to be used for some time before meeting
circumstances that cause a deadlock; it is important to recognize and allow for the
possibility of deadlock early in the application program design stages.

Here are examples of different types of deadlock found in recoverable data sets:

v Two transactions running concurrently are modifying records within a single
recoverable file, through the same FCT entry, as follows:

Chapter 20. An overview of file control 307

Transaction 1 has acquired the record lock for record 1 (even though it has
completed the READ UPDATE command with an UNLOCK command).
Transaction 2 has similarly acquired the record lock for record 2. The
transactions are then deadlocked because each wants to acquire the CICS lock
held by the other. The CICS lock is not released until syncpoint.

v Two transactions running concurrently are modifying two recoverable files as
follows:

Here, the record locks have been acquired on different files as well as different
records; however, the deadlock is similar to the first example.

For VSAM files accessed in non-RLS mode, CICS detects deadlock situations, and
a transaction about to enter a deadlock is abended with the abend code AFCF if it
is deadlocked by another transaction, or with abend code AFCG if it has
deadlocked itself.

VSAM-detected deadlocks (RLS only)
With files accessed in RLS mode, deadlocks can arise between two different CICS
regions, possibly running under different MVS images. In these cases, deadlock
detection and resolution cannot be performed by CICS, and therefore it is
performed by VSAM.

If VSAM detects an RLS deadlock condition it returns a deadlock exception
condition to CICS, causing CICS file control to abend the transaction with an AFCW
abend code. CICS also writes messages and trace entries that identify the
members of the deadlock chain.

However, VSAM cannot detect a cross-resource deadlock (for example, a deadlock
arising from use of RLS and DB2 resources) where another resource manager is
involved. A cross-resource deadlock is resolved by VSAM when the timeout period
expires, and the waiting request is timed out. In this situation, VSAM cannot
determine whether the timeout is caused by a cross-resource deadlock, or a
timeout caused by another transaction acquiring an RLS lock and not releasing it. In
the event of a timeout, CICS writes trace entries and messages to identify the
holder of the lock for which a timed-out transaction is waiting.

Transaction 1
READ UPDATE record 1
UNLOCK record 1

WRITE record 2

Transaction 2
DELETE record 2

READ UPDATE record 1
REWRITE record 1

Transaction 1 Transaction 2
READ UPDATE file 1, record 1 READ UPDATE file 2, record 2
REWRITE file 1, record 1 REWRITE file 2, record 2

READ UPDATE file 2, record 2 READ UPDATE file 1, record 1
REWRITE file 2, record 2 REWRITE file 1, record 1

308 CICS TS for z/OS: CICS Application Programming Guide

All file control requests issued in RLS mode have an associated timeout value. This
timeout value is that defined by DTIMEOUT if DTIMEOUT is active for the
transaction, or FTIMEOUT from the system initialization table if DTIMEOUT is not
active.

Rules for avoiding deadlocks
You can avoid deadlocks by following these rules:

v All applications that update (modify) multiple resources should do so in the same
order. For instance, if a transaction is updating more than one record in a data
set, it can do so in ascending key order. A transaction that is accessing more
than one file should always do so in the same predefined sequence of files.

If a data set has an alternate index, beware of mixing transactions that perform
several updates by the base key with transactions that perform several updates
by the alternate key. Assume that the transactions that perform updates always
access records in ascending key sequence. Then transactions that perform all
updates by the base key will not deadlock with other transactions that perform all
updates by the base key. Likewise, transactions that perform all updates by the
alternate key do not deadlock with other transactions that perform all updates by
the alternate key. But transactions that perform all updates by the base key may
deadlock with transactions that perform all updates by the alternate key. This is
because the key that is locked is always the base key. Consequently, a
transaction performing updates by the alternate key may be acquiring locks in a
different order to a transaction performing updates by the base key.

v An application that issues a READ UPDATE command should follow it with a
REWRITE, DELETE without RIDFLD, or UNLOCK command to release the
position before doing anything else to the file, or should include the TOKEN
option with both parts of each update request.

v A sequence of WRITE MASSINSERT commands must terminate with the
UNLOCK command to release the position. No other operation on the file should
be performed before the UNLOCK command has been issued.

v An application must end all browses on a file by means of ENDBR commands
(thereby releasing the VSAM lock) before issuing a READ UPDATE, WRITE, or
DELETE with RIDFLD command, to the file.

Chapter 20. An overview of file control 309

310 CICS TS for z/OS: CICS Application Programming Guide

Chapter 21. File control—VSAM considerations

This chapter explains how to perform:
v “VSAM record identification”
v “Locking of VSAM records in recoverable files” on page 312
v “RLS Record level locking” on page 313
v “Active and retained states for locks” on page 315
v “CICS locking for writing to ESDS” on page 316

VSAM record identification
You identify records in data sets by:
v Key
v Relative byte address (RBA) and relative record number (RRN)

Key
Generally, if you use a key, you can specify either a complete key or a generic
(partial) key. The exceptions to this rule are when you write a record to a KSDS or
when you write a record by an alternate index path. In either of these cases you
must specify the complete key in the RIDFLD option of the command.

When you use a generic key, you must specify its length in the KEYLENGTH option
and you must specify the GENERIC option on the command. A generic key cannot
have a key length equal to the full key length. You must define it to be shorter than
the complete key.

You can also specify the GTEQ option on certain commands, for both complete and
generic keys. The command then positions at, or applies to, the record with the
next higher key if a matching key cannot be found. When accessing a data set by
way of an alternate index path, the record identified is the one with the next higher
alternate key when a matching record cannot be found.

Even when using generic keys, always use a storage area for the record
identification field that is equal in length to the length of the complete key. During a
browse operation, after retrieving a record, CICS copies into the record identification
area the actual identifier of the record retrieved. CICS returns a complete key to
your application, even when you specified a generic key on the command. For
example, a generic browse through a KSDS returns the complete key to your
application on each READNEXT and READPREV command.

Relative byte address (RBA) and relative record number (RRN)
You can use the RBA and RRN options on most commands that access data sets.
In effect, they define the format of the record identification field (RIDFLD). Unless
you specify either the RBA or the RRN, the RIDFLD option should hold a key to be
used for accessing a KSDS (or a KSDS or ESDS by way of an alternate index).

RBA
RBA specifies that the record identification field contains the relative byte address of
the record to be accessed. A relative byte address is used to access an ESDS, and
it may also be used to access a KSDS that is not opened in RLS access mode. All
file control commands that refer to an ESDS base, and specify the RIDFLD option,
must also specify the RBA option.

© Copyright IBM Corp. 1989, 2010 311

Note: If a KSDS is accessed in this way, the RBA of the record may change during
the transaction as a result of another transaction adding records to, or
deleting records from, the same data set.

RRN
RRN specifies that the record identification field contains the relative record number
of the record to be accessed. The first record in the data set is number one. All file
control commands that refer to an RRDS, and specify the RIDFLD option, must also
specify the RRN option.

Locking of VSAM records in recoverable files
Earlier, the prevention of transaction deadlocks in terms of the record locks
acquired whenever records in a recoverable file are modified was explained. These
locks are acquired by VSAM if the file is accessed in record-level sharing (RLS)
mode, and by CICS if not. The locks are held on behalf of the transaction doing the
change until it issues a syncpoint request or terminates (at which time a syncpoint
is automatically performed). For VSAM recoverable file processing, note the
following:

v Whenever a VSAM record is obtained for modification or deletion, CICS file
control (or VSAM in the case of RLS) locks the record with an ENQUEUE
request using the primary record identifier as the enqueue argument.

If a record is modified by way of a path, the enqueue uses the base key or the
base RBA as an argument. So CICS permits only one transaction at a time to
perform its request, the other transactions having to wait until the first has
reached a syncpoint.

v For the READ UPDATE and REWRITE-related commands the record lock is
acquired as soon as the READ UPDATE command has been issued.

For a DELETE command that has not been preceded by a READ UPDATE
command, or for a WRITE command, the record lock is acquired at the time the
VSAM command is executed.

For a WRITE MASSINSERT command (which consists of a series of WRITE
commands), a separate record lock is acquired at the time each individual
WRITE command is performed. Similarly, for a DELETE GENERIC command,
each record deleted acquires a separate lock on behalf of the transaction issuing
the request.

Update locks and delete locks (non-RLS mode only)
The record locks referred to above are known as update locks, because they are
acquired whenever a record is updated (modified). A further type of lock (a delete
lock) may also be acquired by file control whenever a DELETE, WRITE, or WRITE
MASSINSERT command is being performed for a recoverable KSDS or a
recoverable path over a KSDS. A delete operation therefore may acquire two
separate locks on the record being deleted.

The separate delete lock is needed because of the way file control does its write
operations. Before executing a WRITE MASSINSERT command to a KSDS or
RRDS, file control finds and locks the empty range into which the new record or
records are to go. The empty range is locked by identifying the next existing record
in the data set and acquiring its delete lock.

The empty range is locked to stop other requests simultaneously adding records
into it. Moreover, the record defining the end of the empty range cannot be removed
during the add operation. If another transaction issues a request to add records into

312 CICS TS for z/OS: CICS Application Programming Guide

the empty range or to delete the record at the end of the range, the delete lock
makes the transaction wait until the WRITE or WRITE MASSINSERT command is
complete. The record held with a delete lock may, however, be updated by another
transaction during the write operation if it is in another CI.

Unlike an update lock, a delete lock is held only for the duration of a delete or write
operation, or a sequence of WRITE MASSINSERT commands terminated by an
UNLOCK command. A WRITE MASSINSERT command that adds records to the file
into more than one empty range releases the previous delete lock as it moves into
a new empty range.

The CICS enqueuing mechanism is only for updates and deletes and does not
prevent a read request being satisfied before the next syncpoint. The integrity of a
READ command in these circumstances is not guaranteed.

RLS Record level locking
Files opened in RLS mode can be accessed by many CICS regions simultaneously.
This means it is impractical for the individual CICS regions to attempt to control
record locking, and therefore VSAM maintains a single central lock structure using
the lock-assist mechanism of the MVS coupling facility. This central lock structure
provides sysplex-wide locking at a record level—control interval (CI) locking is not
used. This is in contrast to the locks for files in non-RLS mode, the scope of which
is limited to a single CICS region, and that are either CI locks or CICS ENQs.

Record locks within RLS are owned by a named UOW within a named CICS region.
The lock owner name is the APPLID of the CICS region, plus the UOW id. For
example, when CICS makes a request that may create a lock, CICS passes to
VSAM the UOW id. This enables VSAM to build the lock name using the UOW id,
the record key, and the name of the CICS region.

CICS releases all locks on completion of a UOW using a VSAM interface.

When more than one request requires an exclusive lock against the same resource,
VSAM queues the second and subsequent requests until the resource is freed and
the lock can be granted. However, VSAM does not queue requests for resources
locked by a retained lock (see “Active and retained states for locks” on page 315).

Note: For MASSINSERT operations on a file opened in RLS access mode, CICS
acquires a separate update lock at the time each individual WRITE
command is issued. Unlike the non-RLS mode operation (described under
“Locking of VSAM records in recoverable files” on page 312) CICS does not
acquire the separate delete lock in addition to the update lock. There is no
equivalent to range locking for the MASSINSERT function for files opened in
non-RLS mode.

Exclusive locks and shared locks
VSAM supports two types of lock for files accessed in RLS mode:
1. Exclusive locks
2. Shared locks

Exclusive locks can be active or retained; shared locks can only be active (see
“Active and retained states for locks” on page 315). Note that there are no delete
locks in RLS mode.

Chapter 21. File control—VSAM considerations 313

Exclusive locks
Exclusive locks protect updates to file resources, both recoverable and
non-recoverable. They can be owned by only one transaction at a time. Any
transaction that requires an exclusive lock must wait if another task currently owns
an exclusive lock or a shared lock against the requested resource.

Shared locks
Shared locks support read integrity (see “Read integrity (in RLS mode)” on page
298). They ensure that a record is not in the process of being updated during a
read-only request. Shared locks can also be used to prevent updates of a record
between the time that a record is read and the next syncpoint.

A shared lock on a resource can be owned by several tasks at the same time.
However, although several tasks can own shared locks, there are some
circumstances in which tasks can be forced to wait for a lock:

v A request for a shared lock must wait if another task currently owns an exclusive
lock on the resource.

v A request for an exclusive lock must wait if other tasks currently own shared
locks on this resource.

v A new request for a shared lock must wait if another task is waiting for an
exclusive lock on a resource that already has a shared lock.

Lock duration
Shared locks for repeatable read requests, for recoverable and non-recoverable
data sets, are held until the next syncpoint.

Exclusive locks against records in a non-recoverable data set remain held only for
the duration of the request—that is, they are acquired at the start of a request and
released on completion of it. For example, a lock acquired by a WRITE request is
released when the WRITE request is completed, and a lock acquired by a READ
UPDATE request is released as soon as the following REWRITE or DELETE
request is completed. Exceptionally, locks acquired by sequential requests may
persist beyond the completion of the immediate operation. Sequential requests are
WRITE commands that specify the MASSINSERT option and browse for update
requests. A lock acquired by a WRITE command with the MASSINSERT option is
always released by the time the corresponding UNLOCK command completes, but
may have been released by an earlier request in the WRITE MASSINSERT
sequence. The exact request in the sequence that causes the lock to be released is
not predictable. Similarly, a lock acquired by a READNEXT UPDATE command may
still exist after the following DELETE or REWRITE command completes. Although
this lock is guaranteed to be released by the time the subsequent ENDBR
command completes, it may be released by some intermediate request in the
browse sequence.

If a request is made to update a recoverable data set, the associated exclusive lock
must remain held until the next syncpoint. This ensures that the resource remains
protected until a decision is made to commit or back out the request. If CICS fails,
VSAM continues to hold the lock until CICS is restarted.

314 CICS TS for z/OS: CICS Application Programming Guide

Active and retained states for locks
VSAM RLS supports active and retained states for locks. The difference between
these two types of lock is that whereas a request for a resource that has an active
lock is queued until the resource becomes available, a request for a resource that
has a retained lock fails immediately.

The active state is applicable to both exclusive and shared locks. However, only
exclusive locks against recoverable resources can have their state changed from
active to retained. The important characteristic of these states is that they determine
whether or not a task must wait for a lock:

v A request for a lock is made to wait if there is already an active lock against the
requested resource, except in two cases:

1. A request for a shared lock does not have to wait if the current active lock is
also a shared lock, and there are no exclusive lock requests waiting.

2. An update request that specifies NOSUSPEND does not wait for a lock if an
active lock already exists. In this case, CICS returns an exception condition
indicating that the “record is busy”.

v A request for a lock is rejected immediately with the LOCKED condition if there is
a retained lock against the requested resource.

When a lock is first acquired, it is an active lock. It is then either released, the
duration of the lock depending on the type of lock, or if an event occurs which
causes a UOW to fail temporarily and which would therefore cause the lock to be
held for an abnormally long time, it is converted into a retained lock. The types of
event that can cause a lock to become retained are:

v Failure of the CICS system, the VSAM server or the whole MVS system

v A unit of work entering the backout failed state

v A distributed unit of work becoming indoubt owing to the failure of either the
coordinating system or of links to the coordinating system

If a UOW fails, VSAM continues to hold the exclusive record locks that were owned
by the failed UOW for recoverable data sets. To avoid new requests being made to
wait for locks owned by the failed UOW, VSAM converts the active locks owned by
the failed UOW into retained locks. Retaining locks ensures that data integrity for
the locked records is maintained until the UOW is completed.

Exclusive recoverable locks are also converted into retained locks in the event of a
CICS failure, to ensure data integrity is maintained until CICS is restarted and
performs recovery.

Task 1 Task 2
CICS: READ(filea) UPDATE KEY(99)
VSAM: grants exclusive lock - key 99

CICS: READ(filea) KEY(99)
with integrity

VSAM: Queues request for shared lock
CICS: REWRITE(filea) KEY(99)
VSAM: holds exclusive lock until syncpoint

CICS: task completes and takes syncpoint
VSAM: frees exclusive lock

VSAM grants shared lock to task 2

Figure 79. Illustration of lock contention between CICS tasks on a recoverable data set

Chapter 21. File control—VSAM considerations 315

Exclusive recoverable locks are also converted into retained locks if the VSAM
data-sharing server (SMSVSAM) fails (the conversion is carried out by the other
servers in the Sysplex, or by the first server to restart if all servers have failed). This
means that a UOW does not itself have to fail in order to hold retained RLS locks.

Any shared locks owned by a failed CICS region are discarded, and therefore an
active shared lock can never become retained. Similarly, active exclusive
non-recoverable locks are discarded. Only locks that are both exclusive and apply
to recoverable resources are eligible to become retained.

Conditional VSAM file update requests
On file control update requests against files opened in RLS mode, you can avoid
waiting for a lock by making your request conditional upon being given a lock
immediately. You do this by specifying the NOSUSPEND option on the request. If
another task already holds an active lock, CICS returns the RECORDBUSY
condition instead of queueing your request.

You can specify NOSUSPEND on READ, READNEXT, READPREV, WRITE,
REWRITE, and DELETE commands.

It is important to distinguish between the LOCKED and RECORDBUSY responses:

v A LOCKED response occurs when a request attempts to access a record that is
locked by a retained lock.

v A RECORDBUSY response occurs when a request attempts to access a record
that is locked by an active lock. Remember that this could be caused by a
DEADLOCK, in which case retries may not work. It may be necessary to issue a
SYNCPOINT with or without rollback to resolve the condition.

Note: Requests that specify NOSUSPEND wait for at least 1 second before
CICS returns the RECORDBUSY response.

If you do not specify NOSUSPEND on your request, CICS causes it to wait for a
lock if the record is already locked by an active lock. If you specify NOSUSPEND,
your request receives a RECORDBUSY response if the record is locked by an
active lock.

If you issue a request (with or without the NOSUSPEND option) against a record
locked by a retained lock, CICS returns a LOCKED response.

File control implementation of NOSUSPEND
There is a slight difference in the way that NOSUSPEND works on file control
commands compared with the way that NOSUSPEND works on other CICS
commands. If you issue HANDLE CONDITION(RECORDBUSY) it does not cause
NOSUSPEND to be assumed on subsequent file control requests. On the other
hand, specifying HANDLE CONDITION(QBUSY) causes NOSUSPEND to be
assumed on subsequent transient data commands even when it is not explicitly
specified.

CICS locking for writing to ESDS
CICS write operations to ESDS are single threaded, for both RLS and non-RLS
mode access. However, the lock held for serialization can be held for slightly longer
for RLS-mode access compared with non-RLS mode. You can compensate for the
possible increase in overhead by increasing the task priority of those transactions

316 CICS TS for z/OS: CICS Application Programming Guide

that add new records to ESDS files. It is possible that when you switch an ESDS
RLS mode from non-RLS mode that you might see an increase in time-outs for
those transactions that add new records.

Using RLS mode access for an ESDS can also cause availability problems. If a
CICS region fails while writing to an ESDS, the data set might be locked until the
CICS region is restarted. It is recommended that you do not use RLS mode access
for ESDS.

Chapter 21. File control—VSAM considerations 317

318 CICS TS for z/OS: CICS Application Programming Guide

Chapter 22. File control—BDAM considerations

This chapter explains how to perform the following functions :
v “Identifying BDAM records”
v “Browsing records from BDAM data sets” on page 320
v “Adding records to BDAM data sets” on page 321

Note: When a blocked record is read for update, CICS maintains exclusive control
of the containing block. An attempt to read a second record from the block
before the first is updated (by a REWRITE command), or before exclusive
control is released (by an UNLOCK command), causes a deadlock.

Identifying BDAM records
You identify records in BDAM data sets by a block reference, a physical key
(keyed data set), or a deblocking argument (blocked-data set). The record
identification (in the RIDFLD option) has a subfield for each item. These subfields,
when used, must be in the above order.

Note: When using EDF, only the first of the above three fields (the block reference
subfield) is displayed.

Block reference subfield
This is one of the following:

v Relative block address: 3-byte binary, beginning at relative block zero
(RELTYPE=BLK).

v Relative track and record (hexadecimal format): 2-byte TT, 1-byte R
(RELTYPE=HEX).

The 2-byte TT begins at relative track zero. The 1-byte R begins at relative
record one.

v Relative track and record (zoned decimal format): 6-byte TTTTTT, 2-byte RR
(RELTYPE=DEC).

v Actual (absolute) address: 8-byte MBBCCHHR (RELTYPE operand omitted).

The system programmer must specify the type of block reference you are using in
the RELTYPE operand of the DFHFCT TYPE=FILE system macro that defines the
data set.

Physical key subfield
You only need this if the data set has been defined to contain recorded keys. If
used, it must immediately follow the block reference. Its length must match the
length specified in the BLKKEYL operand of the DFHFCT TYPE=FILE system
macro that defines the data set.

Deblocking argument subfield
You only need this if you want to retrieve specific records from a block. If used, it
must immediately follow the physical key (if present) or the block reference. If you
omit it, you retrieve an entire block.

The deblocking argument can be a key or a relative record number. If it is a key,
specify the DEBKEY option on a READ or STARTBR command and make sure its
length matches that specified in the KEYLEN operand of the DFHFCT TYPE=FILE

© Copyright IBM Corp. 1989, 2010 319

system macro. If it is a relative record number, specify the DEBREC option on a
READ or STARTBR command. It is a 1-byte binary number (first record=zero).

Figure 80 shows examples of the following possible forms of BDAM record
identifiers. The examples assume a physical key of four bytes and a deblocking key
of three bytes:

v Relative block number followed by relative record number for search by relative
block and deblock by relative record

v Relative block number followed by a key for search by relative block and deblock
by key

v TTR followed by physical key and deblocking key for search by relative track and
record and key and deblock by key

v MBBCCHHR followed by relative record number for search by actual address
and deblock by relative relative record

v TTTTTRR followed by physical key and deblocking key for search by zoned
decimal relative track and record and key and deblock by key

v TR followed by physical key for search by relative track and record and deblock
by key

Browsing records from BDAM data sets
The record identification field must contain a block reference (for example, TTR or
MBBCCHHR) that conforms to the addressing method defined for the data set.
Processing begins with the specified block and continues with each subsequent
block until you end the browse.

If the data set contains blocked records, processing begins at the first record of the
first block and continues with each subsequent record, regardless of the contents of
the record identification field.

Byte Number

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RELBLK# N Search by relative block;
deblock by relative record

RELBLK# KEY Search by relative block;
deblock by key

T T R PH KEY KEY Search by relative track
and record and key;
deblock by key

M B B C C H H R N Search by actual address;
deblock by relative record

T T T T T T R R PH KEY KEY Search by zoned decimal
relative track and record
and key; deblock by key

T T R KEY Search by relative track
and record; deblock by key

Figure 80. Examples of BDAM record identification

320 CICS TS for z/OS: CICS Application Programming Guide

In other words, CICS uses only the information held in the TTR or MBBCCHHR
subfield of the RIDFLD to identify the record. It ignores all other information, such
as physical key and relative record, or logical key.

After the READNEXT command, CICS updates the RIDFLD with the complete
identification of the record retrieved. For example, assume a browse is to be started
with the first record of a blocked, keyed data set, and deblocking by logical key is to
be performed. Before issuing the STARTBR command, put the TTR (assuming that
is the addressing method) of the first block in the record identification field. After the
first READNEXT command, the record identification field might contain
X'0000010504', where X'000001' represents the TTR value, X'05' represents the
block key, (of length 1), and X'04' represents the logical record key.

Now assume that a blocked, nonkeyed data set is being browsed using relative
record deblocking and the second record from the second physical block on the
third relative track is read by a READNEXT command. Upon return to the
application program, the record identification field contains X'00020201', where
X'0002' represents the track, X'02' represents the block, and X'01' represents the
number of the record in the block relative to zero.

Note: Specify the options DEBREC and DEBKEY on the STARTBR command
when browsing blocked-data sets. This enables CICS to return the correct
contents in the RIDFLD. Specifying DEBREC on the STARTBR command
causes the relative record number to be returned. Specifying DEBKEY on
the STARTBR command causes the logical record key to be returned.

Do not omit DEBREC or DEBKEY when browsing a blocked file. If you do,
the logical record is retrieved from the block, the length parameter is set
equal to the logical record length, but the RIDFLD is not updated with the
full identification of the record. Do not use this method.

Compare this with what happens if you omit the DEBREC or DEBKEY option
when reading from a blocked BDAM data set. In this case, you retrieve the
whole block, and the length parameter is set equal to the length of the
block.

Adding records to BDAM data sets
When adding records to a BDAM data set, bear in mind the following:

v When adding undefined or variable-length records (keyed or nonkeyed), you
must specify the track on which each new record is to be added. If space is
available on the track, the record is written following the last previously written
record, and the record number is put in the “R” portion of the record identification
field of the record. The track specification may be in any format except relative
block. If you use zoned-decimal relative format, the record number is returned as
a 2-byte zoned decimal number in the seventh and eighth positions of the record
identification field.

The extended search option allows the record to be added to another track if no
space is available on the specified track. The location at which the record is
added is returned to the application program in the record identification field
being used.

When adding records of undefined length, use the LENGTH option to specify the
length of the record. When an undefined record is retrieved, the application
program must find out its length.

Chapter 22. File control—BDAM considerations 321

v When adding keyed fixed-length records, you must first format the data set with
dummy records or “slots” into which the records may be added. You signify a
dummy record by a key of X'FF's. The first byte of data contains the record
number.

v When adding nonkeyed fixed-length records, give the block reference in the
record identification field. The new records are written in the location specified,
destroying the previous contents of that location.

v When adding keyed fixed-length records, track information only is used to search
for a dummy key and record, which, when found, is replaced by the new key and
record. The location of the new record is returned to the application program in
the block reference subfield of the record identification field.

For example, for a record with the following identification field:
0 3 0 ALPHA
T T R KEY

the search starts at relative track three. When control is returned to the
application program, the record identification field is:
0 4 6 ALPHA

showing that the record is now record six on relative track four.

v When adding variable-length blocked records you must include a 4-byte record
description field (RDF) in each record. The first two bytes specify the length of
the record (including the 4-byte RDF); the other two bytes consist of zeros.

Updating records from BDAM data sets
You cannot change the record length of a variable blocked or unblocked BDAM
record on a REWRITE command which specifies deblocking. You cannot change
the record length of an undefined format BDAM record on a REWRITE command
either.

322 CICS TS for z/OS: CICS Application Programming Guide

Chapter 23. Database control

This chapter introduces DL/I databases and “DB2 databases.”

DL/I databases
You get a logical view of the database in terms of a hierarchy of segments. DL/I lets
you manipulate these segments without needing to know how they are organized.
DL/I databases are processed by the IBM licensed program Information
Management System/Enterprise Systems Architecture (IMS/ESA®).

CICS has two programming interfaces to DL/I. We recommend that you use the
higher-level EXEC DLI interface. It is straightforward, works with EDF, and can fully
exploit a 31-bit environment. The lower-level DL/I programming interface is the DL/I
CALL interface.

DB2 databases
DB2 databases also provide data independence, offering a logical view of the
database as a series of tables that you can interrelate more or less as you wish.
DB2 lets you manipulate these tables without needing to know how they are
organized. DB2 databases are processed by the IBM licensed program DB2
Universal Database™ for z/OS and OS/390.

CICS has one interface to DB2—the EXEC SQL interface, which offers powerful
statements for manipulating sets of tables—thus relieving the application program of
record-by-record (segment-by-segment, in the case of DL/I) processing.

CICS applications that process DB2 tables can also access DL/I databases. Any
CICS resources (files, transient data, and so on), DL/I, and DB2 can be accessed
from within one transaction. See the CICS IMS Database Control Guide for
information about what databases and resources you can access.

For information about SQL commands, which are not discussed in this book, see
the DB2 Universal Database for OS/390 and z/OS Application Programming and
SQL Guide.

Requests to DB2
Requests from CICS applications to DB2 are made using EXEC SQL commands.
DB2 runs in its own address space, like DBCTL. The CICS-DB2 and the
CICS-DBCTL interfaces are similar in that they both use the task-related user exit
interface (also known as the resource manager interface (RMI)) and have a
two-phase commit process. However, they differ in a number of respects. For
example, the CICS-DB2 interface uses the task-related user exit interface (also
known as the resource manager interface, RMI) and has a two-phase commit
process. CICS supports DBCTL and remote DL/I, and has to determine at PSB
schedule time which of them is being used.

When an application issues an EXEC SQL command, the following processing
takes place:

1. The RMI is invoked from a stub that is link-edited to the application.

2. If this is the first DB2 request from this task, the RMI sets up a task interface
element (TIE).

© Copyright IBM Corp. 1989, 2010 323

3. The RMI invokes the DB2 task-related user exit.

4. The DB2 task-related user exit services the request. It suspends the task that
made the request: returns the response and data to the application, then
resumes the requesting task, before returning control to the RMI.

5. Control is returned to the application.

The processing steps are illustrated in Figure 81. and are the responsibility of DB2,
until control is returned to the RMI

EXEC SQL request

Invoke RMI

First
request for

DB2 from this
task?

Set up task interface
element (TIE)

Invoke DB2
task-related user exit

Service request

Suspend task that
made DB2 request

Return response and
any data to
applications

Resume task that
made DB2 request

Return control to RMI

Return control
to application

Application

Application

RMI

DB2

RMI

N Y

Figure 81. How EXEC SQL requests are processed

324 CICS TS for z/OS: CICS Application Programming Guide

Chapter 24. CICS documents

The CICS document handler allows you to build up formatted data areas, known as
documents. Some examples of how these formatted areas, or documents, can be
used, are:
v Constructing a COMMAREA.
v Sending HTML data to be displayed by a Web client.
v Creating standard formats for printing (for example, using your own letterhead,

address, and so on).

Using the DOCUMENT programming interface
This section explains the function and use of the commands in the DOCUMENT
application programming interface:
v DOCUMENT CREATE
v DOCUMENT INSERT
v DOCUMENT RETRIEVE
v DOCUMENT SET

Creating a document
You can create an empty document using the DOCUMENT CREATE command,
and then build the contents with subsequent DOCUMENT INSERT commands, or
use DOCUMENT CREATE to create and build the document in one step.
DOCUMENT CREATE has a mandatory DOCTOKEN parameter requiring a
16–byte data-area. The document handler domain uses the DOCTOKEN operand to
return a token, which is used to identify the document on subsequent calls. The
following example creates an empty document, and returns the token in the variable
MYDOC:
EXEC CICS DOCUMENT CREATE

DOCTOKEN(MYDOC)

To create a document with data, use the DOCUMENT CREATE command in any of
the following ways:
v Using the BINARY option
v Using the TEXT option
v Using the FROMDOC option to copy an existing document
v Using the TEMPLATE option. “Setting up document templates” on page 326

describes this option.

The BINARY option
Use this option to add to the document the contents of a data-area that must not
undergo conversion to a client code page when the data is sent.
EXEC CICS DOCUMENT CREATE

DOCTOKEN(MYDOC1)
BINARY(DATA-AREA)

The TEXT option
Use this option to add the specified contents to the document. For example, if you
define a character string variable called DOCTEXT and initialise it to This is an
example of text to be added to a document, you can use the following command to
create a document consisting of this text string:
EXEC CICS DOCUMENT CREATE

DOCTOKEN(MYDOC2)
TEXT(DOCTEXT)
LENGTH(53)

© Copyright IBM Corp. 1989, 2010 325

The FROMDOC option
To copy an existing document into a new document, you can use the DOCUMENT
CREATE command with the FROMDOC option. The following example shows this:
EXEC CICS DOCUMENT CREATE

DOCTOKEN(MYDOC3)
FROMDOC(MYDOC2)

where MYDOC2 and MYDOC3 are 16–character variables. MYDOC2 must contain
the token returned by a previous DOCUMENT CREATE command.

This results in two identical documents, each containing the text This is an example
of text to be added to a document.

Setting up document templates
Document templates are portions of a document which can be created off-line, or in
another CICS program, and inserted into the document in the application program.
Document templates are CICS resources, which you define using DOCTEMPLATE
definitions; the name of the template is specified in the TEMPLATENAME attribute.

Templates can contain static data, and symbols whose values are inserted into the
template when you issue the DOCUMENT CREATE or DOCUMENT INSERT
command. The values to be subsituted are specified in the application program;
they are associated with a particular document and cannot be used in a different
document.

Templates can be retrieved from several different sources, to suit the way they are
used in the application program; the DOCTEMPLATE definition specifies the source
of the template:

v from a partitioned data set

v from a CICS program

v from a CICS file

v from a z/OS UNIX System Services HFS file

v from a temporary storage queue

v from a transient data queue

v from an exit program

If you attempt to use a template for which there is no installed DOCTEMPLATE
definition, CICS attempts to retrieve the template from the partitioned data set with
a DDNAME of DFHHTML.

Templates in a partitioned data set
Consider storing your templates in a partitioned data set when any of the following
apply:

v You want to edit your template on-line, or import the template from an HTML
editor.

v You want to use templates that have been created from BMS maps

CICS loads a copy of the template from the partitioned data set when you install the
corresponding DOCTEMPLATE definition. Therefore you can modify the template in
the partitioned data set while CICS is running, and reinstall the definition in order to
activate the changes.

326 CICS TS for z/OS: CICS Application Programming Guide

|

A partitioned data set used to store templates may have one of the following record
formats:

v FB (fixed length blocked)

v VB (variable length blocked)

v U (unblocked)

Records may contain sequence numbers in the following cases:

v When the record format is FB, and the record length is 80; the sequence
numbers must be in positions 73 through 80.

v When the record format is VB; the sequence numbers must be in positions 1
through 8.

In other cases, there must be no sequence numbers in the records. If you use
sequence numbers, they must be present in all the records; do not used partially
sequenced members.

Templates in a CICS program
Consider coding a CICS program to contain a template when:

v You need to minimize the overhead of retrieving the template

v The template is static; in other words, the contents of the template do not change
dynamically

v The same template is used by a several applications

To code a program which contains a template:

1. Code an Assembler CSECT containing

a. An ENTRY statement, which denotes the start of the template

b. Character constants (DC statements) defining the text that you wish to
include in your template.

c. An END statement

For example:
ENTRY WKLYHDR

WKLYHDR CSECT
DC CL4’<HR>’
DC CL29’<H2>Weekly Status Report</H2>’
END

2. Assemble and link edit the program into your CICS application program library.
Note that the name you give to the program can be different from the name of
the entry point.

3. Create and install a DOCTEMPLATE definition which specifies the name of the
program in the Program attribute.

CICS will autoinstall the program on first reference, or you can create and install a
PROGRAM definition.

Templates in CICS files, z/OS UNIX System Services HFS files,
temporary storage, or transient data

Consider using one of these resources when you want to use dynamic data from an
application program in a template. Which resource you use will depend upon:

v how the application program stores its data

v whether the existing data can be used directly in the template, or needs to be
modified

v whether the data must be preserved after it is used in the template

Chapter 24. CICS documents 327

In general, when a template is inserted into a document, all the data contained in
the resource is used:

Temporary storage
The queue is read, in sequence, by ITEM number, and therefore all records
in the queue are read, regardless of which records have been read by other
applications.

Transient data
Because transient data uses a destructive read, when you insert data from
a transient data queue into a template, the contents of the queue are no
longer available to other applications.

CICS file

v Entry-sequenced data sets (ESDS) are read in sequence of relative byte
address.

v Relative record data sets (RRDS) are read in sequence of relative record
number.

v Other data sets are read in sequence of key field.

z/OS UNIX System Services HFS file

v All the data in the file is used.

v In the DOCTEMPLATE definition, you need to provide the fully-qualified
name of the HFS file, which can be up to 255 characters in length.

v The CICS region must have permissions to access z/OS UNIX, and it
must have permission to access the HFS directory containing the file,
and the file itself. Java Applications in CICS explains how to achieve this.

Creating templates in exit programs
Consider using an exit program for a template when:

v You need to minimize the overhead of retrieving the template

v The contents of the template change dynamically

v The same template is used by a several applications

v You want to retrieve the contents of the template from a non-CICS resource (for
example, DB2)

When an application program requests a template which is defined as being
created in an exit program, CICS calls the specified program, and passes a
communication area; the communication area is mapped by the following
copybooks:
v DFHDHTXD (Assembler)
v DFHDHTXH (C)
v DFHDHTXL (PL/I)
v DFHDHTXO (COBOL)

The communication area contains the following fields:

dhtx_template_name_ptr
Contains a pointer to the name (up to 48 characters) of the template that is
being requested.

dhtx_buffer_ptr
Contains the pointer of the CICS-supplied buffer in which the exit program
returns the template.

328 CICS TS for z/OS: CICS Application Programming Guide

|

|

|
|

|
|
|

dhtx_buffer_len
(Fullword binary.) Contains the length of the CICS-supplied buffer in which the
exit program returns the template.

dhtx_message_len
(Fullword binary.) Use this field to return the length of a message that is issued
when the exit program is unable to return a template. If there is no message,
return a value of zero.

dhtx_message_ptr
Use this field to return the pointer of a message that explains why the exit
program was unsuccessful. CICS writes this message to the CSDH transient
data destination. If there is no message, return a value of zero.

dhtx_template_len
(Fullword binary.) Use this field to return the actual length of the template.

dhtx_append_crlf
Use the characters ‘1’ (append) or ‘0’ (do not append) to specify whether or not
to add carriage return and line feed characters to the end of each line.

dhtx_return_code
(Fullword binary.) Use this field to indicate whether the exit program has
successfully returned a template:

v A return code of 0 indicates that the exit has returned a template.

v A return code of 8 indicates that the exit has not returned a template. In this
case, CICS raises a TEMPLATERR condition in the application program.

If the template to be returned is longer than dhtx_buffer_len, the template must be
truncated to length dhtx_buffer_len and the exit program must set the length
required in dhtx_template_len. The exit program is then called again with a larger
buffer.

If your exit program sets a return code of 8, you can return an explanatory
message, which is written to the CSDH transient data destination. Return the
address and length of the message in dhtx_message_ptr and dhtx_message_len
respectively. The storage which contains the message must be accessible to the
caller of the exit program. For example, your exit program can issue a GETMAIN
command to acquire storage for the message. CICS will release the storage when
the task ends, unless you specify the SHARED option on the command.

Programming with documents and document templates
This section covers the following topics:
v “Symbols and symbol lists”
v “Setting symbol values” on page 330
v “Embedded template commands” on page 332
v “Using templates in your application” on page 333
v “The lifespan of a document” on page 334
v “Constructing a document” on page 336
v “Using Bookmarks” on page 338
v “Code page conversion for documents” on page 339

Symbols and symbol lists
Symbols represent variable data that is resolved at the time the template is added
to the document - at the time the DOCUMENT CREATE or DOCUMENT INSERT is
issued.

Chapter 24. CICS documents 329

The application program needs to define values for the symbols that will be
substituted when the template is used. These values can be defined on the
DOCUMENT CREATE or the DOCUMENT SET commands. These commands both
take a SYMBOLLIST operand which allows several symbols to be defined in a
single command. You can also define individual symbols by using the SYMBOL and
VALUE operands on the DOCUMENT SET command.

When you are planning your use of symbols and templates, note that:

1. When a template containing symbols has been inserted into a document, you
cannot change the substituted values of those symbols in the document that is
being composed. If you set different values for the symbols, the new values will
be used the next time that the template is inserted into a document. Your
changes will not affect the values that have already been inserted into the
document.

2. If you insert a template before the symbols contained in it are set, the symbols
will never be substituted. This can occur if you create a document from a
template without specifying a symbol list.

3. Symbol substitution does not occur in html comments.

The support for symbols and symbol lists in the DOCUMENT application
programming interface is designed to interpret data with a content type of
application/x-www-form-urlencoded, as described in the HTML specification (at
http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4). This is the format in
which data is returned when it has been entered into a form on a web page.

In CICS, the DOCUMENT application programming interface extends this
specification in respect of space characters. You can use simple space characters
to indicate spaces within values in a symbol list or in the VALUE option; you do not
have to use a plus sign to indicate a space. However, if you want to adhere more
closely to the specification, it is suggested that you do use a plus sign instead of a
space character when possible. Note, though, that you cannot use a plus sign to
indicate a space character when the UNESCAPED option is used to prevent CICS
from unescaping symbol values contained in a symbol list or in the VALUE option.
In these cases, you must use a space character to indicate a space, because plus
signs are not converted to spaces when the UNESCAPED option is used.

Setting symbol values
You can define values for symbols using the DOCUMENT SET command or the
DOCUMENT CREATE command.

The DOCUMENT CREATE and DOCUMENT SET commands both take a
SYMBOLLIST operand which allows several symbols to be defined in a single
command. The SYMBOLLIST operand is a character string consisting of one or
more definitions with single byte separators. By default, the symbol separator is an
ampersand, but you can override this by using the DELIMITER option of the
DOCUMENT SET or DOCUMENT CREATE commands. A definition for a symbol
consists of a name, an equals sign, and a value.

Here is an example of a symbol list:
mytitle=New+Authors&auth1=Halliwell+Sutcliffe&auth2=Stanley+Weyman

This example defines three symbols. The first symbol called mytitle has the value
'New Authors'. The second symbol called auth1 has the value 'Halliwell Sutcliffe'
and the last symbol called auth2 has the value 'Stanley Weyman'. To adhere to the
specification for the content type application/x-www-form-urlencoded, plus signs

330 CICS TS for z/OS: CICS Application Programming Guide

have been used to indicate spaces within the symbol values; they will be converted
to spaces when the symbol values are put into the symbol table.

The following rules apply when setting symbols using a SYMBOLLIST:

v The name of each symbol must contain only uppercase and lowercase letters,
numbers and the special characters dollar ('$'), underscore ('_'), hyphen ('-'),
number sign ('#'), period ('.') and at sign ('@'). The name is case-sensitive, so
uppercase letters are regarded as different from lowercase letters.

v The values in the symbol list can contain any characters. However, special
coding is required if you need to include the following characters in symbol
values in the symbol list:

– The character that you have used as the symbol separator (which defaults to
an ampersand, but can be overridden by use of the DELIMITER option).

– The plus sign and the percent sign.

You can use the percent sign, followed by two characters that are hexadecimal
digits (that is, 0–9, a-f, and A-F), to include characters such as these that have a
special meaning. When the value is put into the symbol table, a percent sign and
the two hexadecimal digits following it are interpreted as the EBCDIC equivalent
of the single ASCII character denoted by the two digits. Some useful
combinations are as follows:

– If you want a plus sign in the value in the symbol table, put %2B in the value
in the symbol list.

– If you want a percent sign in the value in the symbol table, put %25 in the
value in the symbol list.

– If you want an ampersand in the value in the symbol table, put %26 in the
value in the symbol list.

– You can also use this coding to specify a space in the value in the symbol
table—put %20 in the value in your symbol list. Alternatively, you can use the
space character or the plus sign, as described below.

If you prefer not to use this special coding, you can specify the UNESCAPED
option on the DOCUMENT CREATE or DOCUMENT SET command. When you
specify this option, no conversion takes place, and the symbol values are put into
the symbol table exactly as you entered them. The example below shows you
how to do this. However, the UNESCAPED option does not allow you to include
the character that you have used as the symbol separator, within a symbol value
in a symbol list. If you want to use the UNESCAPED option, choose a symbol
separator that will never be used within a symbol value. Alternatively, you can
use the SYMBOL and VALUE options on the DOCUMENT SET command to
specify symbol values that contain the character you have used as the symbol
separator, because the symbol separator has no special meaning when used in
the VALUE option.

v If you want to include spaces in a value, CICS allows you to use the space
character. However, to adhere more closely to the specification for the content
type, it is suggested that you use a plus sign instead of a space character. The
plus sign is interpreted as a space when the symbol value is put into the symbol
table. However, you cannot use a plus sign to indicate a space character when
the UNESCAPED option is used to prevent CICS from unescaping symbol values
contained in a symbol list or in the VALUE option. In these cases, you must use
a space character to indicate a space, because plus signs are not converted to
spaces when the UNESCAPED option is used.

Chapter 24. CICS documents 331

The following example shows you how, without using special coding, you can pass
symbol values to the document handler containing embedded plus signs, percent
signs, and ampersands, none of which are to undergo unescape processing:
EXEC CICS DOCUMENT CREATE

DOCTOKEN(ATOKEN)
DELIMITER(’!’)
SYMBOLLIST(’COMPANY=BLOGGS & SON!ORDER=NUTS+BOLTS’)
LISTLENGTH(37)
UNESCAPED

Here the symbol COMPANY has a value of 'BLOGGS & SON', and the symbol
ORDER has a value of 'NUTS+BOLTS'. The symbol separator used in this example
is '!', but it is best to use a non-printable character that does not appear in the
symbol value. The use of a character other than the ampersand as the symbol
separator means that an ampersand can be used in 'BLOGGS & SON'. The use of
the UNESCAPED option ensures that the plus sign in 'NUTS+BOLTS' does not get
converted to a space. Because the UNESCAPED option has been used, you must
use a space character, rather than a plus sign, to indicate where a space is
required in the symbol value, and the data no longer conforms to the specification
for the content type application/x-www-form-urlencoded.

Depending on your application, you might find that instead of specifying the exact
list length for your symbol list each time you define values for the symbols, it is
more convenient to choose a permanent value for the LISTLENGTH option, which
will provide a fixed list length for your symbol list. The fixed list length that you
choose should be long enough to include the maximum length of symbol list that
you expect to supply. However, on those occasions when the fixed list length that
you have specified for your symbol list is greater than the actual length of the
symbols that you supply, you might find that there are trailing spaces or
unpredictable characters in the value of the last symbol in the list. You can avoid
this issue by including an extra dummy symbol at the end of your symbol list, such
as ’&END=’. Do not include this symbol in any templates or documents. Any trailing
spaces or unpredictable characters will be assigned to the dummy symbol and will
not appear in your documents, so you can continue to specify a list length that is
greater than the actual length of the symbols.

As an alternative to using a symbol list, the DOCUMENT SET command allows you
to set individual symbol values with the SYMBOL and VALUE options. The
SYMBOL option specifies the name of the symbol, and the VALUE option specifies
the value for that symbol. The rules for including spaces in a symbol value in a
symbol list also apply to the VALUE option: you can use a simple space character
or a plus sign, unless the UNESCAPED option of the DOCUMENT SET command
has been specified, in which case you must use a space character. Also, the
special coding that is required to include a plus sign or percent sign in symbol lists
is similarly required in the VALUE option, unless the UNESCAPED option of the
DOCUMENT SET command has been specified. However, ampersands, or any
other character that you have specified as a symbol separator for the symbol list,
have no special significance when used in the VALUE option.

Embedded template commands
The Document Handler recognises three commands that can be embedded in the
template. These commands follow the syntax rules for Server Side Include
commands. A Server Side Include command starts with the characters left angle
bracket, exclamation mark, hyphen, hyphen, number sign followed by the command
and it is terminated with the characters hyphen, hyphen, right angle bracket. For
example:

332 CICS TS for z/OS: CICS Application Programming Guide

<!--#command -->

The characters used to start and end the Server Side Include must be in codepage
037, otherwise the command will be ignored. The hexadecimal equivalents for these
character sequences are X'4C5A60607B' and X'60606E'.

The three commands that are supported are #set, #echo and #include.

#set

The #set command is used to set the values of symbols and is useful for setting
up default values for symbols. The #set command in the template will be
ignored if the symbol has already been given a value using the DOCUMENT
SET command. If a previous #set command has been used to assign a value to
the symbol, the value will be overridden. A symbol which has been assigned a
value using the DOCUMENT SET command can only be changed by issuing
another DOCUMENT SET command.

#echo

The #echo command identifies a symbol that must be substituted when the
template is inserted into the document. The string containing the #echo
command will be completely replaced by the value associated with the symbol.
If no symbol has been defined with that name, the #echo command will remain
in the output data.

An alternative method to using the #echo command is to specify the symbol
name, preceding it with an ampersand and terminating it with a semicolon. If we
set a symbol called ASYM and give it a value of 'sample', the following two
templates will give the same result after substitution.
Template 1:

This is an example template.
<!--#set var=ASYM value=’sample’-->
This is a <!--#echo var=ASYM--> symbol.

Template 2:
This is an example template.
<!--#set var=ASYM value=’sample’-->
This is a &ASYM; symbol.

Result of substitution:
This is an example template.
This is a sample symbol.

#include

The #include command allows a template to be embedded within another
template. Up to 32 levels of embedding are allowed.

For example:
<!--#include template=templatename-->

wheretemplatename is the name of the template (the 48 byte name) defined in
the doctemplate definition. The template name can also be enclosed in double
quotes.

Using templates in your application
If you have created a template and defined it to CICS, the following example shows
how you can use the template to create the contents of a document. The following
template is created and defined to CICS with the name ASampleTemplate.

Chapter 24. CICS documents 333

<!--#set var=ASYM value=’DFLTUSER’-->
This is a sample document which has been created by user
<!--#echo var=ASYM-->.

In the application program, you can define a 48-byte variable called
TEMPLATENAME and initialize it to a value of 'ASampleTemplate'. Once again you
must define a 16-byte field for the document token (in this example, ATOKEN). You
can then issue the command to create the document.
EXEC CICS DOCUMENT CREATE

DOCTOKEN(ATOKEN)
TEMPLATE(TEMPLATENAME)

This will result in a document being created with the content “ This is a sample
document which has been created by user DFLTUSER.”.

To change the symbol to another value, you can issue the DOCUMENT CREATE
command with the SYMBOLLIST option:
EXEC CICS DOCUMENT CREATE

DOCTOKEN(ATOKEN)
TEMPLATE(TEMPLATENAME)
SYMBOLLIST(’ASYM=Joe Soap’)
LISTLENGTH(13)

This will result in a document being created with the content “This is a sample
document which has been created by user Joe Soap.”.

The lifespan of a document
Documents created by an application exist only for the length of the CICS task in
which they are created. This means that when the last program in the CICS task
returns control to CICS, all documents created during the task’s lifetime are deleted.
It is the application’s responsibility to save a document before terminating if the
document is going to be used in another task. You can obtain a copy of the
document by using the DOCUMENT RETRIEVE. The application can then save this
copy to a location of its choice, such as a temporary storage queue. The copy can
then be used to recreate the document.

The following sequence of commands show how a document can be created,
retrieved and stored on a temporary storage queue, assuming that the following
variables have been defined and initialised in the application program:
v A 16-byte field ATOKEN to hold the document token
v A 20-byte buffer DOCBUF to hold the retrieved document
v A fullword binary field called FWORDLEN to hold the length of the data retrieved
v A halfword binary field called HWORDLEN to hold the length for the temporary

storage WRITE command.
EXEC CICS DOCUMENT CREATE

DOCTOKEN(ATOKEN)
TEXT(’A sample document.’)
LENGTH(18)

EXEC CICS DOCUMENT RETRIEVE
DOCTOKEN(ATOKEN)
INTO(DOCBUF)
LENGTH(FWORDLEN)
MAXLENGTH(20)

EXEC CICS WRITEQ TS
QUEUE(’AQUEUE’)
FROM(DOCBUF)
LENGTH(HWORDLEN)

334 CICS TS for z/OS: CICS Application Programming Guide

You can now use the following sequence of commands to recreate the document in
the same or another application.
EXEC CICS READQ TS

QUEUE(’AQUEUE’)
INTO(DOCBUF)
LENGTH(HWORDLEN)

EXEC CICS DOCUMENT CREATE
DOCTOKEN(ATOKEN)
FROM(DOCBUF)
LENGTH(FWORDLEN)

When the document is retrieved, the data that is delivered to the application buffer
is stored in a form which contains control information necessary to reconstruct an
exact replica of the document. The document that is created from the retrieved copy
is therefore identical to the original document. To help the application calculate the
size of the buffer needed to hold a retrieved document, each document command
which alters the size of the document has a DOCSIZE option. This is a fullword
value which gives the maximum size that the buffer must be to contain the
document when it is retrieved. This size is calculated to include all the control
information and data. The size should not be taken as an accurate size of the
document as the actual length delivered to the application can often be slightly
smaller than this size. The length delivered will however never exceed the length in
the DOCSIZE option.

The above example introduced the use of the FROM option on the DOCUMENT
CREATE command. The data passed on the FROM option was the buffer returned
to the application when the DOCUMENT RETRIEVE command was issued. It is
possible for the application to supply data on the FROM option that did not originate
from the DOCUMENT RETRIEVE command. When this happens, the document
handler treats the data as a template and parses the data for template commands
and symbols.

Retrieving the document without control information
The document data containing control information is only useful to an application
that wishes to recreate a copy of the original document. It is possible to issue a
DOCUMENT RETRIEVE command and ask for the control information to be
omitted. The following command sequence uses the DATAONLY option on the
DOCUMENT RETRIEVE command to instruct the Document Handler to return only
the data. This example assumes that the following variables have been defined and
initialised in the application program:
v A 16-byte field ATOKEN to hold the document token
v A 20-byte buffer DOCBUF to hold the retrieved document
v A fullword binary field called FWORDLEN to hold the length of the data retrieved.
EXEC CICS DOCUMENT CREATE

DOCTOKEN(ATOKEN)
TEXT(’A sample document.’)
LENGTH(18)

EXEC CICS DOCUMENT RETRIEVE
DOCTOKEN(ATOKEN)
INTO(DOCBUF)
LENGTH(FWORDLEN)
MAXLENGTH(20)
DATAONLY

When the commands have executed, the buffer DOCBUF will contain the string “A
sample document.”.

Chapter 24. CICS documents 335

Constructing a document
Once a document has been created, the contents can be extended by issuing one
or more DOCUMENT INSERT commands. The options on the DOCUMENT
INSERT command work in the same way as the equivalent commands on the
DOCUMENT CREATE command.

336 CICS TS for z/OS: CICS Application Programming Guide

The following sequence of commands shows an empty document being created
followed by two INSERT commands:
EXEC CICS DOCUMENT CREATE

DOCTOKEN(ATOKEN)

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
TEXT(’Sample line 1. ’)
LENGTH(15)

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
TEXT(’Sample line 2. ’)
LENGTH(15)

The document resulting from the above commands will contain:
Sample line 1. Sample line 2.

You can use the DOCUMENT RETRIEVE and DOCUMENT INSERT commands to
insert a whole document into an existing document. The following variables must
first be defined and initialized in the application program:

v A 16-byte field RTOKEN which contains the document token of the document to
be retrieved

v A buffer DOCBUF of sufficient length to hold the retrieved document

v A fullword binary field called RETRIEVLEN to hold the length of the data
retrieved

v A fullword binary field called MAXLEN to hold the maximum amount of data the
buffer can receive, i.e. the length of DOCBUF

v A 16-byte field ITOKEN which contains the document token of the document that
is being inserted into

The following sequence of commands shows a document indicated by RTOKEN
being inserted into another document indicated by ITOKEN:
EXEC CICS DOCUMENT RETRIEVE

DOCTOKEN(RTOKEN)
INTO(DOCBUF)
LENGTH(RETRIEVLEN)
MAXLENGTH(MAXLEN)

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ITOKEN)
FROM(DOCBUF)
LENGTH(RETRIEVLEN)

The retrieved document is inserted at the end of the document specified in the
DOCUMENT INSERT command, and all the control information of the retrieved
document will be present in the second document. The LENGTH parameter of the
DOCUMENT INSERT command must be equal to the value returned from the
DOCUMENT RETRIEVE command into the field RETRIEVLEN.

The DOCUMENT INSERT command allows an operand called SYMBOL to be used
to add blocks of data to the document. SYMBOL must contain the name of a valid
symbol whose value has been set. The Document Handler inserts the value that is
associated with the symbol into the document.

Note that when a value associated with a symbol has been inserted into a
document, you cannot change that value in the document that is being composed. If
you set a different value for the symbol, the new value will be used the next time

Chapter 24. CICS documents 337

that symbol is inserted into a document. Your change will not affect the value that
has already been inserted into the document.

Using Bookmarks
The sequence in which an application inserts data into a document might not reflect
the desired sequence that the data should appear in the document. Bookmarks
allow the application to insert blocks of data in any order yet still control the
sequence of the data in the document. A bookmark is a label that the application
inserts between blocks of data. Note: a bookmark cannot be inserted in the middle
of a block of data.

The following example creates a document with two blocks of text and a bookmark:
EXEC CICS DOCUMENT CREATE

DOCTOKEN(ATOKEN)
TEXT(’Pre-bookmark text. ’)
LENGTH(19)

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
BOOKMARK(’ABookmark ’)

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
TEXT(’Post-bookmark text. ’)
LENGTH(20)

The document will now contain:
Pre-bookmark text. <ABookmark>Post-bookmark text.

Note that the text <ABookmark> does not appear in the document content but
serves merely as a pointer to that position in the document. To add data to this
document, you can insert text at the bookmark as follows:
EXEC CICS DOCUMENT INSERT

DOCTOKEN(ATOKEN)
TEXT(’Inserted at a bookmark. ’)
LENGTH(25)
AT(’ABookmark ’)

Logically, the data of the document will contain the following (Note that in this
instance, only the data is being shown and not the position of the bookmark).
Pre-bookmark text. Inserted at a bookmark. Post-bookmark text.

If the AT option is omitted, the data is always appended to the end of the document.
A special bookmark of 'TOP' can be used to insert data at the top of the document,
making it unnecessary to define a bookmark which will mark the top of the
document.

338 CICS TS for z/OS: CICS Application Programming Guide

Replacing data in the document
The following example shows how data between two bookmarks can be replaced:
EXEC CICS DOCUMENT CREATE

DOCTOKEN(ATOKEN)

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
TEXT(’Initial sample text. ’)
LENGTH(21)

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
BOOKMARK(’BMark1 ’)

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
TEXT(’Text to be replaced. ’)
LENGTH(21)

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
BOOKMARK(’BMark2 ’)

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
TEXT(’Final sample text. ’)
LENGTH(19)

At this point the logical structure of the document will be as follows:
Initial sample text. <BMark1>Text to be replaced. <BMark2>Final
sample text.

You can now issue the command to replace the text between the two bookmarks,
BMark1 and BMark2:
EXEC CICS DOCUMENT INSERT

DOCTOKEN(ATOKEN)
TEXT(’Replacement Text. ’)
LENGTH(18)
AT(’BMark1 ’)
TO(’BMark2 ’)

The document now has the following logical structure:
Initial sample text. <BMark1>Replacement Text. <BMark2>Final
sample text.

Code page conversion for documents
The documents that an application creates may be transmitted to systems running
on other platforms; for example, when a document is used to supply a Web page to
a client. Textual data that is in the code pages used by the CICS system must be
converted to the code pages used on the target system. This process is known as
code page conversion. A code page used by the CICS system is usually described
as a host code page, except when CICS is acting as an HTTP client. A code page
used by the target system is described as a client code page, or where the target
system is a Web client or server using ASCII, it can be referred to as a character
set.

You can make CICS documents include information about the code pages in which
they have been created. When you create a document using the EXEC CICS
DOCUMENT CREATE and EXEC CICS DOCUMENT INSERT commands, you can
use the HOSTCODEPAGE option together with any of the TEXT, FROM,
TEMPLATE and SYMBOL options, to indicate the code page for that block of data.
Each block can be specified in a different code page.

Chapter 24. CICS documents 339

When you use the EXEC CICS DOCUMENT RETRIEVE command to retrieve a
document for sending, you can specify the CLNTCODEPAGE option to make the
Document Handler to convert all the individual blocks from their respective host
code pages, into a single client code page that is suitable for use by the target
system.

For CICS Web support, when a CICS document is specified for sending by a
Web-aware application program using the EXEC CICS WEB API commands, the
EXEC CICS DOCUMENT RETRIEVE command is not used by the application
program. Instead, the document token of the CICS document is specified, and CICS
manages retrieval of the document. Conversion to a client code page is handled by
CICS, according to options that the application program specifies on the EXEC
CICS WEB API commands.

Also for CICS Web support, when a CICS document template is specified in a
URIMAP definition to provide a static response to a Web client, conversion to a
client code page is handled by CICS. The host code page in which the template
exists, and the client code page to which it should be converted, are specified in the
URIMAP definition. When the static response is required, CICS creates a document
using the template, retrieves the document, and carries out appropriate code page
conversion.

CICS documents and document templates cannot be converted to or from the
UTF-8 and UTF-16 character encodings. This restriction applies whether they are
used as a static response in CICS Web support, retrieved by CICS in response to
EXEC CICS WEB API commands, or retrieved by an application program using an
EXEC CICS DOCUMENT RETRIEVE command.

340 CICS TS for z/OS: CICS Application Programming Guide

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

Chapter 25. Named counter servers

This chapter describes the services provided by CICS named counter servers.

CICS provides a facility for generating unique sequence numbers for use by
application programs in a Parallel Sysplex environment. This facility is controlled by
a named counter server, which maintains each sequence of numbers as a named
counter. Each time a sequence number is assigned, the corresponding named
counter is incremented automatically. By default, the increment is 1, ensuring that
the next request gets the next number in sequence. You can vary the increment
when using the EXEC CICS GET command to request the next number.

There are various uses for this facility, such as obtaining a unique number for
documents (for example, customer orders, invoices, and despatch notes), or for
obtaining a block of numbers for allocating customer record numbers in a customer
file.

In a single CICS region, there are various methods you can use to control the
allocation of a unique number. For example, you could use the CICS common work
area (CWA) to store a number that is updated by each application program that
uses the number. The problem with the CWA method is that the CWA is unique to
the CICS address space, and cannot be shared by other regions that are running
the same application. A CICS shared data table could be used to provide such a
service, but the CICS regions would all have to reside in the same MVS image. The
named counter facility overcomes all the sharing difficulties presented by other
methods by maintaining its named counters in the coupling facility, and providing
access through a named counter server running in each MVS image in the sysplex.
This ensures that all CICS regions throughout the Parallel Sysplex have access to
the same named counters.

When you use a named counter server, each normal request (to assign the next
counter value) only requires a single coupling facility access. This provides a
significant improvement in performance compared to the use of files for this
purpose. The named counter server also performs better than coupling facility data
tables in this respect, because at least two coupling facility accesses are required to
update a coupling facility data table. Depending on your hardware configuration,
you should easily be able to make many thousands of named counter server
requests each second.

This chapter describes:
v “The named counter fields”
v “Named counter pools” on page 342
v “Using the named counter EXEC interface” on page 343
v “Using the named counter CALL interface” on page 345
v “Named counter recovery” on page 358

The named counter fields
Each named counter consists of:

The counter name
The name can be up to 16-bytes, comprising the characters A
through Z, 0 through 9, $ @ # and _. Names less than 16 bytes
should be padded with trailing blanks.

© Copyright IBM Corp. 1989, 2010 341

The current value
The next number to be assigned to a requesting application
program.

The minimum value
Specifies the minimum number for a counter, and the number to
which a counter is reset by the server in response to a REWIND
command.

The maximum value
Specifies the maximum number that can be assigned by a counter,
after which the counter must be explicitly reset by a REWIND
command (or automatically by the WRAP option).

All values are stored internally as 8-byte (doubleword) binary numbers. The EXEC
CICS interface allows you to use them as either fullword signed binary numbers or
doubleword unsigned binary numbers. This can give rise to overflow conditions if
you define a named counter using the doubleword command (see “Using the
named counter EXEC interface” on page 343) and request numbers from the server
using the signed fullword version of the command.

Named counter pools
A named counter is stored in a named counter pool, which resides in a list structure
in a coupling facility. Each pool, even if its list structure is defined with the minimum
size of 256KB, can hold up to a thousand named counters.

You create a named counter pool by defining the coupling facility list structure for
the pool, and then starting the first named counter server for the pool. Pool names
are of 1 to 8 bytes from the same character set for counter names. Although pool
names can be made up from any of the allowed characters, names of the form
DFHNCxxx are recommended.

You can create different pools to suit your needs. You could create a pool for use
by production CICS regions (for example, called DFHNCPRD), and others for test
and development regions (for example, using names like DFHNCTST and
DFHNCDEV). See “Named counter options table” for information about how you
can use logical pool names in your application programs, and how these are
resolved to actual pool names at runtime.

Defining a list structure for a named counter server, and starting a named counter
server, is explained in the CICS System Definition Guide.

Named counter options table
The POOL(name) parameter is optional on all the EXEC CICS COUNTER and
DCOUNTER commands (see “Using the named counter EXEC interface” on page
343 for more information). If you specify the POOL parameter, it can refer to either
an actual or a logical pool name. Whether you specify a POOL parameter or omit it,
CICS resolves the actual pool name by reference to the named counter options
table, which is loaded from the link list.

The named counter options table, DFHNCOPT, provides several methods for
determining the actual pool name referenced by a named counter API command, all
of which are described in the CICS System Definition Guide. This also describes
the DFHNCO macro that you can use to create your own options table.

342 CICS TS for z/OS: CICS Application Programming Guide

This section discusses how the POOLSEL parameter in the default options table
works in conjunction with the POOL(name) option on the API. The default options
table is supplied in source and object form. The pregenerated version is in
hlq.SDFHLINK, and the source version, which is supplied in the hlq.SDFHSAMP
library (where hlq represents the high-level qualifier for the library names,
established at CICS installation time), contains the following entries:

DFHNCO POOLSEL=DFHNC*,POOL=YES
DFHNCO POOL=
END DFHNCOPT

The default options table entries work as follows:

POOLSEL=DFHNC*
This pool selection parameter defines a generic logical pool name
beginning with the letters DFHNC. If any named counter API request
specifies a pool name that matches this generic name, the pool name is
determined by the POOL= operand in the DFHNCO entry. Because this is
POOL=YES in the default table, the name passed on the POOL(name)
option of the API command is taken to be an actual name. Thus, the default
options table specifies that all logical pool names beginning with DFHNC
are actual pool names.

POOL=
This entry in the default table is the 'default' entry. Because the POOLSEL
parameter is not specified, it defaults to POOLSEL=*, which means it is
taken to match any value on a POOL parameter that does not find a more
explicit match. Thus, any named counter API request that:

v Secifies a POOL value that begins with other than DFHNC, or

v Omits the POOL name parameter altogether

is mapped to the the default pool (indicated by a POOL= options table
parameter that omits a name operand).

You can specify the default pool name to be used by a CICS region by
specifying the NCPLDFT system initialization parameter. If NCPLDFT is
omitted, the pool name defaults to DFHNC001.

You can see from the above that you do not need to create you own options table,
and named counter API commands do not need to specify the POOL option, if:

v You use pool names of the form DFHNCxxx, or

v Your CICS region uses only one pool that can be defined by the NCPLDFT
system initialization parameter.

Notes:

1. DFHNCOPT named counter options tables are not suffixed. A CICS region loads
the first table found in the MVS link list.

2. There must be a named counter server running, in the same MVS image as
your CICS region, for each named counter pool used by your application
programs.

Using the named counter EXEC interface
Although all named counter values are held internally as doubleword unsigned
binary numbers, the CICS API provides both a fullword (COUNTER) and
doubleword (DCOUNTER) set of commands, which you should not mix. These
EXEC CICS commands allow you to perform the following operations on named
counters:

Chapter 25. Named counter servers 343

DEFINE
Defines a new named counter, setting minimum and maximum values, and
specifying the current number at which the counter is to start.

DELETE
Deletes a named counter from its named counter pool.

GET
Gets the current number from the named counter, provided the maximum
number has not already been allocated.

Using the WRAP option: If the maximum number has been allocated to a
previous request, the counter is in a counter-at-limit condition and the request
fails, unless you specify the WRAP option. This option specifies that a counter
in the the counter-at-limit condition is to be reset automatically to its defined
minimum value. After the reset, the minimum value is returned as the current
number, and the counter is updated ready for the next request.

Using the INCREMENT option: By default, a named counter is updated by an
increment of 1, after the server has assigned the current number to a GET
request. If you want more than one number at a time, you can specify the
INCREMENT option, which effectively reserves a block of numbers from the
current number. For example , if you specify INCREMENT(50), and the server
returns 100 025:

v Your application program can use 100 025 through 100 074

v As a result of updating the current number (100 025) by 50, the current
number is left at 100 075 ready for the next request.

This example assumes that updating the current value by the INCREMENT(50)
option does not exceed the maximum value by more than 1. If the range of
numbers between the current value and the maximum value plus 1 is less than
the specified increment, the request fails unless you also specify the REDUCE
option.

Using the REDUCE option: To ensure that a request does not fail because the
remaining range of numbers is too small to satisfy your INCREMENT value (the
current number is too near the maximum value), specify the REDUCE option.
With the reduce option, the server automatically adjusts the increment to allow it
to assign all the remaining numbers, leaving the counter in the counter-at-limit
condition.

Using both the WRAP and REDUCE options: If you specify both options, only
one is effective depending on the state of the counter:

v If the counter is already at its limit when the server receives the GET
request, the REDUCE option has no effect and the WRAP option is obeyed.

v If the counter is not quite at its limit when the server receives the GET
request, but the remaining range is too small for increment, the REDUCE
option is obeyed and the WRAP option has no effect.

Using the COMPAREMIN and COMPAREMAX options: You can use these
options to make the named counter GET (and UPDATE) operation conditional
upon the current number being within a specified range, or being greater than,
or less than, one of the specified comparison values.

QUERY
Queries the named counter to obtain the current, minimum, and maximum
values. Note that you cannot use more than one named counter command in a
way that is atomic, and you cannot rely on the information returned on a
QUERY command not having been changed by another task somewhere in the

344 CICS TS for z/OS: CICS Application Programming Guide

sysplex. Even the CICS sysplex-wide ENQ facility cannot lock a counter for
you, because a named counter could be accessed by a batch application
program using the named counter CALL interface. If you want to make an
operation conditional upon the current value being within a certain range, or
greater than, or less than, a certain number, use the COMPAREMIN and
COMPAREMAX parameters on your request.

REWIND
Rewinds a named counter that is in the counter-at-limit condition back to its
defined minimum value.

UPDATE
Updates the current value of a named counter to a new current value. For
example, you could set the current value to the next free key in a database.
Like the GET command, this can be made conditional by specifying
COMPAREMIN and COMPAREMAX values.

Using the named counter CALL interface
In addition to the CICS named counter API, CICS provides a call interface that you
can use from a batch application to access the same named counters. This could
be important where you have an application that uses both CICS and batch
programs, and both need to access the same named counter to obtain unique
numbers from a specified range. The call interface does not depend on CICS
services, therefore it can also be used in applications running under any release of
CICS.

The named counter call interface does not use CICS command-level API, therefore
the system initialization parameter CMDPROT=YES has no effect. If the interface is
called from a CICS application program that is excuting in user key, it switches to
CICS key while processing the request but CICS does not attempt to verify that the
program has write access to the output parameter fields.

The first request by an application region that addresses a particular pool
automatically establishes a connection to the server for that pool. This connection is
associated with the current MVS TCB (which for CICS is the quasi-reentrant (QR)
TCB) and normally lasts until the TCB terminates at end of job. This connection can
only be used from the TCB under which the connection was established. A request
issued from another TCB will establish a separate connection to the server.

Note: The named counter server interface uses MVS name/token services
internally. A consequence of this is that jobs using the named counter
interface cannot use MVS checkpoint/restart services (as described in APAR
OW06685).

Application programming considerations
To use the named counter callable interface:

1. Ensure your application programs include the appropriate copybook that defines
the parameter list definition for the application programming language. The
copybook defines symbolic constants for the function codes and return codes,
and also defines the callable entry point for high level languages. The copybook
name is of the form DFHNCxxx where xxx indicates the programming language,
as follows:

Chapter 25. Named counter servers 345

ASM or EQU for Assembler
C for C/C++
COB for COBOL
PLI for PL/I

2. Ensure the application program is link-edited with the callable interface linkage
routine, DFHNCTR.

3. Ensure the named counter server interface module, DFHNCIF, and the options
table, DFHNCOPT, are available to the CICS region. That is, these objects must
be in a STEPLIB library, in a linklist library, or in the LPA. To support CICS
application programs that run in user key, DFHNCIF must be loaded from an
APF-authorized library. The default option table and the named counter server
interface module are supplied in CICSTS31.CICS.SDFHLINK.

CICS provides copybooks for all the supported languages:

Assembler
The standard assembler named counter interface definitions are provided in
copybook DFHNCASM. Include these in your application programs using COPY
DFHNCASM within a constant CSECT area. The symbolic values are defined
as static fullword constants, in fhe form NC_name DC F'nnn'. For example:
NC_BROWSE_NEXT DC F’7’

An alternative set of definitions is provided as symbolic equated values in copy
book DFHNCEQU. These symbols are all of the form NC_EQU_name to avoid
conflict with the static constants. Note that when these equated values are used
for function codes or return code comparisons, they should be used as address
constant values, so that for example the function code NC_ASSIGN can be
replaced by a reference to =A(NC_EQU_ASSIGN).

The syntax of the assembler version of the call to the named counter interface
is as follows:
CALL DFHNCTR,(function,return_code,pool_selector,counter_name, X

value_length,current_value,minimum_value,maximum_value, X
counter_options,update_value,compare_min,compare_max),VL

The CALL macro must specify the VL option to set the end of list indication, as
shown in the following example:
CALL DFHNCTR,(NC_ASSIGN,RC,POOL,NAME,CTRLEN,CTR),VL

C/C++
The named counter interface definitions for C/C++ are provided in header file
DFHNCC. The symbolic constant names are in upper case. The function name
is dfhnctr, in lower case.

COBOL
The named counter interface definitions for COBOL are provided in copybook
DFHNCCOB.

COBOL does not allow underscores within names, therefore the symbolic
names provided in copy book DFHNCCOB use a hyphen instead of an
underscore (for example NC-ASSIGN and NC-COUNTER-AT-LIMIT).

Note that the RETURN-CODE special register is set by each call, which affects
the program overall return code if it is not explicitly set again before the
program terminates.

PL/I
The named counter interface definitions for PL/I are provided in include file
DFHNCPLI.

346 CICS TS for z/OS: CICS Application Programming Guide

Syntax
The syntax of the named counter call is as follows:

Notes:

1. All functions that refer to a named counter require at least the first four
parameters, but the remaining parameters are optional, and trailing unused
parameters can be omitted.

If you do not want to use an imbedded optional parameter, either specify the
default value or ensure that the parameter list contains a null address for the
omitted parameter. For an example of a call that omits an optional parameter,
see “Example of DFHNCTR calls with null parameters” on page 353.

2. The NC_FINISH function requires the first three parameters only.

function
specifies the function to be performed, as a 32-bit integer, using one of the
following symbolic constants.

NC_CREATE Create a new named counter, using the initial value, range
limits, and default options specified on the current_value,
minimum_value, maximum_value, update_value and
counter_options parameters.

If you omit an optional value parameter, the new named counter
is created using the default for the omitted value. For example,
if you omit all the optional parameters, the counter is created
with an initial value of 0, a minimum value of 0, and a maximum
value of high values (the double word field is filled with X'FF').

NC_ASSIGN Assign the current value of the named counter, then increment
it ready for the next request. When the number assigned equals
the maximum number specified for the counter, it is
incremented finally to a value 1 greater than the maximum. This
ensures that any subsequent NC_ASSIGN requests for the
named counter fail (with NC_COUNTER_AT_LIMIT) until the
counter is reset using the NC_REWIND function, or
automatically rewound by the NC_WRAP counter option (see
the counter_options parameter).

This operation can include a conditional test on the current
value of the named counter, using the compare_min and
compare_max parameters.

The server returns the minimum and maximum values if you
specify these fields on the call parameter list and the request is
successful.

You can use the counter_options parameter on the
NC_ASSIGN request to override the counter options set by the
NC_CREATE request.

You can use the update_value parameter to specify the
increment to be used on this request only for the named
counter (the default increment is 1). This enables you to obtain

CALL DFHNCTR(function,return_code,pool_selector,counter_name,
value_length,current_value,minimum_value,maximum_value,
counter_options,update_value,compare_min,compare_max);

Figure 82. DFHNCTR call syntax-PL/I illustration

Chapter 25. Named counter servers 347

a range of numbers on a single request. For more information,
see the description of the update_value parameter.

Note that the named counter is incremented by update_value
after the current value is assigned. For example:

If the current value is 109
and update_value specifies 25

the named counter server returns 109 and sets the current
value to 134 ready for the next NC_ASSIGN request, effectively
assigning numbers in the range 109 through 133. The
increment can be any value between zero and the limit is
determined by the minimum and maximum values set for the
named counter. Thus the increment limit is ((maximum_value
plus 1) minus minimum value). An increment of zero causes
NC_ASSIGN to operate the same as NC_INQUIRE, except for
any comparison options.

When the increment is greater than 1, and the named counter
is near the maximum limit, the server may not be able to
increment the current number by the whole value of the
specified increment. This situation occurs when incrementing
the counter would exceed the maximum value plus 1. You
control what action the named counter server takes in this
situation through the counter_options NC_NOREDUCE |
NC_REDUCE, and NC_NOWRAP | NC_WRAP. See
counter_options parameter for information about the operation
of these options.

NC_BROWSE_FIRST
Return the details of the first named counter with a name
greater than or equal to the specified name, and update the
counter_name field accordingly.

NC_BROWSE_NEXT
Return the details of the next named counter with a name
greater than the specified name, and update the counter_name
field accordingly.

NC_DELETE Delete the specified named counter. The server returns the
current_value, minimum_value, maximum_value, and
counter_options if you specify these fields on the parameter list
and the request is successful.

NC_FINISH Terminate the connection between the current MVS task (TCB)
and the named counter server for the specified pool. If a further
request is made to the same pool, a new connection is
established.

This function does not apply to a specific counter, therefore the
only parameters required are the function, the return code and
the pool name.

Use this function only when there is a special reason to
terminate the connection (for example, to allow the server to be
shut down).

NC_INQUIRE Return the details (current_value, minimum_value,
maximum_value and counter_options) of a named counter

348 CICS TS for z/OS: CICS Application Programming Guide

without modifying it. The current value is the value to be
returned on the next NC_ASSIGN call. If the maximum value of
the named counter has already been assigned, the server
returns a current value one greater than the maximum value.

NC_REWIND Reset the named counter to its minimum value. This function is
valid only when the last number permitted by the maximum
value has been assigned, leaving the counter in the
NC_COUNTER_AT_LIMIT condition. If an NC_ASSIGN call
causes the server to assign the last number for the named
counter, use the NC_REWIND function to reset the counter.

This operation can include a conditional test on the current
value of the named counter, using the compare_min and
compare_max parameters.

The server returns the new current value, minimum value, and
maximum value if you specify these fields on the parameter list
and the request is successful.

If any option parameter or update_value parameter was
specified on an NC_ASSIGN request which failed because the
named counter was at its limit, the same parameter values
must also be specified on the NC_REWIND request, so that it
can check whether the original NC_ASSIGN would still fail. The
NC_REWIND request is suppressed with return code 102
(NC_COUNTER_NOT_AT_LIMIT) whenever the corresponding
NC_ASSIGN request would succeed.

If the NC_WRAP option is in effect, or the update_value
parameter is zero, NC_REWIND is suppressed because
NC_ASSIGN always succeeds with these conditions. See the
counter_options parameter for information about the NC_WRAP
option.

NC_UPDATE Set the named counter to a new value. This operation can
include a conditional test on the current value of the named
counter, using the compare_min and compare_max parameters.

You specify the new value on the update_value parameter. If
you don't specify a new value, the named counter remains
unchanged.

You can specify a valid counter_options override parameter (or
a null address) with this function, but counter options have no
effect. Specify either a null address or NC_NONE as the
counter_options parameter.

return_code
specifies a 32-bit integer field to receive the return code. The same information
is also returned in register 15, which for COBOL callers is stored in the
RETURN-CODE special register.

Each return code has a corresponding symbolic constant. See “Return codes”
on page 355 for details of these.

pool_selector
specifies an 8-character pool selection parameter that you use to identify the
pool in which the named counter resides.

This parameter is optional. If you omit the pool selection parameter, a string of
8 blank X'40') characters is assumed.

Chapter 25. Named counter servers 349

The acceptable characters for pool_selector are A through Z, 0 through 9, $ @
and _ (underscore) but the first character cannot be numeric or an
underscore. The parameter should be padded to fill 8 characters with trailing
spaces as necessary. The parameter can be all spaces to use the default pool
for the current region, provided this is mapped by the options table to a valid
non-blank named counter name).

Depending on the named counter options table in use, you can use the pool
selector parameter either as an actual pool name, or as a logical pool name
that is mapped to a real pool name through the options table. The default
options table assumes:

v That any pool selection parameter beginning with DFHNC (matching the
table entry with POOLSEL=DFHNC*) is an actual pool name

v That any other pool selection parameter (including all blanks) maps to the
default pool name.

Note: The default pool name for the call interface is DFHNC001. The default
pool name for the EXEC CICS API is defined by the NCPLDFT system
initialization parameter.

See “Named counter options table” on page 342 for information about the pool
selection parameter in the DFHNCOPT options table.

counter_name
specifies a 16-byte field containing the name of the named counter, padded if
necessary with trailing spaces.

The acceptable characters for the name are A through Z, 0 through 9, $ @ #
and _ (underscore) but the first character cannot be numeric or an underscore.
The parameter should be padded to fill 16 characters with trailing spaces as
necessary.

You are recommended to use names that have a common prefix of up to 8
bytes to avoid conflicts with other applications. Any named counters used
internally by CICS have names starting with DFH.

For the NC_BROWSE_FIRST and NC_BROWSE_NEXT functions, the actual
name is returned in this field, which must be a variable for this purpose. For all
other functions, this can be a constant.

value_length
specifies a 32-bit integer field indicating the length of each named counter value
field. Values can be in unsigned format (where the high order bit is part of the
value), or in positive signed format (where the high order bit is reserved for a
zero sign bit). To use unsigned format, specify the length in bytes, in the range
1 to 8, corresponding to 8 to 64 bits. To use values in signed format, specify the
length in bytes as a negative number in the range –1 to –8, corresponding to 7
to 63 bits. For compatibility with the named counter EXEC interface, this should
be set to –4 for counters that are handled as fullword signed binary values
(COUNTER) and 8 for counters that are handled as doubleword unsigned
binary values (DCOUNTER).

If no value parameters are used on the call, you can either omit all the trailing
unused parameters completely, including the value length, or specify
value_length as 0.

When input values are shorter than 8 bytes, they are extended with high-order
zero bytes to the full 8 bytes used internally. When output values are returned
in a short value field, the specified number of low-order bytes are returned,
ignoring any higher-order bytes. However, if the value is too large to be

350 CICS TS for z/OS: CICS Application Programming Guide

represented correctly within the field, then a warning return code might be set,
as described in “Checking for result overflow” on page 353.

current_value
specifies a variable to be used for:

v Setting the initial sequence number for the named counter

v Receiving the current sequence number from the named counter.

For the NC_CREATE function this parameter is an input (sender) field and can
be defined as a constant. The default value is low values (binary zeroes). The
value can either be within the range specified by the following minimum and
maximum values, or it can be one greater than the maximum value, in which
case the counter has to be reset using the NC_REWIND function before it is
used. No sign check is made for this field, but a value that has the sign bit set
would normally be rejected by the server as being inconsistent with the counter
limits. For a counter that has a range consisting of all signed numbers, the
counter at limit value does have the sign bit set, and this can be used as a valid
input value.

For all other counter functions, this parameter is an output (receiver) field and
must be defined as a variable.

minimum_value
specifies a variable to be used for:

v Setting the minimum value for the named counter

v Receiving from the named counter the specified minimum value.

For the NC_CREATE function this parameter is an input (sender) field and can
be defined as a constant. The default value is low values (binary zeroes).

For all other functions, this parameter is an output (receiver) field and must be
defined as a variable.

maximum_value
specifies a variable to be used for:

v Setting the maximum value for the named counter

v Receiving from the named counter the specified maximum value.

For the NC_CREATE function this parameter is an input (sender) field and can
be defined as a constant. If you specify a non-zero value_length parameter but
omit maximum_value, then maximum_value defaults to high values (or, for
signed variables, the largest positive value) for the specified length. If the
value_length parameter is omitted or is specified as zero, then maximum_value
defaults to eight bytes of high values. However, if the minimum value is all low
values and the maximum value is eight bytes of high values, the maximum
value is reduced to allow some reserved values to be available to the server for
internal use.

For all other functions, this parameter is an output (receiver) field and must be
defined as a variable.

counter_options

specifies an optional fullword field to indicate named counter options that control
wrapping and increment reducing. The valid options are represented by the
symbolic values NC_WRAP or NC_NOWRAP and NC_REDUCE or
NC_NOREDUCE. The default options are NC_NOWRAP and NC_NOREDUCE.

NC_NOWRAP The server does not automatically rewind the named counter
back to the minimum value in response to an NC_ASSIGN

Chapter 25. Named counter servers 351

request that fails with the NC_COUNTER_AT_LIMIT condition.
With NC_NOWRAP in force, and the named counter in the
NC_COUNTER_AT_LIMIT condition, the NC_ASSIGN function
is inoperative until the counter is reset by an NC_REWIND
request (or the counter option reset to NC_WRAP).

NC_WRAP The server automatically performs an NC_REWIND in response
an NC_ASSIGN request for a counter that is in the
NC_COUNTER_AT_LIMIT condition. The server sets the
current value of the named counter equal to the minimum
value, returns the new current value to the caller, and
increments the named counter.

NC_NOREDUCE
If the range of numbers remaining to be assigned (the
difference between the current value and the maximum value
plus 1) is less than the increment specified on the update_value
parameter, the assign fails (unless NC_WRAP is in force).
NC_NOREDUCE, with NC_NOWRAP, means the NC_ASSIGN
request fails with the NC_COUNTER_AT_LIMIT condition.

For example, if a request specifies an update value of 15 when
the current number is 199 990 and the counter maximum
number is defined as 199 999, the NC_REQUEST fails because
the increment would cause the current number to exceed
200 000.

NC_REDUCE If the range of numbers remaining to be assigned (the
difference between the current value and the maximum value
plus 1) is less than the increment specified on the update_value
parameter, the increment is reduced and the assign succeeds.
In this case, the NC_ASSIGN request has been assigned a
range of numbers less than that specified by the update_value,
and the named counter is left in the NC_COUNTER_AT_LIMIT
condition. Subsequent NC_ASSIGN requests will fail until the
named counter is reset with an NC_REWIND request.

The options specified on NC_CREATE are stored with the named counter and
are used as the defaults for other named counter functions. You can override
the options on NC_ASSIGN, NC_REWIND or NC_UPDATE requests. If you
don't want to specify counter_options on a DFHNCTR call, specify the symbolic
constant NC_NONE (equal to zero) as the input parameter (or specify a null
address).

For the NC_CREATE, NC_ASSIGN, NC_REWIND, and NC_UPDATE functions,
this parameter is an input field.

For the NC_DELETE, NC_INQUIRE, and NC_BROWSE functions, this
parameter is an output field, which returns the options specified on
NC_CREATE.

update_value
specifies the value to be used to update the counter. For NC_ASSIGN, this is
the increment to be added to the current counter value (after the current
number is assigned). See the NC_ASSIGN option on the function parameter for
information on how specifying an increment other than 1 can affect an assign
operation.

For NC_UPDATE, this is the new current value for the named counter.

352 CICS TS for z/OS: CICS Application Programming Guide

compare_min
specifies a value to be compared with the named counter's current value. If you
specify a value, this parameter makes the NC_ASSIGN, NC_REWIND or
NC_UPDATE operation conditional on the current value of the named counter
being greater than or equal to the specified value. If the comparison is not
satisfied, the operation is rejected with a counter-out-of-range return code (RC
103).

If you omit this parameter by specifying a null address, the server does not
perform the comparison.

compare_max
specifies a value to be compared with the named counter's current value. If you
specify a value, this parameter makes the NC_ASSIGN, NC_REWIND or
NC_UPDATE operation conditional on the current value of the named counter
being less than or equal to the specified value. If the comparison is not
satisfied, the operation is rejected with a counter-out-of-range return code (RC
103).

If you specify high values (X'FF') for this parameter, the server does not perform
the comparison. You must specify (X'FF') in all the bytes specified by the
value_length parameter.

If the compare_max value is less than the compare_min value, the valid range
is assumed to wrap round, in which case the current value is considered to be
in range if it satisfies either comparison, otherwise both comparisons must be
satisfied.

Checking for result overflow
The call interface checks for results which do not fit into the specified size of result
field, or which overflow into the sign bit when signed variables are used.

If a result field (counter_value, minimum_value or maximum_value) has been
defined as a signed variable by specifying value_length as a negative value, the call
interface checks for results that overflow into the sign bit. In this case, the operation
completes normally but the return code NC_RESULT_OVERFLOW is set. As a
special case, a result value for a counter which is at its limit value is not checked
for this form of overflow, to avoid setting the return code unnecessarily. This means
that if a query is made to a counter which is at its limit, and whose maximum value
is the maximum positive value, a negative number might be returned as the current
counter value without causing this return code.

If a result field (counter_value, minimum_value or maximum_value) is too short to
contain the full non-zero part of the result, the operation completes normally, but
one of the following return codes is set:

v NC_RESULT_CARRY, if the leading part is exactly equal to 1.

v NC_RESULT_TRUNCATED, if the leading part is greater than 1.

If a 4–byte unsigned counter that has a maximum of high values has reached its
limit value, the return code NC_RESULT_CARRY is set, and the counter value is
zero.

Example of DFHNCTR calls with null parameters
If you omit an optional parameter on a DFHNCTR call, ensure that the parameter
list is built with a null address for the missing parameter. The example that follows
illustrates how to issue, from a COBOL program, an NC_CREATE request with
some parameters set to null addresses.

Chapter 25. Named counter servers 353

DFHNCTR call with null addresses for omitted parameters: In this example, the
parameters used on the call are defined in the WORKING-STORAGE SECTION, as
follows:

Call parameter COBOL variable Field definition
function 01 FUNCTION PIC S9(8) COMP VALUE +1.
return_code 01 NC-RETURN-CODE. PIC S9(8) COMP VALUE +0.
pool_selector 01 NC-POOL-SELECTOR PIC X(8).
counter_name 01 NC-COUNTER-NAME PIC X(16).
value_length 01 NC_VALUE-LENGTH PIC S9(8) COMP VALUE +4.
current_value 01 NC-CURRENT-VALUE PIC S9(8) VALUE +0.
minimum_value 01 NC-MIN-VALUE PIC S9(8) VALUE +0.
maximum_value 01 NC-MAX-VALUE PIC S9(8) VALUE -1.
counter_options 01 NC-OPTIONS PIC S9(8) COMP VALUE +0.
update_value 01 NC-UPDATE-VALUE PIC S9(8) VALUE +1.
compare_min 01 NC-COMP-MIN PIC S9(8) VALUE +0.
compare_max 01 NC-COMP-MAX PIC S9(8) VALUE +0.

The variable used for the null address is defined in the LINKAGE SECTION, as
follows:

LINKAGE SECTION.
01 NULL-PTR USAGE IS POINTER.

Using the data names specified in the WORKING-STORAGE SECTION as
described above, and the NULL-PTR name as described in the LINKAGE
SECTION, the following illustrates a call to a named counter server where
value_length, current_value, minimum_value and counter_options are the only
optional parameters specified. The others are allowed to default, or, in the case of
trailing optional parameters, omitted altogether.

354 CICS TS for z/OS: CICS Application Programming Guide

NAMED-COUNTER SECTION.
*

SET ADDRESS OF NULL-PTR TO NULLS.
*

MOVE 1 TO FUNCTION.
MOVE 100 TO NC-MIN-VALUE NC-CURRENT-VALUE.
MOVE NC-WRAP TO NC-OPTIONS.
MOVE "DFHNC001" TO NC-POOL-SELECTOR.
MOVE "CUSTOMER_NUMBER" TO NC-COUNTER-NAME.
CALL ’DFHNCTR’ USING FUNCTION NC-RETURN-CODE NC-POOL-SELECTOR

NC-COUNTER-NAME NC-VALUE-LENGTH NC-CURRENT-VALUE
NC-MIN-VALUE NULL-PTR NC-OPTIONS.

Return codes
There are three warning return codes (1–3) for the named counter call interface,
which indicate result overflows for a request that otherwise completed normally. If
more than one warning return code applies for the same request, the highest
applicable warning return code is set.

The remaining return codes are divided into ranges (100, 200, 300, and 400®)
according to their severity. Each range of non-zero return codes begins with a
dummy return code that describes the return code category, to make it easy to
check for values in each range using a symbolic name.

In the list that follows, the numeric return code is followed by its symbolic name.

0 (NC_OK)
The request completed normally.

1 (NC_RESULT_OVERFLOW)
The result value overflowed into the sign bit.

2 (NC_RESULT_CARRY)
The result value overflowed, and the leading part was exactly equal to 1.

3 (NC_RESULT_TRUNCATED)
The result value overflowed, and the leading part was greater than 1.

100 (NC_COND)
Return codes in this range indicate that a conditional function did not succeed
because the condition was not satisfied:

101 (NC_COUNTER_AT_LIMIT)
An NC_ASSIGN function is rejected because the previous request for this
named counter obtained the maximum value and the counter is now at its
limit. New counter values cannot be assigned until an NC_REWIND
function call is issued to reset the counter.

102 (NC_COUNTER_NOT_AT_LIMIT)
An NC_REWIND FUNCTION is rejected because the named counter is not
at its limit value. This is most likely to occur when another task has lready
succeeded in resetting the counter with an NC_REWIND.

103 (NC_COUNTER_OUT_OF_RANGE)
The current value of the named counter is not within the range specified on
the compare_min and compare_max parameters.

200 (NC_EXCEPTION)
Return codes in this range indicate an exception condition that an application
program should be able to handle:

Chapter 25. Named counter servers 355

201 (NC_COUNTER_NOT_FOUND)
The named counter cannot be found.

202 (NC_DUPLICATE_COUNTER_NAME)
An NC_CREATE function is rejected because a named counter with the
specified name already exists.

203 (NC_SERVER_NOT_CONNECTED)
An NC_FINISH function is rejected because no active connection exists for
the selected pool.

300 (NC_ENVIRONMENT_ERROR)
Return codes in this range indicate an environment error. These are serious
errors, normally caused by some external factor, which a program may not to
be able to handle.

301 (NC_UNKNOWN_ERROR)
The server has reported an error code that is not understood by the
interface. Generally, this is not possible unless the interface load module,
DFHNCIF, is at a lower maintenance or release level than the server itself.

302 (NC_NO_SPACE_IN_POOL)
A new counter cannot be created because there is insufficient space in the
named counter pool.

303 (NC_CF_ACCESS_ERROR)
An unexpected error, such as structure failure or loss of connectivity, has
occurred on a macro used to access the coupling facility. Further
information can be found in message DFHNC0441 in the CICS job log.

304 (NC_NO_SERVER_SELECTED)
The pool selection parameter specified in the program cannot be resolved
to a valid server name using the current options table.

305 (NC_SERVER_NOT_AVAILABLE)
The interface is unable to establish a connection to the server for the
appropriate named counter pool. Further information can be found in an
AXM services message in the CICS job log.

306 (NC_SERVER_REQUEST_FAILED)
An abend occurred during server processing of a request. Further
information can be found in a message in the CICS job log and the server
job log.

307 (NC_NAME_TOKEN_ERROR)
An IEANTxx name/token service call within the named counter interface
module gave an unexpected return code.

308 (NC_OPTION_TABLE_NOT_FOUND)
The DFHNCOPT options table module, required for resolving a pool name,
could not be loaded.

309 (NC_OPTION_TABLE_INVALID)
During processing of the options table, the named counter interface
encountered an unknown entry format. Either the options table is not
correctly generated, or the DFHNCIF interface load module is not at the
same release level as the options table.

310 (NC_USER_EXIT_NOT_FOUND)
An options table entry matching the given pool name specified a user exit
program, but the user exit program is not link-edited with the options table
and cannot be loaded.

356 CICS TS for z/OS: CICS Application Programming Guide

311 (NC_STRUCTURE_UNAVAILABLE)
The named counter server list structure is temporarily unavailable. One
reason, for example, for this is that a z/OS system–managed rebuild is in
progress.

Note: The EXEC CICS interface to the named counter uses the CALL
interface internally, but it hides this return code from the application
program by waiting for one second and retrying the request. The
EXEC CICS interface continues this wait anmd retry until it
succeeds, with the result that the application program sees only a
time delay, not an error response. You can use the same technique
in your application programs that use the CALL interface.

400 (NC_PARAMETER_ERROR)
Return codes in this range indicate a parameter error, generally the result of a
coding error in the calling program.

401 (NC_INVALID_PARAMETER_LIST)
The parameter list is invalid for one of the following reasons:

v Too few parameters are specified (less than four, or less than three for
the NC_FINISH function)

v Too many parameters are given (more than eight)

v A parameter address is zero

v The end-of-list marker is missing.

402 (NC_INVALID_FUNCTION)
The function code parameter is not in the supported range.

403 (NC_INVALID_POOL_NAME)
The pool selection parameter contains characters that are not allowed, or
embedded spaces.

404 (NC_INVALID_COUNTER_NAME)
The counter_name parameter contains characters that are not allowed, or
embedded spaces.

405 (NC_INVALID_VALUE_LENGTH)
The value length parameter is not in the range 0 to 8.

406 (NC_INVALID_COUNTER_VALUE)
The specified counter value or increment value is inconsistent with the
minimum and maximum limits for the counter.

The counter value specified on the current_value parameter for the
NC_CREATE function, or the update_value for the NC_UPDATE function,
cannot be less than the specified minimum value, and cannot be more than
(maximum value + 1).

The increment value specified in the update_value parameter for the
NC_ASSIGN or NC_REWIND function cannot be greater than the total
range of the counter ((maximum value − minimum value) + 1).

407 (NC_INVALID_COUNTER_LIMIT)
The maximum value is less than the minimum value.

408 (NC_INVALID_OPTIONS)
The value of the counter_options parameter is invalid. It is either a value
that does not correspond to any defined option, or it is a value that
represents some mutually exclusive options.

Chapter 25. Named counter servers 357

Named counter recovery
Named counters are only stored in the coupling facility. Applications using named
counters might therefore need to implement recovery logic to handle the possible
impact of any coupling facility problems.

If the coupling facility or list structure for the named counter pool fails, but another
facility is available, it should normally be possible to recreate the named counter
pool's list structure very quickly on another facility. The original instance of the
server terminates as soon as it detects the problem, and a new instance is normally
started immediately by ARM, provided that it is available, and the installation policy
allows the restart. If the pool's list structure is known to have failed, the new server
should be able to allocate a new instance immediately, and the pool should be
available again within seconds.

However, in some situations, such as a coupling facility power failure, MVS might
initially perceive the situation as a loss of connectivity, and be unable to determine
that the list structure has failed until the original facility has been restarted. In such
situations, recovery can be speeded up by issuing an operator command to force
deletion of the existing structure, allowing a new instance to be allocated
immediately.

Until the new structure has been created, attempts to obtain a counter value are
rejected because the server is unavailable. This means that applications issuing
such requests are unavailable while the new structure is being created, unless they
have an alternative method of assigning numbers.

If the list structure for a named counter pool is recreated because of a failure, it is
empty, and applications will immediately discover that their named counters are no
longer found. The standard recovery technique in this situation is as follows:

1. Make the application issue an enqueue command (ENQ) for a resource based
on the counter name. This ensures that only one task will be trying to repair
each named counter.

2. Check to see if another task has already recreated the named counter.

3. If the named counter has not been recreated, recreate it with an appropriate
value that you have reconstructed from other information, using the methods
described below.

4. Issue a dequeue command (DEQ) for the resource, to release the named
counter.

The enqueue and dequeue process is used in order to avoid multiple tasks wasting
time and resources duplicating the same processing. However, if the process that
you use to recreate the named counter is simple enough, you can omit the enqueue
and dequeue process. If another task has already repaired the named counter, any
subsequent attempt to recreate the counter will be rejected with a duplicate counter
name indication.

If a named counter is only being used for temporary information that does not need
to be preserved across a structure failure (for example, unique identifiers for active
processes that would not be expected to survive such a failure), then recovery
techniques can be minimal. For example, you could simply recreate the counter
with a standard initial value.

However, if a named counter is being used for persistent information, such as an
order number, recreating it may require specific application logic to reconstruct the

358 CICS TS for z/OS: CICS Application Programming Guide

counter value. For example, the application could locate the highest key that is
currently used in the order file. If active transactions might have already acquired
new numbers from the counter, but not yet used them, then you should allow for
this in the recovery process. Two methods of allowing for values that have been
assigned, but not yet recorded, are:

1. Add a safety margin to the last used value, choosing a large enough margin so
that the application should not set the counter to a value that might already
have been assigned.

2. Treat all counter values as provisional. Restore the counter to the next
apparently unused value, and in applications that use the counter, include logic
to cover the situation where a counter value has already been assigned, and an
application attempts to use it. The duplicate value can be detected by a
duplicate key exception at the time the value is used (as a database or file key),
at which point the application can obtain a new counter value and try again. Be
careful to ensure that no side effects result from the original attempt to use the
duplicated value.

The technique of locating the highest used counter value and provisionally
assigning the next value can also be used as a backup method of assigning
numbers when the named counter server is unavailable. However, it requires
particularly careful verification and testing, because the logic to handle duplicate
keys is normally only exercised in very unusual recovery situations.

If it is difficult to recreate the counter value from existing data repositories, then
another possibility is that every so often (for example, once every 100 or 1000
numbers), the counter value could be logged to a record in a file. The recovery
logic could recreate a suitable value for the named counter by taking the number
logged in the file, and adding a safety margin, such as twice the interval at which
the values are logged.

For systems running z/OS Release 3 or above, system-managed duplexing can be
used to maintain duplexed copies of the named counters in different coupling
facilities. This greatly reduces the risk of losing access to the counters, but it
involves some cost in performance and resources. There is still some theoretical
risk of losing the structure, perhaps because of operational errors or software
problems, and any data in the coupling facility cannot be considered permanent, so
some method of reconstructing counter values might still be required.

Chapter 25. Named counter servers 359

360 CICS TS for z/OS: CICS Application Programming Guide

Part 5. Data Communication

Chapter 26. Terminal control 365
Terminal access method support 366
Terminal control commands . 366

Send/receive mode . 367
Contention for the terminal 367
RETURN IMMEDIATE. 367

Speaking out of turn . 368
Interrupting . 369
Terminal waits . 369

Using data transmission commands. 370
What you get on a RECEIVE 370

Input chaining . 370
Logical messages . 370
NOTRUNCATE option . 371
Print key . 371

Device control commands . 371
Terminal device support . 372
Finding out about your terminal 375

EIB feedback on terminal control operations. 377
Using VTAM . 378

Chaining input data . 378
Chaining output data . 378
Handling logical records . 379
Response protocol . 379
Using function management headers 380

Inbound FMH . 380
Outbound FMH . 380

Preventing interruptions (bracket protocol) 380
Using sequential terminal support 381

Coding considerations for sequential terminals 382
Print formatting . 382
GOODNIGHT convention 382

Using TCAM . 383
Coding for the TCAM/DCB interface. 383

Using batch data interchange 383
Destination selection and identification 385

Selection by named data set 385
Selection by medium . 385

Definite response . 385
Waiting for function completion 385

Chapter 27. The 3270 family of terminals 387
History of the 3270 . 387

Screen fields . 388
Personal computers . 388

PCs as 3270s . 389
The 3270 buffer . 390
The output datastream . 390

3270 write commands . 390
Write control character 391

3270 display fields . 392
Display characteristics. 392

3270 field attributes. 392

© Copyright IBM Corp. 1989, 2010 361

||
||

Protection . 393
Modification . 393
Intensity . 394
Base color . 394
Extended attributes . 394

Orders in the data stream . 395
The start field order. 395
The modify field order . 396
The set buffer address order 397
The set attribute order. 398

Outbound data stream sample. 398
Input from a 3270 terminal . 400

Data keys . 400
Keyboard control keys. 401
Attention keys . 401

The AID . 401
Reading from a 3270 terminal 403
Inbound field format . 403
Input data stream example . 404
Unformatted mode . 404

Chapter 28. CICS support for printing 407
Formatting for CICS printers 407
CICS 3270 printers . 408
CICS 3270 printer options . 409

PRINT option and print control bit 409
ERASE option. 410
Line width options: L40, L64, L80, and HONEOM. 410
NLEOM option . 410

Blank lines . 411
Multiple sends . 411
Page width . 411
Total page size . 411

FORMFEED . 411
PRINTERCOMP option . 412

Non-3270 CICS printers . 412
SCS input . 413

Determining the characteristics of a CICS printer 413
BMS page size, 3270 printers 414
Supporting multiple printer types 414

Using CICS printers . 415
Printing with a START command 415
Printing with transient data 415

Task that wants to print (on printer PRT1): 416
Task that gets triggered: 416

Printing with BMS routing 417
Using Non-CICS printers . 417

Formatting for non-CICS printers 417
Non-CICS printers: Delivering the data. 417
Programming for non-CICS printers 418
Notifying the print application 419

Printing display screens . 420
CICS print key . 420
ISSUE PRINT and ISSUE COPY. 420
Hardware print key . 421
BMS screen copy . 421

362 CICS TS for z/OS: CICS Application Programming Guide

Chapter 29. CICS interface to JES 423
Using the CICS interface to JES 425

Spool interface restrictions 425
Creating output spool files . 425

Using the MVS internal reader. 426
Reading input spool files . 426

JES exits . 427
Identifying spool files . 427
Examples of SPOOL commands 430

COBOL . 430
PL/I . 431
C . 431
ASSEMBLER . 432

Chapter 30. CICS intercommunication 433
Design considerations . 433

Programming language . 434
Transaction routing . 434
Function shipping . 434
Distributed program link (DPL). 435

Using the distributed program link function 436
Examples of distributed program link 437
Programming considerations for distributed program link 442

Issuing multiple distributed program links from the same client task . . . 442
Sharing resources between client and server programs 442
Mixing DPL and function shipping to the same CICS system 442
Mixing DPL and DTP to the same CICS system 443
Restricting a program to the distributed program link subset 443
Determining how a program was invoked. 443
Accessing user-related information with the ASSIGN command 443
Exception conditions for LINK command 444

Asynchronous processing . 446
Distributed transaction processing (DTP) 446
Common Programming Interface Communications (CPI Communications) 446
External CICS interface (EXCI) 447

Part 5. Data Communication 363

364 CICS TS for z/OS: CICS Application Programming Guide

Chapter 26. Terminal control

The CICS application programming interface contains two sets of commands for
communicating with terminals:
1. Terminal control commands
2. Basic Mapping Support (BMS)

Terminal control interface

Terminal control is the more basic of the two. It gives you flexibility and function,
at the cost of more programming. In particular, if you code at the terminal
control level, you need to build the device data stream in your application.

Terminal control commands apply to a variety of devices, reducing the
sensitivity of programs to the terminals they support and to the access methods
controlling the terminals. In addition to the commands themselves, CICS
provides the data translation, synchronization of input and output operations,
and session control needed to read from or write to a terminal or logical unit.
This helps insulate you from the APIs of the individual communications access
methods, which are complex and very different from one another.

BMS

BMS lets you communicate with a terminal at a much higher language level. It
formats your data, and you do not need to know the details of the data stream.
It is thus easier to code initially and easier to maintain, especially if your
application has to support new types of terminal. However, BMS pathlengths
are longer (BMS itself uses terminal control), and BMS does not support all the
terminal types that terminal control does. BMS is described in Chapter 31,
“Basic mapping support,” on page 453.

BMS insulates you even more from the characteristics of particular devices and
the mechanics of communication than does terminal control, but at the cost of
some flexibility and function.

This chapter describes:
v “Terminal access method support” on page 366
v “Terminal control commands” on page 366
v “Using data transmission commands” on page 370
v “Device control commands” on page 371
v “Terminal device support” on page 372
v “Finding out about your terminal” on page 375
v “Using VTAM” on page 378
v “Using sequential terminal support” on page 381
v “Using TCAM” on page 383
v “Using batch data interchange” on page 383

© Copyright IBM Corp. 1989, 2010 365

Terminal access method support
CICS Transaction Server for z/OS, Version 3 Release 1 supports terminals directly
through interfaces to the following access methods:

Virtual Telecommunications Access Method (VTAM)

Basic Graphics Access Method (BGAM) for graphics terminals using GDDM®

Sequential Access Method (SAM) for terminals simulated by sequential
devices

CICS supports operating system consoles as terminals too, but through operating
system services rather than through an access method. The terminal control
interface to a console is the same as to other terminals (though certain consoles
might have certain restrictions), but BMS is not available. You can find a full list of
the terminals supported by CICS in the CICS Resource Definition Guide.

Earlier releases of CICS also supported terminals through the ‘DCB’ interface of
TCAM. You can still execute transactions under CICS from terminals using
TCAM/DCB. However, the terminals themselves must be attached to a remote,
pre-CICS TS 3.1, terminal-owning region. Local terminals using TCAM/DCB are not
supported. The ACB interface of TCAM is not supported at all.

A transaction running under CICS communicates with a local surrogate for the
remote TCAM terminal, and the two CICS systems manage the correspondence
between the surrogate and the real terminal. The transaction is invoked either when
the CICS that owns the terminal routes the transaction to the CICS region, or by
automatic transaction initiation (ATI) in the CICS region. With ATI, this region
arranges assignment of the terminal as principal facility for the transaction through
the CICS region that owns the terminal.

Terminal control commands
The commands described in this chapter apply only to the principal facility of the
task issuing them, where that facility is one of the following:

v A device connected through SAM

v An LU Type 0, 1, 2, 3, or 4 connected through VTAM.

Note: This chapter does not cover program-to-program communication, whether
directed to the alternate or principal facility. This is covered in a separate
manual, APPC commands are covered in the CICS Distributed Transaction
Programming Guide.

Terminal control commands fall into four groups:

v Basic data transmission commands: RECEIVE, SEND, and CONVERSE

v Commands that send device controls, synchronize transmission, end a session,
or perform similar control functions

v Commands to tell you about your terminal: ASSIGN and INQUIRE.

v Special device group commands: the batch data interchange (BDI) commands

366 CICS TS for z/OS: CICS Application Programming Guide

|
|
|
|
|

|

Send/receive mode
The terminals and logical units covered in this chapter all operate in “half-duplex,
flip-flop” mode. This means, essentially, that at any given moment, one partner in a
conversation is in send mode (allowed to send data or control commands) and the
other is in receive mode (restricted to receiving). This protocol is formally defined
and enforced under VTAM. CICS observes the same conventions for terminals
attached under other access methods, but both the hardware and the access
methods work differently, so that not all operations are identical.

When a terminal is the principal facility of a task, its conversation partner is the
task. When it is not associated with a task, its conversation partner is the terminal
control component of CICS. Between tasks, under VTAM, the conversation is left in
a neutral state where either partner can send first. Ordinarily the terminal goes first,
sending the unsolicited input that initiates a task (see “How tasks are started” on
page 142).

This transmission also reverses the send/receive roles; thereafter the terminal is in
receive mode and CICS, represented by the task that was attached, is in send
mode. The task starts and remains in send mode, no matter how many SENDs it
executes, until it explicitly changes the direction of the conversation. One way in
which you can put the task in receive mode is by specifying the INVITE option on a
SEND command. After SEND with INVITE, the task is in receive mode and must
issue a RECEIVE before sending to the terminal again. You can also put the task in
receive mode simply by issuing a RECEIVE, without a preceding INVITE; INVITE
simply optimizes transmissions.

Note that the first RECEIVE command in a task initiated by unsolicited input does
not count in terms of send/receive mode, because the input message involved has
long since transmitted (it started the task). This RECEIVE just makes the message
accessible to the task, and sets the related EIB fields.

ATI tasks—those initiated automatically by CICS—also start out in send mode, just
like tasks started by unsolicited input.

Note that if a task is executing normally and performing non-terminal operations
when a VTAM/network error occurs, the task is unaware of the error and continues
processing until it attempts the next terminal control request. It is at this point that
the task receives the TERMERR. If the task does not issue any further terminal
control request, it will not receive the TERMERR or ABEND.

Contention for the terminal
CICS satisfies requests for automatic task initiation (ATI) as soon as the terminal
required as principal facility is available. When a task ends at a terminal, and CICS
has an ATI request for that terminal, there may be contention between CICS, which
wants to initiate the ATI task, and the terminal user, who wants to initiate a certain
task by unsolicited input. In this situation, CICS always sets itself up as contention
loser. That is, if the terminal sends unsolicited input quickly enough after the end of
the previous transaction, CICS creates a task to process it and delay fulfilling the
ATI request. This is intentional—it gives the user priority in contention situations.

RETURN IMMEDIATE
However, you sometimes need to execute a sequence of particular tasks in
succession at a terminal without allowing the user to intervene. CICS provides a
way for you to do this, with the IMMEDIATE option on the RETURN command that
ends the task. With RETURN IMMEDIATE, CICS initiates a task to execute the
transaction named in the TRANSID option immediately, before honoring any other

Chapter 26. Terminal control 367

waiting requests for tasks at that terminal and without accepting input from the
terminal. The old task can even pass data to the new one. The new task accesses
this data with a RECEIVE, as if the user had initiated the task with unsolicited input,
but no input/output occurs. This RECEIVE, like the first one in a task initiated by
unsolicited input, has no effect on send/receive status; it just makes the passed
data available to the new task. If the terminal is using bracket protocol (explained in
“Preventing interruptions (bracket protocol)” on page 380), CICS does not end the
bracket at the end of the first task, as it ordinarily does, but instead continues the
bracket to include the following task. Consequently, the automatic opening of the
keyboard at the end of bracket between tasks does not occur.

Speaking out of turn
It is usually clear to users when they are supposed to “talk” (key and transmit), and
when they are supposed to “listen” (wait for output), because the application makes
this clear. On 3270 displays and many other terminals, the keyboard locks after the
user has transmitted to reinforce this convention. It remains locked until the task
unlocks it, which it usually does on a SEND before a RECEIVE, or on the last
SEND in the task. This means the user has to do something particular (press the
keyboard reset key) in order to break protocol.

What happens if the user does this? For terminals connected under VTAM, violating
this protocol causes the task to abend (code ATCV) unless read-ahead queueing is
in force. Read-ahead queueing allows the logical unit and the task to send and
receive at any time; CICS saves input messages in temporary storage until the task
needs them. Inputs not read by task end are discarded. Read-ahead queueing is
applied at the transaction level (it is specified in the RAQ option of the PROFILE
under which the transaction runs). Read-ahead queueing applies only to LU type 4
devices, and was originally provided for compatibility reasons, to allow a transaction
to support both BTAM-connected and VTAM-connected terminals in the same way.
As BTAM is no longer supported, read-ahead queueing should no longer be used.

Sequential terminals differ from others in send/receive rules. Because the input is a
pre-prepared file, CICS simply provides input messages whenever the task requests
them, and it is impossible to break protocol. If the input is improperly prepared, or is
not what the task is programmed to handle, it is possible for the task to get out of
synchronization with its inputs, to exhaust them prematurely, or to fail to read some
of them.

368 CICS TS for z/OS: CICS Application Programming Guide

|
|
|
|

Interrupting
VTAM provides a mechanism for a terminal in receive mode to tell its partner that it
would like to send. This is the “signal” data flow in VTAM, which is detected on the
next SEND, RECEIVE or ISSUE DISCONNECT command from the task. When a
signal flow occurs, CICS raises the SIGNAL condition and sets EIBSIG in the EIB.
CICS default action for the SIGNAL condition is to ignore it. For the signal to have
any effect, the task must first detect the signal and then honor it by changing the
direction of the conversation.

On a 3270 display terminal and some others, the ATTENTION key is the one that
generates the interrupt. Not all terminals have this feature, however, and in VTAM,
the bind image must indicate support for it as well, or VTAM ignores the interrupts.

Terminal waits
When a task issues a SEND command without specifying WAIT, CICS can defer
transmission of the output to optimize either its overall terminal handling or the
transmissions for your task. When it does this, CICS saves the output message and
makes your task dispatchable, so that it can continue executing. The ISSUE COPY
and ISSUE ERASE commands, which also transmit output, work similarly without
WAIT.

If you use the WAIT option, CICS does not return control to your task until the
output operation is complete. This wait lengthens the elapsed time of your task, with
attendant effects on response time and memory occupancy, but it ensures that your
task knows whether there has been an error on the SEND before continuing. You
can avoid some of this wait and still check the completion of the operation if you
have processing to do after your SEND. You issue the SEND without WAIT,
continue processing, and then issue a WAIT TERMINAL command at the point
where you need to know the results of your SEND.

When you issue a RECEIVE command that requires transmission of input, your
task always waits, because the transmission must occur before the RECEIVE can
be completed. However, there are cases where a RECEIVE does not correspond to
terminal input/output. The first RECEIVE in a task initiated by unsolicited terminal
input is the most frequent example of this, but there are others, as explained in the
next section.

Also, when you issue any command involving your terminal, CICS ensures that the
previous command is complete (this includes any deferred transmissions), before
processing the new one.

Chapter 26. Terminal control 369

|

Using data transmission commands
There are three commands that transmit data to and from the terminal or logical
unit that is the principal facility of your task:

RECEIVE
reads data from the terminal.

SEND
writes data to the terminal.

CONVERSE
writes data to the terminal, waits for input, and reads the input.

CONVERSE is essentially a combination of SEND and RECEIVE and is usually the
equivalent of SEND followed by RECEIVE. In certain cases you must use
CONVERSE instead of SEND and RECEIVE, for example, sending structured-field
data to certain 3270 devices. In other cases you must use SEND and RECEIVE,
because CONVERSE is not provided; these are noted in Table 24 on page 374.

The SEND, RECEIVE, and CONVERSE commands are fully described in the CICS
Application Programming Reference manual. They are broken down by device
group, because the options for different devices and access methods vary
considerably. “Terminal device support” on page 372 tells you which device group to
use for your particular device.

What you get on a RECEIVE
We use the terms “input message” and “transmission” to mean both what the
terminal sent and what the application received. For the most common types of
terminals, these are equivalent. A 3270 display, for example, sends whatever was
changed in its buffer as a single entity, and the task associated with the terminal
normally gets the entire message in response to a single RECEIVE command.

However, input messages and physical transmissions are not always equivalent,
and there are several factors that can affect the one-to-one relationship of either to
RECEIVE commands. These are:
v VTAM chaining
v Logical records
v NOTRUNCATE option
v “Print” PA key

Input chaining
Some SNA devices break up long input messages into multiple physical
transmissions, a process called “chaining”. CICS assembles the component
transmissions into a single input message or present them individually, depending
on how the terminal associated with the task has been defined. This affects how
many RECEIVEs you need to read a chained input message. Details on inbound
chaining are explained in “Chaining input data” on page 378.

Logical messages
Just as some devices break long inputs into multiple transmissions, others block
short inputs and send them in a single transmission. Here again, CICS provides an
option about who deblocks, CICS or the receiving program. This choice also affects
how much data you get on a single RECEIVE. (See “Handling logical records” on
page 379 for more on this subject.)

370 CICS TS for z/OS: CICS Application Programming Guide

NOTRUNCATE option
Still another exception to the one-input-message-per-RECEIVE rule occurs when
the length of the input data is greater than the program expects. If this occurs and
the RECEIVE command specifies NOTRUNCATE, CICS saves the excess data and
uses it to satisfy subsequent RECEIVE commands from the program with no
corresponding read to the terminal. If you are using NOTRUNCATE, you should
issue RECEIVEs until the field EIBCOMPL in the EIB is set on (that is, set to X'FF').
CICS turns on EIBCOMPL when no more of the input message is available.

Without NOTRUNCATE, CICS discards the excess data, turns on EIBCOMPL, and
raises the LENGERR condition. It reports the true length of the data, before
truncation, in the data area named in the LENGTH option, if you provide one.

Print key
If your CICS system has a PA key defined as a “print” key, another exception to the
normal send/receive sequence can occur. If the task issues a RECEIVE, and the
user presses the “print” key in response, CICS intercepts this input, does the
necessary processing to fulfil the request, and puts the terminal in receive mode
again. The user must send another input to satisfy the original RECEIVE. (See
“CICS print key” on page 420 for more information about the “print” key.)

Device control commands
In addition to data transmission commands, the CICS API for terminals includes a
series of commands that send instructions or control information, rather than data,
to the terminal or to the access method controlling it. These commands are listed in
the table below, along with a brief description of their function. Not all of these
commands apply to all terminals, and for some, different forms apply to different
terminals. See Terminal device support before going to the descriptions in the CICS
Application Programming Reference manual .

The terminal in the table below is always the principal facility of the task issuing the
command, except where explicitly stated otherwise. It may be a logical unit of a
type not ordinarily considered a terminal.

Table 22. Control commands for terminals and logical units

Command Action

FREE Releases the terminal from the task, so that the terminal may be
used in another task before the current one ends.

ISSUE COPY Copies the buffer contents of the terminal named in the TERMID
option to the buffer of the terminal owned by the task. Both
terminals must be 3270s.

ISSUE DISCONNECT Schedules termination of the session between CICS and the
terminal at the end of the task.

ISSUE EODS Sends an end-of-data-set function management header (for 3650
interpreter logical units only).

ISSUE ERASEAUP Erases all the unprotected fields of the terminal (for 3270 devices
only).

ISSUE LOAD Instructs the terminal to load the program named in the
PROGRAM option (for 3650 interpreter logical units only).

ISSUE PASS Schedules disconnection of the terminal from CICS and its transfer
to the VTAM application named in the LUNAME option, at the end
of the issuing task.

Chapter 26. Terminal control 371

Table 22. Control commands for terminals and logical units (continued)

Command Action

ISSUE PRINT Copies the terminal buffer to the first printer eligible for a print
request (for 3270 displays only).

WAIT SIGNAL Suspends the issuing task until its terminal sends a SIGNAL
dataflow command.

WAIT TERMINAL Suspends the issuing task until the previous terminal operation has
completed.

Terminal device support
Hardware and access method sensitivity is one of the major distinctions between
using BMS and using terminal control commands to communicate with a terminal.
BMS shields an application from hardware dependencies at the expense of some
loss of function, whereas terminal control provides all the function.

The result of providing full function is that not all terminal control commands apply
to all devices. Some commands require that you know what type of terminal you
have, to determine the options that apply and the exceptional conditions that can
occur. For some commands, you also need to know what access method is in use.
The two tables that follow tell you which commands apply to which terminal and
access method combinations. If you need to support several types of terminals, you
can find out which type your task has as its principal facility using the commands
described in “Finding out about your terminal” on page 375.

To use the tables, look up the terminal type that your program must support in the
first column of Table 23. Use the value in the second column to find the
corresponding command group in the first column of Table 24 on page 374. The
second column of this table tells you the access method, and the third tells you the
commands you can use. The commands themselves are described in full in the
CICS Application Programming Reference manual . Where there is more than one
version of a command in that manual, the table tells you which one to use. This
information appears in parentheses after the command, just as it does in the
manual itself.

Table 23. Devices supported by CICS

Device Use commands for

2260, 2265 2260

3101 (supported as TWX 33/35) 3767

3230 (VTAM) 3767

3270 displays, 3270 printers (VTAM SNA) LU type 2/3

3270 displays, 3270 printers (VTAM non-SNA) 3270 logical

3270 displays, 3270 printers (non-VTAM) 3270 display

SCS printers (VTAM) SCS

3600 Pipeline mode (VTAM) 3600 pipeline

3601 (VTAM) 3600-3601

3614 (VTAM) 3600-3614

3630, attached as 3600 (3631, 3632, 3633, 3643, 3604) Use 3600 entry

3641, 3644, 3646, 3647 (VTAM, attached as 3767) 3767

372 CICS TS for z/OS: CICS Application Programming Guide

Table 23. Devices supported by CICS (continued)

Device Use commands for

3643 (VTAM, attached as LU type 2) LU type 2/3

3642, 3645 (VTAM, attached as SCS printer) SCS

3650 interpreter LU 3650 interpreter

3650 host conversational LU (3270) 3650-3270

3650 host conversational LU (3653) 3650-3653

3650 host command LU (3680, 3684) 3650-3680

3650 interpreter LU 3650 interpreter

3650 host conversational LU (3270) 3650-3270

3650 host conversational LU (3653) 3650-3653

3650 host command LU (3680, 3684) 3650-3680

3730 3790 full function or inquiry

3767 interactive LU (VTAM) 3767

3770 Interactive LU (VTAM) 3767

3770 Full function LU 3790 full function or inquiry

3770 Batch LU (3771, 3773, 3774) (VTAM) 3770

3790 Full function or inquiry 3790 full function or inquiry

3790 3270 display LU 3790 3270-display

3790 SCS printer 3790 SCS

3790 3270 printer 3790 3270-printer

4700 (supported as 3600) Use 3600 entry

5280 attached as 3270 Use 3270 entry

5520 VTAM, supported as 3790 full-function LU 3790 full function or inquiry

5550 (supported as 3270) Use 3270 entry

5937 (supported as 3270) Use 3270 entry

6670 VTAM LU type 4

8130, 8140 under DPCX (supported as 3790) 3790 full function or inquiry

8100 DPPX/BASE using Host Presentation Services or Host
Transaction Facility (attached as 3790)

3790 full function or inquiry

8100 DPPX/DSC, DPCX/DSC, including 8775 attach
(supported as 3270)

LU type 2/3

8775 LU type 2/3

8815 APPC

Displaywriter supported as 3270 Use 3270 entry

Displaywriter supported as APPC APPC

INTLU (interactive LU) 3767

PC, PS/2, attached as 3270 Use 3270 entry

Scanmaster APPC

Series/1 supported as 3650 pipeline 3600 pipeline

Series/1 supported as 3790 full-function LU 3790 full function or inquiry

System/32 (5320) VTAM, supported as 3770 Use 3770 entry

Chapter 26. Terminal control 373

Table 23. Devices supported by CICS (continued)

Device Use commands for

System/34 (5340) VTAM, supported as 3770 Use 3770 entry

System/34 (5340) non-VTAM System/3

System/36 (supported as System/34) Use System/34 entry

System/38 (5381) VTAM, attached as 3770 Use 3770 entry

System/38 (5381) VTAM, attached as APPC APPC

TWX 33/35 VTAM NTO 3767

WTTY VTAM NTO 3767

Table 24. Terminal control commands by device type

Device group
name

Access methods Commands applicable

2260 non-VTAM RECEIVE (2260), SEND (2260), CONVERSE (2260),
ISSUE DISCONNECT (default), ISSUE RESET

3270 display non-VTAM RECEIVE (3270 display), SEND (3270 display),
CONVERSE (3270 display), ISSUE COPY (3270
display), ISSUE DISCONNECT (default), ISSUE
ERASEAUP, ISSUE PRINT, ISSUE RESET

LU type 2/3
(3270 SNA)

VTAM RECEIVE (LU type 2/3), SEND (LU type 2/3),
CONVERSE (LU type 2/3), ISSUE COPY (3270
logical), ISSUE DISCONNECT (default), ISSUE
ERASEAUP, ISSUE PASS, ISSUE PRINT

3270 logical
(3270 non-SNA)

VTAM RECEIVE (3270 logical), SEND (3270 logical),
CONVERSE (3270 logical), ISSUE COPY (3270
logical), ISSUE DISCONNECT (default), ISSUE
ERASEAUP, ISSUE PASS, ISSUE PRINT

SCS VTAM SEND (SCS), CONVERSE (SCS), ISSUE
DISCONNECT (default), ISSUE PASS

3600 pipeline VTAM RECEIVE (3600 pipeline), SEND (3600 pipeline),
ISSUE DISCONNECT (default), ISSUE PASS

3600-3601 VTAM RECEIVE (3600-3601), SEND (3600-3601),
CONVERSE (3600-3601), ISSUE DISCONNECT
(default), ISSUE PASS, WAIT SIGNAL

3600-3614 VTAM RECEIVE (3600-3614), SEND (3600-3614),
CONVERSE (3600-3614), ISSUE DISCONNECT
(default), ISSUE PASS

3650 interpreter VTAM RECEIVE (3650), SEND (3650 interpreter),
CONVERSE (3650 interpreter), ISSUE
DISCONNECT (default), ISSUE EODS, ISSUE
LOAD, ISSUE PASS

3650-3270 VTAM RECEIVE (3650), SEND (3650-3270), CONVERSE
(3650-3270), ISSUE DISCONNECT (default), ISSUE
ERASEAUP, ISSUE PASS, ISSUE PRINT

3650-3653 VTAM RECEIVE (3650), SEND (3650-3653), CONVERSE
(3650-3653), ISSUE DISCONNECT (default), ISSUE
PASS

374 CICS TS for z/OS: CICS Application Programming Guide

Table 24. Terminal control commands by device type (continued)

Device group
name

Access methods Commands applicable

3650-3680 VTAM RECEIVE (3650), RECEIVE (3790 full function or
inquiry), SEND (3650-3680), SEND (3790 full
function or inquiry), CONVERSE(3650-3680), ISSUE
DISCONNECT (default), ISSUE PASS

3767 VTAM RECEIVE (3767), SEND (3767), CONVERSE (3767),
ISSUE DISCONNECT (default), ISSUE PASS, WAIT
SIGNAL

3770 VTAM RECEIVE (3770), SEND (3770), CONVERSE (3770),
ISSUE DISCONNECT (default), ISSUE PASS, WAIT
SIGNAL

3790 full function
or inquiry

VTAM RECEIVE (3790 full function or inquiry), SEND (3790
full function or inquiry), CONVERSE (3790 full
function or inquiry), ISSUE DISCONNECT (default),
ISSUE PASS, WAIT SIGNAL

3790
3270-display

VTAM RECEIVE (3790 3270-display), SEND (3790
3270-display), CONVERSE (3790 3270-display),
ISSUE DISCONNECT (default), ISSUE ERASEAUP,
ISSUE PASS, ISSUE PRINT

3790 3270-printer VTAM SEND (3790 3270-printer), ISSUE DISCONNECT
(default), ISSUE ERASEAUP, ISSUE PASS

3790 SCS VTAM SEND (3790 SCS), ISSUE DISCONNECT (default),
ISSUE PASS

LU type 4 VTAM RECEIVE (LU type 4), SEND (LU type 4),
CONVERSE (LU type 4), ISSUE DISCONNECT
(default), ISSUE PASS, WAIT SIGNAL

Outboard
controllers (batch
data interchange)

VTAM ISSUE ABORT, ISSUE ADD, ISSUE END, ISSUE
ERASE, ISSUE NOTE, ISSUE QUERY, ISSUE
RECEIVE, ISSUE REPLACE, ISSUE SEND, ISSUE
WAIT

All others VTAM RECEIVE (VTAM default), SEND (VTAM default),
CONVERSE (VTAM default), ISSUE PASS

All others non-VTAM RECEIVE (non-VTAM default), SEND (non-VTAM
default), CONVERSE (non-VTAM default)

Finding out about your terminal
Some applications must support more than one type of terminal, and sometimes the
types are sufficiently different that they require separate code. If you are writing
such a program, and you need to determine what sort of terminal it is currently
communicating with, you can use the ASSIGN command to find out.

ASSIGN returns a variety of information about the executing task, including a
number of fields that describe its principal facility. Table 25 lists the ones that relate
directly to terminal control operations. There are other ASSIGN options that relate to
BMS and to other aspects of the task. You can find details on all ASSIGN options in
the CICS Application Programming Reference manual. The “terminal” cited in
column 2 of the table is always the principal facility of the task.

Chapter 26. Terminal control 375

Table 25. ASSIGN command options for terminals

ASSIGN option Information returned

ALTSCRNHT
ALTSCRNWD

The alternate height and width of the terminal screen (from its
terminal definition); see also SCRNHT and SCRNWD

APLKYBD Whether terminal has an APL keyboard

APLTEXT Whether terminal has the APL text feature

BTRANS Whether terminal has background transparency capability

COLOR Whether terminal has extended color capability

DEFSCRNHT
DEFSCRNWD

The default height and width of the terminal screen (from its terminal
definition); see also SCRNHT and SCRNWD

DELIMITER The data-link control character for the terminal (for 3600 terminals
only)

DESTID
DESTIDLENGTH

The identifier of the outboard destination and its length (for BDI
operations only)

DSSCS Whether the terminal is an SCS data stream device

DS3270 Whether the terminal is a 3270 data stream device

EXTDS Whether the terminal supports “query structured field” orders

EWASUPP Whether the terminal supports “erase write alternate” orders (i.e. has
alternate screen size capability)

FACILITY The 4-character identifier of the terminal

FCI The type of principal facility associated with the task (terminal, queue,
and so on)

GCHARS
GCODES

The graphic character set global identifier and the code page global
identifier associated with the terminal

HILIGHT Whether the terminal has extended highlight capability

KATAKANA Whether the terminal supports Katakana

LANGINUSE The 3-character mnemonic

MSRCONTROL Whether the terminal supports magnetic slot reader control

NATLANGINUSE The national language in use for the current task

NETNAME The 8-character identifier of the terminal in the VTAM network

NUMTAB Number of tabs required to position the print element in the correct
passbook area (for 2980s only)

OPID
OPCLASS

Operator identifier code and operator class of user signed on at
terminal

OUTLINE Whether the terminal has field outlining capability

PARTNS Whether the terminal supports screen partitions

PS Whether the terminal has programmed symbols capability

SCRNHT
SCRNWD

Height and width of the terminal screen for the current task

SIGDATA SIGNAL data received from the terminal

SOSI Whether the terminal has mixed EBCDIC/double-byte character set
capability

STATIONID
TELLERID

Station and teller identifier of the terminal (for 2980s only)

TERMCODE Type and model number of the terminal

376 CICS TS for z/OS: CICS Application Programming Guide

Table 25. ASSIGN command options for terminals (continued)

ASSIGN option Information returned

TERMPRIORITY Terminal priority value

TEXTKYBD Whether the terminal has the TEXTKYBD feature

TEXTPRINT Whether the terminal has the TEXTPRINT feature

UNATTEND Whether the terminal is unattended

USERID
USERNAME
USERPRIORITY

The 8-character identifier, 20-character name and priority of the user
signed on at the terminal

VALIDATION Whether the terminal has validation capability

You can also use the INQUIRE TERMINAL command to find out about your own
terminal or any other terminal. INQUIRE TERMINAL returns information from the
terminal definition, whereas ASSIGN describes the use of that terminal in the
current task. For many options, however, particularly the hardware characteristics,
the information returned is the same. INQUIRE TERMINAL is described in the CICS
System Programming Reference manual .

EIB feedback on terminal control operations
CICS reports the results of processing terminal control commands, including those
generated by BMS, in the EIB. Because of the complexity of terminal operations,
many EIB fields are specific to terminal commands. Those that apply to the
principal facility are listed in Table 26. (Other fields relate only to LU type 6.1, APPC
and MRO operations; see the CICS Application Programming Reference manual for
programming information about these.)

EIB fields are posted when CICS returns control to your task, and they always
describe the most recent command to which they apply. This means that if you are
conducting program-to-program communication over an alternate facility and using
your principal facility, you need to check the EIB before results from one overlay
those of the other.

It also means that when a task is initiated by unsolicited input from the terminal, or
by a RETURN IMMEDIATE in the previous task at the same terminal, the EIB fields
that describe the input are not set at task start. You must issue a RECEIVE to gain
access to the input and post the EIB fields.

Note: If you are interested only in the EIB values and not the data itself, omit both
the INTO and SET options from your RECEIVE.

Here are the fields that apply to the principal facility:

Table 26. EIB fields that apply to terminal control commands

Field Contents

EIBAID The attention identifier (AID) from the last input operation (3270s only, see
“The AID” on page 401)

EIBATT Whether the input contains attach header data (an attach FMH)

EIBCOMPL Whether the RECEIVE command just issued used all the input data, or
more RECEIVEs are required (see “Chaining output data” on page 378)

EIBCPOSN Cursor position at time of last input operation (3270s only)

Chapter 26. Terminal control 377

Table 26. EIB fields that apply to terminal control commands (continued)

Field Contents

EIBEOC Whether an end-of-chain indicator appeared in the input from the last
RECEIVE

EIBFMH Whether user data just received or retrieved contains an FMH

EIBFREE Whether the facility just used has been freed

EIBRCODE,
EIBRESP,
EIBRESP2

CICS response code values from the previously issued command
Note: For output commands in which transmission can be deferred, these
values reflect only the initial CICS processing of the command, not the
eventual transmission (see “Terminal waits” on page 369).

EIBSIG Whether the terminal has sent a SIGNAL

EIBTRMID (CICS) identifier of the terminal

Using VTAM
Under VTAM, communication with logical units is governed by the conventions
(protocols) which vary with the type of logical unit. This section describes the
options provided by CICS to enable applications to conform to and make best use
of these protocols,

Chaining input data
As noted earlier, some SNA devices segment long input messages for transmission.
Each individual segment is called a request unit (RU), and the entire logical
message is called a chain. CICS provides an option in the terminal definition,
BUILDCHAIN, that governs who assembles the chain. If the BUILDCHAIN value for
the terminal is YES, CICS assembles the chain and presents the entire message to
the program in response to a single RECEIVE command. This choice ensures that
the whole chain is complete and available before it is presented to the application.

If BUILDCHAIN=NO, the application assembles the chain. CICS provides one RU
for each RECEIVE. The application can tell when it has received the last RU in the
chain, because CICS raises the EOC (end-of-chain) condition at that time. CICS
raises this condition even when there is only one RU in the chain, or when it
assembles the chain, or when the input is from a terminal that does not support
inbound chaining, like a 3270 display. An EOC condition is not considered an error;
the CICS default action when it occurs is to ignore the condition.

EOC may occur simultaneously with either the EODS (end-of-data-set) or INBFMH
(inbound-FMH) conditions, or both. Either condition takes precedence over EOC in
determining where control goes if both it and EOC are the subject of active
HANDLE CONDITION commands.

Chaining output data
VTAM supports the chaining of outbound as well as inbound terminal data. If the
length of an output message exceeds the outbound RU size, and the terminal
supports outbound chaining, CICS breaks the message into RU-size segments and
transmits them separately.

Your application can take advantage of the fact that chaining is permitted by
passing a single output message to CICS bit by bit across several SEND
commands. To do this, you specify the CNOTCOMPL (“chain not complete”) option
on each SEND except the one that completes the message. (Your message

378 CICS TS for z/OS: CICS Application Programming Guide

segments do not have to be any particular length; CICS assembles and transmits
as many RUs as are required.) The PROFILE definition under which your
transaction is running must specify CHAINCONTROL=YES in order for you to do
this.

Note: Options that apply to a complete logical message (that is, the whole chain)
must appear only on the first SEND command for a chain. These include
FMH, LAST, and, for the 3601, LDC.

Handling logical records
As noted earlier, some devices block input messages and send multiple inputs in a
single transmission. CICS allows you to specify whether CICS or the application
should deblock the input. The choice is expressed in the LOGREC option of the
PROFILE under which the current transaction is executing.

With LOGREC (NO), CICS provides the entire input message in response to a
RECEIVE (assuming the input is not chained or BUILDCHAIN=YES). The user is
responsible for deblocking the input. If BUILDCHAIN=NO, a RECEIVE retrieves one
RU of the chain at a time. In general, logical records do not span RUs, so that a
single RU contains one or more complete logical records. The exception is LU type
4 devices, where a logical record may start in one RU and continue in another; for
this reason, BUILDCHAIN=YES is recommended if you do your own deblocking for
these devices.

If the PROFILE specifies LOGREC (YES), CICS provides one logical record in
response to each RECEIVE command (whether or not CICS is assembling input
chains).

If an RU contains more than one logical record, the records are separated by new
line (NL) characters, X'15', interrecord separators (IRS characters), X'1E', or
transparent (TRN) characters, X'35'. If NL characters are used, they are not
removed when the data is passed to the program and appear at the end of the
logical record. If IRS characters are used, however, they are removed. If the
delimiter is a transparent character, the logical record can contain any characters,
including NL and IRS, which are considered normal data in transparent mode. The
terminating TRN is removed, however. CICS limits logical records separated by
TRNs to 256 characters.

Response protocol
Under VTAM, CICS allows the use of either definite response or exception
response protocol for outbound data.

Under exception response, a terminal acknowledges a SEND only if an error
occurred. If your task is using exception response, CICS does not wait for the last
SEND in the task (which may be the only SEND) to complete before terminating
your task. Consequently, if an error does occur, it may not be possible to report it to
your task. When this happens, the error is reported to a CICS-supplied task created
for the purpose.

Definite response requires that the terminal acknowledge every SEND, and CICS
does not terminate your task until it gets a response on the last SEND. Using
definite response protocol has some performance disadvantages, but it may be
necessary in some applications.

Chapter 26. Terminal control 379

The MSGINTEG option of the PROFILE under which a task is running determines
which response mode is used. However, if you select MSGINTEG (NO) (exception
response), you can still ask for definite response on any particular SEND by using
the DEFRESP option. In this way, you can use definite response selectively, paying
the performance penalty only when necessary. For transactions that must verify the
delivery of data before continuing, the DEFRESP option should be used on the last
SEND.

Using function management headers
SNA architecture defines a particular type of header field that accompanies some
messages, called a function management header (FMH). It conveys information
about the message and how it should be handled. For some logical units, use of an
FMH is mandatory, for others it is optional, and in some cases FMHs cannot be
used at all. In particular, FMHs do not apply to LU type 2 and LU type 3 terminals,
which are the most common 3270 devices.

Inbound FMH
When an FMH is present in an input message, CICS consults the PROFILE
definition under which the transaction is executing to decide whether to remove it or
pass it on to the application program that issued the RECEIVE. The PROFILE can
specify that no FMHs are to be passed, that only the FMH indicating the end of the
data set should be passed, or that all FMHs are to be passed. There is also an
option that causes the FMH to be passed to the batch data interchange program.

If an FMH is present, it occupies the initial bytes of the input message; its length
varies by device type. CICS sets the EIBFMH field in the EIB on (X'FF') to tell you
that one is present, and it also raises the INBFMH condition, which you can detect
through a HANDLE CONDITION command or by testing the RESP value.

Outbound FMH
On output, the FMH can be built by the application program or by CICS. If your
program supplies the FMH, you place it at the front of your output data and specify
the FMH option on your SEND command. If CICS is to build the FMH, you reserve
the first three bytes of the message for CICS to fill in and omit the FMH option.
CICS builds an FMH only for devices that require one; you must supply it for
devices for which it is optional.

Preventing interruptions (bracket protocol)
Brackets are an SNA protocol for ensuring that a conversation between two LUs is
not interrupted by a request from a third LU. CICS uses bracket protocol to prevent
interruption of the conversation between a CICS task and its principal facility for the
duration of the task. If the task has an alternate facility, bracket protocol is used
there also, for the same reason. The logical unit begins the bracket if it sends
unsolicited input to initiate the task, and CICS begins the bracket if it initiates the
task automatically. CICS ends the bracket at task end, unless the IMMEDIATE
option appears on the final RETURN command. RETURN IMMEDIATE lets you
initiate another task at your principal facility without allowing it to enter input. CICS
does this by not ending the bracket between the ending task and its successor
when brackets are in use.

CICS requires the use of brackets for many devices under VTAM. For others, the
use of brackets is determined by the value of the BRACKET option in the terminal
definition. Because bracket protocol is a feature of SNA, if you specify
BRACKET(YES) for non-SNA devices, CICS will neither follow, nor enforce, strict
bracket protocol.

380 CICS TS for z/OS: CICS Application Programming Guide

In general, bracket protocol is transparent to an application program, but it is still
possible to optimize flows related to bracket protocol using the LAST option on the
SEND command. If you know that a particular SEND is the last command for the
terminal in a task, you can improve performance by adding the LAST option. LAST
allows VTAM to send the “end-of-bracket” indicator with the data and saves a
separate transmission to send it at task end. If you are sending the last output in a
program-built chain (using CNOTCOMPL), LAST must be specified on the first
SEND for the chain in order to be effective.

If your task has significant work to do or may experience a significant delay after its
last SEND, you may want to issue a FREE command. FREE releases the terminal
for use in another task.

Using sequential terminal support
One of the many types of terminal that CICS supports is not really a terminal at all,
but a pair of sequential devices or files simulating a terminal. One of the pair
represents the input side of the terminal, and might be a card reader, a spool file or
a SAM file on tape or DASD. The other represents the output, and might be a
printer, a punch, spool or SAM file. Many device-type combinations are allowed,
and either of the pair can be missing; that is, you can have an input-only or
output-only sequential terminal.

You read from and write to the devices or files that constitute a sequential terminal
with terminal control commands, specifically RECEIVE, SEND, and CONVERSE.
(BMS supports sequential terminals too; see “Special options for non-3270
terminals” on page 472.)

The original purpose of sequential terminal support was to permit application
developers to test online code before they had access to real terminals. This
requirement rarely occurs any more, but sequential terminals are still useful for:

Printing
See “Programming for non-CICS printers” on page 418. Sequential
terminals are particularly useful for output that is sometimes directed to a
low-speed CICS printer, for which BMS or terminal control commands are
required, and sometimes directed to a high-speed system printer (spool or
transient data commands). If you define the high-speed printer as a
sequential terminal, you can use terminal control or BMS commands, and
you can use the same code for both types of printers. (If there are
differences in the device data streams, you need to use BMS for complete
transparency.)

Regression testing
Tests run from sequential terminals leave a permanent record of both input
and output. This encourages systematic and verifiable initial testing. Also, it
allows you to repeat tests after modifications, to ensure that a given set of
inputs produces the same set of outputs after the change as before.

Initialization
Some installations use a sequential terminal to execute one or more
initialization transactions, in preference to program list table programs.
Transactions initiated from a sequential terminal begin execution as soon as
the terminal is in service, and they continue as quickly as CICS can
process them until the input is exhausted. Hence the inputs from a
sequential terminal can be processed immediately after startup, if the

Chapter 26. Terminal control 381

sequential terminal is initially in service, at some later time (when it is put in
service) or even as part of a controlled shutdown.

Coding considerations for sequential terminals
The input data submitted from a sequential terminal must be in the form in which it
would come from a telecommunication device. For example, the first record usually
starts with a transaction code, to tell CICS what transaction to execute. The
transaction code must start in the first position of the input, just as it must on a real
terminal. Note that this limits the ability to test applications that require input in
complex formats. For example, there is no provision for expressing a formatted
3270 input stream as a sequential file, because of all the complex control
sequences. However, you can use an unformatted 3270 data stream (or any other
similar stream) for input, and you can still use BMS to format your output.

When you build the input file, you place an end-of-data indicator (EODI) character
after each of your input records. The EODI character is defined in the system
initialization table; the default value is a backslash (‘\’, X'E0'), but your installation
may have defined some other value.

When processing the input stream, CICS observes EODI characters only. CICS
does not analyze the record structure of the input file or device, which means that
each input can span records in the input file. However, you must start each input on
a new physical record to ensure each input is correctly processed.

The length of an input record (the number of characters between EODIs) should not
exceed the size of the input buffer (the INAREAL value in the LINE component of
the sequential terminal definition). If it does, the transaction that attempts to
RECEIVE the long record abends, and CICS positions the input file after the next
EODI before resuming input processing.

An end-of-file marker in the input also acts as an EODI indicator. Any RECEIVE
command issued after end-of-file is detected also causes an abend.

Print formatting
If the definition of a sequential terminal indicates that the output half is a line printer,
you can write multiple lines of output with a single SEND. For this type of device,
CICS breaks your output message into lines after each new line character (X'15') or
after the number of characters defined as the line length, whichever occurs first.
Line length is defined by the LPLEN value in the terminal definition. Each SEND
begins a new line.

GOODNIGHT convention
CICS continues to initiate transactions from a sequential terminal until it (or the
transactions themselves) have exhausted all the input or until the terminal goes out
of service. To prevent CICS from attempting to read beyond the end of the input file
(which causes a transaction abend), the last transaction executed can put the
terminal out of service after its final output. Alternatively (and this is usually easier),
the last input can be a CESF GOODNIGHT transaction, which signs the terminal off
and puts it out of service. You cannot normally enter further input from a sequential
terminal once CICS has processed its original input, without putting it out of service.

382 CICS TS for z/OS: CICS Application Programming Guide

#
#
#
#

Using TCAM

Important
In CICS TS for z/OS, Version 3.1, local TCAM terminals are not supported.
The only TCAM terminals supported are remote terminals connected to a
pre-CICS TS 3.1 terminal-owning region by the DCB (not ACB) interface of
TCAM. Thus, the only way in which TCAM is supported is by transaction
routing or function shipping from a remote, pre-CICS TS 3.1, terminal-owning
region, to which the terminals are connected by TCAM/DCB.

Coding for the TCAM/DCB interface
CICS does not support the DCB interface of TCAM directly. To use a terminal
through this interface, you need to do so through an older version of CICS, as
explained in “Terminal access method support” on page 366. In general, you use
the same terminal control commands and options for such a device as you would if
it were attached through VTAM. However, the path between your CICS application
program and the terminal is much more complex, and consequently there are many
more programming possibilities.

For programming information about the CICS-TCAM interface, see the
Customization Guide for your older version of CICS (the terminal-owning region to
which your TCAM terminals are connected).

Using batch data interchange
Many installations have a host computer and database at a central location, linked
to other computers at branch offices. They do not necessarily contain CICS, but
they can communicate with CICS in the host system. The CICS batch data
interchange program provides for communication between an application program
and a named data set (or destination) that is part of a batch data interchange
logical unit in an outboard controller, or with a selected medium on a batch logical
unit or an LU type 4 logical unit. This medium indicates the required device such as
a printer or console.

The term “outboard controller” is a generalized reference to a programmable
subsystem, such as the IBM 3770 Data Communication System, the IBM 3790 Data
Communication System, or the IBM 8100 System running DPCX, which uses SNA
protocols. (Details of SNA protocols and the data sets that can be used are given in
CICS/OS/VS IBM 3767/3770/6670 Guide and CICS/OS/VS IBM 3790/3780/8100
Guide.) Figure 83 on page 384 gives an overview of batch data interchange.

Chapter 26. Terminal control 383

|

|

|
|
|
|
|
|
||||

|

|
|
|
|
|
|
|

|
|
|

The following batch data interchange commands are provided:

ISSUE QUERY
Initiate transfer of a data set to the CICS application program.

ISSUE RECEIVE
Read a record from a data set or read data from an input medium.

ISSUE SEND
Transmit data to a named data set or to a selected medium.

ISSUE ADD
Add a record to a data set.

ISSUE REPLACE
Update (replace) a record in a data set.

ISSUE ERASE
Delete a record from a data set.

ISSUE END
Terminate processing of a data set.

ISSUE ABORT
Terminate processing of a data set abnormally.

ISSUE NOTE
Request the next record number in a data set.

ISSUE WAIT
Wait for an operation to be completed.

Where the controller is an LU type 4 logical unit, only the ISSUE ABORT, ISSUE
END, ISSUE RECEIVE, ISSUE SEND, and ISSUE WAIT commands can be used.

Where the data set is a DPCX/DXAM data set, only the ISSUE ADD, ISSUE
ERASE, and ISSUE REPLACE commands can be used.

Refer to Chapter 17, “Dealing with exception conditions,” on page 261 for
information about how to deal with any exception conditions that occur during
execution of a batch data interchange command.

System with CICS

CICS
Batch
Interchange
Program

Programmable
subsystem

Card
Device

Printer

Terminals

Data can be moved
across this link

Figure 83. CICS batch data interchange

384 CICS TS for z/OS: CICS Application Programming Guide

Destination selection and identification
All batch data interchange commands except ISSUE RECEIVE include options that
specify the destination. This is either a named data set in a batch data interchange
logical unit, or a selected medium in a batch logical unit or LU type 4 logical unit.

Selection by named data set
The DESTID and DESTIDLENG options must always be specified, to supply the
data set name and its length (up to a maximum of eight characters). For
destinations having diskettes, the VOLUME and VOLUMELENG options may be
specified, to supply a volume name and its length (up to a maximum of six
characters); the volume name identifies the diskette that contains the data set to be
used in the operation. If the VOLUME option is not specified for a multidiskette
destination, all diskettes are searched until the required data set is found.

Selection by medium
As an alternative to naming a data set as the destination, various media can be
specified by means of the CONSOLE, PRINT, CARD, or WPMEDIA1–4 options.
These media can be specified only in an ISSUE ABORT, ISSUE END, ISSUE
SEND, or ISSUE WAIT command.

Definite response
CICS uses terminal control commands to carry out the functions specified in batch
data interchange commands. For those commands that cause terminal control
output requests to be made, the DEFRESP option can be specified. This option has
the same effect as the DEFRESP option of the SEND terminal control command;
that is, to request a definite response from the outboard controller, irrespective of
the specification of message integrity for the CICS task (by the system
programmer). The DEFRESP option can be specified for the ISSUE ADD, ISSUE
ERASE, ISSUE REPLACE, and ISSUE SEND commands.

Waiting for function completion
For those batch data interchange commands that cause terminal control output
requests to be made, the NOWAIT option can be specified. This option has the
effect of allowing CICS task processing to continue; unless the NOWAIT option is
specified, task activity is suspended until the batch data interchange command is
completed. The NOWAIT option can be specified only on the ISSUE ADD, ISSUE
ERASE, ISSUE REPLACE, and ISSUE SEND commands.

After a batch data interchange command with the NOWAIT option has been issued,
task activity can be suspended, by the ISSUE WAIT command, at a suitable point in
the program to wait for the command to be completed.

Chapter 26. Terminal control 385

386 CICS TS for z/OS: CICS Application Programming Guide

Chapter 27. The 3270 family of terminals

This chapter helps you to understand 3270 facilities and operation, so that you can
use these terminals to best advantage in creating the end-user interface for your
application. Some appreciation of the 3270 is also crucial to understanding BMS,
because so many facilities of BMS exploit features of the 3270.

The 3270 is a family of display and printer terminals, with supporting control units,
that share common characteristics and use the same encoded data format to
communicate between terminal and host processor. This data format is known as
the 3270 data stream.

The 3270 is a complex device with many features and capabilities. Only basic
operations are covered here and the emphasis is on the way CICS supports the
3270. For a comprehensive discussion of 3270 facilities, programming and data
stream format, see the IBM 3270 Information Display System Data Stream
Programmer’s Reference manual. Programmers using terminal control commands
still need to consult the IBM 3270 Information Display System Data Stream
Programmer’s Reference manual for details. The IBM CICS/OS/VS 3270 Data
Stream Device Guide also contains much important information. It is primarily
intended for programmers using terminal control, but contains information that may
be helpful for BMS programmers as well. BMS support for a few special features is
discussed in the BMS chapter. (See page Chapter 42, “Support for special
hardware,” on page 549 for more information.)

Although the discussion in this chapter is focused on display terminals, most of the
material applies equally to 3270 printers. A 3270 printer accepts the same data
stream as a 3270 display and simply delivers the screen image in hardcopy form.
Most of the differences relate to input, which is (mostly) lacking on printers.

However, additional formatting facilities are available for use with printers, and there
are special considerations in getting your printed output to the desired printer. For
more information see Chapter 28, “CICS support for printing,” on page 407.

This chapter describes:
v “History of the 3270”
v “The 3270 buffer” on page 390
v “The output datastream” on page 390
v “Orders in the data stream” on page 395
v “Outbound data stream sample” on page 398
v “Input from a 3270 terminal” on page 400
v “Inbound field format” on page 403
v “Unformatted mode” on page 404

History of the 3270
The development of the 3270 coincided with, and in part caused, the explosive
growth of online transaction processing that began in the late 1960s. Consequently,
the 3270 was a major influence in the design of transaction processing systems
such as CICS.

The earliest terminal devices for online processing were adaptations of the teletype,
the original and most basic computer terminal. Output was typed, and structure in
the input typed by the operator was determined entirely by program convention,
without any assists from the hardware. Cathode-ray tube terminals brought a

© Copyright IBM Corp. 1989, 2010 387

revolutionary improvement in output speed, allowing a complexity of application not
previously possible, but formatting on early CRTs was not much more sophisticated
than on their hard-copy predecessors.

Screen fields
The 3270 transformed the user interface by introducing the concept of fields on a
display screen. Each field on the screen has a starting position and individual
attributes, such as display intensity, color, and whether or not you can key data into
it. Fields introduce structure into the communication between program and terminal
operator in the same way that fields in a file record provide structure for interaction
between programs and data.

Organizing a screen display into fields has many advantages:

v The screen is easier to read, because fields can have different display
characteristics.

v Data entry is enhanced by providing clear visual and keyboard cues about the
order and format of the information required. The screen can be as explicit as a
standard “fill-in-the-blanks” paper form. (Keyboard facilities reinforce the structure
imposed by the fields. The keyboard locks if the operator tries to key into the
wrong place. There are keys that tab from one field to the next, another that
erases just the current field, and so on.)

v The length of the outbound data stream is reduced, because you send only
nonblank (that is, nonspacer) data.

v The inbound data stream is also reduced, because the host normally reads only
the changed fields.

Personal computers
The advent of personal computers (PCs) and intelligent workstations brought a
second revolution in terminal display function. These terminals differ from 3270s in
two important respects:

v They are generally “all points addressable”. That is, you can address any point
on the display raster, just as you can on a television screen. A typical display
might contain a grid of 640 by 480 points in the space normally used to display a
single character on an earlier display. Moreover, a whole palette of colors and
intensities is available at each point.

In contrast, a 3270 screen is divided into an array of character positions, typically
24 down and 80 across. Each position consists of an array of raster points, but
you cannot address them individually. You can only select a character, from a set
of about 190 choices, for each position. Some terminals allow you to select from
several character sets and to load new sets, allowing a rudimentary form of
graphics, but essentially you are working with a terminal that displays text,

Billing information on customer:

Reference Number KRK123456

Full Name Phileas Arthur Fogg

Amount Owed $40.07

Figure 84. Part of a formatted screen, showing fields. Each block of text on the screen is a
separate field. The fields on the left were filled in by program; those on the right were
completed by an operator.

388 CICS TS for z/OS: CICS Application Programming Guide

numbers and symbols. You get some control of how the characters are
displayed, but the choices are very limited in comparison with a PC display.

v The second difference is what makes the first possible. Personal computers and
intelligent workstations contain a processor, memory, and programming (that is,
“intelligence”) that make it possible to communicate with this very much more
complex hardware through a relatively simple programming interface and
minimum long-distance transmission of data.

These characteristics make possible a much higher-function end-user interface than
that of the 3270. You can draw pictures, select from a variety of fonts, scale images
in size, and so on. If you are writing a new application, and all of your users access
it from such terminals, you may want to take advantage of this function to create
the most efficient end-user interface possible for your application.

CICS cannot provide this type of function directly, but it does provide a number of
ways for a task to communicate with a workstation, so that you can use a software
package tailored for your particular workstation in combination with CICS. One
popular approach is to use one of these packages, executing on the PC, to build
your screens and handle the interactions with your user—that is, to implement the
“front end” of your application. This code can then communicate with the part of
your application that does the actual processing—the “back end” or “business logic”
part—executing under CICS on the host. Communication between the two parts of
the application can be done in several ways, depending on what your workstation
supports:

v You can use one of the SNA application-to-application protocols, such as APPC.

v You can use the CPI-C “sockets” interface (see Chapter 30, “CICS
intercommunication,” on page 433).

v You can use CICS on the workstation and use CICS facilities to communicate, or
even distribute the business logic between the host and the workstation. CICS
runs on many of these platforms, including OS/2, AIX®, OS/400®, and others.

When you do this, you can execute specific commands on the host (file
operations, for example), or whole programs, or whole tasks. Executing
commands remotely is called function shipping, executing a program remotely
is called a distributed program link, and executing the whole task remotely is
called transaction routing. See the CICS Intercommunication Guide for a full
discussion of the possibilities, and the CICS Distributed Transaction
Programming Guide for implementation details.

v You can use the terminal in emulation mode, a technique explained in “PCs as
3270s.”

If some of your users have 3270s or other nonprogrammable terminals, on the
other hand, or if you are modifying an existing 3270 application, you need to use
either terminal control or BMS commands.

PCs as 3270s
Although there is a different programming interface for a PC display, you can use
PCs as “3270” terminals. Almost all PCs have programs available that emulate a
3270. These programs convert output in 3270 data stream format into the set of PC
instructions that produces the same display on the screen, and similarly convert
keyboard input into the form that would have come from a 3270 with the same
screen contents.

Under an emulator, the PC display has essentially the same level of function as a
real 3270. This limits your access to the more powerful PC hardware, although an
emulator program often gives you a means to switch easily from its control to other

Chapter 27. The 3270 family of terminals 389

programs that use the display in full function mode. Moreover, the hardware on a
particular PC does not always permit exact duplication of 3270 function (the
keyboard may be different, for example). Consequently, your PC may not always
behave precisely as described in this chapter or in the IBM 3270 Information
Display System Data Stream Programmer’s Reference manual, although the
differences are usually minor.

The 3270 buffer
Communication with a 3270 device occurs through its character buffer, which is a
hardware storage mechanism similar to the memory in a processor. Output to the
3270 is sent to the buffer. The buffer, in turn, drives the display of a display terminal
and the print mechanism of a printer terminal.

Conversely, keyboard input reaches the host through the buffer, as explained in
“Input from a 3270 terminal” on page 400.

Each position on the screen corresponds to one in the buffer, and the contents of
that buffer position determine what is displayed on the screen. When the screen is
formatted in fields, the first position of each field is used to store certain display
characteristics of the field and is not available to display data (it appears blank). In
the original models of the 3270, this byte was sufficient to store all of the display
characteristics. In later models, which have more types of display characteristics,
the additional information is kept in an area of buffer storage not associated with a
fixed position on the screen. See “Display characteristics” on page 392 for more
about display characteristics.

The output datastream
To create a 3270 display, you send a stream of data that consists of:
v A write command (one byte)
v A write control character or WCC (one byte)
v Display data (variable number of bytes)

The WCC and display data are not always present; the write command determines
whether a WCC follows and whether data may or must be present.

When you use BMS, CICS builds the entire data stream for you. The WCC is
assembled from options in the SEND command, and the write command is selected
from other SEND options and information in the PROFILE of the transaction being
executed. Display data is built from map or text data that you provide, which BMS
translates into 3270 format for you.

When you use terminal control commands, such as SEND, CICS still supplies the
write command, built from the same information. However, you provide the WCC
and you must express the display data in 3270 format.

3270 write commands
Even though CICS supplies the write command, you need to know the possibilities,
so that you can select the options that produce the one you want. There are five
3270 commands that send data or instructions to a terminal:
v Write
v Erase/write
v Erase/write alternate
v Erase all unprotected fields

390 CICS TS for z/OS: CICS Application Programming Guide

v Write structured fields

The 3270 write command sends the data that follows it to the 3270 buffer, from
which the screen (or printer) is driven. Erase/write and erase/write alternate also
do this, but they erase the buffer first (that is, they set it entirely to null values).
They also determine the buffer size (the number of rows and columns on the
screen), if the terminal has a feature called alternate screen size.

Terminals with this feature have two sizes, default size and alternate size. The
erase/write command causes the default size to be used in subsequent operations
(until the next erase/write or erase/write alternate command), and erase/write
alternate selects the alternate size, as the names suggest.

CICS uses the plain write command to send data unless you include the ERASE
option on your SEND command. If you specify ERASE DEFAULT on your SEND,
CICS uses erase/write instead (setting the screen to default size), and ERASE
ALTERNATE causes CICS to use erase/write alternate (setting alternate size). If
you specify ERASE without DEFAULT or ALTERNATE, CICS looks at the PROFILE
definition associated with the transaction you are executing to decide whether to
use erase/write or erase/write alternate.

The erase unprotected to address command causes a scan of the buffer for
unprotected fields (these are defined more precisely in “3270 field attributes” on
page 392). Any such fields that are found are set to nulls. This selective erasing is
useful in data entry operations, as explained in “The SEND CONTROL command”
on page 485. No WCC or data follows this command; you send only the command.

Write structured fields causes the data that follows to be interpreted as 3270
structured fields. Structured fields are required for some of the advanced function
features of the 3270. They are not covered here, but you can write them with
terminal control SEND commands containing the STRFIELD option. See the IBM
CICS/OS/VS 3270 Data Stream Device Guide if you wish to do this.

Write control character
The byte that follows a 3270 write, erase/write or erase/write alternate command is
the write control character or WCC. The WCC tells the 3270 whether or not to:
v Sound the audible alarm
v Unlock the keyboard
v Turn off the modified data tags
v Begin printing (if terminal is a printer)
v Reset structured fields
v Reset inbound reply mode

In BMS, CICS creates the WCC from the ALARM, FREEKB, FRSET, and PRINT
options on your SEND MAP command. If you use terminal control commands, you
can specify your WCC explicitly, using the CTLCHAR option. If you do not, CICS
generates one that unlocks the keyboard and turns off the modified data tags (these
are explained shortly, in “Modification” on page 393).

Chapter 27. The 3270 family of terminals 391

3270 display fields
Display data consists of a combination of characters to be displayed and
instructions to the device on how and where to display them. Under ordinary
circumstances, this data consists of a series of field definitions, although it is
possible to write the screen without defining fields, as explained in “Unformatted
mode” on page 404.

After a write command that erases, you need to define every field on the screen.
Thereafter, you can use a plain write command and send only the fields you want to
change.

To define a field, you need to tell the 3270:
v How to display it
v What its contents are
v Where it goes on the screen (that is, its starting position in the buffer)

Display characteristics
Each field on the screen has a set of display characteristics, called attributes.
Attributes tell the 3270 how to display a field, and you need to understand what the
possibilities are whether you are using BMS or terminal control commands.
Attributes fall into two categories:

Field attributes
These include:
v Protection (whether the operator can modify the field or not)
v Modification (whether the operator did modify the field)
v Display intensity

All 3270s support field attributes; “3270 field attributes” explains your
choices for them.

Field attributes are stored in the first character position of a field. This byte
takes up a position on the screen and not only stores the field attributes,
but marks the beginning of the field. The field continues up to the next
attributes byte (that is, to the beginning of the next field). If the next field
does not start on the same line, the current one wraps from the end of the
current line to the beginning of the next line until another field is
encountered. A field that has not ended by the last line returns to the first.

Extended field attributes
(Usually shortened to extended attributes). These are not present on all
models of the 3270. Consequently, you need to be aware of which ones are
available when you design your end-user interface. Extended attributes
include special forms of highlighting and outlining, the ability to use multiple
symbol sets and provision for double-byte character sets. Table 27 on page
394 lists the seven extended attributes and the values they can take.

3270 field attributes
As noted above, the field attributes byte holds the protection, modification and
display intensity attributes of a field. Your choices for each of these attributes are
described here using the terms that BMS uses in defining formats. If you use
terminal control commands, you need to set the corresponding bits in the attributes
byte to reflect the value you choose.

392 CICS TS for z/OS: CICS Application Programming Guide

(See the IBM 3270 Information Display System Data Stream Programmer’s
Reference manual for the bit assignments. See also “Attribute value definitions:
DFHBMSCA” on page 481 for help from CICS in this area.)

Protection
There are four choices for the protection attribute, using up two bit positions in the
attributes byte. They are:

Unprotected
The operator can enter any data character into an unprotected field.

Numeric-only
The effect of this designation depends on the keyboard type of the terminal.
On a data entry keyboard, a numeric shift occurs, so that the operator can
key numbers without shifting. On keyboards equipped with the “numeric
lock” special feature, the keyboard locks if the operator uses any key
except one of the digits 0 through 9, a period (decimal point), a dash
(minus sign) or the DUP key. This prevents the operator from keying
alphabetic data into the field, although the receiving program must still
inspect the entry to ensure that it is a number of the form it expects.
Without the numeric lock feature, numeric-only allows any data into the
field.

Protected
The operator cannot key into a protected field. Attempting to do so locks the
keyboard.

Autoskip
The operator cannot key into an autoskip field either, but the cursor
behaves differently. (The cursor indicates where the operator’s next
keystroke will go; for more information about this, see “Input from a 3270
terminal” on page 400.) Whenever the cursor is being advanced to a new
field (either because the previous field filled or because a field advance key
was used), the cursor skips over any autoskip fields in its path and goes to
the first field that is either unprotected or numeric-only.

Modification
The second item of information in the field attributes byte occupies only a single bit,
called the modified data tag or MDT. The MDT indicates whether the field has
been modified or not. The hardware turns on this bit automatically whenever the
operator makes any change to the field contents. The MDT bit is very important
because, for the read command that CICS normally uses, it determines whether the
field is included in the inbound data or not. If the bit is on (that is, the field was
changed), the 3270 sends the field; if not, the field is not sent.

You can also turn the MDT on by program, when you send a field to the screen.
Using this feature ensures that a field is returned on a read, even if the operator
cannot or does not change it. The FRSET option on BMS SEND commands allows
you to turn off the tags for all the fields on the screen by program; you cannot turn
off individual tags by program. If you are using terminal control commands, you turn
on a bit in the WCC to turn off an individual tag.

Chapter 27. The 3270 family of terminals 393

Intensity
The third characteristic stored in the attributes byte is the display intensity of the
field. There are three mutually exclusive choices:

Normal intensity
The field is displayed at normal brightness for the device.

Bright The field is displayed at higher than normal intensity, so that it appears
highlighted.

Nondisplay
The field is not displayed at all. The field may contain data in the buffer, and
the operator can key into it (provided it is not protected or autoskip), but the
data is not visible on the screen.

Two bits are used for display intensity, which allows one more value to be
expressed than the three listed above. For terminals that have either of the
associated special hardware features, these same two bits are used to determine
whether a field is light-pen detectable or cursor selectable. Because there are only
two bits, not all combinations of intensity and selectability are possible. The
compromise is that bright fields are always detectable, nondisplay fields are never
detectable, and normal intensity fields may be either. “Cursor and pen-detectable
fields” on page 552 contains more information about these features.

Base color
Some terminals support base color without, or in addition to, the extended colors
included in the extended attributes. There is a mode switch on the front of such a
terminal, allowing the operator to select base or default color. Default color shows
characters in green unless field attributes specify bright intensity, in which case they
are white. In base color mode, the protection and intensity bits are used in
combination to select among four colors: normally white, red, blue, and green; the
protection bits retain their protection functions as well as determining color. (If you
use extended color, rather than base color, for 3270 terminals, note that you cannot
specify "white" as a color. You need to specify "neutral", which is displayed as white
on a terminal.)

Extended attributes
In addition to the field attributes just described, some 3270 terminals have extended
attributes as well. Table 27 lists the types of extended attributes in the first column
and the possible values for each type in the second column.

Table 27. 3270 extended attributes

Attribute type Values

Extended color Blue, red, pink, green, turquoise, yellow, neutral

Extended highlighting Blinking, reverse video, underscoring

Field outlining Lines over, under, left and right, in any combination

Background transparency Background transparent, background opaque

Field validation Field must be entered; field must be filled; field triggers
input

394 CICS TS for z/OS: CICS Application Programming Guide

Table 27. 3270 extended attributes (continued)

Attribute type Values

Programmed symbol sets Number identifying the symbol set
Note: The control unit associated with a terminal contains
a default symbol set and can store up to five additional
ones. To use one of these others, you need to load the
symbol set into the controller prior to use. You can use a
terminal control SEND command to do this.

SO/SI creation Shift characters indicating double-byte characters may be
present; shift characters are not present

The IBM 3270 Information Display System Data Stream Programmer’s Reference
manual contains details about extended attributes and explains how default values
are determined. You can use ASSIGN and INQUIRE commands to determine which
extended attributes your particular terminal has. These commands are described in
“Finding out about your terminal” on page 375.

Some models of the 3270 also allow you to assign extended attribute values to
individual characters within a field that are different from the value for the field as a
whole. Generally, you need to use terminal control commands to do this, because
BMS does not make explicit provision for character attributes. However, you can
insert the control sequences for character attributes in text output under BMS, as
explained in “Text lines” on page 523. “The set attribute order” on page 398
describes the format of such a sequence.

Orders in the data stream
The next several sections tell you how to format outbound data to express the
attributes, position, and contents of a field. You need to know this information if you
are writing to a 3270 using terminal control commands. If you are using BMS, all
this is done for you, and you can move on to “Input from a 3270 terminal” on page
400.

When you define a field in the 3270 data stream, you begin with a start field (SF)
or a start field extended (SFE) order. Orders are instructions to the 3270. They
tell it how to load its buffer. They are one byte long and usually are followed by data
in a format specific to the order.

The start field order
The SF order is supported on all models and lets you specify the field attributes and
the display contents of a field, but not extended attributes. To define a field with SF,
you insert a sequence in the data stream as in Figure 85 on page 396.

Chapter 27. The 3270 family of terminals 395

If you need to specify extended attributes, and your terminal supports them, you
use the start field extended order instead. SFE requires a different format, because
of the more complex attribute information. Extended attributes are expressed as
byte pairs. The first byte is a code indicating which type of attribute is being
defined, and the second byte is the value for that attribute. The field attributes are
treated collectively as an additional attribute type and also expressed as a byte pair.
Immediately after the SFE order, you give a 1-byte count of the attribute pairs, then
the attribute pairs, and finally the display data. The whole sequence is shown in
Figure 86.

The modify field order
When a field is on the screen, you can change it with a command almost identical
in format to SFE, called modify field (MF). The only differences from SFE are:

v The field must already exist.

v The command code is X'2C' instead of X'29'.

v You send only the attributes you want to change from their current values, and
you send display data only if you want to change it.

v A null value sets an attribute back to its default for your particular terminal (you
accomplish the same thing in an SFE order by omitting the attribute).

1D F0 D4 C5 D5 E4
(M E N U)

Display data: word "MENU"

Field attributes: autoskip, normal intensity, MDT off

SF order

Figure 85. Field definition using SF order

29 02 C2 0F C0 F0 D4 C5 D5 E4
(M E N U)

Display data: word "MENU"

Field attributes: autoskip,
normal intensity, MDT off

Attribute code for field attributes

Field outlining value for box around field

Attribute code for field outlining

Count of attribute pairs to follow

SFE order

Figure 86. Field definition using SFE order

396 CICS TS for z/OS: CICS Application Programming Guide

For example, to change the “menu” field of earlier examples back to the default
color for the terminal and underscore it, you would need the sequence in Figure 87.

The set buffer address order
The SF and SFE orders place the field they define at the current position in the
buffer, and MF modifies the field at this position. Unless the field follows the last
character sent (that is, begins in the current buffer position), you need to precede
these orders with a set buffer address (SBA) order to indicate where you want to
place or change a field. To do this, you send an SBA order followed by a 2-byte
address, as in Figure 88.

The address in the figure is a “12-bit” address for position 112 (X'70'), which is row
2, column 33 on an 80-column screen. Note that counting starts in the first row and
column (the zero position) and proceeds along the rows. There are two other
addressing schemes used: “14-bit” and “16-bit”. Buffer positions are numbered
sequentially in all of them, but in 12- and 14-bit addressing, not all the bits in the
address are used, so that they do not appear sequential. (The X'70' (B'1110000') in
the figure appears as B'110000' in the low-order six bits of the rightmost byte of the
address and B'000001' in the low-order six bits of the left byte.) The IBM 3270
Information Display System Data Stream Programmer’s Reference manual explains
how to form addresses.

After an SF, SFE, or MF order, the current buffer address points to the first position
in the buffer you did not fill—right after your data, if any, or after the field attributes
byte if none.

2C 02 41 F4 42 00

Value to set to terminal default

Attribute code for foreground color

Extended highlighting value for underscore

Attribute code for extended highlighting

Count of attribute pairs to follow

MF order

Figure 87. Changing field attributes within an MF order

11 C1 F0

Buffer address (row 2, column 33)

SBA order

Figure 88. SBA sequence

Chapter 27. The 3270 family of terminals 397

The set attribute order
To set the attributes of a single character position, you use a set attribute (SA)
order for each attribute you want to specify. For example, to make a character blink,
you need the sequence in Figure 89.

The attributes you specify with SA orders are assigned to the current buffer
position, in the same way that field definitions are placed at the current buffer
position, so you generally need to precede your SAs with SBA sequences.

Outbound data stream sample
This section shows you an annotated example of the data stream required to paint
a particular 3270 screen, to reinforce the explanation of how the data stream is
built.

Figure 90 shows an example screen that is part of an application that keeps track of
cars used by the employees at a work site, and is used to record a new car. The
only inputs are the employee identification number, the license plate (tag) number,
and, if the car is from out-of-state, the licensing state.

Note: This is an unrealistically simple screen, designed to keep the explanation
manageably short. It does not conform to generally accepted standards of
screen design, and you should not use it as a model.

There are eight fields on this screen:
1. Screen title, “Car Record”, on line 1, column 26
2. Label field, “Employee No:” (line 3, column 1), indicating what the operator is to

enter into the next field
3. An input field for the employee number (line 3, column 14), six positions long
4. Label field, “Tag. No:”, at line 3, column 21
5. An input field (tag number) at line 3, column 31, eight positions long
6. Label field, “State:”, at line 3, column 40
7. An input field (state), at line 3, column 49, two positions long
8. A field to mark the end of the previous (state) input field, at line 3, column 52

Table 28 shows the outbound data stream:

28 41 F1

Extended highlighting value for blinking

Attribute code for extended highlighting

SA order

Figure 89. SA sequence to make a character blink

Car Record
Employee No: ______ Tag No: ________ State: __

Figure 90. Example of a data-entry screen

398 CICS TS for z/OS: CICS Application Programming Guide

Table 28. 3270 output data stream

Bytes Contents Notes

1 X'F5' The 3270 command that starts the data stream, in this
case erase/write.

2 X'C2' WCC; this value unlocks the keyboard, but does not
sound the alarm or reset the MDTs.

3 X'11' SBA order to position first field at ...

4-5 X'40D6' Address of line 1, column 23 on 24 by 80 screen, using
12-bit addressing.

6 X'1D' SF order to begin first field definition.

7 X'F8' Field attributes byte; this combination indicates a field
which is autoskip and bright, with the MDT initially off.

8-17 ‘Car record’ Display contents of the field.

18-20 X'11C260' SBA sequence to reset the current buffer position to
line 3, column 1 for second field.

21 X'1D' SF order for second field.

22 X'F0' Field attributes byte: autoskip, normal intensity, MDT
off.

23-34 ‘Employee No:’ Display contents of field.

35 X'29' SFE order to start fourth field. SFE is required, instead
of SF, because you need to specify extended attributes.
This field starts immediately after the previous one left
off, so you do not have to precede it with an SBA
sequence.

36 X'02' Count of attribute types that are specified (two here:
field outlining and field attributes).

37 X'41' Code indicating attribute type of extended highlighting.

38 X'F4' Extended highlighting value indicating underscoring.

39 X'C0' Code indicating attribute type of field attributes.

40 X'50' Field attributes value for numeric-only, normal intensity,
MDT off. Any initial data for this field would appear
next, but there is none.

41 X'13' Insert cursor (IC) order, which tells the 3270 to place
the cursor at the current buffer position. We want it at
the start of the first field which the operator has to fill
in, which is the current buffer position.

42-44 X'11C2F4' SBA sequence to position to line 3, column 21, to leave
the six positions required for an employee number. The
beginning of the “Tag No” label field marks the end of
the employee number input field, so that the user is
aware immediately if he tries to key too long a number.

45 X'1D' SF order to start field.

46 X'F0' Field attributes byte: autoskip, normal intensity, MDT
off.

47-55 ‘ Tag No:’ Display data. We attach two leading blanks to the label
for more space between the fields. (We could have
used a separate field, but this is easier for only a few
characters.)

56 X'29' SFE (the next field is another input field, where we
want field outlining, so we use SFE again).

Chapter 27. The 3270 family of terminals 399

Table 28. 3270 output data stream (continued)

Bytes Contents Notes

57 X'02' Count of attribute types.

58-59 X'41F4' Code for extended highlighting with value of
underscoring.

60-61 X'C040' Code for field attributes and attributes of unprotected,
normal intensity, MDT off.

62-64 X'11C3C7' SBA sequence to reposition to line 3, column 40,
leaving eight positions for the tag.

65 X'1D' SF to start field.

66 X'F0' Field attributes byte: autoskip, normal intensity, MDT
off.

67-74 ‘ State:’ Field data (two leading blanks again for spacing).

75-80 X'290241F4C040' SFE order and attribute specifications for state input
field (attributes are identical to those for tag input field).

81-82 X'0000' The (initial) contents of the state field. We could have
omitted this value as we did for other input fields, but
we would need an SBA sequence to move the current
buffer position to the end of the field, and this is
shorter.

83 X'1D' SF. The last field indicates the end of the previous one,
so that the user does not attempt to key more than two
characters for the state code. It has no initial data, just
an attributes byte. This kind of field is sometimes called
a “stopper” field.

84 X'F0' Field attributes byte: autoskip, normal intensity, MDT
off.

Note: If you use terminal control commands and build your own data stream, the
data you provide in the FROM parameter of your SEND command starts at
byte 3 in the table above; CICS supplies the write command and the WCC
from options on your SEND command.

Input from a 3270 terminal
As explained earlier, keyboard input reaches the host through the buffer. There are
many different keyboard arrangements available for 3270 terminals, but in any
arrangement, a key falls into one of three categories:
v Data key
v Keyboard control key
v Attention key

Data keys
The data keys include all the familiar letters, numbers, punctuation marks and
special characters. Depressing a data key simply changes the content of the buffer
(and therefore the screen) at the point indicated by the cursor. The cursor is a
visible pointer to the position on the screen (that is, in the buffer) where the next
data keystroke is be stored. As the operator keys data, the cursor advances to the
next position on the screen, skipping over fields defined with the autoskip attribute
on the screens that have been formatted.

400 CICS TS for z/OS: CICS Application Programming Guide

Keyboard control keys
Keyboard control keys move the cursor to a new position, erase fields or individual
buffer positions, cause characters to be inserted, or otherwise change where or how
the keyboard modifies the buffer.

Attention keys
The keys in the previous groups, Data and Keyboard control keys, cause no
interaction with the host; they are handled entirely by the device and its control unit.
An attention key, on the other hand, signals that the buffer is ready for transmission
to the host. If the host has issued a read to the terminal, the usual situation in
CICS, transmission occurs at this time.

There are five types of attention key:
v ENTER
v PF (program function) key
v CLEAR
v PA (program attention) key
v CNCL (cancel key, present only on some keyboard models)

In addition to pressing an attention key, there are other operator actions that cause
transmission:
v Using an identification card reader
v Using a magnetic slot reader or hand scanner
v Selecting an attention field with a light pen or the cursor select key
v Moving the cursor out of a trigger field

Trigger field capability is provided with extended attributes on some terminal
models, but all the other actions listed above require special hardware, and in most
cases the screen (buffer) must be set up appropriately beforehand. We talk about
these features in Chapter 42, “Support for special hardware,” on page 549. For this
chapter, we concentrate on standard features.

The AID
The 3270 identifies the key that causes transmission by an encoded value in the
first byte of the inbound data stream. This value is called the attention identifier or
AID.

Ordinarily, the key that the terminal operator chooses to transmit data is dictated by
the application designer. The designer assigns specific meanings to the various
attention keys, and the user must know these meanings in order to use the
application. (Often, there are only a few such keys in use: ENTER for normal
inputs, one PF key to exit from control of the application, another to cancel a
partially completed transaction sequence, for example. Where there are a number
of choices, you may want to list the key definitions on the screen, so that the user
does not have to memorize them.)

There is an important distinction between two groups of attention keys, which the
application designer must keep in mind. The ENTER and PF keys transmit data
from the buffer when the host issues a “read modified” command, the command
normally used by CICS. CLEAR, CNCL and the PA keys do not, although you do
get the AID (that is, the identity of the key that was used). These are called the
short read keys. They are useful for conveying simple requests, such as “cancel”,
but not for those that require accompanying data. In practice, many designers use
PF keys even for the nondata requests, and discard any accompanying data.

Chapter 27. The 3270 family of terminals 401

Note: The CLEAR key has the additional effect of setting the entire buffer to nulls,
so that there is literally no data to send. CLEAR also sets the screen size to
the default value, if the terminal has the alternate screen size feature, and it
puts the screen into unformatted mode, as explained in “Unformatted mode”
on page 404.

402 CICS TS for z/OS: CICS Application Programming Guide

Reading from a 3270 terminal
There are two basic read commands for the 3270:
v Read buffer
v Read modified

For either command, the inbound data stream starts with a 3-byte read header
consisting of:
v Attention identifier (AID), one byte
v Cursor address, two bytes

As noted in the previous section, the AID indicates which action or attention key
causes transmission. The cursor address indicates where the cursor was at the
time of transmission. CICS stores this information in the EIB, at EIBAID and
EIBCPOSN, on the completion of any RECEIVE command.

The read buffer command brings in the entire buffer following the read header, and
the receiving program is responsible for extracting the information it wants based on
position. It is intended primarily for diagnostic and other special purposes, and CICS
uses it in executing a RECEIVE command only if the BUFFER option is specified.
CICS never uses read buffer to read unsolicited terminal input, so the BUFFER
option cannot be used on the first RECEIVE of a transaction initiated in this way.

With read modified, the command that CICS normally uses, much less data is
transmitted. For the short read keys (CLEAR, CNCL and PAs), only the read header
comes in. For other attention keys (ENTER and PFs), the fields on the screen that
were changed (those with the MDT on, to be precise) follow the read header. We
describe the format in the next section. When transmission occurs because of a
trigger field, light pen detect or cursor select, the amount and format of the
information is slightly different; these special formats are described in Chapter 42,
“Support for special hardware,” on page 549. Input from a program attention key
on an SCS printer is also an exception; see “SCS input” on page 413 for a
description of that data stream.

Inbound field format
The next several sections describe the format in which the 3270 transmits data,
which you need to understand if you are using terminal control commands. If you
are using BMS, you can skip to “Unformatted mode” on page 404, because BMS
translates the input for you.

Each modified field comes in as follows:
v SBA order
v Two-byte address of the first data position of field
v SF order
v Field contents

Only the non-null characters in the field are transmitted; nulls are skipped, wherever
they appear. Thus if an entry does not fill the field, and the field was initially nulls,
only the characters keyed are transmitted, reducing the length of the inbound data.
Nulls (X'00') are not the same as blanks (X'40'), even though they are
indistinguishable on the screen. Blanks get transmitted, and hence you normally
initialize fields to nulls rather than to blanks, to minimize transmission.

A 3270 read command can specify that the terminal should return the attribute
values along with the field contents, but CICS does not use this option.

Chapter 27. The 3270 family of terminals 403

Consequently, the buffer address is the location of the first byte of field data, not the
preceding attributes byte (as it is in the corresponding outbound data stream).

Note: Special features of the 3270 for input, such as the cursor select key, trigger
fields, magnetic slot readers, and so on, produce different input formats. See
“Field selection features” on page 551 for details.

Input data stream example
To illustrate an inbound data stream, we assume that an operator using the screen
shown in Figure 90 on page 398 did the following:
v Put “123456” in the employee identifier field
v Put “ABC987” in the tag number
v Pressed ENTER, without filling in the state field

Here is the resulting inbound data stream:

Table 29. 3270 input data stream

Bytes Contents Notes

1 X'7D' AID, in this case the ENTER key.

2-3 X'C3C5' Cursor address: line 3, column 38, where the operator left it
after the last data keystroke.

4 X'11' SBA, indicating that a buffer address follows.

5-6 X'C26E' Address of line 3, column 15, which is the starting position of
the field to follow.

7-12 ‘123456’ Input, the employee number entered by the operator.

13-15 X'11C3D1' SBA sequence indicating a buffer address of line 3, column 32.

16 X'1D' SF, indicating another input field follows.

17-22 ‘ABC987’ Input field: plate number. Notice that only six characters came
in from a field that was eight long, because an operator left the
remaining positions null.

Note that the third input field (the state code) does not appear in the input data
stream. This is because its MDT did not get turned on; it was set off initially, and
the operator did not turn it on by keying into the field. Note also that no SF is
required at byte 7 because CICS normally issues a Read Modified All.

Unformatted mode
Even though the high function of the 3270 revolves around its field structure, it is
possible to use the 3270 without fields, in what is called unformatted mode. In this
mode, there are no fields defined, and the entire screen (buffer) behaves as a
single string of data, inbound and outbound, much like earlier, simpler terminals.

When you write in unformatted mode, you define no fields in your data, although
you can include SBA orders to direct the data to a particular positions on the
screen. Data that precedes any SBA order is written starting at the current position
of the cursor. (If you use an erase or write command, the cursor is automatically set
to zero, at the upper left corner of the screen.)

When you read an unformatted screen, the first three bytes are the read header
(the AID and the cursor address), just as when you read a formatted screen. The
remaining bytes are the contents of the entire buffer, starting at position zero. There

404 CICS TS for z/OS: CICS Application Programming Guide

are no SBA or SF orders present, because there are no fields. If the read command
was read modified, the nulls are suppressed, and therefore it is not always possible
to determine exactly where on the screen the input data was located.

You cannot use a BMS RECEIVE MAP command to read an unformatted screen.
BMS raises the MAPFAIL condition on detecting unformatted input, as explained in
“MAPFAIL and other exceptional conditions” on page 504. You can read
unformatted data only with a terminal control RECEIVE command in CICS.

Note: The CLEAR key puts the screen into unformatted mode, because its sets the
buffer to nulls, thereby erasing all the attributes bytes that demarcate fields.

Chapter 27. The 3270 family of terminals 405

406 CICS TS for z/OS: CICS Application Programming Guide

Chapter 28. CICS support for printing

CICS does not provide special commands for printing, but there are options on
BMS and terminal control commands that apply only to printers, and for some
printers you use transient data or SPOOL commands. We cover the factors that
determine the API and the choices you have in the sections that follow.

There are two issues associated with printing that do not usually occur in other
types of end-user communication:
1. There are additional formatting considerations, especially for 3270 printers
2. The task that needs to print may not have direct access to the printer.

In addition, there are two distinct categories of printer, which have different
application programming interfaces:

CICS printers
Printers defined as terminals to CICS and managed directly by CICS. They
are usually low-speed devices located near the end users, suitable for
printing on demand of relatively short documents. The 3289 and 3262 are
usually attached as CICS printers.

Non-CICS printers
Printers managed by the operating system or another application. These
printers are usually high-speed devices located at the central processing
site, appropriate for volume printing that does not have to be available
immediately. They may also be advanced function or other printers that
require special connections, management, or sharing.

This chapter describes:
v “Formatting for CICS printers”
v “CICS 3270 printers” on page 408
v “CICS 3270 printer options” on page 409
v “Non-3270 CICS printers” on page 412
v “Determining the characteristics of a CICS printer” on page 413
v “Using CICS printers” on page 415
v “Using Non-CICS printers” on page 417
v “Printing display screens” on page 420

Formatting for CICS printers
The application programming interface for writing to a printer terminal is essentially
the same as for writing to a display. (This section does not discuss the problem of
arranging that your task have the printer as its principal facility; this is discussed in
“Using CICS printers” on page 415.)

You can use terminal control commands (SENDs) for any CICS printer, and most of
them are supported by BMS too (SEND MAP, SEND TEXT, and SEND CONTROL).
“BMS support levels” on page 453 lists the devices that BMS supports. For printers
that are components of an outboard controller or LU Type 4, you can use batch
data interchange (BDI) commands as well as terminal control and BMS. BDI
commands are described in “Using batch data interchange” on page 383.

The choice between using BMS and terminal control is based on the same
considerations as it is for a display terminal. Like displays, printers differ widely from
one another, both in function and in the implementation of that function, and the
differences are reflected in the data streams and device controls they accept.

© Copyright IBM Corp. 1989, 2010 407

When you use terminal control commands, your application code must format the
output in the manner required by the printer. For line printers and similar devices,
formatting has little programming impact. For high-function printers, however, the
data stream often is very complex; formatting requires significant application code
and introduces device dependencies into program logic.

For some of these terminals, coding effort is greatly reduced by using BMS, which
relieves the programmer of creating or even understanding device data streams.
BMS also removes most data stream dependencies from the application code so
that the same program can support many types of printers, or a mixture of printers
and displays, without change. BMS does not remove all device dependencies and
imposes a few restrictions on format. It also involves extra path length; the amount
depends on how many separate BMS requests you make, the complexity of your
requests, and the corresponding path length avoided in your own program.

CICS 3270 printers
Most of the additional format controls for printers that BMS provides are for a
specific type of CICS printer, the 3270 printer. A 3270 printer is any printer that
accepts the 3270 data stream— it is the hardcopy equivalent of a 3270 display. It
has a page buffer, corresponding to the display buffer of a 3270 display device.
(See “The 3270 buffer” on page 390 for an introductory discussion of the 3270 data
stream.) We discuss 3270 printers first and defer the simpler, non-3270 printers,
until “Non-3270 CICS printers” on page 412.

A 3270 printer accepts two different types of formatting instructions: buffer control
orders and print format orders. Buffer control orders are executed as they are
received by the control unit, and they govern the way in which the buffer is filled.
These are same orders that are used to format a 3270 display screen. We have
already described some of the important ones in “Orders in the data stream” on
page 395. For example, SBA (set buffer address) tells the control unit where in the
buffer to place the data that follows, SF (start field), which signals an attributes byte
and possibly field data, and so on. You can find a complete list in the IBM 3270
Information Display System Data Stream Programmer’s Reference manual.

In contrast, print format orders are not executed when they are received, but
instead are stored in the buffer along with the data. These orders—NL (new line),
FF (form feed), and so on—are interpreted only during a print operation, at which
time they control the format of the printed output. (They have no effect on displays,
other than to occupy a buffer position; they look like blanks on the screen.)

If you are writing to a 3270 printer, you can format with either buffer control orders
or print format orders or a mixture of both. We show an example of formatting with
buffer control orders in “Outbound data stream sample” on page 398. If you send
this same data stream to a 3270 printer, it prints an image of the screen shown in
Figure 90 on page 398. You might choose to format printed output with buffer
control orders so that you can send the same data stream to a display and a
printer.

On the other hand, you might choose to format with print format orders so that you
can send the same stream to a 3270 printer and a non-3270 printer (print format
orders are the same as the format controls on many non-3270 printers). See the
discussion of the NLEOM option on page 410 for more details about this choice.

Here is a data stream using print format orders that produces the same printed
output as the data stream on page 398, which uses buffer control orders.

408 CICS TS for z/OS: CICS Application Programming Guide

Table 30. Example of data stream using print control orders

Bytes Contents Notes

1 X'FF' “Formfeed” (FF) order, to cause printer to space to
a new page.

2-23 blanks 22 blanks to occupy columns 1-22 on first line.

24-33 Car Record Text to be printed, which appears in the next
available columns (23-32) on line 1.

34 X'1515' Two successive “new line” (NL) orders, to position
printer to beginning of third line.

35-80 Employee No: ______ Tag
________ State: __

Text to be printed, starting at first position of line 3.

81 X'19' “End-of-message” (EM) print order, which stops the
printing.

Notice that the field structure is lost when you use print format orders. This does
not matter ordinarily, because you do not use the printer for input. However, even if
you format with print control orders, you might need to use buffer control orders as
well, to assign attributes like color or underscoring to an area of text.

CICS 3270 printer options
For BMS, the special controls that apply to 3270 printers take the form of command
options:
v PRINT
v ERASE
v L40, L64, L80 and HONEOM
v NLEOM
v FORMFEED
v PRINTERCOMP

In terminal control commands, ERASE is also expressed as an option, but the other
controls are expressed directly in the data stream. The IBM CICS/OS/VS 3270 Data
Stream Device Guide and the IBM 3270 Information Display System Data Stream
Programmer’s Reference tell you how to encode them; the discussion that follows
explains what they do.

PRINT option and print control bit
Writing to a 3270 display or printer updates the device buffer. On a display, the
results are reflected immediately on the screen, which is a driven from the buffer.
For a printer, however, there might be no visible effect, because printing does not
occur until you turn on the appropriate bit in the “write control character”. (The WCC
is part of the 3270 data stream; see “Write control character” on page 391.) For
BMS, you turn on the print bit by specifying the PRINT option on a SEND MAP,
SEND TEXT, or SEND CONTROL command, or in the map used with SEND MAP.
If you are using terminal control SENDs, you must turn on the print bit with the
CTLCHAR option.

A terminal write occurs on every terminal control SEND, and on every SEND MAP,
SEND TEXT, or SEND CONTROL unless you are using the ACCUM or PAGING
options. ACCUM delays writing until a page is full or the logical message is ended.
When you use ACCUM, you should use the same print options on every SEND

Chapter 28. CICS support for printing 409

command for the same page. PAGING defers the terminal writes to another task,
but they are generated in the same way as without PAGING.

The fact that printing does not occur until the print bit is on allows you to build the
print buffer in stages with multiple writes and to change data or attribute bytes
already in the buffer. That is, you can use the hardware to achieve some of the
effects that you get with the ACCUM option of BMS. The NLEOM option affects this
ability, however; see the discussion below.

ERASE option
Like the 3270 display buffer, the 3270 printer buffer is cleared only when you use a
write command that erases. You do this by specifying the ERASE option, both for
BMS and terminal control SENDs. If the printer has the alternate screen size
feature, the buffer size is set at the time of the erase, as it is for a display.
Consequently, the first terminal write in a transaction should include erasing, to set
the buffer to the size required for the transaction and to clear any buffer contents
left over from a previous transaction.

Line width options: L40, L64, L80, and HONEOM
In addition to the print bit, the write control character contains a pair of bits that
govern line length on printing. If you are using terminal control commands, you use
the CTLCHAR option to set these bits. For BMS, the default is the one produced by
the HONEOM option, which stands for “honor end-of-message”. With this setting,
the printer formats according to the buffer control and print format orders only,
stopping printing at the first EM (end-of-message) character in the buffer. Only if
you attempt to print beyond the maximum width for the device (the platen width)
does the printer move to a new line on its own.

However, you also can specify that the line length is a fixed at 40, 64, or 80
characters (the L40, L64 and L80 options, respectively). If you do, the printer
ignores certain print format orders, moves to a new line when it reaches the
specified line size, and prints the entire buffer. The print format orders that are
ignored are NL (new line), CR (carriage return), and EM (end-of-message). Instead
they are simply printed, as graphics.

If you use L40, L64, or L80 under BMS, you should use only the value that
corresponds to the page width in your terminal definition (see “Determining the
characteristics of a CICS printer” on page 413). The reason is that BMS calculates
buffer addresses based on the page size, and these addresses are wrong if you
use a different page width.

NLEOM option
BMS ordinarily uses buffer control orders, rather than print format orders, to format
for a 3270 printer, whether you are using SEND TEXT or SEND MAP. However, you
can tell BMS to use print format orders only, by specifying the NLEOM option. If you
do, BMS formats the data entirely with blanks and NL (new line) characters, and
inserts an EM (end-of-message) character after your data. NLEOM implies
HONEOM. (NLEOM support requires standard BMS; it is not available in minimum
BMS.)

You might want to do this in order to maintain compatibility with an SCS printer
(print format orders are compatible with the corresponding SCS control characters).
The following operational differences might cause you to choose or avoid NLEOM.

410 CICS TS for z/OS: CICS Application Programming Guide

Blank lines
The 3270 printer suppresses null lines during printing. That is, a line that has no
data fields and appears blank on the display screen is omitted when the same map
is sent to a printer. Under BMS, you can force the printed form to look exactly like
the displayed form by placing at least one field on every line of the screen; use a
field containing a single blank for lines that would otherwise be empty. Specifying
NLEOM also has this effect, because BMS uses a new line character for every line,
whether or not there is any data on it.

Multiple sends
With NLEOM, data from successive writes is simply stacked in the buffer, since it
does not contain positioning information. However, BMS adds an EM
(end-of-message) character at the end of data on each SEND with NLEOM, unless
you are using the ACCUM option. When printing occurs, the first EM character
stops the printing, so that only the data from the first SEND with NLEOM (and any
unerased data up to that point in the buffer) gets printed. The net effect is that you
cannot print a buffer filled with multiple SEND commands with NLEOM unless you
use the ACCUM option.

Page width
BMS always builds a page of output at a time, using an internal buffer whose size
is the number of character positions on the page. (See “Determining the
characteristics of a CICS printer” on page 413 for a discussion of how BMS
determines the page size.) If you are using buffer control orders to format, the
terminal definition must specify a page width of 40, 64, 80 or the maximum for the
device (the platen size); otherwise your output might not be formatted correctly. If
you are using NLEOM, on the other hand, the terminal definition may specify any
page width, up to the platen size.

Total page size
If you are using buffer control orders, the product of the number of lines and the
page width must not exceed the buffer size, because the buffer is used as an image
of the page. Unused positions to the right on each line are represented by null
characters. If you use NLEOM, however, BMS does not restrict page size to the
buffer capacity. BMS builds the page according to the page size defined for the
terminal and then compresses the stream using new-line characters where possible.
If the resulting stream exceeds the buffer capacity, BMS uses multiple writes to the
terminal to send it.

FORMFEED
The FORMFEED option causes BMS to put a form feed print format order (X'0C') at
the beginning of the buffer, provided that the printer is defined as capable of
advancing to the top of the form (with the FORMFEED option in the associated
TYPETERM definition). CICS ignores a form feed request for a printer defined
without this feature.

If you issue a SEND MAP using a map that uses position (1,1) of the screen, you
overwrite the order and lose the form feed. This occurs whether you are using
NLEOM or not.

If you use FORMFEED and ERASE together on a SEND CONTROL command, the
results depend on whether NLEOM is present. Without NLEOM, SEND CONTROL
FORMFEED ERASE sends the form feed character followed by an entire page of
null lines. The printer suppresses these null lines, replacing them with a single
blank line. With NLEOM, the same command sends the form feed character

Chapter 28. CICS support for printing 411

followed by one new line character for each line on the page, so that the effect is a
full blank page, just as it is on a non-3270 printer.

PRINTERCOMP option
When you SEND TEXT to a printer, there is one additional option that affects page
size. This is the PRINTERCOMP option, which is specified in the PROFILE
associated with the transaction you are executing, rather than on individual SEND
TEXT commands. (In the default profile that CICS provides, the PRINTERCOMP
value is NO.)

Under PRINTERCOMP(NO), BMS produces printed output consistent with what it
would send to a 3270 display. For the display, BMS precedes the text from each
SEND TEXT command with an attribute byte, and it also starts each line with an
attribute byte. These attribute bytes take space on the screen, and therefore BMS
replaces them with blanks for printers if PRINTERCOMP is NO. If PRINTERCOMP
is YES, BMS suppresses these blanks, allowing you to use the full width of the
printer and every position of the buffer. New line characters that you embed in the
text are still honored with PRINTERCOMP(YES), as they are with
PRINTERCOMP(NO).

You should use PRINTERCOMP(NO) if you can, for compatibility with display
devices and to ensure consistent results if the application uses different printer
types, even though it reduces the usable line width by one position.

Non-3270 CICS printers
A non-3270 printer is any printer that does not accept the 3270 data stream, such
as an SNA character set (SCS) printer. The terminology is somewhat confusing,
because a non-3270 printer can be a 3270-family device, and many devices, like
the 3287 and 3262, can be either 3270 printers or SCS (non-3270) printers,
depending on how they are defined at the control unit.

There are special considerations for non-3270 printers, although not so many as for
3270 printers. Non-3270 printers do not have page buffers, and therefore do not
understand buffer control orders. Formatting is accomplished entirely with print
control orders. For compatibility with 3270 printers, BMS formats for them by
constructing an image of a page in memory, and always prints a full page at a time.
However, you can define any size page, provided you do not exceed the platen
width, as there is no hardware buffer involved. BMS transmits as many times as
required to print the page, just as it does for a 3270 printer using the NLEOM
option.

BMS formats for these printers with blanks and NL (new line) characters. It uses
form feed (FF) characters as well if the definition of your terminal indicates form
feed support.

BMS also uses horizontal tabs to format if the terminal definition has the
HORIZFORM option and the map contains HTAB specifications. Similarly, it uses
vertical tabs if the terminal definition specifies VERTICALFORM and your map
includes VTAB. Tab characters can shorten the data stream considerably. If tabs are
used, BMS assumes that the current task, or some earlier one, has already set the
tabs on the printer. On an SCS printer, you set the tabs with a terminal control
SEND command, as explained in the IBM CICS/OS/VS 3270 Data Stream Device
Guide. For other non-3270 printers, you should consult the appropriate device
guide.

412 CICS TS for z/OS: CICS Application Programming Guide

For SEND TEXT to an SCS printer, BMS does not recognize any non-3270 control
codes in the input datastream except newline (X'15') and set attribute (X'28'). All
other characters are assumed to be display characters. In particular, the datastream
might be affected if you attempt to use the transparency control order (X'35') under
BMS. This control order normally causes the data that follows it to be ignored (the
next byte contains the length of the data to be ignored). However, because BMS
does not recognize the X'35' control order, it processes the data that follows the
transparency control order as if it were a normal part of the datastream. If this data
cannot be processed correctly, BMS might remove it from the datastream. For
example, if the X'28' character is encountered in the transparency sequence it will
be mistaken for a set attribute control order, in which case the two bytes following it
will be mistaken for an attribute description, and all three bytes might be removed
from the datastream. The X'0C' character (formfeed) is also liable to be removed
from the datastream. If you want to send a datastream including a transparency
sequence which contains characters that may be recognized and altered by BMS,
the recommended method is to use a terminal control SEND command, rather than
BMS.

SCS input
SCS printers also have limited input capability, in the form of “program attention”
keys. These keys are not like the PA keys described in “Attention keys” on page
401, however. Instead they transmit an unformatted data stream consisting of the
characters ‘APAK nn’, where “nn” is the 2-digit PA key number—‘APAK 01’ for PA
key 1, for example.

You can capture such input by defining a transaction named ‘APAK’ (APAK is the
transaction identifier, not the TASKREQ attribute value, because SCS inputs do not
look like other PA key inputs.) A program invoked by this transaction can determine
which PA key was pressed by issuing a RECEIVE and numeric positions of the
input.

Determining the characteristics of a CICS printer
If you are writing a program that supports more than one type of CICS printer, you
may need to determine the characteristics of a particular printer. As we explained in
connection with terminals generally, you can use the ASSIGN and INQUIRE
TERMINAL commands for this purpose. Table 25 on page 376 lists the ASSIGN
options that apply to terminals, including several that are specific to printers.

The INQUIRE TERMINAL options that apply specifically to printers and the
corresponding parameters in the terminal definition are shown in Table 31:

Table 31. INQUIRE TERMINAL options for printers

INQUIRE
option

Source in TERMINAL
or TYPETERM
definition

Description

PAGEHT x of PAGESIZE(x,y) Number of lines per page (for alternate screen
size terminals, reflects default size)

PAGEWD y of PAGESIZE(x,y) Number of characters per line (for alternate
screen size terminals, reflects default size)

DEFPAGEHT x of PAGESIZE(x,y) Number of lines per page in default mode
(alternate screen size terminals only)

DEFPAGEWD y of PAGESIZE(x,y) Number of characters per line in default mode
(alternate screen size terminals only)

Chapter 28. CICS support for printing 413

Table 31. INQUIRE TERMINAL options for printers (continued)

INQUIRE
option

Source in TERMINAL
or TYPETERM
definition

Description

ALTPAGEHT x of ALTPAGE(x,y) Number of lines per page in alternate mode
(alternate screen size terminals only)

ALTPAGEWD y of ALTPAGE(x,y) Number of characters per line in alternate
mode (alternate screen size terminals only)

DEVICE DEVICE The device type (see the CICS System
Programming Reference for possible values)

TERMMODEL TERMMODEL The model number of the terminal (either 1 or
2)

BMS page size, 3270 printers
BMS uses both the terminal definition and the profile of the transaction that is
running to determine the page size of a CICS printer. The profile is used when the
terminal has the alternate screen size feature, to determine whether to use default
or alternate size. (The default profile in CICS specifies “default” size for the screen.)
Table 32 lists the values used.

Table 32. Priority of parameters defining BMS page size. BMS uses the first value in the
appropriate column that has been specified in the terminal definition.

Terminals with
alternate screen size,
using alternate size

Terminals with alternate
screen size, using default size

Terminals without alternate
screen size feature

ALTPAGE PAGESIZE PAGESIZE

ALTSCREEN DEFSCREEN TERMMODEL

DEFSCREEN TERMMODEL (12,80)

TERMMODEL (12,80)

(12,80)

The definition of a “page” is unique to BMS. If you are printing with terminal control
SEND commands, you define what constitutes a page, within the physical limits of
the device, by your print format. If you need to know the buffer size to determine
how much data you can send at once, you can determine this from the SCRNHT
and SCRNWD values returned by the ASSIGN command.

Supporting multiple printer types
When you are writing programs to support printers that have different page sizes, it
is not always possible to keep device dependencies like page size out of the
program. However, BMS helps with this problem in two ways.

1. You can refer to a map generically and have BMS select the map that was
designed for the terminal associated with your task (see the discussion of map
suffixes in “Device-dependent maps” on page 472).

2. If you are using SEND TEXT, BMS breaks the text into lines at word
boundaries, based on the page size of the receiving terminal. You can also
request header and trailer text on each page.

414 CICS TS for z/OS: CICS Application Programming Guide

Using CICS printers
As we noted at the start of the chapter, the second issue that frequently arises in
printing concerns ownership of the printer. Requests for printing often originate from
a user at a display terminal. The task that processes the request and generates the
printed output is associated with the user’s terminal and therefore cannot send
output directly to the printer.

If your task does not own the printer it wants to use, it must create another task,
which does, to do the work. These are the ways to do this:
1. Create the task with a START command.
2. Write to an intrapartition transient data queue that triggers the task.
3. Direct the output to the printer in a BMS ROUTE command.
4. Use the ISSUE PRINT command, if you need only a screen copy.

Printing with a START command
The first technique for creating the print task is to issue a START command in the
task that wants to print. The command names the printer as the terminal required
by the STARTed task in the TERMID option and passes the data to be printed, or
instructions on where to find it, in the FROM option. START causes CICS to create
a task whose principal facility is the designated terminal when that terminal is
available.

The program executed by the STARTed task, which you must supply, retrieves the
data to be printed (using a RETRIEVE command), and then writes it to its terminal
(the printer) with SEND, SEND MAP, or SEND TEXT . For example:

The task associated with the printer loops until it exhausts all the data sent to it, in
case another task sends data to the same printer before the current printing is
done. Doing this saves CICS the overhead of creating new tasks for outputs that
arrive while earlier ones are still being printed; it does not change what finally gets
printed, as CICS creates new tasks for the printer as long as there are unprocessed
START requests.

Printing with transient data
The second method for creating the print task involves transient data. A CICS
intrapartition transient data queue can be defined to have a property called a
“trigger”. When the number of items on a queue with a trigger reaches the trigger

...
(build output in OUTAREA, formatted as expected by the STARTed task)

EXEC CICS START TRANSID(PRNT) FROM(OUTAREA) TERMID(PRT1)
LENGTH(OUTLNG) END-EXEC....

Figure 91. Task that wants to print (on printer PRT1)

...
EXEC CICS RETRIEVE INTO(INAREA) LENGTH(INLNG) END-EXEC....

(do any further data retrieval and any formatting required)
EXEC CICS SEND TEXT FROM(INAREA) LENGTH(INLNG) ERASE PRINT END-EXEC....

(repeat from the RETRIEVE statement until a NODATA condition arises)

Figure 92. STARTed task (executing transaction PRNT)

Chapter 28. CICS support for printing 415

value, CICS creates a transaction to process the queue. The queue definition tells
CICS what transaction this task executes and what terminal, if any, it requires as its
principal facility.

You can use this mechanism to get print data from the task that generates it to a
task that owns the printer. A transient data queue is defined for each printer where
you direct output in this way. A task that wants to print puts its output on the queue
associated with the required printer (using WRITEQ TD commands). When enough
items are on the queue and the printer is available, CICS creates a task to process
the queue. (For this purpose, the trigger level of “enough” is usually defined as just
one item.) The triggered task retrieves the output from the queue (with READQ TD
commands) and writes it to its principal facility (the printer), with SEND, SEND MAP,
or SEND TEXT commands.

As in the case of a STARTed printer task, you have to provide the program
executed by the task that gets triggered. The sample programs distributed with
CICS contain a complete example of such a program, called the “order queue print
sample program”. The CICS 4.1 Sample Applications Guide describes this program
in detail, but the essentials are as follows:

Task that wants to print (on printer PRT1):
...

(do any formatting or other processing required)
EXEC CICS WRITEQ TD QUEUE('PRT1') FROM(OUTAREA)

LENGTH(OUTLNG) END-EXEC....

Task that gets triggered:
...
EXEC CICS ASSIGN QNAME(QID) END-EXEC.
EXEC CICS READQ TD QUEUE(QID) INTO(INAREA) LENGTH(INLNG)

RESP(RESPONSE) END-EXEC.
IF RESPONSE = DFHRESP(QZERO) GO TO END-TASK....

(do any error checking, further data retrieval and formatting required)
EXEC CICS SEND FROM(INAREA) LENGTH(INLNG) END-EXEC....

(repeat from READQ command)

The print task determines the name of its queue using an ASSIGN command rather
than a hard-coded value so that the same code works for any queue (printer).

Like its START counterpart, this task loops through its read and send sequence
until it detects the QZERO condition, indicating that the queue is empty. While this
is just an efficiency issue with the STARTed task, it is critical for transient data;
otherwise unprocessed queue items can accumulate under certain conditions. (See
“Automatic transaction initiation (ATI)” on page 595 for details on the creation of
tasks to process transient data queues with triggers.)

If you use this technique, you need to be sure that output to be printed as a single
unit appears either as a single item or as consecutive items on the queue. There is
no fixed relationship between queue items and printed outputs; packaging
arrangements are strictly between the programs writing the queue and the one
reading it. However, if a task writes multiple items that need to be printed together,
it must ensure that no other task writes to the queue before it finishes. Otherwise
the printed outputs from several tasks may be interleaved.

416 CICS TS for z/OS: CICS Application Programming Guide

If the TD queue is defined as recoverable, CICS prevents interleaving. Once a task
writes to a recoverable queue, CICS delays any other task that wants to write until
the first one commits or removes what it has written (by SYNCPOINT or end of
task). If the queue is not recoverable, you need to perform this function yourself.
One way is to ENQUEUE before writing the first queue item and DEQUEUE after
the last. (See Chapter 47, “Transient data control,” on page 593 for a discussion of
transient data queues.)

Printing with BMS routing
A task also can get output to a printer other than its principal facility with BMS
routing. This technique applies only to BMS logical messages (the ACCUM or
PAGING options) and thus is most appropriate when you are already building a
logical message.

When you complete a routed message, CICS creates a task for each terminal
named in a route list. This task has the terminal as its principal facility, and uses
CSPG, the CICS-supplied transaction for displaying pages, to deliver the output to
the printer. So routing is similar in effect to using START commands, but CICS
provides the program that does the printing. (See Chapter 39, “Message routing,”
on page 527 for more information about routing.)

Using Non-CICS printers
Here are the steps to use a printer managed outside CICS:

1. Format your output in the manner required by the application or subsystem that
controls the printer you wish to use.

2. Deliver the output to the application or subsystem that controls the printer in the
form required by that application.

3. If necessary, notify that application that the output is ready for printing.

Formatting for non-CICS printers
For some printers managed outside CICS, you can format output with BMS, as we
explain in “Programming for non-CICS printers” on page 418. However, for most
printers, you need to meet the format requirements of the application that drives the
printer. This may be the device format or an intermediate form dictated by the
application. For conventional line printers, formatting is simply a matter of producing
line images and, sometimes, adding carriage-control characters.

Non-CICS printers: Delivering the data
Print data is usually conveyed to an application outside of CICS by placing the data
in an intermediate file, accessible to both CICS and the application. The type of file,
as well as the format within the file, is dictated by the receiving application. It is
usually one of those listed in the first column of Table 33. The second column of the
table shows which groups of CICS commands you can use to create such data.

Table 33. Intermediate files for transferring print data to non-CICS printers

File type Methods for writing the data

Spool files CICS spool commands (SPOOLOPEN, SPOOLWRITE, etc.)
Transient data commands (WRITEQ TD) Terminal control and BMS
commands (SEND, SEND MAP, etc.)

BSAM CICS spool commands (SPOOLOPEN, SPOOLWRITE, etc.)
Transient data commands (WRITEQ TD)

VSAM CICS file control commands (WRITE)

Chapter 28. CICS support for printing 417

Table 33. Intermediate files for transferring print data to non-CICS printers (continued)

File type Methods for writing the data

DB2 EXEC SQL commands

IMS EXEC DLI commands or CALL DLI statements

Programming for non-CICS printers
If you are using VSAM, DB2, or IMS, the CICS application programming commands
you can use are determined by the type of file you are using.

For BSAM and spool files, however, you have a choice. The CICS definition of the
file (or its absence) determines which commands you use. The file may be:

v An extra-partition transient data queue (see Chapter 47, “Transient data control,”
on page 593 for information on transient data queues)

v The output half of a sequential terminal (see “Using sequential terminal support”
on page 381 and “Support for non-3270 terminals” on page 470)

v A spool file (see Chapter 29, “CICS interface to JES,” on page 423)

Both transient data queue definitions and sequential terminal definitions point to an
associated data definition (DD) statement in the CICS start-up JCL, and it is this DD
statement that determines whether the file is a BSAM file or a spool file. Files
created by CICS spool commands do not require definition before use and are
spool files by definition.

If the printing application accepts BSAM or spool file input, there are several factors
to consider in deciding how to define your file to CICS:

System definitions
Files created by the SPOOLOPEN command do not have to be defined to
CICS or the operating system, whereas transient data queues and
sequential terminals must be defined to both before use.

Sharing among tasks
A file defined as a transient data queue is shared among all tasks. This
allows you to create a print file in multiple tasks, but it also means that if
your task writes multiple records to the queue that must be printed together
(lines of print for a single report, for example), you must include enqueue
logic to prevent other tasks from writing their records between yours. This is
the same requirement that was cited for intrapartition queues in “Printing
with transient data” on page 415. In the case of extra-partition transient
data, however, CICS does not offer the recoverability solution, and your
program must prevent the interspersing itself.

In contrast, a file created by a SPOOLOPEN can be written only by the task
that created it. This eliminates the danger of interleaving output, but also
prevents sharing the file among tasks.

A spool file associated with a sequential terminal can be written by only one
task at a time (the task that has the terminal as its principal facility). This
also prevents interleaving, but allows tasks to share the file serially.

Release for printing
Both BSAM and spool files must be closed in order for the operating
system to pass them from CICS to the receiving application, and therefore
printing does not begin until the associated file is closed. Files created by
SPOOLOPEN are closed automatically at task end, unless they have

418 CICS TS for z/OS: CICS Application Programming Guide

already been closed with a SPOOLCLOSE command. In contrast, an
extrapartition transient data queue remains open until some task closes it
explicitly, with a SET command. (It must be reopened with another SET if it
is to be used subsequently.) So transient data gives you more control over
release of the file for processing, at the cost of additional programming.

A file that represents the output of a sequential terminal does not get closed
automatically (and so does not get released for printing) until CICS
shutdown, and CICS does not provide facilities to close it earlier. If you use
a sequential terminal to pass data to a printer controlled outside of CICS,
as you might do in order to use BMS, you should be aware of this
limitation.

Formatting
If you define your file as a sequential terminal, you can use BMS to format
your output. This feature allows you to use the same maps for printers
managed outside of CICS—for example, line printers managed by the MVS
job entry subsystem (JES)—that you use for CICS display and printer
terminals.

If you choose this option, remember that BMS always sends a page of
output at a time, using the page size in the terminal definition, and that the
data set representing the output from a sequential terminal is not released
until CICS shutdown.

Spool file limits
Operating systems identify spool files by assigning a sequential number.
There is an upper limit to this number, after which numbers are reused. The
limit is usually very large, but it is possible for a job that runs a very long
time (as CICS can) and creates a huge number of spool files (as an
application under CICS can) to exceed the limit. If you are writing an
application that generates a very large number of spool files, consult your
systems programmer to ensure that you are within system limits. A new
spool file is created at each SPOOLOPEN statement and each open of a
transient data queue defined as a spool file.

Notifying the print application
When you deliver the data to a print application outside CICS, you might need to
notify the application that you have data ready to process. You do not need to do
this if the application runs automatically and knows to look for your data. For
example, to print on a printer owned by the MVS job entry system (JES), all you
need to do is create a spool file with the proper routing information. JES does the
rest.

However, sometimes you need to submit a job to do the processing, or otherwise
signal an executing application that you have work for it.

To submit a batch job from a CICS task, you need to create a spool file which
contains the JCL for the job, and you need to direct this file to the JES internal
reader. You can create the file in any of the three ways listed for spool files in
Table 33 on page 417, although if you use a sequential terminal, the job does not
execute until CICS shuts down, as noted earlier. For files written with spool
commands, the information that routes the file to the JES internal reader is
specified in the SPOOLOPEN command. For transient data queues and sequential
terminals, the routing information appears on the first record in the file, the “JOB
card”.

Chapter 28. CICS support for printing 419

The output to be printed can be embedded in the batch job (as its input) or it can
be passed separately through any form of data storage that the job accepts.

Printing display screens
If your printing requirement is simply to copy a display screen to a printer, you have
choices additional to those already described. Some of these are provided by the
terminal hardware itself, and some by CICS. Some of the CICS support also
depends on hardware features, and so your options depend on the type of
terminals involved and, in some cases, the way in which they are defined to CICS.
See the CICS Resource Definition Guide for more detail on copying.

CICS print key
The first such option is the CICS print key (also called the local copy key). This
allows a user to request a printed copy of a screen by pressing a program attention
key, provided the terminal is a 3270 display or a display in 3270 compatibility mode.
Print key support is optional in CICS; the system programmer decides whether to
include it and what key is assigned. The default is PA1. (See the PRINT option in
the CICS System Definition Guide.)

The print key copies the display screen to the first available printer among those
defined as eligible. Which printers are eligible depends on the definition of the
display terminal from which the request originates, as follows:

v For VTAM 3270 displays defined without the “printer-adapter” feature, the printers
named in the PRINTER and ALTPRINTER options of the terminal definition are
eligible. PRINTER is be used if available; ALTPRINTER is second choice. If both
are unavailable, the request is queued for execution when PRINTER becomes
available.

v For the 3270 compatibility mode of the 3790 and a 3650 host conversational
(3270) logical unit, the same choices apply.

v For VTAM 3270 displays defined with the printer-adapter feature, copying is
limited to printers on the same control unit as the display. The printer
authorization matrix within the control unit determines printer eligibility.

v For a 3270 compatibility mode logical unit of the 3790 with the printer-adapter
feature, the 3790 determines eligibility and allocates a printer for the copy.

v For a 3275 with the printer-adapter feature, the print key prints the data currently
in the 3275 display buffer on the 3284 attached to the display.

Where CICS chooses the printer explicitly, as it does in the first three cases above,
the printer has to be in service and not attached to a task to be “available” for a
CICS print key request. Where a control unit or subsystem makes the assignment,
availability and status are determined by the subsystem. The bracket state of the
device usually determines whether it is available or not.

ISSUE PRINT and ISSUE COPY
An application can initiate copying a screen to a printer as well as the user, with the
ISSUE PRINT and ISSUE COPY commands. ISSUE PRINT simulates the user
pressing the CICS print key, and printer eligibility and availability are the same as
for CICS print key requests.

There is also a command you can use to copy a screen in a task that owns the
printer, as opposed to the task that owns the terminal which is to be copied. This is
the ISSUE COPY command. It copies the buffer of the terminal named in the
TERMID option to the buffer of the principal facility of the issuing task. The method

420 CICS TS for z/OS: CICS Application Programming Guide

of copying and the initiation of printing once the copy has occurred is controlled by
the “copy control character” defined in the CTLCHAR option of the ISSUE COPY
command; see the IBM CICS/OS/VS 3270 Data Stream Device Guide for the bit
settings in this control character. The terminal whose buffer is copied and the printer
must both be 3270 logical units, and they must be on the same control unit.

Hardware print key
Some 3270 terminals also have a hardware print key. Pressing this key copies the
screen to the first available and eligible printer on the same control unit as the
display. This function is performed entirely by the control unit, whose configuration
and terminal status information determine eligibility and availability. If no printer is
available, the request fails; the user is notified by a symbol in the lower left corner
of the screen and must retry the request later.

BMS screen copy
Both the CICS and hardware print keys limit screen copies to a predefined set of
eligible printers, and if more than one printer is eligible, the choice depends on
printer use by other tasks. For screens created as part of a BMS logical message, a
more general screen copy facility is available. Users can print any such screen with
the “page copy” option of the CICS-supplied transaction for displaying logical
messages, CSPG. With page copy, you name the specific printer to receive the
output, and it does not have to be on the same control unit as the display. CSPG is
described in the CICS Supplied Transactions manual.

Chapter 28. CICS support for printing 421

422 CICS TS for z/OS: CICS Application Programming Guide

Chapter 29. CICS interface to JES

CICS provides a programming interface to JES (the Job Entry Subsystem
component of MVS) that allows CICS applications to create and retrieve spool files.
Spool files are managed by JES and are used to buffer output directed to
low-speed peripheral devices (printers, punches, and plotters) between the job that
creates them and actual processing by the device. Input files from card readers are
also spool files and serve as buffers between the device and the jobs that use the
data.

The interface consists of five commands:

v SPOOLOPEN INPUT, which opens a file for input

v SPOOLOPEN OUTPUT, which opens a file for output

v SPOOLREAD, which retrieves the next record from an input file

v SPOOLWRITE, which adds one record to an output file

v SPOOLCLOSE, which closes the file and releases it for subsequent processing
by JES

“Input” and “output” here refer to the CICS point of view here; what is spool output
to one job is always spool input to another job or JES program.

These commands can be used with either the JES2 or JES3 form of JES, although
some restrictions apply to each (see “Spool interface restrictions” on page 425).
The term JES refers to both. You can support the requirements of other products to
exchange files with other systems connected through a JES remote spooling
communications subsystem (RSCS) network.

You can use the spool commands to do the following types of things:

v Create an (output) file for printing or other processing by JES. JES manages
most of the “unit record” facilities of the operating system, including high-speed
printers, and card readers. In order to use these facilities, you pass the data to
be processed to JES in a spool file. See Figure 93

MVS

CICS JES

SPOOLOPEN OUTPUT
USERID('*')

TOKEN

SPOOLWRITE TOKEN

SPOOLWRITE TOKEN

SPOOLWRITE TOKEN

SPOOLCLOSE TOKEN

JES SPOOL

Figure 93. Create a file and write it to the JES spool

© Copyright IBM Corp. 1989, 2010 423

v Submit a batch job to MVS. Spool files directed to the JES “internal reader” are
treated as complete jobs and executed.

v Create an (output) file to pass data to another job (outside of your CICS), that
runs under MVS.

v Retrieve data passed from such a job. See Figure 94

v Create a file to pass data to another operating system, such as VM, VSE/ESA, or
an MVS system other than the one under which your CICS is executing. See
Figure 95.

This chapter describes:
v “Using the CICS interface to JES” on page 425
v “Creating output spool files” on page 425
v “Reading input spool files” on page 426
v “Identifying spool files” on page 427
v “Examples of SPOOL commands” on page 430

MVS

CICS JES

JES SPOOL

VM1

RSCS

SPOOLOPEN INPUT
USERID('SYS1CICS')

TOKEN

SPOOLREAD TOKEN

RECORD

SPOOLREAD TOKEN

ENDFILE RESP

SPOOLCLOSE TOKEN

Data Set
Name

CP TAG DEV PUN
NODE('MVS')
USERID('SYS1CICS')

Figure 94. Retrieve data from the JES spool

MVS

CICS JES JES SPOOL

VM1

RSCS

USER1

SPOOLOPEN
OUTPUT

USERID ('USER1')
NODE ('VM1')

Figure 95. Send a written file to a remote destination

424 CICS TS for z/OS: CICS Application Programming Guide

Using the CICS interface to JES
To use the CICS interface to JES, you must define the DFHSIT SPOOL=YES
system intialization parameter in your CICS startup JCL.

You must specify RESP or NOHANDLE on the EXEC CICS SPOOLCLOSE,
SPOOLOPEN, SPOOLREAD, and SPOOLWRITE commands. RESP bears a
one-to-one correspondence with HANDLE CONDITION. If you do not code RESP,
your program abends. You can also code the RESP2 option.

Transactions that process SYSOUT data sets larger than 1000 records, either for
INPUT or for OUTPUT, are likely to have a performance impact on the rest of CICS.
When you cannot avoid such a transaction, you should carefully evaluate general
system performance. You should introduce a pacing mechanism if the effects on the
rest of CICS are unacceptable.

All access to a JES spool file must be completed within one logical unit of work.
Issuing an EXEC CICS SYNCPOINT command implicitly issues a SPOOLCLOSE
command for any open report.

Spool interface restrictions
There are internal limits in JES that you should consider when you are designing
applications. Some apply to JES2, some to JES3 and some to both. In particular:

v JES2 imposes an upper limit on the total number of spool files that a single job
(such as CICS) can create. If CICS exceeds this limit during its execution,
subsequent SPOOLOPEN OUTPUT commands fail with the ALLOCERR
condition.

v JES3 does not impose such a limit explicitly, but for both JES2 and JES3, some
control information for each file created persists for the entire execution of CICS.
For this reason, creating very large numbers of spool files can stress JES
resources; you should consult your system programmer before designing such an
application.

v Spool files require other resources (buffers, queue elements, disk space) until
they are processed. You need to consult your systems staff if you are producing
very large files or files that may wait a long time for processing at their
destinations.

v Code NODE('*') and USERID('*') if you want to specify the local spool file and to
enable the OUTDESCR operand to override the NODE and USERID operands.
Do not use NODE('*') with any other userid. If the NODE and USERID operands
specify explicit identifiers, the OUTDESCR operands cannot override them.

v Ensure that your system is defined so that data sets produced by CICS are not
in HELD status in JES. CICS does not search for data sets in HELD status when
the EXEC CICS SPOOLOPEN INPUT command is issued.

Creating output spool files
To create an output spool file, your program starts by issuing a SPOOLOPEN
OUTPUT command, to allocate an output data set.. The NODE and USERID
options on the command tell JES what to do with the file when it is complete, and
there are other options to convey formatting and other processing to JES if
appropriate. SPOOLOPEN returns a unique token in the TOKEN field, which must
be used in all subsequent SPOOLWRITE and SPOOLCLOSE commands to identify
the file being written.

Chapter 29. CICS interface to JES 425

Thereafter, the task puts data into the file with SPOOLWRITE commands that
specify the token value that was returned on the SPOOLOPEN OUTPUT command.
Spool files are sequential; each SPOOLWRITE adds one record to the file. When
the file is complete, the task releases the file to JES for delivery or processing by
issuing a SPOOLCLOSE with the token that identifies the file.

A task can create multiple output spool files, and it can have more than one open at
a time; operations on different files are kept separate by the token. However, a
spool file cannot be shared among tasks, or across logical units of work in the
same task. It can be written only by the task that opened it, and if that task fails to
close the file before a SYNCPOINT command or task end, CICS closes it
automatically at these points.

If the node is a remote system, the data set is queued on the JES spool against the
destination userid. The ID of this destination user was specified on the
SPOOLOPEN OUTPUT USERID parameter. If the node is a remote VM system,
the data is queued in the VM RDR queue for the ID that was specified on the same
USERID parameter.

Note: If you want the job you submit to execute as soon as possible, you should
end your spool file with a record that contains /*EOF in the first five
characters. This statement causes JES to release your file for processing,
rather than waiting for other records to fill the current buffer before release.

Using the MVS internal reader
You can use the USERID parameter to specify that your output is to be written to
the MVS internal reader. To use CICS SPOOL commands for this purpose, specify
USERID(“INTRDR”) and also use an explicit node name. Do not use NODE('*').
INTRDR is an IBM-reserved name identifying the internal reader. If you specify
USERID(“INTRDR”), the output records written by your SPOOLWRITE commands
must be JCL statements, starting with a JOB statement. Also ensure that you
specify the NOCC option on the SPOOLOPEN command. The system places your
output records for the internal reader into a buffer in your address space. When this
buffer is full, JES places the contents on the spool; later, JES retrieves the job from
the spool. (See “Identifying spool files” on page 427 for more information about the
naming of spool files.

Reading input spool files
The command sequence for reading a spool file is similar to that for creating one.
You start with a SPOOLOPEN INPUT command that selects the file. Then you
retrieve each record with a SPOOLREAD command. When the file is exhausted or
you have read as much as required, you end processing with a SPOOLCLOSE
command. CICS provides you with a token to identify the particular file when you
open it, just as it does when you open an output file, and you use the token on all
subsequent commands against the file.

Similar to an output spool file, an input spool file is exclusive to the task that
opened it. No other task can use it until the first one closes it. The file must be read
in the same logical unit of work that opened it, and CICS closes it automatically at a
SYNCPOINT command or at task end if the task does has not done so. However,
you can close the file in such a way that your task (or another one) can read it
again from the beginning.

426 CICS TS for z/OS: CICS Application Programming Guide

In contrast to output files, a task can have only one spool file open for input at
once. Moreover, only one CICS task can have a file open for input at any given
time. This single-threading of input spool files has several programming
implications:

v A task reading a spool file should keep it open for as little time as possible, and
should close it explicitly, rather than letting CICS do so as part of end-of-task
processing. You might want to transfer the file to another form of storage if your
processing of individual records is long.

v If another task is reading a spool file, your SPOOLOPEN INPUT command fails
with a SPOLBUSY condition. This is not an error; you should wait briefly and try
again.

v If you read multiple input files, you should delay your task briefly between closing
one and opening the next, to avoid monopolizing the input thread and locking out
other tasks that need it.

A remote application must route any files intended for a CICS transaction to a
specific user name at the system where CICS resides. See Figure 94 on page 424
for an example of a CP command used by a VM system to do this. The figure also
shows the EXEC CICS SPOOL commands you use to retrieve the data.

The CICS transaction issues the SPOOLOPEN command, specifying the writer
name on the USERID parameter and optionally the class of output within the writer
name. The normal response is:

1. No input for this external writer.

2. The single-thread is busy.

3. The file is allocated to you for retrieval, and is identified by the “token” returned
by CICS. The token must be included on every SPOOL command for retrieving
the data set.

In cases (1) and (2), the transaction should retry the SPOOLOPEN after a suitable
interval, by restarting itself.

In case (3), the transaction should then retrieve the file with SPOOLREAD
commands, and proceed to SPOOLCLOSE as rapidly as possible to release the
path for other users. This is especially important for input from JES because the
input path is single-threaded. When there is more than one transaction using the
interface, their files can be differentiated by using different writer names or different
classes within a single writer name. Furthermore, you should ensure that the
transactions either terminate or wait for a short period between SPOOLCLOSE and
a subsequent SPOOLOPEN. If you do not do this, one transaction can prevent
others from using the interface.

JES exits
Both JES2 and JES3 provide a way of screening incoming files. For JES2, the
TSO/E Interactive Data Transmission Facility Screening and Notification exit is
used. The JES3 equivalent is the Validate Incoming Netdata File exit.

You should review any use your installation makes of these exits to ensure that files
that are to be read using the CICS interface to JES are correctly processed.

Identifying spool files
Input spool files are identified by the USERID and CLASS options on the
SPOOLOPEN INPUT command.

Chapter 29. CICS interface to JES 427

On input, the USERID is the name of a JES external writer. An external writer is a
name defined to JES at JES startup representing a group of spool files that have
the same destination or processing. For files that JES processes itself, an external
writer is usually associated with a particular hardware device, for example, a printer.
The names of these writers are reserved for JES use.

For the transfer of files between applications, as occurs when a CICS task reads a
spool file, the only naming requirement is that the receiver (the CICS task) know
what name the sender used, and that no other applications in the receiver’s
operating system use the same name for another purpose. To ensure that CICS
tasks do not read spool files that were not intended for them, CICS requires that the
external writer name that you specify match its own VTAM applid in the first four
characters. Consequently, a job or system directing a file to CICS must send it to
an external writer name that begins with the first four characters of the CICS applid.

JES categorizes the files for a particular external writer by a 1-character CLASS
value. If you specify a class on your SPOOLOPEN INPUT command, you get the
first (oldest) file in that class for the external writer you name. If you omit the class,
you get the oldest file in any class for that writer. The sender assigns the class; ‘A’
is used when the sender does not specify a class.

On output, you identify the destination of a SPOOL file with both a NODE and a
USERID value. The NODE is the name of the operating system (for example, MVS,
VM) as that system is known to VTAM in the MVS system in which your CICS is
executing).

The meaning of USERID varies with the operating system. In VM, it is a particular
user; in MVS, it may be a JES external writer or another JES destination, a TSO
user, or another job executing on that system. One such destination is the JES
internal reader, which normally has the reserved name INTRDR. If you want to
submit a job to an MVS system, you write a spool file to its internal reader. This file
must contain all the JCL statements required to execute the job, in the same form
and sequence as a job submitted through a card reader or TSO.

The following example shows a COBOL program using SPOOLOPEN for an
internal reader. In this example, you must specify the NOCC option (to prevent use
of the first character for carriage control) and use JCL record format.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 OUTPUT-FIELDS.
03 OUTPUT-TOKEN PIC X(8) VALUE LOW-VALUES.
03 OUTPUT-NODE PIC X(8) VALUE ’MVSESA31’.
03 OUTPUT-USERID PIC X(8) VALUE ’INTRDR ’.
03 OUTPUT-CLASS PIC X VALUE ’A’.

PROCEDURE DIVISION.
EXEC CICS SPOOLOPEN OUTPUT

TOKEN(OUTPUT-TOKEN)
USERID(OUTPUT-USERID)
NODE(OUTPUT-NODE)
CLASS(OUTPUT-CLASS)
NOCC
PRINT
NOHANDLE

END-EXEC.

Figure 96. An example of a COBOL program using SPOOL commands for an internal reader

428 CICS TS for z/OS: CICS Application Programming Guide

OUTDESCR specifies a pointer variable to be set to the address of a field that
contains the address of a string of parameters to the OUTPUT statement of MVS
JCL.

The following example shows a COBOL program using the OUTDESCR operand:

Notes:

1. It is essential to code a GETMAIN command.

2. L-FILLER is not a parameter passed by the calling program. The BLL for
L-FILLER is then substituted by the SET ADDRESS. The address of the
getmained area is then moved to the first word pointed to by L-FILLER being
L-ADDRESS (hence pointing to itself). L-ADDRESS is then changed by plus 4
to point to the area (L-OUTDIS) just behind the address. L-OUTDIS is then filled
with the OUTDESCRIPTOR DATA. Hence W-POINTER points to an area that
has a pointer pointing to the OUTDESCR data.

WORKING-STORAGE SECTION.
01 F.
02 W-POINTER USAGE POINTER.
02 W-POINTER1 REDEFINES W-POINTER PIC 9(9) COMP.
01 RESP1 PIC 9(8) COMP.
01 TOKENWRITE PIC X(8).
01
01 W-OUTDIS.
02 F PIC 9(9) COMP VALUE 43.
02 F PIC X(14) VALUE ’DEST(A20JES2)’.
02 F PIC X VALUE ’ ’.
02 F PIC X(16) VALUE ’WRITER(A03CUBI)’.
02 F PIC X VALUE ’ ’.
02 F PIC X’11’ VALUE ’FORMS(BILL)’.
LINKAGE SECTION.
01 DFHCOMMAREA PIC X.
01 L-FILLER.
02 L-ADDRESS PIC 9(9) COMP.
02 L-OUTDIS PIC X(1020).
PROCEDURE DIVISION.

EXEC CICS GETMAIN SET(W-POINTER) LENGTH(1024)
END-EXEC.

SET ADDRESS OF L-FILLER TO W-POINTER.
MOVE W-POINTER1 TO L-ADDRESS.
ADD 4 TO L-ADDRESS.
MOVE W-OUTDIS TO L-OUTDIS.
EXEC CICS SPOOLOPEN

OUTPUT
PRINT
RECORDLENGTH(1000)
NODE(’*’)
USERID(’*’)
OUTDESCR(W-POINTER)
TOKEN(TOKENWRITE)
RESP(RESP1)
NOHANDLE

END-EXEC.
EXEC CICS SPOOLWRITE

.

.

.

Chapter 29. CICS interface to JES 429

Examples of SPOOL commands

COBOL

DATA DIVISION.
WORKING-STORAGE SECTION.
01 RESP PIC 9(8) BINARY.
01 RESP2 PIC 9(8) BINARY.
01 TOKEN PIC X(8).
01 OUTLEN PIC S9(8) BINARY VALUE +80.
77 OUTPRT PIC X(80) VALUE

’SPOOLOPEN FUNCTIONING’.
01 PARMSPTR POINTER.
01 PARMS-AREA.

03 PARMSLEN PIC S9(8) BINARY VALUE 14.
03 PARMSINF PIC X(14) VALUE

’WRITER(MYPROG)’.
03 PARMADDR POINTER.

PROCEDURE DIVISION.
SET PARMSPTR TO ADDRESS OF PARMS-AREA
SET PARMADDR TO PARMSPTR
SET PARMSPTR TO ADDRESS OF PARMADDR
EXEC CICS SPOOLOPEN OUTPUT

NODE (’*’)
USERID (’*’)
RESP(RESP) RESP2(RESP2)
OUTDESCR(PARMSPTR)
TOKEN(TOKEN)
END-EXEC

EXEC CICS SPOOLWRITE
FROM(OUTPRT)
RESP(RESP) RESP2(RESP2)
FLENGTH(OUTLEN)
TOKEN(TOKEN)
END-EXEC

EXEC CICS SPOOLCLOSE
TOKEN(TOKEN)
RESP(RESP) RESP2(RESP2)
END-EXEC.

430 CICS TS for z/OS: CICS Application Programming Guide

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

PL/I

C

DCL
RESP FIXED BIN(31),
RESP2 FIXED BIN(31),
TOKEN CHAR(8),
OUTLEN FIXED BIN(31) INIT(80),
OUTPRT CHAR(80) INIT(’SPOOLOPEN FUNCTIONING’),
PARMADDR POINTER,
PARMSPTR POINTER;

DCL
1 PARMS,

2 PARMSLEN FIXED BIN(31) INIT(14),
2 PARMSINF CHAR(14) INIT(’WRITER(MYPROG)’)

ALIGNED;
PARMADDR=ADDR(PARMS);
PARMSPTR=ADDR(PARMADDR);
EXEC CICS SPOOLOPEN OUTPUT NODE(’*’) USERID(’*’)

TOKEN(TOKEN) OUTDESCR(PARMSPTR) RESP(RESP)
RESP2(RESP2);

EXEC CICS SPOOLWRITE FROM(OUTPRT) FLENGTH(OUTLEN)
RESP(RESP) RESP2(RESP2) TOKEN(TOKEN);

EXEC CICS SPOOLCLOSE TOKEN(TOKEN) RESP(RESP)
RESP2(RESP2);

#define PARMS struct _parms
PARMS
{

int parms_length;
char parms_info[200];
PARMS * pArea;

};
PARMS ** parms_ptr;
PARMS parms_area;
char userid[8]= "*";
char node[8]= "*";
char token[8];
long rcode1, rcode2;
/* These lines will initialize the outdescr area and
set up the addressing */
parms_area.parms_info[0]= ’\0’;
parms_area.pArea = &parms_area;
parms_ptr = &parms_area.pArea;
/* And here is the command with ansi carriage controls
specified and no class*/
EXEC CICS SPOOLOPEN OUTPUT

NODE (node)
USERID (userid)

OUTDESCR (parms_ptr)
TOKEN (token)

ASA
RESP (rcode1)
RESP2 (rcode2);

Chapter 29. CICS interface to JES 431

ASSEMBLER

OUTPRT DC CL80’SPOOLOPEN FUNCTIONING’
PARMSPTR EQU 6
RESP DC F’0’
RESP2 DC F’0’
TOKEN DS 2F
OUTPTR DC A(PARMSLEN)
PARMSLEN DC F’14’
PARMSINF DC C’WRITER(MYPROG)’

LA PARMSPTR,OUTPTR
EXEC CICS SPOOLOPEN OUTPUT OUTDESCR(PARMSPTR)

NODE(’*’) USERID(’*’) RESP(RESP)
RESP2(RESP2) TOKEN(TOKEN)

EXEC CICS SPOOLWRITE FROM(OUTPRT)
TOKEN(TOKEN) RESP(RESP) RESP2(RESP2)

EXEC CICS SPOOLCLOSE TOKEN(TOKEN) RESP(RESP)
RESP2(RESP2)

432 CICS TS for z/OS: CICS Application Programming Guide

Chapter 30. CICS intercommunication

This chapter provides only a summary of what you need to consider when writing
applications that communicate with other CICS systems. For further information,
see the CICS Intercommunication Guide.

You can run application programs in a CICS intercommunication environment using
one or more of the following:

Transaction routing
enables a terminal in one CICS system to run a transaction in another
CICS system, see “Transaction routing” on page 434.

Function shipping
enables your application program to access resources in another CICS
system, see “Function shipping” on page 434.

Distributed program link (DPL)
enables an application program running in one CICS region to link to
another application program running in a remote CICS region, see
“Distributed program link (DPL)” on page 435.

Asynchronous processing
enables a CICS transaction to start another transaction in a remote system
and optionally pass data to it, see “Asynchronous processing” on page 446.

Distributed transaction processing (DTP)
enables a CICS transaction to communicate with a transaction running in
another system. There are two interfaces available for DTP; command-level
EXEC CICS and the SAA interface for DTP known as Common
Programming Interface Communications (CPI Communications), see
“Distributed transaction processing (DTP)” on page 446.

Common Programming Interface Communications (CPI-C)
provides DTP on APPC connections and defines an API that can be used
on multiple system platforms, see “Common Programming Interface
Communications (CPI Communications)” on page 446.

External CICS interface (EXCI)
enables a non-CICS program running in MVS to allocate and open sessions
to a CICS system, and to issue DPL requests on these sessions. In CICS
Transaction Server for z/OS, Version 3 Release 1, CICS supports MVS
resource recovery services (RRS) in applications that use the external CICS
interface. see “External CICS interface (EXCI)” on page 447.

The intercommunication aspects of the CICS Front End Programming Interface
(FEPI) are not discussed in this book. See the CICS Front End Programming
Interface User's Guide for details about FEPI.

Design considerations
If your application program uses more than one of these facilities, you obviously
need to bear in mind the design considerations for each one. Also, if your program
uses more than one intersystem session for distributed transaction processing, it
must control each session according to the rules for that type of session.

© Copyright IBM Corp. 1989, 2010 433

Programming language
Generally speaking, you can use COBOL, C, C++, PL/I, or assembler language to
write application programs that use CICS intercommunication facilities. There is,
however, an exception. You can only use C, C++, or assembler language for DTP
application programs that hold APPC unmapped conversations using the EXEC
CICS API.

Transaction routing
Transactions that can be invoked from a terminal owned by another CICS system,
or that can acquire a terminal owned by another CICS system during transaction
initiation, must be able to run in a transaction routing environment.

Generally, you can design and code such a transaction just like one used in a local
environment. However, there are a few restrictions related to basic mapping support
(BMS), pseudoconversational transactions, and the terminal on which your
transaction is to run. All programs, tables, and maps that are used by a transaction
must reside on the system that owns the transaction. (You can duplicate them in as
many systems as you need.)

Some CICS transactions are related to one another, for example, through common
access to the CWA or through shared storage acquired using a GETMAIN
command. When this is true, the system programmer must ensure that these
transactions are routed to the same CICS system. You should avoid (where
possible) any techniques that might create inter-transaction affinities that could
adversely affect your ability to perform dynamic transaction routing.

To help you identify potential problems with programs that issue these commands,
you can use the CICS Interdependency Analyzer. See the CICS Interdependency
Analyzer for z/OS User's Guide and Reference for more information about this utility
and Chapter 15, “Affinity,” on page 221 for more information about transaction
affinity.

When a request to process a transaction is transmitted from one CICS system to
another, transaction identifiers can be translated from local names to remote
names. However, a transaction identifier specified in a RETURN command is not
translated when it is transmitted from the transaction-owning system to the
terminal-owning system.

Function shipping
You code a program to access resources in a remote system in much the same
way as if they were on the local system. You can use:

DL/I calls (EXEC DLI commands)
to access data associated with a remote CICS system.

File control commands
to access files on remote systems. Note that requests which contain the
TOKEN keyword may not be function-shipped.

Temporary storage commands
to access data from temporary storage queues on remote systems.

Transient data commands
to access transient data queues on remote systems.

434 CICS TS for z/OS: CICS Application Programming Guide

|

Three additional exception conditions can occur with remote resources. They occur
if the remote system is not available (SYSIDERR), if a request is invalid
(ISCINVREQ), or if the mirror transaction abends (ATNI for ISC connections and
AZI6 for MRO).

Distributed program link (DPL)
The distributed program link function enables a CICS program (the client program)
to call another CICS program (the server program) in a remote CICS region. There
are several reasons why you might want to design your application to use
distributed program link. Some of these are:

v To separate the end-user interface (for example, BMS screen handling) from the
application business logic, such as accessing and processing data, to enable
parts of the applications to be ported from host to workstation more readily

v To obtain performance benefits from running programs closer to the resources
they access, and thus reduce the need for repeated function shipping requests

v To offer a simple alternative, in many cases, to writing distributed transaction
processing (DTP) applications

There are several ways in which you can specify that the program to which an
application is linking is remote:

1. By specifying the remote system name on a LINK command

2. By specifying the remote system name on the installed program resource
definition4

3. By specifying the remote system name using the dynamic routing program (if
the installed program definition specifies DYNAMIC(YES) or there is no installed
program definition)4

4. By specifying the remote system name in a XPCREQ global user exit

The basic flow in distributed program link is described in the CICS
Intercommunication Guide. The following terms, illustrated in Figure 97 on page
436, are used in the discussion of distributed program link:

Client region
The CICS region running an application program that issues a link to a
program in another CICS region.

Server region
The CICS region to which a client region ships a link request.

Client program
The application program that issues a remote link request.

Server program
The application program specified on the link request, and which is
executed in the server region.

4. By “installed program definition” we mean a program definition that has been installed statically, by means of autoinstall, or by an
EXEC CICS CREATE command.

Chapter 30. CICS intercommunication 435

Using the distributed program link function
The distributed program link function provides a number of options. You can specify:

v The name of the remote system (the server region).

v The name of the server program, if it is known by a different name in the server
region.

v That you want to run the linked program locally, but restrict it to the distributed
program link subset of the application programming interface (API) for testing
purposes. (Server programs cannot use the entire CICS API when executed
remotely; the restrictions are listed in Table 36 on page 445.)

v That the server program takes a syncpoint independently from the client.

v The name of the transaction you want the program to run under in the server
region.

v The data length of the COMMAREA being passed.

A server program can itself issue a distributed program link and act as a client
program with respect to the program it links to.

The options shown in Table 34 are used on the LINK command, and the options
shown inTable 35 on page 437 are used in the PROGRAM resource definition in
support of the distributed program link facility.

Table 34. Options on LINK command to support DPL

Keyword Description

DATALENGTH Specifies the length of the contiguous area of
storage (from the start of the COMMAREA) that
the application is sending to a server program.

Client Region Server Region
(SYSIDNT=CICX) (SYSIDNT=CICY)

Transaction AC20 Transaction AC20

Client program CICS mirror program
(PROG1) (DFHMIRS)

EXEC CICS LINK invoke program2

PROGRAM('PROG2')
SYSID('CICY')
TRANSID ('AC20') Server program
END-EXEC (PROG2)

Application
code

EXEC CICS RETURN

Return to PROG1

Figure 97. Illustration of distributed program link

436 CICS TS for z/OS: CICS Application Programming Guide

Table 34. Options on LINK command to support DPL (continued)

Keyword Description

SYSID Specifies the name of the connection to the
server region to which you want the client region
to ship the program link request.
Note: A remote SYSID specified on the LINK
command overrides a REMOTESYSTEM name
specified on the program resource definition or a
sysid returned by the dynamic routing program.

SYNCONRETURN Specifies that you want the server region to take
a syncpoint on successful completion of the
server program.
Note: This option is unique to the LINK
command and cannot be specified on the
program resource definition.

TRANSID Specifies the name of the transaction that the
server region is to attach for execution of the
server program.
Note: TRANSID specified on the LINK
command overrides any TRANSID specified on
the program resource definition.

Note: Programming information, including the full syntax of the LINK command, is
in the CICS Application Programming Reference manual, but note that for a
distributed program link you cannot specify the INPUTMSG or
INPUTMSGLEN options.

Table 35. Options in the PROGRAM resource definition to support DPL

Keyword Description

REMOTESYSTEM Specifies the name of the connection to the
server region (SYSID) to which you want the
client region to ship the program link request.

REMOTENAME Specifies the name by which the program is
known in the server region (if different from the
local name).

DYNAMIC Specifies whether the program link request can
be dynamically routed. For detailed information
about the dynamic routing of DPL requests, see
the CICS Recovery and Restart Guide.

EXECUTIONSET Specifies whether the program is restricted to the
distributed program link subset of the CICS API.
Note: This option is unique to the program
definition and cannot be specified on the LINK
command.

TRANSID Specifies the name of the transaction that the
server region is to attach for execution of the
server program.

Examples of distributed program link
A COBOL example of a distributed program link command is shown in Figure 98 on
page 438. The numbers down the right-hand side of the example refer to the
numbered sections, following the figure, which give information about each option.

Chapter 30. CICS intercommunication 437

Important
If the SYSID option of the LINK command specifies the name of a remote
region, any REMOTESYSTEM, REMOTENAME, or TRANSID attributes
specified on the program definition or returned by the dynamic routing program
have no effect.

1. The program name of the server program

A program may have different names in the client and server regions. The name
you specify on the LINK command depends on whether or not you specify the
SYSID option.

If you specify the name of a remote region on the SYSID option of the LINK
command, CICS ships the link request to the server region without reference to
the REMOTENAME attribute of the program resource definition in the client
region, nor to any program name returned by the dynamic routing program. In
this case, the PROGRAM name you specify on the LINK command must be the
name by which the program is known in the server region.

If you do not specify the SYSID option on the LINK command, or you specify
the name of the local client region, the PROGRAM name you specify on the
LINK command must be the name by which the program is known in the client
region. CICS looks up the program resource definition in the client region.
Assuming that the REMOTESYSTEM option of the installed program definition
specifies the name of a remote region, the name of the server program on the
remote region is obtained from:
a. The REMOTENAME attribute of the program definition
b. If REMOTENAME is not specified, the PROGRAM option of the LINK

command.

If the program definition specifies DYNAMIC(YES), or there is no installed
program definition, the dynamic routing program is invoked and can accept or
change the name of the server program.

2. The communication data area (COMMAREA)

To improve performance, you can specify the DATALENGTH option on the LINK
command. This allows you to specify the amount of COMMAREA data you want
the client region to pass to the server program. Typically, you use this option
when a large COMMAREA is required to hold data that the server program is to
return to the client program, but only a small amount of data needs to be sent to
the server program by the client program, as in the example.

If more than one server program updates the same COMMAREA before it is
passed back to the client program, use the DATALENGTH option to specify the
length of the COMMAREA. Ensure that if any of the server programs use an
XCTL command to pass the COMMAREA to the next server program, they
specify the same length and address for it. This ensures that the original
COMMAREA is returned to the client program. If a different length or address

EXEC CICS LINK PROGRAM(’DPLPROG’) 1
COMMAREA(DPLPRO-DATA-AREA) 2
LENGTH(24000) 2
DATALENGTH(100) 2
SYSID(’CICR’) 3
TRANSID(’AC20’) 4
SYNCONRETURN 5

Figure 98. COBOL example of a distributed program link

438 CICS TS for z/OS: CICS Application Programming Guide

are specified, the invoked program will receive a copy of the COMMAREA,
rather than the original COMMAREA, and so the original COMMAREA will not
be returned to the client program. “COMMAREA” on page 567 has more
information about using COMMAREAs to pass data to other programs.

3. The remote system ID (SYSID)

You can specify the 4-character name of the server region to which you want
the application region to ship a program link request using any of the following:
v The SYSID option of the LINK command
v The REMOTESYSTEM option of the program resource definition
v The dynamic routing program.

The rules of precedence are:

a. If the SYSID option on the EXEC CICS LINK command specifies a remote
CICS region, CICS ships the request to the remote region.

If the program definition specifies DYNAMIC(YES)—or there is no program
definition—the dynamic routing program is invoked for notification only—it
cannot re-route the request.

b. If the SYSID option is not specified or specifies the same name as the local
CICS region:

1) If the program definition specifies DYNAMIC(YES)—or there is no
installed program definition—the dynamic routing program is invoked,
and can route the request.

The REMOTESYSTEM option of the program definition, if specified,
names the default server region passed to the dynamic routing program.

Note: If the REMOTESYSTEM option names a remote region, the
dynamic routing program cannot route the request locally.

2) If the program definition specifies DYNAMIC(NO), CICS ships the
request to the remote system named on the REMOTESYSTEM option. If
REMOTESYSTEM is not specified, CICS runs the program locally.

The name you specify is the name of the connection definition installed in the
client region defining the connection with the server region. (CICS uses the
connection name in a table look-up to obtain the netname (VTAM APPLID) of
the server region.) The name of the server region you specify can be the name
of the client region, in which case the program is run locally.

If the server region is unable to load or run the requested program (DPLPROG
in our example), CICS returns the PGMIDERR condition to the client program in
response to the link request. Note that EIBRESP2 values are not returned over
the link for a distributed program link request where the error is detected in the
server region. For errors detected in the client region, EIBRESP2 values are
returned.

You can also specify, or modify, the name of a server region in an XPCREQ
global user exit program. See the CICS Customization Guide for programming
information about the XPCREQ global user exit point.

4. The remote transaction (TRANSID) to be attached

The TRANSID option is available on both the LINK command and the program
resource definition. This enables you to tell the server region the transaction
identifier to use when it attaches the mirror task under which the server program
runs. If you specify the TRANSID option, you must define the transaction in the
server region, and associate it with the supplied mirror program, DFHMIRS. This
option allows you to specify your own attributes on the transaction definition for
the purpose of performance and fine tuning. For example, you could vary the
task priority and transaction class attributes.

Chapter 30. CICS intercommunication 439

If the installed program definition specifies DYNAMIC(YES), or there is no
installed program definition, the dynamic routing program is invoked and
(provided that the SYSID option of the LINK command did not name a remote
region) can change the value of the TRANSID attribute.

The order of precedence is:
a. If the SYSID option of the LINK command specified a remote region, a

TRANSID supplied on the LINK
b. A TRANSID supplied by the dynamic routing program
c. A TRANSID supplied on the LINK command
d. The TRANSID attribute of the program definition.
e. The mirror TRANSID, CSMI.

You are recommended to specify the transaction identifier of the client program
as the transaction identifier for the server program. This enables any statistics
and monitoring data you collect to be correlated correctly under the same
transaction.

The transaction identifier used on a distributed link program request is passed
to the server program as follows:

v If you specify your own transaction identifier for the distributed link program
request, this is passed to the server program in the EIBTRNID field of the
EIB.

v EIBTRNID is set to the TRANSID value as specified in the DPL API or server
resource definition. Otherwise, it defaults to the client’s transaction code,
which is the same value that is in the client’s EIBTRNID.

5. The SYNCONRETURN option for the server program

When you specify the SYNCONRETURN option, it means that the resources on
the server are committed in a separate logical unit of work immediately before
returning control to the client; that is, an implicit syncpoint is issued for the
server just before the server returns control to the client. Figure 99 on page 441
provides an example of using distributed program link with the
SYNCONRETURN option. The SYNCONRETURN option is intended for use
when the client program is not updating any recoverable resources, for
example, when performing screen handling. However, if the client does have
recoverable resources, they are not committed at this point. They are committed
when the client itself reaches a syncpoint or in the implicit syncpoint at client
task end. You must ensure that the client and server programs are designed
correctly for this purpose, and that you are not risking data integrity. For
example, if your client program has shipped data to the server that results in the
server updating a database owned by the server region, you only specify an
independent syncpoint if it is safe to do so, and when there is no dependency
on what happens in the client program. This option has no effect if the server
program runs locally in the client region unless EXECUTIONSET(DPLSUBSET)
is specified. In this case, the syncpoint rules governing a local link apply.

Without the SYNCONRETURN option, the client commits the logical unit of work
for both the client and the server resources, with either explicit commands or
the implicit syncpoint at task end. Thus, in this case, the server resources are
committed at the same time as the client resources are committed. Figure 100
on page 441 shows an example of using distributed program link without the
SYNCONRETURN option.

440 CICS TS for z/OS: CICS Application Programming Guide

Note: This includes three logical units of work: one for the client and two for the
server. The client resources are committed separately from the server.

Client

U
Update O
resources W

1 LINK Server

SYNCONRETURN Update U
resources O

W
SYNCPOINT 2
(explicit)

Update U
resources O

W
SYNCPOINT 3

Client (implicit)

Update U
resources O

W
SYNCPOINT 1

Figure 99. Using distributed program link with the SYNCONRETURN option

Client

U
Update O
local W
resources 1 LINK Server

U
Update O
resources W

Client 1

U RETURN
Update O
local W
resources 1 LINK Server

U
Update O
resources W

Client 1

Update RETURN
local U
resources O

W
SYNCPOINT 1
(implicit

or
explicit)

Figure 100. Using distributed program link without the SYNCONRETURN option

Chapter 30. CICS intercommunication 441

Note: The implicit or explicit syncpoint causes all client and server resources to be
committed. There is only one logical unit of work because the client is
responsible for determining when both the client and server resources are
committed.

You need to consider the case when the client has a HANDLE ABEND command.
When the client is handling abends in the server, the client gets control when the
server abends. This is also true when the SYNCONRETURN option has been
specified on the LINK command. In this case, it is recommended that the client
issues an abend after doing the minimum of cleanup. This causes both the client
logical unit of work and the server logical unit of work to be backed out.

Programming considerations for distributed program link
There are some factors you should consider when writing application programs that
use distributed program link.

Issuing multiple distributed program links from the same client
task
A client task cannot request distributed program links to a single CICS server region
using more than one transaction code in a single client unit of work unless the
SYNCONRETURN option is specified. It can issue multiple distributed program links
to one CICS server system with the same or the default transaction code.

Sharing resources between client and server programs
The server program does not have access to the lifetime storage of tasks on the
client, for example, the TWA. Nor does it necessarily have access to the resources
that the client program is using, for example, files, unless the file requests are being
function shipped.

Mixing DPL and function shipping to the same CICS system
Great care should be taken when mixing function shipping and DPL to the same
CICS system, from the same client task. These are some considerations:

v A client task cannot function ship requests and then use distributed program link
with the SYNCONRETURN option in the same session (same logical unit of work
or system initialization parameter MROFSE=YES specified).. The distributed
program link fails with an INVREQ response. In this case EIBRESP2 is set to 14.

v A client task cannot function ship requests and then use distributed program link
with the TRANSID option in the same client logical unit of work. The distributed
program link fails with an INVREQ response. In this case, EIBRESP2 is set to
15.

v Any function-shipped requests that follow a DPL request with the
SYNCONRETURN option runs in a separate logical unit of work from the server
logical unit of work.

v Any function-shipped requests running that follow a DPL request with the
TRANSID option to the same server region runs under the transaction code
specified on the TRANSID option, instead of under the default mirror transaction
code. The function-shipped requests are committed as part of the overall client
logical unit of work when the client commits.

v Any function-shipped requests running before or after a DPL request without the
SYNCONRETURN or TRANSID options are committed as part of the overall
client logical unit of work when the client commits.

See the CICS Intercommunication Guide for more information about function
shipping.

442 CICS TS for z/OS: CICS Application Programming Guide

Mixing DPL and DTP to the same CICS system
Care should be taken when using both DPL and DTP in the same application,
particularly using DTP in the server program. For example, if you have not used the
SYNCONRETURN option, you must avoid taking a syncpoint in the DTP partner
which requires the DPL server program to syncpoint.

Restricting a program to the distributed program link subset
When a program executes as the result of a distributed program link, it is restricted
to a subset of the full CICS API called the distributed program link subset. The
commands that are prohibited in a server program are summarized in Table 36 on
page 445.

You can specify, in the program resource definition only, that you want to restrict a
program invoked by a local LINK command to this subset with the
EXECUTIONSET(DPLSUBSET) option. The use of any prohibited commands can
then be detected before an application program is used in a distributed
environment. The EXECUTIONSET(DPLSUBSET) option should be used for very
early testing purposes only, and should never be used in production.

When the server program is running locally the following considerations apply:

v If EXECUTIONSET(DPLSUBSET) is specified on the server program then the
SYNCONRETURN option causes an implicit syncpoint to be taken in the local
server program, prior to returning control to the client program. In this case,
because the server program is running locally, both the client and server
resources are committed. However, it should be noted that SYNCONRETURN is
intended for use when the client has no recoverable resources.

v If EXECUTIONSET(FULLAPI) is specified on the server program, the
SYNCONRETURN option is ignored.

v The TRANSID and DATALENGTH options are ignored when processing the local
link, but the format of the arguments is checked, for example, the TRANSID
argument cannot be all blank.

Determining how a program was invoked
The 2-byte values returned on the STARTCODE option of the ASSIGN command
are extended in support of the distributed program link function enabling the server
program to find out that it is restricted to the distributed program link subset. See
the CICS Application Programming Reference manual for programming information
about EXEC CICS commands.

Accessing user-related information with the ASSIGN command
The values returned with the USERID and OPID keywords of the ASSIGN
command in the server program depend on the way the ATTACHSEC option is
defined for the connection being used between the client CICS region and the
server CICS region. For example, the system could be defined so that the server
program could access the same USERID and OPID values as the client program or
could access different values determined by the ATTACHSEC option.

Client Server DTP partner

DPL DTP

Figure 101. Example of mixing DPL and DTP

Chapter 30. CICS intercommunication 443

If ATTACHSEC(LOCAL) is specified, the userid to which the OPID and USERID
parameters correspond is one of the following, in the order shown:

1. The userid specified on the USERID parameter (for preset security) of the
SESSIONS resource definition, if present

2. The userid specified on the SECURITYNAME parameter of the connection
resource definition, if present and no preset security userid is defined on the
sessions

3. The userid specified on the DFLTUSER system initialization parameter of the
server region, if neither the sessions nor connection definitions specify a userid

If any value other than LOCAL is specified for ATTACHSEC, the signed-on userid is
the one received in the function management header (FMH5) from the client region.

See the CICS RACF Security Guide for more information about link security and
DPL security with MRO.

Another security-related consideration concerns the use of the CMDSEC and
RESSEC options of the ASSIGN command. These are attributes of the transaction
definition for the mirror transaction in the server region. They can be different from
the definitions in the client region, even if the same TRANSID is used.

Exception conditions for LINK command
There are error conditions introduced in support of DPL.

Exception conditions returned to the client program: Condition codes returned
to a client program describe such events as “remote system not known” or “failure
to commit” in the server program. There are different reasons, identified by
EIBRESP2 values, for raising the INVREQ and LENGERR conditions on a LINK
command. The ROLLEDBACK, SYSIDERR, and TERMERR conditions may also be
raised. See the CICS Application Programming Reference manual for programming
information about these commands.

If the mirror transaction in the remote region fails, the application program that
issued the DPL request can handle the abend of the mirror, and commit its own
local resources, only if both the following are true:

1. The application program explicitly handles the abend caused by the mirror’s
failure, and either:
v Takes an implicit syncpoint by normal transaction termination
v or Issues an explicit syncpoint request.

2. The remote mirror transaction performed no recoverable work within the scope
of the application program’s unit of work. That is, the mirror was invoked only for
a distributed program link (DPL) request with SYNCONRETURN.

In all other cases—that is, if the application program does not handle the abend, or
the mirror does any recoverable work (for example, a file update, even to a
non-recoverable file)—CICS forces the transaction to be backed out.

The PGMIDERR condition is raised on the HANDLE ABEND PROGRAM, LOAD,
RELEASE, and XCTL commands if the local program definition specifies that the
program is remote. This exception is qualified by an EIBRESP2 value of 9.

Exception conditions returned to the server program: The INVREQ condition
covers the use of prohibited API commands. INVREQ is returned, qualified by an
EIBRESP2 value of 200, to a server program if it issues one of the prohibited
commands summarized in Table 36 on page 445. If the server program does not

444 CICS TS for z/OS: CICS Application Programming Guide

handle the INVREQ condition, the default action is to abend the mirror transaction
under which the server program is running with abend code ADPL.

For programming information about the DPL-related exception conditions, see the
CICS Application Programming Reference manual.

Table 36. API commands prohibited in programs invoked by DPL

Command Options

ASSIGN ALTSCRNHT ALTSCRNWD APLKYBD APLTEXT BTRANS
COLOR DEFSCRNHT DEFSCRNWD DELIMITER
DESTCOUNT DESTID DESTIDLENG DS3270 DSSCS
EWASUPP EXTDS FACILITY FCI GCHARS GCODES GMMI
HILIGHT INPARTN KATAKANA LDCMNEM LDCNUM
MAPCOLUMN MAPHEIGHT MAPLINE MAPWIDTH
MSRCONTROL NATLANGINUSE NEXTTRANSID NUMTAB
OPCLASS OPSECURITY OUTLINE PAGENUM PARTNPAGE
PARTNS PARTNSET PS QNAME SCRNHT SCRNWD
SIGDATA SOSI STATIONID TCTUALENG TELLERID
TERMCODE TERMPRIORITY TEXTKYBD TEXTPRINT
UNATTEND USERNAME USERPRIORITY VALIDATION

CONNECT PROCESS all

CONVERSE all

EXTRACT ATTRIBUTES all

EXTRACT PROCESS all

FREE all

HANDLE AID all

ISSUE ABEND CONFIRMATION ERROR PREPARE SIGNAL PRINT
ABORT ADD END ERASE NOTE QUERY RECEIVE
REPLACE SEND WAIT

LINK INPUTMSG INPUTMSGLEN

PURGE MESSAGE all

RECEIVE all

RETURN INPUTMSG INPUTMSGLEN

ROUTE all

SEND CONTROL MAP PARTNSET TEXT TEXT(MAPPED)
TEXT(NOEDIT) PAGE

SIGNOFF all

SIGNON all

START TERMID

SYNCPOINT Can be issued in server region if SYNCONRETURN specified
on LINK

WAIT TERMINAL all

XCTL INPUTMSG INPUTMSGLEN

The following commands are also restricted but can be used in the server region if
SYNCONRETURN is specified on the LINK:
v CPIRR COMMIT
v CPIRR BACK
v EXEC DLI TERM
v CALL DLI TERM

Chapter 30. CICS intercommunication 445

||

Where only certain options are prohibited on the command, they are shown. All the
APPC commands listed are prohibited only when they refer to the principal facility.
One of these, the CONNECT PROCESS command, causes an error even if it refers
to the principal facility in a non-DPL environment. It is included here because, if a
CONNECT PROCESS command refers to its principal facility in a server program,
the exception condition raised indicates a DPL error.

Asynchronous processing
The response from a remotely initiated transaction is not necessarily returned to the
task that initiated the transaction, which is why the processing is referred to as
asynchronous. Asynchronous processing is useful when you do not need or want
to tie up local resources while having a remote request processed. For example,
with online inquiry on remote databases, terminal operators can continue entering
inquiries without having to wait for an answer to the first one.

You can start a transaction on a remote system using a START command just like a
local transaction. You can use the RETRIEVE command to retrieve data that has
been stored for a task as a result of a remotely issued START, CANCEL, SEND, or
RECEIVE command, as if it were a local transaction.

Distributed transaction processing (DTP)
The main advantage of DTP is that it allows the two transactions to have exclusive
control of a session and to “converse”. DTP is particularly useful when you need
remote resources to be processed remotely or if you need to transfer data between
systems. It also allows you to design very flexible and efficient applications. DTP
can be used with either EXEC CICS or CPI Communications. You can use C, C++,
and assembler language in DTP application programs that hold LU type 6.2
unmapped conversations using the EXEC CICS API as well as applications that use
the CICS intercommunication facilities.

DTP can be used with a variety of partners, including both CICS and non-CICS
platforms, as long as they support APPC. For further information about DTP, see
the CICS Distributed Transaction Programming Guide and CICS Family:
Interproduct Communication manuals.

Common Programming Interface Communications (CPI
Communications)

CPI Communications provides an alternative API to existing CICS APPC support.
CPI Communications provides DTP on APPC connections and can be used in
COBOL, C, C++, PL/I, and assembler language.

CPI Communications defines an API that can be used in APPC networks that
include multiple system platforms, where the consistency of a common API is seen
to be of benefit.

The CPI Communications interface can converse with applications on any system
that provides an APPC API. This includes applications on CICS platforms. You may
use EXEC CICS APPC API commands on one end of a conversation and CPI
Communications commands on the other.

446 CICS TS for z/OS: CICS Application Programming Guide

CPI Communications requires specific information (side information) to begin a
conversation with partner program. CICS implementation of side information is
achieved using the partner resource which your system programmer is responsible
for maintaining.

The application’s calls to the CPI Communications interface is resolved by
link-editing it with the CICS CPI Communications stub (DFHCPLC). You can find
information about how to do this in “Including the CICS-supplied interface modules”
on page 108.

The CPI Communications API is defined as a general call interface. The interface is
described in the Common Programming Interface Communications Reference
manual.

External CICS interface (EXCI)
The external CICS interface is an application programming interface that enables a
non-CICS program (a client program) running in MVS to call a program (a server
program) running in a CICS region and to pass and receive data by means of a
communications area. The CICS program is invoked as if linked-to by another CICS
program.

This programming interface allows a user to allocate and open sessions (pipes) to a
CICS system and to pass distributed program link (DPL) requests over them. CICS
interregion communication (IRC) supports these requests and each pipe maps onto
one MRO session.

For programming information about EXCI, see the External Interfaces Guide.

A client program that uses the external CICS interface can operate multiple
sessions for different users (either under the same or separate TCBs) all coexisting
in the same MVS address space without knowledge of, or interference from, each
other.

The external CICS interface provides two forms of programming interface:

v The EXCI CALL interface consists of six commands that allow you to:

– Allocate and open sessions to a CICS system from non-CICS programs
running under MVS

– Issue DPL requests on these sessions from the non-CICS programs

– Close and de-allocate the sessions on completion of the DPL requests

v The EXEC CICS interface provides:

– A single composite command (LINK PROGRAM) that performs all six
commands of the EXCI CALL interface in one invocation

The command takes the same form as the distributed program link command of
the CICS command-level application programming interface.

CICS supports MVS resource recovery services (RRS) in applications that use the
external CICS interface. This means that:

v The unit of work within which the CICS server program changes recoverable
resources may now become part of the MVS unit of recovery associated with the
EXCI client program.

v The CICS server unit of work may be committed when the server program
returns control to the client or continues over multiple EXCI DPL calls, until the
EXCI client decides to commit or backout the unit of recovery.

Chapter 30. CICS intercommunication 447

448 CICS TS for z/OS: CICS Application Programming Guide

Part 6. Basic Mapping Support (BMS)

Chapter 31. Basic mapping support 453
BMS support levels . 453

Minimum BMS . 453
Standard BMS . 453
Full BMS . 454

A BMS output example . 455

Chapter 32. Creating the map 459
Defining map fields: DFHMDF 459
Defining the map: DFHMDI . 461
Defining the map set: DFHMSD 462
Writing BMS macros . 463
Assembling the map . 465

Physical and symbolic map sets 465
The SDF II alternative . 466
Grouping maps into map sets 466
The Application Data Structure (ADS) 467

Using complex fields . 467
Composite fields: the GRPNAME option 468
Repeated fields: the OCCURS option 469

Block data . 469
Support for non-3270 terminals 470

Output considerations for non-3270 devices 470
Differences on input . 471
Special options for non-3270 terminals. 472

Device-dependent maps . 472
Device dependent support: DDS 473
Finding out about your terminal 475

Chapter 33. Sending BMS mapped output 477
Acquiring and defining storage for the maps. 477

BASE and STORAGE options 478
Initializing the output map . 478
Moving the variable data to the map 479
Setting the display characteristics 479

Changing the attributes . 480
Attribute value definitions: DFHBMSCA 481

Chapter 34. Using the SEND MAP command 483
SEND MAP control options . 483

Other BMS SEND options: WAIT and LAST 484
Merging the symbolic and physical maps 484

MAPONLY option . 484
DATAONLY option . 485
The SEND CONTROL command 485

Building the output screen . 485
What you start with . 486
What is sent . 486
Where the values come from 486
Outside the map . 487
Using GDDM and BMS . 488

Positioning the cursor . 488
Sending invalid data and other errors 489

© Copyright IBM Corp. 1989, 2010 449

Output disposition options: TERMINAL, SET, and PAGING 489
Using SET . 490

Chapter 35. Receiving mapped data 493
An input-output example . 493

The symbolic input map . 495
Programming mapped input. 496
Using the RECEIVE MAP command 496
Getting storage for mapped input. 497
Formatted screen input . 497

Modified data . 498
Upper case translation . 499

Using the attention identifier 499
Using the HANDLE AID command 499

Finding the cursor . 500
Processing the mapped input 500
Handling input errors . 501

Flagging errors . 501
Saving the good input . 502
Rechecking. 502

Sending mapped output after mapped input 503
MAPFAIL and other exceptional conditions 504

EOC condition. 504
Formatting other input . 505

Chapter 36. BMS logical messages 507
Building logical messages . 507
The SEND PAGE command 508
RETAIN and RELEASE . 508
The AUTOPAGE option . 510
Terminal operator paging: the CSPG transaction 510
Logical message recovery . 511

Chapter 37. Cumulative output — the ACCUM option 513
Floating maps: how BMS places maps using ACCUM 513
Page breaks: BMS overflow processing 514
Map placement rules . 515

ASSIGN options for cumulative processing 517
Input from a composite screen. 517
Performance considerations. 517

Minimizing path length. 517
Reducing message lengths 518

Chapter 38. Text output . 521
The SEND TEXT command. 521

Text logical messages . 521
Text pages . 522
Text lines . 523
Header and trailer format. 524
SEND TEXT MAPPED and SEND TEXT NOEDIT 525

Chapter 39. Message routing 527
Message destinations . 527

Eligible terminals. 528
Destinations specified with OPCLASS only 528
OPCLASS and LIST omitted 529

450 CICS TS for z/OS: CICS Application Programming Guide

Route list provided . 529
Route list format . 530
Message delivery . 531

Undeliverable messages . 532
Recoverable messages . 532

Message identification . 533
Programming considerations with routing 534

Routing and page overflow 534
Routing with SET . 535
Interleaving a conversation with message routing 535

Chapter 40. The MAPPINGDEV facility 537
SEND MAP with the MAPPINGDEV option 537
RECEIVE MAP with the MAPPINGDEV option 538
Sample assembler MAPPINGDEV application 539

Chapter 41. Partition support 541
Uses for partitioned screens 542

Scrolling . 542
Data entry . 542
Lookaside . 542
Data comparison. 543
Error messages . 543

Partition definition . 543
3290 character size. 544

Establishing partitioning . 544
Partition options for BMS SEND commands 545

Determining the active partition 545
Partition options for BMS RECEIVE commands 546

ASSIGN options for partitions 546
Partitions and logical messages 546

Partitions and routing . 547
Attention identifiers and exception conditions 547
Terminal sharing . 548

Chapter 42. Support for special hardware 549
Logical device components . 549

Defining logical device components 549
Sending data to a logical device component. 550
LDCs and logical messages 550
LDCs and routing . 550

10/63 magnetic slot reader . 551
Field selection features . 551

Trigger field support . 551
Cursor and pen-detectable fields 552

Selection fields . 553
Attention fields . 553
BMS input from detectable fields 553

Outboard formatting . 554

Part 6. Basic Mapping Support (BMS) 451

452 CICS TS for z/OS: CICS Application Programming Guide

Chapter 31. Basic mapping support

Basic mapping support (BMS) is an application programming interface between
CICS programs and terminal devices. BMS is one of two sets of commands for this
purpose. The other one, terminal control, is described in Chapter 26, “Terminal
control,” on page 365.

For many applications, BMS has several advantages. First, BMS removes device
dependencies from the application program. It interprets device-independent
output commands and generates device-dependent data streams for specific
terminals. It also transforms incoming device-dependent data into
device-independent format. These features eliminate the need to learn complex
device data streams. They also allow you to use the same program for a variety of
devices, because BMS determines the device information from the terminal
definition, not from the application program.

Second, BMS separates the design and preparation of formats from application
logic, reducing the impact of one on the other. Both of these features make it easier
to write new programs and to maintain existing code.

This chapter describes:
v “BMS support levels”
v “A BMS output example” on page 455

BMS support levels
There are three levels of BMS support: minimum, standard, and full. Most
installations use full BMS. If yours does, you can use all the features we describe in
this chapter and not concern yourself with levels. If your installation uses minimum
or standard BMS, you should note the features that require levels beyond yours.
They are summarized here, and they are noted again whenever a facility that is not
in minimum BMS is covered.

Minimum BMS
Minimum BMS supports all the basic functions for 3270 terminals, including
everything described in our example and in the discussion of simple mapped output
and mapped input.

Note: Minimum BMS has a substantially shorter path length than standard or full
BMS. It is included in the larger versions and invoked as a kind of “fast path”
on commands do not require function beyond what it provides. Specifically, it
is used for SEND MAP and SEND CONTROL commands without the
ACCUM, PAGING, SET, OUTPARTN, ACTPARTN, LDC, MSR, or REQID
options, and for RECEIVE MAP commands, when your principal facility is a
3270 display or printer whose definition does not include outboard formatting.
You can tell whether a particular BMS request used the fast path by looking
at the CICS trace table. When fast path is used, the trace table contains
duplicate entries for the BMS entry and exit code.

Standard BMS
Standard BMS adds:

v Support for terminals other than 3270s

v Text output commands

© Copyright IBM Corp. 1989, 2010 453

v Support for special hardware features: partitions, logical devices codes, magnetic
slot readers, outboard formatting, and so on

v Additional options on the SEND command: NLEOM and FMHPARM

Standard BMS supports these terminals:
v Sequential terminals (composed of card readers, line printers, tape or disk)
v TCAM terminals (see “Terminal access method support” on page 366).

Note: In CICS TS 3.1, local TCAM terminals are not supported. The only TCAM
terminals supported are remote terminals connected to a pre-CICS TS 3.1
terminal-owning region by the DCB (not ACB) interface of TCAM.

v TWX Model 33/35
v 1050
v 2740-1 (no buffer receive), 2740-2, 2741
v 2770
v 2780
v 2980, models 1, 2 and 4
v 3270
v 3600 (3601) LU
v 3650 (3653 and 3270 host conversational LUs)
v 3650 interpreter LU
v 3767/3770 interactive LU
v 3770 batch LU
v 3780
v LU type 4

Full BMS
Full BMS is required for:

v Sending BMS output other than directly to your own terminal (the SET and
PAGING options, and BMS routing)

v Messages built cumulatively, with multiple BMS SEND commands (the ACCUM
and PAGING options)

Some CICS platforms do not support all the features of BMS. Table 37 shows the
approximate level of support in each, for general guidance. However, there are
differences among platforms even at the same level, usually imposed by differences
in execution environment. These are described in detail, by function, in CICS
Family: API Structure. If your application may eventually move to another platform,
or there is a chance that the end-user interface part of it may get distributed to one,
you should consult that manual.

Table 37. BMS support across IBM platforms

Platform BMS support

CICS OS/2 Minimum plus SEND TEXT of standard

CICS/400 Minimum plus SEND TEXT of standard

CICS/6000® Minimum plus SEND TEXT of standard

CICS/VSE, CICS/DOS/VS Full

CICS/ESA, CICS/MVS, CICS
Transaction Server for OS/390,
CICS Transaction Server for
z/OS

Full

454 CICS TS for z/OS: CICS Application Programming Guide

|
|
|

A BMS output example
To create a formatted screen, BMS takes a list of data items from a program and
displays them on the screen (or printed page) according to a predefined format. It
merges variable data supplied by the program with constant data in the format
(titles, labels for variable fields, default values for these fields). It builds the data
stream for the terminal to which you are writing, to show this merged data in the
designated screen positions, with the proper attributes (color, highlighting, and so
on). You do not have to know anything about the data stream, and you do not need
to know much about the format to write the required CICS commands.

Note: For simplicity, this chapter is mainly concerned with display screens, but
most of it applies equally to printers. Chapter 28, “CICS support for printing,”
on page 407 discusses differences between displays and printers and covers
additional considerations that apply to printing. Furthermore, the examples
and discussion assume a standard 3270 terminal because BMS is designed
to support the features of the 3270. Other terminals are discussed in
“Support for non-3270 terminals” on page 470.

You define the formats, called maps, separately from the programs that use them.
This allows you to reposition fields, change their attributes, and change the constant
text without modifying your programs. If you add or remove variable data, of course,
you need to change the programs which use the affected fields.

The basics of how this works are explained by an atypically simple example. In real
life, requirements are always more complex, but this gives you the essentials
without too much confusing detail. There are more realistic and complete BMS
examples among the CICS sample applications. These programs are included in
source form on the CICS distribution tape. More information can be found in the
Sample Applications Guide.

This example assumes that you need to write the code for a transaction used in a
department store that checks a customer’s balance before a charge sale is
completed. The transaction is called a “quick check”, because all it does is check
that the customer’s account is open and that the current purchase is permissible,
given the state of the account. The program for the output part of this transaction
gets an account number as input, and produces the screen shown in Figure 102 in
response:

The program uses the input account number to retrieve the customer’s record from
the account file. From the information in this record, it fills in the account number
and customer name in the map, and computes the maximum charge allowed from
the credit limit, outstanding balance, and purchases posted after the last billing
period. If the amount comes out negative, you are supposed to show a value of
zero and add an explanatory message. You also need to alert the clerk if the
charge card is listed as lost, stolen or canceled with a message as shown in
Figure 103:

QCK Quick Customer Account Check
Account: 0000005
Name: Thompson Chris
Max charge: $500.00

Figure 102. Normal “quick check” output screen

Chapter 31. Basic mapping support 455

This message is to be highlighted, to draw the clerk’s attention to it.

The first thing you must do is define the screen. We explain how to do so for this
particular map in Chapter 32, “Creating the map,” on page 459. For the moment,
however, let us assume that one of the outputs of this process is a data structure
like the one in Figure 104. (We show the COBOL-coded version of the structure,
because we are using COBOL to code our examples. However, BMS produces the
structure in any language that CICS supports.) The map creation process stores
this source code in a library from which you copy it into your program.

The data names in this structure come from the map definition. You assign names

to the fields that the program may have to change in any way. For our example, this
category includes the fields where you display the account number, last name, first
name, maximum charge, and explanatory message. It does not include any of the
field labels or screen titles that never change, such as “Quick Customer Account
Check” and “Account”.

Each field that you name on the screen generates several fields in the data
structure, which are distinguished by a 1-character suffix added to the name you
assigned in the map. Two appear here, the “A” suffix for the field attributes byte and
the “O” suffix for the output data. If we were creating a map to use special device
features like color and highlighting, or were using the map for input as well as
output, there would be many more. We tell you about these other fields in “Setting
the display characteristics” on page 479 and Chapter 35, “Receiving mapped data,”
on page 493.

The key fields for this particular exercise are the ones suffixed with “O”. These are
where you put the data that you want displayed on the screen. You use the “A”
subfields if you want to change how the data is displayed. In our example, we use
MSGA to highlight the message if our customer is using a dubious card.

QCK Quick Customer Account Check
Account: 0000005
Name: Thompson Chris
Max charge: $0.00
STOLEN CARD - SECURITY NOTIFIED

Figure 103. “Quick check” output screen with warning message

01 QCKMAPO.
02 FILLER PIC X(12).
02 FILLER PICTURE X(2).
02 ACCTNOA PICTURE X.
02 ACCTNOO PIC X(7).
02 FILLER PICTURE X(2).
02 SURNAMEA PICTURE X.
02 SURNAMEO PIC X(15).
02 FILLER PICTURE X(2).
02 FNAMEA PICTURE X.
02 FNAMEO PIC X(10).
02 FILLER PICTURE X(2).
02 CHGA PICTURE X.
02 CHGO PIC $,$$0.00
02 FILLER PICTURE X(2).
02 MSGA PICTURE X.
02 MSGO PIC X(30).

Figure 104. Symbolic map for “quick check”

456 CICS TS for z/OS: CICS Application Programming Guide

Here is an outline of the code that is needed for the example. You have to copy in
the data structure (Figure 104 on page 456) produced by creating the map, and the
COPY QCKSET statement in the third line does this. (Ordinarily, you would use a
copy statement for the account record format too. We show it partly expanded here
so that you can see its contents.)

WORKING-STORAGE SECTION.
C COPY IN SYMBOLIC MAP STRUCTURE.

01 COPY QCKSET.
01 ACCTFILE-RECORD.

02 ACCTFILE-ACCTNO PIC S9(7).
02 ACCTFILE-SURNAME PIC X(15).
02 ACCTFILE-FNAME PIC X(10).
02 ACCTFILE-CREDIT-LIM PIC S9(7) COMP-3.
02 ACCTFILE-UNPAID-BAL PIC S9(7) COMP-3.
02 ACCTFILE-CUR-CHGS PIC S9(7) COMP-3.
02 ACCTFILE-WARNCODE PIC X....

PROCEDURE DIVISION....
EXEC CICS READ FILE (ACCT) INTO (ACCTFILE-RECORD) RIDFLD (CKNO)

... END-EXEC.
MOVE ACCTFILE-ACCTNO TO ACCTNOO.
MOVE ACCTFILE-SURNAME TO SURNAMEO.
MOVE ACCTFILE-FNAME TO FNAMEO.
COMPUTE CHGO = ACCTFILE-CREDIT-LIM - ACCTFILE-UNPAID-BAL

- ACCTFILE-CUR-CHGS.
IF CHGO < ZERO, MOVE ZERO TO CHGO

MOVE ’OVER CHARGE LIMIT’ TO MSGO.
IF ACCTFILE-WARNCODE = ’S’, MOVE DFHBMBRY TO MSGA

MOVE ’STOLEN CARD - SECURITY NOTIFIED’ TO MSGO
EXEC CICS LINK PROGRAM(’NTFYCOPS’) END-EXEC.

EXEC CICS SEND MAP (’QCKMAP’) MAPSET (’QCKSET’) END-EXEC.
EXEC CICS RETURN END-EXEC.

Figure 105. BMS output example

Chapter 31. Basic mapping support 457

458 CICS TS for z/OS: CICS Application Programming Guide

Chapter 32. Creating the map

BMS provides three assembler language macro instructions (macros) for defining
maps. This method of map definition is still widely used, and we are about to
explain how to do it. However, there are also other products for creating maps
which exploit the facilities of the display terminal to make the map creation process
easier. They produce the same outputs as the BMS macros, generally with less
programmer effort.

One of these is the Screen Definition Facility II (SDF II). SDF II allows you to build
your screens directly from a display station, testing the appearance and usability as
you go. You can find out more about SDF II in Screen Definition Facility II General
Introduction Part 1 and Screen Definition Facility II General Introduction Part 2.

The three assembler macros used to define BMS maps are:

DFHMDF
defines an individual field on a screen or page.

DFHMDI
defines a single map as a collection of fields.

DFHMSD
groups single maps into a map set.

The explanation of this process begins by telling you how to define individual fields.
Then we explain how to go from the fields to a complete map, and from a map to a
map set (the assembly unit). BMS is designed principally for 3270-type terminals,
although it supports nearly all types. See Chapter 27, “The 3270 family of
terminals,” on page 387 for information on 3270 terms.

This chapter describes:
v “Defining map fields: DFHMDF”
v “Defining the map: DFHMDI” on page 461
v “Defining the map set: DFHMSD” on page 462
v “Writing BMS macros” on page 463
v “Assembling the map” on page 465
v “Using complex fields” on page 467
v “Block data” on page 469
v “Support for non-3270 terminals” on page 470
v “Device-dependent maps” on page 472

Defining map fields: DFHMDF
You should design the layout of your screen before you attempt to code any
macros. After you have done that, you define each field on the screen (page) with a
DFHMDF macro. In it, you indicate:

v The position of the field on the screen

v The length of the field

v The default contents (unless you always intend to provide them in the program)

v The field display attributes, governing whether and what the operator can key
into the field, whether the cursor stops there, the intensity of the characters, and
the initial state of the modified data tag

v For some terminals, extended display attributes, such as color, underlining,
highlighting

© Copyright IBM Corp. 1989, 2010 459

v The name by which you refer to the field in your program, if you ever modify its
contents or attributes

Fields that are referenced by the application must be allocated field names. The
length of the field name and the characters that may be used to form field names
must conform to the following rules. (Note that these rules apply to
currently-supported compilers and assemblers.)

The characters used must be valid for names of assembler ordinary symbols. This
character set consists of the alphabetic characters A - Z (upper or lower case), $, #,
@, numeric digits 0 - 9, and the underscore (_) character.

There is one exception to this rule. The hyphen (-) character may be used in field
names provided that:

v The mapset is only used by application programs written in COBOL.

v The mapset is generated using the High Level Assembler.

The first character of the field name must be alphabetic, but the other characters
can be any from the character set described above.

In addition, the characters used in field names must conform to the character set
supported by the programming language of the application using the map. For
example, if the application language is COBOL, you cannot use either the @
character or an underscore. You should refer to the appropriate Language
Reference manual for information about these character sets.

The DFHMDF macro allows the length of field names to be from one through 30
characters. DFHMDF derives additional variable names by appending one of
several additional characters to the defined name to generate a symbolic
description map. These derived names may therefore be up to 31 characters in
length. The assembler, PL/1, and C languages all support variable names of at
least 31 characters. However the COBOL language only allows up to 30 characters,
which means that field names used in maps must not exceed 29 characters for
COBOL applications. For example, the following field definition is valid for all
languages except COBOL:
ThisIsAnExtremelyLongFieldName DFHMDF LENGTH=10,POS=(2,1)

and the following field definition is only valid for COBOL:
Must-Not-Exceed-29-Characters DFHMDF LENGTH=10,POS=(2,1) "

Not all the options for field definition are described here; the rest are described in
the CICS Application Programming Reference manual.

Figure 106 shows the field definitions for the map we considered in Figure 103 on
page 456.

460 CICS TS for z/OS: CICS Application Programming Guide

1. The POS (position) parameter indicates the row and column position of the field,
relative to the upper left corner of the map, position (1,1). It must be present.
Remember that every field begins with a field attributes byte; POS defines the
location of this byte; the contents of the field follow immediately to the right.

2. The LENGTH option tells how many characters long the field is. The length
does not include the attributes byte, so each field occupies one more column
than its LENGTH value. In the case of the first field in our map, for example, the
attributes byte is in row 1, column 1, and the display data is in columns 2-4.
Fields can be up to 256 characters long and can wrap from one line to another.
(Take care with fields that wrap if your map is smaller than your screen. See
“Outside the map” on page 487 for further information.)

3. The ATTRB (attributes) option sets the field attributes of the field, which we
discussed in “3270 field attributes” on page 392. It is not required; BMS uses a
default value of (ASKIP, NORM)—autoskip protection, normal intensity, modified
data tag off—if you omit it. There are other options for each of the extended
attributes, none of which was used in this map; these are described in “Setting
the display characteristics” on page 479.

4. The INITIAL value for the field is not required either. You use it for label and title
fields that have a constant value, such as ‘QCK’, and to assign a default value
to a field, so that the program does not always have to supply a value.

5. The PICOUT option on the definition of the field CHG tells BMS what sort of
PICTURE clause to generate for the field. It lets you use the edit facilities of
COBOL or PL/I directly, as you move data into the map. If you omit PICOUT,
and also the numeric (NUM) attribute, BMS assumes character data. Figure 104
on page 456 shows the effects of the PICOUT option for CHG and, in the other
fields, its absence. You can omit the LENGTH option if you use PICOUT,
because BMS infers the length from the picture.

6. The GRPNAME and OCCURS options do not appear in our simple example,
because they are for more complex problems. GRPNAME allows you to
subdivide a map field within the program for processing, and OCCURS lets you
define adjacent, like map fields so that you can treat them as an array in the
program. These options are explained in “Using complex fields” on page 467
after some further information about maps.

Defining the map: DFHMDI
After all the fields on your map are defined, you tell BMS that they form a single
map by preceding them with a DFHMDI macro. This macro tells BMS:

v The name of the map

v The size, in rows and columns

v Where it appears on the screen (you can put several maps on one screen)

v Whether it uses 3270 extended display attributes and, if so, which ones

DFHMDF POS=(1,1),LENGTH=3,ATTRB=(ASKIP,BRT),INITIAL=’QCK’
DFHMDF POS=(1,26),LENGTH=28,ATTRB=(ASKIP,NORM), X

INITIAL=’Quick Customer Account Check’
DFHMDF POS=(3,1),LENGTH=8,ATTRB=(ASKIP,NORM),INITIAL=’Account:’

ACCTNO DFHMDF POS=(3,13),LENGTH=7,ATTRB=(ASKIP,NORM)
DFHMDF POS=(4,1),LENGTH=5,ATTRB=(ASKIP,NORM),INITIAL=’Name:’

SURNAME DFHMDF POS=(4,13),LENGTH=15,ATTRB=(ASKIP,NORM)
FNAME DFHMDF POS=(4,30),LENGTH=10,ATTRB=(ASKIP,NORM)

DFHMDF POS=(5,1),LENGTH=11,ATTRB=(ASKIP,NORM),INITIAL=’Max charge:’
CHG DFHMDF POS=(5,13),ATTRB=(ASKIP,NORM),PICOUT=’$,$$0.00’
MSG DFHMDF LENGTH=20,POS=(7,1),ATTRB=(ASKIP,NORM)

Figure 106. BMS map definitions

Chapter 32. Creating the map 461

v The defaults for these extended attributes for fields where you have not assigned
specific values on the DFHMDF macro

v Device controls associated with sending the map (such as whether to sound the
alarm, unlock the keyboard)

v The type of device the map supports, if you intend to create multiple versions of
the map for different types of devices (see “Device-dependent maps” on page
472)

The map name and size are the critical information on a DFHMDI macro but, for
documentation purposes, you should specify your other options explicitly rather than
letting them default. The DFHMDI macro for our example might be:
QCKMAP DFHMDI SIZE=(24,80),LINE=1,COLUMN=1,CTRL=ALARM

We have named the map QCKMAP. This is the identifier we use in SEND MAP
commands. It is 24 lines long, 80 columns wide, and starts in the first column of the
first line of the display. We have also indicated that we want to sound the alarm
when the map is displayed.

Defining the map set: DFHMSD
You need one more macro to create a map:DFHMSD, which defines a map set.
Maps are assembled in groups called map sets. Typically you group all the maps
used by a single transaction or several related transactions. (We discuss reasons
for grouping maps further in “Grouping maps into map sets” on page 466.) A map
set need not contain more than one map, incidentally, and in our simple example,
the map set consists of just the “quick check” map.

One DFHMSD macro is placed in front of all the map definitions in the map set. It
gives:

v The name of the map set

v Whether you are using the maps for output, input, or both

v Defaults for map characteristics that you did not specify on the DFHMDI macros
for the individual maps

v Defaults for extended attributes that you did not specify in either the field or map
definitions

v Whether you are creating physical or symbolic maps in the current assembly
(see “Physical and symbolic map sets” on page 465)

v The programming language of programs that use the maps

v Information about the storage that is used to build the maps

Here’s the DFHMSD macro we need at the beginning of our example:
QCKSET DFHMSD TYPE=MAP,STORAGE=AUTO,MODE=OUT,LANG=COBOL,TIOAPFX=YES

This map set definition tells BMS that the maps in it are used only for output, and
that the programs using them are written in COBOL. It assigns the name QCKSET
to the map set. TIOAPFX=YES causes inclusion of a 12-byte “prefix” field at the
beginning of each symbolic map (you can see the effect in the second line in
Figure 104 on page 456). You always need this filler in command language
programs and you should specify it explicitly, as the default is sometimes omission.
MAP and STORAGE are explained in Chapter 33, “Sending BMS mapped output,”
on page 477.

You need another DFHMSD macro at the end of your map definitions, to tell the
assembler that it has reached the end of last map in the map set:

462 CICS TS for z/OS: CICS Application Programming Guide

DFHMSD TYPE=FINAL

Writing BMS macros
Because a BMS macro is an assembler language statement, you have to follow
assembler syntax rules. We do not try to explain those in full here; you can find
them in Assembler H Version 2 Application Programming Language Reference
manual. Instead we give you a set of rules that work, although they are more
restrictive than the actual rules.

1. Start names in column 1. Map and map set names may be up to seven
characters long. The maximum length for field names (the DFHMDF macro)
depends on the programming language. BMS creates labels by adding
1-character suffixes to your field names. These labels must not be longer than
the target language allows, because they get copied into the program. Hence
the limit for a map field name is 29 characters for COBOL, 30 for Pl/I and
Assembler H, and 7 for Assembler F. For C and C++, it is 30 if the map is
copied into the program as an internal data object, and six if it is an external
data object (see “Acquiring and defining storage for the maps” on page 477 for
more information about copying the map).

2. Start the macro identifier in column 10, or leave one blank between it and the
name if the name exceeds eight positions. For field definitions, the identifier is
always DFHMDF; for map definitions, DFHMDI; and for the map set macros
that begin and end the map set, DFHMSD.

3. The rest of the field description consists of keywords (like POS for the position
parameter) followed by values. Sometimes a keyword does not have a value,
but if it does, an equals sign (=) always separates the keyword from its value.

4. Leave one blank after your macro identifier and then start your keywords. They
can appear in any order.

5. Separate keywords by one comma (no blanks), but do not put a comma after
the last one.

6. Keywords can extend through column 71. If you need more space, stop after
the comma that follows the last keyword that fits entirely on the line and
resume in column 16 of the next line.

7. Initial values (the INITIAL, XINIT, and GINIT keywords) are exceptions to the
rule, because they may not fit even if you start on a new line. Except when
double-byte characters are involved, you can split them at any point after the
first character of the initial value itself. When you split in this way, use all of the
columns through 71 and continue in column 16 of the next line. Double-byte
character set (DBCS) data is more complicated to express than ordinary
single-byte (SBCS) data. See Step 12 if you have DBCS initial values.

8. Surround initial values by single quote marks. If you need a single quote within
your text, use two successive single quotes (the assembler removes the extra
one). Ampersands also have special significance to the assembler, and you
use the same technique: use two ampersands where you want one, and the
assembler removes the extra.

9. If you use more than one line for a macro, put a character (any one except a
blank) in column 72 of all lines except the last.

10. If you want comments in your map, use comment lines between macros, not
among the lines that make up a single macro. Comment lines have an asterisk
in column 1 and a blank in column 72. Your comments can appear anywhere
among columns 2-71.

11. Use upper case only, except for values for the INITIAL parameter and in
comments.

Chapter 32. Creating the map 463

12. For initial values containing DBCS. If you have initial data that is entirely
DBCS, use the GINIT keyword for your data and specify the keyword PS=8 as
well. If your data contains both DBCS and SBCS characters, that is, if it is
mixed, use INITIAL and specify SOSI=YES. (We need to explain a third
alternative, XINIT, because you may find it in code you are maintaining. You
should use GINIT and INITIAL if possible, however, as XINIT is more difficult to
use and your data is not validated as completely. XINIT can be used for either
pure or mixed DBCS. XINIT with PS=8 follows the rules for GINIT, and XINIT
with SOSI=YES follows those for INITIAL (mostly, at least). The main
difference is that you express your data in hexadecimal with XINIT, but you
use ordinary characters for GINIT and INITIAL.)

This is how you write DBCS initial values:

v You enclose your data with single quotes, as you do with the ordinary
INITIAL parameter.

v You use two ordinary characters for each DBCS character in your constant
(two pairs of hexadecimal digits with XINIT) and one for each SBCS
character (one pair with XINIT).

v You bracket each DBCS character string with a shift-out (SO) character
immediately preceding and a shift-in (SI) character immediately after. SO is
hexadecimal X'0E', which appears as ‘<’ on most keyboards, and SI is X'0F'
(‘>’). (XINIT with PS=8 is an exception; the SO/SI brackets are implied and
you do not key them.) For example, all of these define the same initial
value, which is entirely DBCS. (Ignore the LENGTH values for the moment;
we explain those in a moment.)

GINIT=’<D1D2D3D4D5>’,PS=8,LENGTH=10
INITIAL=’<D1D2D3D4D5>’,SOSI=YES,LENGTH=12
XINIT=’C4F1C4F2C4F3C4F4C4F5’,PS=8,LENGTH=10
XINIT=’0EC4F1C4F2C4F3C4F4C4F50F’,SOSI=YES,LENGTH=12

v SBCS and DBCS sequences can follow each other in any combination with
INITIAL (and XINIT with SOSI=YES). If we add ‘ABC’ in front of the DBCS
string in the previous example, and ‘def’ following the string, we have:

INITIAL=’ABC<D1D2D3D4D5>def’,SOSI=YES,LENGTH=18
XINIT=’C1C2C30EC4F1C4F2C4F3C4F4C4F50F848586’,SOSI=YES,LENGTH=18

v To calculate the length of your initial value, count two for each DBCS
character and one for each SBCS character, whether you express them in
ordinary characters or hexadecimal pairs. With GINIT (and XINIT with
PS=8), you do not count the SO and SI characters, but with INITIAL (and
XINIT with SOSI=YES), you add one for each SO and for each SI. (Note the
different LENGTH values for the same constants in the examples above.) In
all cases, your LENGTH value must not exceed 256.

v For GINIT and INITIAL, if your constant does not fit on one line, you use
“extended” continuation rules, which are a little different from the ones
described earlier. With extended continuation, you can stop after any full
character (SBCS character, DBCS pair, or the SI ending a DBCS string)
within your initial value. If you are in the middle of a DBCS string, add an SI
(the SOs and SIs on one line must balance). Then fill out the line through
column 72 with a continuation character. Any character will do, so long as it
is different from the last meaningful character on the line.

464 CICS TS for z/OS: CICS Application Programming Guide

If you have stopped within a DBCS string, put an SO character in column 16
of the next line and resume in 17; otherwise just resume in 16, thus:
GXMPL1 DFHMDF POS=(02,21),LENGTH=20,PS=8,GINIT=’<D1D2D3D4D5D6>******

<D7D8D9D0>’
IXMPL1 DFHMDF POS=(02,21),LENGTH=23,PS=8,INITIAL=’abc<D1D2D3D4>ABC**

DEFGHIJ’

You cannot use extended continuation with XINIT; use the rules described in
Step 7.

v If your LENGTH specification exceeds the length of the initial value you
provide, the value is filled out on the right with DBCS blanks to your
LENGTH value if you have used GINIT (or XINIT with PS=8). If you have
used INITIAL, the fill character is an SBCS blank if the last part of the
constant was SBCS, a DBCS blank if the last part was DBCS. If you use
XINIT with SOSI=YES, the fill character is always an SBCS blank.

Assembling the map
Before you start coding, you must assemble and link edit your map set. You usually
have to assemble twice, to create the map set in two different forms. The TYPE
option in the DFHMSD macro tells the assembler the form to produce in any
particular assembly.

Physical and symbolic map sets
A TYPE=MAP assembly, followed by a link-edit, produces a load module called the
physical map set. The physical map set contains format information in encoded
form. CICS uses it at execution time for constant fields and to determine how to
merge in the variable data from the program. The physical map set normally is
stored in the same library as your application programs, and it requires a MAPSET
resource definition within CICS, just as a program requires a PROGRAM resource
definition.

The output of a TYPE=DSECT assembly is a series of data structures, collectively
called the symbolic map set, coded in the source language specified in the LANG
option. There is a structure for each map used for input, called the symbolic input
map, and one for each map used for output, called the symbolic output map.

Symbolic map sets are used at compile (assembly) time. You copy them into your
program, and they allow you to refer to the fields in the maps by name and to pass
the variable data in the form dictated by the physical map set. We have already
shown you an example of a symbolic output map in COBOL (see Figure 104 on
page 456) and used it in the example code. Symbolic map sets are usually stored
in the library your installation defines for source code that gets copied into
programs. Member names are usually the same as the map set names, but they
need not be.

You need the TYPE=DSECT assembly before you compile or assemble your
program. You can defer the TYPE=MAP assembly and link-edit until you are ready
to test, because the physical map set is not used until execution time. However,
because you must do both eventually, many installations provide a catalogued
procedure to do this automatically; the procedure copies the source file for the map
set and processes it once using TYPE=MAP and again using TYPE=DSECT. You
also can use the SYSPARM option in your assembler procedure to override the
TYPE value in a particular assembly. See the Assembler H Version 2 Application
Programming Language Reference manual for a description of SYSPARM in

Chapter 32. Creating the map 465

connection with map assemblies, and Chapter 10, “Installing map sets and partition
sets,” on page 125 for more information about assembling maps.

Notes:

1. The fact that symbolic map sets are coded in a specific language does not
prevent you from using the same map in programs coded in different languages.
You simply assemble with TYPE=DSECT for each LANG value you need, taking
care to store the outputs in different libraries or under different names. The
LANG value does not affect the TYPE=MAP assembly, which need be done
only once.

2. If you modify an existing map in a way that affects the symbolic map, you must
recompile (reassemble) any programs using it, so that the compilation uses the
symbolic structure that corresponds to the new physical structure. Changes to
unnamed map fields do not affect the symbolic map, but addition, deletion,
rearrangement, and length changes of named fields do. (Rearrangement refers
to the DFHMDF macros; the order of the fields on the screen does not affect
the symbolic map, although it is more efficient to have the DFHMDF macros in
same order as the fields on the screen.) So make changes to the DSATTS
option in the map definition—this option states the extended attributes you may
want to change by program. It is always safest to recompile, of course.

The SDF II alternative
None of these assembly or link-edit steps is required if you use the IBM licensed
program Screen Definition Facility II. SDF II produces creates both the symbolic
map set and the physical map set in the final step of the interactive map creation
process. SDF II can run under either MVS (Program 5665-366) or VM (5664-307).
Refer to the Screen Definition Facility II Primer for CICS/BMS Programs, the Screen
Definition Facility II General Introduction Part 1, and the Screen Definition Facility II
General Introduction Part 2. More information can be found in the Screen Definition
Facility II General Information and Screen Definition Facility II Primer for CICS/BMS
Programs.

Grouping maps into map sets
Because they are assembled together, all of the physical maps in a map set
constitute a single load module. BMS gains access to all of them with a single load
request, issued on the first use of the map set in the task. No further loads are
required unless you request a map in a different set, in which case BMS releases
the old map set and loads the new one. If you go back to the first map set
subsequently, it gets loaded again. Loading and deleting does not necessarily
involve I/O, but you should consider the path length when grouping your maps into
map sets. Generally, if maps are used together, they should be in the same map
set; those not used together should be in different map sets.

The limit to the number of maps in a set is 9 998, but you should also keep the size
of any given load module reasonable. So you might keep infrequently used maps
separate from those normally used in a given process.

Similarly, all of the symbolic maps for a map set are in a single symbolic structure.
This affects the amount of storage you need while using the maps, as explained in
“BASE and STORAGE options” on page 478. Depending on the programming
language, it also may affect high-level names, and this may be a reason for
separating or combining maps as well.

466 CICS TS for z/OS: CICS Application Programming Guide

The Application Data Structure (ADS)
The symbolic map generated by the BMS macros is also known as the application
data structure (ADS).

Physical maps produced by CICS Transaction Server for z/OS, Version 3 Release 1
also include an ADS descriptor in the output load module. This is provided to allow
interpretation of the BMS Application Data Structure (the structure used by the
application program for the data in SEND and RECEIVE MAP requests), without
requiring your program to include the relevant DSECT or copybook at compile time.

The ADS descriptor contains a header with general information about the map, and
a field descriptor for every field that appears in the ADS (corresponding to every
named field in the map definition macro). It can be located in the mapset from an
offset field in DFHMAPDS.

The ADS descriptor is generated for all maps. You can choose to map the long or
short form of the ADS by specifying the DSECT=ADS|ADSL option. The default is
ADS,the short (normal) form. The long form of the ADS aligns all fields on 4-byte
boundaries and is required for some interfaces with other products, such as
MQSeries®.

Map sets generated with CICS releases before CICS Transaction Server for OS/390
Release 2 do not contain the ADS descriptor.

The format of the ADS descriptor is contained in the following copybooks:

Table 38. ADS descriptor copybooks

Language Copybook

Assembler DFHBRARD

C DFHBRARH

PL/I DFHBRARL

COBOL DFHBRARO

For further information about the ADS descriptor, see the CICS External Interfaces
Guide.

If you need to reassemble maps but have no access to the source, a utility
program, DFHBMSUP, is provided in CICS Transaction Server for z/OS, Version 3
Release 1 to recreate BMS macro source from a mapset load module.

See the CICS Operations and Utilities Guide for more information about
DFHBMSUP.

Using complex fields
The symbolic maps we have shown so far consisted of a fixed set of fields for each
named map field (the A and O subfields, and so on, in Figure 104 on page 456).
Such fields are the most common, but BMS provides two options for field definition
which produce slightly different structures, to account for two common programming
situations.

Chapter 32. Creating the map 467

Composite fields: the GRPNAME option
Sometimes, you have to refer to subfields within a single field on the display. For
example, you may have a date field that appears on the screen like this:

03-17-92

It is one field on the screen (with one attributes byte, just before the digit “0”), but
you must be able to manipulate the month, day, and year components separately in
your program.

You can do this with a “group field”, using the GRPNAME option of the DFHMDF
macro. To create one, you code a DFHMDF macro for each of the component
subfields; each definition names the same group field in the GRPNAME option. To
define the date above as a group field starting at the beginning of line 10, for
example, we would write:
MO DFHMDF POS=(10,1),LENGTH=2,ATTRB=BRT,GRPNAME=DATE
SEP1 DFHMDF POS=(10,3),LENGTH=1,GRPNAME=DATE,INITIAL=’-’
DAY DFHMDF POS=(10,4),LENGTH=2,GRPNAME=DATE
SEP2 DFHMDF POS=(10,6),LENGTH=1,GRPNAME=DATE,INITIAL=’-’
YR DFHMDF POS=(10,7),LENGTH=2,GRPNAME=DATE

These definitions produce the following in the symbolic output map:
02 DATE.

03 FILLER PICTURE X(2).
03 MOA PICTURE X.
03 MOO PIC X(2).
03 SEP1 PIC X(1).
03 DAO PIC X(2).
03 SEP2 PIC X(1).
03 YRO PIC X(2).

Several rules must be observed when using a group field:

v There is only one attributes byte; it precedes the whole group field and applies to
the whole field. You specify it just once, on the DFHMDF macro for the first
subfield, MO here.

v Because there is only one attributes byte, the cursor behaves as if the group field
were a single field. In our example, the cursor does not move from the last
position of month to the first of day, or day to year, skipping over the hyphens.
This is because the group really is a single field as far as the hardware goes; it is
subdivided only for program access to the component subfields.

v Although subfields after the first do not have an attributes byte, you define the
POS option as if they did, as shown in the example. That is, POS points to one
character before the subfield begins, and can overlap the last character of the
previous subfield, as occurs in our example.

v Although all the component subfields are adjacent in this example, they do not
have to be. There can be gaps between the subfields, provided you do not define
any other field in the gap. The group field spans all the columns from its first
subfield to its last, and you must put the component DFHMDF macros in the
order the subfields appear on the screen. The group ends with the first DFHMDF
macro that does not specify its name.

v You must assign a field name to every subfield, even if you do not intend to refer
to it (as we did in the SEP1 and SEP2 subfields in the example).

v You cannot use the OCCURS option (explained in the next section) for a group
field or any of its components.

468 CICS TS for z/OS: CICS Application Programming Guide

Repeated fields: the OCCURS option
Sometimes a screen contains a series of identical fields that you want to treat as an
array in your program. Suppose, for example, that you need to create a display of
40 numbers, to be used when a clerk assigns an unused telephone number to a
new customer. (The idea is to give the customer some choice.) You also want to
highlight numbers which have been in service recently, to warn the customer of the
possibility of calls to the previous owner.

You can define the part of your screen which shows the telephone numbers with a
single field definition:
TELNO DFHMDF POS=(7,1),LENGTH=9,ATTRB=NORM,OCCURS=40

This statement generates 40 contiguous but separate display fields, starting at
position (7,1) and proceeding across the rows for as many rows as required (five, in
our case). We have chosen a length that (with the addition of the attributes byte)
divides the screen width evenly, so that our numbers appear in vertical columns and
are not split across row boundaries. The attributes you specify, and the initial value
as well, apply to each field.

The description of these fields in the symbolic map looks like this in COBOL:
02 TELNOG OCCURS 40.

03 FILLER PICTURE X(2).
03 TELNOA PICTURE X.
03 TELNOO PIC X(9).

This structure lets you fill the map from an array in your program (or any other
source) as follows:

PERFORM MOVENO FOR I FROM 1 THROUGH 40.
...

MOVENO.
MOVE AVAIL-NO (I) TO TELNOO (I).
IF DAYS-SINCE-USE (I) < 90, MOVE DFHBMBRY to TELNOA (I).

(DFHBMBRY is a CICS-supplied constant for setting the field intensity to bright; we
explain more in “Attribute value definitions: DFHBMSCA” on page 481.)

Labels for OCCURS fields vary slightly for the different languages that CICS
supports, but the function is the same.

Each element of an array created by the OCCURS option is a single map field. If
you need to repeat a series of fields (an array of structures, in other words), you
cannot use OCCURS. To use such an array in a program, you must define all of the
fields individually, without OCCURS, to produce the necessary physical map. Then
you can modify the resulting symbolic map, replacing the individual field definitions
with an array whose elements are the structure you need to repeat. You must
ensure that the revised symbolic map has exactly the same field structure as the
original, of course. An alternative is to use SDF II, which allows you to define such
an array directly.

Block data
BMS provides an alternate format for the symbolic map, called block data format,
that may be useful in specific circumstances. In block data format, the symbolic
output map is an image of the screen or page going to the terminal. It has the
customary field attributes (A) and output value (O) subfields for each named map
field, but the subfields for each map field are separated by filler fields such that their

Chapter 32. Creating the map 469

displacement in the symbolic map structure corresponds to their position on the
screen. There are no length subfields, and symbolic cursor positioning is
unavailable as a consequence.

For example, the symbolic map for the “quick check” screen in Figure 103 on page
456 would look like this in block data format (assuming a map 80 columns wide).
Compare this with the normal “field data”. format (in Figure 104 on page 456) from
the same map definition.
You can set only the field attributes in the program; BMS ignores the DSATTS

option in the map and does not generate subfields for the extended attributes in
block data format. You can use block data for input as well. The input map is
identical in structure to the output map, except that the flag (F) replaces the field
attributes (A) subfield, and the input (I) replaces the output (O) subfield, as in field
format.

Block data format may be useful if the application program has built or has access
to a printer page image which it needs to display on a screen. For most situations,
however, the normal field data format provides greater function and flexibility.

Support for non-3270 terminals
Minimum BMS supports only 3270 displays and printers. This category includes the
3178, 3290, 8775 and 5520, LU type 2 and LU type 3 devices, and any other
terminal that accepts the 3270 data stream. The IBM 3270 Information Display
System Data Stream Programmer’s Reference manual contains a full list. Standard
BMS expands 3270 support to SCS printers (3270 family printers not using the
3270 data stream) and all of the terminal types listed in Table 39 on page 474. See
“Non-3270 CICS printers” on page 412 for more information about BMS and SCS
datastreams.

Because of functional differences among these terminal types, it is not possible to
make BMS work in exactly the same way for each of them. The sections which
follow outline the limitations in using BMS on devices which lack the hardware basis
for certain features.

Output considerations for non-3270 devices
Because BMS separates the device-dependent content of the output data stream
from the logical content, there are only a few differences between 3270 and
non-3270 devices that you need to consider in creating BMS output.

01 QCKMAPO.
02 FILLER PIC X(12). <---TIOAPFX still present
02 FILLER PICTURE X(192). <---Spacer
02 ACCTNOA PICTURE X. <---Position (3,13)
02 ACCTNOO PIC X(7).
02 FILLER PICTURE X(72). <---Spacer
02 SURNAMEA PICTURE X. <---Position (4,13)
02 SURNAMEO PIC X(15).
02 FNAMEA PICTURE X. <---Position (4,30),
02 FNAMEO PIC X(10).
02 FILLER PICTURE X(52). <---Spacer
02 CHGA PICTURE X. <---Position (5,13)
02 CHGO PIC $,$$0.00
02 FILLER PICTURE X(139). <---Spacer
02 MSGA PICTURE X. <---Position (7,1).
02 MSGO PIC X(30).

Figure 107. Symbolic map for “quick check” in block data format

470 CICS TS for z/OS: CICS Application Programming Guide

The primary difference between 3270 and non-3270 devices is that the 3270 is
field-oriented, and most others are not. Consequently, there are neither field
attributes nor extended attributes associated with output fields sent to non-3270
terminals. BMS can position the output in the correct places, field by field, but the
field structure is not reflected in the data stream. BMS can even emulate some field
attributes on some terminals (it may underline a highlighted field, for example), but
there is no modified data tag, no protection against keying into the field, and so on.

If you specify attributes on output that the terminal does not support, BMS simply
ignores them. You do not need to worry about them, provided the output is
understandable without the missing features.

Differences on input
The absence of field structure has more impact on input operations, because many
of the features of BMS depend on the ability to read—by field—only those fields
that were modified. If the hardware does not provide the input field-by-field with its
position on the screen, you must provide equivalent information.

You can do this in either of two ways. The first is to define a field-separator
sequence, one to four characters long, in the FLDSEP option of the map definition.
You place this sequence between each field of your input and supply the input fields
in the same order as they appear on the screen or page. You must supply every
field on the screen, up to the last one that contains any data. If there is no input in
a field, it can consist of only the terminating field-separator sequence. On hardcopy
devices, input cannot overlay the output because of paper movement. On displays
that emulate such terminals, the same technique is generally used. Input fields are
entered in an area reserved for the purpose, in order, separated by the
field-separator sequence.

The second method is to include control characters in your input. If you omit the
FLDSEP option from your map, BMS uses control characters to calculate the
position of the data on the “page” and maps it accordingly. The control characters
that BMS recognizes are:

NL new line X’15’
IRS interchange record separator X’1E’
LF line feed X’25’
FF form feed X’0C’
HT horizontal tab X’05’
VT vertical tab X’0B’
CR carriage return X’0D’
RET return on the TWX X’26’
ETB end text block X’26’
ESC escape, for 2780 X’27’

When you read data of this kind with a RECEIVE MAP command, there are some
differences from true 3270 input:

v The flag byte (F subfield) is not set; it contains a null. You cannot determine
whether the operator erased the field or whether the cursor was left in the field.

v You cannot preset a modified data tag on output to ensure that a field is returned
on input.

Chapter 32. Creating the map 471

Special options for non-3270 terminals
BMS provides some additional formatting options for non-3270 devices, to take
advantage of device features that shorten the data stream. These include:

v Vertical and horizontal tabs. You can position your output with horizontal and
vertical tab orders if the device supports them. The tab characters are defined by
the HTAB and VTAB options in the map set definition. When you want to position
to the next horizontal tab, you include the HTAB character in your data; you
position to the next vertical tab by supplying the VTAB character in your data.
BMS translates these characters to the tab sequence required by your particular
principal facility.

Before you use tabs in BMS output, your task or some earlier task at the same
terminal must have set the tabs in the required positions. This is usually done
with a terminal control SEND command, described in “Using data transmission
commands” on page 370.

v Outboard formatting. Some logical units can store format information and
participate in the formatting process. This allows BMS to send much less data
(essentially the symbolic map contents) and delegate the work of merging the
physical and symbolic maps to the logical unit. See “Outboard formatting” on
page 554 for details.

v NLEOM (new line, end of message). Standard BMS also gives you the option of
requesting that BMS format your output with blanks and new-line (NL) characters
rather than 3270 buffer control orders. This technique gives you more flexibility in
page width settings on printers, as explained in “NLEOM option” on page 410.

Device-dependent maps
Because the position, default attributes, and default contents of map fields appear
only in the physical map and not in the symbolic map, you can use a single
program to build maps that contain the same variable information but different
constant information in different arrangements on the screen. This is very
convenient if the program you are writing must support multiple devices with
different characteristics.

You do this by defining multiple maps with the same names but different attributes
and layout, each with a different suffix.

Suppose, for example, that some of the clerks using the “quick update” transaction
use 3270 Model 2s (as we have assumed until now), and the rest use a
special-purpose terminal that has only 3 rows and 40 columns. The format we
designed for the big screen will not do for the small one, but the information will fit if
we rearrange it:
We need the following map definition:

QUP Quick Account Update:
Current charge okay; enter next
Acct: _______ Charge: $ _______

Figure 108. “Quick update” for the small screen

472 CICS TS for z/OS: CICS Application Programming Guide

The symbolic map set produced by assembling this version of the map is identical
to the one shown in “An input-output example” on page 493, because the fields with
names have the same names and same lengths, and they appear in the same
order in the map definition. (They do not need to appear in the same order on the
screen, incidentally; you can rearrange them, provided you keep the definitions of
named fields in the same order in all maps.) You only need one copy of the
symbolic map and you can use the same code to build the map.

CICS will select the physical map to use from the value coded in the ALTSUFFIX
option of the TYPETERM resource definition for the terminal from which the
transaction is being run. You also need to specify SCRNSZE(ALTERNATE) in the
transaction PROFILE resource definition. See CICS Resource Definition Guide for
information about the TYPETERM and PROFILE resource definitions.

You might use this technique to distinguish among standard terminals used for
special purposes. For example, if an application were used by both English and
French speakers, you could create two sets of physical maps, one with the
constants in French and the other in English. You would assign each a suffix, and
specify the English suffix as the ALTSUFFIX value in the definitions of the English
terminals and the French suffix for French terminals. Transactions using the map
would point to a PROFILE that specified alternate screen size. Then when you sent
the map, BMS would pick the version with the suffix that matched the terminal (that
is, in the appropriate language).

Another way to provide device dependent maps is to allow BMS to generate a suffix
based on the terminal type, and select the physical map to use to match the
terminal in the current execution when you issue SEND MAP or RECEIVE MAP.

Device dependent support: DDS
The BMS feature that does this is called “device dependent support” (DDS). DDS is
an installation option that works as follows.

When you assemble your map sets, you specify the type of terminal the maps are
for in the TERM option. This causes the assembler to store the physical map set
under the MAPSET name suffixed by the character for that type of terminal5. When
you issue SEND MAP or RECEIVE MAP with DDS active, BMS adds a 1-character
suffix to the name you supply in the MAPSET option. It chooses the suffix based on
the definition of your terminal, and thus loads the physical map that corresponds to
the terminal for any given execution.

5. You also can use JCL or the link-edit NAME statement to control the member name under which a map set is stored.

QUPSET DFHMSD TYPE=MAP,STORAGE=AUTO,MODE=INOUT,LANG=COBOL,SUFFIX=9
QUPMAP DFHMDI SIZE=(3,40),LINE=1,COLUMN=1,CTRL=FREEKB

DFHMDF POS=(1,1),LENGTH=24,ATTRB=(ASKIP,BRT), X
INITIAL=’QUP Quick Account Update’

MSG DFHMDF LENGTH=39,POS=(2,1),ATTRB=(ASKIP,NORM)
DFHMDF POS=(3,1),LENGTH=5,ATTRB=(ASKIP,NORM), X

INITIAL=’Acct:’
ACCTNO DFHMDF POS=(3,11),LENGTH=6,ATTRB=(UNPROT,NUM,IC)

DFHMDF POS=(3,18),LENGTH=1,ATTRB=(ASKIP),INITIAL=’ ’
DFHMDF POS=(3,20),LENGTH=7,ATTRB=(ASKIP,NORM),INITIAL=’Charge:’

CHG DFHMDF POS=(3,29),LENGTH=7,ATTRB=(UNPROT,NORM),PICIN=’$$$$0.00’
DFHMDF POS=(3,37),LENGTH=1,ATTRB=(ASKIP),INITIAL=’ ’
DFHMSD TYPE=FINAL

Figure 109. Map definition

Chapter 32. Creating the map 473

BMS defines the suffixes used for the common terminal types. A 3270 Model 2 with
a screen size of 24 rows and 80 columns is assigned the letter ‘M,’ for example.
The type is determined from the TYPETERM definition if it is one of the standard
types shown in Table 39.

Table 39. Terminal codes for BMS

Code Terminal or logical unit

A CRLP (card reader input, line printer output) or TCAM terminal.
Note: In CICS TS 3.1, local TCAM terminals are not supported. The only
TCAM terminals supported are remote terminals connected to a pre-CICS TS
3.1 terminal-owning region by the DCB (not ACB) interface of TCAM.

B Magnetic tape

C Sequential disk

D TWX Model 33/35

E 1050

F 2740-1, 2740-2 (without buffer receive)

G 2741

H 2740-2 (with buffer receive)

I 2770

J 2780

K 3780

L 3270-1 displays (40-character width)

M 3270-2 displays (80-character width), LU type 2s

N 3270-1 printers

O 3270-2 printers, LU type 3s

P All interactive LUs, 3767/3770 Interpreter LU, 3790 full function LU, SCS printer
LU

Q 2980 Models 1 and 2

R 2980 Model 4

U 3600 (3601) LU

V 3650 Host Conversational (3653) LU

W 3650 Interpreter LU

X 3650 Host Conversational (3270) LU

Y 3770 Batch LU, 3770 and 3790 batch data interchange LUs, LU type 4s

blank 3270-2 (default if TERM omitted)

An installation can also define additional terminal types, such as the miniature
screen described above. The system programmer does this by assigning an
identifier to the terminal type and specifying it in the ALTSUFFIX option of the
TYPETERM definition for the terminals. When you create a map for such a
terminal, you specify this identifier in the SUFFIX option, instead of using the TERM
option. Transactions using the map must also point to a PROFILE that specifies
alternate screen size, so that ALTSUFFIX is used.

With DDS, the rules BMS uses for selecting a physical map are:

v BMS adds the ALTSUFFIX value in the terminal definition to your map set name,
provided that definition specifies both ALTSUFFIX and ALTSCREEN, and

474 CICS TS for z/OS: CICS Application Programming Guide

|
|
|

provided that the screen size for the transaction is the alternate size (either
because the transaction PROFILE calls for alternate size, or because the default
and alternate sizes are the same).

v If these conditions are not met, or if BMS cannot find a map with that suffix, it
attempts to find one with the suffix that corresponds to the terminal type in the
terminal definition.

v If BMS cannot find that map either, it looks for one with no suffix. (A blank suffix
indicates an all-purpose map, suitable for any terminal that might use it.)

Without DDS, BMS always looks first (and only) for an unsuffixed map.

Device-dependent support is an installation option for BMS, set by the system
programmer in the system initialization table. Be sure that it is included in your
system before taking advantage of it; you should know whether it is present, even if
you are supporting only one device type.

With DDS in the system, there is an efficiency advantage in creating suffixed map
sets, even if you are supporting only one device type, because you prevent BMS
from attempting to load a map set that does not exist before defaulting to the
universal one (the blank suffix).

Without DDS, on the other hand, it is unnecessary to suffix your maps, because
BMS looks for the universal suffix (a blank) and fails to locate suffixed maps.

Finding out about your terminal
Because of the overall design of BMS, and device-dependent support in particular,
you generally do not need to know much about your terminal to format for it.
However, if you need to know the characteristics of your principal facility, you can
use the ASSIGN and INQUIRE commands. You can tell, for example, whether your
terminal supports a particular extended attribute, what national language is in use,
screen size and so on. This type of information applies whether you are using BMS
or terminal control to communicate with your terminal. You need it more often for
terminal control, and so we describe the options that apply in that chapter, in
“Finding out about your terminal” on page 375.

There are also ASSIGN options specific to BMS, but you need them most often
when you use the ACCUM option, and so we describe them later, in “ASSIGN
options for cumulative processing” on page 517.

Chapter 32. Creating the map 475

476 CICS TS for z/OS: CICS Application Programming Guide

Chapter 33. Sending BMS mapped output

When you have assembled your symbolic map set, you are ready to code. We have
explained by example how you get data from an application program to a map. We
discuss that process in greater detail now, describing all the steps that must be
performed, and telling you more about the options you have.

You must perform the following steps to produce mapped output:

1. Acquire storage in which to build the map.

2. Copy the symbolic map set so that it defines the structure of this storage.

3. Initialize it.

4. Move the output data into the map structure.

5. Set the field attributes.

6. Write the map to the screen with a SEND MAP command, adding any device
control information required.

This chapter describes:
v “Acquiring and defining storage for the maps”
v “Initializing the output map” on page 478
v “Moving the variable data to the map” on page 479
v “Setting the display characteristics” on page 479

Acquiring and defining storage for the maps
The first step in creating mapped output is to provide storage in which to arrange
the variable map data that your program passes to BMS. If you place the map
structure in working storage, CICS does the allocation for you. (CICS allocates a
private copy of working storage for each execution of a program, so that data from
one task does not get confused with that from another, as explained in “Program
storage” on page 158.) To use working storage, copy the symbolic map set there
with the language statement provided for the purpose:

COPY in COBOL and assembler
%INCLUDE in PL/I
#include in C and C++

Working storage is the WORKING-STORAGE SECTION in COBOL, automatic
storage in PL/I, C, C++, and DFHEISTG in a CICS assembler program. For
example:

WORKING-STORAGE SECTION.
...
01 COPY QCKSET.
...

Alternatively, you can obtain and release map set storage as you need it, using
CICS GETMAIN commands. (GETMAIN is discussed in Chapter 46, “Storage
control,” on page 577.) In this case you copy the map into storage addressed by a
pointer variable (the LINKAGE SECTION in COBOL, based storage in PL/I, C, and
C++, a DSECT in assembler). On return from the GETMAIN, you use the address
returned in the SET option to associate the storage with the data structure,
according to the facilities of the programming language.

© Copyright IBM Corp. 1989, 2010 477

We used working storage in the example back on page Figure 105 on page 457,
but we could have used a GETMAIN. If we had, the code we just showed you
would change to:

LINKAGE SECTION.
...
01 COPY QCKSET.
...
PROCEDURE DIVISION.
...
MOVE LENGTH OF QCKMAPO TO LL.
EXEC CICS GETMAIN SET(ADDRESS OF QCKMAPO)

LENGTH(LL) END-EXEC.
...

The length you need on your GETMAIN command is the length of the variable
whose name is the map name suffixed by the letter “O”. In COBOL, PL/I, C, and
C++, you can use language facilities to determine this length, as in the example
above. In assembler, it is defined in an EQUate statement whose label is the map
name suffixed by “L”.

BASE and STORAGE options
Two options on the DFHMSD map set definition macro affect how storage for maps
is defined: BASE and STORAGE=AUTO (the STORAGE option always has the
value AUTO). You can use either one or neither, so there are three possibilities. If
you specify neither for a map set containing several maps, the symbolic structures
for the maps are defined so that they overlay one another. If you specify
STORAGE=AUTO, they do not; each occupies separate space. Thus
STORAGE=AUTO requires more storage.

However, when you use maps that overlay one another in a single program, you
must use them serially or compensate for the reuse of storage by programming.
Unless storage is a major issue, STORAGE=AUTO simplifies programming and
reduces the risk of error.

In PL/I, C, and C++, STORAGE=AUTO has the additional effect of defining the map
as automatic storage (storage that CICS allocates); the absence of
STORAGE=AUTO causes these compilers to assume based storage, for which you
generally incur the overhead of an additional GETMAIN. BMS assigns the name
BMSMAPBR to the associated pointer variable, unless you specify another name
with the BASE option.

The third possibility, BASE, lets you use the same storage for all the maps in
multiple map sets. Its effect varies slightly with the programming language, but
essentially, all the maps in map sets with the same BASE value overlay one
another. In COBOL, BASE=xxxx causes the 01 levels (that is, each individual map)
to contain a REDEFINES xxxx clause. In PL/I, C, and C++, it designates each map
as storage based on the pointer variable xxxx. BASE cannot be used when the
programming language is assembler.

Initializing the output map
Before you start building your output, make sure that the map storage is initialized
to nulls, so that data left there by a previous process is not used inadvertently. If
you have read input data using this same map, or one that overlays it, you need to
ensure that you have processed or saved this data first. The relationship between

478 CICS TS for z/OS: CICS Application Programming Guide

input and output maps is discussed in “The symbolic input map” on page 495, and
using the same map you used for input is discussed in “Sending mapped output
after mapped input” on page 503.

You initialize by moving nulls (X'00') into the structure. The symbolic map structures
are defined so that you can refer to the whole map area by the name of the map
suffixed by the letter O. You can see this in Figure 104 on page 456, and, in fact,
the statement:

MOVE LOW-VALUES TO QCKMAPO.

would clear the area in which we built the map in the “quick check” example. If you
are using the map for both input and output, it may be easier to clear the map one
field at a time, as you edit the input (see “Handling input errors” on page 501).

When you obtain map storage with a CICS GETMAIN instruction, another way to
initialize is to use the INITIMG option.

Moving the variable data to the map
Having obtained storage for your map, established the relationship of the map
structure to the storage, and initialized, you are finally ready to create your output.
There are two parts to it: the data itself and its display attributes. We tell you about
the data first and get to the attributes right after.

In the usual case, an output display consists of some constant or default data
(provided by the physical map) and some variable data (provided by the program).
For each field that you want to supply by program, you move the data into the field
in the symbolic map whose name is the name assigned in the map suffixed by the
letter O. See the code on page “A BMS output example” on page 457 for an
example.

If you do not supply a value for a field (that is, you leave it null, as initialized), BMS
ordinarily uses the initial value assigned in the map, if any. Constants (that is, fields
without names) also get the initial values specified in the map. However, the
DATAONLY and MAPONLY options on the SEND MAP command modify the way in
which program and map data are merged; we explain these options in “Merging the
symbolic and physical maps” on page 484 and summarize the exact rules in
“Building the output screen” on page 485.

Setting the display characteristics
Display attributes are the second component of the output data. (See “3270 field
attributes” on page 392 for information about attributes.) In the “quick check”
example on page “A BMS output example” on page 457, we show how 3270 field
attributes for a map field are defined with the ATTRB option, and how BMS
generates the “A” subfield to let you override the map value by program if you
name the field.

BMS always provides the A subfield, because all 3270 devices support field
attributes. Many 3270s also have some of the extended attributes shown in
Table 40 on page 480. BMS supports each of these attributes individually in much
the same way that it does field attributes collectively. You can assign attribute
values in your DFHMDF field definitions, and, if you name the field, BMS generates
a subfield in the symbolic map, so that you can override the map-assigned value in
your program. There is a separate subfield for each type of extended attribute.

Chapter 33. Sending BMS mapped output 479

You can request subfields for the extended attributes by specifying the required
attribute in the DSATTS option of DFHMDI or DFHMSD. You must also include the
list of extended attributes in the the MAPATTS option (even if these attribute types
do not appear in any DFHMDF macro).

Table 40. BMS attribute types. The columns show the types of attributes, the name of the
associated MAPATTS and DSATTS value, and the suffix of the associated subfields in the
symbolic map.

Attribute type MAPATTS, DSATTS value Subfield suffix

Field attributes None (default) A

Color COLOR C

Highlighting HILIGHT H

Outlining OUTLINE U

Background transparency TRANSP T

Validation VALIDN V

Double-byte character capability SOSI M

Programmed symbols PS P

Note: If you use programmed symbols, you need to ensure that a suitable symbol
set has been sent to the device first, unless you choose one that is
permanently loaded in the device. You can use a terminal control SEND
command to do this (see “Using data transmission commands” on page
370). The IBM 3270 Information Display System Data Stream Programmer’s
Reference manual describes what to send.

The types of attributes that apply depend on the features of your principal
facility at the time of execution. If you specify a value for an attribute that the
terminal does not possess, BMS ignores it. If you are supporting different
terminal types, however, you may need to use different techniques to get the
same visual clarity. You can find out what kind of terminal you are using with
the ASSIGN and INQUIRE commands, explained in “Finding out about your
terminal” on page 375. There are also provisions in BMS for keeping your
program independent of the terminal type; see “Device-dependent maps” on
page 472.

Changing the attributes
Here is an example of how this works. Suppose that the terminals in our “quick
check” application have color and highlighting capabilities. We might decide to show
the maximum charge allowed in a different color from the rest of the screen,
because this field is of most interest to the clerk. We might also make the warning
message red, because when it appears at all, it is important for the clerk to notice
it. And when we really want to get the clerk’s attention, because the card is stolen,
we could change the attributes in the program to make the message blink. To add
these features, we need to change our map definition as follows:
QCKMAP DFHMDI SIZE=(24,80),..., X

MAPATTS=(COLOR,HILIGHT),COLOR=GREEN,HILIGHT=OFF,DSATTS=HILIGHT

The MAPATTS option tells BMS that we specify color and highlighting in the map
(or in the program, because any attribute listed in DSATTS must be included in
MAPATTS as well). The COLOR and HILIGHT values indicate that fields with no
color assigned should be green and that highlighting should be off if not specified.

480 CICS TS for z/OS: CICS Application Programming Guide

The only field definitions that we need to change are the ones that are not green or
are highlighted:
CHG DFHMDF POS=(5,13),LENGTH=8,ATTRB=(ASKIP,NORM),PICOUT=’$,$$0.00’, X

COLOR=NEUTRAL
MSG DFHMDF LENGTH=20,POS=(7,1),ATTRB=(ASKIP,NORM),COLOR=RED

Specifying COLOR=NEUTRAL means that on a terminal, the field is displayed in
white.

The DSATTS option tells BMS that we want to alter the highlighting of some fields
at execution time, and therefore it should produce “H”-suffix subfields in the
symbolic map to let us do that. Each named field gets the extra subfield; the
message field, for example, expands from the current three lines in Figure 104 on
page 456 to:

02 FILLER PICTURE X(2).
02 MSGH PICTURE X.
02 MSGA PICTURE X.
02 MSGO PIC X(30).

The program statement we need to produce the blinking is:
MOVE DFHBLINK to MSGH.

In general, BMS takes attribute values from the program if you supply them and
from the map if you do not (that is, if you leave the program value null, as
initialized). However, the MAPONLY and DATAONLY options on the SEND MAP
command affect attribute values as well as field data, as explained in “Where the
values come from” on page 486.

Attribute value definitions: DFHBMSCA
The 1-byte values required to set attribute values are bit combinations defined by
3270 hardware. They are hard to remember and, in some languages, clumsy to
express. To solve this problem, CICS provides source code that you can copy into
your program. The code, named DFHBMSCA, defines all the commonly used
values for all attributes and assigns meaningful names to each combination.
DFHBLINK in the line of code above is an example. To define DFHBLINK, we
simply copy DFHBMSCA into our working storage, thus:

WORKING-STORAGE SECTION.
...
01 COPY DFHBMSCA.

There is a separate version of DFHBMSCA for each programming language, but the
value names are the same in all versions. If you need an attribute combination not
included in DFHBMSCA, you can determine the value by referring to the IBM 3270
Information Display System Data Stream Programmer’s Reference; if you make
frequent use of the value, you may want to modify DFHBMSCA to include it.

Note: In assembler language only, the values are defined with EQUates, so you
use MVI rather than MVC instructions.

Chapter 33. Sending BMS mapped output 481

#
#

#
#
#

#
#

482 CICS TS for z/OS: CICS Application Programming Guide

Chapter 34. Using the SEND MAP command

The SEND MAP command tells BMS:

v Which map to use (MAP option), and where to find that map (the MAPSET
option)

v Where to find the variable data for the map (FROM option) and how to merge it
with the values from the map (MAPONLY and DATAONLY)

v Which device controls to include in the data stream, and other control options

v Where to put the cursor, if you want to override the position in the map definition
(the CURSOR option)

v Whether the message is complete or is built cumulatively (the ACCUM option)

v What to do with the formatted output (TERMINAL, SET and PAGING options)

The MAP and MAPSET options are self-explanatory, and we cover most of the rest
as we describe the programming steps that precede a simple SEND MAP . The last
two topics require a knowledge of BMS logical message facilities, which we
describe in “Output disposition options: TERMINAL, SET, and PAGING” on page
489.

Until we get to that point, we assume the defaults: that each SEND MAP creates
one message, and we are sending that message to our own terminal. The CICS
Application Programming Reference manual describes this command in more detail.

This chapter describes:
v “SEND MAP control options”
v “Merging the symbolic and physical maps” on page 484
v “Building the output screen” on page 485
v “Positioning the cursor” on page 488
v “Sending invalid data and other errors” on page 489
v “Output disposition options: TERMINAL, SET, and PAGING” on page 489

SEND MAP control options
There are many control options for the BMS SEND commands. Some apply only to
particular devices or special features of BMS, and we defer describing these until
we get to the associated device support or feature. The following device control
options, however, apply generally:

v ERASE, ERASEAUP, and FRSET all modify the contents of the device buffer, if
the terminal has one, before writing your output into it. ERASE sets the entire
buffer to nulls (X‘00’). If the terminal has the alternate screen size feature,
ERASE also sets the buffer size. Therefore, the first SEND MAP in a task
normally specifies the ERASE option, both to clear the buffer and to select the
buffer size. (See “3270 write commands” on page 390 for more information about
alternate screen size.)

ERASEAUP (erase all unprotected fields) sets the contents of all fields in the
buffer that are unprotected (that is, fields which the operator can change) to
nulls. This is useful for data entry, as we explain in “DATAONLY option” on page
485.

FRSET (field reset) turns off the modified data tag of all fields in the buffer
(“Saving the good input” on page 502 and “Modification” on page 393 explain
more about this option).

v FREEKB (free keyboard) unlocks the keyboard when the output is sent to the
terminal. You usually want to do this on a display terminal.

© Copyright IBM Corp. 1989, 2010 483

v ALARM sounds the audible alarm, if the terminal has one.

v FORMFEED, PRINT, L40, L64, L80, and HONEOM are specific to printing and
are explained in “CICS 3270 printer options” on page 409. NLEOM also is used
mainly in printing, and is explained in the same section. NLEOM requires
standard BMS.

Some of these options can also be specified in the map itself, in particular, the
options that are expressed in the 3270 write control character and coded in the
CTRL option of the DFHMDI or DFHMSD macros: PRINT, FREEKB, ALARM,
FRSET, L40, L64, L80, HONEOM.

Note: CTRL options are always treated as a group, so if you include any of them
on your SEND MAP command, BMS ignores the values for all of them in
your map definition and uses only those in the command. As we noted
earlier, you can also send device control options separate from your map
data, using a SEND CONTROL command. You can use any option on SEND
CONTROL that you can use on SEND MAP, except those that relate
expressly to data, such as NLEOM.

Other BMS SEND options: WAIT and LAST
When a task writes to a terminal with a BMS or terminal control SEND command
CICS normally schedules the transmission and then makes the task ready for
execution again. Actual transmission occurs somewhat later, depending on terminal
type, access method and other activity in the system. If you want to ensure that
transmission is complete before your program regains control, use the WAIT option.

WAIT can increase response time slightly, because it prevents overlap between
processing and output transmission for a task. (Overlap occurs only until a
subsequent SEND, RECEIVE, or end of task, however, because CICS finishes one
terminal operation completely before starting another.)

You can improve response time slightly for some terminals by using the LAST
option. LAST indicates that the output you are sending is the last output for the
task. This knowledge allows CICS to combine transmission of the data with the
VTAM end-of-bracket flow that occurs at end of task.

Merging the symbolic and physical maps
So far, we have assumed that every display consists of some constant data
(provided by the physical map) and some variable data (provided by the program
and structured according to the symbolic map). Sometimes, however, one or more
of these components is missing.

MAPONLY option
For example, a menu map may not need any data supplied by program. In such a
case, you code the MAPONLY option in place of the FROM option on your SEND
MAP command. BMS then takes all the information from the physical map, sending
the initial values for both the constant (unnamed) and named fields. You do not
need to copy the symbolic map set into a program that always sends the map with
MAPONLY, and, in fact, you can skip the TYPE=DSECT map set assembly if all
programs use all the maps in the set in this way.

MAPONLY is also the way you get an input-only map to the screen.

484 CICS TS for z/OS: CICS Application Programming Guide

DATAONLY option
The opposite situation is also possible: the program can supply all the data and not
need any constant or default values from the map. This happens on the second and
subsequent displays of a map in many situations: data entry applications, inquiry
applications where the operator browses through a series of records displayed in
identical format, and screens which are redisplayed after detection of an error in the
input.

BMS takes advantage of this situation if you indicate it with the DATAONLY option.
You still need to tell BMS which map and map set you are using for positioning
information, but BMS sends only those fields which have non-null attribute or data
values in the symbolic map. Other fields and attribute values are left unchanged.

The SEND CONTROL command
There are also occasions when you do not need to send data at all, but you do
need to send device controls. For example, you might need to erase the screen or
sound the alarm. You do this with a SEND CONTROL command listing the options
you need,

Consider a program in a data entry application. When first initiated, it displays the
data entry map to format the screen with the input fields, the associated labels,
screen headings and instructions. This first SEND MAP command specifies
MAPONLY, because the program sends no variable data. Thereafter, the program
accepts one set of data input. If the input is correct, the program files it and
requests another. It still does not need to send any variable data. What it needs to
do is to erase the input from the screen and unlock the keyboard, to signal the
operator to enter the next record.

EXEC CICS SEND CONTROL ERASEAUP FREEKB END-EXEC

does this. (See “SEND MAP control options” on page 483 for a description of these
and other device control options.)

If there are errors, the program does need to send variable data, to tell the operator
how to fix the problem. This one changes the attributes of the fields in error to
highlight them and sends a message in a field provided for the purpose. Here, our
program uses the DATAONLY option, because the map is already on the screen.
(We tell you more about handling input errors in “Handling input errors” on page
501.)

You should use MAPONLY, DATAONLY, and SEND CONTROL when they apply,
especially when response time is critical, as it is in a data entry situation.
MAPONLY saves path length, DATAONLY reduces the length of the outbound data
stream, and SEND CONTROL does both.

Building the output screen
The interaction of physical map definition options, SEND MAP options, program
data and merge options is sufficiently complex that a summary of the rules for
determining what appears on the screen after a SEND MAP is in order.

The contents of the screen (buffer) are determined by:

v What was there before your SEND MAP command

v The fields (field attributes, extended attributes, and display data) that get sent
from your SEND MAP command

Chapter 34. Using the SEND MAP command 485

v Where the several values for these field elements come from

We discuss the possibilities in that order.

What you start with
The first thing that happens on a SEND MAP command is that the entire screen
(buffer) is cleared to nulls if the ERASE option is present, regardless of the size or
origin of your map. On terminals that have the alternate screen size feature, the
screen size is set as well, as explained in “3270 write commands” on page 390.
The screen is in unformatted state, with no fields defined and no display data. If
ERASEAUP is present, all of the unprotected fields on the screen are erased, but
the field structure and attributes of all fields and the contents of protected fields are
unchanged.

ERASE and ERASEAUP are honored before your SEND MAP data is loaded into
the buffer. If neither of these options appears on the SEND MAP, the screen buffer
starts out as it was left after the previous write operation, modified by whatever the
operator did. In general, the positions of the fields (that is, of the attributes bytes)
and their attributes are unchanged, but the data content of unprotected fields may
be different. Furthermore, if the operator used the CLEAR key, the whole buffer is
cleared to nulls and the screen is in unformatted state, just as if you had included
the ERASE option.

What is sent
Secondly, BMS changes only those positions in the buffer within the confines of
your map. Outside that area, the contents of the buffer are unchanged, although it
is possible for areas outside your map to change in appearance, as explained in
“Outside the map” on page 487.

Within the map area, what is sent depends on whether the DATAONLY option is
present. In the usual case, where it is not present, BMS sends every component
(field attributes, extended attributes, display data) of every field in your map. This
creates a field at the position specified in the POS operand and overlays the
number of bytes specified in the LENGTH field from POS. Buffer positions between
the end of the display data and the next attributes byte (POS value) are left
unchanged. (There may or may not be fields (attributes bytes) in these intervening
spaces if you did not ERASE after the last write operation that used a different
map.)

The values for these field elements come from the program, the map or defaults, as
explained in the next section.

If DATAONLY is present, on the other hand, BMS sends only those fields, and only
those components for them, that the program provides. Other screen data is
unchanged.

Where the values come from
The values that determine screen contents may come from four sources:
v Program
v Map
v Hardware defaults
v Previous screen contents

BMS considers each component of each map field separately, and takes the value
from the program, provided:

486 CICS TS for z/OS: CICS Application Programming Guide

v The MAPONLY option has not been used.

v The field has a name in the map, so that the symbolic output map contains the
corresponding set of subfields from which to get the data. The field attributes
value comes from the program subfield whose name is the map field name
suffixed by A. The display data comes from the subfield of the same name
suffixed by O, and the extended attribute values come from the same-named
subfields suffixed by the letter that identifies the attribute (see Table 40 on page
480). In the case of the extended attributes, the attribute must also appear
among DSATTS in order for the symbolic map to contain the corresponding
subfield.

v A value is present. The definition of “present” varies slightly with the field
component:

– For field attributes bytes, the value must not be null (X'00') or one of the
values that can be left over from an input operation (X'80', X'02', or X'82').

– For extended attribute bytes, the value must not be null.

Note: BMS sends only those extended attribute values that the terminal is
defined as supporting. Values for other extended attributes are omitted
from the final data stream.

– For display data, the first character of the data must not be null.

If any of these conditions is not met, the next step depends on whether DATAONLY
is present. With DATAONLY, BMS stops the process here and sends only the data it
got from the program. BMS does this in such a way that components not changed
by program are not changed on the screen. In particular, extended attributes values
are not changed unless you specify a new value or ask for the hardware default. (A
value of X'FF' requests the hardware default for all extended attributes except
background transparency, for which you specify X'F0' to get the hardware default.)

Without DATAONLY, if one of the conditions above is not met, BMS takes the data
from the map, as follows:

v For field attributes, it takes the value in the ATTRB option for the field. If none is
present, BMS assumes an ATTRB value of (ASKIP,NORM).

v For extended attributes, BMS takes the value from:

– The corresponding option in the DFHMDF field definition

– If it is not specified there, the value is taken from the corresponding option in
the DFHMDI map definition

– If it is not there either, the value is taken from the corresponding option in the
DFHMSD map set definition

(If no value is specified anywhere, BMS does not send one, and this causes the
3270 to use its hardware default value.)

v For display data, from the initial value in the map (the INITIAL, XINIT, or GINIT
option). If there is no initial value, the field is set to nulls.

Outside the map
We have assumed, so far, that your map is the same size as your screen or printer
page. It need not be. Your application may use only a part of the screen area, or
you may want to build your output incrementally, or both.

BMS logical messages allow you to build a screen from several maps, sending it
with a single terminal write. You use the ACCUM option to do this, which we cover
in Chapter 36, “BMS logical messages,” on page 507. Even without using ACCUM,
you can build a screen from several maps if the terminal is a 3270-like device with

Chapter 34. Using the SEND MAP command 487

a buffer. You do this with multiple SEND MAP commands written to different areas
of the screen (buffer), not erasing after the first command. Each SEND MAP causes
output and may produce a momentary “blink” at a display device. For this reason,
and to eliminate the path length of extra I/O, you may prefer to use logical
messages for such composite screens.

Outside the map just sent, the contents of the buffer are unchanged, except for the
effects of ERASE and ERASEAUP cited earlier. In general, this means that the
corresponding areas of the screen are unchanged. However, a screen position
outside the map may get its attributes from a field within the map. This occurs if you
do not define a field (using a different map) beyond the boundary of the map and
before the position in question. If you change the attributes of the field inside your
map governing this position outside, the appearance of the position may change,
even though the contents do not.

Using GDDM and BMS
One use of the buffer overlay technique we just described is the creation of screens
containing a mixture of BMS and Graphical Data Display Manager (GDDM) output.
You generally write the BMS output first, followed by the GDDM. You can leave
space in the BMS map for the GDDM output, or you can create a “graphic hole” in
any display by writing a map with no fields in it to the position where you want the
hole. Such a map is called a “null map,” and its size (height and width) correspond
to the size of the hole.

If you use GDDM to combine graphics with BMS output, you need to include a
GDDM PSRSRV call to prevent GDDM from corrupting programmed symbol sets
that BMS may be using.

Positioning the cursor
Usually, you set the initial position for the cursor in the map definition by including
“insert cursor” (IC) in the ATTRB values of the field where you want it. (Cursor
position is not important for the output-only maps we have been discussing, but it
becomes important as soon as you use a map for input too.)

The CURSOR option on the SEND MAP command allows you to override this
specification, if necessary, when the map is displayed. If you specify
CURSOR(value), BMS places the cursor in that absolute position on the screen.
Counting starts in the first row and column (the zero position), and proceeds across
the rows. Thus, to place the cursor in the fourth column of the third row of an
80-column display, you code CURSOR(163).

Specifying CURSOR without a value signals BMS that you want “symbolic cursor
positioning”. You do this by setting the length subfield of the field where you want
the cursor to minus one (-1). Length subfields are not defined on output-only maps,
so you must define your map as INOUT to use symbolic cursor positioning. (We tell
you about length subfields in “Formatted screen input” on page 497, and about
INOUT maps in Chapter 35, “Receiving mapped data,” on page 493.) If you mark
more than one field in this way, BMS uses the first one it finds.

Symbolic cursor positioning is particularly useful for input-output maps when the
terminal operator enters incorrect data. If you validate the fields, setting the length
of any in error to -1, BMS places the cursor under the first error when you redisplay.
“Processing the mapped input” on page 500 shows this technique.

488 CICS TS for z/OS: CICS Application Programming Guide

You can position the cursor with a SEND CONTROL command also, but only by
specifying an absolute value for CURSOR; if you omit CURSOR on SEND
CONTROL, the cursor is not moved.

Sending invalid data and other errors
The exceptional conditions that can occur on SEND MAP and SEND CONTROL
commands are listed with the descriptions of these commands in the CICS
Application Programming Reference manual . Most of them apply only to the
advanced BMS options: logical messages, partitions, and special devices.

However, it is also possible to send invalid data to a terminal. BMS does not check
the validity of attribute and data values in the symbolic map, although it does not
attempt to send an extended attribute, like color, to a terminal not defined to support
that attribute.

The effects of invalid data depend on both the particular terminal and the nature of
the incorrect data. Sometimes invalid data can be interpreted as a control
sequence, so that the device accepts the data but produces the wrong output;
sometimes the screen displays an error indicator; and sometimes an ATNI abend
occurs. The point at which your task is notified of an ATNI depends on whether or
not you specified the WAIT option (see “Other BMS SEND options: WAIT and
LAST” on page 484).

Output disposition options: TERMINAL, SET, and PAGING
The only disposition option we have described up to this point is TERMINAL, which
sends the output to the principal facility of your task. TERMINAL is the default value
that you get if you do not specify another disposition. There are, however, two other
possibilities:

1. BMS can return the formatted output stream to the task rather than sending it to
the terminal. You use the SET disposition option to request this. You might do
so to defer transmission or to modify the data stream to meet special
requirements. “Acquiring and defining storage for the maps” on page 477
explains how and when to use SET.

2. You can ask BMS to store and manage your output in CICS temporary storage
for subsequent delivery to your terminal. This option, PAGING, implies that your
message may contain more than one screen or page, and is particularly useful
when you want to send a message to a display terminal that exceeds its screen
capacity. BMS saves the entire message in temporary storage until you indicate
that it is complete. Then it provides facilities for the operator to page through the
output at the terminal. You can use PAGING for printers as well as displays,
although you do not need the operator controls, and sometimes TERMINAL is
just as satisfactory.

When you use PAGING, the output still goes to your principal facility, though
indirectly, as just described. Full BMS also provides a feature, routing, that lets you
send your message to another terminal, or several, in place of or in addition to your
own. We tell you about routing in Chapter 39, “Message routing,” on page 527, after
we cover the prerequisites.

Note: Both PAGING and SET and related options require full BMS. TERMINAL is
the only disposition available in minimum and standard BMS.

Chapter 34. Using the SEND MAP command 489

Using SET
When you specify a disposition of SET for a BMS message, BMS formats your
output and returns it in the form of a device-dependent data stream. No terminal I/O
occurs, although the returned data stream usually is sent to a terminal
subsequently.

There are several reasons for asking BMS to format a data stream without sending
it. You might want to do any of the following:

v Edit the data stream to meet the requirements of a device with special features
or restrictions not explicitly supported by CICS.

v Compress the data stream, based on standard 3270 features or special device
characteristics.

v Forward the data stream to a terminal not connected directly to CICS. For
example, you might want to pass data to a 3270 terminal attached to a system
connected to CICS by an APPC link. You can format the data with SET and send
the resulting pages to a partner program across the link. If the terminal is of a
different type from your principal facility, you can define a dummy terminal of the
appropriate type and then ROUTE to that terminal with SET to get the proper
formatting, as explained in “Routing with SET” on page 535.

BMS returns formatted output by setting the pointer variable named in the SET
option to the address of a page list. This list consists of one or more 4-byte entries
in the following format, each corresponding to one page of output.

Table 41. Page list entry format

Bytes Contents

0 Terminal type (see Table 39 on page 474)

1-3 Address of TIOA containing the formatted page of output

An entry containing -1 (X'FF') in the terminal type signals the end of the page list.
Notice that the addresses in this list are only 24 bits long. If your program uses
31-bit addressing, you must expand a 24-bit address to a full word by preceding it
with binary zeros before using it as an address.

Each TIOA (terminal input-output area) is in the standard format for these areas:

Table 42. TIOA format

Field name Position Length Contents

TIOASAA 0 8 CICS storage accounting information (8 bytes)

TIOATDL 8 2 Length of field TIOADBA in halfword binary
format

(unnamed) 10 2 Reserved field

TIOADBA 12 TIOATDL Formatted output page

(unnamed) TIOATDL +
12

4 Page control area, required for the SEND
TEXT MAPPED command (if used)

The reason that BMS uses a list to return pages is that some BMS commands
produce multiple pages. SEND MAP does not, but SEND TEXT can. Furthermore, if
you have established a routing environment, BMS builds a separate logical
message for each of the terminal types among your destinations, and you may get
pages for several different terminal types from a single BMS command. The

490 CICS TS for z/OS: CICS Application Programming Guide

terminal type tells you to which message a page belongs. (Pages for a given type
are always presented in order.) If you are not routing, the terminal type is always
that of your principal facility.

If you are not using the ACCUM option, pages are available on return from the BMS
command that creates them. With ACCUM, however, BMS waits until the available
space on the page is used. BMS turns on the RETPAGE condition to signal your
program that pages are ready. You can detect RETPAGE with a HANDLE
CONDITION command or by testing the response from the BMS command (in
EIBRESP or the value returned in the RESP option).

You must capture the information in the page list whenever BMS returns one,
because BMS reuses the list. You need save only the addresses of the pages, not
the contents. BMS does not reuse the pages themselves, and, in fact, moves the
storage for them from its control to that of your task. This allows you to free the
storage for a page when you are through with it. If you do this, the DATA or
DATAPOINTER option in your FREEMAIN command should point to the TIOATDL
field, not to TIOASAA.

Chapter 34. Using the SEND MAP command 491

492 CICS TS for z/OS: CICS Application Programming Guide

Chapter 35. Receiving mapped data

Formatted screens are as important for input as for output. Data entry applications
are an obvious example, but most other applications also use formatted input, at
least in part. On input, BMS does for you approximately the reverse of what it does
on output: it removes device control characters from the data stream and moves the
input fields into a data structure, so that you can address them by name.

Maps can be used exclusively for input, exclusively for output (the case we have
already covered), or for both. Input-only maps are relatively rare, and we cover
them as a special case of an input-output map, pointing out differences where they
occur.

This chapter describes:
v “An input-output example”
v “Programming mapped input” on page 496
v “Using the RECEIVE MAP command” on page 496
v “Getting storage for mapped input” on page 497
v “Formatted screen input” on page 497
v “Handling input errors” on page 501
v “Finding the cursor” on page 500
v “Processing the mapped input” on page 500
v “Handling input errors” on page 501
v “Sending mapped output after mapped input” on page 503
v “MAPFAIL and other exceptional conditions” on page 504
v “Formatting other input” on page 505

An input-output example
Before we explain the details of the input structure, let us re-examine the “quick
check” example. Suppose that it is against our policy to let a customer charge up to
the limit over and over again between the nightly runs when new charges are
posted to the accounts. We want a new transaction that augments “quick check”
processing by keeping a running total for the day.

In addition, we want to use the same screen for both input and output, so that there
is only one screen entry per customer. In the new transaction, “quick update,” the
clerk enters both the account number and the charge at the same time. The normal
response is:
When we reject a transaction, we leave the input information on the screen, so that

the clerk can see what was entered along with the description of the problem:

QUP Quick Account Update
Current charge okay; enter next
Account: _______
Charge: $ _______

Figure 110. Normal “quick update” response

© Copyright IBM Corp. 1989, 2010 493

(Here again, we are oversimplifying to keep our maps short for ease of
explanation.)

The map definition we need for this exercise is:
You can see that the map field definitions for this input-output map are very similar

to those for the output-only “quick check” map, if we allow for changes to the
content of the screen. The differences to note are:

v The MODE option in the DFHMSD map set definition is INOUT, indicating that
the maps in this map set are used for both input and output. INOUT causes BMS
to generate a symbolic structure for input as well as for output for every map in
the map set. If this had been an input-only map, we would have said MODE=IN,
and BMS would have generated only the input structures.

v We put names on the fields from which we want input (ACCTNO and CHG) as
well as those to which we send output (MSG). As in an output-only map, we
avoid naming constant fields to save space in the symbolic map.

v The input fields, ACCTNO and CHG, are unprotected (UNPROT), to allow the
operator to key data into them.

v IC (insert cursor) is specified for ACCTNO. It positions the cursor at the start of
the account number field when the map is first displayed, ready for the first item
that the operator has to enter. (You can override this placement when you send
the map; IC just provides the default position.)

v Just after the ACCTNO field, there is a constant field consisting of a single blank,
and a similar one after the CHG field. These are called “stopper” fields. Normally,
they are placed after each input field that is not followed immediately by some
other field. They prevent the operator from keying data beyond the space you
provided, into an unused area of the screen.

If you define the stopper field as “autoskip”, the cursor jumps to the next
unprotected field after the operator has filled the preceding input field. This is
convenient if most of the input fields are of fixed length, because the operator
does not have to advance the cursor to get from field to field.

If you define the stopper field as “protected,” but not “autoskip,” the keyboard
locks if the operator attempts to key beyond the end of the field. This choice may
be preferable if most of the input fields are of variable length, where one usually

QUP Quick Account Update
Charge exceeds maximum; do not approve
Account: 482554
Charge: $ 1000.00

Figure 111. “Quick update” error response

QUPSET DFHMSD TYPE=MAP,STORAGE=AUTO,MODE=INOUT,LANG=COBOL,TERM=3270-2
QUPMAP DFHMDI SIZE=(24,80),LINE=1,COLUMN=1,CTRL=FREEKB

DFHMDF POS=(1,1),LENGTH=3,ATTRB=(ASKIP,BRT),INITIAL=’QUP’
DFHMDF POS=(1,26),LENGTH=20,ATTRB=(ASKIP,NORM), X

INITIAL=’Quick Account Update’
MSG DFHMDF LENGTH=40,POS=(3,1),ATTRB=(ASKIP,NORM)

DFHMDF POS=(5,1),LENGTH=8,ATTRB=(ASKIP,NORM), X
INITIAL=’Account:’

ACCTNO DFHMDF POS=(5,14),LENGTH=6,ATTRB=(UNPROT,NUM,IC)
DFHMDF POS=(5,21),LENGTH=1,ATTRB=(ASKIP),INITIAL=’ ’
DFHMDF POS=(6,1),LENGTH=7,ATTRB=(ASKIP,NORM),INITIAL=’Charge:’

CHG DFHMDF POS=(6,13),ATTRB=(UNPROT,NORM),PICIN=’$$$$0.00’
DFHMDF POS=(6,21),LENGTH=1,ATTRB=(ASKIP),INITIAL=’ ’
DFHMSD TYPE=FINAL

Figure 112. Map definition for input-output map

494 CICS TS for z/OS: CICS Application Programming Guide

has to use the cursor advance key anyway, because it alerts the operator to the
overflow immediately. Whichever you choose, you should use the same choice
throughout the application if possible, so that the operator sees a consistent
interface.

v The CHG field has the option PICIN. PICIN produces an edit mask in the
symbolic map, useful for COBOL and PL/I, and implies the field length. See CICS
Application Programming Reference manual for details on using PICIN.

Figure 113 shows the symbolic map set that results from this INOUT map definition.
The second part of this structure, starting at QUPMAPO, is the symbolic output

map—the structure required to send data back to the screen. Apart from the fields
we redefined, it looks almost the same as the one you would have expected if we
had specified MODE=OUT instead of MODE=INOUT. See Figure 102 on page 455
for a comparison. The main difference is that the field attributes (A) subfield
appears to be missing, but we explain this in a moment.

The symbolic input map
The first part of the structure, under the label QUPMAPI, is new. This is the
symbolic input map—the structure required for reading data from a screen
formatted with map QUPMAP. For each named field in the map, it contains three
subfields. As in the symbolic output map, each subfield has the same name as the
map field, suffixed by a letter indicating its purpose. The suffixes and subfields
related to input are:

L the length of the input in the map field.

F the flag byte, which indicates whether the operator erased the field and
whether the cursor was left there.

I the input data itself.

01 QUPMAPI.
02 FILLER PIC X(12).
02 FILLER PICTURE X(2).
02 MSGL COMP PIC S9(4).
02 MSGF PICTURE X.
02 FILLER REDEFINES MSGF.

03 MSGA PICTURE X.
02 MSGI PIC X(40).
02 ACCTNOL COMP PIC S9(4).
02 ACCTNOF PICTURE X.
02 FILLER REDEFINES ACCTNOF.

03 ACCTNOA PICTURE X.
02 ACCTNOI PIC X(6).
02 CHGL COMP PIC S9(4).
02 CHGF PICTURE X.
02 FILLER REDEFINES CHGF.

03 CHGA PICTURE X.
02 CHGI PIC X(7) PICIN ’$,$$0.00’.

01 QUPMAPO REDEFINES QUPMAPI.
02 FILLER PIC X(12).
02 FILLER PICTURE X(3).
02 MSGO PIC X(40).
02 FILLER PICTURE X(3).
02 ACCTNO PICTURE X(6).
02 FILLER PICTURE X(3).
02 CHGO PIC X.

Figure 113. Symbolic map for “quick update”

Chapter 35. Receiving mapped data 495

The input and output structures are defined so that they overlay one another field
by field. That is, the input (I) subfield for a given map field always occupies the
same storage as the corresponding output (O) subfield. Similarly, the input flag (F)
subfield overlays the output attributes (A) subfield. (For implementation reasons, the
order of the subfield definitions varies somewhat among languages. In COBOL, the
definition of the A subfield moves to the input structure in an INOUT map, but it still
applies to output, just as it does in an output-only map. In assembler, the input and
output subfield definitions are interleaved for each map field.)

BMS uses dummy fields to leave space in one part of the structure for subfields
that do not occur in the other part. For example, there is always a 2-byte filler in the
output map to correspond to the length (L) subfield in the input map, even in
output-only maps. If there are output subfields for extended attributes, such as color
or highlighting, BMS generates dummy fields in the input map to match them. You
can see examples of these fields (FILLERs in COBOL) in both Figure 102 on page
455 and Figure 113 on page 495.

The correspondence of fields in the input and output map structures is very
convenient for processes in which you use a map for input and then write back in
the same format, as you do in data entry transactions or when you get erroneous
input and have to request a correction from the operator.

Programming mapped input
The programming required for mapped input is similar to that for mapped output,
except, of course, that the data is going in the opposite direction. You define your
maps and assemble them first, as for mapped output. In the program or programs
reading from the terminal, you:
1. Acquire the storage to which the symbolic map set corresponds.
2. Copy the symbolic map set to define the structure of this storage.
3. Format the input data with a RECEIVE MAP command.
4. Process the input.

We tell you more about these tasks and related topics in the paragraphs that follow,
starting with the RECEIVE MAP command. We also develop the code for the “quick
update” transaction.

If the transaction also calls for mapped output, as “quick update” and most other
transactions do, you simply continue with the steps outlined before, in Chapter 33,
“Sending BMS mapped output,” on page 477. Some considerations and shortcuts
for mapped input are described in “Sending mapped output after mapped input” on
page 503.

Using the RECEIVE MAP command
The RECEIVE MAP command causes BMS to format terminal input data and make
it accessible to your application program. It tells BMS:

v Which map to use in formatting the input data stream—that is, what format is on
the screen and what data structure the program expects (the MAP option)

v Where to find this map (MAPSET option)

v Where to get the input (TERMINAL or FROM option)

v Whether to suppress translation to upper case (ASIS option)

v Where to put the formatted input data (the INTO and SET options)

The MAP and MAPSET options together tell BMS which map to use, and they work
exactly as they do on a SEND MAP command.

496 CICS TS for z/OS: CICS Application Programming Guide

BMS gets the input data to format from the terminal associated with your task (its
principal facility), unless you use the FROM option. FROM is an alternative to
TERMINAL, the default, used in relatively unusual circumstances (see “Formatting
other input” on page 505).

BMS also translates lower case input to upper case automatically in some cases;
we explain how to control translation in “Upper case translation” on page 499.

You tell BMS where to put the formatted input with the INTO or SET option of
RECEIVE MAP.For the full syntax of the RECEIVE MAP command, see CICS
Application Programming Reference manual .

In addition to the data on the screen, the RECEIVE MAP command tells you where
the operator left the cursor and what key caused transmission. This information
becomes available in the EIB on completion of the RECEIVE MAP command.
EIBAID identifies the transmit key (the “attention identifier” or AID), and EIBCURSR
tells you where the cursor was left.

Getting storage for mapped input
When you issue a RECEIVE MAP command, BMS needs storage in which to build
the input map structure. You can provide this space yourself, either in the working
storage of your program or with a CICS GETMAIN. These are the same choices
you have for allocating storage in which to build an output map, and you use them
the same way (see “Acquiring and defining storage for the maps” on page 477 for
details and examples). For either, you code the INTO option on your RECEIVE
command, naming the variable into which the formatted input is to be placed. For
our “quick update”, for example, the required command is:

EXEC CICS RECEIVE MAP(’QUPMAP’) MAPSET(’QUPSET’)
INTO(QUPMAPI) END-EXEC.

Usually, the receiving variable is the area defined by the symbolic input map, to
which BMS assigns the map name suffixed by the letter “I”, as shown above. You
can specify some other variable if you wish, however.

For input operations, you have a third choice for acquiring storage. If you code the
SET option, BMS acquires the storage for you at the time of the RECEIVE
command and returns the address in the pointer variable named in the SET option.
So we could have coded the RECEIVE MAP command in “quick update” like this:

LINKAGE SECTION.
...
01 QUPMAP COPY QUPMAP.
...
PROCEDURE DIVISION.
...
EXEC CICS RECEIVE MAP(’QUPMAP’) MAPSET(’QUPSET’)

SET(ADDRESS OF QUPMAPI) END-EXEC.
...

Storage obtained in this way remains until task end unless you issue a FREEMAIN
to release it (see Chapter 46, “Storage control,” on page 577).

Formatted screen input
As we noted earlier, we explain receiving input from a terminal in terms of 3270
devices. You should also read “Support for non-3270 terminals” on page 470 if you
are writing for non-3270 terminals.

Chapter 35. Receiving mapped data 497

CICS normally reads a 3270 screen with a “read modified” command6. The data
transmitted depends on what the operator did to cause transmission:
v The ENTER key or a PF key
v CLEAR, CNCL or a PA key (the “short read” keys)
v Field selection: cursor select, light pen detect or a trigger field

You can tell which event occurred, if you need to know; we explain how in “Using
the attention identifier” on page 499. You can also find more detail on 3270 input
operations in “Input from a 3270 terminal” on page 400.

The short read keys transmit only the attention identifier (the identity of the key
itself). No field data comes in, and there is nothing to map. For this reason, short
read keys can cause the MAPFAIL condition, as explained on page 504. Field
selection features transmit field data, but in most cases not the same data as the
ENTER and PF keys, which we describe in the paragraphs that follow. See
Chapter 42, “Support for special hardware,” on page 549 for the exceptions if you
plan to use these features.

Most applications are designed for transmission by the ENTER key or a PF key.
When one of these is used to transmit, all of the fields on the screen that have
been modified, and only those fields, are transmitted.

Modified data
As we explained in “Modification” on page 393, a 3270 screen field is considered
modified only if the “modified data tag” (MDT), one of the bits in the field attributes
byte, is on. The terminal hardware turns on this bit if the operator changes the field
in any way—entering data, changing data already there, or erasing. You can also
turn it on by program when you send the map, by including MDT among the ATTRB
values for the field. You do this when you want the data in a particular field to be
returned even if the operator does not change it.

You can tell whether there was input from a particular map field by looking at the
corresponding length (L) subfield. If the length is zero, no data was read from that
field. The associated input (I) subfield contains all nulls (X'00'), because BMS sets
the entire input structure to nulls before it performs the input mapping operation.
The length is zero either if the modified data tag is off (that is, the field was sent
with the tag off and the operator did not change it) or if the operator erased the
field. You can distinguish between these two situations, if you care, by inspecting
the flag (F) subfield. It has the high-order bit on if the field contains nulls but the
MDT is on (that is, the operator changed the field by erasing it). See “Finding the
cursor” on page 500 for more information about the flag subfield.

If the length is nonzero, data was read from the field. Either the operator entered
some, or changed what was there, or the field was sent with the MDT on. You may
find the data itself in the corresponding input (I) subfield. The length subfield tells
how many characters were sent. A 3270 terminal sends only non-null characters, so
BMS knows how much data was keyed into the field. Character fields are filled out
with blanks on the right and numeric fields are filled on the left with zeros unless
you specify otherwise in the JUSTIFY option of the field definition. BMS assumes
that a field contains character data unless you indicate that it is numeric with
ATTRB=NUM. See the CICS Application Programming Reference manual for details
of how these options work.

6. CICS provides an option, BUFFER, for the terminal control RECEIVE command, with which you can capture the entire contents of
a 3270 screen. See “Reading from a 3270 terminal” on page 403 if you need to do this.

498 CICS TS for z/OS: CICS Application Programming Guide

Upper case translation
CICS converts lower case input characters to upper case automatically under some
circumstances. The definition of the terminal and the transaction together determine
whether translation occurs. See the UCTRAN option of the PROFILE and the
TYPETERM definitions in CICS Resource Definition Guide for how these
specifications interact.

You can suppress this translation by using the ASIS option on your RECEIVE MAP
command, except on the first RECEIVE in a task initiated by terminal input. (The
first RECEIVE may be either a RECEIVE MAP (without FROM) or a terminal control
RECEIVE.) CICS has already read and translated this input, and it is too late to
suppress translation. (Its arrival caused the task to be invoked, as explained in
“How tasks are started” on page 142.) Consequently, ASIS is ignored entirely in
pseudoconversational transaction sequences, where at most one RECEIVE MAP
(without FROM) occurs per task, by definition. For the same reason, you cannot
use ASIS with the FROM option (see “Formatting other input” on page 505).

Using the attention identifier
This information is part of the input in many applications, and you may also need it
to interpret the input correctly.

For example, in the “quick update” transaction, we need some method for allowing
the clerk to exit our transaction, and we have not yet provided for this. Suppose that
we establish the convention that pressing PF12 causes you to leave control of the
transaction. We would then code the following after our RECEIVE MAP command:

IF EIBAID = DFHPF12,
EXEC CICS SEND CONTROL FREEKB ERASE END-EXEC
EXEC CICS RETURN END-EXEC.

This would end the transaction without specifying which one should be executed
next, so that the operator would regain control. The SEND CONTROL command
that precedes the RETURN unlocks the keyboard and clears the screen, so that the
operator is ready to enter the next request.

The hexadecimal values that correspond to the various attention keys are defined in
a copy book called DFHAID. To use these definitions, you simply copy DFHAID into
your working storage, in the same way that you copy DFHBMSCA to use the
predefined attributes byte combinations (see “Attribute value definitions:
DFHBMSCA” on page 481). The contents of the DFHAID copy book are listed in
the CICS Application Programming Reference manual.

Using the HANDLE AID command
You can also use a HANDLE AID command to identify the attention key used
(unless you are writing in C or C++, which does not support HANDLE AID
commands). HANDLE AID works like other HANDLE commands; you issue it before
the first RECEIVE command to which it applies, and it causes a program branch on
completion of subsequent RECEIVEs if a key named in the HANDLE AID is used.

For example, an alternative to the “escape” code just shown would be:
EXEC CICS HANDLE AID PF12(ESCAPE) END-EXEC.
...
EXEC CICS RECEIVE MAP(’QUPMAP’) MAPSET(’QUPSET’) ...

Chapter 35. Receiving mapped data 499

...
ESCAPE.

EXEC CICS SEND CONTROL FREEKB ERASE END-EXEC
EXEC CICS RETURN END-EXEC.

HANDLE AID applies only to RECEIVE commands in the same program. The
specification for a key remains in effect until another HANDLE AID in the same
program supersedes it by naming a new label for the key or terminates it by naming
the key with no label. A RESP, RESP2, or NOHANDLE option on a RECEIVE
command exempts that particular command from the effects of HANDLE AID
specifications, but they remain in effect otherwise.

If you have a HANDLE active for an AID received during an input operation, control
goes to the label specified in the HANDLE AID, regardless of any exceptional
condition that occurs and whether or not a HANDLE CONDITION is active for that
exception. HANDLE AID can thus mask an exceptional condition if you check for it
with HANDLE CONDITION. For this reason you may prefer to use an alternative
test for the AID or exceptional conditions or both. You can check EIBAID for the AID
and use the RESP option or check EIBRESP for exceptions. You need to be
especially aware of MAPFAIL in this respect, as noted on page 504.

Finding the cursor
In some applications, you need to know where the operator left the cursor at the
time of sending. There are two ways of finding out. If your map specifies
CURSLOC=YES, BMS turns on the seventh (X'02') bit in the flag subfield of the
map field where the cursor was left. This only works, of course, if the cursor is left
in a map field to which you assigned a name.

Also, because the flag subfield is used to indicate both cursor presence and field
erasure, you need to test the bits individually if you are looking for one in particular:
the X'80' bit for field erasure and the X'02' bit for the cursor. If you are using a
language in which it is awkward to test bits, you can test for combinations. A value
of X'80' or X'82' signals erasure; either X'02' or X'82' indicates the cursor. The
DFHBMSCA definitions described in the CICS Application Programming Reference
manual include all of these combinations.

You can also determine the position of the cursor from the EIBCPOSN field in the
EIB. This is the absolute position on the screen, counting from the upper left
(position zero) and going across the rows. Thus a value of 41 on a screen 40
characters wide would put the cursor in the second row, second column. Avoid this
method if possible, because it makes your program sensitive to the placement of
fields on the screen and to the terminal type.

Processing the mapped input
To illustrate how the input subfields are used, we return to “quick update”. After we
have the input, we need to do some checks on it before continuing. First, we
require that the charge be entered (that is, that the input length be greater than
zero), and be positive and numeric.

IF CHGL = 0, MOVE -1 TO CHGL
MOVE 1 TO ERR-NO

ELSE IF CHGI NOT > ZERO OR CHGI NOT NUMERIC,
MOVE DFHUNIMD TO CHGA,
MOVE -1 TO CHGL
MOVE 2 TO ERR-NO.

500 CICS TS for z/OS: CICS Application Programming Guide

The ’MOVE -1’ statements here and following put the cursor in the first field in error
when we redisplay the map, as explained in “Positioning the cursor” on page 488.
The message number tells us what message to put in the message area; 1 is “enter
a charge”, and so on through 6, for “charge is over limit”. We do these checks in
roughly ascending order of importance, to ensure that the most basic error is the
one that gets the message. At the end of the checking, we know that everything is
okay if ERR-NO is zero.

An account number must be entered, as well as the charge. If we have one
(whatever the condition of the charge), we can retrieve the customer’s account
record to ensure that the account exists:

IF ACCTNOL = 0, MOVE -1 TO ACCTNOL
MOVE 3 TO ERR-NO

ELSE EXEC CICS READ FILE (ACCT) INTO (ACCTFILE-RECORD)
RIDFLD (ACCTNOI) UPDATE RESP(READRC) END-EXEC

IF READRC = DFHRESP(NOTFOUND), MOVE 4 TO ERR-NO,
MOVE DFHUNIMD TO ACCTNOA
MOVE -1 TO ACCTNOL

ELSE IF READRC NOT = DFHRESP(NORMAL) GO TO HARD-ERR-RTN.

If we get this far, we continue checking, until an error prevents us from going on.
We need to ensure that the operator gave us a good account number (one that is
not in trouble), and that the charge is not too much for the account:

IF ERR-NO NOT > 2
IF ACCTFILE-WARNCODE = ’S’, MOVE DFHBMBRY TO MSGA

MOVE 5 TO ERR-NO
MOVE -1 TO ACCTNOL
EXEC CICS LINK PROGRAM(’NTFYCOPS’) END-EXEC

ELSE IF CHGI > ACCTFILE-CREDIT-LIM - ACCTFILE-UNPAID-BAL
- ACCTFILE-CUR-CHGS

MOVE 6 TO ERR-NO
MOVE -1 TO ACCTNOL.

IF ERR-NO NOT = 0 GO TO REJECT-INPUT.

Handling input errors
As illustrated in “quick update,” above, whenever you have operator input to
process, there is almost always a possibility of incorrect data, and you must provide
for this contingency in your code. Usually, what you need to do when the input is
wrong is:

v Notify the operator of the errors. Try to diagnose all of them at once; it is
annoying to the operator if you present them one at a time.

v Save the data already entered, so that the operator does not have to rekey
anything except corrections.

v Arrange to recheck the input after the operator makes corrections.

Flagging errors
In the preceding code for the “quick update” transaction, we used the message field
to describe the error (the first one, anyway). We highlighted all the fields in error,
provided there was any data in them to highlight, and we set the length subfields to
-1 so that BMS would place the cursor in the first bad field. We send this
information using the same map, as follows:

REJECT-INPUT.
MOVE LOW-VALUES TO ACCTNOO CHGO.
EXEC CICS SEND MAP(’QUPMAP’) MAPSET(’QUPSET’) FROM(QUPMAPO)

DATAONLY END-EXEC.

Chapter 35. Receiving mapped data 501

Notice that we specify the DATAONLY option. We can do this because the constant
part of the map is still on the screen, and there is no point in rewriting it there. We
cleared the output fields ACCTNOO and CHGO, to avoid sending back the input we
had received, and we used a different attributes combination to make the ACCTNO
field bright (DFHUNIMD instead of DFHBMBRY). DFHUNIMD highlights the field
and leaves the modified data tag on, so that if the operator resends without
changing the field, the account number is retransmitted.

Saving the good input
The next step is to ensure that whatever good data the operator entered gets
saved. One easy technique is to store the data on the screen. You do not have to
do anything additional to accomplish this; once the MDT in a field is turned on, as it
is the first time the operator touches the field, it remains on, no matter how many
times the screen is read. Tags are not turned off until you erase the screen, turn
them off explicitly with the FRSET option on your SEND, or set the attributes
subfield to a value in which the tag is off.

The drawback to saving data on the screen is that all the data is lost if the operator
uses the CLEAR key. If your task is conversational, you can avoid this hazard by
moving the input to a safe area in the program before sending the error information
and asking for corrections. In a pseudoconversational sequence, where the
component tasks do not span interactions with the terminal, the equivalent is for the
task that detects the error to pass the old input forward to the task that processes
the corrected input. You can forward data through a COMMAREA on the RETURN
command that ends a task, by writing to temporary storage, or in a number of other
ways (see Chapter 13, “Sharing data across transactions,” on page 183 for
possibilities).

In addition to avoiding the CLEAR key problem, storing data in your program or in a
temporary storage queue reduces inbound transmission time, because you transmit
only changed fields on the error correction cycles. (You must specify FRSET when
you send the error information to prevent the fields already sent and not corrected
from coming in again.) You can also avoid repeating field audits because, after the
first time, you need to audit only if the user has changed the field or a related one.

However, these gains are at the expense of extra programming and complexity, and
therefore the savings in line time or audit path length must be considerable, and the
probability of errors high, to justify this choice. You must add code to merge the
new input with the old, and if you have turned off the MDTs, you need to check both
the length and the flag subfield to determine whether the operator has modified a
map field. Fields with new data have a nonzero length; those which had data and
were subsequently erased have the high-order bit in the flag subfield on.

A good compromise is to save the data both ways. If the operator clears the screen,
you use the saved data to refresh it; otherwise you simply use the data coming in
from the screen. You do not need any merge logic, but you protect the operator
from losing time over an unintended CLEAR.

For our “quick update” code, with its minimal audits and transmissions, we choose
the “do nothing” approach and save the information on the screen.

Rechecking
The last requirement is to ensure that the input data is rechecked. If your task is
conversational, this simply means repeating the audit section of your code after you
have received (and merged, if necessary) the corrected input. In a

502 CICS TS for z/OS: CICS Application Programming Guide

pseudoconversational sequence, you usually repeat the transaction that failed. In
the example, because we saved the data on the screen in such a way that
corrected data is indistinguishable from new data, all we need to do is arrange to
execute the same transaction against the corrected data, thus:

EXEC CICS RETURN TRANSID(’QUPD’) END-EXEC.

where ‘QUPD’ is the identifier of the “quick update” transaction.

Sending mapped output after mapped input
If your transaction makes it through its input audits and the attendant hazards, the
processing specific to mapped input is complete. The next step, frequently, is to
prepare and send the transaction output. In general, if the output is to be mapped,
you follow the steps outlined in Chapter 33, “Sending BMS mapped output,” on
page 477. However, the acquisition of storage for building the map may be affected
by the input mapping you have already done. If the output and input maps are
different, but in the same map set or in map sets defined to overlay one another,
you have already done the storage acquisition during your input mapping process. If
your output and input maps overlay one another, you need to ensure that you save
any map input you still need and clear the output structure to nulls before you start
building the output map. If this is awkward, you may want to define the maps so
that they do not overlay one another. (See “BASE and STORAGE options” on page
478 for your choices in this regard.)

Your transaction may also call for using the same map for output as input. This is
routine in code that handles input errors, as we have already seen, and also in
simple transactions like “quick update”. One-screen data-entry transactions are
another common example.

When you are sending new data with a map already on the screen, you can reduce
transmission with the DATAONLY option, and you may need only the SEND
CONTROL command. See “Merging the symbolic and physical maps” on page 484
for a discussion of these options.

For the “quick update” transaction, however, we need to fill in the message field
with our “go” response (and update the file with the charge to finish our processing):

MOVE ’CURRENT CHARGE OKAY; ENTER NEXT’ TO MSGO
ADD CHGI TO ACCTFILE-CUR-CHGS
EXEC CICS REWRITE FILE(’ACCT’) FROM (ACCTFILE-RECORD)....

We also need to erase the input fields, so that the screen is ready for the next
input. We have to do this both on the screen (the ERASEAUP option erases all
unprotected fields) and in the output structure (because the output subfield overlays
the input subfield and the input data is still there).

MOVE LOW-VALUES TO ACCTNOO CHGO.
EXEC CICS SEND MAP(’QUPMAP’) MAPSET(’QUPSET’) FROM(QUPMAPO)

DATAONLY ERASEAUP END-EXEC.

Finally, we can return control to CICS, specifying that the same transaction is to be
executed for the next input.

EXEC CICS RETURN TRANSID(’QUPD’) END-EXEC.

Chapter 35. Receiving mapped data 503

MAPFAIL and other exceptional conditions
The exceptional conditions that can occur on a RECEIVE command are all
described in the CICS Application Programming Reference manual, and most are
self-explanatory. One of them warrants discussion, however, because it can result
from a simple operator error. This is MAPFAIL, which occurs when no usable data
is transmitted from the terminal or when the data transmitted is unformatted (in the
3270 sense—see “Unformatted mode” on page 404). MAPFAIL occurs on a
RECEIVE MAP if the operator has used the CLEAR key or one of the PA keys. It
also occurs if the operator uses ENTER or a PF key from a screen where:

v No fields defined in the map have the modified data tag set on (this means the
operator did not key anything and you did not send any fields with the tags
already set, so that no data is returned on the read), and

v The cursor was not left in a field defined in the map and named, or the map did
not specify CURSLOC=YES.

Pressing ENTER prematurely or a “short read” key accidentally is an easy mistake
for the operator to make. In the interest of user friendliness, you may want to
refresh the screen after MAPFAIL instead of ending the transaction in error.

MAPFAIL also occurs if you issue a RECEIVE MAP without first formatting with a
SEND MAP or equivalent in the current or a previous task, and can occur if you use
a map different from the one you sent. This might signal an error in logic, or it might
simply mean that your transaction is in its startup phase. For instance, in our “quick
update” example, we have not made any provision for getting started—that is, for
getting an empty map onto the screen so that the operator can start using the
transaction. We could use a separate transaction to do this, but we might as well
take advantage of the code we need to refresh the screen after a MAPFAIL. What
we need is:

IF RCV-RC = DFHRESP(MAPFAIL)
MOVE ’PRESS PF12 TO QUIT THIS TRANSACTION’ TO MSGO
EXEC CICS SEND MAP(’QUPMAP’) MAPSET(’QUPSET’)

FROM(QUPMAPO) END-EXEC.

We are reminding the operator how to escape, because attempts to do this may
have caused the MAPFAIL in the first place. If we had not wanted to send this
message, or if it was the default in the map, we could have used the MAPONLY
option:

EXEC CICS SEND MAP(’QUPMAP’) MAPSET(’QUPSET’) MAPONLY END-EXEC.

When MAPFAIL occurs, the input map structure is not cleared to nulls, as it is
otherwise, so it is important to test for this condition if your program logic depends
on this clearing.

You can issue a HANDLE CONDITION command to intercept MAPFAIL, as you can
other exception conditions. If you do, and you also have a HANDLE AID active for
the AID you receive, however, control goes to the label specified for the AID and not
that for MAPFAIL, as explained in “Using the HANDLE AID command” on page 499.
In this situation you will be unaware of the MAPFAIL, even though you issued a
HANDLE for it, unless you also test EIBRESP.

EOC condition
EOC is another condition that you encounter frequently using BMS. It occurs when
the end-of-chain (EOC) indicator is set in the request/response unit returned from
VTAM. EOC does not indicate an error, and the BMS default action is to ignore this
condition.

504 CICS TS for z/OS: CICS Application Programming Guide

Formatting other input
Although the data that you format with a RECEIVE MAP command normally comes
from a terminal, you can also format data that did not come from a terminal, or that
came indirectly. For example, you might not know which map to use until you
receive the input and inspect some part of it. This can happen when you use
special hardware features like partitioning or logical device codes, and also in
certain logic situations. You might also need to format data that was read from a
formatted screen by an intermediate process (without mapping) and later passed to
your transaction.

The FROM option of the RECEIVE MAP command addresses these situations.
FROM tells BMS that the data has already been read, and only the translation from
the native input stream to the input map structure is required.

Because the input has already been read, you need to specify its length if you use
FROM, because BMS cannot get this information from the access method, as it
does normally. If the data came originally from a RECEIVE command in another
task, the length on the RECEIVE MAP FROM command should be the length
produced by that original RECEIVE.

For the same reason, you cannot suppress translation to upper case with the ASIS
option when you use FROM. Moreover, BMS does not set EIBAID and EIBCURSR
after a RECEIVE FROM command.

And finally, BMS does not know from what device the input came, and it assumes
that it was your current principal facility. (You cannot even use RECEIVE FROM
without a principal facility, even though no input/output occurs.) If the data came
from a different type of device, you have to do the mapping in a transaction with a
similar principal facility to get the proper conversion of the input data stream.

Note: You cannot map data read with a terminal control RECEIVE with the
BUFFER option, because the input data is unformatted (in the 3270 sense).
If you attempt to RECEIVE MAP FROM such input, MAPFAIL occurs.

Chapter 35. Receiving mapped data 505

506 CICS TS for z/OS: CICS Application Programming Guide

Chapter 36. BMS logical messages

The disposition options do not affect the correspondence between SEND MAP
commands and pages of output. You get one page for each SEND MAP command,
unless you also use a second feature of full BMS, the ACCUM option. ACCUM
allows you to build pages piecemeal, using more than one map, and like PAGING,
it allows your message to exceed a page. You do not have to worry about page
breaks or about tailoring your output to a specific page or screen capacity. BMS
handles these automatically, giving you control at page breaks if you wish. Details
on cumulative page building are in Chapter 37, “Cumulative output — the ACCUM
option,” on page 513.

As soon as you create an output message of more than one page, or a single page
composed of several different maps, you are doing something BMS calls
cumulative mapping. PAGING implies multiple pages, and ACCUM implies both
multiple and composite pages, and so at the first appearance of either of these
options, BMS goes into cumulative mapping mode and begins a logical message.
The one-to-one correspondence between SEND commands and messages ends,
and subsequent SEND MAPS simply add to the current logical message. Individual
pages within the message are still disposed of as soon as they are complete, but
they all belong to the same logical message, which continues until you tell BMS to
end it.

This chapter describes:
v “Building logical messages”
v “The SEND PAGE command” on page 508
v “RETAIN and RELEASE” on page 508
v “The AUTOPAGE option” on page 510
v “Terminal operator paging: the CSPG transaction” on page 510
v “Logical message recovery” on page 511

Building logical messages
When you start a logical message, you need to observe a number of rules:

v You can build only one logical message at a time. If you are routing this
message, BMS may create more than one logical message internally, but in
terms of content, there is only one. After you complete the message and dispose
of it, you can build another in the same task, using different options if you wish.

v Options related to message management must be the same on all commands
that build the message. These are:
– the disposition option: PAGING, TERMINAL, or SET
– the option governing page formation: ACCUM should be present on all

commands or absent on all
– the identifier for the message in CICS temporary storage: the REQID option

value.

Switching options mid-message results in the INVREQ condition or, in the case
of REQID, the IGREQID condition.

v The ERASE, ERASEAUP, NLEOM, and FORMFEED options are honored if they
are used on any of the BMS commands that contribute to the page.

v The values of the CURSOR, ACTPARTN, and MSR options for the page are
taken from the most recent SEND MAP command, if they are specified there,
and from the map if not.

© Copyright IBM Corp. 1989, 2010 507

v The 3270 write control character (WCC) from the most recent SEND MAP
command is used. The WCC is assembled from the ALARM, FREEKB, PRINT,
FRSET, L40, L64, L80, and HONEOM options in the command whenever any of
them is specified. Otherwise, it is built from the same options in the map; options
from the command are never mixed with those in the map.

v The FMHPARMs from all commands used to build the message are included.

v You can use both SEND MAP and SEND CONTROL commands to build a logical
message, as long as the options noted above are consistent. You can also build
a logical message with a combination of SEND TEXT and SEND CONTROL
commands. (SEND TEXT is an alternative to SEND MAP for formatting text
output, covered in “The SEND TEXT command” on page 521.) However, you
cannot mix SEND MAP and SEND TEXT in the same message unless you are
using partitions or logical device codes, subjects covered in Chapter 41, “Partition
support,” on page 541 and “Logical device components” on page 549
respectively.

There are also two special forms of SEND TEXT which allow combined mapping
and text output, but to which other restrictions apply. See “SEND TEXT MAPPED
and SEND TEXT NOEDIT” on page 525 for details.

v While you are building a logical message, you can still converse with your
terminal. You cannot use BMS commands to write to the terminal unless you are
also routing, but you can use BMS RECEIVE MAP commands and terminal
control SEND and RECEIVE commands.

The SEND PAGE command
When you have completed a logical message, you notify BMS with a SEND PAGE
command. If you used the ACCUM option, SEND PAGE causes BMS to complete
the current page and dispose of it according to the disposition option you
established, as it has already done for any previous pages. If your disposition is
TERMINAL, this last page is written to your principal facility; if SET, it is returned to
the program; and if PAGING, it is written to temporary storage. If your disposition
was PAGING, BMS also arranges delivery of the entire message to your principal
facility. Options on the SEND PAGE command govern how this is done, as
explained in RETAIN and RELEASE.

A SYNCPOINT command or the end of your task also ends a logical message,
implicitly rather than explicitly. Where possible, BMS behaves as if you had issued
SEND PAGE before your SYNCPOINT or RETURN, but you lose the last page of
your output if you used the ACCUM option. Consequently, you should code SEND
PAGE explicitly.

You also can delete an incomplete logical message if for some reason you decide
not to send it. You use the PURGE MESSAGE command in place of SEND PAGE.
PURGE MESSAGE causes BMS to delete the current logical message and
associated control blocks, including any pages already written to CICS temporary
storage. You can create other logical messages subsequently in the same task, if
you wish.

RETAIN and RELEASE
When you complete a logical message with a disposition of PAGING, BMS
arranges to deliver the entire logical message, which it has accumulated in
temporary storage. The display or printing of pages can be done inline, immediately
after the SEND PAGE command, but it is more common to schedule a separate
task for the purpose. In either case, CICS supplies the programs required. These

508 CICS TS for z/OS: CICS Application Programming Guide

programs allow a terminal operator to control the display of the message, paging
back and forth, displaying particular pages, and so on. When a separate task is
used, it executes pseudoconversationally under transaction code CSPG. When the
display is inline, the work is done (by the same CICS-supplied programs) within the
task that created the message, which becomes conversational as a result.

You indicate how and when the message is sent by specifying RETAIN, RELEASE,
or neither on your SEND PAGE command. The most common choice, and the
default, is neither. It causes CICS to schedule the CICS-supplied transaction CSPG
to display the message and then return control to the task. The CSPG transaction is
queued with any others waiting to be executed at your terminal, which execute in
priority sequence as the terminal becomes free. In the ordinary case, where no
other tasks waiting, CSPG executes as soon as the creating task ends.

Note: The terminal must be defined as allowing automatic transaction initiation for
CICS to start CSPG automatically (ATI(YES) in the associated TYPETERM
definition). If it is not, the operator has to enter the transaction code CSPG
or one of the paging commands to get the process started when neither
RELEASE nor RETAIN is specified.

The RELEASE option works similarly, but your task does not regain control after
SEND PAGE RELEASE. Instead, BMS sends the first page of the message to the
terminal immediately. It then ends your task, as if a CICS RETURN had been
executed in the highest level program, and starts a CSPG transaction at your
terminal so that the operator can display the rest of the pages. The CSPG code
executes pseudoconversationally, just as it does if you specify neither RELEASE
nor RETAIN, and the original task remains pseudoconversational if it was
previously.

There are two other distinctions between RELEASE and using neither option:

v RELEASE allows you to specify the transaction identifier for the next input from
the terminal, after the operator is through displaying the message with CSPG.

v RELEASE also permits the terminal operator to chain the output from multiple
transactions (see “Terminal operator paging: the CSPG transaction” on page
510).

SEND PAGE RETAIN causes BMS to send the message immediately. When this
process is complete, your task resumes control immediately after the SEND PAGE
command. When the terminal is a display, BMS provides the same operator
facilities for paging through the message as the CSPG transaction does, but within
the framework of your task. The code that BMS uses for this purpose issues
RECEIVE commands to get the operator’s display requests, and this causes your
task to become conversational.

Note: If an error occurs during the processing of a SEND PAGE command, the
logical message is not considered complete and no attempt is made to
display it. BMS discards the message in its cleanup processing, unless you
arrange to regain control after an error. If you do, you can either delete the
logical message with a PURGE command or retry the SEND PAGE. You
should not retry unless the error that caused the failure has been remedied.

Chapter 36. BMS logical messages 509

The AUTOPAGE option
Your SEND PAGE command also tells BMS how to deliver the pages to the
terminal. For display terminals, you want CSPG to send one page at a time, at the
request of the terminal operator. For printers, you want to send one page after
another. You control this with the AUTOPAGE or NOAUTOPAGE option on your
SEND PAGE command. NOAUTOPAGE lets the terminal operator control the
display of pages; AUTOPAGE sends the pages in ascending sequence, as quickly
as the device can accept them. If you specify neither, BMS determine which is
appropriate from the terminal definition.

Note: If your principal facility is a printer, you can sometimes use a disposition of
TERMINAL rather than PAGING, because successive sends to a printer do
not overlay one another as they do on a display. TERMINAL has less
overhead, especially if you do not need ACCUM either, and thus avoid
creating a logical message.

Terminal operator paging: the CSPG transaction
The CICS-supplied paging transaction, CSPG, allows a user at a terminal to display
individual pages of a logical message by entering page retrieval requests. Your
systems staff define the transaction identifiers for retrieval and other requests
supported by CSPG in the system initialization table; sometimes program function
keys are used to minimize operator effort.

Retrieval can be sequential (next page or previous page) or random (a particular
page, first page, last page). In addition to page retrieval, CSPG supports the
following requests:

Page copy
Copy the page currently on display to another terminal. BMS reformats the
page if the target terminal has a different page size or different formatting
characteristics, provided the terminal is of a type supported by BMS.

Message query
List the messages waiting to be displayed at the terminal with CSPG. The
list contains the BMS-assigned message identifier and, for a routed
message, the message title, if the sender provided one.

Purge message
Delete the logical message.

Page chaining
Suspend the current CSPG transaction after starting to display a message,
execute one or more other transactions, and then resume the original
CSPG display. An intervening transaction may itself produce BMS or
terminal output. If this output is a BMS logical message created with the
PAGING and RELEASE or RETAIN options, this message is “chained” to
the original one, and the operator can switch between one and the other.

Switch to autopage
Switch from NOAUTOPAGE display mode to AUTOPAGE mode. For
terminals that combine a keyboard and hard copy output, this allows an
operator to purge or print a message based on inspection of specific pages.

The process of examining pages continues until the operator signals that the
message can be purged. CSPG provides a specific request for this purpose, as

510 CICS TS for z/OS: CICS Application Programming Guide

noted above. If the SEND PAGE command contained the option OPERPURGE, this
request is the only way to delete the message and get control back from CSPG.

If OPERPURGE is not present, however, any input from the terminal that is not a
CSPG request is interpreted as a request to delete the message and end CSPG. If
the message was displayed with the RETAIN option, the non-CSPG input that
terminates the display can be accessed with a BMS or terminal control RECEIVE
when the task resumes execution. See the CICS Supplied Transactions manual for
detailed information about the CSPG transaction.

Logical message recovery
Logical messages created with a disposition of PAGING are kept in CICS temporary
storage between creation and delivery. BMS constructs the temporary storage
queue name for a message from the 2-character REQID on the SEND commands,
followed by a six-position number to maintain uniqueness. If you do not specify
REQID, BMS uses a value of two asterisks (**).

Temporary storage can be a recoverable resource, and therefore logical messages
with a disposition of PAGING can be recovered after a CICS abend. In fact,
because CICS bases the recoverability of temporary storage on generic queue
names, you can make some of your messages recoverable and others not, by your
choice of REQID for the message. The conditions under which logical messages
are recoverable are described in the CICS Recovery and Restart Guide.

Routed messages are eligible for recovery, as well as messages created for your
principal facility. We explain routing in Chapter 39, “Message routing,” on page 527.

Chapter 36. BMS logical messages 511

512 CICS TS for z/OS: CICS Application Programming Guide

Chapter 37. Cumulative output — the ACCUM option

The ACCUM option allows you to build your output cumulatively, from any number
of SEND MAP commands and less-than-page-size maps. Without it, each SEND
MAP command corresponds to one page (if the disposition is PAGING), or a whole
message (if TERMINAL or SET). With ACCUM, however, BMS formats your output
but does not dispose of it until either it has accumulated more than fits on a page or
you end the logical message. You can intercept page breaks if you wish, or you can
let BMS handle them automatically.

Page size is determined by the PAGESIZE or ALTPAGE value in the terminal
definition. PAGESIZE is used if the PROFILE under which your transaction is
running specifies the default screen size, and ALTPAGE is used if it indicates
alternate screen size. (Unlike screen size, page size is not affected by the
DEFAULT and ALTERNATE options that you can include with the ERASE
command.)

This chapter describes:
v “Floating maps: how BMS places maps using ACCUM”
v “Page breaks: BMS overflow processing” on page 514
v “Map placement rules” on page 515
v “Input from a composite screen” on page 517
v “Performance considerations” on page 517

Floating maps: how BMS places maps using ACCUM
In our example map on page 461, we described placing maps on a screen or page
absolutely, by specifying the number of the line and column for the upper left
corner. However, maps can float. That is, they can be positioned relative to maps
already written to the same page and to any edge of the page. Floating maps save
program logic when you need to support multiple screen sizes or build pages
piecemeal out of headers, detail lines and trailers, where the number of detail lines
depends on the data.

The BMS options that allow you to do this are:
v JUSTIFY
v HEADER and TRAILER
v Relative values (NEXT and SAME) for the LINE and COLUMN options

When you are building a composite screen with the ACCUM option, the position on
the screen of any particular map is determined by:
v The space remaining on the screen at the time it is sent
v The JUSTIFY, LINE and COLUMN option values in the map definition

The space remaining on the page, in turn, depends on:

v Maps already placed on the current page.

v Whether you are participating in “overflow processing”, that is, the processing
that occurs at page breaks. If you are, the sizes of the trailer maps in your map
sets are also a factor.

The placement rules we are about to list apply even if you do not specify ACCUM,
although JUSTIFY values of FIRST and LAST are ignored. However, without
ACCUM, each SEND MAP corresponds to a separate page, and thus the space
remaining on the page is always the whole page.

© Copyright IBM Corp. 1989, 2010 513

Page breaks: BMS overflow processing
When you build a mapped logical message, you can ask BMS to notify you when a
page break is about to occur; that is, when the map you just sent does not fit on the
current page. This is very useful when you are forming composite pages with
ACCUM. It allows you to put trailer maps at the bottom of the current page and
header maps at the top of the next one, number your pages, and so on.

BMS gives your program control at page breaks if either:

v You have issued a HANDLE CONDITION command naming a label for the
OVERFLOW condition, or

v You specify the NOFLUSH option with either the RESP or the NOHANDLE option
on your SEND MAP commands.

Either of these actions has two effects:

v The calculation of the space remaining on the page changes. Unless the map
you are sending is itself a trailer map, BMS assumes that you eventually want
one on the current page. It therefore reserves space for the largest trailer in the
same map set. (The largest trailer map is the one containing the TRAILER option
that has the most lines.) If you do not intercept page breaks (or if you send a
trailer map), BMS uses the true end of the page to determine whether the current
map fits.

v The flow of control changes if the map does not fit on the current page. On
detecting this situation, BMS raises the OVERFLOW condition. Then it returns
control to your task without processing the SEND MAP command that caused the
overflow. Control goes to the location named in the HANDLE CONDITION
command if you used one. With NOFLUSH, control goes to the statement after
the SEND MAP as usual, and you need to test the RESP value or EIBRESP in
the EIB to determine whether overflow occurred.

When your program gets control after overflow, it should:

v Add any trailer maps that you want on the current page. BMS leaves room for
the one with the most lines in the map set you just used. If this is not the right
number of lines to reserve, or if you are using several map sets, you can ensure
the proper amount by including a dummy map in any map set that may apply.
The dummy map must specify TRAILER and contain the number of lines you
wish to reserve; you do not need to use it in any SEND MAP commands.

v Write any header maps that you want at the top of the next page.

v Resend the map that caused the overflow in the first place. You must keep track
of the data and map name at the time the overflow occurs; BMS does not save
this information for you. Note that if you have several SEND MAP commands
which might cause overflow, the program logic required to determine which one
you need to reissue is more complex if you use HANDLE CONDITION
OVERFLOW than if you use NOFLUSH.

Once OVERFLOW is turned on, BMS suspends returning control to your program
when the output does not fit on the current page, although it still uses overflow rules
for calculating the remaining space. OVERFLOW remains on until BMS processes
the first SEND MAP naming a map which is not a header or a trailer. This allows
you to send your trailers and headers without disabling your HANDLE CONDITION
for OVERFLOW or changing your response code tests, and reinstates your overflow
logic as soon as you return to regular output. (Resending the map that originally
caused overflow is usually the event that turns off the overflow condition.)

514 CICS TS for z/OS: CICS Application Programming Guide

If you do not intercept overflows, BMS does not notify your program when a page
break occurs. Instead, it disposes of the current page according to the disposition
option you have established and starts a new page for the map that caused the
overflow.

Map placement rules
The primary placement of maps on the screen is from top to bottom. You can place
maps side-by-side where space permits, provided you maintain the overall flow from
top to bottom. The precise rules for a given SEND MAP ACCUM command are as
follows:

1. The highest line on which the map might start is determined as follows:

a. If the map definition contains JUSTIFY=FIRST, BMS goes immediately to a
new page (at Step 5), unless the only maps already on the page are
headers placed there during overflow processing. In this case, BMS
continues at Step 1c.

b. If the map specifies JUSTIFY=LAST, BMS starts the map on the lowest line
that allows it to fit on the page. If the map is a trailer map or you are not
intercepting overflows or you are already in overflow processing, BMS uses
all the space on the page. Otherwise, BMS places the map as low on the
page as it can while still retaining room for the largest trailer map. If the map
fits vertically using this starting line, processing continues at Step 3 (the
LINE option is ignored if JUSTIFY=LAST); if not, overflow occurs (Step 5).

Note: JUSTIFY=BOTTOM is the same as JUSTIFY=LAST for output
operations with ACCUM. (There are differences without ACCUM and
for input mapping; see the CICS Application Programming Reference
manual).

c. If there is no vertical JUSTIFY value (or after any overflow processing
caused by JUSTIFY=FIRST has been completed), the LINE operand is
checked. If an absolute value for LINE is given, that line is used, provided it
is at or below the starting line of the map most recently placed on the page.
If the value is above that point, BMS goes to a new page at Step 5.

If LINE=NEXT, the first completely unused line (below all maps currently on
the page) is used. If LINE=SAME, the starting line of the map sent most
recently is used.

2. BMS now checks that the map fits vertically on the screen, given its tentative
starting line. Here again, BMS uses all of the space remaining if the map is a
trailer map, if you are not intercepting overflows or if you are already in overflow
processing. Otherwise, BMS requires that the map fit and still leave space for
the largest trailer map. If the map does not fit vertically, BMS starts a new page
(Step 5).

3. Next, BMS checks whether the map fits horizontally, assuming the proposed
starting line. In horizontal positioning, the JUSTIFY option values of LEFT and
RIGHT come into play. LEFT is the default, and means that the COLUMN value
refers to the left-hand side of the map. A numeric value for COLUMN tells where
the left edge of the map should start, counting from the left side of the page.
COLUMN=NEXT starts the map in the first unused column from the left on the
starting line. COLUMN=SAME means the left-hand column of the map most
recently placed on the screen which also specified JUSTIFY=LEFT and which
was not a header or trailer map.

JUSTIFY=RIGHT means that the COLUMN value refers to the right-hand edge
of the map. A numeric value tells where the right edge of the map should start,
counting from the right. COLUMN=NEXT means the first available column from

Chapter 37. Cumulative output — the ACCUM option 515

the right, and COLUMN=SAME is the right-hand column of the map most
recently placed which had JUSTIFY=RIGHT and was not a header or trailer.

If the map does not fit horizontally, BMS adjusts the starting line downward, one
line at a time, until it reaches a line where the map does fit or overflow occurs.
Processing resumes with the vertical check (Step 2) after each adjustment of
the starting line.

4. If the map fits, BMS adds it to the current page and updates the available
space, using the following rules:

v Lines above the first line of the map are completely unavailable.

v If the map specifies JUSTIFY=LEFT, the columns from the left edge of the
page through the right-most column of the map are unavailable on the lines
from the top of the map through the last line on the page that has anything
on it (whether from this map or an earlier one).

v If the map specifies JUSTIFY=RIGHT, the columns between the right-hand
edge of the page and the left-hand edge of the map are unavailable on the
lines from the top of the map through the last line of the page that has
anything on it.

Figure 114 shows how the remaining space is reduced with each new map
placed.

5. When the current map does not fit on a page, BMS determines whether it
should return control to your program. If you have asked for control at overflow
and you are not already in overflow processing, BMS returns control as
described in “Page breaks: BMS overflow processing” on page 514. Otherwise,
BMS disposes of the current page according to the disposition option you have
established, starts a new page, and resumes processing for the map that would
not fit at Step 1.

3 10 50 78

Waste (space unavailable) after Map 1 placed

3
MAP 1 Waste Waste (space unavailable) after

(Map 2) Map 3 placed
6 LINE=3

COL=3 MAP 2 MAP 3
JUSTIFY Waste after
=LEFT LINE=6 Map 4 placed LINE=SAME

COL=NEXT COL=3
14 JUSTIFY JUSTIFY=

=LEFT MAP 4 RIGHT

Waste LINE=14
after COL=31
Map 2 JUSTIFY=

RIGHT
Waste after Map 4

Space still available

Figure 114. Successive placement of maps on a page, showing space made unavailable by
each

516 CICS TS for z/OS: CICS Application Programming Guide

ASSIGN options for cumulative processing
To help you manage the complexities of building a composite screen, CICS
provides ASSIGN command options that relate specifically to cumulative
processing:

MAPCOLUMN
MAPHEIGHT
MAPLINE
MAPWIDTH

All apply to the map most recently sent. MAPHEIGHT and MAPWIDTH are the size
(number of rows and columns) and MAPLINE and MAPCOLUMN are the origin of
the map (the position of the upper left corner).

Input from a composite screen
You can read mapped input from a screen built from multiple maps, but there are
restrictions. First, you can specify only one map in your RECEIVE MAP command,
whereas the screen may have been written with several.

Second, BMS cannot know how to position a floating map for input and assumes
that the map in your RECEIVE MAP command was written to an empty screen.
Thus LINE or COLUMN values of NEXT or SAME are interpreted differently on
input than on output. JUSTIFY=LAST is ignored altogether; you should use
JUSTIFY=BOTTOM if you want to place a map at the bottom of the screen and
read data back from it. See the the CICS Application Programming Reference
manual for the exact rules.

Performance considerations
There are three components to the overall efficiency of the part of your application
that the end user sees: processor path length, communications line utilization, and
user time. Path length and line time used to be paramount, and much design and
programming effort has been invested in minimizing them.

As online systems have evolved, however, the emphasis has shifted steadily to
making things as easy, pleasant and quick for the user as possible, at the expense
of the other factors if necessary. Also, as processors have become cheaper,
designers have been willing to expend cycles to reduce programming and
maintenance effort as well as to make the user interface better.

We have already given you references on elements of good design for the user
interface, in “Personal computers” on page 388, and usually these should be your
overriding considerations. In this section, we point out some ways that you can
reduce path length and line time as well. You need to judge for yourself whether
and to what extent the savings justify extra programming effort or a less general
design.

Minimizing path length
Ordinarily, the number of instructions executed in a single CICS command is large
in comparison to the number of instructions in the application program that invoked
it. Consequently, the path length for a given task ordinarily depends more on the
number and type of CICS commands than on anything else, and commands are the
most fertile area for tuning. Commands vary by type, of course, and path length for
any given command may vary considerably with circumstances.

Chapter 37. Cumulative output — the ACCUM option 517

For BMS, some recommendations are:

v Build screens (pages) with a single command when practical. Avoid building a
composite screen with the ACCUM feature when a modest amount of additional
programming accomplishes the same function, and avoid building a composite
screen by multiple physical writes, as described in “Outside the map” on page
487, except in unusual circumstances.

v Avoid producing more output at one time than the user is likely to inspect. Some
transactions—inquiries, especially—produce many pages of output for certain
input values. When this happens, the user usually narrows the search and
repeats the inquiry, rather than page through the initial output. To avoid the path
length of producing output that is never viewed, you can limit it to some
reasonable number of pages, inform the user on the last page that there is more,
and save the information required to restart the search from that point if the user
requests it. The extra programming is minimal; see Chapter 13, “Sharing data
across transactions,” on page 183 for ways to save the restart data.

v Use commands that are on the BMS “fast path” if possible. (See “Minimum BMS”
on page 453 for the commands and terminal types that qualify.)

v Use terminal control commands for very simple inputs an outputs, where you do
not need BMS formatting or other function. If path length is critical, you may want
to use terminal control entirely. However, the advantages of BMS over terminal
control in terms of flexibility, initial programming effort and maintainability are
significant, and usually outweigh the path length penalty.

Reducing message lengths
You can take advantage of 3270 hardware to reduce the length of both inbound and
outbound messages. If the bandwidth in any link between the terminal and the
processor is constrained, you get better response overall with shorter messages.
However, the time for any given transmission depends on the behavior of other
users of those links at the time, and so you may not see improvement directly. Here
are some of the possibilities for reducing the length of a 3270 datastream:

v Avoid turning on MDTs unnecessarily when you send a screen, because they
cause the associated input fields to be transmitted on input. Ordinarily, you do
not need to set the tag on, because the hardware does this when the user enters
input into the field. The tag remains on, no matter how many times the screen is
transmitted, until explicitly turned off by program (by FRSET, ERASEAUP, or
ERASE, or by an override attribute byte with the tag off). The only time you need
to set it on by program is when you want to store data on the screen in a field
that the user does not modify, or when you highlight a field in error and you want
the field returned whether or not the user changes it. In this case you need to
turn on the MDT as well as the highlighting.

v Use FRSET to reset the MDTs when you do not want input on a screen
retransmitted (that is, when you have saved it and the user does not need to
change it on a subsequent transmission of the same screen). (See “Saving the
good input” on page 502 for more.)

v Do not initialize input fields to blanks when you send the screen because, on
input, blanks are transmitted and nulls are not. Hence the data stream is
shortened by the unused positions in each modified field if you initialize with
nulls. The appearance on the screen is the same, and the data returned to the
program is also the same, if you map the input.

v For single-screen data entry operations, use ERASEAUP to clear data from the
screen, rather than resending the screen.

v If you are updating a screen, send only the changed fields, especially if the
changes are modest, as when you highlight fields in error or add a message to

518 CICS TS for z/OS: CICS Application Programming Guide

the screen. In BMS, you can use the DATAONLY option, both to shorten the data
stream and reduce the path length (see “DATAONLY option” on page 485). To
highlight a field, in fact, you send only the new attribute byte; the field data
remains undisturbed on the screen.

v If you are using terminal control commands, format with set buffer address (SBA)
and repeat-to-address (RA) orders, rather than spacing with blanks and nulls.
(BMS does this for you.)

Chapter 37. Cumulative output — the ACCUM option 519

520 CICS TS for z/OS: CICS Application Programming Guide

Chapter 38. Text output

If the output you are sending to the terminal is simply text, and you do not need to
format the screen for subsequent input, you do not need to create a map. BMS
provides a different command expressly for this purpose: SEND TEXT, which
formats without maps.

When you use SEND TEXT, BMS breaks your output into pages of the proper width
and depth for the terminal to which it is directed. Lines are broken at word
boundaries, and you can add header and trailer text to each page if you wish. Page
size is determined as it is for other BMS output (see “The SEND PAGE command”
on page 508).

This chapter describes:
v “The SEND TEXT command”
v “Text pages” on page 522
v “Text lines” on page 523
v “Header and trailer format” on page 524
v “SEND TEXT MAPPED and SEND TEXT NOEDIT” on page 525

The SEND TEXT command
Except for the different type of formatting performed, the SEND TEXT command is
very similar to SEND MAP. You specify the location of the text to be formatted in
the FROM option and its length in the LENGTH option. Nearly all the options that
apply to mapped output apply to text output as well, including:

Device controls
FORMFEED, ERASE, PRINT, FREEKB, ALARM, CURSOR.

Formatting options
NLEOM, L40, L64, L80, HONEOM.

Disposition options
TERMINAL, PAGING, SET.

Page formation option
ACCUM.

In general, these options have the same meaning on aSEND TEXT command as
they do on aSEND MAP command. The SEND TEXT command itself requires
standard BMS; options like ACCUM, PAGING and SET that require full BMS in a
mapped environment also require full BMS in a text environment.

There are also options for SEND TEXT that correspond to functions associated with
the map in a SEND MAP context. These are HEADER, TRAILER, JUSTIFY,
JUSFIRST and JUSLAST. We explain how they work in “Text pages” on page 522.

Two SEND MAP options that do not carry over to SEND TEXT are ERASEAUP and
NOFLUSH. ERASEAUP does not apply because text uses fields only minimally, and
NOFLUSH does not apply because BMS does not raise the OVERFLOW condition
on text output.

Text logical messages
The presence of either the ACCUM or PAGING option on a SEND TEXT command
signals BMS that you are building a logical message, just as it does in a SEND

© Copyright IBM Corp. 1989, 2010 521

MAP command. Text logical messages are subject to the same rules as mapped
logical messages (see page 507). In particular, you can use both SEND TEXT and
SEND CONTROL commands to build your message, but you cannot mix in SEND
MAPs, except as noted there. You also end your message in the same way as a
mapped message (see Chapter 36, “BMS logical messages,” on page 507).

Text pages
Page formation with SEND TEXT is somewhat different from page formation with
SEND MAP. First, a single SEND TEXT command can produce more output than
fits on a screen or a printer page (SEND MAP never does this). BMS sends the
whole message, which means that you can deliver a multi-page message to a
printer without using logical facilities. You cannot use the same technique for
displays, however, because even though BMS delivers the whole message, the
component screens overlay one another, generally too quickly for anyone to read.

If you specify ACCUM, BMS breaks the output into pages for you, and the second
difference is that unless you specify a disposition of SET, your task does not get
control at page breaks. Instead, when the current page has no more room, BMS
simply starts a new one. It adds your header and trailer, if any, automatically, and
does not raise the OVERFLOW condition. This is true whether you produced the
pages with a single SEND TEXT command or you built the message piecemeal,
with several. The only situation in which your task is informed of a page break is
when the disposition is SET. In this case, BMS raises the RETPAGE condition to
tell you that one or more pages are complete, as explained in “Using SET” on page
490.

Here are the details of how BMS builds pages of text with ACCUM:

1. Every message starts on page 1, which is initially empty.

2. If you specify the HEADER option, BMS starts every page with your header
text. BMS numbers your pages in the header or trailer if you wish. (Header
format and page numbering are explained on page 524.)

3. If you specify one of the justification options (JUSTIFY, JUSFIRST, JUSLAST),
BMS starts your text on the indicated line. JUSFIRST begins your text on the
first line after the header, or the top line if there is no header. JUSTIFY=n starts
your text on line n, and JUSLAST starts it on the lowest line that allows both it
and your trailer (if any) to fit on the current page. If the contents of the current
page prevent BMS from honoring the justification option there, BMS goes to a
new page first, at step 6.

Justification applies only to the start of the data for each SEND TEXT
command; when the length of your data requires an additional page, BMS
continues your text on it in the first available position there.

4. If you do not specify justification, BMS starts your text in the first position
available. On the first SEND TEXT of the message, this works out the same as
JUSFIRST. Thereafter, your text follows one character after the text from the
previous SEND TEXT of the current logical message. (The intervening character
is an attributes byte on 3270 terminals, a blank on others.)

5. Having determined the starting position, BMS continues down the page,
breaking your data into lines as explained in “Text lines” on page 523, until it
runs out of space or data. If you have specified a trailer, the available space is
reduced by the requirement for the trailer. If the data is exhausted before the
space, processing ends at this point. The message is completed when you
indicate that you are finished with a SEND PAGE or PURGE MESSAGE
command.

522 CICS TS for z/OS: CICS Application Programming Guide

6. If you text does not fit on the current page, BMS completes it by adding your
trailer text, if any, at the bottom and disposes of it according to the disposition
option you have established (TERMINAL, PAGING, or SET), just as it does for a
mapped logical message. The trailer is optional, like the header; you use the
TRAILER option to specify it (see “Header and trailer format” on page 524).

7. BMS then goes to a new page and repeats from step 2 with the remaining data.

Text lines
In breaking the text into lines, BMS uses the following rules:

1. Ordinarily, each line starts with what appears to be a blank. On a 3270 device,
this is the attributes byte of a field that occupies the rest of the line on the
screen or printed page. For other devices, it is simply a blank or a carriage
control character.

An exception occurs if the task creating the output is running under a PROFILE
that specifies PRINTERCOMP(YES) and the output device is a 3270 printer. In
this case, no character is reserved at the beginning of each line. See
“PRINTERCOMP option” on page 412.

2. BMS copies your text character for character, including all blanks, with two
exceptions that occur at line end:

v If a line ends in the middle of a word, BMS fills out the current line with
blanks and places the word that would not fit in the first available position of
the next line. For this purpose, a “word” is any string of consecutive nonblank
characters.

v If two words are separated by a single blank, and first one fits on the current
line without leaving room for the blank, the blank is removed and the next line
starts at the beginning of the second word.

3. You can embed new-line (NL) characters and other print format orders as well
as blanks to control the format, if the destination terminal is a printer. NLs and
tabs are particularly useful with columnar data, and BMS does not filter or even
interpret these characters. However, print format orders do not format displays;
see “CICS 3270 printers” on page 408 for more information about using them.

4. You can also include set attribute (SA) order sequences in your output. (Each
one sets the attributes of a single character in the data stream, as explained in
“The set attribute order” on page 398.) BMS abends the task unless SA
sequences are exactly three bytes long and represent a valid attribute type.
However, if you use a valid SA sequence to a terminal that does not support the
attribute, BMS removes the SA sequence and then sends the message.
Attributes set with SA orders remain until overridden by subsequent orders or
until another SEND TEXT command, which resets them to their default values.

You should not include 3270 orders other than SA in your text. BMS treats them
as display data and they do not format as intended; they may even cause a
terminal error.

Chapter 38. Text output 523

Header and trailer format
To place a header on the pages of a text message, you point to a block of data in
the following format in the HEADER option:
You use the same format for trailer text, but you point to it with the TRAILER option.

Here:

LL is the length of the header (trailer) data, not including the four bytes of LL,
P, and C characters. LL should be expressed in halfword binary form.

P is the page-number substitution character (see PNFLD below). Use a blank
if you do not want page numbers.

C is a reserved 1-byte field.

TEXT is the header (trailer) text to be placed at the top (bottom) of each page of
output. Use new-line characters (X'15') to indicate where line breaks should
occur if you want multiple lines.

PNFLD
is the page number field within your header (trailer) text. If you want to
number the pages of your output, choose a character that does not
otherwise appear in your header (trailer) text. Place this character in the
positions where the page number is to appear. You can use from one to five
adjacent positions, depending on how large you expect your page numbers
to get (32,767 is the maximum BMS allows). Place the same character in
the P field above, to tell BMS where to make the substitution. Do not use
X'0C', X'15', X'17', X'26', or X'FF' for P; these values are reserved for other
purposes. If you do not want page numbering, simply place a blank (X'40')
in P.

When you are building a logical message, you should repeat your HEADER and
TRAILER options on each SEND TEXT command, so that they are present when
the page breaks occur, and you need to specify the trailer again on the SEND
PAGE command that terminates the message.

Here is an example of a COBOL definition for a header that simply numbers the
pages, leaving room for a number up to 99.

EXEC CICS SEND TEXT FROM (OUTPUT-AREA)
HEADER(HEADER-TEXT) PAGING ACCUM END-EXEC.

where:

Screens built with SEND TEXT are not designed for extensive input from the
terminal operator. However, you can interpret the attention identifier and read simple
inputs—such as those used in the CSPG transaction to control the page display—if
the field structure on the screen is suitable and the operator knows or can see what
is expected. (A new field starts at each line, as well as at the first character of the

L L P C PNFLD

< TEXT >

01 HEADER-TEXT
02 HEADER-LL PIC S9(4) COMP VALUE +11.
02 HEADP PIC X VALUE ’@’.
02 FILLER PIC X VALUE LOW-VALUE.
02 HEADING PIC X(11) VALUE ’PAGE NO. @@’.

524 CICS TS for z/OS: CICS Application Programming Guide

text sent with each SEND TEXT command that made up the message. The fields
defined are unprotected, alphameric and normal intensity, so that the operator can
key into them.) Normally a terminal control RECEIVE is used in this situation; you
can use RECEIVE MAP only if you can build a map with a field structure matching
that of the screen.

SEND TEXT MAPPED and SEND TEXT NOEDIT
BMS provides two special forms of the SEND TEXT command that allow you to use
some of the message delivery facilities of BMS for output that is already formatted.
SEND TEXT MAPPED sends a page of device-dependent data previously built by
BMS and captured with the SET option. You may have used either SEND MAP or
SEND TEXT commands to build the page originally. See “Using SET” on page 490
for details.

SEND TEXT NOEDIT is similar, but is used to send a page of device-dependent
output built by the program or some method other than BMS.

You can deliver such pages to your own principal facility individually, using a
disposition of TERMINAL, or you can include them in a logical message built with
the PAGING option. In a logical message, these forms can be mixed with ordinary
SEND TEXT commands or with SEND MAP7 commands, as long as each BMS
SEND represents a separate page (that is, the ACCUM option is not used).

You can also use these commands in a routing environment (described in
Chapter 39, “Message routing,” on page 527). Whether you are routing or sending
to your own terminal, you must ensure that the data stream is appropriate to the
destinations; BMS does not check before transmission, other than to remove 3270
attributes that the destination does not support.

None of the page-formatting options, ACCUM, JUSTIFY, JUSFIRST, JUSLAST,
HEADER, and TRAILER, apply to either of these commands, because the page is
already formatted and built, by definition.

The primary difference between the MAPPED and NOEDIT forms is that SEND
TEXT MAPPED uses the 4-byte page control area (PGA) that BMS appends to the
end of pages returned by the SET option. This area tells BMS the write command
and write control character to be used, which extended attributes were used on the
page, and whether the page contains formfeeds, data in SCS format, 14- or 16-bit
buffer addresses, structured fields and FMHs. It allows BMS to deliver a page built
for one device to one with different hardware characteristics, as might be required
for a page copy or a routing operation. With SEND TEXT NOEDIT, you specify this
type of information on the command itself. You should use SEND TEXT MAPPED
for output created with BMS, and NOEDIT for output formatted by other means. You
cannot include structured fields in the output with either SEND TEXT MAPPED or
SEND TEXT NOEDIT, incidentally; you must use a terminal control SEND for such
output.

The LENGTH option for a SEND TEXT MAPPED command should be set from the
TIOATDL value returned when the page was built, which does not include the PGA
(see “Using SET” on page 490). If you copy the page for later use with SEND TEXT
MAPPED, however, you must be sure to copy the PGA as well as the page itself
(TIOATDL + 4 bytes in all).

7. The usual restriction against mixing text with mapped output in the same logical method does not apply here, because the page is
already formed.

Chapter 38. Text output 525

526 CICS TS for z/OS: CICS Application Programming Guide

Chapter 39. Message routing

The message routing facilities of BMS allow you to send messages to terminals
other than the principal facility of your task (your task does not even need to have a
principal facility). Routing does not give your task direct control of these terminals,
but instead causes the scheduling of a task for each destination to deliver your
message. These tasks execute the CICS-supplied transaction CSPG, the same one
used for delivery of messages with a disposition of PAGING to your own terminal.
Thus the operator at a display terminal who receives a routed message uses CSPG
requests to view the message. (See “Terminal operator paging: the CSPG
transaction” on page 510 for more information about CSPG.)

Message routing is useful for message-switching and broadcasting applications, and
also for printing (see “Using CICS printers” on page 415). It is the basis for the
CICS-supplied transaction CMSG, with which terminal users can send messages to
other terminals and users. See the CICS Supplied Transactions for an explanation
of CMSG and what you can do with it.

To route a message, you start by issuing a ROUTE command. This command tells
BMS where to send the message, when to deliver it, what to do about errors, and
other details. Then you build your message. It can be a mapped or text message,
but it must be a logical message (that is, either ACCUM or PAGING present), and
the disposition must be either PAGING or SET, not TERMINAL. PAGING is the
more common choice and is assumed in the discussion that follows. We explain
SET in a routing context in “Routing with SET” on page 535.

Your ROUTE command is in effect until you end your message with a SEND PAGE
command, and you must not issue another one until this occurs. (If you issue
ROUTE while building your message you get an invalid request response; if you
issue a second ROUTE before you start your logical message, it simply replaces
the first one.) You can also terminate a message with PURGE MESSAGE, if you
decide you do not want to send it. PURGE MESSAGE causes the routing
environment established with your ROUTE command to be discarded, along with
your logical message.

This chapter describes:
v “Message destinations”
v “Route list format” on page 530
v “Message delivery” on page 531
v “Recoverable messages” on page 532
v “Programming considerations with routing” on page 534

Message destinations
You can specify destinations for your routed message in three different ways:

v You can request that certain classes of operators receive the message, by using
the OPCLASS option of the ROUTE command. Classes are associated with an
operator in the RACF user definition or a CICS sign-on table entry.

v You can name particular operators who are to receive the message by using a
route list, to which you point with the LIST option of the ROUTE command.
Operators are identified by a 3-character OPIDENT value, which is also assigned
in the RACF definition or a sign-on table entry.

© Copyright IBM Corp. 1989, 2010 527

v You can name particular terminals which are to receive the message; this is also
done with a route list. Terminals are identified by their 4-character TERMID value,
and, for terminal types to which they apply, a 2-character logical device code.

Note: If you need to know the identifier or operator class values for the operator
signed on at your principal facility to specify the destination of your routed
message, you can use the ASSIGN command with the OPID or OPCLASS
options to find out.

Eligible terminals
To format a message properly for a particular destination, BMS needs to know the
characteristics of the terminal for which it is formatting. This is true even for
destinations that you designate by operator or operator class. The first step in
processing a route list, therefore, is to translate your destinations to a list of
terminals to which the message may be delivered. This “eligible terminal” list
combines the information in your route list and your OPCLASS specification with
the state of the terminal network at the time of the ROUTE command.

Later, when your message is ready for delivery, BMS uses this list to decide which
terminals actually get your message. A terminal must be on the list to receive the
message, but its presence there does not guarantee delivery. There may be
operator restrictions associated with the terminal and, because delivery occurs later
in time, the status or even the nature of the terminal may have changed.

Both at the time the list is built and at the time of delivery, BMS is restricted to the
terminal definitions installed in its own CICS region (where the routing task is
running, or ran) and may not have all of the terminal definitions you expect. First,
terminals that are autoinstalled may not be logged on either at the time of the
ROUTE, excluding them from inclusion on the list, or at the times sending is
attempted, preventing delivery.

In a multiple-region environment, there is the additional possibility that terminals
known to one region may not be known to another. (It depends on how they are
defined, as explained in CICS Application Programming Reference.) In particular, if
a terminal definition is shared among regions by designating it as SHIPPABLE in
the region that owns it, the terminal is not defined in any other region until
something occurs to cause shipment there. This usually happens the first time the
terminal routes a transaction to the region in question. Consequently, a ROUTE in
this region cannot include the terminal before the first such event occurs.

The following sections describe how BMS builds the list of eligible terminals. This
occurs at the time of the ROUTE command:

Destinations specified with OPCLASS only
If you specified operator classes (the OPCLASS option) but no route list, BMS
scans all the terminal definitions in the local system. Any terminal that meets all
these conditions gets on the eligible terminal list:

v The terminal is of a type supported by BMS.

v The terminal can receive routed messages not specifically addressed to it
(ROUTEDMSGS (ALL) in the terminal definition).

v An operator is signed on at the terminal.

v The operator belongs to one of the operator classes in your OPCLASS list.

528 CICS TS for z/OS: CICS Application Programming Guide

The resulting entry is marked so that delivery occurs only when and if an operator
belonging to at least one of the operator classes in your OPCLASS list is signed on.
(This operator does not have to be the one that was signed on at ROUTE time.)

OPCLASS and LIST omitted
If you specify neither operator classes nor a route list, BMS puts every terminal that
meets the first two tests above on the list, and sets no operator restrictions on
delivery. In a network where many terminals are eligible to receive all routed
messages, this is a choice you almost certainly want to avoid.

Route list provided
If you provide a route list, BMS builds its list from yours instead of scanning the
terminal definitions. Each of your entries is processed as follows. Processing
includes setting a status flag in the list entry to tell you whether the entry was used
or skipped and why.

v If the entry contains a terminal identifier but no operator identifier, the terminal
goes on the eligible list, provided it is defined, of a type supported by BMS, and
eligible to receive routed messages. If BMS cannot find the terminal definition, it
sets the “entry skipped” and “invalid terminal identifier” bits (X'C0') in the status
flag of the route list entry; if the terminal exists but is not supported by BMS or is
not allowed to received any routed messages, the “entry skipped” and “terminal
not supported under BMS” bits get set (X'A0').

Note: The eligibility of a terminal to receive routed messages is governed by the
ROUTEDMSGS option in the terminal definition. Three values are
possible: a terminal may be allowed to receive all routed messages, only
messages routed to it by terminal or operator name, or no routed
messages at all. If you specified OPCLASS as well as a route list, BMS
checks whether an operator belonging to one of the classes you listed is
signed on at the terminal. If not, BMS sets the “operator not signed on” bit
(X'10') in the status flag for the entry to inform you, but includes the
terminal anyway. There are no operator restrictions associated with the list
entry, even when you specify operator classes.

v If the entry contains both a terminal and an operator identifier, the terminal
identifier is checked in the same way as it is without an operator identifier, and
the same errors can occur. If the terminal passes these tests, it goes on the
eligible list. However, the entry is marked such that the message can be
delivered only when the operator named is signed on at the same terminal.

If this operator is not signed on to the terminal at the time of the ROUTE
command, BMS notifies you by turning on the “operator not signed on” bit (X'10')
in the status flag, but the terminal goes on the delivery list regardless of sign-on
status. (OPCLASS is ignored entirely when an operator identifier is present.)

v If the entry contains only an operator identifier, BMS searches the terminal
definitions until it finds one where the operator is signed on. (The operator may
be signed on at additional terminals, but BMS ignores these.) If this terminal is of
a type not supported by BMS, or if the terminal cannot receive routed messages,
BMS sets the “entry skipped” and “operator signed on at unsupported terminal”
bits (X'88') in the status flag. It also fills in the terminal identifier in your route list.
If the terminal is suitable, BMS treats the entry as if you had specified both that
terminal and operator identifier, as described above.

If the operator is not signed on anywhere, BMS sets the “entry skipped” and
“operator not signed on” bits (X'90') in the status flag.

Chapter 39. Message routing 529

Route list format
BMS requires a fixed format for route lists. Each entry in the list is 16 bytes long, as
follows:

Table 43. Standard route list entry format

Bytes Contents

0-3 Terminal or logical unit identifier (four characters, including trailing blanks), or
blanks

4,5 LDC mnemonic (two characters) for logical units with LDC support, or blanks

6-8 Operator identifier, or blanks

9 Status flag for the route entry

10-15 Reserved; must contain blanks

Either a terminal or an operator identifier must be present in each entry. A Logical
Device Component(LDC) may accompany either; see “LDCs and routing” on page
550 for more information about LDCs.

The entries in the route list normally follow one another in sequence. However, they
do not all have to be adjacent. If you have a discontinuity in your list, you end each
group of successive entries except the last group with an 8-byte chain entry that
points to the first entry in the next group. This entry looks like this:

Table 44. Route list chain entry format

Bytes Contents

0,1 −2 in binary halfword format (X'FFFE')

2,3 Reserved

4-7 Address of the first entry in the next group of contiguous entries

The end of the entire list is signalled by a 2-byte entry containing a halfword value
of −1 (X'FFFF').

Your list may consist of as many groups as you wish. There is an upper limit on the
total number of destinations, but it depends on many variables; if you exceed it,
BMS abends your task with abend code ABMC.

On return from a ROUTE command, BMS raises condition codes to signal errors in
your list:

RTESOME
means that at least one of the entries in your route list could not be used
and was skipped. The default action is to continue the routing operation,
using the destinations that were processed successfully.

RTEFAIL
means that none of the destinations in your list could be used, and
therefore no routing environment has been set up. The default action is to
return control to your task. You should test for this condition, consequently,
because with no routing environment, a subsequent BMS SEND command
goes to the principal facility, which is probably not your intention.

In addition to the general information reflected by RTESOME and RTEFAIL, BMS
tells you what it did with each entry in your list by setting the status flag (byte 9). A

530 CICS TS for z/OS: CICS Application Programming Guide

null value (X'00') means that the entry was entirely correct. The high-order bit tells
you whether the entry was used or skipped, and the other bits tell you exactly what
happened. Here are the meanings of each bit being on:

ENTRY SKIPPED (X'80')
The entry was not used. When this bit is on, another bit is also on to indicate
the reason.

INVALID TERMINAL IDENTIFIER (X'40')
There is no terminal definition for the terminal named in the entry. The entry is
skipped.

TERMINAL NOT SUPPORTED UNDER BMS (X'20')
The terminal named in the route list entry is of a type not supported by BMS, or
it is restricted from receiving routed messages. The entry is skipped.

OPERATOR NOT SIGNED ON (X'10')
The operator named in the entry is not signed on. Any of these conditions
causes this flag to be set:

v Both an operator identifier and a terminal identifier were specified, and the
operator was not signed on at the terminal. The entry is not skipped.

v An operator identifier was specified without a terminal identifier, and the
operator was not signed on at any terminal. The entry is skipped.

v OPCLASS was specified on the ROUTE command, a terminal identifier was
specified in the route list entry, and the operator signed on at the terminal did
not have any of the specified operator classes. The entry is not skipped.

OPERATOR SIGNED ON AT UNSUPPORTED TERMINAL (X'08')
Only an operator identifier was specified in the route list entry, and that operator
was signed on at a terminal not supported by BMS or not eligible to receive
routed messages. The entry is skipped. The name of the terminal is returned in
the terminal identifier field of the entry.

INVALID LDC MNEMONIC (X'04')
Either of these conditions causes this flag to be set:

v The LDC mnemonic specified in the route list is not defined for this terminal.
That is, the terminal supports LDCs but it has no LDC list, or its LDC list is
extended but does not contain this entry.

v The device type for this LDC entry is different from that of the first entry in
the route list with an LDC (only one LDC device type is allowed, as explained
in “LDCs and routing” on page 550).

The entry is skipped.

Note: CICS provides source code which defines a standard route list entry and the
values you need to test status flag bit combinations. You can insert this code
into your program with a COPY or INCLUDE of the member DFHURLDS, in
the same way you can include the BMS attention identifier or attribute byte
definitions.

Message delivery
We have just explained how BMS determines the terminals eligible to receive your
routed message. Actual delivery occurs later in time, much later in some cases,
depending on the scheduling options in your ROUTE command (INTERVAL, TIME,
AFTER and AT). You can request delivery immediately, after an interval of time has
elapsed, or at a particular time of day.

Chapter 39. Message routing 531

When the appointed time arrives, BMS attempts to deliver the message to every
terminal on the eligible terminal list. All the following conditions must be met for the
message to be delivered to any particular terminal:

v The terminal must be defined as a type supported by BMS, and the same type
as when the ROUTE command was processed8. (Where there is a long delay
between creation and delivery of a message, it is possible for the terminal
defined with a particular TERMID to change characteristics or disappear,
especially in an autoinstall environment.)

v The terminal must be in service and available (that is, there cannot be a task
running with the terminal as its principal facility).

v The terminal must be eligible for automatic transaction initiation, or the terminal
operator must request delivery of the message with the CSPG transaction.

Note: If several messages accumulate for delivery to a particular terminal, there
is no guarantee that the operator will view them in any particular order. In
fact, the CSPG transaction allows the operator to control delivery order in
some situations. If a specific sequence of pages is required, you must
send them as one message.

v If the delivery list entry restricts delivery to a particular operator or to operators in
certain classes, the operator signed on at the terminal must qualify. (See
“Message destinations” on page 527 for the OPCLASS and LIST specifications
that produce these restrictions.)

v The purge delay must not have expired, as explained in the next section.

Undeliverable messages
If BMS cannot deliver a message to an eligible terminal, it continues to try
periodically until one of the following conditions occurs:
v A change in terminal status allows the message to be sent.
v The message is deleted by the destination terminal operator.
v The purge delay elapses.

The purge delay is the period of time allowed for delivery of a message once it is
scheduled for delivery. After this interval elapses, the message is discarded. The
purge delay is a system-wide value, set by the PRGDLY option in the system
initialization table. Its use is optional; if the systems programmer sets PRGDLY to
zero, messages are kept indefinitely.

When BMS purges a message in this fashion, it sends an error message to the
terminal you specify in ERRTERM. (If you use ERRTERM without a specific
terminal name, it sends the message to the principal facility of the task that
originally created the message. If you omit ERRTERM altogether, no message is
sent.)

Recoverable messages
Between creation and delivery of a routed message with a disposition of PAGING,
BMS stores the message in CICS temporary storage, just as it does in the case of
an ordinary PAGING message. Consequently, you can make your routed messages
recoverable by your choice of the REQID option value, just as in the case of a
nonrouted message. (See “Logical message recovery” on page 511.)

8. A 3270 terminal need not have exactly the same extended attributes that it had at the time the ROUTE command was issued,
because BMS removes unsupported attributes from the data stream at the time of delivery.

532 CICS TS for z/OS: CICS Application Programming Guide

If you are routing to more than one type of terminal, BMS builds a separate logical
message for each type, with the appropriate device-dependent data stream, and
uses a separate temporary storage queue for each type.

Note: For terminal destinations that have the alternate screen size feature, where
two message formats are possible, BMS chooses the default size if the
profile under which the task creating the message specifies default size, and
alternate size if the profile specifies alternate size.

All of the logical messages use the same REQID value, however, so that you can
still choose whether they are recoverable or not.

BMS also uses temporary storage to store the list of terminals eligible to receive
your message and to keep track of whether delivery has occurred. When all of the
eligible terminals of a particular type have received a message, BMS deletes the
associated logical message. When all of the destinations have received delivery, or
the purge delay expires, BMS erases all of the information for the message,
reporting the number of undeliverable messages by destination to the master
terminal operator message queue.

Message identification
You can assign a title to your routed message if you wish. The title is not part of the
message itself, but is included with the other information that BMS maintains about
your message in CICS temporary storage. Titles are helpful in situations where a
number of messages may accumulate for an operator or a terminal, because they
allow the operator to control the order in which they are displayed. (See the “query”
option of the CSPG command in the CICS Supplied Transactions manual.)

To assign a title, use the TITLE option of the ROUTE command to point to a data
area that consists of the title preceded by a halfword binary length field. The length
includes the 2-byte length field and has a maximum of 64, so the title itself may be
up to 62 characters long. For example:

01 MSG-TITLE.
02 TITLE-LENGTH PIC S9(4) COMP VALUE +19.
02 TITLE-TEXT PIC X(17) VALUE ’MONTHLY INVENTORY’.

...
EXEC CICS ROUTE TITLE(MSG-TITLE)....

Figure 115. Assigning a title

Chapter 39. Message routing 533

Programming considerations with routing
For the most part, you build a routed message in the same way you do a nonrouted
message. However, because BMS builds a separate logical message for each
terminal type among your destinations, there are differences. The first involves page
overflow.

Routing and page overflow
Because different types of terminals have different page capacities, page overflow
may occur at different times for different types. If you are using SEND MAP
commands and intercepting overflows, your program gets control when overflow
occurs for each page of each logical message that BMS is creating in response to
your ROUTE.

If you want to number your pages or do page-dependent processing at overflow
time, you may need to keep track of information for each terminal type separately.
Data areas kept for this purpose are called overflow control areas. You can tell
how many such areas you need (that is, how many different terminal types
appeared in your ROUTE command) by issuing an ASSIGN command with the
DESTCOUNT option after your ROUTE and before any BMS command that could
cause overflow. Issued at this time, ASSIGN DESTCOUNT returns a count of the
logical messages that BMS builds.

When overflow occurs, you can use the same command to determine for which
logical message overflow occurred. At this time ASSIGN DESTCOUNT returns the
relative number of that message among those BMS is building for this ROUTE
command. If you are using overflow control areas, this number tells you which one
to use. If you use ASSIGN PAGENUM at this time, BMS returns the number of the
page that overflowed as well.

To handle the complication of different overflow points for different terminal types,
the processing you need to do on overflow in a routing environment is:

v Determine which logical message overflowed with ASSIGN DESTCOUNT (unless
you are doing very simple overflow processing).

v Send your trailer maps for the current page, followed by headers for the next
page, as you do in a non-routing environment (see “Page breaks: BMS overflow
processing” on page 514). While the OVERFLOW condition is in force, these
SEND MAP commands apply only to the logical message that overflowed (you
would not want them in a logical message where you were mid-page, and BMS
makes no assumptions about different terminal types that happen to have the
same page capacity).

v Reissue the command that caused the overflow, as you do in a non-routing
environment. After you do, however, you must retest for overflow and repeat the
whole process, until overflow does not occur. This procedure ensures that you
get the trailers and headers and the map that caused the overflow into each of
the logical messages that you are building.

534 CICS TS for z/OS: CICS Application Programming Guide

Routing with SET
When you specify a disposition of SET in a routing environment, no messages are
sent to the destinations in your route list, because the pages are returned to your
program as they are completed. However, the ROUTE command is processed in
the usual way to determine these destinations and the terminal types among them.
BMS builds a separate logical message for each type, as usual, and returns a page
to the program each time one is completed for any of the terminal types. BMS
raises the OVERFLOW and RETPAGE conditions as it does with a disposition of
PAGING. Consequently, ROUTING with SET allows you to format messages for
terminal types other than that of your principal facility.

Interleaving a conversation with message routing
While you are building a message to be routed, you can use BMS SEND
commands as well as RECEIVE MAP and terminal control commands to converse
with your principal facility. (Without routing, you cannot use BMS SENDs, as noted
in “Building logical messages” on page 507.) Such SEND commands must have a
disposition option of TERMINAL rather than PAGING or SET, and must not specify
ACCUM. The associated inputs and outputs are processed directly and do not
interfere with your logical message, even if your terminal is one of the destinations
of the message.

Chapter 39. Message routing 535

536 CICS TS for z/OS: CICS Application Programming Guide

Chapter 40. The MAPPINGDEV facility

Minimum BMS function assumes that the principal facility of your task is the
mapping device that performs input and output mapping operations for the
features and status that is defined in the TCTTE (Terminal Control Table entry).

The principal facility for transactions using BMS function should have a device type
supported by BMS. However, the MAPPINGDEV facility is an extension of minimum
BMS that allows you to perform mapping operations for a device that is not the
principal facility. When the MAPPINGDEV request completes, the mapped data is
returned to the application. BMS does not have any communication with the
MAPPINGDEV device.

You can specify the MAPPINGDEV option on the RECEIVE MAP command (see
the CICS Application Programming Reference manual) and the SEND MAP
command, (see the CICS Application Programming Reference manual) but not on
any other BMS command.

The TERMID specified in the MAPPINGDEV option must represent a device in the
3270 family supported by BMS. If the device is partitioned, it is assumed to be in
base state. Outboard formatting is ignored.

Data is mapped in exactly the same way as for minimum BMS, and there is no
need to change mapset definitions or to re-generate mapsets.

This chapter describes:
v “SEND MAP with the MAPPINGDEV option”
v “RECEIVE MAP with the MAPPINGDEV option” on page 538
v “Sample assembler MAPPINGDEV application” on page 539

SEND MAP with the MAPPINGDEV option
Your SEND MAP commands that have the MAPPINGDEV option must also specify
the SET option. (The SET option provides BMS with a pointer that sets the address
of the storage area that contains the mapped output datastream.)

If you have storage protection active, the data is returned in storage in the key
specified in the TASKDATAKEY option of the transaction definition. The storage is
located above or below the line depending on which TASKDATALOC option of the
transaction definition you have specified.

The storage area is in task-related user storage but in the format of a TIOA
(Terminal Input/Output Area). The application can reference the storage area using
the DFHTIOA copybook. The TIOATDL field, at offset 8, contains the length of the
datastream that starts at TIOADBA, at offset 12, in the storage area. The length
value placed in TIOATDL does not include the length of the 4-byte page control
area, which contains information such as the extended attributes that have been
used in the datastream and can be referenced using the DFHPGADS copybook.

The storage area usually has a length greater than the datastream because the
storage area is allocated before the exact length of the output datastream is
determined. This storage area is in a form that can be used in a SEND TEXT
MAPPED command.

© Copyright IBM Corp. 1989, 2010 537

If you are familiar with using the SET option without the MAPPINGDEV option, (see
“Protection” on page 393 for details) you know that the datastream is returned to
the application indirectly by a list of pages. However, when MAPPINGDEV is
specified, a direct pointer to the storage area containing the datastream is returned
to your application.

When the SEND MAP MAPPINGDEV command completes its processing, the
storage area is under the control of the application and remains allocated until the
end of the transaction unless your application FREEMAINs it. You are advised to
FREEMAIN these storage areas, for long-running transactions but CICS frees these
areas when the task terminates.

RECEIVE MAP with the MAPPINGDEV option
You must specify the FROM option when using the MAPPINGDEV option on the
RECEIVE MAP command. BMS needs the FROM option to supply a formatted
3270 input datastream that is consistent with the datastream returned via a Terminal
Control RECEIVE command (that is, a normal input 3270 datastream). The only
difference is that it does not start with an AID and input cursor address because this
information is removed from the input datastream by terminal control, but there are
options on the RECEIVE MAP command that allow you to specify an AID value and
input cursor position when the MAPPINGDEV option is specified. If the datastream
contains an AID and input cursor address, they are ignored by BMS.

When neither option is specified, BMS assumes that the input data operation was
terminated with the ENTER key, and returns the appropriate AID value to the
application from the EIBAID field. BMS also assumes that the input cursor was
positioned at the home address and returns a value of zero to the application from
the EIBCPOSN field.

The new AID option of the RECEIVE MAP command allows your application to
specify an AID value which, if specified, overrides the default value of ENTER.
Whether provided by the application, or defaulted by BMS, the AID value that you
established causes control to be passed, when applicable, to the routine registered
by a previous HANDLE AID request issued by the application.

The new CURSOR option of the RECEIVE MAP command allows your application
to specify an input cursor position which, if specified, overrides the default value of
zero. Whether provided by the application, or defaulted by BMS, the input cursor
value is used in cursor location processing when you define the map with
CURSLOC=YES.

As with the minimum BMS RECEIVE MAP command, the mapped data is returned
to your application by the INTO or SET option. If neither option is specified, the
CICS translator attempts to apply a default INTO option by appending the character
'I' to the map name.

When you use the SET option with the MAPPINGDEV option, it must provide a
pointer variable that BMS sets with the address of the storage area containing the
mapped input datastream. The data is returned in task-related user storage. If
storage protection is active, the data is returned in storage in the key specified by
the TASKDATAKEY option of the transaction definition. The storage is located
above or below the line depending on the TASKDATALOC option of your
transaction definition.

538 CICS TS for z/OS: CICS Application Programming Guide

When the RECEIVE MAP MAPPINGDEV command completes its processing
successfully, the storage area is returned by the SET option and is under the
control of the application and remains allocated until the end of the transaction
unless your application FREEMAINs it. You are advised to FREEMAIN these
storage areas, for long-running transactions but CICS frees these areas when the
task terminates.

Sample assembler MAPPINGDEV application
Figure 116 is a modification of the FILEA operator instruction sample program, and
uses the same mapset named DFH$AGA.

This application is only intended to demonstrate how to code the keywords
associated with the MAPPINGDEV facility, and as a means of testing this function.
It is not offered as a recommended design for applications that make use of the
MAPPINGDEV facility.

DFH$AMNX CSECT
*

DFHREGS
DFHEISTG DSECT
OUTAREA DS 0CL512

DS CL8
OUTLEN DS H

DS H
OUTDATA DS CL500
INLEN DS H
INAREA DS CL256
PROOF DS CL60

COPY DFH$AGA
COPY DFHBMSCA

DFH$AMNU CSECT
EXEC CICS HANDLE AID PF3(PF3_ROUTINE)

*
XC DFH$AGAS(DFH$AGAL),DFH$AGAS
MVC MSGO(L’APPLMSG),APPLMSG
EXEC CICS SEND MAP(’DFH$$AGA’) FROM(DFH$AGAO) ERASE

MAPPINGDEV(EIBTRMID) SET(R6)
MVC OUTAREA(256),0(R6)
MVC OUTAREA+256(256),256(R6)
EXEC CICS SEND TEXT MAPPED FROM(OUTDATA) LENGTH(OUTLEN)

*
EXEC CICS RECEIVE INTO(INAREA) LENGTH(INLEN)

MAXLENGTH(MAXLEN)
*

EXEC CICS RECEIVE MAP(’DFH$AGA’) SET(R7) LENGTH(INLEN)
MAPPINGDEV(EIBTRMID) FROM(INAREA)
CURSOR(820) AID(=C’3’)

*
XC PROOF,PROOF
MVC PROOF(25),=C’You just keyed in number ’
MVC PROOF+25(6),KEYI-DFH$$AGAI(R7)

Figure 116. ASM example of a MAPPINGDEV application (Part 1 of 2)

Chapter 40. The MAPPINGDEV facility 539

FINISH DS 0H
EXEC CICS SEND TEXT FROM(PROOF) LENGTH(60) ERASE FREEKB
TM MSGF-DFH$AGAI(R7),X’02’
BNO RETURN
XC PROOF,PROOF
MVC PROOF(33),=C’Input cursor located in MSG field’
EXEC CICS SEND TEXT FROM(PROOF) LENGTH(60) ERASE FREEKB

*
* THE RETURN COMMAND ENDS THE PROGRAM.
*
RETURN DS 0H

EXEC CICS RETURN
*
PF3_ROUTINE DS 0H

XC PROOF,PROOF
MVC PROOF(30),=C’RECEIVE MAP specified AID(PF3)’
B FINISH

MAXLEN DC H’256’
APPLMSG DC C’This is a MAPPINGDEV application’

END

Figure 116. ASM example of a MAPPINGDEV application (Part 2 of 2)

540 CICS TS for z/OS: CICS Application Programming Guide

Chapter 41. Partition support

Partitions are the first of several special hardware features that BMS supports.
Standard BMS is required for partitions.

Some IBM displays allow you to divide the screen into areas which you can write to
and read from separately, as if they were independent screens. The areas are
called partitions, and features of BMS that allow you to take advantage of the
special hardware are collectively called “partition support”.

The IBM 3290 display, which is a member of the 3270 family, and the IBM 8775 are
the primary examples of devices that support partitioning. You should consult the
device manuals9 to understand the full capabilities of a partitioned device, but the
essential features are these:

v You can divide the physical screen into any arrangement of one to eight
non-overlapping rectangular areas. The areas are independent from one other, in
the sense that the operator can clear them separately, the state of the keyboard
(locked or unlocked) is maintained separately for each, and you write to and read
from them one at a time.

v Only one partition is active at any given time. This is the one containing the
cursor. The operator is restricted to keying into this partition, and the cursor
wraps at partition boundaries. When a key that transmits data is depressed (the
ENTER key or one of the program function keys), data is transmitted only from
the active partition.

v The operator can change the active partition at any time by using the “jump” key;
your program can also, as explained in “Determining the active partition” on page
545.

v BMS also writes to only one partition on a given SEND, but you can issue
multiple SENDs and you do not have to write to the active partition.

v The partition configuration is sent to the device as a data stream, so that you can
change the partitions for each new task or even within a task. The BMS construct
that defines the partitions is called a partition set and is described in “Partition
definition” on page 543.

v You also can use the terminal in base state (without partitions) and you can
switch from partitioned to base state with the same command that you use to
change partition arrangements.

v When you specify how to partition the screen area, you also divide up the
hardware buffer space from which the screen is driven. In partitioned devices, the
capacity of the buffer is generally greater than that of the screen, so that some
partitions can be assigned extra buffer space. The screen area allocated to a
partition is called its viewport and the buffer storage is called its presentation
space.

BMS uses the presentation space as its page size for the partition, so that you
can send as much data as fits there, even though not all of it can be on display
at once. Keys on the device allow the operator to scroll the viewport of the
partition vertically to view the entire presentation space. Scrolling occurs without
any intervention from the host.

v Some partitioned devices allow you to choose among character sets of different
sizes. We talk about this in “3290 character size” on page 544.

9. IBM 3290 Information Display Panel Description and Reference for the 3290 and IBM 8775 Display Terminal Component
Description for the 8775.

© Copyright IBM Corp. 1989, 2010 541

In spite of the independence of the partitions, the display is still a single terminal to
CICS. You cannot have more than one task at a time with the terminal as its
principal facility, although you can use the screen space cooperatively among
several pseudoconversational transaction sequences if they use the same partition
set (see “Terminal sharing” on page 548).

Note: The 3290 can be configured internally so that it behaves as more than one
logical unit (to CICS or any other system); this definition is separate from the
partitioning that may occur at any one of those logical terminals.

This chapter describes:
v “Uses for partitioned screens”
v “Partition definition” on page 543
v “Establishing partitioning” on page 544
v “Partition options for BMS SEND commands” on page 545
v “Partition options for BMS RECEIVE commands” on page 546
v “Partitions and logical messages” on page 546
v “Attention identifiers and exception conditions” on page 547
v “Terminal sharing” on page 548

Uses for partitioned screens
Partitioned screens are particularly useful in certain types of application. For
example:

Scrolling
For transactions that produce more output than fits on a single screen, scrolling is
an alternative to BMS terminal paging (see “Output disposition options: TERMINAL,
SET, and PAGING” on page 489). For example, you can define a partition set that
consists of just one partition, where the viewport is the whole screen and the
presentation space is the entire buffer. You can write to the entire buffer as a single
page, and the operator can scroll through the data using the terminal facilities.
Response time is to scrolling requests is very short, because there is no interaction
with the host. You are limited to the capacity of the buffer, of course.

You may also want to scroll just part of the screen and use some partitions for fixed
data.

Data entry
Another good use for a partitioned screen is “heads down” data entry, where the
operator’s productivity depends on how fast the application can process an input
and reopen the keyboard for the next. With a partitioned screen, you can divide the
screen into two identical entry screens. The operator fills one, presses Enter, and
then fills the second one while the data entry transaction is processing the first
input. If the input is good, the program simply erases it in preparation for the next
entry; if not, there is still an opportunity for the operator to make corrections without
losing subsequent work. The CICS 4.1 Sample Applications Guide contains an
example of such a data entry transaction.

Lookaside
In many online operations, the operator sometimes needs to execute a second
transaction in order to finish one in progress. Order entry is an example, where the
operator may have to look up codes or prices to complete an entry. Many inquiries
are similar. The initial inquiry brings back a summary list of hits. The operator

542 CICS TS for z/OS: CICS Application Programming Guide

selects one and asks for further detail, then may need to select another for detail,
and so on. In such cases, a partitioned screen allows the operator to do the second
task while keeping the output of the first, which is needed later, on the screen. The
CICS 4.1 Sample Applications Guide also contains an example of a lookaside
transaction.

“Help” text is still another example of “lookaside”. If you allocate one partition of the
screen to this text, the operator can get the required tutorial information without
losing the main screen.

Data comparison
Applications in which the operator needs to compare two or more sets of data
simultaneously are also excellent candidates for a partitioned screen. Partitioning
allows a side-by-side comparison, and the scrolling feature makes it possible to
compare relatively large documents or records.

Error messages
If you partition a screen and allocate one area to error messages and other
explanatory text, usability is enhanced because the operator always knows where to
look for messages, and the main screen areas are never overwritten with such
information. CICS sends its own messages to such a partition if you designate one
in your partition set, as we explain in “Partition definition.”

Partition definition
Each partitioning of a screen is defined by a partition set, which is a collection of
screen areas (partitions) intended for display together on a screen. You define a
partition set with assembler macros, just as you do map sets. There are two of
them: DFHPSD and DFHPDI.

The partition set definition begins with a DFHPSD (partition set definition) macro,
which defines:

v The name of the partition set

v Screen size (BMS makes sure that the partition viewports do not exceed the total
space available)

v Default character cell size (we talk about cell size in “3290 character size” on
page 544)

v The partition set suffix, used to associate the partition set with a particular screen
size (see “Establishing partitioning” on page 544)

After the initial DFHPSD macro, you define each partition (screen area) with a
DFHPDI macro. DFHPDI specifies:

v The identifier of the partition within the partition set.

v Where the partition is located on the screen.

v Its viewport size (in lines and columns).

v The presentation space associated with the viewport (that is, the amount of
buffer space allocated), also in lines and columns. Because scrolling is strictly
vertical, BMS requires that the width of the presentation space match the width of
the viewport.

v The character size to be used.

v The map set suffix associated with the partition, used to select the map set
appropriate for the partition size.

Chapter 41. Partition support 543

v Whether the partition may receive CICS error messages (BMS sends certain
error messages that it generates to a partition so designated, if there is one).

You end the partition set with a second DFHPSD macro, containing only the option
TYPE=FINAL. See the CICS Application Programming Reference manual.

Because these are assembler macros, you need to follow assembler format rules in
creating them. See “Writing BMS macros” on page 463 if you are not familiar with
assembler language. After you do, you need to assemble and link-edit your partition
set. The resulting load module can be placed in the same library as your map sets,
or in a separate library if your installation prefers. Your systems staff also need to
define each partition set to the system with a PARTITION definition.

3290 character size
The 3290 hardware allows you to use up to eight different character sets, of
different sizes. Two sets come with the hardware; the others can be loaded with a
terminal control SEND command. (Refer to the IBM 3290 Information Display Panel
Description and Reference manual for details.)

Each character occupies a rectangular cell on the screen. Cell size determines how
many lines and columns fit on the screen, or in a particular partition of the screen,
because you can specify cell size by partition. Cells are measured in pels (picture
elements), both vertically and horizontally. The smallest cell allowed is 12 vertical
pels by 6 horizontal pels. The 3290 screen is 750 pels high and 960 pels wide.
Using the minimum cell size, therefore, you can fit 62 characters vertically (that is,
have 62 lines), and 160 characters horizontally (for 160 columns). (The 3290
always selects the character set that best fits your cell size, and places the
character at the top left corner of the cell.)

Partition sizes are expressed in lines and columns, based on the cell size you
specify for the partition, which is expressed in pels. (The name of the option is
CHARSZE, but it is really cell size.) To make sure your partitions fit on the screen,
you need to work out your allocation in pels, although BMS tells you when you
assemble if your partitions overlap or does not fit on the screen. The partition height
is the product of the number of rows in the partition and the vertical CHARSZE
dimension; the partition width is the product of the number of columns and the
horizontal CHARSZE value.

If you do not specify a CHARSZE size in your DFHPDI partition definition, BMS
uses the default given in the DFHPSD partition set definition. If DFHPSD does not
specify CHARSZE either, BMS uses the default established for the terminal when it
was installed. If you specify cell size for some but not all partitions, you must
specify a default for the partition set too, so that you do not mix your choices with
the installation default.

Establishing partitioning
You can tell BMS which partition set to load for a particular transaction by naming it
in the PARTITIONSET option of the TRANSACTION definition. If you do this, and
the named partition set is not already loaded at the terminal, BMS adds the partition
definitions to your data on the first BMS SEND in the task.

You can also direct BMS not to change the partitions from their current state
(PARTITIONSET=KEEP in the TRANSACTION definition) or indicate that you load

544 CICS TS for z/OS: CICS Application Programming Guide

the partitions yourself (PARTITIONSET=OWN). If you do not specify any
PARTITIONSET value, BMS sets the terminal to base state (no partitions) at the
time it initiates the transaction.

Whatever the PARTITIONSET value associated with the transaction, a task can
establish new partitions at almost any time with a SEND PARTNSET command,
except that you cannot issue the command while you are building a logical
message.

SEND PARTNSET does not send anything to the terminal immediately. Instead,
BMS remembers to send the partition information along with the next BMS
command that sends data or control information, just as it sends a partition set
named in the PARTITIONSET option of the TRANSACTION definition on the first
BMS SEND. Consequently, you must issue a SEND MAP, SEND TEXT or SEND
CONTROL command before you issue a RECEIVE or RECEIVE MAP that depends
on the new partitions.

Note: You can get an unexpected change of partitions in the following situation. If
CICS needs to send an error message to your terminal, and the current
partition set does not include an error partition, CICS returns the terminal to
base state, clear the screen, and write the message. For this reason, it is a
good idea to designate one partition as eligible for error messages in every
partition set.

When BMS loads a partition set, it suffixes the name requested with the letter that
represents your terminal type if device-dependent support is in effect, in order to
load the one appropriate to your terminal. It takes suffix from the ALTSUFFIX option
value of the TYPETERM definition associated with your terminal. Partition set
suffixing is analogous to map set suffixing, and the same sequence of steps is
taken if there is no partition set with the right suffix (see “Device-dependent maps”
on page 472).

Partition options for BMS SEND commands
As noted earlier, when you write to a partitioned screen, you write to only one
partition, and the effects of your command are limited to that partition. ERASE and
ERASEAUP clear only within the partition, and FREEKB unlocks the keyboard only
when the partition becomes active.

You can specify the partition to which you are sending with either the PARTN option
in your map definition or with the OUTPARTN option on your SEND MAP.
OUTPARTN overrides PARTN. If you don't specify either, BMS chooses the first
partition in the set.

The use of partitions affects the suffixing of map set names that we described in
“Device-dependent maps” on page 472. The map set suffix is taken from the
MAPSFX value for the partition instead of being determined as described in that
section.

Determining the active partition
When you send to a partition, you can move the cursor to that partition or another
one. A value of ACTIVATE in the PARTN option of the map definition puts the
cursor in the partition to which you are writing. If you specify ACTPARTN on your
BMS SEND command, you can name any partition (not necessarily the one to
which you are writing), and you override the ACTIVATE specification. Both

Chapter 41. Partition support 545

ACTIVATE and ACTPARTN unlock the keyboard for the active partition, as well as
placing the cursor there. If neither is present, the cursor does not move and the
keyboard is not unlocked.

Although you can make a partition active by placing the cursor there when you
send, you do not have the last word on this subject, because the operator can use
the jump key on the terminal to move the cursor to another partition. This can
complicate receiving data back from the terminal, but BMS provides help, as we are
about to explain.

Partition options for BMS RECEIVE commands
When you issue a RECEIVE MAP command, you can tell BMS from which partition
you expect data (that is, which partition you expect to be active) with either the
PARTN option in the map definition or with the INPARTN option on your RECEIVE
MAP. INPARTN overrides PARTN. If you do, and the operator transmits from a
different partition than the one you named, BMS repositions the cursor in the
partition you named, unlocks the keyboard and repeats the RECEIVE command. It
also sends a message to the error partition (the one with ATTRB=ERROR) asking
the operator to use the right partition. (No message is sent if there is no error
partition.) The input from the wrong partition is discarded, although it is not lost,
because it can be reread later. BMS does this up to three times; if the operator
persists for a fourth round, BMS raises the PARTNFAIL condition.

You do not have to specify an input partition; sometimes there is only one that
allows input, and sometimes the same map applies to all. If you issue RECEIVE
MAP without INPARTN and there is no PARTN option in the map, BMS accepts
data from any partition and map it with the map named in the command. You also
can determine the partition afterward, if you need to, with an ASSIGN command
containing the INPARTN option.

INPARTN is not set until after the first BMS operation, however, and so if you need
to know which partition is sending to select the right map, you need another
approach. In this situation, you can issue a RECEIVE PARTN command, which
reads data unmapped and tells you which partition sent it. Then you issue a
RECEIVE MAP command using the map that matches the partition with the FROM
option, using the map that matches the partition. RECEIVE MAP with FROM maps
data already read, as explained in “Formatting other input” on page 505.

ASSIGN options for partitions
In addition to the INPARTN option just described, there are three other ASSIGN
options to help you in programming for a partitioned terminal. The PARTNS option
tells you whether the terminal associated with your task supports partitions, and the
PARTNSET option returns the name of the current partition set (blanks if none has
been established). The fourth ASSIGN option, PARTNPAGE applies only to logical
messages, which we talk about in “Partitions and logical messages.”

Partitions and logical messages
When you build a BMS logical message for a terminal for which partitions have
been established, you can direct the pages of the message to multiple partitions.
You can even send text output to some partitions and mapped output to others,
provided you do not mix them in the same partition. (This is an exception to the
normal rule against mixing text and mapped output in a logical message.)

546 CICS TS for z/OS: CICS Application Programming Guide

When the output is displayed, the first page for each partition is displayed initially.
The pages are numbered by partition, and CSPG commands that the operator
enters into a particular partition apply only to that partition, with the exception of the
page purge command. The purge command deletes the entire logical message from
all partitions.

On each BMS SEND that contributes to the message, you specify the partition to
which the output goes. If you are not using ACCUM, BMS builds a page for that
partition. If you are using ACCUM, BMS puts the output on the current page for that
partition. Page overflows therefore occur by partition. If you are intercepting
overflows and are not sure in which partition the overflow occurred, you can use the
PARTNPAGE option of the ASSIGN command to find out.

Note: Because BMS uses both the page size and partition identifiers in building a
logical message, you cannot change the partitions mid-message.

The bookkeeping required to handle page overflow when you are distributing pages
among partitions is analogous to that required in a routing environment (see
“Routing and page overflow” on page 534). In particular, you need to ensure that
you finish overflow processing for one partition before doing anything that might
cause overflow in another. Failure to do so can cause program loops as well as
incorrect output.

Partitions and routing
You cannot route a logical message written to multiple partitions. BMS ignores the
OUTPARTN and ACTPARTN options on BMS SEND commands in a routing
environment.

You can route an ordinary message to a terminal that supports partitions, but BMS
builds the message and the CSPG transaction displays it using the terminal in base
(unpartitioned) state.

You also cannot use partitions and logical device codes together (LDCs are
described in “Logical device components” on page 549). In addition, you cannot use
partitions in combination with GDDM, although you can use partitions with outboard
formats (see “Outboard formatting” on page 554).

Attention identifiers and exception conditions
Partitioned terminals have a CLEAR PARTITION key that clears the active partition
in the same way that the CLEAR key clears the whole screen (CLEAR still does
this on a partitioned terminal). You may need to check for this additional attention
identifier in your program logic. The CLEAR PARTITION AID value is included in
DFHAID (see “Using the attention identifier” on page 499).

There are also some new exception conditions associated with partitions, and new
ways to get some of the old ones. The new ones include INVPARTN (naming a
partition that does not exist in the partition set), INVPARTNSET (naming a module
that is not a partition set), and PARTNFAIL (receiving from a partition other than the
one the operator transmitted from). They are all described in the CICS Application
Programming Reference manual with the commands to which they apply.

Chapter 41. Partition support 547

Terminal sharing
With proper planning, you can share a terminal among several processes by
assigning each a separate partition. You cannot have more than one task in
progress at once at a terminal, of course, but you can interleave the component
tasks of several pseudoconversational transaction sequences at a partitioned
terminal.

To take a very simple example, suppose you decide to improve response time for
an existing pseudoconversational data entry transaction by letting the operator enter
data in two partitions (see “Data entry” on page 542). You could modify the
application to work on two records at once, or you could simply modify it to send to
the same partition from which it got its input. Then you could run it independently
from each partition.

You can establish the partitions with the PARTITIONSET option in the
TRANSACTION definition (all of the transactions involved, if there are several in the
sequence). As noted earlier, BMS does not reload the partitions as long as each
transaction has the same PARTITIONSET value. Alternatively, you could establish
the partitions with a preliminary transaction (for example, one that displayed the first
entry screen in both partitions) and use a PARTITIONSET value of KEEP for the
data entry transactions. Whenever you share a partitioned screen, whether among
like transactions or different ones, you need to ensure that one does not the destroy
the partition set required by another. Also, if two different CICS systems may share
the same screen, they should name partition sets in common, so that BMS does
not reload the partitions when it should not.

If the hypothetical data entry transaction sequence uses the TRANSID option on the
RETURN command to specify the next transaction identifier, you would need to
make another small change, because the option applies to the whole terminal, not
the partition. One solution would be to place the next transaction identifier in the
first field on the screen (turning on the modified data tag in the field definition) and
remove the TRANSID from the RETURN. CICS would then determine the next
transaction from the input, as described in “How tasks are started” on page 142.

548 CICS TS for z/OS: CICS Application Programming Guide

Chapter 42. Support for special hardware

In addition to partitions, BMS provides support these other special hardware
features:
v Logical device components
v 10/63 magnetic slot reader
v Field selection features: cursor select, light pen, trigger fields
v Outboard formatting

The magnetic slot reader and outboard formatting both require standard BMS.
Support for the cursor select key, light pen and trigger fields is included in
minimum.

This chapter describes:
v “Logical device components”
v “10/63 magnetic slot reader” on page 551
v “Field selection features” on page 551
v “Cursor and pen-detectable fields” on page 552
v “Outboard formatting” on page 554

Logical device components
Logical device components (LDCs) are another special hardware feature supported
by BMS. Like partitions, LDCs require standard BMS.

A terminal that supports LDCs is one that consists of multiple functional
components (logical devices) controlled through a single point (the logical unit). The
components might be a printer, reader, keyboard and display, representing a remote
work station, or they might be multiple like devices, such as word processing
stations or passbook printers. The IBM 3601 logical unit, the 3770 batch logical unit,
3770, and 3790 batch data interchange logical units, and LU type 4 logical units all
support logical device components.

Because the logical unit is a single entity to CICS, but consists of components that
can be written and read independently, the CICS application programming interface
for LDC terminals looks similar to that for partitioned terminals, each LDC
corresponding to one partition in a partition set. There are many differences, of
course, and you should consult the CICS manual that describes CICS support for
your particular terminal type. The sections which follow describe the major
differences that affect programming, which are: .
v LDC definition
v SEND command options
v Logical messages
v Routing

Defining logical device components
The logical device components for a terminal are defined by a list called an LDC
table. The TYPETERM component of the TERMINAL definition points to the table,
which may be individual to the logical unit or shared by several logical units that
have the same components. The table itself is defined with DFHTCT TYPE=LDC
(terminal control) macros. (See CICS Resource Definition Guide for descriptions of
both TYPETERM and the DFHTCT macros.)

An LDC table contains the following information for each logical device component
of the logical unit:

© Copyright IBM Corp. 1989, 2010 549

v A 2-character logical device identifier. These identifiers are usually standard
abbreviations, such as CO for console and MS for a magnetic stripe encoder, but
they need not be.

v A 1-character device code, indicating the device type (console, card reader, word
processing station). Codes are assigned by CICS from the device type and other
information provided in the macro.

v A BMS page size. BMS uses this size, rather than one associated with the logical
unit, because different logical devices have different page sizes.

v A BMS page status (AUTOPAGE or NOAUTOPAGE); see “The AUTOPAGE
option” on page 510.

Sending data to a logical device component
You direct BMS output to a specific logical device component of a terminal by
naming it in the LDC option of your SEND MAP, SEND TEXT, or SEND CONTROL
command or the LDC option of your mapset. A value in the command overrides one
in the map set. If the LDC does not appear in either place, BMS uses a default that
varies with the terminal type.

LDCs and logical messages
When you build a BMS logical message for your own terminal, you can distribute
pages of the message among different logical device components in the same way
that you can direct pages to a logical message to different partitions. BMS
accumulates pages separately for each logical device component in the same way
that it does for partitions (see “Partitions and logical messages” on page 546). You
can include both text and mapped output in the message, provided you do not send
both to one LDC. Page overflow occurs by LDC, and terminal operator paging
commands operate on a logical device component basis.

When retrieving pages, the operator (or user code in the device controller) must
indicate the LDC to which the request applies, because not all devices have
keyboards. As in the case of partitions, a message purge request deletes the entire
message, from all LDCs. See the CICS Supplied Transactions manual for more
detail on page retrieval for logical devices.

If you are intercepting page overflows, you can tell which LDC overflowed by
issuing an ASSIGN command with either the LDCMNEM or LDCNUM option. Both
identify the device which overflowed, the first by its 2-character name and the
second by the 1-byte numeric identifier. You can determine the page number for the
overflowing device with ASSIGN PAGENUM, just as with a partitioned device.

There is one restriction associated with LDCs and page overflow that is unique to
LDCs. After overflow occurs, you must send both a trailer map for the current page
and a header for the next one to the LDC that overflowed. BMS raises the INVREQ
(invalid request) condition if you fail to do this.

LDCs and routing
Routing is supported in an LDC environment, provided the message goes to the
same component type for every destination that supports LDCs. (You cannot route
a multiple-LDC message.)

You can supply the LDC value in several ways:

550 CICS TS for z/OS: CICS Application Programming Guide

v If you use the LDC option on your ROUTE command, the value supplied
overrides all other sources and is used for all eligible destinations to which LDCs
apply.

v If you specify an LDC in a route list entry (and not in the ROUTE command), that
value is used for the associated destination. (If you specify both and they do not
agree, the ROUTE list value is used and the discrepancy is flagged in the status
flag of the entry.)

v If you specify neither, the value is determined from terminal and system LDC
tables in the same way as it is in a non-routing environment when you omit the
LDC from the BMS SEND command. (The value on the SEND command is
ignored when routing is in effect.)

10/63 magnetic slot reader
Some IBM display terminals support a magnetic slot reader (MSR), a device that
reads data from small magnetic cards, as an optional feature. The MSR has
indicator lights and an audible alarm to prompt operator actions. Some terminals
control the MSR themselves, but others, such as the IBM 8775 and the IBM 3643,
let you control the functions of the reader by program.

CICS provides an ASSIGN command option, MSR, that tells you whether the
principal facility of your task has an MSR or not.

With BMS, you can control the state of such an MSR by using the MSR option of
the BMS SEND commands. This option transmits four bytes of control data to the
attached MSR, in addition to display data sent to the terminal. BMS provides a
copybook, DFHMSRCA, containing most of the control sequences you might need.
The CICS Application Programming Reference manual describes the supplied
constants and explains the structure of the control data, so that you can expand the
list if you need to.

The control sequence that you send to an MSR affects the next input from the
device; hence it has no effect until a RECEIVE command is issued. Input from
MSRs is placed in the device buffer and transmitted in the same way as keyboard
input. If the MSR input causes transmission, you can detect this by looking at the
attention identifier in EIBAID. A value of X'E6' indicates input from the MSR, and
X'E7' signals input from the MSR extended (a second MSR that may be present).
See the IBM 3270 Information Display System Data Stream Programmer’s
Reference manual for information on how to format a screen for MSR input and
other details on these devices.

Field selection features
BMS supports several special hardware features that allow the operator to enter
and transmit input by selecting a field on the screen:
v Trigger fields
v Cursor selectable fields
v Light pen detection

Trigger field support
Trigger fields are a special hardware feature of certain types of terminal, such as
the 8775. A field defined as a trigger field causes the terminal to transmit its
contents if the operator moves the cursor out of the field when it is primed. The
field gets primed when the operator moves the cursor into it and enters data or
uses either the DELETE or ERASE EOF keys. It becomes unprimed after it causes

Chapter 42. Support for special hardware 551

transmission, or if the operator uses the ERASE INPUT key, or after a send to the
terminal (if you are using partitions, the send must be to the partition that contains
the trigger field to have this effect).

You define a field as a trigger field by setting the VALIDN extended attribute to a
value of TRIGGER, either in the map or by program override.

Only the field itself is sent when a trigger field causes transmission; other fields are
not sent, even if they have been modified. You can detect a transmission caused by
a trigger field by checking the attention identifier, which has a value of X'7F'.

Terminals that support the validation feature buffer the keyboard, so that the
operator can continue to enter data while the host is processing an earlier
transmission. The program processing such inputs needs to respond quickly, so that
the operator does not exceed the buffer capacity or enter a lot of data before an
earlier error is diagnosed.

The customary procedure is for the program receiving the input to check the
contents of the trigger field immediately. If correct, the program simply unlocks the
keyboard to let the operator continue (a BMS SEND command containing the
FREEKB option does this). If the field is in error, you may wish to discard the stored
keystrokes, in addition to sending a diagnostic message. Any of the following
actions does this:

v A BMS SEND command that contains ERASE, ERASEAUP, or ACTPARTN or
that lacks FREEKB

v A BMS SEND directed to a partition other than the one containing the trigger field
(where partitions are in use)

v A RECEIVE MAP, RECEIVE PARTITION or terminal control RECEIVE command

v Ending the task

See the IBM 3270 Information Display System Data Stream Programmer’s
Reference manual for more information about trigger fields.

Cursor and pen-detectable fields
BMS also supports detectable fields, another special hardware feature available on
some terminals. There are two hardware mechanisms for detectable fields: the
“cursor select” key and the light pen. A terminal has either the key or a pen, not
both. Both work the same way and, as the key succeeded the pen, we talk about
the key.

For a field to be detectable, it must have certain field attributes, and the first
character of the data, known as the designator character, must contain one of five
particular values. You can have other display data after the designator character if
you wish.

The bits in the field attributes byte that govern detectability also control brightness.
High intensity (ATTRB=BRT) fields are detectable if the designator character is one
of the detectable values. Normal intensity fields may or may not be detectable; you
have to specify ATTRB=DET to make them so; nondisplay (ATTRB=DRK) fields
cannot be detectable.

As usual, you can specify attributes and designator characters either in the map
definition or by program override. However, DET has a special effect when it
appears in an input-only map, as we explain in a moment.

552 CICS TS for z/OS: CICS Application Programming Guide

Note that because high-intensity fields have, by definition, the correct field attributes
for detectability, the terminal operator can make an unprotected high-intensity field
detectable by keying a designator character into the first position of the field.

Selection fields
There are two types of detectable field, selection and attention fields; the type is
governed by the designator character. A selection field is defined by a designator
character of either a question mark (?) or a greater-than sign (>). The convention is
that (?) means the operator has not selected whatever the field represents, and (>)
means he has. The hardware is designed around this convention, but it is not
enforced, and you can use another if it suits. You can initialize the designator to
either value and initialize the modified data tag off or on with either value.

Every time the operator presses the cursor select key when the cursor is in a
selection field, the designator switches from one value to the other (? changes to >
and > changes to ?). The MDT is turned on when the designator goes from ? to >
and off when the designator goes from > to ?, regardless of its previous state. This
allows the operator to change his mind about a field he has selected (by pressing
cursor select under it again) and gives him ultimate control over the status of the
MDT. The MDT governs whether the field is included when transmission occurs, as
it does for other fields. No transmission occurs at this time, however; selection fields
do not of themselves cause transmission; that is the purpose of attention fields.

Attention fields
Attention fields are defined by a designator character of blank, null,10 or ampersand.
In contrast to a selection field, when the cursor select key is pressed with the cursor
in an attention field, transmission occurs.

If the designator character is an ampersand, the effect of pressing the cursor select
key is the same as depressing the ENTER key. However, if the designator is blank
or null, what gets transmitted is the address of every field with the MDT on, the
position of the cursor, and an attention identifier of X'7E'. The contents of these
fields are not transmitted, as they are with the ENTER key (or a cursor select with
an ampersand designator). In either case, the fields with the MDT bit on may be
selection fields or normal fields which the operator changed or which were sent with
the MDT on.

BMS input from detectable fields
After transmission caused by a cursor-select attention field with a blank or null
designator, BMS tells you which fields were transmitted (that is, had the MDT on)
by setting the first position of the corresponding input (I) subfield to X'FF'. The first
position is otherwise set to X'00'. You can tell which attention field caused
transmission from this value if it was the only one transmitted, or from the position
of the cursor otherwise.

If transmission is caused by a cursor-select attention field with an ampersand
designator (or by the ENTER key or a PF key), the I subfield contains the contents
of the field if the MDT is on and the L subfield reflects its length, as usual, except if
the DET attribute is specified for a field in the input map (that is MODE=IN or
MODE=INOUT, DATA=FIELD). After a RECEIVE MAP naming such a map, this I

10. A null in the data stream has the same effect as a blank in this function, but in BMS you should use a blank, because BMS does
not transmit nulls in some circumstances, and because you cannot override the first position of a field with a null (see “Where the
values come from” on page 486).

Chapter 42. Support for special hardware 553

#
#
#
#
#

subfield contains X'FF' with a length of 1 if the field is selected (that is, if the MDT
was on), and a null (X'00') if not. BMS supplies no other input for the field, even if
some was transmitted.

Consequently, if you need to receive data from a detectable field as well as
knowing whether it was selected or not, you need to avoid the use of DET in an
input map. You can use separate maps for output and input and specify the DET
attribute only in the output map, or you can set the DET attribute in the datastream
sent by the program rather than in the map. For high intensity fields you do not
need to specify DET, because BRT implies DET. BMS will return the data for fields
specified as BRT in the input map.

You also need to ensure that the data gets transmitted. When the cause of
transmission is the ENTER key, a PF key, or an attention field with an ampersand
designator character, field data gets transmitted. It does not when the cause is an
attention field with a blank or null designator.

See the IBM 3270 Information Display System Data Stream Programmer’s
Reference manual for more information about detectable fields.

Outboard formatting
Outboard formatting is a technique for reducing the amount of line traffic between
the host processor and an attached subsystem. The reduction is achieved by
sending only variable data across the network. This data is combined with constant
data, such as a physical map, by a program within the subsystem. The formatted
data can then be displayed.

You can use outboard formatting with a 3650 Host Communication Logical Unit, an
8100 Series processor with DPPX and DPS Version 2, or a terminal attached
through a 3174 control unit. Maps used by the 3650 must be redefined using the
3650 transformation definition language before they can be used. For more
information, see the section describing BMS in the IBM CICS/OS/VS 3650/3680
Guide. Maps to be used with the 8100 must be generated on the 8100 using either
an SDF II utility or the interactive map definition component of the DPS Version 2.

If a program in the host processor sends a lot of mapped data to subsystems, you
can reduce line traffic by telling BMS to transmit only the variable data in maps. The
subsystem must then perform the mapping operation when it receives the data.
BMS prefixes the variable data with information that identifies the subsystem map to
be used to format the data.

Terminals that support outboard formatting have OBFORMAT(YES) in their
TYPETERM definition. When a program issues a SEND MAP command for such a
terminal, and the specified map definition contains OBFMT=YES, BMS assumes
that the subsystem is going to format the data and generates an appropriate data
stream. If you send a map that has OBFMT=YES to a terminal that does not
support outboard formatting, BMS ignores the OBFMT operand.

See “Using batch data interchange” on page 383 for more information about
programming some of the devices that support outboard formatting.

554 CICS TS for z/OS: CICS Application Programming Guide

#
#
#

#
#
#
#
#
#
#

Part 7. CICS management functions

Chapter 43. Interval control 557
Expiration times . 558
Request identifiers . 559

Chapter 44. Task control . 561
Controlling sequence of access to resources 562

Chapter 45. Program control 565
Program linking . 566

Application program logical levels 566
Link to another program expecting return 566

Passing data to other programs 567
COMMAREA . 567
Channels . 569
INPUTMSG. 569

Using the INPUTMSG option on the RETURN command 571
Using mixed addressing modes 571
Using LINK to pass data . 572
Using RETURN to pass data 574

Chapter 46. Storage control 577
Overview of CICS storage protection and transaction isolation 578

Storage protection . 578
Storage categories . 579

Transaction isolation . 579
Reducing system outages 580
Protecting application data 580
Protecting CICS from being passed invalid addresses 580
Aiding application development 580

Defining the storage key for applications 580
System-wide storage areas 581
Task lifetime storage . 581
Program working storage specifically for exit and PLT programs 581
Passing data by a COMMAREA 581
The GETMAIN command 582

Selecting the execution and storage key 583
User-key applications . 584
CICS-key applications . 584

Tables. 586
Map sets and partition sets 586
Storage protection exception conditions 587

Using transaction isolation . 587
MVS subspaces . 589

Subspaces and basespaces for transactions 589
The common subspace and shared storage 590

Chapter 47. Transient data control 593
Intrapartition transient data queues 593
Extrapartition queues . 594
Indirect queues . 595
Automatic transaction initiation (ATI) 595

Chapter 48. Temporary storage control 597

© Copyright IBM Corp. 1989, 2010 555

||

Temporary storage queues . 597
Typical uses of temporary storage control 598

556 CICS TS for z/OS: CICS Application Programming Guide

Chapter 43. Interval control

The CICS interval control services provide functions that are related to time.

Java and C++
The application programming interface described in this chapter is the EXEC
CICS API, which is not used in Java programs. For information about Java
programs using the JCICS classes to access Interval Control services, see the
Java Applications in CICS component of the CICS Information Center and the
JCICS Javadoc html documentation. For information about C++ programs
using the CICS C++ classes, see the CICS C++ OO Class Libraries manual.

Using interval control commands, you can:

v Start a task at a specified time or after a specified interval, and pass data to it
(START command).

v Retrieve data passed on a START command (RETRIEVE command).

v Delay the processing of a task (DELAY command).

v Request notification when a specified time has expired (POST command).

v Wait for an event to occur (WAIT EVENT command).

v Cancel the effect of previous interval control commands (CANCEL command).

v Request the current date and time of day (ASKTIME command).

v Select the format of date and time (FORMATTIME command). Options are
available that help you to handle dates in the twenty-first century. Programming
information about these is in the CICS Application Programming Reference
manual .

Note: Do not use EXEC CICS START TRANSID() TERMID(EIBTRMID) to start a
remote transaction. Use EXEC CICS RETURN TRANSID() IMMEDIATE
instead. START, used in this way, ties up communications resources
unnecessarily and can lead to performance degradation across the
connected regions.

If you use WAIT EVENT, START, RETRIEVE with the WAIT option, CANCEL,
DELAY, or POST commands, you could create inter-transaction affinities that
adversely affect your ability to perform dynamic transaction routing.

Storage for the timer-event control area on WAIT EVENT must reside in shared
storage if you have specified ISOLATE(YES).

If CICS is executing with or without transaction isolation, CICS checks that the
timer-event control area is not in read-only storage.

To help you identify potential problems with programs that issue these commands,
you can use the CICS Interdependency Analyzer. See the CICS Interdependency
Analyzer for z/OS User's Guide and Reference for more information about this utility
and Chapter 15, “Affinity,” on page 221 for more information about transaction
affinity.

This chapter describes:
v “Expiration times” on page 558
v “Request identifiers” on page 559

© Copyright IBM Corp. 1989, 2010 557

|

Expiration times
The time at which a time-controlled function is to be started is known as the
expiration time. You can specify expiration times absolutely, as a time of day
(using the TIME option), or as an interval that is to elapse before the function is to
be performed (using the INTERVAL option). For DELAY commands, you can use
the FOR and UNTIL options; and for POST and START commands, you can use
the AFTER and AT options. See the CICS Application Programming Reference
manual for programming information about these commands.

Note: The C and C++ languages do not provide the support for the packed decimal
types used by the TIME and INTERVAL options.

You use an interval to tell CICS when to start a transaction in a specified number
of hours, minutes, and seconds from the current time. A nonzero INTERVAL value
always indicates a time in the future—the current time plus the interval you specify.
The hours may be 0–99, but the minutes and seconds must not be greater than 59.
For example, to start a task in 40 hours and 10 minutes, you would code:
EXEC CICS START INTERVAL(401000)

You can use an absolute time to tell CICS to start a transaction at a specific time,
again using hhmmss. For example, to start a transaction at 3:30 in the afternoon,
you would code:
EXEC CICS START TIME(153000)

An absolute time is always relative to the midnight before the current time and may
therefore be earlier than the current time. TIME may be in the future or the past
relative to the time at which the command is executed. CICS uses the following
rules:

v If you specify a task to start at any time within the previous six hours, it starts
immediately. This happens regardless of whether the previous six hours includes
a midnight. For example:
EXEC CICS START TIME(123000)

This command, issued at 05:00 or 07:00 on Monday, expires at 12:30 on the
same day.
EXEC CICS START TIME(020000)

This command, issued at 05:00 or 07:00 on Monday expires immediately
because the specified time is within the preceding six hours.
EXEC CICS START TIME(003000)

This command, issued at 05:00 on Monday, expires immediately because the
specified time is within the preceding six hours. However, if it is issued at 07:00
on Monday, it expires at 00:30 on Tuesday, because the specified time is not
within the preceding six hours.
EXEC CICS START TIME(230000)

This command, issued at 02:00 on Monday, expires immediately because the
specified time is within the preceding six hours.

v If you specify a time with an hours component that is greater than 23, you are
specifying a time on a day following the current one. For example, a time of
250000 means 1 a.m. on the day following the current one, and 490000 means 1
a.m. on the day after that.

558 CICS TS for z/OS: CICS Application Programming Guide

If you do not specify an expiration time or interval option on DELAY, POST, or
START commands, CICS responds using the default of INTERVAL(0), which means
immediately.

Because each end of an intersystem link may be in a different time zone, you
should use the INTERVAL form of expiration time when the transaction to be started
is in a remote system.

If the system fails, the times associated with unexpired START commands are
remembered across the restart.

Notes:

1. On a lightly used system, the interval time specified can be exceeded by as
much as a quarter of a second.

2. If your expiration time falls within a possible CICS shutdown, you should
consider whether your task should test the status of CICS before attempting to
run. You can do this using the CICSSTATUS option of INQUIRE SYSTEM.
INQUIRE SYSTEM CICSSTATUS is described in the CICS System
Programming Reference. During a normal shutdown, your task could run at the
same time as the PLT programs with consequences known only to you.

Request identifiers
As a means of identifying the request and any data associated with it, a unique
request identifier is assigned by CICS to each DELAY, POST, and START
command. You can specify your own request identifier by means of the REQID
option. If you do not, CICS assigns (for POST and START commands only) a
unique request identifier and places it in field EIBREQID in the EXEC interface
block (EIB). You should specify a request identifier if you want the request to be
canceled at some later time by a CANCEL command.

Chapter 43. Interval control 559

560 CICS TS for z/OS: CICS Application Programming Guide

Chapter 44. Task control

The CICS task control facility provides functions that synchronize task activity, or
that control the use of resources.

Java and C++
The application programming interface described in this chapter is the EXEC
CICS API, which is not used in Java programs. For information about Java
programs using the JCICS classes to access Task Control services CICS, see
Java Applications in CICS in the CICS Information Center and the JCICS
Javadoc html documentation. For information about C++ programs using the
CICS C++ classes, see the CICS C++ OO Class Libraries manual.

CICS assigns priorities based on the value set by the CICS system programmer.
Control of the processor is given to the highest-priority task that is ready to be
processed, and is returned to the operating system when no further work can be
done by CICS or by your application programs.

You can:

v Suspend a task (SUSPEND command) to enable tasks of higher priority to
proceed. This can prevent processor-intensive tasks from monopolizing the
processor. When other eligible tasks have proceeded and terminated or
suspended processing, control is returned to the issuing task; that is, the task
remains dispatchable.

v Schedule the use of a resource by a task (ENQ and DEQ commands). This is
sometimes useful in protecting a resource from concurrent use by more than one
task; that is, by making that resource serially reusable. Each task that is to use
the resource issues an enqueue command (ENQ). The first task to do so has the
use of the resource immediately but, if a HANDLE CONDITION ENQBUSY
command has not been issued, subsequent ENQ commands for the resource,
issued by other tasks, result in those tasks being suspended until the resource is
available.

If the NOSUSPEND option is coded on an ENQ command, control is always
returned to the next instruction in the program. By inspecting the contents of the
EIBRESP field, you can see whether the ENQ command was successful or not.

Each task using a resource should issue a dequeue command (DEQ) when it
has finished with it. However, when using the enqueue/dequeue mechanism,
there is no way to guarantee that two or more tasks issuing ENQ and DEQ
commands issue these commands in a given sequence relative to each other.
For a way to control the sequence of access, see “Controlling sequence of
access to resources” on page 562.

v Change the priority assigned to a task (CHANGE TASK PRIORITY command).

v Wait for events that post MVS format ECBs when they complete.

Two commands are available, WAITCICS and WAIT EXTERNAL. These
commands cause the issuing task to be suspended until one of the ECBs has
been posted; that is, until one of the events has occurred. The task can wait on
one or more ECBs. If it waits on more than one, it is dispatchable as soon as
one of the ECBs is posted. You must ensure that each ECB is cleared (set to
binary zeros) no later than the earliest time it could be posted. CICS cannot do
this for you. If you wait on an ECB that has been previously posted and is not

© Copyright IBM Corp. 1989, 2010 561

subsequently cleared, your task is not suspended and continues to run as though
WAITCICS or WAIT EXTERNAL had not been issued.

WAIT EXTERNAL usually has less overhead, but the associated ECBs must
always be posted using the MVS POST facility or by an optimized post (using the
compare and swap (CS) instruction). They must never be posted by any other
method. If you are in any doubt about the method of posting, use a WAITCICS
command. When dealing with ECBs passed on a WAIT EXTERNAL command,
CICS extends the ECBs and uses the MVS POST exit facility. A given ECB must
not be waited on by more than one task at once (or appear twice in one task’s
ECBLIST). Failure to follow this rule leads to an INVREQ response.

WAITCICS must be used if ECBs are to be posted by any method other than the
MVS POST facility or by an optimized post. For example, if your application
posts the ECB by moving a value into it, WAITCICS must be used. (The
WAITCICS command can also be used for ECBs that are posted using the MVS
POST facility or optimized post.) Whenever CICS goes into an MVS WAIT, it
passes a list to MVS of all the ECBs being waited on by tasks that have issued a
WAITCICS command. The ECBLIST passed by CICS on the MVS WAIT contains
duplicate addresses, and MVS abends CICS.

If you use MVS POST, WAIT EXTERNAL, WAITCICS, ENQ, or DEQ commands,
you could create inter-transaction affinities that adversely affect your ability to
perform dynamic transaction routing.

To help you identify potential problems with programs that issue this command,
you can use the CICS Interdependency Analyzer. See the CICS Interdependency
Analyzer for z/OS User's Guide and Reference for more information about this
utility and Chapter 15, “Affinity,” on page 221 for more information about
transaction affinity.

Controlling sequence of access to resources
If you want a resource to be accessed by two or more tasks in a specific order,
instead of ENQ and DEQ commands, use one or more WAITCICS commands in
conjunction with one or more hand-posted ECBs.

To hand-post an ECB, a CICS task sets a 4-byte field to either the cleared state of
binary zeros, or the posted state of X'40008000'. The task can use a START
command to start another task and pass the address of the ECB. The started task
receives the address through a RETRIEVE command.

Either task can set the ECB or wait on it. Use the ECB to control the sequence in
which the tasks access resources. Two tasks can share more than one ECB if
necessary. You can extend this technique to control as many tasks as you wish.

Note: Only one task can wait on a given ECB at any one time.

The example in Figure 117 on page 563 shows how two tasks can sequentially
access a temporary storage queue by using hand-posted ECBs and a WAITCICS
command.

The example uses two ECBs, (ECB1 and ECB2), addressed by the pointers
illustrated in Figure 118 on page 563.

In theory, these tasks could exchange data through the temporary storage queue
for ever. In practice, some code would be included to close the process down in an
orderly way.

562 CICS TS for z/OS: CICS Application Programming Guide

|

Chapter 17, “Dealing with exception conditions,” on page 261 describes how the
exception conditions that can occur during processing of a task control command
are handled.

Task A Task B
Delete temporary storage queue
Clear ECB1 (set to X’00000000’)
Clear ECB2
EXEC CICS START task B (pass addresses EXEC CICS RETRIEVE
of PTR_ECB1_ADDR_LIST and (addresses passed)
PTR_ECB2_ADDR_LIST

LOOP: LOOP:
EXEC CICS WAITCICS Write to TS queue
ECBLIST(PTR_ECB1_ADDR_LIST) Post ECB1 (set to X’40008000)
NUMEVENTS(1) EXEC CICS WAITCICS
Clear ECB1 ECBLIST(PTR_ECB2_ADDR_LIST)
Read TS queue NUMEVENTS(1)
Process data
Delete TS queue
Write to TS queue
Post ECB2 ClearECB2
Go to start of loop Read TS queue

Process data
Delete TS queue
Go to start of loop

Figure 117. Two tasks using WAITCICS to control access to a shared resource

PTR_ECB1_ADDR_LIST

A(ECB1_ADDR_LIST)

ECB1_ADDR_LIST ECB1

A(ECB1)

PTR_ECB2_ADDR_LIST

A(ECB2_ADDR_LIST)

ECB2_ADDR_LIST ECB2

A(ECB2)

Figure 118. ECB pointers used by WAITCICS example

Chapter 44. Task control 563

564 CICS TS for z/OS: CICS Application Programming Guide

Chapter 45. Program control

The CICS program control facility governs the flow of control between application
programs in a CICS system.

Java and C++
The application programming interface described in this chapter is the EXEC
CICS API, which is not used in Java programs. For information about Java
programs using the JCICS classes to access program control services, see
Java Applications in CICS in the CICS Information Center and the JCICS
Javadoc html documentation. For information about C++ programs using the
CICS C++ classes, see the CICS C++ OO Class Libraries manual.

The name of the application referred to in a program control command must have
been defined as a program to CICS. You can use program control commands to:

v Link one of your application programs to another, anticipating subsequent return
to the requesting program (LINK command). The COMMAREA, CHANNEL, and
INPUTMSG options of this command allow data to be passed to the requested
application program.

v Link one of your application programs to another program in a separate CICS
region, anticipating subsequent return to the requesting program (LINK
command). The COMMAREA or CHANNEL option of this command allows data
to be passed to the requested application program. This is referred to as
distributed program link (DPL). (You cannot use the INPUTMSG and
INPUTMSGLEN options of a LINK command when using DPL. See Chapter 30,
“CICS intercommunication,” on page 433 for more information about DPL.

v Transfer control from one of your application programs to another, with no return
to the requesting program (XCTL command). The COMMAREA, CHANNEL, and
INPUTMSG options of this command allow data to be passed to the requested
application program. (You cannot use the INPUTMSG and INPUTMSGLEN
options of an XCTL command when using DPL. See Chapter 30, “CICS
intercommunication,” on page 433 for more information about DPL.

v Return control from one of your application programs to another, or to CICS
(RETURN command). The COMMAREA, CHANNEL, and INPUTMSG options of
this command allow data to be passed to a newly initiated transaction. (You
cannot use the INPUTMSG and INPUTMSGLEN options of a RETURN
command when using DPL. See Chapter 30, “CICS intercommunication,” on
page 433 for more information about DPL.)

v Load a designated application program, table, or map into main storage (LOAD
command).

If you use the HOLD option with the LOAD and RELEASE command to load a
program, table or map that is not read-only, you could create inter-transaction
affinities that could adversely affect your ability to perform dynamic transaction
routing.

To help you identify potential problems with programs that issue these
commands, you can use the CICS Interdependency Analyzer. See CICS
Interdependency Analyzer for z/OS User's Guide and Reference for more
information about this utility and see Chapter 15, “Affinity,” on page 221 for more
information about transaction affinity.

v Delete a previously loaded application program, table, or map from main storage
(RELEASE command).

© Copyright IBM Corp. 1989, 2010 565

|

|

|

|

|

You can use the RESP option to deal with abnormal terminations.

This chapter describes:
v “Program linking”
v “Passing data to other programs” on page 567
v “Using mixed addressing modes” on page 571
v “Using LINK to pass data” on page 572
v “Using RETURN to pass data” on page 574

Program linking
A LINK command is used to pass control from an application program at one logical
level to an application program at the next lower logical level.

Application program logical levels
Application programs running under CICS are executed at various logical levels.
The first program to receive control within a task is at the highest logical level.
When an application program is linked to another, expecting an eventual return of
control, the linked-to program is considered to reside at the next lower logical level.
When control is simply transferred from one application program to another, without
expecting return of control, the two programs are considered to reside at the same
logical level.

Link to another program expecting return
If the program receiving control is not already in main storage, it is loaded. When a
RETURN command is processed in the linked program, control is returned to the
program initiating the link at the next sequential process instruction.

The linked program operates independently of the program that issues the LINK
command with regard to handling exception conditions, attention identifiers, and
abends. For example, the effects of HANDLE commands in the linking program are
not inherited by the linked-to program, but the original HANDLE commands are
restored on return to the linking program. You can use the HANDLE ABEND
command to deal with abnormal terminations in other link levels. See the CICS
Application Programming Reference manual for programming information about this
command. Figure 119 on page 567 shows the concept of logical levels.

566 CICS TS for z/OS: CICS Application Programming Guide

Passing data to other programs
You can pass data to another program using the EXEC CICS program control
commands, LINK, XCTL, and RETURN and by specifying the COMMAREA,
CHANNEL, and INPUTMSG options of those commands. (COMMAREA and
CHANNEL are mutually exclusive.)

COMMAREA
The COMMAREA option of LINK and XCTL commands specifies the name of a
data area (known as a communication area) in which data is passed to the
program being invoked.

In a similar manner, the COMMAREA option of a RETURN command specifies the
name of a communication area in which data is passed to the transaction identified
in the TRANSID option. (The TRANSID option specifies a transaction that is
initiated when the next input is received from the terminal associated with the task.)

The invoked program receives the data as a parameter. The program must contain
a definition of a data area to allow access to the passed data.

Figure 119. Application program logical levels

Chapter 45. Program control 567

|
|

In a receiving COBOL program, you must give the data area the name
DFHCOMMAREA. In this COBOL program, if a program passes a COMMAREA as
part of a LINK, XCTL, or RETURN command, either the working-storage or the
LINKAGE SECTION can contain the data area. A program receiving a COMMAREA
should specify the data in the LINKAGE SECTION. This applies when the program
is either of the following:

v The receiving program during a LINK or XCTL command where a COMMAREA is
passed

v The initial program, where a RETURN command of a previously called task
specified a COMMAREA and TRANSID

In a C or C++ program that is receiving a COMMAREA, the COMMAREA must be
defined as a pointer to a structure. The program then must issue the ADDRESS
COMMAREA command to gain addressability to the passed data.

In a PL/I program, the data area can have any name, but it must be declared as a
based variable, based on the parameter passed to the program. The pointer to this
based variable should be declared explicitly as a pointer rather than contextually by
its appearance in the declaration for the area. This prevents the generation of a
PL/I error message. No ALLOCATE statement can be processed within the
receiving program for any variable based on this pointer. This pointer must not be
updated by the application program.

In an assembler language program, the data area should be a DSECT. The register
used to address this DSECT must be loaded from DFHEICAP, which is in the
DFHEISTG DSECT.

The receiving data area need not be of the same length as the original
communication area; if access is required only to the first part of the data, the new
data area can be shorter. However, it must not be longer than the length of the
communication area being passed. If it is, your transaction may inadvertently
attempt to read data outside the area that has been passed. It may also overwrite
data outside the area, which could cause CICS to abend.

To avoid this happening, your program should check whether the length of any
communication area that has been passed to it is as expected, by accessing the
EIBCALEN field in the EIB of the task. If no communication area has been passed,
the value of EIBCALEN is zero; otherwise, EIBCALEN always contains the value
specified in the LENGTH option of a LINK, XCTL, or RETURN command,
regardless of the size of the data area in the invoked program. You should ensure
that the value in EIBCALEN matches the value in the DSECT for your program, and
make sure that your transaction is accessing data within that area.

You may also add an identifier to COMMAREA as an additional check on the data
that is being passed. This identifier is sent with the sending transaction and is
checked for by the receiving transaction.

When a communication area is passed using a LINK command, the invoked
program is passed a pointer to the communication area itself. Any changes made to
the contents of the data area in the invoked program are available to the invoking
program, when control returns to it. To access any such changes, the program
names the data area specified in the original COMMAREA option.

When a communication area is passed using an XCTL command, a copy of that
area is made unless the area to be passed has the same address and length as

568 CICS TS for z/OS: CICS Application Programming Guide

the area that was passed to the program issuing the command. For example, if
program A issues a LINK command to program B, which in turn issues an XCTL
command to program C, and if B passes to C the same communication area that A
passed to B, program C will be passed addressability to the communication area
that belongs to A (not a copy of it), and any changes made by C will be available to
A when control returns to it.

When a lower-level program, which has been accessed by a LINK command,
issues a RETURN command, control passes back one logical level higher than the
program returning control. If the task is associated with a terminal, the TRANSID
option can be used at the lower level to specify the transaction identifier for the next
transaction to be associated with that terminal. The transaction identifier comes into
play only after the highest logical level has relinquished control to CICS using a
RETURN command and input is received from the terminal. Any input entered from
the terminal, apart from an attention key, is interpreted wholly as data. You may use
the TRANSID option without COMMAREA when returning from any link level, but it
can be overridden on a later RETURN command. If a RETURN command fails at
the top level because of an invalid COMMAREA, the TRANSID becomes null. Also,
you can specify COMMAREA or IMMEDIATE only at the highest level, otherwise
you get an INVREQ with RESP2=2.

In addition, the COMMAREA option can be used to pass data to the new task that
is to be started.

The invoked program can determine which type of command invoked it by
accessing field EIBFN in the EIB. This field must be tested before any CICS
commands are issued. If the program was invoked by a LINK or XCTL command,
the appropriate code is found in the EIBFN field. If it was invoked by a RETURN
command, no CICS commands have been issued in the task, and the field contains
zeros.

Channels
Instead of using a communication area (COMMAREA), a more modern method of
transferring data between CICS programs is to use a channel. Channels have
several advantages over COMMAREAs—see Benefits of channels. Channels can
be passed, instead of COMMAREAs, on LINK, XCTL, and RETURN commands.

Channels are described in Enhanced inter-program data transfer: channels as
modern-day COMMAREAs.

INPUTMSG
The INPUTMSG option of LINK, XCTL, and RETURN commands is another way of
specifying the name of a data area to be passed to the program being invoked. In
this case, the invoked program gets the data by processing a RECEIVE command.
This option enables you to invoke (“front-end”) application programs that were
written to be invoked directly from a terminal, and which contain RECEIVE
commands, to obtain initial terminal input.

If program that has been accessed by means of a LINK command issues a
RECEIVE command to obtain initial input from a terminal, but the initial RECEIVE
request has already been issued by a higher-level program, there is no data for the
program to receive. In this case, the application waits on input from the terminal.
You can ensure that the original terminal input continues to be available to a linked
program by invoking it with the INPUTMSG option.

Chapter 45. Program control 569

|

|
|
|
|

|
|

When an application program invokes another program, specifying INPUTMSG on
LINK (or XCTL or RETURN) command, the data specified on the INPUTMSG
continues to be available even if the linked program itself does not issue an
RECEIVE command, but instead invokes yet another application program. See
Figure 120 for an illustration of INPUTMSG.

Notes:

1. In this example, the “real” first RECEIVE command is issued by program A. By
linking to program B with the INPUTMSG option, it ensures that the next
program to issue a RECEIVE request can also receive the terminal input. This
can be either program B or program C.

2. If program A simply wants to pass on the unmodified terminal input that it
received, it can name the same data area for the INPUTMSG option that it used
for the RECEIVE command. For example:
EXEC CICS RECEIVE

INTO(TERMINAL-INPUT)...
EXEC CICS LINK

PROGRAM(PROGRAMB)
INPUTMSG(TERMINAL-INPUT)...

3. As soon as one program in a LINK chain issues a RECEIVE command, the
INPUTMSG data ceases to be available to any subsequent RECEIVE
command. In other words, in the example shown, if B issues a RECEIVE
request before linking to C, the INPUTMSG data area is not available for C.

4. This method of communicating data from one program to another can be used
for any kind of data—it does not have to originate from a user terminal. In our
example, program A could move any data into the named data area, and invoke
program B with INPUTMSG referencing the data.

Transaction
input from
terminal

CICS
invokes
application

RECEIVE input from terminal

Program LINK to B with INPUTMSG

A

Program LINK to C
LINK to D

B

Program Program

D C

Figure 120. Use of INPUTMSG in a linked chain

570 CICS TS for z/OS: CICS Application Programming Guide

5. The “terminal-data” passed on INPUTMSG also ceases to be available when
control is eventually returned to the program that issued the link with
INPUTMSG. In our example, if C returns to B, and B returns to A, and neither B
nor C issues a RECEIVE command, the data is assumed by A to have been
received. If A then invokes another program (for example, D), the original
INPUTMSG data is no longer available to D, unless the INPUTMSG option is
specified.

6. The INPUTMSG data ceases to be available when a SEND or CONVERSE
command is issued.

Using the INPUTMSG option on the RETURN command
You can specify INPUTMSG to pass data to the next transaction specified on a
RETURN command with the TRANSID option. To do this, RETURN must be issued
at the highest logical level to return control to CICS, and the command must also
specify the IMMEDIATE option. If you specify INPUTMSG with TRANSID, and do
not also specify IMMEDIATE, the next real input from the terminal overrides the
INPUTMSG data, which is therefore lost. See the CICS Application Programming
Reference manual for programming information about the RETURN command.

If you specify INPUTMSG with TRANSID some time after a SEND command, the
SEND message is immediately flushed out to the terminal.

The other use for INPUTMSG, on a RETURN command without the TRANSID
option, is intended for use with a dynamic transaction routing program. See the
CICS Customization Guide for programming information about the user-replaceable
dynamic transaction routing program.

Using mixed addressing modes
CICS supports the use of LINK, XCTL, and RETURN commands between programs
with different addressing modes and between programs with the same addressing
mode.

The following restrictions apply to programs passing data using a communication
area named by the COMMAREA option:

v Addresses passed within a communication area to an AMODE(31) program must
be 31 bits long. Do not use 3-byte addresses with flag data packed into the top
byte, unless the called program is specifically designed to ignore the top byte.

v Addresses passed as data to an AMODE(24) program must be below the 16MB
line if they are to be interpreted correctly by the called program.

These restrictions apply to the address of the communication area itself, and also to
addresses within it. However, a communication area above the 16MB line can be
passed to an AMODE(24) subprogram. CICS copies the communication area into
an area below the 16MB line for processing. It copies it back again when control
returns to the linking program. See Chapter 46, “Storage control,” on page 577 for
information about copying CICS-key storage.

CICS does not validate any data addresses passed within a communication area
between programs with different addressing modes.

Chapter 45. Program control 571

Using LINK to pass data
Figures 121 to 124 show how, in COBOL, C, C++, PL/I, and assembler language,
aLINK command causes data to be passed to the program being linked to; an
XCTL command is coded in a similar way.

These examples show data being passed in a COMMAREA. For an example of a
LINK command that uses a channel to pass data, see Enhanced inter-program data
transfer: channels as modern-day COMMAREAs.

Invoking program
IDENTIFICATION DIVISION.
PROGRAM ID. ’PROG1’.
.
WORKING-STORAGE SECTION.
01 COM-REGION.

02 FIELD PICTURE X(3).
.
PROCEDURE DIVISION.

MOVE ’ABC’ TO FIELD.
EXEC CICS LINK PROGRAM(’PROG2’)

COMMAREA(COM-REGION)
LENGTH(3) END-EXEC.

.
Invoked program

IDENTIFICATION DIVISION.
PROGRAM-ID. ’PROG2’.
.
LINKAGE SECTION.
01 DFHCOMMAREA.

02 FIELD PICTURE X(3).
.
PROCEDURE DIVISION.
IF EIBCALEN GREATER ZERO
THEN

IF FIELD EQUALS ’ABC’ ...

Figure 121. COBOL example—LINK command

Invoking program
main()
{

unsigned char field[3];
memcpy(field, "ABC", 3);
EXEC CICS LINK PROGRAM("PROG2")

COMMAREA(field)
LENGTH(sizeof(field));

}
Invoked program

main()
{

unsigned char *commarea;
EXEC CICS ADDRESS COMMAREA(commarea) EIB(dfheiptr);
if (dfheiptr->eibcalen > 0)
{

if (memcmp(commarea, "ABC", 3) == 0)
{

.

Figure 122. C example—LINK command. In this example, the COMMAREA contains a
character string. For an example of a COMMAREA that contains a structure, see Figure 126
on page 575.

572 CICS TS for z/OS: CICS Application Programming Guide

|
|
|

Invoking program
PROG1: PROC OPTIONS(MAIN);
DCL 1 COM_REGION AUTOMATIC,

2 FIELD CHAR(3),
.
FIELD=’ABC’;
EXEC CICS LINK PROGRAM(’PROG2’)

COMMAREA(COM_REGION) LENGTH(3);
END;

Invoked program
PROG2:
PROC(COMM_REG_PTR) OPTIONS(MAIN);
DCL COMM_REG_PTR PTR;
DCL 1 COM_REGION BASED(COMM_REG_PTR),

2 FIELD CHAR(3),
.
IF EIBCALEN>0 THEN DO;

IF FIELD=’ABC’ THEN ...
.

END;
END;

Figure 123. PL/I example—LINK command

Invoking program
DFHEISTG DSECT
COMREG DS 0CL20
FIELD DS CL3
.
PROG1 CSECT
.

MVC FIELD,=C’XYZ’
EXEC CICS LINK
PROGRAM(’PROG2’)
COMMAREA(COMREG) LENGTH(3)

.
END

Invoked program
COMREG DSECT
FIELD DS CL3
.
PROG2 CSECT
.

L COMPTR,DFHEICAP
USING COMREG,COMPTR
CLC FIELD,=C’ABC’

END

Figure 124. ASM example—LINK command

Chapter 45. Program control 573

Using RETURN to pass data
Figures 125 to 128 show how in COBOL, C, C++, PL/I, and assembler language, a
RETURN command is used to pass data to a new transaction.

These examples show data being returned in a COMMAREA. For an example of a
RETURN command that uses a channel to return data, see Enhanced
inter-program data transfer: channels as modern-day COMMAREAs.

Invoking program
IDENTIFICATION DIVISION.
PROGRAM-ID. ’PROG1’.
.
WORKING-STORAGE SECTION.
01 TERMINAL-STORAGE.

02 FIELD PICTURE X(3).
02 DATAFLD PICTURE X(17).

.
PROCEDURE DIVISION.

MOVE ’XYZ’ TO FIELD.
EXEC CICS RETURN TRANSID(’TRN2’)

COMMAREA(TERMINAL-STORAGE)
LENGTH(20) END-EXEC.

.
Invoked program

IDENTIFICATION DIVISION.
PROGRAM-ID. ’PROG2’
.
LINKAGE SECTION.
01 DFHCOMMAREA.

02 FIELD PICTURE X(3).
02 DATAFLD PICTURE X(17).

.
PROCEDURE DIVISION.

IF EIBCALEN GREATER ZERO
THEN

IF FIELD EQUALS ’XYZ’
MOVE ’ABC’ TO FIELD.

EXEC CICS RETURN END-EXEC.

Figure 125. COBOL example—RETURN command

574 CICS TS for z/OS: CICS Application Programming Guide

|
|
|

Invoking program
struct ter_struct
{

unsigned char field[3];
unsigned char datafld[17];

};
main()
{

struct ter_struct ter_stor;
memcpy(ter_stor.field,"XYZ",3);
EXEC CICS RETURN TRANSID("TRN2")

COMMAREA(&ter_stor)
LENGTH(sizeof(ter_stor));

}
Invoked program

struct term_struct
{

unsigned char field[3];
unsigned char datafld[17];

};
main()
{

struct term_struct *commarea;
EXEC CICS ADDRESS COMMAREA(commarea) EIB(dfheiptr);
if (dfheiptr->eibcalen > 0)
{

if (memcmp(commarea->field, "XYZ", 3) == 0)
memcpy(commarea->field, "ABC", 3);

}
EXEC CICS RETURN;

}

Figure 126. C example—RETURN command

Invoking program
PROG1: PROC OPTIONS(MAIN);
DCL 1 TERM_STORAGE,

2 FIELD CHAR(3),
.
FIELD=’XYZ’;
EXEC CICS RETURN TRANSID(’TRN2’)

COMMAREA(TERM_STORAGE);
END;

Invoked program
PROG2:
PROC(TERM_STG_PTR) OPTIONS(MAIN);
DCL TERM_STG_PTR PTR;
DCL 1 TERM_STORAGE

BASED(TERM_STG_PTR),
2 FIELD CHAR(3),

.
IF EIBCALEN>0 THEN DO;

IF FIELD=’XYZ’ THEN FIELD=’ABC’;
END;

EXEC CICS RETURN;
END;

Figure 127. PL/I example—RETURN command

Chapter 45. Program control 575

Invoking program

DFHEISTG DSECT
TERMSTG DS 0CL20
FIELD DS CL3
DATAFLD DS CL17...
PROG1 CSECT...

MVC FIELD,=C’ABC’
EXEC CICS RETURN
TRANSID(’TRN2’)
COMMAREA(TERMSTG)...
END

Invoked program

TERMSTG DSECT
FIELD DS CL3
DATAFLD DS CL17...
PROG2 CSECT...

CLC EIBCALEN,=H’0’
BNH LABEL2
L COMPTR,DFHEICAP
USING TERMSTG,COMPTR
CLC FIELD,=C’XYZ’
BNE LABEL1
MVC FIELD,=C’ABC’

LABEL1 DS 0H...
LABEL2 DS 0H...

END

Figure 128. ASM example—RETURN command

576 CICS TS for z/OS: CICS Application Programming Guide

Chapter 46. Storage control

The CICS storage control facility controls requests for main storage to provide
intermediate work areas and other main storage needed to process a transaction.

Java and C++
The application programming interface described in this chapter is the EXEC
CICS API, which is not used in Java programs. For information about Java
programs using the JCICS classes to access storage control services, see
Java Applications in CICS in the CICS Information Center and the JCICS
Javadoc html documentation. For information about C++ programs using the
CICS C++ classes, see the CICS C++ OO Class Libraries manual.

CICS makes working storage available within each command-level program
automatically, without any specific request from the application program, and
provides other facilities for intermediate storage, both within and among tasks.
Chapter 12, “Design for performance,” on page 165 describes storage within
individual programs. If you need working storage in addition to the working storage
provided automatically by CICS, however, you can use the following commands:
v GETMAIN to get and initialize main storage
v FREEMAIN to release main storage

You can initialize the acquired main storage to any bit configuration by supplying the
INITIMG option on the GETMAIN command; for example, zeros or EBCDIC blanks.

CICS releases all main storage associated with a task when the task is ended
normally or abnormally. This includes any storage acquired, and not subsequently
released, by your application program, except for areas obtained with the SHARED
option. This option of the GETMAIN command prevents storage being released
automatically when a task completes.

If you use the GETMAIN command with the SHARED option, and the FREEMAIN
command, you could create inter-transaction affinities that adversely affect the
ability to perform dynamic transaction routing.

To help you identify potential problems with programs that issue these commands,
you can use the CICS Interdependency Analyzer. See the CICS Interdependency
Analyzer for z/OS User's Guide and Reference for information about this utility and
see Chapter 15, “Affinity,” on page 221 for information about transaction affinity.

If there is no storage available when you issue your request, CICS suspends your
task until space is available, unless you specify the NOSUSPEND option. While the
task is suspended, it may be canceled (timed out) if the transaction definition
specifies SPURGE(YES) and DTIMOUT(mmss). NOSUSPEND returns control to
your program if storage is not available, allowing you to do alternative processing,
as appropriate.

This chapter describes:
v “Overview of CICS storage protection and transaction isolation” on page 578
v “Defining the storage key for applications” on page 580
v “Selecting the execution and storage key” on page 583
v “Using transaction isolation” on page 587
v “MVS subspaces” on page 589

© Copyright IBM Corp. 1989, 2010 577

|

Overview of CICS storage protection and transaction isolation
Storage control is affected by Storage protection introduced in CICS/ESA 3.3 and
Transaction isolation introduced in CICS/ESA 4.1.

Storage protection protects CICS code and control blocks from applications, and
transaction isolation protects tasks from each other.

The ESA/390 subsystem storage protection facility works in a way that enables you
to prevent CICS code and control blocks from being overwritten accidentally by your
application programs. It does not provide protection against deliberate overwriting
of CICS code or control blocks. CICS cannot prevent an application obtaining the
necessary access (execution key) to modify CICS storage.

Transaction isolation extends this storage protection to provide protection for
transaction data. Accidental overwrites of the transaction data by an application
program of another transaction can affect the reliability and availability of your CICS
system and the integrity of the data in the system.

The use of storage protection is optional. You choose whether you want to use
storage protection facilities by means of CICS system initialization parameters
described in the CICS System Definition Guide. For information about transaction
isolation, see “Transaction isolation” on page 579.

Storage protection
CICS allows you to run your application programs in either user-key or CICS-key
storage. (See “Storage categories” on page 579 for definitions of the terms user key
and CICS key.) CICS storage is automatically protected from being overwritten by
application programs that execute in user-key storage (the default). The concept of
isolating CICS code and control blocks (CICS internal data areas) from user
application programs is illustrated in Figure 129.

The terms in Figure 129 relating to storage keys and execution keys are explained
under “Storage categories” on page 579.

CICS
READ/ (CICS-key) READ/
WRITE WRITE

CICS-key storage User-key storage

CICS code and User application
control blocks programs and data areas

READ READ/WRITE
only

User
Application
programs
(User-key)

Figure 129. Protecting CICS code and control blocks from user application programs

578 CICS TS for z/OS: CICS Application Programming Guide

Storage categories
When you are running with the storage protection facility active, CICS separates
storage into two categories:
CICS-key storage

is used for CICS system code and control blocks and, at the discretion of the
installation, other code and data areas that require protection from overwriting.

In a CICS region with transaction isolation active, a CICS-key program has
read/write access to CICS-key and user-key storage.

User-key storage
is where application programs and their data areas normally reside.

There are two associated execution modes:

1. CICS system programs run in CICS key. CICS-key execution allows a program
read-write access to both CICS-key and user-key storage.

2. Application programs normally execute in user key. User-key execution allows
a program read-write access to user-key storage, but only read access to
CICS-key storage.

The terms “user key” and “CICS key” thus apply both to storage and to the
execution of programs with respect to that storage. They are reflected in the
resource definition keywordsused in TRANSACTION definitions. See the CICS
Resource Definition Guide for more information.

The execution key controls the type of access your application programs have to
CICS-key storage. The default is that application programs are given control in user
key. You should define CICS key only for those programs where it is essential that
they execute in CICS key. The programs you might select to run in CICS key are
typically those that are written by system programmers, and are usually designed to
provide special function in support of user applications. Such programs are
generally considered to be an extension of CICS rather than part of an application.
Some examples of such programs are described in “CICS-key applications” on
page 584.

The storage protection facility does not protect CICS code and control blocks from
being overwritten by this type of program, or by ordinary application programs that
you choose to execute in CICS key.

Defining the execution key: To run your programs in CICS key, you should use
the execution key parameter (EXECKEY) on the program resource definition. See
“Selecting the execution and storage key” on page 583 for an explanation of
EXECKEY. The EXECKEY parameter determines the key in which CICS passes
control to an application program.

Transaction isolation
Transaction isolation uses the MVS subspace group facility to offer protection
between transactions. This ensures that an application program associated with one
transaction cannot accidentally overwrite the data of another transaction.

Some of the benefits of transaction isolation, and its associated support are:
v Reducing system outages
v Protecting application data
v Protecting CICS from application programs that pass invalid addresses
v Aiding application development

Chapter 46. Storage control 579

Reducing system outages
Transaction isolation prevents data corruption and unplanned CICS system outages
caused by coding errors in user-key application programs that cause the storage of
user-key transactions to be accidentally overwritten. Prevention of accidental
transaction data overwrites significantly improves the reliability and availability of
CICS regions.

Protecting application data
If an application program overwrites CICS code or data, CICS can fail as a result. If
an application program overwrites another application program’s code, that other
application program is likely to fail. Whereas this is a serious interruption in a
production region, the effect is immediate and the program can generally be
recovered so that the terminal user can retry the failed transaction. However, if an
application program of one transaction overwrites the data of another transaction,
the results often are not immediately apparent; the erroneous data can be written to
a database and the error may remain undetected until later, when it may be
impossible to determine the cause of the error. The consequences of a data
overwrite are often much more serious than a code overwrite.

Protecting CICS from being passed invalid addresses
CICS also protects itself against applications that pass invalid addresses that would
result in CICS causing storage violations. This occurs when an application program
issues an EXEC CICS command that causes CICS to modify storage on the
program’s behalf, but the program does not own the storage. In earlier releases,
CICS did not check ownership of the storage referenced by the passed address,
and executed such commands with consequent storage violations.

CICS validates the start address of the storage, and establishes that the application
program has write access to the storage that begins with that address, before
executing the command.

This address checking is controlled using the CMDPROT system initialization
parameter. If a program passes an invalid address to CICS as an output field on the
API, an AEYD abend occurs. It is completely independent of storage protection and
transaction isolation.

Aiding application development
Transaction isolation aids application development in the testing and debugging
phase. If an application tries to overwrite CICS or another application, or if it tries to
pass a storage address it does not own for CICS to write to, CICS immediately
abends the task and reports the rogue program’s name and the area it tried to
overwrite. This saves much time trying to debug what is a common problem in
application development environments.

Defining the storage key for applications
CICS enables you to choose between user-key storage and CICS-key storage for a
number of CICS data areas and application program data areas that your
applications can use. Depending on the data area, you select the storage key by:
v System initialization parameters
v Resource definition option
v Selecting an option on the GETMAIN command

Defining the storage key for storage areas that your applications need to access is
described in the following sections.

580 CICS TS for z/OS: CICS Application Programming Guide

System-wide storage areas
For each CICS region, your installation can choose between user-key and
CICS-key storage for the common work area (CWA) and for the terminal control
table user areas (TCTUAs). If these areas are in user-key storage, all programs
have read-write access to them; if they are in CICS-key storage, user-key
application programs are restricted to read-only access. The storage keys for the
CWA and the TCTUAs are set by the system initialization parameters CWAKEY and
TCTUAKEY, respectively. In both cases the default option is that CICS obtains
user-key storage.

See the CICS System Definition Guide for information about how to specify these
and other storage-protection-related system initialization parameters.

Task lifetime storage
You can also specify whether user-key or CICS-key storage is used for the storage
that CICS acquires at transaction attach time, and for those elements of storage
directly related to the individual application programs in a transaction. You do this
by means of the TASKDATAKEY option on the transaction resource definition. This
governs the type of storage allocated for the following storage areas:

v The transaction work area (TWA) and the EXEC interface block (EIB)

v The copies of working storage that CICS obtains for each execution of an
application program

v Any storage obtained for an application program in response to:

– Explicit storage requests by means of an GETMAIN command

– Implicit storage requests as a result of a CICS command that uses the SET
option

For information about how to specify the TASKDATAKEY parameter, see the CICS
Resource Definition Guide.

Figure 130 on page 582 shows what TASKDATAKEY controls for both task lifetime
storage and program working storage.

See the CICS Application Programming Reference manual for programming
information about EXEC CICS commands; see the CICS Resource Definition Guide
for information about specifying the TASKDATAKEY option on the transaction
resource definition.

Program working storage specifically for exit and PLT programs
CICS uses the TASKDATAKEY option of the calling transaction to determine the
storage key for the storage acquired for global user exits, task-related user exits,
user-replaceable modules, and PLT programs. For programming information about
storage key, including details of how this affects the different types of program, see
the CICS Customization Guide.

Passing data by a COMMAREA
In a pseudoconversational application, CICS ensures that a COMMAREA you
specify on a RETURN command is always accessible in read-write mode to the
next program in the conversation. The same is true when passing a COMMAREA
within a transaction that comprises more than one program (using a LINK or XCTL
command). CICS ensures that the target program has read-write access to the
COMMAREA.

Chapter 46. Storage control 581

The GETMAIN command
The GETMAIN command provides USERDATAKEY and CICSDATAKEY options to
enable the application program to explicitly request user-key or CICS-key storage,
regardless of the TASKDATAKEY option specified on the associated transaction
resource definition. For example, this option allows application programs, which are
executing with TASKDATAKEY(CICS) specified, to obtain user-key storage for
passing to, or returning to, a program executing in user key.

CICS-key storage obtained by GETMAIN commands issued in a program defined
with EXECKEY(CICS) can be freed explicitly only if the FREEMAIN command is
issued by a program defined with EXECKEY(CICS). If an application program
defined with EXECKEY(USER) attempts to free CICS-key storage using FREEMAIN
commands, CICS returns the INVREQ condition. However, an application can free
user-key storage with FREEMAIN commands regardless of the EXECKEY option.

All task lifetime storage acquired by an application, whether in CICS key or user
key, is freed by CICS at task termination. You can also specify
STORAGECLEAR(YES) on this option of the associated transaction resource
definition. This clears the storage and so prevents another task accidentally viewing
sensitive data.

For programming information about commands, see the CICS Application
Programming Reference manual ; for information about defining resources, see the
CICS Resource Definition Guide.

Notes:

1. The TASKDATAKEY option ensures the TWA and EIB are allocated from
user-key storage, required for PROGRAM1, which executes in user
key—specified by EXECKEY(USER).

2. PROGRAM1 executes in user key (controlled by EXECKEY), and has its
working storage obtained in user-key storage (controlled by the TASKDATAKEY

Transaction:- TRANID(A123) TASKDATAKEY(USER)
- PROGRAM(PROGRAM1)

Program: - PROGRAM1 EXECKEY(USER)
- PROGRAM2 EXECKEY(CICS)

(1)
Task lifetime storage allocated from user-key storage

EXEC interface block (EIB) Transaction work area (TWA)

(2) (3) (4)
PROGRAM1 PROGRAM2

EXEC CICS LINK CICS-key
EXECKEY EXECKEY storage
(USER) PROGRAM(PROGRAM2) (CICS) obtained

(5) by a
GETMAIN

Working Working
storage in storage in
user-key user-key

Figure 130. Illustration of the use of the TASKDATAKEY and EXECKEY options

582 CICS TS for z/OS: CICS Application Programming Guide

option). Any other storage the program obtains by means of GETMAIN
commands or by using the SET option on a CICS command is also obtained in
user-key storage.

3. PROGRAM2 executes in CICS key (controlled by EXECKEY), but has its
working storage obtained in user-key storage, which again is controlled by the
TASKDATAKEY option.

4. PROGRAM2 issues an explicit GETMAIN command using the CICSDATAKEY
option and, because it executes in CICS key, can store data into the CICS-key
protected storage before returning control to PROGRAM1.

5. PROGRAM1 cannot write to the CICS-key protected storage that PROGRAM2
acquired, but can read what PROGRAM2 wrote there.

When deciding whether you need to specify EXECKEY(CICS) and
TASKDATAKEY(CICS), you must consider all the reasons that make these
options necessary.

Programs that modify their storage protection key should ensure they are running in
the correct key when attempting to access storage. CICS can only use the
EXECKEY defined in the program definition when invoking a program.

Selecting the execution and storage key
When you are running CICS with storage protection, the majority of your application
programs should execute in user key, with all their storage obtained in user key.
You only need to define EXECKEY(CICS) on program definitions, and
TASKDATAKEY(CICS) on the associated transaction definitions, for those programs
that use facilities that are not permitted in user key, or for any special “system-type”
transactions or vendor packages.

You should only specify TASKDATAKEY(CICS) for those transactions where all the
component programs have EXECKEY(CICS), and for which you want to protect
their task lifetime and working storage from being overwritten by user-key
applications. For example, the CICS-supplied transactions such as CEDF are
defined with TASKDATAKEY(CICS).

Note that you cannot specify EXECKEY(USER) on any programs that form part of a
transaction defined with TASKDATAKEY(CICS) because, in this situation, a
user-key program would not be able to write to its own working storage.
Transactions abend with an AEZD abend if any program is defined with
EXECKEY(USER) within a transaction defined with TASKDATAKEY(CICS),
regardless of whether storage protection is active.

You cannot define a program so that it inherits its caller’s execution key. The
execution key and data storage keys are derived for each program from its program
and associated transaction resource definitions respectively, which you either
specify explicitly or allow to default; the default is always user key. Table 45 on page
584 summarizes the various combinations of options.

Chapter 46. Storage control 583

Table 45. Combinations of KEY options

EXECKEY TASKDATAKEY Recommended usage and comments

USER USER For normal applications using the CICS API

USER CICS Not permitted. CICS abends any program
defined with EXECKEY(USER) invoked
under a transaction defined with
TASKDATAKEY(CICS).

CICS USER For programs that need to issue restricted
MVS requests or modify CICS-key storage.

CICS CICS For transactions (and component programs)
that function as extensions to CICS, such as
the CICS-supplied transactions, or which
require the same protection.

User-key applications
For most applications you should define your programs with EXECKEY(USER), and
the related transactions with TASKDATAKEY(USER). To obtain the maximum
benefits from the CICS storage protection facility, you are recommended to run your
application programs in user key storage. Specifying USER on these options has
the following effect:

EXECKEY(USER)
This specifies that CICS is to give control to the program in user key when
it is invoked. Programs defined with EXECKEY(USER) are restricted to
read-only access to CICS-key storage. These include:

v Storage belonging to CICS itself

v CICS-key storage belonging to user transactions defined with
TASKDATAKEY(CICS)

v Application programs defined with EXECKEY(CICS) and thus loaded into
CICS-key storage

v In a CICS region where transaction isolation is active, a user-key
program has read/write access to the user-key task-lifetime storage of its
own transaction and any shared DSA storage

TASKDATAKEY(USER)
This specifies that all task lifetime storage, such as the transaction work
area (TWA) and the EXEC interface block (EIB), is obtained from the
user-key storage.

It also means that all storage directly related to the programs within the
transaction is obtained from user-key storage.

However, user-key programs of transactions defined with ISOLATE(YES)
have access only to the user-key task-lifetime storage of their own task.

USER is the default for both the EXECKEY and TASKDATAKEY options, therefore
you do not need to make any changes to resource definitions for existing
application programs.

CICS-key applications
Most application programs can be defined with EXECKEY(USER), which is the
default value, and this is the option you are recommended to use in the majority of

584 CICS TS for z/OS: CICS Application Programming Guide

cases. These include programs that use DL/I or DB2 and programs that access
vendor products through the resource manager interface (RMI) or a LINK
command.

However, some application programs need to be defined with EXECKEY(CICS)
because they need to use certain facilities that are listed later. Widespread use of
EXECKEY(CICS) diminishes the protection offered by the storage protection facility
because there is no protection of CICS code and control blocks from being
overwritten by application programs that execute in CICS key. The ISOLATE
attribute in the transaction definition does not provide any protection against
application programs that execute in CICS key—that is, from programs defined with
EXECKEY(CICS). Any application program causing a protection exception when
defined with EXECKEY(USER) must be examined to determine why it is attempting
to modify storage it is not allowed to modify. You should change a program’s
definition to EXECKEY(CICS) only if you are satisfied that the application program
legitimately uses the facilities described below.

v The program uses MVS macros or services directly, rather than through the
CICS API. The only MVS macros that are supported in user-key programs are
SPIE, ESPIE, POST, WAIT, WTO, and WTOR. It is also possible to issue GTF
trace requests from an EXECKEY(USER) program. If a program uses any other
MVS macro or service, it must be defined with EXECKEY(CICS). Some particular
examples are:
– Use of dynamic allocation (DYNALLOC macro, SVC 99)
– Use of MVS GETMAIN and FREEMAIN or STORAGE requests
– Use of MVS OPEN, CLOSE, or other file access requests

Direct use of some MVS macros and services is undesirable, even in a CICS
application defined with EXECKEY(CICS). This is because they may cause MVS
to suspend the whole CICS region until the request is satisfied.

Some COBOL, PL/I, C, and C++ language statements, and compiler options,
cause operating system functions to be invoked. See Chapter 4, “Programming in
COBOL,” on page 21, Chapter 5, “Programming in C and C++,” on page 43, and
Chapter 6, “Programming in PL/I,” on page 53 for information about which of
these should not be used in CICS application programs. It is possible that some
of these functions may have worked in previous releases of CICS, or at least
may not have caused the application to fail. They do not work when the
program is defined with EXECKEY(USER). When the use of prohibited options or
statements is the cause of a protection exception, you should remove these from
the program rather than simply redefine the program with EXECKEY(CICS). The
use of prohibited statements and options can have other side effects on the
overall execution of CICS, and these should be removed.

v The program needs to modify the CWA, and the CWA is in CICS-key storage
(CWAKEY=CICS).

If you decide to protect the CWA by specifying CWAKEY(CICS), you should
restrict the programs that are permitted to modify the CWA to as few as possible,
perhaps only one. See “Using the common work area (CWA)” on page 183 for
information about how you can control access to a protected CWA.

v The program needs to modify the TCTUA, and the TCTUAs are in CICS-key
storage (TCTUAKEY=CICS).

See “Using the TCTTE user area (TCTUA)” on page 186 for information about
using TCTUAs in a storage protection environment.

v The program can be invoked from PLT programs, from transactions defined with
TASKDATAKEY(CICS), from task-related or global user exits programs, or from
user-replaceable programs.

Chapter 46. Storage control 585

v The program modifies CICS control blocks—for example, some vendor products
that do need to manipulate CICS control blocks. These must be defined with
EXECKEY(CICS).

v The program provides user extensions to CICS and requires protection and data
access similar to CICS system code. For example, you may consider that such
programs are a vital part of your CICS installation, and that their associated
storage, like CICS storage, should be protected from ordinary application
programs.

v CICS always gives control in CICS key to the following types of user-written
program, regardless of the option specified on their program resource definitions:
– Global user exits (GLUEs)
– Task-related user exits (TRUEs)
– User-replaceable modules (URMs)
– Program list table (PLT) programs

CICS ensures that when control is passed to a PLT program, a global or
task-related user exit, or a user-replaceable program, the first program so
invoked executes in CICS key, regardless of the EXECKEY specified on its
program resource definition. However, if this first program LINKs or XCTLs to
other programs, these programs execute under the key specified in their program
definitions. If these subsequent programs are required to write to CICS-key data
areas, as often occurs in this type of situation, they must be defined as
EXECKEY(CICS).

In a CICS region with transaction isolation active, these TRUEs and GLUEs run
in either base space or subspace (see “MVS subspaces” on page 589),
depending on the current mode when CICS gives control to the exit program.
They can also modify any application storage. The URMs and PLT programs
execute in base space.

For programming information about the execution of GLUEs, TRUEs, URMs, and
PLT programs in a CICS region running with storage protection, see the CICS
Customization Guide.

If two transactions have an affinity by virtue of sharing task lifetime storage, the
transactions must be defined as ISOLATE(NO), or the programs must be defined as
EXECKEY(CICS). You can use the CICS Interdependency Analyzer to check the
causes of transaction affinity. See the CICS Interdependency Analyzer for z/OS
User's Guide and Reference for more information about this utility. The first of these
options is the recommended option, because CICS system code and data is still
protected.

Tables
In addition to executable programs, you can define tables, map sets, and partition
sets as program resources. EXECKEY has less relevance to these objects,
because they are not actually executed. However, EXECKEY does control where
non-executable objects are loaded, and thus affects whether other programs can
store into them.

Map sets and partition sets
Map sets are not reentrant (BMS itself updates fields in maps when calculating
absolute screen positions). However, map sets should not be modified by
application programs; they must be modified only by CICS, which always executes
in CICS key. CICS always loads map sets and partition sets into CICS-key storage.

586 CICS TS for z/OS: CICS Application Programming Guide

|

Storage protection exception conditions
If an application program executing in user key attempts to modify CICS-key
storage, a protection exception occurs. The protection exception is processed by
normal CICS program error handling, and the offending transaction abends with an
ASRA abend. The exception condition appears to the transaction just as if it had
attempted to reference any other protected storage. CICS error handling checks
whether the reference is to a CICS-key dynamic storage area (DSA), and sends a
message (DFHSR0622) to the console. Otherwise, CICS does not treat the failure
any differently from any other ASRA abend. See CICS Problem Determination
Guide for more information about the storage protection exception conditions.

Using transaction isolation
Transaction isolation is built on top of storage protection, which means that
STGPROT=YES must be specified. Transaction isolation makes use of parameters
introduced by storage protection, these being EXECKEY and TASKDATAKEY.

In addition to being able to specify the storage and execution key for user
transactions, you can also specify whether you want transaction isolation. You can
control transaction isolation globally for the whole CICS region by means of the
TRANISO system initialization parameter. For individual transactions, the ISOLATE
option of the transaction resource definition allows you to specify the level of
protection that should apply to each transaction and program.
ISOLATE [YES or NO]

The defaults for these options mean that, in most cases, no changes to resource
definition are needed for existing applications. However, where necessary,
protection can be tailored to allow transactions to continue to function where they
fail to meet the criteria for full protection, which is the default. This means that the
transaction’s user-key task lifetime storage is protected from the user-key programs
of other transactions, but not from CICS-key programs. See Figure 131 on page
588 for an illustration of this.

A user-key program invoked by transaction A (TXNA) may read and write to TXNA’s
user-key task lifetime storage and to shared user storage. Moreover, TXNA has no
access to transaction B’s (TXNB) user-key task lifetime storage.

Chapter 46. Storage control 587

If a transaction is defined as ISOLATE(NO), its user-key task lifetime is visible to all
other transactions also defined as ISOLATE(NO). It is, however, protected from
transactions defined as ISOLATE(YES).

TXNA
User-key
program

READ READ/ READ/
WRITE WRITE

CICS-key shared TXNA TXNB
User-key User-key User-key

storage storage task lifetime task lifetime
storage storage

READ READ/ READ/
WRITE WRITE

TXNB
User-key
program

Figure 131. Two transactions defined as ISOLATE(YES)

TXNA
User-key
program

READ READ/ READ/ READ/
WRITE WRITE WRITE

CICS-key shared TXNA TXNB
User-key User-key User-key

storage storage task lifetime task lifetime
storage storage

READ/ READ/ READ/ READ/
WRITE WRITE WRITE WRITE

TXNB
User-key
program

Figure 132. Two transactions defined as ISOLATE(NO) with read/write access to each other’s
task lifetime storage

588 CICS TS for z/OS: CICS Application Programming Guide

MVS subspaces
MVS/ESA 5.2 introduces the subspace group facility, which can be used for storage
isolation to preserve data integrity within an address space.

The subspace-group facility uses hardware to provide protection for transaction
data. A subspace-group is a group of subspaces and a single base space, where
the base space is the normal MVS address space as in releases prior to MVS/ESA
5.1.

The subspace-group facility provides a partial mapping of the underlying base
space, so that only specified areas of storage in the base space are exposed in a
particular subspace. Thus each subspace represents a different subset of the
storage in the base space. Transaction isolation, when specified, ensures that
programs defined with EXECKEY(USER) execute in their own subspace, with
appropriate access to any shared storage, or to CICS storage. Thus a user
transaction is limited to its own “view” of the address space.

Programs defined with EXECKEY(CICS) execute in the base space, and have the
same privileges as in CICS/ESA 3.3.

Subspaces and basespaces for transactions
In general, transaction isolation ensures that user-key programs are allocated to
separate (unique) subspaces, and have:

v Read and write access to the user-key task-lifetime storage of their own tasks,
which is allocated from one of the user dynamic storage areas (UDSA or
EUDSA)

v Read and write access to shared storage; that is, storage obtained by GETMAIN
commands with the SHARED option (SDSA or ESDSA)

CICS key

TXNA
User-key
program

READ READ/ READ/ READ/
WRITE WRITE WRITE

CICS-key shared TXNA TXNB
User-key User-key User-key

storage storage task lifetime task lifetime
storage storage

READ/ READ/ READ/ READ/
WRITE WRITE WRITE WRITE

TXNB
User-key
program

Figure 133. Two transactions defined as ISOLATE(YES) to a CICS-key program that has
read/write access to both CICS- and user-key storage

Chapter 46. Storage control 589

v Read access to the CICS-key task-lifetime storage of other tasks (CDSA or
ECDSA)

v Read access to CICS code

v Read access to CICS control blocks that are accessible by the CICS API

They do not have any access to user-key task-lifetime storage of other tasks.

The defaults for new transaction resource definition attributes specify that existing
application programs operate with transaction isolation (the default for the ISOLATE
option is YES). Existing applications should run unmodified provided they conform
to transaction isolation requirements.

However, a minority of applications may need special definition if they:
v Issue MVS macros directly, or
v Modify CICS control blocks, or
v Have a legitimate need for one task to access, or share, another task’s storage

Some existing transactions may share task-lifetime storage in various ways, and
this sharing may prevent them running isolated from each other. To allow such
transactions to continue to execute, a single common subspace is provided in which
all such transactions can execute. They are then isolated from the other
transactions in the system that are running in their own subspaces, but able to
share each other’s data within the common subspace. See “The common subspace
and shared storage” for more information.

CICS-key programs execute in the base space and so have read/write access to all
CICS-key storage and user-key storage.

The common subspace and shared storage
You might have some transactions where the application programs access one
another’s storage in a valid way. One such case is when a task waits on one or
more event control blocks (ECBs) that are later posted, either by an MVS POST or
“hand posting”, by another task.

For example, a task can pass the address of a piece of its own storage to another
task (by a temporary storage queue or some other method) and then WAIT for the
other task to post an ECB to say that it has updated the storage. Clearly, if the
original task is executing in a unique subspace, the posting task fails when
attempting the update and to post the ECB, unless the posting task is executing in
CICS key.

CICS supports the following methods to ensure that transactions that need to share
storage can continue to work in the subspace-group environment:

v You can specify that all the related transactions are to run in the common
subspace. The common subspace allows tasks that need to share storage to
coexist, while isolating them from other transactions in the system. Transactions
assigned to the common subspace have the following characteristics:

– They have read and write access to each other’s task-lifetime storage.

– They have no access of any kind to storage of transactions that run in unique
subspaces.

– They have read access only to CICS storage.

Any group of related transactions that work in user key in CICS/ESA 4.1 should
work under CICS Transaction Server for z/OS, Version 3 Release 1 if defined
with ISOLATE(NO) to ensure they run in the common subspace. This provides

590 CICS TS for z/OS: CICS Application Programming Guide

support for migration, allowing the separation of transactions into their own
unique subspaces to be staged gradually after installing CICS and related
support.

v You can ensure that the common storage is in SHARED storage by obtaining the
storage with the SHARED option.

v You can ensure that the application programs of the transactions that are sharing
storage are all defined with EXECKEY(CICS). This ensures that their programs
execute in base space, where they have read/write access to all storage.
However, this method is not recommended because it does not give any storage
protection.

You can use the CICS Interdependency Analyzer to help you identify transactions
that include the commands such as WAIT EVENT, WAITCICS, WAIT EXTERNAL,
and MVS POST. See the CICS Interdependency Analyzer for z/OS User's Guide
and Reference manual for more information about this utility.

Chapter 46. Storage control 591

|

592 CICS TS for z/OS: CICS Application Programming Guide

Chapter 47. Transient data control

This chapter describes the three different transient data queues in CICS and also
explains automatic transaction initiation.

The CICS transient data control facility provides a generalized queuing facility. Data
can be queued (stored) for subsequent internal or external processing. Selected
data, specified in the application program, can be routed to or from predefined
symbolic transient data queues: either intrapartition or extrapartition.

Transient data queues are intrapartition if they are associated with a facility
allocated to the CICS region, and extrapartition if the data is directed to a
destination that is external to the CICS region. Transient data queues must be
defined and installed before first reference by an application program.

You can:
v Write data to a transient data queue (WRITEQ TD command)
v Read data from a transient data queue (READQ TD command)
v Delete an intrapartition transient data queue (DELETEQ TD command)

If the TD keyword is omitted, the command is assumed to be for temporary storage.
(See Chapter 48, “Temporary storage control,” on page 597 for more information
about temporary storage.)

Java and C++
The application programming interface described in this chapter is the EXEC
CICS API, which is not used in Java programs. For information about Java
programs using the JCICS classes to access transient data services, see the
Java Applications in CICS component of the CICS Information Center and the
JCICS Javadoc html documentation. For information about C++ programs
using the CICS C++ classes, see the CICS C++ OO Class Libraries manual.

This chapter describes:
v “Intrapartition transient data queues”
v “Extrapartition queues” on page 594
v “Indirect queues” on page 595
v “Automatic transaction initiation (ATI)” on page 595

Intrapartition transient data queues
“Intrapartition” refers to data on direct-access storage devices for use with one or
more programs running as separate tasks. Data directed to or from these internal
queues is referred to as intrapartition data; it must consist of variable-length
records. All intrapartition transient data destinations are held as queues in the same
VSAM data set, which is managed by CICS. An intrapartition destination requires a
resource definition containing information that locates the queue in the intrapartition
data set. Intrapartition queues can be associated with either a terminal or an output
data set. When data is written to the queue by a user task, the queue can be used
subsequently as input data by other tasks within the CICS region. All access is
sequential, governed by read and write pointers. Once a record has been read, it
cannot be read subsequently by another task. Intrapartition data may ultimately be
transmitted upon request to the terminal or retrieved sequentially from the output
data set.

© Copyright IBM Corp. 1989, 2010 593

Typical uses of intrapartition data include:

v Message switching

v Broadcasting

v Database access

v Routing of output to several terminals (for example, for order distribution)

v Queuing of data (for example, for assignment of order numbers or priority by
arrival)

v Data collection (for example, for batched input from 2780 Data Transmission
Terminals)

There are three types of intrapartition transient data queue:

v Non-recoverable Non-recoverable intrapartition transient data queues are
recovered only on a warm start of CICS. If a unit of work (UOW) updates a
non-recoverable intrapartition queue and subsequently backs out the updates,
the updates made to the queue are not backed out.

v Physically recoverable Physically recoverable intrapartition transient data
queues are recovered on warm and emergency restarts. If a UOW updates a
physically recoverable intrapartition queue and subsequently backs out the
updates, the updates made to the queue are not backed out.

v Logically recoverable Logically recoverable intrapartition transient data queues
are recovered on warm and emergency restarts. If a UOW updates a logically
recoverable intrapartition queue and subsequently backs out the changes it has
made, the changes made to the queue are also backed out. On a warm or an
emergency restart, the committed state of a logically recoverable intrapartition
queue is recovered. In-flight UOWs are ignored.

If an application is trying to issue a read, write, or delete request and suffers an
indoubt failure, it may receive a LOCKED response if WAIT(YES) and
WAITACTION(REJECT) are specified in the queue definition.

Extrapartition queues
Extrapartition queues (data sets) reside on any sequential device (DASD, tape,
printer, and so on) that are accessible by programs outside (or within) the CICS
region. In general, sequential extrapartition queues are used for storing and
retrieving data outside the CICS region. For example, one task may read data from
a remote terminal, edit the data, and write the results to a data set for subsequent
processing in another region. Logging data, statistics, and transaction error
messages are examples of data that can be written to extrapartition queues. In
general, extrapartition data created by CICS is intended for subsequent batched
input to non-CICS programs. Data can also be routed to an output device such as a
printer.

Data directed to or from an external destination is referred to as extrapartition data
and consists of sequential records that are fixed-length or variable-length, blocked
or unblocked. The record format for an extrapartition destination must be defined in
a TDQUEUE resource definition by the system programmer. See the CICS
Resource Definition Guide for details about queue definitions.

If you create a data set definition for the extrapartition queue using JCL, the DD
statement for the data set should not include the FREE=CLOSE operand. If
FREE=CLOSE is specified, attempts to read the queue after the queue has been
closed and then re-opened can receive an IOERR condition. The CICS System
Definition Guide has more information about defining data sets to CICS.

594 CICS TS for z/OS: CICS Application Programming Guide

Indirect queues
Intrapartition and extrapartition queues can be used as indirect queues. Indirect
queues provide some flexibility in program maintenance in that data can be routed
to one of several queues with only the transient data definition, and not the program
itself, having to be changed.

When a transient data definition has been changed, application programs continue
to route data to the queue using the original symbolic name; however, this name is
now an indirect queue that refers to the new symbolic name. Because indirect
queues are established by using transient data resource definitions, the application
programmer does not usually have to be concerned with how this is done. Further
information about transient data resource definition is in the CICS Resource
Definition Guide.

Automatic transaction initiation (ATI)
For intrapartition queues, CICS provides the option of automatic transaction
initiation (ATI).

A basis for ATI is established by the system programmer by specifying a nonzero
trigger level for a particular intrapartition destination. (See the CICS Resource
Definition Guide for more information about trigger levels.) When the number of
entries (created by WRITEQ TD commands issued by one or more programs) in the
queue reaches the specified trigger level, a transaction specified in the definition of
the queue is automatically initiated. Control is passed to a program that processes
the data in the queue; the program must issue repetitive READQ TD commands to
deplete the queue.

When the queue has been emptied, a new ATI cycle begins. That is, a new task is
scheduled for initiation when the specified trigger level is again reached, whether or
not execution of the earlier task has ended. The exact point at which a new ATI
cycle begins depends on whether or not the queue is defined as logically
recoverable. If the queue is defined with a recoverability attribute (RECOVSTATUS)
of No or Physical, the new ATI cycle begins when the queue is read to QZERO. But
if the queue is defined with a recoverability attribute of Logical, the new ATI cycle
begins only after the task terminates after having read the queue to QZERO.

If an automatically initiated task does not empty the queue, access to the queue is
not inhibited. The task may be normally or abnormally ended before the queue is
emptied (that is, before a QZERO condition occurs in response to a READQ TD
command). If the contents of the queue are to be sent to a terminal, and the
previous task completed normally, the fact that QZERO has not been reached
means that trigger processing has not been reset and the same task is reinitiated. A
subsequent WRITEQ TD command does not trigger a new task if trigger processing
has not been reset.

If the contents of the queue are to be sent to a file, the termination of the task has
the same effect as QZERO (that is, trigger processing is reset). The next WRITEQ
TD command initiates the trigger transaction (if the trigger level has been reached).

If the trigger level of a queue is zero, no task is automatically initiated.

If a queue is logically recoverable, initiation of the trigger transaction is deferred
until the next syncpoint.

Chapter 47. Transient data control 595

If the trigger level has already been exceeded because the last triggered
transaction abended before clearing the queue, or because the transaction was
never started because the MXT limit was reached, another task is not scheduled.
This is because QZERO has not been raised to reset trigger processing. If the
contents of a queue are destined for a file, the termination of the task resets trigger
processing and means that the next WRITEQ TD command triggers a new task.

To ensure that an automatically initiated task completes when the queue is empty,
the application program should test for a QZERO condition in preference to some
other application-dependent factor (such as an anticipated number of records). Only
the QZERO condition indicates an emptied queue.

If the contents of a queue are to be sent to another system, the session name is
held in EIBTERMID. If a transaction (started with a destination of system) abends, a
new transaction is started in the same way as a terminal.

If you use ATI with a transient data trigger mechanism, it could create
inter-transaction affinities that adversely affect your ability to perform dynamic
transaction routing. See Chapter 15, “Affinity,” on page 221 for more information
about transaction affinity.

A trigger transaction is shunted if it suffers from an indoubt failure. Another trigger
transaction is not attached until the shunted UOW commits or backs out the
changes it has made following resynchronization.

596 CICS TS for z/OS: CICS Application Programming Guide

Chapter 48. Temporary storage control

The CICS temporary storage control facility provides the application programmer
with the ability to store data in temporary storage queues, either in main storage, in
auxiliary storage on a direct-access storage device, or in a temporary storage data
sharing pool. Data stored in a temporary storage queue is known as temporary
data.

Java and C++
The application programming interface described in this chapter is the EXEC
CICS API, which is not used in Java programs. For information about Java
programs using the JCICS classes to access temporary storage services, see
Java Applications in CICS in the CICS Information Center and the JCICS
Javadoc html documentation. For information about C++ programs using the
CICS C++ classes, see the CICS C++ OO Class Libraries manual.

You can:

v Write data to a temporary storage queue (WRITEQ TS command).

v Update data in a temporary storage queue (WRITEQ TS REWRITE command).

v Read data from a temporary storage queue (READQ TS command).

v Read the next data from a temporary storage queue (READQ TS NEXT
command).

v Delete a temporary storage queue (DELETEQ TS command).

The TS keyword may be omitted; temporary storage is assumed if it is not
specified.

Exception conditions that occur during execution of a temporary storage control
command are handled as described in Chapter 17, “Dealing with exception
conditions,” on page 261.

If you use these commands, you could create inter-transaction affinities that
adversely affect your ability to perform dynamic transaction routing.

To help you identify potential problems with programs that issue these commands,
you can use the scanner and collector components of the CICS Interdependency
Analyzer. See the CICS Interdependency Analyzer for z/OS User's Guide and
Reference for more information about this utility and Chapter 15, “Affinity,” on page
221 for more information about transaction affinity.

This chapter describes:
v “Temporary storage queues”
v “Typical uses of temporary storage control” on page 598

Temporary storage queues
Temporary storage queues are identified by symbolic names that may be up to 16
characters, assigned by the originating task. Temporary data can be retrieved by
the originating task or by any other task using the symbolic name assigned to it. To
avoid conflicts caused by duplicate names, a naming convention should be
established; for example, the operator identifier or terminal identifier could be used

© Copyright IBM Corp. 1989, 2010 597

|
|

as a suffix to each programmer-supplied symbolic name. Specific items (logical
records) within a queue are referred to by relative position numbers.

Temporary storage queues remain intact until they are deleted by the originating
task, by any other task, or by an initial or cold start; before deletion, they can be
accessed any number of times. Even after the originating task is terminated,
temporary data can be accessed by other tasks through references to the symbolic
name under which it is stored.

Temporary data can be stored either in main storage or in auxiliary storage.
Generally, main storage should be used if the data is needed for short periods of
time; auxiliary storage should be used if the data is to be kept for long periods of
time. Data stored in auxiliary storage is retained after CICS termination and can be
recovered in a subsequent restart, but data in main storage cannot be recovered.
Main storage might be used to pass data from task to task, or for unique storage
that allows programs to meet the requirement of CICS that they be quasi-reentrant
(that is, serially reusable between entry and exit points of the program).

Temporary storage data sharing provides another type of temporary storage queue
that can be supported concurrently. The temporary storage queues can be defined
as local, remote, or shared, and they can be stored in temporary storage pools in
the coupling facility.

Typical uses of temporary storage control
A temporary storage queue that has only one record can be treated as a single unit
of data that can be accessed using its symbolic name. Using temporary storage
control in this way provides a typical scratch-pad capability. This type of storage
should be accessed using the READQ TS command with the ITEM option; not
doing so may cause the ITEMERR condition to be raised.

In general, temporary storage queues of more than one record should be used only
when direct access or repeated access to records is necessary; transient data
control provides facilities for efficient handling of sequential data sets.

Some uses of temporary storage queues are:

Terminal paging
A task could retrieve a large master record from a direct-access data set,
format it into several screen images (using BMS), store the screen images
temporarily in auxiliary storage, and then ask the terminal operator which
“page” (screen image) is desired. The application programmer can provide
a program (as a generalized routine or unique to a single application) to
advance page by page, advance or back up a relative number of pages,
and so on.

A suspend data set
Suppose a data collection task is in progress at a terminal. The task reads
one or more units of input and then allows the terminal operator to interrupt
the process by some kind of coded input. If not interrupted, the task repeats
the data collection process. If interrupted, the task writes its incomplete data
to temporary storage and terminates. The terminal is now free to process a
different transaction (perhaps a high-priority inquiry). When the terminal is
available to continue data collection, the operator initiates the task in a
“resume” mode, causing the task to recall its suspended data from
temporary storage and continue as though it had not been interrupted.

598 CICS TS for z/OS: CICS Application Programming Guide

Preprinted forms
An application program can accept data to be written as output on a
preprinted form. This data can be stored in temporary storage as it arrives.
When all the data has been stored, it can first be validated and then
transmitted in the order required by the format of the preprinted form.

Chapter 48. Temporary storage control 599

600 CICS TS for z/OS: CICS Application Programming Guide

Part 8. Testing and debugging applications

Chapter 49. Testing applications 603
Preparing the application for testing 604
Preparing the system for testing 604

Chapter 50. Execution diagnostic facility (EDF) 607
Restrictions when using EDF 608

OPEN TCBs and EDF. 610
Parameter list stacking . 610
Security considerations . 610

What does EDF display? . 611
The header . 611
The body . 612

At program initiation . 612
At the start of execution of a CICS command 612
At the end of execution of a command. 614
At program and task termination 616
At abnormal termination 617

Using EDF . 618
Interrupting program execution 619
Using EDF in single-screen mode 620

Checking pseudoconversational programs 621
Using EDF in dual-screen mode 622
EDF and remote transactions 622
EDF and non-terminal transactions 622
EDF and DTP programs . 623

EDF and distributed program link commands 623
Stopping EDF . 624

Overtyping to make changes 624
EDF responses . 626

Using EDF menu functions . 626

Chapter 51. Temporary storage browse (CEBR) 633
Using the CEBR transaction 633
What does the CEBR transaction display? 635

The header . 635
The command area . 635
The body . 635
The message line . 635

Using the CEBR function keys. 636
Using the CEBR commands 637
Using the CEBR transaction with transient data 639

Chapter 52. Command-level interpreter (CECI) 641
What does CECI display? . 641

The command line . 641
The status line . 642

Command syntax check 643
About to execute command 644
Command execution complete. 645

The body . 646
The message line . 646
CECI options on function keys. 646

Using CECI. 648

© Copyright IBM Corp. 1989, 2010 601

##

Making changes . 649
Using the CECI function keys 650

Expanded area . 650
Variables. 650

Defining variables . 651
The EXEC interface block (EIB) 652
Error messages display . 652

Saving commands . 653
How CECI runs . 654

CECI sessions . 654
Abends . 654
Exception conditions . 655
Program control commands. 655
Terminal sharing . 655
Shared storage: ENQ commands without LENGTH option 655

Chapter 53. Using debuggers with CICS applications 657
Debugging profiles . 658
Using debugging profiles to select programs for debugging 659
Using generic parameters in debugging profiles 661

Chapter 54. Debugging CICS applications from a workstation. 663
Preparing to debug applications from a workstation 663

Chapter 55. Using Debug Tool with CICS applications 665
About Debug Tool . 665
Preparing to debug applications with Debug Tool 665

602 CICS TS for z/OS: CICS Application Programming Guide

##

Chapter 49. Testing applications

Java
This guidance does not relate to testing Java applications.

You can use the following methods to test CICS application programs:

Single-thread testing

A single-thread test takes one application transaction at a time, in an otherwise
“empty” CICS system, and sees how it behaves. This enables you to test the
program logic, and also shows whether or not the basic CICS information (such
as resource definition) is correct. It is quite feasible to test this single application
in one CICS region while your normal, online production CICS system is active
in another.

Multithread testing

A multithread test involves several concurrently active transactions. Naturally,
all the transactions are in the same CICS region, so you can readily test the
ability of a new transaction to coexist with them.

You may find that a transaction that works perfectly in its single-thread testing
still fails in the multithread test. It may also cause other transactions to fail, or
even terminate CICS.

Regression testing

A regression test is used to make sure that all the transactions in a system
continue to do their processing in the same way both before and after changes
are applied to the system. This is to ensure that fixes applied to solve one
problem do not cause further problems. It is a good idea to build a set of
miniature files to perform your tests on, because it is much easier to examine a
small data file for changes.

A good regression test exercises all the code in every program; that is, it
explores all tests and possible conditions. As your system develops to include
more transactions, more possible conditions, and so on, add these to your test
system to keep it in step. The results of each test should match those from the
previous round of testing. Any discrepancies are grounds for suspicion. You can
compare terminal output, file changes, and log entries for validity.

Sequential terminal support (described in “Using sequential terminal support” on
page 381), can be useful for regression testing. When you have a module that
has worked for some time and is now being modified, you need to rerun your
old tests to ensure that the function still works. Sequential terminal support
makes it easy to maintain a “library” of old test cases and to rerun them when
needed.

Sequential terminal support allows you to test programs without having to use a
telecommunication device. System programmers can specify that sequential
devices be used as terminals (using the terminal control table (TCT)). These
sequential devices may be card readers, line printers, disk units, or magnetic
tape units. They can also be combinations of sequential devices such as:
v A card reader and line printer (CRLP)
v One or more disk or tape data sets as input
v One or more disk or tape data sets as output

You can prepare a stream of transaction test cases to do the basic testing of a
program module. As the testing progresses, you can generate additional

© Copyright IBM Corp. 1989, 2010 603

transaction streams to validate the multiprogramming capabilities of the
programs or to allow transaction test cases to run concurrently.

You have to do two main tasks before you can test and debug an application:
1. “Preparing the application for testing”
2. “Preparing the system for testing”

Preparing the application for testing
To prepare the application and system table entries you should do the following:

1. Translate, assemble or compile, and link-edit each program. Make sure that
there are no error messages on any of these three steps for any program
before you begin testing.

2. Use the DEBUG and EDF options on your translator step, so that you can use
translator statement numbers with execution diagnostic facility (EDF) displays.

3. Use the COBOL compiler options CLIST and DMAP so that you can relate
storage locations in dumps and EDF displays to the original COBOL source
statements, and find your variables in working storage.

4. Use the RDO DEFINE PROFILE command to generate a profile for your
transactions to use, and make sure the definitions are INSTALLed.

5. Use the RDO DEFINE TRANSACTION command for each transaction in your
application, and make sure the definitions are INSTALLed.

6. If your system does not use program autoinstall, use the RDO DEFINE
PROGRAM command for each program used in the application, and make
sure the definitions are INSTALLed.

7. If your system does not use program autoinstall, use the RDO DEFINE
MAPSET command for each map set in the application, and make sure each
definition is INSTALLed.

8. Use the RDO DEFINE FILE command, or put an entry in the FCT, for each file
used. If you use RDO, make sure the definitions are INSTALLed.

9. Build at least a test version of each of the files required.

10. Define each of the transient data destinations to be used by the application.

11. Put job control DD cards in the startup job stream for each file used in the
application.

12. Prepare some test data.

Preparing the system for testing
To prepare the system for debugging you should do the following:

1. Make sure that EDF is available in your system, by including group DFHEDF in
the list you specify in the GRPLIST system initialization

2. Set up appropriate tracing options for your application. For details about setting
up tracing options, see the CICS Problem Determination Guide.

3. Make sure that transaction dumping is enabled for all transaction dump codes,
and that system dumping is enabled for all system dump codes. These are,
anyway, the default settings. For information about setting up dump options, see
the CICS Problem Determination Guide.

4. Be prepared to print the dumps. Have a DFHDU640 job stream or procedure
ready, and have the CICS dump data sets defined in your startup procedure.

5. Contact your system programmer for information about SDUMP data sets
available on your system and access to JCL for processing them.

604 CICS TS for z/OS: CICS Application Programming Guide

6. Enable CICS to detect loops, by setting the ICVR parameter in the SIT to a
number greater than zero. Something between five and ten seconds
(ICVR=5000 to ICVR=10000) is usually a workable value.

7. Generate statistics. For more information about using statistics, see the CICS
Performance Guide.

Chapter 49. Testing applications 605

606 CICS TS for z/OS: CICS Application Programming Guide

Chapter 50. Execution diagnostic facility (EDF)

You can use the execution diagnostic facility (EDF) to test an application program
online, without modifying the program or the program-preparation procedure. The
CICS execution diagnostic facility is supported by the CICS-supplied transaction,
CEDF, which invokes the DFHEDFP program.

Note: You can also invoke CEDF indirectly through another CICS-supplied
transaction, CEDX, which enables you to specify the name of the transaction
you want to debug. When this chapter refers to the CEDF transaction (for
example, when it explains about CICS starting a new CEDF task below)
remember that it may have been invoked by the CEDX command.

The names of your programs should not begin with the letters “DFH” because this
prefix is used for CICS system modules and samples. Attempting to use EDF on a
CICS-supplied transaction has no effect. However, you can use EDF with CICS
sample programs and some user-replaceable modules. (For example, you can use
EDF to debug DFHPEP.)

EDF intercepts the execution of CICS commands in the application program at
various points, allowing you to see what is happening. Each command is displayed
before execution, and most are displayed after execution is complete. Screens sent
by the application program are preserved, so you can converse with the application
program during testing, just as a user would on a production system.

When a transaction runs under EDF control, EDF intercepts it at the following
points, allowing you to interact with it:

v At program initiation, after the EXEC interface block (EIB) has been updated,
but before the program is given control.

v At the start of the execution of each CICS command. This interrupt happens
after the initial trace entry has been made, but before the command has been
performed. Both standard CICS commands and the Front End Programming
Interface (FEPI) commands are intercepted. EXEC DLI and EXEC SQL
commands and any requests processed through the resource manager interface
are also intercepted at this point.

v At the end of the execution of every command except for ABEND, XCTL, and
RETURN commands (although these commands could raise an error condition
that EDF displays). EDF intercepts the transaction when it finishes processing
the command, but before the HANDLE CONDITION mechanism is invoked, and
before the response trace entry is made.

v At program termination.

v At normal task termination.

v When an ABEND occurs and after abnormal task termination.

If you want to work through an example of EDF, see Designing and Programming
CICS Applications, which guides you through a sample EDF session.

Note: For a program translated with the option NOEDF, these intercept points still
apply, apart from before and after the execution of each command. For a
program with CEDF defined as NO on its resource definition or by the
program autoinstall exit, the program initiation and termination screens are
suppressed as well.

© Copyright IBM Corp. 1989, 2010 607

Each time EDF interrupts the execution of the application program a new CEDF
task is started. Each CEDF task is short lived, lasting only long enough for the
appropriate display to be processed.

The terminal that you are using for the EDF interaction must be in transceive
(ATI/TTI) status and be able to send and receive data. This is the most common
status for display terminals, but you can find out by asking your system programmer
to check its status, or you can use CEMT.

For a transaction initiated at a terminal, you can use EDF on the same terminal as
the transaction you are testing, or on a different one. On the same terminal, you
must start by clearing the screen and entering the transaction code CEDF,
otherwise you may get unpredictable results. The message THIS TERMINAL: EDF
MODE ON is displayed at the top of an empty screen. You clear the screen again
and run your transaction in the normal way.

When you are using EDF, the user task is not directly purgable. If you need to
terminate the task, first forcepurge the CEDF task, then attempt to press the Enter
key while the EDF screen is displayed. If pressing the Enter key brings no
response, forcepurge the CEDF task a second time. CEDF will terminate, and the
user transaction will receive an AED3 abend.

This chapter describes:
v “Restrictions when using EDF”
v “What does EDF display?” on page 611
v “Using EDF” on page 618
v “Overtyping to make changes” on page 624
v “Using EDF menu functions” on page 626

Restrictions when using EDF
User application programs that are to be debugged using EDF must be assembled
(or compiled) with the translator option EDF, which is the default. If you specify
NOEDF, the program cannot be debugged using EDF. There is no performance
advantage in specifying NOEDF, but the option can be useful to prevent commands
in well debugged subprograms appearing on EDF displays.

Application programs that are to be debugged using EDF must also have the
attribute CEDF(YES) in their resource definition, which is the default. If a program is
defined with CEDF(YES) and compiled with the translator option EDF, EDF
diagnostic screens are displayed for the program. If the program is defined with
CEDF(YES) but compiled with the translator option NOEDF, only the program
initiation and termination screens are displayed. If CEDF(NO) is specified, no EDF
screens are displayed.

If a program with the attribute CEDF(NO) links to a program with the attribute
CEDF(YES), it might not be possible to use EDF for the transaction. For example, if
the CICSPlex SM dynamic transaction routing program EYU9XLOP is defined with
the attribute CEDF(NO), and the user-replaceable program EYU9WRAM (for
workload management processing) is defined with the attribute CEDF(YES), you
cannot use EDF to debug EYU9WRAM. For successful debugging of multiple
programs within a transaction, ensure that all the programs are defined with
CEDF(YES).

There are some restrictions on the use of EDF that make it preferable or even
necessary to use one particular screen mode:

608 CICS TS for z/OS: CICS Application Programming Guide

#
#
#
#
#
#
#

#
#
#
#
#
#
#
#

v EDF can be used only in single-screen mode when running a remote transaction.

v VM PASSTHRU is not supported by EDF when testing in single-screen mode.

v In single-screen mode, neither the user transaction nor CEDF should specify
message journaling, because the messages interfere with the EDF displays.
Message journaling is controlled by the profile definition for each transaction.

v In single screen mode, the CEDF transaction should not specify PROTECT=YES
in its profile definition. If this option is specified, message protection for the CEDF
transaction is ignored. The user transaction can still specify the PROTECT=YES
option even when running under CEDF. This restriction does not apply to
dual-screen mode.

v If a SEND LAST command is issued, EDF is ended before the command is
processed if you are using single-screen mode.

v If you want to test an application program that uses screen partitions, or that
does its own request unit (RU) chaining, you must run in dual-screen mode.

v In single-screen mode, if the profile for the user transaction specifies
INBFMH=ALL or INBFMH=DIP, the profile for CEDF must have the same
INBFMH value. Otherwise the user transaction abends ADIR. Dual-screen mode
does not require the profiles to match in this respect.

v If the inbound reply mode is set to “character” to enable the attribute setting
keys, EDF disables the keys in single-screen mode.

v When using CECI under EDF in dual-screen mode, you should be aware that
certain commands (for example, ASSIGN and ADDRESS) are issued against the
EDF terminal and not the transaction terminal. See “INVOKE CECI” on page 627
for information about how to invoke CECI from CEDF.

v TCAM terminals are supported by EDF, but only in dual-screen mode, and
provided that the terminals are not pooled.

Note: In CICS TS 3.1, local TCAM terminals are not supported. The only TCAM
terminals supported are remote terminals connected to a pre-CICS TS 3.1
terminal-owning region by the DCB (not ACB) interface of TCAM.

v When using EDF in dual-screen mode, you should avoid starting a second task
at the EDF terminal, for example by issuing a START command. Because EDF is
a pseudoconversational transaction, it does not prevent a second task from
starting at the terminal it is using. This may lead to a deadlock in certain
circumstances.

v When using EDF screen suppression in dual screen mode, commands that
cause a long wait, such as DELAY, WAIT, or a second RECEIVE, may cause
EDF to appear as if it had finished. If the task is ABENDed, EDF is reactivated at
the monitoring terminal.

Other restrictions apply to both screen modes:

v If a transaction issues the FREE command, EDF is switched off without warning.

v To test a user transaction executing on a remote CICS at a release level earlier
than CICS/ESA 3.1.1, you must run the transaction under control of CRTE, as
explained in “EDF and remote transactions” on page 622.

v EDF does not intercept calls to the CPI Communications interface (CPI-C) or the
SAA Resource Recovery interface (CPI-RR). You can test transactions that use
CPI calls under EDF, but you cannot see EDF displays at the call points.

v When processing a SIGNON command, CEDF suppresses display of the
password value to reduce the risk of accidental disclosure.

Chapter 50. Execution diagnostic facility (EDF) 609

|
|
|

OPEN TCBs and EDF
Even if your program would normally run using an OPEN TCB (L8, L9, X8, or X9)
CEDF forces the program to run on the QR TCB, because CEDF itself is not
threadsafe.

Parameter list stacking
CEDF only has one level of stacking for its copies of the EXEC CICS parameter
list. This means that if an application calls an EXEC-capable global user exit or
user-replaceable module (URM), the parameter list for the EXEC CICS commands
issued by the global user exit or URM may overlay the parameter list for EXEC
CICS commands issued by the main program.

Security considerations
EDF is such a powerful tool that your installation may restrict its use with
attach-time security. (The external security manager used by your installation
defines the security attributes for the EDF transaction.) If this has been done, and
you are not authorized to use CEDF, you cannot initiate the transaction.

For guidance on using security, see your system programmer or the CICS RACF
Security Guide.

610 CICS TS for z/OS: CICS Application Programming Guide

#

#
#
#

What does EDF display?
All EDF displays have the same general format, but the contents depend on the
point at which the task was interrupted. The display indicates which of these
interception points has been reached and shows information relevant to that point.
Figure 134 shows a typical display; occurring after execution of a SEND MAP
command.

Note: �1�Header �2�Body �3�Message line �4�Menu of functions

The display consists of a header, a body (the primary display area), a message line,
and a menu of functions you can select at this point. If the body does not fit on one
screen, EDF creates multiple screens, which you can scroll through using PF7 and
PF8. The header, menu, and message areas are repeated on each screen.

The header
The header shows:
v The identifier of the transaction being executed
v The name of the program being executed
v The internal task number assigned by CICS to the transaction
v The applid of the CICS region where the transaction is being executed
v A display number
v STATUS, that is, the reason for the interception by EDF

TRANSACTION: AC20 PROGRAM: DFH0VT1 TASK: 00032 APPLID: 1234567 DISPLAY:00
STATUS: COMMAND EXECUTION COMPLETE �1�
EXEC CICS SEND MAP
MAP (’T1 ’)
FROM (’...’...)
LENGTH (154)
MAPSET (’DFH0T1 ’)
CURSOR �2�
TERMINAL
ERASE
NOFLUSH
NOHANDLE

OFFSET:X’002522’ LINE:00673 EIBFN=X’1804’
RESPONSE: NORMAL EIBRESP=0 �3�

ENTER: CONTINUE �4�
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 134. Typical EDF display

Chapter 50. Execution diagnostic facility (EDF) 611

The body
The body or main part of the display contains the information that varies with the
point of intercept. The following screens show the body contents:
v “At program initiation”
v “At the start of execution of a CICS command”
v “At the end of execution of a command” on page 614
v “At program and task termination” on page 616
v “At abnormal termination” on page 617

At program initiation
At program initiation, as shown in Figure 135, EDF displays the COMMAREA (if
any) and the contents of the principal fields in the EIB. For programming information
about these EIB fields, see the CICS Application Programming Reference manual. If
there isn't a COMMAREA, line 4 on the screen is left blank and EIBCALEN has a
value of zero.

At the start of execution of a CICS command
At the start of execution of a CICS command, EDF displays the command,
including keywords, options, and argument values, as shown in Figure 136 on page
613. You can display the information in hexadecimal or character form (and switch
from one to the other) by pressing PF2. If character format is requested, numeric
arguments are shown in signed numeric character format.

TRANSACTION: AC20 PROGRAM: DFH0VT1 TASK: 00032 APPLID: 1234567 DISPLAY:00
STATUS: PROGRAM INITIATION

COMMAREA = ’3476559873’
EIBTIME = 92920
EIBDATE = 91163
EIBTRNID = ’AC20’
EIBTASKN = 32
EIBTRMID = ’S246’

EIBCPOSN = 4
EIBCALEN = 10
EIBAID = X’7D’ AT X’032F059A’
EIBFN = X’0000’ AT X’032F059B’
EIBRCODE = X’000000000000’ AT X’032F059D’
EIBDS = ’........’

+ EIBREQID = ’........’

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: UNDEFINED

Figure 135. Typical EDF display at program initiation

612 CICS TS for z/OS: CICS Application Programming Guide

Figure 137 shows a similar screen for the start of execution of an EXEC SQL
command running with DB2 version 2.3.

In addition to options and values, the command is identified by its hexadecimal
offset within the program. If the program was translated with the DEBUG translator
option, the line number also appears, as shown in Figure 136. (See “Defining
translator options” on page 74 for information about this option.)

TRANSACTION: AC20 PROGRAM: DFH0VT1 TASK: 00032 APPLID: 1234567 DISPLAY:00
STATUS: ABOUT TO EXECUTE COMMAND
EXEC CICS SEND MAP
MAP (’T1 ’)
FROM (’...’..)
LENGTH (154)
MAPSET (’DFH0T1 ’)
CURSOR
TERMINAL
ERASE
NOFLUSH
NOHANDLE

OFFSET:X’002522’ LINE:00673 EIBFN=X’1804’

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : UNDEFINED
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 136. Typical EDF display at start of execution of a CICS command

TRANSACTION: LOKO PROGRAM: TLOKO TASK: 00082 APPLID: 1234567 DISPLAY:00
STATUS: ABOUT TO EXECUTE COMMAND
CALL TO RESOURCE MANAGER DSNCSQL
EXEC SQL UPDATE
DBRM=TLOK0, STMT=00242, SECT=00001
IVAR 001: TYPE=CHAR, LEN=00010 AT X’001E5A99’

DATA=X’F0F0F0F0F0F1F0F0F0F0’

OFFSET:X’000298’ LINE: UNKNOWN EIBFN= X’0A02’
ENTER: CONTINUE
PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 137. Typical SQL display at start of execution of a SQL command

Chapter 50. Execution diagnostic facility (EDF) 613

At the start of an EXEC SQL or EXEC DLI command, the body of the EDF display
shows you the parameter list of the CALL to which your command translates. If a
DLI command generates multiple CALL statements, you see only the last CALL
statement.

At the end of execution of a command
At the end of execution of a command, EDF provides a display in the same
format as at the start of the command. At this point, you can see the effects of
executing the command, in the values of the variables returned or changed and in
the response code. EDF does not provide this display for the ABEND, XCTL, and
RETURN commands (although these commands could raise an error condition that
EDF displays). The completion screen corresponding to the about to execute
screen in Figure 136 on page 613 is shown in Figure 138.

For CICS commands, response codes are described both by name (for example,
NORMAL or NOTFND) and by the corresponding EIBRESP value in decimal form.
For DL/I, the response code is a 2-character DL/I status code, and there is no
EIBRESP value. Programming information, including a list of EIBRESP codes, is in
CICS Application Programming Reference manual , and DL/I codes are
documented in the Application Programming: EXEC DLI Commands.

Figure 139 and Figure 140 show typical screens for an EXEC DLI command.

TRANSACTION: AC20 PROGRAM: DFH0VT1 TASK: 00054 APPLID: 1234567 DISPLAY:00
STATUS: COMMAND EXECUTION COMPLETE
EXEC CICS SEND MAP
MAP (’T1 ’)
FROM (’..’...)
LENGTH (154)
MAPSET (’DFH0T1 ’)
CURSOR
TERMINAL
ERASE
NOFLUSH
NOHANDLE

OFFSET:X’002522’ LINE:00673 EIBFN=X’1804’
RESPONSE: NORMAL EIBRESP=0

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 138. Typical EDF display at completion of a CICS command

614 CICS TS for z/OS: CICS Application Programming Guide

TRANSACTION: XDLI PROGRAM: UPDATE TASK: 00111 APPLID: 1234567 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
EXEC DLI GET NEXT
USING PCB (+00003)
FIRST
SEGMENT (’A ’)
INTO (’ ’)
SEGLENGTH (+00012)
FIRST
VARIABLE
+SEGMENT (’B ’)

OFFSET:X’000246’ LINE: 00000510 EIBFN:X’000C’
RESPONSE: ’AD’

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 139. Typical EDF display at completion of a DLI command (screen one)

TRANSACTION: XDLI PROGRAM: UPDATE TASK: 00111 APPLID: 1234567 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
EXEC DLI GET NEXT
+
FIRST
SEGMENT (’C ’)
SEGLENGTH (+00010)
LOCKED
INTO (’SMITH ’)
WHERE (ACCOUNT = ’12345’)
FIELDLENGTH (+00005)

OFFSET:X’000246’ LINE: 00000510 EIBFN:X’000C’
RESPONSE: ’AD’

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 140. Typical EDF display at completion of a DLI command (screen two)

Chapter 50. Execution diagnostic facility (EDF) 615

At program and task termination
At program termination and normal task termination, there is no body
information; all the pertinent information is in the header. Figure 142 and Figure 143
on page 617 show summarized screens for program and task termination.

TRANSACTION: LOKO PROGRAM: TLOKO TASK: 00111 APPLID: 1234567 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
CALL TO RESOURCE MANAGER DSNCSQL
EXEC SQL UPDATE
PLAN=TLOK0, DBRM=TLOK0, STMT=00242, SECT=00001
SQL COMMUNICATION AREA:
SQLCABC = 136 AT X’001E5A18’
SQLCODE = 000 AT X’001E5A1C’
SQLERRML = 000 AT X’001E5A20’
SQLERRMC = ’’ AT X’001E5A22’
SQLERRP = ’DSN’ AT X’001E5A68’
SQLERRD(1-6) = 000, 000, 00001, -1, 00000, 000 AT X’001E5A70’
SQLWARN(0-A) = ’_ _ _ _ _ _ _ _ _ _ _’ AT X’001E5A88’
SQLSTATE = 00000 AT X’001E5A93’

OFFSET:X’000298’ LINE: UNKNOWN EIBFN= X’0A02’
RESPONSE:

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : UNDEFINED PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 141. Typical SQL display at completion of an SQL command

TRANSACTION: AC20 PROGRAM: DFH0VT1 TASK: 00054 APPLID: 1234567 DISPLAY:00
STATUS: PROGRAM TERMINATION

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : UNDEFINED
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 142. Typical EDF display at program termination

616 CICS TS for z/OS: CICS Application Programming Guide

At abnormal termination
When an abend or abnormal task termination occurs, EDF displays the screens
shown in Figure 144 and Figure 145 on page 618.

TRANSACTION: AC20 TASK: 00054 APPLID: 1234567 DISPLAY: 00
STATUS: TASK TERMINATION

CONTINUE EDF? (ENTER YES OR NO) REPLY: YES
ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: UNDEFINED

Figure 143. Typical EDF display at task termination

TRANSACTION: AC20 PROGRAM: DFH0VT1 TASK:00054 APPLID: 1234567 DISPLAY: 00
STATUS: AN ABEND HAS OCCURRED

COMMAREA = ’1287656678’
EIBTIME = 135510
EIBDATE = 91163
EIBTRNID = ’AC20’
EIBTASKN = 76
EIBTRMID = ’S232’
EIBCPOSN = 4
EIBCALEN = 10
EIBAID = X’7D’ AT X’032F059A’
EIBFN = X’1804’ SEND AT X’032F059B’
EIBRCODE = X’000000000000’ AT X’032F059D’
EIBDS = ’........’

+ EIBREQID = ’........’

ABEND : ABCD

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: UNDEFINED

Figure 144. Typical EDF display when an abend occurs

Chapter 50. Execution diagnostic facility (EDF) 617

The body displays the COMMAREA and the values of the fields in the EIB as well
as the following items:

v The abend code

v If the abend code is ASRA (that is, a program interrupt has occurred), the
program status word (PSW) at the time of interrupt, and the source of the
interrupt as indicated by the PSW

v If the PSW indicates that the instruction giving rise to the interrupt is within the
application program, the offset of that instruction relative to the main entry point

Using EDF
You can run EDF by invoking either the CEDF or CEDX transaction.

If you are testing a non-terminal transaction, use the CEDX transaction, which
enables you to specify the name of the transaction.

If you are testing a transaction that is associated with a terminal, you can run EDF
in the following ways:
v “Using EDF in single-screen mode” on page 620
v “Using EDF in dual-screen mode” on page 622
v “EDF and remote transactions” on page 622
v “EDF and non-terminal transactions” on page 622
v “EDF and DTP programs” on page 623

Generally, you can use whichever method you prefer, but there are a few situations
in which one or the other is required. You must use single-screen mode for remote
transactions. See “Restrictions when using EDF” on page 608 for other conditions
which affect your choice.

TRANSACTION: AC20 TASK: 00054 APPLID: 1234567 DISPLAY: 00
STATUS: ABNORMAL TASK TERMINATION

COMMAREA = ’2934564671’
EIBTIME = 135510
EIBDATE = 91163
EIBTRNID = ’AC20’
EIBTASKN = 76
EIBTRMID = ’S232’
EIBCPOSN = 4
EIBCALEN = 10
EIBAID = X’7D’ AT X’032F059A’
EIBFN = X’1804’ SEND AT X’032F059B’
EIBRCODE = X’000000000000’ AT X’032F059D’
EIBDS = ’........’

+ EIBREQID = ’........’

ABEND : ABCD
CONTINUE EDF? (ENTER YES OR NO) REPLY: YES
ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: UNDEFINED

Figure 145. Typical EDF display at abnormal task termination

618 CICS TS for z/OS: CICS Application Programming Guide

Interrupting program execution
The power of EDF lies in what you can do at each of the intercept points. For
example, you can:

v Change the argument values before a command is executed. For CICS
commands, you cannot change the actual command, or add or delete options,
but you can change the value associated with any option. You can also suppress
execution of the command entirely using NOOP. See page 625 for further details.

v Change the results of a command, either by changing the argument values
returned by execution or by modifying the response code. This allows you to test
branches of the program that are hard to reach using ordinary test data (for
example, what happens on an input/output error). It also allows you to bypass
the effects of an error to check whether this eliminates a problem.

v Display the working storage of the program, the EIB, and for DL/I programs, the
DIB.

v Invoke the command interpreter (CECI). Under CECI you can execute
commands that are not present in the program to gain additional information or
change the execution environment.

v Display any other location in the CICS region.

v Change the working storage of the program and most fields in the EIB and the
DIB. EDF stops your task from interfering with other tasks by preventing you from
changing other areas of storage.

v Display the contents of temporary storage and transient data queues.

v Suppress EDF displays until one or more of a set of specific conditions is
fulfilled. This speeds up testing.

v Retrieve up to 10 previous EDF displays or saved screens.

v Switch off EDF mode and run the application normally.

v Abend the task.

The first two types of changes are made by overtyping values in the body of the
command displays. “Overtyping to make changes” on page 624 tells you how to do
this. You use the function keys in the menu for the others; “Using EDF menu
functions” on page 626 tells you exactly what you can do and how to go about it.

Chapter 50. Execution diagnostic facility (EDF) 619

Using EDF in single-screen mode
When you use EDF with just one terminal, the EDF inputs and outputs are
interleaved with those from the transaction. This sounds complicated, but works
quite easily in practice. The only noticeable peculiarity is that when a SEND
command is followed by a RECEIVE command, the display sent by the SEND
command appears twice: once when the SEND is executed, and again when the
RECEIVE is executed. It is not necessary to respond to the first display, but if you
do, EDF preserves anything that was entered from the first display to the second.

You start EDF by:
v Entering transaction code CEDF from a cleared screen, or
v Pressing the appropriate PF key (if one has been defined for EDF)

Next, you start the transaction to be tested by:
1. Pressing the CLEAR key to clear the screen
2. Entering the transaction code of the transaction you want to test

When both EDF and the user transaction are sharing the same terminal, EDF
restores the user transaction display at the following times:
v When the transaction requires input from the operator
v When you change the transaction display
v At the end of the transaction
v When you suppress the EDF displays
v When you request USER DISPLAY

To enable restoration, user displays are remembered at the following times:
1. At start of task, before the first EDF screen for the task is displayed
2. Before the next EDF screen is displayed, if the user display has been changed
3. On leaving SCREEN SUPPRESS mode

TRANSACTION: DLID PROGRAM: DLID TASK: 00049 APPLID: IYAHZCIB DISPLAY:00
ADDRESS: 00000000

WORKING STORAGE IS NOT AVAILABLE
ENTER: CURRENT DISPLAY
PF1 : UNDEFINED PF2 : BROWSE TEMP STORAGE PF3 : UNDEFINED
PF4 : EIB DISPLAY PF5 : INVOKE CECI PF6 : USER DISPLAY
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : UNDEFINED
PF10: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: REMEMBER DISPLAY

Figure 146. Typical EDF display from which CECI can be invoked

620 CICS TS for z/OS: CICS Application Programming Guide

If CEDF is used with an application program that has been translated with option
NOEDF, or one that has NO specified for CEDF in its resource definition:

v It is not possible for EDF to ascertain when the display is changed by that
application program.

v Therefore EDF does not know when to save, for later use, a copy of that display.

v This means that, unless either situation 1 on page 620 or 3 on page 620 also
apply, the next EDF display overwrites any display sent by the application
program.

v EDF has not saved the application's current display, and is unaware that it has
changed.

v The changed (but now overwritten) display cannot be restored.

Similarly, in these circumstances:

v CEDF cannot restore the current display when it is about to be changed by the
application, or when the transaction requires input from the operator.

v This means that an output command to the principal facility from the application
program may result in random background information from a previous EDF
display appearing on the screen.

v An input command may be executed against the previous EDF display, rather
than a display from the application program, or, if it is the first receive in the
transaction, it may require explicit input from the CEDF panel instead of being
satisfied by the contents of the initial tioa.

These considerations apply to any screen I/O operation performed by the
application program.

When EDF restores the transaction display, it does not sound the alarm or affect
the keyboard in the same way as the user transaction. The effect of the user
transaction options is seen when the SEND command is processed, but not when
the screen is restored. When you have NOEDF specified in single-screen mode,
you should take care that your program does not send and receive data because
you will not see it.

When EDF restores the transaction display on a device that uses color,
programmed symbols, or extended highlighting, these attributes are no longer
present and the display is monochrome without the programmed symbols or
extended highlighting. Also, if the inbound reply mode in the application program is
set to “character” to enable the attribute-setting keys, EDF resets this mode,
causing these keys to be disabled. If these changes prevent your transaction from
executing properly, you should test in a dual-screen mode.

If you end your EDF session part way through the transaction, EDF restores the
screen with the keyboard locked if the most recent RECEIVE command has not
been followed by a SEND command; otherwise, the keyboard is unlocked.

Checking pseudoconversational programs
EDF makes a special provision for testing pseudoconversational transactions from a
single terminal. If the terminal came out of EDF mode between the several tasks
that make up a pseudoconversational transaction, it would be very hard to do any
debugging after the first task. So, when a task terminates, EDF asks the operator
whether EDF mode is to continue to the next task. If you are debugging a
pseudoconversational task, press enter, as the default is “yes”. If you have finished,
reply “no”.

Chapter 50. Execution diagnostic facility (EDF) 621

Using EDF in dual-screen mode
In dual-screen mode, you use one terminal for EDF interaction and another for
sending input to, and receiving output from, the transaction under test.

You start by entering, at the EDF terminal, the transaction CEDF tttt, where tttt is
the name of the terminal on which the transaction is to be tested.

The message that CEDF gives in response to this depends on whether there is
already a transaction running on the second terminal. If the second terminal is not
busy, the message displayed at the first terminal is:
TERMINAL tttt: EDF MODE ON

and nothing further happens until a transaction is started on the second terminal,
when the PROGRAM INITIATION display appears.

You can also use EDF in dual-screen mode to monitor a transaction that is already
running on the second terminal. If, for example, you believe a transaction at a
specific terminal to be looping, you can go to another terminal and enter a CEDF
transaction naming the terminal at which this transaction is running. The message
displayed at the first terminal is:
TERMINAL tttt: TRANSACTION RUNNING: EDF MODE ON

EDF picks up control at the next EXEC CICS command executed, and you can
then observe the sequence of commands that are causing the loop, assuming that
at least one EXEC CICS command is executed.

EDF and remote transactions
You cannot use EDF in dual-screen mode if the transaction under test, or the
terminal that invokes it, is owned by another CICS region.

Furthermore, if the remote CICS region is earlier than CICS/ESA 3.1.1, you cannot
run the transaction directly under EDF by invoking CEDF in the TOR. In this
situation, you must use the routing transaction, CRTE. You enter CEDF at the
terminal, clear the screen, and then enter CRTE followed by the system identifier
(SYSIDNT) of the remote CICS region. This action causes CICS to route
subsequent inputs to the remote region, and you can then enter the transaction
identifier of the transaction you want to test. The CICS Supplied Transactions
manual explains how to use CRTE.

If a remote transaction abends while under EDF using a CRTE routing session,
EDF displays the abnormal task termination screen, followed by message
DFHAC2206 for the user transaction. The CRTE session is not affected by the user
task abend. Also, if you opted to continue with EDF after the abend, your terminal
remains in EDF mode within the CRTE routing session.

There is a difference in execution as well. For remote transactions, EDF purges its
memory of your session at the termination of each transaction, whether EDF is to
be continued or not. This means that any options you have set and any saved
screens are lost between the individual tasks in a pseudoconversational sequence.

EDF and non-terminal transactions
You can use EDF to test transactions that execute without a terminal: for example,
transactions started by an EXEC CICS START command, or transactions initiated

622 CICS TS for z/OS: CICS Application Programming Guide

by a transient data trigger-level. To test non-terminal transactions, use the CEDX
trnx command, where trnx is the transaction identifier.

To test a transaction using CEDX:

v The terminal you use for the EDF displays, at which you enter the CEDX
command, must be logged on to the CICS region in which the specified
transaction is to execute.

v The CEDX command must be issued before the specified transaction is started
by CICS. Other instances of the same transaction that are already executing
when you issue the CEDX command are ignored.

When you use CEDX to debug a transaction, CICS controls the EDF operation by
modifying the definition of the transaction specified on the CEDX command, to
reference a special transaction class, DFHEDFTC. When you switch off EDF (using
CEDX tranid,OFF) CICS modifies the transaction definition back to its normal
transaction class.

EDF and DTP programs
You can also test a transaction that is using distributed transaction processing
across a remote link by telling EDF to monitor the session on the link. You can do
this on either (or both) of the participating systems that are running under CICS and
has EDF installed. (You cannot do this if the transaction has been routed from
another CICS region because you must use single-screen mode for remote
transactions.)

For APPC and MRO links, you can name the system identifier (sysid) of the remote
system:
CEDF sysid

This causes EDF to associate itself with any transaction attached across any
session belonging to the specified system.

For APPC, MRO, and LU6.1 links, you can use the session identifier (sessionid)
that the transaction is using:
CEDF sessionid

You can determine the session identifier with the CEMT INQUIRE TERMINAL
transaction, but this means that the transaction must be running and have reached
the point of establishing a session before you start EDF.

If a transaction using distributed transaction processing also has a terminal
associated with it, or if you can invoke it from a terminal (even though it does not
use one), you can use EDF to test it in the ordinary way from that terminal.

When you have finished testing the transaction on the remote system, you should
turn off EDF on that SYSID or sessionid before logging off from CICS with CESF.
For example:
CEDF sysid,OFF

Failure to do this could cause another transaction using a link to that system to be
suspended.

EDF and distributed program link commands
You can use EDF, in single- or dual-terminal mode, to test a transaction that
includes a distributed program link (DPL) command. However, EDF displays only

Chapter 50. Execution diagnostic facility (EDF) 623

the DPL command invocation and response screens. CICS commands issued by
the remote program are not displayed, but a remote abend, and the message a
remote abend has occurred is returned to the EDF terminal, along with the SYSID
of the system from which the abend was received. After control is returned to your
local program, EDF continues to test as normal, but the PSW is not displayed if the
abend is in a remote program.

Stopping EDF
If you want to end EDF control of a terminal, the method you use depends on
where you are in the testing. If the transaction under test is still executing and you
want it to continue, but without EDF, press the END EDF SESSION function key. If
you have reached the task termination intercept, EDF asks if you want to continue.
If you do not, overtype the reply as NO (YES is the default). If no transaction is
executing at the terminal, clear the screen and enter:
CEDF ,OFF

(The space and comma are required.)

If you are logging off from dual-screen mode, clear the screen and enter CEDF
tttt,OFF.

In all these cases, the message THIS TERMINAL: EDF MODE OFF is displayed at
the top of an empty screen.

Overtyping to make changes
Most of the changes you make with EDF involve changing information in memory.
You do this simply by typing over the information shown on the screen with the
information you want used instead. You can change any area where the cursor
stops when you use the tab keys, except for the menu area at the bottom.

When you change the screen, you must observe the following rules:

v On CICS command screens, any argument value can be overtyped, but not the
keyword of the argument. An optional argument cannot be removed, nor can an
option be added or deleted.

v When you change an argument in the command display (as opposed to the
working storage screen), you can change only the part shown on the display. If
you attempt to overtype beyond the value displayed, the changes are not made
and no diagnostic message is generated. If the argument is so long that only part
of it appears on the screen, you should change the area in working storage to
which the argument points. (To determine the address, display the argument in
hexadecimal format; the address of the argument location also appears.)

v In character format, numeric values always have a sign field, which can be
overtyped with a minus or a blank only.

v When an argument is to be displayed in character format, some of the characters
may not be displayable (including lowercase characters). EDF replaces each
nondisplayable character with a period. When overtyping a period, you must be
aware that the storage may in fact contain a character other than a period. You
should not overtype any character with a period; if you do, the change is ignored
and no diagnostic message is issued. If you need to overtype a character with a
period, you can do so by switching the display to hexadecimal format, using PF2,
and overtyping with X'4B'.

624 CICS TS for z/OS: CICS Application Programming Guide

v When storage is displayed in both character and hexadecimal format and
changes are made to both, the value of the hexadecimal field takes precedence
should the changes conflict; no diagnostic message is issued.

v The arguments for some commands, such as HANDLE CONDITION, are
program labels rather than numeric or character data. The form in which EDF
displays (and accepts modifications to) these arguments depends on the
programming language in use:

– For COBOL, a null argument is displayed: for example, ERROR (), and
because of this, you cannot modify it.

– For C and C++, labels are not valid.

– For PL/I, the address of the label constant is used; for example, ERROR
(X'001D0016').

– For assembler language, the address of the program label is used; for
example, ERROR (X'00030C').

If no label value is specified on a HANDLE CONDITION command, EDF displays
the condition name alone without the parentheses.

v The response field can be overtyped with the name of any exception condition,
including ERROR, that can occur for the current function, or with the word
NORMAL. The effect when EDF continues is that the program takes whatever
action has been prescribed for the specified response. You can get the same
effect by changing the EIBRESP field in the EIB display to the corresponding
values. If you change the EIBRESP value or the response field on the command
execution complete screen, EIBRCODE is updated. EIBRESP appears on
second EIB screen and is the only one you can change (EIBRCODE protected).
You can get the same effect by changing the EIBRESP value on the EIB display;
EDF changes related values in the EIB and command screens accordingly if you
do this.

v If uppercase translation is not specified for the terminal you are using you must
take care to always enter uppercase characters.

v Any command can be overtyped with NOOP or NOP before processing; this
suppresses processing of the command. Use of the ERASE EOF key, or
overtyping with blanks, gives the same effect. When the screen is redisplayed
with NOOP, the original verb line can be restored by erasing the whole verb line
with the ERASE EOF key and pressing the ENTER key.

When you overtype a field representing a data area in your program, the change is
made directly in application program storage and is permanent. However, if you
change a field that represents a constant (a program literal), program storage is not
changed, because this may affect other parts of the program that use the same
constant or other tasks using the program. The command is executed with the
changed data, but when the command is displayed after processing, the original
argument values reappear. For example, suppose you are testing a program
containing a command coded:
EXEC CICS SEND MAP('MENU') END-EXEC.

If you change the name MENU to MENU2 under EDF before executing the
command, the map actually used is MENU2, but the map displayed on the
response is MENU. (You can use the “previous display” key to verify the map name
you used.) If you process the same command more than once, you must enter this
type of change each time.

Chapter 50. Execution diagnostic facility (EDF) 625

EDF responses
The response of EDF to any keyboard entry follows the rules listed below, in the
order shown:

1. If the CLEAR key is used, EDF redisplays the screen with any changes ignored.

2. If invalid changes are made, EDF accepts any valid changes and redisplays the
screen with a diagnostic message.

3. If the display number is changed, EDF accepts any other changes and shows
the requested display.

4. If a PF key is used, EDF accepts any changes and performs the action
requested by the PF key. Pressing ENTER with the cursor under a PF key
definition in the menu at the bottom of the screen is the same as pressing a PF
key.

5. If the ENTER key is pressed and the screen has been modified (other than the
REPLY field), EDF redisplays the screen with changes included.

6. If the ENTER key is pressed and the screen has not been modified (other than
the REPLY field), the effect differs according to the meaning of the ENTER key.
If the ENTER key means CONTINUE, the user transaction continues to
execute. If it means CURRENT DISPLAY, EDF redisplays the current status
display.

Using EDF menu functions
The function keys that you can use at any given time are displayed in a menu at
the bottom of every EDF display (see Figure 134 on page 611). The function of the
ENTER key for that display is also shown. Functions that apply to all displays are
always assigned to the same key, but definitions of some keys depend on the
display and the intercept point. To select an option, press the indicated function key.
Where a terminal has 24 function keys, EDF treats PF13 through PF24 as
duplicates of PF1 through PF12 respectively. If your terminal has no PF keys, place
the cursor under the option you want and press the ENTER key.

ABEND USER TASK
terminates the task being monitored. EDF asks you to confirm this action by
displaying the message “ENTER ABEND CODE AND REQUEST ABEND
AGAIN”. After entering the code at the position indicated by the cursor, the user
must request this function again to abend the task with a transaction dump
identified by the specified code. If you enter “NO”, the task is abended without a
dump and with the 4-character default abend code of four question marks
(????).

Abend codes beginning with the character A are reserved for use by CICS.
Using a CICS abend code may cause unpredictable results.

You cannot use this function if an abend is already in progress or the task is
terminating.

BROWSE TEMP STORAGE
produces a display of the temporary storage queue CEBRxxxx, where xxxx is
the terminal identifier of the terminal running EDF. This function is only available
from the working storage (PF5) screen. You can then use CEBR commands,
discussed in “Using the CEBR commands” on page 637, to display or modify
temporary storage queues and to read or write transient data queues.

CONTINUE
redisplays the current screen if you have made any changes, incorporating the

626 CICS TS for z/OS: CICS Application Programming Guide

changes. If you had not made changes, CONTINUE causes the transaction
under test to resume execution up to the next intercept point. To continue, press
ENTER.

CURRENT DISPLAY
redisplays the current screen if you have made any changes, with the changes
incorporated. If you have not made changes, it causes EDF to display the
command screen for the last intercept point. To execute this function, press
ENTER from the appropriate screen.

DIB DISPLAY
shows the contents of the DL/I interface block (DIB). This function is only
available from the working-storage screen (PF5). See the Application
Programming: EXEC DLI Commands manual for information on DIB fields.

EIB DISPLAY
displays the contents of the EIB. See Figure 135 on page 612 for an example of
an EIB display. For programming information about the EIB, see theCICS
Application Programming Reference manual . If COMMAREA exists, EDF also
displays its address and one line of data in the dump format.

INVOKE CECI
accesses CECI. This function is only available from the working storage (PF5)
screen. See Figure 146 on page 620 for an example of the screen from which
CECI is invoked. You can then use CECI commands, discussed in Chapter 52,
“Command-level interpreter (CECI),” on page 641. These CECI commands
include INQUIRE and SET commands against the resources referenced by the
original command before and after command execution. See “inbound reply
mode” on page 609 for restrictions when running CECI in dual-screen mode.
The use of CECI from this panel is similar to the use of CEBR within CEDF.

END EDF SESSION
ends the EDF control of the transaction. The transaction continues running from
that point but no longer runs in EDF mode.

NEXT DISPLAY
is the reverse of PREVIOUS DISPLAY. When you have returned to a previous
display, this option causes the next one forward to be displayed and the display
number to increase by one.

PREVIOUS DISPLAY
causes the previous display to be sent to the screen. This is the previous
command display, unless you saved other displays. The number of the display
from the current intercept point is always 00. As you request previous displays,
the display number decreases by 1 to −01 for the first previous display, −02 for
the one before that, and so on, down to the oldest display, −10. When no more
previous screens are available, the PREVIOUS option disappears from the
menu, and the corresponding function key becomes inoperative.

REGISTERS AT ABEND
displays storage containing the values of the registers should a local ASRA
abend occur. The layout of the storage is:
v Register values (0 through 15)
v PSW at abend (8 bytes)

In some cases, when a second program check occurs in the region before EDF
has captured the values of the registers, this function does not appear on the
menu of the abend display. If this happens, a second test run generally proves
to be more informative.

Chapter 50. Execution diagnostic facility (EDF) 627

REMEMBER DISPLAY
places a display that would not usually be kept in memory, such as an EIB
display, in the EDF memory. (EDF automatically saves the displays at the start
and completion of each command.) The memory can hold up to 10 displays.
The displays are numbered in reverse chronological order (that is, −10 is the
oldest display, and −01 is the newest). All pages associated with the display are
kept in memory and can be scrolled when recalled. Note, however, that if you
save a working-storage display, only the screen on view is saved.

SCROLL BACK
applies to an EIB, DIB, or command display that does not all fit on one screen.
When the screen on view is not the first one of the display, and there is a plus
sign (+) before the first option or field, you can view previous screens in the
display by selecting SCROLL BACK. See Figure 135 on page 612 for an
example.

SCROLL FORWARD
applies to an EIB, DIB, or command display that does not all fit on one screen.
When this happens, a plus sign (+) appears after the last option or field in the
display, to show that there are more screens. Using SCROLL FORWARD brings
up the next screen in the display.

SCROLL BACK FULL
has the same function for displays of working storage as the SCROLL BACK
option for EIB and DIB displays. SCROLL BACK FULL gives a working-storage
display one full screen backward, showing addresses lower in storage than
those on the current screen.

SCROLL FORWARD FULL
has the same function for displays of working storage as the SCROLL
FORWARD option for EIB and DIB displays. SCROLL FORWARD FULL gives a
working-storage display one full screen forward, showing addresses higher in
storage than those on the current screen.

SCROLL BACK HALF
is similar to SCROLL BACK FULL, except that the display of working storage is
reversed by only half a screen.

SCROLL FORWARD HALF
is similar to SCROLL FORWARD FULL, except that the display of working
storage is advanced by only half a screen.

STOP CONDITIONS
produces the menu screen shown in Figure 147 on page 629. You use this
screen to tell EDF when to resume its displays after you have pressed the
SUPPRESS DISPLAYS key. You can use STOP CONDITIONS and SUPPRESS
DISPLAYS together to cut down on the interaction between you and EDF when
you are checking a program that you know is partly working.

628 CICS TS for z/OS: CICS Application Programming Guide

You can specify any or all of these events as STOP CONDITIONS:

v A specific type of function and option, such as READNEXT file or ENQ
resource, is encountered, for example, FEPI ADD or GDS ASSIGN.

v The command at a specific offset or on a specific line number (assuming the
program has been translated with the DEBUG option) is encountered.

v Any DL/I error status occurs, or a particular DLI error status occurs.

v A specific exception condition occurs. If CICS exception condition is specified
as ERROR (the default), EDF redisplays a screen in response to any
ERROR condition (for example, NOTOPEN, EOF, or INVREQ). If you specify
a specific condition such as EOF, EDF redisplays the screen only when an
EOF condition arises, provided that ANY CICS CONDITION is left as the
default NO.

If this field is changed to YES, EDF overrides the CICS exception conditions
and redisplays a screen whenever any command results in a non-zero
EIBRESP value such as NOTOPEN, EOF, or QBUSY.

v Any exception condition occurs for which the CICS action is to raise ERROR;
for example, INVREQ or NOTFND.

v An abend occurs.

v The task ends normally.

v The task ends abnormally.

You do not always have to set STOP CONDITIONS in order to use the
SUPPRESS DISPLAYS function, because EDF sets a default in the following
fields on the assumption that you usually want to resume displays if any of
them occurs:
v CICS exception condition
v Transaction abend
v Normal task termination
v Abnormal task termination

TRANSACTION: AC20 PROGRAM: DFH0VT1 TASK: 0086 APPLID: 1234567 DISPLAY: 00
DISPLAY ON CONDITION:-

COMMAND: EXEC CICS
OFFSET: X’......’
LINE NUMBER:
CICS EXCEPTION CONDITION: ERROR
ANY CICS CONDITION NO
TRANSACTION ABEND YES
NORMAL TASK TERMINATION YES
ABNORMAL TASK TERMINATION YES

DLI ERROR STATUS:
ANY DLI ERROR STATUS

ENTER: CURRENT DISPLAY
PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : UNDEFINED PF8 : UNDEFINED PF9 : UNDEFINED
PF10: UNDEFINED PF11: UNDEFINED PF12: REMEMBER DISPLAY

Figure 147. Typical EDF display for STOP CONDITIONS

Chapter 50. Execution diagnostic facility (EDF) 629

These are the options described in Figure 147 on page 629. You can turn off
any of the defaults that do not apply when you bring up the STOP
CONDITIONS menu, as well as adding conditions specific to your program.

When you use an offset for STOP CONDITIONS, you must specify the offset of
the BALR instruction corresponding to a command. The offset can be
determined from the code listing produced by the compiler or assembler. In
COBOL, C, C++, or PL/I, you must use the compiler option that produces the
assembler listing to determine the relevant BALR instruction.

When you use a line number, you must specify it exactly as it appears on the
listing, including leading zeros, and it must be the line on which a command
starts. If you have used the NUM or the SEQUENCE translator options, the
translator uses your line numbers as they appear in the source. Otherwise, the
translator assigns line numbers.

Line numbers can be found in the translator listing (SYSPRINT in the translator
step) if you have used either the SOURCE or VBREF translator options. If you
have used the DEBUG translator option, as you must to use line numbers for
STOP CONDITIONS, the line number also appears in your compilation
(assembly) listing, embedded in the translated form of the command, as a
parameter in the CALL statement.

You can tell EDF to stop suppressing displays at DL/I commands as well as at
CICS commands. You do this by overtyping the qualifier “CICS” on the
command line with “DLI” and entering the type of DL/I command at which you
want suppression to stop. You must be executing a DL/I program or have
executed one earlier in the same task. You can suppress DL/I commands as
early as the program initiation panel.

You can also stop suppression when a particular DL/I status code occurs. For
information about the status codes that you can use, see the list of codes in the
DL/I interface block (DIB) in the Application Programming: EXEC DLI
Commands manual.

SUPPRESS DISPLAYS
suppresses all EDF displays until one of the specified STOP CONDITIONS
occurs. When the condition occurs, however, you still have access to the 10
previous command displays, even though they were not actually sent to the
screen when they were originally created.

SWITCH HEX/CHAR
switches displays between character and hexadecimal form. The switch applies
only to the command display, and has no effect on previously remembered
displays, STOP CONDITIONS displays, or working-storage displays.

In DL/I command displays which contain the WHERE option, only the key
values (the expressions following each comparison operator) can be converted
to hexadecimal.

UNDEFINED
means that the indicated function key is not defined for the current display at
the current intercept point.

USER DISPLAY
causes EDF to display what would be on the screen if the transaction was not
running in EDF mode. (You can use it only for single terminal checkout.) To
return to EDF after using this key, press the ENTER key.

WORKING STORAGE
allows you to see the contents of the working-storage area in your program, or

630 CICS TS for z/OS: CICS Application Programming Guide

of any other address in the CICS region. Figure 148 shows a typical
working-storage screen.

The working-storage contents are displayed in a form similar to that of a dump
listing, that is, in both hexadecimal and character representation. The address of
working storage is displayed at the top of the screen. You can browse through the
entire area using the scroll commands, or you can simply enter a new address at
the top of the screen. This address can be anywhere within the CICS region. The
working-storage display provides two additional scrolling keys, and a key to
display the EIB (the DIB if the command is a DL/I command).

The meaning of “working storage” depends on the programming language of the
application program, as follows:

COBOL
All data storage defined in the WORKING-STORAGE section of the program

C, C++ and PL/I
The dynamic storage area (DSA) of the current procedure

Assembler language
The storage defined in the current DFHEISTG DSECT

Assembler language programs do not always acquire working storage; it may not
be necessary, for example, if the program does not issue CICS commands. You
may get the message “Register 13 does not address DFHEISTG” when you LINK to
such a program. The message does not necessarily mean an error, but there is no
working storage to look at.

Except for COBOL programs, working storage starts with a standard format save
area; that is, registers 14 to 12 begin at offset 12 and register 13 is stored at offset
4.

Working storage can be changed at the screen; either the hexadecimal section or
the character section can be used. Also, the ADDRESS field at the head of the

TRANSACTION: AC20 PROGRAM: DFH0VT1 TASK: 00030 APPLID: 1234567 DISPLAY:00
ADDRESS: 035493F0 WORKING STORAGE
035493F0 000000 E3F14040 00000000 00010000 00000000 T1
03549400 000010 00000000 00000000 F1000000 000000001.......
03549410 000020 F0000000 00000000 F0000000 00000000 0.......0.......
03549420 000030 F0000000 00000000 F0000000 00000000 0.......0.......
03549430 000040 00000000 00000000 00000000 00000000
03549440 000050 D7C1D5D3 00000000 D9C5C3C4 00000000 PANL....RECD....
03549450 000060 D3C9E2E3 00000000 C8C5D3D7 00000000 LIST....HELP....
03549460 000070 84000000 00000000 A4000000 00000000 d.......u.......
03549470 000080 82000000 00000000 C4000000 00000000 b.......D.......
03549480 000090 E4000000 00000000 C2000000 00000000 U.......B.......
03549490 0000A0 D5000000 00000000 E2000000 00000000 N.......S.......
035494A0 0000B0 7B000000 00000000 6C000000 00000000 #.......%.......
035494B0 0000C0 4A000000 00000000 F1000000 00000000 ¢.......1.......
035494C0 0000D0 F2000000 00000000 F3000000 00000000 2.......3.......

ENTER: CURRENT DISPLAY
PF1 : UNDEFINED PF2 : BROWSE TEMP STORAGE PF3 : UNDEFINED
PF4 : EIB DISPLAY PF5 : INVOKE CECI PF6 : USER DISPLAY
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : UNDEFINED
PF10: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: REMEMBER DISPLAY

Figure 148. Typical EDF display for working-storage

Chapter 50. Execution diagnostic facility (EDF) 631

display can be overtyped with a hexadecimal address; storage starting at that
address is then displayed when ENTER is pressed. This allows any location in the
address space to be examined. Further information on the use of overtyping is
given in “Overtyping to make changes” on page 624.

If the program storage examined is not part of the working storage of the program
currently executing (which is unique to the particular transaction under test), the
corresponding field on the screen is protected to prevent the user from overwriting
storage that might belong to or affect another task.

If the initial part of a working-storage display line is blank, the blank portion is not
part of working storage. This can occur because the display is doubleword aligned.

At the beginning and end of a task, working storage is not available. In these
circumstances, EDF generates a blank storage display so that the user can still
examine any storage area in the region by overtyping the address field.

Note that if you terminate a PL/I or Language Environment program with an
ordinary non-CICS return, EDF does not intercept the return, and you are not able
to see working storage. If you use a RETURN command instead, you get an EDF
display before execution and at program termination.

If you are using a Language Environment-enabled program, working storage is
freed at program termination if the program is terminated using a non-CICS return.
In this case, working storage is not available for display.

632 CICS TS for z/OS: CICS Application Programming Guide

Chapter 51. Temporary storage browse (CEBR)

You can use the browse transaction (CEBR) to browse temporary storage queues
and delete them. You can also use the CEBR transaction to transfer the contents of
a transient data queue to temporary storage in order to look at them, and to
reestablish the transient data queue when you have finished. The CEBR commands
that perform these transfers allow you to add records to a transient data queue and
remove all records from a transient data queue.

Some installations restrict the use of the CEBR transaction, particularly in
production systems, to prevent modifications that were not intended or not
authorized. Installations also may protect individual resources, including temporary
storage and transient data queues. If you are using the CEBR transaction and
experience an abend described as a security failure, you probably have attempted
to access a queue to which your user ID is not authorized.

This chapter describes:
v “Using the CEBR transaction”
v “What does the CEBR transaction display?” on page 635
v “Using the CEBR function keys” on page 636
v “Using the CEBR commands” on page 637
v “Using the CEBR transaction with transient data” on page 639

Using the CEBR transaction
You start the CEBR transaction by entering the transaction identifier CEBR, followed
by the name of the queue you want to browse. You can choose a name of up to 16
characters. For example, to display the temporary storage queue named
AXBYQUEUENAME111 you type CEBR AXBYQUEUENAME111 and press ENTER. If the
queue name includes lower case characters, ensure that upper case translation is
suppressed for the terminal you are using, and then enter the correct combination
of upper and lower case characters. CICS responds with a display of the queue, for
example, as shown in Figure 149 on page 634.

Alternatively, you can start the CEBR transaction from the CEDF transaction. You
do this by pressing PF5 from the initial CEDF screen (see Figure 134 on page 611)
which takes you to the working-storage screen, and then pressing PF2 from that
screen to browse temporary storage (that is, invoke the CEBR transaction). CEBR
can also be started from CEMT I TSQ by entering 'b' at the queue to be browsed.
The CEBR transaction responds by displaying the temporary storage queue whose
name consists of the four letters CEBR followed by the four letters of your terminal
identifier. (CICS uses this same default queue name if you invoke the CEBR
transaction directly and do not supply a queue name.) The result of invoking the
CEBR transaction without a queue name or from an EDF session at terminal S21A
is shown in Figure 150. If you enter the CEBR transaction from the CEDF
transaction, you return to the EDF panel when you press PF3 from the CEBR
screen.

© Copyright IBM Corp. 1989, 2010 633

CEBR TSQ AXBYQUEUENAME111 SYSID CIJP REC 1 OF 3 COL 1 OF 5
ENTER COMMAND ===>

************************** TOP OF QUEUE *******************************
00001 HELLO
00002 HELLO
00003 HELLO

************************* BOTTOM OF QUEUE *****************************

PF1 : HELP PF2 : SWITCH HEX/CHAR PF3 : TERMINATE BROWSE
PF4 : VIEW TOP PF5 : VIEW BOTTOM PF6 : REPEAT LAST FIND
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : UNDEFINED
PF10: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: UNDEFINED

Figure 149. Typical CEBR display of temporary storage queue contents

CEBR TSQ AXBYQUEUEAME1AA SYSID CIJP REC 1 OF 0 COL 1 OF �1�
ENTER COMMAND ===> �2�

************************** TOP OF QUEUE ******************************
************************* BOTTOM OF QUEUE ****************************

�3�

TS QUEUE AXBYQUEUEAME1AA DOES NOT EXIST �4�
PF1 : HELP PF2 : SWITCH HEX/CHAR PF3 : TERMINATE BROWSE �5�
PF4 : VIEW TOP PF5 : VIEW BOTTOM PF6 : REPEAT LAST FIND
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : UNDEFINED
PF10: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: UNDEFINED

Note: �1�Header �2�Command area �3�Body �4�Message line �5�Menu of options

Figure 150. Typical CEBR display of default temporary storage queue

634 CICS TS for z/OS: CICS Application Programming Guide

What does the CEBR transaction display?
As shown in Figure 150 on page 634, a CEBR transaction display consists of a
header, a command area, a body (the primary display area), a message line, and a
menu of functions you can select at this point.

The header
The header shows:

v The transaction being run, that is, CEBR.

v The identifier of the temporary storage queue (AXBYQUEUEAME111 in
Figure 149 on page 634 and (AXBYQUEUEAME1AA in Figure 150 on page 634).
You can overtype this field in the header if you want to switch the screen to
another queue. If the queue name includes lower case characters, ensure that
upper case translation is suppressed for the terminal you are using, and then
enter the correct combination of upper and lower case characters.

v The system name that corresponds to a temporary storage pool name or to a
remote system. If you have not specified one, the name of the local system is
displayed. You can overtype this field in the header if you want to browse a
shared or remote queue.

v The number of the highlighted record.

v The number of records in the queue (three in AXBYQUEUEAME111 and none in
AXBYQUEUEAME1AA)

v The position in each record at which the screen starts (position 1 in both cases)
and the length of the longest record (22 for queue AXBYQUEUEAME111 and
zero for queue AXBYQUEUEAME1AA).

The command area
The command area is where you enter commands that control what is to be
displayed and what function is to be performed. These commands are described in
“Using the CEBR commands” on page 637. You can also modify the screen with
function keys shown in the menu of options at the bottom of the screen. The
function keys are explained in “Using the CEBR function keys” on page 636.

The body
The body is where the queue records are shown. Each line of the screen
corresponds to one queue record. If a record is too long for the line, it is truncated.
You can change the portion of the record that is displayed, however, so that you
can see an entire record on successive screens. If the queue contains more
records than will fit on the screen, you can page forward and backward through
them, or specify at what record to start the display, so that you can see all the
records you want.

The message line
CEBR uses the message line between the body and menu to display messages to
the user, such as the “Does not exist” message in Figure 150 on page 634.

Chapter 51. Temporary storage browse (CEBR) 635

Using the CEBR function keys
The function keys that you can use at any time are displayed at the bottom of every
CEBR transaction screen. The keys have the same meaning on all screens. If your
terminal does not have PF keys, you can simulate their use by placing the cursor
under the description and pressing ENTER. Where a terminal has 24 function keys,
the CEBR transaction treats PF13 through PF24 as duplicates of PF1 through PF12
respectively.

PF1 HELP
Displays a help screen that lists all the commands you can use when the CEBR
transaction is running. You can return to the main screen by pressing ENTER.

PF2 SWITCH HEX/CHAR
Switches the screen from character to hexadecimal format, and back again.

PF3 TERMINATE BROWSE
Terminates the CEBR transaction. If you entered the CEBR transaction directly,
it frees up your terminal for the next transaction. If you entered from an EDF
session, it returns you to the working-storage screen from which you entered. If
you entered from CEMT I TSQ, it returns you to the CEMT screen.

PF4 VIEW TOP
Displays the first records in the queue and has the same effect as the TOP
command.

PF5 VIEW BOTTOM
Displays the last records in the queue and has the same effect as the BOTTOM
command.

PF6 REPEAT LAST FIND
Repeats the previous FIND command.

PF7 SCROLL BACK HALF
Moves the display backward by one-half the number of records that fit on the
screen, so that the records on the top half of the screen move to the bottom
half.

PF8 SCROLL FORWARD HALF
Advances the display by one-half the number of records that fit on the screen,
so that the records on the bottom half of the screen move to the top half.

PF9 VIEW RIGHT (or VIEW LEFT)
Changes the screen to show the columns immediately after (to the right of) or
before (to the left of) the columns currently on display. The key is not defined if
the entire record fits on one line of the screen. It moves you to the right until the
end of the record is reached, and then reverses to move left back to the
beginning of the record. You can also use the COLUMN command to change
the column at which the display begins.

PF10 SCROLL BACK FULL
Moves the screen backward by the number of records that fit on the screen, to
show the records immediately before those currently on display.

PF11 SCROLL FORWARD FULL
Advances the screen by the number of records that will fit on the screen, to
show the records immediately after those currently on display.

636 CICS TS for z/OS: CICS Application Programming Guide

Using the CEBR commands
Here is a list of the CEBR commands that you can use to view and manipulate the
records in the temporary storage queue.

BOTTOM
(Abbreviation: B)

Shows the last records in the temporary storage queue (as many as fill up the
body of the screen, with the last record on the last line).

COLUMN nnnn
(Abbreviation: C nnnn)

Displays the records starting at character position (column) nnnn of each
record. The default starting position, assumed when you initiate the CEBR
transaction, is the first character in the record.

FIND /string
(Abbreviation: F /string)

Finds the next occurrence of the specified string. The search starts in the
record after the current record. The current record is the one that is
highlighted. In the initial display of a queue, the current record is set to one, and
therefore the search begins at record two.

If the string is found, the record containing the string becomes the highlighted
line, and the display is changed to show this record on the second line. If you
cannot see the search string after a successful FIND, it is in columns of the
record beyond those on display; use the scroll key or the COLUMN command
to shift the display right or left to show the string.

For example:
FIND /05-02-93

locates the next occurrence of the string “05-02-93” The / character is a
delimiter. It does not have to be /, but it must not be a character that appears in
the search argument. For example, if the string you were looking for was
“05/02/93” instead of “05-02-93”, you could not use the following:
FIND /05/02/93

There is a slash in the search string. The following examples would work:
FIND X05/02/93 or FIND S05/07/93

Any delimiter except a / or one of the digits in the string works. If there are any
spaces in the search string, you must repeat the delimiter at the end of the
string. For example:
FIND /CLARE JACKSON/

The search string is not case-sensitive. When you have entered a FIND
command, you can repeat it (that is, find the next occurrence of the string) by
pressing PF6.

GET xxxx
(Abbreviation: G xxxx)

Transfers the named transient data queue to the end of the temporary storage
queue currently on display. This enables you to browse the contents of the
queue. xxxx must be either the name of an intrapartition transient data queue,
or the name of an extrapartition transient data queue that has been opened for
input. See “Using the CEBR transaction with transient data” on page 639 for
more information about browsing transient data queues.

Chapter 51. Temporary storage browse (CEBR) 637

LINE nnnn
(Abbreviation: L nnnn)

Starts the body of the screen at the queue record one prior to nnnn, and sets
the current line to nnnn. (This arrangement causes a subsequent FIND
command to start the search after record nnnn.)

PURGE
Deletes the queue being browsed.

Do not use PURGE to delete the contents of an internally generated queue,
such as a BMS logical message.

Note: If you purge a recoverable temporary storage queue, no other task can
update that queue (add a record, change a record, or purge) until your
task ends.

PUT xxxx
(Abbreviation: P xxxx)

Copies the temporary storage queue that is being browsed to the named
transient data queue. xxxx must be either the name of an intrapartition transient
data queue, or the name of an extrapartition transient data queue that has been
opened for output. See “Using the CEBR transaction with transient data” on
page 639 for more information about creating or restoring a transient data
queue.

QUEUE xxxxxxxxxxxxxxxx
(Abbreviation: Q xxxxxxxx)

Changes the name of the queue you are browsing. The value that you specify
can be in character format using up to 16 characters (for example, QUEUE
ABCDEFGHIJKLMNOP) or in hexadecimal format (for example, QUEUE
X'C1C2C3C4'). If the queue name includes lower case characters, ensure that
upper case translation is suppressed for the terminal you are using, and then
enter the correct combination of upper and lower case characters. The CEBR
transaction responds by displaying the data that is in the named queue.

You can also change the queue name by overtyping the current value in the
header.

SYSID xxxx
(Abbreviation: S xxxx)

Changes the name of the temporary storage pool or remote system where the
queue is to be found.

You can also change this name by overtyping the current SYSID value in the
header.

Note: If ISC is not active in the CICS system on which the CEBR transaction is
running then the SYSID will default to the local SYSID.

TERMINAL xxxx
(Abbreviation: TERM xxxx)

Changes the name of the queue you are browsing, but is tailored to
applications that use the convention of naming temporary storage queues that
are associated with a terminal by a constant in the first four characters and the
terminal name in the last four. The new queue name is formed from the first
four characters of the current queue name, followed by xxxx.

638 CICS TS for z/OS: CICS Application Programming Guide

TOP
(Abbreviation: T)

Causes the CEBR transaction to start the display at the first record in the
queue.

Using the CEBR transaction with transient data
The GET command reads each record in the transient data queue that you specify
and writes it at the end of the temporary storage queue you are browsing, until the
transient data queue is empty. You can then view the records that were in the
transient data queue. When you have finished your inspection, you can copy the
temporary storage queue back to the transient data queue (using the PUT
command). This usually leaves the transient data queue as you found it, but not
always. Here are some points you need to be aware of when using the GET and
PUT commands:

v If you want to restore the transient data queue unchanged after you have
browsed it, make sure that the temporary storage queue on display at the time of
the GET command is empty. Otherwise, the existing temporary storage records is
copied to the transient data queue when the subsequent PUT command is
issued.

v After you get a transient data queue and before you put it back, other tasks may
write to that transient data queue. When you issue your PUT command, the
records in the temporary storage queue are copied after the new records, so that
the records in the queue are no longer in the order in which they were originally
created. Some applications depend on sequential processing of the records in a
queue.

v After you get a recoverable transient data queue, no other task can access that
queue until your transaction ends. If you entered the CEBR transaction from the
CEDF transaction, the CEDF transaction must end, although you can respond
“yes” to the “continue” question if you are debugging a pseudoconversational
sequence of transactions. If you invoked the CEBR transaction directly, you must
end it.

v Likewise, after you issue a PUT command to a recoverable transient data queue,
no other task can access that queue until your transaction ends.

The GET and PUT commands do not need to be used as a pair. You can add to a
transient data queue from a temporary storage queue with a PUT command at any
time. If you are debugging code that reads a transient data queue, you can create a
queue in temporary storage (with the CECI transaction, or the CEBR GET
command, or by program) and then refresh the transient data queue as many times
as you like from temporary storage. Similarly, you can empty a transient data queue
by using a GET command without a corresponding PUT command.

Chapter 51. Temporary storage browse (CEBR) 639

640 CICS TS for z/OS: CICS Application Programming Guide

Chapter 52. Command-level interpreter (CECI)

You can use the command-level interpreter (CECI) transaction to check the syntax
of CICS commands and process these commands interactively on a 3270 screen.
CECI allows you to follow through most of the commands to execution and display
the results. It also provides you with a reference to the syntax of the whole of the
CICS command-level application programming and system programming interface.

CECI interacts with your test system to allow you to create or delete test data,
temporary storage queues, or to deliberately introduce wrong data to test out error
logic. You can also use CECI to repair corrupted database records on your
production system.

The interpreter is such a powerful tool that your installation may restrict its use with
attach-time security. (The external security manager used by your installation
defines the security attributes for the CECI and CECS transactions.) If this has
been done, and you are not authorized to use the interpreter transaction you select,
you will not be able to initiate the transaction.

This chapter describes:
v “What does CECI display?”
v “Using CECI” on page 648
v “Using the CECI function keys” on page 650
v “Saving commands” on page 653
v “How CECI runs” on page 654

What does CECI display?
All CECI screens have the same basic layout. As shown in Figure 153 on page 648,
CECI displays consist of:
v “The command line”
v “The status line” on page 642
v “The body” on page 646
v “The message line” on page 646
v “CECI options on function keys” on page 646

The command line
The command line is the first line of the screen. You enter the command you want
to process or whose syntax you want to check here. This can be the full or
abbreviated syntax. The rules for entering and abbreviating the command are:

v The keywords EXEC CICS are optional.

v The options of a command can be abbreviated to the number of characters
sufficient to make them unique. Valid abbreviations are shown in uppercase
characters in syntax displays in the body of the screen.

v The quotes around character strings are optional, and all strings of characters
are treated as character-string constants unless they are preceded by an
ampersand (&), in which case they are treated as variables.

v Options of a command that receive a value from CICS when the command is
processed are called receivers, and need not be specified. The value received
from CICS is included in the syntax display, and stored in the variable if one has
been specified, after the command has been processed.

© Copyright IBM Corp. 1989, 2010 641

v If you issue a CECI command with two of the keywords in conflict, CECI ignores
the first keyword and issues an error message, such as this one, from a READ
command:
E INTO option conflicts with SET option and is ignored

v If you put a question mark in front of your command, the interpreter stops after
the syntax check, even if you have used the transaction code CECI. If you want
to proceed with execution, remove the question mark.

The following example shows the abbreviated form of a command. The file control
command:
EXEC CICS READ FILE(’FILEA’) RIDFLD(’009000’) INTO(&REC)

can be entered on the command input line, as:
READ FIL(FILEA) RID(009000)

or at a minimum, as:
READ F(FILEA) RI(009000)

In the first form, the INTO specification creates a variable, &REC, into which the
data is to be read. However, INTO is a receiver (as defined above) and you can
omit it. When you do, CICS creates a variable for you automatically.

The status line
As you go through the process of interpreting a command, CECI presents a
sequence of displays. The format of the body of the screen is essentially the same
for all; it shows the syntax of the command and the option values selected. The
status line on these screens tells you where you are in the processing of the
command, and is one of:
v COMMAND SYNTAX CHECK
v ABOUT TO EXECUTE COMMAND
v COMMAND EXECUTION COMPLETE
v COMMAND NOT EXECUTED

From any of these screens, you can select additional displays. When you do, the
body of the screen shows the information requested, and the status line identifies
the display, which may be any of:
v EXPANDED AREA
v VARIABLES
v EXEC INTERFACE BLOCK
v SYNTAX MESSAGES

These screens are described in “Using the CECI function keys” on page 650. You
can request them at any time during processing and then return to the command
interpretation sequence.

There is also one input field in the status line called NAME=. This field is used to
create and name variables, as explained in “Variables” on page 650 and “Saving
commands” on page 653.

642 CICS TS for z/OS: CICS Application Programming Guide

Command syntax check
When the status line shows command syntax check (as shown in Figure 153 on
page 648), it indicates that the command entered on the command input line has
been syntax checked but is not about to be processed. This is always the status if
you enter CECS or if you precede your command with a question mark. It is also
the status when the syntax check of the command gives severe error messages.

In addition, you get this status if you attempt to execute one of the commands that
the interpreter cannot execute. Although any command can be syntax-checked,
using either CECS or CECI, the interpreter cannot process the following commands
any further:

v EXEC CICS commands that depend upon an environment that the interpreter
does not provide:

FREE

FREEMAIN

GETMAIN

HANDLE ABEND

HANDLE AID

HANDLE CONDITION

IGNORE CONDITION

POP HANDLE

PUSH HANDLE

SEND LAST

SEND PARTNSET

WAITCICS

WAIT EVENT

WAIT EXTERNAL

v BMS commands that refer to partitions (because the display cannot be restored
after the screen is partitioned)

v EXEC DLI

v CPI Communication (CPI-C) commands

v SAA Resource Recovery interface (CPI-RR) commands

Chapter 52. Command-level interpreter (CECI) 643

About to execute command
This display (as shown in Figure 151) appears when none of the reasons for
stopping at command syntax check applies.

If you press the ENTER key at this point without changing the screen, CECI
executes the command. You can still modify it at this point, however. If you do,
CECI ignores the previous command and processes the new one from scratch. This
means that the next screen displayed is command syntax check if the command
cannot be executed or else about to execute command if the command is correct.

READ FILE(’FILEA’) RIDFLD(’009000’)
STATUS: ABOUT TO EXECUTE COMMAND NAME=
EXEC CICS READ
File(’FILEA ’)
< SYsid() >
SEt() | Into()
< Length() >
RIdfld(’009000’)
< Keylength() < GEneric > >
< RBa | RRn | DEBRec | DEBKey >
< GTeq | Equal >
< Update < Token() > >

PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 151. Typical CECI display for about to execute command

644 CICS TS for z/OS: CICS Application Programming Guide

Command execution complete
This display (as shown in Figure 152) appears after the interpreter has executed a
command, in response to the ENTER key from an unmodified about to execute
command screen.

The command has been processed and the results are displayed on the screen.

Any receivers, whether specified or not, together with their CICS-supplied values,
are displayed intensified.

INQUIRE FILE NEXT
STATUS: COMMAND EXECUTION COMPLETE NAME=
EXEC CICS INquire File(’DFHCSD ’)
< STArt | END | Next >
< ACcessmethod(+0000000003) >
< ADd(+0000000041) >
< BAsedsname(’ ’) >
< BLOCKFormat(+0000000016) >
< BLOCKKeylen(-0000000001) >
< BLOCKSize(-0000000001) >
< BRowse(+0000000039) >
< DElete(+0000000043) >
< DIsposition(+0000000027) >
< DSname(’CFV01.CICS03.PSK.CSD ’) >
< EMptystatus(+0000000032) >
< ENAblestatus(+0000000033) >
< EXclusive(+0000000001) >
< Fwdrecstatus(+0000000361) >
< Journalnum(+00000) >

+ < KEYLength(+0000000000) >

RESPONSE: NORMAL EIBRESP=+0000000000 EIBRESP2=+0000000000
PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 152. Typical CECI display for command execution complete

Chapter 52. Command-level interpreter (CECI) 645

The body
The body of command syntax check, about to execute command, and
command execution complete screens contains information common to all three
displays.

The full syntax of the command is displayed. Options specified in the command line
or assumed by default are intensified, to show that they are used in executing the
command, as are any receivers. The < > brackets indicate that you can select an
option from within these brackets. If you make an error in your syntax, CECI
diagnoses it in the message area that follows the body, described in “The message
line.” If there are too many diagnostic messages, the rest of the messages can be
displayed using PF9.

Arguments can be displayed in either character or hexadecimal format. You can use
PF2 to switch between formats. In character format, some characters are not
displayable (including lowercase characters on some terminals); CECI shows them
as periods. You need to switch to hexadecimal to show the real values, and you
need to use caution when modifying them, as explained in “Making changes” on
page 649.

If the value of an option is too long for the line, only the first part is displayed
followed by “...” to indicate there is more. You can display the full value by
positioning the cursor at the start of the option value and pressing ENTER. This
produces an expanded display described in “Expanded area” on page 650.

If the command has more options than can fit on one screen, a plus sign (+)
appears at the left-hand side of the last option of the current display to indicate that
there are more. An example of this is shown in Figure 152 on page 645. You can
display additional pages by scrolling with the PF keys.

The message line
CECI uses the message line to display error messages. After execution of a
command, the message line shows the response code. Figure 153 on page 648
shows an error message, where the user has omitted a required field. The S that
precedes the message indicates that it is severe (bad enough to prevent execution).
There are also warning messages (flagged by W) and error messages (flagged by
E), which provide information without preventing execution. E messages indicate
option combinations unusual enough that they may not be intended and warrant a
review of the command before you proceed with execution.

Where there are multiple error messages, CECI creates a separate display
containing all of them, and uses the message line to tell you how many there are,
and of what severity. You can get the message display with PF9, as explained in
“Using the CECI function keys” on page 650.

Figure 152 on page 645 shows the second use of the message line, to show the
result of executing a command. CECI provides the information in both text
(NORMAL in the example in Figure 152 on page 645) and in decimal form (the
EIBRESP and EIBRESP2 value).

CECI options on function keys
The single line at the foot of the screen provides a menu indicating the effect of the
PF keys for the display.

646 CICS TS for z/OS: CICS Application Programming Guide

The PF keys are described below. If the terminal has no PF keys, the same effect
can be obtained by positioning the cursor under the required item in the menu and
pressing ENTER.

PF1 HELP
displays a HELP panel giving more information on how to use the command
interpreter and on the meanings of the PF keys.

PF2 HEX
(SWITCH HEX/CHAR) switches the display between hexadecimal and character
format. This is a mode switch; all subsequent screens stay in the chosen mode
until the next time this key is pressed.

PF3 END
(END SESSION) ends the current session of the interpreter.

PF4 EIB
(EIB DISPLAY) shows the contents of the EXEC interface block (EIB). An
example of this screen is shown in Figure 155 on page 652.

PF5 VAR
(VARIABLES) shows all the variables associated with the current command
interpreter session, giving the name, length, and value of each. See Variables
for more information about the use of this PF key.

PF6 USER
(USER DISPLAY) shows the current contents of the user display panel (that is,
what would appear on the terminal if the commands processed thus far had
been executed by an ordinary program rather than the interpreter). This key is
not meaningful until a terminal command is executed, such as SEND MAP.

PF7 SBH
(SCROLL BACK HALF) scrolls the body half a screen backward.

PF8 SFH
(SCROLL FORWARD HALF) scrolls the body half a screen forward.

PF9 MSG
(DISPLAY MESSAGES) shows all the messages generated during the syntax
check of a command.

PF10 SB
(SCROLL BACK) scrolls the body one full screen backward.

PF11 SF
(SCROLL FORWARD) scrolls the body one full screen forward.

Chapter 52. Command-level interpreter (CECI) 647

Using CECI
You start the command-level interpreter by entering either of two transaction
identifiers, CECS or CECI, followed by the name of the command you want to test.
You can list command options too, although you can also do this later. For example:
CECS READ FILE(’FILEA’)

or
CECI READ FILE(’FILEA’)

CICS responds with a display of the command and its associated functions, options,
and arguments, as shown in Figure 153. If you leave out the command, CECI
provides a list of possible commands to get you started. You can use any of the
commands described for programming purposes in the CICS Application
Programming Reference and the CICS System Programming Reference manuals.
CECI also supports the FEPI commands provided for the CICS Front End
Programming Interface.

If you use the transaction code CECS, the interpreter simply checks your command
for correct syntax. If you use CECI, you have the option of executing your
command once the syntax is correct. (CICS uses two transaction identifiers to allow
different security to be assigned to syntax checking and execution.)

READ FILE(’FILEA’) �1�
STATUS: COMMAND SYNTAX CHECK NAME= �2�
EXEC CICS READ
File(’FILEA ’)
< SYsid() > �3�
SEt() | Into()
< Length() >
RIdfld()
< Keylength() < GEneric > >
< RBa | RRn | DEBRec | DEBKey >
< GTeq | Equal >
< Update < Token() > >

S Option RIDFLD has been omitted or specified with an invalid value,
the command cannot be executed. �4�

PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF�5�

Note: �1�Command line�2�Status line�3�Body�4�Message line�5�Menu of
functions

Figure 153. Typical CECI display for command syntax check

648 CICS TS for z/OS: CICS Application Programming Guide

Making changes
Until CICS executes a command, you can change it by changing the contents of the
command line, by changing the option values shown in the syntax display in the
body, or by changing the values of variables on the variables screen. (You can still
make changes after a command is executed, but, unless they are in preparation for
another command, they have no effect.)

When you make your changes in the command line or on the variables screen,
they last for the duration of the CECI transaction. If you make them in the body of
the syntax screen, however, they are temporary. They last only until the command
is executed and are not reflected in the command line.

As noted earlier, not all characters are displayable on all terminals. When the
display is in character rather than hexadecimal format, CECI shows these
characters as periods (X'4B'). When you overtype a period, you should be aware
that the current value may not be a period but an undisplayable character.

Furthermore, you cannot change a character to a period when the display is in
character mode. If you attempt this, CECI ignores your change, and does not issue
a diagnostic message. To make such a change, you have to switch the display to
hexadecimal and enter the value (X'4B') that represents a period.

There is a restriction on changes in hexadecimal format as well. If you need to
change a character to a blank, you cannot enter the code (X'40') from a
hexadecimal display. Again, your change is ignored and CECI does not issue a
message. Instead, you must switch to character mode and blank out the character.

After every modification, CECI rechecks your syntax to ensure that no errors have
appeared. It restarts processing at the command syntax check if there are any
execution-stoppers, and at about to execute command if not. Only after you press
ENTER on an unmodified about to execute command screen does CECI execute
your command.

Chapter 52. Command-level interpreter (CECI) 649

Using the CECI function keys
Additional screens of information are available when you press the relevant PF key,
described in “CECI options on function keys” on page 646. You can get back to
your original screen by pressing ENTER from an unmodified screen.

Expanded area
This display uses the whole of the body of the screen to display a variable selected
with the cursor. The cursor can be positioned at the start of the value of an option
on a syntax display, or under the ampersand of a variable in a variables display.
Pressing ENTER then gives the expanded area display. The scrolling keys can be
used to display all the information if it exceeds a full screen.

Variables
Figure 154 shows the result of requesting a variables display, obtained by pressing
PF5. For each variable associated with the current interpreter session, it shows the
name, length, and value.

The first three variables displayed are created for you by CECI and always appear
unless you explicitly delete them. They are designed to help you create command
lists, as described in “Saving commands” on page 653, as well as to serve as
examples.

After these three, you see any variables that you have created. The fourth one in
Figure 154, &REC, is the result of executing:
READ FILE(’FILEA’) RID(’009000’) INTO(&REC)

Normally, the value supplied for an option in the command line is taken as a
character string constant. However, sometimes you need to specify a variable to
represent this value, as when you want to connect two commands through option
values.

READ FILE(’FILEA’) RIDFLD(’009000’)INTO(&REC)
VARIABLES LENGTH DATA
&DFHC +00016 THIS IS A SAMPLE
&DFHW +00046 EXEC CICS WRITEQ QUEUE(’ CIS200’) FROM(&DFHC)
&DFHR +00045 EXEC CICS READQ QUEUE(’ CIS200’) INTO(&DFHC)
&REC +00080 482554 D694 72 WIDGET, .007 TEST 100

PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 9 MSG

Figure 154. Typical CECI display of variables associated with a CECI session

650 CICS TS for z/OS: CICS Application Programming Guide

For example, to change a record with CECI, you might first enter:
EXEC CICS READ UPDATE INTO(&REC)

FILE(’FILEA’) RID(’009000’)

You would then modify the record as required by changing the variable &REC, and
then enter:
EXEC CICS REWRITE FROM(&REC) FILE(’FILEA’)

The ampersand (&) in the first position tells CECI that you are specifying a variable.

A variable is also useful when the values of the options cause the command to
exceed the line length of the command input area. Creating variables with the
required values and specifying the variable names in the command overcomes the
line length limitation.

Defining variables
Variables can have a data type of character, fullword, halfword, or packed decimal,
and you can create them in any of the following ways:

v By naming the variable in a receiver (&REC in Figure 154 on page 650, for
example). The variable is created when the command is processed. The data
type and length are implied by the option.

v By adding new entries to the list of variables already defined. To create a new
variable, simply type its name and length in the appropriate columns on the first
unused line of the variables display, and then press ENTER. For character
variables, use the length with which the variable has been defined. For fullwords
or halfwords, type F or H. For packed variables, use the length in bytes,
preceded by a P.

Character variables are initialized to blanks. The others are initialized to zero in
the appropriate form. Once a variable is created, you can change the value by
modifying the data field on the variables display.

v By using the NAME field on the status line when you have produced an
expanded area display of a particular option. You do this by positioning the
cursor under the option on a syntax display and pressing ENTER. Then you
assign the variable name you want associated with the displayed option value by
typing it into the NAME field and pressing ENTER again.

v By copying an existing variable. You do this by obtaining an expanded area
display of the variable to be copied, overkeying the name displayed with the
name of the new variable, and pressing ENTER.

v By using the NAME field directly on a syntax display. This creates a character
variable whose contents are the character string on the command line, for use in
command lists as explained in “Saving commands” on page 653.

You can also delete a variable, although you do not usually need to, as CECI
discards all variables at session end. To delete one before session end, position the
cursor under the ampersand that starts the name, press ERASE EOF, and then
press ENTER.

Chapter 52. Command-level interpreter (CECI) 651

The EXEC interface block (EIB)
You can display the EIB associated with the CECI transaction by pressing PF4.
Figure 155 shows an example of the contents of the EXEC interface block (EIB).

The fields in the EIB are described for programming purposes in the CICS
Application Programming Reference manual.

Error messages display
When there are more messages than CECI can display on the message line, you
can display all of them by pressing PF9.

READ FILE(’FILEA’) RIDFLD(’009000’)
EXEC INTERFACE BLOCK
EIBTIME = +0124613
EIBDATE = +0091175
EIBTRNID = ’CECI’
EIBTASKN = +0000046
EIBTRMID = ’S200’
EIBCPOSN = +00004
EIBCALEN = +00000
EIBAID = X’7D’
EIBFN = X’0000’
EIBRCODE = X’000000000000’
EIBDS = ’........’
EIBREQID = ’........’
EIBRSRCE = ’ ’
EIBSYNC = X’00’
EIBFREE = X’00’
EIBRECV = X’00’
EIBATT = X’00’
EIBEOC = X’00’

+ EIBFMH = X’00’

PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 155. Typical CECI display of the EIB

652 CICS TS for z/OS: CICS Application Programming Guide

Saving commands
Sometimes you may want to execute a command, or a series of commands, under
CECI, repeatedly. One technique for doing this is to create a temporary storage
queue containing the commands. You then alternate reading the command from the
queue and executing it.

CECI provides shortcuts both for creating the queue and for executing commands
from it. To create the queue:

1. Start a CECI session.

2. Enter the first (or next) command you want to save on the command line, put
&DFHC in the NAME field in the status line, and press ENTER. This action
causes the usual syntax check, and it also stores your command as the value of
&DFHC, which is the first of those three variables that CECI always defines for
you. (See Figure 154 on page 650.) If you select the variables display at this
point, you will see that &DFHC is the value of your command.

3. After the syntax is correct but before execution (on the about to execute
command screen), change the command line to &DFHW and press ENTER.
This causes CECI to use the value of &DFHW for the command to be executed.
&DFHW is the second of the variables CECI supplies, and it contains a
command to write the contents of variable &DFHC (that is, your command) to
the temporary storage queue named “ CItttt”, where “tttt” is the name of your
terminal and two blanks precede the letters “CI”.

4. Execute this WRITEQ command (through the command execution complete
screen). This stores your command on the queue.

5. If you want to save more than one command, repeat steps 2 to 4 for each.

When you want to execute the saved commands from the list, do the following:

READ
SYNTAX MESSAGES
S FILE must be specified.
S RIDFLD must be specified.

PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 10 SB 11 SF

Figure 156. Typical CECI display of the message display

Chapter 52. Command-level interpreter (CECI) 653

1. Enter &DFHR on the command line and press ENTER. &DFHR is the last of the
CECI-supplied variables, and it contains a command to read the queue that was
written earlier. Execute this command; it brings the first (next) of the commands
you saved into the variable &DFHC.

2. Then enter &DFHC on the command line and press ENTER. CECI replaces the
command line with the value of &DFHC, which is your command. Press ENTER
to execute your command.

3. Repeat these two steps, alternating &DFHR and &DFHC on the command line,
until you have executed all of the commands you saved.

You can vary this procedure to suit your needs. For example, you can skip
commands in the sequence by simply skipping step (2). You can change the
options of the saved command before executing it in the same way as a command
entered normally.

If you want to repeat execution of the saved sequence, you need to specify the
option ITEM(1) on the first execution of the READQ command, in order to reposition
your read to the beginning of the queue.

How CECI runs
There are several things you should know about how the interpreter works, in order
to use it properly. These include:
v CECI sessions
v Abends
v Exception conditions
v Program control commands
v Terminal sharing
v Saving commands
v Shared storage

CECI sessions
The interpreter runs as a transaction, using programs supplied by CICS. It is
conversational, which means that everything you do between the start of a session
(entering CECI) and the end (PF3) is a single logical unit of work in a single task.
This means that locks and enqueues produced by commands you execute remain
for the duration of your session. If you read a record for update from a recoverable
file, for example, that record is not available to any other task until you end CECI.

Abends
CECI executes all commands with the NOHANDLE option, so that execution errors
do not ordinarily cause abends.

CECI also issues a HANDLE ABEND command at the beginning of the session, so
that it does not lose control even if an abend occurs. Consequently, when you get
one, CECI handles it and there is no resource backout. If you are doing a series of
related updates to protected resources, you need to be sure that you do not do
some of them and then find you cannot complete the others. If you find yourself in
this situation, you can execute a SYNCPOINT ROLLBACK command or an ABEND
command with the CANCEL option to remove the effects of your earlier commands
on recoverable resources.

654 CICS TS for z/OS: CICS Application Programming Guide

#

Exception conditions
For some commands, CECI may return exception conditions even when all
specified options are correct. This occurs because, on some commands, CECI uses
options that you do not specify explicitly. For example, the ASSIGN command
always returns the exception condition INVREQ under CECI. Even though it may
return the information you requested correctly, it will have attempted to get
information from other options, some of which are invalid.

Program control commands
Because the interpreter is itself an application program, the interpretation of some
program control commands may produce different results from an application
program executing those commands. For example, ABEND command is
intercepted, as noted above, unless you use the CANCEL option.

If you execute a LINK command, the target program executes, but in the
environment of the interpreter, which may not be the one expected. In particular, if
you modify a user display during a linked-to program, the interpreter will not be
aware of the changes.

Similarly, if you interpret an XCTL command, CECI passes control to the named
program and never gets control back, so that the CECI session is ended.

Terminal sharing
When the command being interpreted is one that uses the same screen as the
interpreter, the command interpreter manages the sharing of the screen between
the interpreter display and the user display.

The user display is restored:
v When the command being processed requires input from the operator
v When the command being processed is about to modify the user display
v When USER DISPLAY is requested

Thus, when a SEND command is followed by a RECEIVE command, the display
sent by the SEND command appears twice, once when the SEND command is
processed, and again when the RECEIVE command is processed. It is not
necessary to respond to the SEND command, but, if a response is made, the
interpreter stores it and redisplays it when the screen is restored for the RECEIVE
command.

When the interpreter restores the user display, it does not sound the alarm or affect
the keyboard in the same way as when a SEND command is processed. This is
similar to EDF (see “Using EDF in single-screen mode” on page 620 for more
information).

Shared storage: ENQ commands without LENGTH option
Normally, when you use the EXEC CICS ENQ command without the LENGTH
option, the effect is to specify as the resource a data area with a specific location
(address) in storage. Multiple tasks can enqueue on this resource and must refer to
the same location in storage. CECI is not able to emulate this behavior, because it
uses its own working storage, rather than shared storage.

If you execute an ENQ command in CECI without the LENGTH option, CICS
enqueues on an address within storage owned by the CECI task. Other tasks,

Chapter 52. Command-level interpreter (CECI) 655

#

#
#
#
#
#

#
#

whether CECI or not, cannot enqueue on this same storage. CECI does not provide
support for using shared storage for its variables.

It is not possible to emulate the desired behavior by specifying the storage address
as the RESOURCE option, and adding the LENGTH option, when the ENQ
command is executed in a CECI task, then specifying the same storage address
without the LENGTH option in another CECI or non-CECI task. When the LENGTH
option is specified, CICS enqueues on the value of the resource rather than on its
location. CICS therefore regards the enqueues with and without the LENGTH option
as different enqueues, and the tasks are not serialized as intended.

When the LENGTH option is specified for the same ENQ command issued from
multiple tasks, the enqueue works as expected, because the location of the data
area (whether in storage owned by CECI or in other storage) does not matter when
the LENGTH option is specified.

656 CICS TS for z/OS: CICS Application Programming Guide

#
#

#
#
#
#
#
#
#

#
#
#
#

Chapter 53. Using debuggers with CICS applications

CICS supports the use of workstation-based and host-based debuggers for isolating
and fixing bugs, and for testing applications. This topic provides an overview of the
high-level tasks you must perform before you can use a debugger with CICS
applications, and tells you where to find more information:

Choose between a workstation-based and host-based debugger
When you debug an application program, you interact with the program
through the debugging tools. For example, you may want to examine
storage, set breakpoints, or step through your code. This interaction is a
debugging session. In CICS, you can choose the environment in which you
conduct your debugging session:

Workstation-based
A debugger client on the workstation provides a graphical user
interface which you use to perform the debugging tasks. The
debugger client communicates with a debugger server which runs
on your CICS system, and interacts with the program that is being
debugged.

For more information, see Chapter 54, “Debugging CICS
applications from a workstation,” on page 663.

Host-based
A debugging tool running in your CICS system provides a terminal
interface which you use to perform the debugging tasks. The
debugging tool interacts directly with the application as it executes.

CICS supports Debug Tool for host-based debugging. For more
information, see Chapter 55, “Using Debug Tool with CICS
applications,” on page 665.

Different application programs may have different debugging requirements
(for example, Java programs cannot be debugged in a host-based
debugging session). CICS lets different users use workstation-based and
host-based debugging concurrently in the same region.

Ensure that your application programs will be intercepted by the debugging
tool, and that others will not

Even in a test or development system, most of your application programs
will function correctly most of the time. And when you are debugging, you
will probably want to focus on one application at a time. At the same time,
your colleagues may want to debug different applications. So you will need
a way to specify those programs in your CICS system that are to interact
with your debugging session, and those that are to interact with other users'
debugging sessions, while letting most programs in the system run
normally.

Debugging profiles let you do all this — a debugging profile specifies a set
of application programs which are to be debugged together. When you
make a profile active, the programs it defines run under the control of the
debugger, using a debugging session that you have specified. When you
make the profile inactive, the programs run normally again, as do programs
that are not referred to in debugging profiles. Debugging profiles also let
you define the characteristics of the debugging session that you will use to
debug a particular program.

For more information, see “Debugging profiles” on page 658.

© Copyright IBM Corp. 1989, 2010 657

Prepare your programs for interacting with a debugger
CICS supports application programs written in a variety of languages. The
compiled language programs (COBOL, PL/I, C, C++, and Language
Environment-enabled Assembler subroutines) run under the control of
Language Environment; Java programs run in a Java virtual machine
(JVM). Because there are, essentially, two different runtime environments
for programs, there are two different ways to make your programs interact
with the debugger.

v For compiled language programs, you must decide when you compile
your programs that you want them to interact with the debugger, and
specify the appropriate compiler options. See the compiler documentation
for more information.

v For Java programs, you can decide at run time that you want them to
interact with the debugger, and specify the appropriate JVM options. See
the CICS System Definition Guide for more information.

Ensure that your CICS system is set up to support the debugging
environment

When you have debugging profiles in your CICS system, there is an
overhead in starting a program, even when all the profiles are inactive. This
overhead, although small, is unlikely to be acceptable in a
high-performance production system. In any case, you would not normally
debug your applications in such a system. Therefore, the use of debugging
profiles is optional, and if you want to use them, your system programmer
will need to configure CICS accordingly.

For more information, see the CICS System Definition Guide.

Debugging profiles
A debugging profile specifies a set of one or more application programs which are
to be debugged together. For example:

v All instances of program PYRL01 running in system CICS1

v All Java classes with names beginning “setBankAccount”

v All programs with names beginning “'PYRL'” run by user APPDEV02

CICS uses the following information in the debugging profile to decide if an instance
of a program should run under the debugger's control. The parameters specify:
v The transaction under which the program is running
v The terminal associated with the transaction. You can specify the terminal

identifier or the VTAM netname.
v The name of the program
v For COBOL programs, the name of the compile unit (the program or class name)
v For Java objects, and stateless CORBA objects, the class name
v For enterprise beans, the bean name
v For enterprise beans, and stateless CORBA objects, the method name
v The userid of the signed-on user
v The applid of the CICS region in which the transaction is running

Many of the parameters can be generic, allowing you to specify a set of values
which begin with the same characters (for example, TRN0, TRN1, TRN2, TRNA,
TRNB, ...)

Debugging profiles contain the following additional information:

Status
The status of the profile: active or inactive:

658 CICS TS for z/OS: CICS Application Programming Guide

v When a profile is active, it is examined each time a program is started in
a region for which debugging is required.

Note: If you change a profile while it is active, the changes take effect
immediately: the next time a program is started, the changed
parameters are used to decide if the program should run under
the debugger's control.

v When a profile is inactive, it is ignored when a program is started.

Debugging display device settings
The debugging display device settings specify how you will interact with the
debugger:
v For a Java program, you can use a debugging tool on a workstation
v For a compiled language program, you can use:

a 3270 terminal
a debugging tool on a workstation

The JVM profile name
For Java programs only, you can specify the JVM profile that will be used
when a program is debugged

Debug Tool and Language Environment options
For compiled language programs only, you can specify options to be
passed to Debug Tool and Language Environment when a program is
debugged

You can create debugging profiles for the following sorts of program:
Compiled language programs
Java application programs
Enterprise beans
Stateless CORBA objects

The information stored in the profile is different for each type of program.

Profiles are stored in a CICS file which can be shared by more than one CICS
region. A profile that is shared by several CICS regions is either active or inactive in
all the regions: it cannot be active in some regions and inactive in others.

CICS provides a set of sample profiles which are optionally generated when your
system is set up to use debugging profiles. You can use these profiles as a starting
point for creating your own profiles.

Using debugging profiles to select programs for debugging
To select a program for debugging, you must create one or more debugging
profiles. Each profile specifies a number of parameters that CICS uses to decide if
an instance of a program should run under the debugger's control. Profiles can be
active or inactive: if one of the active profiles matches the program instance, the
program runs under the debugger's control. Inactive profiles are not examined when
CICS starts a program. Profiles are inactive when they are created.

Table 46 on page 660 is an example which shows how parameters in the
debugging profiles are used to select program instances for compiled language
programs; Table 47 on page 660 shows how parameters in a debugging profile are
used to select the program instance for a Java program.

Chapter 53. Using debuggers with CICS applications 659

Table 46. Examples of debugging profile parameters for compiled language programs

Debugging
profile

Transaction Terminal Program User Applid

Profile 1 PRLA T001 PYRL01 TESTER5 CICSTST2

Profile 2 PRLA * PYRL02 * *

Profile 3 PRL* * * * CICSTST3

Table 47. Example of a debugging profile for a Java program

Debugging
profile

Transaction Bean Method User Applid

Profile 4 PRLA NewEmployee setBasicSalary TESTER5 CICSTST2

This is how each profile controls which programs run under the debugger's control:

Profile 1 In this example, all the parameters in the table are specified
explicitly: Program PYRL01 will run under the debugger's control
only if all these conditions are satisfied:

v The transaction is PRLA

v The transaction was started by terminal input from terminal T001

v The transaction is being run by user TESTER5

v The transaction is running in region CICSTST2

Profile 2 In this example, some of the parameters in the table are generic
parameters, specified as *; generic parameters of this type match
all values. This profile specifies that every instance of program
PYRL02 that runs under transaction PRLA will be under the
debugger's control.

Profile 3 This example contains another sort of generic parameter: PRL*
matches all values that start with the characters 'PRL'. This profile
specifies that every program that runs under a transaction whose ID
starts with the characters 'PRL' in region CICSTST3 will be under
the debugger's control.

Profile 4 Method setBasicSalary will run under the debugger's control only if
all these conditions are satisfied:

v The transaction is PRLA

v The method is a method of bean NewEmployee

v The transaction is being run by user TESTER5

v The transaction is running in region CICSTST2

You should choose the parameters that you specify in your debugging profiles with
care, to ensure that programs do not start under the debugger's control
unexpectedly:

v If you can do so, specify values for all, or most, of the parameters, to restrict
debugging to particular programs in particular circumstances. Use specific values
rather than generic values where possible.

v Whenever possible, specify the userid and applid explicitly in each debugging
profile.

v Although it is inadvisable to debug programs in a production region, there may
be times when you need to do so. On these occasions, use a debugging profile
in which all the parameters are specified explicitly.

v Activate debugging profiles only when you need to use them, and inactivate them
immediately after use.

660 CICS TS for z/OS: CICS Application Programming Guide

Using generic parameters in debugging profiles
You can supply generic values for many of the parameters in your debugging
profiles. To specify generic parameters, use an asterisk (*) as a wildcard character.
You can use the wildcard character on its own, or at the end of a parameter.
Leaving a parameter blank is equivalent to specifying an asterisk. For example:

* matches all possible values
TR* matches TR, TRA, TRAA and TRAQ
TRA* matches TRA, TRAA and TRAQ, but not TR

When wildcards are used, a starting program may match more than one active
profile. In this case, CICS selects the profile that is the best match, using the
following principles:

v All parameters must match, either exactly, or when wildcards are considered.

v The best match is a profile that contains no wildcards.

v The next best matches are profiles that contain *. Within this grouping, the best
matches are those that contain the smallest number of * characters, and the
greatest number of explicitly specified characters.

For example, considering transaction TRAA:

v TRAA is the best possible match (all characters match)

v TRA* is a better match than TR*

It is advisable to avoid complex use of wildcards in your debugging profiles, as it is
not always obvious which of many profiles will be the best match for a given
program instance. However, should you need to do so, you can use the information
in Figure 157 to work out exactly which of several profiles will be the best match.

For each field in turn:

1. Count the number of characters (excluding * but including trailing blanks) for
each field (C)

2. Count the number of * characters (A)

3. Determine the length of the field (L)

4. Calculate M as C −(L * A). Note that M may be negative.

For each profile in turn, sum the values of M for all the fields (R).

The profile with the greatest value of R is the best match. If two or more
matching profiles have the same greatest value of R, CICS chooses one of
them, basing its selection on the sequence in which the profiles were created.

Figure 157. The debugging profile matching algorithm

Chapter 53. Using debuggers with CICS applications 661

662 CICS TS for z/OS: CICS Application Programming Guide

Chapter 54. Debugging CICS applications from a workstation

You can debug a CICS application using debugging tools that run on a workstation.
There are two components to the debugging tools in this environment:

v The debugger client, which runs on the workstation. It is through the graphical
user interface (GUI) provided by the debugger client that you interact with the
application program. For example, you can use the debugger client to set
breakpoints, to step through your program, and to examine the variables used by
your program.

v The debugger server, which runs on the same system as the application
program, and communicates with the debugger client.

You can debug the following sorts of CICS applications using a debugger client on
a workstation:

v Applications written in a compiled language (COBOL, PL/I, C, C++)

v Language Environment-enabled Assembler subroutines

v Java applications running in a JVM

v Applications that use a combination of compiled language programs and Java
programs

You cannot debug PLT programs using a debugger client on a workstation.

You can use the following as your debugger client:
WebSphere® Studio Enterprise Developer
WebSphere Studio Application Developer

For compiled languages and Language Environment-enabled Assembler
subroutines, you can use the following products as your debugger server:

v Debug Tool

For Java programs, the debugger server is the Java Virtual Machine (JVM)
executing in debug mode.

Preparing to debug applications from a workstation
Before you can debug CICS applications using a workstation, your system
programmer must prepare your CICS region for debugging. See the CICS System
Definition Guide for more information. You must then complete the following tasks:

1. Install a suitable debugger client in your workstation. You can use the following
product as your debugger client:

WebSphere Studio Enterprise Developer
WebSphere Studio Application Developer

The documentation for these products contains the information you need to
install and use them.

2. Create one or more debugging profiles. A debugging profile specifies which
programs will run under the debugger's control.

Note: A debugging profile is not the same thing as a JVM profile. To debug a
Java application, you need both profiles.

3. If you want to debug programs that are written in COBOL, PL/I, C or C++; or
Language Environment-enabled Assembler subroutines, consider how you want
to conduct your debug session, and compile your programs with the appropriate
options. For more information, see Debug Tool for z/OS User’s Guide.

© Copyright IBM Corp. 1989, 2010 663

4. If you want to debug a Java program, you must ensure that it runs in a Java
virtual machine (JVM) that is enabled for debugging. To do this:

a. Create a JVM profile with parameters which enable the JVM for debugging.
See Java Applications in CICS for more information.

b. Specify the JVM profile when you create a debugging profile for the Java
program. If you do not specify the JVM profile, the JVM uses the profile
specified in the PROGRAM definition.

5. Start the debugger client on your workstation.

6. If you are using WebSphere Studio as your debugger, set at least one
breakpoint in your program.

7. Activate the debugging profiles that define the program instances that you want
to debug. When you activate profiles for compiled language programs, you must
define debugging options that specify the attributes of the debugging session
that is started when the program runs.

When you have completed all these steps, the programs that you have selected at
step 7 will run under the control of a debugger.

664 CICS TS for z/OS: CICS Application Programming Guide

Chapter 55. Using Debug Tool with CICS applications

Debug Tool helps you test programs and examine, monitor, and control the
execution of application programs. This chapter describes how you can use Debug
Tool with CICS application programs. It contains the following topics:
v “About Debug Tool”
v “Preparing to debug applications with Debug Tool”

For detailed information about Debug Tool, see Debug Tool for z/OS User’s Guide.

About Debug Tool
Debug Tool helps you test programs and examine, monitor, and control the
execution of CICS application programs. You can debug the following sorts of CICS
applications using Debug Tool:

v Applications written in a compiled language (COBOL, PL/I, C, C++)

v Language Environment-enabled Assembler subroutines

v Applications that use a combination of compiled language programs and Java
programs. Debug Tool does not debug the Java portions of these applications

You cannot debug PLT programs using Debug Tool.

You can use Debug Tool in four ways:

Single terminal mode
Debug Tool displays its screens on the same terminal as the application

Dual terminal mode
Debug Tool displays its screens on a different terminal than the one used
by the application

Batch mode
Debug Tool does not have a terminal, but uses a commands file for input
and writes output to a log

Remote debug mode
Debug Tool works with a debugger client to display results on a workstation

For more information about Debug Tool, see Debug Tool for z/OS User’s Guide.

Note: If you use Debug Tool in Single terminal mode, or Dual terminal mode, the
terminal which is used by Debug Tool must be a local terminal in the region
where the application is running: you cannot use a terminal on a
terminal-owning region to interact with Debug Tool in an application-owning
region.

Preparing to debug applications with Debug Tool
Before you can debug CICS applications using Debug Tool, your system
programmer must prepare your CICS region for debugging. See the CICS
Application Programming Guide for more information. You must then complete the
following tasks:

1. Consider how you want to conduct your debug session, and compile your
programs with the appropriate options. For more information, see Debug Tool
for z/OS User’s Guide.

© Copyright IBM Corp. 1989, 2010 665

2. Create one or more debugging profiles. A debugging profile specifies which
programs will run under the debugger's control.

3. Activate the debugging profiles that define the program instances that you want
to debug. When you activate the profiles, you must specify the display device
with which you will interact with the debugger.

When you have completed all these steps, the programs that you have selected at
step 3 will run under the control of Debug Tool.

666 CICS TS for z/OS: CICS Application Programming Guide

Part 9. Appendixes

© Copyright IBM Corp. 1989, 2010 667

668 CICS TS for z/OS: CICS Application Programming Guide

Appendix A. Using the phonetic conversion subroutine
DFHPHN

You can use the DFHPHN macro to perform phonetic conversion of 16-character
names (the DFHPHN macro is no longer supported). The result is a 4-byte
phonetic equivalent. DFHPHN is supplied in CICSTS31.CICS.SDFHLOAD. For
online code, DFHPHN takes the following parameters:

lang
A symbolic reference to a 1-byte argument indicating the programming
language being used. This is X'F0' for COBOL, C/370, and assembler, and
X'F1' for PL/I. If an error occurs during the processing of this request, then X'50'
is returned in this argument; if no error occurs, X'00' is returned. This argument
must be reset to indicate the programming language, before it can be reused.

name
a symbolic reference to the field that contains the 16-character name you want
to convert.

phon
a symbolic reference to the field that contains the 4-byte phonetic equivalent of
the name passed from the subroutine to the calling program.

For example;
Language Command

COBOL CALL ’DFHPHN’ USING lang name phon.
C/370 In the program prior to the main()[statement, code:

#pragma linkage(DFHPHN,OS)
void DFHPHN();

In the program AFTER the main(){ statement, code:

DFHPHN(lang,name,phon);
PL/I CALL DFHPHN (lang,name,phon);
Assembler CALL DFHPHN,(lang,name,phon)

The phonetic code conversion subroutine (DFHPHN) also assists you to load and
access data sets offline. The steps in creating such a data set would typically be:

1. Create the keys
a. Read a record from the source data set
b. Generate the “phon” using a call to the DFHPHN subroutine
c. Write the record to a temporary sequential data set

2. Sort the temporary data set on the 4-byte phonetic code

3. Load the key-sequenced VSAM data set
a. Read the sorted temporary data set
b. Write to the keyed data set

© Copyright IBM Corp. 1989, 2010 669

670 CICS TS for z/OS: CICS Application Programming Guide

Appendix B. Migration for OS/VS COBOL programs

Runtime support for OS/VS COBOL programs is now withdrawn. These programs,
which had runtime support in CICS Transaction Server for z/OS Version 2, cannot
run under CICS Transaction Server for z/OS Version 3. This section is provided for
migration purposes to help you upgrade OS/VS COBOL programs.

OS/VS COBOL programs must be upgraded to Language Environment conforming
COBOL, and recompiled against a level of COBOL compiler supported by CICS.
The CICS Release Guide lists the compilers supported by CICS. Enterprise COBOL
for z/OS is the recommended compiler.

For information about writing CICS applications with Enterprise COBOL compilers,
see Chapter 4, “Programming in COBOL,” on page 21.

Conversion to Enterprise COBOL
Many of the changes in the CICS-COBOL interface occur because Enterprise
COBOL simplifies the procedures. This means that you do not need to use some
CICS-specific OS/VS COBOL programming techniques. Of the changes described
in this section, the only one that is mandatory is the replacement (removal) of all
PROCEDURE DIVISION references to BLL cells.

Based addressing
Do not define and manipulate BLL cells. Review programs that use the CICS SET
option and BLL cells, and make the following changes:

v Remove, from the linkage section, the entire structure defining BLL cells and the
FILLER field. See Table 48 on page 672 for further information.

v Revise code that deals with chained storage areas to take advantage of the
ADDRESS special register and POINTER variables.

v Change every SET(BLL cell) option in CICS commands to SET(ADDRESS OF
A-DATA) or SET(A-POINTER) where A-DATA is a structure in the linkage section
and A-POINTER is defined with the USAGE IS POINTER clause.

v Remove all SERVICE RELOAD statements.

v Remove all program statements needed in OS/VS COBOL to address structures
in the linkage section longer than 4KB. A typical statement is:
ADD 4096, D-PTR1 GIVING D-PTR2.

v Remove artificial paragraph names where BLL cells are used to address chained
storage areas.

v Review any program that uses BMS map data structures in its linkage section.
The points to consider are:

– In OS/VS COBOL programs, working storage is part of the compiled and
saved program. Placing the maps in the linkage section reduces the size of
the saved program, saving library space. In Enterprise COBOL, working
storage is not part of the compiled program but is acquired dynamically.

– If your map is in the linkage section, you can acquire and release the map
storage dynamically with CICS GETMAIN and FREEMAIN commands. This
helps you to optimize storage use, and can be useful in a long conversational
transaction. This advantage of linkage section maps still applies in Enterprise
COBOL.

© Copyright IBM Corp. 1989, 2010 671

|
|
|
|

|
|
|
|

– If your map is in the linkage section, you must issue a CICS GETMAIN
command to acquire storage for the map. With OS/VS COBOL, you must
determine the necessary amount of storage, which must be sufficient for the
largest map in your map sets. This can be difficult to determine, and probably
involves examining all the map assemblies. With Enterprise COBOL, use the
LENGTH special register:
EXEC CICS GETMAIN

SET(ADDRESS OF DATAREA)
LENGTH(LENGTH OF DATAREA)

Table 48. Addressing CICS data areas in locate mode

OS/VS COBOL Enterprise COBOL

WORKING-STORAGE SECTION.
77 LRECL-REC1 PIC S9(4) COMP.
LINKAGE SECTION.
01 BLLCELLS.

02 FILLER PIC S9(8) COMP.
02 BLL-REC1A PIC S9(8) COMP.
02 BLL-REC1B PIC S9(8) COMP.
02 BLL-REC2 PIC S9(8) COMP.

01 REC-1.
02 FLAG1 PIC X.
02 MAIN-DATA PIC X(5000).
02 OPTL-DATA PIC X(1000).

01 REC-2.
02
.
.

PROCEDURE DIVISION.
EXEC CICS READ UPDATE.

.

.
SET(BLL-REC1A)
LENGTH(LRECL-REC1)
END-EXEC.

ADD 4096 BLL-REC1A GIVING BLL-REC1B.
SERVICE RELOAD REC-1.
IF FLAG1 EQUAL X’Y’

MOVE OPTL-DATA TO ...
EXEC CICS REWRITE...

FROM(REC-1)
LENGTH(LRECL-REC1)
END-EXEC.

WORKING-STORAGE SECTION.
77 LRECL-REC1 PIC S9(4) COMP.

LINKAGE SECTION.
01 REC-1.

02 FLAG1 PIC X.
02 MAIN-DATA PIC X(5000).
02 OPTL-DATA PIC X(1000).

01 REC-2.
02 ...
.
.

PROCEDURE DIVISION.
EXEC CICS READ UPDATE

.

.
SET(ADDRESS OF REC-1)
LENGTH(LRECL-REC1)
END-EXEC.

IF FLAG1 EQUAL X’Y’
MOVE OPTL-DATA TO ...
EXEC CICS REWRITE

.

.
FROM(REC-1)
END-EXEC.

This table shows the replacement of BLL cells and SERVICE RELOAD in OS/VS
COBOL by the use of ADDRESS special registers in Enterprise COBOL . If the
records in the READ or REWRITE commands are fixed length, Enterprise COBOL
does not require a LENGTH option. This example assumes variable-length records.
After the read, you can get the length of the record from the field named in the
LENGTH option (here, LRECL-REC1). In the REWRITE command, you must code
a LENGTH option if you want to replace the updated record with a record of a
different length.

Table 49 on page 673 shows the old and new methods of processing BMS maps in
the linkage section. In this example, it is assumed that the OS/VS COBOL program
has been compiled with the LANGLVL(1) option, and that the following map set has
been installed:

672 CICS TS for z/OS: CICS Application Programming Guide

MAPSET1 DFHMSD TYPE=DSECT,
TERM=2780,LANG=COBOL,
STORAGE=AUTO,
MODE=IN

The new ADDRESS special register used in the example is described under “Using
based addressing with COBOL” on page 27.

Table 49. Addressing BMS map sets in the linkage section

OS/VS COBOL Language Environment conforming
COBOL

WORKING-STORAGE SECTION.
77 FLD0 PIC X VALUE IS LOW-VALUE.
LINKAGE SECTION.
01 BLLCELLS.

02 FILLER PIC S9(8) COMP.
02 BLL-DATAA PIC S9(8) COMP.

01 DATA1 COPY MAPSET1.
PROCEDURE DIVISION.
EXEC CICS GETMAIN LENGTH(1000)

SET(BLL-DATAA)
INITIMG(FLD0)
END-EXEC.

WORKING-STORAGE SECTION.
77 FLD0 PIC X VALUE IS LOW-VALUE.
LINKAGE SECTION.
COPY MAPSET1.
01 MAP1

02 FILLER PIC X(12).
02 FILLER1L COMP PIC S9(4).
.
.
02 FIELD90 PIC X(20).

PROCEDURE DIVISION
EXEC CICS GETMAIN

FLENGTH(LENGTH OF MAP1I)
SET(ADDRESS OF MAP1I)
INITIMG(FLD0)
END-EXEC.

The highlighted material describes the contents of the MAP1I COBOL copybook.

Artificial assignments
Remove artificial assignments from an OCCURS DEPENDING ON object to itself.
These are needed in OS/VS COBOL to ensure addressability.

Appendix B. Migration for OS/VS COBOL programs 673

674 CICS TS for z/OS: CICS Application Programming Guide

Bibliography

The CICS Transaction Server for z/OS library
The published information for CICS Transaction Server for z/OS is delivered in the
following forms:

The CICS Transaction Server for z/OS Information Center
The CICS Transaction Server for z/OS Information Center is the primary source
of user information for CICS Transaction Server. The Information Center
contains:

v Information for CICS Transaction Server in HTML format.

v Licensed and unlicensed CICS Transaction Server books provided as Adobe
Portable Document Format (PDF) files. You can use these files to print
hardcopy of the books. For more information, see “PDF-only books.”

v Information for related products in HTML format and PDF files.

One copy of the CICS Information Center, on a CD-ROM, is provided
automatically with the product. Further copies can be ordered, at no additional
charge, by specifying the Information Center feature number, 7014.

Licensed documentation is available only to licensees of the product. A version
of the Information Center that contains only unlicensed information is available
through the publications ordering system, order number SK3T-6945.

Entitlement hardcopy books
The following essential publications, in hardcopy form, are provided
automatically with the product. For more information, see “The entitlement set.”

The entitlement set
The entitlement set comprises the following hardcopy books, which are provided
automatically when you order CICS Transaction Server for z/OS, Version 3 Release
1:

Memo to Licensees, GI10-2559
CICS Transaction Server for z/OS Program Directory, GI10-2586
CICS Transaction Server for z/OS Release Guide, GC34-6421
CICS Transaction Server for z/OS Installation Guide, GC34-6426
CICS Transaction Server for z/OS Licensed Program Specification, GC34-6608

You can order further copies of the following books in the entitlement set, using the
order number quoted above:

CICS Transaction Server for z/OS Release Guide
CICS Transaction Server for z/OS Installation Guide
CICS Transaction Server for z/OS Licensed Program Specification

PDF-only books
The following books are available in the CICS Information Center as Adobe
Portable Document Format (PDF) files:

CICS books for CICS Transaction Server for z/OS
General

CICS Transaction Server for z/OS Program Directory, GI10-2586
CICS Transaction Server for z/OS Release Guide, GC34-6421
CICS Transaction Server for z/OS Migration from CICS TS Version 2.3,
GC34-6425

© Copyright IBM Corp. 1989, 2010 675

CICS Transaction Server for z/OS Migration from CICS TS Version 1.3,
GC34-6423
CICS Transaction Server for z/OS Migration from CICS TS Version 2.2,
GC34-6424
CICS Transaction Server for z/OS Installation Guide, GC34-6426

Administration
CICS System Definition Guide, SC34-6428
CICS Customization Guide, SC34-6429
CICS Resource Definition Guide, SC34-6430
CICS Operations and Utilities Guide, SC34-6431
CICS Supplied Transactions, SC34-6432

Programming
CICS Application Programming Guide, SC34-6433
CICS Application Programming Reference, SC34-6434
CICS System Programming Reference, SC34-6435
CICS Front End Programming Interface User's Guide, SC34-6436
CICS C++ OO Class Libraries, SC34-6437
CICS Distributed Transaction Programming Guide, SC34-6438
CICS Business Transaction Services, SC34-6439
Java Applications in CICS, SC34-6440
JCICS Class Reference, SC34-6001

Diagnosis
CICS Problem Determination Guide, SC34-6441
CICS Messages and Codes, GC34-6442
CICS Diagnosis Reference, GC34-6899
CICS Data Areas, GC34-6902
CICS Trace Entries, SC34-6443
CICS Supplementary Data Areas, GC34-6905

Communication
CICS Intercommunication Guide, SC34-6448
CICS External Interfaces Guide, SC34-6449
CICS Internet Guide, SC34-6450

Special topics
CICS Recovery and Restart Guide, SC34-6451
CICS Performance Guide, SC34-6452
CICS IMS Database Control Guide, SC34-6453
CICS RACF Security Guide, SC34-6454
CICS Shared Data Tables Guide, SC34-6455
CICS DB2 Guide, SC34-6457
CICS Debugging Tools Interfaces Reference, GC34-6908

CICSPlex SM books for CICS Transaction Server for z/OS
General

CICSPlex SM Concepts and Planning, SC34-6459
CICSPlex SM User Interface Guide, SC34-6460
CICSPlex SM Web User Interface Guide, SC34-6461

Administration and Management
CICSPlex SM Administration, SC34-6462
CICSPlex SM Operations Views Reference, SC34-6463
CICSPlex SM Monitor Views Reference, SC34-6464
CICSPlex SM Managing Workloads, SC34-6465
CICSPlex SM Managing Resource Usage, SC34-6466
CICSPlex SM Managing Business Applications, SC34-6467

Programming
CICSPlex SM Application Programming Guide, SC34-6468
CICSPlex SM Application Programming Reference, SC34-6469

676 CICS TS for z/OS: CICS Application Programming Guide

Diagnosis
CICSPlex SM Resource Tables Reference, SC34-6470
CICSPlex SM Messages and Codes, GC34-6471
CICSPlex SM Problem Determination, GC34-6472

CICS family books
Communication

CICS Family: Interproduct Communication, SC34-6473
CICS Family: Communicating from CICS on System/390, SC34-6474

Licensed publications
The following licensed publications are not included in the unlicensed version of the
Information Center:

CICS Diagnosis Reference, GC34-6899
CICS Data Areas, GC34-6902
CICS Supplementary Data Areas, GC34-6905
CICS Debugging Tools Interfaces Reference, GC34-6908

Other CICS books
The following publications contain further information about CICS, but are not
provided as part of CICS Transaction Server for z/OS, Version 3 Release 1.

Designing and Programming CICS Applications SR23-9692
CICS Application Migration Aid Guide SC33-0768
CICS Family: API Structure SC33-1007
CICS Family: Client/Server Programming SC33-1435
CICS Transaction Gateway for z/OS Administration SC34-5528
CICS Family: General Information GC33-0155
CICS 4.1 Sample Applications Guide SC33-1173
CICS/ESA 3.3 XRF Guide SC33-0661

Books from related libraries

DL/I
If you use the CICS-DL/I interface, see the following manuals:

IMS Application Programming: Design Guide, SC27-1287
IMS: Application Programming: EXEC DLI Commands for CICS and IMS,
SC27-1288
IMS: Administration Guide: Database Manager, SC26-8725

DB2
For information about using DB2 SQL commands in a CICS application program,
see the following manuals:

DB2 Universal Database for z/OS Administration Guide , SC26-9931
DB2 Universal Database for z/OS Application Programming and SQL Guide ,
SC26-9933

Screen definition facility II (SDF II)
For information about Screen Definition Facility II, see the following manuals:

Screen Definition Facility II General Information, GH19-6114.
Screen Definition Facility II General Introduction Part 1, SH19-8128
Screen Definition Facility II General Introduction Part 2, SH19-8129

Bibliography 677

Screen Definition Facility II Primer for CICS/BMS Programs SH19-6118.
Screen Definition Facility II Preparing a Prototype, SH19-6458

Common programming interface
For information about the SAA interface, see the following manuals:

SAA CPI-C Reference, SC09-1308

Common Programming Interface Communications Reference, SC26-4399

SAA Common Programming Interface for Resource Recovery Reference,
SC31-6821

Common user access
For information about screens that conform to the CUA standard, see the following
manuals:

SAA: Common User Access. Basic Interface Design Guide, SC26-4583
SAA: Common User Access. Advanced Interface Design Guide, SC26-4582

Programming languages
For information on programming in COBOL , see the following manuals:

Enterprise COBOL for z/OS: Customization Guide, GC27-1410
Enterprise COBOL for z/OS: Programming Guide, SC27-1412
Enterprise COBOL for z/OS: Compiler and Run-Time Migration Guide,
GC27-1409

For information on programming in C and C++, see the following manuals:
z/OS: C/C++ Compiler and Run-Time Migration Guide , GC09-4913
z/OS: C/C++ Programming Guide, SC09-4765
z/OS: C/C++ User's Guide, SC09-4767
z/OS: C/C++ Language Reference, SC09-4764

For information on programming in PL/I, see the following manuals:
Enterprise PL/I for z/OS: Programming Guide, SC27-1457
Enterprise PL/I for z/OS: Language Reference, SC27-1460
Enterprise PL/I for z/OS: Compiler and Runtime Migration Guide, GC27-1458

For information on programming in assembler language, see the following manuals:

Assembler H Version 2 Application Programming Guide, SC26-4036

Assembler H Version 2 Application Programming Language Reference,
GC26-4037

Teleprocessing Network Simulator (TPNS)
TPNS General Information, GH20-2487
TPNS Language Reference, SH20-2489

Language Environment:
z/OS: Language Environment Concepts Guide, SA22-7567
z/OS: Language Environment Run-Time Migration Guide, GA22-7565
z/OS: Language Environment Programming Guide, SA22-7561
z/OS: Language Environment Customization , SA22-7564
z/OS: Language Environment Writing Interlanguage Communication
Applications, SC28-1943

678 CICS TS for z/OS: CICS Application Programming Guide

Miscellaneous books
2780 Data Transmission Terminal: Component Description, GA27-3005

8775 Display Terminal: Terminal User’s Guide, GA33-3045

IBM InfoWindow 3471 and 3472 Introduction and Installation Planning Guide,
GA18-2942

3270 Information Display System Data Stream Programmer’s Reference,
GA23-0059

3290 Information Display Panel Description and Reference, GA23-0021

8775 Display Terminal Component Description, GA33-3044

IBM CICS/ESA 3.3 3270 Data Stream Device Guide, SC33-0232

Determining if a publication is current
IBM regularly updates its publications with new and changed information. When first
published, both hardcopy and BookManager® softcopy versions of a publication are
usually in step. However, due to the time required to print and distribute hardcopy
books, the BookManager version is more likely to have had last-minute changes
made to it before publication.

Subsequent updates will probably be available in softcopy before they are available
in hardcopy. This means that at any time from the availability of a release, softcopy
versions should be regarded as the most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on the
Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each
reissue of the collection kit is indicated by an updated order number suffix (the -xx
part). For example, collection kit SK2T-0730-06 is more up-to-date than
SK2T-0730-05. The collection kit is also clearly dated on the cover.

Updates to the softcopy are clearly marked by revision codes (usually a #
character) to the left of the changes.

Bibliography 679

680 CICS TS for z/OS: CICS Application Programming Guide

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS system
in one of these ways:

v using a 3270 emulator logged on to CICS

v using a 3270 emulator logged on to TSO

v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need in your CICS system.

© Copyright IBM Corp. 1989, 2010 681

682 CICS TS for z/OS: CICS Application Programming Guide

Index

Numerics
10/63 magnetic slot reader 551
31-bit mode transaction 571
3262 printer 407
3270 bridge

ADS descriptor 467
3270 display 370
3270 family 387

attention keys 401
attributes, extended 394
base color 394
buffer 390
color, base 394
data stream 387
data stream orders 395
data stream, outbound 398
display characteristics 392
emulating 388
extended attributes 394
field attributes 392
field format, inbound 403
fields 392
inbound field format 403
input from 400
intensity 394
MDT 393
modified data tag 393
orders in data stream 395
outbound data stream 398
protection 393
reading from 403
screen fields 388
terminal, writing to 390
unformatted mode 404
write control character 391
writing to terminal 390

3270 Information Display System 127
3270 printer 408

options 409
3270 screen field 498
3289 printer 407
3290 display 541

character size 544
3601 logical unit 549
3770 batch data interchange logical unit 549
3770 batch logical unit 549
3790 batch data interchange logical unit 549

A
abend 265
ABEND command 274
abend exit facility 273
abend exit program 274
abend exit routine 274
abend user task, EDF 626
abnormal termination recovery 273

ACCEPT statement 24
access to system information

EXEC interface block (EIB) 6
ACCUM option 409, 483, 507
ACK 369
acknowledgment 369
active partition 545
ACTPARTN option 507, 545
adding records 303
ADDRESS command 5
ADDRESS COMMAREA command 568
addressing mode (AMODE)

options for CICS applications 100
addressing of CICS areas 177
ADS descriptor 467
affinity 221
AFTER option 558
ALARM option 483
ALLOCATE command 171

inhibit wait, NOSUSPEND option 171
ALLOCERR condition 425
alternate

index 289
key 289

ALTPAGE value 513
AMODE (addressing mode)

options for CICS applications 100
APAK transaction 413
APCG 166
API

subset for DPL 443
APOST option 75
application program logical levels 33
application programs

asynchronous processing 446
design 139
design for performance 165
distributed program link 435
distributed transaction processing 446
function shipping 434
installing 99
intercommunication considerations 433
logical levels 566
testing 604
transaction routing 434
using BMS map sets 105
writing 5

area, dynamic storage 166
argc 46
argv 46
ASIS option 499
ASKTIME command 557
assembler language

31-bit mode 57
64–bit registers 58
applications 168
CALL statement 60
programming techniques 57

© Copyright IBM Corp. 1989, 2010 683

assembler language (continued)
restrictions 57

Assembler language 89
DFHECALL macro 89

assembly 67
assembly, TYPE=DSECT 465
ASSIGN command 5, 375, 413

DESTCOUNT option 534
MAPCOLUMN option 517
MAPHEIGHT option 517
MAPLINE option 517
MAPWIDTH option 517
MSR option 551
options 375
PAGENUM option 534

asynchronous journal output 255
asynchronous processing 433, 446
AT option 558
ATI 142, 367, 595
ATNI 435
attention field 553
attention identifier 499
ATTENTION key 369
automatic task initiation 142, 367
automatic transaction initiation 595
AUTOPAGE option 510
auxiliary storage

temporary data 598
auxiliary temporary storage 158
auxiliary trace 170
AZI6 435

B
backout of resources 257
BAKR 57
BASE option 478
basic mapping support

assembling and link-editing physical map sets 128
assembling map 465
assembly, TYPE=DSECT 465
BMS support levels 453
complex fields 467
composite fields 468
copy facility 180
creating map 459
cursor position 488
cursor, finding the 500
data streams 176
data, moving to map 479
DFHASMVS procedure 128
DFHLNKVS procedure 128
DFHMAPS, procedure for installing maps 132
DFHMDF macro 459
DFHMDI macro 459, 461
DFHMSD macro 459, 462
DFHPSD, for defining partition sets 134
display, receiving data from 493
EOC condition 504
field, group 468
fields 456

basic mapping support (continued)
fields, complex 467
fields, composite 468
fields, repeated 469
finding the cursor 500
full 454
group field 468
GRPNAME option 468
initializing output map 478
installing mapsets 126
installing partition sets 134
installing physical map sets 128
installing symbolic description map sets 129
invalid data 489
link-edit 465
macro 459
macros, rules for writing 463
map 455
map sets 466
map, assembling 465
map, creating 459
map, initializing output 478
map, moving data to 479
map, physical 465
map, symbolic 465
mapping input data 496
maps 176, 177, 180
maps, storage 477
MAPSET resource definition 465
MDT 498
message lengths, reducing 518
minimizing path length 517
minimum 453
modified data tag (MDT) 176
moving data to map 479
multimap screens 180
OCCURS option 469
output example 455
output map, initializing 478
page building operations 179
page routing operations 179
path length, minimizing 517
performance considerations 517
physical map 465
physical maps 126
preparing maps 125
PROGRAM resource definition 465
receiving data from display 493
reducing message lengths 518
repeated fields 469
rules for writing macros 463
screen copy 421
SEND MAP command 477
standard 453
storage for maps 477
support across platforms 454
symbolic description map sets for BMS 129
symbolic map 465
symbolic maps 126
terminals supported 454
TYPE=DSECT assembly 465

684 CICS TS for z/OS: CICS Application Programming Guide

basic mapping support (continued)
types of mapsets 126
upper case translation 499
using BMS map sets in application programs 105
using symbolic map sets in a program 130

batch compilation 36
batch data interchange 383

definite response 385
DEFRESP option 385
destination identification 385
ISSUE WAIT command 385
NOWAIT option 385

BDAM 174
browsing operations 320
data sets 290, 319
exclusive control 319
updating operations 322

BDI 407
BGAM 366
big COMMAREAs 189, 192, 209, 215
blank fields 177
block references 319
block, Execution interface 45
blocked-data set 291
BMS 408

routing 417
BMS commands 365
BOTTOM command, CEBR transaction 637
BRACKET option 380
bracket protocol, LAST option 380
bridge (3270)

ADS descriptor 467
brightness 552
browse operation

BDAM 320
BROWSE TEMP STORAGE option, CEDF 626
browsing 174

DELAY 174
records 298
SUSPEND 174

BTS activities 207
BUILDCHAIN 378

C
C and C++ arguments 49
C and C++ restrictions 45
C language considerations

addressing EIB 50
data declarations 45
LENGTH option default 162
naming EIB fields 50
struct, symbolic description map set 126

C++ considerations 51
CALL statement

assembler language 60
CANCEL command 557
CARD option 385
CBLCARD option 75
CDUMP 46
CEBR transaction 633

CEBR transaction (continued)
body 635
BOTTOM command 637
browse transaction 633
CEBR initiation 633
COLUMN command 637
command area 635
displays 635
FIND command 637
GET command 637
header 635
initiation 633
LINE command 638
message line 635
PURGE command 638
PUT command 638
QUEUE command 638
security considerations 633
SYSID command 638
temporary storage browse 633
TERMINAL command 638
TOP command 639
transient data 639

CECI transaction
about to execute command 644
ampersand (&) 650
body 646
command execution complete 645
command input 641
command input line 641
command line 641
command syntax check 643
ENQ commands 655
expanded area 650
information area 646
introduction 641
making changes 649
message line 646
PF key values area 646
program control 655
screen layout 641
shared storage 655
status area 642
terminal sharing 655
variables 650

CECS transaction 648
CEDF transaction 607, 608

abend user task 626
body 612
browse temporary storage 626
display register 627
displays 611
DPL 623
dual-screen mode 622
EDF transaction 608
functions 607
header 611
invoke CECI 627
invoking 608
modifying execution 624
non-terminal transactions 622

Index 685

CEDF transaction (continued)
options on function (PF) keys 626
overtyping displays 624
PF key 611
program labels 625
pseudoconversational programs 621
remote transactions 622
remote-linked programs 623
security 610
single-screen mode 620

CESE transient data destination 115
CESF, GOODNIGHT transaction 382
chaining 370
chaining of data 378
CHANNEL

LINK command 565
option 187, 565, 569
RETURN command 565
XCTL command 565

channels
as large COMMAREAs 189
basic examples 190
benefits of 215
compared to BTS activities 207
constructing 206
creating 195
current 196, 199
current, example, with LINK commands 196
current, example, with XCTL commands 198
data conversion 212
designing 205
discovering which containers a program's been

passed 204
discovering which containers were returned from a

link 204
dynamic and distributed routing 209, 219
LINK command 572
on LINK and XCTL commands 158
on RETURN commands 187
overview 189
read only containers 204
RETURN command 574
scope of 200, 202
typical scenarios

multiple interactive components 194
one channel—one program 192
one channel—several programs 193
several channels, one component 193

using from JCICS 209
channels as large COMMAREAs 189, 192, 209, 215
checkout, program 607
CICS

testing environment 7
CICS areas, addressing 177
CICS dump utility program 278
CICS option 75
CICS printer 407

determining characteristics of 413
CICS-key storage 579
CICS-maintained table 291
CICS-value data areas 162

CICSDATAKEY option 156, 582
CLASS option 427
CLEAR

key 547
PARTITION AID value 547
PARTITION key 547

CLEAR key 188
client region 435
CLOCK 46
CMT 291
CNOTCOMPL option 378
COBOL

31-bit addressing 25
addressing CICS data areas 27
blank lines 35
BMS data structures 671
calling subprograms 28
comma and semicolon delimiters 42
compiler options not used under CICS 24
compilers supported 21, 43, 53
DL/I CALL interface 26
elimination of SERVICE RELOAD statement 23
example of DFHNCTR call 353
global variables 42
LENGTH register 23
lower case characters 35
reference modification 41
REPLACE statement 35
reserved word table 23
restrictions 22, 167
RETURN CODE register 23
run unit 29, 33
sequence numbers 35
symbolic characters 42
WITH DEBUGGING MODE 28

COBOL2 option 75
COBOL3 option 75
COLUMN

command, CEBR transaction 637
COM assembler instruction 57
comma and semicolon delimiters, COBOL 42
command language translator 69, 73

APOST option 75
CBLCARD option 75
CICS option 75
COBOL2 option 75
COBOL3 option 75
CPSM option 76
DBCS option 76
DEBUG option 76
DLI option 76
EDF option 76
EPILOG option 76
EXCI option 76
FEPI option 77
FLAG option 77
GDS option 77
GRAPHIC option 77
LENASM option 78
LENGTH option 78
line numbers 71

686 CICS TS for z/OS: CICS Application Programming Guide

command language translator (continued)
LINECOUNT option 78
LINKAGE option 78
MARGINS option 78
NATLANG option 79
NOCBLCARD option 79
NOCPSM option 79
NODEBUG option 79
NOEDF option 80
NOEPILOG option 80
NOFEPI option 80
NOLENGTH option 80
NOLINKAGE option 80
NONUM option 80
NOOPSEQUENCE option 80
NOOPTIONS option 81
NOPROLOG option 81
NOSEQ option 81
NOSEQUENCE option 81
NOSOURCE option 71, 81
NOSPIE option 81
NOVBREF option 81
NOXREF option 81
NUM option 81
OPMARGINS option 82
OPSEQUENCE option 82
options 73, 74
OPTIONS option 82
PROLOG option 82
QUOTE option 82
SEQ option 83
SEQUENCE option 83
SOURCE option 71, 83
SP option 83
SPACE option 83
SPIE option 83
SYSEIB option 83
VBREF option 71, 84
XOPTS keyword 73
XREF option 84

command-level interpreter
EIB 652
ENTER key 646
invoking 648
messages display 652
security considerations 641

command, SYNCPOINT 258
commands supported in C++ 51
COMMAREA 140, 156, 157, 166

LINK command 565
option 187, 565, 567, 569

COMMAREAs > 32K 189, 209, 215
common work area (CWA) 183

protecting 184
compilation 67
compilers supported

assembler 57
C and C++ 43
COBOL 21
Language Environment 9
PL/I 53

complex fields 467
components

multiple, interactive 194
one channel—several programs 193
several channels, one component 193

composite fields 468
condition, exception 261
CONNECT PROCESS command 446
CONSISTENT option

READ command 298
READNEXT command 300
READPREV command 300

CONSOLE option 385
constructing a channel 206
containers

basic examples 190
context, BTS or channel 208
designing a channel 205
discovering which a program's been passed 204
discovering which were returned from a link 204
overview 189
read only 204
using from JCICS 209

contention for resources 140
contention for terminal 367
context

of containers, BTS or channel 208
control

exclusive of BDAM 319
of VSAM blocks 312

conversation partner 367
conversational programming 140, 181
CONVERSE command 181, 370, 381
copy facility

BMS 180
COPY statements 86
copybook translation 86
counter name

named counters 341
coupling facility data tables 292
coupling facility list structure

current value 342
CPI Communications interface module, DFHCPLC 86
CPI Communications stub 447
CPI-C 433, 446
CPSM option 76
CQRY transaction 145
creating a channel 195
CSECT, adding to map assembly 132
CSNAP 46
CSPG transaction 417, 421, 509, 510
CSPP transaction 145
CTDLI 46
CTEST 46
CTLCHAR option 409, 410
CTRACE 46
current channel

example, with LINK commands 196
example, with XCTL commands 198
overview 196, 199

CURSOR option 483, 488, 507

Index 687

cursor position 488
cursor positioning, symbolic 488
cursor-detectable field 552
cursor, finding the 500
CVDA 162, 281, 282
CWA 183
CWAKEY parameter 184

D
data

chaining 378
definition 167
initialization 167
passing to other program 567
records 162
storing within transaction 156

data conversion 210
and channels 210

a SOAP example 214
why necessary 210
with channels 212

data interchange block 71
data sets 172

access from CICS application programs 296
batch data interchange 383
BDAM 290, 319
blocked 290
empty 289
sequential 175
user 160
VSAM 311

data storing within transaction 156
data streams

compressing 178
inbound 176
RA order 178
repeat-to-address orders (SBA) 178
SBA order 178
set buffer address order 178

data tables
coupling facility 292
shared 291

data, moving to map 479
data, reading from a display 496
DATA(24) 24
DATA(31) 24
database

DB2 323
DL/I 323

DATAONLY option 177, 483, 485
date field of EIB 6
DB2 323

request processing 323
task related user exit 323

DBCS option 76
DCB interface of TCAM 383
DDname list, in translator dynamic invocation 72
DDS 473
deadlock 169

prevention 312

deadlocks 309
DEBKEY option 321
deblocking argument 319
DEBREC option 320, 321
DEBUG option 76
debugging 607
default

action for condition 261
deferred journal output 256
definite response protocol

terminal control 379
DEFRESP option 182, 385

terminal control 379
DELAY command 557, 558
DELETE command 24
DELETEQ TD command 593
DELETEQ TS command 597
deleting records 302
DEQ command 561
DEQUEUE command 417
design considerations of applications

exclusive control of resources 169
designator character 552
designing a channel 205
DESTCOUNT option 534
DESTID option 385
DESTIDLENG option 385
destination identification 385
detectable field 552
device dependent support 473
device-dependent maps 472
DFH3QSS 7
DFHAID 45
DFHASMVS procedure 128, 130, 133
DFHBMSCA 45, 481
DFHBMSCA definitions 500
DFHBMSUP 467
DFHCOMMAREA 23, 567
DFHCPLC 447
DFHCPLC, CPI Communications interface module 86
DFHCPLRR, SAA Resource Recovery interface

module 86
DFHEAI, interface module for assembler 87
DFHEAI0, interface module for assembler 87
DFHEAP1$, translator for assembler 72
DFHECP1$, translator for COBOL 72
DFHEDF group 604
DFHEDP1$, translator for C 72
DFHEIBLK 23
DFHEIEND macro 81, 82
DFHEIENT macro 62, 81, 82
DFHEIRET macro 62, 76, 80
DFHEISTG macro 81, 82
DFHEITAL procedure 106, 109
DFHEIVAR 23
DFHELII 88, 89
DFHELII, interface module for Language Environment

conforming compilers 87
DFHEPP1$, translator for PL/I 72
DFHEXEC 89
DFHEXTAL procedure 106

688 CICS TS for z/OS: CICS Application Programming Guide

DFHFCT macro 291
DFHLNKVS procedure 128, 133
DFHMAPS procedure 106, 131
DFHMAPT

procedure for installing HTML templates 131
DFHMDF macro 459

display characteristics 479
DSATTS option 479
MAPATTS option 479

DFHMDI macro 459, 461
DFHMIRS program 439
DFHMSCAN utility program 100
DFHMSD macro 459, 462

BASE option 478
STORAGE option 478

DFHMSD, macro for assembling map sets 127
DFHMSRCA 45, 551
DFHNC001

default named counter pool 343
DFHNCO macro

named counter options table 342
DFHNCOPT

named counter options table 342
DFHNCTR

example COBOL call with null pointers 353
DFHPDI macro 543
DFHPEP program 274
DFHPSD macro 134, 543
DFHRESP translator function 71, 262
DFHURLDS 531
DFHVALUE 71
DFHYITDL procedure 106, 118
DFHYITEL procedure 106, 118
DFHYITPL procedure 106, 114
DFHYITVL procedure 106, 111
DFHYXTDL procedure 106, 118
DFHYXTEL procedure 106, 118
DFHYXTPL procedure 106, 114
DFHYXTVL procedure 106, 111
DFHZITCL procedure 106, 112
DFHZITPL procedure 106, 115
DIB 71
direct terminal 535
discovering which containers a program's been

passed 204
discovering which containers were returned from a

link 204
display

register, EDF 627
screens 188

display characteristics 479
DISPLAY statement 24
display, reading from 496
distributed application design 146
distributed program link 565

client region 435
COMMAREA option 438
DPL API subset 443
exception conditions 444
independent syncpoints 440
options 436

distributed program link (continued)
programming considerations 442
REMOTENAME option 438
REMOTESYSTEM option 439
server program 438
server region 435, 439
SYSID option 439
TRANSID option 439

DL/I 25, 323
database operations 172
EXEC DLI interface 323
references 5
segment-search area (SSA) 172
syncpoints 258

DLI 45, 77
DLI option 76
DLIUIB 45
DOCTEMPLATE resource 326
document

document template 326
TEMPLATE option 326

document handler 325
document template

CICS file 327
HFS file 327
in a CICS program 326, 327
in an exit program 328
in temporary storage 327
in transient data 327

documents
creating 325
HTML 325

DPL 258, 433, 435, 565, 623
DSA 166
DSATTS option 479
DTP 433, 446
DUMP TRANSACTION command 278
DUPKEY condition 300
dynamic

program 169
storage area 166
transaction backout program 274
transaction routing 571

dynamic invocation of translator 72
dynamic routing with channels 209, 219

E
ECBLIST 562
EDF 71, 76, 607
EDF option 76
EIB 45, 70, 261, 367

description 6
EIBCALEN field 568
EIBCOMPL field 371
EIBFN field 569
terminal control feedback 377

empty data sets 289
end-of-data indicator character 382
ENDBR command 300
ENQ command 171, 561

Index 689

ENQBUSY condition 171
ENQUEUE command 417
enqueuing

in a VSAM file 170
VSAM internal 170

entry point, trace 277
entry-sequenced data set (ESDS) 288
EOC condition 378, 504
EODI character 382
EODS condition 378
EPILOG option 76
EQUAL option 297
ERASE option 410, 483, 507
ERASEAUP option 483, 507, 521
ERDSA 103
ESDS (entry-sequenced data set) 288
events

monitoring point 277
examples

channels, basic 190
CICS client program that contructs a channel 206
CICS server program that uses a channel 207
containers, basic 190
multiple interactive components 194
one channel—one program 192
one channel—several programs 193
several channels, one component 193
simple client program compared to a BTS

activity 207
exception condition

description 261
exception conditions

HANDLE CONDITION command 266, 267
IGNORE CONDITION command 269

exception trace entry point 277
EXCI

CALL 447
communications 447
option 76

EXCI - external call interface 433
exclusive control of records

BDAM 319
VSAM 312
VSAM RLS 313

exclusive resources 169
EXEC DLI commands 46
EXEC DLI interface 323
EXEC interface block 70
EXEC interface modules 86, 87, 120
EXEC interface stubs 87
EXEC SQL commands 323
EXEC SQL interface 323
EXECKEY 157, 184
EXECKEY parameter 579
execution diagnostic facility 71, 76, 607
Execution interface block 45
expiration time

specifying 558
extended read-only DSA (ERDSA) 103
external call interface (EXCI) 433
External CICS interface (EXCI) 447

extrapartition queues 594
extrapartition transient data 160, 175
EYUVALUE 71

F
FEPI

references 5
FEPI - Front End Programming Interface 433
FEPI option 77
FETCH 46
field

blank 177
group 468

fields
BMS 456
complex 467
composite 468
repeated 469

file control
BDAM data sets 319
overview 287
VSAM data sets 311

FIND command, CEBR transaction 637
finding the cursor 500
flag byte, route list 530
FLAG option 77
flip-flop mode 367
floating maps 513
FMH 380

inbound 380
option 380
outbound 380

FMHPARM option 507
FOR option 558
formatted screen, reading from a 497
FORMATTIME command 557
FORMFEED option 411, 507
FREE command 381
FREEKB option 483
FREEMAIN command 577
FROM option 306, 483
Front End Programming Interface (FEPI) 433
FRSET option 483
function (PF) keys, CEBR transaction 636
function management header

description 380
function shipping 434
Function shipping 433
function-ship 306
functions, EDF 607

G
GDDM 488
GDS option 77
generic delete 303
generic key 297
GENERIC option 297, 311
GET command, CEBR transaction 637
GETMAIN command 156

690 CICS TS for z/OS: CICS Application Programming Guide

GETMAIN command (continued)
CICSDATAKEY option 156, 582
INITIMG option 168, 577
NOSUSPEND option 577
SHARED option 156, 160, 577
TASKDATAKEY option 156
USERDATAKEY option 156, 582

global user exits 581
global variables, COBOL 42
GOODNIGHT transaction, CESF 382
GRAPHIC option 77
group field 468
GRPNAME option 468
GTEQ option 297, 311

H
half-duplex mode 367
HANDLE ABEND command 262, 265, 273
HANDLE ABEND LABEL with Assembler 57
HANDLE AID command 499
HANDLE CONDITION command 262, 265, 272
HANDLE CONDITION ERROR command 269
HOLD option 565
HONEOM option 410
horizontal tabs 412
HTML templates

installing 131

I
IBM Screen Definition Facility II (SDF II) 126
ICTL (input format control) 57
ICVR parameter 604
identification

BDAM record 319
VSAM record 311

IGNORE CONDITION command 262, 265, 269
IGREQID condition 507
IGYCCICS 23
IMMEDIATE option 367, 380, 569
IMS.RESLIB (IMS library) 123
INBFMH condition 378
inbound

data streams 176
index, alternate 289
indirect queues 595
initializing output map 478
INITIMG option 168, 577
input

format control (ICTL) 57
input data

chaining of 378
input map, symbolic 495
INPUTMSG option 565, 569, 571
INQUIRE command 6
INQUIRE TERMINAL command 377, 413
INRTN option 546
installing application programs

assembler-language 109
C 117

installing application programs (continued)
COBOL 110
PL/I 114
using your own job stream 120

installing assembler application programs
sample job stream for 109

Installing HTML templates 131
integrated CICS translator 67
integrated translators 6, 67
inter-transaction affinity

affinity life times 246
affinity transaction groups 247
caused by application generators 246
detecting 246
programming techniques 223
recommendations 224
relations and lifetimes 247

global relation 247
terminal relation 248
userid relation 250

safe programming techniques 224
the COMMAREA 225
the TCTUA 226
using BTS containers 229
using DEQ with ENQMODEL 228
using ENQ with ENQMODEL 228

suspect programming techniques
DELAY and CANCEL REQID commands 243
global user exits 222
INQUIRE and SET commands 222
POST command 244
RETRIEVE WAIT and START commands 240
START and CANCEL REQID commands 241
transient data 239

temporary storage data-sharing
temporary storage 236

unsafe programming techniques 229
the CWA 229
using DEQ 235
using ENQ 235
using LOAD PROGRAM HOLD 231
using shared storage 230
using task lifetime storage 232
using WAIT EVENT 234

interactive debugging
CECI transaction 641
CECS transaction 648
CEDF transaction 607

interactive problem control system 278
intercommunication 433
interface block, Execution 45
interface modules

CPI Communications 86
EXEC 86
programs using EXEC CICS or EXEC DLI

commands 120
SAA Resource Recovery 86
using 108

interface stubs, EXEC 87
interleaving conversation with message routing 535
interregion communication 447

Index 691

interrupting 369
interval control 557

cancel interval control command 557
DELAY command 558
delay processing of a task 557
expiration time 558
POST command 558
specifying request identifier 559
START command 558
starting a task 557

INTERVAL option 558
INTO option 305
intrapartition queues 593
intrapartition transient data 160
INVITE option 367
invoking EDF 608
INVPARTN condition 547
INVPARTNSET condition 547
INVREQ condition 507
IPCS 278
IRC 447
iscics 7
ISCINVREQ 435
ISSUE ABORT command 384

CARD option 385
CONSOLE option 385
PRINT option 385
WPMEDIA1–4 option 385

ISSUE ADD command 384
ISSUE COPY command 369, 420
ISSUE DISCONNECT command 369
ISSUE END command 384

CARD option 385
CONSOLE option 385
PRINT option 385
WPMEDIA1–4 option 385

ISSUE ERASE command 369, 384
ISSUE NOTE command 384
ISSUE PRINT command 420
ISSUE QUERY command 384
ISSUE RECEIVE command 384
ISSUE REPLACE command 384
ISSUE SEND command 384

CARD option 385
CONSOLE option 385
PRINT option 385
WPMEDIA1–4 option 385

ISSUE WAIT command 384, 385
CARD option 385
CONSOLE option 385
PRINT option 385
WPMEDIA1–4 option 385

J
JCICS

and channels 209
JES 6, 423
JES (job entry subsystem)

exits 427
input 427

JES (job entry subsystem) (continued)
RESP and RESP2 options 425
retrieve data from JES spool 423, 424
spooler commands 425

Job Entry Subsystem component of MVS 423
journal

records 162, 255
journal control

output synchronization 255
journal identifier 257
journal type identifier 257
journaling 175, 255
JOURNALNAME 257
JOURNALNUM 257
JTYPEID 257
JUSFIRST option 522
JUSLAST option 522
JUSTIFY option 522

K
key

alternate (secondary) 289
generic 297
hardware print 421

key-sequenced data set (KSDS) 287
KEYLENGTH option, remote data set 306
keys

physical 319
KSDS (key-sequenced data set) 287

L
language considerations

assembler 57
Language Environment 9

abend handling 12
under PL/I 55

Assembler
conforming routines 58
non-conforming routines 60

C and C++ 43
callable services 10
CEEBINT 19
compilers supported 9
condition handlers, user-written 12
destinations, message and dump 11
DLLs 15
dump destination 11
Dynamic Link Libraries 15
HANDLE AID command 11
HANDLE CONDITION command 11
HLL user exit 19
languages, mixing 13
levels of support 9
message destination 11
mixing languages 13
PL/I 54
runtime options 16

and CICS LINK 18
determining which options were used 19

692 CICS TS for z/OS: CICS Application Programming Guide

Language Environment (continued)
runtime options (continued)

in child enclaves 18
RUWAPOOL 11, 13
storage 11, 13
support, levels of 9
user-written condition handlers 12
VS COBOL II 26

large COMMAREAs 189, 192, 209, 215
LAST option 381, 484

bracket protocol 380
LDC 549
LDCMNEM option 550
LDCNUM option 550
LEASM option 78
LENGERR condition 371
LENGTH option 78, 162, 371
LENGTH register, COBOL 23
LENGTHLIST option

multiple dumps of task-related storage areas 279
levels, application program logical 566
library lookaside (LLA) 102
light pen-detectable field 552
LINE command

CEBR transaction 638
line length on printing 410
line traffic reduction 178
LINECOUNT option 78
LINK command 156, 165, 166, 566

CHANNEL option 565, 569
COMMAREA option 565, 567, 569
IMMEDIATE option 569
INPUTMSG option 565, 569
TRANSID option 569

LINK commands, migrating to use channels 217
link pack area (LPA) 102
LINK PROGRAM 447
link to program, expecting return 566
link-edit 67, 71
link-edit of map 465
LINKAGE option 78
LIST option 527
LLA (library lookaside) 102
LOAD command

HOLD option 565
load libraries

support for secondary extents 108
local copy key 420
locale support 51
locality of reference 167
logging 175
logical device component 549
logical levels, application program 29, 33, 566
logical messages, rules for 507
logical record presentation 379
logical unit of work (LUW)

database operations, control of PSB 172
description 141
recoverable resources 141
syncpoints used 257

logical units (LUs)
facilities for 378

lookaside transaction 543
lower case characters 35
LPA 102
LU type 4

batch data interchange 384
device 368
logical record presentation 379

LUs (logical units)
facilities for 378

M
magnetic slot reader, 10/63 551
main storage 166

temporary data 598
main temporary storage 158
map

BMS 455
creating 459
initializing output 478
link-edit 465
moving data to 479
sets 466
symbolic input 495
symbolic output 495

map sets
Adding a CSECT 132
Using symbolic description map sets in a

program 105
MAPATTS option 479
MAPCOLUMN option 517
MAPFAIL condition 498, 504
MAPHEIGHT option 517
MAPLINE option 517
MAPONLY option 177, 483, 484
MAPPED option 525
mapping input data 496
maps

BMS 177, 180
device-dependent 472
floating 513
sets 168

MAPSET option 483
MAPSET resource definition 465
mapsets

loading above the 16MB line 126
MAPWIDTH option 517
MARGINS option 78
MASSINSERT option 174, 304
MDT 176, 498
MERGE statement 24
message routing 527
message title 533
messages, undeliverable 532
migrating COMMAREAs on RETURN commands 218
migrating LINK commands that pass

COMMAREAs 217
migrating programs that use temporary storage to pass

data 218

Index 693

migrating START data to use channels 218
migrating XCTL commands that pass

COMMAREAs 217
migration 218

of LINK commands to use channels 217
of RETURN commands to use channels 218
of START data to use channels 218
of XCTL commands to use channels 217
to channels from COMMAREAs

exploiting the new function 216
without exploiting the new function 216

mixed addressing mode transaction 571
modernising COMMAREAs 189
modified data tag 176, 498
modifying execution, EDF 624
modular program 168
MONITOR command 277
MONITOR POINT command 277
monitoring application performance 277
moving data to map 479
MSGINTEG option 181
MSR 551
MSR option 507, 551
multimap screens 180
multipage outputs 179
multithread testing 603
multithreading 147
MVS subspace 589
MVS transaction 571
MXT parameter 170

N
named counters 341

CICS API 343
counter name 341
coupling facility list structure 342
current value 342
DFHNC001 343
DFHNCO macro 342
maximum value 342
minimum value 342
named counter fields 341
options table 342
overview 341
pools 342

NATLANG option 79
nested programs 38
NLEOM option 408, 410, 507
NOAUTOPAGE option 510
NOCBLCARD option 79
NOCPSM option 79
NODE option 425
NODEBUG option 79
NOEDF option 80
NOEDIT option 525
NOEPILOG option 80
NOFEPI option 80
NOFLUSH option 514, 521
NOHANDLE option 262, 268
NOJBUFSP condition 171

NOLENGTH option 80
NOLINKAGE option 80
non-CICS printer 407
Non-CICS printer 417
non-terminal transactions

EDF 622
nonconversational programming 140
NONUM option 80
NOOPSEQUENCE option 80
NOOPTIONS option 81
NOPROLOG option 81
NOQUEUE option 171
NOSEQ option 81
NOSEQUENCE option 74, 81
NOSOURCE option 81
NOSPACE condition 268
NOSPIE option 81
NOSUSPEND option 171

GETMAIN command 577
READ command 298
READNEXT command 300, 303
READPREV command 300, 303
WRITE command 304

NOTRUNCATE option 371
NOVBREF option 81
NOWAIT option 385
NOXREF option 81
null parameters, example of DFHNCTR CALLs

with 353
null values, use of 179
NUM option 81
NUMREC option 303
NUMSEGMENTS option

multiple dumps of task-related storage areas 279

O
OCCURS option 469
OPCLASS option 528
OPEN command 24
open transaction environment (OTE) 149
operating system waits 171
OPID option 528
OPIDENT value 527
OPMARGINS option 82
OPSEQUENCE option 82
OPSYN (equate operation code) 57
option list, in translator dynamic invocation 72
options

HANDLE CONDITION command 267
on function keys, EDF 626

OPTIONS option 82
OPTIONS(MAIN) specification 53
OS/VS COBOL 671
OTE, open transaction environment 149
outboard controller 383
outboard formatting 554
output data, chaining of 378
output map, initializing 478
output map, symbolic 495
OVERFLOW condition 514

694 CICS TS for z/OS: CICS Application Programming Guide

overlays 169
overtyping EDF displays 624
overview

dynamic routing with channels 209, 219

P
PA key 413
page break 514
page building operations 179
page fault 167
page overflow 534
page routing operations 179
PAGENUM option 534
PAGESIZE value 513
paging

reducing effects 167
PAGING option 409, 483, 489
parameters

null 353
partition sets

installing 133
loading above the 16MB line 126

partition, active 545
partitions 541
partitions, defining 543
PARTITIONSET option 544
PARTN option 546
partner, conversation 367
partners, range of 446
PARTNFAIL condition 547
PARTNPAGE option 547
passing control, anticipating return (LINK) 566
passing data to other program 567
pen-detectable field 552
PERFORM command 6
PERFORM DUMP command 278
PF (program function) key 611, 635, 646
physical keys 319
physical map sets

installing 128
PL/I language considerations

OPTIONS(MAIN) specification 53
restrictions 53

PLT program 581
plus 32K COMMAREAs 189, 209, 215
POP HANDLE command 265, 274
POST command 557, 558
pre-translated code 119
preprinted form 599
presentation space 541
PRGDLY option 532
principal facility 142, 143
print control bit 409
print formatting 382
print key 371, 420
print key, Hardware 421
PRINT option 385
printed output, requests for 181
printer

3270 408

printer (continued)
options 409

CICS 407
determining characteristics of 413

non-CICS 407
Non-CICS 417
SCS 410

PRINTERCOMP option 412
printing 407

CICS API considerations 418
line length on 410
START command 415
transient data 415
with BMS routing 417

program
size 165
testing 607

program control
linking to another program 566
passing data to another program 567
program logical levels 566

program design
conversational 140, 181
nonconversational 140
pseudoconversational 140

program labels in EDF 625
PROGRAM option 273
PROGRAM resource definition 465
program storage 158
programming models 139
programming techniques

general 165
PL/I 53

PROLOG option 82
PROTECT option 181
pseudoconversational programming 140
PURGE command, CEBR transaction 638
purge delay 532
PURGE MESSAGE command 508, 527
PUSH HANDLE command 265, 274
PUT command, CEBR transaction 638

Q
QBUSY condition 171
QUERY SECURITY command 281

NOLOG option 282
RESCLASS option 281
RESID option 281
RESTYPE option 281

query transaction 145
queue

temporary storage 597
QUEUE command, CEBR transaction 638
queues

extrapartition 594
intrapartition 593
transient data 593

QUOTE option 82
QZERO condition 595

Index 695

R
RACF 281
range of partners 446
RBA (relative byte address) 288, 311
RDF 322
READ command 24, 301

CONSISTENT option 298
NOSUSPEND option 298
REPEATABLE option 298
UNCOMMITTED option 298

read only containers 204
read-ahead queueing 368
read-only DSA (RDSA) 103
reading data from a display 496
reading from a formatted screen 497
reading records 296
READNEXT command 298, 299

CONSISTENT option 300
NOSUSPEND option 300, 303
REPEATABLE option 300
UNCOMMITTED option 300

READPREV command 299
CONSISTENT option 300
NOSUSPEND option 300, 303
REPEATABLE option 300
UNCOMMITTED option 300

READQ TD command 171, 593
READQ TS command 597

ITEM option 598
RECEIVE command 181, 367, 369, 370, 381

MAPFAIL condition 504
RECEIVE MAP command 496

ASIS option 499
RECEIVE PARTN command 546
record

identification 311, 319
locking 312
locking (RLS) 313

record description field 322
record locking 313
record-level sharing (RLS)

accessing files in RLS mode 289
records

adding 303
adding to BDAM data set 321
browsing 296
deleting 302
journal 255
length of 162
reading 296
updating 301
writing 301, 303

recoverable resources 141
exclusive use 140

recovery
of resources 169
problem avoidance 163
sequential terminal support 381
syncpoint 257

reduction of line traffic 178
reentrancy 147

Reference modification 41
reference set 168
regression testing 603
relative byte address (RBA) 288, 311
relative record data set (RRDS) 288
relative record number (RRN) 288, 311
RELEASE 46
RELEASE command

HOLD option 565
RELEASE option 509
RELTYPE keyword 291
remote data set, KEYLENGTH option 306
remote transactions, EDF 622
remote-linked programs

DPL 623
EDF 623

REMOTENAME option 438
REMOTESYSTEM option 439
REPEATABLE option

READ command 298
READNEXT command 300
READPREV command 300

repeated fields 469
REPLACE statement 35

translator action 35
REQID option 300, 507, 532, 559
request/response unit (RU) 378
RESCLASS option 281
RESETBR command 299
RESID option 281
residence mode (RMODE)

options for CICS applications 100
resources

contention 140
control of 140
controlling sequence of access to 562
exclusive control of 169
exclusive use 140
recoverable 141, 169

RESP and RESP2 options
for interface to JES 425

RESP option 262, 268
deactivating NOHANDLE 267

RESP value 261
RESP2 option 262
RESP2 value 261, 262
restrictions

31-bit mode 57
64–bit registers 58
assembler language 57
PL/I 53

RESTYPE option 281
RETPAGE condition 491, 522
RETRIEVE command 557, 562
RETURN CODE register, COBOL 23
RETURN command 158, 569

CHANNEL option 187, 565
COMMAREA option 187, 565
IMMEDIATE option 367, 380
INPUTMSG option 565, 569, 571
TRANSID option 142

696 CICS TS for z/OS: CICS Application Programming Guide

reverse interrupt 369
REWRITE command 24, 301
RIDFLD option 291, 298, 305
RMODE (residence mode)

options for CICS applications 100
ROUTE command 527

LIST option 527
page overflow 534
TITLE option 533

route list 527
LIST option 530
segment chain entry format 530
standard entry format 530

ROUTEDMSGS option 529
routing terminals 535
routing, Transaction 433
RRDS (relative record data set) 288
RRN (relative record number) 288, 311
RTEFAIL condition 530
RTESOME condition 530
RU (request/response unit) 378
rules for logical messages 507
run unit in COBOL 29, 33
runaway tasks 170
RVI 369

S
SAA Resource Recovery 258
SAA Resource Recovery interface module,

DFHCPLRR 86
SAM 366
scenarios

multiple interactive components 194
one channel—one program 192
one channel—several programs 193
several channels, one component 193

scope of a channel
example, with LINK commands 200
example, with XCTL commands 202
overview 200

screen copy, BMS 421
screen field, 3270 498
screen, reading from a formatted 497
SCS

printer 410
SCS input 413
SDF II 459, 466
SDF II (IBM Screen Definition Facility II) 126
SEC system initialization option 282
secondary extents, CICS load libraries 108
security

CICS-defined resource identifiers 282
EDF 610
programming hints 282
record or field level 281
SEC system initialization option 282
SPCOMMAND resource type 282

SEGMENTLIST option
multiple dumps of task-related storage areas 279

selection field 553

SEND command 181, 369, 370, 381
CNOTCOMPL option 378
CTLCHAR option 409
FMH option 380
INVITE option 367
LAST option 381
MSR option 551

SEND CONTROL command 407, 485
SEND MAP command 407, 477

ACCUM option 483, 507
ALARM option 483
CURSOR option 483, 488
DATAONLY option 483
ERASE option 483
ERASEAUP option 483, 521
FREEKB option 483
FROM option 483
LAST option 484
MAPONLY option 483
MAPSET option 483
NOFLUSH option 514, 521
PAGING option 483
SET option 483
TERMINAL option 483, 489
WAIT option 484

SEND PAGE command 258, 508, 527
AUTOPAGE option 510
NOAUTOPAGE option 510
RELEASE option 509

SEND PARTNSET command 545
SEND TEXT command 407, 521

MAPPED option 525
NOEDIT option 525

SEQ option 83
sequence of access to resources, controlling 562
SEQUENCE option 83
sequential terminal support 381, 603
server

program 438
region 435, 439

SERVICE RELOAD
elimination, COBOL 23

SESSBUSY condition 171
SET

command 6, 489
option 305

SET option 483, 489
SETLOCALE 46
shared control of records

VSAM RLS 313
shared data tables 291
SHARED option 156, 160

GETMAIN command 577
SHARED option 157

shared storage 160
sharing data across transactions 183
SIGNAL condition 369
simultaneous browse 300
single-screen mode, EDF 620
single-thread testing 603
single-threading 147

Index 697

size, program 165
SOURCE option 83
SP option 83
SPACE option 83
space, presentation 541
SPCOMMAND resource type 282
SPIE option 83
SPOLBUSY condition 427
spool

commands 6
file 423

SPOOLCLOSE command 423
SPOOLOPEN

examples 430
SPOOLOPEN command 418, 423

NODE option 425
TOKEN option 425
USERID option 425

SPOOLREAD command 423
SPOOLWRITE command 423
SPURGE parameter 234
SQL 5
SQL interface, EXEC 323
START command 24, 415, 557, 562
START data, migrating to use channels 218
STARTBR command 298
static storage 168
status flag byte, route list 530
STOP statement 24
storage

CICS-key 579
main 166
program 158
shareable 577
static 168
temporary 158
user 156
user-key 579

storage area, dynamic 166
storage control 577
STORAGE option 23, 478
storage protection 578
struct, C/370 symbolic description map set 126
stubs, EXEC interface 87
subroutines 167
subspace 589
SUSPEND command 561
suspend data set 598
SVC99 46
symbolic

input map 495
output map 495

symbolic cursor positioning 488
symbolic description map sets

using in a program 105
synchronize action

journal output 255
SYNCONRETURN option 440, 445
SYNCPOINT command 258, 508

ROLLBACK option 274
syncpointing 257, 259

syncpointing, DPL 440
SYSEIB option 83
SYSID command, CEBR transaction 638
SYSID option 439
SYSIDERR 435
SYSIN 70
SYSPARM, operand for assembling map sets 127
SYSPRINT 71
SYSPUNCH 70
SYSTEM 46
system information, access to 5
system trace entry point 277

T
tabs, horizontal 412
tabs, vertical 412
task control 561

sequence of access to resources 562
task-related user exit 581
TASKDATAKEY option 156, 581
TASKDATALOC option 83, 156
TCAM 383

DCB interface of 383
TCTUA 186, 581
TCTUAKEY 186, 581
TCTUALOC 186
techniques, programming 165
template

CICS file 327
HFS file 327
in a CICS program 326, 327
in an exit program 328
in temporary storage 327
in transient data 327

temporary data 597
temporary storage

auxiliary 158, 598
browse transaction, CEBR 633
data 597
main 158, 598
queue 597

temporary storage, used to pass data 218
TERM option 473
TERMID value 528
terminal

contention for 367
option 483
performance 176
sharing 655
support, sequential 381
wait 369

TERMINAL
option 489

TERMINAL command, CEBR transaction 638
terminal control

bracket protocol, LAST option 380
break protocol 368
chaining of input data 378
chaining of output data 378
definite response 379

698 CICS TS for z/OS: CICS Application Programming Guide

terminal control (continued)
facilities for logical units 378
FMH, inbound 380
FMH, outbound 380
function management header (FMH) 380
interrupting 369
logical record presentation 379
map input data 496
print formatting 382
protocol, break 368
read-ahead queueing 368
table user area (TCTUA) 186

Terminal control
commands 366
conversation partner 367
flip-flop mode 367
half-duplex mode 367
partner, conversation 367

Terminal control commands 365
TERMINAL option 489
terminals, extended data stream 127
TEST compiler option 24
testing applications

multithread testing 603
preparing application table entries 604
preparing system table entries 604
preparing the system 604
regression testing 603
sequential terminal support 603
single-thread testing 603
using sequential devices 381, 603

threadsafe programs 149
effect of

ADDRESS CWA 152
EXTRACT EXIT 152
GETMAIN SHARED 152

time field of EIB 6
TIOATDL value 525
TITLE option 533
title, message 533
TOKEN option 306, 425
TOP command, CEBR transaction 639
trace

description 276
trace entry point 277

TRANISO 587
transaction

affinity 434, 557, 562, 565, 577, 586
deadlock 307
routing 433, 434
routing, dynamic 571

transaction affinity
inter-transaction affinity 222
transaction-system affinity 222

transaction identifier
CEBR 633
CECI 648
CEDF transaction 607

transaction isolation 578
transaction work area 156
transaction-system affinity 222

transactions
conversational 140
nonconversational 140
pseudoconversational 140

TRANSID option 439, 569
transient data 415

extrapartition 160, 175
intrapartition 160
queue 160, 239

transient data control
automatic transaction initiation (ATI) 595
queues 593, 594

translation 6, 67
translator

dynamic invocation of 72
integrated with Language Environment-conforming

compilers 67
translator data sets 69, 73
trigger field 551
TRUNC option 24
TS queue 236
TST TYPE=SHARED 237
TWA 156
TWASIZE option 156
TYPE=DSECT assembly 465

U
UMT 292
UNCOMMITTED option

READ command 298
READNEXT command 300
READPREV command 300

undeliverable messages 532
unit of compilation, COBOL

start of, nested programs 38
submitting to translator 39
translator options for 36

unit of work 258
UNLOCK command 304
UNTIL option 558
UOW 258
update operation, BDAM 322
UPDATE option 301
updating records 301
upgrade set 289
upper case translation in BMS 499
user

data sets 160
storage 156
trace entry point 277

user-key storage 579
user-maintained table 292
user-replaceable module 581
USERDATAKEY option 156, 582
USERID option 425, 427
using channels from JCICS 209

Index 699

V
validity of reference 167
variables, CECI/CECS 650
VBREF option 84
vertical tabs 412
viewport 541
virtual lookaside facility (VLF) 102
virtual storage 166
virtual storage environment 165
VLF (virtual lookaside facility) 102
VOLUME option 385
VOLUMELENG option 385
VSAM

data sets 173, 311
enqueues 170
MASSINSERT option 174
processor overhead 173

VTAM 366, 367

W
WAIT EVENT command 234, 557
WAIT EXTERNAL command 235, 561
WAIT JOURNALNUM command

synchronize with journal output 255
WAIT option 256, 369, 484
WAIT TERMINAL command 369
wait, terminal 369
WAITCICS command 235, 561
waits, operating system 171
WITH DEBUGGING MODE 28
working set 167
working storage 23, 44, 57
WPMEDIA1–4 option 385
WRITE command 24, 303

NOSUSPEND option 304
WRITE JOURNALNAME command 171, 255
WRITE JOURNALNUM command 171, 255

create a journal record 255
WRITEQ TD command 593
WRITEQ TS command 597
writing records 301, 303
WRKAREA parameter 183

X
XCTL command 156, 158, 165, 166

CHANNEL option 565, 569
COMMAREA option 565, 567
INPUTMSG option 565, 569

XCTL commands, migrating to use channels 217
XOPTS keyword 73
XPCREQ global user exit 435, 439
XREF option 84
XTC OUT exit 178
XTSEREQ, global user exit 237

700 CICS TS for z/OS: CICS Application Programming Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user's responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM United Kingdom Laboratories,
MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

© Copyright IBM Corp. 1989, 2010 701

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Programming License Agreement, or any equivalent agreement
between us.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide. A
current list of IBM trademarks is available on the Web at Copyright and trademark
information at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

702 CICS TS for z/OS: CICS Application Programming Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the
information is presented.

To ask questions, make comments about the functions of IBM products or systems,
or to request additional publications, contact your IBM representative or your IBM
authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring any
obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

IBM United Kingdom Limited
User Technologies Department (MP095)
Hursley Park
Winchester
Hampshire
SO21 2JN
United Kingdom

v By fax:

– From outside the U.K., after your international access code use
44–1962–816151

– From within the U.K., use 01962–816151

v Electronically, use the appropriate network ID:

– IBMLink: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

v The publication title and order number

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1989, 2010 703

704 CICS TS for z/OS: CICS Application Programming Guide

����

Product Number: 5655-M15

SC34-6433-06

Sp
in
e
in
fo
rm
at
io
n:

�
�

�
C

IC
S

T
S

fo
r

z/
O

S
C

IC
S

Ap
pl

ic
at

io
n

Pr
og

ra
m

m
in

g
G

ui
de

Ve
rs

io
n

3
R

el
ea

se
1

	Contents
	Preface
	What this book is about
	Who should read this book
	What you need to know to understand this book
	How to use this book
	Notes on terminology
	What is not covered in this book

	Summary of changes
	Changes for CICS Transaction Server for z/OS, Version 3 Release 1
	Changes for CICS Transaction Server for z/OS, Version 2 Release 3
	Changes for CICS Transaction Server for z/OS, Version 2 Release 2
	Changes for CICS Transaction Server for z/OS, Version 2 Release 1
	Changes for CICS Transaction Server for OS/390, Version 1 Release 3

	Part 1. Writing CICS Applications
	Chapter 1. What is a CICS application?
	CICS programs, transactions and tasks

	Chapter 2. CICS programming
	CICS programming commands
	System programming commands
	EXEC interface block (EIB)

	Translation
	Translator Options

	Testing for CICS
	CICS programming roadmap

	Chapter 3. Language Environment
	Language Environment services
	Using Language Environment Abend-handling
	User-written Language Environment condition handlers

	Managing Language Environment storage
	Mixing languages in Language Environment
	Using Dynamic Link Libraries and Language Environment
	Defining runtime options for Language Environment
	Runtime options in child enclaves
	CEEBXITA coding
	Determining which options were used

	Writing a CEEBINT initialization exit for Language Environment

	Chapter 4. Programming in COBOL
	COBOL programming considerations
	COBOL programming restrictions
	Language Environment CBLPSHPOP option
	Using the DL/I CALL interface

	Considerations for VS COBOL II programs
	Using based addressing with COBOL
	Using WITH DEBUGGING MODE

	Calling subprograms from COBOL
	Rules for calling subprograms
	Translation
	Compilation
	Link-editing
	CICS CSD entries without program autoinstall
	Return from subprogram
	Language of subprogram
	Contents of subprogram
	Passing parameters to subprogram
	Storage
	CICS condition, AID and abend handling
	Location of subprogram

	Flow of control between programs and subprograms

	Using the COBOL2 and COBOL3 translator options
	Literals intervening in blank lines
	Lower case characters
	Sequence numbers containing any character
	REPLACE statement
	Batch compilation
	Nested programs
	Integrated CICS translator
	Translator action
	Comments in translator input
	Nesting: what the application programmer must do
	An example of a nested program

	Reference modification
	Global variables
	Comma and semicolon as delimiters
	Symbolic character definition

	Chapter 5. Programming in C and C++
	C and C++ programming considerations
	XPLink considerations for C and C++ programming
	XPLink, and the X8 and X9 TCBs
	Writing C and C++ programs, which are to be compiled with the XPLINK option, for the CICS environment
	Passing control between XPLink and non-XPLink objects
	Changing CICS definitions to obtain CICS support for objects compiled with the XPLINK option
	Global User exits and XPLink

	Passing arguments in C or C++
	Accessing the EIB
	Naming EIB fields
	Data types in EIB fields

	Locale support for C and C++
	Programming in C++
	Restrictions

	Chapter 6. Programming in PL/I
	PL/I programming restrictions
	Language Environment considerations for PL/I applications

	Chapter 7. Programming in Assembler
	Language Environment considerations for Assembler applications
	Calling Assembler programs

	Part 2. Preparing applications to run
	Chapter 8. Translation and compilation
	The integrated CICS translator
	Using the integrated CICS translator
	Specifying CICS translator options

	The translation process
	The CICS-supplied translators
	Dynamic invocation of the separate translator
	Translator option list
	Data definition (DD name) list

	Using a CICS translator
	Defining translator options
	Translator options
	APOST
	CBLCARD
	CICS
	COBOL2
	COBOL3
	CPP
	CPSM
	DBCS
	DEBUG
	DLI
	EDF
	EPILOG
	EXCI
	FEPI
	FLAG (I, W, E, or S)
	GDS
	GRAPHIC
	LEASM
	LENGTH
	LINECOUNT(n)
	LINKAGE
	MARGINS(m,n[,c])
	NATLANG(EN or KA)
	NOCBLCARD
	NOCPSM
	NODEBUG
	NOEDF
	NOEPILOG
	NOFEPI
	NOLENGTH
	NOLINKAGE
	NONUM
	NOOPSEQUENCE
	NOOPTIONS
	NOPROLOG
	NOSEQ
	NOSEQUENCE
	NOSOURCE
	NOSPIE
	NOVBREF
	NUM
	OPMARGINS(m,n[,c])
	OPSEQUENCE(m,n)
	OPTIONS
	PROLOG
	QUOTE
	SEQ
	SEQUENCE(m,n)
	SOURCE
	SP
	SPACE(1 or 2 or 3)
	SPIE
	SYSEIB
	VBREF

	Translator options table

	Using COPY statements
	The CICS-supplied interface modules
	The EXEC interface modules
	The CPI Communications interface module
	The SAA Resource Recovery interface module

	Using the EXEC interface modules
	COBOL
	PL/I
	C and C++
	Assembler language
	EXAMPLE Assembler language PROGRAM using LEASM

	Chapter 9. Installing application programs
	Program installation roadmap
	Preparing for program installation

	Defining MVS residence and addressing modes
	Establishing a program’s addressing mode
	CICS address space considerations
	Making programs permanently resident

	Running applications in the link pack area
	Running application programs in the RDSAs
	Assembler
	C and C/++
	COBOL
	PL/I

	Using BMS map sets in application programs
	Using the CICS-supplied procedures to install application programs
	Installing programs in load library secondary extents

	Including the CICS-supplied interface modules
	Installing assembler language application programs
	Installing COBOL application programs
	Sample JCL to install COBOL application programs

	Installing PL/I application programs
	Sample JCL to install PL/I application programs
	PL/I procedure with an integrated translator

	Installing C application programs
	Sample JCL to install C application programs
	Including pre-translated code with your C source code

	Using your own job streams
	Translator requirements
	Online programs that use EXEC CICS or EXEC DLI commands
	Online programs that use the CALL DLI interface
	Batch or BMP programs that use EXEC DLI commands
	Batch or BMP programs that use DL/I CALL commands

	Chapter 10. Installing map sets and partition sets
	Installing map sets
	Types of map sets
	Defining the type of map set you require
	Using extended data stream terminals

	Installing physical map sets
	Installing symbolic description map sets
	Installing physical and symbolic description maps together
	Using the DFHMAPT procedure to install HTML templates from BMS maps
	JCL to install physical and symbolic description maps
	Adding a CSECT to your map assembly

	Installing partition sets
	Defining programs, map sets, and partition sets to CICS

	Part 3. Application design
	Chapter 11. Application design
	Pseudoconversational and conversational design
	Terminal interruptibility

	How tasks are started
	Which transaction?
	Separating business and presentation logic
	Multithreading: Reentrant, quasi-reentrant and threadsafe programs
	Quasi-reentrant application programs
	Threadsafe programs
	Threadsafe considerations for statically or dynamically called routines

	OPENAPI programs
	Obligations of OPENAPI programs

	Using the FORCEQR system initialization parameter
	Non-reentrant programs

	Storing data within a transaction
	Transaction work area (TWA)
	User storage
	COMMAREA in LINK and XCTL commands
	Channels in LINK and XCTL commands
	Program storage
	Temporary storage
	Intrapartition transient data
	GETMAIN SHARED command
	Your own data sets

	Lengths of areas passed to CICS commands
	LENGTH options
	Journal records
	Data set definitions
	Recommendation

	Minimizing errors
	Protecting CICS from application errors
	Testing applications

	Non-terminal transaction security

	Chapter 12. Design for performance
	Program size
	Virtual storage
	Reducing paging effects
	Locality of reference
	Working set
	Reference set

	Exclusive control of resources
	Operational control
	Operating system waits
	The NOSUSPEND option
	Efficient data operations
	Efficient database operations
	Efficient data set operations
	VSAM data sets
	BDAM data sets

	Efficient browsing (in non-RLS mode)
	Efficient logging
	Efficient sequential data set access

	Efficient terminal operations
	Length of the data stream sent to the terminal
	Basic mapping support considerations
	Avoid turning on modified data tags (MDTs) unnecessarily
	Use FRSET to reduce inbound traffic
	Do not send blank fields to the screen
	Address CICS areas correctly
	Use the MAPONLY option when possible
	Send only changed fields to an existing screen
	Design data entry operations to reduce line traffic
	Compress data sent to the screen
	Use nulls instead of blanks
	Use methods that avoid the need for nulls or blanks

	Page-building and routing operations
	Sending multipage output
	Sending messages to destinations other than the input terminal
	Sending pages built from multiple maps
	Using the BMS page-copy facility

	Requests for printed output
	Additional terminal control considerations
	Use only one physical SEND command per screen
	Use the CONVERSE command
	Limit the use of message integrity options
	Avoid using the DEFRESP option on SEND commands
	Avoid using unnecessary transactions
	Send unformatted data without maps

	Chapter 13. Sharing data across transactions
	Using the common work area (CWA)
	Protecting the CWA

	Using the TCTTE user area (TCTUA)
	Using the COMMAREA in RETURN commands
	Using a channel on RETURN commands
	Using the display screen to share data

	Chapter 14. Enhanced inter-program data transfer: channels as modern-day COMMAREAs
	Channels: quick start
	Containers and channels
	Basic examples

	Using channels: some typical scenarios
	One channel, one program
	One channel, several programs (a component)
	Several channels, one component
	Multiple interactive components

	Creating a channel
	The current channel
	Current channel example, with LINK commands
	Current channel example, with XCTL commands
	Current channel: START and RETURN commands

	The scope of a channel
	Scope example, with LINK commands
	Scope example, with LINK and XCTL commands

	Discovering which containers a program's been passed
	Discovering which containers were returned from a link
	CICS read only containers
	Designing a channel: best practices
	Constructing and using a channel: an example
	Channels and BTS activities
	Context

	Using channels from JCICS
	Dynamic routing with channels
	Data conversion
	Why is data conversion needed?
	Preparing for code page conversion with channels
	Data conversion with channels
	How to cause CICS to convert character data automatically
	Using containers to do code page conversion
	A SOAP example

	Benefits of channels
	Migrating from COMMAREAs to channels
	Migration of existing functions
	Migration to the new function
	Migrating LINK commands that pass COMMAREAs
	Migrating XCTL commands that pass COMMAREAs
	Migrating pseudoconversational COMMAREAs on RETURN commands
	Migrating START data
	Migrating programs that use temporary storage to pass data
	Migrating dynamically-routed applications

	Chapter 15. Affinity
	Types of affinity
	Inter-transaction affinity
	Transaction-system affinity
	Using INQUIRE and SET commands and global user exits

	Programming techniques and affinity
	Safe techniques
	Unsafe techniques
	Suspect techniques
	Recommendations

	Safe programming to avoid affinity
	The COMMAREA
	The TCTUA
	Using the TCTUA in an unsafe way

	Using ENQ and DEQ commands with ENQMODEL resource definitions
	Overview of sysplex enqueue and dequeue
	Benefits

	BTS containers

	Unsafe programming for affinity
	Using the common work area
	Using GETMAIN SHARED storage
	Using the LOAD PROGRAM HOLD command
	Sharing task-lifetime storage
	Using the WAIT EVENT command
	Using ENQ and DEQ commands without ENQMODEL resource definitions

	Suspect programming for affinity
	Using temporary storage
	Naming conventions for remote queues
	Exception conditions for globally accessible queues

	Using transient data
	Exception conditions for globally accessible queues

	Using the RETRIEVE WAIT and START commands
	Using the START and CANCEL REQID commands
	Using the DELAY and CANCEL REQID commands
	Using the POST and CANCEL REQID commands

	Detecting inter-transaction affinities
	Inter-transaction affinities caused by application generators

	Duration and scope of inter-transaction affinities
	Affinity transaction groups
	Relations and lifetimes
	The global relation
	The LUname (terminal) relation
	The userid relation
	The BAPPL relation

	Chapter 16. Recovery design
	Journaling
	Journal records
	Journal output synchronization

	Syncpointing

	Chapter 17. Dealing with exception conditions
	Default CICS exception handling
	Handling exception conditions by in-line code
	How to use the RESP and RESP2 options
	Use of RESP and DFHRESP in COBOL and PL/I
	Use of RESP and DFHRESP in C and C++
	Use of DFHRESP in assembler

	An example of exception handling in C
	An example of exception handling in COBOL

	Modifying default CICS exception handling
	Using the HANDLE CONDITION command
	RESP and NOHANDLE options
	How CICS keeps track of what to do

	Using the HANDLE CONDITION ERROR command
	Using the IGNORE CONDITION command
	Using the HANDLE ABEND command
	Using PUSH HANDLE and POP HANDLE commands

	Chapter 18. Abnormal termination recovery
	Creating a program-level abend exit
	Retrying operations
	Trace
	Trace entry points
	System trace entry points
	User trace entry points
	Exception trace entry points
	User exception trace entry points

	Monitoring
	Dump

	Chapter 19. The QUERY SECURITY command
	Using the QUERY SECURITY command
	Security protection at the record or field level
	CICS-defined resource identifiers
	SEC system initialization parameter
	Programming hints

	Part 4. Data Management
	Chapter 20. An overview of file control
	VSAM data sets
	Key-sequenced data set (KSDS)
	Entry-sequenced data set (ESDS)
	Relative record data set (RRDS)
	Empty data sets
	VSAM alternate indexes
	Accessing files in RLS mode
	Some RLS limitations

	BDAM data sets
	CICS shared data tables
	Coupling facility data tables
	Coupling facility data table models

	Techniques for sharing data
	Using CICS commands to read records
	Direct reading (using READ command)
	Direct reading from a KSDS
	Direct reading from an ESDS
	Direct reading from an RRDS
	Direct reading by way of a path
	Read integrity (in RLS mode)

	Sequential reading (browsing)
	Browsing through a KSDS
	Browsing through an ESDS
	Browsing through an RRDS
	Browsing using a path
	Browse integrity (in RLS mode)
	Ending the browse
	Simultaneous browse operations

	Skip-sequential processing

	Using CICS commands to update records
	Using CICS commands to delete records
	Deleting single records
	Updating and deleting records in a browse (VSAM RLS only)

	Deleting groups of records (generic delete)
	Read integrity

	Using CICS commands to add records
	Adding to a KSDS
	Adding to an ESDS
	Adding to an RRDS
	Records that are already locked
	Specifying record length
	Sequential adding of records (WRITE MASSINSERT command)

	File control command options
	The RIDFLD option
	The INTO and SET options
	The FROM option
	The TOKEN option
	KEYLENGTH option for remote data sets

	Transaction deadlocks
	VSAM-detected deadlocks (RLS only)
	Rules for avoiding deadlocks

	Chapter 21. File control—VSAM considerations
	VSAM record identification
	Key
	Relative byte address (RBA) and relative record number (RRN)
	RBA
	RRN

	Locking of VSAM records in recoverable files
	Update locks and delete locks (non-RLS mode only)

	RLS Record level locking
	Exclusive locks and shared locks
	Exclusive locks
	Shared locks
	Lock duration
	Active and retained states for locks

	Conditional VSAM file update requests
	File control implementation of NOSUSPEND

	CICS locking for writing to ESDS

	Chapter 22. File control—BDAM considerations
	Identifying BDAM records
	Block reference subfield
	Physical key subfield
	Deblocking argument subfield

	Browsing records from BDAM data sets
	Adding records to BDAM data sets
	Updating records from BDAM data sets

	Chapter 23. Database control
	DL/I databases
	DB2 databases
	Requests to DB2

	Chapter 24. CICS documents
	Using the DOCUMENT programming interface
	Creating a document
	The BINARY option
	The TEXT option
	The FROMDOC option

	Setting up document templates
	Templates in a partitioned data set
	Templates in a CICS program
	Templates in CICS files, z/OS UNIX System Services HFS files, temporary storage, or transient data
	Creating templates in exit programs

	Programming with documents and document templates
	Symbols and symbol lists
	Setting symbol values
	Embedded template commands
	Using templates in your application
	The lifespan of a document
	Retrieving the document without control information

	Constructing a document
	Using Bookmarks
	Replacing data in the document

	Code page conversion for documents

	Chapter 25. Named counter servers
	The named counter fields
	Named counter pools
	Named counter options table

	Using the named counter EXEC interface
	Using the named counter CALL interface
	Application programming considerations
	Syntax
	Checking for result overflow
	Example of DFHNCTR calls with null parameters

	Return codes

	Named counter recovery

	Part 5. Data Communication
	Chapter 26. Terminal control
	Terminal access method support
	Terminal control commands
	Send/receive mode
	Contention for the terminal
	RETURN IMMEDIATE

	Speaking out of turn
	Interrupting
	Terminal waits

	Using data transmission commands
	What you get on a RECEIVE
	Input chaining
	Logical messages
	NOTRUNCATE option
	Print key

	Device control commands
	Terminal device support
	Finding out about your terminal
	EIB feedback on terminal control operations

	Using VTAM
	Chaining input data
	Chaining output data
	Handling logical records
	Response protocol
	Using function management headers
	Inbound FMH
	Outbound FMH

	Preventing interruptions (bracket protocol)

	Using sequential terminal support
	Coding considerations for sequential terminals
	Print formatting
	GOODNIGHT convention

	Using TCAM
	Coding for the TCAM/DCB interface

	Using batch data interchange
	Destination selection and identification
	Selection by named data set
	Selection by medium

	Definite response
	Waiting for function completion

	Chapter 27. The 3270 family of terminals
	History of the 3270
	Screen fields
	Personal computers
	PCs as 3270s

	The 3270 buffer
	The output datastream
	3270 write commands
	Write control character

	3270 display fields
	Display characteristics

	3270 field attributes
	Protection
	Modification
	Intensity
	Base color
	Extended attributes

	Orders in the data stream
	The start field order
	The modify field order
	The set buffer address order
	The set attribute order

	Outbound data stream sample
	Input from a 3270 terminal
	Data keys
	Keyboard control keys
	Attention keys
	The AID

	Reading from a 3270 terminal
	Inbound field format
	Input data stream example
	Unformatted mode

	Chapter 28. CICS support for printing
	Formatting for CICS printers
	CICS 3270 printers
	CICS 3270 printer options
	PRINT option and print control bit
	ERASE option
	Line width options: L40, L64, L80, and HONEOM
	NLEOM option
	Blank lines
	Multiple sends
	Page width
	Total page size

	FORMFEED
	PRINTERCOMP option

	Non-3270 CICS printers
	SCS input

	Determining the characteristics of a CICS printer
	BMS page size, 3270 printers
	Supporting multiple printer types

	Using CICS printers
	Printing with a START command
	Printing with transient data
	Task that wants to print (on printer PRT1):
	Task that gets triggered:

	Printing with BMS routing

	Using Non-CICS printers
	Formatting for non-CICS printers
	Non-CICS printers: Delivering the data
	Programming for non-CICS printers
	Notifying the print application

	Printing display screens
	CICS print key
	ISSUE PRINT and ISSUE COPY
	Hardware print key
	BMS screen copy

	Chapter 29. CICS interface to JES
	Using the CICS interface to JES
	Spool interface restrictions

	Creating output spool files
	Using the MVS internal reader

	Reading input spool files
	JES exits

	Identifying spool files
	Examples of SPOOL commands
	COBOL
	PL/I
	C
	ASSEMBLER

	Chapter 30. CICS intercommunication
	Design considerations
	Programming language

	Transaction routing
	Function shipping
	Distributed program link (DPL)
	Using the distributed program link function
	Examples of distributed program link
	Programming considerations for distributed program link
	Issuing multiple distributed program links from the same client task
	Sharing resources between client and server programs
	Mixing DPL and function shipping to the same CICS system
	Mixing DPL and DTP to the same CICS system
	Restricting a program to the distributed program link subset
	Determining how a program was invoked
	Accessing user-related information with the ASSIGN command
	Exception conditions for LINK command

	Asynchronous processing
	Distributed transaction processing (DTP)
	Common Programming Interface Communications (CPI Communications)
	External CICS interface (EXCI)

	Part 6. Basic Mapping Support (BMS)
	Chapter 31. Basic mapping support
	BMS support levels
	Minimum BMS
	Standard BMS
	Full BMS

	A BMS output example

	Chapter 32. Creating the map
	Defining map fields: DFHMDF
	Defining the map: DFHMDI
	Defining the map set: DFHMSD
	Writing BMS macros
	Assembling the map
	Physical and symbolic map sets
	The SDF II alternative
	Grouping maps into map sets
	The Application Data Structure (ADS)

	Using complex fields
	Composite fields: the GRPNAME option
	Repeated fields: the OCCURS option

	Block data
	Support for non-3270 terminals
	Output considerations for non-3270 devices
	Differences on input
	Special options for non-3270 terminals

	Device-dependent maps
	Device dependent support: DDS
	Finding out about your terminal

	Chapter 33. Sending BMS mapped output
	Acquiring and defining storage for the maps
	BASE and STORAGE options

	Initializing the output map
	Moving the variable data to the map
	Setting the display characteristics
	Changing the attributes
	Attribute value definitions: DFHBMSCA

	Chapter 34. Using the SEND MAP command
	SEND MAP control options
	Other BMS SEND options: WAIT and LAST

	Merging the symbolic and physical maps
	MAPONLY option
	DATAONLY option
	The SEND CONTROL command

	Building the output screen
	What you start with
	What is sent
	Where the values come from
	Outside the map
	Using GDDM and BMS

	Positioning the cursor
	Sending invalid data and other errors
	Output disposition options: TERMINAL, SET, and PAGING
	Using SET

	Chapter 35. Receiving mapped data
	An input-output example
	The symbolic input map

	Programming mapped input
	Using the RECEIVE MAP command
	Getting storage for mapped input
	Formatted screen input
	Modified data
	Upper case translation

	Using the attention identifier
	Using the HANDLE AID command

	Finding the cursor
	Processing the mapped input
	Handling input errors
	Flagging errors
	Saving the good input
	Rechecking

	Sending mapped output after mapped input
	MAPFAIL and other exceptional conditions
	EOC condition

	Formatting other input

	Chapter 36. BMS logical messages
	Building logical messages
	The SEND PAGE command
	RETAIN and RELEASE
	The AUTOPAGE option
	Terminal operator paging: the CSPG transaction
	Logical message recovery

	Chapter 37. Cumulative output — the ACCUM option
	Floating maps: how BMS places maps using ACCUM
	Page breaks: BMS overflow processing
	Map placement rules
	ASSIGN options for cumulative processing

	Input from a composite screen
	Performance considerations
	Minimizing path length
	Reducing message lengths

	Chapter 38. Text output
	The SEND TEXT command
	Text logical messages

	Text pages
	Text lines
	Header and trailer format
	SEND TEXT MAPPED and SEND TEXT NOEDIT

	Chapter 39. Message routing
	Message destinations
	Eligible terminals
	Destinations specified with OPCLASS only
	OPCLASS and LIST omitted
	Route list provided

	Route list format
	Message delivery
	Undeliverable messages

	Recoverable messages
	Message identification

	Programming considerations with routing
	Routing and page overflow
	Routing with SET
	Interleaving a conversation with message routing

	Chapter 40. The MAPPINGDEV facility
	SEND MAP with the MAPPINGDEV option
	RECEIVE MAP with the MAPPINGDEV option
	Sample assembler MAPPINGDEV application

	Chapter 41. Partition support
	Uses for partitioned screens
	Scrolling
	Data entry
	Lookaside
	Data comparison
	Error messages

	Partition definition
	3290 character size

	Establishing partitioning
	Partition options for BMS SEND commands
	Determining the active partition

	Partition options for BMS RECEIVE commands
	ASSIGN options for partitions

	Partitions and logical messages
	Partitions and routing

	Attention identifiers and exception conditions
	Terminal sharing

	Chapter 42. Support for special hardware
	Logical device components
	Defining logical device components
	Sending data to a logical device component
	LDCs and logical messages
	LDCs and routing

	10/63 magnetic slot reader
	Field selection features
	Trigger field support

	Cursor and pen-detectable fields
	Selection fields
	Attention fields
	BMS input from detectable fields

	Outboard formatting

	Part 7. CICS management functions
	Chapter 43. Interval control
	Expiration times
	Request identifiers

	Chapter 44. Task control
	Controlling sequence of access to resources

	Chapter 45. Program control
	Program linking
	Application program logical levels
	Link to another program expecting return

	Passing data to other programs
	COMMAREA
	Channels
	INPUTMSG
	Using the INPUTMSG option on the RETURN command

	Using mixed addressing modes
	Using LINK to pass data
	Using RETURN to pass data

	Chapter 46. Storage control
	Overview of CICS storage protection and transaction isolation
	Storage protection
	Storage categories

	Transaction isolation
	Reducing system outages
	Protecting application data
	Protecting CICS from being passed invalid addresses
	Aiding application development

	Defining the storage key for applications
	System-wide storage areas
	Task lifetime storage
	Program working storage specifically for exit and PLT programs
	Passing data by a COMMAREA
	The GETMAIN command

	Selecting the execution and storage key
	User-key applications
	CICS-key applications
	Tables
	Map sets and partition sets
	Storage protection exception conditions

	Using transaction isolation
	MVS subspaces
	Subspaces and basespaces for transactions
	The common subspace and shared storage

	Chapter 47. Transient data control
	Intrapartition transient data queues
	Extrapartition queues
	Indirect queues
	Automatic transaction initiation (ATI)

	Chapter 48. Temporary storage control
	Temporary storage queues
	Typical uses of temporary storage control

	Part 8. Testing and debugging applications
	Chapter 49. Testing applications
	Preparing the application for testing
	Preparing the system for testing

	Chapter 50. Execution diagnostic facility (EDF)
	Restrictions when using EDF
	OPEN TCBs and EDF
	Parameter list stacking
	Security considerations

	What does EDF display?
	The header
	The body
	At program initiation
	At the start of execution of a CICS command
	At the end of execution of a command
	At program and task termination
	At abnormal termination

	Using EDF
	Interrupting program execution
	Using EDF in single-screen mode
	Checking pseudoconversational programs

	Using EDF in dual-screen mode
	EDF and remote transactions
	EDF and non-terminal transactions
	EDF and DTP programs
	EDF and distributed program link commands

	Stopping EDF

	Overtyping to make changes
	EDF responses

	Using EDF menu functions

	Chapter 51. Temporary storage browse (CEBR)
	Using the CEBR transaction
	What does the CEBR transaction display?
	The header
	The command area
	The body
	The message line

	Using the CEBR function keys
	Using the CEBR commands
	Using the CEBR transaction with transient data

	Chapter 52. Command-level interpreter (CECI)
	What does CECI display?
	The command line
	The status line
	Command syntax check
	About to execute command
	Command execution complete

	The body
	The message line
	CECI options on function keys

	Using CECI
	Making changes

	Using the CECI function keys
	Expanded area
	Variables
	Defining variables

	The EXEC interface block (EIB)
	Error messages display

	Saving commands
	How CECI runs
	CECI sessions
	Abends
	Exception conditions
	Program control commands
	Terminal sharing
	Shared storage: ENQ commands without LENGTH option

	Chapter 53. Using debuggers with CICS applications
	Debugging profiles
	Using debugging profiles to select programs for debugging
	Using generic parameters in debugging profiles

	Chapter 54. Debugging CICS applications from a workstation
	Preparing to debug applications from a workstation

	Chapter 55. Using Debug Tool with CICS applications
	About Debug Tool
	Preparing to debug applications with Debug Tool

	Part 9. Appendixes
	Appendix A. Using the phonetic conversion subroutine DFHPHN
	Appendix B. Migration for OS/VS COBOL programs
	Conversion to Enterprise COBOL
	Based addressing
	Artificial assignments

	Bibliography
	The CICS Transaction Server for z/OS library
	The entitlement set
	PDF-only books
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	CICS family books
	Licensed publications

	Other CICS books
	Books from related libraries
	DL/I
	DB2
	Screen definition facility II (SDF II)
	Common programming interface
	Common user access
	Programming languages
	Teleprocessing Network Simulator (TPNS)
	Language Environment:
	Miscellaneous books

	Determining if a publication is current

	Accessibility
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Notices
	Trademarks

	Sending your comments to IBM

