

CICS Transaction Server for OS/390 IBM

CICS IMS Database Control Guide
Release 3

 SC33-1700-02

CICS Transaction Server for OS/390 IBM

CICS IMS Database Control Guide
Release 3

 SC33-1700-02

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

Third edition (March 1999)

This edition applies to Release 3 of CICS Transaction Server for OS/390, program number 5655-147, and to all subsequent
versions, releases, and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

This book is based on the CICS IMS Database Control Guide for CICS Transaction Server for OS/390 Release 2, SC33-1700-01.
Changes from that edition are marked by vertical lines to the left of the changes.

The CICS Transaction Server for OS/390 Release 2 edition remains applicable and current for users of CICS Transaction Server for
OS/390 Release 2, and may be ordered using its order number, SC33-1700-01.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1989, 1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Programming interface information . viii
Trademarks . viii

Preface . xi
Who this book is for . xi

What this book is about . xi
What you need to know before reading this book xi
How to use this book . xi
Determining if a publication is current . xi
Terms used . xii

Bibliography . xiii
CICS Transaction Server for OS/390 . xiii

CICS books for CICS Transaction Server for OS/390 xiii
CICSPlex SM books for CICS Transaction Server for OS/390 xiv
Other CICS books . xiv

Summary of changes . xv
Changes for CICS Transaction Server for OS/390 Release 3 xv
Changes for CICS Transaction Server for OS/390 Release 2 xv
Changes for CICS TS for OS/390 release 1 . xv
Changes for the CICS/ESA 4.1 edition . xv
Changes for the CICS/ESA 3.3 edition . xvi

Chapter 1. Overview of Database Control (DBCTL) 1
Summary of the benefits of DBCTL . 1
Overview of DL/I request handling in CICS . 2
Connecting to DBCTL . 3
CICS-IMS DBCTL environment . 3
Coordinator control subsystem (CCTL) . 7
Resources you can access from a CICS environment that includes DBCTL . . . 8

Chapter 2. Benefits of using DBCTL . 9
Function . 9
System availability . 13
Performance . 14

Chapter 3. Migration considerations for DBCTL 15
Other methods for accessing DL/I . 15
CICS-IMS release compatibility . 15
Possible migration paths . 16
Suggested migration procedure . 17
Planning your new DBCTL setup . 18
Setting up test and production systems . 20

Chapter 4. Installing DBCTL, and defining CICS and IMS system
resources . 21

Checklist for installing and generating DBCTL 21
Defining CICS system resources . 22

 Copyright IBM Corp. 1989, 1999 iii

Generating DBCTL . 28
Starting DBCTL, DLISAS, and DBRC . 38
Defining the IMS DRA startup parameter table 39
Customizing DBCTL . 43

Chapter 5. Operations with DBCTL . 45
Connection to DBCTL . 45
Operator communication with DBCTL . 53
Dealing with messages from DBCTL and CICS 71

Chapter 6. Recovery and restart operations for DBCTL 73
Overview of CICS and IMS recovery and restart 73
Commit protocols and units of recovery . 79
Database utilities . 84
Log utilities . 86
Component failures . 86

Chapter 7. Application programming for DBCTL 93
Overview of application programming for DBCTL 93
Programming languages and environments . 94
Additional facilities available with DBCTL . 95
Migrating programs to DBCTL . 111
Summary of abends and return codes . 114

Chapter 8. Security checking with DBCTL 117
PSB authorization checking by CICS . 117
Resource access security checking by DBCTL 117
DBCTL password security checking . 120
Migration considerations for security with DBCTL 120

Chapter 9. Problem determination for DBCTL 125
Interactions between CICS and DBCTL . 125
DBCTL error scenarios . 126
Trace . 129
Dumps . 140
Messages . 143
Using CICS EDF to debug application programs in DBCTL 146

Chapter 10. Statistics, monitoring, and performance for DBCTL 147
Data available for a CICS-DBCTL system . 147
Monitoring DBCTL—transaction level data . 150
Tuning a CICS-DBCTL system . 158

Appendix A. Migration task summary for DBCTL 165
Education task list . 165
Installation, system and resource definition task list 166
Operations task list . 166
Recovery and restart task list . 167
Application programming task list . 167
Security task list . 168
Problem determination task list . 168
Monitoring, statistics, and performance task list 168

iv CICS IMS Database Control Guide

Appendix B. Illustration of DBCTL startup parameter creation and
selection . 171

Appendix C. Messages issued during DBCTL startup and termination . 173
Messages issued by DBCTL during startup . 174

Appendix D. Summary of DBCTL operator commands 177

Appendix E. Using global user exit XDLIPRE to change PSB to be
scheduled . 181

Glossary . 187

Index . 195

Sending your comments to IBM . 197

 Contents v

vi CICS IMS Database Control Guide

 Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:
 INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication
at any time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM United Kingdom Laboratories,
MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

 Copyright IBM Corp. 1989, 1999 vii

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Programming License Agreement, or any equivalent agreement
between us.

Programming interface information
This book is intended to help you evaluate, install, and use the CICS-IMS Database
Control (DBCTL) interface.

This book also documents Product-sensitive Programming Interface and Associated
Guidance Information and Diagnosis, Modification or Tuning Information provided
by CICS.

Product-sensitive programming interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of
CICS. Use of such interfaces creates dependencies on the detailed design or
implementation of the IBM software product. Product-sensitive programming
interfaces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that
programs written to such interfaces may need to be changed in order to run with
new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, by an introductory statement to a chapter or section.

Diagnosis, Modification or Tuning Information is provided to help you diagnose
problems with your CICS system.

Attention: Do not use this Diagnosis, Modification or Tuning Information as a
programming interface.

Diagnosis, Modification or Tuning Information is identified where it occurs, by an
introductory statement to a chapter or section.

This book contains sample programs. Permission is hereby granted to copy and
store the sample programs into a data processing machine and to use the stored
copies for study and instruction only. No permission is granted to use the sample
programs for any other purpose.

 Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

AT MVS/DFP
CICS/ESA MVS/ESA
DATABASE 2 OS/390
DB2 RACF
IBM RMF
IMS VTAM
IMS/ESA 3090

viii CICS IMS Database Control Guide

Other company, product, and service names may be trademarks or service marks
of others.

 Notices ix

x CICS IMS Database Control Guide

 Preface

Who this book is for
This book is for anyone who uses the CICS-IMS Database Control interface,
referred to as DBCTL in the rest of this book.

This book is intended to help you understand DBCTL. It contains guidance on
evaluating, installing, and using DBCTL. This book also discusses migration from
local DL/I.

For programming information on programming interfaces provided by IMS, see the
IMS Application Programming: EXEC DLI Commands manual and the IMS
Application Programming: DL/I Calls manual manuals.

What this book is about
The aim of this book is to give introductory and guidance information on evaluating,
installing, and using DBCTL.

This book is intended to be used in conjunction with existing manuals in the CICS
and IMS libraries, to which it refers where appropriate.

What you need to know before reading this book
Before you read this book, you need a general understanding of CICS and IMS.
You can find general introductory information in the CICS Family: General
Information and the General Information manual manual. You should also have
some knowledge of the concepts of data management and databases. For
guidance on these topics, see the IMS Database Administration Guide or the
IMS/ESA Administration Guide: Database Manager.

How to use this book
Probably, at first, you will read this book sequentially. Aspects of DBCTL, from
installation through performance considerations, are presented in the order in which
you are likely to need them. However, new users of DL/I should skip Chapter 3,
“Migration considerations for DBCTL” on page 15.

Determining if a publication is current
IBM regularly updates its publications with new and changed information. When first
published, both hardcopy and BookManager softcopy versions of a publication are
usually in step. However, due to the time required to print and distribute hardcopy
books, the BookManager version is more likely to have had last-minute changes
made to it before publication.

Subsequent updates will probably be available in softcopy before they are available
in hardcopy. This means that at any time from the availability of a release, softcopy
versions should be regarded as the most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on
the Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each

 Copyright IBM Corp. 1989, 1999 xi

reissue of the collection kit is indicated by an updated order number suffix (the -xx
part). For example, collection kit SK2T-0730-06 is more up-to-date than
SK2T-0730-05. The collection kit is also clearly dated on the cover.

Updates to the softcopy are clearly marked by revision codes (usually a “#”
character) to the left of the changes.

 Terms used
In general, this book refers to Customer Information Control System and
Information Management System as “CICS” and “IMS,” respectively. CICS used
without qualification normally refers to the CICS element of CICS Transaction
Server for OS/390. However, when it is necessary to distinguish between particular
CICS or IMS products, there are the following abbreviations, with a version and
release number where appropriate:

CICS for MVS/ESA refers to IBM CICS for Multiple Virtual Storage/Enterprise
Systems Architecture.

CICS/MVS refers to IBM Customer Information Control System/Multiple Virtual
Storage.

CICS/ESA refers to IBM Customer Information Control System/Enterprise
Systems Architecture.

IMS/VS refers to IBM Information Management System/Virtual Storage.

IMS/ESA refers to IBM Information Management System/Enterprise Systems
Architecture.

IMS/VS DB/DC refers to IBM Information Management System/Virtual Storage
Database/Data Communication.

IMS/ESA DM/TM refers to IBM Information Management System/Enterprise
Systems Architecture Database Manager/Transaction Manager.

MVS refers to the IBM MVS operating system.

For definitions of DBCTL-related terminology used in this book, see “Glossary” on
page 187.

xii CICS IMS Database Control Guide

 Bibliography

CICS Transaction Server for OS/390
CICS Transaction Server for OS/390: Planning for Installation GC33-1789
CICS Transaction Server for OS/390: Release Guide GC34-5352
CICS Transaction Server for OS/390: Migration Guide GC34-5353
CICS Transaction Server for OS/390: Program Directory GC33-1706
CICS Transaction Server for OS/390: Licensed Program Specification GC33-1707

CICS books for CICS Transaction Server for OS/390
General

CICS Master Index SC33-1704
CICS User's Handbook SX33-6104
CICS Glossary (softcopy only) GC33-1705

Administration
CICS Installation Guide GC33-1681
CICS System Definition Guide SC33-1682
CICS Customization Guide SC33-1683
CICS Resource Definition Guide SC33-1684
CICS Operations and Utilities Guide SC33-1685
CICS Supplied Transactions SC33-1686

Programming
CICS Application Programming Guide SC33-1687
CICS Application Programming Reference SC33-1688
CICS System Programming Reference SC33-1689
CICS Front End Programming Interface User's Guide SC33-1692
CICS C++ OO Class Libraries SC34-5455
CICS Distributed Transaction Programming Guide SC33-1691
CICS Business Transaction Services SC34-5268

Diagnosis
CICS Problem Determination Guide GC33-1693
CICS Messages and Codes GC33-1694
CICS Diagnosis Reference LY33-6088
CICS Data Areas LY33-6089
CICS Trace Entries SC34-5446
CICS Supplementary Data Areas LY33-6090

Communication
CICS Intercommunication Guide SC33-1695
CICS Family: Interproduct Communication SC33-0824
CICS Family: Communicating from CICS on System/390 SC33-1697
CICS External Interfaces Guide SC33-1944
CICS Internet Guide SC34-5445

Special topics
CICS Recovery and Restart Guide SC33-1698
CICS Performance Guide SC33-1699
CICS IMS Database Control Guide SC33-1700
CICS RACF Security Guide SC33-1701
CICS Shared Data Tables Guide SC33-1702
CICS Transaction Affinities Utility Guide SC33-1777
CICS DB2 Guide SC33-1939

 Copyright IBM Corp. 1989, 1999 xiii

CICSPlex SM books for CICS Transaction Server for OS/390
General

CICSPlex SM Master Index SC33-1812
CICSPlex SM Concepts and Planning GC33-0786
CICSPlex SM User Interface Guide SC33-0788
CICSPlex SM View Commands Reference Summary SX33-6099

Administration and Management
CICSPlex SM Administration SC34-5401
CICSPlex SM Operations Views Reference SC33-0789
CICSPlex SM Monitor Views Reference SC34-5402
CICSPlex SM Managing Workloads SC33-1807
CICSPlex SM Managing Resource Usage SC33-1808
CICSPlex SM Managing Business Applications SC33-1809

Programming
CICSPlex SM Application Programming Guide SC34-5457
CICSPlex SM Application Programming Reference SC34-5458

Diagnosis
CICSPlex SM Resource Tables Reference SC33-1220
CICSPlex SM Messages and Codes GC33-0790
CICSPlex SM Problem Determination GC33-0791

Other CICS books

If you have any questions about the CICS Transaction Server for OS/390 library,
see CICS Transaction Server for OS/390: Planning for Installation which discusses
both hardcopy and softcopy books and the ways that the books can be ordered.

CICS Application Programming Primer (VS COBOL II) SC33-0674
CICS Application Migration Aid Guide SC33-0768
CICS Family: API Structure SC33-1007
CICS Family: Client/Server Programming SC33-1435
CICS Family: General Information GC33-0155
CICS 4.1 Sample Applications Guide SC33-1173
CICS/ESA 3.3 XRF Guide SC33-0661

xiv CICS IMS Database Control Guide

Summary of changes

Changes for CICS Transaction Server for OS/390 Release 3
DFHDBFK, the DCBM group command file, added.

Significant changes for this edition are indicated by vertical lines to the left of the
changes.

Changes for CICS Transaction Server for OS/390 Release 2
This edition of the book contains few changes since the previous edition. It does
describe the new DBCTLCON system initialization parameter, in “Defining CICS
system resources” on page 22.

Changes for CICS TS for OS/390 release 1
The following topics have been added or changed since the CICS/ESA 4.1 edition:

� Withdrawal of support for local DL/I and batch shared database.

� DBCTL support for Indoubt Wait.

� Support for the IMS AIB format has been extended.

� Chapter 8 of the previous edition, about DBCTL in an XRF environment, has
been deleted because the XRF function has not changed. If you require that
chapter, refer to the CICS/ESA 4.1 edition of this book.

Changes for the CICS/ESA 4.1 edition
The following topics have been added or changed since the CICS/ESA 3.3 edition:

� A CICS-supplied transaction, CDBM, used to issue DBCTL operator commands

� A CICS-DBCTL installation verification procedure, DFHIVPDB

� Specifying a DBCTL identifier during CICS initialization or via the CDBC
transaction

� Release of DBCTL threads at syncpoint instead of task termination

� IMS AIB call format

� Withdrawal of support for IMS/VS 2.2 with local DL/I

� New system initialization parameters DSALIM and EDSALIM, which replace
CDSASZE, ECDSASZE, ERDSASZE, EUDSASZE, and UDSASZE parameters

 � Migration scenarios

� Example trace entries

� Example of DFHSTUP output.

 Copyright IBM Corp. 1989, 1999 xv

Changes for the CICS/ESA 3.3 edition
The book has been updated to reflect the replacement of the following system
initialization parameters:

Obsolete Replaced by

DSASZE CDSASZE and UDSASZE.

EDSASZE ECDSASZE, ERDSASZE, and EUDSASZE.

xvi CICS IMS Database Control Guide

Chapter 1. Overview of Database Control (DBCTL)

This overview of DBCTL introduces the concepts of the CICS-IMS interface that
uses Database Control (DBCTL) under these headings:

� “Summary of the benefits of DBCTL”

� “Overview of DL/I request handling in CICS” on page 2

� “Connecting to DBCTL” on page 3

� “CICS-IMS DBCTL environment” on page 3

� “Coordinator control subsystem (CCTL)” on page 7

� “Resources you can access from a CICS environment that includes DBCTL” on
page 8

Summary of the benefits of DBCTL
DBCTL is an IMS facility that provides an IMS/ESA Database Manager (IMS/ESA
DM) subsystem that can be attached to CICS, but runs in its own address spaces.
The benefits of DBCTL are summarized below and are discussed in more detail in
Chapter 2, “Benefits of using DBCTL” on page 9.

� Release independence—you do not need to regenerate the DL/I support in
CICS if you change to a new release of CICS or IMS.

� Access to more IMS functions for CICS users—DBCTL gives one or more
CICS systems online access to data entry databases (DEDBs) as well as full
function DL/I databases.

� Virtual storage constraint relief for CICS systems that currently contain DL/I
because DL/I code is outside the CICS address space.

� Improved throughput on multiprocessors, because DL/I requests run under task
control blocks (TCBs) separate from those used by CICS and because CICS
and DBCTL reside in separate address spaces.

� Improved logging—DBCTL uses a separate log (the IMS log), so DL/I activity
does not appear on the CICS system log. This means that all DL/I information
is on a single log and can be processed using IMS logging facilities. IMS
logging facilities include dual logging and are well integrated with database
recovery control (DBRC). For more information, see “IMS logging” on page 33.

� Ability to use CICS support for the extended recovery facility (XRF). In addition,
if your CICS system is connected to an IMS/ESA Database
Manager/Transaction Manager (IMS/ESA DM/TM) system to obtain DBCTL
support, you can use IMS XRF facilities.

� Improved failure isolation between CICS and IMS—a DBCTL failure should not
cause your CICS system to fail.

� Batch jobs can be run as batch message processing programs (BMPs), which
are application programs that perform batch type processing online using the
same DBCTL as CICS and sharing its databases. You can usually run the
same program as a BMP or as a batch program. Using DBCTL gives you
concurrent access to IMS databases from BMPs and from CICS.

 Copyright IBM Corp. 1989, 1999 1

Overview of DL/I request handling in CICS
CICS can access DL/I databases in the following ways:

 � Using DBCTL

This is when DBCTL satisfies the DL/I request issued from the CICS system by
means of the CICS-DBCTL interface.

Installing and using DBCTL are introduced in this manual (but note that you will
also need to refer to other CICS/ESA and IMS/ESA manuals for further
information).

� Using remote DL/I

Remote DL/I is done by means of CICS function shipping a DL/I request to
another CICS system, in which the DL/I support can be local DL/I (CICS 4.1 or
below), remote DL/I, or DBCTL. See the CICS Intercommunication Guide for
more information on function shipping, and the CICS Installation Guide for
information on adding remote DL/I support.

Notes:

1. Although these methods of accessing DL/I databases can coexist, a program
specification block (PSB) can only contain databases that are controlled by one
of the methods.

2. CICS Transaction Server for OS/390 Release 1 onward does not support local
DL/I.

CICS can also access DL/I databases in an IMS/ESA Database
Manager/Transaction Manager (IMS/ESA DM/TM) system using the CICS-DBCTL
interface. This means that you can have access to DL/I databases controlled by
IMS/ESA DM/TM without needing to use IMS data sharing, provided that CICS and
IMS/ESA DM/TM are in the same MVS image. Both the IMS/ESA DM/TM system
and the CICS system can include the extended recovery facility (XRF).

Figure 1 illustrates the three kinds of DL/I request.

D B C T L A

d a t a b a s e

D B C T L AC I C S A

C I C S B D B C T L B D B C T L B

d a t a b a s e

C I C S B

d a t a b a s e

R e q u e s t # 1

R e q u e s t # 2 bR e q u e s t # 2 a

R e q u e s t # 2 a R e q u e s t # 2 b

Figure 1. DL/I request handling within CICS

2 CICS IMS Database Control Guide

Notes:

1. Request #1 is a DBCTL request from CICSA to DBCTLA for a database
controlled by DBCTLA. See “CICS-DL/I router (DFHDLI)” on page 5 for a
description of request processing.

2. Requests #2a and #2b are two separate remote (function shipped) DL/I
requests to databases controlled by, or connected to, other CICS systems
(which may be in the same MVS image or a different one). There are two ways
of issuing such requests:

� Request #2a from CICSA to CICSB for a database controlled by CICSB,
where CICSB is CICS/ESA 4.1 or below

� Request #2b from CICSA to CICSB for a database controlled by DBCTLB.
The most likely reason for using request #2b is if CICSA and CICSB are in
different MVS images.

Connecting to DBCTL
You can connect to, and disconnect from, DBCTL using the CICS-supplied
transaction CDBC. When you have connected to DBCTL by means of CDBC, you
can issue DL/I requests from your application programs. There is another
CICS-supplied transaction, CDBI, which you can use to inquire on the status of the
connection to DBCTL from CICS. See “Connection, disconnection, and inquiry
transactions” on page 47 for information on using CDBC and CDBI.

CICS-IMS DBCTL environment
Figure 2 on page 4 gives an overview of a CICS-DBCTL interface. Each box
represents an address space running within a single MVS system. The marked
area between the second CICS and the first BMP is the point at which CICS
components end and IMS components begin.

 Chapter 1. Overview of Database Control (DBCTL) 3

D L / I f u l l

f u n c t i o n

d a t a b a s e s

D E D B

d a t a b a s e s

L o g R E C O N

B M P B M P I M S (D B C T L)

c o n t r o l

r e g i o n

D L I S A S D B R C I R L M

M V S / E S A

C I C S

Figure 2. CICS-DBCTL interface

CICS-IMS DBCTL environment—description of components
The following sections give detailed information about each of the major
components of the CICS-IMS DBCTL interface. See Figure 3 on page 7 for an
illustration of these components. At this point, you may prefer to go directly to
Chapter 2, “Benefits of using DBCTL” on page 9 and use the following information
for reference later.

CICS-DBCTL interface control components in CICS address space
The components of the CICS-DBCTL interface in the CICS address space are:

� The CICS-DL/I router (DFHDLI)
� The CICS database adapter transformer (DFHDBAT)
� The database resource adapter (DRA)

4 CICS IMS Database Control Guide

CICS-DL/I router (DFHDLI)
The CICS-DL/I router, DFHDLI, forms the interface between your application
programs and the DL/I call processor. It accepts requests for remote, local, or
DBCTL database processing. If DFHDLI decides that the request is for DBCTL, it
passes the request to the CICS-DL/I DBCTL processor, DFHDLIDP. The request
then goes to the task-related user exit interface and then to the CICS database
adapter transformer, DFHDBAT. (The task-related user exit interface is also
referred to as the resource manager interface (RMI). These terms are defined and
compared in the “Glossary” on page 187, and you can find programming
information about the task-related user exit interface in the CICS Customization
Guide.)

CICS database adapter transformer (DFHDBAT)
The main responsibility of the CICS database adapter transformer, DFHDBAT (also
referred to in IMS publications as the adapter, or adapter/transformer) is to
communicate with the database resource adapter (DRA), which is described below.
DFHDBAT constructs parameter lists for the DRA. These parameter lists enable
CICS to connect to and disconnect from DBCTL, and enable DL/I requests to be
processed. To summarize, DFHDBAT:

� Tells the DRA that it must initialize the interface to DBCTL in response to a
request from the connection program (DFHDBCON).

� Tells the DRA when it must issue PSB schedule requests, DL/I requests, and
syncpoint requests in response to a request from the CICS-DBCTL processor
(DFHDLIDP).

� Tells the DRA that it must terminate the interface to DBCTL in response to a
request from the disconnection program (DFHDBDSC). If an orderly
disconnection has been requested, DFHDBAT ensures that all current CICS
tasks using DBCTL complete before telling the DRA to terminate the interface.
If an immediate disconnection has been requested, DFHDBAT ensures that
only the current CICS-DL/I request(s) using DBCTL can complete before telling
the DRA to terminate the interface.

CICS master terminal operators can use the CICS-supplied transaction CDBC to
connect to and disconnect from DBCTL. They can also automate connection to
DBCTL, as described in “Connection to DBCTL” on page 45.

Database resource adapter (DRA)
The functions of the database resource adapter (DRA) are to:

� Request connection to, and disconnection from, DBCTL.

� Tell CICS when a shutdown of DBCTL has been requested, or if DBCTL has
failed.

� Manage threads. A CICS application thread provides a two-way link between
an application and DBCTL. When a CICS transaction issues a DL/I request to
DBCTL, the thread represents that CICS transaction in DBCTL. It identifies the
transaction’s existence, traces its progress, sets aside the resources it needs to
be processed, and delimits its accessibility to other resources.

� Establish contact with the DBCTL address space and load the DRA startup
parameter table. The DRA startup parameter table provides the parameters
needed to define the interface to a DBCTL subsystem. (See “Defining the IMS

 Chapter 1. Overview of Database Control (DBCTL) 5

DRA startup parameter table” on page 39, for a list of DRA startup table
parameters.)

Components of DBCTL in IMS address spaces
 The components of DBCTL that reside in IMS address spaces are:

 � DBCTL
� DL/I separate address space (DLISAS)
� Database Recovery Control (DBRC)
� Internal resource lock manager (IRLM).

 DBCTL
The DBCTL subsystem contains support and features required to process full
function DL/I databases and DEDBs. Full function supports HSAM, SHSAM,
HISAM, SHISAM, HDAM, and HIDAM databases. Each DBCTL subsystem is made
up of three address spaces: DBCTL, DLISAS, and DBRC. A single DBCTL can
service multiple CICS systems, but a CICS system can connect to only one DBCTL
at a time. A CICS system can connect to one DBCTL, disconnect from it, and then
connect to a different DBCTL.

DL/I separate address space (DLISAS)
DL/I separate address space (DLISAS), which is required with DBCTL, is a
separate address space that contains DL/I code, control blocks, buffers for DL/I
databases and program isolation (PI), which is DL/I’s lock manager. (Lock
management is the process of controlling concurrent requests.) You use PI for lock
management unless you need the extra facilities provided by the IRLM, which is
described below. For example, you need the IRLM if you are data sharing with
another DBCTL subsystem, with local DL/I, or with an IMS/VS DB/DC or IMS/ESA
DM/TM system. See the IMS System Administration Guide or the IMS/ESA
Administration Guide: System for guidance information on PI.

Database Recovery Control (DBRC)
Database Recovery Control (DBRC) is an IMS facility that supports log
management, recovery control, and database sharing by providing the necessary
information to subsystems, batch programs, and utilities. DBRC is required with
DBCTL for log control and can optionally be used for database recovery control and
data sharing. See “Database recovery control (DBRC)” on page 78 for information
on DBRC and logging, and the IMS Operations Guide for more general information
on using DBRC.

Internal resource lock manager (IRLM)
The internal resource lock manager (IRLM) is a global lock manager that is a
feature of IMS and resides in its own address space. In simple configurations, you
do not need to use the IRLM; program isolation (PI) locking is sufficient. However,
you must use the IRLM to maintain data integrity if you are sharing databases at
block level. (For VSAM databases, a block is a control interval (CI); for any other
kind of database, it is a physical block.) You also need the IRLM if you need to
process a set of common databases from multiple IMS/ESA (or CICS Transaction
Server for OS/390) subsystems. The IRLM is also the lock manager used by
DATABASE 2 (DB2), and so you may prefer to use it with DBCTL if you already
use, or intend to use, DB2. See the IMS System Administration Guide or the
IMS/ESA Administration Guide: System and the IMS Operations Guide for more
information on the IRLM.

6 CICS IMS Database Control Guide

Summary of DBCTL components in CICS and IMS
Figure 3 summarizes the major components in a simple CICS-IMS DBCTL
environment. Each separate box represents an address space. All the components
shown in Figure 3 except the IRLM are mandatory.

Shipped with CICS/ESA Shipped with IMS/ESA

CICS address space IMS address spaces

D D R D D D D D I
F F M F R B L B R
H H I H A C I R L
D D D T S C M

CICS L L B L A
I I A S

D T
P

P
I

CICS IMS
LOG LOG

Figure 3. Major components of a simple CICS-IMS DBCTL environment

Coordinator control subsystem (CCTL)
The coordinator control subsystem (CCTL) is the transaction management
subsystem that communicates with the DRA, which in turn communicates with
DBCTL. In a CICS-DBCTL environment, the CCTL is CICS. The term CCTL is used
in a number of DBCTL operator commands and in the IMS manuals. CICS users of
DBCTL should take the term CCTL to mean a CICS system that is attached to IMS
by means of DBCTL.

 Chapter 1. Overview of Database Control (DBCTL) 7

Resources you can access from a CICS environment that includes
DBCTL

Figure 4 summarizes the resources you can access from a CICS environment that
includes DBCTL.

D E D B D L / I f u l l
f u n c t i o n
d a t a b a s e

D B C T L

D B 2

V S A M
f i l e s

G S A M
f i l e s

C I C S A C I C S B C I C S C B M P X B M P Y

D B 2
d a t a b a s e

D B 2
d a t a b a s e

Figure 4. Resources you can access from a CICS environment that includes DBCTL

A single CICS task can use DB2 tables, IMS databases (using DBCTL or remote
DL/I), and CICS-managed local or remote resources (for example, VSAM files).

The CICS-DB2 and the CICS-DBCTL interfaces are similar in that they both use
the task-related user exit interface, and have a two-phase commit process.
However, they differ in a number of respects. For example, CICS supports DBCTL
and remote DL/I, and has to determine at PSB schedule time which of them is
being used. For more information, see “Other methods for accessing DL/I” on
page 15.

8 CICS IMS Database Control Guide

Chapter 2. Benefits of using DBCTL

Support for local DL/I and batch shared database is withdrawn in CICS Transaction
Server for OS/390. The benefits of DBCTL over local DL/I fall into the following
main categories:

 � “Function”
� “System availability” on page 13
� “Performance” on page 14

DBCTL provides CICS users with additional function, a release-independent
interface, no DL/I code in the CICS address space, improved throughput on
multiprocessors, and more flexible operations.

 Function
The functional benefits that DBCTL offers are in the areas of:

 � “Data availability”
� “Batch message processing programs (BMPs)”
� “System service requests” on page 10
� “Access to data entry databases (DEDBs)” on page 10

 Data availability
Previously, if you did not use DBCTL, and a database was unavailable when CICS
tried to schedule a program specification block (PSB), the transaction received a
return code to say that the schedule has failed. DBCTL enables CICS to take
advantage of the data availability that IMS provides; you can successfully schedule
a PSB, even though some of the databases used in that PSB are unavailable.

Scheduling for database recovery is more flexible because database blocks (or CIs)
that have had read or write errors are still available after a DBCTL restart.

See “Enhanced scheduling” on page 100 for more information on data availability
and the system service requests you can use in connection with it.

Batch message processing programs (BMPs)
Running batch jobs (both CICS shared database and “native” IMS batch jobs) as
BMPs enables you to use system service requests, such as symbolic checkpoint
(CHKP) and extended restart (XRST), and to access GSAM databases, which you
could not do with CICS shared database. With BMPs, all logging goes to a single
log (the IMS log), which eliminates the need for separate batch logs. BMPs also
support automatic backout, and automatic restart from the last checkpoint (without
requiring JCL changes). BMPs communicate directly with the DBCTL address
space instead of accessing databases through CICS, and enable concurrent access
to databases without the need to use IMS data sharing. Using BMPs gives a
performance advantage compared with the same programs that ran as CICS
shared database jobs, both in terms of the elapsed time of the batch jobs
themselves, and in terms of transaction response and throughput, because they do
not delay the CICS online workload as much. See “Batch message processing
programs (BMPs)” on page 103 for more information.

 Copyright IBM Corp. 1989, 1999 9

System service requests
Your CICS application programs can use the following IMS system service requests
in addition to those related to data availability:

� DEQ (in its command or call format) releases segments that were retrieved
using the LOCKCLASS keyword or the Q command code. LOCKCLASS and Q
enable an application program to reserve segments for its use.

� LOG (in its command or call format) can be used to write a record from an
application program to the IMS log. You may prefer to use this instead of
EXEC CICS journal commands so that all your DBCTL information is on the
IMS log instead of the CICS log.

See Chapter 7, “Application programming for DBCTL” on page 93 for more
information on using these requests.

Access to data entry databases (DEDBs)
Data entry databases (DEDBs) provide the same features as HDAM databases
(with the exceptions of secondary indexing and logical relationships). They also
have a number of advantages. Using DEDBs enables you to have very large
databases with high availability. DEDBs are designed to provide efficient storage
and fast online gathering, retrieval, and update of data, using VSAM entry
sequenced data sets (ESDSs).

DEDBs are hierarchic databases that can contain up to 127 segment types. One of
these segments is always a root segment. The remaining 126 segments can either
be direct dependent (DDEP) segments, or 125 DDEP segments and one sequential
dependent (SDEP) segment. A DEDB structure can have as many as 15
hierarchical levels.

DEDBs are made up of database records stored in a set of up to 240 areas. Each
area contains a range of database records (which you can specify using the DEDB
randomizing routine) that contain the entire logical structure for a set of root
segments and their dependent segments. Areas are independent of each other, are
individually recognized, can be accessed by multiple programs and DEDB utilities,
are the basis for recovery procedures, and are largely transparent to application
programs.

DEDBs provide the following advantages:

 � Large databases

– Areas can be as large as 4 gigabytes, and because you can have up to
240 areas in a single database, you can use very large databases, which
you would have to partition if you were not using DEDBs.

 � Flexible design

– Each area can be designed to meet your storage, availability, performance,
and application needs. Areas can be separately reorganized and
reacquired.

– You use the DEDB direct reorganization utility to physically reorganize
DEDBs to reduce ESDS fragmentation without taking them offline.

10 CICS IMS Database Control Guide

� Increased data availability

– If a DEDB area is not available, a PSB requiring that database can still be
scheduled provided the area it requires is not the one that is unavailable
and, of course, the database itself is available. A PSB that requires an
unavailable area is still scheduled, and receives a status code indicating
the condition. You can therefore delay recovery until it is convenient to take
the area offline.

– You can have up to seven copies of the same area. Each copy is called an
area data set (ADS) and all are automatically maintained in
synchronization. This is called multiple area data set (MADS) support.
Write operations are done to each ADS, but read operations are done from
only one ADS. With MADS, read and write errors are much less common
because, if data cannot be read from, or written to, the first copy, the next
copy will automatically be used. Read errors are transparent to application
programs (except in the rare instance where a read operation is
unsuccessful with all ADSs).

– You can use DEDB utilities, which are run on an area basis and can be run
online concurrently with online update. This helps to reduce the time for
which areas have to be taken offline. For example, you can avoid using
offline database recovery by using the DEDB area data set create utility.
This online utility makes a new corrected copy of an area from existing
copies of that area. It creates one or more copies from multiple DEDB
ADSs during online transaction processing, enabling application programs
to continue while the utility is running.

– You use the DEDB initialization utility to initialize one or more data sets or
one or more areas of a DEDB offline.

– You can use the DEDB area data set compare utility if you suspect you
may have problems with compatibility of data. It compares control intervals
(CIs) of different copies of an area, and lists all the CIs that do not have
equal content. In the case of unequal comparison, full dumps of up to ten
unmatched CIs are printed out on the device you have specified.

� Efficient data retrieval and entry

– DEDB attempts to physically write DDEP segments hierarchically in the
same CI as the parent segment, which can make retrieval faster.

– The SDEP segment (located at the end of the ADS) is designed especially
for fast, online, mass insert in applications such as data collection, auditing,
and journaling. This is because SDEP segments for an area are stored
rapidly, regardless of the root on which they are dependent. For example,
in a banking application, transaction data can be collected during the day
and inserted as SDEPs in an account database. At the end of the day,
these transactions can be reprocessed by first retrieving them using the
sequential dependent scan utility. This online utility retrieves SDEP
segments in mass and copies them to a sequential data set. You can then
process this data set offline using your own programs; for example, for a
statistical analysis. The area involved remains available while the utility is
running.

– You can delete SDEPs using the DEDB sequential dependent delete utility,
which deletes SDEP segments within a specified limit of a DEDB area.

 Chapter 2. Benefits of using DBCTL 11

– The ability to use high speed sequential processing (HSSP), which is
available from IMS/ESA Version 3 onwards. HSSP is useful with
applications that do large scale sequential updates to DEDBs. HSSP can
reduce DEDB processing time, enables an image copy to be taken during a
sequential update job, and minimizes the amount of log data written to the
IMS log. For further guidance, see “High speed sequential processing
(HSSP)” on page 163.

 � Improved performance

– Pathlength is reduced because DEDBs use the MVS Data Facility Product
(MVS/DFP) Media Manager offering.

– You can improve speed of access, or concurrent access, to DEDBs by
tuning DEDB buffer pool specifications. (See “DEDB performance and
tuning considerations” on page 161.)

– Logging overhead is reduced because only after-images are logged and
because logging is done during syncpoint processing only.

– The amount of I/O needed for each SDEP segment inserted can be very
low, because SDEPs are gathered from various transactions, stored in
last-in first-out order in one buffer, and are written out only when that buffer
is full. This means that many transactions “share the cost” of SDEP writes.

– Most DEDB processing is done in parallel to allow multithreading. Writes to
the database are done by a number you specify (up to 255) of parallel
processes called output threads. Furthermore, the DEDBs are not updated
during application program processing, but the updates are kept in buffers
until a syncpoint occurs. (See “When updates are written to databases” on
page 79.) This means that waiting applications can be processed sooner
and improves throughput on multiprocessors.

– DEDBs have their own resource manager and normally need to interact
very infrequently with program isolation or the IRLM (unless you are using
block level sharing). DEDBs maintain their own buffer pool.

– You can use subset pointers in your application programs to speed up
processing. A major problem in some applications is the need to process
long twin chains of segments. Occasionally database design must be
modified because some database records have excessively long twin
chains. Subset pointers give direct access to subsets of long twin chains of
segments, which can speed up application processing because segments
located in front of the subset do not have to be searched. Each pointer
points to the first occurrence of a subset in a range of direct dependent
segments. See “Command codes to manage subset pointers in DEDBs” on
page 96 and “Keywords and corresponding command codes” on page 98
for information about using subset pointers in application programs. (See
the IMS Database Administration Guide or the IMS/ESA Administration
Guide: Database Manager for guidance on database structure.)

12 CICS IMS Database Control Guide

 System availability
The benefits that DBCTL offers in the area of system availability are:

� “Release independent interface”
� “Improved sharing of databases between multiple CICS systems”

 � “Failure isolation”
 � “Operational flexibility”
� “Ability to use XRF” on page 14

Release independent interface
You do not need to regenerate the DBCTL interface every time you upgrade your
CICS or IMS system.

Improved sharing of databases between multiple CICS systems
With DBCTL, sharing of databases between multiple CICS systems is improved.
CICS systems in the same MVS image can share databases with other CICS
systems, with batch (as BMPs), and with IMS/ESA TM without the need for IMS
data sharing . Performance with DBCTL is better than using CICS database-owning
regions (DORs) with multiregion operation.

 Failure isolation
The interface is designed so that a failure in CICS should not cause DBCTL to fail,
and a failure in DBCTL should not cause CICS to fail.

 Operational flexibility
CICS and DBCTL are independent of each other; that is, CICS can be running
while DBCTL is not, and vice versa. A CICS transaction, CDBC, is provided for you
to connect to, and disconnect from, DBCTL dynamically. Another CICS transaction,
CDBI, enables you to inquire on the status of the connection.

DBCTL enables you to do a number of operations online, including:

� Online image copy
 � Online change
� Online reorganization for DEDBs.

These utilities are summarized below, see “Database utilities” on page 84 for more
information.

Online image copy utility
The online image copy utility is used to create an as-is copy of your database while
it is being updated. The copy can then be used for recovery purposes. This utility is
used for HISAM, HDAM, and HIDAM databases only.

Online change utility
In many installations, it is important for the online system to be is available to users
for most of the day. The online change utility enables you to update ACBLIBs,
which contain PSBs and data management blocks (DMBs), and security information
belonging to full function databases, without bringing down the system. For
guidance information on this utility, see the IMS System Administration Guide or the
IMS/ESA Administration Guide: System and the IMS Utilities Reference: Database
manual manual.

 Chapter 2. Benefits of using DBCTL 13

Online reorganization for DEDBs
As mentioned in “Access to data entry databases (DEDBs)” on page 10, the DEDB
direct reorganization utility enables you to reorganize DEDBs without taking them
offline.

Ability to use XRF
DBCTL users can use CICS or IMS support for the extended recovery facility (XRF)
in either of the following ways:

� Standard DBCTL, in which the active is a standard DBCTL subsystem. The
“alternate” is simply another standard DBCTL subsystem that is preinitialized
and waiting for a restart command. You use this method with or without full
CICS XRF support and you can have more than one preinitialized DBCTL in
the same MVS image. (This method is for users who do not have an
IMS/ESA DM/TM system .)

� If your CICS system is connected to an IMS/ESA DM/TM system to obtain
DBCTL support, you can use IMS XRF facilities. In this case, your active and
alternate DBCTL subsystems are the standard IMS active and alternate. (This
method is for users who already have an IMS/ESA DM/TM system .)

See Chapter 6, “Recovery and restart operations for DBCTL” on page 73 for more
information.

 Performance
The benefits that DBCTL offers in the area of performance are:

� “Virtual storage constraint relief”
� “Improved throughput on multiprocessors”

Virtual storage constraint relief
Previously, if you did not use DBCTL, DL/I code and its associated control blocks
(including DBRC) resided in the CICS address space. With DBCTL, all this is
moved out of the CICS address spaces, freeing virtual storage within CICS systems
that previously contained local DL/I.

Improved throughput on multiprocessors
Because the components of the CICS-DBCTL interface reside in separate address
spaces and, because DBCTL uses a separate task control block (TCB) for each
application thread, throughput on multiprocessors is improved and there can be
more concurrent activity. See “Tuning a CICS-DBCTL system” on page 158 for
more information on thread and TCB performance considerations.

14 CICS IMS Database Control Guide

Chapter 3. Migration considerations for DBCTL

Migrating from local DL/I to DBCTL is described as follows:

� “Other methods for accessing DL/I”
� “CICS-IMS release compatibility”
� “Possible migration paths” on page 16
� “Suggested migration procedure” on page 17
� “Planning your new DBCTL setup” on page 18
� “Setting up test and production systems” on page 20

See Appendix A, “Migration task summary for DBCTL” on page 165 for checklist of
tasks to be done to migrate to DBCTL, and a list of fallback considerations.

See the CICS Transaction Server for OS/390: Migration Guide and the IMS
Release Planning Guide for information on migrating to CICS Transaction Server
for OS/390 Release 3 and to IMS/ESA respectively.

Other methods for accessing DL/I
 Remote database support remains in CICS/ESA for function-shipped DL/I
requests. Your remote databases can be managed either by local DL/I (if the
remote CICS is CICS/ESA 4.1 or below) or by DBCTL.

Function shipping supports the additional system service requests, DEDB requests,
and enhanced scheduling (usually known as “data availability”) supported by a
DBCTL environment, all of which are described in Chapter 7, “Application
programming for DBCTL” on page 93.

Withdrawn support of local DL/I and shared database
CICS Transaction Server for OS/390 does not support local DL/I or batch shared
database.

Batch jobs that use the CICS shared database facility cannot access databases
owned by DBCTL. If you want to use CICS shared database jobs with DBCTL, you
must migrate them to run as BMPs, which communicate directly with the DBCTL
address space.

CICS-IMS release compatibility
The starting point for migration is a CICS system running with local DL/I. The aim
is to install CICS Transaction Server for OS/390 Release 3 and then IMS/ESA
Version 4 or later. Table 1 on page 16 shows which CICS and IMS releases can
be used together, and whether they can be used with DBCTL, local DL/I, or both.

 Copyright IBM Corp. 1989, 1999 15

Any attempt to connect CICS, with storage protection active, to a DBCTL
subsystem running IMS/ESA 3.1 results in CICS terminating the connection attempt
abnormally. Message DFHDB8118 with return code 4 is sent to transient data
destination CDBC, indicating that CICS detected that the release of IMS/ESA does
not support the MVS subsystem storage-protection facility. CICS only allows
connection to this DBCTL subsystem if storage protection is turned off.

Table 1. CICS-IMS release compatibility

CICS Local DL/I DBCTL

CICS Transaction Server
for OS/390 1.1

---- IMS/ESA 3.1
 IMS/ESA 4.1
 IMS/ESA 5.1
 IMS/ESA 6.1

CICS Transaction Server
for OS/390 1.2

---- IMS/ESA 3.1
 IMS/ESA 4.1
 IMS/ESA 5.1
 IMS/ESA 6.1

| CICS Transaction Server
| for OS/390 1.3
| ----| IMS/ESA 5.1
| IMS/ESA 6.1

Possible migration paths
This section outlines some possible migration scenarios to CICS Transaction
Server for OS/390 Release 3 with DBCTL, based on your current setup.

CICS with local DL/I
CICS with local DL/I:

1. CICS/ESA 4.1 with local DL/I with IMS/ESA Version 4 or below

2. CICS/ESA 4.1 with local DL/I with IMS/ESA Version 3 or later and DBCTL
(optional)

3. CICS Transaction Server for OS/390 Release 3 with DBCTL.

CICS with local DL/I and data sharing
1. CICS/ESA 4.1 with local DL/I with IMS/ESA Version 4 or below data sharing in

a single-MVS environment

2. CICS/ESA 4.1 with local DL/I with IMS/ESA Version 3 or later and DBCTL with
data sharing (optional)

3. CICS Transaction Server for OS/390 Release 3 with DBCTL without data
sharing.

CICS with shared database
1. CICS/ESA 4.1 with local DL/I with IMS/ESA Version 4 or below CICS shared

database

2. CICS Transaction Server for OS/390 Release 3 with DBCTL and BMPs—CICS
shared database programs converted to BMPs.

16 CICS IMS Database Control Guide

CICS with IMS data sharing and batch
1. CICS/ESA 4.1 with local DL/I with IMS/ESA Version 4 or below and data

sharing with batch in a single-MVS environment

2. CICS Transaction Server for OS/390 Release 3 with DBCTL and BMPs without
data sharing—batch programs converted to BMPs in a single-MVS
environment.

CICS with function shipping
1. CICS/ESA 4.1 with IMS/ESA Version 4 or below, local DL/I—multiple MRO

regions — TORs, AORs, and DORs

2. Multiple CICS Transaction Server for OS/390 Release 3 systems using
DBCTL—DBCTL replaces DORs.

CICS with IMS/ESA DM/TM

 Scenario 1
1. CICS/ESA 4.1 with local DL/I and IMS/ESA DM/TM version 4 or later data

sharing (possibly in a multi-MVS environment)

2. CICS Transaction Server for OS/390 Release 3 with IMS/ESA TM Version 3 or
later with DBCTL in a single-MVS environment.

 Scenario 2
1. CICS/ESA 4.1 with IMS/ESA DM/TM Version 3 or later with LU 6.1 in a

single-MVS environment or multi-MVS

2. CICS Transaction Server for OS/390 Release 3 with IMS/ESA DM/TM Version
4 or later with DBCTL (application program rewritten) in a single-MVS
environment.

Suggested migration procedure
If you already use CICS with DL/I, a suggested migration path is as follows:

� Install MVS (without changing your CICS or IMS systems).

� Install IMS/ESA Version 4 (Version 5 does not support local DL/I).

� Install CICS/ESA 4.1 with IMS/ESA Version 4 running locally and put these
systems into production together. (At this stage, there are no great changes in
the CICS-DL/I environment.)

� Convert to DBCTL.

� Install CICS Transaction Server for OS/390 Release 3.

You will probably want to migrate to DBCTL in stages, perhaps as follows:

1. Set up a test system. If you already have a test system that is used for testing
new applications, consider using it for testing migration to DBCTL.

2. If you do not want to begin with a test system, begin by setting up a trial
production system, perhaps one you already use for testing existing production
applications problems.

3. Set up a production DBCTL.

 Chapter 3. Migration considerations for DBCTL 17

You then:

� Generate DBCTL, DLISAS, and DBRC.

You must use DBRC with DBCTL. If you are not familiar with using DBRC, you
should use it initially just to control log facilities. To do this, specify SHARECTL
when you install DBRC, but do not register databases.

� Decide which applications to migrate.

� Take full image copies of databases before migrating them to use DBCTL.
This is because information for CICS-DL/I databases is on both the CICS and
the IMS logs. Taking an image copy will ensure that the RECON is updated,
and information for that database will be from the IMS log only. See the IMS
Operations Guide for information on taking image copies, and the IMS Utilities
Reference: Database manual manual for information on the utilities you can
use to do so.

� Convert CICS shared database programs to BMPs.

� Convert any programs that use DFHFC TYPE=DLI macros to issue DL/I
commands or calls instead.

� Convert production CICS Transaction Server for OS/390 Release 3 systems.

 � Tune CICS-DBCTL.

� Convert batch jobs to BMPs (they must issue checkpoints).

� When migrating your CICS shared database programs or “native” IMS batch
programs to BMPs, define PSBs in DBCTL security generation.

| Note: If you run the application with CICS Local DL/I (which IMS treats as a
| batch job), IMS allows path inserts without the PROCOPT=P parameter.

| IMS issues status code AM if a CICS online program or a CICS shared
| database program issues an ISRT call with the D command code when
| the program does not have the PROCOPT=P parameter specified in the
| DB PCB that was referenced in the call. IMS batch programs, however,
| do not need the PROCOPT=P parameter to issue an ISRT call with the
| D command code unless the program uses field level sensitivity.

| If you then convert to DBCTL, and run the application in a BMP region
| (which IMS treats as online processing rather than batch), you are no
| longer permitted to use path inserts without the PROCOPT=P
| parameter.

| For information on doing this, see Chapter 8, “Security checking with DBCTL”
| on page 117.

� Consider DEDBs for new applications.

Planning your new DBCTL setup
� If you are running multiple CICS regions, each with its own copy of local DL/I,

you are recommended to migrate all your local DL/I systems to use a single
DBCTL. If you are running the same applications that schedule the same PSBs
on each of your CICS systems, but access different instances of the same
databases, migrating to a single DBCTL means that you will need a separate
DBD and separate PSBs for each instance of a database. However, your
applications could continue to schedule the same PSBs because there is a

18 CICS IMS Database Control Guide

CICS global user exit available to DL/I users which may help with migration to a
single DBCTL in this case. It is called XDLIPRE, and it enables you to change
the PSB name and/or the SYSID that the application program has scheduled at
execution time. Appendix E, “Using global user exit XDLIPRE to change PSB
to be scheduled” on page 181 contains an example of XDLIPRE that you can
copy and modify. Note that this example is provided for guidance only. See the
CICS Customization Guide for programming information on using these exits.

� You have a remote DL/I environment, in which you are running multiple CICS
AORs that function ship DL/I requests to a DL/I resource owning CICS region
in the same MVS image. In this case, replace the DL/I resource-owning region
with DBCTL. However, if you are function shipping DL/I requests to a DL/I
resource owning CICS region in a different MVS image you cannot replace the
DL/I resource owning region with a DBCTL subsystem. This is because CICS
and DBCTL can only communicate with each other when they are in the same
MVS image. However, the DL/I resource owning CICS region must use DBCTL
instead of local DL/I, as shown in Figure 5. In this case, you keep the DOR,
but it communicates with DBCTL; that is, DBCTL replaces local DL/I, but not
the DOR.

MVS A MVS B

AORs DOR DBCTL

Figure 5. Function shipping to a DOR in a different MVS image with DBCTL

� CICS Transaction Server for OS/390 Release 3 systems running in a separate
MVS image from DBCTL must function ship their DL/I requests to a CICS
Transaction Server for OS/390 Release 3 system located in the same MVS
image as DBCTL.

� If you want batch programs to run concurrently with CICS, and you do not
already use IMS data sharing or DBRC:

– Install DBRC in the existing CICS system and become familiar with it
before migrating to DBCTL; or

– Install DBCTL and use DBRC to control logs only. Run the batch programs
as BMPs. When you are familiar with this environment, extend your usage
of DBRC to control database integrity.

� You have an IMS data sharing environment, in which you are running multiple
CICS systems that are data sharing with one another and with batch, and all
the data sharing is taking place within a single-MVS environment. In this case,
you could consider migrating completely to a single DBCTL within an MVS
image instead of using data sharing. If you do this, migrate all the DL/I batch
jobs involved to BMPs, which will simplify log management.

You can use IMS data sharing across multiple DBCTLs in a single- or
multi-MVS environment.

� If your current CICS is sharing databases with IMS/VS DB/DC or IMS/ESA
DM/TM using IMS data sharing, it may be appropriate to migrate to using the
IMS/VS DB/DC or IMS/ESA DM/TM region as the DBCTL region.

 Chapter 3. Migration considerations for DBCTL 19

Setting up test and production systems
Note the following points when setting up your test and/or production systems.

Number of DBCTL subsystems to use
You will need to determine the number of DBCTLs you require in a single-MVS
environment; for example, one DBCTL subsystem for the whole MVS image, or one
DBCTL subsystem for each CICS system in single-MVS environment. Balance the
number of DBCTLs within a single MVS image against the amount of CSA needed.
Also, be aware of the need to differentiate DBCTL systems on the same MVS
image to avoid causing any confusion between subsystems.

You are recommended to have only one production DBCTL in a single-MVS
environment. Normally, this should be large enough to serve all CICS Transaction
Server for OS/390 Release 3 systems within one MVS image. For multiple CICS
systems with local and remote DL/I, running in several MVS images using IMS data
sharing, count the number of DL/I threads needed. If the sum of these threads, plus
the number of expected active BMPs is less than 255, you should need only one
DBCTL without data sharing.

You need one log for each DBCTL, so bear in mind that logging can become more
complex the more DBCTLs you have. Balance the need for multiple DBCTLs
against the logging procedures you will need. However, log throughput time should
be improved compared with local DL/I, because DBCTL uses the write ahead data
set (WADS), which can reduce the elapsed time needed for a log write.

20 CICS IMS Database Control Guide

Chapter 4. Installing DBCTL, and defining CICS and IMS
system resources

This chapter describes how to install DBCTL and define CICS and IMS system
resources under the following sections:

� “Checklist for installing and generating DBCTL”

� “Defining CICS system resources” on page 22 for a DBCTL environment, and
describing the effects on system definitions in an existing DL/I environment

� “Generating DBCTL” on page 28, including some examples of JCL you can
copy to provide a basic DBCTL subsystem

� “Starting DBCTL, DLISAS, and DBRC” on page 38

� “Defining the IMS DRA startup parameter table” on page 39, including some
example JCL

� “Customizing DBCTL” on page 43, by means of a user-replaceable program
and two global user exits.

Checklist for installing and generating DBCTL
In this checklist, it is assumed that you have already installed CICS Transaction
Server for OS/390 Release 3 and IMS/ESA 4.1 or higher,and have read the
program directory for each product to check for any PTFs or APARs that you may
need, as advised in the CICS Installation Guide. This checklist is an example to
help you develop your own procedures for installing DBCTL, depending on the
DBCTL facilities you want to use. When developing your own checklist, refer to the
IMS Installation Guide and the IMS System Definition Reference manual manual or
IMS/ESA Installation Volume 2: System Definition and Tailoring for further guidance
on IMS installation and system definition.

CICS supplies a DBCTL installation verification procedure, DFHIVPDB. For more
information about this IVP, see the CICS Installation Guide.

Using DBCTL instead of local DL/I simplifies installation, because you do not have
to perform a partial system generation of CICS to use DL/I resources. Also, you do
not have to do a partial system generation if you use remote DL/I support.

1. Prepare a PDIR that does not specify PSBs for an application that is to be
migrated to DBCTL for testing. (See “PSB directories (PDIRs)” on page 25.)

2. Perform DBCTL startup. (See “Starting DBCTL, DLISAS, and DBRC” on
page 38.)

3. Update system procedure libraries; for example, SYS1.PROCLIB, with the
startup procedures for DBCTL, DLISAS, DBRC, and the IRLM (if you are using
it). (These startup procedures are in the IMS.PROCLIB library.)

4. Check that DBCTL has been fully installed, integrated with MVS, and that all
required online data sets have been allocated and initialized, where applicable.
(For further guidance on doing this, see the IMS Installation Guide.)

5. Perform an ACB generation to create members of the IMS.ACBLIB, if you have
not done this already.

 Copyright IBM Corp. 1989, 1999 21

An ACB generation should have been performed when CICS with local DL/I
was migrated to IMS/ESA 3.1 or later. DBCTL can use ACBs generated for a
local DL/I (IMS/ESA 3.1) environment, but you should not simply include
existing ACBLIBs in the DBCTL and DLISAS JCL. Use a pair of new, separate,
ACBLIBs, which will enable you to use the IMS online change facility. You can
copy them from, say, CICS.LOCAL.ACBLIB into a DBCTL.ONLINE.ACBLIBA
and DBCTL.ONLINE.ACBLIBB but, if you do this, be aware that you might copy
some invalid (that is, pre-IMS/ESA 3.1) ACBs. To avoid this, start with empty
ACBLIBA and ACBLIBB libraries, and regenerate ACBs as required.

6. If you intend to use dynamic allocation, create DFSMDA members. (See “IMS
dynamic allocation macro (DFSMDA)” on page 36.)

7. Start DBCTL. DBCTL will issue a start command for DLISAS and DBRC. This
requires the DLISAS and DBRC JCL procedures to be in SYS1.PROCLIB. (See
“Starting DBCTL, DLISAS, and DBRC” on page 38.)

8. Test DBCTL, for example by using the DBCTL operator command /DISPLAY to
verify that DBCTL recognizes the PSBs and DBDs you defined in the DBCTL
generation. (See “Finding out current status of DBCTL activities” on page 64.)

9. Check your log archiving setup works before doing any more testing. (See “Log
control with DBRC” on page 34.) If it does not, the IMS logs may eventually fill
and stall the system.

10. Assemble a DRA that will enable CICS to connect to DBCTL. (See “Defining
the IMS DRA startup parameter table” on page 39.)

11. Start CICS and test the connection to DBCTL, using the CDBC transaction.
(See “CDBC transaction for connect and disconnect” on page 48.)

12. Generate an initialization PLT, so that CICS can connect to DBCTL
automatically at startup time. (See “Connecting DBCTL to CICS automatically”
on page 46.)

13. Test the application(s) you defined to DBCTL.

14. Set up and test recovery and restart of CICS and DBCTL, and database
recovery. (See Chapter 6, “Recovery and restart operations for DBCTL” on
page 73.)

Defining CICS system resources
This section tells you how to define system resources for DBCTL.

System initialization parameters
The CICS system initialization parameters contain information needed to initialize
and control system functions and the initialization process. It also contains module
suffixes to enable you to choose between different versions of CICS modules and
tables. You can generate several SITs and select the one that best meets your
current requirements at initialization time. If you have more than one CICS system,
each can use a different SIT.

22 CICS IMS Database Control Guide

Specifying DL/I support in system initialization parameters
In CICS Transaction Server for OS/390 Release 3, there is no DLI system
initialization parameter. Support for DBCTL is always present. Support for remote
DL/I is included if the PDIR=YES|xx keyword is specified.

Note: The default is PDIR=NO, meaning that by default support for remote DL/I is
not included.

See the CICS System Definition Guide for more details about these parameters.

Reviewing CICS system initialization parameters
With DBCTL, many CICS system initialization parameters are replaced by DBCTL
generation parameters, and you will need to change what you specify for others
because DL/I code has been removed from the CICS address space.

Table 2 on page 24 lists the CICS system initialization parameters relevant to DL/I.
It states whether each parameter applies to DBCTL or remote DL/I (in the D and R
columns, respectively). Where applicable, it lists the corresponding IMS startup
parameter that applies to DBCTL. Finally, it mentions special considerations for
DBCTL.

See the CICS System Definition Guide for the syntax of CICS system initialization
parameters. See “Generating DBCTL” on page 28 for more information about the
IMS and DBCTL parameters mentioned in this table. See “Defining the IMS DRA
startup parameter table” on page 39 for information about DRA startup table
parameters.

 Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 23

Table 2. CICS system initialization parameters and DBCTL

System
initialization
parameter

D R IMS/DBCTL
startup
parameter

Comments

APPLID Y Y N/A The generic VTAM application identifier for this CICS system.

DBCTLCON Y N N/A YES specifies that you want CICS to connect to a DBCTL
subsystem automatically during CICS initialization. This causes
CICS to invoke the DBCTL attach program, DFHDBCON. The
other information CICS needs for starting the attachment, such as
the DRA startup table suffix or the DBCTL subsystem name, is
taken from an INITPARM system initialization parameter.

Specifying DBCTLCON=YES means you do not have to define
the DBCTL attach program in the CICS post-initialization program
list table (PLT), as described in “Program list table (PLT)” on
page 27.

DSALIM Y Y N/A Upper limit of the total amount of storage within which CICS can
allocate the individual dynamic storage areas (DSAs) below the
16M byte line. See the CICS System Definition Guide and the
CICS Performance Guide for information about specifying
DSALIM. See the IMS System Administration Guide for guidance
on DBCTL storage estimates.

EDSALIM Y Y N/A Upper limit of the total amount of storage within which CICS can
allocate the individual dynamic storage areas (EDSAs) above the
16M byte line. For more information, see the CICS System
Definition Guide and the CICS Performance Guide for information
on specifying EDSALIM. See the IMS System Administration
Guide for guidance on DBCTL storage estimates.

INITPARM Y N N/A Used to pass parameters to programs (for example, PLT
programs) during CICS startup. With DBCTL, you can use it to
specify DRA startup parameter table suffix and DBCTL identifier
to automate connection to a particular DBCTL. INITPARM applies
to COLD, INITIAL, WARM, or EMERGENCY starts of CICS. With
XRF, INITPARM applies only if the active CICS was not
connected to DBCTL. Otherwise, the alternate CICS is
automatically connected to the same DBCTL as the active.

PDIR N Y N/A—use
APPLCTN

Suffix of the PDIR. With DBCTL, the PDIR is generated during
DBCTL generation using the APPLCTN macro.

PSBCHK Y Y N/A Requests PSB authorization checking of a remote terminal
initiating a transaction using transaction routing. To obtain the
check, you must also specify YES or name on the XPSB system
initialization parameter.

RST Y N N/A Suffix of recoverable service table (RST), which contains
alternative DBCTL IDs to which CICS can try to connect, and
which is used by CICS XRF with DBCTL. See Chapter 6,
“Recovery and restart operations for DBCTL” on page 73.

XPSB Y Y N/A Security class name by which PSBs are defined to RACF. For
DBCTL, you specify the RACF resource class to be used to
security check PSBs. (See the CICS RACF Security Guide for
more information.)

24 CICS IMS Database Control Guide

PSB directories (PDIRs)
PSB directories (PDIRs) contain entries defining each PSB to be accessed using
remote DL/I.

If you are using DBCTL exclusively, you do not need to generate a PDIR for CICS.
Instead you must define PSBs and DMBs using the IMS macros APPLCTN and
DATABASE respectively. (For information on the APPLCTN and DATABASE
macros, see “Generating DBCTL” on page 28.)

If you want to function ship requests to a CICS system, at which the database
manager may be DBCTL or remote DL/I (function shipping), you will need to
generate a PDIR. See the CICS System Definition Guide and the CICS Resource
Definition Guide for details about defining PDIRs.

CICS routes DL/I requests to remote DL/I or DBCTL according to the PSB that is
named. If the PSB appears in the CICS PDIR, the request is routed to remote DL/I
(that is, function shipped to another CICS system). If the PSB does not appear in
the CICS PDIR, and CICS is connected to DBCTL, CICS routes the request to
DBCTL. In addition, if the PSB appears in the PDIR and specifies a SYSID that
matches the local SYSID, the request is routed to DBCTL.

 DD statements
You must put the following two modules, which appear in the IMS.RESLIB library,
in the CICS STEPLIB data set concatenation:

� The DRA startup parameter table—DFSPZPxx (where xx is the user-defined
suffix)

� The DRA startup router program—DFSPRRC0.

You can do this by placing a DD statement for IMS.RESLIB in the CICS STEPLIB
concatenation (which must be APF-authorized). For example:

//STEPLIB DD DSN=CICSTS13.CICS.SDFHAUTH,DISP=SHR

// DD DSN=IMS.RESLIB,DISP=SHR

IMS.RESLIB (which must also be APF-authorized) contains a default DRA startup
table, in which the suffix is set to 00. You can generate your own versions into this
library. If you decide to use a different library for your own versions, make sure it
is APF-authorized, and is included in the CICS STEPLIB concatenation.

The DRA will dynamically allocate the IMS.RESLIB library using the DD name
CCTLDD and the data set name IMS.RESLIB, unless either has been overridden in
the DRA startup parameter table.

DD statements removed from CICS JCL in a DBCTL-exclusive
environment
DFSCTL

For DBCTL, DFSCTL is not required. DBCTL owns the OSAM buffer pools,
which are specified in DBCTL startup JCL and in the DRA startup parameter
table. See “Database buffer specifications and option parameters” on page 36
and “Defining the IMS DRA startup parameter table” on page 39.

 Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 25

DFSRESLB
For DBCTL, DFSRESLB is not required. DFSRESLB is replaced by the DRA
dynamically allocating IMS.RESLIB as described in “DD statements.”

IEFRDER
Used to define DL/I batch logging. For DBCTL, DL/I logging is to the IMS log.
See “Defining IMS logging parameters” on page 35.

IMSMON
With DBCTL, you can start and stop the IMS monitor dynamically. See “Using
the IMS monitor” on page 155.

IMSACB
For DBCTL, IMSACB is in the DBC procedure and the DLS procedure. There
are additional DD statements—IMSACBA and IMSACBB. One is the active
library and the other is available for the IMS online change utility.

DFSVSAMP
For DBCTL, DFSVSAMP is not used. The information it contains, for example,
VSAM buffer parameters and performance and trace options, is in the
DFSVSMxx member of IMS.PROCLIB in the PROCLIB DD statement of the
DBCTL startup procedure (DBC). The DFSVSMxx member must be available to
DLISAS, which means that you must add a data set with member DFSVSMxx
to the DLISAS address space. The last two characters of the DFSVSM member
are a suffix, which you specify in the VSPEC parameter of the DBCTL startup
procedure (DBC).

RECON data sets
RECON data sets are generally specified in DFSMDA IMS dynamic allocation
members in the IMS.RESLIB library. See “IMS dynamic allocation macro
(DFSMDA)” on page 36. For DBCTL, RECON data sets can be specified in the
DBRC procedure.

JCLPDS
For DBCTL, JCLPDS is in the DBRC procedure.

JCLOUT
For DBCTL, JCLOUT is in the DBRC procedure.

Database DD statements
Generally, you specify database DD statements in DFSMDA IMS dynamic
allocation members in the IMS.RESLIB library. For DBCTL, they can be
specified in the DLS address space for DL/I databases, or in the DBC address
space for DEDBs.

CICS-supplied groups within CICS system definition
Program, transaction, and mapset entries for the CICS system definition (CSD) file
to provide DBCTL support are supplied in the group DFHDBCTL. This includes the
DBCTL connection and disconnection transaction, CDBC, the inquiry transaction,
CDBI, and the operator transaction, CDBM. DFHDBCTL is in DFHLIST, which
contains the CICS resource definitions needed to run IBM-supplied transactions
that must be installed in your system. Also in DFHLIST is the DFHEDP group,
which provides the program definition required to run EXEC DLI applications. The
group DFHEDP must always be installed in the CICS system. If you need further
information on DFHLIST, see the CICS Resource Definition Guide.

26 CICS IMS Database Control Guide

You may also want to specify the following options of the TRANSACTION definition
for transactions using DBCTL:

 � RESTART

This option defines whether or not CICS will attempt to restart a transaction
that has been backed out after a failure. (See “Deadlocks and interactions with
automatic restart” on page 90.)

 � SPURGE

Specify SPURGE(YES) so that the transaction can be purged using CEMT.
“Purging a transaction that is using DBCTL” on page 68 tells you how to use
CEMT in this way.

 Log management
All DBCTL-related information is sent to the IMS log, not the CICS system log. This
method of logging uses the IMS log utilities and the online log data sets (OLDS)
and write-ahead data sets (WADS). Because database change records are written
to the IMS log, you do not need to retain the CICS system log for use by IMS
database recovery utilities in a DBCTL-exclusive environment. IMS logging
operations are described in “IMS logging” on page 33.

Monitoring control table (MCT)
If you were using local DL/I when converting to DBCTL, you can remove the entries
for the DL/I event monitoring points (EMPs) from the monitoring control table
(MCT). However, you will need additional monitoring control table (MCT) entries if
you want to provide support for the monitoring information returned from DBCTL.
These MCT entries are in CICSTS13.CICS.SDFHSAMP in the copy member
DFH$MCTD.

Program list table (PLT)
To connect CICS to DBCTL at CICS startup time, you can invoke it in the second
stage of program list table postinitialization (PLTPI) processing (that is, the third
stage of CICS initialization). You do this by including an entry for DFHDBCON (the
DBCTL connection program) using the DFHPLT macro. See the CICS Resource
Definition Guide for help on using the DFHPLT macro. If you are using XRF, you
must also do this for your alternate CICS subsystems. CICS will then invoke
DFHDBCON after takeover, passing the same DBCTL startup table suffix as was
being used by the active CICS system when the failure occurred.

Including an entry for DFHDBCON in the PLT enables you to connect automatically
to the same DBCTL as when the system was last shut down, or to a different one.
For more information on doing this, see “Connecting DBCTL to CICS automatically”
on page 46.

As an alternative, you may use the DBCTLCON system initialization parameter to
make the automatic connection, see Table 2 on page 24.

 Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 27

Transient data queues
You will need a definition for the CDBC transient data queue. The CDBC transient
data queue is used for messages issued by the CICS-DBCTL interface.

You can suppress or reroute messages sent to transient data queues such as
CDBC. You can reroute from CDBC to a list of consoles, from CDBC to a different
transient data queue, or reroute console messages to CDBC. For programming
information about coding the CICS-supplied user exit used to re-route messages,
and on the example user exit provided to help you do so, see the CICS
Customization Guide.

 Generating DBCTL
You generate the appropriate IMS control blocks and resource definitions for a
DBCTL subsystem by performing an IMS system definition. IMS system definition is
a two-stage process with an optional preprocessor. Stage 1 checks your input
specifications (appropriate JCL and macro statements, which are described below)
and generates a series of MVS/ESA job steps for stage 2. Stage 2 builds IMS
system libraries, execution procedures, and the DBCTL control program. The
optional preprocessor is a convenient tool that checks for duplicate names and
checks the length and format of the names used as input for stage 1.

Defining the DBCTL subsystem
IMS uses macro statements for system definition. These macro statements define
the operating systems, operating system interfaces, storage pools, PSBs, and
databases. From some of these macro statements, DBCTL constructs a set of
control blocks with which to execute.

To define the environment in which DBCTL operates, you use DBCTL startup
parameters and control information in a number of IMS system data sets. You then
use the appropriate suffixes to specify the information to be used for a particular
DBCTL run. (This is similar to selecting CICS tables by specifying their suffixes in
the SIT or in SIT overrides.)

The IMS system generation macros you need are listed in “IMS system generation
macros used by DBCTL.” See the IMS System Definition Reference manual
manual or IMS/ESA Installation Volume 2: System Definition and Tailoring for
guidance on the syntax of these macros. Appendix B, “Illustration of DBCTL startup
parameter creation and selection” on page 171 shows how DBCTL startup
parameters are created and selected during startup. If you are new to IMS system
definition, you may find it helpful to refer to this illustration while reading the
information on generating DBCTL.

IMS system generation macros used by DBCTL
 � IMSCTRL

The first macro in a DBCTL system generation is IMSCTRL. It is always
required and there can be only one within each IMS system definition.
IMSCTRL describes the MVS system under which IMS executes, the type of
IMS system, the type of generation to be performed, and the components of
the IMS environment, for example, IRLM and DBRC. Note that, because DBRC
is mandatory for DBCTL, you do not need to specify the IMSCTRL parameter,
DBRC=YES. (If you do specify this parameter, it is ignored.) You can use

28 CICS IMS Database Control Guide

IMSCTRL to cause the IMS nucleus and/or the DDIR and PDIR to be
regenerated.

 – MAXREGN

MAXREGN is the number of regions (threads) that DBCTL will allocate at
startup. This can be from 1 through 255. It can increase dynamically to a
maximum of 255. Each BMP needs one region. Each connected CICS
needs from MINTHRD to MAXTHRD regions. See also MINTHRD and
MAXTHRD, which are used to specify the minimum and maximum numbers
of threads for a particular CICS system, as described in “Defining the IMS
DRA startup parameter table” on page 39. For information on how these
parameters interact, see “Specifying numbers of threads” on page 159.
(MAXREGN is not the only parameter you need in IMSCTRL, but we
mention it here to contrast it with MINTHRD and MAXTHRD.)

 � APPLCTN

You use the APPLCTN macro to name PSBs (one macro for each PSB) that
are to be used by application programs to access databases through DBCTL.

If multiple CICS transactions or BMPs are to schedule a PSB concurrently, the
APPLCTN macro for that PSB must specify SCHDTYP=PARALLEL. If you do
not specify SCHDTYP=PARALLEL, only one transaction at a time will be
able to schedule a PSB . You can change the SCHDTYP of a PSB using the
online change process and the /MODIFY command, which you enter at the
DBCTL console. See “Changing DBCTL resources online” on page 65 for
more information about the online change process and the /MODIFY command.

In DBCTL, PSBs used by CICS transactions can be defined either with the TP
option or the BATCH option. In the example in Figure 6 on page 32, we have
used the BATCH option. Figure 6 also includes an example of defining a PSB
for the CDBM operator transaction.

 � BUFPOOLS

You use the BUFPOOLS macro to specify default main storage buffer pool
sizes for DBCTL, including the size of the DMB and PSB pools. You can
override these values at startup using the CSAPSB=, DLIPSB=, and DMB=
parameters.

 � DATABASE

You use DATABASE macro statements to define the databases that DBCTL
will access (one macro for each database). Each physical database must be
referenced on a DATABASE macro statement. You can change this resource
through the online change process using the /MODIFY command, which you
enter at the DBCTL console. See “Changing DBCTL resources online” on
page 65 for more information on the /MODIFY command.

 � FPCTRL

The FPCTRL macro statement defines the fast path options when DEDBs are
used. You need to use this macro only if you want DEDB support.

Note: For DBCTL users, fast path support refers only to DEDBs. Parameters
that begin with FP refer to DEDBs in a DBCTL-exclusive environment.

 � IMSCTF

 Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 29

The IMSCTF macro statement includes parameters to define the SVCs to be
used by DBCTL, logging options, and the device type for DBCTL’s restart data
set.

 � SECURITY

The SECURITY macro statement enables you to specify optional security
features to be in effect during IMS execution, unless they are overridden during
system initialization.

If you are implementing IMS security, the security maintenance utility is used to
place descriptions of protected resources into suffixed members of a matrix
data set called IMS.MATRIX.

The IMS.MODBLKS data set is used as input to the security maintenance
utility, which means that:

– The IMS system generation has to be completed before the security
maintenance utility can be run

– The security maintenance utility will use IMS.MODBLKS members that
have the same suffix as you specified for the IMS.MATRIX members about
to be created (as the second parameter of the security maintenance utility
EXEC statement).

For more information about security with DBCTL, see Chapter 8, “Security
checking with DBCTL” on page 117.

 � IMSGEN

The IMSGEN macro statement must be the last system definition macro in the
Stage 1 input. It specifies the assembler and linkage editor data sets and
options, and the system definition output options and features. It specifies the
suffix character for the IMS nucleus (DFSVNUCx in IMS.RESLIB) and for the
DDIR (DFSDDIRx) and PDIR (DFSPDIRx) in IMS.MODBLKS. Note that you
must specify the MACLIB parameter of the IMSGEN macro as MACLIB=ALL
when using DBCTL for the first time.

Implementing CICS-supplied transaction, CDBM
CICS provides a transaction, CDBM, which enables DBCTL operator commands to
be input from a CICS screen, as described in “CDBM operator transaction” on
page 55. CDBM uses the AOI commands (available from IMS/ESA 5.1 onwards)
that can be issued across the DRA interface between CICS and DBCTL. For more
information, see “Issue IMS AIB call format” on page 94.

To use CDBM you must:

1. Have a DBCTL system running IMS/ESA 5.1, or later.

2. Generate, and add to the DBCTL system, a PSB named DFHDBMP. Specifying
parallel scheduling for this PSB enables multiple CDBM transactions to be
active at the same time. DFHDBMP need not have any associated PCBs.
Example input for the PSBGEN is:

PSBGEN LANG=ASSEM,PSBNAME=DFHDBMP,IOASIZE=1ððð

The IOASIZE parameter must be large enough to cope with the largest AOI
command issued. Large AOI commands can result from using wild cards. For
example, issuing CDBM /START DATABASE D* results in a start command
being issued for all database names beginning with D. See the IMS Utilities
Reference: Systems manual manual for information on defining IOASIZE.

30 CICS IMS Database Control Guide

Modifying IMS system data sets using online change
You can modify the IMS system data sets MODBLKS, MATRIX, and ACBLIB using
online change. Each of them must be present in the following copies:

� A staging library, which is identified by an unsuffixed DD statement (MODBLKS,
MATRIX, ACBLIB), and is used offline only to prepare changes to the active
library.

� An active and an inactive library, which are used in flip-flop mode and are
identified by suffixed DD statements (MODBLKSA and MODBLKSB, and so
on). The same parameter (MODBLKSx, where x= A or B) controls the active
library for both MODBLKS and MATRIX. While the active library (either ...A or
...B) is being used online by DBCTL, you can use the online change utility to
copy the contents of the staging library to the inactive library. You use a series
of /MODIFY commands to perform the actual switch from the active library to
the updated inactive library.

The IMS.MODSTAT data set, which is created during the IMS system generation
and updated automatically, indicates which of the suffixed data sets is currently
active. For guidance on using online change, see “Changing DBCTL resources
online” on page 65 and the IMS System Administration Guide or the IMS/ESA
Administration Guide: System.

Example of JCL required to generate a basic DBCTL subsystem
The minimum generation required to generate DBCTL is ON-LINE,DBCTL. (You will
need to perform an online generation to change the SVC numbers.) You must
include the dash (-) in the ON-LINE parameter. If you do not, you will get the
following messages when you try to generate DBCTL:

IEV254 \\\ MNOTE \\\ 7+ 4,Gðð2 FOLLOWING OPERAND(S) OMITTED OR INVALID:

IEV254 \\\ MNOTE \\\ 8+ 4, SYSTEM

You use an ACB generation to create members of the IMS.ACBLIB. See the IMS
Utilities Reference: Database manual manual for further guidance on doing this.

Figure 6 shows an example DBCTL generation that you can copy and modify to
generate a DBCTL subsystem. Note that this example includes only the parameters
needed to get a “basic” system up and running. It does not include optional
parameters, such as those for DEDB support, and it assumes that you will want to
tune other parameters (such as the number of threads) later, when you have had
an opportunity to see how the subsystem runs.

Note: You can, instead, use the IMS INSTALL/IVP dialog to generate stage 1
macros for DBCTL. For guidance on doing so, see the IMS Installation
Guide.

 Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 31

//DBCGEN JOB 1,PGMERID,

// MSGCLASS=A,MSGLEVEL=(1,1),

// CLASS=A,NOTIFY=PGMERID

//ASM EXEC PGM=IEV9ð,

// PARM='DECK,NOOBJECT',

// REGION=4ð96K

//SYSLIB DD DSN=IMS.OPTIONS,DISP=SHR

// DD DSN=IMS.GENLIB,DISP=SHR

// DD DSN=IMS.GENLIBA,DISP=SHR

// DD DSN=IMS.GENLIBB,DISP=SHR

// DD SYS1.MACLIB

//\

//SYSUT1 DD UNIT=SYSDA,SPACE=(17ðð,(4ðð,4ðð))

//SYSUT2 DD UNIT=SYSDA,SPACE=(17ðð,(4ðð,4ðð))

//SYSUT3 DD UNIT=SYSDA,SPACE=(17ðð,(4ðð,4ðð))

//SYSPRINT DD SYSOUT=\

//SYSPUNCH DD DSN=IMS.STAGE2,DISP=SHR

//SYSIN DD \

\ \

\ \

\ SAMPLE DBCTL SYSTEM DEFINITION STAGE 1 INPUT SPECIFICATIONS \

\ \

\ \

 IMSCTRL SYSTEM=(VS/2,(ON-LINE,DBCTL),3.1), X

 MAXREGN=(2ð,52K,A,A), X

 MCS=(2,7),DESC=7,MAXCLAS=1,IMSID=IMSA

\

 IMSCTF SVCNO=(,2ð3,2ð2), X

 LOG=(DUAL,MONITOR), X

 RDS=(338ð,4ð96), X

 CPLOG=1ððð,CORE=(,5ð,1)

\

\ DEFINE SYSTEM BUFFERS

\

 BUFPOOLS PSBW=6ðððð,DMB=1ðððð,SASPSB=(2ðððð,8ðððð)

\

\ DEFINE DL/I DATABASES

\

 DATABASE RESIDENT,DBD=DI21PART

Figure 6. Example JCL to generate DBCTL 1/2

32 CICS IMS Database Control Guide

\ DEFINE SAMPLE APPLICATIONS

\

 APPLCTN PSB=DFHSAMð4,PGMTYPE=BATCH,SCHDTYP=PARALLEL

 APPLCTN PSB=DFHSAMð5,PGMTYPE=BATCH,SCHDTYP=PARALLEL

 APPLCTN PSB=DFHSAM14,PGMTYPE=BATCH,SCHDTYP=PARALLEL

 APPLCTN PSB=DFHSAM15,PGMTYPE=BATCH,SCHDTYP=PARALLEL

 APPLCTN PSB=DFHSAM24,PGMTYPE=BATCH,SCHDTYP=PARALLEL

 APPLCTN PSB=DFHSAM25,PGMTYPE=BATCH,SCHDTYP=PARALLEL

 APPLCTN PSB=DFHDBMP,PGMTYPE=BATCH,SCHDTYP=PARALLEL

\

 IMSGEN ASM=(H,SYSLIN), X

 ASMPRT=ON, X

 LKPRT=(XREF,LIST), X

 LKSIZE=(88ðK,64K), X

 LKRGN=4ð96K, X

 SUFFIX=1, X

 SURVEY=NO, X

 SYSMSG=TIMESTAMP, X

 MACLIB=ALL, X

 OBJDSET=IMS.OBJDSET, X

 USERLIB=IMS.LOADLIB, X

 PROCLIB=(YES,), X

 NODE=(IMS,IMS,IMS), X

 JCL=(GENJOB, X

 (1), X

 PGMERID, X

 A, X

 (TIME=5,CLASS=K,NOTIFY=PGMERID)), X

 SCL=(99)

 END

Figure 7. Example JCL to generate DBCTL 2/2

For more detailed system definition examples and further guidance on selecting the
appropriate system definitions, and for IMS system definition examples, see the
IMS System Definition Reference manual manual or IMS/ESA Installation Volume
2: System Definition and Tailoring.

 IMS logging
IMS logging uses two types of data set: online log data sets (OLDS) and write
ahead data sets (WADS). These data sets are described below. For further
guidance on using the OLDS and the WADS, see the IMS Operations Guide.

IMS online log data set (OLDS)
IMS writes log records to a DASD data set called the online log data set (OLDS).
The OLDS is made up of multiple data sets written in wraparound form. Using
more than one OLDS enables IMS to continue logging when the first OLDS is full.
Also, if an I/O error occurs while writing to an OLDS, IMS can continue logging by
isolating the OLDS where the problem occurred and switching to another one.

IMS can write committed log records to the write-ahead data set (WADS) so that
these records are externalized to avoid the need to write partially filled and padded
log blocks to the OLDS. The WADS is described in “IMS write-ahead data set
(WADS)” on page 34.

 Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 33

When the OLDS is full, it is archived to the system log data set (SLDS). How
frequently the OLDS is archived depends on whether you specified automatic
archiving using the ARC=parameter in the DBC JCL. You can specify ARC=1
through ARC=99. Automatic archiving takes place only when the number of OLDS
you specified is full. The system reuses the OLDS after it has been archived. An
SLDS can be on DASD or on tape. The contents are used as input to the database
recovery process.

IMS archives the OLDS using the log archive utility (DFSUARC0). During archiving,
IMS can write a subset of the log records it writes to the SLDS to the recovery log
data set (RLDS). This subset consists only of the log records required to perform a
database recovery.

During logging, IMS writes system checkpoint ID information (including OLDS
positioning information) to the restart data set (RDS). IMS uses the RDS during the
restart process to determine from which checkpoint to begin a restart. (See the IMS
Operations Guide for further guidance about the RDS.)

IMS write-ahead data set (WADS)
The main purpose of the write-ahead data set (WADS) is to contain a copy of
committed log records that are in the OLDS buffers, but have not yet been written
to the OLDS because the OLDS buffer is not yet full. IMS uses the WADS to avoid
the need to write partially filled and padded blocks to the OLDS. WADS space is
continually reused after the appropriate log data has been written to the OLDS. If
there is a system failure, IMS uses the log data in the WADS to complete the
content of the OLDS in use, and then closes the OLDS as part of an emergency
restart. This is also an option of the IMS log recovery utility (DFSULTR0). (The
OLDS must be closed before database recovery can take place.) You can change
the following specifications for the WADS at any restart:

� Number of WADSs
� Sequence of WADSs
� WADSs data set names
� Use of single or dual WADSs.

Log control with DBRC
Database Recovery Control (DBRC) assists you in controlling DBCTL logs and in
managing recovery of databases. With DBCTL, you must use DBRC to control
DBCTL logs, and you may optionally use it to control batch logs and database
recovery. DBRC places the information it uses to control recovery in the RECON
data sets, which are required with DBCTL. These data sets include information
about the OLDS; for example, it indicates whether an OLDS is available for use or
contains data that must be archived.

Define three RECON data sets when you install DBRC. Two of the RECON data
sets are active; the third is a spare. For most purposes, you can think of the two
active RECON data sets as a single RECON data set, or simply the RECON.

DBCTL requires DBRC to be at SHARECTL level; if it is not, DBCTL will not start.
To initialize the RECON specify (or let it default to) INIT.RECON SHARECTL.
Figure 8 shows some example JCL you can copy to initialize the RECON.

34 CICS IMS Database Control Guide

//INITREC JOB 1,PGMERID,CLASS=Q,MSGCLASS=A

//\

//RECON EXEC PGM=DSPURXðð,REGION=1ðððK

//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR

//DFSRESLB DD DSN=IMS.RESLIB,DISP=SHR

//SYSPRINT DD SYSOUT=\

//RECON1 DD DSN=IMS.RECON1,DISP=SHR

//RECON2 DD DSN=IMS.RECON2,DISP=SHR

//SYSIN DD \

 INIT.RECON SSID(IMSA)

/\

Figure 8. Example JCL to initialize the RECON

If you already have a RECON, specify (or let it default to) CHANGE.RECON
SHARECTL. When the OLDS is full, DBRC starts a log archive job. Skeleton JCL
statements are edited by DBRC before the job is submitted. The skeleton JCL is
member ARCHJCL of the library specified in the JCLPDS DD statement in the
DBRC JCL. You do not have to wait for the OLDS to fill in order to test the
automatic log archive. Instead, you can cause the OLDS to switch using the
DBCTL operator command /SWITCH OLDS. Alternatively, you can use the
/DBRECOVERY without the NOFEOV keyword. For guidance on the syntax of the
/SWITCH and /DBRECOVERY commands, see the IMS Operator’s Reference
manual. (See also “Operator communication with DBCTL” on page 53 for
information on using DBCTL operator commands.)

For detailed guidance on automatic log archiving and DBRC skeleton JCL, see the
IMS Utilities Reference: Database manual manual. For further guidance on using
DBRC, see the IMS Operations Guide.

Defining IMS logging parameters
You define IMS logging parameters in member DFSVSMxx in the IMS.PROCLIB,
identified by DD name PROCLIB in the DBC and DLISAS JCL. You specify the
suffix xx for DFSVSMxx in the DBCTL startup parameter VSPEC. For an illustration
of the parameters involved, see Appendix B, “Illustration of DBCTL startup
parameter creation and selection” on page 171. The logging parameters in
DFSVSMxx include:

� Number of OLDS
� Number of OLDS buffers
� Selection of single or dual OLDS
� Number of WADS.

A further logging parameter, used to specify single or dual copies of the WADS is
in the DBCTL startup parameters. See “Starting DBCTL, DLISAS, and DBRC” on
page 38 for information about the DBCTL startup procedure.

You must preallocate the OLDS and WADS data sets and specify the block size
when the data set is allocated. See the IMS Installation Guide for guidance on
doing this.

Provide dynamic allocation members for all OLDS and WADS data sets. See “IMS
dynamic allocation macro (DFSMDA)” on page 36.

 Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 35

 Archiving
DBRC automatically submits a job to archive the OLDS when:

 � IMS terminates
� The OLDS fills and logging switches to an empty OLDS
� You issue a /DBRECOVERY command without the NOFEOV keyword
� You switch the OLDS manually.

See the IMS Operations Guide and the IMS Utilities Reference: Database manual
manual for guidance on implementing automatic archiving, and the IMS Operator’s
Reference manual for the syntax of the /DBRECOVERY command. (You can also
use the /DBRECOVERY command without the NOFEOV keyword to test your
implementation.)

IMS dynamic allocation macro (DFSMDA)
Use the IMS dynamic allocation macro (DFSMDA) in all production databases,
because:

� Allocation is controlled from a central point.

� You do not have to change DBCTL JCL or batch job JCL in order to change a
data set name.

� It avoids possible confusion over which DBCTL address space requires the DD
statement for a database, because the library with the DFSMDA members can
be concatenated in the STEPLIB DD statement.

� If you do not use DFSMDA, DL/I database DD statements must be in the
DLISAS (DLS) address space, and DEDB DD statements must be in the
DBCTL (DBC) address space.

To use dynamic allocation, you need one member per database in the IMS.RESLIB
library (or an authorized STEPLIB library), using the IMSDALOC procedure to
assemble and link-edit the appropriate DFSMDA macros. See the IMS System
Administration Guide or the IMS/ESA Administration Guide: System for general
guidance on dynamic allocation and the IMS Utilities Reference: Database manual
manual for guidance on using the DFSMDA macro.

Database buffer specifications and option parameters
You define the VSAM and OSAM database buffer pool specifications and IMS
performance and trace options in the DFSVSMxx member of the IMS.PROCLIB
data set, which is pointed to by the PROCLIB DD statement of the DBCTL startup
procedure (DBC). The last two characters of the DFSVSMxx member are a suffix.
You specify this suffix in the VSPEC parameter of the DBCTL startup procedure.
See the IMS System Definition Reference manual manual or IMS/ESA Installation
Volume 2: System Definition and Tailoring for guidance on the syntax of these
parameters and the IMS Database Administration Guide or the IMS/ESA
Administration Guide: Database Manager for guidance on specifying the database
buffer pool parameters. For an illustration of the parameters involved in DBCTL
startup, see Appendix B, “Illustration of DBCTL startup parameter creation and
selection” on page 171.

36 CICS IMS Database Control Guide

Overriding DBCTL generation parameters at execution time
You can change many IMS system definition values at DBCTL startup using
parameters on the DBC procedure. You can specify these override parameters on
the PARM of the EXEC statement. However, there is a 100-character limit to the
length of the PARM field you can specify on a JCL EXEC statement, which means
that you cannot override all possible DBC parameters in the JCL. (For further
guidance on the EXEC statement, see the IMS System Definition Reference
manual manual or IMS/ESA Installation Volume 2: System Definition and Tailoring.)
If you find you have exceeded this limit, you will need to consolidate some of your
existing override parameters in DFSPRRDx, and then remove these parameters
from your startup JCL. You create DFSPRRDx by assembling and link-editing the
IMS macro parameters during DBC system generation. You can make further
changes to DFSPRRDx by creating your own version of it, as described below.

Generating your own version of DFSPRRDx
To generate your own version of DFSPRRDx, take a copy of the supplied
DFSPRRD0 macros, which you can find in IMS.DBSOURCE, and give this copy a
different suffix from the supplied version. Assemble and link-edit your copy into
IMS.RESLIB (or an authorized data set that is concatenated to it in the STEPLIB of
the DBC procedure). Finally, specify the suffix you have chosen in the RGSUF
parameter of the DBC procedure. (In the example in Figure 9, we have used a
suffix of 1.)

The IMS generation parameter and its corresponding override parameter are not
always identical. See the IMS System Definition Reference manual manual or
IMS/ESA Installation Volume 2: System Definition and Tailoring for further guidance
on these parameters and on DFSPRRDx and RGSUF. Figure 9 contains example
JCL you can copy to create your own version of DFSPRRDx.

//DFSPRRD JOB (1),'PGMERID',MSGCLASS=X,CLASS=A

//\

//\ ASSEMBLE AND LINK-EDIT CUSTOMIZED DFSPRRD WITH SUFFIX 1

//\ SPECIFY STARTUP PARAMETER RGSUF=1 IN DBC JCL FOR DBCTL TO USE DFSPRRD1

//\

//ASMLINK EXEC ASMHCL,C='\',

// PARM.LKED='XREF'

//ASM.SYSLIB DD DSN=IMS.OPTIONS,DISP=SHR

// DD DSN=IMS.GENLIB,DISP=SHR

// DD DSN=IMS.GENLIBA,DISP=SHR

// DD DSN=IMS.GENLIBB,DISP=SHR

// DD DSN=IMS.MACLIB,DISP=SHR

// DD DSN=SYS1.MACLIB,DISP=SHR

// DD DSN=SYS1.AMODGEN,DISP=SHR

//ASM.SYSIN DD DISP=SHR,DSN=IMS.DBSOURCE(DFSPRRD1)

//LKED.SYSLMOD DD DSN=IMS.RESLIB,DISP=SHR

//LKED.SYSIN DD \

 NAME DFSPRRD1(R)

/\

//

Figure 9. Example JCL to generate your own version of DFSPRRDx

 Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 37

 Naming convention
The DBCTL display commands (for example, /DISPLAY ACTIVE and /DISPLAY
CCTL, described in “Finding out current status of DBCTL activities” on page 64).
and the DRA startup table USERID parameter, all use what is known in IMS and
DBCTL as the CCTL ID to identify the transaction management subsystem. In the
case of CICS, the CCTL is CICS and the ID is the CICS APPLID.

However, many IMS messages use the jobname of the CICS system instead. An
example of this sort of message is DFS554, which notifies you that a BMP region,
or a thread from a CICS transaction, has terminated abnormally. If the DFS554
message was caused by an abnormal termination of a thread that originated from
CICS, the message text contains the CICS job name or CICS startup procedure
name. You will therefore need a naming convention that enables operators to
immediately identify a corresponding CICS APPLID and CICS JOBNAME. For
example, if you use the APPLID DBDCCICA, your job name could also contain the
characters CICA.

Starting DBCTL, DLISAS, and DBRC
You use the procedure library member DBC that is supplied with DBCTL to start
the DBCTL subsystem. The procedure is generated during IMS system definition
and must be modified to fit your system’s needs.

Also generated during system definition are procedures for DBRC and DLISAS,
which are used to generate the DBRC and DLISAS address spaces. The DBRC
and DLISAS procedures are started automatically by DBCTL during DBCTL startup.

The region types specified for each one are:

PARM='DBC'

for DBCTL PARM='DRC' for DBRC PARM='DLS' for DLISAS

All three procedures use positional parameters on the EXEC statement:

PARM='region type,parm1,parm2,parm3,...'

Many of the positional parameter defaults are specified during system generation,
but you can override them with parameters you specify at execution time.

When all three address spaces have been started successfully, DBCTL issues the
following message indicating it is ready to accept an appropriate restart command:

DFS989I IMS (DBCTL) READY (CRC=x) xxxx

where x is the command recognition character (CRC), as explained in “Operator
communication with DBCTL” on page 53, and xxxx is the DBCTL sysid, as
specified in the IMSID= parameter of the DBCTL startup JCL. See “Messages
issued by DBCTL during startup” on page 174 for a list of other messages that
should be issued at this stage.

See the IMS System Definition Reference manual manual or IMS/ESA Installation
Volume 2: System Definition and Tailoring for guidance on DBCTL procedures,
including JCL and descriptions of parameters.

38 CICS IMS Database Control Guide

Defining the IMS DRA startup parameter table
The DRA startup parameter table provides the parameters needed to define the
interface to the DBCTL subsystem. You create the DRA startup parameter table by
assembling the DFSPRP macro and link-editing it into the IMS.RESLIB library (or
another APF-authorized library) as DFSPZPxx, where xx=00, for the default, or any
other alphanumeric characters. Unless your IMS RESLIB uses the default name
IMS.RESLIB, supplied in DFSPZP00, you must specify the name you have chosen
in your version of the DRA. In our example, in “Example JCL to generate a DRA
startup table” on page 41, we have used IMS.RESLIB.

Note: The macro used is DFSPRP, but the name of the module you must link-edit
is DFSPZPxx. You must also link-edit the DRA into an authorized library
that is part of the CICS STEPLIB concatenation.

The parameters for the DFSPRP macro are:

 � DSECT=NO

A DSECT statement for PZP will not be generated. You must specify this in
order to create a CSECT, which is required in order to assemble the module
DFSPZPxx.

 � FUNCLV=

The CCTL (in this case, CICS) functional level. The default (and the only valid
value) is 1.

 � DDNAME=

A 1- to 8-character ddname to be used with dynamic allocation of the DRA
RESLIB. The default is CCTLDD.

 � DSNAME=

A 1- to 44-character data set name of the DRA RESLIB. The default is
IMS.RESLIB.

 � DBCTLID=xxxx

The 1- to 4-character name of the DBCTL address space. The default is SYS1.
This parameter must be the same as the IMSID in the DBCTL startup
procedure for the DBCTL to which you want this CICS to connect. You can
connect multiple CICS systems to the same DBCTL, but a CICS system can
connect to only one DBCTL at a time.

 � USERID=xxxxxxxx

CICS users do not specify this parameter; it is supplied by CICS itself. If you do
specify anything, CICS will override it. However, we explain the USERID
parameter here to show how it is used. USERID is the 1- to 8-character name
of the CICS address space (or CCTLID). The value CICS supplies when it
connects to DBCTL is either the CICS APPLID (in a non-XRF CICS
environment) or the generic APPLID (in a CICS XRF environment). (The
generic APPLID is the name of the active-alternate pair of CICS systems.)

 � MINTHRD=xxx

This parameter specifies the number of threads for this CICS system that will
be created when CICS connects to DBCTL and will remain created while the
DRA is active. These threads remain allocated until this CICS system is
disconnected from DBCTL, except if a thread is stopped by a /STOP command

 Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 39

or by a thread failure. Additional threads are created, up to the number
specified in MAXTHRD, or the number specified in MAXREGN, or the
maximum of 255, whichever of these is the lowest. These additional threads
(not the MINTHRDs) are released when there is not enough system activity to
require them. The maximum value you can specify for MINTHRD is 255, and
the default is 1. For information on specifying values for MINTHRD, see
“Specifying numbers of threads” on page 159. See also MAXREGN in “IMS
system generation macros used by DBCTL” on page 28.

 � MAXTHRD=xxx

This parameter specifies the maximum number of transactions for which this
CICS system can have PSBs scheduled in DBCTL. Any schedule requests that
are over this limit are queued in the DRA. You can balance the load sent to a
single DBCTL from multiple CICS systems by specifying appropriate values for
MAXTHRD in each CICS.

The maximum value you can specify for MAXTHRD is 255 (but it should not
exceed the value specified for MAXREGN) and the default is 1, or the value
you specified in MINTHRD. For information on specifying values for MAXTHRD,
see “Specifying numbers of threads” on page 159. See also MAXREGN in
“IMS system generation macros used by DBCTL” on page 28.

 � TIMER=xx

The frequency, in seconds, with which CICS is to repeat attempts to connect to
DBCTL when connection has failed and the console operator has requested
that CICS wait for connection in reply to a DFS690 message (rather than
canceling the connection attempt). You can specify any value from 0 through
99. However, note that if you specify 0, the default value is used. The default is
60.

 � CNBA=xxx

The total number of DEDB buffers that will be allocated for this CICS system.
The default is 0.

 � FPBUF=xxx

The number of DEDB buffers to be allocated and fixed per thread. The default
is 0. See “DEDB performance and tuning considerations” on page 161 for
information about defining DEDB buffer pools.

 � FPBOF=xxx

The number of DEDB overflow buffers to be allocated per thread. The default is
0. See “DEDB performance and tuning considerations” on page 161 for
information defining DEDB buffer pools.

Notes:

1. For DBCTL users, fast path support refers only to DEDBs. Parameters that
begin with FP refer to DEDBs in the DRA startup table.

2. You do not need the parameters CNBA, FPBUF, and FPBOF if you are not
using DEDBs.

3. For detailed guidance on specifying DEDB buffers, see the IMS System
Administration Guide or the IMS/ESA Administration Guide: System.

 � TIMEOUT=xxx

40 CICS IMS Database Control Guide

The amount of time, in seconds, that CICS should wait for the a DRA TERM
request to complete. The maximum value is 999, and the default is 60. For
guidance on what to specify, see the section on TIMEOUT in “CICS failure” on
page 87.

 � SOD=x

The output class to be used for a snap dump of abnormal thread terminations.
The default is A. See “Dumps produced by the DRA” on page 142 for more
information on these dumps.

 � AGN=xxxxxxxx

The 1- to 8-character application group name (AGN). You need to use this
parameter only if you have specified AGN security checking for DBCTL. There
is no default. See Chapter 8, “Security checking with DBCTL” on page 117 for
more information.

Example JCL to generate a DRA startup table
Figure 10 on page 42 shows some example JCL you can copy to generate a DRA.

 Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 41

//DRAJOB JOB 1,PGMERID,MSGCLASS=A,MSGLEVEL=(1,1),

// CLASS=A,NOTIFY=PGMERID

//ASM EXEC PGM=IEV9ð,

// PARM='DECK,NOOBJECT,LIST,XREF(SHORT),ALIGN',

// REGION=4ð96K

//SYSLIB DD DSN=IMS.OPTIONS,DISP=SHR

// DD DSN=IMS.GENLIB,DISP=SHR

// DD DSN=IMS.GENLIBA,DISP=SHR

// DD DSN=IMS.GENLIBB,DISP=SHR

// DD DSN=SYS1.MACLIB,DISP=SHR

//\

//SYSUT1 DD UNIT=SYSDA,SPACE=(17ðð,(4ðð,4ðð))

//SYSUT2 DD UNIT=SYSDA,SPACE=(17ðð,(4ðð,4ðð))

//SYSUT3 DD UNIT=SYSDA,SPACE=(17ðð,(4ðð,4ðð))

//SYSPUNCH DD DSN=&&OBJMOD,

// DISP=(,PASS),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=8ð,BLKSIZE=4ðð),

// SPACE=(4ðð,(1ðð,1ðð))

//SYSPRINT DD SYSOUT=\

//SYSIN DD \

PZP TITLE 'DATABASE RESOURCE ADAPTER STARTUP PARAMETER TABLE'

DFSPZPðð CSECT

\\

\ MODULE NAME: DFSPZPðð \

\ \

\ DESCRIPTIVE NAME: DATABASE RESOURCE ADAPTER (DRA) \

\ STARTUP PARAMETER TABLE. \

\ \

\ FUNCTION: TO PROVIDE THE VARIOUS DEFINITIONAL PARAMETERS \

\ FOR THE COORDINATOR CONTROL REGION. THIS \

\ MODULE MAY BE ASSEMBLE BY A USER SPECIFYING \

\ THEIR PARTICULAR NAMES, ETC. AND LINKEDITED \

\ INTO THE USER RESLIB AS DFSPZPXX. WHERE XX \

\ IS EITHER ðð FOR THE DEFAULT, OR ANY OTHER ALPHA- \

\ NUMERIC CHARACTERS. \

\ \

\\

 EJECT

 DFSPRP DSECT=NO, X

 DBCTLID=IMSA, X

 DDNAME=CCTLDD, X

 DSNAME=IMS.RESLIB, X

 MAXTHRD=99, X

 MINTHRD=1ð, X

 TIMER=6ð, X

 USERID=, X

 CNBA=1ð, X

 FPBUF=, X

 FPBOF=, X

 TIMEOUT=6ð, X

 SOD=A, X

 AGN=

 END

/\

Figure 10. Example JCL to generate a DRA startup table 1/2

42 CICS IMS Database Control Guide

//LNKEDT EXEC PGM=IEWL,

// PARM='LIST,XREF,LET,NCAL'

//SYSUT1 DD UNIT=SYSDA,SPACE=(1ð24,(1ðð,5ð))

//SYSPRINT DD SYSOUT=\

//SYSLMOD DD DSN=IMS.RESLIB,DISP=SHR

//SYSLIN DD DISP=(OLD,DELETE),DSN=&&OBJMOD

// DD DDNAME=SYSIN

//SYSIN DD \

 NAME DFSPZPðð(R)

/\

Figure 11. Example JCL to generate a DRA startup table 2/2

 Customizing DBCTL
This section provides information on facilities that you can use to customize
DBCTL.

 DFHDBUEX
DFHDBUEX is an IBM-supplied user-replaceable program that is invoked each time
CICS connects to, and disconnects from, DBCTL. You can use DFHDBUEX to
enable, or disable, CICS-DBCTL transactions at DBCTL connection and
disconnection time. The transactions are available to be run if that DBCTL is
connected. Users who attempt to enter one of these transactions when DBCTL is
not connected are notified immediately that the transaction is unavailable. This
means that end users will not be able to start one of these transactions, only to find
that it fails because the database is unavailable.

To summarize, DFHDBUEX is invoked when:

� CICS has successfully connected to DBCTL.

� CICS is disconnecting from DBCTL, and has been notified that:

– DBCTL has been terminated normally (using a /CHECKPOINT FREEZE or
/CHECKPOINT PURGE command, as described in “Stopping DBCTL
normally” on page 70).

– The DRA has terminated abnormally.

– DBCTL has terminated abnormally.

– The menu transaction CDBC has been used to request disconnection from
DBCTL.

See the CICS Customization Guide for programming information on DFHDBUEX.

Global user exits XDLIPRE and XDLIPOST
There are two global user exits—XDLIPRE and XDLIPOST. They are available to
all DL/I users (that is, local and remote as well as DBCTL), and you can use them
to intercept any Call level or EXEC level DL/I request on entry to and exit from
DL/I. XDLIPRE is invoked before the DL/I request is processed. XDLIPOST is
invoked after the DL/I request is processed. If you are using function shipping, the
exits are invoked from the application owning region (AOR), and the database
owning region (DOR). However, there are restrictions on what actions can be
performed by an exit program running at exit point XDLIPRE or XDLIPOST in a

 Chapter 4. Installing DBCTL, and defining CICS and IMS system resources 43

DOR. For programming information on these exits, see Naming, testing, and
debugging your autoinstall control program and CICS action on return from the
control program in the CICS Customization Guide .

To help with migration of applications from local DL/I to DBCTL, you can use
XDLIPRE to change the PSB name that the application program has scheduled at
execution time. There is an example of XDLIPRE in Appendix E, “Using global user
exit XDLIPRE to change PSB to be scheduled” on page 181 that you can copy and
modify. Note that this example is provided for guidance only. Another example of
using the exits to ease migration from local DL/I to DBCTL concerns DBCTL
enhanced scheduling, whereby the schedule of a PSB does not fail if one of the
databases used by that PSB is unavailable. Instead, a status code is set in the
relevant PCB indicating the database is unavailable. This is different from local
DL/I, where an 0805 response code would have been set for CALLDLI programs,
or a DHTE abend would occur for EXEC DLI programs, if any of the databases are
unavailable. The XDLIPOST exit could be used, on return from a schedule request,
to scan down the list of PCBs and, if any of the status codes indicate a database is
unavailable, the XDLIPOST exit could change the UIB response codes to 0805.
This would cause EXEC DLI programs to abend DHTE, and CALLDLI programs to
receive an 0805 response. With this technique, DBCTL thinks that the PSB is still
scheduled, so a new schedule request must not be attempted before the PSB is
terminated either explicitly, by transaction termination, or by an abend. New
applications should use the EXEC DLI ACCEPT STATUS GROUP(A) command to
cope with DBCTL enhanced scheduling.

To provide an availability enhancement, you can use the XDLIPRE exit to change
the identity of the SYSID during CICS execution. In this way, you can route work
from a SYSID that becomes unavailable to an alternative.

Global user exits XRMIIN and XRMIOUT
The global user exits XRMIIN and XRMIOUT enable you to monitor activity across
the resource manager interface (RMI). XRMIIN is invoked just before control is
passed from the RMI to a task-related user exit, and XRMIOUT is invoked just after
control is returned to the RMI. You can use these exits to monitor DL/I activity; for
example, control being passed to and from DFHDBAT for DBCTL requests, or
DFHEDP for EXEC DLI. For programming information on using these exits, see
Naming, testing, and debugging your autoinstall control program and CICS action
on return from the control program in the CICS Customization Guide .

Global user exits for XRF
If you use CICS support for XRF, global user exits XXDFA, XXDFB, and XXDTO
are available to enable you to establish a takeover mechanism for DBCTL.

44 CICS IMS Database Control Guide

Chapter 5. Operations with DBCTL

Operating DBCTL involves:

� “Connection to DBCTL”
� “Operator communication with DBCTL” on page 53
� “Dealing with messages from DBCTL and CICS” on page 71

Areas related to recovery are described in Chapter 6, “Recovery and restart
operations for DBCTL” on page 73.

Connection to DBCTL
You can perform CICS and DBCTL startup from a TSO terminal or an MVS
console. Before DBCTL can begin accepting transactions, several things must
happen, as shown in Figure 12. The numbers in the figure and corresponding step
numbers indicate the sequence of events.

CICS CONNECT request DBCTL DBCTL READY IMS start
startup startup command
(step 1) (step 4) (step 2) message (step 3)

Figure 12. Connecting to DBCTL

1. CICS is started by submitting a job or starting a procedure, as described in the
CICS Operations and Utilities Guide.

2. DBCTL is started by submitting a job or starting a procedure, as described in
“Starting DBCTL, DLISAS, and DBRC” on page 38.

3. After receiving a DBCTL READY message, indicating that startup is complete,
the IMS console operator enters a start command, as follows:

� If starting DBCTL for the first time, use /NRESTART CHECKPOINT 0
FORMAT ALL. This command cold starts DBCTL and formats the write
ahead data set (WADS) and the restart data set (RDS).

� /NRESTART for a warm start.

� /ERESTART for an emergency restart after a failure.

The / used in these commands is explained in “Operator communication with
DBCTL” on page 53. See “Restarting DBCTL” on page 74 for information on
restart options.

When the start has completed, the following message is issued:

DFS994I rtype START COMPLETED

where rtype is the type of start requested (COLD, WARM, or EMERGENCY).

4. The CICS operator requests connection to DBCTL using the CDBC transaction.

Step 1 can be done before, during, or after steps 2 and 3. Steps 2 and 3 must be
done in the sequence shown, and all three steps must be completed successfully
before step 4 can begin.

 Copyright IBM Corp. 1989, 1999 45

Connecting DBCTL to CICS automatically
You can specify that CICS is connected automatically to either the same or a
different DBCTL.

If you want to connect automatically to the DBCTL that was being used when CICS
was last shut down, use the DBCTLCON system initialization parameter, or add an
entry for DFHDBCON to the PLTPI so that it is invoked in the second stage of
PLTPI processing (that is, the third stage of CICS initialization), as described in the
CICS Resource Definition Guide.

If you want to connect automatically to a specific DBCTL, or to connect CICS to
DBCTL when it was not connected at shutdown, use the CICS INITPARM system
initialization parameter, in addition to specifying DFHDBCON in the PLTPI.
INITPARM enables DFHDBCON to have access to the DRA startup parameter
table suffix you want to use. Specify:

INITPARM=(DFHDBCON='xx[,yyyy]')

where xx is a 1-to 2-character DRA startup table suffix, which you must enter, and
yyyy is an optional 1-to 4-character DBCTL identifier. The DBCTL identifier
specified in INITPARM overrides the DRA startup parameter DBCTLID.

| Using INITPARM avoids the need to use the CRLP or DASD sequential terminal as
| your means of automating connection to a specific DBCTL. If you prefer to use a
| CRLP or DASD sequential terminal, code the following:

//DDIN DD \

CDBC CONNECT SUFFIX(xx) DBCTLID(yyyy)\

where xx is the 1- to 2-character DRA startup table suffix and yyyy is the 1- to
4-character DBCTL identifier, both of which are optional. Specifying a DBCTL
identifier here overrides the one specified in the DRA startup table parameter
DBCTLID. \ is the end-of-line character. (See the CICS Resource Definition Guide
and the CICS Application Programming Guide for guidance on using sequential
terminal support.)

What happens at startup depends on the type of CICS start being used (or whether
you are using DBCTL with CICS XRF) whether you specified INITPARM, and on
whether DBCTL was connected to CICS when CICS was last shut down.

Connecting to DBCTL after a CICS WARM or EMERGENCY start
If CICS startup is WARM or EMERGENCY:

� If you used INITPARM, the DRA startup table suffix and DBCTL identifier
specified there are used to determine which DBCTL to connect to, whether or
not CICS and DBCTL were connected when CICS was last shut down.

� If you did not use INITPARM:

– If CICS and DBCTL were connected when CICS was last shutdown, CICS
is reconnected to the same DBCTL. DFHDBCON uses the DRA startup
parameter table suffix and DBCTL identifier override (which may be blanks)
from the catalog.

– If CICS and DBCTL were not connected when CICS was last shut down
CICS issues message DFHDB8117 and does not attempt to connect to
DBCTL.

46 CICS IMS Database Control Guide

Connecting to DBCTL after a CICS COLD or INITIAL start
If CICS startup is COLD or INITIAL:

� If you used INITPARM, CICS attempts to connect to DBCTL, using the suffix
and DBCTL identifier (if any) you specified.

� If you did not use INITPARM, CICS attempts to connect to DBCTL using the
default DRA startup table suffix (00) and no DBCTL identifier override, whether
or not DBCTL was connected when CICS was last shut down.

Connecting to DBCTL after a CICS XRF takeover
If you are using DBCTL in a CICS XRF environment:

� If CICS and DBCTL were connected when takeover occurred, CICS connects
to that DBCTL, whether or not you used INITPARM.

� If CICS and DBCTL were not connected when takeover occurred:

– If you used INITPARM, CICS connects to the DBCTL specified

– If you did not use INITPARM, message DFHDB8117 is issued and no
connection attempt is made.

See Chapter 6, “Recovery and restart operations for DBCTL” on page 73 for
information on using DBCTL with CICS XRF.

Connection, disconnection, and inquiry transactions
There are two CICS transactions that you can use to connect to, disconnect from,
and inquire on the status of the CICS-DBCTL interface. They are:

� CDBC, which enables users (for example, CICS operators and network
controllers) to display a menu to connect to and disconnect from DBCTL.

– For connection , CDBC issues a DBCTL connection request to DFHDBAT,
which issues a DRA INIT request internally to the DRA.

CDBC also enables you to override the DRA startup parameter table suffix
and DBCTL identifier when you are connecting CICS to DBCTL. (See
“Defining the IMS DRA startup parameter table” on page 39 for information
on the contents of the DRA startup table.)

– For disconnection , CDBC can issue an orderly or an immediate
disconnection request to DFHDBAT, which issues a DRA TERM request
internally to the DRA.

(See “CDBC transaction for connect and disconnect” on page 48 for more
information on using CDBC.)

� CDBI, which enables users to inquire on the status of the CICS-DBCTL
interface. See “CDBI transaction for inquiry” on page 52 for more information.

You can enter CDBC and CDBI from either a CICS terminal or an MVS console.
You can restrict access to these transactions using transaction security. Messages
from CDBC can be sent to the transient data destination CDBC. (For help on
defining transient data destinations, see the CICS Resource Definition Guide.)

 Chapter 5. Operations with DBCTL 47

CDBC transaction for connect and disconnect
Typing CDBC on a 3270-type terminal displays a menu for connecting CICS to, and
disconnecting it from, DBCTL. Figure 13 shows an example of the menu.

To connect to DBCTL, enter option number 1 after:

Option Selection ==>

à ð
 CDBC CICS-DBCTL CONNECTION/DISCONNECTION 93.259

 13:39:2ð

Select one of the following:

 1 Connection

2 ORDERLY disconnection

3 IMMEDIATE disconnection

 Option Selection ==> 2

Startup Table Suffix ==> ðð

DBCTL ID Override ==>

DFHDB82ð9D DBCTL orderly disconnection requested. Press PF5 to confirm.

Status of the Interface: DFHDB8293I DBCTL connected and ready.

CICS APPLID: IYAHZCD2

DBCTL ID: SYS2

Startup Table Suffix: ðð

 PF1 = Help 2 = Refresh 3 = End

á ñ

Figure 13. CDBC transaction menu screen

If you want to specify a DRA startup table suffix, you can enter it after:

Startup Table Suffix ==>

If you do not specify a suffix, CICS uses the one that was used when it was last
connected to DBCTL. If this is the first time you have connected CICS to DBCTL,
and you do not specify a suffix, CICS uses the default suffix, which is 00.

If you want to specify a DBCTL identifier, you can enter it after:

DBCTL ID Override ==>

If you do not specify a DBCTL identifier, the DRA uses the DBCTL identifier
specified on the DBCTLID parameter in the DRA startup table.

When you have pressed ENTER, you should get the message:

DFHDB82ð9 I DBCTL orderly disconnection requested. Press PF5 to confirm.

as shown on the example screen in Figure 13.

The CDBC menu screen displays the following additional information:

� Status of the CICS-DBCTL interface; in this case, DBCTL is connected and
ready

� The APPLID of the CICS system; in this case, DBDCCICS

48 CICS IMS Database Control Guide

� The identifier of the DBCTL system; in this case, SYS2

� The DRA startup parameter table suffix for this connection; in this case, 00.

The DBCTL identifier and the DRA startup parameter table suffix are only displayed
when CICS has been connected to DBCTL. You can refresh any of the information
on the CDBC menu screen by pressing PF2.

You can obtain a help screen for the CDBC menu by pressing PF1. As you can
see in Figure 14, the CDBC help screen reminds you which number to specify for
which option, what the options mean, and summarizes the CICS-DBCTL interface
information displayed on the CDBC menu screen.

à ð
HELP : CICS-DBCTL CONNECTION/DISCONNECTION

To CONNECT to DBCTL, select option 1. You can also specify a startup

table suffix, or accept the existing suffix. The id of the DBCTL system is

obtained from the startup table, but can be optionally overridden.

To DISCONNECT from DBCTL, select option 2 or option 3.

Select option 2 for ORDERLY disconnection: this allows all CICS-DBCTL

transactions from this CICS to complete before disconnecting from DBCTL.

Select option 3 for IMMEDIATE disconnection: this allows all CICS-DBCTL

requests from this CICS to complete before disconnecting from DBCTL.

 --

Displayed information (press PF2 to refresh the information):

STATUS OF THE INTERFACE The current status of the connection to DBCTL.

CICS APPLID The application identifier for this CICS system.

Displayed when available:

DBCTL ID Identifier of the DBCTL system with which this

CICS system is communicating.

STARTUP TABLE SUFFIX Suffix used when CICS was connected to DBCTL.

PRESS ENTER TO RETURN TO SELECTION SCREEN

á ñ

Figure 14. CDBC transaction menu help screen

Using CDBC without the menu screen: The menu screen is displayed if you
| use CDBC from a 3270-type terminal, However, if you issue CDBC from a CRLP or
| DASD sequential terminal or operating system console, the menu screen is not

displayed. For example, if you specify:

CDBC CONnect

DBCTL is connected using the default suffix, 00.

If you specify a suffix:

CDBC CONnect SUFfix(12)

and DBCTL is connected using suffix 12.

You can also type a DBCTL identifier, in addition to the suffix, or on its own. For
example, if you enter:

CDBC CONnect DBCtlid(DBC1)

CICS is connected to the DBCTL named DBC1.

 Chapter 5. Operations with DBCTL 49

You can also enter:

CDBC CONnect DBCtlid(DBC2) SUFfix(11)

or

CDBC CONnect SUFfix(11) DBCtlid(DBC2)

in either case, CICS is connected to DBCTL DBC2, using suffix 11.

See “What happens when you have requested connection to DBCTL” below for
details of the system’s response to your connection request.

If you disconnect CICS from DBCTL using a BSAM CRLP-type terminal, the menu
screen is not displayed.

For orderly disconnection, specify:

CDBC DISconnect

For immediate disconnection, enter:

CDBC DISconnect IMMediate

See “Deciding whether to use orderly or immediate disconnection” on page 51 for
information on the two types of disconnection request.

What happens when you have requested connection to DBCTL
When you have requested connection to DBCTL, you should get messages
confirming that connection is taking place. If you have used the CDBC menu, the
following messages appear on the terminal:

Status of the Interface: DFHDB8292I DBCTL CONNECT PHASE 2 IN PROGRESS.

Status of the Interface: DFHDB8293I DBCTL CONNECTED AND READY.

If you have not used the CDBC menu, the following messages appear on the MVS
console:

+DFHDB821ðD CONNECTION TO DBCTL IS PROCEEDING. CHECK CDBC TD QUEUE.

+DFHDB8225I DBDCCICS THE DBCTL ID IS SYS1. THE DRA STARTUP TABLE SUFFIX IS ðð.

The CICS Messages and Codes manual contains information about interpreting the
CICS DFHDBnnnn messages that are issued when you are using CDBC.

If DBCTL is not yet available, the main CICS-supplied IMS control exit,
DFHDBCTX, is invoked. DFHDBCTX in turn calls DFHDXAX. For more information
about the IMS control exit routines, see the appropriate IMS/ESA Customization
Guide.

For a DBCTL restart, the control exit is invoked as for any DBCTL connection
attempt. However, instead of returning control directly to the DRA, the control
transaction invokes the DFHDXAX module. This control exit routine checks to see if
it is being invoked for a failing connection:

� If it is not being invoked for a failing connection, it does not attempt to connect
and passes back control.

� If it is being invoked for a failing connection, it checks the input arguments to
determine whether:

– An IDENTIFY attempt failed, and
– CICS is not in the process of terminating

50 CICS IMS Database Control Guide

If an IDENTIFY failed, and CICS is not terminating, the action taken then depends
on whether there is an RST defined, which may or may not contain alternative
DBCTL IDs.

CICS regions without a recoverable service table (RST): If there is no RST,
DFHDXAX selects the current DBCTL ID, and initiates repeated attempts to
reconnect to the current DBCTL, thus avoiding operator intervention.

Retries are made every five seconds for a ten minute period, and message
DFHDB8297 is issued periodically. If reconnection is still not successful after ten
minutes, DFHDXAX abandons the attempt, and requests IMS to issue message
DFS0690A, which requires operator intervention. The IMS Messages and Codes
manual manual contains guidance on interpreting the IMS DFSnnnn messages that
are displayed when you are using CDBC. If you reply CANCEL, the connection
attempt is abandoned. It you reply WAIT, the DRA retries the connection attempt
after the number of seconds specified in the TIMER parameter in the DRA startup
parameter table. If the connection attempt fails again, the DRA will continue to
retry after the same number of seconds. You can stop these repeated connection
attempts by using the CDBC transaction to disconnect from DBCTL. (This can be
either the same instance of CDBC or one from a different terminal.) Disconnection
takes effect when the DRA next tries to reconnect to DBCTL.

CICS regions with an RST: If you are using XRF, and therefore have defined an
RST, and it does contain alternative DBCTL IDs to which CICS can try to connect,
DFHDXAX selects each DBCTL subsystem ID in the RST in turn as a candidate for
reconnection.

The processing, which can take one of two courses, is as described in “I/O PCB”
on page 104.

Deciding whether to use orderly or immediate disconnection
Orderly disconnection allows all existing CICS-DBCTL tasks to complete before
CICS is disconnected from DBCTL. Tasks not currently using DBCTL are prevented
from issuing further PSB schedule requests. This means that there should not be
any in-doubt logical units of work (UOWs), and database records are available to
other CICS systems connected to that DBCTL.

Immediate disconnection allows only current DL/I requests to DBCTL from this
CICS system to complete before CICS is disconnected from DBCTL. Any new DL/I
or PSB schedule requests are prevented. This can cause in-doubt UOWs for the
task involved and leave database records unavailable for other CICS systems
connected to that DBCTL until it is reconnected. What happens depends on the
type of request issued to DBCTL after the immediate disconnection request:

� If it is a PSB schedule request, a DHTJ abend (for a command-level program)
or a DLINA condition (for a call-level program) is issued.

� If it is a DL/I request, the UOW is backed out and an ADCA abend is issued.

� If it is a PREPARE request, the UOW is backed out and an ASP7 abend is
issued.

In all the above cases, database records are available to other applications.

� If it is a COMMIT request, the task remains in-doubt and DBCTL records are
unavailable. The in-doubts will not be resolved until DBCTL is reconnected to

 Chapter 5. Operations with DBCTL 51

CICS. An abend is issued when the next PSB schedule is received, as
described for PSB schedule request, above.

See “Two-phase commit” on page 79 for information on PREPARE and
COMMIT requests.

So, use immediate disconnection only if necessary. For example, you may need to
use it if you have already issued an orderly disconnection request which has not
taken place, and you need disconnection to take place soon. Orderly disconnection
may be delayed by a task that is issuing many DL/I requests, or by a
conversational task that is awaiting input from an unattended terminal. If you think
the problem is being caused by such a task, you may prefer to identify it using
CEMT INQ TASK, and then use CEMT SET TASK(n) PURGE, where “n” is the
task identifier to purge it. You can then use orderly disconnection. However, if the
problem is being caused by many tasks or by a single task that you cannot identify,
you may have to use immediate disconnection.

CDBI transaction for inquiry
You can use the CDBI transaction to inquire on the status of the DBCTL
connection. Typing CDBI displays a screen like the one shown in Figure 15. The
CDBI screen shows the status of the CICS-DBCTL interface (in this example,
DBCTL is connected and ready), plus the APPLID of the CICS system
(DBDCCICS) and the DBCTL identifier (SYS1). You can refresh the information by
pressing PF2.

à ð
 CDBI CICS-DBCTL INTERFACE INQUIRY 93.194

 11:23:5ð

Status : DFHDB8293 I DBCTL connected and ready.

CICS APPLID: DBDCCICS

 DBCTL ID : SYS1

 PF1 = Help 2 = Refresh 3 = End

á ñ

Figure 15. CDBI transaction screen

You can obtain a help screen for CDBI by pressing PF1. Figure 16 on page 53
shows an example of such a panel. The CDBI help screen tells you how to refresh
the information on the CDBI screen, and explains that information. It includes a list
of the CICS messages describing the status of the CICS-DBCTL interface that can
appear on the CDBI screen. The CICS Messages and Codes manual tells you how
to interpret these messages.

52 CICS IMS Database Control Guide

à ð
HELP : CICS-DBCTL INTERFACE INQUIRY

The CICS-DBCTL interface inquiry screen shows:

STATUS OF THE INTERFACE The status can be:

DFHDB829ðI DBCTL NOT CONNECTED TO CICS.

DFHDB8291I DBCTL CONNECT PHASE 1 IN PROGRESS.

DFHDB8292I DBCTL CONNECT PHASE 2 IN PROGRESS.

DFHDB8293I DBCTL CONNECTED AND READY.

DFHDB8294I DBCTL ORDERLY DISCONNECT IN PROGRESS.

DFHDB8295I DBCTL IMMEDIATE DISCONNECT IN PROGRESS.

DFHDB8296I DBCTL CANNOT BE CONNECTED TO CICS.

CICS APPLID The application identifier of this CICS system.

Displayed when available:

DBCTL ID The identifier of the DBCTL system with which this CICS

 is communicating

You can press PF2 to update (refresh) the information shown on the screen

PRESS ENTER TO RETURN TO INQUIRY SCREEN

á ñ

Figure 16. CDBI transaction help screen

Operator communication with DBCTL
IMS operations can be done from an IMS master terminal operator console, which
is usually the primary MVS console. This can be the primary MVS console, but
you are advised to have a secondary MVS console that is specifically dedicated to
DBCTL. We refer to this as the DBCTL console .

With IMS/ESA 5.1 onwards, you can choose to issue operator commands to
DBCTL from a CICS terminal, using a CICS-supplied transaction, CDBM, as
described in “CDBM operator transaction” on page 55.

DBCTL operator commands
The operator commands you can use to communicate with DBCTL are a subset of
IMS operator commands. This book summarizes the ways in which you can use
these commands with DBCTL. For guidance on syntax, see the IMS Operator’s
Reference manual. See also Appendix D, “Summary of DBCTL operator
commands” on page 177 for a list of DBCTL operator commands and their
corresponding CICS commands, and a list of valid keywords for DBCTL users.

Format of DBCTL operator commands
DBCTL commands begin with a command recognition character (CRC). A CRC of
/ is the default. (The examples of DBCTL commands in this manual use the default
CRC.) You can override it on the DBCTL job, but remember that each DBCTL
subsystem in a single MVS image must have a different CRC . This CRC must
also be different from every other subsystem in the processor (or multiprocessor),
not just DBCTL subsystems. The same applies to any test systems you may be
using. You can, if you prefer, use the subsystem ID (for example, SYS1) of the
DBCTL you are using instead of a CRC.

 Chapter 5. Operations with DBCTL 53

The general format of DBCTL commands is a CRC, a verb, then a password (if
required), followed by keyword(s), and finally comments (if any). There must be no
space between the CRC and the verb. Usually there is a space between
parameters, except as noted for specific parameters in the IMS Operator’s
Reference manual. Many verbs and keywords have abbreviations. Guidance on
using them is in the IMS Operator’s Reference manual.

Multisegment DBCTL operator commands
The DBCTL operator commands /CHANGE, /ERESTART, /RMxxxxxx, and /SSR
can be entered in multiple segments. The format of multisegment commands varies
according to the environment you are using. For multisegment commands in a
DBCTL environment, each segment preceding the last segment requires an
end-of-segment (EOS) indicator, which is the CRC followed by the ENTER key.
The last (or only) segment requires an end-of-message (EOM) indicator, which is
the ENTER key. In addition, each segment must begin with the CRC.

Figure 17 is an example of a multisegment command that has two segments. The
CRC is a slash (/), and appears at the beginning and end of the first segment. The
EOS of the first segment is the CRC (/) followed by the ENTER key, which does
not appear because it is not displayable. The EOM of the second (and last)
segment is the ENTER key, so this segment begins with the CRC, but does not
end with it.

DBCTL can handle single-segment commands from an unlimited number of
consoles concurrently, but the number of consoles that can concurrently issue
multisegment commands is limited to eight. A single multisegment command is
limited to 241 bytes. If either of these limits is exceeded, a message is sent to the
issuing console.

 /RMI DBRC='ic dbd(dedbddð1) area(ddð1arð) icdsn(fvt31.dedbddð1.ddð1arð

 .ic.dummy1) icdsn2/

 /(FVT31.DEDBDDð1.DDð1ARð.IC2.DUMMY1) HSSP'

 DFSðððI MESSAGE(S) FROM ID=SYS1 49ð

 INIT.IC DBD(DEDBDDð1) AREA(DDð1ARð) -

 ICDSN(FVT31.DEDBDDð1.DDð1ARð.IC.DUMMY1) -

 ICDSN2(FVT31.DEDBDDð1.DDð1ARð.IC2.DUMMY1) HSSP

 DSPð2ð3I COMMAND COMPLETED WITH CONDITION CODE ðð

 DSPð22ðI COMMAND COMPLETION TIME 89.ð45 16:24:58.7

 DSPð211I COMMAND PROCESSING COMPLETE

 DSPð211I HIGHEST CONDITION CODE = ðð

 DSPðð58I RMI COMMAND COMPLETED

 /RMI DBRC='ic dbd(dedbddð1) area(ddð1arð) icdsn(fvt31.dedbddð1.ddð1arð

 .ic.dummy2) /

 /ICDSN2(FVT31.DEDBDDð1.DDð1ARð.IC2.DUMMY2) HSSP'

 DFSðððI MESSAGE(S) FROM ID=SYS1 514

 INIT.IC DBD(DEDBDDð1) AREA(DDð1ARð) -

 ICDSN(FVT31.DEDBDDð1.DDð1ARð.IC.DUMMY2) -

 ICDSN2(FVT31.DEDBDDð1.DDð1ARð.IC2.DUMMY2) HSSP

 DSPð2ð3I COMMAND COMPLETED WITH CONDITION CODE ðð

 DSPð22ðI COMMAND COMPLETION TIME 89.ð45 16:28:1ð.3

 DSPð211I COMMAND PROCESSING COMPLETE

 DSPð211I HIGHEST CONDITION CODE = ðð

 DSPðð58I RMI COMMAND COMPLETED

Figure 17. Example of using multisegment commands in a DBCTL environment

54 CICS IMS Database Control Guide

For further guidance on multisegment operator commands, see the IMS Operator’s
Reference manual.

You can use null words (for example, FOR, and TO) within the operator commands
to help clarify the syntax without affecting the command itself. Because null words
are reserved, you must not use them to name system resources. For further
guidance on null words, see the IMS Operator’s Reference manual.

You may need to use a password, depending on how the verb was defined when
the security maintenance utility was run at system definition. See the IMS Utilities
Reference: Database manual manual for guidance on running the security
maintenance utility; see the IMS System Administration Guide or the IMS/ESA
Administration Guide: System for guidance on determining passwords; and see
“Deleting password security authorization” on page 63 if you need to delete a
password. See Chapter 8, “Security checking with DBCTL” on page 117 for
information about security considerations with DBCTL.

The rest of this chapter describes situations that occur during normal system
operation in which you need DBCTL operator commands, sometimes in conjunction
with CICS operator commands. For information on operator commands to use if the
system (or some part of it) fails, see Chapter 6, “Recovery and restart operations
for DBCTL” on page 73.

CDBM operator transaction
With IMS/ESA 5.1 or later, you can use CDBM to issue most of the IMS operator
commands that are valid for DBCTL across the DRA interface to DBCTL to display
and change the state of selected resources.

| CDBM also provides a means of maintaining a command file which stores
| commands. You may store commands for any reason, but repeated re-use is likely
| to be a frequent purpose. These stored commands may include more databases
| than the operator transaction panel has space for.

When dealing with databases, you can use an asterisk (*) to refer to generic
groups; for example DB21* refers to all databases starting with the characters
DB21. You can also use a plus (+) sign in place of a single character; for example,
DB+2 displays databases DB12, DB22, DB32, and so on.

| You can issue DBCTL commands via a menu panel, as shown in Figure 18 on
| page 56. This panel is obtained by starting the CDBM transaction.

 Chapter 5. Operations with DBCTL 55

à ð
CDBM CICS-DBCTL Operator Transaction 98.135

 13:24:2ð

Type IMS command.

 __

 __

 __

 __

For /DBDUMP or /DBRECOVER commands

Choose one. 1 1. Do not force end of volume
2. Force end of volume

Press enter to display responses.

CICS APPLID DBDCCICS

 DBCTL ID SYS3

F1=Help F2=Maintenance F3=Exit F5=Refresh F12=Cancel

á ñ

Figure 18. CDBM CICS-DBCTL operator transaction panel

| On this panel you can enter a DBCTL command, for example:

| /DISPLAY DB ALL

| or a group command, for example:

| /GROUP SAMPLE STA

There is also a help screen, as shown in Figure 19 on page 57.

56 CICS IMS Database Control Guide

| à| ð
| CDBM Help: CICS-DBCTL Operator Transaction

| CDBM Use the transaction to send an IMS command to a DBCTL system.

| Command Type the command recognition character / followed by an IMS

| command and press enter to display responses.

| Responses Use the PF keys to page IMS responses.

| Wildcards \ or + can be used within one database name.

| End of volume For /DBDUMP or /DBRECOVER commands only

| Choose one.

| 1. Do not force end of volume

| 2. Force end of volume

| CICS APPLID

| These are shown for information.

| DBCTL ID

| Enter the group common maintenance screen.

| Example /DIS DB DEPT\ displays the status of several databases.

| F3=Exit F12=Cancel

| á| ñ

| Figure 19. CDBM CICS-DBCTL operator transaction help panel

| An example of the use of a /GROUP command from the CICS-DBCTL Operator
| Transaction screen is shown in Figure 20.

| à| ð
| CDBM CICS-DBCTL Operator Transaction 98.135

| 13:24:2ð

| Type IMS command.

| /GROUP SAMPLE STA__

| __

| __

| __

| For /DBDUMP or /DBRECOVER commands

| Choose one. 1 1. Do not force end of volume
| 2. Force end of volume

| Press enter to display responses.

| CICS APPLID DBDCCICS

| DBCTL ID SYS3

| F1=Help F2=Maintenance F3=Exit F5=Refresh F12=Cancel

| á| ñ

| Figure 20. CICS-DBCTL operator transaction panel showing a GROUP command

 Chapter 5. Operations with DBCTL 57

Responses to commands issued from the CDBM screen are returned on a screen
like the one in Figure 21 on page 58, which shows the first of a number of screens
resulting from a /DISPLAY DB ALL command.

à ð
CDBM CICS-DBCTL IMS Responses Screen 1

 Responses 1 to 18

 More: +

 DATABASE TYPE TOTAL UNUSED TOTAL UNUSED ACC CONDITIONS

ACCOUNDB UP STOPPED, NOTOPEN, NOTINIT

ADMIDX1 UP STOPPED, NOTOPEN, NOTINIT

ADMOBJ1 UP STOPPED, NOTOPEN, NOTINIT

ADMOBJ2 UP STOPPED, NOTOPEN, NOTINIT

ADMOBJ3 UP STOPPED, NOTOPEN, NOTINIT

ADMSYSDF UP STOPPED, NOTOPEN, NOTINIT

 BE1CHKPT DL/I UP NOTOPEN

BE1PARTA UP STOPPED, NOTOPEN, NOTINIT

BE1PARTB UP STOPPED, NOTOPEN, NOTINIT

BE1PARTC UP STOPPED, NOTOPEN, NOTINIT

BE1PARTS UP STOPPED, NOTOPEN, NOTINIT

 BE2ORDER DL/I UP NOTOPEN

 BE2ORDRX DL/I UP NOTOPEN

 BE2PARTS DL/I UP NOTOPEN

 BE2PCUST DL/I UP NOTOPEN

 BE3ORDER DL/I UP NOTOPEN

 BE3ORDRX DL/I UP NOTOPEN

 More...

F1=Help F3=Exit F4=Top F6=Bottom F7=Bkwd F8=Fwd F9=Retrieve F12=Cancel

á ñ

Figure 21. CDBM CICS-DBCTL IMS responses panel

Alternatively, you can issue CDBM and the DBCTL command directly, as follows:

CDBM /xxxxxxxx

where / is the default CRC and xxxxxxxx is a IMS operator command that is valid
for use with DBCTL and CDBM.

Note: IMS requires that each command is prefixed with the default CRC. The
CRC is present only for syntax checking; it does not determine to which
DBCTL the command is sent. You cannot use a CRC value to route a
command to a particular DBCTL system through CDBM. It can be sent only
to the one currently connected to CICS. This DBCTL may have its own
CRC value which is different from the default one of '/'. However, this does
not matter to CDBM, because the '/' character is used only for syntax
checking, and the command is presented to the connected DBCTL without
a CRC, using the AIB interface.

| The /GROUP may also be entered in this way, for example:

| CDBM /GROUP SAMPLE DIS.

| DFHDBFK - The CDBM GROUP command file
| Before you can use the /GROUP command CDBM requires a file in which all your
| predefined commands can be stored. This file, DFHDBFK, is the CDBM GROUP
| command file. It is a VSAM KSDS.

| The DFHDBFK file is not required until you first attempt to use the /GROUP
| command.

58 CICS IMS Database Control Guide

| Record layout in the CDBM GROUP command file: Each record in the
| DFHDBFK file may be up to 1428 characters long, as follows:

| Table 3. table

| field| length| content| description

| 1| 12| Group| a 12-character field containing your chosen name
| for this group. The acceptable characters are A-Z
| 0-9 $ @ and #. Leading or embedded blanks are
| not allowed, but trailing blanks are acceptable.

| 2| 10| IMS
| Command
| a 10-character field containing any of the IMS
| command verbs that are valid for CDBM (see
| section 61 for details). Leading or embedded blanks
| are not allowed, but trailing blanks are acceptable.

| Note: The validity of the IMS command verb is not
| checked by CDBM. Invalid values will be
| reported by IMS when the command is
| attempted.

| 3| 1406| IMS
| Command
| parameters

| Up to 1406 characters of parameters appropriate to
| the chosen IMS command verb. (This will often
| consist of lists of databases.)

| Note: Wildcard characters may not be used in the
| parameters stored in the CDBM Group
| command file. This is unlike the other
| functions of the CDBM transaction which
| permit the use of wildcard characters to
| describe multiple similarly named databases.

| The MAINTENANCE panel for DFHDBFK
| If you press the Maintenance key (PF2) on the main CDBM panel, you get the
| panel shown in Figure 22.

| à| ð
| CDBM CICS/DBCTL COMMAND GROUP MAINTENANCE

| _ ACTION A add B browse D delete R read U update

| ____________ GROUP __________ IMS COMMAND

| > <

| > <

| > <

| > <

| > <

| > <

| > <

| > <

| > <

| > <

| > <

| > <

| > <

| > <

| > <

| > <

| > <

| > <

| > <

| F1=Help F3=Exit F12=Cancel

| á| ñ

| Figure 22. CICS-DBCTL Group Maintenance Panel

 Chapter 5. Operations with DBCTL 59

| Input fields
| The input fields are:

| � Action
| � Group
| � IMS Command
| � IMS Command parameters

| (between the > < marks).

| Group, IMS Command and IMS Command parameters are described in “Record
| layout in the CDBM GROUP command file” on page 59

| The Action field will accept one of the following:

| A Add

| Add a new record to the DFHDBFK file. If the key already exists, the Add fails.

| Note: To Add a record that is very similar to an existing record, but which has
| a different key, you may find it helpful to Read the existing record,
| modify the displayed fields, and then Add this new record.

| B Browse

| Displays the contents of the command file, record by record. Specify any key
| (or none) to indicate where you want the browse to start. Each time you press
| ENTER, Browse moves on to the next record. At the end of the file you will be
| prompted to wrap around to the start of the file. You can accept this or not as
| you prefer. Incomplete keys, and unknown keys are also acceptable as start
| points. If no key is provided, the browse starts at the first record in the file.

| If you have used Browse to locate a specific record for deletion or for update,
| remember to use Read before either Delete or Update.

| D Delete

| Delete a record from the DFHDBFK file. A Delete must be immediately
| preceded by a Read to lock the required record.

| R Read

| Read displays a specific record. Unlike Browse it does not operate on partial, or
| absent keys, and does not present the next record when you press ENTER.

| Read is required before those actions (Delete and Update) which change an
| existing record. It locks that record against the possibility of being changed by
| another operator. This action also serves to help you confirm that the correct
| record has been selected.

| A lock is released by ending CDBM, or by your next CDBM Maintenance action
| (whether that is the Update or Delete you had contemplated, or something
| different entirely).

| U Update

| Update a record in the DFHDBFK file. An Update must be immediately
| preceded by a Read to lock the required record.

| You cannot update the key fields (GROUP and IMS COMMAND).

| Reminder:: Use Add to create a new key.

60 CICS IMS Database Control Guide

| Note: In the descriptions above, Key refers to the 22 characters at the beginning
| of each record in the DFHDBFK file (namely the GROUP and IMS
| COMMAND).

| If you press the help key (PF1) from the CICS-DBCTL Maintenance panel, you get
| the panel shown in Figure 23.

| à| ð
| CDBM Help: CICS-DBCTL Operator Transaction

| Maintenance Store commands for issuing from the CDBM screen.

| GROUP Enter the group you want to store a command in.

| IMS COMMAND Enter a valid IMS command to execute with the supplied data

| ACTION A - Add a command to the command file.

| B - Browse the contents of the command file.

| D - Delete a command, only after it has been read.

| R - Read a command from the file.

| U - Update a command, only after it has been read.

| Issue commands from the main screen in the format

| /GROUP group command.

| Example /GROUP SAMPLE DIS shows information for the databases in

| F3=Exit F12=Cancel

| á| ñ

| Figure 23. CICS-DBCTL Maintenance help panel

The following IMS operator commands are valid with CDBM:

 � /CHANGE
� /CHECKPOINT (simple form) and /CHECKPOINT STATISTICS

 � /DBDUMP
 � /DBRECOVERY
 � /DELETE
 � /DEQUEUE
 � /DISPLAY
 � /LOCK
 � /LOG
 � /PSTOP
 � /RMCHANGE
 � /RMDELETE
 � /RMGENJCL
 � /RMINIT
 � /RMLIST
 � /RMNOTIFY
 � /START
 � /STOP
 � /SWITCH OLDS
� /TRACE SET PI

 � /UNLOCK
 � /VUNLOAD

 Chapter 5. Operations with DBCTL 61

The following IMS operator commands are not valid with CDBM and must be
issued via the MVS console:

� /CHECKPOINT FREEZE and /CHECKPOINT PURGE
 � /MODIFY
 � /ERESTART
 � /NRESTART
 � /SSR

For more information, see Appendix A, “Migration task summary for DBCTL” on
page 165.

Issuing DBRC commands
With DBCTL, you must issue DBRC commands via DBCTL console commands
(/RMxxxxxx) because DBRC runs outside the CICS address space. If you are using
IMS/ESA 5.1 or later, you can issue the /RMxxxxxx commands via the
CICS-supplied transaction CDBM.

You can use the following /RMxxxxxx commands online :

� /RMCHANGE—to change or modify information in the RECON
� /RMDELETE—to delete information from the RECON
� /RMGENJCL—to generate JCL for a specified utility
� /RMINIT—to create records in the RECON
� /RMLIST—to list the contents of the RECON
� /RMNOTIFY—to add information to the RECON.

For example:

/RMINIT DBRC='DB DBD(IVPDB2) SHARELVL(3)'.

See the IMS Operator’s Reference manual for further guidance on the syntax of
these commands.

You can also enter DBRC commands in batch , but the syntax is slightly different,
as shown in Figure 24.

//INITDB JOB 1,PGMERID,CLASS=Q,MSGCLASS=A

//\

//RECON EXEC PGM=DSPURXðð,REGION=1ðððK

//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR

//DFSRESLB DD DSN=IMS.RESLIB,DISP=SHR

//SYSPRINT DD SYSOUT=\

//RECON1 DD DSN=IMS.RECON1,DISP=SHR

//RECON2 DD DSN=IMS.RECON2,DISP=SHR

//SYSIN DD \

 INIT.DB DBD(IVPDB2) SHARELVL(3)

/\

Figure 24. Example JCL to register a database with DBRC

62 CICS IMS Database Control Guide

Authorizing access to databases and PSBs
To stop a PSB being scheduled, use the /LOCK command with the PROGRAM
keyword. To stop access to a database, use the /LOCK command with the
DATABASE keyword. To negate or reset the effects of previous /LOCK
commands, use the /UNLOCK command with the DATABASE and PROGRAM
keywords.

Changing IMS passwords
To protect DBCTL against unauthorized /LOCK and /UNLOCK commands for
certain PSBs (referred to as “programs” in the IMS publications) and databases,
you can establish IMS passwords for those PSBs and databases.

IMS passwords are defined by the security maintenance utility or the /CHANGE
command with the PASSWORD keyword. (See Chapter 8, “Security checking with
DBCTL” on page 117 for a description of DBCTL password security.) Using the
/CHANGE command with the PASSWORD keyword changes the password
immediately.

To add a password security definition, use the PASSWORD keyword with the
/MODIFY PREPARE command. To request that password security specifications
should take effect when restart processing has completed, use the PASSWORD
keyword with the /NRESTART command.

Deleting password security authorization
To delete IMS password security authorization for a specified database or PSB, use
the /DELETE command with the PASSWORD keyword. Password security
authorization is used on the /LOCK and /UNLOCK commands, and requires a
password to be supplied when entering that command.

Controlling tracing of DBCTL events
To start and stop tracing of internal DBCTL events dynamically, and define
activities to be monitored by the IMS monitor, use the /TRACE command, as
follows:

� The PI keyword specifies that program isolation (PI) trace data be written to a
trace table. PI trace entries contain information about program isolation
ENQ/DEQ calls and DL/I calls.

� The PSB keyword requests a trace of all DL/I calls issued for a specified PSB.

� The TABLE keyword specifies that online tracing into the specified trace tables
be started or stopped.

Use the CICS-supplied transaction CETR to trace DL/I activity. For DBCTL, CETR
traces a DL/I request until it leaves DFHDBAT. (See the CICS Supplied
Transactions manual for help on using CETR.)

See “Trace entries produced by DBCTL” on page 138 for information on obtaining
DBCTL trace entries. See the IMS Operator’s Reference manual for guidance on
the syntax of /TRACE commands and keywords, and the IMS System
Administration Guide or the IMS/ESA Administration Guide: System for guidance on
the effects using /TRACE commands can have on your system.

 Chapter 5. Operations with DBCTL 63

Finding out current status of DBCTL activities
To find out the status of particular DBCTL activities, use the /DISPLAY command,
as follows:

� The /DISPLAY command with the ACTIVE keyword gives you an overview of
activity in the entire DBCTL subsystem including processing for BMPs and for
threads processing scheduled CICS transactions. For each thread that is
currently active (has a PSB scheduled) from a CICS transaction, there is an
entry “DBT” in the column headed “TYPE,” as shown in the /DISPLAY
command examples in the IMS Operator’s Reference manual. (The TYPE
column shows the thread type and DBT stands for DBCTL thread.) The display
may show fewer DBT threads than the number specified by MINTHRD in the
DRA startup parameter table.

� The /DISPLAY command with the CCTL keyword displays all (or specified)
CICS systems currently connected to DBCTL. To specify a CICS system, add a
CCTLNAME, which is the APPLID of the connected CICS system. The
/DISPLAY command with the CCTL keyword also displays the following items
for all or specified CICS systems:

– All in-doubts for a given CICS or for all CICS systems (when you enter
/DISPLAY CCTL INDOUBT).

– Pseudo recovery token (only when status is INDOUBT). See “Resolving
in-doubt units of work manually” on page 83 for information on using the
pseudo recovery token in a /CHANGE command.

 – Recovery token.

– Thread number (displayed as REGID) for all threads.

 – PSB name.

– Status of thread(s).

– All threads for a given CICS or all CICS systems.

Note: The /DISPLAY command uses the CCTL ID (which, in the case of a
CICS system, is the APPLID). However, many IMS messages use the
jobname of the CICS system. Therefore, it is advisable to have a
naming convention that enables operators to immediately identify a
corresponding CICS APPLID and CICS JOBNAME. For example, if you
use the APPLID DBDCICA, your job name could also contain the
characters CICA.

� The /DISPLAY command with the OLDS keyword displays the system logging
status. You can use it to determine how many OLDS data sets are available for
use or require archiving.

� The /DISPLAY command with the POOL keyword displays main storage
utilization statistics for IMS storage pools.

� The /DISPLAY command with the AREA keyword displays the status of DEDB
data sets in an area.

� The /DISPLAY command with the DATABASE keyword displays the status (for
example, NOTOPEN or STOPPED) of specified databases. If the database you
specify is a DEDB, the associated DEDB areas are also displayed.

� The /DISPLAY command with the DBD keyword displays, for databases that
are being accessed, their type, the PSBs accessing them, and the type of

64 CICS IMS Database Control Guide

access. (You can use the DBD keyword only if you have DEDB support
installed.)

� The /DISPLAY command with the MODIFY keyword displays the status of
resources to be deleted or changed using the /MODIFY command. See
“Changing DBCTL resources online” for information on the /MODIFY command.

� The /DISPLAY command with the PSB keyword displays the status of PSBs,
the databases being accessed, and the type of access. (You can use the PSB
keyword only if you have DEDB support installed.)

� The /DISPLAY command with the PROGRAM keyword displays the status of
PSBs; for example, NOTINIT or STOPPED.

� The /DISPLAY command with the SHUTDOWN STATUS keywords displays
system activity during a shutdown type of checkpoint; for example, the number
of regions still active.

� The /DISPLAY command with the STATUS keyword displays the status of
DBCTL resources, such as databases and PSBs.

� The /DISPLAY command with the TRACE keyword displays status and options
for IMS traces and the IMS monitor, and whether restart should occur without
backout of BMP updates. (You can restart without using backout or recovery of
databases—see the description of the COLDBASE keyword of the /ERESTART
command in “Emergency restart” on page 76.)

Specifying messages to be logged on IMS log
Use the /LOG command to specify any alphanumeric character message to be
logged on the IMS log.

Changing DBCTL resources online
The /MODIFY command is a part of the online change process used to control the
modification of DBCTL resources online. However, note that online change for
DBCTL is very different from CICS resource definition online (RDO). You first use
the offline process for doing a generation (whether it be an ACBGEN, a security
maintenance utility matrix data set generation, or a partial MODBLKS generation for
the DATABASE and APPLCTN macros). Guidance information on doing these
generations is in the IMS System Definition Reference manual manual or IMS/ESA
Installation Volume 2: System Definition and Tailoring and the IMS Utilities
Reference: Database manual manual. To bring the new libraries online, use the
/MODIFY command. First use the /MODIFY command with the PREPARE keyword
to indicate the type of system definitions that need to be replaced. Depending on
the parameters entered, the system initiates quiescing of the appropriate resources.
Then use the /MODIFY command with the COMMIT keyword to bring all newly
defined resources online, update the changed resources, and invalidate the deleted
resources. If the /MODIFY command deletes a database, the database is closed
and made unavailable to programs. You cannot use the /MODIFY command on
DEDBs.

If some kind of failure occurred before a COMMIT could complete, the changes
defined by the /MODIFY command with the PREPARE keyword are not recovered
across an emergency restart and you must reenter them. When a commit is
successful, changes persist across all DBCTL restarts.

 Chapter 5. Operations with DBCTL 65

You can use the /MODIFY command with the ABORT keyword to reset the status
that was set by the /MODIFY command with the PREPARE keyword. You can also
use the /MODIFY command with the ABORT keyword if you have previously used
the /MODIFY command with the COMMIT keyword, but it was not successful and
you decide not to continue with the change. See also “Finding out current status of
DBCTL activities” on page 64 for details of using the /DISPLAY command with the
MODIFY keyword.

Preventing programs and transactions from updating databases
You can use the /DBDUMP command with the DATABASE keyword to prevent
programs from updating DL/I full function databases.

You can use the /DBRECOVERY command to prevent transactions or programs
from accessing a database (with the DATABASE keyword) or a DEDB area (with
the AREA keyword, which is valid with DEDBs only). The command closes and
deallocates the database(s) or area(s), so that they are not authorized to DBRC.

If a specified database is being used when you enter either /DBDUMP or
/DBRECOVERY, the thread currently using the database is allowed to complete,
but no further PSB schedules are allowed.

If a database specified in either of these commands is being used by a BMP, an
error message is issued, and the command is ignored for that database. You
reenter the /DBDUMP or /DBRECOVERY command when the database is no
longer being used by a BMP. If you need to recover the database immediately, use
the /STOP command with the THREAD keyword (or its synonym, REGION) to
terminate any BMPs using the database before you reenter the /DBDUMP or
/DBRECOVERY command.

For a whole DEDB, the PSB is not scheduled. For a DEDB area, programs are not
allowed access to data in that area. For a DL/I database, programs are not allowed
access to the database.

Note: Issuing the /DBRECOVERY and /DBDUMP commands causes the OLDS to
switch; an archive job may be generated to archive the previous OLDS.
(This is controlled by the ARC=xx startup parameter.) Use the NOFEOV
keyword to prevent the OLDS switching when you issue these commands.

The /START command reverses the effects of a /DBDUMP or /DBRECOVERY
command. The /START command allocates the database or area. A database is
authorized on the first schedule request it receives, and is opened at the first DL/I
request. An area is authorized and opened on receipt of the first DL/I request.

Switching to a new OLDS
In IMS/ESA 4.1, specifying /SWITCH OLDS causes the IMS log to switch to the
next OLDS. This switch to the next OLDS is marked as a recovery point for log
archiving purposes. If you also specify the (optional) CHECKPOINT keyword, IMS
issues a simple checkpoint after the active log data set has been switched to the
next OLDS. This switch capability is identical to that provided with the
DBRECOVERY command, as described in “Preventing programs and transactions
from updating databases” and “Log control with DBRC” on page 34.

66 CICS IMS Database Control Guide

Entering external subsystem commands from DBCTL
If you are using DBCTL to access DB2 databases via BMPs, you can use certain
DBCTL operator commands to enter external subsystem commands (where DB2
is the external subsystem).

To display the status of all or specified external subsystems, use the /DISPLAY
command with the SUBSYS keyword. (This is similar to using the /DISPLAY
command with the CCTL keyword to display the status of CICS systems connected
to DBCTL.)

To display the status of origin application schedule numbers (OASNs), which are
IMS recovery elements in a DB2 subsystem, use the /DISPLAY command with the
OASN and SUBSYS keywords. If you then need to purge any incomplete UOWs in
the external subsystem, use the /CHANGE command with the SUBSYS, OASN,
and RESET keywords.

To enter an external subsystem command from the DBCTL console or a program
authorized do so, use the /SSR command. For example:

/SSR -DISPLAY THREAD

displays information about DB2 threads. The command is processed in DB2 and
the response is sent back to the terminal from which you issued the /SSR
command.

Making DBCTL resources available
To make DBCTL resources available to refer to and use, enter the /START
command, as follows:

� Specify that the stopped status of particular DEDB areas be reset (AREA
keyword).

� Change the automatic archiving option selected at system initialization or
specified in a previous /STOP command (AUTOARCH keyword).

� Specify databases to be started so that they can be referenced by PSB
schedule commands (DATABASE keyword).

Add the NOBACKOUT keyword to the DATABASE keyword for databases that
are not registered in DBRC and were backed out using standard batch backout.
If your databases are registered with DBRC, the /START process inquires with
DBRC whether backout needs to be done before starting a database.

� Specify that a previously stopped online log data set (OLDS) is to be started or
that DBCTL is to add a new OLDS (OLDS keyword). (See “IMS online log data
set (OLDS)” on page 33 for more information on this data set.)

� Specify a PSB to be started (PROGRAM keyword). DBCTL stops a PSB after
most pseudo abend codes that can occur. If this happens, you must use a
/START PROGRAM command before that PSB can be scheduled again.

� Start BMPs from a JCL partitioned data set (REGION keyword). Using /START
REGION in this way enables you to keep all your BMP JCL in one place.

� Specify that a write-ahead data set (WADS) is to be added to the pool of
WADS (WADS keyword).

 Chapter 5. Operations with DBCTL 67

Preventing scheduling of PSBs and use of databases
The /STOP command stops the scheduling of specific PSBs and can stop the use
of a given database, as follows:

� The ADS keyword specifies that a DEDB area data set (ADS) is to be stopped
and deallocated. Note that this commands stops only the ADS, not the entire
area. The area is stopped only if there is no ADS allocated. This command is
rejected if the ADS you specified is the last data set available in the area
because ADSs are invalidated when they are stopped. ADSs are reestablished
by running the DEDB area data set create utility.

� The AREA keyword specifies that all the data sets associated with an area are
to be stopped and deallocated. The status of this area is set to STOP, as
displayed with a /DISPLAY DATABASE command. (See “Finding out current
status of DBCTL activities” on page 64.) If the area is already stopped, the
/STOP command just deallocates the data sets.

� The AUTOARCH keyword specifies that automatic archiving is to be stopped.

� The DATABASE keyword stops the use of the specified database.

� The OLDS keyword specifies that DBCTL is to stop using an OLDS.

� The PROGRAM keyword specifies that a PSB is to be stopped.

� The REGION or THREAD keywords specify a region or thread that is to be
stopped. This can be a region or thread shown by the /DISPLAY CCTL
command. (See “Finding out current status of DBCTL activities” on page 64.)

� The WADS keyword indicates that a WADS is to be removed from the pool of
WADS.

Purging a transaction that is using DBCTL
You can query and purge tasks that use DBCTL using the CICS CEMT transaction
as for any CICS task. However, if a transaction has “hung” in DBCTL, and you
need to purge it, you must use the DBCTL command /STOP THREAD.

To find out what is happening to a task:

1. Issue CEMT INQ TASK to find out what tasks are active.

2. Expand the information on individual tasks by typing a ? to the left of the task
you want to see. You will get a display like the one in Figure 25 on page 69.

68 CICS IMS Database Control Guide

à ð
 I TA

SYNTAX OF SET COMMAND

Tas(ðððð11ð) Tra(DLID) Fac(D2D3) Sus Ter Iso Pri(ðð1)

Hty(DBCTL) Hva(DLSUSPND) Hti(ððððð7) Sta(TO)

 Use(CICSUSER) Rec(X'9EDA1F61E11CFAð2')

CEMT Set TAsk() | < All >

< PRiority() >

< PUrge | FOrcepurge >

 SYSID=CIC1 APPLID=DBDCCICS

 PF 1 HELP 3 END 7 SBH 8 SFH 9 MSG 1ð SB 11 SF

á ñ

Figure 25. CEMT INQ TASK (expanded)

Figure 25 includes the following useful information:

 Tas(ðððð11ð)—task identifier
Tra(DLID)—transaction name of the task
Fac(D2D3)—identifier of the terminal or queue that initiated the task
Sus—the task is suspended
Ter—the task was initiated from a terminal
Pri(ðð1)—the task is running with a priority of 1
Hty(DBCTL)—the task is currently issuing a DL/I request to DBCTL
Hva(DLSUSPND)—the task is suspended in DBCTL
Hti(ððððð7)—how long, in seconds, the task has been sus pended
Sta(TO)—how the task was started; TO means from a terminal by an
operator entering a transaction
Use(CICSUSER)—is the userid of the user who initiated the task
Rec(X'9EDA1F61E11CFAð2') shows the recovery token associated with the
task
The screen also contains a reminder of the syntax of the CEMT SET TASK
command, which you may need to use; for example, if you want to purge
the suspended task.
SYSID=CIC1—CICS system identifier, as specified in the system initialization
parameter SYSIDNT.
APPLID=DBDCCICS—APPLID for the CICS system.

3. Issue CEMT INQ TASK again.

� If the response indicates that the task is no longer suspended in DBCTL,
you can purge it using CEMT SET TASK(n) PURGE as for any CICS task.
(Information on using CEMT commands is in the CICS Supplied
Transactions manual.) The purge takes place after the DL/I request to
DBCTL has completed.

 Chapter 5. Operations with DBCTL 69

� If the response indicates that the task is still suspended in DBCTL, the task
has “hung” in DBCTL, and you must use DBCTL operator commands to
purge it.

To do this:

1. From the CEMT INQ TASK display, make a note of the CICS APPLID and the
16-digit recovery token. (You can use a recovery token to find the thread
number of a CICS task in DBCTL. For a fuller definition, see “Recovery tokens”
on page 82.)

2. At the DBCTL console, enter /DISPLAY CCTL cctlname, where cctlname is the
CICS APPLID (in this example, it is DBDCCICS). This causes the current
status of DL/I activity to be displayed, as shown in Figure 26.

à
ðð8ð /DIS CCTL DBDCCICS

ðð8ð DFSðððI MESSAGE(S) FROM ID=SYS1 ð47

ðð8ð CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME STATUS

ðð8ð DBDCCICS ATTACHED

ðð8ð 9EDA1F61E11CFAð2 6 PC3COCHD ACTIVE

ðð8ð 9EDA1F4E9B571Bð2 5 PC3COCHD ACTIVE

ðð8ð \882ð4/1ð1241\

Figure 26. Output from /DISPLAY CCTL cctlname

3. Find the recovery token (9EDA1F61E11CFA02 in this example) that matches
the one you noted from the CEMT INQ TASK display, and then note the thread
number that is next to it in the REGID column (6 in this example).

4. Issue the command:

/STOP THREAD n ABDUMP

where n is the thread number.

This causes the thread and transaction to terminate when it has finished
processing the current request, and causes a dump to be taken.

If the thread does not stop, use:

/STOP THREAD n CANCEL

Do not use /STOP THREAD CANCEL if you do not need to, because it
may cause DBCTL to terminate with a U113 abend .

Stopping DBCTL normally
To stop DBCTL normally and disconnect it from CICS, use the /CHECKPOINT
command with the FREEZE or PURGE keywords. Active threads are terminated,
CICS threads are terminated when they reach a syncpoint, and BMPs are
processed until they reach a checkpoint, a SYNC call, or the end of a program.
Shutdown then completes and the system status is saved in a system checkpoint
on the log, and in the checkpoint ID table on the restart data set. See “Messages
issued by DBCTL during normal termination” on page 175 for a list of messages
that should be issued at this stage.

The difference between the FREEZE and PURGE keywords applies to BMPs.
FREEZE stops them after the next checkpoint, or at program completion, whichever
is the sooner, and PURGE allows them to complete.

70 CICS IMS Database Control Guide

When you have stopped DBCTL using /CHECKPOINT FREEZE or /CHECKPOINT
PURGE, you can warm start it using /NRESTART, as described in “Warm start” on
page 75.

Stopping DBCTL abnormally
There is no equivalent of a CICS immediate shutdown in DBCTL. If you need to
force termination of DBCTL, the MVS console operator has to issue an MVS
MODIFY jobname STOP command. This causes an abnormal termination without a
dump. If you want a dump to be taken, use an MVS MODIFY jobname DUMP
command. For guidance on using MVS commands with IMS, see the IMS
Operator’s Reference manual.

Dealing with messages from DBCTL and CICS
Messages from DBCTL (in the form DFSnnnn) are sent to console(s) as specified
in the MCS= parameter of the IMSCTRL macro in the IMS generation. These
messages include notification of change in status and of abnormal events.

There are many additional messages in the DBCTL environment. You can direct
them to the console from which DBCTL commands will be entered. However, if you
find that the volume of messages means it is impractical to view them “live” at the
console, you may prefer to direct them to the console log and process them with
whatever tool your installation uses to review console output.

The DFS554 message is a notification of the abnormal termination of a BMP region
or a thread from a CICS transaction. If it has been caused by an abnormal
termination of a thread that originated from CICS, the message text contains the
CICS job name or CICS started procedure name. It also contains the abend code
in the form SSS, UUU where SSS is a system abend code and UUU is an IMS
user abend code. (See “Return codes in DBCTL” on page 144 for more information
on these codes.) The message may contain the characters “PSB.” If it does, the
PSB contained in the message has been stopped. All attempts to schedule that
PSB will fail until a /START PROGRAM command is issued for that PSB. See the
IMS Messages and Codes manual manual for guidance on interpreting DFSnnnn
messages.

Messages from CICS that relate to DBCTL begin with DFHDB, and messages that
relate to DBCTL in an XRF environment begin with DFHDX.

Messages from CICS that relate to DBCTL (for example, those relating to the
CDBC transaction) are sent to the transient data destination CDBC so that they are
located in one place. You can reroute these messages from CDBC, as you can
with CSMT.

You can suppress or reroute messages sent to transient data queues such as
CDBC. You can reroute from CDBC to a list of consoles, from CDBC to a different
transient data queue, or reroute console messages from their transient data queues
to CDBC. For programming information about coding the CICS-supplied user exit
used to re-route messages and on the example user exit provided to help you do
so, see the CICS Customization Guide.

Messages DFHDB8103 and DFHDB8104 are issued if there is a failure to connect
to DBCTL. They contain the DBCTL reason codes for the connection failure.

 Chapter 5. Operations with DBCTL 71

Message DFHDB8109 is issued when:

� A schedule request has failed.

� DBCTL has abnormally terminated a thread and, as a result, CICS abnormally
terminates the transaction.

Message DFHDB8109 is not issued when an error type status code is returned to
the application program.

DFHDB8109 enables you to identify the IMS reason for which this CICS transaction
has failed. The IMS Messages and Codes manual manual contains guidance on
interpreting the IMS abend and reason codes referred to above. See the CICS
Messages and Codes manual for help on interpreting messages beginning with
DFH.

72 CICS IMS Database Control Guide

Chapter 6. Recovery and restart operations for DBCTL

Recovery and restart in a DBCTL environment is described under:

� “Overview of CICS and IMS recovery and restart”

� “Commit protocols and units of recovery” on page 79

� “Database utilities” on page 84

� “Log utilities” on page 86

� “Component failures” on page 86

Using CICS with DBCTL introduces a number of changes to recovery and restart
procedures:

� DBCTL performs backout of DL/I databases. DBCTL is a resource manager
and is responsible for the integrity and recoverability of its own resources,
regardless of the using subsystem (for example, CICS or a BMP).

� Because DL/I code is no longer in the CICS address space, you must restart
both the CICS and DBCTL address spaces, and DBCTL must be reconnected
to CICS if there is a processor or power failure.

� Units of work (UOWs) left in-doubt after a failure can be resolved only when
DBCTL has been reconnected to CICS.

Overview of CICS and IMS recovery and restart
CICS and IMS perform similar recovery functions, but there are differences in
terminology and in implementation. The following sections give an overview of
these similarities and differences. See the CICS Recovery and Restart Guide and
the IMS Operations Guide for background information on recovery in CICS and
IMS, respectively. If you are familiar with CICS or IMS, but not both, read this
overview and then read the manual for the product that you are not familiar with.

CICS initialization and termination
CICS has the following types of initialization or restart depending on the system
initialization START parameter and on how it was last terminated:

 � Initial start
 � Cold start
 � Warm start
 � Emergency restart.

You cannot specify warm start or emergency restart explicitly. Instead, you specify
the START=AUTO system initialization parameter, and CICS determines which of
these two kinds of start to use. See the CICS Operations and Utilities Guide for
information about specifying CICS START options.

If CICS performs a warm start or an emergency restart on a system to which
DBCTL was connected and you have specified DBCTLCON=YES as a system
initialization parameter or put DFHDBCON in the PLT, so that it is invoked in the
second stage of PLTPI processing, the same DRA startup table suffix is
automatically used when DBCTL is reconnected. The suffix may change if you have
used the INITPARM system initialization parameter (described in “Reviewing CICS

 Copyright IBM Corp. 1989, 1999 73

system initialization parameters” on page 23) to override the suffix previously used.
(For information on methods of connecting to the same, or a different, DBCTL see
“Connecting DBCTL to CICS automatically” on page 46.)

CICS initialization begins when the job is submitted and, in almost all cases,
continues until completion of the specified type of restart. Error conditions may
require operator replies or may cause abnormal termination.

CICS has three types of termination:

 � Normal
 � Immediate
� Abnormal—due to abend or an MVS CANCEL

The CICS master terminal command to shut down CICS has two options—normal
and immediate. A normal shutdown allows transactions to complete before shutting
down and saves the system status in the CICS catalog. You can do a warm start
after a normal shutdown. An immediate shutdown does not allow transactions to
complete. This means it is equivalent to an abnormal termination, and you must
restart CICS using emergency restart.

There are special considerations for canceling CICS when it is connected to
DBCTL. See the information on causing an abnormal termination of CICS, in “CICS
failure” on page 87.

When considering CICS and IMS recovery and restart, consider the capabilities of
the extended recovery facility (XRF), which can provide you with automatic
takeover of a failing system, based on an emergency restart. For further guidance
on XRF, see:

� CICS/ESA 3.3 XRF Guide for information about XRF support in CICS

� IMS System Administration Guide for information about XRF support in IMS

� Chapter 6, “Recovery and restart operations for DBCTL” on page 73 for
information on using DBCTL with CICS XRF and IMS XRF.

 Restarting DBCTL
DBCTL has three types of (re)start:

� Cold (/NRESTART CHECKPOINT 0)
 � Warm (/NRESTART)
 � Emergency (/ERESTART)

The startup process has two distinct phases: initialization and restart. You can use
AUTO restart to do either a warm start or an emergency restart.

With an AUTO restart, (DBCTL startup parameter AUTO=Y), DBCTL decides
whether warm start or emergency restart is required, based on the contents of the
IMS restart data set (RDS), and proceeds with the restart without your needing to
enter any further restart command.

If you need to enter your own restart command (for example, to perform a cold
start), use a non-AUTO restart (DBCTL startup parameter AUTO=N). Non-AUTO
restart stops after initialization, at which point you must manually enter a restart
command.

74 CICS IMS Database Control Guide

AUTO=N will have been specified, or defaulted to, for the first startup of DBCTL.
For subsequent restarts, use warm start or emergency restart, which means that
you will need to change the parameter to AUTO=Y. For guidance on specifying
AUTO=Y and AUTO=N, see the IMS System Definition Reference manual manual
or IMS/ESA Installation Volume 2: System Definition and Tailoring.

During restart processing, the log and RECON are opened.

The sections that follow state how you use these types of (re)start with DBCTL.

 Cold start
With this type of start, DBCTL is brought up in the state it was in at system
generation. Do not use cold start after a DBCTL failure. Instead, use an emergency
restart. See “Emergency restart” on page 76 for more information.

To request a cold start of DBCTL, use the /NRESTART command with the
CHECKPOINT 0 keyword. Additional keywords with /NRESTART CHECKPOINT 0
enable you to:

� Specify whether you want the RDS, or the WADS (or both) formatted as part of
restart process (the RDS, WADS, or ALL keywords). Format the RDS and the
WADS if there has been a data set I/O error, if you need to reallocate a data
set or change its size, or if you are starting DBCTL for the first time.

� Specify whether the IMS system definition password security option is to be in
effect—provided your system definition enables operators to change password
security (the PASSWORD keyword).

Before you do a cold start, you must ensure that the IMS you intend to start
does not have a subsystem record in the RECON. This will be the case if it is a
new subsystem, if it was shut down normally the last time it was used, or if it
was not shut down normally but the appropriate DBRC commands (including
DELETE.SUBSYS) and other actions needed to ensure database integrity were
performed.

 Warm start
With this type of start, DBCTL is brought up in the environment it was in when it
terminated normally using a /CHECKPOINT FREEZE or /CHECKPOINT PURGE
command, as described in “Stopping DBCTL normally” on page 70. After a warm
start, resources are in the same state they were in at the time the system was shut
down.

The difference between the FREEZE and PURGE keywords applies to BMPs.
FREEZE stops them after the next checkpoint, or at program completion, whichever
is the sooner, and PURGE allows them to complete. See the IMS Operator’s
Reference manual for a list giving guidance on the differences between these
options.

To request a warm start of DBCTL, use the /NRESTART command without
CHECKPOINT 0.

Any in-doubt UOWs are re-created for this type of start. (An in-doubt UOW is a
piece of work that is pending during commit processing. If commit processing fails
between DBCTL’s response to CICS’s request to prepare for commit and CICS’s
decision to execute the commit, recovery processing must resolve the status of any

 Chapter 6. Recovery and restart operations for DBCTL 75

work that is in-doubt.) See “Resolving in-doubt units of work manually” on page 83
for information on using operator commands to resolve in-doubt UOWs.

You can use the following optional keywords on /NRESTART:

� If the WADSs have been reallocated, specify whether you want them to be
formatted as part of the restart process. Format the RDS and the WADS if
there has been a data set I/O error or if you need to reallocate a data set or
change its size.

� Specify whether the IMS system definition password security option is to be in
effect—provided your system definition enables operators to override password
security.

 Emergency restart
To perform an emergency restart of DBCTL, use the /ERESTART command. With
this type of start, DBCTL is restarted in the environment it was in before a DBCTL
failure. DL/I in-flight UOWs (that is, those that were still being processed when the
failure occurred) are backed out. Committed but unwritten DEDB changes are
applied to the database. Units of work that were in-doubt are retained and are
resolved automatically when CICS and DBCTL are reconnected. For further
guidance on how this is done, see the IMS Operations Guide. If the UOWs fail to
be resolved automatically, you can use DBCTL operator commands to do so, as
described in “Resolving in-doubt units of work manually” on page 83.

If a failure in emergency restart prevents backout being completed, instead of using
a COLD start, you can reattempt the emergency restart using the COLDBASE
keyword on the emergency restart command. Full function DL/I databases and
DEDB areas that have in-doubt data or that need backout or recovery are identified
and stopped. Database backout and committed DEDB updates are not done. You
must then use the appropriate IMS utilities to backout or forward recover these
databases. (See the IMS Utilities Reference: Database manual manual for guidance
on using the utilities.)

You can also specify whether the restart or write ahead data sets should be
formatted as part of the restart process. Format the RDS and the WADS if there
has been a data set I/O error or if you need to reallocate a data set or change its
size.

CICS keypoints and IMS checkpoints
This section discusses system-level keypoint and checkpoint information. Both
CICS and IMS also have task or program (thread) level synchronization information.

CICS keypoints and IMS checkpoints both contain system status information that is
modified during online operation. The concepts are basically the same, but they are
implemented differently.

A CICS warm start uses a warm keypoint that was written to the CICS catalog by
the previous normal CICS shutdown.

A CICS emergency restart reads the CICS system log backwards until it has
located an activity keypoint. The keypoint contains a record of incomplete UOW
chains which CICS reads directly. These chains can reside on the primary and
secondary system logs.

76 CICS IMS Database Control Guide

An IMS warm start reads the checkpoint ID table on the RDS to find the shutdown
checkpoint on the log. The RDS is a data set that IMS uses to record system
checkpoint ID information during the logging process. IMS finds the information it
needs and uses it automatically. If the RDS is not available at restart, you can
obtain the checkpoint information needed from the log, but this may lengthen the
restart process. Generally, you do not need to know the content of the RDS.
However, if you are faced with a particularly complex recovery problem, you may
need to examine the RDS. You can find guidance on its contents in the IMS
Operations Guide.

An IMS emergency restart reads the checkpoint ID table on the RDS and selects
the checkpoint that precedes the last synchronization point of each program that
was active at the time of the failure. It then reads the IMS log forward from the
selected checkpoint.

To take a simple checkpoint of DBCTL, use the /CHECKPOINT command.

Backing out uncommitted updates after a failure
The meaning of the term dynamic backout differs slightly between CICS and IMS.

In CICS, dynamic backout means backout as a result of a transaction (or
application program) failure. The term transaction backout is used for backout
done during CICS emergency restart.

In IMS, dynamic backout means backout as a result of a program failure. In a
DBCTL environment, program failures include CICS transaction abends and BMP
failures. The IMS /ERESTART command also performs emergency restart backout.
IMS provides a batch backout utility, DFSBBO00, which you can use if dynamic
backout or emergency restart fails. See the IMS Operations Guide for guidance on
when to run this utility, and IMS Utilities Reference: Database manual manual for
guidance on how to run it.

Because IMS does the backing out of database updates in a DBCTL environment,
we concentrate on IMS backout in this section.

For IMS full function databases, database changes are placed in the log buffers
and the database buffers as they are made. Depending on system activity, they
may be written before they are committed and so, after a program failure or an IMS
system failure, databases may require backout. The IMS log data sets (OLDS) are
used for dynamic backout. (See “IMS online log data set (OLDS)” on page 33 for
more information.) Additionally, if dynamic backout or /ERESTART backout fails, for
a database, that database is stopped. The backout is automatically reattempted
when the database is restarted.

For DEDBs, no changes are placed in the log buffers until syncpoint processing
begins, and no changes are written to the database until a commit has been
received. This means that they do not need backout if there is a failure during
phase 1 of the syncpoint process. The system can undo the changes by releasing
the database buffers that have been modified but not yet written.

 Chapter 6. Recovery and restart operations for DBCTL 77

 Log records
The IMS log is a record of activities and database changes. Among the log records
written to the IMS log are those that record both phases of the commit for each unit
of work. These log records contain the information necessary for database recovery
and system restart. The IMS Diagnosis Guide and Reference manual manual
contains, for guidance, a list of the types of log records and tells you how to obtain
a listing of these DSECTs. The IMS Utilities Reference: Database manual manual
gives guidance on using the file select and formatting print utility, DFSERA10, to
print the IMS log records.

Database recovery control (DBRC)
Database recovery control (DBRC) assists you in controlling DBCTL logs, and in
managing recovery of databases. With DBCTL, you must use DBRC to control
your logs, and you may optionally use it to control batch logs and database
recovery. DBCTL requires DBRC to be at SHARECTL level; if it is not, DBCTL will
not start.

You may optionally use DBRC to control the data sharing environment by allowing
(or preventing) access to databases by various subsystems sharing those
databases.

If you use DBRC to control database recovery, you must register your databases
with DBRC, so that it can record the relevant information in the RECON, and then
use that information to control the recovery of your databases. See the IMS
Operations Guide for general guidance on registering databases. You can register
your databases using either of the following:

� The recovery control utility, DSPURX00. See the IMS Utilities Reference:
Database manual manual for guidance on using DSPURX00.

� The /RMINIT.db and /RMINIT.dbds commands. See the IMS Operator’s
Reference manual for guidance on the syntax of these commands.

To recover a database that is registered with DBRC, use the /RMGENJCL.RECOV
command. DBRC recovers the database using a combination of available input; for
example, image copy data set, change accumulation data sets, log data sets, and
archived log data sets.

Recovery control (RECON) data sets
DBRC automatically records information in dual recovery control (RECON) data
sets. Both data sets contain identical information, and so are usually referred to as
one—the RECON. The information from the RECON is needed during warm and
emergency restarts. DBRC selects the correct data sets to be used by a recovery
utility when you enter a GENJCL command. For a restart, the RECON shows which
data set—the OLDS or the SLDS—contains the most recent log data for each
database data set (DBDS) you have registered with DBRC. For the OLDS, the
RECON shows whether the OLDS has been closed and whether it has been
archived. The RECON contains timestamp information for each log data set and
volume. IMS uses this information to determine which data set and volume contain
the checkpoint information needed to restart DBCTL.

78 CICS IMS Database Control Guide

Commit protocols and units of recovery
This section describes what happens when a transaction has updated DBCTL
databases, and is issuing a syncpoint, or a TERM request, or is terminating. If a
failure occurs at any of these stages, DBCTL may not be able to determine whether
CICS intended these updates to be backed out or committed and has to request
this information from CICS when it has been reconnected.

 Two-phase commit
DBCTL uses a two-phase commit to record a syncpoint. At the completion of a
two-phase commit, the requested processing is committed and if a failure occurs,
DBCTL does not ABORT committed changes.

Two-phase commit consists of the PREPARE and COMMIT phases. Within the
PREPARE phase, CICS issues a PREPARE request to DBCTL. DBCTL writes to
the log and issues its response to the PREPARE request to CICS. Within the
COMMIT phase, there are two possible actions: COMMIT and ABORT. The
ABORT action for data belonging to full function DL/I databases is backout . There
is no backout for data belonging to DEDBs because, as explained below, it is not
written to the database before the COMMIT phase. The effect of an ABORT for
DEDBs is also referred to as undo . Because a CICS thread may be accessing data
belonging to both full function DL/I databases and DEDBs, we use the term ABORT
to refer to both backout and undo.

When updates are written to databases
The DEDB terms UNDO and REDO are analogous to the DL/I full function terms
BACKOUT and COMMIT respectively. However, although the processes that these
terms refer to have the similar end results, the processes themselves differ. The
difference is in the stage at which updates are written to the database. This is
shown in Figure 27.

PREPARE COMMIT
phase 1 in-doubt phase 2

..................
DL/I updates DEDB updates

Figure 27. When updates are written to databases

This difference in timing of writing updates dictates the action taken during the
second phase of two-phase commit.

For full function DL/I databases:

� If the phase 2 action is COMMIT, no action is needed to commit updates
because DL/I wrote them to the database during phase 1.

� If phase 2 action is ABORT, a BACKOUT of the updates is required because
DL/I wrote them to the database during phase 1.

For DEDBs:

� If phase 2 action is COMMIT, the changes must be REDOne to the database
because they have only been made in main storage. (They are written
(committed) to the database on DASD by the output threads, which are

 Chapter 6. Recovery and restart operations for DBCTL 79

generated by the IMS system generation parameter OTHREADS. See the IMS
System Definition Reference manual manual or IMS/ESA Installation Volume 2:
System Definition and Tailoring for guidance on this parameter.)

� If phase 2 action is ABORT, no changes have to be made to the database,
because the changes are still in main storage, and can be UNDOne from there.

REDO is also used to refer to the action required for committed DEDBs during
emergency restart of IMS. IMS can determine from the log that a COMMIT was
initiated, but that phase 2 is not indicated as complete. In this case, DEDB updates
must be REDOne. The two phases are:

1. Phase 1, in which CICS directs syncpoint preparation and asks whether or not
the updates to DBCTL databases can be committed.

2. Phase 2, in which CICS tells DBCTL that it must either COMMIT or ABORT the
resources. (CICS can request an ABORT without first issuing a PREPARE
request. That is, CICS can bypass the first phase of two-phase commit when
an update is being backed out.)

Figure 28 shows two-phase commit and describes the activities taking place.

CICS Task-related user exit DBCTL
interface

CICS receives
syncpoint
request (1) In-flight (4)

P Begins phase 1
r PREPARE request
e Enters phase 1
p
a DBCTL writes to log
r DBCTL retains locks
e Response to

(2)
CICS writes PREPARE request
to log In-doubt (5)

Begins phase 2 (3)
COMMIT request

Enters phase 2
C
o DBCTL writes to log
m DBCTL releases locks
m
i OK Committed
t

CICS writes
end-of-syncpoint
record to log

Figure 28. Two-phase commit

80 CICS IMS Database Control Guide

Notes:

1. The syncpoint request can be EXEC CICS SYNCPOINT, a DL/I TERM call, or
a CICS task termination.

2. If DBCTL indicates that it cannot commit the updates, CICS aborts the unit of
recovery and the rest of the Figure 28 does not apply.

3. If CICS tells DBCTL to commit the updates, DBCTL must commit.

4. At this stage, units of recovery are in-flight and, if DBCTL fails, all database
updates are aborted.

5. At this stage, from the time that DBCTL issues its response to the PREPARE
request to the time it receives a COMMIT request from CICS, units of recovery
are in-doubt . DBCTL retains the in-doubt information. When DBCTL is
restarted after a failure, it inquires with CICS about the status of the in-doubts.
This is part of resynchronization .

UOWs and resources belonging to multiple resource managers
The two-phase commit process also applies if a UOW is updating resources that
belong to more than one resource manager; for example, any of the following:
DBCTL databases (DL/I full function or DEDBs, or both), local VSAM files, and DB2
databases. As explained above, CICS is the coordinator of the two-phase commit
process; DBCTL is a participant. CICS must ensure that all the resource managers,
including DBCTL, are in synchronization. To do this, at phase 1 of two-phase
commit, it issues a PREPARE request to all the resource managers involved to find
out if a COMMIT can be done. This is as shown in Figure 28 on page 80, in which
CICS is communicating with DBCTL only. If all the other resource managers
indicate that a COMMIT is possible, CICS tells them all to COMMIT. If not, CICS
tells them all to ABORT. The COMMIT or ABORT must now be carried out in all
the resource managers. For this reason, CICS considers the COMMIT or ABORT to
be completed at this stage, even if it is slightly delayed.

DBCTL unit of recovery
A DBCTL unit of recovery is created for each processing request when the first
schedule request is made by the transaction, and is kept until the two-phase
commit is complete. As described in “Resolving in-doubt units of work manually” on
page 83, commands are available to display the units of recovery and take
appropriate actions for committing or ending them.

In-flight unit of recovery: If DBCTL fails and is subsequently restarted, all
in-flight units of recovery are backed out.

In-doubt unit of recovery: When a failure occurs, a recoverable in-doubt
structure (RIS) is constructed for each in-doubt unit of recovery and is also written
to the IMS log. The RIS contains:

� Residual recovery element (RRE), which contains the recovery token.

� In-doubt extended error queue element (IEEQE), which contains the changed
data records.

� Buffer extended error queue element (BEEQE), which indicates a data block
that cannot be accessed because of unresolved in-doubts.

� Extended error queue element link (EEQEL), which links the basic portion of
the RIS (the RRE) with the IEEQE and the BEEQE, which are used to protect
in-doubt data.

 Chapter 6. Recovery and restart operations for DBCTL 81

The IMS batch backout utility, DFSBBO00, and the IMS database recovery utility,
DFSURDB0, process the in-doubt units of recovery.

CICS units of work (UOWs)
CICS UOWs and DBCTL units of recovery are more or less synonymous, except
that from CICS’s point of view, a UOW begins at the beginning of a task, and a unit
of recovery begins when that task issues its first DL/I request. For simplicity, in the
rest of this book, we use the CICS term UOW to refer to both. The IMS publications
use the term “unit of recovery.”

 Recovery tokens
Recovery tokens are created by CICS and passed to DBCTL. They are unique
identifiers for each UOW. The lifetime of a recovery token is the same as for a
UOW. You can use them to correlate work done between CICS and DBCTL in the
same UOW. Each recovery token is 16 bytes long; the first 8 bytes are the CICS
APPLID (passed to DBCTL when CICS is first connected) and the second 8 bytes
are a UOW identifier. CICS creates an identifier like this for every UOW. DBCTL
validates the recovery token to protect against duplication of UOWs. You can use
the recovery token in certain operator commands. For example, you can display it
as part of the output of the /DISP CCTL and CEMT INQ TASK commands, and you
can enter it in /CHANGE commands, in the form of a pseudo recovery token, as
explained below. The recovery token is included in certain messages (for example,
the CICS message DFHDB8109, which is issued when a DL/I request has failed).
Recovery tokens can be useful in problem determination, because they are
displayed in dumps produced by CICS and DBCTL and in trace entries produced
by CICS. See Chapter 9, “Problem determination for DBCTL” on page 125 for
more information.

The pseudo recovery token is an 8-character decimal token, which can be used in
place of the 8-byte hexadecimal recovery token and is displayed when the status of
a thread is in-doubt. It is made shorter than the recovery token so that it is easier to
make note of (for example, from /DISPLAY commands) and enter (for example, in
/CHANGE commands).

Figure 29 shows a pseudo recovery token (00010040 in the column headed
PSEUDO-RTKN) and a recovery token (F0F58879641002C2) for thread number 4
(in the column headed REGID) for PSBNAME PC3COCHD, whose STATUS is
INDOUBT.

à
ðð8ð /DIS CCTL DBDCCICS

ðð8ð DFSðððI MESSAGE(S) FROM ID=SYS1 ð47

ðð8ð CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME STATUS

ðð8ð DBDCCICS ATTACHED

ðð8ð 9EDA1F61E11CFAð2 6 PC3COCHD ACTIVE

ðð8ð 9EDA1F4E9B571Bð2 5 PC3COCHD ACTIVE

ðð8ð ððð1ðð4ð FðF58879641ðð2C2 4 PC3COCHD INDOUBT

Figure 29. /DISPLAY CCTL cctlname command showing pseudo recovery token

82 CICS IMS Database Control Guide

Resolving in-doubt units of work manually
 Normally, an emergency restart of DBCTL followed by reconnection of CICS and
DBCTL after a failure should resolve in-doubts automatically. However, you may
sometimes need to do this yourself. For example, if a CICS system using DBCTL
disconnects abnormally from DBCTL (for instance, if CICS or DBCTL abends, or
CDBC DISCONNECT IMMEDIATE is issued), there may be some incomplete
updates about which DBCTL is in doubt. Even if CICS then needs to be cold
started for some reason, it normally recovers enough information to resolve
indoubts automatically. However, if CICS is started with the START=INITIAL
system initialization parameter, it loses its record of the in-doubt updates and they
must be resolved manually. You are strongly advised not to start CICS with
START=INITIAL specified when there are in-doubt units of work outstanding.

The DFS2283I message, issued during the resynchronization process, indicates
that there are UOWs that have not received a COMMIT or ABORT request, and are
therefore in-doubt.

In this situation you must use DBCTL operator commands (described in “Using
DBCTL operator commands to resolve in-doubts”) to resolve the in-doubts.

Using DBCTL operator commands to resolve in-doubts: Use the following
DBCTL operator commands to commit or backout a unit of work.

1. Use /DISPLAY CCTL cctlname INDOUBT, as shown in Figure 30 to obtain the
pseudo recovery token that identifies the in-doubt work. (Pseudo recovery
tokens are defined in “Recovery tokens” on page 82.)

à
ðð8ð /DIS CCTL DBDCCICS INDOUBT

ðð8ð DFSðððI MESSAGE(S) FROM ID=SYS1 ð47

ðð8ð CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME STATUS

ðð8ð DBDCCICS ATTACHED

ðð8ð ððð1ðð4ð FðF58879641ðð2C2 4 PC3COCHD INDOUBT

Figure 30. /DISPLAY CCTL cctlname command showing in-doubt

2. Use /CHANGE CCTL cctlname PRTKN token command to abort or commit the
in-doubt. The cctlname is the APPLID of the CICS system. The PRTKN
keyword specifies the pseudo recovery token of the element to be processed.
The command is either:

� ABORT to backout changes for a unit of recovery, or COMMIT to commit
changes for recovery. For example:

/CHANGE CCTL DBDCCICS PRTKN ððð1ðð4ð COMMIT

would commit the in-doubt shown in Figure 30.

When the action you specified has been completed, the recoverable in-doubt
structure (RIS) for the in-doubt UOW is removed.

 Chapter 6. Recovery and restart operations for DBCTL 83

 Database utilities
DBCTL enables you to use utilities that IMS provides to help with the backup and
recovery of your databases. These utilities are listed below.

Note: Because database change records are written to the IMS log, you do not
need to retain the CICS system log for use by IMS database recovery
utilities in a DBCTL-exclusive environment.

� Database image copy utility, DFSUDMP0

The database image copy utility, DFSUDMP0 is a batch utility that
creates a copy of data sets within a database. For DEDBs, you can
copy an area concurrently with DBCTL activity. In IMS/ESA 4.1, you can
also use concurrent image copy for full function DL/I databases.

If the databases are updated while the utility is running, all logs
including the one that was being used when DFSUDMP0 was started,
are needed for use with DFSURDB0. You need both the log and the
image copy to give a complete “picture” of the database for recovery
purposes.

If you have not created an image copy, the data set to be recovered is
used as input to DFSURDB0.

� Online database image copy utility, DFSUICP0

The online database image copy utility, DFSUICP0, is a BMP that
creates an output copy of a data set within a full function DL/I database
while the database is allocated and being used by DBCTL.

If the databases are updated while the utility is running, all logs
including the one that was being used when DFSUICP0 was started,
are needed for use with DFSURDB0. You need both the log and the
image copy to give a complete “picture” of the database for recovery
purposes.

If you have not created an image copy, the data set to be recovered is
used as input to DFSURDB0.

� Database change accumulation utility, DFSUCUM0

If system availability is a major concern for your installation, you will
probably want to use this utility. It collects the changes from the other
log data sets onto a single log, thus helping to speed recovery. Balance
the benefits of using it against the overhead it incurs, and the fact that
you may not need to use its output.

� Database recovery utility, DFSURDB0

The database recovery utility uses a backup copy of your database
together with either (or both) the change accumulation utility or the logs,
and reapplies changes made since the backup copy to create a new,
reconstructed, database.

The database recovery utility performs recovery at the data set level, or
at the track level. Often, only a single data set of the database requires
recovery. However, if more than one data set has been lost or
damaged, you need to recover each one separately. If an I/O error
caused the problem, you might need to recover only a single track
instead of reconstructing the entire data set.

84 CICS IMS Database Control Guide

You can use these utilities together to perform recovery by updating a copy of the
database with the changes logged since the copy was made, as shown in
Figure 31 on page 85. See the IMS Utilities Reference: Database manual manual
and the IMS Operations Guide for further guidance on using the utilities, including
any restrictions that may apply.

L o g (s)

i n p u t

I m a g e

c o p y

(D F S U D M P 0

o r

D F S U I C P 0)

C h a n g e

a c c u m u l a t i o n

(D F S U C U M 0)

i n p u t

R E C O N

D B D

l i b r a r y

D a t a s e t

t o b e

r e c o v e r e d

I n p u t c o n t r o l

s t a t e m e n t s

R e c o v e r e d

d a t a s e t

S Y S P R I N T

m e s s a g e s

D a t a b a s e

r e c o v e r y

u t i l i t y ,

D F S U R D B 0

Figure 31. Database recovery utility, DFSURDB0, showing inputs and outputs

Note: Input from the image copy and change accumulation utilities is optional.

 Chapter 6. Recovery and restart operations for DBCTL 85

 Log utilities
DBCTL enables you to use the following IMS log utilities:

� The log archive utility, DFSUARC0 produces a system log data set (SLDS)
from a filled OLDS. DBCTL can automatically invoke DFSUARC0 to archive the
OLDS when an OLDS switch occurs. You use the ARC= parameter in the
DBC procedure to control automatic archiving. (See the IMS System Definition
Reference manual manual or IMS/ESA Installation Volume 2: System Definition
and Tailoring for further guidance on specifying ARC, and the IMS Utilities
Reference: Database manual manual for guidance on setting up the skeleton
JCL needed.) Alternatively, you can use the DBRC command
GENJCL.ARCHIVE to initiate manually an archive if you did not specify the
automatic archive option, or if an automatic archive fails. See the IMS
Operations Guide for further guidance about automatic archiving. The log
archive utility runs as a batch job, and you can run multiple log archive jobs
concurrently. The SLDS it creates may be on DASD, MSS, or tape.
DFSUARC0 is the recommended utility for archiving logs in a CICS-IMS
environment.

� The log recovery utility, DFSULTR0 produces a usable log data set from one
that contains read errors or could not be closed properly. You can recover both
system log data sets (SLDSs) and online log data sets (OLDSs) with this utility.

� The file select and print formatting utility, DFSERA10 enables you to display
and examine data from the IMS log data set in the following ways:

– Print or copy a whole log data set

– Print or copy from multiple log data sets based on control statement input

– Select and print log records according to their sequential position in the
data set

– Select and print log records based upon data contained within the record
itself, such as the contents of a time, date or identification field

– Enable your exit routines to do special processing on selected log records.

See the IMS Utilities Reference: Database manual manual for further guidance on
using these utilities.

 Component failures
This section discusses the impact of failures of different components of a
CICS-DBCTL environment and of transaction and thread failures.

86 CICS IMS Database Control Guide

 CICS failure
If CICS fails, DBCTL retains locks on database records updated by in-doubt UOWs.
These records remain unavailable until in-doubts are resolved. CICS records
information about the disposition of UOWs on its log. A CICS warm start or
emergency restart reconstructs information describing UOWs that may be in-doubt.
When CICS reconnects to DBCTL, DBCTL returns a list of any in-doubt UOWs.
CICS notifies DBCTL of the resolution of all in-doubts, so DBCTL can commit or
backout as appropriate.

If CICS fails, or if you need to cause an immediate shutdown, CICS attempts to
disconnect from DBCTL. At this time, CICS gives the requests in progress time to
complete before shutdown occurs. The time is specified in the DRA startup table
parameter, TIMEOUT. (For information on this parameter, see “Defining the IMS
DRA startup parameter table” on page 39.) If TIMEOUT is exceeded and CICS
terminates while threads are still active in DBCTL, a U113 abend of DBCTL will
occur. If this happens, you will have to restart DBCTL (IMS).

Choosing a value for TIMEOUT involves a trade-off between the length of restart
process, which may be delayed if the value you specify is too high, and the risk of
causing U113 abends, which may increase if you specify to low a value. One
possible solution is to specify a TIMEOUT value that is about equal to the average
length of time between BMP checkpoints. If a BMP checkpoint has been taken,
there is less likelihood that CICS resources are waiting. This lessens the likelihood
of U113 abends without lengthening the restart process too much.

If you want an abnormal termination of CICS, and CICS does not respond to an
immediate shutdown, use an MVS CANCEL command. This command, and CICS
abends with different causes, should not result in an IMS U113 abend because
DBCTL “traps” the CANCEL and an MVS system abend code of 08E is issued
instead. Changing the effect of an MVS CANCEL from a U113 abend to an MVS
system abend of 08E makes the effects of a CANCEL more like the effects of a
CICS immediate shutdown, as described above. If you have been obliged to cancel
CICS in this way, do not start CICS with the START=INITIAL system initialization
parameter unless absolutely necessary, especially if there is a possibility of in-doubt
units of work for DBCTL, because CICS will lose its record of the in-doubt units of
work. (Unlike 4.1 and releases earlier than CICS TS, a cold start of CICS does not
lose the record of in-doubt units of work. This allows in-doubt units of work to be
resolved automatically on reconnection of CICS and DBCTL. The START=INITIAL
system initialization parameter causes CICS to lose its in-doubt units of work. See
“Resolving in-doubt units of work manually” on page 83.)

For further information on the effects of a CICS failure in a DBCTL environment,
see the section on CCTL termination in the appropriate IMS Customization Guide:
Database manual.

Database resource adapter (DRA) failure
If the DRA fails:

� DBCTL notifies CICS that the DRA is terminating abnormally, and message
DFHDB8106 is issued.

� CICS cleans up the storage associated with the CICS-DBCTL interface and
disconnects from DBCTL.

� When it has done this, CICS issues message DFHDB8102.

 Chapter 6. Recovery and restart operations for DBCTL 87

� You must then reconnect DBCTL using the CDBC CONNECT command.

 DBCTL failure
A termination of DBCTL should not cause CICS to terminate; but simply leaves
CICS without DBCTL services. The DRA is left partially initialized to help reduce
the restart time.

If any of the DBCTL address spaces (DBC, DBRC, or DLISAS) fails, all of these
address spaces are terminated and you must restart the system using an
/ERESTART command.

If you are using the IRLM as your lock manager, and it has failed as well as
DBCTL, you must restart it before restarting DBCTL. See “IRLM failure” on
page 89.

Normally, you terminate DBCTL with a /CHECKPOINT FREEZE or a
/CHECKPOINT PURGE command, but an MVS MODIFY command can be used to
force the termination of DBCTL. The STOP option used with the MODIFY
command forces termination without a dump and the DUMP option forces
termination with a dump. The DBCTL address space terminates with a U0020
abend. The messages received at the system console are:

DFS628I ABNORMAL TERMINATION SCHEDULED DFS629I IMS DBC REGION ABEND

jobname ðð2ð

If DL/I is processing a request and the thread that is doing the processing abends
is active in DL/I or is waiting on a lock, DBCTL abends with a U113 after the
following message has been sent to the system console:

DFS613I DBC RCN U113 DUE TO Sxxx Uyyyy DURING DL/I CALL IN CCTL

 zzzzzzzz dddd

where:

xxx is the system abend code. This is Sððð if it is a user abend.

yyyy is the user abend code. This is Uðððð if it is a system abend.

zzzzzzzz is the job name of the abending CICS system or BMP.

dddd is the DBCTL system identifier.

For example, for a user abend:

DFS613I DBC RCN U113 DUE TO Sððð Uð474 DURING DL/I CALL IN CCTL

 DBDCCICS IMSA

CICS is isolated from such abends because, in DBCTL, each thread TCB has its
own extended subtask ABEND exit (ESTAE).

The threads are then terminated and the DRA attempts to reconnect to DBCTL.
Any requests made by the subsystem during this period result in a return code of
40, which indicates that no active communications exist with DBCTL, or a return
code 28, which indicates that the specified thread does not exist. These return
codes are included in messages DFHDB8104, DFHDB8109, DFHDB8111, and
DFHDB8130. Guidance on interpreting them is in the DBCTL DRA return codes
appendix of the IMS Messages and Codes manual manual.

88 CICS IMS Database Control Guide

The DRA attempts to reconnect to DBCTL. After the first failing attempt, you are
given the opportunity to reply to message DFS690A. You can reply either WAIT, in
which case the DRA continues trying to reconnect, or CANCEL, in which case the
DRA stops trying to reconnect. If you reply CANCEL, you must use the CDBC
transaction to reconnect DBCTL.

If you reply WAIT, the time interval between each attempt to reconnect is as
specified in the DRA startup parameter TIMER (described in “Defining the IMS DRA
startup parameter table” on page 39).

If you reply WAIT and later want to prevent further attempts to reconnect, use the
CDBC DISCONNECT transaction. (See “Deciding whether to use orderly or
immediate disconnection” on page 51.)

 IRLM failure
When the IRLM fails, DBCTL subsystems using it cannot continue normal
operations. DBCTL terminates active programs that are using the IRLM with a
U3303 abend and forces any PSB schedule requests to wait until it has been
reconnected to the IRLM. You reconnect DBCTL to the IRLM by first restarting the
IRLM using an MVS START command, and then issuing an MVS MODIFY
RECONNECT command to DBCTL. For guidance on using MVS commands with
the IRLM and DBCTL, see the IMS Operator’s Reference manual.

Transaction and thread failures
If a transaction fails in DBCTL , the CICS transaction is abended.

If a transaction fails in CICS when a DL/I request it has issued is being processed
in DBCTL, the error is passed to the DBCTL thread. When a transaction
terminates, the thread allocated to it is released and a record is written to the IMS
log. If there is an error, a return code is returned to the application in the usual
form:

� For command level requests, this is to the DL/I interface block (DIB) as a status
code, or transaction abend. (Definitive Programming Interface and Associated
Guidance Information on what is returned to the DIB is in the IMS Application
Programming: EXEC DLI Commands manual manual.)

� For call level requests, it is to the user interface block (UIB) as a PCB status
code or a transaction abend. (Definitive Programming Interface and Associated
Guidance Information on what is returned to the UIB is in the IMS Application
Programming: DL/I Calls manual manual.)

(Response codes for a DBCTL environment are in “Summary of abends and
return codes” on page 114.)

Where the transaction has been abended, the thread is also terminated, and all
recoverable resources, including DL/I, are backed out. (DL/I backout is assumed on
all thread and transaction failures.)

In some cases, other resources may not have been backed out, but DL/I backout
has taken place. In these cases, one of the following status codes will be returned:
BB, FD, FR, FS. You can also receive the FD status code on a call to a full
function database if the PSB for the program (BMP) has a DEDB PCB. See “Status
codes and backout” on page 103 for actions you should take if this happens.

 Chapter 6. Recovery and restart operations for DBCTL 89

Deadlocks and interactions with automatic restart
As described in the CICS Recovery and Restart Guide, DBCTL detects transaction
deadlocks, which can occur when two transactions are waiting for the same two
resources to become available; that is, both resources are needed by both
transactions, as illustrated in Figure 32.

If one resource is a DBCTL database and the other is a CICS resource, the task
waiting for the CICS resource is abended after its DTIMOUT period has elapsed, if
you have specified one. (See the CICS Resource Definition Guide for help on
specifying the DTIMOUT option of the TRANSACTION definition.)

In the example shown in Figure 32, transaction A is the one that is abended when
DTIMOUT expires. This is because it is waiting in an enqueue until transaction B
frees the lock held for CICS resource C. However, CICS resource C is not freed
because transaction B is waiting for transaction A to free the lock it is holding on
DBCTL resource D.

Time

1 Transaction A DBCTL resource D

2 Transaction B CICS resource C

3 Transaction A CICS resource C

4 Transaction B DBCTL resource D

Figure 32. Transaction deadlock

If you did not specify DTIMOUT for the task using the CICS resource, both tasks
will remain suspended indefinitely, unless one of them is canceled by the CICS
master terminal operator (as described in “Purging a transaction that is using
DBCTL” on page 68).

If the resources are both DBCTL databases, DBCTL detects the potential deadlock
when the database requests that create the deadlocks are attempted. DBCTL then
causes the task with less update activity to be abended. The abend (ADCD) causes
all resources to be backed out. If a deadlock is detected when you are using
DEDBs, an FD status code is issued instead of an ADCD abend. See “Status
codes and backout” on page 103 for details.

For DL/I full function databases and DEDBs, if you have specified automatic restart,
the task can be restarted at this point. (See the CICS Recovery and Restart Guide
for help on specifying automatic restart.) However, this can take place only if the
transaction abended in the first (or only) UOW, and there has been no terminal
input or output since the initial terminal input was read.

90 CICS IMS Database Control Guide

 BMP failures
If a BMP fails, DBCTL backs out any changes made by that BMP following the
latest successful syncpoint. You must restart BMPs, because DBCTL does not
restart them automatically.

The JCL used to restart BMPs depends on whether the checkpoint for the BMP is
still on an OLDS available to DBCTL. If the BMP’s last checkpoint records are not
in the OLDS, they will be in the SLDS, and you must add an IMSLOGR DD
statement for the SLDS(s) containing the log records required to the BMP JCL.
Guidance on the JCL needed to do this is in the IMS Utilities Reference: Database
manual manual.

There is an option to defer changes made to databases by backout of BMPs at
emergency restart. If you specify NOBMP on the /ERESTART command, changes
made to databases by BMPs are not backed out and all PSBs affected are
stopped. Databases that were being updated by BMPs when the failure occurred
are also stopped. You must then do batch backout for the databases that are
stopped. (Batch backout will also backout the databases that were affected.) Be
aware that using NOBMP may mean that the online DBCTL is restarted sooner, but
it also delays data availability for the databases that were stopped by the BMP
failure.

MVS, processor, or power failures
If an MVS, processor, or power failure occurs, DBRC is unable to mark the
subsystem (SSYS) records in the RECON as having terminated abnormally. This
means that you cannot use automatic restart. Instead, you must use the
/ERESTART command with the OVERRIDE keyword to override the RECON
subsystem record. Alternatively, use the DBRC command CHANGE.SUBSYS to
mark the subsystem record as abnormally terminated. You will need to do this if
you want to run any utilities (such as database recovery or log utilities). This is
because these utilities will fail if the subsystem record is still marked as active. For
information on doing this, see the IMS Utilities Reference: Database manual
manual. Backout of in-flight updates should then occur. You can then restart CICS
with an AUTO (emergency) restart. When CICS has reconnected to DBCTL, CICS
decides whether any in-doubt UOWs exist, and resolves them in the same way as
for other failures.

 Chapter 6. Recovery and restart operations for DBCTL 91

92 CICS IMS Database Control Guide

Chapter 7. Application programming for DBCTL

Other product information

The information given about IMS commands is intended to help you understand
the facilities available to your CICS system when you use DBCTL. The
information is not part of the CICS Programming Interface and Associated
Guidance Information.

This chapter contains these sections:

� “Overview of application programming for DBCTL”

� “Programming languages and environments” on page 94

� “Additional facilities available with DBCTL” on page 95

� “Migrating programs to DBCTL” on page 111

� “Summary of abends and return codes” on page 114

Overview of application programming for DBCTL
Programming information on DL/I requests is in the IMS Application Programming:
EXEC DLI Commands manual and the IMS Application Programming: DL/I Calls
manual manuals.

Application programming considerations in a DBCTL environment include:

� Additional facilities available to application programmers with DBCTL
� Migrating programs to DBCTL
� Additional abends and return codes that may be issued with DBCTL

In most cases, your existing application programs should not need any changes to
access databases controlled by DBCTL. See “Migrating a DL/I program to a DBCTL
program” on page 112. However, consider the following:

� You must migrate batch CICS shared database programs to BMPs, and you
are advised to migrate “native” IMS batch jobs to use BMPs. (See “Batch
message processing programs (BMPs)” on page 103, “Migrating CICS shared
database batch jobs to BMPs” on page 112, and “Migrating native IMS batch
jobs to BMPs” on page 113.)

� Your application programs will have to deal with a number of abend and
response codes that may be issued with DBCTL. (See “Summary of abends
and return codes” on page 114.)

� Enhanced scheduling with DBCTL enables a PSB to be scheduled even if
some of the full function databases or DEDB areas it requires are not available.
(See “Enhanced scheduling” on page 100.)

� You can use the DL/I LOG request instead of the EXEC CICS WRITE
JOURNALNAME command so that all DBCTL logging information is on the IMS
log instead of the CICS system log. (See “LOG command and call” on
page 108.)

 Copyright IBM Corp. 1989, 1999 93

� DBCTL supports additional DL/I requests for application programs. DL/I
requests available with DBCTL are described for guidance. It also supports all
existing call level and EXEC level requests previously supported in the local
DL/I environment. Programming information on DL/I requests is in the IMS
Application Programming: EXEC DLI Commands manual and the IMS
Application Programming: DL/I Calls manual manuals.

Programming languages and environments
You can write your programs in COBOL (VS COBOL II or OS/VS COBOL), C, PL/I,
or assembler. The examples of DL/I requests in this chapter are in COBOL.

You have a choice of two interfaces—the command level interface (EXEC DLI)
and the call level interface (using DL/I CALLs). The IMS Application Programming:
Design Guide contains guidance on comparing the two interfaces. For programming
information on the functions of EXEC DLI commands and DL/I CALLs, see the IMS
Application Programming: EXEC DLI Commands manual or the IMS Application
Programming: DL/I Calls manual manuals, respectively.

Issue IMS AIB call format
CICS supports IMS requests with the AIBTDLI interface as well as with the PCB
format.

In addition, IMS/ESA 5.1 supports application interface block (AIB) format for
issuing GMSG, ICMD, and RCMD calls. These three calls enable DBCTL operator
commands to be sent in a CICS transaction, CDBM. (See “CDBM operator
transaction” on page 55.)

These are the calls (in IMS/ESA 4.1 onwards) that are supported:

 � DELETE
 � DEQUEUE
� GET UNIQUE/GET NEXT/GET NEXT IN PARENT
� GET HOLD UNIQUE/GET HOLD NEXT/GET HOLD NEXT IN PARENT
� GETMESSAGE (IMS/ESA 5.1 only)
� ICOMMAND (IMS/ESA 5.1 only)

 � INIT
 � INQY
 � INSERT
 � LOG
 � POSITION
� RCOMMAND (IMS/ESA 5.1 only)

 � REPLACE
 � ROLS
 � SETS
 � STAT

CICS has the following restrictions when function shipping AIB requests:

� The AIB length must be defined as 128 to 256 bytes. IMS recommends 128,
but CICS enforces this range by abend code AXF7.

� Only CICS Transaction Server for OS/390 systems may be in a
function-shipping chain if AIB requests are being issued.

94 CICS IMS Database Control Guide

� Do not specify LIST=NO on the PCB statement in the PSB if you intend to
function ship AIB requests for that PCBNAME.

See the IMS/ESA Application Programming: DL/I Calls manual for programming
interface information on these calls, plus information on defining AIB format instead
of PCB format, and on the AIBTDLI entry point for link-edit.

The following table compares the AIB and PCB formats for EXEC DLI calls.

Notes:

1. USING PCB is not required because these commands assume the IOPCB.

2. You cannot use both the AIB and the PCB in a single EXEC DLI command, but
you can choose either of them for each EXEC DLI command in an application
program.

For more information about these commands, see the IMS/ESA Application
Programming: EXEC DLI Commands Summary.

Table 4. Comparison of AIB and PCB formats for EXEC DLI calls

AIB format PCB format

EXEC DLI GU AIB(aibname) EXEC DLI GU USING PCB(n)

EXEC DLI GN AIB(aibname) EXEC DLI GN USING PCB(n)

EXEC DLI GNP AIB(aibname) EXEC DLI GNP USING PCB(n)

EXEC DLI ISRT AIB(aibname) EXEC DLI ISRT USING PCB(n)

EXEC DLI DLET AIB(aibname) EXEC DLI DLET USING PCB(n)

EXEC DLI REPL AIB(aibname) EXEC DLI REPL USING PCB(n)

EXEC DLI POS AIB(aibname) EXEC DLI POS USING PCB(n)

EXEC DLI STAT AIB(aibname) EXEC DLI STAT USING PCB(n)

EXEC DLI QUERY AIB(aibname) EXEC DLI QUERY USING PCB(n)

EXEC DLI DEQ AIB(aibname) EXEC DLI DEQ1

EXEC DLI LOG AIB(aibname) EXEC DLI LOG1

EXEC DLI REFRESH AIB(aibname) EXEC DLI REFRESH1

EXEC DLI ACCEPT AIB(aibname) EXEC DLI ACCEPT1

EXEC DLI SETS AIB(aibname) EXEC DLI SETS1

EXEC DLI ROLS AIB(aibname) EXEC DLI ROLS1

EXEC DLI GMSG AIB(aibname) ---

EXEC DLI ICMD AIB(aibname) ---

EXEC DLI RCMD AIB(aibname) ---

Additional facilities available with DBCTL
Additional facilities available with DBCTL include application program access to
DEDBs, a number of additional commands, calls, and keywords, increased data
availability, and the ability to use BMPs.

 Chapter 7. Application programming for DBCTL 95

Application program access to DEDBs
With DBCTL, your EXEC DLI and CALL DL/I application programs can access
DEDBs. For an overview of the benefits of using DEDBs (including subset
pointers), see “Access to data entry databases (DEDBs)” on page 10.

For programming information on using subset pointers and EXEC DL/I keywords,
see the IMS Application Programming: EXEC DLI Commands manual and the IMS
Application Programming: DL/I Calls manual manuals.

Command codes to manage subset pointers in DEDBs
With DEDBs, you can set and use up to eight subset pointers for each direct
dependent segment type in the database description (DBD). You must also define
in the PSB, using the SENSEG statement, which subset pointers your program will
use. You can then use subset pointers from within the application program together
with certain command codes. “Keywords and corresponding command codes” on
page 98 tells you which subset pointers you can use with which command codes.

Additional EXEC DLI keywords
You can use a number of additional EXEC DLI keywords in a CICS-DBCTL
environment; they are described in the headings that follow. Each of these
keywords has a corresponding CALL DL/I command code. These are shown in
“Keywords and corresponding command codes” on page 98.

 LOCKCLASS
The LOCKED keyword corresponds to the Q command code. You use either of
these to reserve a segment so that other programs cannot update until after you
have finished with it. You can associate the Q command code with a 1-character
field, from A through J, but the LOCKED keyword cannot take an argument. The
LOCKCLASS keyword enables you to make full use of the DEQ command.

You use the LOCKCLASS keyword, with retrieve requests only, in the same
situations that the LOCKED keyword can be used. However, the LOCKCLASS
keyword can take a 1-character argument, in the range B to J inclusive. You cannot
use LOCKED and LOCKCLASS for the same segment.

 MOVENEXT
The MOVENEXT keyword sets the subset pointer to the segment following the
current segment. You can only use it with a DEDB that uses subset pointers. You
can use it when retrieving, inserting, or replacing a segment. You cannot use it with
a SETZERO keyword for which you have specified subset pointer values, or with
the LOCKED or LOCKCLASS keywords.

MOVENEXT, which corresponds to the M command code, can take an argument,
which can be a constant of up to 8 bytes or a variable of exactly 8 bytes. Each
byte indicates a subset pointer and should be a single number from 1 through 8. If
you use a variable that is longer than the number of subset pointers to be
referenced, you should left justify the data and set the rest of the variable to blanks
(for example, X'F1F3404040').

96 CICS IMS Database Control Guide

 GETFIRST
The GETFIRST keyword, which corresponds to the R command code, causes the
first segment in a subset to be retrieved or inserted. You can only use it when
retrieving or inserting a segment in a DEDB that uses subset pointers. You can
only use one GETFIRST keyword with each parent or object segment. You cannot
use the GETFIRST keyword with the FIRST, LOCKED, or LOCKCLASS keywords.

GETFIRST can take a single argument, which can be a constant or a 1-byte
variable. The value of the argument must be a number from 1 through 8, in
character form, that indicates a subset pointer.

 SET
The SET keyword, which corresponds to the S command code, causes the
appropriate subset pointer to be set unconditionally to the current position, in a
DEDB with subset pointers. Use the SET keyword when retrieving, inserting or
replacing a segment. You cannot use it with a SETZERO keyword that has the
same subset pointer value, or with the LOCKED or LOCKCLASS keywords.

SET can take an argument, which can be a constant of up to 8 bytes, or a variable
of exactly 8 bytes. Each byte indicates a subset pointer and must be a single
integer, in character form, from 1 through 8. If you use a variable that is longer than
the number of subset pointers to be referenced, you should left justify the data and
set the rest of the variable to blanks (for example, X'F1F3404040').

 SETCOND
The SETCOND keyword, which corresponds to the W command code, causes the
appropriate subset pointer to be set only if it is not already set to a segment. You
can only use it when processing a DEDB with subset pointers. You can use
SETCOND when retrieving, inserting, or replacing a segment. You cannot use it
with the SETZERO keyword that has the same subset pointer value, or with the
LOCKED or LOCKCLASS keywords.

SETCOND can take an argument, which can be a constant of up to 8 bytes or a
variable of exactly 8 bytes. Each byte indicates a subset pointer and must be a
single number, in character form, from 1 through 8. If you use a variable that is
longer than the number of subset pointers to be referenced, you should left justify
the data and set the rest of the variable to blanks (for example, X'F1F3404040').

 SETZERO
The SETZERO keyword, which corresponds to the Z command code, causes the
appropriate segment subset pointer to be set to zero. You can only use it with
DEDBs that use subset pointers. You can use SETZERO when retrieving, inserting,
replacing, or deleting a segment. You cannot use it with SET, SETCOND, or
MOVENEXT keywords that have the same subset pointer values. You cannot use it
with the LOCKED or LOCKCLASS keywords.

SETZERO can take an argument, which can be a constant of up to 8 bytes or a
variable of exactly 8 bytes. Each byte indicates a subset pointer and must be a
single number, in character form, from 1 through 8. If you use a variable that is
longer than the number of subset pointers to be referenced, you should left justify
the data, and set the rest of the variable to blanks (for example, X'F1F3404040').

 Chapter 7. Application programming for DBCTL 97

System service (SYSSERVE)
If your application program issues a system service request in an EXEC DLI
environment, you do not need to specify the PCB number, because the IOPCB is
assumed for this type of request. However, if you are using one of the following
EXEC DLI system service requests:

 � LOG command
 � REFRESH command
 � ACCEPT command
 � SETS command
� ROLS command (without the USING PCB(1) option)

first issue a PSB schedule command specifying the SYSSERVE keyword. See
“PSB schedule command and call” on page 106 for the format of the schedule
request.

Keywords and corresponding command codes
Table 5 lists EXEC DLI keywords and corresponding DL/I CALL command codes
that are valid in a DBCTL environment.

Table 5 (Page 1 of 2). Keywords and corresponding command codes

EXEC DLI keyword DL/I CALL command
code

Purpose

KEYS C Using the concatenated key of a segment to identify
the segment.

INTO or FROM specified
on segment level to be
retrieved or inserted

D Retrieving or inserting a sequence of segments in a
hierarchic path using only one request, instead of
having to use a separate request for each segment
(path call or command).

FIRST F Backing up to the first occurrence of a segment under
its parent when searching for a particular segment
occurrence. Disregarded for a root segment.

LAST L Retrieving the last occurrence of a segment under its
parent.

MOVENEXT 1 M 1 Moving a subset pointer to the next segment
occurrence after your current position.

Leaving out the
SEGMENT option for
segments you do not
want replaced

N Designating segments you do not want replaced, when
replacing segments after a get hold request. Used
when replacing part of a path of segments.

SETPARENT P Setting parentage at a higher level than usual. (It is
usually the lowest SSA level of the call.)

LOCKED 2
 LOCKCLASS 2

Q 2 Reserving a segment so that other programs will not
be able to update it until after you have finished
processing and updating it.

GETFIRST 1 R 1 Starting search with the first segment occurrence in a
subset.

SET 1 S 1 Unconditionally setting a subset pointer to the current
position.

No EXEC equivalent U Limiting the search for a segment to the dependents of
the segment occurrence on which position is
established.

98 CICS IMS Database Control Guide

Table 5 (Page 2 of 2). Keywords and corresponding command codes

EXEC DLI keyword DL/I CALL command
code

Purpose

CURRENT V Using the current position at this hierarchic level and
above as qualification for the segment.

SETCOND 1 W 1 Setting a subset pointer to your current position, if the
subset pointer is not already set.

SETZERO 1 Z 1 Setting a subset pointer to zero.

Notes:

1. DEDB subset pointer operations only. These command codes are new for
CICS users who are new to DBCTL.

2. Cannot be used with DEDBs.

POS command and call
With DEDBs, you can use the position (POS) command and call to retrieve the
location of a specific sequential dependent segment or the location of the last
inserted sequential dependent segment. The POS command and call also provides
information about unused space.

You can specify only one SSA with the POS request; that is, either the root
segment, or a sequential dependent segment. You can use POS to locate a
specific sequential dependent segment when you already have a valid position of a
root segment. If you do not already have one, you must first issue a separate POS
request, or other request, to establish the position of a root segment.

The format of the POS command is:

EXEC DLI POS|POSITION

 USING PCB(n)

 INTO(data-area)

 [KEYFEEDBACK(area)[FEEDBACKLEN(expression)]]

 [SEGMENT(name)|SEGMENT((area))]

 [WHERE(qualification_statement)[FIELDLENGTH(expression)]]

Figure 33. EXEC DLI POS command

The format of the POS call is:

CALL 'CBLTDLI' USING POS,dedb_pcb,i/o_area[,ssa]

See “Keywords and corresponding command codes” on page 98 and “Comparing
EXEC DLI commands and DL/I calls” on page 109 for brief comparisons of
commands and calls. For further guidance on the differences between commands
and calls, see the IMS Application Programming: Design Guide.

 Chapter 7. Application programming for DBCTL 99

Addressing and residency mode
Addressing mode (AMODE) refers to the address length that a program is prepared
to handle: 24-bit addresses, 31-bit addresses, or both (ANY). Programs with an
addressing mode of ANY must have been designed to receive control in either 24-
or 31-bit addressing mode.

Residency mode (RMODE) specifies where a program is expected to reside in
virtual storage. RMODE 24 indicates that a program is coded to reside in virtual
storage below 16MB. RMODE ANY indicates that a program is coded to reside
anywhere in virtual storage.

See the OS/390 MVS Extended Addressability Guidefor more information on
AMODE and RMODE. See also the appropriate programming guides for COBOL
and PL/I for guidance on placing parameters above or below the line.

Note that you cannot place parameters above the 16MB line if you are using
OS/VS COBOL.

With remote DL/I and DBCTL, programs can be AMODE(31) RMODE(any) with
parameters above the 16 MB line, for both DL/I call and command level.

 Enhanced scheduling
DBCTL supports enhanced scheduling. That is, PSB scheduling completes
successfully, even if some of the full function databases or DEDB areas it requires
are not available. Full function databases that have been stopped or locked by the
commands /STOP, /DBRECOVERY, or /LOCK, or that are unavailable for update
because a /DBDUMP command has been issued, do not cause scheduling failures.
Instead, the application program is prevented from accessing only the unavailable
database(s) or area(s). Application programs can have read access to databases
that have been made unavailable for update by the /DBDUMP command. If a
program issues a call to an unavailable database or area, a transaction abend is
issued. To avoid this happening, you can issue requests, after a PSB has been
scheduled, to obtain information regarding the availability of each database and to
indicate that your program will handle data availability status codes. These requests
are described in “Obtaining information about database availability” and “Accepting
database availability status codes” on page 102.

Obtaining information about database availability
A PSB scheduling request places data availability status codes in each of the DB
PCBs. You can use DL/I requests to obtain and refresh this information, as
described below.

QUERY and REFRESH DBQUERY commands
In a command-level environment, issue the following command after a PSB
schedule request for each PCB:

EXEC DLI QUERY PCB(n)

where n is the number of a PCB.

This obtains the status code and other information in the DL/I interface block (DIB).
You should get one of the following values in the DIB:

100 CICS IMS Database Control Guide

� TH, which means that a PSB has not yet been scheduled and results in a
DHTH abend.

� NA, which means that at least one of the databases that can be accessed
using this PCB is unavailable, but does not result in an abend.

� NU, which means that at least one of the databases that can be updated using
this PCB is unavailable and does not result in an abend.

� (blanks), mean that the data accessible using this PCB is available for all
functions that the PCB sensitivity allows.

DIBDBORG, which is returned when DIBSTAT has been set to NA, NU or ␣␣
(blanks). DIBDBORG contains one of the following values describing the database
organization:

 � DEDB
 � GSAM
 � HDAM
 � HIDAM
 � HISAM
 � INDEX
 � HSAM
 � SHISAM
 � SHSAM.

DIBDBDNM, which is returned when DIBSTAT has been set to NA, NU or blanks,
and contains the DBDNAME. You can refresh these status codes using the
command:

EXEC DLI REFRESH DBQUERY

INIT call—format for refreshing status code information
Application programs using the DL/I CALL interface can access the PCB status
codes directly. You can refresh these status codes using the INIT call as follows:

CALL 'CBLTDLI' USING INIT,i/o pcb,i/o_area

where i/o_area contains a string in the format LLZZcharacter_string.

� LL is a halfword containing the length of the character_string including LLZZ.
� ZZ contains binary zeros
� character_string contains DBQUERY.

The data availability status codes used in this context are:

� (blanks), which means that all of the databases are available.

� NA, which means that at least one of the databases that can be accessed
using this PCB is unavailable.

� NU, which means that at least one of the databases that can be updated using
this PCB is unavailable for update.

 Chapter 7. Application programming for DBCTL 101

Accepting database availability status codes
You can use DL/I requests to indicate that your application program is prepared to
accept and handle database availability status codes for DL/I calls, as described in
“ACCEPT STATUSGROUP command” and “INIT call—format for accepting status
codes.” These status codes may have been issued because PSB scheduling has
completed without all of the referenced databases being available.

ACCEPT STATUSGROUP command
For command level application programs, use:

EXEC DLI ACCEPT STATUSGROUP('A')

INIT call—format for accepting status codes
For call level application programs, use:

CALL 'CBLTDLI' USING INIT,i/o pcb,i/o_area

where i/o_area contains a string in the format LLZZcharacter_string.

LL is a halfword containing the length of the character_string including LLZZ
ZZ contains binary zeros
Character_string contains STATUSGROUPA.

If you have used ACCEPT STATUSGROUP, and a DL/I request tries to access a
database or a DEDB area that is not available after PSB schedule, DBCTL returns
a status code instead of abending the transaction. If you have not used ACCEPT
STATUSGROUP, the transaction will be abnormally terminated with ADCI if it tries
to access unavailable data. (See “Summary of abends and return codes” on
page 114 for details of accompanying return codes.)

The status codes used are:

� (blanks), which means that the request completed successfully.

� BA, which means that the request could not be completed because a database
was not available. In this case, only the updates done for the current DL/I call
are backed out.

� BB, which means that the request could not be completed because a database
was not available. In this case, all DL/I updates are backed out to the last
commit point.

Note: Only DL/I resources are backed out because the transaction has not
abended. Therefore, ensure that you keep DL/I and other resources in
synchronization.

See the IMS Application Programming: EXEC DLI Commands manual or the IMS
Application Programming: DL/I Calls manual manuals for programming information
on status codes.

Although a PSB can contain PCBs for GSAM and MSDB databases, and the PSB
can be scheduled, programs using DBCTL (or any other kind of CICS-DL/I
program) cannot access those GSAM or MSDB databases online from CICS.
Access to such databases is by means of batch and BMPs only. See “I/O PCB” on
page 104 for information on the option SCHD, which you can use to state whether
you require an input/output PCB (I/O PCB).

102 CICS IMS Database Control Guide

Status codes and backout
The following DEDB status codes are returned when DL/I backout has taken place:
BB, FD, FR, FS. If you receive one of these status codes, it is as if any update
requests you issued to full function databases or to DEDBs in the same UOW had
not taken place.

If you are using EXEC DLI, these status codes are, as usual, accompanied by a
DHBB, DHFD, DHFR, or DHFS abend.

If you are using CALL DL/I and if you want any other resources you may have
been updating in the same UOW to be backed out, issue an EXEC CICS ABEND
request or a SYNCPOINT ROLLBACK command.

Batch message processing programs (BMPs)
Batch message processing programs (BMPs) are application programs that perform
batch type processing online and can access databases controlled by DBCTL. You
can run the same program as a BMP or as a batch program. Figure 34 on
page 104 shows the kind of data BMPs can access. See the IMS Application
Programming: Design Guide for further guidance on using BMPs.

 Chapter 7. Application programming for DBCTL 103

D B 2

B M PM V S f i l e s G S A M

D B C T L

D E D B s D L / I f u l l

f u n c t i o n

Figure 34. BMP access

System service requests

 I/O PCB
A PSB used in a DBCTL environment can contain any of the following PCB types:

� I/O PCB. In a CICS-DBCTL environment, an input/output PCB (I/O PCB) is
needed to issue DBCTL service requests. Unlike other types of PCB, it is not
defined with PSB generation. If the application program is using an I/O PCB,
this has to be indicated in the PSB scheduling request, as explained in “Format
of a PSB” on page 105.

� Alternate TP PCB(s) . An alternate TP PCB defines a logical terminal and can
be used instead of the I/O PCB when it is necessary to direct a response to a
terminal. Alternate TP PCBs appear in PSBs used in a CICS-DBCTL
environment, but are used only in an IMS/VS DC or IMS/ESA TM environment.
CICS applications using DBCTL cannot successfully issue requests that specify
an alternate TP PCB, an MSDB PCB, or a GSAM PCB, but PSBs that contain
this kind of PCB can be scheduled successfully in a CICS-DBCTL environment.

104 CICS IMS Database Control Guide

Alternate PCBs are included in the PCB address list returned to a call level
application program. The existence of alternate PCBs in the PSB can affect the
PCB number used in the PCB keyword in an EXEC DLI application program,
depending on whether you are using CICS online, batch programs, or BMPs.
For more information, see “PCB summary” below.

� DB PCB(s) . A database PCB (DB PCB) is the PCB that defines an application
program’s interface to a database. One DB PCB is needed for each database
view used by the application program. It can be a full function PCB, or a DEDB
PCB.

� GSAM PCB(s) . A GSAM PCB defines an application program’s interface for
GSAM operations.

With DBCTL, a CICS online application program receives, by default, a DB PCB as
the first PCB in the parameter list passed to it after scheduling.

With the EXEC DLI interface, in order to use system service requests, you specify
the SYSSERVE keyword on the SCHD command to indicate that your application
program can handle an I/O PCB. In an EXEC DLI environment, the SYSSERVE
keyword does not change the PCB numbering, which means that your first PCB is
still the DB PCB, and you do not need to specify a PCB number when you issue a
system service request.

With the DL/I CALL interface, in order to use system service requests, you use the
IOPCB parameter on the PCB to indicate that your application program can handle
an I/O PCB. The I/O PCB will then be the first PCB in the parameter address list
passed back to your application program.

Format of a PSB
PSBs used in a DBCTL environment will be of the following form:

 [IOPCB]

[Alternate TP PCB ... Alternate TP PCB]

[DBPCB ... DBPCB]

[GSAMPCB ... GSAMPCB]

Figure 35. General format of a PSB in a DBCTL environment

Each PSB must contain at least one PCB. A DB PCB can be a full function PCB, or
a DEDB PCB.

 PCB summary
This section summarizes information concerning I/O PCBs and alternate PCBs in
the supported environments. Read it if you intend to issue system service requests.

CICS online programs:

 � EXEC DLI

The first PCB in your PCB address list always refers to the first database PCB
(DB PCB) whether or not you specify the SYSSERVE keyword.

 � CALL DL/I

If you specify the IOPCB option on the PCB call, the first PCB in your PCB
address list will be the I/O PCB, followed by any alternate PCBs, followed by
the DB PCBs.

 Chapter 7. Application programming for DBCTL 105

If you do not specify the IOPCB option, the first PCB in your PCB address list
will be the first DB PCB.

 BMPs:

� EXEC DLI and CALL DL/I

The PCB list always contains the address of the I/O PCB, followed by the
addresses of any alternate PCBs, followed by the addresses of the DB PCBs.

Batch programs: Alternate PCBs are always returned to batch programs
irrespective of whether you have specified CMPAT=Y. The I/O PCB is returned
depending on the CMPAT option, as follows:

� EXEC DLI and CALL DL/I

If you specify CMPAT=Y, the PCB list contains the address of the I/O PCB,
followed by any alternate PCBs, and then the DB PCBs.

If you do not specify CMPAT=Y, the PCB list contains the addresses of any
alternate PCBs followed by the addresses of the DB PCBs.

Table 6 summarizes the I/O PCB and alternate PCB information.

Notes:

1. SCHD request issued without the IOPCB or SYSSERVE option.

2. SCHD request issued with the IOPCB or SYSSERVE for a CICS DBCTL
request or for a function shipped request which is satisfied by a CICS system
using DBCTL.

 3. CMPAT=N specified.

 4. CMPAT=Y specified.

Table 6. PCB summary

Environment EXEC DLI CALL DL/I

I/O PCB
count

included
in PCB(n)

Alternate
PCB

count
included
in PCB(n)

I/O PCB
address
returned

Alternate
PCB

address
returned

CICS DBCTL (1) No No No No

CICS DBCTL (2) No No Yes Yes

BMP Yes Yes Yes Yes

Batch (3) No Yes No Yes

Batch (4) Yes Yes Yes Yes

PSB schedule command and call
The format of the schedule command is:

EXEC DLI SCHD PSB(name)[SYSSERVE]

Specifying SYSSERVE does not affect the PCB number you specify in the USING
PCB keyword because PCB(1) will always refer to the first DB PCB. The

106 CICS IMS Database Control Guide

application program must establish addressability to the I/O PCB. See the IMS
Application Programming: Design Guide for further guidance on doing this.

The format of the schedule call is:

CALL 'CBLTDLI' USING PCB␣,psbname,uibptr[,sysserve]

where sysserve is an optional 8-byte variable, set to either IOPCB or NOIOPCB.

Almost all the new DL/I calls supported in the CICS-DBCTL environment require an
I/O PCB. The two exceptions are the ROLS call, which can use a DB PCB, and the
POS call, which uses a DEDB PCB.

Preventing DHxx abends after EXEC DLI SCHD PSB failure: When a PSB
schedule request fails (for example, because a database is unavailable), CICS
abends the transaction with a DHxx abend code. In a production system, PSB
schedule request failures are more likely to be caused by unavailability of a
database than by application coding errors, which means that end users may see
DHxx abends unnecessarily. To prevent this happening, you can use the EXEC DLI
SCHD PSB keyword, NODHABEND, which specifies that no DHxx abends are
issued for that PSB schedule request. Instead, the xx value is returned to the
application program in DIBSTAT, enabling the application to deal with the situation
in a more user-friendly way, and avoiding the need to code global HANDLE
ABENDs (EXEC DLI does not support HANDLE CONDITION).

DEQ command and call
The DEQ (dequeue) request releases segments that were retrieved using the
LOCKCLASS keyword or the Q command code.

The LOCKED keyword cannot take an argument, and cannot be used with DEQ.
(Segments locked using the LOCKED keyword are released when a SYNCPOINT
is taken.) Instead, you use LOCKCLASS with DEQ, which can take a 1-character
argument in the range B to J inclusive. (These keywords correspond to the Q
command code, which you can associate with a 1-character field in the range A to
J.) You cannot use LOCKED and LOCKCLASS for the same segment. Using
LOCKCLASS or Q on retrieval requests enables you to reserve segments for
exclusive use by your transaction. No other transaction is allowed to update these
reserved segments until your transaction reaches a syncpoint, or the DEQ request
has been issued, when the reserved segments are released. This means that your
application can leave these segments and retrieve them later without them being
changed in the meantime.

The format of the DEQ command is:

EXEC DLI DEQ LOCKCLASS(data_value)

where data_value is a 1-byte alphabetic character in the range B to J.

The format of the DEQ call is:

CALL 'CBLTDLI' USING function,i/o pcb,i/o_area

where function is the address of a 4-byte area that contains the value of the DEQb
function, i/o pcb is the name of the I/O PCB (mandatory), and i/o_area is a 1-byte
alphabetic character in the range A to J.

 Chapter 7. Application programming for DBCTL 107

LOG command and call
You can use the LOG request online when you want a record to be written from an
application program to the IMS log. Your program can specify whatever information
you want to be on the log. You may prefer to use it instead of EXEC CICS journal
commands so that all your DBCTL information will be on the IMS log instead of the
CICS log. IMS uses different log codes to distinguish different types of log record.
All user log records in the IMS log have the same code. Records logged using the
LOG request will not be backed out if synchronization fails and the UOW is
aborted.

The format of the LOG command is:

EXEC DLI LOG FROM(area) LENGTH(expression)

The format of the LOG call is:

CALL 'CBLTDLI' USING LOG␣,i/o-pcb,data-area

where LOG␣ is the address of a 4-byte area that contains the value of the LOG␣

function.

Defining intermediate backout points for DBCTL resources
The SETS and ROLS requests enable you to define multiple points at which to
preserve the state of DL/I full function databases and to return to these points later.
The backout points are not CICS syncpoints, they are intermediate backout points
that apply only to DBCTL resources. For example, you can use them to allow your
program to handle the consequences of PSB scheduling having completed without
all of the referenced DL/I databases being available.

The SETS and ROLS requests apply to DL/I full function databases only. If an
UOW is updating recoverable resources other than full function databases, for
example, DEDBs and VSAM files, the SETS and ROLS requests have no effect on
the non-DL/I resources. Therefore, take steps to ensure the consistency of other
resources involved, if any. See “Summary of abends and return codes” on
page 114 for explanations of relevant return codes.

SETS command and call: You can use a SETS request to define points in your
application at which to preserve the state of DL/I databases before initiating a set of
DL/I calls to perform a function. Your application can issue a ROLS request later if
it cannot complete that function.

The format of the SETS command is:

EXEC DLI SETS [TOKEN(mytoken) AREA(data-area)]

where mytoken is a 4-byte token associated with the current processing point.

data-area is an area to be restored to the program when a ROLS request is issued.
The first two bytes of the data-area field contain the length of the data-area,
including the length itself. The second two bytes must be set to X'0000'.

The format of the SETS call is:

CALL 'CBLTDLI' USING SETS,i/o_pcb[,i/o_area,token]

108 CICS IMS Database Control Guide

TOKEN(mytoken) AREA(data-area) in the command version and i/o_area,token in
the call version are optional, but if you do omit them, this cancels any intermediate
backout points set in previous SETS requests and ROLS backs out to the last
commit point.

ROLS command and call: You can use the ROLS request to backout to the
state all full function databases were in before: (a) a specific SETS request or (b)
the most recent commit point.

The format of the ROLS command is:

EXEC DLI ROLS [TOKEN(mytoken) AREA(data-area)]

The format of the ROLS call is:

CALL 'CBLTDLI' USING ROLS,pcb[,i/o_area,token]

i/o_area and token on the call, and TOKEN(mytoken) AREA(data-area) on the
command are optional. If you include them, ROLS backs out to the SETS you
specified . If you omit them, ROLS backs out to the most recent SETS.

The ROLS command has a second format, the purpose of which is to backout to
before an ACCEPT STATUSGROUPA request:

EXEC DLI ROLS [USING(PCB(n)]

where n is the name of a database PCB that has received a “data” unavailable
status code. This causes the same action to take place that would have occurred
had the program not issued an ACCEPT STATUSGROUPA request. (See
“Accepting database availability status codes” on page 102.)

Comparing EXEC DLI commands and DL/I calls
Table 7 lists corresponding EXEC DLI and CALL DL/I requests and their functions.

Table 7 (Page 1 of 2). EXEC commands and DL/I calls

EXEC DLI CALL DL/I Function

GU, GN, and
GNP

GU, GN, and
GNP

Retrieving segments from the database

GU, GN, and
GNP

GHU, GHN, and
GHNP

Retrieving segments from database for updating

DLET DLET Deleting segments from a database

REPL REPL Replacing segments in a database

ISRT ISRT Adding segments to a database

LOAD ISRT Initially loading a database

SCHD PCB Scheduling a PSB

TERM TERM Terminating a PSB

CHKP CHKP (basic) Issuing a basic checkpoint

SYMCHKP CHKP (extended) Issuing a symbolic checkpoint

XRST
 RETRIEVE

XRST Issuing an extended restart

 Chapter 7. Application programming for DBCTL 109

Table 7 (Page 2 of 2). EXEC commands and DL/I calls

EXEC DLI CALL DL/I Function

-----1 SYNC Requesting syncpoint processing

DEQ DEQ Releasing segments retrieved using Q command code

-----1 GSCD Retrieving system addresses

LOG LOG Writing a message to the system log

ROLL or ROLB ROLL or ROLB Dynamically backing out changes

STAT STAT Obtaining system and buffer pool statistics (see also Table 8 on
page 110)

REFRESH
 ACCEPT
 QUERY2

INIT Refreshing, accepting and querying data availability status codes

SETS SETS Setting a backout point

ROLS ROLS Backing out to a previously set backout point

-----1 GSAM Issuing requests to GSAM databases

POS POS Retrieving positioning and/or space usage information in a DEDB
area

Notes:

1. No EXEC DLI equivalent. Use a DL/I CALL, but note that you cannot mix
EXEC and CALL in the same UOW.

2. Status codes are available directly to CALL DL/I applications. EXEC DLI
QUERY corresponds to code in the CALL DL/I program instructing it to
examine the PCB.

DL/I requests supported
Table 8 summarizes the DL/I requests you can use and the environments in which
they apply.

Table 8 (Page 1 of 2). DL/I requests supported

Request type CICS and DBCTL 1 Batch BMP

Get commands and calls (GU, GHU, GN,
GHN, GNP, GHNP)

Yes Yes Yes

DLET command and call Yes Yes Yes

REPL command and call Yes Yes Yes

ISRT command and call Yes Yes Yes

ISRT call (initial load) No Yes No

LOAD command No Yes No

PCB call Yes No No

SCHD command Yes No No

TERM command and call Yes No No

CHKP command and call (basic) No Yes Yes

CHKP call (extended) No Yes Yes

110 CICS IMS Database Control Guide

Table 8 (Page 2 of 2). DL/I requests supported

Request type CICS and DBCTL 1 Batch BMP

SYMCHKP command No Yes Yes

XRST command and call No Yes Yes

RETRIEVE command No Yes Yes

SYNC call No No Yes

DEQ command and call Yes Yes Yes

GSCD call No Yes No

LOG call Yes Yes Yes

LOG command Yes Yes Yes

ROLL call No Yes Yes

ROLL command No Yes Yes

ROLB command and call No Yes Yes

STAT command and call Yes2 Yes2 Yes2

INIT call Yes Yes Yes

REFRESH command Yes Yes Yes

ACCEPT command Yes Yes Yes

QUERY command Yes Yes Yes

SETS command and call Yes Yes Yes

ROLS command and call Yes Yes Yes

GSAM calls No Yes Yes

POS command and call Yes No Yes

Notes:

1. Requests are also supported with function shipping to a remote CICS that
uses DBCTL .

2. Enhancements to the STAT call are available in IMS/ESA 3.1, via an SPE, and
in IMS/ESA 4.1. For programming information on keywords used to request the
enhanced statistics, see the IMS Application Programming: DL/I Calls manual
manual. (If you do not have the correct level of IMS installed, and request the
enhanced statistics, the transaction will receive a PCB status code indicating an
invalid DL/I call, as shown in Table 9 on page 114.)

Migrating programs to DBCTL
Considerations for migrating programs to DBCTL include using your existing local
DL/I programs with DBCTL, and changing CICS shared data base programs and
“native” IMS batch jobs to run as BMPs.

 Chapter 7. Application programming for DBCTL 111

Migrating a DL/I program to a DBCTL program
Your existing CICS application programs should not require any changes in order to
run in the DBCTL environment.

However, you must define the names of all DMBs to be owned by DBCTL to
DBCTL using system definition DATABASE statements. Make sure that you have
defined the names of all PSBs to be used by application programs when accessing
DBCTL databases using system definition APPLCTN statements (which are
equivalent to DFHDLPSB in local DL/I). All DMBs to be owned by a given PSB
must be owned by the same DBCTL. See the IMS Application Programming:
Design Guide for further guidance on defining PSBs.

Your applications may receive some different abend codes. You may also get a
message that DL/I is not available. This may occur because DBCTL can be
disconnected dynamically from CICS, using the CDBC transaction, and because,
unlike local DL/I, a failure in DBCTL should not cause CICS to fail, but merely
leaves it without DL/I services. New abend codes are summarized in “Summary of
abends and return codes” on page 114.

An application program that updates DL/I databases owned by DBCTL and has
activated an exit to use HANDLE ABENDs, should terminate the abend exit routine
with an ABEND request.

| We recommend that programs that have read-only access to the database, and an
| abend exit is active, should not attempt to reschedule a PSB as part of abend
| processing. This is because if the high order bit of the DBCTL return code
| (PAPLRETC) is set on, the DBCTL thread has been withdrawn from use by the
| transaction and any further DBCTL request is abended with a code of AEY9. The
| only exception to this is if the abending request was a schedule, this is because the
| thread is not obtained until the schedule completes successfully.

Migrating CICS shared database batch jobs to BMPs
With CICS Transaction Server for OS/390 Release 3, you must migrate any batch
jobs that currently use the CICS shared database facility to BMPs so that they
communicate directly with the DBCTL address space. BMPs perform batch
processing and are started with job control language (JCL) like programs in a batch
environment. The JCL for this is in the IMS procedure IMSBATCH. (For further
guidance on IMSBATCH, see the IMS System Definition Reference manual manual
or IMS/ESA Installation Volume 2: System Definition and Tailoring.) Migrating these
batch jobs gives you:

� A performance advantage, because BMPs communicate directly with DBCTL
instead of accessing databases through CICS. For more information on BMP
performance, see Chapter 10, “Statistics, monitoring, and performance for
DBCTL” on page 147.

� The ability to use system service requests, such as symbolic checkpoint
(CHKP) and extended restart (XRST).

� Access to DEDBs.

� Access to GSAM databases.

� Logging to the IMS log (so there is no need for multiple logs).

� Automatic restart from last checkpoint without requiring JCL changes.

112 CICS IMS Database Control Guide

Automatic backout, which you will already be using for your shared database
programs, also applies to BMPs.

With BMPs, the PCB always includes an I/O PCB. If you have specified CMPAT=Y
in the JCL to execute your CICS shared database job, need not change any source
code in your application. If you have specified CMPAT=N, change your code to
allow for the addition of an I/O PCB. For example, in COBOL, you do this by
changing the ENTRY statement in the PROCEDURE division to include the I/O
PCB. For guidance on doing this, in COBOL, PL/I and assembler language, see the
IMS Application Programming: EXEC DLI Commands manual or the IMS
Application Programming: DL/I Calls manual manuals.

Migrating native IMS batch jobs to BMPs
You are advised to migrate “native” IMS batch jobs to BMPs that use DBCTL. This
will give you:

� Logging to the IMS log (no need for multiple logs).

� Automatic restart from the last checkpoint (no JCL changes required).

� Concurrent access to databases.

� Automatic backout. (You may already have this for your batch programs if you
use disk logging.)

General design considerations for BMPs
Your applications must take checkpoints and must be restartable from the last
checkpoint (also known as checkpoint restart). This is particularly important for
batch programs migrated to BMPs. A disconnection request cannot complete until a
BMP checkpoint occurs if a CICS thread is waiting for a lock held by a BMP.

Design and code your batch programs to be restartable from checkpoints, even if
you have no immediate intention of running them as BMPs. This is because it is
simpler to design batch programs with checkpoint restart than to introduce it to
existing programs if you do decide to migrate them later.

The following is a summary of what to consider when designing BMPs and
applications to run in a DBCTL environment:

� All BMPs and applications should issue frequent checkpoints to avoid locking
out other resource users.

� All BMPs and applications must be restartable from last checkpoint. This is
because records in the same database may have since been updated, and
these updates would be lost if the database were restored from a previous
backup.

� BMPs and applications should not hold on to locks for long periods without
issuing checkpoints or syncpoints (either explicitly or implicitly).

� Beware of long-running applications that do not issue syncpoints or that hold
data over terminal conversations.

� Be aware that small but very frequently updated databases may cause
contention for resources.

� Review the use of control records; that is, records that are accessed by most
applications. If they have to be updated, it is important to remember that the CI

 Chapter 7. Application programming for DBCTL 113

or physical block is locked from other subsystems until the updates are
committed.

Summary of abends and return codes
With DBCTL, your PSB scheduling request might fail either because DBCTL is not
available, or because the PSB could not be found. However, after a successful
PSB schedule, CICS might be disconnected from DBCTL for some reason, and
subsequent DBCTL requests will fail. This situation, which is unique to a DBCTL
environment, causes an ADCJ abend to be issued.Table 9 summarizes the
schedule failure codes and abends in a DBCTL environment, and the conditions
that can arise on a PSB schedule request because DBCTL is not available or the
PSB cannot be found.

Table 9 (Page 1 of 2). Summary of abends and return codes

Request EXEC
abend

CALL UIBDLTR CALL
UIBFCTR

CALL
abend

Explanation

PSB
schedule
request

DHTA X'01' (PSBNF) X'08'
(INVREQ)

---- PSB not found1.

PSB
schedule
request

DHTC X'03' (PSBSCH) X'08'
(INVREQ)

---- PSB already scheduled
detected in CICS.

PSB
schedule
request

DHTE X'05' (PSBFAIL) X'08'
(INVREQ)

---- PSB initialization failed in
DBCTL only.

PSB
schedule
request

DHTJ X'FF' (DLINA) X'08'
(INVREQ)

---- DBCTL not available on PSB
scheduling2.

PSB
schedule
request

ADCC ---- ---- ADCC PSB already scheduled
detected in DBCTL.

PSB
schedule
request

ADCP ---- ---- ADCP The user is not authorized to
use the PSB.

PSB
schedule
request

ADCQ ---- ---- ADCQ The SYSSERVE keyword or
the I/O PCB option was not
specified, and the PSB does
not contain any DB PCBs.

PSB
schedule
request

ADDA ---- ---- ADDA An error response from the
storage domain.

DL/I
request

DHTH X'08' (FUNCNS) X'08'
(INVREQ)

---- PSB not scheduled, detected
by CICS.

DL/I
request

ADCB ---- ---- ADCB PSB not scheduled.

DL/I
request

ADCD ---- ---- ADCD Deadlock detected.

DL/I
request

ADCI ---- ---- ADCI Lock outstanding.

114 CICS IMS Database Control Guide

Table 9 (Page 2 of 2). Summary of abends and return codes

Request EXEC
abend

CALL UIBDLTR CALL
UIBFCTR

CALL
abend

Explanation

DL/I
request

ADCJ ---- ---- ADCJ DBCTL not available on DL/I
request3.

DL/I
request

ADCR ---- ---- ADCR DL/I request (other than PSB
schedule) issued when
DBCTL not connected.

Terminate
request

DHTG X'07'
(TERMNS)

X'08'
(INVREQ)

---- PSB not scheduled.

PSB
schedule,
DL/I, and
terminate
requests

DHxx ---- ---- ---- Many reasons. xx is the PCB
status code. (See also
“Preventing DHxx abends
after EXEC DLI SCHD PSB
failure” on page 107.)

PSB
schedule
or DL/I
request

---- X'00' (INVARG) X'08'
(INVREQ)

---- Invalid argument.

PSB
schedule
or DL/I
request

TR status
code in
DIB-
 STAT

X'04'
(NOTDONE)

X'08'
(INVREQ)

---- Global user exit XDLIPRE
indicates that DL/I request
should not be executed.

PSB
schedule
or DL/I
request

ADCA ---- ---- ADCA Error, detected in DBCTL.

PSB
schedule
or DL/I
request

ADCE ---- ---- ADCE Bad response code has been
returned from DFHDBAT.

PSB
schedule
or DL/I
request

ADCN ---- ---- ADCN FORCEPURGE issued while
executing in DBCTL.

Notes:

1. The PSB was not found in PDIR and DBCTL was not ready. Alternatively, the
PSB was not found in PDIR and DBCTL was ready but the PSB was not found
in DBCTL APPLCTN.

2. DBCTL was not ready at the time of the DL/I request.

3. DBCTL is in use, and a PSB has been scheduled. However, the connection
between CICS and DBCTL has since been broken.

See the Messages and Codes manual for details of these abends, and see the
IMS/ESA Application Programming: EXEC DLI Commands manual for details of
DL/I status codes.

If you use remote DL/I with DBCTL, you may also receive Axxx and DHxx abends
not listed here. For information about DHxx abends (where 'xx' indicates the DL/I

 Chapter 7. Application programming for DBCTL 115

status code), see the IMS/ESA Application Programming: EXEC DLI Commands
manual.

116 CICS IMS Database Control Guide

Chapter 8. Security checking with DBCTL

Considerations for using security checking with DBCTL are:

� The different types of security checking you may need
 � Migration

When using CICS with DBCTL, you may want to use one or more of the following
optional security facilities:

� “PSB authorization checking by CICS”

� “Resource access security checking by DBCTL.” This comprises checks at:

 – Connect time
– PSB scheduling time.

For more information, see also the information on defining resource security
checking for PSBs in the CICS RACF Security Guide.

� “DBCTL password security checking” on page 120, for /LOCK and /UNLOCK
commands.

� “Migration considerations for security with DBCTL” on page 120

Of the resources you can protect using IMS security, you need be concerned only
with PSBs, databases, and commands.

PSB authorization checking by CICS
At PSB scheduling time, CICS invokes security checking to find out whether the
terminal user is authorized to access the PSB. The actual check is carried out by
an external security manager, which can be RACF or your own security program.

Although PSB scheduling requests are sent to DBCTL for processing, CICS does
PSB authorization checking. See the CICS Customization Guide for programming
information on writing your own security program.

Resource access security checking by DBCTL
DBCTL views all the resources that can be accessed by one particular CICS
system or BMP as a single entity. Resources in this context means one or more
PSBs. The set of PSBs that one CICS or BMP can access are grouped together in
an entity called an application group . Each application group has a name—its
AGN, and the AGNs are defined in matrix data sets .

Application groups, and the names of the resources within those groups, are placed
in tables in DBCTL’s security matrix data set(s) using the IMS security maintenance
utility. You can use the IMS online change facility to bring new security tables
online.

The AGN that CICS intends to use is specified in the DRA startup table referenced
by CICS when it attempts to connect to DBCTL. You can assign the same AGN to
different CICS systems, if you need to.

 Copyright IBM Corp. 1989, 1999 117

DBCTL resource access security checking provides the following:

� Checking at connect time

When CICS or a BMP connects to DBCTL, DBCTL initiates a check to find out
if CICS or the BMP is authorized. The check is carried out either by RACF in
conjunction with DBCTL or by a user exit routine (DFSISIS0):

1. RACF and DBCTL

This check has two parts:

– RACF checks whether the userid supplied in the JOB statement of the
CICS startup job (or in the started procedure table), or BMP JCL, is
authorized to access the AGN supplied by CICS or the BMP during the
connect request.

– If the above check is successful, DBCTL carries out the second part of
the check. This involves verifying that the supplied AGN is in the matrix
data sets used for this DBCTL startup.

2. User exit routine (DFSISIS0), which gives or refuses authorization by
setting the appropriate return code.

If you use DBCTL connect-time checking, you must also use DBCTL PSB
schedule-time checking. That is, you can use both of these checks, or
neither, but you cannot use only one of them.

See the IMS System Administration Guide or the IMS/ESA Administration
Guide: System for guidance on specifying security, and the IMS Utilities
Reference: Database manual manual for guidance on the security
maintenance utility.

� Checking at PSB scheduling time

This is completely unrelated to and independent of the PSB authorization
checking by CICS, which is described in “PSB authorization checking by CICS”
on page 117.

This check is carried out by DBCTL and involves verifying that the PSB belongs
to the AGN specified during the connection process.

118 CICS IMS Database Control Guide

Relationships between AGNs, PSBs, and DBCTL ID in security
checking

Figure 36 summarizes the relationships between AGNs, PSBs, and the DBCTL ID
in security checking.

DRA AGN= parameter
CICS BMP JOB EXEC parameters DBCTL

Connection of
interface

CICS A AGN=01 (DFSISIS or RACF)

PSB1 CICSA AGN01
PSB2 CICSB AGN02
. BMP AGN03
. . .

. .

CICS B AGN=02
PSB schedule

PSB2 time
PSB3
. PSB 1 AGN01
. PSB 2 AGN01
. PSB 2 AGN02

PSB 3 AGN02
PSB 4 AGN03
. .

BMP AGN=03 . .

PSB4

Figure 36. Relationships between AGNs, PSBs and DBCTL ID in security checking

The two levels of security mean that if a new PSB is introduced, there are two
kinds of table that you must update:

� The RACF table that defines the CICS PSB resource class
� The security management utility AGN definition.

If the AGN is changed in the DRA startup parameter table, update the following
tables:

� The RACF table that defines the AGN resource class
� The security management utility AGN definition

Parameters for DBCTL resource access security
You specify the kind of security checking you want by using either the DBCTL
system generation macro SECURITY or the DBCTL startup parameter ISIS. See
the IMS System Definition Reference manual manual or IMS/ESA Installation
Volume 2: System Definition and Tailoring for further guidance on this parameter.

For guidance on the RACF aspects of implementing DBCTL security, see the
Resource Access Control Facility (RACF) Security Administrator’s Guide.

 Chapter 8. Security checking with DBCTL 119

DBCTL password security checking
You can protect DBCTL against unauthorized /LOCK and /UNLOCK commands for
certain PSBs (referred to as “programs” in the IMS publications) and databases by
establishing passwords for these PSBs and databases. The IMS security
maintenance utility is used to place the definitions needed into DBCTL’s matrix data
sets:

)(PROGRAM PSB11

 PASSWORD PWP11

)(PROGRAM PSB12

 PASSWORD PWP12

)(DATABASE DB21

 PASSWORD PWD21

)(DATABASE DB22

 PASSWORD PWD22

Note: The parentheses shown in the above example are used by the security
maintenance utility to recognize input commands.

Security considerations for using BMPs with DBCTL
In most cases, PSB authorization checking by CICS provides sufficient security.
The fact that CICS and DBCTL run in the same MVS image, and that the
connection parameters (in the DRA startup table) have to be in an authorized
library should usually allow you enough control over the connection process, and
you will not need to implement the DBCTL security checking described in
“Resource access security checking by DBCTL” on page 117. However, these
considerations do not apply if you are using BMPs with DBCTL. To provide security
control for BMPs, use DBCTL resource access security checking. This is because
DBCTL resources, such as PSBs, can be accessed by programs that operate in
dependent regions. To MVS, these dependent regions are normal MVS jobs that
anyone can initiate using the MVS job entry subsystem. This means that a user
who is not authorized to access a database using a RACF-protected CICS
transaction could access that database by submitting a BMP region with the correct
parameters in the EXECUTE statement. (See “Making DBCTL resources available”
on page 67 for information on starting BMP JCL using a DBCTL operator
command.)

Migration considerations for security with DBCTL
Before migrating, review the security facilities available and decide which ones you
want to use in a CICS-DBCTL environment—in particular, whether you need to use
the additional DBCTL checks.

Security migration scenarios
Figure 37 and Figure 38 on page 121 show considerations for migrating
installations that already use PSB security checking.

120 CICS IMS Database Control Guide

CICS PSB authorization checking
Figure 37 shows migration from a CICS system with local DL/I to a CICS system
with DBCTL. In this situation, you can retain all existing security-related definitions.

C I C S

L o c a l D L / I
D B C T L

D a t a b a s e s D a t a b a s e s

C I C S

Figure 37. CICS with local DL/I to CICS with DBCTL

Figure 38 shows migration from a multiregion operation (MRO) installation with a
CICS database-owning region (DOR) and local DL/I to DBCTL, which replaces local
DL/I and the DOR. If you already use PSB security checking in the CICS
application-owning regions (AORs), you do not need any security-related changes.

C I C S A O R C I C S A O R C I C S A O R C I C S A O R

C I C S D O R

L o c a l D L / I

D B C T L

D a t a b a s e s D a t a b a s e s

Figure 38. MRO installation with CICS DOR with DBCTL replacing local DL/I

 Chapter 8. Security checking with DBCTL 121

Figure 39 shows PSB RACF checking being done in the CICS DOR.

C I C S A O R 1

n o P S B R A C F c h e c k i n g

C I C S A O R 2

n o P S B R A C F c h e c k i n g

C I C S D O R

w i t h P S B R A C F c h e c k i n g

L o c a l

D L / I

D a t a b a s e

Figure 39. Local DL/I environment—PSB RACF checking in CICS DOR

If you want this kind of checking after replacing the DOR with DBCTL, it must be
done in the CICS AORs that use DBCTL, as shown in Figure 40.

C I C S A O R 1

w i t h P S B R A C F c h e c k i n g

C I C S A O R 2

w i t h P S B R A C F c h e c k i n g

D B C T L D a t a b a s e

Figure 40. DBCTL environment—PSB RACF checking in CICS AOR

Decide whether you want to keep your previous setup with respect to grouping
PSBs, and using or not using prefixes.

Review the CICS system initialization parameters SEC, XPSB, and PSBCHK for
each CICS AOR. Depending on any changes you make to these parameters, you
may also need to change the corresponding RACF definitions (CDT class names,
RDEFINE, and PERMIT).

DBCTL resource access security checking
Follow the steps below only if you have decided to use the additional DBCTL
checks.

1. DBCTL system generation

Select the appropriate macros and parameters:

 � IMSGEN PSWDSEC=...

 � SECURITY TYPE=...,PASSWD=...,RCLASS=...

2. Application group name (AGN)

For multiple CICS systems connected to DBCTL, first decide whether you want
to use the same, or different, AGNs.

Specify the appropriate AGN in the DRA startup parameter table for each
CICS, or by a BMP JCL parameter (AGN=).

3. Allocate MATRIX data set, and

If you want to use online change, you must also define MATRIXA and
MATRIXB.

122 CICS IMS Database Control Guide

For further guidance on space calculations, see the section on establishing IMS
security in the IMS System Administration Guide or the IMS/ESA Administration
Guide: System.

4. Define AGNs and their PSBs using the IMS security maintenance utility,
DFSISMP0.

Note that you can run DFSISMP0 only after DBCTL system generation has
completed.

5. For password security checking, define the PSBs (or programs) and/or
databases and the passwords to be used with /LOCK and /UNLOCK in the
MATRIX data set.

6. Specify the value of the DBCTL startup parameter ISIS. Values are as follows:

ISIS=ð - no checks

ISIS=1 - checks using RACF

ISIS=2 - checks using an installation exit (DFSISISð)

 RACF preparations
1. CICS P/QCICSPSB definitions.

� CICS with local DL/I to CICS with DBCTL (Figure 37 on page 121)—no
modifications required.

� MRO installation with CICS DOR with DBCTL replacing local DL/I
(Figure 38 on page 121)—depending on whether you decided to
differentiate or not, you may have to adjust the RDEFINEs and PERMITs
accordingly.

2. Specify RDEFINE for AGNs in RACF CLASS AIMS.

3. Specify PERMIT for CICS USERIDs.

Before CICS or a BMP can connect to DBCTL, the USERID from the JOB
statement of the CICS startup job or the BMP JCL must be authorized to
access its AGN.

4. You may want to write a simple program to list existing RACF profiles for
PCICSPSB and QCICSPSB and construct the control statements needed for
the IMS security maintenance utility. The group structure for PSBs within RACF
(QCICSPSB) will probably be the same as that required within DBCTL AGN
groups, plus the additional groups needed for BMPs.

 Chapter 8. Security checking with DBCTL 123

124 CICS IMS Database Control Guide

Chapter 9. Problem determination for DBCTL

This chapter contains Diagnosis, Modification, or Tuning information.

This discussion of problem determination with DBCTL is placed under these
headings:

� “Interactions between CICS and DBCTL”

� “DBCTL error scenarios” on page 126

� “Trace” on page 129

� “Dumps” on page 140

� “Messages” on page 143

� “Using CICS EDF to debug application programs in DBCTL” on page 146

In a CICS-DBCTL environment, you need to correlate information produced by the
CICS system with information produced by the DBCTL system. This information
includes:

� Trace entries produced by CICS and DBCTL
� Dumps produced by CICS, the DRA, and DBCTL
� Messages produced by CICS, the DRA, and DBCTL

The link between CICS and DBCTL in all the above cases is the recovery token. It
appears in trace entries, in dumps (including the dump header), and in messages
issued by CICS and DBCTL.

See the CICS Problem Determination Guide for more detailed help on dealing with
problems, beginning from symptoms through to identification and solution. For
detailed component descriptions of DBCTL, which you may find useful in
debugging, see the CICS Diagnosis Reference. See the CICS Messages and
Codes manual for help on interpreting, and suggested responses to, messages and
abend codes that are issued by the CICS system. See the IMS Messages and
Codes manual manual for similar guidance on messages and abend codes issued
by the DRA and by DBCTL.

Interactions between CICS and DBCTL
Errors can occur at any of the following stages in a CICS-DBCTL environment.

Interactions between CICS and DBCTL at the interface level
� Connection to DBCTL.

See “Connection to DBCTL has failed to complete” on page 126.

� Disconnection from DBCTL. (This includes intentional operator-requested
disconnection, and unintentional disconnections caused by failures of the
system, or parts of the CICS-DBCTL interface.)

See “Disconnection from DBCTL has failed to complete” on page 127.

 Copyright IBM Corp. 1989, 1999 125

Interactions between CICS and DBCTL caused by requests
� Requests that are issued by applications:

– Waits or failures during PSB scheduling.

See “Failures during PSB scheduling” on page 128.

– Waits or failures during the processing of a DL/I request.

See “Failures during DL/I request processing” on page 128.

� Requests that are issued as a result of task termination, including syncpoint
processing:

– Failures during PREPARE processing
– Failures during COMMIT processing (TERM call or task termination)
– Failures during resynchronization of UOWs

In all these cases, see “Thread termination” on page 138.

DBCTL error scenarios
The headings that follow describe a number of DBCTL error situations and tell you
how to go about solving them.

Connection to DBCTL has failed to complete
In this situation, the DRA may be in a “wait” state because you attempted to
connect CICS to DBCTL using the CDBC transaction, but the connection process
failed to complete.

Connection to DBCTL using the CICS-supplied transaction CDBC takes place in
two phases. In phase 1, CDBC passes the request for connection to IMS and
returns. In phase 2, IMS processes the request asynchronously and returns to
CICS when connection is complete. To discover where the problem occurred, try to
find out how far the connection attempt has progressed by:

� Pressing PF2 on the CDBC menu panel to refresh this display, as described in
“CDBC transaction for connect and disconnect” on page 48; or

� Using the CDBI inquiry panel, as described in “CDBI transaction for inquiry” on
page 52.

If connection is in phase 1, the following message is issued:

DFHDB8291 I DBCTL CONNECT PHASE 1 IN PROGRESS

It is very unlikely that a wait will occur during this phase, unless there is a problem
with the CICS transaction.

If connection is in phase 2, the following message is issued:

DFHDB8292 I DBCTL CONNECT PHASE 2 IN PROGRESS

126 CICS IMS Database Control Guide

If phase 2 fails to complete, the failure is associated with IMS. This may be
because:

� The DRA startup table is pointing to the wrong system because the DBCTL
subsystem ID is incorrect. If this is so, CICS issues a WTO message saying:

SUBSYSTEM xxxx NOT ACTIVE. REPLY WAIT OR CANCEL

where xxxx is the subsystem ID indicated on the CDBC panel.

See “Defining the IMS DRA startup parameter table” on page 39 for
information on specifying the DBCTL subsystem ID.

� DBCTL has been initialized, but no restart command has been issued.
Remember that DBCTL needs a restart command unless you are using AUTO
start. See “Connection to DBCTL” on page 45 and “Restarting DBCTL” on
page 74 for information on restarting DBCTL and on the implications of
different restart options.

If neither of the above situations applies, the problem is in IMS; see the IMS
Diagnosis Guide and Reference manual manual for further guidance.

For an example of the trace entries produced by CICS for a successful connection
to DBCTL, see “Connection to DBCTL” on page 130.

Disconnection from DBCTL has failed to complete
In this case, the DRA may be in a wait state because you attempted to disconnect
CICS from DBCTL using the CDBC transaction, but the disconnection process
failed to complete.

For an example of the trace entries produced by CICS for a successful
disconnection from DBCTL, see “Disconnection from DBCTL” on page 133.

When you use CDBC to disconnect from DBCTL, it invokes another CICS
transaction, CDBT. CDBT makes the disconnection request to DBCTL, and is
suspended by CICS while DBCTL services the request asynchronously.

If disconnection fails to complete, you can inquire on CDBT using CEMT INQ TASK
to see how far disconnection has progressed. You will probably find CDBT is
waiting on resource name DLSUSPND and resource type DBCTL, which means the
request is being processed by DBCTL. For an illustrated example, see the
description of CEMT INQ TASK in “Purging a transaction that is using DBCTL” on
page 68.

� If CDBT is waiting on DLSUSPND, what you do next depends on whether the
disconnection requested was orderly or immediate. (Use the CDBI inquiry
panel, as described in “CDBI transaction for inquiry” on page 52, if you need to
find out.)

– If you have requested orderly disconnection, it is likely that DBCTL is
waiting for a task issuing many DL/I requests, or for a conversational task,
perhaps one that is waiting for input from an unattended terminal.

You can, if necessary, override an orderly disconnection by requesting
immediate disconnection, in which case the process should conclude at
once. However, be aware that immediate disconnection can cause
in-doubt UOWs, and leave database records unavailable to other CICS

 Chapter 9. Problem determination for DBCTL 127

systems using that DBCTL until it is reconnected, as described in “Deciding
whether to use orderly or immediate disconnection” on page 51.

– If you have requested immediate disconnection, and it has not taken place,
it is likely that an unexpected wait within IMS has occurred. See the IMS
Diagnosis Guide and Reference manual manual for further guidance.

� If CDBT is not waiting on DLSUSPND, this indicates a problem in CICS. See
the CICS Problem Determination Guide for information on dealing with it.

Failures during PSB scheduling
For examples of trace entries produced by CICS during PSB scheduling (both
successful and failed), see “PSB schedule” on page 135 and “PSB scheduling
failure” on page 136.

Use the DBCTL operator command /DISPLAY as follows:

� /DISPLAY PROGRAM psbname to check that the ACB is valid. A status of
“invalid” means that the PSB was not defined during IMS system generation. A
status of “notinit” means that the ACB is not in the ACBLIB. A status of
“stopped” means an error has caused DBCTL to stop the PSB, or that a /STOP
command has been issued for the PSB. Investigate the cause of this error.
When resolved, use /START PROGRAM psbname to start the PSB again.

� /DISPLAY DATABASE dbname to check that the databases are valid.

Failures during DL/I request processing
The DRA may have entered a “wait” state because you have a CICS task in a wait
state.

For an example of the trace entries produced by CICS during DL/I request
processing, see “CICS task issuing DL/I requests to be processed by DBCTL” on
page 137. For an example of the trace entries produced by DBCTL during DL/I
request processing, see “Trace entries produced by DBCTL” on page 138.

If a task appears to have “hung,” query it using CEMT INQ TASK, as for any CICS
task. If you have a task waiting on a resource name of DLSUSPND and resource
type DBCTL, the task has made a DL/I request and has been suspended in CICS
while DBCTL services that request. If repeated use of CEMT INQ TASK shows the
task still waiting on DLSUSPND, it has “hung” in DBCTL. If you want to purge the
task, you must use DBCTL operator commands to do so. See “Purging a
transaction that is using DBCTL” on page 68 for an illustrated example of using
CEMT INQ TASK and the relevant DBCTL operator commands in this way.

If the task is not waiting on DLSUSPND, this may indicate a problem in CICS. See
the CICS Problem Determination Guide for information about dealing with it.

Correlating activity in DBCTL and CICS
Using the /DISPLAY command to display DBCTL activity and the CEMT INQ TASK
to display CICS activity are useful means of correlating what is happening on each
side of the interface. Check to see that the recovery token matches in CICS and
DBCTL. If it does not, this may indicate a thread hanging. /DISPLAY CCTL ALL
displays all the threads associated with CICS tasks in DBCTL. If you enter
/DISPLAY ACTIVE ALL, region and DC activity is also displayed, enabling you to
find out if a BMP is waiting in DBCTL.

128 CICS IMS Database Control Guide

 Trace
When examining traces entries produced by CICS and DBCTL, you need to relate
them according to whether they are produced at the same time in CICS and in
DBCTL, or at different times. You also need to know how to find the relevant parts
of each trace and use them to correlate what is happening in CICS and in DBCTL.

Trace entries produced by CICS
Use the CICS-supplied transaction CETR to trace DBCTL activity. CETR traces
DL/I requests until they leave DFHDBAT. See the CICS Supplied Transactions
manual for information on using CETR.

The sections that follow give examples of CICS trace entries produced at the
following points:

� “Connection to DBCTL” on page 130
� “Disconnection from DBCTL” on page 133
� “PSB schedule” on page 135
� “PSB scheduling failure” on page 136
� “CICS task issuing DL/I requests to be processed by DBCTL” on page 137
� “Thread termination” on page 138

These trace examples were produced using abbreviated auxiliary trace with file
control level 1 trace points selected. You will probably find this amount of
information sufficient. If it is not, selecting file control level 2 will give you more
details on, for example, entry to and exit from DFHDBAT and DFHERM.

See the CICS Problem Determination Guide for details of the general format of
CICS trace entries, how to select trace options for component and task tracing,
whether to use “standard” or “special” tracing, and how to start and stop tracing
selectively. Trace point IDs are listed in the CICS Diagnosis Reference. See the
CICS Operations and Utilities Guide for help on formatting and printing trace
entries, including a sample job you can use to do so.

The numbers in the margin to the left of the example traces point to things that you
may find useful in correlating CICS and DBCTL activity, but please note that these
additional numbers are not part of the trace output. Also note that we have omitted
some trace entries for brevity. This is indicated by the following symbol:

 .

 .

 Chapter 9. Problem determination for DBCTL 129

Connection to DBCTL
Figure 41 shows an example of the CICS trace entries produced when CICS
connects to DBCTL.

1 .

 .

2 ððð28 1 AP ððE1 EIP ENTRY LINK ððð4,ð73ð1464,ð8ðððEð2

ððð28 1 PG 11ð1 PGLE ENTRY LINK_EXEC DFHDBCON,ð73ð1ð88 , ðððððð14

ððð28 1 DD ð3ð1 DDLO ENTRY LOCATE ð6Dð8F8ð,ð73ð1698,PPT,DFHDBCON

ððð28 1 DD ð3ð2 DDLO EXIT LOCATE/OK D7D7E3C5 , ð6D89858

ððð28 1 LD ððð1 LDLD ENTRY ACQUIRE_PROGRAM ð6D8BF5ð

 .

 .

3 ððð28 1 XM 11ð1 XMAT ENTRY ATTACH CDBO,ð73ð2E38 , ððððððð4,ð,NONE,C,NO,YES,NO,ð

ððð28 1 XM ð4ð1 XMLD ENTRY LOCATE_AND_LOCK_TRANDEF CDBO

ððð28 1 DD ð3ð1 DDLO ENTRY LOCATE ð6Dððð4ð,ð73ð3314,TXD,CDBO

ððð28 1 DD ð3ð2 DDLO EXIT LOCATE/OK ð6D86B78 , D7ðððððð

 .

 .

4 ððð28 1 LD ððð1 LDLD ENTRY ACQUIRE_PROGRAM DFHDBSPX,YES

ððð28 1 LD ððð2 LDLD EXIT ACQUIRE_PROGRAM/OK 87ðAðð2ð,ð7ðAðððð

 .

 .

5 ððð28 1 AP ððE1 EIP ENTRY ENABLE ððð4,ð73ð2AD4 ...M,ð8ðð22ð2

 .

6 1CICS/ESA - AUXILIARY TRACE FROM ð7/2ð/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.714486ððð2

 .

7 ððð28 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)

ððð28 1 AP ð31ð DBAT ENTRY APPLICATION REQUEST

8 ððð28 1 AP ð314 DBAT EVENT DRA-ROUTER-LOAD , LOAD-RESPONSE-CODE (ðððððððð)

9 ððð28 1 AP ð315 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR INTERFACE REQUEST , ð1ðð

1ð ððð28 1 AP ð316 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR INTERFACE REQUEST , ðððððððð

ððð28 1 AP ð313 DBAT EXIT DBAT-RESPONSE-CODE (ðððððððð)

11 ððð28 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)

ððð28 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)

12 ððð28 1 ME ð3ð1 MEME ENTRY SEND_MESSAGE 1FB4,ð73D642C , ððððððð4,ð73D5ð6ð , ððððððð2,DB

ððð28 1 ME ð5ð1 MEIN ENTRY INQUIRE_MESSAGE_DATA 86BB5AEð,DFHMET1E,1FB4,ð73ð39CD , ðððððððð , ðððððð1C,ð73ð3967 , ðððððððð

ððð28 1 KE ð1ð1 KETI ENTRY INQ_LOCAL_DATETIME_DECIMAL

ððð28 1 KE ð1ð2 KETI EXIT INQ_LOCAL_DATETIME_DECIMAL/OK ð72ð1995,ð95757,ð97993,MMDDYYYY

ððð28 1 KE ð4ð1 KEGD ENTRY INQUIRE_KERNEL

ððð28 1 KE ð4ð2 KEGD EXIT INQUIRE_KERNEL/OK CICSKPG1,CIA1

ððð28 1 ME ð5ð2 MEIN EXIT INQUIRE_MESSAGE_DATA/OK ð6BB5D7C,ð6BC5Eð7,ð6BC5E1D,ð6BC5E7C,,I,ð95757,2ðð71995,M,CIA1,CICSKPG1

ððð28 1 ME ð312 MEME EVENT ISSUE-MVS-GETMAIN

ððð28 1 ME ð313 MEME EVENT MVS-GETMAIN-COMPLETE

13 ððð28 1 DU ð5ðð DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8116

ððð28 1 DU ð6ðð DUTM ENTRY INQUIRE_SYSTEM_DUMPCODE DB8116

ððð28 1 DU ð6ð1 DUTM EXIT INQUIRE_SYSTEM_DUMPCODE/EXCEPTION DUMPCODE_NOT_FOUND,ð,ð,,,,

ððð28 1 DU ð5ð1 DUDT EXIT INQUIRE_SYSTEM_DUMPCODE/EXCEPTION DUMPCODE_NOT_FOUND,ð,ð,,,,

ððð28 1 ME ð4ð1 MEBU ENTRY BUILD_MESSAGE ð6BC5Eð7,ð6BB5D7C,2ðð71995,M,ð95757,CIA1,CICSKPG1,ð73ð369D , ððððððð9,ð73

ððð28 1 ME ð4ð2 MEBU EXIT BUILD_MESSAGE/OK ð

ððð28 1 ME FF35 MEFO ENTRY -FUNCTION(FORMAT_MESSAGE) ð698B39ð , ðððððð6F,1,78,ð73ð39EB , ððððððð1,YES

ððð28 1 ME FF36 MEFO EXIT -FUNCTION(FORMAT_MESSAGE) OK

14 ððð28 1 AP F6ðð TDA ENTRY WRITE_TRANSIENT_DATA CDBC,ð73ð39FB , ððððððð1,NO

 .

 .

15 ððð28 1 DU ð5ðð DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB821ð

 .

 .

16 ððð28 1 DU ð5ðð DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8292

 .

17 .

ððð38 1 DS ððð5 DSSR EXIT WAIT_MVS/OK

18 ððð38 1 AP ð3ð6 DBCT EVENT POSTED FOR CONNECTION COMPLETE

19 ððð38 1 ME ð3ð1 MEME ENTRY SEND_MESSAGE 1FA5,ð698B24ð , ððððððð4,ð73D5ð6ð , ððððððð2,DB

 .

 .

ððð38 1 DU ð5ðð DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB81ð1

 .

 .

2ð ððð38 1 GC 2ð1ð CCCC ENTRY WRITE ðð1ð8194 , ððððððð8,DBCTL,STATUS

 .

 .

ððð38 1 GC 2ð5ð CCCC EXIT WRITE/OK

21 ððð38 1 PG ðAð1 PGLU ENTRY LINK_URM DFHDBUEX,ðð1ð81Fð , ðððððððB,NO

ððð38 1 DD ð3ð1 DDLO ENTRY LOCATE ð6Dð8F8ð,ðð1ð822ð,PPT,DFHDBUEX

ððð38 1 DD ð3ð2 DDLO EXIT LOCATE/OK D7D7E3C5 , ð6D89A5ð

 .

 .

22 ððð38 1 AP ðð64 USER EVENT APPLICATION-PROGRAM-ENTRY CONNECT DBCTL HAS JUST BEEN CONNECTED

 .

 .

ððð38 1 AP 1941 APLI EXIT START_PROGRAM/OK,DFHDBUEX

ððð38 1 LD ððð1 LDLD ENTRY RELEASE_PROGRAM ð732B45ð,86D5Bð28

ððð38 1 LD ððð2 LDLD EXIT RELEASE_PROGRAM/OK ð6D5Bððð,3A8,ECDSA

ððð38 1 PG ðAð2 PGLU EXIT LINK_URM/OK

ððð38 1 AP ððE1 EIP ENTRY RESYNC ððð4,ðð1ð87C4 ..gD,ð8ðð16ð4

Figure 41. CICS trace entries produced during connection to DBCTL 1 of 2

130 CICS IMS Database Control Guide

22 ððð38 1 AP ðð64 USER EVENT APPLICATION-PROGRAM-ENTRY CONNECT DBCTL HAS JUST BEEN CONNECTED

 .

 .

ððð38 1 AP 1941 APLI EXIT START_PROGRAM/OK,DFHDBUEX

ððð38 1 LD ððð1 LDLD ENTRY RELEASE_PROGRAM ð732B45ð,86D5Bð28

ððð38 1 LD ððð2 LDLD EXIT RELEASE_PROGRAM/OK ð6D5Bððð,3A8,ECDSA

ððð38 1 PG ðAð2 PGLU EXIT LINK_URM/OK

ððð38 1 AP ððE1 EIP ENTRY RESYNC ððð4,ðð1ð87C4 ..gD,ð8ðð16ð4

 .

 .

23 ððð38 1 AP E161 EXEC EXIT RESYNC 'DBCTL ' AT X'ð713Fð62','JB1A ' AT X'8698B27ð',AT X'ðððððððð',ð AT X

ððð38 1 AP E111 EISR EXIT TRACE_EXIT/OK

ððð38 1 AP ððE1 EIP EXIT RESYNC OK ððF4,ðððððððð,ðððð16ð4

ððð38 1 AP ððE1 EIP ENTRY SYNCPOINT ððð4,ðð1ð87C4 ..gD,ð8ðð16ð2

 .

 .

ððð38 1 AP E161 EXEC EXIT SYNCPOINT ð,ð,ASM,ð949ðððð

 .

 .

24 ððð28 1 ME ð3ð1 MEME ENTRY RETRIEVE_MESSAGE 2ð65,ððð55ðA7 , ðððððððð , ðððððð33,E,DB

ððð28 1 ME ð5ð1 MEIN ENTRY INQUIRE_MESSAGE_DATA 86BB5AEð,DFHMET1E,2ð65,ð73ð1F95 , ðððððððð , ðððððð1C,ð73ð1F2F , ðððððððð

 .

 .

ððð28 1 ME ð5ð2 MEIN EXIT INQUIRE_MESSAGE_DATA/OK ð6BB5D7C,ð6BC7416,ð6BC742C,ð6BC744D,I,,ð95759,2ðð71995,M,CIA1,CICSKPG1

ððð28 1 DU ð5ðð DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8293

Figure 42. CICS trace entries produced during connection to DBCTL 2 of 2

Notes:

1. Phase 1 of connection begins.

2. Locating DFHDBCON and loading if not already loaded. (In this example, CICS
and DBCTL have already been connected during this CICS session, so
DFHDBCON has already been loaded.)

3. The control transaction, CDBO, is attached. CDBO enables the DRA to pass
information from itself and DBCTL independently of CICS. It is invoked
whenever the DRA needs to determine whether to continue processing, which
is when:

� The DRA has successfully connected to DBCTL
� DBCTL has been terminated normally using /CHECKPOINT FREEZE or

/CHECKPOINT PURGE
� Connection to DBCTL has failed
� A CICS request to connect to DBCTL has been canceled
� The DRA fails

 � DBCTL fails

4. Loading programs needed: DFHDBSPX (shown in example), plus DFHDBCX,
DFHDBMOX, DFHDBREX, DFHDBSTX, DFHDBSSX, DFHDBTOX, and
DFHDBAT.

5. DFHDBCON enables DFHDBAT.

6. A timestamp is included in the header line of every page of CICS abbreviated
auxiliary trace output to help you match trace entries with external events.

7. DFHERM invokes DFHDBAT for connection request.

8. DRA router module DFSPRRC0 loaded.

9. DRA is invoked for interface request. The type of interface request is indicated
by request type from the PAPL—0100 is a CONNECT request. (See “PAPL
request and return codes” on page 145.)

10. DBCTL return code (00000000). See “Return codes in DBCTL” on page 144.

11. Control is passed back to DFHERM.

12. Phase 1 of connection has ended at this point. Message DFHDB8116 is issued
confirming that connection is proceeding. The message includes the DBCTL
identifier and the DRA suffix used.

 Chapter 9. Problem determination for DBCTL 131

13. When a message has been issued, the CICS dump domain checks to see if
the user has requested any action for that message (using the CEMT SET
SYDUMPCODE, as described in the CICS Supplied Transactions manual or the
EXEC CICS SET SYSDUMPCODE commands, as described for programming
purposes in the CICS System Programming Reference manual). (In this case,
no dump has been requested, as indicated by DUMPCODE_NOT_FOUND.)
However, when you are using abbreviated trace, entries such as
INQUIRE_SYSTEM_DUMPCODE DB8116 (in which the system dump code is
the message number without the characters “DFH”) are useful in indicating
which messages have been issued. (Complete message numbers are included
in full trace.)

14. Message DFHDB8116 is sent to transient data destination CDBC.

15. Message DFHDB8210 is issued confirming that connection to DBCTL is
proceeding.

16. Message DFHDB8292 is issued indicating that CICS is in phase 2 of
connecting to DBCTL.

17. At this point, DBCTL exits are loaded, which causes I/O activity. The task is
suspended, and the control transaction, CDBO, starts. This is indicated by the
task number changing (from 00031 to 00032). Control transaction enters a
series of waits. CDBO invokes the CICS-DBCTL interface control program
(DFHDBCT).

18. DBCTL notifies CICS that CICS-DBCTL connection is complete.

19. Message DFHDB8101 is issued.

20. A record is written to the global catalog, indicating which DBCTL should be
reconnected to if there is a CICS failure. (See “Program list table (PLT)” on
page 27 and “Connecting DBCTL to CICS automatically” on page 46.)

21. DFHDBUEX, the CICS-supplied user replaceable program for use with DBCTL,
is linked. Trace entries following invocation of DFHDBUEX depend on what you
have coded in your own version. (See “DFHDBUEX” on page 43.)

22. In this example, the user has coded DFHDBUEX to issue a trace entry stating
that DBCTL has just been connected.

23. CICS issues an EXEC CICS RESYNC command to resynchronize any
outstanding DBCTL in-doubt UOWs. (See Chapter 6, “Recovery and restart
operations for DBCTL” on page 73.)

24. Control transaction waits have ended—task number changes back again (from
00032 to 00031). Message DFHDB8293 is issued confirming that DBCTL is
connected and ready.

132 CICS IMS Database Control Guide

Disconnection from DBCTL
Figure 43 shows some examples of CICS trace entries produced at disconnection
from DBCTL.

1 1CICS/ESA - AUXILIARY TRACE FROM ð7/2ð/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.714486ððð2

 .

2 .

ððð47 1 AP ððE1 EIP ENTRY START ððð4,ð73ð1464,ð8ðð1ðð8

3 ððð47 1 XM ð4ð1 XMLD ENTRY LOCATE_AND_LOCK_TRANDEF CDBT

ððð47 1 DD ð3ð1 DDLO ENTRY LOCATE ð6Dððð4ð,ð73ð182ð,TXD,CDBT

ððð47 1 DD ð3ð2 DDLO EXIT LOCATE/OK ð6D86C1ð , D7ðððððð

 .

 .

4 ððð47 1 DU ð5ðð DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8211

 .

 .

5 ððð47 1 DU ð5ðð DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8294

 .

 .

6 ððð48 1 PG ð9ð1 PGPG ENTRY INITIAL_LINK DFHDBDSC

 .

 .

7 ððð48 1 AP ððE1 EIP ENTRY ADDRESS ððð4,ððð5Bð1ð,ð8ððð2ð2

 .

 .

8 ððð48 1 PG ðAð1 PGLU ENTRY LINK_URM DFHDBUEX,ððð5BðC4 , ðððððððB,NO

ððð48 1 DD ð3ð1 DDLO ENTRY LOCATE ð6Dð8F8ð,ððð5B3A4,PPT,DFHDBUEX

ððð48 1 DD ð3ð2 DDLO EXIT LOCATE/OK D7D7E3C5 , ð6D89A5ð

ððð48 1 LD ððð1 LDLD ENTRY ACQUIRE_PROGRAM ð732B45ð

ððð48 1 LD ððð2 LDLD EXIT ACQUIRE_PROGRAM/OK 86D5Bð28,ð6D5Bððð,3A8,ð,REUSABLE,ECDSA,OLD_COPY

9 ððð48 1 AP 194ð APLI ENTRY START_PROGRAM DFHDBUEX,NOCEDF,FULLAPI,URM,NO,ð73ð9828,ððð5BðC4 , ðððððððB,2

 .

 .

ððð48 1 AP ðð65 USER EVENT APPLICATION-PROGRAM-ENTRY DISCONN DBCTL HAS JUST BEEN DISCONNECTED

 .

 .

1ð ððð48 1 LD ððð1 LDLD ENTRY RELEASE_PROGRAM ð732B45ð,86D5Bð28

ððð48 1 LD ððð2 LDLD EXIT RELEASE_PROGRAM/OK ð6D5Bððð,3A8,ECDSA

ððð48 1 PG ðAð2 PGLU EXIT LINK_URM/OK

ððð48 1 AP 252ð ERM ENTRY APPLICATION-CALL-TO-TRUE(DBCTL)

 .

 .

ððð48 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)

ððð48 1 AP ð31ð DBAT ENTRY APPLICATION REQUEST

11 ððð48 1 AP ð315 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR INTERFACE REQUEST , ð4ðð

12 ððð48 1 AP ð3ð4 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR DISCONNECTION REQUEST

ððð48 1 DS ððð4 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,ððð5B444,NO,OTHER_PRODUCT

ððð48 1 DS ððð5 DSSR EXIT WAIT_MVS/OK

ððð48 1 AP ð3ð5 DBSPX EVENT POSTED FOR DISCONNECTION REQUEST

13 ððð48 1 AP ð316 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR INTERFACE REQUEST , ðððððððð

 .

 .

14 ððð48 1 ST ððð3 STST ENTRY RECORD_STATISTICS ð72F7618 , ðððððð54,USS

 .

 .

ððð48 1 ST ððð4 STST EXIT RECORD_STATISTICS/OK

ððð48 1 AP ð313 DBAT EXIT DBAT-RESPONSE-CODE (ðððððððð)

ððð48 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)

ððð48 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)

15 ððð48 1 GC 2ð1ð CCCC ENTRY WRITE ððð5BðBC , ððððððð8,DBCTL,STATUS

16 .

 .

ððð48 1 DS ððð4 DSSR ENTRY WAIT_MVS ASYNRESP,CCVSAMWT,ð6C8D5Cð,NO,IO

ððð38 1 DS ððð5 DSSR EXIT WAIT_MVS/OK

17 ððð38 1 AP ð3ð6 DBCT \EXC\ EVENT POSTED FOR DFHDBCT SHOULD TERMINATE

ððð38 1 AP ððE1 EIP ENTRY START ððð4,ðð1ð87C4 ..gD,ð8ðð1ðð8

 .

 .

ððð38 1 XM ð4ð1 XMLD ENTRY LOCATE_AND_LOCK_TRANDEF CDBD

ððð38 1 DD ð3ð1 DDLO ENTRY LOCATE ð6Dððð4ð,ð73ðCð78,TXD,CDBD

ððð38 1 DD ð3ð2 DDLO EXIT LOCATE/OK ð6D86918 , D7ðððððð

 .

 .

ððð38 1 AP ððF3 ICP ENTRY INITIATE CDBD 4ðð3,ðððððððC,ðððððððð,CDBD

 .

 .

18 ððð49 1 LD ððð1 LDLD ENTRY RELEASE_PROGRAM DFHDBSSX,8711A91ð

ððð49 1 LD ððð2 LDLD EXIT RELEASE_PROGRAM/OK

 .

 .

ððð49 1 ME ð5ð2 MEIN EXIT INQUIRE_MESSAGE_DATA/OK ð6BB5D7C,ð6BC56B8,ð6BC56CE,ð6BC571ð,,I,1ððð11,2ðð71995,M,CIA1,CICSKPG1

19 ððð49 1 DU ð5ðð DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB81ð2

Figure 43. CICS trace entries produced during disconnection from DBCTL

Notes:

1. Timestamp, as mentioned in “Connection to DBCTL” on page 130.

2. Phase 1 of disconnection begins at this stage.

3. The CICS-DBCTL interface disconnection transaction, CDBT, is attached.

4. Message DFHDB8211 is issued to confirm that orderly disconnection is
proceeding. This message is issued in response to the user pressing PF5 on
the CDBC screen. (For an immediate disconnection, message DFHDB8212 is
issued.)

 Chapter 9. Problem determination for DBCTL 133

5. Message DFHDB8294 is issued confirming that orderly disconnection is in
progress. (If immediate disconnection had been requested, message
DFHDB8295 would have been issued.)

6. CDBT invokes CICS-DBCTL interface disconnection program, DFHDBDSC. A
wait is entered (task number changes, from 00034 to 00035).

7. The EXEC interface program, DFHEIP, links to the CICS-DBCTL
user-replaceable program, DFHDBUEX.

8. DFHDBUEX is loaded.

9. Trace entries at this point depend on what, if anything, you have coded in your
own version of DFHDBUEX. (See “DFHDBUEX” on page 43.) In this example,
DFHDBUEX has been coded to issue a trace entry stating that DBCTL has just
been disconnected.

10. DFHDBUEX is released and control is passed back to DFHDBDSC.

11. The DRA is invoked for an interface request. (PAPL request type 0400
indicates the request is a DISCONNECT. See “PAPL request and return codes”
on page 145.)

If there is DL/I activity at the time of the disconnect, and the disconnect is
orderly (not immediate) DFHDBAT links to DFHDBSPX (the CICS-DBCTL
suspend exit) to wait for all DL/I activity to complete. In this example, there was
no DL/I activity at the time the disconnect was issued.

12. The DRA links to DFHDBSPX to cause the CICS task to wait while the DRA
processes the disconnect request.

13. DBCTL return code (00000000). (See “Return codes in DBCTL” on page 144.)

14. Statistics for this session are recorded. (See “DBCTL statistics” on page 148.)

15. DFHDBDSC writes a record to the CICS global catalog, to indicate that CICS is
no longer connected to DBCTL.

16. Phase 2 of disconnection begins.

17. DFHDBDI’s associated transaction, CDBD, runs and disables DFHDBAT to
make it unavailable. (The transaction number changes from 00035 to 00032.)

18. Programs loaded at startup are disabled. This example shows DFHDBSPX. A
complete trace should also include similar entries for other programs loaded at
startup, as listed in “Connection to DBCTL” on page 130.

19. Message DFHDB8102 is issued confirming that disconnection from DBCTL is
complete.

134 CICS IMS Database Control Guide

 PSB schedule
Figure 44 shows an example of some CICS trace entries produced at PSB
schedule time.

 .

 .

1 1CICS/ESA - AUXILIARY TRACE FROM ð7/2ð/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.714486ððð2

 .

 .

ððð39 1 AP ððE1 EIP ENTRY CALLDLI ððð4,ðð182718,ðððð4ððð .. .

2,3 ððð39 1 AP ð328 DLI ENTRY FUNCTION_CODE(PCB) ðððC7526,TDLRA1

 .

 .

ððð39 1 AP ð33ð DLIDP ENTRY DBCTL

 .

 .

ððð39 1 AP 252ð ERM ENTRY APPLICATION-CALL-TO-TRUE(DBCTL)

 .

 .

ððð39 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)

ððð39 1 AP ð31ð DBAT ENTRY APPLICATION REQUEST

4,5 ððð39 1 AP ð311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CAð1,ð3ð1

6 ððð39 1 AP ð3ð4 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST

ððð39 1 DS ððð4 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,ð732ðð1C,NO,OTHER_PRODUCT

ððð39 1 DS ððð5 DSSR EXIT WAIT_MVS/OK

ððð39 1 AP ð3ð5 DBSPX EVENT POSTED FOR THREAD REQUEST

4,7 ððð39 1 AP ð312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CAð1,ðððððððð

ððð39 1 AP ð313 DBAT EXIT DBAT-RESPONSE-CODE (ðððððððð)

ððð39 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)

 .

 .

ððð39 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)

ððð39 1 AP ð331 DLIDP EXIT DBCTL

ððð39 1 AP ð329 DLI EXIT IMS_PCB_FORMAT ðððð,ðððð,PCB

8 ððð39 1 AP ððE1 EIP EXIT CALLDLI OK ððF4,ðððððððð,ðððð4ððð .. .

Figure 44. CICS trace entries produced for successful PSB schedule

Notes:

1. Timestamp, as mentioned in “Connection to DBCTL” on page 130.

2. DL/I command or call type—PCB indicates a schedule request using the DL/I
call interface.

3. PSB name (TDLRA1).

4. Recovery token (C3C9C3E2D2D7C7F1AB6538123994CA01).

5. The DRA is invoked for a thread request—0301 is a PSB schedule request.
(See “PAPL request and return codes” on page 145.)

6. DFHDBAT must wait, because the request has entered IMS code.

7. The DFHDBAT wait ends and DBCTL return code (00000000) is issued. The
DBCTL return code is 00000000 because the PSB was successfully scheduled.
See Figure 45 on page 136 for an example of the DBCTL return code in the
case of a PSB scheduling failure. See “Return codes in DBCTL” on page 144
for an explanation of DBCTL return codes.

8. 00 in the UIBFCTR, and 00 in the UIBDLTR (underscored in this example)
indicate that the PSB was scheduled successfully. See “PSB scheduling failure”
on page 136 for an example of the contents of these fields, PSB scheduling
fails. See “Summary of abends and return codes” on page 114 for information
on the UIBFCTR and UIBDLTR.

 Chapter 9. Problem determination for DBCTL 135

PSB scheduling failure
Figure 45 shows an example of the trace entries produced if PSB scheduling fails.

1 1CICS/ESA - AUXILIARY TRACE FROM ð7/2ð/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.714486ððð2

 .

 .

ððð64 1 AP ððE1 EIP ENTRY CALLDLI ððð4,ðð182718,ðððð4ððð .. .

2,3 ððð64 1 AP ð328 DLI ENTRY FUNCTION_CODE(PCB) ðððC8946,TXLRA1

 .

 .

ððð64 1 AP ð33ð DLIDP ENTRY DBCTL

 .

 .

ððð64 1 AP 252ð ERM ENTRY APPLICATION-CALL-TO-TRUE(DBCTL)

 .

 .

ððð64 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)

ððð64 1 AP ð31ð DBAT ENTRY APPLICATION REQUEST

4,5 ððð64 1 AP ð311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB654BD5E4Fð7Eð4,ð3ð1

6 ððð64 1 AP ð3ð4 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST

ððð64 1 DS ððð4 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,ð732ðð1C,NO,OTHER_PRODUCT

ððð64 1 DS ððð5 DSSR EXIT WAIT_MVS/OK

ððð64 1 AP ð3ð5 DBSPX EVENT POSTED FOR THREAD REQUEST

ððð64 1 AP ð312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB654BD5E4Fð7Eð4,88ððð1AC

ððð64 1 AP ð313 DBAT EXIT DBAT-RESPONSE-CODE (ðððððððð)

ððð64 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)

ððð64 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)

ððð64 1 ME ð3ð1 MEME ENTRY SEND_MESSAGE 1FAD,ððð5123ð , ððððððð4,ðð11F5Dð , ððððððð5,ðð11F5D5 , ððððððð8,ðð11F3CC

ððð64 1 ME ð5ð1 MEIN ENTRY INQUIRE_MESSAGE_DATA 86BB5AEð,DFHMET1E,1FAD,ð73ð17ED , ðððððððð , ðððððð1C,ð73ð1787 , ðððððððð

 .

 .

7 ððð64 1 DU ð5ðð DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB81ð9

 .

 .

ððð64 1 AP ð331 DLIDP EXIT DBCTL

8 ððð64 1 AP ð329 DLI EXIT IMS_PCB_FORMAT ð8ð5,ðððð,PCB

ððð64 1 AP ððE1 EIP EXIT CALLDLI OK ððF4,ðððððððð,ðððð4ððð .. .

Figure 45. CICS trace entries produced for failed PSB schedule

Notes:

1. Timestamp, as explained in “Connection to DBCTL” on page 130.

2. DL/I command or call—PCB indicates a schedule request using the DL/I call
interface.

3. PSB name (TXLRA1).

4. Recovery token (C3C9C3E2D2D7C7F1AB654BD5E4F07E04).

5. The DRA is invoked for a thread request—0301 is a PSB schedule request.
(See “PAPL request and return codes” on page 145.)

6. The reason for the PSB scheduling failure is in the DBCTL return code
(880001AC). In this case, it is X'1AC', indicating an IMS user abend U0428
(decimal), which was issued because the PSB was not defined to DBCTL.

7. Message DFHDB8109 is issued. It contains the IMS user abend, the recovery
token, and the DBCTL ID. (For an example and explanation of how messages
are displayed in abbreviated trace, see “Connection to DBCTL” on page 130.)

8. 0805 (underscored in this example) indicates that a PSB scheduling failure has
occurred. 08 is in the UIBFCTR, and 05 in the UIBDLTR. (See “Summary of
abends and return codes” on page 114 for information on the UIBFCTR and
UIBDLTR.)

136 CICS IMS Database Control Guide

CICS task issuing DL/I requests to be processed by DBCTL
Figure 46 shows an example of CICS trace entries produced when a DL/I request
is issued. For an example of trace entries produced by DBCTL for processing of a
DL/I request, see “Trace entries produced by DBCTL” on page 138.

1 1CICS/ESA - AUXILIARY TRACE FROM ð7/2ð/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.714486ððð2

ððð4ð 1 AP ððE1 EIP ENTRY CALLDLI ððð4,ðð183718,ðððð4ððð .. .

2,3 ððð4ð 1 AP ð328 DLI ENTRY FUNCTION_CODE(GU) ððð1A8AC,DLIDBDR

ððð4ð 1 AP ð33ð DLIDP ENTRY DBCTL

ððð4ð 1 AP 252ð ERM ENTRY APPLICATION-CALL-TO-TRUE(DBCTL)

ððð4ð 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)

ððð4ð 1 AP ð31ð DBAT ENTRY APPLICATION REQUEST

4,5 ððð4ð 1 AP ð311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB653817A31F9ððð,ð3ð3

ððð4ð 1 AP ð3ð4 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST

ððð4ð 1 DS ððð4 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,ð7395ð1C,NO,OTHER_PRODUCT

ððð41 1 DS ððð5 DSSR EXIT WAIT_MVS/OK

ððð41 1 AP ð3ð5 DBSPX EVENT POSTED FOR THREAD REQUEST

4,6 ððð41 1 AP ð312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB653817A6C966ðð,ðððððððð

ððð41 1 AP ð313 DBAT EXIT DBAT-RESPONSE-CODE (ðððððððð)

ððð41 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)

ððð41 1 RM ð3ð1 RMLN ENTRY SET_LINK ð1ð5ðððð,ð73D69D4 , ðððððððð , ððððððð8,NECESSARY,

ððð41 1 RM ð3ð2 RMLN EXIT SET_LINK/OK

ððð41 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)

ððð41 1 AP ð331 DLIDP EXIT DBCTL

7 ððð41 1 AP ð329 DLI EXIT IMS_PCB_FORMAT ðððð,ðððð,PCB

ððð41 1 AP ððE1 EIP EXIT CALLDLI OK ððF4,ðððððððð,ð ððð4ððð .. .

Figure 46. CICS trace entries produced for a DL/I request

Notes:

1. Timestamp, as mentioned in “Connection to DBCTL” on page 130.

2. DL/I command or call—GU indicates a GET UNIQUE request. (See “Comparing
EXEC DLI commands and DL/I calls” on page 109 and “DL/I requests
supported” on page 110.)

3. DBD name (DLIDBDR).

4. Recovery token (C3C9C3E2D2D7C7F1AB653817A31F9000). 3

5. The DRA is invoked for a thread request—0303 is a DL/I request. (See “PAPL
request and return codes” on page 145.)

6. DBCTL return code (00000000). (See “Return codes in DBCTL” on page 144.)

7. Status code in the DIBSTAT (underscored in this example) is 0000, indicating
that the request was successful. See “Summary of abends and return codes”
on page 114 for the contents of DIBSTAT in the case of an unsuccessful
request.

 Chapter 9. Problem determination for DBCTL 137

 Thread termination
Figure 47 shows example trace entries produced during PREPARE, COMMIT, and
TERMINATE request processing. See “Two-phase commit” on page 79 for a
description of PREPARE and COMMIT request processing.

 .

 .

1 1CICS/ESA - AUXILIARY TRACE FROM ð7/2ð/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE ð9:59:ð9.129947625ð

2 ððð39 1 AP 252ð ERM ENTRY SYNCPOINT-MANAGER-CALL-TO-TRUE(DBCTL)

ððð39 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)

ððð39 1 AP ð31ð DBAT ENTRY SYNCPOINT-MANAGER REQUEST

3,4 ððð39 1 AP ð311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CAð1,ð3ð4

ððð39 1 AP ð3ð4 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST

ððð39 1 DS ððð4 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,ð732ðð1C,NO,OTHER_PRODUCT

ððð39 1 DS ððð5 DSSR EXIT WAIT_MVS/OK

ððð39 1 AP ð3ð5 DBSPX EVENT POSTED FOR THREAD REQUEST

3,5 ððð39 1 AP ð312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CAð1,ðððððððð

ððð39 1 AP ð313 DBAT EXIT DBAT-RESPONSE-CODE (ððððððð4)

ððð39 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)

ððð39 1 AP 2521 ERM EXIT SYNCPOINT-MANAGER-CALL-TO-TRUE(DBCTL)

 .

 .

ððð39 1 AP 252ð ERM ENTRY SYNCPOINT-MANAGER-CALL-TO-TRUE(DBCTL)

ððð39 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)

ððð39 1 AP ð31ð DBAT ENTRY SYNCPOINT-MANAGER REQUEST

3,6 ððð39 1 AP ð311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CAð1,ð3ð7

ððð39 1 AP ð3ð4 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST

ððð39 1 DS ððð4 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,ð732ðð1C,NO,OTHER_PRODUCT

 .

 .

ððð39 1 DS ððð5 DSSR EXIT WAIT_MVS/OK

ððð39 1 AP ð3ð5 DBSPX EVENT POSTED FOR THREAD REQUEST

3,5 ððð39 1 AP ð312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CAð1,ðððððððð

ððð39 1 MN ð2ð1 MNMN ENTRY MONITOR 1,DBCTL,732ðð9ð,1ðð

ððð39 1 MN ð2ð2 MNMN EXIT MONITOR/OK

3,7 ððð39 1 AP ð311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CAð1,ð3ðF

ððð39 1 AP ð3ð4 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST

ððð39 1 DS ððð4 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,ð732ðð1C,NO,OTHER_PRODUCT

 .

 .

ððð39 1 DS ððð5 DSSR EXIT WAIT_MVS/OK

ððð39 1 AP ð3ð5 DBSPX EVENT POSTED FOR THREAD REQUEST

3,5 ððð39 1 AP ð312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CAð1,ðððððððð

ððð39 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)

8 ððð39 1 AP 2521 ERM EXIT SYNCPOINT-MANAGER-CALL-TO-TRUE(DBCTL)

Figure 47. CICS trace entries produced during thread termination after DL/I request

Notes:

1. Timestamp, as mentioned in “Connection to DBCTL” on page 130.

2. Enters syncpoint manager.

3. Recovery token (C3C9C3E2D2D7C7F1AB6538123994CA01).

4. The DRA is invoked for a thread request—0304 is a PREPARE request. See
“PAPL request and return codes” on page 145.

5. DBCTL return code (00000000), one for each of the requests PREPARE,
COMMIT, and TERMINATE THREAD.

6. The DRA is invoked for a thread request—0307 is a COMMIT request. See
“PAPL request and return codes” on page 145.

7. The DRA is invoked for a thread request—030F is a TERMINATE THREAD
request. See “PAPL request and return codes” on page 145.

8. Leaves syncpoint manager. (See “Return codes in DBCTL” on page 144.)

Trace entries produced by DBCTL
In DBCTL, tracing is started by specifying an option in member DFSVSMxx in the
IMS.PROCLIB (where xx is the suffix specified by VSPEC= in the DBCTL startup
JCL). See the IMS System Definition Reference manual manual or IMS/ESA
Installation Volume 2: System Definition and Tailoring for guidance on the
DFSVSMxx member. Alternatively, you can start tracing dynamically with the
/TRACE command. (See the IMS Operator’s Reference manual for guidance on the
/TRACE command and its keywords.)

138 CICS IMS Database Control Guide

In DBCTL, you can start PI tracing in the DFSVSMxx member of the
IMS.PROCLIB, as explained above. Alternatively, you can start PI tracing in DBCTL
by issuing the command:

/TRACE SET ON PI

DBCTL produces an external trace when DL/I requests are issued to be processed
by DBCTL. This trace corresponds to the CICS trace for a DL/I request being
processed by DBCTL, as shown in Figure 46 on page 137. (DBCTL does not
produce any external traces that correspond with the other CICS trace examples
given.)

Figure 48 shows an example of the trace records produced when you use the DL/I
trace table. To start the DL/I trace table, DLI=ON must have been specified in the
DFSVSMxx member of IMS.PROCLIB. Specifying DLI=ON also enables program
isolation and lock trace. For guidance on specifying DLI=ON, see the IMS System
Definition Reference manual manual or IMS/ESA Installation Volume 2: System
Definition and Tailoring. Alternatively, you can start DL/I tracing dynamically using
the /TRACE command, as follows:

/TRACE SET ON TABLE DL/I

For a more detailed example, see the IMS Operator’s Reference manual, example
8.

AC070E87 D9E3D2D5 00000000 00000000 C3C9C3E2 E6D2D8F1 A031BB3E D5863000

Recovery token
Not used

Eyecatcher RTKN

Trace sequence number

PST number

x'AC' database call analyzer entry

Figure 48. X'AC' trace entry

The DBCTL trace entry shown in Figure 48 includes:

� X'AC'—the database call analyzer entry, which is only present for DBCTL.

� The partition specification table (PST) number. The PST number is equivalent
to a particular DL/I thread number, as displayed using the /DISPLAY command,
and can be used to find all DBCTL trace records for a particular thread. (For an
example of a thread number being displayed, see “Purging a transaction that is
using DBCTL” on page 68.)

� The trace sequence number.

� An “eyecatcher” recovery token. This is the actual characters “RTKN,” used to
draw attention to the recovery token in the same line, and is the same in every
X'AC' entry.

� The recovery token that is passed from CICS via DFHDBAT.

 Chapter 9. Problem determination for DBCTL 139

You can print and format the above data using the IMS/ESA file select and
formatting print utility, DFSERA10. You would typically print and format several log
types, plus the X'AC' records to enable you to correlate the DBCTL activity with
your CICS trace for a DL/I request.

Printing and formatting IMS X'67FA' log records
Figure 49 shows an example of JCL and DD statements that you can use to print
and format IMS X'67FA' log records. For further examples, see the IMS Utilities
Reference: Database manual manual.

//LOGPRINT JOB 1,PGMERID,MSGCLASS=A,MSGLEVEL=(1,1),

// CLASS=A

//ERA1ð EXEC PGM=DFSERA1ð,REGION=4ð96K

//STEPLIB DD DISP=SHR,DSN=IMS.RESLIB

//SYSPRINT DD SYSOUT=\,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=133ð)

//LOGIN DD DISP=SHR,DSN=IMS.SLDS.OLDSðð

//SYSIN DD \

CONTROL CNTL DDNAME=LOGIN

OPTION PRINT OFFSET=5,FLDLEN=2,VALUE=67FA,COND=E,EXITR=DFSERA6ð

END

/\

//

Figure 49. Example JCL to print and format IMS '67FA' log records

The output should contain the following:

� The request type.

� The recovery token, plus an eyecatcher (GRTKN) to indicate presence of the
recovery token, which includes the CICS APPLID.

� The database name.

See the IMS Utilities Reference: Database manual manual for examples of
formatted DL/I trace tables.

 Dumps
The headings that follow describe dumps produced by CICS, the DRA, and DBCTL.

CICS transaction dump
This dump is produced whenever a CICS task terminates abnormally. For a
CICS-DBCTL task, that is, a task which has issued a DFHRMCAL request to
DFHDBAT, this dump includes:

� The CICS-DBCTL global and task local areas
� DFHDBAT’s global and task local areas

 � PCBs

The recovery token for the task at the point of abnormal termination appears in the
TCA (TCARTKN).

The EXEC CICS SET TRANDUMPCODE command and the CEMT SET
TRANDUMPCODE transaction enable you to change some of the values recorded
in entries in the transaction dump code table, to add new entries to the table, and

140 CICS IMS Database Control Guide

to remove existing entries from the table. For example, you can specify an action
for a particular CICS message, as mentioned in Figure 41 on page 130.

For information about transaction dump codes, and interpreting CICS dumps, see
the CICS Problem Determination Guide.

CICS system dump
This dump is produced when a CEMT PERFORM DUMP|SNAP or an EXEC CICS
DUMP SYSTEM command is issued, or when CICS abends. CICS specifies all
options when issuing this type of dump, for example, CSA and NUC. All MVS
control blocks appear in this type of dump, including those corresponding to any
subordinate TCBs. You can format and analyze this type of dump using the
interactive problem control system (IPCS). For guidance on using IPCS, see the
OS/390 MVS IPCS User's Guide.

The EXEC CICS SET SYSDUMPCODE command and the CEMT SET
SYSDUMPCODE transaction enable you to change some of the values recorded in
entries in the transaction dump code table, to add new entries to the table, and to
remove existing entries from the table. For example, you can specify an action for a
particular CICS message, as mentioned in Figure 41 on page 130.

For information about system dump codes, and interpreting CICS dumps, see the
CICS Problem Determination Guide.

Determining whether a problem is occurring in CICS or DBCTL
To help you determine whether a problem is occurring in DBCTL or CICS, examine
the CICS transaction or system dump. These dumps include indications of the point
at which DFHDBAT passes control to DBCTL and the point at which DBCTL
returns control to DFHDBAT. Correlating this with the time at which the problem
occurred should tell you whether it was in CICS or DBCTL.

Each page of auxiliary trace output also includes a timestamp, as mentioned in
“Connection to DBCTL” on page 130. These timestamps should also help you
correlate events in CICS with events in DBCTL.

DRA snap data set
The DRA’s snap data set is dynamically allocated to the CICS address space when
DBCTL is connected. The SYSOUT class used is determined by a parameter in the
DRA startup table. The DRA dumps its control blocks (those associated with its
own work unit and that of DBCTL) to this data set whenever a high order bit is set
in PAPLRETC. (The participant adapter parameter list (PAPL) is a part of the DRA.
For guidance on the PAPL and its contents, see the appropriate IMS/ESA
Customization Guide.) The high order bit is set on if a thread is terminating. It then
closes the snap file. The recovery token appears in the dump produced.

What is provided in a CICS dump
When a transaction abends or requests a dump, the following areas are written to
the CICS dump data set(s):

� The TCA representing the task.

� The CSA and CSA optional feature list (CSAOPFL) table. The CSAOPFL points
to DFHDLPDS, the CICS-DL/I interface parameter block.

 Chapter 9. Problem determination for DBCTL 141

� The internal trace table, if CICS trace was active.

� Any areas acquired.

Dumps produced by the DRA
DBCTL creates an SDUMP containing diagnostic information for a DL/I request
failure from CICS using the system dump data sets from the CICS job.

The DRA produces an SDUMP in the following situations:

� If the DRA fails
� If a thread fails
� If DL/I set a high order bit in PAPLRETC for a thread request

However, the DRA does not always take a dump if DL/I sets the high order bit
in PAPLRETC. If it does not, it sets the second high order bit on to indicate
this. For example:

– If PAPLRETC is 1000 0000 3 2 4 0 0 0, a dump was taken
– If PAPLRETC is 1000 1000 3 2 4 0 0 0, a dump was not taken

(See “Return codes in DBCTL” on page 144, “Using return codes to find out
what kind of dump has been produced” on page 144 and “PAPL request and
return codes” on page 145 for information on interpreting these return codes.)

An SDUMP is created in a terminate address space request or a terminate thread
request while running in DBCTL and under the DRA TCB.

An SDUMP contains:

� DBCTL address space

� DLISAS address space

� A storage list for the DRA area on the request

� Key 0 and key 7 CSA storage for the request processing

� MVS storage blocks—address space control block (ASCB), TCB, and RBS for
the failing DRA TCB

� The local system queue area (LSQA)

If the SDUMP request fails, a SNAP dump (which contains a subset of the
information in an SDUMP) is produced instead. (See “Return codes in DBCTL” on
page 144.) The SNAP contains the following subset of the information produced in
an SDUMP:

� MVS storage blocks—address space control block (ASCB), TCB, and RBS for
the failing DRA TCB

� A storage list for the DRA area on the request

Because the DRA runs in problem state, it cannot access other storage areas, such
as CSA or DBCTL storage. This may mean that the SNAP does not contain
enough information, and you may have to recreate the failure and use the DBCTL
address space dump.

See the IMS Diagnosis Guide and Reference manual manual for a further
comparison of the information produced in SDUMPs and SNAP dumps, which you
may find useful in diagnosis. The IMS Diagnosis Guide and Reference manual

142 CICS IMS Database Control Guide

manual also contains information on the IMS offline dump formatter (ODF) which
you can use to show the layout of IMS blocks referred to in these dumps.

Dumps produced by DBCTL
The formatted dump feature of IMS is available with DBCTL. This feature formats
the system, database, and data communication areas of IMS. It formats the control
blocks and data areas in an IMS region.

See the IMS Diagnosis Guide and Reference manual manual for guidance
information on the areas that are dumped.

Control blocks generated by DBCTL have an “eyecatcher” for visual identification.
For example:

� **SCD — system contents directory area
� **SSA — SAP and save area
� **DSP — dispatcher area.

The recovery token is included in dumps produced by DBCTL. Output is to the IMS
log.

 Messages
DBCTL-related messages fall into the following categories:

� Messages issued by the CDBC transaction and displayed on your screen.
These messages relate to the end user’s interaction with the transaction and
they do not appear on CSMT. Any CDBC type messages issued from the
initialization transaction, when it is running from the PLT during CICS startup,
are issued as writes-to-operator (WTOs).

� Messages that appear on the status line of the CDBC and CDBI transaction
screens.

CICS and IMS messages relating to CICS tasks that issue DL/I requests include
the recovery token. See also “Dealing with messages from DBCTL and CICS” on
page 71.

CICS messages relating to DBCTL begin with DFHDB81 or DFHDB82. CICS
messages relating to DBCTL with XRF begin with DFHDX83. See the CICS
Messages and Codes manual for help on interpreting, and responding to,
DFHDBnnnn and DFHDXnnnn messages.

All DBCTL-related messages are routed to a separate destination called CDBC. If
you prefer, you can direct them elsewhere (for example to CSMT).

You can suppress or reroute messages sent to transient data queues such as
CDBC. You can reroute from CDBC to a list of consoles, from CDBC to a different
transient data queue, or reroute console messages to CDBC. For programming
information on coding the CICS-supplied user exit used to re-route messages and
on the sample user exit provided to help you do so, see the CICS Customization
Guide.

Messages produced with DBCTL dumps and traces are sent to the DBCTL master
terminal operator. IMS messages begin with “DFS.” See the IMS Messages and

 Chapter 9. Problem determination for DBCTL 143

Codes manual manual for guidance on interpreting, and responding to, IMS
messages.

Return codes in DBCTL
When DBCTL responds to CICS with a return code, this can be an MVS system
abend code, an IMS user abend code, or a DBCTL return code. The return code
includes an indicator to help you determine what kind of abend it is. The DBCTL
return code (also known as the PAPLRETC) displayed in the CICS trace can
contain:

� An MVS system abend code
� A user abend code (also known as a pseudo abend code)
� A DBCTL return code (also known as a DBCTL DRA return code)

The return code is 4 bytes long and is in the following form:

H H S S S U U U

If the top bit (bit 0 of the HH byte) is set:

� SSS is a nonzero hexadecimal return code, for example:

1000 0000 3 2 4 0 0 0 324 (hex) system abend code = 804 (decimal)
MVS system abend

which indicates an MVS system abend code (as explained in the OS/390 MVS
System Codes), or

� UUU is a nonzero hexadecimal, for example:

1000 0000 0 0 0 3 4 D 34D (hex) IMS user abend code = 845 (decimal)
IMS user abend

which indicates a user abend code (as explained, for guidance, in the section on
user abend codes in the IMS Messages and Codes manual manual).

If the top bit (bit 0 of the HH byte) is not set, and the DBCTL return code in the
CICS trace is nonzero, then UUU is a DBCTL nonzero return code, for example:

0000 0000 0 0 0 0 3 0 30 (hex) DBCTL return code = 48 (decimal) DBCTL
return code

as explained, for guidance, in the DBCTL return codes section of the IMS
Messages and Codes manual manual.

Using return codes to find out what kind of dump has been
produced
The top byte of the return codes indicates whether a dump has been produced and,
if so, whether it is an SDUMP or a SNAP dump.

� X'80' means that an SDUMP or SNAP dump will be produced. (A SNAP dump
is produced if the SDUMP request fails.)

� X'84' means that a SNAP dump only is produced.

� X'88' and X'00' both mean that neither an SDUMP nor a SNAP dump is
produced.

144 CICS IMS Database Control Guide

See the IMS Messages and Codes manual manual for guidance on interpreting
IMS return codes and DBCTL return codes (also known as DRA return codes).
Messages issued by CICS also distinguish the kind of return code you are
receiving. See the CICS Messages and Codes manual for help on interpreting and
responding to CICS messages.

PAPL request and return codes
The trace examples given contain a number of 4-digit hexadecimal request codes
issued by the participant adapter parameter list (PAPL). These request codes are a
concatenation of a 2-digit PAPL function code and a 2-digit PAPL subfunction code.
For further guidance on the contents of the PAPL, see the appropriate IMS/ESA
Customization Guide.

Table 10 summarizes the PAPL request codes that are sent from CICS to the
DRA, and are displayed in CICS trace output as 4-digit request codes. See “Trace
entries produced by CICS” on page 129 for examples of traces containing these
request codes.

Table 11 on page 146 summarizes the PAPL return codes that are sent from the
DRA to CICS. CICS intercepts these return codes and displays them as
explanatory text in trace output.

Table 10. PAPL request codes

Event Request
code

Connection 0100

Disconnection 0400

Disconnection due to CICS failure 0404

PSB schedule 0301

DL/I request 0303

COMMIT request 0307

PREPARE request 0304

ABORT request 030D

Terminate thread 030F

COMMIT request during resynchronization 0201

ABORT request during resynchronization 0202

Lost because CICS was initial started before resynchronization 0203

DBCTL should not be in-doubt 0204

 Chapter 9. Problem determination for DBCTL 145

Table 11. PAPL return codes

Event Return
code

Connection complete 0500

Identify failure 0501

Connection request (DRA INIT) canceled in reply to DFS690 message 0502

DBCTL has terminated abnormally 0503

The DRA has terminated abnormally 0504

/CHECKPOINT FREEZE or /CHECKPOINT PURGE command was issued
to terminate DBCTL normally

0505

Using CICS EDF to debug application programs in DBCTL
You can use the CICS execution (command-level) diagnostic facility (EDF), with
local and remote application programs that access databases controlled by DBCTL.
EDF supports the additional EXEC DLI commands and keywords that you can use
with DBCTL, and the additions to the DL/I interface block (DIB) mentioned in
“QUERY and REFRESH DBQUERY commands” on page 100.

However, a number of storage areas that resided in the CICS address space with
local DL/I are outside the CICS address space with DBCTL. These areas include
the PDIR, DDIR, the PSB pool, and the DMB pool. You cannot access these areas
using the WORKING STORAGE option of the CEDF transaction that invokes EDF.
Instead, you use the DBCTL operator command /DISPLAY (with the keywords
PSB, DBD, or POOL) to display the corresponding DBCTL information.

For information on using EDF, see the CICS Application Programming Guide.

146 CICS IMS Database Control Guide

Chapter 10. Statistics, monitoring, and performance for
DBCTL

This chapter contains the following sections:

� “Data available for a CICS-DBCTL system”

� “Monitoring DBCTL—transaction level data” on page 150

� “Tuning a CICS-DBCTL system” on page 158

Note: In CICS and IMS, the term statistics means data produced concerning
timing and resources used by the system as a whole over a specified period
of time. Additionally, in CICS, monitoring means data produced concerning
timing and resources used by a task or a logical unit of work (UOW). IMS
does not make this distinction—all data returned is referred to as statistics.
Here, we use the terms statistics and monitoring in the CICS sense.

For programming information on monitoring in CICS, see the CICS Customization
Guide. For information on statistics and on CICS performance and tuning, see the
CICS Performance Guide. For information on IMS performance and tuning, see the
IMS System Administration Guide or the IMS/ESA Administration Guide: System.

Data available for a CICS-DBCTL system
As with your CICS or IMS system, observing the performance of DBCTL involves
collecting and interpreting data gathered by various CICS and IMS performance
tools. The difference with DBCTL is that you need to keep an eye on events taking
place in separate address spaces. Figure 50 on page 148 gives an overview of
where DBCTL monitoring and statistics data is sent to and the tools you can use to
produce output from this data. The data and tools mentioned are described in the
sections that follow.

 Copyright IBM Corp. 1989, 1999 147

C I C S

m o n i t o r i n g

f a c i l i t y

r e p o r t s

C I C S

s t a t i s t i c a l

r e p o r t s

R M F

r e p o r t s

S L R

o u t p u t

I M S

m o n i t o r

o u t p u t

D F H $ M O L S D F H S T U P R M F S L R D F S U T R 2 0

u t i l i t y

M V S

C I C S D R A D B C T L

D F H M N D U P

S M F

I M S l o g

X ' 0 7 ' r e c o r d

X ' 0 8 ' r e c o r d

X ' 4 5 ' r e c o r d

I M S

m o n i t o r

d a t a s e t

Figure 50. Overview of DBCTL statistics and monitoring data

 DBCTL statistics
DBCTL supplies CICS with statistics information when CICS disconnects from
DBCTL. These are known as unsolicited statistics, because they are not
produced as part of normal internal processing, but are produced as a USS
statistics record. The statistics are written to SMF regardless of the status of
statistics recording.

CICS-DBCTL statistics are collected whenever DBCTL is disconnected as a result
of:

� An orderly or immediate disconnection of DBCTL
� An orderly termination of CICS

CICS-DBCTL statistics are not collected if there is an immediate shutdown or
abend of CICS.

148 CICS IMS Database Control Guide

When statistics are collected, the following happens:

1. The DRA returns statistics for the CICS-DBCTL session that has just ended to
DFHDBAT.

2. DFHDBAT invokes the CICS statistics exit for DBCTL statistics (DFHDBSTX).

3. DFHDBSTX invokes the CICS statistics domain.

4. The CICS statistics domain writes the statistics to the SMF data set.

CICS-DBCTL session statistics are contained in the DFHDBUDS DSECT, which
you can generate from the copybook DFHDBUDS. DFHDBUDS includes the
following information, which is returned from the DRA for that CICS session:

� DBCTL identifier for the CICS-DBCTL session (STATDBID).

� DBCTL recoverable service element (RSE) name (STARSEN). (For more
information about RSEs, see Chapter 6, “Recovery and restart operations for
DBCTL” on page 73.)

� Time CICS connected to DBCTL (STACTIME).

� Time CICS disconnected from DBCTL (STADTIME).

� Minimum number of threads specified in the DRA startup table (STAMITHD).

� Maximum number of threads specified in the DRA startup table (STAMATHD).

� Number of times that the CICS-DBCTL session “collapsed” threads down to the
minimum thread value specified in the DRA startup table (STANOMITHD).

� Number of times that the CICS-DBCTL session reached the maximum thread
value specified in the DRA startup table (STANOMATHD).

� Elapsed time, expressed in hours, minutes, and seconds, for which the
CICS-DBCTL session ran at the maximum thread value (STAELMAX).

� Largest number (also known as the “high-water mark”) of threads used during
the CICS-DBCTL session (STHIWAT).

� Total number of times this CICS-DBCTL session successfully scheduled a PSB
(STAPSBSU).

For information on DBCTL statistics see the CICS Performance Guide.

To extract and print a report from these statistics, run the CICS-supplied statistics
utility program (DFHSTUP), specifying the specific APPLID of the relevant CICS
system. The output will include CICS-DBCTL session statistics provided DBCTL
was connected to CICS when the statistics were collected. For information about
other parameters needed to run DFHSTUP, and a sample job stream you can use,
see the CICS Operations and Utilities Guide. Figure 51 shows an example of a
report produced by running DFHSTUP.

 Chapter 10. Statistics, monitoring, and performance for DBCTL 149

Unsolicited Statistics Report Collection Date-Time ð9/16/93-15:16:18 Last Reset 15:ð6:46 Applid IYAHZCD2 Jobname CI13JTD5

DBCTL SESSION TERMINATION STATISTICS

CICS DBCTL Session Number : 2

 DBCTL identifier : SYS2

DBCTL RSE name : DBCTLSY2

Time CICS connected to DBCTL : 15:14:ð2.85ð6

Time CICS disconnected from DBCTL : 15:16:18.3689

Minimum number of threads : 1

Maximum number of threads : 3

Times minimum threads hit : 1

Times maximum threads hit : 1

Elapsed time at maximum threads : ðð:ðð:ð9.4371

Peak number of threads : 3

Successful PSB schedules : 9

Figure 51. Example of CICS-DBCTL session statistics output

Note: The statistics report produced by running DFHSTUP (shown in Figure 51)
displays the times at which CICS connected to and disconnected from
DBCTL in hours, minutes, and seconds (hhmmss) format in local time. The
DBCTL USS record mapped by the DFHDBUDS DSECT contains the
connect and disconnect times as four 8-byte store clock (STCK) values.
These are: connect and disconnect time expressed in local time and
connect and disconnect time in Greenwich Mean Time (GMT).

CICS statistics that contain the number of DL/I requests by type, issued against
each DL/I database are not produced by CICS in the DBCTL environment. Instead,
DBCTL produces this type of information. You can obtain DBCTL buffer pool
utilization information from the DBCTL /DISPLAY command, or from the IMS log
records of type X'45'.

Monitoring DBCTL—transaction level data
Monitoring data for DBCTL is passed to CICS and IMS components. (See
Figure 50 on page 148.) See the CICS Operations and Utilities Guide for help on
switching monitoring on, and on printing and formatting the data.

DBCTL monitoring data returned to CICS
Monitoring data at the transaction level is passed back to CICS by DBCTL
whenever a TERM request occurs, either explicitly, or implicitly at the end of task
termination. The data is appended to the CICS monitoring facility performance
record of the issuing task. The data returned is as follows:

 � PSB name.

� Elapsed wait time for pool space. In a PSB schedule, when the pool space is
insufficient for PSB/DMB blocks, the schedule request is put on a wait queue.
The total wait time for it is in this field.

� Elapsed wait time for intent conflict. In a PSB schedule, when an intent conflict
is detected, the schedule request is put on a wait queue. The total wait time for
it is in this field.

� Elapsed time for the schedule request.

� Elapsed wait time for database I/O.

� Elapsed wait time for locking. The total wait time to get the PI locks which are
local segment level locks.

� Total number of database I/O counts.

150 CICS IMS Database Control Guide

� Number of DL/I requests for each of the following:

 Get unique
 Get next

Get next within parent
Get hold unique
Get hold next
Get hold next within parent

 Insert requests
 Delete requests
 Replace requests

� Total number of DL/I database requests.

� Number of test enqueues.

� Number of times requesting the PI locks on segments.

� Number of waits on test enqueues.

� Number of times requesting the PI locks on segments.

� Number of dequeues.

� Number of times PI locks are released.

� Number of update enqueues.

� Number of times the update locks are not available for a request and requires a
wait.

� Number of update dequeues.

� Number of times requesting the exclusive lock.

� Number of waits on exclusive enqueues.

� Number of times the exclusive locks are released.

� Number of exclusive dequeues.

� Number of times the exclusive locks are released.

 � DEDB statistics:

Number of DEDB requests
Number of DEDB I/Os
Number of overflow buffers used
Number of waits for DEDB buffer
Number of unit of work contentions

� Date of schedule start.

� Time of schedule start.

� Date of schedule end.

� Time of schedule end.

� Elapsed UOW CPUTIME for DRA thread (see note below).

Note: The elapsed CPUTIME field was introduced by IMS APAR PL83370. The
CPUTIME represents the time spent in the DRA Thread TCB from the time
the PSB is scheduled, to the time the PSB is terminated. CICS always
terminates the PSB at the end of the Unit of work (UOW). The CPUTIME
does not include any time spent in the DBCTL region.

 Chapter 10. Statistics, monitoring, and performance for DBCTL 151

Obtaining DBCTL monitoring data sent to CICS
DBCTL supplies CICS with monitoring data, which is then output to the CICS
monitoring domain in the following cases:

� When CICS receives the response to a PSB schedule request from DBCTL, it
checks whether this task has already been scheduled successfully to DBCTL. If
it has, CICS forces the monitoring data from the previous PSB schedule out;
that is, it writes the performance class record for the task and resumes
monitoring that task. If it has not been scheduled before, no monitoring
processing is done.

� When CICS receives a response from the DBCTL as a result of a COMMIT or
ABORT request, CICS outputs the monitoring data, but does not write it.

� In the case of the final PSB schedule for a task, the monitoring data is
automatically written at the end of a task.

To obtain the monitoring data that DBCTL returns to CICS, code two additional
event monitoring points (EMPs) in your CICS monitoring control table (MCT).
DBCTL EMPs can be found in CICSTS13.CICS.SDFHSAMP member DFH$MCTD.

For programming information on EMPs, and the format of monitoring records, see
the CICS Customization Guide.

When you have obtained the monitoring data, you can use monitoring tools such as
the CICS monitoring facility and the Service Level Reporter (SLR) with the data
supplied to tune your CICS-DBCTL environment. See the CICS Customization
Guide for programming information on using the CICS monitoring facility.

Service Level Reporter (SLR)
Service Level Reporter (SLR) is an IBM database and reporting program that
collects and analyzes data from CICS and other IBM systems and products. SLR
collects CICS data from CICS monitoring records and from a subset of CICS
statistics on the SMF log data set. It then analyzes the data, summarizes the
results, and stores the data in the SLR database.

The DBCTL data in the CICS monitoring records is output as one 256-byte block,
and is written by the EMP DBCTL.2, as defined in CICSTS13.CICS.SDFHSAMP
member DFH$MCTD. The DSECT for this 256-byte block of data is mapped by the
DFSDSTA macro in the IMS GENLIBs. The SLR tables CICSTRANSLOG and
CICSTRANSNUM contain the fields in this block.

During SLR installation, you must specify whether you want DBCTL data. For
guidance on the format of this data, see the description of the DFSDSTA macro in
the appropriate IMS/ESA Customization Guide. For information on SLR data in
CICS and IMS, see the CICS Performance Guide and the IMS System
Administration Guide or the IMS/ESA Administration Guide: System. For help on
using SLR, including examples of SLR reports and how to make use of them, see
the Service Level Reporter Version 3 General Information manual.

Note: There is a follow-on product to SLR, called Performance Reporter for MVS,
which has DB2 as a prerequisite. This product includes the functions that
are carried out by SLR. Performance Reporter for MVS CICS Performance
Feature Guide and Reference, SH19-6820, describes the way this product
works with CICS.

152 CICS IMS Database Control Guide

IMS monitor reports with DBCTL
This section summarizes DBCTL-related data in IMS monitor reports. (This
information also applies if your CICS system is connected to an IMS/ESA DM/TM
system to obtain DBCTL support.)

IMS monitor reports that apply to DBCTL
 � Call summary
 � Program I/O
� DB buffer pool
� VSAM buffer pool

 � Program summary

Note: In a DBCTL environment, interpret the terms “program” and “transaction” in
these reports as “PSB” and “PSB scheduling,” respectively.

IMS monitor reports that apply partially to DBCTL
 � Region summary
 � Region IWAIT

(An IWAIT occurs when a DBCTL request causes I/O activity. IWAIT time
denotes the time DBCTL spends waiting for IMS resources, in addition to the
number of I/Os.)

� Any other region based reports.

Note: In a DBCTL environment, interpret the term “region” in these reports as the
representation of a CICS thread or a BMP region in DBCTL, but beware
that a DBCTL region may represent different CICS threads or BMP regions
during a monitor run.

IMS monitor reports that do not apply to DBCTL
The following reports, related to transaction management and communication, do
not apply to DBCTL, and either do not appear, or are shown as headings without
any data:

 � Communication wait
 � Communication summary
 � Line functions
� Message format buffer pool
� Message queue pool
� MSC queuing summary

 � MSC summaries
 � MSC traffic

Data contained in relevant IMS monitor reports
This section tells you what kind of data you can find in the IMS monitor reports that
apply to DBCTL.

General wait time events
All threads built for a CICS system have the same job name as that CICS system.
They are shown in the jobnames for regions in the “General reports.”

 Chapter 10. Statistics, monitoring, and performance for DBCTL 153

 General reports
The “general reports” include the “Regions and jobname” report and the “Region
summary report.”

Regions and jobname report
Within a trace interval, a thread can be assigned to multiple CICS systems but it
can only be assigned to one CICS at any one time. So, depending on the number
of CICS systems connected to DBCTL, the regions and jobname report can show:

� One region with only one jobname.

� One region with multiple jobnames.

� Multiple regions with multiple jobnames where some regions have the same
jobname, and some have multiple jobnames.

� Multiple regions with only one jobname.

Any monitor report for a region is a summary for all connected CICS systems that
a thread has served during the trace interval. For example, the elapsed time of
schedule end to first call means the sum of this elapsed time for all CICS systems
that a thread has been assigned to during the trace interval.

Depending on the workload of a CICS system, a trace interval may be a relatively
short period of time, and thread switching between depending regions may not
occur very often. However, the more the workload fluctuates, the more frequently
threads are likely to be assigned amongst connected CICS systems.

Region summary report
A region summary report can show:

� Scheduling and termination , including:

– The time from PSB schedule request being received by DBCTL to when
the request is completed by DBCTL. This includes the time spent by
DBCTL allocating IMS resources and does not include any schedule time
spent in CICS or being processed by the DRA.

– The time from when a PSB unschedule request is received by DBCTL to
when the request is completed by DBCTL. This request could be an
unschedule PSB request, or a request imbedded in any synchronization
type terminate request, or a terminate thread request.

� Schedule to first call is the time from when DBCTL completed the PSB
schedule to when DBCTL received the first DL/I request. This time includes all
time spent processing in CICS, including application program, CICS itself, and
DRA processing. (Because CICS is the transaction manager, how and when its
own applications are loaded or scheduled cannot be interpreted by DBCTL in
the IMS monitor reports.)

� Elapsed execution is the time between the completion of the DBCTL PSB
schedule request and when DBCTL receives the PSB unschedule request. It
indicates the amount of time IMS resources were allocated to a CICS thread.

� Region occupancy is the ratio of the elapsed time when a thread is active
(that is, with IMS resources allocated) to the trace interval.

� DL/I calls is the time between DBCTL receiving the DL/I request and the
request being completed in DBCTL.

154 CICS IMS Database Control Guide

 Program summary
DBCTL does not process any messages. For the purpose of using the DC monitor
report, it counts each PSB schedule as one message dequeued. Because DBCTL
is not the transaction manager, it has to assume a one-to-one relation between a
CICS transaction and a PSB schedule. This is shown in program summary , where
the number of transactions dequeued is the same as the number of scheduled
requests. “Per transaction” means requests per schedule, and “elapsed time per
transaction” means elapsed time per schedule.

 Run profile
In run profile , the number of messages dequeued means the number of scheduled
PSBs and transactions per second means PSB schedules per second.

Transaction queuing report
This report can include a list of “transactions” for DBCTL. Each transaction name is
an 8-byte transaction ID specified by CICS on the schedule request. A transaction
ID from CICS comprises of a 4-byte CICS transaction name, plus a 4-byte CICS
identifier. If CICS does not specify a transaction ID, DBCTL takes the CICS region
ID, obtained at connection time. In this report, for DBCTL, the transaction “number
dequeued” means number of PSB schedules. The “on queue when scheduled” in
this report is always zero because the IMS message queues do not apply to
DBCTL.

For examples of IMS monitor reports and detailed guidance on interpreting their
contents, see the IMS Utilities Reference: Database manual manual.

Using the IMS monitor
DBCTL enables CICS users who do not have an IMS/VS DB/DC or
IMS/ESA/DM/TM system to use the IMS monitor online . The IMS monitor is the
main tool provided by IMS for monitoring. It collects data from the system while it is
running. It formats and records significant events during execution, and is useful in
tuning constrained systems.

Monitoring data is written to a separate data set or tape defined by the IMSMON
DD statement in the DBCTL JCL. To define this data set or tape and to run the IMS
monitor with DBCTL, add an IMSMON DD statement to your DBCTL JCL. For
further guidance on doing so, see the IMS System Definition Reference manual
manual or IMS/ESA Installation Volume 2: System Definition and Tailoring.

To allocate an IMSMON data set, use the IEFBR14 utility to allocate a data set
without any DCB parameters; for example:

//ALLOC EXEC PGM IEFBR14

//IMSMON DD DISP=(NEW,CATLG),UNIT=338ð,VOL=SER=xxxxxx,SPACE=(CYL,(5,5))

You can start and stop the IMS monitor dynamically using the /TRACE command
with the MON keyword. For example:

/TRACE SET ON MON ALL

gives you all the activity that the monitor collects. For guidance on using the
/TRACE command and its keywords more selectively, see the IMS Operator’s
Reference manual.

 Chapter 10. Statistics, monitoring, and performance for DBCTL 155

The IMS monitor has two phases:

� During the first phase, the monitor programs collect the data and store it on
either disk or tape.

� During the second, the data is retrieved from the data set, and is organized and
printed.

The data collected by the monitor (also known as DFSMNTR0) is organized and
printed by the IMS monitor report print program, DFSUTR20. See the IMS Utilities
Reference: Database manual manual for guidance on using the IMS monitor report
print utility, DFSUTR20, and for information on using the IMS monitor to identify
constraints.

DBCTL data returned to IMS log
In addition to the information returned to the monitor, as described in “IMS monitor
reports with DBCTL” on page 153, IMS writes some monitoring information to the
log records. This information is always recorded; you do not have to request it. IMS
appends the following information to the X'08' log records during scheduling .

� Total elapsed wait time due to intent conflict
� Total elapsed wait time due to pool space not being available
� Total elapsed time for a schedule request

IMS appends the following information to the X'07' log records at PSB
termination :

� Total number of databases used involved in I/O
� Total number of DL/I database requests
� Total elapsed wait time due to databases involved in I/O
� Total elapsed wait time due to locking
� Total number of gets
� Total number of inserts
� Total number of replace
� Total number of deletes

Program isolation trace
For full function DL/I databases, you can use the program isolation (PI) trace to get
records that indicate queueing activity taking place for program isolation. The PI
trace records are written to the IMS log. You can then print them using the IMS file
select and formatting utility. See the IMS System Administration Guide for further
guidance on using PI trace.

 DL/I trace
For full function databases, you can use DL/I trace with DBCTL by enabling the
DL/I trace table in the DFSVSMxx member or by issuing the /TRACE command, as
described in “Controlling tracing of DBCTL events” on page 63. Using the /TRACE
command enables you to turn DL/I trace on and off while the system is running.
Output is to the IMS log as type X'67FA' records. See the IMS Diagnosis Guide
and Reference manual manual for guidance on using DL/I trace for diagnosis, the
IMS Operator’s Reference manual for guidance on the commands needed to invoke
it, and the IMS Utilities Reference: Database manual manual for guidance on
printing its output.

156 CICS IMS Database Control Guide

Using the IMS log statistics utilities
You can use the following IMS log statistics utilities to process the information from
the IMS log. See “DBCTL data returned to IMS log” on page 156 for a list of the
data returned to the IMS log.

� File select and formatting print utility, DFSERA10, formats and prints selected
records from the IMS log data set. The active OLDS must have been archived
before you can access the log data. You normally specify the SLDS to
DFSERA10. You can also use DFSERA10 with the program isolation trace
record format and print module, DFSERA40, to format PI trace.

� DEDB log analysis utility, DBFULTA0, prepares statistical reports for DEDBs
based on data recorded on the IMS system log.

� IMS program isolation trace report utility, DFSPIRP0. If you use program
isolation (PI), you can use DFSPIRP0 with the IMS log to obtain information
about deadlocked tasks. DFSPIRP0 prints a report that shows only those
enqueue requests that required a wait because the resource was not
immediately available.

See the IMS Utilities Reference: Database manual manual for guidance on using
these utilities.

 Trace facilities
CICS trace facilities are intended primarily as debugging tools. However, because
they record all requests for CICS, you can use them to analyze the performance of
individual transactions. See Chapter 9, “Problem determination for DBCTL” on
page 125 for information on trace entries produced in a DBCTL environment. See
the CICS Problem Determination Guide for information about specifying CICS trace
parameters.

CICS auxiliary trace facility
The CICS auxiliary trace facility enables you to record trace entries on a separate
data set to be analyzed later. Trace entries are time-stamped and they can provide
very detailed information for analyzing constraints or other problems that may occur
while CICS is running. For examples of CICS auxiliary trace output, see “Trace
entries produced by CICS” on page 129.

However, consider carefully how often you need to use CICS auxiliary trace
because it generates a large volume of entries, which means that there may be a
considerable overhead if you run it all the time. Also, you may find it difficult to
make effective use of too large a volume of such data. See the CICS Performance
Guide for information on using auxiliary trace as a performance tool.

Additional performance tools
The following are additional performance tools that you may want to consider using
with DBCTL if you already have them or are considering adding them to your
system.

 Chapter 10. Statistics, monitoring, and performance for DBCTL 157

Generalized trace facility (GTF)
If you use the IRLM as your locking manager, you can use the generalized trace
facility (GTF) to provide a trace of its activity. It traces request handler request
completions, the PTB input/output buffers, and statistical data relevant to the IRLM.
You can print the records GTF produces offline. Output is collected in a data set
specified by its user in the GTF job. For guidance on using GTF, which you may
find of use in debugging, see the IMS Diagnosis Guide and Reference manual
manual.

MVS/ESA Resource Measurement Facility (RMF)
The MVS/ESA Resource Measurement Facility (RMF) is a measurement tool
designed to meet the needs of performance management in the large systems
environment that MVS/ESA supports. Its primary purpose is to reduce the amount
of system programmer time and expertise required to identify and to diagnose
system tuning problems. It is designed to monitor selected areas of system activity
and present the data collected in the form of SMF records and/or formatted reports.
Display reports are also available for some system activities. For more details, see
the CICS Performance Guide, and the Resource Measurement Facility User’s
Guide.

Tuning a CICS-DBCTL system
This section describes how you tune your CICS-DBCTL setup to make efficient use
of resources to help you reach performance objectives.

Performance parameters in CICS
System design considerations for CICS with DBCTL are similar to those that
applied to local DL/I. For example, do not allow excessive database accesses or
updates in a single UOW.

However, there are some differences.

The fact that DBCTL is structured to have one TCB per thread is an additional
consideration for CICS. This allows more concurrent processing, but you must be
aware of the need to specify minimum and maximum numbers of threads that are
consistent with your system’s needs. For more information, see “Specifying
numbers of threads” on page 159.

The storage specified in CICS system initialization parameters DSALIM and
EDSALIM is used for different resources in a CICS-DBCTL environment. DSALIM is
used to specify the upper limit of the total amount of storage within which CICS can
allocate the individual DSAs below the 16MB line. EDSALIM is used to specify the
upper limit of the total amount of storage within which CICS can allocate the
individual EDSAs above the 16MB line. Local uses DSA for PSB and DMB pools,
but with DBCTL, these blocks are stored outside CICS. Instead, you need to allow
for the storage DBCTL needs in CICS for DRA code when specifying DSALIM and
EDSALIM. This storage is allocated in the CICS region, but not from DSA or EDSA
storage. See the CICS System Definition Guide and the CICS Performance Guide
for information about specifying DSALIM and EDSALIM, and the IMS System
Administration Guide or the IMS/ESA Administration Guide: System for guidance on
DBCTL storage estimates.

158 CICS IMS Database Control Guide

Performance parameters in IMS
From an IMS point of view, tuning DBCTL is much like tuning an IMS system.
Additional considerations are DRA threads, described in “Specifying numbers of
threads,” and DEDBs, described in “DEDB performance and tuning considerations”
on page 161 .

Response time—assigning job dispatching priorities
| To minimize response times, we recommend that you assign a higher dispatching
| priority to the CICS address space than to the DBCTL address spaces (DBCTL,
| DLISAS, DBRC). Although CICS can be regarded as “front-end” to DBCTL, you
| should be aware that CICS also has to manage the network and the application
| environment for non-DLI transactions such as DB2 or VSAM. This means that it
| has very different CPU requirements from other front ends to DBCTL such as a
| BMP or a MPP. For example, when a CICS transaction is waiting for a response to
| a DBCTL request, CICS dispatches other CICS transactions.

| We recommend that if IRLM is assigned a priority of n, CICS should have a priority
| of n-1, DBCTL and DLISAS a priority of n-2, and DBRC a priority of n-3.

| For further guidance on assigning priorities, see the IMS System Administration
| Guide or the IMS/ESA Administration Guide: System.

Specifying numbers of threads
The DRA startup parameters MINTHRD and MAXTHRD specifies the minimum and
maximum numbers of threads that can process DBCTL DL/I or DEDB requests.
(See “Defining the IMS DRA startup parameter table” on page 39 for information on
DRA startup parameters.)

The IMS system generation parameter MAXREGN specifies the number of regions
(or threads), to be allocated at startup, that DBCTL can handle for all connected
CICS systems and BMPs. The number can increase dynamically, to a limit of 255,
as needed. (See “Generating DBCTL” on page 28 for information on system
generation parameters.)

The number you specify for MAXREGN should be no less than the sum of
MINTHRDs specified for active CICS systems, and for BMPs.

In Figure 52 on page 160, the following threads are in use: one from BMPA, one
from BMPB, five from CICSA and three from CICSB, making a total of 10 threads.
A MAXREGN of 10 has therefore been specified for DBCTLA.

 Chapter 10. Statistics, monitoring, and performance for DBCTL 159

CICSA 1
MINTHRD=5 2 1 BMPA
MAXTHRD=10 3 DBCTLA

4 MAXREGN=10
5

1
2 1 BMPB

CICSB 3
MINTHRD=3
MAXTHRD=10

Figure 52. Interaction of MAXREGN, MINTHRD, and MAXTHRD

The maximum number of threads you can specify in DBCTL is 255. One thread is
equivalent to one MVS TCB. The number you specify must be large enough for
your system’s needs, but if you specify a number that exceeds those needs, this
will have an adverse effect on the performance of the DRA. If you specify a
minimum thread value that is higher than your system’s actual minimum activity,
this will tie up threads unnecessarily, preventing DBCTL from allocating them to
other CICS systems or BMPs. If you specify a minimum thread value that is too
low, this can also affect performance; if the level of thread activity falls, this could
cause the DRA to release threads down to the minimum value. These threads
would then have to be reestablished if the thread requests increased again.

The number you specify for MAXTHRD should reflect what you consider to be the
peak load of DBCTL threads needed. The number of threads you specify will affect
performance. The larger the number you have preallocated, the more storage is
needed. However, if threads are preallocated, the time needed to allocate them on
demand is saved, thus improving response time and throughput. So, if your system
is storage constrained, specify a lower value for MINTHRD, and use MAXTHRD as
a “safety valve.” If response time and throughput are more important than storage
requirements, specify a higher number for MINTHRD so that more threads are
ready to be used.

Also bear DBCTL thread activity in mind when specifying the MXT system
initialization parameter. You use MXT to specify the maximum number of tasks that
CICS will allow to exist at any time. With DBCTL, MXT should be enough to allow
for the number specified in MINTHRD, plus the number you need for “standard”
CICS tasks. With DB2, there is no minimum number of threads. See the CICS
Performance Guide for general help on MXT.

To help you decide on the optimum values for minimum and maximum numbers of
DBCTL threads, monitor thread usage and IMS task throughput (to see if tasks are
being delayed), and IMS I/O rates. For details of thread statistics produced,
including maximum and minimum thread usage, see “DBCTL statistics” on
page 148. See “DBCTL data returned to IMS log” on page 156 for details of data
produced for monitoring IMS I/O rates. You can also use CICS auxiliary trace to
check for queueing for threads and PSBs.

160 CICS IMS Database Control Guide

DEDB performance and tuning considerations
If you use DEDBs, you must define the characteristics and usage of the IMS DEDB
buffer pool. You do this by specifying parameters (including DRA startup
parameters, as described in “Defining the IMS DRA startup parameter table” on
page 39) during IMS system definition or execution.

The main concerns in defining DEDB buffer pools are the total number of buffers in
the IMS region and how they are shared by CICS threads. You use the following
parameters on the IMS FPCTRL macro to define the number of buffers:

� DBBF—total number of buffers
� DBFX—number of buffers used exclusively for DEDB overflow threads

The number of buffers available for the needs of CICS threads is the number
remaining when you subtract the value specified for DBFX from DBBF. In this
discussion, we have assumed a fixed number for DBFX. DBBF must therefore be
large enough to accommodate all BMPs and CICS systems that you want to
connect to a particular DBCTL.

When a CICS thread connects to IMS, its DEDB buffer requirements are as
specified using a normal buffer allocation (NBA) parameter. For a CICS system,
there are two NBA parameters in the DRA startup table:

� CNBA—total buffers needed for the CICS system. This is taken from the total
specified in DBBF.

� FPBUF—number of buffers to be given to each CICS thread. This is taken from
the number specified in CNBA. FPBUF is used for each thread that requests
DEDB resources, and so should be large enough to handle the requirements of
any application that can run in that CICS system.

A CICS system may fail to connect to DBCTL if its CNBA value is more than that
available from DBBF. An application attempting to schedule PSBs that contains
references to DEDBs may receive a schedule failure if the FPBUF value is more
than that available from CNBA.

When a CICS system has successfully connected to DBCTL, and the application
has successfully scheduled a PSB containing DEDBs, the DRA startup parameter
FPBOF becomes relevant. FPBOF specifies the number of overflow buffers each
thread will get if it exceeds FPBUF. These buffers are not taken from CNBA.
Instead, they are buffers that are serially shared by all CICS applications or other
dependent regions that are currently exceeding their NBA allocation.

Because overflow buffer allocation (OBA) usage is serialized, thread performance
can be affected by NBA and OBA specifications. If FPBUF is too small, more
applications need to use OBA, which may cause delays due to contention. If both
NBA and OBA are too small, the application fails. If FPBUF is too large, this affects
the number of threads that can concurrently access DEDB resources, and
increases the number of schedule failures.

In a CICS-DBCTL environment, the main performance concern is the trade-off
between speed and concurrent access. The size of this trade-off is dictated by the
kind of applications you are running in the CICS system. If the applications have
approximately the same NBA requirements, there is no trade-off. You can specify a
FPBUF large enough to never need OBA. This speeds access and there is no
waste of buffers in CNBA, thus enabling a larger number of concurrent threads

 Chapter 10. Statistics, monitoring, and performance for DBCTL 161

using DEDBs. The more the buffer requirements of your applications vary, the
greater the trade-off. If you want to maintain speed of access (because OBAs are
not being used) but decrease concurrent access, you should increase the value of
FPBUF. If you prefer to maintain concurrent access, do not increase the value of
FPBUF. However, speed of access will decrease because this and possibly other
threads will need to use the OBA function.

For information on specifying the parameters CNBA, FPBOF, and FPBUF, see
“Defining the IMS DRA startup parameter table” on page 39. For further guidance
on DEDB buffer specification and tuning, see sections on DEDBs in the IMS
Database Administration Guide and the IMS System Administration Guide, or, for
Version 5, the IMS/ESA Administration Guide: Database Manager and the IMS/ESA
Administration Guide: System.

 Using DEDBs
Using DEDBs can give you performance improvements in the following areas:

� Reduced path length

– DEDBs use Media Manager for more efficient control interval (CI)
processing, which can reduce pathlength.

– DEDBs have their own resource manager, which means:

- Less interaction with whichever lock manager you are using (PI or the
IRLM), provided you are not using block level sharing.

- Simplified buffer handling (and reduced pathlength) because DEDBs
have their own buffer pool.

 � Parallel processing

DEDB writes are not done during the life of the transactions but are kept in
buffers. Actual update operations are delayed until a synchronization point and
are done by asynchronous processing using output threads in the control
region. The output thread runs as a service request block (SRB)—a separate
dispatchable MVS task. You can specify up to 255 output threads. This means
that:

– The CICS task can be freed earlier

– Parallel processing is increased and throughput on multiprocessors is
improved.

 � Less I/O

The cost of I/O per SDEP segment inserted can be very low because SDEP
segments are gathered in one buffer and are written out only when it is full.
This means that many transactions can “share the cost” of SDEP CI writes to a
DEDB. SDEPs should have larger CIs to reduce I/Os.

� Reduced logging overhead.

DEDB log buffers are written to OLDS only when they are full. This means less
I/O than would be needed with full function databases.

162 CICS IMS Database Control Guide

High speed sequential processing (HSSP)
Using DBCTL enables you to use high speed sequential processing (HSSP), which
is available from IMS/ESA Version 3. HSSP is useful with applications that do large
scale sequential updates to DEDBs, which may require an image copy after the
DEDBs are updated. Using HSSP provides the following major benefits:

� DEDB processing time can be improved by using the IBM 3990 Storage
Control Model 3 Fast Write capability and the IBM 3990 Storage Control Model
3 Sequential Mode for both READs and WRITEs.

� You can take an HSSP image copy during a sequential update job. This avoids
having to make a subsequent sequential pass through the DEDB areas to take
an image copy.

� HSSP reduces elapsed DEDB processing time by using private buffer pools
and optimizing locking.

� Only a minimum amount of log data is written to the IMS system log when you
request an HSSP image copy. This reduces the large amount of logging that
such large scale sequential runs usually involve.

For further guidance on HSSP, see the IMS Release Planning Guide.

IMS asynchronous database buffer purge facility
IMS/ESA 4.1 includes the asynchronous database buffer purge facility. At syncpoint
time, when database buffers are to be flushed, buffers that are to be written to
different devices are written concurrently, rather than serially, as in earlier releases
of IMS. (For further guidance, see the IMS System Administration Guide or the
IMS/ESA Administration Guide: System).

The asynchronous database buffer purge facility should improve response time for
transactions that update databases on multiple devices in a single UOW.

Virtual storage usage
CICS regions that previously used local DL/I can obtain considerable virtual storage
constraint relief because the following storage areas reside in the DBCTL address
spaces:

� All DL/I and DBRC code and control blocks
� OSAM and VSAM buffer pools and related control blocks
� PSB, DMB, and ENQ pools

However, DBCTL requires some MVS CSA storage, which may lower the maximum
available region size in the MVS system. See the CICS Performance Guide and the
IMS System Administration Guide or the IMS/ESA Administration Guide: System for
details of CSA and other DBCTL storage requirements.

Improved throughput on multiprocessors
You can obtain throughput improvements on multiprocessors because the
CICS-DBCTL interface resides in multiple address spaces and because it uses
separate MVS subtasks to manage threads.

If you currently use MRO function shipping, converting the CICS DOR to use
DBCTL should result in improved throughput due to multiprocessor exploitation and
the reduced instruction pathlength of the CICS-DBCTL interface. DBCTL provides a

 Chapter 10. Statistics, monitoring, and performance for DBCTL 163

separate TCB for each CICS application thread, which significantly improves the
amount of concurrent processing.

You can obtain further performance improvements by using DEDBs instead of
full-function databases. See “Access to data entry databases (DEDBs)” on page 10
for introductory guidance on DEDBs, and “Using DEDBs” on page 162 for
information on the performance aspects.

CICS shared database jobs and IMS batch jobs run as BMPs
When you migrate your CICS shared database batch and IMS batch jobs to use
BMPs, this will simplify log management. Although a BMP may run more slowly
than the same job running as an IMS batch job, performance for CICS shared
database jobs running as BMPs should be improved. Observations show that the
elapsed time for CICS shared database job converted to run as a BMP job is
considerably shorter, and the CICS degradation of the CICS online workload in
terms of transaction response and throughput is significantly less.

164 CICS IMS Database Control Guide

Appendix A. Migration task summary for DBCTL

This summary lists the tasks involved in migration to DBCTL and makes cross
references to further information in the main body of this book under these
headings:

� “Education task list”

� “Installation, system and resource definition task list” on page 166

� “Operations task list” on page 166

� “Recovery and restart task list” on page 167

� “Application programming task list” on page 167

� “Security task list” on page 168

� “Problem determination task list” on page 168

� “Monitoring, statistics, and performance task list” on page 168

Education task list
You should plan the kind of education necessary before implementing DBCTL. You
will probably find that it is most needed in the areas of operations and system
programming.

Operator topics include:

 � DBRC
� DBCTL console operator

 � Log archiving
� Recovery and restart
� Monitoring and statistics

System programmer topics include:

� DBCTL system definition
 � DBRC
 � Log archiving
� Recovery and restart

 � Debugging
� Monitoring and statistics

 � Tuning

Application programmer topics include:

 � New function
� New transaction abends
� Dump analysis (CICS-DBCTL correlated information)

There is a certain amount of new vocabulary, which is explained in context, and, for
quick reference, in “Glossary” on page 187.

 Copyright IBM Corp. 1989, 1999 165

Installation, system and resource definition task list
See Chapter 4, “Installing DBCTL, and defining CICS and IMS system resources”
on page 21. The following considerations apply:

� CICS installation is simplified, because there is no need to do a partial system
generation.

� In CICS resource definition, there are changes to:

– System initialization parameters.

– Monitoring control table (MCT) entries.

– CICS system definition (CSD) file entries.

– Program list table (PLT).

– Some DD statements are removed from CICS JCL, and some are changed
because of DBCTL.

– PDIRs are not needed for DBCTL. You define PSBs using IMS APPLCTN
macros.

– DDIRs are not needed for DBCTL. You define DBDs using IMS
DATABASE macros.

– New DBCTL startup parameters.

– DRA startup table parameters.

– Customization—user-replaceable program DFHDBUEX and DL/I global
user exits XDLIPRE and XDLIPOST. If you use CICS support for XRF,
global user exits XXDFA, XXDFB, and XXDTO are available to enable you
to establish takeover decision mechanisms for DBCTL.

System programmers should also:

� Set up procedures for operations and recovery
� Review use of DBRC
� Review use of data sharing

 � Check exits
� Consider new problem determination techniques
� Consider new performance tuning techniques

Operations task list
There are many changes to CICS operations for operators who are not familiar with
IMS/ESA DM/TM. See Chapter 5, “Operations with DBCTL” on page 45.

� Starting and stopping DBCTL.

The DBCTL address space starts the DBRC and DLISAS address spaces
automatically. Each address space issues messages. (See also Appendix C,
“Messages issued during DBCTL startup and termination” on page 173 for
examples of these messages.)

� New and changed CICS and DBCTL messages.

� DBCTL is operated via an operating system console, if not using the
CICS-supplied transaction, CDBM. (See “CDBM operator transaction” on
page 55.)

166 CICS IMS Database Control Guide

� New DBCTL operator commands (a subset of IMS operator commands). (See
also Appendix D, “Summary of DBCTL operator commands” on page 177 for
tables comparing CICS and DBCTL operator commands, and listing keywords
of IMS operator commands valid for DBCTL users.)

� Changes to CICS master terminal operator transactions.

� New CICS master terminal operator transactions to connect to and disconnect
from DBCTL dynamically, and to inquire on the status of the interface.

� Additional considerations for XRF. (See also “Migrating CICS shared database
batch jobs to BMPs” on page 112.)

� Online change using the /MODIFY command. This is very different to CICS
resource definition online (RDO).

� Use of recovery token to correlate CICS tasks with DBCTL threads using CICS
recovery token. (See also “Recovery tokens” on page 82.)

� High speed sequential processing (HSSP), if used. (See “High speed
sequential processing (HSSP)” on page 163 and the IMS Release Planning
Guide.)

Recovery and restart task list
See Chapter 6, “Recovery and restart operations for DBCTL” on page 73.

� Use emergency restart, not cold start after a DBCTL failure.

� Log management—CICS system log and DBCTL (IMS) log.

� DBCTL uses two-phase commit, for which CICS system log is needed.

 � Implementing DBRC.

� Resolving in-doubt threads, using the pseudo recovery token and DBCTL
CHANGE CCTL command.

� High speed sequential processing (HSSP) and image copy, if used. (See “High
speed sequential processing (HSSP)” on page 163 and the IMS Release
Planning Guide.

� Online image copy.

Application programming task list
See Chapter 7, “Application programming for DBCTL” on page 93.

� Data availability is always active. This means that a transaction can fail after
PSB schedule because of unavailable data.

� New CICS transaction abend codes and messages.

� Access needed to an MVS console (referred to in this book as DBCTL
console—see also “Operator communication with DBCTL” on page 53) to take
databases offline.

� Migrating CICS shared database and “native” IMS batch programs to use
BMPs.

� New DL/I requests.

� DEDB subset pointers.

 Appendix A. Migration task summary for DBCTL 167

� Batch programs migrated to DBCTL must issue checkpoints and be restartable
from the last checkpoint. You will have to change any existing batch jobs to do
this before you can run them on DBCTL.

Security task list
See Chapter 8, “Security checking with DBCTL” on page 117.

� CICS invokes PSB security checking by RACF (or an equivalent external
security manager), as with local DL/I previously.

� Optional DBCTL resource security checking, which you may require if you
decide to use BMPs. It also includes DBCTL password security checking.

� Migrating security definitions from CICS system with local DL/I to CICS system
with DBCTL.

� Database security - for example, SENSEG and PROCOPT - still applies with
DBCTL.

Problem determination task list
See Chapter 9, “Problem determination for DBCTL” on page 125.

The following considerations apply:

� Correlation of CICS and DBCTL problem determination information.

– CICS trace, transaction dump, system dump, and log.

 – DRA dump.

– DBCTL dump, trace, and log.

Monitoring, statistics, and performance task list
See Chapter 10, “Statistics, monitoring, and performance for DBCTL” on page 147.

 � Monitoring:

– New format of monitoring data returned with DBCTL

– New DBCTL monitor reports from IMS monitor online

 � Statistics:

– Data returned at the end of a CICS-DBCTL session

– DL/I statistics summary by database no longer available at CICS shutdown

� Performance, tuning, and resource utilization:

– You have new parameters to tune, for example DBCTL and DRA startup
table parameters.

– There should be enough space to increase number of buffers and pool
sizes.

– System initialization parameters DSALIM and EDSALIM are used to store
different resources.

– Adapt MINTHRD, MAXTHRD, MAXREGN, and MXT for each CICS
connected to DBCTL. You can have up to 255 threads in a single DBCTL.

168 CICS IMS Database Control Guide

You may need more common storage area (CSA) if you have:

– Regions that already have constrained virtual storage

– Test and production DBCTL subsystems in the same MVS image

– XRF in a single-MVS environment (which means two DBCTL subsystems in
the same MVS image)

 Appendix A. Migration task summary for DBCTL 169

170 CICS IMS Database Control Guide

Appendix B. Illustration of DBCTL startup parameter creation
and selection

Figure 53 shows how DBCTL startup parameters are created and selected during
startup. If you are new to IMS system definition, you will probably find it helpful to
refer to this figure while reading “Generating DBCTL” on page 28.

Note: “OCU” in Figure 53 refers to the IMS online change utility.

IMS system SMU/OCU ACBGEN/
definition ------- OCU
---------------- PARM= -------
IMSCTRL SYSTEM= '...,x'
ALL/MODBLKS/
NUCLEUS/...

IMS. IMS. IMS.
MODBLKSm MATRIXm ACBLIBm
--------- ------ - ------

O DFS .
DATABASE DFSDDIRx AGT0x .
... C .

.
U

APPLCTN DFSPDIRx
...

IMSGEN SUFFIX=x

IMS.
RESLIB

DFSVNUCx

Assembled/ IMS start-
link-edited up parms
------------ DFSPRRDx
INCLUDE... EXEC
NAME parms
DFSPRRDx(R) -------- MODBLKSm, IMSACBm

IMS.PROCLIB IMS.MODSTAT
----------------- RGSUF=x

SUF=x
DFSVSMxx
(VSAM .. parms)

VSPEC=xx

DFSFIXxx
(Page fixing)

FIX=xx

DFSMPLxx
(Resid.modules)

PRLD=xx

Figure 53. Creating and selecting DBCTL startup parameters

 Copyright IBM Corp. 1989, 1999 171

172 CICS IMS Database Control Guide

Appendix C. Messages issued during DBCTL startup and
termination

These examples show the messages you should expect to see during a successful
startup and normal termination of DBCTL. Messages are issued separately by each
of the three address spaces involved (DBCTL, DLISAS, and DBRC). As you can
see from the timestamp in the messages, they are issued at varying times; that is,
DBCTL does not complete its startup before DLISAS and DBRC begin. (The same
applies at termination time.) The numbers prefixed with STC that are displayed
after the timestamp and before the message number indicate which address space
issued which message. In these examples, 9303 indicates messages issued by
DBCTL, 9573 indicates DLISAS messages, and 9574 indicates DBRC messages.
See the CICS Operations and Utilities Guide for similar information on CICS startup
messages.

 Copyright IBM Corp. 1989, 1999 173

Messages issued by DBCTL during startup

17.ðð.ðð STC 93ð3 $HASP373 DBCTL STARTED

17.ðð.ð3 STC 93ð3 IEF188I PROBLEM PROGRAM ATTRIBUTES ASSIGNED

17.ðð.ð6 STC 93ð3 DFSð578I - READ SUCCESSFUL FOR DDNAME PROCLIB MEMBER = DFSVSMðð IMSA

17.ðð.15 STC 93ð3 DFS341ðI DATASETS USED ARE IMSACBA FORMATA MODBLKSB P=891ð7 1148431 C=891ð7 1148431 IMSA

17.ðð.17 STC 93ð3 START DLIS

17.ðð.19 STC 93ð3 START DBRC

17.ðð.2ð STC 93ð3 DFS3613I - STM TCB INITIALIZATION COMPLETE IMSA

17.ðð.2ð STC 93ð3 DFS3613I - MOD TCB INITIALIZATION COMPLETE IMSA

17.ðð.22 STC 93ð3 DFS3613I - STC TCB INITIALIZATION COMPLETE IMSA

17.ðð.22 STC 93ð3 DFS3613I - RDS TCB INITIALIZATION COMPLETE IMSA

17.ðð.22 STC 93ð3 DFS3613I - DYC TCB INITIALIZATION COMPLETE IMSA

17.ðð.23 STC 93ð3 DFS3613I - RST TCB INITIALIZATION COMPLETE IMSA

17.ðð.24 STC 93ð3 DFS22ð8I DUAL LOGGING IN EFFECT ON IMS LOG DATA SET IMSA

17.ðð.24 STC 93ð3 DFS22ð8I DUAL LOGGING IN EFFECT ON WRITE AHEAD DATA SET IMSA

17.ðð.24 STC 93ð3 DFS22ð7I IMS LOG(S) BLOCKSIZE=18432, BUFNO=ðð5 IMSA

17.ðð.24 STC 93ð3 DFS3613I - DLG TCB INITIALIZATION COMPLETE IMSA

17.ðð.35 STC 93ð3 DFSð759I THE FOLLOWING VIRTUAL ADDRESSES HAVE BEEN FIXED IMSA

17.ðð.35 STC 93ð3 DFSð759I ESCD ððBE8428-ððBE8CAC IMSA

17.ðð.35 STC 93ð3 DFSð759I LBUF ð296B5A8-ð296D5A8 IMSA

17.ðð.35 STC 93ð3 DFSð76ðI THE FOLLOWING FIX OPERANDS WERE NOT FIXED IMSA

17.ðð.35 STC 93ð3 DFSð76ðI DMHR OTHR DEDB IMSA

17.ðð.35 STC 93ð3 DFS3613I - FP TCB INITIALIZATION COMPLETE IMSA

17.ðð.35 STC 93ð3 \DFS227A - CTL REGION WAITING FOR DLS REGION (DLIS) INIT - IMSA

17.ð2.47 STC 93ð3 DFS3613I - CTL TCB INITIALIZATION COMPLETE IMSA

17.ð2.47 STC 93ð3 \DFS989I IMS (DBCTL) READY (CRC=X) - IMSA

17.ð2.48 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS3136I NORMAL RESTART IN PROCESS.

17.ð2.49 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS68ðI USING CHKPT 89111/1716ðð

17.ð2.49 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS2591I NO MSDB HEADERS FOUND, IMAGE COPY LOAD IGNORED

17.ð2.49 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS25ððI DATASET DFSOLPð1 SUCCESSFULLY ALLOCATED

17.ð2.51 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS3257I ONLINE LOG NOW OPENED ON DFSOLSð1

17.ð2.51 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS3257I ONLINE LOG NOW OPENED ON DFSOLSð1

17.ð2.51 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS3261I WRITE AHEAD DATA SET NOW ON DFSWADSð

17.ð2.51 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS3261I WRITE AHEAD DATA SET NOW ON DFSWADS1

17.ð2.51 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS994I \CHKPT 89114/17ð251\\SIMPLE\

17.ð2.51 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS3499I ACTIVE DDNAMES: MODBLKSB IMSACBA FORMATA MODSTAT ID: 4

17.ð2.51 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS38ð4I LATEST RESTART CHKPT: 89114/17ð251

17.ð2.51 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS994I WARM START COMPLETED.

Figure 54. Messages issued by DBCTL during startup

Messages issued by DLISAS during startup

17.ð2.12 STC 9573 $HASP373 DLIS STARTED

17.ð2.41 STC 9573 IEF188I PROBLEM PROGRAM ATTRIBUTES ASSIGNED

17.ð2.42 STC 9573 DFSð578I - READ SUCCESSFUL FOR DDNAME PROCLIB MEMBER = DFSVSMðð IMSA

17.ð2.45 STC 9573 DFS228I - DLS REGION STORAGE COMPRESSION INITIALIZED IMSA

17.ð2.45 STC 9573 DFS228I - DLS REGION DYNAMIC ALLOCATION INITIALIZED IMSA

17.ð2.47 STC 9573 DFS228I - DLS REGION INITIALIZATION COMPLETE IMSA

Figure 55. Messages issued by DLISAS during startup

174 CICS IMS Database Control Guide

Messages issued by DBRC during startup

17.ð2.17 STC 9574 $HASP373 DBRC STARTED

17.ð2.18 STC 9574 IEF188I PROBLEM PROGRAM ATTRIBUTES ASSIGNED

17.ð2.24 STC 9574 DFS3613I - DRC TCB INITIALIZATION COMPLETE IMSA

Figure 56. Messages issued by DBRC during startup

Messages issued by DBCTL during normal termination

17.ð8.51 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFSð58I CHECKPOINT COMMAND IN PROGRESS

17.ð8.52 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS994I \CHKPT 89114/17ð852\\FREEZE\

17.ð8.52 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS3499I ACTIVE DDNAMES: MODBLKSB IMSACBA FORMATA MODSTAT ID: 4

17.ð8.52 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS38ð4I LATEST RESTART CHKPT: 89114/17ð852

17.ð8.53 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS3257I ONLINE LOG CLOSED ON DFSOLPð1

17.ð8.53 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS3257I ONLINE LOG CLOSED ON DFSOLSð1

17.ð8.55 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS2484I JOBNAME=ARCHJOB GENERATED BY LOG AUTOMATIC ARCHIVING

17.ð8.55 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFSð92I IMS LOG TERMINATED

17.ð8.55 STC 93ð3 DFSðððI MESSAGE(S) FROM ID=IMSA

DFS2ð91I IMS TIMER SERVICE SHUTDOWN COMPLETED

17.ð8.57 STC 93ð3 DFS994I IMS (DBCTL) SHUTDOWN COMPLETED IMSA

17.ð8.57 STC 93ð3 DFS627I IMS RTM CLEANUP (EOT) COMPLETE FOR JS DBCTL .IEFPROC .DBCTL ,RC=ðð

17.ð8.58 STC 93ð3 DBCTL IEFPROC DFSMVRCð ðððð

17.ð8.58 STC 93ð3 $HASP395 DBCTL ENDED

Figure 57. Messages issued by DBCTL during normal termination

Messages issued by DLISAS during normal termination

17.ð8.52 STC 9573 DFS6ð3I IMS DLS CLEANUP (EOT) COMPLETE FOR JS DLIS .DB1ADLIS. ,RC=ðð

17.ð8.52 STC 9573 DLIS DB1ADLIS DFSMVRCð ðððð

17.ð8.52 STC 9573 $HASP395 DLIS ENDED

Figure 58. Messages issued by DLISAS during normal termination

Messages issued by DBRC during normal termination

17.ð8.57 STC 9574 DBRC IEFPROC DFSMVRCð ðððð

17.ð8.57 STC 9574 $HASP395 DBRC ENDED

Figure 59. Messages issued by DBRC during normal termination

 Appendix C. Messages issued during DBCTL startup and termination 175

176 CICS IMS Database Control Guide

Appendix D. Summary of DBCTL operator commands

Table 12 and Table 13 on page 179 list:

� CICS operator commands, corresponding DBCTL operator commands, and
which DBCTL commands can be issued using the CICS-supplied transaction
CDBM.

� IMS operator commands and keywords valid with DBCTL.

Chapter 5, “Operations with DBCTL” on page 45 and Chapter 6, “Recovery and
restart operations for DBCTL” on page 73 contain information on using operator
commands with DBCTL. For further guidance on the syntax of DBCTL operator
commands, see the IMS Operator’s Reference manual.

Note: The / used in these commands is the default command recognition
character (CRC). For information on the usage of CRCs, see “Operator
communication with DBCTL” on page 53.

Table 12 (Page 1 of 2). DBCTL operator commands and CICS equivalents

DBCTL operator command CICS equivalent Valid
with
CDBM

/CHANGE None Yes

/CHECKPOINT (simple form) ACTIVITY KEYPOINT Yes

/CHECKPOINT FREEZE
 or /CHECKPOINT PURGE

CEMT PERFORM SHUTDOWN No

/CHECKPOINT STATISTICS CEMT PERFORM STATISTICS RECORD Yes

/DBDUMP None Yes

/DBRECOVERY None Yes

/DELETE None Yes

/DEQUEUE None Yes

/DISPLAY ACTIVE or /DISPLAY CCTL CEMT INQUIRE TASK Yes

/DISPLAY DATABASE None Yes

/DISPLAY DBD, /DISPLAY POOL, and
/DISPLAY PSB

None Yes

/ERESTART SIT with START=AUTO resulting in EMER
restart

No

/LOCK None Yes

/LOG None Yes

/MODIFY None No

/NRESTART CHECKPOINT 0 SIT START=INITIAL No

/NRESTART (without CHECKPOINT 0) SIT with START=AUTO resulting in WARM start No

/PSTOP None Yes

/RMCHANGE None Yes

/RMDELETE None Yes

/RMGENJCL None Yes

 Copyright IBM Corp. 1989, 1999 177

Table 12 (Page 2 of 2). DBCTL operator commands and CICS equivalents

DBCTL operator command CICS equivalent Valid
with
CDBM

/RMINIT None Yes

/RMLIST None Yes

/RMNOTIFY None Yes

/SSR None No

/START DATABASE None Yes

/STOP DATABASE None Yes

/STOP THREAD CEMT SET TASK PURGE Yes

/SWITCH OLDS (IMS/ESA 4.1, or later) None Yes

/TRACE SET PI None Yes

/UNLOCK None Yes

/VUNLOAD (IMS/ESA Version 5.1 or later) None Yes

MVS MODIFY jobname,RECONNECT CEMT PERFORM RECONNECT N/A —
MVS
command

MVS MODIFY jobname,STOP|DUMP CEMT PERFORM SHUTDOWN IMMEDIATE N/A —
MVS
command

178 CICS IMS Database Control Guide

Table 13. DBCTL operator commands and keywords

DBCTL operator
command

Keyword(s)

/CHANGE CCTL, PASSWORD, SUBSYS

/CHECKPOINT FREEZE, PURGE, ABDUMP, SNAPQ

/DBDUMP DATABASE

/DBRECOVERY AREA, DATABASE

/DELETE DATABASE, PASSWORD, PROGRAM

/DISPLAY ACTIVE, AREA, CCTL, DATABASE, DBD, INDOUBT, MODIFY, OASN SUBSYS, OLDS,
POOL, PROGRAM, PSB, SHUTDOWN STATUS, STATUS, TRACE

/ERESTART CHECKPOINT, COLDBASE, COLDCOMM, COLDSYS, FORMAT, NOBMP

/LOCK DATABASE, PROGRAM

/LOG None

/MODIFY ABORT, COMMIT, PREPARE

/NRESTART CHECKPOINT 0, FORMAT, NOPASSWORD, PASSWORD

/PSTOP REGION

/RMCHANGE DBRC modifier

/RMDELETE DBRC modifier

/RMGENJCL DBRC modifier

/RMINIT DBRC modifier

/RMLIST DBRC modifier

/RMNOTIFY DBRC modifier

/SSR Commands and keywords from appropriate subsystem (for example, DB2)

/START AREA, AUTOARCH, DATABASE, OLDS, PROGRAM, REGION|THREAD1, WADS

/STOP ADS, AREA, AUTOARCH, DATABASE, OLDS, PROGRAM, REGION|THREAD1, WADS

/SWITCH OLDS

/TRACE SET, MONITOR, PI, PSB, TABLE

/UNLOCK DATABASE, PROGRAM

/VUNLOAD AREA

Note: THREAD is a synonym for REGION.

 Appendix D. Summary of DBCTL operator commands 179

180 CICS IMS Database Control Guide

Appendix E. Using global user exit XDLIPRE to change PSB
to be scheduled

This chapter contains Product-sensitive Programming Interface information.

To help with migration of applications from local DL/I to DBCTL, you can use the
global user exit XDLIPRE to change the PSB name that the application program
has scheduled at execution time. Figure 60 contains an example of XDLIPRE that
you can copy and modify. Note that this example is provided for guidance only. See
the CICS Customization Guide for programming information on global user exits.

You can also use the XDLIPRE exit to change the identity of the SYSID, enabling
work to be rerouted from a SYSID that becomes unavailable to one that is
available.

\\

\ This is an example for global user exit XDLIPRE \

\ \

\ It is invoked prior to any DLI call being passed to \

\ the local, remote, or DBCTL processors. \

\ \

\ A check is made for the presence of a PSB. \

\ If not, a normal return is made \

\ \

\ If the PSB is in a predefined table, it is changed to a \

\ different value, and a normal return is made. \

\ \

\ If not, the task purge return is made. \

\ \

\ In all cases,a trace entry is written describing the action \

\ taken, using TRACE-POINT 384 (hex 'ð18ð') \

\ \

\\

\ \

\ The first few instructions set up the global user exit \

\ environment, identify the user exit point, prepare for the use of\

\ the exit programming interface, and copy in the definitions that \

\ are to be used by the XPI function. \

\ \

\\

\

DFHUEXIT TYPE=EP,ID=XDLIPRE PROVIDE DFHUEPAR PARAMETER

\ LIST AND LIST OF EXITID

\ EQUATES

\

DFHUEXIT TYPE=XPIENV SET UP ENVIRONMENT FOR

\ EXIT PROGRAMMING INTERFACE

\ MUST BE ISSUED BEFORE ANY

\ XPI MACROS ARE ISSUED

Figure 60. Example of XDLIPRE user exit to change PSB names 1/6

 Copyright IBM Corp. 1989, 1999 181

\

COPY DFHTRPTY DEFINE PARAMETER LIST FOR

\ USE BY DFHTRPTX MACRO

\

COPY DFHSMMCY DEFINE PARAMETER LIST FOR

\ USE BY DFHSMMCX MACRO

\

\\

\The following DSECT maps a storage area to be used as work area \

\for the information in the TRACE entry. \

\\

\

DSA DSECT DSECT FOR GETMAINED STORAGE

 USING DSA,R7

\

RETCODE DS F store return code

MESSAGEA DS F message address for trace

MESSAGEL DS F message length for trace

MESSAGE DS ðCL37

OLDPSB DS CL8

MESS1 DS CL21

NEWPSB DS CL8

\\\

\The next instructions form the normal start of a global user \

\exit program, setting the program addressing mode to 31-bit, saving\

\the calling program's registers, establishing base addressing\

\and establishing the addressing of the user exit parameter list. \

\\\

\

DLIPR CSECT

DLIPR AMODE 31

\

SAVE (14,12) SAVE CALLING PROGRAM'S RGSTRS

\

LR R11,R15 SET UP USER EXIT PROGRAM'S

 USING DLIPR,R11 BASE REGISTER

\

LR R2,R1 SET UP ADDRESSING FOR USER

USING DFHUEPAR,R2 EXIT PARAMETER LIST -- USE

\ REGISTER 2 AS XPI CALLS USE

\ REGISTER 1

\

\\

\Before issuing an XPI function call, set up addressing to XPI \

\parameter list. \

\\

\

L R5,UEPXSTOR SET UP ADDRESSING FOR XPI

\ PARAMETER LIST

Figure 61. Example of XDLIPRE user exit to change PSB names 2/6

182 CICS IMS Database Control Guide

\\

\ Before issuing an XPI function call, you must ensure that register\

\ 13 addresses the kernel stack. \

\\

\

L R13,UEPSTACK ADDRESS KERNEL STACK

\

\\

\ Issue a GETMAIN to get storage for work area \

\\

\

USING DFHSMMC_ARG,R5 MAP PARAMETER LIST

\

 DFHSMMCX CALL, X

 CLEAR, X

 IN, X

 FUNCTION(GETMAIN), X

 GET_LENGTH(1ðð), X

 STORAGE_CLASS(USER), X

 SUSPEND(NO), X

 OUT, X

 ADDRESS((R7)), X

 RESPONSE(\), X

 REASON(\)

\

\\

\ SET UP THE NORMAL RETURN CODE \

\\

\

 LA R6,UERCNORM

 ST R6,RETCODE

\

\\

\ See if a PSB exists \

\\

\

L R6,UEPPSBNX PSB EXISTENCE FLAG

 TM ð(R6),UEPPSB1 PSB EXISTS?

 BO PSBCALL YES

MVC MESSAGE,MESS3T NO-MOVE MESSAGE TO DSA

 B TRACE

\

\\

\ See if we want to change a PSB name \

\\

\

PSBCALL EQU \

L R6,UEPPSBNM ADDRESS OF PASSED PSB NAME

LA R8,PSBS ADDRESS OF table of PSB pairs

 CLC ð(8,R6),ð(R8) SAME?

Figure 62. Example of XDLIPRE user exit to change PSB names 3/6

 Appendix E. Using global user exit XDLIPRE to change PSB to be scheduled 183

 BE FOUND YES

LA R8,16(R8) BUMP TO NEXT PAIR

 CLC ð(8,R6),ð(R8)

 BE FOUND

LA R8,16(R8) BUMP TO NEXT PAIR

 CLC ð(8,R6),ð(R8)

 BE FOUND

B NOTFOUND NO MATCH - END

\

\\

\ Move new PSB name in \

\\

\

FOUND EQU \

 MVC ð(8,R6),8(R8)

\

\\

\ SET UP MESSAGE BLOCK FOR TRACE ENTRY FOR CHANGED NAME \

\\

\

MVC MESS1,MESS1T SET UP MESSAGE

MVC NEWPSB,8(R8) NEW PSB NAME

MVC OLDPSB,ð(R8) OLD PSB NAME

B TRACE GO PUT TRACE ENTRY

\

\\

\ SET UP MESSAGE BLOCK FOR TRACE ENTRY FOR PSB NOT FOUND \

\ SETUP THE PURG TASK RETURN CODE \

\\

\ NOTFOUND EQU \

MVC MESS1,MESS2T SET UP MESSAGE

MVC OLDPSB,ð(R6) SUPPLIED PSB NAME

 MVC NEWPSB,=CL8'' CLEAR FIELD

LA R1,UERCPURG SET UP TASK PURGE RETURN CODE

B TRACE GO PUT TRACE ENTRY

\

\\

\ Issue trace put macro \

\\

\

TRACE EQU \

 LA R6,MESSAGE STORE ADDRESS...

ST R6,MESSAGEA ...INTO BLOCK DESCRIPTOR

 LA R6,L'MESSAGE STORE LENGTH...

ST R6,MESSAGEL ...INTO BLOCK DESCRIPTOR

LA R8,384 SET UP TRACE-ID

\

Figure 63. Example of XDLIPRE user exit to change PSB names 4/6

184 CICS IMS Database Control Guide

DROP R5 REUSE R5 TO MAP DFHTRPT

USING DFHTRPT_ARG,R5 XPI PARAMETER LIST

\

 DFHTRPTX CALL, X

 CLEAR, X

 IN, X

 FUNCTION(TRACE_PUT), X

 POINT_ID((R8)), X

 DATA1(MESSAGEA,MESSAGEL), X

 OUT, X

 RESPONSE(\)

\

\\

\When the rest of the exit program is complete, free the storage \

\and return. \

\\

\

DROP R5 REUSE REGISTER 5 TO MAP DFHSMMC

USING DFHSMMC_ARG,R5 XPI PARAMETER LIST

\

\\

\ Issue the DFHSMMCX macro call \

\ Store the return code in register 6 \

\\

\

L R6,RETCODE PICK UP SAVED RETURN CODE

\

 DFHSMMCX CALL, X

 CLEAR, X

 IN, X

 FUNCTION(FREEMAIN), X

 ADDRESS((R7)), X

 STORAGE_CLASS(USER), X

 OUT, X

 RESPONSE(\), X

 REASON(\)

\

\\\

\Restore registers, set return code, and return to user exit handler\

\\\

\

 L R13,UEPEPSA

ST R6,16(13) STORE INTO R15 SLOT OF SA

 RETURN (14,12)

\

\\\

\old and new PSB names, in pairs \

\\\

\

Figure 64. Example of XDLIPRE user exit to change PSB names 5/6

 Appendix E. Using global user exit XDLIPRE to change PSB to be scheduled 185

PSBS EQU \

 DC CL8'PC3CONEW' VALID

 DC CL8'PC3CONE2' VALID

 DC CL8'PC3FRED' INVALID

 DC CL8'PC3CONEW' VALID

 DC CL8'PC3JOE' INVALID

 DC CL8'PC3JOEX' INVALID

\

MESS1T DC CL21' HAS BEEN CHANGED TO '

MESS2T DC CL21' WAS NOT FOUND'

MESS3T DC CL37'THIS WAS NOT A DLI SCHEDULE CALL'

 LTORG

 END DLIPR

Figure 65. Example of XDLIPRE user exit to change PSB names 6/6

186 CICS IMS Database Control Guide

 Glossary

ABORT . Two-phase commit consists of the PREPARE
and COMMIT phases. Within the COMMIT phase, there
are two possible actions: COMMIT and ABORT. The
ABORT action for data belonging to full function DL/I
databases is backout . There is no backout for data
belonging to DEDBs, because it has not been written to
the database before the COMMIT phase. The effect of
an ABORT on DEDBs is also referred to as an undo .
Because a CICS thread may be accessing data
belonging to both full function DL/I databases and
DEDBs, we use the term ABORT to refer to both
backout and undo.

ACB (application control block) . Created from the
output of DBDGEN and PSBGEN and placed in the
ACB library (ACBLIB) for use during online and DBD
region type execution of IMS.

active . In an XRF environment, active describes the
system that is currently supporting processing requests.

ADS (area data set) . A copy of a DEDB area. You
can have up to seven copies of the same area, which
are all automatically maintained in synchronization.

AGN (application group name) . DBCTL views the set
of PSBs that can be accessed by one particular CICS
system or BMP as a single entity, known as an
application group . Application groups, and the names
of the resources within those groups, are placed in
tables in DBCTL’s security matrix data set(s) using the
IMS security maintenance utility. An AGN for a CICS
system is specified in the DRA startup table. When a
CICS system requests connection to DBCTL, RACF
checks against its resource class table to ensure that
the AGN being specified authorizes it to connect to that
DBCTL subsystem.

alternate . In an XRF environment, alternate describes
system that is standing by waiting to take over the
workload when the active system fails or a takeover is
initiated.

alternate TP PCB . An alternate TP (transaction
processing) PCB defines an alternate destination (a
logical terminal or a message program) and can be
used instead of the I/O PCB when it is necessary to
direct a response to a terminal. Alternate TP PCBs
appear in PSBs used in a CICS-DBCTL environment,
but are used only in an IMS/VS DC or IMS/ESA TM
environment. CICS applications using DBCTL cannot
successfully issue requests that specify an alternate TP
PCB, an MSDB PCB, or a GSAM PCB. However, a
PSB that contains PCBs of these types can be
scheduled successfully in a CICS-DBCTL environment.
Alternate PCBs are included in the PCB address list

returned to a call level application program The
existence of alternate PCBs in the PSB affects the PCB
number used in the PCB keyword in an EXEC DLI
application program.

AMODE (addressing mode) . Refers to whether
program addresses are 24 or 31 bits.

AOR (application-owning region) . A CICS address
space whose primary purpose is to manage application
programs. It receives transaction routed requests from a
terminal-owning region (TOR). It may also contain file
related resources in a system that does not have a
database-owning region (DOR). See also DOR
(database-owning region) and TOR (terminal-owning
region) .

APPLID . Operand of the CICS system initialization
table that specifies the 1- to 8-character application
name of a CICS system. It is the name by which the
CICS system is to be known to other systems or
regions.

AVM (MVS availability manager) . Handles
communication between active and alternate IMS XRF
systems. See also CAVM (CICS availability manager) .

BMP (batch message processing program) . BMPs
are application programs that perform batch type
processing online and can access databases controlled
by DBCTL. You can run the same program as a BMP
or as a batch program.

call . An instruction in COBOL, assembler, or PL/I that
is used by an application program to request DL/I
services. It does not require translation. Contrast with
command .

CAVM (CICS availability manager) . Handles
communication between active and alternate CICS
systems in a CICS system with XRF. See also AVM
(MVS availability manager) .

CCTL (coordinator control subsystem) . This refers
to the transaction management subsystem that
communicates with the DRA, which in turn
communicates with DBCTL. In a CICS-DBCTL
environment, the CCTL is CICS. The term is used in a
number of IMS operator commands that apply to
DBCTL, and in the IMS manuals.

checkpoint . For applications , a point at which the
program commits that the changes it has made to the
database are consistent and complete, and releases
database segments for use by other programs. You can
request checkpoints at appropriate points in a program

 Copyright IBM Corp. 1989, 1999 187

to provide places from which you can restart that
program if it, or the system, fails.

For systems , a point in time from which IMS can start
again if a failure makes recovery necessary. The
checkpoint is performed by IMS itself.

CI (control interval) . The unit of information
transmitted to or from auxiliary storage by VSAM,
independent of logical record size.

CICS monitoring facility . The CICS monitoring facility
gives a comprehensive set of operational data for CICS,
using a data recording program. Data is normally output
to the system in SMF data sets.

cold start . The standard initialization sequence that is
performed by the system initialization program without
regard for prior system activity.

command . In CICS, an instruction similar in format to
a high-level programming language statement. CICS
commands usually include the verb EXECUTE
(abbreviated to EXEC), and can be issued by an
application program to make use of CICS facilities. With
DL/I, the format of the command is EXEC DLI.
Commands require processing by the CICS translator.
Contrast with call .

CRC (command recognition character) . A character
that denotes a DBCTL operator command. DBCTL
operator commands have / as their default CRC. You
can override the default CRC on the DBCTL job, but
remember that each DBCTL subsystem within an
MVS image must have a unique CRC and that CRC
must be unique with respect to every other subsystem
on the processor, not just DBCTL subsystems. If you
are using the CICS-supplied operator transaction,
CDBM, to issue operator commands to DBCTL, you
must use the default CRC, even though your DBCTL is
using some other CRC.

CRLP (card reader/line printer) . Or in-stream
sequential terminal. Can be used as a means of
automating connection to a different DBCTL or to
connect automatically when CICS was not connected to
DBCTL at shutdown.

data availability . Data availability is an IMS
enhancement available with DBCTL. It allows PSB
scheduling to complete successfully even if some of the
full function databases it requires are not available.

database integrity . The protection of data items in a
database while they are available to any application
program. Protection includes isolating the effects of
concurrent updates to a database by two or more
application programs.

database organization . The physical arrangement of
related data on a storage device. DL/I database
organizations are hierarchical.

database record . (1) A collection of DL/I data
elements known as segments that are hierarchically
related to a single root segment. (2) In a DL/I or IMS
database, a root segment and all its descendant
segments.

database reorganization . The process of unloading
and reloading a database to optimize physical segment
adjacency, or to modify the DBD.

data sharing . An IMS term. Data sharing can be done
at:

� Block level , which allows multiple subsystem
access to the same database, controlled by means
of a lock manager.

� Database level , which allows application programs
in one IMS subsystem to read data while another
program in another IMS subsystem reads from, or
updates, the same database.

DBCTL . DBCTL is an interface between CICS
Transaction Server for OS/390 and IMS/ESA that allows
access to IMS DL/I full function databases and to Data
Entry Databases (DEDBs) from one or more CICS
systems without the need for data sharing. It also
provides release independence, virtual storage
constraint relief, operational flexibility, and failure
isolation.

DBD (database description) . In IMS, the collection of
macro parameter statements that describes an IMS
database. These statements describe the hierarchical
structure, IMS organization, segment length, sequence
fields, and alternate search fields. They are assembled
to produce database description blocks.

DB PCB (database PCB) . A PCB that supports
communication between an application program and a
database.

DBRC (database recovery control) . An IMS facility
that maintains information needed for database
recovery, generates recovery control statements,
verifies recovery input, maintains a separate change log
for database data sets, and supports sharing of IMS
DL/I database by multiple IMS systems.

DDIR (database directory) . A list of data
management blocks (DMBs) that define for DL/I the
physical and logical characteristics of databases that
are used by application programs. A CICS system
initialization parameter of the same name specifies a
suffix to identify a DDIR.

DEDB (data entry database) . In IMS, a direct-access
database originally provided in the Fast Path feature.

188 CICS IMS Database Control Guide

DEDBs can be divided into independent areas, which
increases availability of data. DEDBs provide a high
level of availability for, and efficient access to, large
volumes of data. They are hierarchic structures that
contain a special type of segment called a sequential
dependent segment (SDEP) that is used for fast
collection of information and is useful, for example, in
journaling and auditing applications. Applications that
access DEDBs can also use subset pointers, which
allow more efficient processing of long segment chains.
The database is accessed using Media Manager, which
is a component of Data Facility Product (DFP).

DFHDBAT . The interface between the DRA and CICS.
DFHDBAT adapts CICS’s calls to the DRA’s interface
when accessing DBCTL databases. See also DRA
(database resource adapter) .

DFHDBCON. DFHDBCON, the DBCTL connection
program, is invoked during connection to DBCTL.

DFHDLI. The CICS DL/I router module. Determines
whether a DL/I request should be processed by local
DL/I, remote DL/I, or passed to DBCTL.

DFH$INDB. DFH$INDB, the CICS-supplied sample
in-doubt resolution program helps you decide whether
to commit or backout updates that are in-doubt after
CICS has disconnected abnormally from DBCTL.
DFH$INDB produces a list of in-doubts, plus the action
needed to resolve each one.

DIB (DL/I interface block) . Whenever you issue an
EXEC DLI command, DL/I responds by storing the
information in the DIB in your program. It is inserted
automatically into your program by the CICS translator.
See also DIBSTAT .

DIBSTAT . The DL/I status code, which is contained in
the DIB. It indicates the success (or otherwise) of your
EXEC DLI command.

DL/I (Data Language/I) . A high-level interface
between applications and IMS. It is invoked from PL/I,
COBOL, or Assembler language, or (for command-level
only) C language. by means of ordinary subroutine
calls. DL/I enables you to define data structures, to
relate structures to the application, and to load and
reorganize these structures. It enables applications
programs to retrieve, replace, delete and add segments
to databases. See also command .

DMB (data management block) . An IMS control block
that resides in main storage and describes and controls
a physical database. It is constructed from information
obtained from the application control block (ACB) library
or the database description (DBD) library.

domain . A logical grouping of CICS function; for
example, the storage domain or the monitoring domain.

DOR (database-owning region) . A CICS address
space whose primary purpose is to manage files and
databases. See also AOR (application-owning region)
and TOR (terminal-owning region) .

DRA (database resource adapter) . The architected
interface that enables DBCTL databases to be
accessed from CICS.

DRA control exit . Enables the DRA to pass
information from itself and DBCTL independently of
CICS. It is invoked whenever the DRA needs to
determine whether to continue processing, as follows:

� The DRA successfully connects to DBCTL
� DBCTL is terminated normally using /CHECKPOINT

FREEZE or /CHECKPOINT PURGE
� An attempt to connect to DBCTL fails
� A CICS INIT request is canceled
� The DRA fails.

DRA startup parameter table . The DRA startup
parameter table provides the parameters needed to
define a DBCTL subsystem.

equivalent . In an XRF environment, equivalent
describes DBCTL subsystems that are defined as
members of the same RSE. See also RSE
(recoverable service element) and RST (recoverable
service table) .

full function databases . Full function databases are
hierarchic databases that can be accessed using DL/I
and can be processed by batch programs and BMPs.

function shipping . The process by which CICS
accesses resources on another CICS system. The
process is transparent to application programs. See
also remote DL/I .

generic APPLID . The name by which the
active-alternate pair of CICS systems is known to other
systems or regions.

gigabyte . The exact value 1 073 741 824.

global user exit . A global user exit is a point in a
CICS module at which CICS can pass control to a
program that you have written (known as an exit
program), and then resume control when your program
has finished. When an exit program is enabled for a
particular exit point, the program is called every time the
exit point is reached. Global user exits used with
DBCTL are: XDLIPRE and XDLIPOST, XRMIIN and
XRMIOUT; plus XXDFA, XXDFB, and XXDTO, which
are used with XRF. See also task-related user exit .

HSSP (high speed sequential processing) . An
IMS/ESA Version 3 facility. HSSP is useful with
applications that do large scale sequential updates to
DEDBs. It can reduce DEDB processing time, enables

 Glossary 189

an image copy to be taken during a sequential update
job, and minimizes the amount of log data written to the
IMS log. See also DEDB (data entry database) .

IMS monitor . An IMS monitoring tool, which can be
run online, unlike the IMS DB monitor which can be run
in batch only. DBCTL enables CICS users who do not
have an IMS/ESA DM/TM system to use the IMS
monitor.

in-doubt . Refers to a piece of work that is pending
during commit processing. If commit processing fails
between polling of subsystems and the decision to
execute the commit, recovery processing must resolve
the status of any work that is in-doubt.

in-flight . Refers to a piece of work that is being
processed when a system failure occurs.

I/O PCB. An input/output PCB that is needed to issue
DBCTL service requests.

IRLM (internal resource lock manager) . A global
lock manager that resides in its own address space,
and gives the option of keeping most of its control
blocks in local storage instead of in the common
storage area (CSA). You must use the IRLM to maintain
data integrity if you are sharing databases at block
level. (For VSAM databases, a block is a control interval
(CI); for any other kind of database, it is a physical
block.) You also need the IRLM to process a set of
common databases from multiple IMS/ESA (or CICS
Transaction Server for OS/390) subsystems. You may
optionally use the IRLM in a database level sharing
environment for improved integrity for read-only
subsystems. The IRLM is also the lock manager used
by DATABASE 2 (DB2).

JES (job entry subsystem) . The subsystem used in
CICS with XRF to route commands and queries from
the alternate to the active system.

journal . A set of one or more data sets to which
records are written during a CICS run:

� By CICS to implement user-defined resource
protection (logging to the system log)

� By CICS to implement user-defined automatic
journaling (to any journal, including the system log)

� Explicitly by JOURNAL command (or macro) from
an application program (user journaling to any
journal including the system log).

KB (kilobyte) . The abbreviation KB (as in 1KB)
represents the exact value of 1024.

linkage editor . A processing program that prepares
the output of language translators for execution. It
combines separately produced object modules, resolves
symbolic cross-references among them, and produces

executable code that is ready to be fetched or loaded
into virtual storage.

local DL/I . DL/I residing in the CICS address space.
Discontinued in CICS Transaction Server for OS/390
Release 3.

LP (logical partition) . A partition, in a central
processing complex, capable of running its own MVS
image. It comprises a set of hardware resources
(processors, storage, channels, and so on, sufficient to
allow a system control program such as MVS to
execute.

MB (megabyte) . The abbreviation MB (as in 1MB)
represents the exact value of 1 048 576.

monitoring . In CICS, data produced on timing and
resources used by a task or a logical unit of work
(UOW). Note that CICS distinguishes between
monitoring and statistics, but IMS does not. See also
statistics .

multi-MVS environment . An environment that
supports more than one MVS image. See also MVS
image .

MVS image . Can be a physical processing system
(such as an IBM 3090), which can be partitioned.
Each partition, which has one or more processors, is an
MVS image.

NODHABEND . A keyword on the EXEC DLI SCHD
PSB command. Used to prevent DHxx abends being
issued after PSB schedule request failures that may
have been caused by unavailable databases. Prevents
end users seeing abends unnecessarily, enables the
application to deal with the situation in a more
user-friendly way, and avoids the need to code global
HANDLE ABEND commands.

OASN (origin application schedule number) . An
IMS recovery element in an external subsystem (for
example, DB2). The OASN is equivalent to the unit of
recovery ID in the CICS recovery token. It is coupled
with the IMS ID to become the recovery token for
UOWs in external subsystems. You can display it using
the DBCTL operation command /DISPLAY and then use
the /CHANGE SUBSYS OASN RESET command to
purge incomplete UOWs.

OLDS (online log data set) . A data set on direct
access storage that contains the log records written by
DBCTL. When the current OLDS is full, IMS continues
logging to a further available OLDS.

overseer . A CICS program running in its own address
space that provides status information about active and
alternate CICS systems. You can use it to automate a
restart of failed regions.

190 CICS IMS Database Control Guide

PAPL (participant adapter parameter list) . A
component of the DRA. See also DRA (database
resource adapter) .

PAPLRETC . The response code field from the DRA.

PCB (program communication block) . An IMS
control block that describes an application program’s
interface to an IMS database or, additionally, for
message processing and batch message processing
(BMP) programs, to the source and destination of
messages. See also PSB (program specification
block) .

PDIR (PSB directory) . Contains entries defining each
PSB to be accessed using local DL/I. Also contains
entries for remote PSBs, to which requests are
function-shipped using remote DL/I. A CICS system
initialization parameter of the same name specifies a
suffix for the PDIR.

physical partition . Part of a central processing
complex (CPC) that operates as a CPC in its own right,
with its own copy of the operating system.

PI (program isolation) . An IMS facility that protects all
activity of an application program from any other active
application program until that application program
indicates, by reaching a syncpoint, that the data it has
modified is consistent and complete.

PSB (program specification block) . An IMS control
block that describes databases and logical message
destinations used by an application program. A PSB
consists of one or more program communication blocks
(PCBs). See also PCB (program communication
block) .

pseudo recovery token . A pseudo recovery token
consists of 8 decimal characters, which can be used in
place of the recovery token in certain circumstances.
For example, a pseudo recovery token is displayed
when the status of an application thread is in-doubt. It is
made shorter so that it is easier to make note of and
enter, for example, in certain DBCTL commands. See
also recovery token .

PST (partition specification table) . An IMS control
block that contains information about a dependent
region; for example, type of region, data transferred by
DL/I, and status codes. In a CICS-DBCTL environment,
the dependent region is CICS.

RDS (restart data set) . An IMS direct access data set
used to contain system checkpoint ID information
written during the logging process. The information is
used when restarting IMS (DBCTL). This checkpoint
information is contained in a table called the checkpoint
ID table, which contains an entry for each checkpoint
taken. During restart, IMS uses the table to determine

from which checkpoint restart should take place. IMS
finds the information it needs and uses it automatically.
If the RDS is not available at restart, you can obtain the
checkpoint information needed from the log, but this
may lengthen the restart process.

(RECON) recovery control data sets . DBRC
automatically records information in dual recovery
control (RECON) data sets. Both data sets contain
identical information, and so are usually referred to as
one—the RECON. You need the information from the
RECON during warm and emergency restarts. DBRC
selects the correct data sets to be used by a recovery
utility for you when you enter a GENJCL command. For
a restart, the RECON shows which data set—the OLDS
or the SLDS—contains the most recent log data for
each database data set (DBDS) you have registered
with DBRC. For the OLDS, the RECON shows whether
the OLDS has been closed and whether it has been
archived. The RECON contains timestamp information
for each log data set and volume. You use this
information to determine which data set and volume
contain the checkpoint information needed to restart
DBCTL.

recovery token . A recovery token is a 16-byte unique
identifier that is created by CICS (and passed to
DBCTL) for each UOW. Its lifetime is the same as the
UOW. The first 8 bytes are the CICS APPLID (in an
XRF environment, this is the generic APPLID) and the
second 8 bytes are a unit of recovery ID. (CICS creates
a unit of recovery ID for every UOW.) DBCTL validates
the recovery token to protect against duplication of units
of recovery. The DBCTL operator can display the
recovery token by using the /DISP CCTL command. It is
also displayed in a number of CICS and IMS messages.
See also pseudo recovery token .

redo . A DEDB term, which is more or less analogous
to the full function DL/I term COMMIT. It has the same
aim, but the means of achieving it are different. For
DEDBs, if phase two action is COMMIT, the changes
must be written to the database using REDO, because
the DEDB changes have only been made in main
storage.

REDO is also used to refer to the action required for
committed DEDBs during emergency restart of IMS.
You can determine from the log that a COMMIT was
initiated, but that phase two is not indicated as
complete. In this case, DEDB updates must be
REDOne.

remote DL/I . Accessing a DL/I database by function
shipping, in which CICS sends a DL/I request to
another CICS system. See also function shipping .

return code equate . An alphameric equivalent of a
numeric return code, such as UERCNOAC for “take no
action.” In DBCTL, return code equates are used in the
XRF global user exits XXDFA, XXDFB, and XXDTO.

 Glossary 191

RMI (resource manager interface) . A program or a
group of programs that enable you to structure calls
from your CICS system in such a way that they can
access non-CICS resources, such as databases, that
you would not normally be able to access. An RMI is
written using the CICS task-related user exit interface.
DBCTL is accessed by means of a CICS-supplied RMI.
See also task-related user exit .

RMODE (residency mode) . Specifies where a
program is expected to reside in virtual storage.
RMODE 24 indicates that a program is coded to reside
in virtual storage below the 16MB line. RMODE ANY
indicates that a program is coded to reside anywhere in
virtual storage.

RIS (recoverable in-doubt structure) . When a failure
occurs, an RIS is constructed for each unit of recovery
and is written to the IMS log. Its contents include the
recovery token, the changed data records, and the
identity of the data block that cannot be accessed
because of unresolved in-doubts.

RSE (recoverable service element) . Each
recoverable service element (RSE) contains a set of
DBCTL subsystem identifiers of equivalent DBCTL
subsystems together with their associated job names,
and the specific APPLIDs of the CICS systems that will
use them.

When CICS attempts to connect to DBCTL using a
particular startup table, it attempts to connect using the
specific subsystem ID associated with that startup table,
or any other DBCTL subsystem ID in the RSE to which
the specific subsystem ID belongs. See also equivalent
and RST (recoverable service table) .

RST (recoverable service table) . A suffixable table,
specified by a CICS system initialization parameter.
You use the CICS RST to define the relationships
between your DBCTL subsystems (DBCTL is a
subsystem to MVS) and CICS systems. The RST
consists of a set of recoverable service elements
(RSEs).

CICS can use the RST when connecting to a DBCTL
system, or when a connection to a DBCTL system fails.
A CICS alternate can also use the RST to determine
whether it is authorized to cancel a particular DBCTL
subsystem. See also equivalent and RSE (recoverable
service element) .

SCHEDULE PSB . An application schedules a PSB to
obtain access to PCBs. See also PCB (program
communication block) and PSB (program
specification block) .

scheduling . Selecting jobs or tasks that are to be run.

single-MVS environment . An environment that
supports one MVS image. See also MVS image .

SIT (system initialization table) . A CICS table that
contains user-specified information to initialize and
control system functions, module suffixes for selection
of user-specified versions of CICS modules and tables,
and information used to control the initialization process.
You can generate several SITs and then select the one
that best meets your current requirements at
initialization time.

SLDS (system log data set) . When the OLDS is full,
it is archived as an SLDS. An SLDS can be on DASD
or tape. The contents are used as input to the database
recovery process. See also OLDS (online log data set)
and WADS (write ahead data set) .

snap dump . A snap (or snapshot) dump can be
requested by a task at any time during which that task
is being processed.

startup job stream . A set of job control statements
used to initialize CICS.

statistics . In CICS and IMS, data produced on timing
and resources used by the system as a whole over a
specified period of time. Note that CICS distinguishes
between monitoring and statistics, but IMS does not.
See also monitoring .

subsystem . A secondary or subordinate system of the
main system; for example, DBCTL, which is a
subsystem to MVS.

SVC (supervisor call) . An instruction that interrupts
the program being executed and passes control to the
supervisor so that it can perform a specific service
indicated by the instruction.

syncpoint . A syncpoint (or synchronization point) is a
logical point in execution of an application program
where the changes made to the databases by the
program are consistent and complete and can be
committed to the database. The output, which has been
held up to that point, is sent to its destination(s), the
input is removed from the message queues, and the
database updates are made available to other
applications. CICS recovery and restart facilities do not
backout updates prior to a syncpoint if the program has
terminated abnormally.

A syncpoint is created by any of the following:

� A DL/I CHECKPOINT command or CHKP call
� A DL/I TERMINATE command or TERM call
� A CICS syncpoint request
� An end of task or an end of program.

See also UOW (unit of work) .

SYSPLEX (systems complex) . In an MVS/ESA
environment, a set of one or more MVS systems given

192 CICS IMS Database Control Guide

an XCF name and in which programs in these systems
can then use XCF services.

takeover . In XRF, the shift of workload from the active
to the alternate CICS system, and the switching of
resources needed for this to happen.

task-related user exit . A task-related user exit
enables you to write a user exit program that is
associated with specified events in a particular task,
rather than with every occurrence of a particular event
in CICS processing (as is the case with global user
exits). Task-related user exits can be used to build a
resource manager interface (RMI) that enables you to
access non-CICS resources, such as databases.
DBCTL is accessed by means of a CICS-supplied RMI.
See also global user exit and RMI (resource manager
interface) .

TCB (task control block) . An MVS concept. Anything
in the operating system needs a TCB to execute. In a
non-DBCTL environment, CICS needs only one TCB.
DBCTL provides a separate TCB for each CICS
application thread, which significantly improves the
amount of concurrent processing. See also thread .

thread . A CICS application thread provides a two-way
link between an application and DBCTL. It is the
representation in DBCTL of a CICS transaction when
that transaction issues a DL/I request to DBCTL. The
DRA creates a thread for each transaction when it first
schedules a PSB. The thread is terminated and made
available for other work at syncpoint or when an abend
occurs. It identifies the transaction’s existence, traces its
progress, sets aside the resources it needs to be
processed, and delimits its accessibility to other
resources. You can display and stop threads using IMS
operator commands. You can use them in problem
determination and in performance tuning, because they
are displayed (as recovery tokens) in various
messages, traces, dumps, and thread activity is
included in DBCTL statistics. See also recovery token
and TCB (task control block) .

TOR (terminal-owning region) . A CICS address
space whose primary purpose is to manage terminals.
See also AOR (application-owning region) and DOR
(database-owning region) .

tracking . In XRF, monitoring of terminals in the active
CICS system by the alternate CICS system.

two-phase commit . A two-step process by which
recoverable resources in an IMS system and a CICS
system are committed. During the first step, the
subsystems are polled to ensure that they are ready to
commit. If they all respond positively, they are then
instructed to execute commit processing.

UIB (user interface block) . Whenever you issue an
DL/I call, DL/I responds by storing the information in the
UIB in your program. Include the UIB in your application
program only if it is to be referenced. The UIB is
acquired by the interface routine when an application
issues a schedule request specifying a pointer
reference to be set with the address of the UIB.
Information on the success (or otherwise) is returned to
UIBFCTR and UIBDLTR.

undo . A DEDB term, which is more or less analogous
to the full function DL/I term BACKOUT. It has the same
aim, but the means of achieving it are different. The
difference is in the stage at which updates are written to
the database. For DEDBs, if phase two action of
two-phase commit is ABORT, no changes have to be
made to the database, because the changes are still in
main storage, and can be UNDOne from there.

unit of recovery . In DBCTL, a unit of recovery is
created for each processing request when the first DL/I
update request is received from CICS and is kept until a
two-phase commit is complete. A unit of recovery is
more or less synonymous with a CICS UOW, except
that it begins when the first DL/I request is received
from CICS, and not when the CICS task begins. See
UOW (unit of work) .

UOW (unit of work) . Synonymous with logical unit of
work . In CICS, a sequence of processing actions (for
example, database changes) that must be completed
before any of the individual actions can be regarded as
committed. A UOW begins when a task starts or at a
syncpoint you specified, and ends at a syncpoint you
specified or when a task ends. If you do not specify any
syncpoints, an entire task will be an UOW.

If changes are committed when the UOW completes
successfully and the syncpoint is recorded on the
system log, these changes do not need to be backed
out if there is a subsequent failure of the task or
system. See also unit of recovery and syncpoint .

user-replaceable program . A CICS-supplied program
that is always invoked at a particular point in CICS
processing as if it were part of CICS code. The program
contains points at which you can enter your own code.
DFHDBUEX is a user-replaceable program for use with
DBCTL.

WADS (write ahead data set) . A data set that
contains log records that reflect committed operations
but are not yet written to an OLDS (online log data
set) .

XCF (Cross Systems Coupling Facility) . A facility of
MVS/ESA that provides some initial MVS services
needed to support a multisystem environment while still
maintaining a single system image. Systems coupled
using XCF are known as an XCF SYSPLEX.

 Glossary 193

XRF (extended recovery facility) . A software function
that minimizes the impact of various system failures on

users by transferring activity to an alternate system in
the same MVS image or a different one.

194 CICS IMS Database Control Guide

 Index

Special Characters
/CHANGE CCTL, DBCTL operator command 83
/CHANGE PASSWORD, DBCTL command 63
/CHECKPOINT command, DBCTL operator

command 88
/CHECKPOINT FREEZE, DBCTL operator

command 70
/CHECKPOINT PURGE, DBCTL operator

command 70
/CHECKPOINT, DBCTL operator command 77
/DBDUMP, DBCTL operator command 66
/DBRECOVERY, DBCTL operator command 66
/DELETE,DBCTL operator command 63
/DISPLAY, DBCTL operator command 64
/ERESTART, DBCTL operator command 76
/LOCK, DBCTL operator command 63
/LOG, DBCTL operator command 65
/MODIFY, DBCTL operator command 65
/NRESTART, DBCTL operator command 75
/RMINIT.dbds, DBCTL operator command 78
/RMxxxxxx, DBCTL operator commands, for DBRC 62
/SSR, DBCTL operator command 67
/START, DBCTL operator command 67
/STOP, DBCTL operator command 68
/SWITCH OLDS, DBCTL operator command 35, 66
/TRACE, DBCTL operator command 63, 155, 156
/UNLOCK, DBCTL command 63

Numerics
24-bit addressing 100
31-bit addressing 100

A
abend U113, IMS 88
abends, DL/I CALL

ADCA 115
ADCB 114
ADCC 114
ADCD 114
ADCE 115
ADCI 114
ADCJ 114, 115
ADCN 115
ADCP 114
ADCQ 114
ADCR 115
ADDA 114
UIB (user interface block) 89
UIBDLTR 114, 115
UIBFCTR 114, 115

abends, EXEC DLI
ADCA 115
ADCB 114
ADCC 114
ADCD 114
ADCE 115
ADCI 114
ADCJ 114, 115
ADCN 115
ADCP 114
ADCQ 114
ADCR 115
ADDA 114
DHTA 114
DHTC 114
DHTE 114
DHTG 115
DHTH 114
DHTJ 114
DHxx 115
DL/I interface block (DIB) 89
preventing after PSB schedule failure 107
UIBDLTR 114, 115

abnormal termination of DBCTL 88
ACCEPT STATUSGROUP command 102
ACTIVE keyword 64
address spaces 6
addressing mode (AMODE) 100
addressing, 24-bit 100
addressing, 31-bit 100
AGN, DRA startup parameter 41, 117
AIB (application interface block) 94
alternate PCB, summary 105
alternate TP PCB 104
AMODE (addressing mode) 100
APPLCTN macro 24, 29, 112
application interface block (AIB) 94
application programming, DL/I

access to DEDBs 96
additional facilities with DBCTL 95
BMP design considerations 113
comparison, command codes and keywords 98
considerations with DBCTL 93
defining DMBs 112
I/O PCB 104
return codes and abends 114
subset pointers 96
system service requests 104
with BMPs 103

APPLID, system initialization parameter 24
archiving an OLDS 36

 Copyright IBM Corp. 1989, 1999 195

asynchronous database buffer purge facility, IMS 163
automating connection to DBCTL 46

B
backout, status codes 103
batch backout for in-doubt units of recovery 81
BEEQE (buffer extended error queue element) 81
benefits of DBCTL 9

access to DEDBs 10
BMPs 9
data availability 9
failure isolation 13
improved sharing of databases 13
multiple TCBs 14
multiprocessor throughput 14
online utilities 13
performance 14
release independent interface 13
summary 1
system service requests 10
VSCR 14
XRF 14

BMP (batch message processing program) 103
benefits 9
design considerations 113
migrating from CICS shared database batch

jobs 112
security considerations 120

buffer extended error queue element (BEEQE) 81
BUFPOOLS macro 29

C
CALL DL/I application programming interface

calls supported 110
comparison, commands and calls 109
DBCTL support 94
DEQ 10, 107
IMS AIB call format 94
INIT 101, 102
LOG 10, 108
ROLS 109
schedule PSB 107
SETS 108
subset pointers 96
UIB (user interface block) 89

CANCEL command, response to DFS690A 51, 89
CBRC transaction 62
CCTL (coordinator control subsystem) 7
CCTL keyword with /DISPLAY command 64
CCTLDD, DD name 25
CDBC transaction

functions 47
help screen 49
immediate disconnection 51

CDBC transaction (continued)
menu screen 48
orderly disconnection 51
to connect to DBCTL 45
using 47

CDBC, transient data queue 28
CDBI transaction

help screen 53
inquiring on status of interface 52
inquiry screen 52
using 47

CDBM Group command
DFHBFK file 58
maintenance panel for DFHBFK file 59
record layout 59

CDBM transaction
example help screen 56
example screen 55
implementing 30
issuing IMS operator commands 55

CDBT transaction 127
CEMT INQ TASK command 52, 68, 127
CEMT PERFORM DUMP|SNAP command 141
CEMT SET TASK purge command 52
CICS system definition (CSD) file 26
CICS XRF (extended recovery facility) with DBCTL

connecting to DBCTL after takeover 47
DFHDXnnnn messages 71
INITPARM 47
introduction 14
preinitialized DBCTL 14

CNBA, DRA startup parameter 40
coexistence of local DL/I and DBCTL

XDLIPRE to change PSB to be scheduled 181
cold starting DBCTL 75
command codes, DL/I CALL 98
command recognition character (CRC) 53
COMMIT request, trace 138
communicating with DBCTL 53
components of DBCTL

adapter 5
CCTL (coordinator control subsystem) 7
CICS 4
DBCTL 6
DBRC 6
DFHDBAT 5
DFHDLI 5
DLISAS 6
DRA 5
DRA startup parameter table 5, 39
IMS 6
IRLM 6
major components 7
PI (program isolation) 6
resources DBCTL can access 8
task-related user exit interface 5

196 CICS IMS Database Control Guide

connection to DBCTL
after CICS COLD start 47
after CICS INITIAL start 47
after CICS WARM or EMERGENCY start 46
after CICS XRF takeover 47
automating 27, 46
CDBC transaction 47
connection fails 126
DBCTL not available 50
INIT request 47
INITPARM and DBCTLID 46
introduction 3
messages issued 50
requesting 45
trace 130
using CDBC from CRLP-type terminal 49
using CDBC menu 48
using CDBC without menu 49

console, DBCTL 53
control information for startup 28
coordinator control subsystem (CCTL) 7
CRC (command recognition character) 53
CSAPSB, IMS system generation parameter 29
CSD (CICS system definition) file 26
customizing DBCTL 43

D
data availability 9
data set level recovery 84
database change accumulation utility, DFSUCUM0 84
DATABASE macro 29, 112
database PCB (DB PCB) 105
database recovery utility, DFSURDB0 84

to process in-doubt units of recovery 81
database resource adapter (DRA)

See DRA (database resource adapter)
DB PCB (database PCB) 105
DBC procedure library member 38
DBCTLCON, system initialization parameter 24
DBCTLID, DRA startup parameter 39
DBFULTA0, DEDB log analysis utility 157
DBRC (Database Recovery Control)

/RMxxxxxx commands 62
archiving 36
CBRC transaction 62
commands used to register databases 78
functions 6
log control 34, 78
normal termination messages 175
procedure 38
RECON 78
startup messages 175
termination messages 175

DD statements in CICS
for DBCTL 25

DD statements in CICS (continued)
removed with DBCTL 25

DDNAME, DRA startup parameter 39
DEDB (data entry database)

application program access to 96
area data set compare utility 11
area data set create utility 11
benefits 10
direct reorganization utility 10
FPCTRL macro 29
HSSP (high speed sequential processing) 163
initialization utility 11
log analysis utility 157
parameters, tuning 161
performance 162
POS command 99
sequential dependent delete utility 11
sequential dependent scan utility 11
subset pointers 12, 96
using command codes 99

defining DBCTL 28
DEQ call 10, 107
DEQ command 10, 107
DFHDBAT (database adapter/transformer)

DRA parameter lists 5
functions 5

DFHDBCON program, DBCTL connection 27
DFHDBFK

CDBM Group command 58
DFHDBnnnn messages 50
DFHDBSTX exit, DBCTL statistics 149
DFHDBUEX, user-replaceable program for DBCTL 43
DFHDLI, CICS-DL/I router 5
DFHDLPSB macro 25
DFHDXAX 50
DFHDXnnnn, CICS XRF messages 71
DFHIVPDB, DBCTL IVP 21
DFHSTUP, statistics utility program 149
DFS989I message 38
DFSERA10, file select and formatting print utility 78,

86, 140, 156, 157
DFSMDA, IMS dynamic allocation macro 36
DFSPIRP0, program isolation trace report utility 157
DFSPRP macro

AGN 41, 117
CNBA 40
DBCTLID 39
DDNAME 39
DSECT 39
DSNAME 39
FPBOF 40
FPBUF 40
FUNCLV 39
MAXTHRD 40
MINTHRD 39
SOD 41

 Index 197

DFSPRP macro (continued)
TIMEOUT 41
TIMER 40
USERID 39

DFSPRRC0, DRA startup router program 25
DFSPZPxx, DRA startup parameter table module 25
DFSUARC0, log archive utility 86
DFSUCUM0, database change accumulation utility 84
DFSULTR0, log recovery utility 86
DFSURDB0 database recovery utility 84
DFSUTR20, IMS monitor report print program 156
DFSVSMxx member

contents 26
for DL/I trace 156
starting DBCTL trace 138

DIB (DL/I interface block) 89
contents for successful DL/I request 137
status after PSB schedule 100
TR status code in 115

disconnecting DBCTL
CDBC transaction 47
disconnection fails 127
immediate 47, 51
long running tasks 52
orderly 47, 51
reconnection attempts 89
trace 133
using CDBC 51

DL/I (Data Language/I)
CALL abends 114, 115
comparison, keywords and command codes 98
contents of DIBSTAT for successful DL/I

request 137
interface block (DIB) 89, 100
procedure 38
request handling 2, 3
requests supported 110
specifying in CICS system initialization

parameters 23
support available 2
trace of DL/I request 137

DLIPSB, IMS system generation parameter 29
DLISAS (DL/I separate address space)

contents 6
normal termination messages 175
startup messages 174
termination messages 175

DMB (data management block)
defining 112
during migration 112
IMS macros to define 25

DRA (database resource adapter)
AGN 117
CCTLDD 25
creating 39
DD statements 25

DRA (database resource adapter) (continued)
DFSPRP macro 39
DFSPRRC0, startup router program 25
DFSPZPxx module 39
DFSPZPxx, startup parameter table 25
DRA startup router program, DFSPRRC0 25
example JCL to generate 41
failure 87
functions 5
INIT request 47
parameter lists 5
recovery 87
snap data set 141
specification of number of threads 159
startup table parameters 39
TERM request 47
time override for connection attempts 51

DSALIM, system initialization parameter 24
DSECT, DRA startup parameter 39
DSNAME, DRA startup parameter 39
dumps, CICS

problem occurring in CICS or DBCTL 141
system 141
transaction 140
what is provided for DBCTL 141

dumps, DBCTL
description 143
produced by DBCTL 143

dumps, DRA
return codes 144
SDUMP, contents 142
SDUMP, when produced 142
snap data set 141
SNAP, contents 142
when produced 142

dynamic backout
meaning in CICS 77
meaning in IMS 77

E
EDF (execution diagnostic facility) with DBCTL 146
EDSALIM, system initialization parameter 24
EEQEL (extended error queue element link) 81
emergency restart, DBCTL

description 76
status of in-flight UOWs 76

enhanced scheduling
accepting status codes 102
increased 100
obtaining information about 100
QUERY command 100
REFRESH command 101
refreshing PCB status codes 101

environment of DBCTL 3

198 CICS IMS Database Control Guide

error scenarios, DBCTL
connection fails 126
connection to DBCTL not complete 126
disconnection fails 127
DLSUSPND 128
immediate disconnection 128
orderly disconnection 127
PSB scheduling failures 128
trace of COMMIT request 138
trace of connection to DBCTL 130
trace of disconnection from DBCTL 133
trace of DL/I request 137
trace of failed PSB schedule 136
trace of PREPARE request 138
trace of successful PSB schedule 135
trace of TERMINATE thread request 138
waits 126

EXEC CICS DUMP SYSTEM command 141
EXEC DLI application programming interface

abends 114, 115
ACCEPT command 102
additional keywords 96
commands supported 110
comparison, commands and calls 109
comparison, keywords and command codes 98
DBCTL support 94
DEQ 10, 107
DHxx abends 107
DIB (DL/I interface block) 89
GETFIRST keyword 97
LOCKCLASS keyword 96
LOG 10, 108
MOVENEXT keyword 96
NODHABEND keyword 107
obtaining information in DIB 100
QUERY command 100
REFRESH command 101
ROLS command 109
SCHD PSB 106
SCHD PSB failure 107
SET keyword 97
SETCOND keyword 97
SETS and ROLS commands 108
SETS command 108
SETZERO keyword 97
subset pointers 96
SYSSERVE keyword 98

execution diagnostic facility (EDF) with DBCTL 146
extended error queue element link (EEQEL) 81
external subsystem commands 67

F
file select and formatting print utility, DFSERA10 78,

86, 140, 156, 157

FPBOF, DRA startup parameter 40
FPBUF, DRA startup parameter 40
FPCTRL macro 29
FUNCLV, DRA startup parameter 39
function shipping AIB requests 94

G
generalized trace facility (GTF) 158
generating DBCTL

checklist 21
database buffers 36
example JCL 31
generating your own DFSPRRDx 37
IMS INSTALL/IVP 31
introduction 28
naming convention 38
overriding DBCTL generation parameters 37

GETFIRST keyword 97
global user exits

for XRF 44
XDLIPOST 43
XDLIPRE

example 181
function 43
in migration 19

XRMIIN 44
XRMIOUT 44

GSAM PCB 105
GTF (generalized trace facility) 158

H
high speed sequential processing (HSSP) 163
HSSP (high speed sequential processing) 163

I
I/O PCB (input/output PCB) 104

summary 105
IEEQE (in-doubt extended error queue element) 81
IMS dynamic allocation macro, DFSMDA 36
IMS INSTALL/IVP 31
IMS log statistics 157
IMS logging 33
IMS monitor 155, 156

allocating IMSMON data set 155
first phase 156
general reports 154
general wait time events 153
program summary 155
region summary report 154
regions and jobname report 154
report print program, DFSUTR20 156
reports not used with DBCTL 153
reports used with DBCTL 153

 Index 199

IMS monitor (continued)
run profile 155
running 155
second phase 156
starting and stopping dynamically 155
transaction queuing report 155

IMS system data sets, modifying 31
IMS XRF (extended recovery facility)

introduction 14
IMS.RESLIB library 25
IMSCTF macro 29
IMSCTRL macro 28
IMSGEN macro 30
in-doubt extended error queue element (IEEQE) 81
INIT call 102

accept status codes 102
refresh PCB status codes 101

INIT request 47
INITPARM, system initialization parameter 24, 46
inquiring on status of DBCTL interface 52
inquiry transaction, CDBI 47, 52
installing DBCTL

checklist 21
DBC procedure library member 38
DBCTL IVP, DFHIVPDB 21
DBRC procedure 38
DLI procedure 38

IRLM (internal resource lock manager)
functions 6
tracing activity with GTF 158

J
JCL example to generate DBCTL 31

K
keywords, EXEC DLI 98

L
local DL/I

AMODE/RMODE support 100
APPLID parameter 24
DBCTLCON parameter 24
definition 2
directory lists 25
DSALIM parameter 24
EDSALIM parameter 24
partial system generation 21

LOCKCLASS keyword 10, 96
log analysis utility, DEDB 157
log archive utility, DFSUARC0 86
LOG call 10, 108
LOG command 10, 108

log management
CICS system log not needed with DBCTL 27
with DBCTL 27

log records 78
X'07' 156
X'08' 156

log recovery utility, DFSULTR0 86
log, IMS

defined by IMSCTF 29
IMS statistics 157
log records written during two-phase commit 78
PI trace records 156

logging with DBCTL
/SWITCH OLDS command 35
archiving 36
DBRC 34
defining IMS parameters 35
OLDS 33
switching OLDS 66
WADS 34

M
macros, IMS system generation

APPLCTN 24, 29
BUFPOOLS 29
creating control information for startup 28
DATABASE 29
DFHDLPSB 25
FPCTRL 29
IMSCTF 29
IMSCTRL 28, 29

MAXREGN 29
IMSGEN 30
SECURITY 30

main storage buffer pool sizes 29
MAXREGN parameter, IMSCTRL system generation

macro
in system definition 29
tuning 159

MAXTHRD, DRA startup table parameter
in DRA startup table 40
tuning 159

MCT (monitoring control table)
additional entries DBCTL 27
CICS monitoring control table 152
DFH$MCTD 27

messages, CICS-DBCTL
categories 143
dealing with 71
DFHDB8101 132
DFHDB8102 87, 134
DFHDB8103 71
DFHDB8104 71, 88
DFHDB8106 87
DFHDB8109 72, 82, 88, 136

200 CICS IMS Database Control Guide

messages, CICS-DBCTL (continued)
DFHDB8111 88
DFHDB8116 131
DFHDB8117 46
DFHDB8130 88
DFHDB8209 48
DFHDB8210 50
DFHDB8211 133
DFHDB8212 133
DFHDB8225 50
DFHDB8290 53
DFHDB8291 53, 126
DFHDB8292 50, 53, 126
DFHDB8293 48, 52, 53, 132
DFHDB8294 53
DFHDB8295 53
DFHDB8296 53
DFHDBnnnn, CICS 50
DFHDXnnnn, CICS XRF 71
DFS690A 51
on menu and inquiry screens 143
rerouting 143
routed to CDBC 143
suppressing 143
user interaction 143

messages, DBCTL
categories 143
DBCTL normal termination 175
DBCTL startup 174
DBRC startup 175
DBRC termination 175
dealing with 71
DFS613I 88
DFS628I 88
DFS629I 88
DFS690A 89
DFS989I 38
DFS994I 45
DLISAS normal termination 175
DLISAS startup 174
user interaction 143

migration to DBCTL
based on current setup 18
CICS PSB authorization checking 121
CICS shared database batch jobs to BMPs 112
CICS-IMS release compatibility 15
DBCTL resource access checking 122
DL/I program to DBCTL program 112
native IMS batch jobs to BMPs 113
other methods of accessing DL/I 15
paths 16

CICS with function shipping 17
CICS with IMS data sharing and batch 17
CICS with IMS/VS DB/DC or IMS/ESA

DM/TM 17
CICS with local DL/I 16
CICS with local DL/I and data sharing 16

migration to DBCTL (continued)
paths (continued)

CICS with shared database 16
planning

number of DBCTL subsystems to use 20
setting up test and production systems 20

RACF preparations 123
remote DL/I 15
security considerations 120
security migration scenarios 120
suggested procedure 17
task summary 165
tasks

application programming 167
education 165
installation 166
monitoring 168
operations 166
performance 168
problem determination 168
recovery and restart 167
resource definition 166
security 168
statistics 168
system definition 166

MINTHRD, DRA startup table parameter
tuning 159

MODIFY command, MVS
STOP option 88

monitoring, DBCTL data
obtaining 152
program isolation trace 156
returned to CICS 150
returned to IMS log 156
statistics 148

MOVENEXT keyword 96
MTO (master terminal operator)

CDBC transaction 5, 45, 47
CDBI transaction 47
connection to DBCTL 5
disconnection from DBCTL 5

multisegment operator commands, DBCTL 54
MVS console, for DBCTL operations 53
MVS MODIFY command 71, 89

DFSnnnn messages 71
MVS/ESA Resource Measurement Facility 158
MXT, system initialization parameter, tuning 160

N
NODHABEND keyword 107
null words in DBCTL operator commands 55

 Index 201

O
OLDS (online log data set) 33

recovery with log recovery utility 86
online change utility 13
online change, to modify IMS system data sets 31
online image copy utility 13
online reorganization 14
operations, DBCTL 45

CDBM 30
command summary 177
using MVS console 53

operator commands, DBCTL
/CHANGE CCTL 83
/CHANGE PASSWORD 63
/CHECKPOINT 77
/CHECKPOINT command 77, 88
/DELETE 63
/DISPLAY 64
/ERESTART 76
/LOCK 63
/LOG 65
/NRESTART 75
/RMINIT.db 78
/RMxxxxxx, for DBRC 62
/SWITCH OLDS 35
/TRACE 63, 155, 156
/UNLOCK 63
CICS and DBCTL, comparison 177
CRC 53
DBCTL commands valid with CDBM 177
DBCTL operator, summary 177
DBRC 62
external subsystem 67
format of 53
multisegment 54
null words 55
passwords with 55
status of RIS 83
to start CICS 45
to start DBCTL 45
to start IMS 45
used for termination of DBCTL 88

operator commands, MVS
F jobname,RECONNECT 89
F jobname,STOP|DUMP 71
MODIFY 29
MVS MODIFY 71, 89
used for termination of DBCTL 88

operator communication with DBCTL 53
overview of DBCTL 1

P
PAPL (participant adapter parameter list)

description of request codes 145

PAPL (participant adapter parameter list) (continued)
description of return codes 145
PAPLRETC 141
return codes from CICS to DRA 145
return codes from DRA to CICS 145

passwords with operator commands 55
PCB (program control block)

alternate TP PCB 104
batch programs 106
BMPs 106
CICS online programs 105
comparison with AIB for EXEC DLI calls 95
DB PCB 105
GSAM PCB 105
I/O PCB 104
summary 105

PDIR, system initialization parameter 24
performance tools, DBCTL

CICS auxiliary trace facility 157
GTF (generalized trace facility) 158
MVS/ESA Resource Measurement Facility 158

performance, DBCTL
asynchronous database buffer purge 163
auxiliary trace 157
benefits 14
CICS shared database jobs as BMPs 164
DEDB parameters, tuning 161
DEDBs 162
HSSP (high speed sequential processing) 163
IMS batch jobs as BMPs 164
job dispatching priorities 159
monitoring 147
multiprocessor throughput 163
numbers of threads 159
parameters in CICS 158
parameters in IMS 159
statistics 147, 148
tuning 158
virtual storage 163

PI (program isolation)
functions 6
trace 156
trace report utility, DFSPIRP0 157

PLT (program list table) 27
PLTPI, connecting to DBCTL at CICS startup 27
POS command and call with DEDBs 99
preinitialized DBCTL with XRF 14
PREPARE request, trace 138
problem determination 125

CICS trace entries 129
connection fails 126
connection to DBCTL not complete 126
correlating activity in DBCTL and CICS 128
DBCTL dumps 143
DBCTL error scenarios 126
DBCTL return codes 144

202 CICS IMS Database Control Guide

problem determination (continued)
disconnection fails 127
DLSUSPND 127, 128
immediate disconnection 128
IMS X'67FA' log records 140
interactions at interface level 125
interactions at request level 126
interactions between CICS and DBCTL 125
kind of dump produced 144
orderly disconnection 127
PAPL request codes 145
PAPL return codes 145
problem occurring in CICS or DBCTL 141
PSB scheduling failures 128
starting tracing in DBCTL 138
trace 129
trace of COMMIT request 138
trace of connection to DBCTL 130
trace of disconnection from DBCTL 133
trace of DL/I request 137
trace of failed PSB schedule 136
trace of PREPARE request 138
trace of successful PSB schedule 135
trace of TERMINATE thread request 138
waits 126

procedure library member DBC 38
PROCOPT=P parameter 18
program list table (PLT) 27
PSB (program specification block)

containing PCBs for GSAM and MSDB 102
data availability 9
defining for application program access 112
defining when generating DBCTL 29
enhanced scheduling 100
format 105
IMS macros to define 25
in APPLCTN macro statement 29
PDIR list 24
preventing abends after schedule failure 107
schedule failed, contents of UIBDLTR 136
schedule failed, contents of UIBFCTR 136
schedule requests during disconnect 51
schedule successful, contents of UIBDLTR 135
schedule successful, contents of UIBFCTR 135
status in DIB 100
trace of schedule failure 136
trace of successful schedule 135
XDLIPRE to change PSB to be scheduled 181
XPSB parameter 24

pseudo recovery tokens 82
purging a transaction 68

Q
Q command code 10

QUERY command 100

R
RACF (resource access control facility)

checking by DBCTL 117
definition of PSBs 24

RECON (recovery control data sets)
DBCTL operator commands 62
example JCL to initialize 34
information 78
information included 34
specified in DFSMDA 26

reconnecting DBCTL, with MVS MODIFY command 89
reconnecting to DBCTL 50
recoverable service table (RST) 24
recovery and restart with DBCTL 73

/CHECKPOINT command 77
/CHECKPOINT FREEZE 75
/CHECKPOINT PURGE 75
/ERESTART command 76
/SWITCH OLDS command 35
ABORT 79
archiving 36
backing out uncommitted updates 77
backout 79
BEEQE 81
BMP failure 91
CICS failure 87
CICS keypoints 76
CICS units of work (UOWs) 82
cold start 75
COMMIT 79
commit protocols 79
data set level 84
database change accumulation utility 84
database recovery utility 84
database utilities 84
DBCTL failure 88
DBCTL unit of recovery 81
DBRC 34
deadlocks and automatic restart 90
DEDB UNDO 79
defining IMS logging parameters 35
description of CICS initialization 73
description of CICS termination 73
DRA failure 87
EEQEL 81
emergency restart 76
IEEQE 81
IMS checkpoints 76
IMS logging 33
in-doubt units of recovery 81
in-flight unit of recovery 81
IRLM failure 89
log archive utility 86

 Index 203

recovery and restart with DBCTL (continued)
log records 78
log recovery utility 86
log utilities 86
multiple resource managers 81
MVS failure 91
OLDS 33
online log data set (see OLDS) 33
overview of CICS procedures 73
overview of IMS procedures 73
power failure 91
PREPARE 79
processor failure 91
pseudo recovery tokens 82
RECON 78
recovery tokens 82
restarting DBCTL 74
RIS 81
RRE 81
switching OLDS 66
thread failure 89
TIMEOUT 87
track level 84
transaction failure 89
two-phase commit 79
units of recovery 79
WADS 34
warm start 75
when updates are written to databases 79
write-ahead data set (see WADS) 34

recovery tokens 82, 138
REFRESH command 101
release independence 13
remote DL/I

AMODE/RMODE support 100
APPLID parameter 24
DBCTLCON parameter 24
DSALIM parameter 24
EDSALIM parameter 24
partial system generation 21
PDIR list 24
support available 2

request handling 2
residency mode (RMODE) 100
residual recovery element (RRE) 81
resource definition, DBCTL 22
Resource Measurement Facility, MVS/ESA 158
resources accessed in DBCTL 8
restarting DBCTL 74
return codes for programs 114
return codes, DBCTL 144

PAPL 145
to indicate type of dump 144

RIS (recoverable in-doubt structure)
contents of 81
status with emergency restart 76

RMODE (residency mode) 100
ROLS call 109
ROLS command 109
RRE (residual recovery element) 81
RST (recoverable service table) 24
RST, system initialization parameter 24

S
SCHD PSB command 106
schedule PSB call 107
security class name 24
SECURITY macro 30
security maintenance utility, IMS

descriptions of protected resources 30
IMS passwords 63
IMS.MODBLKS 30

security, DBCTL
AGNs 119
CICS PSB authorization 121
DBCTL checking 117
DBCTL considerations 117
DBCTL ID 119
DBCTL resource access checking 122
DBCTL resource access security parameters 119
DRA startup table 117, 120
migration considerations 120
migration scenarios 120
password security checking 120
PSB authorization checking by CICS 117
PSBs 119
RACF 117, 123
security maintenance utility 117
using BMPs with DBCTL 120

SET keyword 97
SETCOND keyword 97
SETS call 108
SETS command 108
SETZERO keyword 97
SLDS (system log data set) 86
SLR (Service Level Reporter) 152
SOD, DRA startup parameter 41
startup messages, DBCTL 174
startup messages, DBRC 175
startup messages, DLISAS 174
startup parameters 28
startup parameters, illustration 171
statistics utility program, DFHSTUP 149
statistics, unsolicited 148
status codes

accepting 102
BA 102
BB 102
DL/I interface block (DIB) 89
UIB (user interface block) 89
with backout 103

204 CICS IMS Database Control Guide

stopping DBCTL
abnormally 71
normally 70

subordinate TCBs 141
subset pointers 12, 96
SYSSERVE keyword 98
system definition parameters

APPLID 24
CICS system initialization parameters, reviewing 23
CSAPSB 29
DBCTL startup 28
DBCTLCON 24
DLIPSB 29
DSALIM 24
EDSALIM 24
for DBCTL startup, illustration 171
INITPARM 24, 46
PDIR 24
PSBCHK 24
RST 24
system initialization 22
XPSB 24

system definition, IMS 28
stage 1 28
stage 2 28
using to define DBCTL 28

system dumps, CICS 141
system initialization parameters

APPLID 24
DBCTLCON 24
DSALIM 24
EDSALIM 24
INITPARM 24, 46
parameters 22
PDIR 24
PSBCHK 24
RST 24
specifying DL/I support 23
XPSB 24

system log data set (SLDS) 86
system service requests 10, 104

T
task control block (TCB) 14
TCB (task control block) 14
TERM request 47
TERMINATE thread request, trace 138
terminating DBCTL 88

DUMP option 88
with /CHECKPOINT command 77
with MVS MODIFY command 71

termination messages, DBCTL 175
termination messages, DBRC 175
termination messages, DLISAS 175

termination, abnormal 88
threads

definition 5
specification in DRA startup table 159
trace of termination 138

TIMEOUT parameter 87
TIMEOUT, DRA startup parameter 41
TIMER, DRA startup parameter 40
trace, CICS-DBCTL

as debugging tool 129
auxiliary 157
connection to DBCTL 130
contents of UIBDLTR 135
contents of UIBFCTR 135
disconnection from DBCTL 133
DL/I request 137
entries produced 129
PSB schedule, successful 135
PSB scheduling failure 136
thread termination 138

trace, DBCTL
as debugging tool 129
DL/I trace 156
entries produced 138
IMS X'67FA' log records 140
starting 138
using /TRACE command 63

track level recovery 84
transaction dumps, CICS 140
transaction level monitoring data 150
transaction using DBCTL, purging 68
transactions for DBCTL

CDBC 47
CDBI 47

transient data queues, entry for CDBC 28
tuning, CICS-DBCTL 158
two-phase commit, DBCTL

ABORT 79
COMMIT 79
DEDB REDO 79
log records 78
phase 1 80
phase 2 80
PREPARE 79
unit of recovery 81
when updates are written to databases 79

U
U113, IMS abend 88
UIB (user interface block)

description 89
UIBDLTR, after PSB schedule 137
UIBDLTR, contents 114, 115
UIBFCTR, after PSB schedule 137
UIBFCTR, contents 114, 115

 Index 205

unit of recovery
during two-phase commit 81
in-doubt 81
in-flight 81
status with emergency restart 76

unsolicited statistics 148
UOW (unit of work)

definition 82
in-doubt during two-phase commit 81
in-doubt, resolving manually 83
in-flight during two-phase commit 81

user-replaceable programs 43
DFHDBUEX 43

USERID, DRA startup parameter 39
utilities, IMS

batch backout 81
database change accumulation 84
database recovery 81, 84
DEDB area data set compare utility 11
DEDB area data set create utility 11
DEDB direct reorganization utility 10
DEDB initialization utility 11
DEDB log analysis utility 157
DEDB sequential dependent delete utility 11
DEDB sequential dependent scan utility 11
file select and formatting print 86, 156
file select and formatting print utility,

DFSERA10 78, 157
IMS monitor 155
log archive 86
log recovery 86
online change utility 13
online image copy utility 13
online reorganization for DEDBs 14
program isolation trace report 157
security maintenance 55, 117

utility programs, CICS
DFHSTUP 149

V
VSCR (virtual storage constraint relief)

freeing storage in CICS 14
tuning a DBCTL system 163

W
WADS (write-ahead data set) 34
WAIT command, response to DFS690A 51, 89
waits, DBCTL 126
warm restart, DBCTL

after /CHECKPOINT FREEZE 75
after /CHECKPOINT PURGE 75
state of resources 75

write-ahead data set (WADS) 34

X
XDLIPOST, global user exit 43
XDLIPRE, global user exit

function 43
to change PSB to be scheduled 181

XPSB, system initialization parameter 24
XRMIIN, global user exit 44
XRMIOUT, global user exit 44
XXDFA, global user exit for XRF 44
XXDFB, global user exit for XRF 44
XXDTO, global user exit for XRF 44

206 CICS IMS Database Control Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the methods listed below to send your
comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy, organization, subject
matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM products or
systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way
it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, to this address:

Information Development Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

 � By fax:

– From outside the U.K., after your international access code use 44–1962–870229

– From within the U.K., use 01962–870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

 – IBMLink: HURSLEY(IDRCF)

 – Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

� The publication number and title

� The topic to which your comment applies

� Your name and address/telephone number/fax number/network ID.

 Copyright IBM Corp. 1989, 1999 207

IBM

Program Number: 5655-147

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-17ðð-ð2

Spine information:

IBM CICS TS for OS/390 CICS IMS Database Control Guide Release 3

