
CICS® Transaction Server for OS/390®

Release Guide
Release 3

GC34-5352-01

���

CICS® Transaction Server for OS/390®

Release Guide
Release 3

GC34-5352-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page xi.

Second edition (March 1999)

This edition applies to Release 3 of CICS Transaction Server for OS/390, program number 5655-147, and to all
subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are using
the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make comments,
but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development, Mail Point 095,
Hursley Park, Winchester, Hampshire, England,
SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
What this book is about . xiii
Who this book is for . xiii
What you need to know to understand this book xiii
How to use this book . xiii
Notes on terminology . xiv

Bibliography . xv
CICS Transaction Server for OS/390 xv

CICS books for CICS Transaction Server for OS/390 xv
CICSPlex SM books for CICS Transaction Server for OS/390 xvi
Other CICS books . xvi

Part 1. Summary of CICS® TS Release 3 . 1

Chapter 1. Summary of Release 3 3
Parallel Sysplex® support . 3

Sysplex enqueue and dequeue 3
Coupling facility data tables. 3
Dynamic routing of DPL and EXEC CICS START requests 4

System management . 4
Resource definition online for CICS temporary storage. 4
Monitoring, statistics, and enterprise management changes 5
Autoinstall for consoles . 5

Application support and solution enablement 5
CICS business transaction services 5
Open transaction environment 5
Long temporary storage queue names. 6
EXCI enhancement for resource recovery 6
Object-oriented interface to CICS services for C++ 6
JCICS interface to CICS services for Java 7
VisualAge® for Java, Enterprise Edition for OS/390 7
Support for the Java Virtual Machine 7

e-Business enablement for network computing. 7
Bridging to 3270 transactions 8
Support for the secure sockets layer 8
CORBA client support . 8
Enhancements to CICS Web support 8

Miscellaneous enhancements . 9
Hardware and software requirements 9

Part 2. Parallel Sysplex support . 11

Chapter 2. Sysplex enqueue and dequeue 13
Overview . 13
Benefits . 14
Requirements . 14
Changes to CICS externals . 14

Changes to resource definition 14

© Copyright IBM Corp. 1998 iii

Changes to the system programming interface 15
Changes to CICS-supplied transactions 15
Changes to global user exits 16
Changes to CICS Affinity Utility 16

CICSPlex SM support . 17

Chapter 3. Coupling facility data tables 19
Overview . 19

Comparison with user-maintained data tables 20
Coupling facility data table models. 20
Coupling facility data table structures and servers 20

Benefits . 22
Requirements . 23

Storage usage . 23
Changes to CICS externals . 23

Changes to system definition. 23
Changes to resource definition 26
Changes to the application programming interface 28
Changes to the system programming interface 30
Changes to global user exits 35
Changes to security . 35
Changes to CICS-supplied transactions 36
Changes to monitoring and statistics 37
Changes to sample programs 37
Changes to problem determination 37

CICSPlex SM support . 38

Chapter 4. Dynamic routing of DPL and EXEC CICS START requests . . . 41
Changes to the dynamic routing interface 41

Two routing models . 42
Two routing programs . 43

Dynamic routing of DPL requests 44
How CICS obtains the transaction ID. 45
When the dynamic routing program is invoked 45

Routing transactions invoked by START commands 46
Advantages of the enhanced method. 46
Terminal-related START commands 47
Non-terminal-related START commands. 50

Benefits . 52
Requirements . 52
Changes to CICS externals . 52

Changes to system definition. 53
Changes to resource definition 53
Changes to system programming 53
Changes to CICS-supplied transactions 54
Changes to user-replaceable programs 54
Changes to the exit programming interface (XPI) 54
Changes to sample programs 55
Changes to monitoring and statistics 55
Changes to trace points . 55
Changes to messages and abend codes 55

CICSPlex SM support . 55

Part 3. System management . 57

Chapter 5. Resource definition online for CICS temporary storage 59

iv CICS TS for OS/390: Release Guide

||
||

Overview . 59
Benefits . 59
Requirements . 59
Changes to CICS externals . 60

Changes to resource definition 60
Changes to the system programming interface 61
Changes to CICS-supplied transactions 62
Changes to global user-exits 62

CICSPlex SM support . 63

Chapter 6. Monitoring, statistics, and enterprise management changes 65
Overview . 65

Monitoring . 65
Statistics . 66

Changes to CICS externals . 66
Changes to the system programming interface 66
Changes to CICS-supplied transactions 68
Changes to sample programs 68
Changes to utility programs 68
Changes to monitoring data 69
Additional exception records 71

Support for Tivoli Global Enterprise Manager 71

Chapter 7. Autoinstall for MVS consoles 73
Overview . 73

Using pre-installed console definitions 73
Using autoinstalled console definitions 73
The terminal autoinstall control program. 74
Preset security for autoinstalled consoles 74
Automatic deletion of autoinstalled consoles 74

Benefits . 74
Requirements . 74
Changes to CICS externals . 75

Changes to system definition. 75
Changes to resource definition 75
Changes to the system programming interface 76
Changes to CICS-supplied transactions 78
Changes to the user replaceable modules 78

Part 4. Application support and solution enablement 79

Chapter 8. CICS business transaction services 81
Overview . 81

Business transactions and CICS transactions. 81
What are CICS business transaction services? 83

Benefits . 88
Requirements . 88
Changes to CICS externals . 88

Changes to the application programming interface 89
Changes to the system programming interface 92
Changes to resource definition 92
Changes to system definition. 93
Changes to CICS-supplied transactions 93
Changes to user-replaceable programs 94
Changes to monitoring . 94
Changes to problem determination 94

Contents v

Changes to utility programs 95
Changes to sample programs 95

An example BTS application . 96
Overview . 96
The initial request . 97
The root activity . 100
Transferring input and output data 106

CICSPlex SM support. 109
Benefits of using CICSPlex SM to manage CICS BTS 110

Chapter 9. Open transaction environment 111
Overview. 111

The future . 111
Open TCBs. 112
Using an open TCB. 113
Permitted programming interfaces under the QR TCB 114
Program attributes for the open transaction environment 115

Benefits . 117
Requirements . 118
Changes to CICS externals . 118

Changes to system definition 118
Changes to resource definition. 119
Changes to the system programming interface (SPI) 121
Changes to global user exits 127
Changes to task-related user exits 128
Changes to the exit programming interface (XPI) 130
User-replaceable modules 132

CICSPlex SM support. 132

Chapter 10. Long temporary storage queue names 133
Overview . 133

Effect on application programs. 133
Benefits of long temporary storage queue names 134
Requirements for long temporary storage queue names 134
Changes to CICS externals . 134

Changes to resource definition 135
Changes to the application programming interface (API) 135
Changes to the system programming interface (SPI) 136
Changes to global user exits 136
Changes to CICS-supplied transactions 137
Changes to monitoring . 137
Changes to samples . 137
Changes to utilities . 138
Changes to problem determination 138
Changes to security . 138

CICSPlex SM support. 138

Chapter 11. EXCI enhancement for resource recovery 139
Overview . 139

Adding RRMS support to CICS regions 142
Benefits . 142
Requirements . 143
Changes to CICS externals . 143

Changes to system definition 143
Changes to the system programming interface (SPI) 143
Changes to the external CICS interface 144

vi CICS TS for OS/390: Release Guide

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

||

Changes to CICS-supplied transactions 145
Changes to problem determination 145

CICSPlex SM support. 146

Chapter 12. Object-oriented interface to CICS services for C++ 147
Overview . 147

The header files . 147
The dynamic link library . 147
The sample programs . 147
The CICS-supplied side-deck 148

Benefits . 148

Chapter 13. JCICS interface to CICS services for Java 149
Overview . 149
JavaBeans . 149
Supplied components . 150

Sample programs . 150
JCICS reference documentation 150

Benefits of Java language support 150

Chapter 14. VisualAge for Java, Enterprise Edition for OS/390 151
Overview . 151
Benefits of Java language support 151
Requirements . 152
Changes to CICS externals . 152

Changes to installation . 152
Changes to the application programming interface (API) 153
Changes to samples . 153
Changes to problem determination 153

Changes to user tasks . 153

Chapter 15. Support for the Java Virtual Machine 155
Overview . 155

MVS JVM integration with CICS 156
Benefits . 157
Requirements . 158
Changes to CICS externals . 158

Changes to system definition 158
Changes to resource definition 158
Changes to the application programming interface 159
Changes to the system programming interface 160
Changes to global user exits 161
Changes to the exit programming interface 161
Changes to user-replaceable modules 162
Changes to CICS-supplied transactions 163
Changes to monitoring and statistics 163
Changes to problem determination 163

CICSPlex SM support. 164

Part 5. e-Business enablement for network computing 165

Chapter 16. Bridging to 3270 transactions 167
Overview . 167

Changes to the 3270 bridge 168
Components of the new 3270 bridge 168
Sample code provided. 170

Contents vii

Security considerations . 171
Running 3270 transactions in a bridge environment 171
Migration considerations . 172
Benefits of bridging to 3270 transactions 172
Requirements for the 3270 bridge 173

Resource usage . 173
Changes to CICS externals . 173

Changes to resource definition 173
Changes to the application programming interface (API) 174
Changes to the system programming interface (SPI) 175
Changes to the exit programming interface (XPI) 176
Changes to user-replaceable modules 176
Changes to CICS-supplied transactions 176

Chapter 17. Support for the secure sockets layer 177
Overview of SSL . 177

SSL authentication . 177
Benefits of secure sockets layer 178
Requirements . 178
Changes to CICS externals . 178

Changes to installation . 178
Changes to system definition 179
Changes to application programming interface 180
Changes to user-replaceable modules 180
Changes to samples . 180
Changes to CICS-supplied transactions 180
Changes to problem determination 181

Chapter 18. CORBA client support 183
Overview . 183
Benefits . 184
Requirements . 184
Changes to CICS externals . 184

Changes to resource definition 185
Changes to the system programming interface (SPI) 185
Changes to user-replaceable modules 185
Changes to CICS-supplied transactions 185
Changes to samples . 185
Changes to CICS-supplied utilities 185
Changes to problem determination 186

Security . 186
CICSPlex SM support. 186

Chapter 19. CICS Web support enhancements 187
Overview . 187

EXEC CICS API for the CICS Web interface 187
HTML templates . 187
Improvements to 3270 support on the Web 187
Removal of 32KB restriction 188
Support for the HTTP 1.0 Keep-Alive header 188
Simplified administration . 188

Benefits . 188
Requirements . 189
Changes to CICS externals . 189

Changes to system definition 189
Changes to resource definition 190

viii CICS TS for OS/390: Release Guide

||

Changes to the application programming interface (API) 190
Changes to the system programming interface (SPI) 191
Changes to user-replaceable programs 192
Changes to CICS-supplied transactions 192
Problem determination . 192

CICSPlex SM support. 193

Part 6. Miscellaneous changes . 195

Chapter 20. Miscellaneous changes 197
Removal of runtime support for RCTs 197

Effect of change on DSNC and INITPARM commands 197
Named counter sequence number facility 198

Overview . 198
The named counter application programming interface 199

CDBM command file for storing IMS commands 200
Background . 200
Overview . 200

Enabling USER KEY CICSPlex SM API applications 201
Performance improvement for EXEC CICS LINK under LE 201
MEMBER option added to INQUIRE TDQUEUE command 201
Remove option added to CEDA and DFHCSDUP Commands 201
USERDEFINE added to DFHCSDUP Commands. 202
Euro support . 202

Data conversion . 202
BMS support for the Euro 202

Support for connection quiesce protocol 203
CICSPlex SM BAS support for FEPI resources 203

Part 7. Requirements . 205

Chapter 21. Prerequisite hardware and software for CICS Transaction
Server for OS/390 . 207

Hardware prerequisites . 207
Parallel Sysplex support . 207

Operating system . 208
IBM database products . 208

IMS/ESA Database Manager 209
IBM DATABASE 2 (DB2) . 209

IBM telecommunications access methods 209
IBM external security manager (RACF) 209
CICS VSAM Recovery . 209
Tivoli Performance Reporter for OS/390 209
Netview® for MVS/ESA . 210
Programming languages . 210
CICS components in object-code-only (OCO) form 210

Part 8. Appendixes . 213

Appendix. Details of changed monitoring records 215
Selectivity of performance class data fields 215
Interpreting CICS monitoring 219

Clocks and time stamps . 220

Definition of terms . 247

Contents ix

||
||
||

||
||
||
||
||
||

Index . 249

Sending your comments to IBM 253

x CICS TS for OS/390: Release Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM United Kingdom Laboratories,
MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

© Copyright IBM Corp. 1998 xi

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Programming License Agreement, or any equivalent agreement
between us.

Trademarks

The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

AD/Cycle C/370 CICS
CICS/ESA CICSPlex COBOL/370
DATABASE 2 DB2 DFSMS
Enterprise Systems

Architecture/370
ES/3090 ESA/370

ESA/390 ES/9000 ESCON
IBM IMS IMS/ESA
Language Environment MQSeries MVS
MVS/ESA Multiprise OS/2
OS/390 Parallel Sysplex PR/SM
RACF S/390 System/390
SystemView VisualAge VTAM

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States, or
other countries, or both.

UNIX is a trademark of X/Open Company Limited in the United States, or other
countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

xii CICS TS for OS/390: Release Guide

Preface

What this book is about

This book provides information about new and changed function in CICS®

Transaction Server for OS/390® (CICS TS), Release 3. It gives an overview of the
changes to reference information, and points you to the manuals where more
detailed reference information is given.

The programming interface information given in this book is intended only to show
what has changed from the previous release of CICS TS, and to help you plan your
migration to the new release. For programming interface information, read the
primary sources of programming interface and associated information in the
following publications:
v CICS Application Programming Reference
v CICS System Programming Reference
v CICS Customization Guide
v CICS External Interfaces Guide
v CICSPlex SM Application Programming Guide
v CICSPlex SM Application Programming Reference

Who this book is for

This book is for those responsible for the following user tasks:
v Evaluation and planning
v System administration
v Programming
v Customization

It describes what is new, changed, and obsolete in the CICS and CICSPlex® SM
elements of CICS Transaction Server for OS/390.

What you need to know to understand this book

The book assumes that you are familiar with CICS and CICSPlex SM, either as a
systems administrator, or as a systems or application programmer.

How to use this book

This book is organised in seven parts:

v Part 1 provides a brief summary of all new and changed function.

v Part 2 describes new function that extends CICS support of Parallel Sysplex®.

v Part 3 describes the new function designed to improve and simplify the task of
CICS system management.

v Part 4 describes the new function introduced to support application development
and to help you to develop solutions that meet your business requirements.

v Part 5 describes the new function introduced to support network computing over
open computer networks.

v Part 6 describes a number of miscellaneous changes.

v Part 7 covers hardware and software requirement for CICS TS Release 3, and
describes the publications that are available, in both hardcopy and softcopy.

© Copyright IBM Corp. 1998 xiii

Notes on terminology

When the term “CICS” is used without any qualification in this book, it refers to the
CICS element of IBM® CICS Transaction Server for OS/390.

“CICSPlex SM” is used for the CICSPlex System Manager element of IBM CICS
Transaction Server for OS/39

“MVS™” is used for the operating system, which is a base element of OS/390.

xiv CICS TS for OS/390: Release Guide

Bibliography

CICS Transaction Server for OS/390

CICS Transaction Server for OS/390: Planning for Installation GC33-1789
CICS Transaction Server for OS/390 Release Guide GC34-5352
CICS Transaction Server for OS/390 Migration Guide GC34-5353
CICS Transaction Server for OS/390 Installation Guide GC33-1681
CICS Transaction Server for OS/390 Program Directory GI10-2506
CICS Transaction Server for OS/390 Licensed Program Specification GC33-1707

CICS books for CICS Transaction Server for OS/390

General
CICS Master Index SC33-1704
CICS User’s Handbook SX33-6104
CICS Transaction Server for OS/390 Glossary (softcopy only) GC33-1705

Administration
CICS System Definition Guide SC33-1682
CICS Customization Guide SC33-1683
CICS Resource Definition Guide SC33-1684
CICS Operations and Utilities Guide SC33-1685
CICS Supplied Transactions SC33-1686

Programming
CICS Application Programming Guide SC33-1687
CICS Application Programming Reference SC33-1688
CICS System Programming Reference SC33-1689
CICS Front End Programming Interface User’s Guide SC33-1692
CICS C++ OO Class Libraries SC34-5455
CICS Distributed Transaction Programming Guide SC33-1691
CICS Business Transaction Services SC34-5268

Diagnosis
CICS Problem Determination Guide GC33-1693
CICS Messages and Codes GC33-1694
CICS Diagnosis Reference LY33-6088
CICS Data Areas LY33-6089
CICS Trace Entries SC34-5446
CICS Supplementary Data Areas LY33-6090

Communication
CICS Intercommunication Guide SC33-1695
CICS Family: Interproduct Communication SC33-0824
CICS Family: Communicating from CICS on System/390 SC33-1697
CICS External Interfaces Guide SC33-1944
CICS Internet Guide SC34-5445

Special topics
CICS Recovery and Restart Guide SC33-1698
CICS Performance Guide SC33-1699
CICS IMS Database Control Guide SC33-1700
CICS RACF Security Guide SC33-1701
CICS Shared Data Tables Guide SC33-1702
CICS Transaction Affinities Utility Guide SC33-1777
CICS DB2 Guide SC33-1939

© Copyright IBM Corp. 1998 xv

CICSPlex SM books for CICS Transaction Server for OS/390

General
CICSPlex SM Master Index SC33-1812
CICSPlex SM Concepts and Planning GC33-0786
CICSPlex SM User Interface Guide SC33-0788
CICSPlex SM View Commands Reference Summary SX33-6099

Administration and Management
CICSPlex SM Administration SC34-5401
CICSPlex SM Operations Views Reference SC33-0789
CICSPlex SM Monitor Views Reference SC34-5402
CICSPlex SM Managing Workloads SC33-1807
CICSPlex SM Managing Resource Usage SC33-1808
CICSPlex SM Managing Business Applications SC33-1809

Programming
CICSPlex SM Application Programming Guide SC34-5457
CICSPlex SM Application Programming Reference SC34-5458

Diagnosis
CICSPlex SM Resource Tables Reference SC33-1220
CICSPlex SM Messages and Codes GC33-0790
CICSPlex SM Problem Determination GC33-0791

Other CICS books

CICS Application Programming Primer (VS COBOL II) SC33-0674
CICS Application Migration Aid Guide SC33-0768
CICS Family: API Structure SC33-1007
CICS Family: Client/Server Programming SC33-1435
CICS Family: General Information GC33-0155
CICS 4.1 Sample Applications Guide SC33-1173
CICS/ESA 3.3 XRF Guide SC33-0661

If you have any questions about the CICS Transaction Server for OS/390 library,
see CICS Transaction Server for OS/390: Planning for Installation which discusses
both hardcopy and softcopy books and the ways that the books can be ordered.

xvi CICS TS for OS/390: Release Guide

Part 1. Summary of CICS® TS Release 3

This Part provides a summary only of what is new and changed in Release 3 of
CICS Transaction Server for OS/390.

Part 1 contains only the summary chapter:

v “Chapter 1. Summary of Release 3” on page 3

© Copyright IBM Corp. 1998 1

2 CICS TS for OS/390: Release Guide

Chapter 1. Summary of Release 3

This chapter summarizes what is new and changed in CICS Transaction Server for
OS/390®, Release 3 under the following main topics:

v “Parallel Sysplex® support”

v “System management” on page 4

v “Application support and solution enablement” on page 5

v “e-Business enablement for network computing” on page 7

v “Miscellaneous enhancements” on page 9

v “Hardware and software requirements” on page 9

Parallel Sysplex® support

CICS support for Parallel Sysplex environments is extended by the following new
function:
v “Sysplex enqueue and dequeue”

v “Coupling facility data tables”

v “Dynamic routing of DPL and EXEC CICS START requests” on page 4

CICSPlex SM is enhanced to include support for some of the functional changes to
CICS for the Parallel Sysplex environment.

Sysplex enqueue and dequeue

The sysplex enqueue (ENQ) and dequeue (ENQ) function enables CICS
transactions running in the same region, or in different regions within a sysplex, to
serialize on a named resource using the existing CICS API. This extension to the
scope of the CICS enqueue mechanism removes a major cause of inter-transaction
affinity, enabling better exploitation of parallel sysplex environments, and thus
providing better price/performance, capacity, and availability.

There are changes to CICSPlex SM in support of the CICS global
enqueue/dequeue function.

See “Chapter 2. Sysplex enqueue and dequeue” on page 13 for details.

Coupling facility data tables

CICS coupling facility data tables enable user applications, running in different CICS
regions that reside in one or more MVS images within a Parallel Sysplex, to share
working data with update integrity.

Data in a coupling facility data table is accessed through the CICS file control
application programming interface (API), enabling existing applications to use it,
either without any modification, or with minimum modification, depending on the
level of function required. Similar in some ways to user-maintained data tables,
coupling facility data tables provides efficient sharing with update capability.

There are changes to some existing CICSPlex SM views, and a new view added,
to provide support for CICS coupling facility data tables.

© Copyright IBM Corp. 1998 3

See “Chapter 3. Coupling facility data tables” on page 19 for details.

Dynamic routing of DPL and EXEC CICS START requests

CICS extends its dynamic routing facility to provide mechanisms for dynamically
routing transactions started by distributed program link (DPL) requests, and a
subset of START commands. Dynamic balancing for DPL includes:

v DPL requests from an external CICS interface (EXCI) client

v External Call Interface (ECI) requests from any of the CICS Client workstation
products.

The routing mechanisms allow workload balancing to be managed by
CICSPlex SM, making it possible to integrate workload balancing for EXCI clients,
CICS Clients, and started tasks.

See “Chapter 4. Dynamic routing of DPL and EXEC CICS START requests” on
page 41 for details.

System management

CICS system management is improved and made easier by the following new
function:
v “Resource definition online for CICS temporary storage”

v Monitoring, statistics, and enterprise management changes
v Autoinstall for consoles.

CICSPlex SM is enhanced to include support for some of the functional changes to
CICS system management.

Resource definition online for CICS temporary storage

CICS provides resource definition online (RDO) support for temporary storage
queues. Instead of coding macros to define a temporary storage table (TST), you
can define TSMODEL resource definitions for temporary storage queues in the
CICS system definition (CSD) file. This RDO facility is provided by the DEFINE
command on the CEDA transaction, and in the DFHCSDUP utility program. You can
also discard TS queue resource definitions while CICS is running.

RDO for temporary storage eliminates the need to prepare a temporary storage
table (TST) for batch assembly and link-edit. It also removes the need to shut down
and restart CICS to make changes to TS queue definitions. RDO support for TS
queues continues the CICS strategy of providing high availability and continuous
operation.

CICSPlex SM provides several new operate views to support CICS RDO for TS
queues.

See “Chapter 5. Resource definition online for CICS temporary storage” on page 59
for details.

4 CICS TS for OS/390: Release Guide

Monitoring, statistics, and enterprise management changes

Many of the changes and new functions introduced in CICS are supported by
additonal information provided by CICS monitoring and statistics domains. Remote
monitoring of CICS regions is also provided by the addition of the CICSPlex SM
Instrumentation component of Tivoli® Global Enterprise Manager.

See “Chapter 6. Monitoring, statistics, and enterprise management changes” on
page 65 for details.

Autoinstall for consoles

Autoinstall for terminals is extended to include MVS consoles, making it
unnecessary to define MVS consoles to CICS explicitly. Autoinstall for consoles
uses the same autoinstall control program as for terminals.

See “Chapter 7. Autoinstall for MVS consoles” on page 73 for details.

Application support and solution enablement

CICS application support and solution enablement is extended by the following new
function:
v “CICS business transaction services”

v “Open transaction environment”

v “Long temporary storage queue names” on page 6

v “EXCI enhancement for resource recovery” on page 6

v “Object-oriented interface to CICS services for C++” on page 6

v “JCICS interface to CICS services for Java” on page 7

v “VisualAge® for Java, Enterprise Edition for OS/390” on page 7

v “Support for the Java Virtual Machine” on page 7

CICS business transaction services

CICS business transaction services (BTS) provide an application programming
interface (API) and support services that simplify the development of complex
business transactions.

A real-world business transaction—for example, the booking of a holiday—may
involve multiple actions that take place over an extended period. Traditionally, the
individual actions that make up a complex business transaction have been mapped
on to CICS transactions. CICS business transaction services provides a better way
of modelling and managing complex business transactions.

See “Chapter 8. CICS business transaction services” on page 81 for details.

Open transaction environment

CICS enhances its internal architecture to enable specified user tasks to run under
their own task control block (TCB). Initially, the main benefit of this change is for

Chapter 1. Summary of Release 3 5

Java application programs that run under a JVM. This will be followed by support
for resource managers that, under the existing TCB structure, are forced to perform
TCB switching to avoid unacceptable suspension (blocking) of the quasi-reentrant
TCB (QR TCB). This is the TCB under which user tasks generally execute for most
of their task lifetime.

The new TCBs under which tasks, optionally, can run are known as open TCBs. In
the longer term, the introduction of these open TCBs will lead to CICS becoming an
open transaction environment, in contrast to the closed, and somewhat restricted,
environment of the past.

See “Chapter 9. Open transaction environment” on page 111 for details.

Long temporary storage queue names

The CICS temporary storage (TS) facility is enhanced to allow TS queues to have
names up to 16-characters long, providing much greater flexibility in user
application programs. The greater flexibility of 16-character names allows you to
generate queue names in a variety of forms. For example, you could use the form
ttttSuuuuuuuu, where tttt is the transaction identifier, S represents a sequence
character (allowing you to have more than one queue for each user or transaction)
and uuuuuuuu the userid. This example of name structure allows you to create
temporary storage definitions with a prefix using only the ttttS part of the queue
names.

Support for longer TS queue names removes many of the restrictions and
difficulties that face application designers caused by the current 8-character limit.

See “Chapter 10. Long temporary storage queue names” on page 133 for details.

EXCI enhancement for resource recovery

CICS supports MVS recoverable resource management services (RRMS) for
applications that use the external CICS interface (EXCI). In earlier releases, EXCI
enforces a syncpoint by the CICS server region before returning control to the EXCI
client program. With MVS recoverable resource management services (RRMS)
support, there are the following enhancements:

v The unit of work within which the CICS server program changes recoverable
resources can now become part of the MVS unit of recovery associated with the
EXCI client program.

v The CICS server unit of work can be committed when the server program returns
control to the client or can continue over multiple EXCI DPL calls, until the EXCI
client decides to commit or backout the unit of recovery.

See “Chapter 11. EXCI enhancement for resource recovery” on page 139 for details.

Object-oriented interface to CICS services for C++

CICS introduces a new C++ object-oriented (OO) programming interface, which
gives application programs access to the CICS services previously available only
through the CICS command-level application programing interface (API). The CICS
OO API, based on the CICS C++ foundation classes, gives a C++ programmer the
choice of writing CICS application programs using either the traditional CICS
command-level API or the CICS OO API classes.

6 CICS TS for OS/390: Release Guide

See “Chapter 12. Object-oriented interface to CICS services for C++” on page 147
for details.

JCICS interface to CICS services for Java

CICS introduces a new programming interface for use in CICS application programs
written in Java. Classes (known as JCICS) are provided to give access to a range
of CICS services traditionally available through the CICS command-level API.

See “Chapter 14. VisualAge for Java, Enterprise Edition for OS/390” on page 151
for details.

VisualAge® for Java, Enterprise Edition for OS/390

This support uses the VisualAge for Java, Enterprise Toolkit for OS/390 (ET/390)
to enable Java application programs to run under CICS control.

The Java language support is similar to CICS language support for COBOL or C++.
The normal CICS program execution model is used, rather than a long-lived Java
Virtual Machine (JVM).

The application program is developed and compiled, using a Java compiler (such
as VisualAge for Java or javac) on a workstation or in the OS/390 UNIX System
Services environment. The .class files produced are then processed by the
bytecode binder component of ET/390, executing in the OS/390 UNIX System
Services environment, to produce Java program objects stored in an MVS PDSE
library.

CICS loads the files from the PDSE and executes the Java program in a Language
Environment® (LE) run-unit, similar to C++, using run-time support in the CICS
region provided by the Java run-time component of ET/390.

See “Chapter 14. VisualAge for Java, Enterprise Edition for OS/390” on page 151
for details.

Support for the Java Virtual Machine

CICS supports the Java Virtual Machine (JVM) to enable CICS application
programs written in Java, and compiled to bytecode by any standard Java compiler,
to run in the CICS address space under the control of a JVM. This support makes
CICS fully Java compliant, and enables user application programs written in Java to
use all the core Java classes.

See “Chapter 15. Support for the Java Virtual Machine” on page 155 for details.

e-Business enablement for network computing

CICS support for network computing is extended by the following new function:
v “Bridging to 3270 transactions” on page 8

v “Support for the secure sockets layer” on page 8

v “CORBA client support” on page 8

Chapter 1. Summary of Release 3 7

v “Enhancements to CICS Web support”

Bridging to 3270 transactions

CICS introduces the following enhancements to the 3270 bridge function:

v New options of the START command are provided to initiate a user transaction
and establish the bridge environment. A bridge transaction is no longer needed
for this purpose.

v Some restrictions on the CICS commands issued by a user transaction are
removed. Support is added for:
– START TRANSID TERMID commands, where TERMID is the bridge facility

and TRANSID is local
– RETURN IMMEDIATE
– INPUTMSG on RETURN, XCTL and LINK
– SET TERMINAL ATISTATUS

See “Chapter 16. Bridging to 3270 transactions” on page 167 for details.

Support for the secure sockets layer

The secure sockets layer (SSL) is a protocol for exchanging confidential
information, in a secure form, across an insecure network such as the Internet. The
OS/390 System Secure Sockets Layer (System SSL), introduced in OS/390
Release 7, is used by CICS to secure data for transmission through the CICS Web
interface.

See “Chapter 17. Support for the secure sockets layer” on page 177 for details.

CORBA client support

CICS introduces support for IIOP requests inbound to Java application programs.

The Internet Inter-ORB protocol (IIOP) is a standard that can be used to provide
communication between object-oriented application programs executing on different
processors. It is part of the Common Object Request Broker Architecture (CORBA)
specification, supporting distributed objects in a TCP/IP network.

CORBA is an architecture for distributed object middleware that separates client
and server programs with a formal interface definition, and IIOP defines the
message formats and protocols used in a CORBA distributed environment.

See “Chapter 18. CORBA client support” on page 183 for details.

Enhancements to CICS Web support

CICS Web support is enhanced by a number of major improvements, including:
new resource definition types; a new set of API commands to handle HTTP
requests and document templates; a new set of SPI commands; and the restructure
of CICS Web support as a CICS domain providing improved reliability and
servicebility.

See “Chapter 19. CICS Web support enhancements” on page 187 for details.

8 CICS TS for OS/390: Release Guide

Miscellaneous enhancements

These include:
v The removal of runtime support for DB2® resource control tables (RCTs).
v A facility for generating sequence numbers that are unique across a Parallel

Sysplex, using the services of a named counter server.
v The introduction of a new CICS system file, DFHDBFK, for storing IMS™

commands for use on the CDBM transaction.
v A change that enables CICSPlex SM API programs to run in USER key.
v A performance improvement for CICS application programs that run under

Language Environment.
v A new option added to the INQUIRE TDQUEUE command.
v A new option, REMOVE, added to the CEDA and DFHCSDUP DELETE

command.

See “Chapter 20. Miscellaneous changes” on page 197 for details.

Hardware and software requirements

Hardware and software requirements are described in “Chapter 21. Prerequisite
hardware and software for CICS Transaction Server for OS/390” on page 207.

Chapter 1. Summary of Release 3 9

10 CICS TS for OS/390: Release Guide

Part 2. Parallel Sysplex support

This Part describes the new function designed to extend CICS TS support for the
System/390® Parallel Sysplex. It covers the following topics:

v “Chapter 2. Sysplex enqueue and dequeue” on page 13

v “Chapter 3. Coupling facility data tables” on page 19

v “Chapter 4. Dynamic routing of DPL and EXEC CICS START requests” on
page 41

© Copyright IBM Corp. 1998 11

12 CICS TS for OS/390: Release Guide

Chapter 2. Sysplex enqueue and dequeue

This chapter describes CICS sysplex enqueue and dequeue. It covers the following
topics:
v “Overview”

v “Benefits” on page 14

v “Requirements” on page 14

v “Changes to CICS externals” on page 14

v “CICSPlex SM support” on page 17

Overview

Changes to the CICS enqueue/dequeue function extend the CICS application
programming interface to provide an enqueue mechanism that serializes access to
a named resource across a specified set of CICS regions operating within a
sysplex. This applies equally to a CICSplex within a single MVS image and to a
CICSplex that resides in more than one MVS.

Local enqueues within a single CICS region are managed within the CICS address
space. Sysplex-wide enqueues that affect more than one CICS region are managed
by GRS. The main points of the changes to the CICS enqueue/dequeue
mechanism are as follows:

v Sysplex enqueue and dequeue expands the scope of an EXEC CICS ENQ|DEQ
command from region to sysplex, by introducing a new CICS resource definition
type, ENQMODEL, to define resource names that are to be sysplex-wide.

v ENQSCOPE, an attribute of the ENQMODEL resource definition, defines the set
of regions that share the same enqueue scope.

v When an EXEC CICS ENQ (or DEQ) command is issued for a resource whose
name matches that of an installed ENQMODEL resource definition, CICS checks
the value of the ENQSCOPE attribute to determine whether the scope is local or
sysplex-wide, as follows:

– If the ENQSCOPE attribute is left blank (the default value), CICS treats the
ENQ|DEQ as local to the issuing CICS region.

– If the ENQSCOPE is non-blank, CICS treats the ENQ|DEQ as sysplex-wide,
and passes a queue name and the resource name to GRS to manage the
enqueue. The resource name is as specified on the EXEC CICS ENQ|DEQ
command, and the queue name is made up by prefixing the 4-character
ENQSCOPE with the letters DFHE.

v The CICS regions that need to use sysplex-wide enqueue/dequeue function must
all have the required ENQMODELs defined and installed.

The recommended way to ensure this is for the CICS regions to share a CSD,
and for the initialization group lists to include the same ENQMODEL groups.

Changes have been made to the CICS Affinity Utility to make it easier to create
affinity groups for enqueues by address separately from enqueues by name.

Existing applications can use sysplex enqueues simply by defining appropriate
ENQMODELs, without any change to the application programs.

© Copyright IBM Corp. 1998 13

Benefits

Sysplex enqueue provides the following benefits:

v Eliminates one of the most common causes of inter-transaction affinity.

v Enables better exploitation of a parallel sysplex providing better
price/performance, capacity, and availability.

v Reduces the need for inter-transaction affinity rules in dynamic transaction
routing programs thereby lowering the systems management cost of exploiting
parallel sysplex.

v Enables serialization of concurrent updates to shared temporary storage queues,
performed by multiple CICS tasks across the sysplex.

v Makes it possible to prevent interleaving of records written by concurrent tasks in
different CICS regions to a remote transient data queue.

v Allows the single-threading and synchronization of tasks across the sysplex. It is
not designed for the locking of recoverable resources.

Requirements

The hardware and software requirements for this function are the same as for CICS
TS generally.

The CICS sysplex enqueue/dequeue function uses MVS GRS services. If you use
the GRS star configuration, which is recommended for production CICS regions,
you require a coupling facility.

Changes to CICS externals

There are changes to a number of CICS externals in support of the sysplex
enqueue/dequeue facility. The externals affected are:
v “Changes to resource definition”

v “Changes to the system programming interface” on page 15

v “Changes to CICS-supplied transactions” on page 15

v “Changes to global user exits” on page 16

v “Changes to CICS Affinity Utility” on page 16

Changes to resource definition

A new resource type, ENQMODEL, is introduced to define the scope, name, and
status of a CICS resource for use with the enqueue/dequeue function. The resource
type is defined in the CSD, using the DEFINE ENQMODEL command in either the
CEDA transaction or the DFHCSDUP utility program. The CEDA DEFINE panel for
the ENQMODEL resource type is shown in Figure 1 on page 15.

14 CICS TS for OS/390: Release Guide

The ENQNAME attribute specifies a 1 - 255 character resource name. The
permitted characters are A-Z 0-9 @ # and ¢, plus the asterisk as a wildcard
character for generic names. Names ending with an * are treated as generic. The *
must be used as the last character of the resource name.

The ENQSCOPE attribute specifies a group name for the CICS regions across
which accesses to this resource name are to be serialized. For example, you could
set ENQSCOPE to TEST for all test regions and PROD for all production regions. If
you leave ENQSCOPE blank, CICS assumes that the ENQMODEL is local only,
and that no other CICS regions are involved.

Changes to the system programming interface

The sysplex enqueue/dequeue facility is supported by the following changes to the
system programming interface:

v The EXEC CICS INQUIRE UOWENQ command is enhanced with the addition of
the ENQSCOPE and DURATION options.

The EXEC CICS INQUIRE ENQ command is introduced as a synonym for EXEC
CICS INQUIRE UOWENQ.

v There are four new SPI commands:

– EXEC CICS CREATE ENQMODEL. This command enables you to define and
install the specified ENQMODEL resource definition.

– EXEC CICS DISCARD ENQMODEL. This command enables you to discard
from the CICS region the specified ENQMODEL resource definition

– EXEC CICS INQUIRE ENQMODEL. This command returns information about
the specified ENQMODEL resource definition.

– EXEC CICS SET ENQMODEL. This command enables you to change the
value of the attributes of the specified ENQMODEL resource definition.

For details of all these commands, see the CICS System Programming Reference
manual.

Changes to CICS-supplied transactions

The sysplex enqueue/dequeue facility is supported by the following changes to the
CICS-supplied transactions:

v The CEMT INQUIRE UOWENQ command is enhanced with the addition of the
ENQSCOPE and DURATION options.

The CEMT INQUIRE ENQ command is introduced as a synonym for CEMT
INQUIRE UOWENQ

v There are three new CEMT commands:

– CEMT DISCARD ENQMODEL. This command enables you to discard from
the CICS region the specified ENQMODEL resource definition.

ENQMODEL ==>
Group ==>
DEscription ==> ...
ENQSCope ==>
STATUS ==> ... (ENABLED|DISABLED)
ENQNAME ==> ...

Figure 1. CEDA DEFINE panel for ENQMODEL resource definition

Chapter 2. Sysplex enqueue and dequeue 15

– CEMT INQUIRE ENQMODEL. This command returns information about the
specified ENQMODEL resource definition.

– CEMT SET ENQMODEL. This command enables you to change the value of
the attributes of the specified ENQMODEL resource definition.

For details of all these commands, see the CICS Supplied Transactions manual.

Changes to global user exits

The XNQEREQ global user exit is enhanced by the addition of UEPSCOPE, an
exit-specific parameter that addresses a 4-byte area containing the scope name
from the ENQMODEL used for the ENQ/DEQ request. XNQEREQ is invoked before
CICS processes an EXEC CICS ENQ or DEQ request, allowing you to change the
ENQSCOPE name associated with the request.

CICS also provides a sample XNQEREQ global user exit program, DFH$XNQE.
This sample program illustrates three methods of adding an ENQSCOPE name to
ENQ and DEQ requests, so that they apply to multiple regions within a sysplex.
These methods are:

v Prefix the resource name with a 4-character ENQSCOPE value, where the
resource name is shorter than 250 characters, and matches an entry in an
installed ENQMODEL resource definition.

v Replace the first 4-characters of the resource name with an ENQSCOPE value,
where the resource name is longer 4 characters, and matches an entry in an
installed ENQMODEL resource definition.

v Place a 4-character ENQSCOPE value in the area addressed by UEPSCOPE,
and return UERCSCPE in R15. This method is not generally recommended.

For details of this sample exit program, see the source code supplied in
CICSTS13.CICS.SDFHSAMP.

See the CICS Customization Guide for details of these new global user exit points.

The XRSINDI global user exit is invoked for the install and discard of ENQMODEL
resource types.

Changes to CICS Affinity Utility

The CICS Affinity Utility is changed so that:

v For an ENQ or DEQ by name (that is, one for which the EXEC CICS ENQ or
EXEC CICS DEQ command included a length parameter), if there is a
non—blank ENQSCOPE name in the appropriate ENQMODEL definition the
detector disregards any matching EXEC CICS ENQ|DEQ (because use of the
ENQMODEL makes the ENQ|DEQ sysplex-wide and thus removes the implied
affinity). The reporter does not report any such ENQs or DEQs because the
detector does not detect them.

v For an ENQ or DEQ by address (that is, one for which the EXEC CICS ENQ or
DEQ command does not include a length parameter), or if there is no matching
ENQMODEL definition, or one with a blank ENQSCOPE name, the ENQ|DEQ is
local and continues to be reported as an affinity.

v The scanner and the reporter now distinguish between ENQ NAME and ENQ
ADDRESS in their reports, where previously only ENQ was shown. Similarly,
DEQ is now reported as either DEQ NAME or DEQ ADDRESS.

16 CICS TS for OS/390: Release Guide

|

|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

|

|
|

|

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

CICSPlex SM support

CICSPlex SM supports the extended EXEC CICS ENQ and EXEC CICS DEQ
commands by providing:

v A new BAS definition object ENQMDEF, which defines enqueue resources that
are to be sysplex-wide.

v New operations views ENQMDL, ENQMDLD, and ENQMDLS, that allow you to
display and manage information about enqueue model resource descriptions.

v A new field Enqscope on the UOWENQ view.

v New resource tables:

– CRESENQM

– ENQINGRP

– ENQMDEF

– ENQMODEL

– ERMCENQM

Chapter 2. Sysplex enqueue and dequeue 17

|

18 CICS TS for OS/390: Release Guide

Chapter 3. Coupling facility data tables

This chapter describes CICS coupling facility data tables. It covers the following
topics:
v “Overview”

v “Benefits” on page 22

v “Requirements” on page 23

v “Changes to CICS externals” on page 23

v “CICSPlex SM support” on page 38

Overview

CICS coupling facility data tables are designed to provide rapid sharing of working
data within a sysplex, with update integrity. The data is held in a table that is similar
in many ways to a shared user-maintained data table, and the API used to store
and retrieve the data is based on the file control API used for user-maintained data
tables.

Because read access and write access have similar performance, this new form of
table is particularly useful for informal shared data. Informal shared data is
characterised as:

v Data that is relatively short-term in nature (it is either created as the application is
running, or is initially loaded from an external source)

v Data volumes that are not usually very large

v Data that needs to be accessed fast

v Data of which the occasional loss can be tolerated by user applications

v Data that commonly requires update integrity.

Informal data can include scratchpad data, shared queues, keyed data, and
application control records.

Typical uses might include sharing scratchpad data between CICS regions across a
sysplex, or sharing of files for which changes do not have to be permanently saved.
There are many different ways in which applications use informal shared data, and
most of these could be implemented using coupling facility data tables. Coupling
facility data tables are particularly useful for grouping data into different tables,
where the items can be identified and retrieved by their keys. For example, you
could use a field in a coupling facility data table to maintain the next free order
number for use by an order processing application, or you could maintain a list of
the numbers of lost credit cards in a coupling facility data table. Other examples
are:

v Look-up tables of telephone numbers

v Creating a subset of customers from a customer list

v Information that is specific to the user of the application, or that relates to the
terminal from which the application is being run.

For many purposes, because it is global in scope, coupling facility data tables can
offer significant advantages over resources such as the CICS common work area
(CWA).

© Copyright IBM Corp. 1998 19

Comparison with user-maintained data tables

To an application, a coupling facility data table (CFDT) appears much like a
sysplex-wide user-maintained data table, because it is accessed in the same way
using the file control API. However, in a CFDT there is a maximum key-length
restriction of 16 bytes.

See the CICS Shared Data Tables Guide for information about shared data tables
support.

Coupling facility data table models

There are two models of coupling facility data table:

v The contention model, which gives optimal performance but normally requires
new programs to exploit it. This is because there is a new API condition code to
indicate to the application program that the data has been changed since it
issued a read-for-update request. The new CHANGED response can occur on a
REWRITE or DELETE command. There is also a new use for the existing
NOTFND response, which may be returned to indicate to the application program
that the record has been deleted since the program issued the read-for-update
request.

Note: It might be possible to use existing programs with the contention model if
you are sure they cannot receive the CHANGED or NOTFND exceptions
on a REWRITE or DELETE. An example of this could be where an
application program operates only on records that relate to the user of the
program, and therefore no other user could be updating the same records.

This model is non-recoverable only: CFDT updates are not backed out if a unit of
work fails.

v The locking model, which is API-compatible with existing programs that conform
to the UMT subset of the file control API. (This subset is nearly, but not quite, the
full file control API.)

This model can either be:

– Non-recoverable: locks do not last until syncpoint, and CFDT updates are not
backed out if a unit of work fails, or

– Recoverable: coupling facility data tables are recoverable in the event of a
unit of work failure, and in the event of a CICS region failure, a CFDT server
failure, and an MVS failure (that is, updates made by units of work that were
in-flight at the time of the failure are backed out).

The recoverable locking model supports in-doubt and backout failures: if a unit
of work fails when backing out an update to the CFDT or if it fails in-doubt
during syncpoint processing the locks are converted to retained locks and the
unit of work is shunted.

CFDTs cannot be forward recoverable. A CFDT does not survive the loss of
the CF structure in which it resides.

You specify the model you want for each table on its file resource definition,
enabling different tables to use different models.

Coupling facility data table structures and servers

Coupling facility data tables are held in coupling facility structures. Access to a
coupling facility data table is through a CFDT server. Coupling facility data tables

20 CICS TS for OS/390: Release Guide

allow you to separate related groups of coupling facility data tables by storing them
in separate pools. For example, you might want to have one pool for production and
another for test.

A coupling facility data table pool is a coupling facility list structure, and access to it
is provided by a coupling facility data table server. Within each MVS image, there
must be one CFDT server for each CFDT pool; in other words, for any given pool,
there must be a server in each MVS that has CICS regions that need access to it.
Coupling facility data table pools are defined in the coupling facility resource
management (CFRM) policy. The pool name is then specified in the start-up JCL for
the table server.

Coupling facility data table pools can be used almost continuously and permanently.
There are utility commands that you can use to minimize the impact of
maintenance.

Access using file control API

A coupling facility data table is accessed from CICS through file control commands.
The file name specified on the command indicates the name of the table and pool
in which it resides. The table name is either specified on the file definition or is the
same as the file name, and the pool name is specified on the file definition. The
table is uniquely identified by the pool name and table name, so that two tables with
the same name may exist in different pools, and will be entirely separate entities.

Automatic connection to coupling facility data table pools

CICS automatically connects to the coupling facility data table server for a given
pool the first time that a coupling facility data table within that pool is referenced.
CICS also automatically reconnects to the coupling facility data table server when
the server has restarted after a failure.

Creating coupling facility data tables

A coupling facility data table that does not already exist is created automatically by
the first server to receive a request from a CICS region that requires the coupling
facility data table to be opened. The CFDT is then used by the file that referenced
it, and also by other CICS regions that issue subsequent open requests for other
files that name the same coupling facility data table.

CICS can optionally load the coupling facility data table automatically from a source
VSAM (KSDS) data set when it is first opened. Unlike user-maintained data tables,
with coupling facility data tables you can specify that there is no associated source
data set, allowing you to create an empty CFDT. Like a user-maintained data table,
updates to a CFDT are not reflected in the source VSAM data set, even when it is
defined as recoverable

Your application programs have access to a coupling facility data table as soon as it
is created, although there are some restrictions on the keys that can be accessed
while data is being loaded.

Administering coupling facility data tables

CICS provides some utility functions that allow you to obtain, from a coupling facility
data table server, summary information and periodic statistics on coupling facility
data tables defined within a pool. This information is designed to help you
administer coupling facility data table pools, and to help you evaluate capacity.

Chapter 3. Coupling facility data tables 21

|
|
|

Benefits

The major benefits of coupling facility data tables are:

Sysplex-wide sharing of data
You can share data across a sysplex with update integrity. This means that
changed data cannot be accidentally overwritten by other tasks running
concurrently. This is in contrast to facilities such as CICS temporary storage
data sharing, which does not provide serialized access.

Coupling facility data tables is useful for data that:
v Consists of small items
v Is very volatile
v Needs updating frequently
v Requires high availability.

All connected CICS regions can update information held in a coupling facility
data table on an equal basis.

Performance
Coupling facility data tables offers good performance for file control API
operations (such as READ, WRITE, REWRITE, and DELETE) for reasonable
record lengths (up to around 4K), compared with other means of sharing data in
a sysplex.

Ease of use through existing API
Access to coupling facility data tables is through the existing file control API,
using the same subset as that supported for user-maintained data tables. This
makes coupling facility data tables easy to use, allows compatibility with existing
applications where required, and means that applications written to use coupling
facility data tables will be compatible with existing types of VSAM file access
supported by CICS (CMTs, UMTs, and non-data-table files). This allows vendor
programs to run both on CICS regions that support coupling facility data tables
and on those that do not.

Server security
A security check is carried out when a CICS region connects to a coupling
facility data table pool. An additional security check can optionally be carried out
when a CICS region connects to a given coupling facility data table.

Availiablity
If a CICS region fails, most access from other regions can continue without
impact.

With non-recoverable coupling facility data tables (using either contention or
non-recoverable locking), all access can continue.

With recoverable coupling facility data tables (using the recoverable locking
model), the only records that remain locked and unavailable are records
updated by failed units of work (UOWs), such as indoubt-failed. In-flight UOWs
are backed out by the server at the time of the CICS failure. In-doubt UOWs
could either have failed in-doubt before the CICS region failed, or could be
in-doubt failures caused in other CICS regions, because the failed CICS was a
co-ordinator for the UOWs.

22 CICS TS for OS/390: Release Guide

Requirements

The software requirements for coupling facility data tables are the same as for
CICS TS generally, but in addition to the same hardware as for CICS TS, you also
require a coupling facility.

Storage usage

Almost all the storage (other than that required by any file control request) is
allocated in the server address space and in the coupling facility. The amount of
server storage used depends on the number of concurrent requests.

Changes to CICS externals

There are changes in a number of CICS externals to support the coupling facility
data tables. These are:
v “Changes to system definition”

v “Changes to resource definition” on page 26

v “Changes to the application programming interface” on page 28

v “Changes to the system programming interface” on page 30

v “Changes to global user exits” on page 35

v “Changes to security” on page 35

v “Changes to CICS-supplied transactions” on page 36

v “Changes to monitoring and statistics” on page 37

v “Changes to sample programs” on page 37

v “Changes to problem determination” on page 37

Changes to system definition

Before you can begin to use coupling facility data tables, you need to define the
required coupling facility data table pools, write some JCL to start a coupling facility
data table server, and understand how to use coupling facility data table server
commands.

These tasks are summarized briefly in the following sections. For detailed
information, see the CICS System Definition Guide.

Defining a coupling facility data table pool

A coupling facility data table pool is a coupling facility list structure, which you
define in a coupling facility resource manager (CFRM) policy in a sysplex couple
data set. A coupling facility data table pool, containing one or more coupling facility
data tables, is accessed by CICS through a server region using cross-memory
services. From the application point of view, a pool and its server are similar to a
file-owning region, and the pool can contain any number of tables provided that
each one has a unique table name.

Chapter 3. Coupling facility data tables 23

Before a coupling facility data table server can use its pool, the active CFRM policy
must contain a definition of the list structure to be used for the pool. To achieve this,
add a statement that specifies the list structure to a selected CFRM policy, and then
activate the policy.

For example, Figure 2 shows a policy definition that you can add using the
administrative data utility, IXCMIAPU. You create the name of the list structure for a
coupling facility data table pool by adding the prefix DFHCFLS_ to your chosen pool
name, giving DFHCFLS_poolname.

Activating a CFRM policy: When you have defined the list structure in a CFRM
policy, activate the policy using the MVS command:
SETXCF START,POLICY,POLNAME=policy_name,TYPE=CFRM

Starting up AXM system services

The execution environment for coupling facility data table server regions is provided
by a run-time environment package called the authorized cross-memory (AXM)
server environment (which is also used for CICS temporary storage data sharing).
To establish AXM cross-memory connections for an MVS image, initialize the AXM
system services by defining a subsystem called AXM. For example, add the
following entry to the appropriate IEFSSNxx member of SYS1.PARMLIB:
SUBSYS SUBNAME(AXM) INITRTN(AXMSI)

Starting coupling facility data table server regions

You activate a coupling facility data table pool in an MVS image by starting up a
coupling facility data table server region for that pool. You can start the server
program, DFHCFMN, as a started task, started job, or as a batch job. The server
program must be run from an APF-authorized library, and is supplied in
CICSTS13.CICS.SDFHAUTH. An example of the JCL needed to start a coupling
facility data table server is shown in Figure 3.

Coupling facility data table server parameters

The POOLNAME parameter, shown in Figure 3 is required when you start a
coupling facility data table server. Other parameters, some of which are used only
for initial allocation of a new pool list structure, are optional. There are parameters
to enable you to control:

STRUCTURE NAME(DFHCFLS_PRODCFT1)
SIZE(1000)
INITSIZE(500)
PREFLIST(FACIL01,FACIL02)

Figure 2. Example of defining a coupling facility data table structure

//PRODCFD1 JOB ...
//CFSERVER EXEC PGM=DFHCFMN,REGION=40M CICS CFDT Server
//STEPLIB DD DSN=CICSTS13.CICS.SDFHAUTH,DISP=SHR Authorized library
//SYSPRINT DD SYSOUT=* Messages and statistics
//SYSIN DD *
POOLNAME=PRODCFD1 Pool name
MAXTABLES=100 Allow up to 100 tables
/*

Figure 3. Sample job to start a coupling facility data table server

24 CICS TS for OS/390: Release Guide

v Server security
v Server statistics
v List structure attributes
v Debug trace options
v Tuning of lock structure ratios
v Lock wait intervals
v Warning message thresholds
v Automatic structure alter thresholds.

All the parameters are described in the CICS System Definition Guide.

Controlling coupling facility data table server regions

You can issue commands to control a coupling facility data table server, using the
MVS MODIFY (F) command to specify the job or started task name of the server
region, followed by the server command. The general form of a coupling facility
data table server command, using the short form F, is as follows:
F server_job_name,command parameters... comments

The commands supported by a coupling facility data table server are:
v SET
v DISPLAY
v PRINT
v DELETE TABLE
v STOP
v CANCEL

These commands and their options are as follows:

SET keyword=operand[,keyword=operand,...]
Change one or more server parameter values. The command can be
abbreviated to T, as for the MVS SET command.

DISPLAY keyword[=operand][,keyword[=operand,]...]
Display one or more parameter values, or statistics summary information, on
the console. The valid keywords for DISPLAY are all the initialization
parameters, plus some others.

The command can be abbreviated to D, as for the MVS DISPLAY command.

PRINT keyword[=operand][,keyword[=operand,]...]
Produces the same output as DISPLAY, supporting the same keywords, but on
the print file only.

DELETE TABLE=name
Delete the named table. The table must not be in use for this command to
succeed. The command can be abbreviated to DEL.

STOP
Terminate the server normally. The server waits for any active connections to
terminate first, and prevents any new connections while it is waiting. The
command can be abbreviated to P.

Note: You can also use the MVS STOP|P [jobname.]identifier[,A=asid]
command, which is equivalent to issuing the server STOP command
through the MVS MODIFY command.

CANCEL
Terminate the server immediately.

Chapter 3. Coupling facility data tables 25

See the CICS System Definition Guide for details of these commands.

Deleting or emptying coupling facility data table pools

You can delete a coupling facility data table pool using the MVS SETXCF command
to delete its coupling facility list structure.

For example:
SETXCF FORCE,STRUCTURE,STRNAME=DFHCFLS_poolname

You can delete a structure only when there are no servers connected to the pool,
otherwise MVS rejects the command.

When you attempt to start a server for a pool that has been deleted (or attempt to
reload the pool), it is allocated as a new structure. The newly allocated structure
uses size and location attributes specified by the currently active CFRM policy, and
other values determined by the server initialization parameters (in particular,
MAXTABLES).

Unloading and reloading coupling facility data table pools

You can unload, and reload, the complete contents of a coupling facility data table
pool to and from a sequential data set by invoking the server program with the
FUNCTION parameter, using the UNLOAD and RELOAD options. The unload and
reload process preserves not only the table data, but also all recovery information
such as unit of work status and record locks for recoverable updates.

You can use this function, for example, to:

v Preserve the coupling facility data table pool during planned coupling facility
maintenance, or

v Move the pool to a different coupling facility.

v Increase the size of the pool’s list structure.

If the maximum number of tables specified in the original pool was too small, or
the pool has reached its maximum size and needs to be expanded further,
unload the pool, then delete the structure so that the reload process can
reallocate it with more space.

Changes to resource definition

New options are added to the FILE resource definition and some existing options
are used in new ways for coupling facility data tables.

File resource definition changes

New attributes are added to the DEFINE FILE command, and on the CEDA panel,
the “REMOTE ATTRIBUTES” group has been split into two groups. The
RECORDSIZE and KEYLENGTH attributes are now shown under a new group
titled “REMOTE AND CFDATATABLE PARAMETERS” as shown in Figure 4 on
page 27.

26 CICS TS for OS/390: Release Guide

There are new options for the TABLE and MAXNUMRECS attributes in the
“DATATABLE PARAMETERS” group, as shown in Figure 5.

There is a new group of attributes for coupling facility data tables, “CFDATATABLE
PARAMETERS” as shown in Figure 6.

The new and changed parameters for coupling facility data tables are summarized
as follows:

TABLE(NO|CICS|USER|CF)
The CF option, for a coupling facility data table, is added to this existing
parameter.

MAXNUMRECS(NOLIMIT|number)
The NOLIMIT option is added, and the range is changed to 1 through
99 999 999. The new values apply to all forms of data table.

CFDTPOOL(name)
This new parameter specifies the name of the coupling facility data table pool
that contains the coupling facility data table to which the file definition refers.

TABLENAME(name)
This new parameter specifies the name of the coupling facility data table to
which the file definition refers. If you omit this attribute when TABLE(CF) is
specified, it defaults to the name specified for the FILE.

UPDATEMODEL(LOCKING|CONTENTION)
This new parameter specifies the type of update model to be used for a
coupling facility data table.

RECORDSIZE(number)
Specifies the maximum record size in bytes for remote files and coupling facility

REMOTE ATTRIBUTES
REMOTESystem :
REMOTEName :

REMOTE AND CFDATATABLE PARAMETERS
RECORDSize ==> 1 - 32767
Keylength ==> 1 - 255 (1-16 for CF Datatable)

Figure 4. Changes to remote attributes on the CEDA DEFINE FILE panel

DATATABLE PARAMETERS
Table ==> No No | CIcs | User | CF
Maxnumrecs ==> Nolimit Nolimit | 1 - 99999999

Figure 5. New options for data table attributes on the DEFINE FILE command

CFDATATABLE PARAMETERS
Cfdtpool ==>
TABLEName ==>
UPDateModel ==> Locking Contention | Locking
LOad ==> No No | Yes

Figure 6. New attributes for DEFINE FILE command

Chapter 3. Coupling facility data tables 27

data tables, in the range 1 through 32767. For a coupling facility data table, the
record size is required only if the file definition also specifies LOAD(NO).

KEYLENGTH(value)
Specifies the key length for remote files and coupling facility data tables. For a
coupling facility data table, KEYLENGTH is required only if the table specifies
LOAD(NO). For a coupling facility data table, the key length is restricted to a
maximum of 16 bytes.

LOAD(NO|YES)
This new parameter specifies whether the coupling facility data table is to be
loaded from a source data set when first opened.

DSNAME(name)
Specifies the name of the source data set from which a coupling facility data
table is to be loaded when this file is opened with the LOAD(YES) attribute, and
the data table is being created. You can also specify the name of the source
data set on a DD statement for the file.

RECORDFORMAT(V|F)
The record format must specify V (for variable) if TABLE(CF) is specified.

JOURNAL(NO|number)
Specify NO for this parameter because file operations to a coupling facility data
table are not journaled. If you do specify a journal number for a CFDT, CICS
attempts to open the log stream specified for the journal when opening the file.

RECOVERY(NONE|BACKOUTONLY|ALL)
Coupling facility data tables defined with UPDATEMODEL(CONTENTION)
cannot be recoverable, and must specify RECOVERY(NONE).

Coupling facility data tables defined with UPDATEMODEL(LOCKING) can
specify RECOVERY(NONE) or RECOVERY(BACKOUTONLY).

FWDRECOVLOG(NO|number)
This attribute is ignored for a coupling facility data table. A coupling facility data
table is not forward recoverable.

BACKUPTYPE(STATIC|DYNAMIC)
This attribute is ignored for a coupling facility data table. A CFDT is not eligible
for dynamic (BWO) backup.

Changes to the application programming interface

In general, the API commands that operate on a coupling facility data table that is
updated using the locking model (either non-recoverable or recoverable) are
upwards compatible with the commands for a user-maintained data table; that is,
any differences from the UMT API do not require existing applications to be
rewritten.

The API for a coupling facility data table that uses the contention model, however,
introduces a new condition, which affects the following file control API commands:
v REWRITE
v DELETE

Although you are advised to write new application programs to use a coupling
facility data table that uses the contention update model, such new applications
would be compatible with other types of file. Note that to be fully compatible, such

28 CICS TS for OS/390: Release Guide

new applications should not be written in such a way that deadlocks become
possible when they access a coupling facility data table that uses the locking
update model.

The changes to the file control API to support coupling facility data tables are as
follows:

New condition on the REWRITE and DELETE command

For a coupling facility data table using the contention update model, the REWRITE
and DELETE commands succeed only if the record is unchanged since it was read
for update. The new exception condition is:

CHANGED
A REWRITE or DELETE command is issued to a coupling facility data table
defined with the contention update model and the record has been changed
since it was read for update. To complete the operation, repeat the read for
update to get the latest version of the record, and try again.

Additional meanings for some existing conditions

There are additional meanings for some existing exception conditions:

SYSIDERR
There are two additional RESP2 values that can be returned with the
SYSIDERR condition on coupling facility data tables:

131 For a coupling facility data table, the connection to the coupling facility
data table server has failed. This could be because the server itself has
failed, or the server is available, but CICS has failed to connect to it.

132 The command is issued against a coupling facility data table that no
longer exists, probably because of a coupling facility failure, in which
case the coupling facility data table server also fails.

IOERR
For those file control commands that can return IOERR, the reason could be a
bad response returned from a coupling facility access.

NOSPACE
For those file control commands that can return NOSPACE, the RESP2 value
can be 102 for a coupling facility data table and there is a new RESP2 value
that can be returned for operations on a coupling facility data table:

102 Can occur if the maximum number of records for a coupling facility data
table is exceeded.

For a recoverable coupling facility data table, CICS can return this
condition on a WRITE request when the CFDT apparently contains
fewer than the maximum number of records specified, if there are
uncommitted updates outstanding. The NOSPACE condition with a
RESP2 of 102 can also be returned on a REWRITE command to a
recoverable coupling facility data table, because this requires an extra
record in the CFDT for recovery purposes, until the update has been
committed.

108 There is insufficient storage in the coupling facility data table pool to
perform the request. This can occur on a WRITE or a REWRITE
command.

Chapter 3. Coupling facility data tables 29

NOTFND
The NOTFND condition, when raised on a REWRITE or DELETE request to a
CFDT using the contention model, means that the record has been deleted
since it was read for update.

LOCKED
The LOCKED condition is possible for a READ UPDATE request to a
recoverable CFDT if the record to be read is locked by a retained lock.

API restrictions during loading

There are restrictions on which API commands you can use while a server is
loading a coupling facility data table. You can issue any file control request that is
supported for a coupling facility data table, but it receives a LOADING condition if
the loading is still in progress and the request is for a key that is outside the range
of keys loaded. A REWRITE request for a record key outside the range of the
records loaded so far receives an INVREQ, because such a request must have
been preceded by a READ UPDATE, which must have failed with the LOADING
condition before the REWRITE could be issued.

This behavior is different from that of a user-maintained data table during loading,
for which only non-update reads with precise keys are allowed. In the case of a
UMT, reads with precise keys succeed both for keys that are already loaded and
those that are not.

Function shipping

If a release of CICS that does not support coupling facility data tables function ships
a file control request to a file-owning region where the remote file refers to a
coupling facility data table, and the FOR returns the new exception condition
CHANGED, the local CICS returns an ERROR exception condition to the
application program. The default action for ERROR is to abend the task.

If one of the existing conditions is returned on a request for which it is not possible
without coupling facility data tables, the condition is correctly raised.

Changes to the system programming interface

There are changes to the CICS system programming interface to support coupling
facility data tables:

v The EXEC CICS CREATE FILE command supports the changes to file resource
definitions described under “Changes to resource definition” on page 26.

v The EXEC CICS INQUIRE FILE and EXEC CICS SET FILE commands are
changed to support files that refer to coupling facility data tables.

v There is a new EXEC CICS INQUIRE CFDTPOOL command.

v The EXEC CICS INQUIRE UOWLINK command is enhanced to provide
additional information for units of work involving coupling facility data tables.

Changed INQUIRE FILE command

The following options are added to the INQUIRE FILE command to return
information about a coupling facility data table:

30 CICS TS for OS/390: Release Guide

|
|

LOADTYPE(cvda)
Returns a CVDA indicating whether the coupling facility data table is preloaded
by the server from a source data set. The CVDA values returned are LOAD,
NOLOAD, and NOTAPPLIC.

CFDTPOOL(data-area)
Returns the 8-character name of the coupling facility data table pool in which
the coupling facility data table resides.

TABLENAME(data-area)
Returns the 8-character name of the table. If a specific table name is not
defined on the file resource definition CICS returns the filename as the table
name.

UPDATEMODEL(cvda)
Returns a CVDA indicating the update model in use for the coupling facility data
table. The CVDA values are CONTENTION, LOCKING, and NOTAPPLIC.

There are some minor changes to the descriptions of some existing options, as
follows:

ACCESSMETHOD
Returns a CVDA value of VSAM for a coupling facility data table because the
coupling facility data table API is compatible with the API used for VSAM files.

BASEDSNAME and DSNAME
Returns the 44-character data set name of the source data set if one is
specified for the coupling facility data table.

EMPTYSTATUS
Returns a CVDA value of NOEMPTYREQ for a coupling facility data table.

FWDRECSTATUS
Returns a CVDA value of NOTFWDRECVBLE for a coupling facility data table.

KEYLENGTH
Returns a fullword binary field containing the keylength of the records in a
coupling facility data table.

KEYPOSITION
Returns the key position of the records in the source data set if one is specified
for a coupling facility data table.

MAXNUMRECS
The maximum number of records can now be in the range 1 through
99 999 999. Also, the special value of 0 is returned for a coupling facility data
table that has no limit on its number of records.

OBJECT
Returns a CVDA value of BASE for a coupling facility data table.

CFDTPOOL
Returns the 8-character name of the coupling facility data table pool specified
on the file definition (or blanks if the file does not refer to a coupling facility data
table).

READINTEG
Returns a CVDA value of NOTAPPLIC for a coupling facility data table.

RECORDSIZE
Returns a fullword binary field containing the maximum record size for a
coupling facility data table, taken either from the file resource definition or from
VSAM if the CFDT is preloaded from a source data set and the file is open.

Chapter 3. Coupling facility data tables 31

TABLE(cvda)
A new CVDA value, CFTABLE, for a coupling facility data table, is added to
CICSTABLE, NOTTABLE, and USERTABLE.

There are no new or changed conditions for coupling facility data tables.

See the CICS System Programming Reference for more information.

Changed SET FILE command

You can use the EXEC CICS SET FILE command to alter the file attributes that
refer to a coupling facility data table, providing the file is closed. This includes
changing a definition from TABLE(NO) to TABLE(CF), or from TABLE(CF) to
TABLE(NO). In the latter case, the CFDT continues to exist in its coupling facility list
structure—it is not deleted.

If a coupling facility data table already exists, and some table attributes specified on
an EXEC CICS SET FILE command are inconsistent with those used when it was
created, an attempt to open the file fails.

The new options are:

CFDTPOOL(data-value)
Specify the name of the coupling facility data table pool in which the CFDT
resides.

KEYLENGTH(data-value)
Specify a key length for records in a coupling facility data table.

LOADTYPE(cvda)
Specify whether the CF data table is to be preloaded from a data set. The
values you can use are LOAD and NOLOAD.

RECORDSIZE(data-value)
Specify a record size for records in a coupling facility data table.

TABLENAME(data-value)
Specify the table name for a coupling facility data table.

UPDATEMODEL(cvda)
Specify the update model to be used for the coupling facility data table. The
CVDA values are CONTENTION and LOCKING.

The following existing options also apply to coupling facility data tables:

DSNAME
Specifies the name of the source data set from which a coupling facility data
table is to be loaded.

MAXNUMRECS
Specifies the maximum number of records, for which the range is extended to
an upper limit of 99 999 999.

OPENSTATUS
Specifies the open status for a file. If the file refers to a coupling facility data
table, setting a file open for the first time in the sysplex causes the server to
create the table, and if specified, load it from its source data set.

TABLE
Specifies the type of data table the file is to use, and a new CVDA value is
added for a coupling facility data tables (CFTABLE).

32 CICS TS for OS/390: Release Guide

Although there are no new exception conditions (RESP) returned on an EXEC
CICS SET FILE command, there are new RESP2 values that can be returned with
the INVREQ condition, and RESP2 value 38 is removed. The new values are:

INVREQ
New RESP2 values:
55 LOADTYPE has an invalid CVDA value.
56 UPDATEMODEL has an invalid CVDA value.
57 EMPTYSTATUS is invalid for a coupling facility data table—it must be

NOEMPTYREQ.
58 CFDTPOOL is not specified for a file that refers to a coupling facility

data table.
59 KEYLENGTH is not specified for a file that refers to a coupling facility

data table specified with LOAD(NO).
60 An invalid KEYLENGTH is specified. The KEYLENGTH must be in the

range 1 through 16 for a coupling facility data table.
61 RECORDSIZE is not specified for a file that refers to a coupling facility

data table specified with LOAD(NO).
62 An invalid RECORDSIZE is specified. RECORDSIZE must be in the

range 1 through 32767 bytes.
63 OPEN has been specified for a file that refers to a coupling facility data

table, but open processing has failed because the file attributes of the
file do not match those specified when the CFDT was created.

64 OPEN is specified for a file that refers to a coupling facility data table,
but OPEN processing has failed because the server is not available.

65 An invalid CFDTPOOL name is specified.
66 An invalid TABLE name is specified.
67 An UPDATEMODEL of CONTENTION is specified for a recoverable

coupling facility data table. The update model must be LOCKING for a
coupling facility data table that is recoverable.

See the CICS System Programming Reference for more details, especially for
information about how CICS responds if a CFDT-specific value is specified for a
non-CFDT file, or a non-CFDT value for a CFDT file.

New INQUIRE CFDTPOOL command

The INQUIRE CFDTPOOL command allows you to discover whether CICS is
connected to a named coupling facility data table pool, and to browse through all
the pools for which the CICS region has installed file definitions.

Syntax:

GG INQUIRE CFDTPOOL(poolname)
CONNSTATUS(cvda)

GH

Options:

START|NEXT|END
Pool browse operations. START is required to commence a browse and will not
return values; likewise with END, which ends a browse. NEXT returns the next
POOL.

CONNSTATUS
returns a CVDA value indicating the connection status of the pool. CVDA values
are:

Chapter 3. Coupling facility data tables 33

CONNECTED
The server for the coupling facility data table pool is available, and this
CICS is currently connected to it.

NOTCONNECTED
The server for the coupling facility data table pool is available, but this
CICS is not currently connected to it.

UNAVAILABLE
The server for the coupling facility data table pool is currently
unavailable.

Conditions:

POOLERR
RESP2 values:
1 The named CFDT pool was not found (that is, CICS has not connected

to it)
2 The CFDT pool was removed whilst the pool chain was being browsed

ILLOGIC
RESP2 values:
1 A START has not been given before a NEXT or END, or a START has

been given before ending a previous START

END
RESP2 values:
2 There are no more coupling facility data table pools to be browsed

This is returned on the NEXT browse option.

NOTAUTH
RESP2 values:
100 Use of the command is not authorized

Changes to INQUIRE UOWLINK

The LINK and TYPE options are enhanced to provide information about a unit of
work that involves a connection to a CFDT server. The full descriptions of these
options are as follows:

LINK(data-area)
returns the name associated with the link, depending on the type of connection,
as follows:

v For a TYPE value of CONNECTION, CICS returns the 8-character netname
of the remote system.

v For a TYPE value of RMI, CICS returns the entry name of the task-related
user exit

v For a TYPE value of CFTABLE, CICS returns the the 8-character name of
the coupling facility data table pool.

TYPE
returns a CVDA value indicating the type of connection. CVDA values are:

CFTABLE
A connection to a CFDT server.

CONNECTION
A connection defined in a CONNECTION resource definition.

RMI A connection to an external resource manager using the resource
manager interface (RMI).

34 CICS TS for OS/390: Release Guide

|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

||
|

Changes to global user exits

The existing shared data tables global user exit points XDTRD, XDTLC, and
XDTAD are invoked by CICS for coupling facility data tables.

XDTRD is invoked when a coupling facility data table is being loaded from its
source data set. You can use an XDTRD global user exit program to select records
for inclusion in a coupling facility data table, and to modify records before they are
written to the CFDT. XDTRD is not invoked for a coupling facility data table that is
not loaded from a source data set.

XDTLC is invoked on completion of loading of a coupling facility data table, whether
successful or otherwise. You can use an XDTLC global user exit program to decide
whether to accept an unsuccessfully loaded coupling facility data table. If the exit
decides to accept the table, it remains open and available for access, but CICS
does not mark it as loading completed. This is also the default action if no XDTLC
exit is enabled. This means that application programs continue to receive the
LOADING condition for any records that are beyond the key range of records
successfully loaded into the table. This ensures that application programs are aware
that not all the expected data is available. It also allows you to retry the load, when
the cause of the failure has been corrected, by closing the file that initiated the load
and reopening it. Alternatively, you could open another load-capable file that refers
to the same data table. If your exit program decides to reject the table, it is closed
and the records already loaded remain in the table. If the cause of the failure is
corrected, a subsequent open for the data table allows the load to complete.

XDTLC is not invoked for a coupling facility data table that is not loaded from a
source data set.

XDTAD is invoked when a record is being written to a coupling facility data table by
an application program request. You can use an XDTAD global user exit program to
decide whether to accept or reject the record being written.

The data tables user exit parameter list, DT_UE_PLIST, has a new indicator added
to the flags byte to indicate that the exit has been invoked for a coupling facility
data table request. Note that the table name parameter contains the name of the
coupling facility data table and not the name of the file (unless they happen to be
the same).

See the CICS Customization Guide for more information about these global user
exits.

Changes to security

There are additional security checks introduced to control access to coupling facility
data table servers and their pools of coupling facility data tables. These security
checks are for:
v Controlling access to coupling facility data table pools
v Controlling AOR access to coupling facility data tables

Controlling access to coupling facility data table pools

You can control access to coupling facility data table pools using RACF® (or an
equivalent external security manager).

Chapter 3. Coupling facility data tables 35

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Authorizing access to a coupling facility structure: Each coupling facility data
table server region must be given access to its associated coupling facility list
structure in accordance with the CFRM security rules. This means giving the user
ID of the server region ALTER access to a FACILITY class general resource profile
called IXLSTR.structure_name. For example, use the RDEFINE command to define
the profile, and the PERMIT command to grant access, as follows:
RDEFINE FACILITY IXLSTR.struct_name UACC(NONE)
PERMIT IXLSTR.struct_name CLASS(FACILITY) ID(server_userid) ACCESS(ALTER)

Authenticating servers: To enable the server to establish itself as a server for the
given pool name, give the server region CONTROL access to a FACILITY class
general resource profile called DFHCF.poolname. For example, use the RDEFINE
command to define the profile, and the PERMIT command to grant access, as
follows:
RDEFINE FACILITY DFHCF.pool_name UACC(NONE)
PERMIT DFHCF.pool_name CLASS(FACILITY) ID(server_userid) ACCESS(CONTROL)

Authorizing CICS regions to access the server and its pool: To enable a CICS
region to access a server and its pool, give the CICS region UPDATE access to the
server’s FACILITY class profile for the pool. For example, use the PERMIT
command to grant access, as follows:
PERMIT DFHCF.pool_name CLASS(FACILITY) ID(CICS_region_userid) ACCESS(UPDATE)

Controlling AOR access to coupling facility data tables

In addition to controlling a CICS region’s access to a coupling facility data table
pool, you can optionally control access to each CFDT in the pool. This security
check, if active, is performed by the server each time a CICS region connects to a
data table for the first time. The resource security check is done as if for a CICS file
owned by the coupling facility data table server region, using profiles defined in the
default FCICSFCT class, with the table name as the name of the profile.

You can optionally prefix the profile name using the server region user ID as the
prefix by specifying SECURITYPREFIX=YES as a server initialization parameter.
You can customize the security class name and prefix for this level of security
checking, using server initialization parameters SECURITYCLASS and
SECURITYPREFIXID respectively.

The server performs the security check by issuing a cross-memory mode
FASTAUTH check, which requires the use of global in-storage security profiles. If
the external security manager does not support cross-memory mode FASTAUTH or
global in-storage profiles, coupling facility data table security checks are not
possible and an error message is issued at server initialization time if security
checking is specified.

Resource security checking for files

Normal CICS resource security for files is unchanged and, if specified, CICS
performs the usual file resource security checks against signed-on users of
transactions that access coupling facility data tables.

Changes to CICS-supplied transactions

There are changes to the CICS-supplied transaction, CEMT, to support coupling
facility data tables:

v There is a new CEMT INQUIRE CFDTPOOL command

36 CICS TS for OS/390: Release Guide

v The CEMT INQUIRE FILE and CEMT SET FILE commands are changed to
support files that refer to coupling facility data tables.

The CEMT INQUIRE CFDTPOOL command is the master terminal operator
equivalent of the EXEC CICS INQUIRE CFDTPOOL SPI command. See “Changes
to the system programming interface” on page 30 for more details.

The changes to the CEMT INQUIRE FILE and SET FILE commands are the same
as those made to the equivalent SPI commands. That is, there are new options
(CFDTPOOL, LOAD|NOLOAD, KEYLENGTH, TABLENAME, RECORDSIZE, and
CONTENTION|LOCKING) added to support coupling facility data tables. See
“Changed INQUIRE FILE command” on page 30 and “Changed SET FILE
command” on page 32 for more details.

Changes to monitoring and statistics

There are changes to CICS performance class data and statistics for coupling
facility data tables. See “Chapter 6. Monitoring, statistics, and enterprise
management changes” on page 65 for details of these changes.

Changes to sample programs

The sample global user exit programs DFH$DTRD, DFH$DTLC, and DFH$DTAD
are updated to work for coupling facility data tables.

Changes to problem determination

There are new messages and codes to aid problem determination, and
enhancements to CICS dump and CICS trace.

Messages

There are new DFHFCnnnn messages for CICS coupling facility data table support,
and DFHCFnnnn messages are introduced for use by the coupling facility data table
server.

Abend codes

There are new abend codes that can occur in connection with coupling facility data
table processing. These are:

ACFA The CFCL transaction has detected an abend, or an error response from a
domain call, while loading a coupling facility data table, after which normal
processing cannot continue.

ACFB A transaction issued a request for a coupling facility data table record for
which it holds an active lock, but after the lock was acquired, the coupling
facility data table server for the CFDT failed and was restarted. This request
is of a type which is reliant on a lock that was acquired before the server
failed; for example, a rewrite to a locking CFDT is dependent on the lock
acquired by the previous read for update, and if the server has failed since
the read for update, the rewrite cannot be allowed to proceed.

ACFC A transaction has issued a request to a coupling facility data table that was
last accessed using a coupling facility data table server that has failed, and
the server has been restarted one or more times since the last access.

Chapter 3. Coupling facility data tables 37

Access between this CICS file and the CFDT, therefore, needs to be
reopened before the request can be processed, but the reopen attempt has
failed.

ACFD A call to the CICS transaction manager by the CFCL transaction during the
loading of a coupling facility data table has received a response (such as
DISASTER) after which normal processing could not continue. CICS issues
message DFHFC7121, loading of the data table is terminated, and CFCL
abends.

ACFE A transaction not internally attached by CICS has made an attempt to
attach a transaction that specifies DFHFCDL as the program to be given
control, which is not allowed. DFHFCDL is for use by the CICS system
transaction, CFCL, to load a coupling facility data table.

New abend codes are added for cases where an application program fails to handle
one of the new exceptional conditions:

AEZE CHANGED condition not handled

AEZN POOLERR condition not handled

Dump

The CICS IPCS dump formatting exit handles the new chain of connected pool
elements, new fields in existing control blocks, and new control blocks associated
with coupling facility data table support.

Trace

New trace points are added to write trace on entry to and exit from new modules
that support coupling facility data tables, and before and after all calls to a coupling
facility data table server.

The new trace point IDs used for coupling facility data tables are in the range
2440-24FF.

CICSPlex SM support

CICSPlex SM supports the file inquiry facility by providing a new view:

v CFDTPOOL, for coupling facility data table pools associated with a file.
Associated with this general view is a detailed view, CFDTPOOD, and a
summary view, CFDTPOOS.

The existing operations view, CMDT, and its associated detail view, CMDTD, and
summary view, CMDTS, have been amended to reflect support for coupling facility
data tables.

Additionally, there are two new detail views for CMDT:

v CMDT2, for detailed information relating to a CICS- or user-maintained data
table, or a coupling facility data table. You can hyperlink to this view from the
Table Info field of the CMDTD view.

v CMDT3, for statistical information relating to a data table file. You can hyperlink
to this view from the Data Set Info field of the CMDT2 view.

The FILE OPERATE view is amended to reflect support of coupling facility data
tables.

38 CICS TS for OS/390: Release Guide

The BAS file definition view, FILEDEF, is extended to incorporate consideration for
coupling facility data table files.

A new resource table, CFDTPOOL, is introduced.

Chapter 3. Coupling facility data tables 39

40 CICS TS for OS/390: Release Guide

Chapter 4. Dynamic routing of DPL and EXEC CICS START
requests

The CICS dynamic routing facility is enhanced as follows:

v The dynamic routing interface is redesigned.

v The dynamic routing facility is extended to provide mechanisms for dynamically
routing:
– CICS-to-CICS distributed program link (DPL) requests.
– Program-link requests received from outside CICS.
– Transactions invoked by a subset of EXEC CICS START commands.
– CICS business transaction services (BTS) processes and activities. (BTS is

described in “Chapter 8. CICS business transaction services” on page 81.)

For eligible requests:

– A routing program is invoked, and can be used to select the target region
– Workload balancing can be managed by CICSPlex SM.

v There is an enhanced method for statically routing transactions that are initiated
by EXEC CICS START commands.

The chapter covers the following topics:
v “Changes to the dynamic routing interface”

v “Dynamic routing of DPL requests” on page 44

v “Routing transactions invoked by START commands” on page 46

v “Benefits” on page 52

v “Requirements” on page 52

v “Changes to CICS externals” on page 52

v “CICSPlex SM support” on page 55

Changes to the dynamic routing interface

This section gives an overview of the enhanced dynamic routing interface.

First, some definitions are necessary:

Requesting region
The region in which a transaction or program-link request is issued. Here
are some examples of what is meant by “requesting region”:

v For transactions started from terminals, it is the terminal-owning region
(TOR).

v For transactions started by EXEC CICS START commands, it is the
region in which the START command is issued.

v For traditional CICS-to-CICS DPL calls, it is the region in which the
EXEC CICS LINK PROGRAM command is issued.

v For program-link calls received from outside CICS—for example, ECI
calls received from CICS Clients—it is the CICS region which receives
the call.

Routing region
The region in which the routing program runs. With one exception, the

© Copyright IBM Corp. 1998 41

requesting region and the routing region are always the same region. For
terminal-related START commands only:

v Because the START command is always executed in the terminal-owning
region (TOR), the requesting region and the routing region may or may
not be the same. (This is more fully explained in “Routing transactions
invoked by START commands” on page 46.)

v The routing region is always the TOR.

Target region
The region in which the routed transaction or program-link request
executes.

Two routing models

There are two possible dynamic routing models:

v The hub model

v The distributed model.

The hub model

The hub is the model that has traditionally been used with CICS dynamic
transaction routing. A routing program running in a TOR routes transactions
between several AORs. Usually, the AORs (unless they are AOR/TORs) do no
dynamic routing. Figure 7 shows a hub routing model.

The hub model applies to the routing of:

v Transactions started from terminals.
v Transactions started by terminal-related START commands.
v CICS-to-CICS DPL requests. (The requesting region acts as a hub because it

routes requests among a set of AORs.)
v Program-link requests received from outside CICS. (The receiving region acts as

a hub or TOR because it routes the requests among a set of back-end server
regions.)

The hub model is a hierarchical system—routing is controlled by one region (the
TOR); normally, a routing program runs only in the TOR.

Advantage of the hub model: It is a relatively simple model to implement. For
example, compared to the distributed model, there are few inter-region connections
to maintain.

Disadvantages of the hub model:

v If you use only one hub to route transactions and program-link requests across
your AORs, the hub TOR is a single point-of-failure.

v If you use more than one hub to route transactions and program-link requests
across the same set of AORs, you may have problems with distributed data. For
example, if the routing program keeps a count of routed transactions for
load-balancing purposes, each hub TOR will need access to this data.

Figure 7. Dynamic routing using a hub routing model. One routing region (the TOR) selects
between several target regions.

42 CICS TS for OS/390: Release Guide

The distributed model

In the distributed model, each region may be both a routing region and a target
region. A routing program runs in each region. Figure 8 shows a distributed routing
model.

The distributed model applies to the routing of:

v CICS business transaction services processes and activities
v Non-terminal-related START requests.

The distributed model is a peer-to-peer system—each participating CICS region
may be both a routing region and a target region. A routing program runs in each
region.

Advantage of the distributed model: There is no single point-of-failure.

Disadvantages of the distributed model:

v Compared with the hub model, there are a great many inter-region connections
to maintain.

v You may have problems with distributed data. For example, any data used to
make routing decisions must be available to all the regions. (CICSPlex SM
solves this problem by using dataspaces and other mechanisms.)

Two routing programs

There are two CICS-supplied user-replaceable programs for dynamic routing:

The dynamic routing program, DFHDYP1

Can be used to route:
v Transactions started from terminals
v Transactions started by terminal-related START commands
v CICS-to-CICS DPL requests
v Program-link requests received from outside CICS.

The distributed routing program, DFHDSRP
Can be used to route:
v CICS business transaction services processes and activities
v Non-terminal-related START requests.

The two routing programs:

1. Are specified on separate system initialization parameters. You specify the
name of your dynamic routing program on the DTRPGM system initialization
parameter. You specify the name of your distributed routing program on the
DSRTPGM system initialization parameter.

2. Are passed the same communications area. (Certain fields that are meaningful
to one program are not meaningful to the other.)

1. In previous CICS releases, the dynamic routing program was known as the “dynamic transaction routing program”, because it
could be used only to route transactions.

Figure 8. Dynamic routing using a distributed routing model. Each region may be both a
routing region and a target region.

Chapter 4. Dynamic routing of DPL and EXEC CICS START requests 43

3. Are invoked at similar points—for example, for route selection, route selection
error, and, optionally, at termination of the routed transaction or program-link
request.

Together, these three factors give you a great deal of flexibility. You could, for
example, do any of the following:

v Use different user-written programs for dynamic routing and distributed routing.

v Use the same user-written program for both dynamic routing and distributed
routing.

v Use a user-written program for dynamic routing and the CICSPlex SM routing
program for distributed routing, or vice versa.

It is worth noting two important differences between the dynamic and distributed
routing programs:

1. The dynamic routing program is only invoked if the resource (the transaction or
program) is defined as DYNAMIC(YES). The distributed routing program, on the
other hand, is invoked (for eligible non-terminal-related START requests and
BTS activities) even if the associated transaction is defined as DYNAMIC(NO);
though it cannot route the request. What this means is that the distributed
routing program is better able to monitor the effect of statically-routed
transactions on the relative workloads of the target regions.

2. Because the dynamic routing program uses the hub routing model—one routing
program controls access to resources on several target regions—the routing
program that is invoked at termination of a routed request is the same program
that was invoked for route selection.

The distributed routing program, on the other hand, uses the distributed model,
which is a “peer-to-peer” system; the routing program itself is distributed. The
routing program that is invoked at termination of a routed request is not the
same program that was invoked for route selection—it is the routing program on
the target region.

Dynamic routing of DPL requests

Not all DPL requests can be dynamically routed. For a DPL request to be eligible
for dynamic routing, the remote program must either:
v Be defined to the local system as DYNAMIC(YES), or
v Not be defined to the local system.

Note: If the program specified on an EXEC CICS LINK command is not currently
defined, what happens next depends on whether program autoinstall is
active:

– If program autoinstall is inactive, the dynamic routing program is
invoked.

– If program autoinstall is active, the autoinstall user program is invoked.
The dynamic routing program is then invoked only if the autoinstall
user program:
- Installs a program definition that specifies DYNAMIC(YES), or
- Does not install a program definition.

As well as traditional CICS-to-CICS DPL calls initiated by EXEC CICS LINK
PROGRAM commands, program-link requests received from outside CICS can also
be dynamically routed. For example, all the following types of program-link request
can be dynamically routed:

44 CICS TS for OS/390: Release Guide

v Calls received from:
– The CICS Web interface
– The CICS Gateway for Java

v Calls from external CICS interface (EXCI) client programs

v External call interface (ECI) calls from any of the CICS Client workstation
products

v Distributed Computing Environment (DCE) remote procedure calls (RPCs)

v ONC RPC calls.

A program-link request received from outside CICS can be dynamically routed by:
v Defining the program to CICS as DYNAMIC(YES)
v Coding your dynamic routing program to route the request.

How CICS obtains the transaction ID

A transaction identifier is always associated with each dynamic program-link
request. CICS obtains the transaction ID using the following sequence:

1. From the TRANSID option on the LINK command

2. From the TRANSID option on the program definition

3. CSMI, the generic mirror transaction. This is the default if neither of the
TRANSID options are specified.

If you write your own dynamic routing program, perhaps based on the
CICS-supplied routing program DFHDYP, the transaction ID associated with the
request may not be significant—you could, for example, code your program to route
requests based simply on program name and available AORs.

However, if you use CICSPlex SM to route your program-link requests, the
transaction ID becomes much more significant, because CICSPlex SM’s routing
logic is transaction-based. CICSPlex SM routes each DPL request according to the
rules specified for its associated transaction.

Note: The CICSPlex SM system programmer can use the EYU9WRAM
user-replaceable module to change the transaction ID associated with a DPL
request.

When the dynamic routing program is invoked

For eligible program-link requests, the dynamic routing program is invoked at the
following points:

v Before the linked-to program is executed, to either:

– Obtain the SYSID of the region to which the link should be routed.

Note: The address of the caller’s communication area (COMMAREA) is
passed to the routing program, which can therefore route requests by
COMMAREA contents if this is appropriate.

– Notify the routing program of a statically-routed request. This occurs if the
program is defined as DYNAMIC(YES)—or is not defined—but the caller uses
the SYSID option of the LINK command to specify the name of a remote
server region explicitly.

v If an error occurs in route selection—for example, if the SYSID returned by the
dynamic routing program is unavailable or unknown, or the link fails on the

Chapter 4. Dynamic routing of DPL and EXEC CICS START requests 45

specified target region—to provide an alternate SYSID. This process iterates until
either the program-link is successful or the return code from the dynamic routing
program is not equal to zero.

v After the link request has completed, if reinvocation was requested by the routing
program.

v If an abend is detected after the link request has been shipped to the specified
remote system, if reinvocation was requested by the routing program.

Routing transactions invoked by START commands

This section describes a new method of routing transactions that are invoked by
EXEC CICS START commands. For convenience, we shall call the method
described in this section the enhanced method. The enhanced method supersedes
the traditional method described in the CICS Intercommunication Guide. Note,
however, that the enhanced method cannot be used to route:
v Some transactions that are invoked by EXEC CICS START commands
v Transactions invoked by the trigger-level on a transient data queue.

In these cases, the traditional method must be used.

To specify that a transaction, if it is invoked by an EXEC CICS START command, is
to be routed by the enhanced method described in this section, define the
transaction as ROUTABLE(YES) in the requesting region (the region in which the
START command is issued).

Advantages of the enhanced method

There are several advantages in using the enhanced method, where possible,
rather than the traditional method:

Dynamic routing
Using the traditional method, you cannot route the started transaction
dynamically. (For example, if the transaction on a terminal-related START
command is defined as DYNAMIC(YES) in the terminal-owning region, your
dynamic routing program is invoked for notification only—it cannot route the
transaction.)

Using the enhanced method, you can route the started transaction dynamically.

Efficiency
Using the traditional method, a terminal-related START command issued in a
TOR is function-shipped to the AOR that owns the transaction. The request is
then shipped back again, for routing from the TOR.

Using the enhanced method, the two hops to the AOR and back are missed
out. A START command issued in a TOR executes directly in the TOR, and the
transaction is routed without delay.

Simplicity
Using the traditional method, when a terminal-related START command issued
in a TOR is function-shipped to the AOR that owns the transaction the
“terminal-not-known” condition may occur if the terminal is not defined in the
AOR.

Using the enhanced method, because a START command issued in a TOR is
not function-shipped to the AOR, the “terminal-not-known” condition does not

46 CICS TS for OS/390: Release Guide

occur. The START command executes in the TOR directly, and the transaction
is routed just as if it had been initiated from a terminal. If the terminal is not
defined in the AOR, a definition is shipped from the TOR.

Terminal-related START commands

For a transaction invoked by a terminal-related START command to be eligible for
the enhanced routing method, all of the following conditions must be met:

v The START command is a member of the subset of eligible START
commands—that is, it meets all the following conditions:

– The START command specifies the TERMID option, which names the
principal facility of the task that issues the command. That is, the transaction
to be started must be terminal-related, and associated with the principal
facility of the starting task.

– The principal facility of the task that issues the START command is not a
surrogate Client virtual terminal.

– The SYSID option of the START command does not specify the name of a
remote region. (That is, the remote region on which the transaction is to be
started must not be specified explicitly.)

v The requesting region, the TOR, and the target region are all CICS TS
Release 3

Note: The requesting region and the TOR may be the same region.

v The requesting region and the TOR (if they are different) are connected by either
of the following:
– An MRO link
– An APPC parallel-session link.

v The TOR and the target region are connected by either of the following:

– An MRO link.

– An APPC single- or parallel-session link. If an APPC link is used, at least one
of the following must be true:

1. Terminal-initiated transaction routing has previously taken place over the
link. (The terminal-initiated transaction routing enables the TOR to
determine whether or not the target region is a CICS TS Release 3
system, and therefore eligible for enhanced routing.)

2. CICSPlex SM is being used for routing.

v The transaction definition in the requesting region specifies ROUTABLE(YES).

v If the transaction is to be routed dynamically, the transaction definition in the TOR
specifies DYNAMIC(YES).

Important: When considering which START-initiated transactions are candidates
for dynamic routing, you need to take particular care if the START
command specifies any of the following options:
– AT, AFTER, INTERVAL, or TIME (that is, there is a delay before

the START is executed)
– QUEUE
– REQID
– RTERMID
– RTRANID

Chapter 4. Dynamic routing of DPL and EXEC CICS START requests 47

You need to understand how each of the options of the START
command is being used; whether, for example, it affects the set of
regions to which the transaction can be routed.

START commands issued in an AOR

If a terminal-related START command is issued in an AOR, it is function-shipped to
the TOR that owns the terminal named in the TERMID option. The START executes
in the TOR.

Static routing: The transaction definition in the AOR specifies ROUTABLE(YES).
The transaction definition in the TOR specifies DYNAMIC(NO). The dynamic routing
program is not invoked. If the transaction is eligible for enhanced routing, 2 it is
routed to the AOR named in the REMOTESYSTEM option of the transaction
definition in the TOR. If REMOTESYSTEM is not specified, the transaction executes
locally, in the TOR.

Note: If the transaction is ineligible for enhanced routing, it is handled in the
traditional way described in the CICS Intercommunication Guide—that is,
CICS tries to route it back to the originating AOR for execution. If the
REMOTESYSTEM option of the transaction definition in the TOR names a
region other than the originating AOR, the request fails.

Figure 9 shows the requirements for using the enhanced method to statically route
a transaction that is initiated by a terminal-related START command issued in an
AOR.

Dynamic routing: The transaction definition in the AOR specifies
ROUTABLE(YES). The transaction definition in the TOR specifies DYNAMIC(YES).
The dynamic routing program is invoked in the TOR. If the transaction is eligible for
enhanced routing, the routing program can reroute the transaction to an alternative
AOR—that is, to an AOR other than that in which the START was issued.

Note: If the transaction is ineligible for enhanced routing, the dynamic routing
program is invoked for notification only—it cannot reroute the transaction.
The transaction is handled in the traditional way—that is, it is routed back to
the originating AOR for execution.

Figure 10 on page 49 shows the requirements for dynamically routing a transaction
that is initiated by a terminal-related START command issued in an AOR.

2. See the list of conditions on page 47.

Figure 9. Static routing of a terminal-related START command issued in an AOR, using the
enhanced method. The requesting region, the TOR, and the target region are all CICS TS
Release 3. The requesting region and the TOR are connected by an MRO or APPC
parallel-session link. The TOR and the target region are connected by an MRO or APPC
(single- or parallel-session) link. The transaction definition in the requesting region specifies
ROUTABLE(YES). The transaction definition in the TOR specifies DYNAMIC(NO). The
REMOTESYSTEM option names the AOR to which the transaction is to be routed.

48 CICS TS for OS/390: Release Guide

START commands issued in a TOR

Static routing: The transaction definition in the TOR specifies ROUTABLE(YES)
and DYNAMIC(NO). The dynamic routing program is not invoked. If the transaction
is eligible for enhanced routing (see the list of conditions on page 47):

1. The START executes in the TOR.
2. The transaction is routed to the AOR named in the REMOTESYSYEM option of

the transaction definition. If REMOTESYSTEM is not specified, the transaction
executes locally, in the TOR.

Note: If the transaction is ineligible for enhanced routing, the START request is
handled in the traditional way described in the CICS Intercommunication
Guide—that is, it is function-shipped to the AOR named in the
REMOTESYSTEM option of the transaction definition. If REMOTESYSTEM
is not specified, the START executes locally, in the TOR.

Figure 11 shows the requirements for using the enhanced method to statically route
a transaction that is initiated by a terminal-related START command issued in a
TOR.

Dynamic routing: The transaction definition in the TOR specifies
ROUTABLE(YES) and DYNAMIC(YES). The dynamic routing program is invoked. If
the transaction is eligible for enhanced routing, the START is executed in the TOR,
and the routing program can route the transaction.

Note: If the transaction is ineligible for enhanced routing, the dynamic routing
program is invoked for notification only—it cannot route the transaction. The
START request is handled in the traditional way—that is, it is
function-shipped to the AOR named in the REMOTESYSTEM option of the
transaction definition in the TOR. If REMOTESYSTEM is not specified, the
START executes locally, in the TOR.

Figure 12 shows the requirements for dynamically routing a transaction that is
initiated by a terminal-related START command issued in a TOR.

Figure 10. Dynamic routing of a terminal-related START command issued in an AOR. The
requesting region, the TOR, and the target region are all CICS TS Release 3. The
requesting region and the TOR are connected by an MRO or APPC parallel-session link. The
TOR and the target region are connected by an MRO or APPC (single- or parallel-session)
link. The transaction definition in the requesting region specifies ROUTABLE(YES). The
transaction definition in the TOR specifies DYNAMIC(YES).

Figure 11. Static routing of a terminal-related START command issued in a TOR, using the
enhanced method. The TOR and the target region are both CICS TS Release 3. The TOR
and the target region are connected by an MRO or APPC (single- or parallel-session) link.
The transaction definition in the TOR specifies DYNAMIC(NO) and ROUTABLE(YES). The
REMOTESYSTEM option names the AOR to which the transaction is to be routed.

Figure 12. Dynamic routing of a terminal-related START command issued in a TOR. The
TOR and the target region are both CICS TS Release 3. The TOR and the target region are
connected by an MRO or APPC (single- or parallel-session) link. The transaction definition in
the TOR specifies both DYNAMIC(YES) and ROUTABLE(YES).

Chapter 4. Dynamic routing of DPL and EXEC CICS START requests 49

Non-terminal-related START commands

For a non-terminal-related START request to be eligible for enhanced routing, all of
the following conditions must be met:

v Both the requesting region and the target region are CICS Transaction Server for
OS/390 Release 3.

v The requesting region and the target region are connected by either of the
following:

– An MRO link.

– An APPC single- or parallel-session link. If an APPC link is used, at least one
of the following must be true:

1. Terminal-initiated transaction routing has previously taken place over the
link. (The terminal-initiated transaction routing enables the requesting
region to determine whether or not the target region is a CICS Transaction
Server for OS/390 Release 3 system, and therefore eligible for enhanced
routing.)

2. CICSPlex SM is being used for routing.

v The transaction definition in the requesting region specifies ROUTABLE(YES).

In addition, if the request is to be routed dynamically:

v The transaction definition in the requesting region must specify DYNAMIC(YES).

v The SYSID option of the START command must not specify the name of a
remote region. (That is, the remote region on which the transaction is to be
started must not be specified explicitly.)

50 CICS TS for OS/390: Release Guide

Important: When considering which START requests are candidates for dynamic
routing, you need to take particular care if the START specifies any of
the following options:
v AT, AFTER, INTERVAL(non-zero), or TIME. That is, there is a delay

before the START is executed.

If there is a delay, the interval control element (ICE) created by the
START request is kept in the requesting region with a transaction ID
of CDFS. The CDFS transaction retrieves any data specified by the
user and reissues the START request without an interval. The
request is routed when the ICE expires, based on the state of the
transaction definition and the sysplex at that moment.

v QUEUE.
v REQID.
v RTERMID.
v RTRANID.

You need to understand how these options are being used; whether, for
example, they affect the set of regions to which the request can be
routed.

Static routing

The transaction definition in the requesting region specifies ROUTABLE(YES) and
DYNAMIC(NO). If the START request is eligible for enhanced routing (see the list of
conditions on page 50), the distributed routing program—that is, the program
specified on the DSRTPGM system initialization parameter—is invoked for
notification of the statically-routed request.

Notes:

1. The distributed routing program differs from the dynamic routing program, in that
it is invoked—for eligible non-terminal-related START requests—even when the
transaction is defined as DYNAMIC(NO). The dynamic routing program is never
invoked for transactions defined as DYNAMIC(NO). This difference in design
means that you can use the distributed routing program to assess the effect of
statically-routed requests on the overall workload.

2. If the request is ineligible for enhanced routing, the distributed routing program
is not invoked.

Dynamic routing

The transaction definition in the requesting region specifies ROUTABLE(YES) and
DYNAMIC(YES). If the request is eligible for enhanced routing, the distributed
routing program is invoked for routing. The START request is function-shipped to
the target region returned by the routing program.

Notes:

1. If the request is ineligible for enhanced routing, the distributed routing program
is not invoked. Unless the SYSID option specifies a remote region explicitly, the
START request is function-shipped to the AOR named in the REMOTESYSTEM
option of the transaction definition in the requesting region; if REMOTESYSTEM
is not specified, the START executes locally, in the requesting region.

2. If the request is eligible for enhanced routing, but the SYSID option of the
START command names a remote region, the distributed routing program is
invoked for notification only—it cannot route the request. The START executes
on the remote region named on the SYSID option.

Chapter 4. Dynamic routing of DPL and EXEC CICS START requests 51

Benefits

Here are some of the benefits of the new routing functions:

v The ability to route all types of program link request dynamically can be used to
improve the performance and reliability of:
– The CICS Web interface
– The CICS Gateway for Java
– EXCI calls
– CICS Client ECI calls
– DCE/RPC
– ONC RPC
– Any function that issues an EXEC CICS LINK PROGRAM request.

v The ability to route a subset of EXEC CICS START commands dynamically can
be used to improve the performance and reliability of applications that use those
commands.

v Using CICSPlex SM, you could, for example, integrate workload balancing for
terminal-initiated transactions, EXCI clients, CICS Clients, and started tasks.

Requirements

For dynamic routing of DPL requests, no special hardware or software is required.

For dynamic routing of transactions started by terminal-related START requests, the
requesting region, the TOR, and the target region must be at the CICS TS Release
3 level.

For dynamic routing of transactions started by non-terminal-related START
requests, the requesting region and the target region must both be at the CICS TS
Release 3 level.

Changes to CICS externals

This section gives an overview, in the following topics, of the changes to CICS
externals introduced by dynamic routing of DPL and START requests:
v “Changes to system definition” on page 53

v “Changes to resource definition” on page 53

v “Changes to system programming” on page 53

v “Changes to CICS-supplied transactions” on page 54

v “Changes to user-replaceable programs” on page 54

v “Changes to the exit programming interface (XPI)” on page 54

v “Changes to sample programs” on page 55

v “Changes to monitoring and statistics” on page 55

v “Changes to trace points” on page 55

v “Changes to messages and abend codes” on page 55

52 CICS TS for OS/390: Release Guide

Changes to system definition

A new system initialization parameter, DSRTPGM, is introduced; it names the
distributed routing program.

Table 1. The DSRTPGM system initialization parameter
DFHSIT [TYPE={CSECT|DSECT}]

[,DSRTPGM={NONE|DFHDSRP|program-name|EYU9XLOP}]
...

DSRTPGM={NONE|DFHDSRP|program-name|EYU9XLOP}
Specifies the name of the distributed routing program to be used for
dynamically routing:
v Eligible CICS business transaction services (BTS) processes and activities
v Eligible non-terminal-related EXEC CICS START requests.

DFHDSRP
The CICS sample distributed routing program.

EYU9XLOP
The CICSPlex SM routing program.

NONE
For eligible BTS processes and activities, no routing program is invoked.
BTS processes and activities cannot be dynamically routed.

For eligible non-terminal-related START requests, the CICS sample
distributed routing program, DFHDSRP, is invoked.

program-name
The name of a user-written program.

Note: See also the DTRPGM parameter, used to name the dynamic routing
program.

Changes to resource definition

The following RDO commands have been modified:

CEDA DEFINE PROGRAM
A new DYNAMIC option is added. It specifies whether, if the program is the
subject of a program-link request, the request can be dynamically routed.

CEDA DEFINE TRANSACTION
A new ROUTABLE option is added. It specifies whether, if the transaction is the
subject of an eligible EXEC CICS START command, it can be dynamically
routed. This option applies to transaction definitions in regions in which START
commands are issued.

Changes to system programming

The following system programming interface (SPI) commands have been modified:

EXEC CICS INQUIRE PROGRAM
A new DYNAMSTATUS option is added. This returns a CVDA value indicating
whether, if the program is the subject of a program-link request, the request can
be dynamically routed.

Chapter 4. Dynamic routing of DPL and EXEC CICS START requests 53

EXEC CICS INQUIRE SYSTEM
A new DSRTPROGRAM option is added. This returns the name of the
distributed routing program currently identified to the system.

EXEC CICS INQUIRE TRANSACTION
A new ROUTESTATUS option is added. This returns a CVDA value indicating
whether, if the transaction is the subject of an eligible EXEC CICS START
command, it can be dynamically routed.

EXEC CICS SET SYSTEM
A new DSRTPROGRAM option is added. This specifies the name of the
distributed routing program.

Changes to CICS-supplied transactions

There are changes to the CICS master terminal transaction, CEMT. The following
CEMT commands have been modified:

CEMT INQUIRE PROGRAM
A new DYNAMSTATUS option is added. This indicates whether, if the program
is the subject of a program-link request, the request can be dynamically routed.

CEMT INQUIRE SYSTEM
A new DSRTPROGRAM option is added. This displays the name of the
distributed routing program currently identified to the system.

CEMT INQUIRE TRANSACTION
A new ROUTSTATUS option is added. This indicates whether, if the transaction
is the subject of an eligible EXEC CICS START command, it can be
dynamically routed.

CEMT SET SYSTEM
A new DSRTPROGRAM option is added. This specifies the name of the
distributed routing program.

Changes to user-replaceable programs

A new user-replaceable program, DFHDSRP, is introduced. This is the default
distributed routing program, which handles the dynamic routing of transactions:
v That implement BTS activities
v That are started by non-terminal-related START commands.

To support the new dynamic routing functions, several new fields are added to the
DFHDYPDS communication area. This communication area is now passed to the
distributed routing program as well as to the dynamic routing program.

Changes to the exit programming interface (XPI)

The following exit programming interface (XPI) commands have been modified:

INQUIRE_CURRENT_PROGRAM
A new DYNAMIC_STATUS option is added. This returns a value indicating
whether, if the program that is currently running is the subject of a program-link
request, the request can be dynamically routed.

INQUIRE_PROGRAM
A new DYNAMIC_STATUS option is added. This returns a value indicating
whether, if the program is the subject of a program-link request, the request can
be dynamically routed.

54 CICS TS for OS/390: Release Guide

INQUIRE_TRANDEF
A new ROUTABLE_STATUS option is added. This returns a value indicating
whether, if the transaction is the subject of an eligible EXEC CICS START
command, it can be dynamically routed.

Changes to sample programs

There is a new CICS-supplied program—the default distributed routing program,
DFHDSRP.

The existing default dynamic routing program, DFHDYP, is updated to handle its
revised communication area.

Changes to monitoring and statistics

A new monitoring field, 073, is added to the DFHPROG group in performance class
monitoring records. It contains the number of DPL requests issued by the user task.

A new statistics field, TCSESTPC, is added to the TCT system entry; it contains the
number of DPL requests that have been successfully routed.

Changes to trace points

A number of new trace points are introduced. These are described in the CICS
User’s Handbook.

Changes to messages and abend codes

A number of new messages and abend codes are introduced, and some existing
messages are modified.

All new and changed messages and abend codes are described in the CICS
Messages and Codes manual.

CICSPlex SM support

CICSPlex SM dynamic routing program EYU9XLOP is extended to include the new
request types. You can integrate all the new request types into workload
management. CICSPlex SM support is provided by:

v A new view, WLMAWAOS, which shows summarized information about all routing
regions that are associated with a workload that is within the CICSplex identified
as the context. WLMAWTOS is a summary form of the WLMAWTOR view.

v A new view, WLMAWTOS, which shows summarized information about all target
regions that are associated with a workload that is within the CICSplex identified
as the context. WLMAWAOS is a summary form of the WLMAWTOR view.

v A new field Routstatus on the LOCTRAND view. This field indicates whether or
not the current transaction is eligible for dynamic routing.

v A new field Dynam Status on the PROGRAMD view. This field indicates whether
or not the current program is eligible for dynamic routing.

v A new field Dynamic on the PROGDEF view now specifies whether or not an
EXEC CICS LINK to the named program may invoke dynamic routing.

Chapter 4. Dynamic routing of DPL and EXEC CICS START requests 55

56 CICS TS for OS/390: Release Guide

Part 3. System management

This Part describes the new function designed to improve and simplify the task of
CICS system management. It covers the following topics:

v “Chapter 5. Resource definition online for CICS temporary storage” on page 59

v “Chapter 6. Monitoring, statistics, and enterprise management changes” on
page 65

v “Chapter 7. Autoinstall for MVS consoles” on page 73

© Copyright IBM Corp. 1998 57

58 CICS TS for OS/390: Release Guide

Chapter 5. Resource definition online for CICS temporary
storage

This chapter describes resource definition online (RDO) for CICS temporary storage
queues. It covers the following topics:
v “Overview”

v “Benefits”

v “Requirements”

v “Changes to CICS externals” on page 60

v “CICSPlex SM support” on page 63

Overview

Continuing its policy of removing the need for macro-defined control tables, CICS
extends support for resource definition online (RDO) by enabling resource
definitions for temporary storage tables (TSTs) to be defined in the CSD. The new
resource definitions support all those functions provided by the DFHTST macros,
plus a small number of extra functions intended to improve usability.

All the function provided by the DFHTST macros is supported by a single new
resource definition type, the TSMODEL resource definition. The TSMODEL resource
definition and its attributes provide the function currently available in the following
DFHTST macro definitions:
DFHTST TYPE=INITIAL
DFHTST TYPE=RECOVERY
DFHTST TYPE=SECURITY
DFHTST TYPE=REMOTE
DFHTST TYPE=LOCAL
DFHTST TYPE=SHARED

The TSMODEL enables you to specify a TS queue name prefix, and associate all
the required attributes with that prefix. The TSMODEL also enables you to map TS
queue names directly to a shared TS pool, without the need to specify a DFHTST
TYPE=SHARED macro.

Benefits

Providing RDO for temporary storage queues extends CICS support for continuous
availability, making it unnecessary to stop and restart CICS regions in order to
introduce new or changed definitions.

It also simplifies system management, RDO making it much simpler to implement
and maintain resource definitions.

Requirements

There are no specific hardware or software requirements for RDO support for
TSMODELs.

© Copyright IBM Corp. 1998 59

Changes to CICS externals

There are changes to a number of CICS externals as a result of adding RDO
support for TS queues. These are:
v “Changes to resource definition”

v “Changes to the system programming interface” on page 61

v “Changes to CICS-supplied transactions” on page 62

v “Changes to global user-exits” on page 62

Changes to resource definition

Adding TSMODEL resource definitions affects both macro and RDO support.

Changes to DFHTST macros

There is a change to the DFHTST TYPE=INITIAL macro, with the addition of the
MIGRATE=YES option. This enables you to migrate your temporary storage control
table definitions to the CSD as TSMODEL definitions.

The MIGRATE option causes a flag to be set in the assembled table to indicate that
the TST can be used for migration purposes. The flag serves two purposes:

v If you are migrating a TST to the CSD, the CSD utility program, DFHCSDUP,
tests whether this flag is set in the table load module. If it is not, the MIGRATE
command fails.

v If you are bringing up a CICS region with a TST specified that has the MIGRATE
flag set, the use of the TST is restricted by CICS to the TSAGE option on the
TYPE=INITIAL macro, and to TYPE=SHARED entries only. For all other
purposes, CICS uses TSMODELs only.

Changes to RDO

The CSD DEFINE command is extended to enable you to define TSMODEL
resource definitions in the CSD. You can use the DEFINE TSMODEL command
with either the CEDA or CEDB RDO transactions, or with the DFHCSDUP utility
program.

If you are using RDO, the CEDA DEFINE TSMODEL panel is as shown in
Figure 13 on page 61.

60 CICS TS for OS/390: Release Guide

You can define as many TSMODEL resource definitions as you need, specifying
appropriate prefixes to match the TS queue names used by your applications.

Changes to the system programming interface

New and changed EXEC CICS commands support the use of TSMODEL resource
definitions:

v The EXEC CICS INQUIRE TSQUEUE command is enhanced with the addition of
two new options:

– POOLNAME is added as an alternative to the SYSID option.

– RECOVSTATUS is added to return a CVDA to indicate the recoverability of
the specified queue. The CVDA values are RECOVERABLE and
NOTRECOVERABLE.

v There are five new SPI commands:

– EXEC CICS CREATE TSMODEL. This command enables you to define and
install the specified TSMODEL resource definition.

– EXEC CICS DISCARD TSMODEL. This command enables you to discard
from the CICS region the specified TSMODEL resource definition.

– EXEC CICS INQUIRE TSMODEL. This command returns information about
the specified TSMODEL resource definition.

– EXEC CICS INQUIRE TSPOOL. This command returns information about the
specified TSPOOL resource definition.

– EXEC CICS SET TSQUEUE. This command enables you to delete a specified
TSQUEUE. You can use the LASTUSEDINT option to ensure that the queue
to be deleted has not been referenced within a given interval.

For details of all these commands, see the CICS System Programming Reference
manual.

OBJECT CHARACTERISTICS CICS RELEASE = 0530
CEDA View TSmodel(testtsq)
TSmodel : testtsq
Group : TEST
Description :
PRefix :
Location : Auxiliary Auxiliary | Main
RECOVERY ATTRIBUTES
RECovery : No No | Yes
SECURITY ATTRIBUTES
Security : No No | Yes
SHARED ATTRIBUTES
POolname :
REMOTE ATTRIBUTES
REMOTESystem :
REMOTEPrefix :

SYSID=HT61 APPLID=CICSHT61

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 13. The CEDA DEFINE panel for the TSMODEL resource definition

Chapter 5. Resource definition online for CICS temporary storage 61

Changes to CICS-supplied transactions

New and changed CEMT commands support the creation of TSMODEL resource
definitions dynamically.

v The CEMT INQUIRE TSQUEUE COMMAND is enhanced with the addition of the
ACTION and RECOVSTATUS options.

v There are four new CEMT commands:

– CEMT DISCARD TSMODEL. This command enables you to discard from the
CICS region the specified TSMODEL resource definition.

– CEMT INQUIRE TSPOOL. This command returns information about the
specified TSPOOL resource definition.

– CEMT INQUIRE TSMODEL. This command returns information about the
specified TSMODEL resource definition.

– CEMT SET TSQUEUE. This command enables you to delete a temporary
storage queue (TS queue). The LASTUSEDINT option may be used to ensure
that the queue to be deleted has not been referenced since a previous
INQUIRE was issued. It may also be used to delete queues which have not
been referenced within a given interval.

For details of all these commands, see the CICS Supplied Transactions manual.

Changes to global user-exits

The XRSINDI global user exit is invoked when TSMODEL resource types are
installed or discarded.

62 CICS TS for OS/390: Release Guide

|
|

CICSPlex SM support

CICSPlex SM support for temporary storage queue models is provided by:

v A new BAS definition object TSMDEF, which allows you to specify a temporary
storage queue name prefix and associate attributes with that name.

v New operate views:

TSMODEL General view of temporary storage queue models.

TSMODELD Detailed view of a temporary storage queue model.

TSMODELS Summary view of temporary storage queue models.

TSPOOL General view of temporary storage shared pools.

TSQSHR General view of shared temporary storage queues.

TSQSHRD Detailed view of a shared temporary storage queue.

TSQSHRS Summary view of shared temporary storage queues.

v A Delete TSQ function, that allows you to delete temporary storage queues from
the TSQ view. A TSQ Deletion panel asks you to confirm the deletion.

Note: The existing temporary storage operate views (TSQ, TSQS, TSQGBL, and
TSQGBLS) remain unchanged.

v New resource tables:

– CRESTSMD

– ERMCTSMD

– TSMDEF

– TSMINGRP

– TSMODEL

– TSPOOL

– TSQSHR

Chapter 5. Resource definition online for CICS temporary storage 63

64 CICS TS for OS/390: Release Guide

Chapter 6. Monitoring, statistics, and enterprise management
changes

This chapter describes the monitoring, statistics, and enterprise management
changes. It contains the following topics:
v “Overview”

v “Changes to CICS externals” on page 66

v “Interpreting CICS monitoring” on page 219

v “Changes to the system programming interface” on page 66

Overview

There are numerous changes and additions to CICS monitoring data and statistics:

v A number of additions and improvements have been made to both the
performance and exception class records. They are aimed primarily at improving
the way that the monitoring data can be used for offline performance analysis
and tuning.

v There are new CICS statistics for the TCP/IP service resources in support of the
CSD TCPIPSERVICE resource definition.

v The statistics utility program (DFHSTUP) is enhanced to provide reports for the
new TCP/IP service statistics data.

v The statistics sample program (DFH0STAT) is enhanced to provide reports for
the new TCP/IP service statistics data as well as enhancements to some existing
reports in support of new function provided in this release.

v New CICS SMF Type 110 statistics records are provided for the coupling facility
data table server (subtype 4) and the named counter server (subtype 5).

Note: These statistics records are not printed by the statistics utility program
(DFHSTUP), they are only printed by the server jobs.

Enterprise management has been enhanced with support for Tivoli Global
Enterprise Manager.

Monitoring

Additions and changes to CICS monitoring data are summarized in the following
sections.

Additions and changes to monitoring data

There are many new performance class data fields in support of the following:
v CICS business transactions services
v Open transaction environment
v Java Virtual Machine (JVM)
v Coupling facility data tables
v Dynamic routing of DPL and EXEC CICS START requests
v CICS Web interface enhancements
v 3270 bridge enhancements
v Secure sockets layer
v MVS resource recovery services for EXCI

© Copyright IBM Corp. 1998 65

|
|

|

v Global enqueue and dequeue
v Dynamic routing enhancements
v Object-oriented interface to CICS services for C++.

Revised sample monitoring control tables (MCTs) are provided for a terminal-owning
region (TOR), an application-owning region (AOR), and a file-owning region (FOR).
These show you the types of fields that can be excluded to reduce the size of the
performance class record output by CICS monitoring. Using these sample MCTs,
you can reduce the size of a performance record by
v 456 bytes for a TOR
v 92 bytes for an AOR
v 496 bytes for an FOR.

There are additions to the exception class data in support of the following:
v MVS resource recovery services for EXCI
v Long temporary storage queue names.

Statistics

There are additional statistics for the new TCP/IP service resources, known by the
resource type name TCPIPSERVICE, and mapped by a new copybook,
DFHSORDS.

There are changes to a number of CICS statistics copybooks to provide additional
information about resources. The changed copybooks are:
v Connection statistics (DFHA14DS)
v Dispatcher statistics (DFHDSGDS)
v Enqueue statistics (DFHNQGDS)
v File statistics (DFHA17DS)
v Transient data queue statistics (DFHTQRDS)

For more information, see the CICS Performance Guide.

Changes to CICS externals

The general changes to CICS monitoring and statistics result in a number of
changes to CICS externals:
v “Changes to the system programming interface”

v “Changes to CICS-supplied transactions” on page 68

v “Changes to sample programs” on page 68

v “Changes to utility programs” on page 68

v “Changes to monitoring data” on page 69.

Changes to the system programming interface

The CICS system programming interface (SPI) is enhanced for monitoring and
statistics with additional options on the EXEC CICS COLLECT STATISTICS and the
EXEC CICS PERFORM STATISTICS RECORD commands.

EXEC CICS COLLECT STATISTICS

The EXEC CICS COLLECT STATISTICS command returns the current statistics for
a named resource or resource type.

66 CICS TS for OS/390: Release Guide

COLLECT STATISTICS

GG COLLECT STATISTICS
...

TCPIPSERVICE(data-value)
...

GH

You can request only specific statistics for the TCPIPSERVICE resource type, using
the option TCPIPSERVICE(data-value), where data-value is the 8-character name
of the TCP/IP service.

Copybooks are provided in ASSEMBLER, COBOL, and PL/I, that map the returned
statistics. The copybooks are supplied in the following libraries:

ASSEMBLER CICSTS13.CICS.SDFHMAC
COBOL CICSTS13.CICS.SDFHCOB
PL/1 CICSTS13.CICS.SDFHPL1

A full list of the statistics data copybooks that you can use is provided in the CICS
Performance Guide. The new copybook for the TCP/IP service statistics is
DFHSORDS.

COLLECT STATISTICS exception conditions

There are no new exception conditions for the COLLECT STATISTICS command.
The existing IOERR, NOTAUTH, and NOTFND can occur for the new
TCPIPSERVICE resource names.

EXEC CICS PERFORM STATISTICS RECORD

The PERFORM STATISTICS RECORD command causes the statistics for a named
resource to be written immediately to the SMF data set. The TCPIPSERVICE
resource type is added to record the TCP/IP service resource statistics.

PERFORM STATISTICS RECORD

GG PERFORM STATISTICS RECORD
...
TCPIPSERVICE
...

GH

Specify TCPIPSERVICE for the TCP/IP service resource statistics to be written
immediately to the SMF data set.

PERFORM STATISTICS exception conditions

There are no new exception conditions for the PERFORM STATISTICS command.
The existing IOERR, NOTAUTH, and NOTFND can occur for the new
TCPIPSERVICE resource name.

Chapter 6. Monitoring, statistics, and enterprise management changes 67

Changes to CICS-supplied transactions

The TCPIPSERVICE option is added to the CEMT PERFORM STATISTICS
RECORD command. This option causes TCP/IP service resource statistics to be
written immediately to the SMF data set.

Changes to sample programs

There are changes to the existing monitoring and statistics sample programs,
DFH£MOLS and DFH0STAT.

DFH£MOLS sample monitoring program

DFH£MOLS is enhanced to:

v Handle SMF 110 monitoring data records for CICS TS Releases 1, 2, and 3, in
addition to CICS/ESA® Version 3 and Version 4.

v Unload performance class records into a flat file (CICS TS (Releases 1, 2 and 3)
and CICS/ESA Version 4 performance class records only).

v Extend record selection by the addition of two new options to the SELECT and
IGNORE control statements. These options are TASKNO and PRCSTYPE, for
task numbers and CICS BTS process types, respectively.

v Print the new data from the exception data record

v Provide a new control statement to control the conversion of the monitoring
timestamp data fields to local time.

DFH0STAT sample statistics program

DFH0STAT, the statistics sample program, is enhanced to produce the following
additional statistics reports:
v TCP/IP services
v Temporary storage queues, by shared TS pool
v Coupling facility data table pools

Various improvements are made to the following statistics reports:
v System status
v Transaction manager and dispatcher
v Files and data tables
v Enqueue
v Exit programs
v Currently loaded programs by DSA and LPA
v Connections and modenames
v Program totals.

Changes to utility programs

DFHSTUP, the statistics utility program, is enhanced to

v Produce additional statistics reports for TCP/IP services

v Produce improved statistics reports for:
– Connections
– Dispatcher
– Enqueue
– Files
– Transient data queues

68 CICS TS for OS/390: Release Guide

Changes to monitoring data

The following sections describe the changes to monitoring data fields.

Additional performance class data fields

The following table shows the additional performance class data fields that are
added in this release.

Table 2. Additional performance class data fields

Group Name Field-Id Description

DFHCBTS 200 CICS BTS process name

DFHCBTS 201 CICS BTS process type

DFHCBTS 202 CICS BTS process id

DFHCBTS 203 CICS BTS activity id

DFHCBTS 204 CICS BTS activity name

DFHCBTS 205 CICS BTS run process/activity synchronous count

DFHCBTS 206 CICS BTS run process/activity asynchronous count

DFHCBTS 207 CICS BTS link process/activity count

DFHCBTS 208 CICS BTS define process count

DFHCBTS 209 CICS BTS define activity count

DFHCBTS 210 CICS BTS reset process/activity count

DFHCBTS 211 CICS BTS suspend process/activity count

DFHCBTS 212 CICS BTS resume process/activity count

DFHCBTS 213 CICS BTS delete activity, or cancel process/activity, request
count

DFHCBTS 214 CICS BTS acquire process/activity request count

DFHCBTS 215 CICS BTS total process/activity request count

DFHCBTS 216 CICS BTS delete/get/put process container count

DFHCBTS 217 CICS BTS delete/get/put activity container count

DFHCBTS 218 CICS BTS total process/activity container request count

DFHCBTS 219 CICS BTS retrieve reattach request count

DFHCBTS 220 CICS BTS define input event request count

DFHCBTS 221 CICS BTS timer associated event request count

DFHCBTS 222 CICS BTS total event related request count

DFHCICS 25 CICS OO foundation class request count

DFHDATA 179 IMS (DBCTL) request count

DFHDATA 180 DB2 request count

DFHDATA 186 IMS (DBCTL) wait time

DFHDATA 187 DB2 Readyq wait time

DFHDATA 188 DB2 Connection wait time

DFHDATA 189 DB2 wait time

DFHDOCH 226 Document handler Create count

DFHDOCH 227 Document handler Insert count

DFHDOCH 228 Document handler Set count

Chapter 6. Monitoring, statistics, and enterprise management changes 69

Table 2. Additional performance class data fields (continued)

Group Name Field-Id Description

DFHDOCH 229 Document handler Retrieve count

DFHDOCH 230 Document handler Total count

DFHDOCH 240 Document handler total created document length

DFHFILE 176 CFDT I/O wait time

DFHPROG 73 Program DPL count

DFHSOCK 241 Socket (SO) I/O wait time

DFHSOCK 242 Bytes encrypted for secure socket

DFHSOCK 243 Bytes decrypted for secure socket

DFHSOCK 244 Client IP address

DFHSYNC 177 CFDT server syncpoint wait time

DFHSYNC 196 Syncpoint delay time

DFHTASK 82 Transaction group ID

DFHTASK 123 Task global ENQ delay time

DFHTASK 190 RRMS/MVS unit-of-recovery id (URID)

DFHTASK 191 RRMS/MVS wait time

DFHTASK 195 CICS BTS run process/activity synchronous wait time

DFHTASK 248 CICS TCB change modes

DFHTASK 249 User-task QR TCB wait-for-dispatch time

DFHTASK 250 CICS MAXOPENTCBS delay time

DFHTASK 251 CICS TCB attach count

DFHTASK 253 CICS JVM elapsed time

DFHTASK 254 CICS JVM suspend time

DFHTASK 255 User-task QR TCB dispatch time

DFHTASK 256 User-task QR TCB CPU time

DFHTASK 257 User-task MS TCB dispatch time

DFHTASK 258 User-task MS TCB CPU time

DFHTASK 259 User-task L8 TCB CPU time

DFHTASK 260 User-task J8 TCB CPU time

DFHTASK 261 User-task S8 TCB CPU time

DFHWEBB 231 WEB Receive request count

DFHWEBB 232 WEB Characters received

DFHWEBB 233 WEB Send request count

DFHWEBB 234 WEB Characters sent

DFHWEBB 235 WEB Total request count

DFHWEBB 236 WEB Repository read request count

DFHWEBB 237 WEB Repository write request count

70 CICS TS for OS/390: Release Guide

Changed performance class data fields

The following table shows the changed performance class data fields.

Table 3. Changed performance class data fields

Group Name Field-Id Description

DFHCICS 130 Transaction routing sysid

DFHPROG 71 Initial program name

DFHTASK 124 3270 Bridge transaction ID

DFHTASK 129 Task local ENQ delay time

Additional exception records

There are two new exceptional records produced. These are written after the
following conditions have been resolved:

v A transaction wait for coupling facility data table locking request slot

v A transaction wait for coupling facility data table non-locking request slot

New exception records data fields

The fixed format of exception records is extended with the addition of the following
three fields:

EXCMNURI (TYPE-C, 16 BYTES)
RRMS/MVS unit-of-recovery ID (URID).

EXCMNRIL (TYPE-A, 4 BYTES)
Exception resource ID length.

EXCMNRIX (TYPE-C, 256 BYTES)
Exception resource ID (extended).

For full details of CICS montoring data that is affected by the changes, see
“Appendix. Details of changed monitoring records” on page 215.

Support for Tivoli Global Enterprise Manager

Tivoli Global Enterprise Manager (GEM) provides a consistent systems
management view of an enterprise. Most enterprises have a set of business
objectives. Those business objectives can be achieved using various business
systems. A business system might comprise various hardware and software
packages from multiple vendors, as well as user-written applications. One or more
of the applications within a business system can make use of various middleware
components such as database, messaging services, or a transaction monitor.

If a business system uses CICS as part of a CICSplex, Tivoli GEM instrumentation
is provided for CICSPlex SM systems management.

The instrumentation for CICSPlex SM provided by Tivoli GEM enables an individual
using the Tivoli GEM client to view status information for the CMAS environment
and the MAS environment of the CICSplex. The CMAS and MAS environments,
when grouped together, form the transaction system component at the middleware
layer of a business system.

Chapter 6. Monitoring, statistics, and enterprise management changes 71

The instrumentation always discovers the status of the CMAS components without
any changes to the existing CICSPlex SM environment. This feature provides the
immediate benefit of a graphical status display of the CMAS subsystem for the
GEM client user.

The instrumentation also automatically discovers the MAS environment within the
CICSplex. The instrumentation discovers any MAS which makes use of the RTA
MRM and/or SAM functions.

The benefit of discovering only those MASs that use RTA and SAM is that the user
has the ability to have only a subset of the CICSplex discovered. This method of
discovery can be helpful in reporting a specific subset of MASs, such as those
supporting an enterprise’s e-mail application, where some of the CICS regions are
used as e-mail servers. If the e-mail application had any RTADEFs or STATDEFs
analyzing its operation, these would also be discovered and displayed at the client.
This would provide the client user at a help desk or operations center with important
status indicators for the CICS layer of the e-mail system.

For details of CICSPlex SM instrumentation in Tivoli GEM, see the Tivoli GEM
CICSPlex SM Instrumentation Guide User’s Guide, GC31-5156.

72 CICS TS for OS/390: Release Guide

Chapter 7. Autoinstall for MVS consoles

This chapter describes enhancements to CICS autoinstall for terminals, which is
extended to include MVS consoles. It covers the following topics:
v “Overview”

v “Benefits” on page 74

v “Requirements” on page 74

v “Changes to CICS externals” on page 75.

Overview

The range of devices supported by the CICS autoinstall for terminals function is
extended to include MVS consoles.

Commands issued at an MVS console (or in a job stream) can be directed to a
CICS region running as a started task, or job, using the MVS MODIFY command.
Before CICS can accept the MVS command, it needs an entry in the terminal
control table for the console issuing the command, so that the entry can be used by
CICS terminal control to direct the response to the console.

Using pre-installed console definitions

When MVS receives your request, it identifies the CICS region from the task or job
name, and passes your request to CICS. CICS extracts the console’s name from
the MODIFY data, and searches the terminal control table (TCT) for a CONSNAME
entry that matches the console name. If CICS cannot find a matching name, but the
console has a migration ID (range 100 - 250) or a non-extended ID (range 0-99),
CICS tries to find a matching CONSOLE ID. If CICS finds a matching entry, it starts
the transaction you specified on the MODIFY command, and the transaction can
send the results to the console using the termid of the console’s entry in the
terminal control table.

Using autoinstalled console definitions

If CICS fails to find a matching entry, it checks the autoinstall status for consoles to
determine whether it can perform an autoinstall for the console.

If autoinstall for consoles is active, CICS searches the autoinstall model table (AMT)
and initiates the autoinstall process for the console. CICS either:

v Passes the suitable autoinstall model definitions to the autoinstall control
program, together with information about the console, or

v Automatically uses the first console model definition it finds, or a console model
with the same name as the console, and autoinstalls the console using a
CICS-generated termid, without calling your autoinstall control program.

Which of these options CICS takes is determined by the autoinstall status for
consoles. The autoinstall status for consoles is either set at startup by the AICONS
system initialization parameter, or dynamically by a CEMT (or EXEC CICS) SET
AUTOINSTALL CONSOLES command.

© Copyright IBM Corp. 1998 73

The terminal autoinstall control program

You use the same autoinstall control program for console autoinstall as for VTAM®

terminals and APPC connections.

If the autoinstall control program is invoked (either the CICS-supplied program or
your own) it selects one of the models and provides the rest of the information
necessary to complete a TCT terminal entry for the console. When the autoinstall
control program returns control, CICS builds a terminal control table terminal entry
(TCTTE) for the console using the autoinstall model, the termid and other data
returned by the autoinstall control program, and MVS data for the console. CICS
then adds the new entry to the TCT and starts the transaction specified on the
MODIFY command.

Preset security for autoinstalled consoles

If the model terminal specifies USERID(*FIRST) or USERID(*EVERY), CICS uses
the user ID passed by MVS on the MODIFY command to sign on the console, in
effect using the MVS-passed user ID as the preset user ID for the new console.

See “Changes to resource definition” on page 75 for details.

Automatic deletion of autoinstalled consoles

CICS automatically deletes autoinstalled consoles if they are unused for a specified
delay period (the default is 60 minutes). For the install function, the autoinstall
control program can set a ‘delete-delay’ value for the console. The delete-delay
period is the length of time (in minutes, since the autoinstalled console was last
used) that a console remains installed before CICS deletes it. Setting this value to 0
inhibits automatic deletion. Autoinstalled consoles are not recorded on the catalog
and not recovered at restart. Note that a console is deleted even if there is a
currently signed-on user.

Benefits

With multiple MVS console support, and CICS console support for TSO users,
CICS regions often need to support many console devices, with numbers ranging
from tens to hundreds. Enabling CICS to autoinstall consoles saves a considerable
amount of system programmer effort in defining and maintaining individual console
resource definitions.

Requirements

There are no dependencies on other software products, but you need a terminal
autoinstall control program that supports autoinstall for consoles. See “Changes to
the user replaceable modules” on page 78.

74 CICS TS for OS/390: Release Guide

Changes to CICS externals

There are changes in a number of CICS externals to support the introduction of
autoinstall support for MVS consoles. These are:
v “Changes to system definition”

v “Changes to resource definition”

v “Changes to the system programming interface” on page 76

v “Changes to CICS-supplied transactions” on page 78

v “Changes to the user replaceable modules” on page 78

Changes to system definition

A new system initialization parameter is added to support autoinstall for consoles:

AICONS={NO|YES|AUTO}
Specifies whether you want CICS to autoinstall console devices that are not
predefined by explicit TERMINAL and TYPETERM definitions.

NO This is the default, and specifies that CICS is not to autoinstall consoles
for which there are no predefined entries in the terminal control table.

YES Specifies that autoinstall for consoles is active, and CICS is to
autoinstall an undefined console that issues a MODIFY command to the
CICS region. CICS calls the autoinstall control program to supply the
required information.

AUTO Specifies that autoinstall for consoles is active, but CICS is not to call
the autoinstall control program. CICS is to perform the autoinstall
without any input from the autoinstall control program, using information
from suitable model definitions and a CICS-generated termid.

Changes to resource definition

The USERID attribute of the TERMINAL resource definition is extended to support
some special attribute values. The syntax of this attribute is as follows:

USERID(name|*EVERY|*FIRST)
Specifies a user identifier used for signon and referred to in security error
messages, security violation messages, and the audit trail.

name This can be up to eight characters in length. The acceptable characters
are: A-Z 0-9 ¢ @ and #. Lowercase characters are converted to
uppercase.

*EVERY (autoinstalled consoles only)
Specifes that CICS is to use the user ID passed on the MVS MODIFY
command every time a MODIFY command is received. The console is
signed on using the MVS user ID as the preset user ID for the console
being autoinstalled. The console remains signed on with this user ID
until the console is deleted or another MODIFY command is received
with another user ID. If a MODIFY command is received without a user
ID, CICS signs on the default CICS user ID until a MODIFY command
is received that has a valid user ID. For non-console terminals, or if
security is not enabled, this value is ignored.

Chapter 7. Autoinstall for MVS consoles 75

*FIRST (autoinstalled consoles only)
Specifes that CICS is to use the user ID passed on the first MVS
MODIFY command that requires the console to be autoinstalled. The
console is signed on with the MVS user ID as the preset user ID. The
console remains signed on with this user ID until the console is deleted.
If a MODIFY command is received without a user ID, CICS signs on the
default CICS user ID. For non-console terminals, or if security is not
enabled, this value is ignored.

See the CICS RACF Security Guide for information about preset security on
consoles and terminals.

Changes to the system programming interface

There are changes to the following SPI commands in support of autoinstall for
consoles:
v EXEC CICS INQUIRE AUTOINSTALL
v EXEC CICS INQUIRE TERMINAL|NETNAME
v EXEC CICS SET AUTOINSTALL

Changes to the INQUIRE AUTOINSTALL command

A new option, CONSOLES, is added to this command, and the meanings of the
ENABLESTATUS CVDAs are changed, as follows:

CONSOLES(cvda)
Returns a CVDA value indicating the status of console autoinstall in CICS. The
CVDA values are:

PROGAUTO
Consoles can be autoinstalled if ENABLESTATUS returns a CVDA of
ENABLED. The autoinstall control program is called for the install and
delete functions.

FULLAUTO
Consoles can be autoinstalled if ENABLESTATUS returns a CVDA of
ENABLED. The autoinstall control program is not called for the install
and delete functions.

NOAUTO
Consoles cannot be autoinstalled.

ENABLESTATUS
Returns a CVDA value indicating the status of the CICS autoinstall facility. The
CVDA values are:

ENABLED
Either consoles or terminals or both can be autoinstalled in CICS. If you
want to check whether ENABLED applies to consoles, terminals, or
both, check the values returned on other options. ENABLED is returned
for the following conditions:

Terminals
MAXREQS not equal 0 and autoinstall control program is
enabled.

Consoles

1. CONSOLES CVDA returns PROGAUTO and autoinstall
control program is enabled.

76 CICS TS for OS/390: Release Guide

2. CONSOLES CVDA returns FULLAUTO.

DISABLED
Neither consoles nor terminals can be autoinstalled in CICS. DISABLED
is returned for the following conditions:

Terminals
MAXREQS equal 0, or autoinstall control program is disabled.

Consoles

1. CONSOLES CVDA returns PROGAUTO but autoinstall
control program is disabled.

2. CONSOLES CVDA returns NOAUTO.

Note: INVREQ (RESP2=1) is no longer returned.

Changes to INQUIRE TERMINAL|NETNAME

A new option, CONSOLE, is added to this command, as follows:

CONSOLE(name_and_id)
Returns, for an MVS console only, a 12-byte string that contains the identifier of
the console, in two sub-fields. If the device is not a console, CICS returns 12
blanks.

If the console is autoinstalled, or is defined with a console name, the name is
returned in the first 8 bytes, and the last four bytes are blank.

If the console is defined by a numeric identifier, the string is divided into two
sub-fields, separated by a period (.) in the ninth byte position. The sub-fields
contain the following information:

v The first 8 bytes contain the MVS console name, if it is known, or the string
‘*UNKNOWN’ if it isn’t.

v The last 3 bytes contain the numeric console ID.

Changes to the SET AUTOINSTALL command

A new option, CONSOLES, is added to this command, as follows:

CONSOLES(cvda)
Specifies whether CICS is to autoinstall console devices that are not
predefined. The CVDA values are:

PROGAUTO
MVS consoles are to be autoinstalled, and CICS is to call the user
autoinstall control program to obtain the termid and other user-specified
information.

FULLAUTO
MVS consoles are to be autoinstalled by CICS automatically, without
calling the user autoinstall control program. CICS is to assign the termid
for the console automatically.

NOAUTO
Autoinstall for consoles is not allowed.

Chapter 7. Autoinstall for MVS consoles 77

Changes to CICS-supplied transactions

There are changes to the following CEMT commands in support of autoinstall for
consoles:
v CEMT INQUIRE AUTOINSTALL
v CEMT INQUIRE TERMINAL|NETNAME
v CEMT SET AUTOINSTALL

The CONSOLES and ENABLESTATUS options are added to the CEMT INQUIRE
AUTOINSTALL command, the meanings of which are the same as for the EXEC
CICS INQUIRE AUTOINSTALL command.

The CONSOLE option is added to the CEMT INQUIRE TERMINAL command, the
meaning of which is the same as for the EXEC CICS INQUIRE TERMINAL
command.

The PROGAUTO, FULLAUTO, and NOAUTO options are added to the CEMT SET
AUTOINSTALL command, providing the same function as the equivalent options on
the EXEC CICS SET AUTOINSTALL command.

See “Changes to the system programming interface” on page 76 for details of these
options.

Changes to the user replaceable modules

The terminal autoinstall control program is a user-replaceable module (URM), the
name of which you specify on the AIEXIT system initialization parameter. There are
two new communication areas that CICS passes to this URM for an MVS console:
(1) when the console is to be autoinstalled, and (2) when the console is to be
deleted. If you use your own autoinstall control program, you need to modify your
program to add support for autoinstalling MVS consoles.

If you use one of the IBM-supplied sample programs shown in Table 4, these are
upgraded to include support for MVS consoles.

Table 4. Autoinstall programs and copy books

Language Member name Alias Library

Programs:
Assembler
COBOL
PL/I
C/370®

DFHZATDX
DFHZCTDX
DFHZPTDX
DFHZDTDX

—
—
—
—

SDFHSAMP
SDFHSAMP
SDFHSAMP
SDFHSAMP

Copy books:
Assembler
COBOL
PL/I
C/370

DFHTCUDS
DFHTCUDO
DFHTCUDP
DFHTCUDH

—
DFHTCUDS
DFHTCUDS
DFHTCUDS

SDFHMAC
SDFHCOB
SDFHPL1
SDFHC370

See the CICS Customization Guide for information about writing, or upgrading, an
autoinstall control program that can handle MVS consoles.

78 CICS TS for OS/390: Release Guide

Part 4. Application support and solution enablement

This Part describes the new function introduced to support application development
and to help you to develop solutions that meet your business requirements. It
covers the following topics:

v “Chapter 8. CICS business transaction services” on page 81

v “Chapter 9. Open transaction environment” on page 111

v “Chapter 10. Long temporary storage queue names” on page 133

v “Chapter 11. EXCI enhancement for resource recovery” on page 139

v “Chapter 12. Object-oriented interface to CICS services for C++” on page 147

v “Chapter 13. JCICS interface to CICS services for Java” on page 149

v “Chapter 14. VisualAge for Java, Enterprise Edition for OS/390” on page 151

v “Chapter 15. Support for the Java Virtual Machine” on page 155

© Copyright IBM Corp. 1998 79

80 CICS TS for OS/390: Release Guide

Chapter 8. CICS business transaction services

This chapter describes CICS business transaction services (BTS). It covers the
following topics:
v “Overview”

v “Benefits” on page 88

v “Requirements” on page 88

v “Changes to CICS externals” on page 88

v “An example BTS application” on page 96

v “CICSPlex SM support” on page 109.

For detailed information about CICS business transaction services, see the CICS
Business Transaction Services manual.

Overview

CICS has always provided a robust transaction processing environment. For
example, it:

v Allows you to create transactions with ACID properties 3 (atomicity, consistency,
isolation, and durability)

v Allows transactions to continue to run under all sorts of conditions.

In recent years, much emphasis has been placed on continuous operation and high
availability of CICS. Use of sophisticated technologies, such as the Parallel Sysplex,
with resource managers sharing data across the sysplex, has led to improved
system availablity through the elimination of single points-of-failure. CICS business
transaction services (BTS) bring a similar sophistication to the CICS application
programming interface (API), making it better able to model complex business
transactions.

Business transactions and CICS transactions

This section examines the ways in which business transactions have traditionally
been modelled by CICS transactions, and some of the shortcomings of the
traditional approach.

Business transactions

A business transaction is a self-contained business deal—for example, buying a
theatre ticket. Some business transactions—for example, buying a newspaper—are
simple and short-lived. However, many are not. Many involve multiple actions that
take place over an extended period. For example, selling a vacation may involve
the travel agent in actions such as:
v Recording customer details
v Booking seats on an aircraft
v Booking a hotel
v Booking a hire car
v Invoicing the customer

3. Jim Gray and Andreas Reuter, Transaction Processing: Concepts and Techniques, 1993

© Copyright IBM Corp. 1998 81

v Checking for receipt of payment
v Processing the payment
v Arranging foreign currency.

Both the customer and the travel agent regard the purchase of the vacation as a
single business transaction, as indeed it is, because each action only makes sense
in the context of the whole. The example illustrates some typical properties of
complex business transactions:

v They tend to be made up of a series of logical actions.

v Some actions may be taken days, weeks, or even months after the transaction
was started—arranging foreign currency, in this example.

v Some of the actions may be optional—not everyone wants to hire a car, for
example.

v At any point, an action could fail. For example, a communications failure could
mean that it’s not possible to book a hotel. In this case, the action must be
retried. Or the customer might fail to meet his final payment; this would require a
reminder to be sent. If the reminder produces no response, the vacation must be
canceled—that is, the actions that have already been taken must be undone.

v Data—for example, a customer account number—must be passed between the
individual actions that make up the business transaction.

v Some control logic is required, to “glue” the actions together. For example, there
must be logic to deal with the conditional invocation of actions, and with failures.

CICS transactions

The basic building blocks used by CICS applications are the CICS transaction and
the unit of work (UOW). Typically, a UOW is short-lived, because it is undesirable
for it to hold locks for long periods, thus causing other UOWs to wait on resources
and possibly abend. A CICS transaction consists of one or more UOWs. It provides
the environment in which its associated UOWs will run—for example, the transid,
program name, and userid. Typically, like the UOWs of which it consists, a CICS
transaction is short-lived, because the aim should be for it to use CICS resources
only while it is doing work—it should not spend long periods waiting for input, for
example.

Before CICS Transaction Server for OS/390 Release 3, the largest transaction
processing unit that CICS understood was the terminal-related pseudoconversation.
A pseudoconversational application appears to a terminal user as a continuous
conversation, but consists internally of multiple transactions.

The problems

Traditionally, application programmers have modelled business transactions using
the basic CICS building blocks, transactions and units of work. However, there are
problems. Here are some of them:

Application design: Typically, the individual actions that make up a complex
business transaction are mapped on to CICS transactions. Usually, it is not
practicable to map a whole business transaction on to a single, long-running CICS
transaction (even if the transaction is divided into multiple units of work), because of
resource constraints. The locks held by the UOWs would tend to be held for long
periods; system performance would suffer, and transaction abends become
frequent, due to deadlocks or contention for locked resources.

82 CICS TS for OS/390: Release Guide

Mapping each individual action on to a CICS transaction is a more sensible option.
However, this approach ignores the overall structure of the business transaction.
Typically, the control logic necessary to glue the actions together ends up being
spread between the various CICS transactions. Thus, the high-level logic required
to control the overall progress of the business transaction and the low-level logic
required to implement a specific business action become blurred. One effect is that
the CICS transactions become less easy to reuse, because they are required to do
more than implement a particular business action.

An even better option might be to separate the control logic in a single, top-level
transaction that would be reinvoked whenever a new stage of the business
transaction was ready to run. Each time it was invoked, the top-level transaction
could run a transaction that implements a particular action of the business
transaction. This would work similarly to a terminal-related pseudoconversation, in
which terminal events cause successive transactions to be invoked. Unfortunately,
in current CICS releases this is not possible. A pseudoconversational application
can be used only to simulate a single conversation with a terminal.

Recovery and restart: Long-lived business transactions are much more likely
than short-lived transactions to span restarts of CICS (which may or may not be
planned). To survive restarts, state data relating to the business transaction’s flow of
control must be saved to a recoverable resource. Thought must also be given to
how the business transaction is to be restarted after a restart of CICS.

What are CICS business transaction services?

CICS business transaction services extend the CICS API and provide support
services that make it easier to model complex business transactions. As the
vacation example on page 81 illustrates, business transactions are often made up
of multiple actions, that may be spread over hours, days, or even months.

CICS business transaction services allow you to control the execution of complex
business transactions. Using BTS, each action that makes up the business
transaction is implemented as one or more CICS transactions, as in the traditional
approach. However, a top-level program is used to control the overall progress of
the business transaction. The top-level program manages the inter-relationship,
ordering, parallel execution, commit scope, recovery, and restart of the actions that
make up the business transaction.

What is a BTS application?

The components of an application written using the CICS business transaction
services API are illustrated, in simplified form, in Figure 14. (For brevity, in the rest
of this chapter we shall refer to an application that uses the CICS business
transaction services API as “a BTS application”.)

The roles of the components are as follows:

Initial Request
A CICS transaction that starts a CICS business transaction services
process.

Figure 14. Components of a BTS application

Chapter 8. CICS business transaction services 83

Process
A collection of one or more BTS activities. It has a unique name by which
it can be referenced and invoked. Typically, a process is an instance of a
business transaction.

In the vacation example, an instance of the business transaction may be
started to sell John Smith a vacation in Majorca. To identify this particular
transaction as relating to John Smith, the process could be given the name
of John Smith’s account number.

Activity
The basic unit of BTS execution. Typically, it represents one of the actions
of a business transaction—in the vacation example, booking a hire car, for
instance.

A program that implements an activity differs from a traditional CICS
application program only in its being designed to respond to BTS events. It
can be written in any of the languages supported by CICS.

Activities can be hierarchically organized, in a tree structure. An activity that
starts another activity is known as a parent activity. An activity that is
started by another is known as a child activity.

Root activity
The activity at the top of the activity tree—it has no parent activity. A
process always contains a root activity. When a process is started, the
program that implements its root activity receives control. Typically, a root
activity is a parent activity that:

v Creates and controls a set of child activities—that is, it manages their
ordering, concurrent execution, and conditional execution

v Controls synchronization, parameter passing and saving of state data.

Data-container
A named area of storage, associated with a particular process or activity,
and maintained by BTS. Each process or activity can have any number of
data-containers. They are used to hold state data, and inputs and outputs
for the activity.

Event (not shown in Figure 14)
A BTS event is a means by which CICS business transaction services
signal progress in a process. It informs an activity that an action is required
or has completed. “Event” is used in its ordinary sense of “something that
happens”. To define an event recognizable by CICS business transaction
services, such a happening is given a name.

Timer (not shown in Figure 14)
A BTS object that expires when the system time becomes greater than a
specified date and time, or after a specified period has elapsed. Each timer
has an event associated with it. The event occurs (“fires”) when the timer
expires.

You can use a timer to, for example, cause an activity to be invoked at a
particular time in the future.

The preceding components are managed by CICS, which:
v Manages many business transactions (processes)
v Records the current status of each business transaction
v Ensures that each activity is invoked at the appropriate times.

84 CICS TS for OS/390: Release Guide

For detailed information about the components of a BTS application, and how they
relate to each other, see the CICS Business Transaction Services manual.

Activation sequences: To complete its entire work, an activity may need to
execute as a sequence of separate processing steps, or activations. For example,
a parent activity typically needs to execute for a while, finish execution temporarily,
then continue execution when one of its children has completed.

Each activation is “triggered” by a BTS event, and consists of a single transaction.
An activity’s first activation is triggered by the system event DFHINITIAL, supplied
by BTS after the first RUN or LINK command is issued against the activity. (In the
case of a root activity, DFHINITIAL occurs after the first RUN or LINK command is
issued against the process.) When the last activation ends, the activity completion
event is “fired”, which may, in turn, trigger another activity’s activation.

Figure 15 shows a BTS activity being reattached in a series of activations.

�1� The first event that “wakes up” the activity is DFHINITIAL. The activity
determines that the event which caused it to be activated was DFHINITIAL
and therefore performs its first processing step. Typically, this involves
defining further events for which it may be activated. The activity program
issues an EXEC CICS RETURN command to relinquish control. The activity
“sleeps”.

�2� The next event occurs and “wakes up” the activity. The activity program
determines which event caused it to be activated and performs the
processing step appropriate for that event. It issues an EXEC CICS
RETURN command to relinquish control.

�3� Eventually, no more processing steps are necessary. To confirm that its
current activation is the last, and that it is not to be reactivated for any
future events, the activity program issues an EXEC CICS RETURN
ENDACTIVITY command. The activity completion event is fired.

Note: Root activities do not have completion events.

Figure 16 is a comparison between a terminal-related pseudoconversation and a
BTS activity that is activated multiple times.

Note: The RETRIEVE REATTACH EVENT command issued by the activity
retrieves the name of an event that caused the activity to be reactivated. The
GET and PUT CONTAINER commands retrieve and store input and output
data.

Control flow: The high-level control flow of a typical BTS business transaction is
as follows:

1. A CICS transaction makes an initial request to start a process.

2. CICS initiates the appropriate root activity.

Figure 15. A sequence of activations

Figure 16. Comparison between a terminal-related pseudoconversation and a BTS activity that is activated multiple
times

Chapter 8. CICS business transaction services 85

3. The root activity program, using the BTS API, creates a child activity—or several
child activities. It provides the child activity with some input data (by placing the
data in a data-container associated with the child), and requests CICS to start
the child activity.

If, as is often the case, the child activity is to run asynchronously with the root
activity, the root activity program returns and becomes dormant.

4. The root activity is reactivated when one of its child activities completes. It
determines which event caused it to be reactivated—that is, the completion of
the activity that it started earlier. It retrieves, from the completed activity’s output
data-containers, any return data that the completed activity has placed there.

5. Steps 3 and 4 are repeated until all the child activities that make up the
business transaction have completed.

6. The root activity program issues an EXEC CICS RETURN ENDACTIVITY
command to indicate that it has completed all its processing steps. CICS
terminates the root activity.

Recovery and restart

CICS maintains state data for BTS processes in a recoverable VSAM KSDS. This
file can be RLS-enabled.

On an emergency restart, CICS automatically restarts any BTS activities that were
in-flight at the time it failed.

Client/server support

CICS business transaction services support client/server processing. A server
process is one that is typically waiting for work. When work arrives, BTS restarts
the process, which retrieves any state data that it has previously saved.

Web Interface support

The CICS Web Interface allows Internet users to run CICS transactions from a Web
browser. CICS business transaction services extend CICS support for the Internet.

In a typical current scenario, a Web-based business transaction might be
implemented as a pseudoconversational CICS application. The initial request from
the browser invokes a CICS transaction that does some setup work, returns a page
of HTML to the browser, and ends. Subsequent requests are handled by other
CICS transactions (or by further invocations of the same transaction). The CICS
application is responsible for maintaining state data between requests.

Using BTS, a Web-based business transaction could be implemented as a BTS
process. A major advantage of this approach is that state data is now maintained by
BTS. This is particularly useful if the business transaction is long-lived.

Support for existing code

BTS supports the 3270 bridge function. (The 3270 bridge is described in the CICS
External Interfaces Guide.) This means that BTS applications can be integrated
with, and make use of, existing 3270-based applications.

Even though BTS activities are not terminal-related (they are never started directly
from a terminal), a BTS activity can be implemented by a 3270-based transaction.

86 CICS TS for OS/390: Release Guide

Sysplex support

You can operate BTS in a single CICS region. However, BTS processes are
sysplex-enabled. In a sysplex, you can create one or more BTS-sets. A BTS-set is
a set of CICS regions across which related BTS processes and activities may
execute. For example, within a single process:

v The activities that constitute the process may execute on several regions.

v Different activations of the same activity may execute on different regions.

Dynamic routing of BTS activities: In a BTS-set, your BTS activities can be
routed dynamically across the participating regions. You can control the dynamic
routing of your BTS activities by either of the following means:

1. Writing a distributed routing program.

CICS introduces a new dynamic routing model, the distributed routing model,
which complements the “hub” model traditionally used for CICS dynamic
transaction routing.

In the traditional “hub” routing model, a dynamic routing program running in a
terminal-owning region routes transactions between a set of application-owning
regions. The new distributed model, on the other hand, is a “peer-to-peer”
system, in that a distributed routing program runs in each participating BTS
region; each region can be both a requesting region and a target region.

The two routing models and routing programs are more fully described in
“Changes to the dynamic routing interface” on page 41.

2. Using the CICSPlex System Manager/ESA (CICSPlex SM) element of CICS TS
to:
v Optionally, specify workload separation for your BTS processes
v Manage affinities
v Control workload balancing of the transactions that implement BTS activities.

Notes:

1. Dynamic routing of BTS activities is at the activation level. When an event is
signalled, an activity is activated in the most appropriate region in the BTS-set,
based on one or more of the following:
v Any workload separation specified by the system programmer
v Any affinities its associated transaction has with a particular region
v The availability of regions
v The relative workload of regions.

2. Activities can be routed, either dynamically or statically, only when they are run
asynchronously with the requestor. When an activity is run synchronously with
the requestor, it cannot be routed to another region, neither dynamically nor
statically.

Audit trails: You can create an audit trail for the BTS processes and activities that
run in your CICS regions. Doing so allows you to, for example, track the progress of
a complex business transaction across the sysplex.

The CICS code contains BTS audit points in much the same way as it contains
trace points. However, because in a sysplex environment different parts of a
process may execute on different regions, each audit record contains system, date,
and time information. By sharing log streams across regions, you can gather audit
information from different regions in the same log.

Chapter 8. CICS business transaction services 87

Benefits

Compared with traditional CICS methods of modelling complex business
transactions, CICS business transaction services confer a number of advantages:

v Management and control is at the business transaction level, as well as at the
action level.

v Control logic is separated from business logic. The individual CICS transactions
that make up the business transaction no longer need to be concerned with
“before and after” actions. This simplifies the development of such transactions
and makes it easier to reuse them.

v Because CICS maintains monitoring information for BTS processes and activities,
you can request information about a business transaction’s use of resources
without knowing the identifiers of all its constituent CICS transactions. Information
is now available at the business transaction level, as well as at the CICS
transaction level.

v In a sysplex, BTS processes and activities can take full advantage of CICSPlex
SM’s workload separation and workload balancing functions.

v BTS processes can be used as servers in a client/server environment.

Requirements

To operate CICS business transaction services in a single CICS region, there are
no additional requirements beyond those for CICS TS generally.

To create a BTS-set, you require a coupling facility. All the regions in a BTS-set
must be in the same MVS Parallel Sysplex. This is because, to support the
necessary sharing of process and activity data between the regions, BTS uses
VSAM record-level sharing (RLS). VSAM RLS requires a coupling facility.

Changes to CICS externals

This section gives an overview of the changes to CICS externals introduced by
CICS business transaction services. For full details of these changes, see the CICS
Business Transaction Services manual. The topics covered are:
v “Changes to the application programming interface” on page 89

v “Changes to the system programming interface” on page 92

v “Changes to resource definition” on page 92

v “Changes to system definition” on page 93

v “Changes to CICS-supplied transactions” on page 93

v “Changes to user-replaceable programs” on page 94

v “Changes to monitoring” on page 94

v “Changes to problem determination” on page 94

v “Changes to utility programs” on page 95

v “Changes to sample programs” on page 95

88 CICS TS for OS/390: Release Guide

Changes to the application programming interface

CICS business transaction services add a subset of new commands to the CICS
application programming interface (API). Also, some existing commands have been
modified.

New API commands

The new BTS API commands are:

EXEC CICS ACQUIRE
Gives a UOW executing outside a BTS process access to an activity within
the process.

EXEC CICS ADD SUBEVENT
Adds a sub-event to a composite event.

EXEC CICS CANCEL
Forces a process or activity to complete.

EXEC CICS CHECK ACQPROCESS
Returns the completion status of the process that the requestor has
acquired in the current unit of work.

EXEC CICS CHECK ACTIVITY
Returns the completion status of an activity.

EXEC CICS CHECK TIMER
Returns the status of a timer and, if the timer has expired, deletes the event
associated with it.

EXEC CICS DEFINE ACTIVITY
Creates a new child activity.

EXEC CICS DEFINE COMPOSITE EVENT
Defines a composite event.

EXEC CICS DEFINE INPUT EVENT
Defines an input event.

EXEC CICS DEFINE PROCESS
Creates a new BTS process.

EXEC CICS DEFINE TIMER
Defines a timer, and associates an event with it.

EXEC CICS DELETE ACTIVITY
Removes a child activity from the BTS data set where it is defined.

EXEC CICS DELETE CONTAINER
Deletes a named data-container.

EXEC CICS DELETE EVENT
Deletes an event.

EXEC CICS DELETE TIMER
Deletes a timer and its associated event (if any).

EXEC CICS ENDBROWSE ACTIVITY
Ends a browse of the child activities of an activity, or of the descendent
activities of a process.

Chapter 8. CICS business transaction services 89

EXEC CICS ENDBROWSE CONTAINER
Ends a browse of the data-containers associated with an activity or
process.

EXEC CICS ENDBROWSE EVENT
Ends a browse of the events known to an activity.

EXEC CICS ENDBROWSE PROCESS
Ends a browse of processes of a specified type.

EXEC CICS FORCE TIMER
Forces the early expiry of a timer, and causes the timer’s associated event
to fire.

EXEC CICS GET CONTAINER
Retrieves data from a named data-container.

EXEC CICS GETNEXT ACTIVITY
Browses the child activities of an activity, or the descendent activities of a
process.

EXEC CICS GETNEXT CONTAINER
Browses the data-containers associated with an activity or process.

EXEC CICS GETNEXT EVENT
Browses the events known to an activity.

EXEC CICS GETNEXT PROCESS
Browses processes of a specified type.

EXEC CICS INQUIRE ACTIVITYID
Returns information about an activity to an external caller.

EXEC CICS INQUIRE CONTAINER
Retrieves the attributes of a data-container.

EXEC CICS INQUIRE EVENT
Retrieves the attributes of an event.

EXEC CICS INQUIRE PROCESS
Returns information about a process to an external caller.

EXEC CICS INQUIRE TIMER
Retrieves the attributes of a timer.

EXEC CICS LINK ACQPROCESS
Invokes the program that implements the process that the requestor has
acquired in the current unit of work. Runs the program synchronously with
the requestor, in the same unit of work, and with the same transaction
attributes as the requestor.

EXEC CICS LINK ACTIVITY
Invokes a program that implements an activity. Runs it synchronously with
the requestor, in the same unit of work, and with the same transaction
attributes as the requestor.

EXEC CICS PUT CONTAINER
Saves data in a named data-container, creating the container if it does not
already exist.

EXEC CICS REMOVE SUBEVENT
Removes a sub-event from a composite event.

90 CICS TS for OS/390: Release Guide

EXEC CICS RESET ACQPROCESS
Resets the process that the requestor has acquired in the current unit of
work to its initial state—used before retrying the process.

EXEC CICS RESET ACTIVITY
Resets an activity to its initial state—used before retrying an activity.

EXEC CICS RESUME
Allows a suspended process or activity to be reattached if events in its
event pool fire.

EXEC CICS RETRIEVE REATTACH EVENT
Retrieves the name of an event that caused the current activity to be
reattached.

EXEC CICS RETRIEVE SUBEVENT
Retrieves the name of the next sub-event in a composite event’s sub-event
queue.

EXEC CICS RUN
Invokes a program that implements a process or activity. Runs it
synchronously or asynchronously with the requestor, in a separate unit of
work, and with the transaction attributes specified on the DEFINE
PROCESS or DEFINE ACTIVITY command.

EXEC CICS STARTBROWSE ACTIVITY
Starts a browse of the child activities of an activity, or of the descendent
activities of a process.

EXEC CICS STARTBROWSE CONTAINER
Starts a browse of the data-containers associated with an activity or
process.

EXEC CICS STARTBROWSE EVENT
Starts a browse of the events known to an activity.

EXEC CICS STARTBROWSE PROCESS
Starts a browse of processes of a specified type.

EXEC CICS SUSPEND
Prevents a process or activity being reattached if events in its event pool
fire.

EXEC CICS TEST EVENT
Test whether an event has fired.

Changed API commands

The following existing API commands have been modified for use with BTS:

EXEC CICS ASSIGN
The following new options have been added. They return information about
the BTS activity and process that the current unit of work is acting for.
v ACTIVITY
v ACTIVITYID
v PROCESS
v PROCESSTYPE

EXEC CICS RETURN
An ENDACTIVITY option has been added. This indicates that a process or
activity is complete.

Chapter 8. CICS business transaction services 91

Changes to the system programming interface

CICS business transaction services add a subset of new system programming
commands to CICS. Also, some existing commands have been modified.

New system programming commands

The new BTS system programming commands are:

EXEC CICS CREATE PROCESSTYPE
Builds a PROCESSTYPE definition in the local CICS region, without
reference to data in the CICS system definition (CSD) file.

EXEC CICS DISCARD PROCESSTYPE
Removes a PROCESSTYPE definition from the local CICS region.

EXEC CICS INQUIRE PROCESSTYPE
Retrieves the attributes of a process-type.

EXEC CICS SET PROCESSTYPE
Modifies the attributes of a PROCESSTYPE definition.

Changed system programming commands

The following existing system programming commands have been modified for use
with BTS:

EXEC CICS INQUIRE SYSTEM
A new DSRTPROGRAM option has been added. This returns the name of
the distributed routing program currently identified to the system.

EXEC CICS INQUIRE TASK
The following new options have been added. They return information about
the BTS activity and process that a task is executing on behalf of.
v ACTIVITY
v ACTIVITYID
v PROCESS
v PROCESSTYPE

EXEC CICS SET SYSTEM
A new DSRTPROGRAM option has been added. This specifies the name of
the distributed routing program.

Changes to resource definition

Most BTS resources (processes, activities, events, and containers) are defined at
run time, using BTS API commands.

The only new BTS resource type that can be defined in the CSD is the
process-type, using the DEFINE PROCESSTYPE command. The files and journals
used by BTS are defined using the existing DEFINE FILE and DEFINE
JOURNALMODEL commands, as described in the CICS Resource Definition Guide.

The XRSINDI global user exit is invoked when PROCESSTYPE resource types are
installed or discarded.

92 CICS TS for OS/390: Release Guide

Changes to system definition

A new system initialization parameter, DSRTPGM, is introduced; it names the
distributed routing program.

Table 5. The DSRTPGM system initialization parameter
DFHSIT [TYPE={CSECT|DSECT}]

[,DSRTPGM={NONE|DFHDSRP|program-name|EYU9XLOP}]
...

DSRTPGM={NONE|DFHDSRP|program-name|EYU9XLOP}
Specifies the name of the distributed routing program to be used for
dynamically routing:
v Eligible CICS business transaction services (BTS) processes and activities
v Eligible non-terminal-related EXEC CICS START requests.

DFHDSRP
The CICS sample distributed routing program.

EYU9XLOP
The CICSPlex SM routing program.

NONE
For eligible BTS processes and activities, no routing program is invoked.
BTS processes and activities cannot be dynamically routed.

For eligible non-terminal-related START requests, the CICS sample
distributed routing program, DFHDSRP, is invoked.

program-name
The name of a user-written program.

Note: See also the DTRPGM parameter, used to name the dynamic routing
program.

BTS introduces a new mandatory CICS data set—the local request queue (LRQ).
You must define an LRQ even if you don’t use BTS facilities.

Changes to CICS-supplied transactions

These are the CICS-supplied transactions that have been added or changed to
support BTS:

CBAM Browses the BTS objects (process-types, processes, activities, containers,
events and timers) known to this region. CBAM is menu-driven and is a
“readonly” transaction—you cannot update any of the displayed attributes
by overtyping their values.

CEDA DEFINE PROCESSTYPE
Defines a CICS business transaction services process-type. Process-types
are used to categorize BTS processes and activities. This is useful for
browsing and auditing purposes. It is possible to browse all processes of a
specified type, for example.

CEMT INQUIRE PROCESSTYPE
Retrieves information about a CICS business transaction services
process-type.

Chapter 8. CICS business transaction services 93

CEMT INQUIRE SYSTEM
A new DSRTPROGRAM option has been added. This displays the name of
the distributed routing program currently identified to the system.

CEMT INQUIRE TASK
New options have been added, that display details of the BTS activity and
process that a task is executing on behalf of.

CEMT SET PROCESSTYPE
Changes the attributes of a CICS business transaction services
process-type.

CEMT SET SYSTEM
A new DSRTPROGRAM option has been added. This specifies the name of
the distributed routing program.

Changes to user-replaceable programs

A new user-replaceable program, DFHDSRP, is introduced. This is the default
distributed routing program, which handles the dynamic routing of:
v BTS activities
v Non-terminal-related START commands.

To support the new dynamic routing functions, several new fields are added to the
DFHDYPDS communication area. This communication area is now passed to the
distributed routing program as well as to the dynamic routing program.

Changes to monitoring

CICS maintains monitoring information for BTS processes and activities. See
“Chapter 6. Monitoring, statistics, and enterprise management changes” on page 65
for details of the monitoring support for CICS BTS.

Changes to problem determination

There are changes to CICS trace, messages, and abend codes to aid problem
determination when you are using CICS BTS.

Trace points

A number of new trace points are introduced. BTS consists of three CICS domains,
each of which has a 2-character component identifier, used to specify levels of
standard and special tracing:

Domain name CICS Component
code

Business application manager BA

Event manager EM

Scheduler services SH

Audit points

The CICS code contains BTS audit points in much the same way as it contains
trace points. However, there are three main differences between audit records and
trace entries:

94 CICS TS for OS/390: Release Guide

1. Trace entries are written to an internal trace table within the CICS address
space. In contrast, the audit trail of a process is written to a CICS journal, which
resides on an MVS log stream.

2. Trace entries record the progress of tasks over a relatively short period of time,
typically seconds, minutes, or hours. In contrast, the audit trail of a process can
extend to days, weeks, or even months.

3. Trace entries relate to activity in a single CICS region. In contrast, in a sysplex
environment the execution of different parts of a process may take place on
different regions within the sysplex. Therefore, each audit record contains
system, date, and time information. Typically, an audit record for a BTS activity
also contains:

v The identifier of the activity

v The process to which the activity belongs

v Information about the event which caused the activity to be invoked,
canceled, suspended, or resumed; or that fired when it completed.

Because log streams can be shared by more than one region, it is possible to
write audit records from different regions to the same log, using the merge
facility of the MVS system logger.

A number of levels of logging are available:
1. No logging
2. Primary logging of processes
3. Primary logging of both processes and activities
4. Full logging of both processes and activities.

Audit log records are written to an MVS log stream by the CICS log manager. You
can read the records offline using the CICS audit trail utility program, DFHATUP.
DFHATUP allows you to:
v Filter records for specific process-types, processes, and activities
v Interpret records into a readable format.

Messages and abend codes

A number of new messages and abend codes are introduced. These are described
in the CICS Messages and Codes manual.

Changes to utility programs

Two new CICS utility programs are introduced:

v The audit trail utility program, DFHATUP, enables you to print selected BTS audit
records from a logstream.

v The repository utility program, DFHBARUP, enables you to print selected records
from a BTS repository data set.

Changes to sample programs

Besides the many fragments of example pseudocode in the CICS Business
Transaction Services manual, CICS supplies a sample BTS application. The sample
is a basic sales application, consisting of order, credit check, stock check, delivery
note, invoice, and payment/reminder activities. It is implemented as a set of COBOL
programs and copybooks. These are supplied, in source code only, in the
SDFHSAMP library.

Chapter 8. CICS business transaction services 95

An example BTS application

The Sale example application is a set of programs that demonstrates how to use
CICS business transaction services to manage business transactions.

Overview

The Sale example implements a Sale business transaction that is made up of four
basic actions:
v Order entry
v Delivery
v Invoice
v Payment.

A Sale business transaction is started by a terminal-user selecting the Sale option
from a menu of business transactions. This causes an instance of the transaction to
be created and its root activity to be started. The root activity creates and runs, in
sequence, four child activities that implement the four actions of the business
transaction:

1. The Order activity obtains order data from the user, and validates it.

2. Successful completion of the Order activity causes the Delivery activity to be
started.

3. Completion of the Delivery activity causes the Invoice activity to be started.

4. When payment is received and recorded by the Payment activity, the Sale
business transaction is complete.

Data flows

Figure 17 shows, in simplified form, data flows in the Sale example application.

1. Customer data (for example, an account number) collected after the terminal
user selects the Sale menu option is used as input to the Order activity.

2. Customer data collected by the Order activity is used as input to the Delivery
activity.

3. The output data produced by the Delivery activity is used as input to the Invoice
activity.

4. The output produced by the Invoice activity is used as input to the Payment
activity.

Note: The first activity (Order) requires input from the terminal user. For the
purposes of this simple example, subsequent activities (Delivery, Invoice and
Payment) are assumed not to require any user involvement and are
triggered serially in the background after the Order activity has completed
successfully. For examples of activities that require user input, see the CICS
Business Transaction Services manual.

Figure 17. Data flow in the Sale example apllication. (The root activity is not shown.)

96 CICS TS for OS/390: Release Guide

CICS transactions and programs

Table 6 shows the CICS transactions and programs that make up the basic Sale
application described in this chapter.

Table 6. Transactions and programs in the Sale application

Transid Program Comments

MENU MNU001 Menu of business transactions

— SAL001
Creates and starts the Sale business
transaction

SALE SAL002
BTS root activity, manages the child
activities that comprise the Sale business
transaction

SORD ORD001 Order activity

SDEL DEL001 Delivery activity

SINV INV001 Invoice activity

SPAY PAY001 Payment activity

Notes:

1. In the CICS Business Transaction Services manual, the Sale example
application is extended to illustrate more advanced features of BTS, such as:
v Parallel activities
v User-related activities
v Compensation actions.

2. For the sake of clarity, the basic example does not include any error handling
code.

The initial request

The initial request to start a Sale business transaction is handled by the MNU001
and SAL001 programs. When a terminal user selects the Sale menu option, the
menu program MNU001 links to the SAL001 program to service the request.
SAL001 establishes a unique reference for this instance of the Sale business
transaction and starts it.

Figure 18 on page 98 shows, in COBOL pseudocode, how SAL001 creates and
starts an instance of the Sale business transaction.

Chapter 8. CICS business transaction services 97

Creating the business transaction

To create an instance of the Sale business transaction, SAL001 issues a DEFINE
PROCESS command. The PROGRAM option of DEFINE PROCESS defines a
program to run under the control of CICS business transaction services—a root
activity program that typically manages the ordering and execution of the child
activities that make up a business transaction. In this case, the program is SAL002,
which is the root activity program for the Sale business transaction.

The PROCESS option uniquely identifies this business transaction instance from
others. (The creation of a unique reference is managed by the user. Typically, you
might use a customer reference or account number.)

The PROCESSTYPE option categorizes the business transaction by assigning it a
process-type of 'Sales'. Categorizing your processes (business transactions) in this
way means that you can browse details of individual processes—and their
constituent activities—more easily.

The TRANSID option serves a number of purposes:

Security
If security is active, CICS performs a security check to see if the requestor
has authority to use the specified transaction identifier (transid). Thus, in
this example, there would be a check on whether the requestor is
authorized to create a new instance of the Sale business transaction.

Externals
When a business transaction is started, its root activity program begins

Identification Division.
Program-id. SAL001.
Environment Division.
Data Division.
Working-Storage Section.
01 Sales-Reference pic x(36) value low-values.

.
01 Process-Type pic x(8) value 'Sales'.

.
Linkage Section.
01 DFHEIBLK.

.
01 DFHCOMMAREA.

.
Procedure Division using DFHEIBLK DFHCOMMAREA.
In-The-Beginning.

.

.. create unqiue sales reference ..

.
EXEC CICS DEFINE PROCESS(Sales-Reference) PROCESSTYPE(Process-Type)

TRANSID('SALE')
PROGRAM('SAL002')

RESP(data-area) RESP2(data-area) END-EXEC
.

EXEC CICS RUN ACQPROCESS
SYNCHRONOUS

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS RETURN END-EXEC

End Program.

Figure 18. Pseudocode for the SAL001 program. SAL001 creates and starts an instance of
the Sale business transaction.

98 CICS TS for OS/390: Release Guide

executing, and any external inquiry such as CEMT shows work being done
under the root activity’s transaction identifier.

In the Sale application, the Sale business transaction is started under the
control of the MENU transaction; however, the actual start of an instance of
the Sale transaction occurs when control is passed to the root activity
program, SAL002. At this point, the transaction identifier changes from
MENU to SALE.

Root activity
Later restarts of a root activity may be required to deal with child activities
that are executed with the RUN ACTIVITY ASYNCHRONOUS command
(the child activities are executed asynchronously with the root activity, are
not included in its unit of work, and have different transaction identifiers).

In the Sale application, the SAL002 root activity program is attached under
the SALE transaction identifier to deal with the Delivery, Invoice, and
Payment activities, that all execute asynchronously, under separate UOW
scope, and under different transaction identifiers.

Monitoring and statistics
The transaction identifier can be used to track resource usage for
monitoring, statistics, and accounting purposes. It allows monitoring and
statistics information to be related to a CICS business transaction services
process.

DEFINE PROCESS is a synchronous request and control is returned to the
requesting program when BTS has accepted the request and added the process to
the set that it is currently managing.

The addition of the process is not committed until the current unit of work has taken
a successful syncpoint. If the requesting task abends before the syncpoint is taken,
the request to add the process is canceled.

Starting the business transaction

To start this instance of the Sale business transaction, on return from the DEFINE
PROCESS request SAL001 issues a RUN ACQPROCESS command. RUN
ACQPROCESS causes the process that has been “acquired” in the current unit of
work to be activated. A program can “acquire” a process in two ways: by defining it,
or by issuing an ACQUIRE PROCESS command. Here, SAL001 has acquired a
process by defining it; thus the RUN ACQPROCESS command causes the SAL002
program specified on the DEFINE PROCESS command to be executed.

Using RUN causes the process to be activated in a separate unit of work from that
of the requesting transaction, under the transaction identifier specified on the
TRANSID option of the DEFINE PROCESS command. (A LINK ACQPROCESS
command would have caused SAL002 to be executed in the same unit of work as
MNU001 and SAL001, and under the same TRANSID, MENU.) The advantages of
giving a process a separate TRANSID from that of its creator are explained in
“Creating the business transaction” on page 98. The SYNCHRONOUS option on the
RUN command causes SAL002 to be executed synchronously with SAL001.

Although a RUN ACQPROCESS command causes a process to be activated in a
separate unit of work from that of its requestor, the start and finish of the activation
are related to the requestor’s syncpoints. In the example application, the SAL002
root activity runs its first child activity (Order) synchronously and as part of its own
unit of work. If the Order activity is successfully completed (in the business sense

Chapter 8. CICS business transaction services 99

as well as the transactional sense), the Sale business transaction will be accepted.
If not, it will be rejected. “Accepted” means committed—this instance of the Sale
transaction will be ready to start its next activity. “Rejected” means rolled back—this
instance of the Sale transaction will no longer exist.

The root activity

The SAL001 program starts a new instance of the Sale business transaction by
starting the SAL002 program, running under the transid SALE. SAL002 implements
a root activity that manages the inter-relationship, ordering, and execution of the
child activities that make up the Sale business transaction.

A root activity program such as SAL002 is designed to be reattached by CICS
business transaction services when events in which it is interested are triggered.
The activity program determines which of the possible events caused it to be
attached and what to do as a result. A typical sequence (somewhat simplified) is:

1. The root activity requests BTS to run a child activity (possibly several child
activities), and to notify it when the child has completed.

2. The root activity “sleeps” while waiting for the child activity to complete.

3. BTS reattaches the root activity because the child activity has completed.

4. The root activity requests the next child activity to run.

5. Steps 1 through 4 are repeated until the business transaction is complete.

Thus, even though the root activity is not initiated from a terminal, you could think of
its style as being “pseudoconversational”.

Figure 19 on page 101 shows, in COBOL pseudocode, the Sale root activity
program, SAL002.

100 CICS TS for OS/390: Release Guide

Identification Division.
Program-id. SAL002.
Environment Division.
Data Division.
Working-Storage Section.
01 RC pic s9(8) comp.
01 Process-Name pic x(36).
01 Event-Name pic x(16).

88 DFH-Initial value 'DFHINITIAL'.
88 Delivery-Complete value 'Delivry-Complete'.
88 Invoice-Complete value 'Invoice-Complete'.
88 Payment-Complete value 'Payment-Complete'.

01 Sale-Container pic x(16) value 'Sale'.
01 Order-Container pic x(16) value 'Order'.
01 Order-Buffer pic x(..).
01 Delivery-Container pic x(16) value 'Delivery'.
01 Delivery-Buffer pic x(..).
01 Invoice-Container pic x(16) value 'Invoice'.
01 Invoice-Buffer pic x(..).
Linkage Section.
01 DFHEIBLK.

.
Procedure Division.
Begin-Process.

.
EXEC CICS RETRIEVE REATTACH EVENT(Event-Type)

RESP(RC) END-EXEC
.

If RC NOT = DFHRESP(NORMAL)
.

End-If.
.

Evaluate True
When DFH-Initial

Perform Initial-Activity
Perform Order-Activity
Perform Delivery-Activity

When Delivery-Complete
Perform Invoice-Activity

When Invoice-Complete
Perform Payment-Activity

When Payment-Complete
Perform End-Process

When Other
.

End Evaluate.
.

EXEC CICS RETURN END-EXEC
.

Figure 19. Pseudocode for SAL002, the root activity program for the Sale business
transaction (Part 1 of 3)

Chapter 8. CICS business transaction services 101

Initial-Activity.
.
EXEC CICS ASSIGN PROCESS(Process-Name)

RESP(data-area) RESP2(data-area) END-EXEC
.

Order-Activity.
.
EXEC CICS DEFINE ACTIVITY('Order')

TRANSID('SORD')
PROGRAM('ORD001')

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS PUT CONTAINER(Sale-Container)

ACTIVITY('Order') FROM(Process-Name)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS LINK ACTIVITY('Order')

RESP(data-area) RESP2(data-area) END-EXEC
.

Delivery-Activity.
.
EXEC CICS DEFINE ACTIVITY('Delivery')

TRANSID('SDEL')
EVENT('Delivry-Complete')

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS GET CONTAINER(Order-Container)

ACTIVITY('Order') INTO(Order-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS PUT CONTAINER(Order-Container)

ACTIVITY('Delivery') FROM(Order-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY('Delivery')

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.

Figure 19. Pseudocode for SAL002, the root activity program for the Sale business
transaction (Part 2 of 3)

102 CICS TS for OS/390: Release Guide

The following discussion steps through the SAL002 pseudocode shown in Figure 19
on page 101:

1. The root activity determines what event caused it to be attached by issuing the
following command:

EXEC CICS RETRIEVE REATTACH EVENT(Event-Type)
RESP(data-area) RESP2(data-area) END-EXEC

The first time an activity is started during a process, the event returned is the
system event DFHINITIAL. This tells the activity that it should perform any
initial housekeeping.

In this example, CICS initially invokes the SAL002 root activity as a result of
the RUN ACQPROCESS command issued by the SAL001 program. As part of
its initial housekeeping, SAL002 uses the EXEC CICS ASSIGN PROCESS
command to discover the name of this instance of the business transaction

Invoice-Activity.
.
EXEC CICS DEFINE ACTIVITY('Invoice')

TRANSID('SINV')
EVENT('Invoice-Complete')

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS GET CONTAINER(Delivery-Container)

ACTIVITY('Delivery') INTO(Delivery-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS PUT CONTAINER(Delivery-Container)

ACTIVITY('Invoice') FROM(Delivery-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY('Invoice')

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.
Payment-Activity.

.
EXEC CICS DEFINE ACTIVITY('Payment')

TRANSID('SPAY')
EVENT('Payment-Complete')

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS GET CONTAINER(Invoice-Container)

ACTIVITY('Invoice') INTO(Invoice-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS PUT CONTAINER(Invoice-Container)

ACTIVITY('Payment') FROM(Invoice-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

.
EXEC CICS RUN ACTIVITY('Payment')

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

.
End-Process.

.
EXEC CICS RETURN ENDACTIVITY

RESP(data-area) RESP2(data-area) END-EXEC
End Program.

Figure 19. Pseudocode for SAL002, the root activity program for the Sale business
transaction (Part 3 of 3)

Chapter 8. CICS business transaction services 103

(process). (The name of the process instance was assigned by the DEFINE
PROCESS command, and might be, for example, a customer reference or
account number.)

2. The root activity creates its first child activity, which in this case is the Order
activity:

EXEC CICS DEFINE ACTIVITY('Order')
TRANSID('SORD')
PROGRAM('ORD001')

RESP(data-area) RESP2(data-area) END-EXEC

The DEFINE ACTIVITY command requests CICS business transaction
services to add an activity to a business transaction (process). In this example,
SAL002 adds an activity called Order to the Sale business transaction. It is
implemented by program ORD001. The TRANSID option specifies that, if the
Order activity is run in its own unit of work, it will run under transaction
identifier SORD.

3. When the Order activity has been added, SAL002 uses the PUT CONTAINER
command to provide it with some input data.

EXEC CICS PUT CONTAINER(Sale-Container)
ACTIVITY('Order') FROM(Process-Name)
RESP(data-area) RESP2(data-area) END-EXEC

The input data is placed in a data-container named Sale (the value of the
variable Sale-Container). The ACTIVITY option of PUT CONTAINER
associates the Sale data-container with the Order activity.

Note: An activity can have many data-containers associated with it. A
data-container is associated with an activity simply by being named on
a command (such as PUT CONTAINER) that specifies the activity.

Two or more activities can each have a data-container named, for
example, Order.

The data put into the Sale data-container is the process name—that is, the
unique reference that identifies this instance of the Sale business transaction.
The process name in this case is the customer reference or account number
specified on the DEFINE PROCESS command in SAL001.

4. SAL002 requests BTS to start the Order activity:
EXEC CICS LINK ACTIVITY('Order')

RESP(data-area) RESP2(data-area) END-EXEC

The LINK ACTIVITY command causes the ORD001 program to be executed
synchronously with SAL002 and to be included as part of the current unit of
work. The TRANSID option of the DEFINE ACTIVITY command is
ignored—LINK ACTIVITY causes the Order activity to run under the
requestor’s transaction identifier, SALE.

The Order activity collects order details from the terminal operator and
validates them. The ORD001 program converses with the terminal operator
until the order is accepted. It then returns the validated details in an output
data-container.

5. When the Order activity completes, SAL002 creates the Delivery activity:
EXEC CICS DEFINE ACTIVITY('Delivery')

TRANSID('SDEL')
EVENT('Delivry-Complete')

RESP(data-area) RESP2(data-area) END-EXEC

104 CICS TS for OS/390: Release Guide

The Delivery activity is to be executed asynchronously with the root activity.
When an activity completes, its completion event fires. The EVENT option
names the Delivery activity’s completion event as Delivry-Complete, and thus
defines it. Defining the event allows it to be referenced and checked for.

CICS reattaches an activity on the firing of any event, other than a sub-event,
that is in its event pool. (An activity’s event pool contains events that have
been defined to the activity, plus the DFHINITIAL system event.) Thus, the
SAL002 root activity will be reattached when the Delivery activity’s completion
event (Delivry-Complete) fires.

Note: All child activities have completion events that fire when the activities
complete. If the EVENT option of DEFINE ACTIVITY is not used, CICS
gives the completion event the same name as the activity itself.

For child activities like the Order activity, that will always be executed
synchronously with the parent, the EVENT option is not often used.
Normally, the firing of a synchronous activity’s completion event does
not cause the parent to be reattached, because the event is deleted (by
a CHECK ACTIVITY command) during the parent’s current activation.
Therefore the event never needs to be tested for by name, among
several other possible reattachment events.

The CHECK ACTIVITY command is described in the CICS Business
Transaction Services manual.

6. SAL002 makes the data returned by the Order activity available to the Delivery
activity:

EXEC CICS GET CONTAINER(Order-Container)
ACTIVITY('Order') INTO(Order-Buffer)

RESP(data-area) RESP2(data-area) END-EXEC

EXEC CICS PUT CONTAINER(Order-Container)
ACTIVITY('Delivery') FROM(Order-Buffer)

RESP(data-area) RESP2(data-area) END-EXEC

Here, the GET and PUT commands are used to transfer data from the Order
activity’s output data-container to the Delivery activity’s input data-container
(both of which are named Order). Note that these are different
data-containers—although they share the same name, they are associated
with different activities.

7. SAL002 requests BTS to start the Delivery activity:
EXEC CICS RUN ACTIVITY('Delivery')

ASYNCHRONOUS
RESP(data-area) RESP2(data-area) END-EXEC

Because RUN rather than LINK is used, the Delivery activity will be executed
as a separate unit of work, and under the transaction identifier specified on the
TRANSID option of the DEFINE ACTIVITY command. (The RUN command
always activates the specified process or activity in a new unit of work.)
Because the ASYNCHRONOUS option is used, the Delivery activity will be
executed asynchronously with SAL002, and will start only if the current unit of
work completes successfully.

8. SAL002 issues an EXEC CICS RETURN command. Control is returned to
SAL001, then to MNU001, and finally to CICS. CICS takes a syncpoint and
commits the following:

v The creation of a new Sale business transaction

Chapter 8. CICS business transaction services 105

v Work done by the Order activity, and its input and output data-containers

v The request to run the Delivery activity, and its input data-container

v The condition under which the SAL002 root activity is to be
“pseudoconversationally” reattached.

After the CICS syncpoint, the menu of business transactions is redisplayed on
the user’s terminal, ready for further selection. The remaining activities will be
completed, without reference to the terminal user, under the control of CICS
business transaction services. The SAL002 program no longer exists in
memory, and the existence of this instance of the Sale business transaction is
known only to BTS.

CICS business transaction services start the Delivery activity (SDEL) as
requested. (BTS participates as a resource manager for the transaction.) On
completion of the Delivery activity, BTS reattaches the Sale root activity—that
is, the SAL002 program under the transaction identifier SALE.

9. The SAL002 program is entered at the top again, and so determines what
event caused it to be reattached by issuing the RETRIEVE REATTACH
EVENT command. This time, however, the event returned is Delivry-Complete.
Having established which child activity has completed, SAL002 determines that
the next activity to be started is the Invoice activity.

As with the Order activity, SAL002 sets the Invoice activity’s parameters, input
data, and execution options before requesting the activity to be run. It then
issues an EXEC CICS RETURN command and waits to be reattached for this
instance of the Sale business transaction.

10. The pattern implied in step 9 is repeated until the Payment activity completes,
at which point the Sale business transaction is complete. SAL002 issues an
EXEC CICS RETURN command on which the ENDACTIVITY option is
specified. This indicates to CICS that the root activity’s processing is complete,
and that it no longer wants to be reattached if defined or system events occur.
The business transaction ends.

Transferring input and output data

This section illustrates how to transfer data between a parent and a child activity. It
uses the Sale application’s Delivery activity as an example.

The SAL002 root activity creates the Delivery child activity by issuing a DEFINE
ACTIVITY command.

106 CICS TS for OS/390: Release Guide

The GET CONTAINER command retrieves the data returned by the Order activity,
and places it in a storage buffer. The data is retrieved from the Order activity’s
output data-container, which is named Order.

The PUT CONTAINER command associates a data-container (also named Order)
with the Delivery activity, and places the retrieved data in it.

The implementation of the Delivery activity is shown in Figure 21:

Delivery-Activity.
.
EXEC CICS DEFINE ACTIVITY('Delivery')

TRANSID('SDEL')
EVENT('Delivry-Complete')

RESP(data-area) RESP2(data-area) END-EXEC
.
EXEC CICS GET CONTAINER(Order-Container)

ACTIVITY('Order') INTO(Order-Buffer)
RESP(data-area) RESP2(data-area) END-EXEC

EXEC CICS PUT CONTAINER(Order-Container)
ACTIVITY('Delivery') FROM(Order-Buffer)

RESP(data-area) RESP2(data-area) END-EXEC

Figure 20. Creating the Delivery activity

Identification Division.
Program-id. DEL001.
Environment Division.
Data Division.
Working-Storage Section.
01 Event-Name pic x(16).

88 DFH-Initial value 'DFHINITIAL'.
1 Order-Ptr usage is pointer.
01 Order-Container pic x(16) value 'Order'.
01 Delivery-Container pic x(16) value 'Delivery'.
01 Deliver-Data.

.
Linkage Section.
01 DFHEIBLK.

.
01 Order-Details.

05 Order-Number pic 9(8).
.

Figure 21. Pseudocode for the Delivery activity (Part 1 of 2)

Chapter 8. CICS business transaction services 107

The Delivery activity issues a GET CONTAINER command to retrieve data from a
data-container named Order. Because the command does not specify the ACTIVITY
option, it references a data-container associated with the current activity; in other
words, it references the same Order data-container as that referenced by the PUT
CONTAINER command in Figure 20 on page 107.

The Delivery activity uses the input data to execute its logic. Then it issues a PUT
CONTAINER command to store its output in a data-container named Delivery.
Again, the ACTIVITY option is not specified, so the data-container is associated
with the current (Delivery) activity.

Procedure Division.
Begin-Process.

.
EXEC CICS RETRIEVE REATTACH EVENT(Event-Type)

RESP(RC) END-EXEC
.
If RC NOT = DFHRESP(NORMAL)

.
End-If.
.
Evaluate True

When DFH-Initial
Perform Delivery-Work
Perform End-Activity

When Other
.

End Evaluate.
.
EXEC CICS RETURN END-EXEC
.

Delivery-Work.
.
EXEC CICS GET CONTAINER(Order-Container) SET(Order-Ptr)

RESP(data-area) RESP2(data-area) END-EXEC
.
set address of Order-Details to Order-Ptr.
.
EXEC CICS READ FILE

RESP(data-area) RESP2(data-area) END-EXEC
.
. logic to print delivery details
.
.
EXEC CICS PUT CONTAINER(Delivery-Container) FROM(Delivery-Data)

RESP(data-area) RESP2(data-area) END-EXEC
.

End-Activity.
.
EXEC CICS RETURN ENDACTIVITY

RESP(data-area) RESP2(data-area) END-EXEC

Figure 21. Pseudocode for the Delivery activity (Part 2 of 2)

108 CICS TS for OS/390: Release Guide

CICSPlex SM support

CICSPlex SM supports BTS by providing:

Dynamic routing of CICS BTS activities
The workload management function of CICSPlex SM controls the dynamic
routing of BTS processes and activities within a BTS-set. The distributed
routing model is used.

Managing CICS BTS workloads
CICSPlex SM workload management allows you to:

v Separate workloads on the basis of process type. For example, you
could specify that workload management is to route all processes of
process type TRAVEL to one BTS-set, and all processes of process type
PAYROLL to another BTS-set.

v Balance workloads by routing CICS BTS activities to the most
appropriate region in the BTS-set, based on:

– Any affinities its associated transaction has with a particular region.

– Any workload separation specified by the system programmer.

– The availability of regions.

– The relative workload of regions.

v Handle transaction affinities.

Workload management and the CICS Transaction Affinities Utility
understand affinities between BTS processes and activities. CICS BTS
itself does not introduce affinities, and discourages programming
techniques that do, but it does support previous releases, which may
introduce affinities. You must define such affinities to workload
management, so that it can make sensible routing decisions. It is
particularly important to specify each affinity’s lifetime; failure to do so
may restrict unnecessarily workload management’s routing options.

You should be aware that:

v A single CICSPlex SM may control routing within multiple BTS-sets. It
cannot route activities between BTS-sets.

v Workload separation may be performed at two levels:
– By creating multiple BTS-sets
– By CICSPlex SM within a BTS-set

Changes to workload management views to support BTS are:

v A new view, WLMATAFD, which provides a detailed display of the
properties of a single active BTS affinity. You can use this view to display
the contents of the BTS affinity key in hexadecimal format.

v The TRANGRP and WLMSPEC views have been enhanced to allow you
to specify the BTS BAPPL affinity relation and the BTS ACTIVITY and
PROCESS affinity lifetimes

Distributed data
If you write your own routing program, you may wish to keep track of the
relative loads in the target regions and use this information in your routing
decision. In the hub model, with a single routing region, such data may be
maintained in a local temporary storage queue. However, in the distributed
model, this data must be held on a shared resource, and distributed, as all
the regions are potential routing regions and target regions. CICSPlex SM
handles routing data by using MVS data spaces. If more than one MVS

Chapter 8. CICS business transaction services 109

image is involved in a workload, CICSPlex SM usually attempts to keep the
data spaces in step. If you use the CICSPlex SM routing program
EYU9XLOP, you will not have to be concerned with the distributed nature of
the routing data, because CICSPlex SM manages this for you.

BAS support
The only CICS BTS resource you need to define to BAS is the process
type, using the PROCDEF view. All other CICS BTS resources are created
dynamically when you specify a name in your application. Each process
type definition is associated with a VSAM KSDS file definition and a journal
definition. The file is used to hold process activity state data. The journal is
used to hold process activity audit data.

Connections between regions in a BTS-set are handled by BAS in the
same way as connections between regions in the CICSplex. You define the
connection and session, and the links are created dynamically when
required. This reduces the number of link definitions that you need to define
for the BTS-set, compared with the number required by CEDA.

Operations support
You can control the CICS BTS processes and activities running in your
BTS-set through a set of operate views:

PROCTYP General view of all installed process types and their
attributes.

PROCTYPD Detailed view of the selected process type and its
attributes.

PROCTYPS Summary view of all installed process types and their
attributes.

New resource tables
The following resource tables are introduced to support CICS BTS:

v CRESPRTY

v ERMCPRTY

v PRCINGRP

v PROCDEF

v PROCTYP

Benefits of using CICSPlex SM to manage CICS BTS

You do not have to use CICSPlex SM workload management to route BTS
activities, but using CICSPlex SM can offer many benefits:

v Management of distributed data

v Workload separation and balancing functions of workload management

v Customizable dynamic routing program EYU9XLOP

v Reduction in link definitions if you use BAS and CICS BTS

v Cooperation between BAS and CICS BTS in the management of your business
environment.

110 CICS TS for OS/390: Release Guide

Chapter 9. Open transaction environment

This chapter describes changes to CICS internal architecture to provide an open
transaction environment (OTE) that supports mutiple task control blocks (TCBs). It
covers the following topics:
v “Overview”

v “Benefits” on page 117

v “Requirements” on page 118

v “Changes to CICS externals” on page 118

v “CICSPlex SM support” on page 132

Overview

In earlier releases of CICS, user applications operate in a restricted, or “closed”,
environment. Although they can use the functionally-rich CICS programming
interfaces (see “Permitted programming interfaces under the QR TCB” on
page 114), direct invocation of other services is not supported. This is because
CICS runs user transactions under a single MVS TCB, known as the CICS
quasi-reentrant (QR) TCB. Direct invocation of other services outside the scope of
the CICS permitted interfaces is not supported, because such actions could
interfere with CICS own use of its QR TCB. In particular, services which result in
the suspension (“blocking”) of the QR TCB would cause all CICS tasks to wait.

Other subsystems, such as DB2, MQSeries®, and IMS DBCTL, can be invoked
indirectly through the CICS resource manager interface, using task-related user
exits (also referred to as adapters). These task-related user exits are themselves
restricted to the closed CICS environment when running under the CICS QR TCB,
and hence they are required to manage a private set of MVS TCBs in order to
access non-CICS function (such as MVS services). However, having to switch to
private TCBs incurs a performance overhead. This is because, when a QR program
calls a task-related user exit (such as DB2 or MQSeries) that performs its
processing under a non-QR TCB, two TCB switches are incurred: (1) from the QR
TCB when the task-related user exit is invoked, and (2) back to the QR TCB on
return from the task-related user exit. Also, switching between a private TCB and
the QR TCB adds to the complexity of writing a task-related user exit.

The restrictions that affect RMI adapters would also prevent CICS from offering full
support for all the core Java classes. Java application programs developed and
compiled using a Java compiler (such as VisualAge for Java or javac) are restricted
to the function provided by the CICS Java classes (JCICS). The normal CICS
program execution model is used for these Java application programs, which
means they are run by CICS under the QR TCB. For information about this type of
CICS Java application program, see “Chapter 14. VisualAge for Java, Enterprise
Edition for OS/390” on page 151.

The future

To remove the restrictions that allow user application programs to use only the
programming interfaces that are permitted to run under the QR TCB, CICS
introduces a new type of TCB (see “Open TCBs” on page 112). These open TCBs
provide support for OS/390 Java Virtual Machines (JVMs) invoked by CICS, and

© Copyright IBM Corp. 1998 111

|

|

|
|
|
|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|

which run as part of the CICS address space. Open TCB support for JVMs is
provided immediately; see “Chapter 15. Support for the Java Virtual Machine” on
page 155 for information about CICS support for JVMs.

In the longer term, it is IBM’s intention to extend the use of this new type of TCB to
provide a fully open environment in which user applications can operate without
today’s restrictions. In particular, task-related user exits, will be able to exploit OTE
support to reduce some of the overhead and to simplify the programming.

Open TCBs

The open transaction environment extends the TCBs used by CICS to include a
new type of TCB called an open TCB. A task running under its own open TCB is
allowed to invoke previously restricted services, such as blocking services, because
it does not interfere with the QR TCB, or cause it to wait. For example, invoking an
OS/390 JVM under a unique open TCB allows the JVM to run a user Java
application program that uses Java classes such as java.io, java.net, and java.awt
(including windowing support).

Similarly, the change to CICS internal architecture for multiple TCB support will
allow task-related user exits to invoke non-CICS services. They will then benefit
from the open transaction environment because they will not need to manage their
own private set of TCBs. This will result in simplified systems management for the
CICS system administrator, and provide performance improvement. A user
application program that is able to run under an open TCB will benefit, because,
when CICS returns control to it following an RMI call, CICS need not switch to the
QR TCB. The associated user task can continue executing on the unique open TCB
under which CICS invoked the task-related user exit and need not incur the
overhead of a TCB switch.

The open TCB modes supported in CICS TS Release 3 are as follows:

J8 A pool of open TCBs, from which a TCB is allocated for each invocation of
a JVM. The mode identification, J8, signifies a TCB mode reserved for
JVMs running in key 8 (CICS key). J8 TCBs are fully supported in CICS TS
Release 3, and you can see information about the use of these in CICS
dispatcher statistics.

L8 A pool of open TCBs, from which one TCB is allocated for a task-related
user exit program that is defined to support open TCBs. The mode
identification, L8, signifies a TCB mode reserved for CICS user tasks that
use LE services, running in key 8 (CICS key). The use of L8 TCBs is
disabled in CICS TS Release 3, but will be enabled in a future release.
CICS dispatcher statistics will always show a zero count until such time that
L8s are enabled for use.

You specifiy the maximum number of all open TCBs that a CICS region can use on
the MAXOPENTCBS system initialization parameter (see “Changes to system
definition” on page 118 for details).

IBM plans to roll out full support for open TCBs over more than one release of
CICS TS. The information provided now is intended to help you prepare your
application programs, task-related user exits, and global user exit programs to
exploit the CICS open transaction environment as more and more OTE support is
enabled.

112 CICS TS for OS/390: Release Guide

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

||
|
|
|
|

||
|
|
|
|
|
|

|
|
|

|
|
|
|
|

Using an open TCB

CICS will determine whether your application programs can take advantage of an
open TCB according to whether they are defined as threadsafe (fully reentrant) or
only quasi-reentrant.

Quasi-reentrant programs

In the CICS quasi-reentrant environment, all user programs (application programs,
user-replaceable modules, global user exits, and task-related user exits), in general,
run under a single TCB—the QR TCB. When a program is given control by the
CICS dispatcher, it can be sure that no other user program can run until it
relinquishes control during a CICS request, at which point the user task is
suspended, leaving the program still“in use”. The same program could then be
reinvoked for another task, which means an application program can be in use
concurrently by more than one task, although only one task at a time can actually
be executing (see quasi-reentrant in “Definition of terms” on page 247).

To ensure that user programs cannot interfere with the working storage of other
user programs, CICS obtains a separate copy of working storage for each
execution of an application program. Thus, if a user application program is in use
by 11 user tasks, there are 11 copies of working storage in the appropriate dynamic
storage area (DSA).

Quasi-reentrancy allows programs to access shared virtual storage—for example,
the CICS common work area (CWA)—without the need to protect that virtual
storage from concurrent access by other programs. The shared virtual storage is
dedicated exclusively to the running program, until it issues its next CICS request.
Thus, for example, an application can read and subsequently update a field in the
CWA between CICS commands without using compare and swap (CS) instructions
or locking (enqueuing on) the resource.

Note: The CICS QR TCB provides protection through exclusive control of shared
virtual storage only if all user tasks that access that virtual storage run under
the QR TCB. It does not provide automatic protection from other tasks that
execute concurrently under another (open) TCB.

Threadsafe programs

In an OTE environment, threadsafe application programs and open task-related
user exits, global user exit programs, and user-replaceable modules cannot rely on
quasi-reentrancy, because they may run concurrently on open TCBs. Furthermore,
even quasi-reentrant programs are at risk if they access shared virtual storage that
can also be accessed by a user task running concurrently under an open TCB. This
means that the techniques used by user programs to access shared resources
must take into account the possibility of simultaneous access by other programs.
Programs that use appropriate serialization techniques when accessing shared
virtual storage are described as threadsafe. (The term fully reentrant is also used
sometimes, but this can be misunderstood, hence threadsafe is the preferred term.)
For all CICS-managed resources, such as files, transient data queues, temporary
storage queues, and DB2 tables, CICS processing automatically ensures access in
a threadsafe manner. However, for any other resources, such as shared storage,
which are accessed directly by user programs, it is the responsibility of the user
program to ensure threadsafe processing. Typical examples of shared storage are
the CICS CWA, global user exit global work areas, and storage acquired by EXEC
CICS GETMAIN SHARED commands.

Chapter 9. Open transaction environment 113

|

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Note: When identifying programs that use shared resources, you should also
include any program that modifies itself. Such a program is effectively
sharing storage and should be considerd at risk.

Techniques that you can use to provide threadsafe processing when accessing a
shared resource are as follows:

v Retry access, if the resource has been changed concurrently by another
program, using the compare and swap instruction

v Enqueue on the resource, to obtain exclusive control and ensure that no other
program can access the resource, using:

– An EXEC CICS ENQ command, in an application program

– An XPI ENQUEUE function call to the CICS enqueue (NQ) domain, in a
global user exit program

v Always perform accesses to shared resources in a quasirent program, and
linking to this using the EXEC CICS LINK command.

This technique applies to threadsafe application programs and open API
task-related user exits only. A linked-to program defined as quasi-reentrant runs
under the QR TCB and can take advantage of the serialization provided by CICS
quasi-reentrancy. Note that even in quasi-reentrant mode, serialization is
provided only for as long as the program retains control and does not wait (see
“Quasi-reentrant programs” on page 113 for more information).

v Place all transactions that access the shared resource into a restricted
transaction class (TRANCLASS), one that is defined with the number of active
tasks specified as MAXACTIVE(1).

This last approach effectively provides a very coarse locking mechanism, and
may have a severe impact on performance.

Note: Although the term threadsafe is defined in the context of individual programs,
a user application as a whole can only be considered threadsafe if all the
application programs that access shared resources obey the rules. A
program that is written correctly to threadsafe standards cannot safely
update shared resources if another program that accesses the same
resources does not obey the threadsafe rules.

Permitted programming interfaces under the QR TCB

The services available to user-written programs that run under the CICS QR TCB
(application programs, user-replaceable modules (URMs), PLT programs,
task-related user exits, and high-level global user exits) are those provided by:

v The CICS command-level application programming interface (API), which is
documented in the CICS Application Programming Reference.

v The CICS system programming interface (SPI), which is documented in the
CICS System Programming Reference.

v The CICS resource manager interface (RMI), which is documented in the CICS
Customization Guide. in the chapter entitled “Task-related user exit programs”.
The RMI allows other products to provide a task-related user exit that interfaces
with their code running in another address space. User applications can use the
RMI to access resource managers such as DB2, DBCTL, and MQSeries.

v The CICS exit programming interface (XPI), which is documented in the CICS
Customization Guide. The XPI, which is available only within global user exit
programs, allows user-written exit programs to have access to certain CICS
services.

114 CICS TS for OS/390: Release Guide

|
|
|

|
|

|
|

|
|

|

|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|

v Systems application architecture (SAA) Common Programming Interfaces
(CPI). The SAA CPIs supported by CICS TS are the common programming
interface for communications (CPI-C) and the common programming interface for
resource recovery (CPI-RR).

v LE callable services, which are listed in the Language Environment for OS/390
& VM Concepts Guide, GC28-1945.

Program attributes for the open transaction environment

The open transaction environment provides a new attribute for user application
programs, global user exit programs, user-replaceable modules (URMs), and PLT
programs. This new attribute, CONCURRENCY, indicates the standard, or level, of
reentrancy to which the program is written. The value you define for
CONCURRENCY (QUASIRENT or THREADSAFE) indicates to CICS whether the
program must run under the QR TCB, or whether it is written to threadsafe
standards and can run under an open TCB. For details of the program
CONCURRENCY attribute, see “Changes to resource definition” on page 119.

Non-threadsafe programs will require the QUASIRENT attribute (for an explanation
of what makes a program threadsafe, see “Quasi-reentrant programs” on page 113).
Existing programs, including existing task-related user exits, will run unchanged as
quasi-reentrant programs, which is the default.

A program defined as THREADSAFE will run under either the QR TCB, or an open
TCB, whichever the user task is running under at the time the program is given
control. In CICS TS Release 3, threadsafe application programs will continue to be
restricted to the CICS programming interfaces (see “Permitted programming
interfaces under the QR TCB” on page 114). As well as being threadsafe, they must
not have any TCB affinity4, but this is assured because compliance with the CICS
permitted programming interfaces avoids TCB affinity. A threadsafe program must
be Language Environment-conforming5, or an assembler program.

Adherence to these restrictions will enable CICS to invoke, or return control to, a
threadsafe program under whichever TCB the user task is running. CICS will not
first need to switch to the QR TCB as for a quasi-reentrant program. This will
provide a performance benefit in the future when using task-related user exits that
exploit OTE.

Program attributes for task-related user exits

Table 7 on page 116 shows the concurrency attributes that you can specify for a
task-related user exit program, depending on whether the program:

v Is threadsafe

4. TCB affinity occurs when a program has a dependency on a specific TCB, and is only able to execute correctly on that TCB. This
can occur when a program issues calls to non-CICS API services that leave the TCB, or dependent control blocks, in a state on
which the program relies whenever control it is returned to it after an interrupt.

5. Language Environment-conforming program. An application program that has been compiled by a Language Environment-
conforming compiler. These compilers are: (1) IBM OS/390 C/C++ (2) IBM SAA AD/Cycle® COBOL/370™ (3) IBM COBOL for
OS/390 & VM (4) IBM COBOL for MVS & VM (formerly COBOL/370) (5) IBM SAA AD/Cycle PL/I MVS & VM (6) IBM PL/I for MVS
& VM (formerly PL/I MVS & VM) and, (7) IBM OS/390 VisualAge for Java, Enterprise ToolKit for OS/390. LE-conforming programs
cannot run without Language Environment and can take advantage of all Language Environment facilities. In contrast,
compatibility-mode application programs are compiled with older compilers, whose executable output is only partially supported by
LE/370.

Chapter 9. Open transaction environment 115

|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

|

v Uses non-CICS programming interfaces (apart from the MVS ATTACH and POST
that it has to use, under the QR TCB, to manage its own TCBs)

Table 7. Defining attributes for task-related user exit programs

Threadsafe?

Uses
non-CICS
interfaces? Description of the task-related user exit program

No No It must be defined as quasi-reentrant.

It is called under the CICS-managed QR TCB, and does
not use any private TCBs.

No Yes It must be defined as quasi-reentrant.

It is called under the CICS-managed QR TCB, and must
provide private TCBs in order to use non-CICS
interfaces.

Yes No It can be defined as threadsafe.

It is called under a CICS-managed TCB (not necessarily
the QR TCB) and does not use any private TCBs.

Yes Yes It can be defined as:

v Threadsafe:It provides private TCBs in order to use
non-CICS interfaces. It is called under a
CICS-managed TCB, which could be an open TCB or
the QR TCB.

v Threadsafe and open API: It does not need private
TCBs. Will be called by CICS under a CICS-managed
open TCB, mode L8.

If the task-related user exit does not support the OPENAPI option on the enable
command, it should switch to a privately-managed TCB if it needs to use non-CICS
API services. Thus, through a combination of the program resource definition and
options on the ENABLE command, a task-related user exit will be:

v Quasi-reentrant, in which case it must switch to a privately-owned TCB in order
to use services other than those provided by the CICS permitted programming
interfaces

v Threadsafe only, in which case it will run under the invoking TCB

v Threadsafe and also an open API task-related user exit, in which case CICS will
invoke the task-related user exit under an open TCB.

The use of these attributes

To enable a task-related user exit as an open API task-related user exit, you will
specify the OPENAPI option on the enhanced EXEC CICS ENABLE command (see
“Changes to the system programming interface (SPI)” on page 121). If a
task-related user exit is enabled in this way, CICS will invoke it under an open TCB
obtained from a CICS-managed pool of open TCBs. Running under its own open
TCB means that the task-related user exit will not need to perform a TCB switch in
order to invoke non-CICS API services. It will therefore be able to take advantage of
reduced TCB switching and gain a performance advantage when invoked by
threadsafe programs.

Task-related user exits that do not support the OPENAPI option will manage their
own pools of TCBs, as currently, switching to one of their own TCBs to use function
outside the permitted programming interfaces.

116 CICS TS for OS/390: Release Guide

|
|

||

|

|
|
||

|||

|
|

|||

|
|
|

|||

|
|

|||

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|

|
|

|

|
|
|
|
|
|
|
|
|

|
|
|

A user task invoking an open API task-related user exit will be given its own
dedicated open TCB for the lifetime of the task. This open TCB will be shared by:

v All open API task-related user exits invoked under the user task

v All the user task’s threadsafe programs, unless they are given control under the
QR TCB.

When a user task first invokes an open API task-related user exit and acquires its
open TCB, it becomes an “open task”.

An open API task-related user exit must be threadsafe and must be able to run its
requests directly under the open TCB. It may have TCB affinity to the open TCB
under which it runs.

IBM plan to enable the DB2 adapter to exploit the open transaction environment in
a future deliverable.

Benefits

The benefits provided by the CICS open transaction environment facility will be as
follows:

Performance improvements
When the DB2 adapter is enabled for OTE, user transactions that access DB2
resources, and which are threadsafe and Language Environment-conforming (or
written in assembler) should achieve improved performance when measured
against earlier releases of CICS and DB2.

Improved RMI
New options on the EXEC CICS ENABLE command will allow a task-related
user exit to notify CICS whether to invoke it under the CICS QR TCB or an
open TCB, obtained from a CICS-managed pool of open TCBs, dedicated to
the user task. When task-related user exits are able to request usage of an
open TCB, the following benefits will apply:

Performance improvements
Task-related user exit programs will be able to avoid the performance
overhead of switching to their own privately-managed TCBs. To do this,
they will have to be threadsafe and will have to perform their function on
the TCB under which CICS calls them (without the need to perform some
extra function that negates the performance gains made by not switching
TCBs).

Easier to write new task-related user exits in future releases
It is planned that the open TCB attribute will become available to all
task-related user exits. It will then be possible to write threadsafe
task-related user exits that do not need to manage their own set of TCBs, in
which case they will benefit from the above performance advantages.

Simpler systems management
Task-related user exits that manage their own TCBs can require their users
to become involved in the systems management of these TCBs. This
requirement could be removed when task-related user exits are enabled to
exploit open TCBs.

Additional function available
Task-related user exits will be able to use the CICS permitted programming
interfaces and additional function supported for application use while
running under a CICS-managed open TCB.

Chapter 9. Open transaction environment 117

|
|

|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

Task-related user exits that are able to run under the caller’s TCB will benefit by
avoiding TCB switches to and from the QR TCB, when invoked by the CICS
RMI running under an open TCB.

Improved problem determination
Information relating to open TCBs appears in CICS trace entries, messages,
statistics, monitoring data, and dumps. Without OTE support, the equivalent
TCBs are in private pools owned by individual task-related user exits, and are
therefore not so visible.

These benefits will be available with the full support of existing CICS functions such
as security, storage protection, and transaction isolation.

Requirements

The hardware and software required for the first phase of OTE support enabled in
CICS TS Release 3 is the same as for CICS TS 3 generally.

Changes to CICS externals

There are changes to a number of CICS externals in readiness for the enablement
of the open transaction environment. These are:
v “Changes to system definition”

v “Changes to resource definition” on page 119

v “Changes to the system programming interface (SPI)” on page 121

v “Changes to global user exits” on page 127

v “Changes to task-related user exits” on page 128

v “Changes to the exit programming interface (XPI)” on page 130

v “User-replaceable modules” on page 132

Changes to system definition

The additions to CICS system initialization parameters to support OTE are shown in
Table 8.

Table 8. DFHSIT macro parameters
DFHSIT [TYPE={CSECT]DSECT}]

,...
,MAXOPENTCBS={5]number}
,FORCEQR={NO]YES}
,...

END DFHSITBA

MAXOPENTCBS=5|number
Specifies the maximum number, in the range 1 to 999, of open TCBs (J8s only
initially) that can exist concurrently in the CICS region. When specifying this
value, take into account TCB storage requirements: TCBs use real storage, and
virtual storage below 16MB.

The default value is 5 open TCBs.

118 CICS TS for OS/390: Release Guide

|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

|

|

|

|

|

|

|

|
|

||

|
|
|
|
|

|

CICS manages a pool of open TCBs up to the limit set by MAXOPENTCBS. At
any one time, the pool can consist of some TCBs that are allocated, and others
that are free. CICS attaches a new TCB only when there isn’t a free TCB
available in the pool. For example, if the maximum number of open TCBs is set
at 100, the pool could consist of 50 open TCBs, not all of which are allocated.

FORCEQR={NO]YES}
Specifies whether you want CICS to force all user application programs
specified as CONCURRENCY(THREADSAFE) to run under the CICS QR TCB,
as if they were specified as CONCURRENCY(QUASIRENT) programs. This
parameter applies to application programs that are restricted to the current
CICS programming interfaces, and therefore does not apply to Java programs
that are run in a JVM.

FORCEQR=YES will allow you, in a test environment, to run incompletely
tested threadsafe application programs that have proved to be non-threadsafe.

FORCEQR will apply to all programs defined as threadsafe that are not invoked
as task-related user exits, global user exits, or user-replaceable modules.

Changes to resource definition

A CONCURRENCY option is added to the program resource definition, as follows:

CONCURRENCY(QUASIRENT]THREADSAFE)
specifies whether the program is written to threadsafe or quasi-reentrancy
standards.

The CONCURRENCY option is applicable to all CICS executable program
objects:
v User application programs
v PLT programs
v User replaceable modules (URMs)
v Global user exits
v Task-related user exits

However, there are special considerations for URMs, task-related user exits and
global user exits. See “User-replaceable modules” on page 132, “Changes to
task-related user exits” on page 128 and “Changes to global user exits” on
page 127 for details of these.

QUASIRENT
specifies that the program is quasi-reentrant only, and relies on the
serialization provided by CICS single threading when accessing shared
resources. QUASIRENT is the default.

The program is restricted to the permitted programming interfaces, and
must comply with the CICS quasi-reentrancy rules. For details of these, see
the multithreading topic in the CICS Application Programming Guide.

This option is supported for all executable programs.

CICS will ensure that the program always executes under the QR TCB,
even when control is returned after it has invoked an open API task-related
user exit, or when it interacts with threadsafe programs.

Chapter 9. Open transaction environment 119

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|
|

To ensure compatibility when migrating from an earlier release of CICS,
CONCURRENCY(QUASIRENT) is the default, and should be specified for
traditional CICS application programs.

THREADSAFE
specifies that the program is threadsafe, and when it accesses shared
non-CICS-managed resources it takes into account the possibility that other
programs may be executing concurrently and attempting to modify the
same resources. It uses appropriate serialization techniques when
accessing any non-CICS-managed shared resources.

A threadsafe program will be able to run under whichever TCB CICS
invokes it, either the QR TCB or an open TCB, which could be:

v An open TCB of mode L8, in which case it will continue to be restricted
to the CICS permitted programming interfaces. Compliance with these
rules ensures that the program has no TCB affinity.

v An open TCB of mode J8, allocated for Java programs defined to run
under a JVM, in which case the CICS restrictions do not apply.

This option is supported for all executable programs. Threadsafe programs
must be Language Environment-conforming, or be assembler programs.

In practice, CICS will not switch TCBs for threadsafe programs between
invocations of the permitted programming interfaces. However, on return
from invoking a service through the permitted programming interfaces, a
user task could receive control under a different TCB, as follows:

v An EXEC CICS request will generally return control under the QR TCB.

Exceptions to this general rule will be where the CICS internal request
processing has been enhanced to be threadsafe (in which case CICS will
return control under the invoker’s TCB, thus possibly avoiding a TCB
switch).

v An invocation of a CONCURRENCY(QUASIRENT) task-related user exit
will return control under the QR TCB (possibly after switching to and from
the task-related user exit’s privately-owned TCB to use services outside
the scope of the permitted programming interfaces).

v An invocation of an open API task-related user exit will return control
under the task-related user exit’s open TCB.

v If a threadsafe program issues an EXEC CICS HANDLE command that
specifies the LABEL option, and an event causes a branch to the label,
the user code could be resumed at the specified label under a different
TCB from that under which the program was running when the event was
triggered. The CICS HANDLE table includes the ID of the TCB under
which the EXEC CICS HANDLE was issued, therefore it will be possible
to identify in a dump the TCB in use prior to label processing.

For an executing CONCURRENCY(THREADSAFE) program, floating point
registers, access registers (other than 0, 1, 14, 15), and program mask will
remain unchanged by CICS between invocations of the permitted
programming interfaces, as for QUASIRENT-defined programs.

CONCURRENCY(THREADSAFE) can be regarded as a performance
option, to be used by application programs to reduce TCB switching, in
conjunction with open API task-related user exits. You will be able to specify
THREADSAFE for existing CICS applications that you know are threadsafe.
You are recommended to comply with the rules for threadsafe programs

120 CICS TS for OS/390: Release Guide

|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|

|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

when developing new application programs, so that they can take
advantage of the benefits of OTE as the support becomes available.

You can specify the program CONCURRENCY option in the following ways:

v On a CSD DEFINE PROGRAM command, using either a CEDx transaction or
the DFHCSDUP utility program.

v On an EXEC CICS CREATE command.

v Using a program autoinstall exit, if program autoinstall is active.

If CONCURRENCY is not specified by any method, it defaults to QUASIRENT.

Changes to the system programming interface (SPI)

The open transaction environment introduces changes to the following SPI
commands:
v CREATE PROGRAM
v ENABLE
v INQUIRE EXITPROGRAM
v INQUIRE PROGRAM
v INQUIRE SYSTEM
v INQUIRE TASK
v SET SYSTEM

New options supported by EXEC CICS CREATE PROGRAM

The EXEC CICS CREATE command is extended to enable you to define the
CONCURRENCY attribute for the program definition you are installing. The
ATTRIBUTES string on the CREATE PROGRAM command can now include one of
the following options:

v CONCURRENCY(QUASIRENT)

v CONCURRENCY(THREADSAFE)

For information about these program attributes, see “Changes to resource
definition” on page 119.

New options on EXEC CICS ENABLE command

The EXEC CICS ENABLE command is extended by the addition of new options
that will allow you to:

v Override the CONCURRENCY attribute defined on the PROGRAM resource
definition for a task-related user exit program.

v Specify whether the task-related user exit is restricted to the CICS permitted
programming interfaces, or can also use non-CICS API services.

The full syntax of the enhanced ENABLE command is as follows:

Chapter 9. Open transaction environment 121

|
|

|

|
|

|

|

|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|

|
|

|

|
|

|
|

|
|

|
|

The new options on the EXEC CICS ENABLE command are as follows:

QUASIRENT]THREADSAFE(task-related user exits only)
specifies whether the task-related user exit program is written to threadsafe
standards, or is only quasi-reentrant. If specified, these options override the
CONCURRENCY attribute set by the PROGRAM resource definition for the
task-related user exit program (see “Changes to resource definition” on
page 119).

Note: The concurrency attribute on the installed program resource definition
remains unchanged, because the attributes for a task-related user exit
are held in its own exit program control block, the information for which
is derived from a combination of the program resource definition and the
ENABLE command.

These options remain in force until changed by another ENABLE
command—there are no equivalent options on the DISABLE command. If,
having enabled a task-related user exit, the adapter component that starts the
connection finds that its resource manager does not support the options
specified, the adapter must issue another ENABLE command to re-specify the
concurrency attribute. There is no SPI option to specify that the
CONCURRENCY attribute defined on the task-related user exit’s program
resource definition is to be reinstated.

If none of a task-related user exit’s ENABLE commands specify a
THREADSAFE or QUASIRENT option, the concurrency is derived from the
program resource definition. Note that the value is not affected by the
FORCEQR system initialization parameter, which does not apply to task-related
user exits.

The CONCURRENCY values that can be specified on the ENABLE command
are as follows:

ENABLE PROGRAM

GG ENABLE PROGRAM(data-value) N

ENTRY(ptr-ref)
ENTRYNAME(data-value)
EXIT(data-value)
FORMATEDF

GALENGTH(data-value)
GAENTRYNAME(data-value)

INDOUBTWAIT
LINKEDITMODE

QUASIRENT
THREADSAFE

OPENAPI
OPENAPI

SHUTDOWN
SPI
START
TALENGTH(data-value)
TASKSTART

GH

Conditions: INVEXITREQ, NOTAUTH

122 CICS TS for OS/390: Release Guide

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

QUASIRENT specifies that the task-related user exit program is
quasi-reentrant, and relies on the serialization provided by CICS
when accessing shared resources.

The task-related user exit program is restricted to the permitted
programming interfaces, and must comply with CICS
quasi-reentrancy rules. CICS always invokes a quasi-reentrant
task-related user exit under the QR TCB. If the task-related
user exit uses non-CICS API services, it must switch to its own
TCB before issuing calls to these services, and switch back
again before returning to its caller.

THREADSAFE
specifies that the task-related user exit program is threadsafe,
and will take into account the possibility that, when accessing
shared resources, other programs may be executing
concurrently and attempting to modify the same resources. It
will use appropriate serialization techniques when accessing
any shared resources.

A threadsafe task-related user exit must be able to run under
whichever TCB CICS invokes it. If OPENAPI is also specified,
CICS will generally invoke the task-related user exit under an
L8 open TCB.

OPENAPI(task-related user exits only)
specifies that the task-related user exit is using non-CICS APIs and wishes to
do so under a CICS open TCB. CICS will always call the task-related user exit
under an open TCB.

Note: If OPENAPI is specified without THREADSAFE, CICS enforces
THREADSAFE by default.

These new options are supported by EDF and CECI.

New options on EXEC CICS INQUIRE EXITPROGRAM command

The EXEC CICS INQUIRE EXITPROGRAM command is extended to allow you to
obtain additional information about a task-related user exit. The new options
provided for this purpose are:

CONCURRENST(cvda) (task-related user exit only)
returns a CVDA indicating the concurrency status of the task-related user exit
program, specified by the latest ENABLE command for this program.

CVDA values are:

QUASIRENT
The task-related user exit program is defined as being quasi-reentrant,
and is able to run only under the CICS QR TCB when invoking CICS
services through the CICS API. To use any non-CICS API services, this
task-related user exit must switch to a privately-managed TCB.

THREADSAFE
The program is defined as threadsafe, and is capable of running under
any TCB. If the APIST option returns OPENAPI, it will always be
invoked under an open TCB. If the APIST option returns BASEAPI, it is

Chapter 9. Open transaction environment 123

||
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|

|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|

invoked under whichever TCB is in use by its user task when the
program is given control, which could be either an open TCB or the
CICS QR TCB.

APIST(cvda) (task-related user exit only)
returns a CVDA indicating which APIs the task-related user exit program uses.

CVDA values are:

BASEAPI
The task-related user exit program is enabled as either QUASIRENT or
THREADSAFE, but without the OPENAPI option. This means it is
restricted to the CICS permitted programming interfaces

OPENAPI
The task-related user exit program is enabled with the OPENAPI option.
This means it will be permitted to use non-CICS API in a threadsafe
manner, for which purpose CICS gives control to the task-related user
exit under an open TCB.

The above new options are supported by EDF and CECI. CEMT does not support
INQUIRE EXITPROGRAM.

New options on EXEC CICS INQUIRE PROGRAM command

The EXEC CICS INQUIRE PROGRAM command is extended to allow you to obtain
information about a program’s concurrency as defined in the program resource
definition. The new option provided for this purpose is:

CONCURRENCY(cvda)
returns a CVDA indicating the concurrency status of the application program.
The CVDA values are:

QUASIRENT
The program is defined as being quasi-reentrant, and is able to run only
under the CICS QR TCB.

THREADSAFE
The program is defined as threadsafe, and is able to run under
whichever TCB is in use by its user task when the program is given
control. This could be either an open TCB or the CICS QR TCB.

Notes:

1. If the program is not yet loaded (or is waiting to be reloaded following a
NEWCOPY or PHASEIN request), the concurrency attribute is derived from
the installed program resource definition. Note that the default for the
program definition is QUASIRENT. However, in the case of a Language
Environment-conforming program, the concurrency as originally defined can
be overridden when the program is subsequently loaded. If CICS finds that
the program itself contains a CONCURRENCY value defined by LE run-time
options, the installed program resource definition is updated by the LE
run-time option.

2. The CONCURRENCY attribute on the installed program resource definition
is not changed by the FORCEQR system initialization parameter. CICS
returns a CVDA of THREADSAFE for a threadsafe-defined program, even if
FORCEQR=YES is specified.

3. The CONCURRENCY attribute on the installed program resource definition
for a task-related user exit program is not changed by any attributes
specified on an ENABLE command. The CONCURRENCY attribute on an

124 CICS TS for OS/390: Release Guide

|
|
|

|
|

|

|
|
|
|

|
|
|
|
|

|
|

|

|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

ENABLE command affects only the use of the program established by the
ENABLE. For a task-related user exit program, CICS always returns a
CVDA using the values defined in the program resource definition.

You cannot modify a program’s concurrency attribute using the SPI—the
CONCURRENCY option is not supported on the EXEC CICS SET
PROGRAM command. You can only change the concurrency by on of the
following methods:

v Redefine the program’s CONCURRENCY option in the CICS program
resource definition, or in the program autoinstall model, and reinstall the
definition

v Recompile and link-edit the program with new LE run-time options, and
issue a CEMT, or EXEC CICS, SET PROGRAM(...) NEWCOPY (or
PHASEIN) command.

The above new options are supported by EDF, CECI and CEMT.

New options on EXEC CICS INQUIRE SYSTEM command

The EXEC CICS INQUIRE SYSTEM command is extended to allow you to obtain
information about open TCBs, and whether quasi-reentrancy is being forced for all
application programs. The new options are:

MAXOPENTCBS(data-area)
returns, as a fullword binary value, the maximum number of open TCBs
currently allowed. For information about the MAXOPENTCBS system
initialization parameter, see “Changes to system definition” on page 118.

ACTOPENTCBS(data-area)
returns, as a fullword BINARY value, the number of open TCBs currently
allocated.

FORCEQR(cvda)
returns a CVDA value indicating whether quasi-reentrancy is currently being
forced for all user application programs defined as threadsafe. The CVDA
values are:

FORCE
All user application programs are being forced to execute under the QR
TCB, as if they were defined with the CONCURRENCY(QUASIRENT)
attribute, even if were defined with CONCURRENCY(THREADSAFE).

NOFORCE
Quasi-reentrancy is not being enforced for all user application
programs, and the threadsafe attribute on program definitions is being
honored.

The new INQUIRE SYSTEM options are supported by EDF, CECI and CEMT.

New options on EXEC CICS INQUIRE TASK command

The EXEC CICS INQUIRE TASK command has a new option to allow you to obtain
information about the TCB under which the user task is running. The new option is:

TCB(cvda)
returns a CVDA value indicating the type of TCB under which the user task is
running.

Chapter 9. Open transaction environment 125

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

|

|
|

|
|
|

CVDA values are:

CKOPEN
The user task is running under a CICS key open TCB, either mode L8
or J8.

QR The user task is running under the CICS quasi-reentrant TCB.

INTERNAL
The user task is running under one of the other CICS-managed TCBs.
This could be the file-owning TCB, resource-owning TCB, the
concurrent TCB, the FEPI TCB, the ONC/RPC TCB, or a sockets
domain TCB.

The TCB option is supported by EDF, CECI, and CEMT.

New options on EXEC CICS SET SYSTEM command

The EXEC CICS SET SYSTEM command is extended to allow you to modify
information relating to the open transaction environment while CICS is running. The
new options provided on the SET SYSTEM command are:

MAXOPENTCBS(value)
specifies, as a fullword binary value, the maximum number of open TCBs that
can exist concurrently in the CICS region. The value specified can be in the
range 1 to 999.

If you reduce MAXOPENTCBS from its previously defined value, and the new
value is less than the number of open TCBs currently allocated, CICS detaches
TCBs to achieve the new limit only when they are freed by user tasks.
Transactions are not abended to allow TCBs to be detached to achieve the new
limit.

If there are tasks queued waiting for an open TCB, and you increase
MAXOPENTCBS from its previously defined value, they will be resumed when
CICS attaches new TCBs up to the new limit.

FORCEQR(cvda)
specifies whether you want CICS to force all user application programs
specified as CONCURRENCY(THREADSAFE) to run under the CICS QR TCB,
as if they were specified as CONCURRENCY(QUASIRENT) programs.

This allows you, in a test environment, to run incompletely tested threadsafe
application programs that have proved to be non-threadsafe.

FORCEQR applies to all programs defined as threadsafe that are not invoked
as task-related user exits, global user exits, or user-replaceable modules.

CVDA values are:

FORCE
All user programs defined as threadsafe are to be forced to execute as
quasi-reentrant programs.

NOFORCE
CICS is to honor the CONCURRENCY(THREADSAFE) attribute defined
on program resource definitions, and invoke them under either the QR
TCB or an open TCB.

126 CICS TS for OS/390: Release Guide

|

|
|
|

||

|
|
|
|
|

|

|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

|

|
|
|

|
|
|
|

The FORCEQR(FORCE]NOFORCE) option allows you to change dynamically
the option specified by the FORCEQR system initialization parameter (see
“Changes to system definition” on page 118).

Specifying FORCEQR(FORCE) is not applied to currently invoked programs,
and applies only to programs invoked for the first time after the change to the
FORCEQR status.

The above new options are supported by EDF, CECI and CEMT.

Changes to global user exits

There are changes to the DFHUEPAR standard parameter list:

v The amount of storage addressed by UEPXSTOR is increased.

v Additional task indicators are provided.

UEPXSTOR now points to a 320-byte area of DFHUEH-owned storage that a global
user exit program should use when invoking the XPI. This provides up to 256 bytes
for the XPI services parameter list, plus an extra 64 bytes for your own purpose.

The DFHUEPAR standard parameter list includes some additional task indicators.
The global user exit task indicator field, addressed by UEPGIND, is extended from
one byte to three bytes, the second and third bytes containing a value indicating the
TCB mode of the global user exit program’s caller. This is represented in
DFHUEPAR as both a two-character code and a symbolic value, as follows:

Table 9. TCB indicators in DFHUEPAR. Description

Symbolic
value

2-byte
code

Description

UEPTQR QR The quasi-reentrant mode TCB

UEPTCO CO The concurrent mode TCB

UEPTFO FO The file-owning mode TCB

UEPTRO RO The resource-owning mode TCB

UEPTRP RP The ONC/RPC mode TCB

UEPTSZ SZ The FEPI mode TCB

UEPTJ8 J8 The JVM mode TCB

UEPTL8 L8 An open mode TCB

UEPTSL SL The sockets listener mode TCB

UEPTSO SO The sockets mode TCB

UEPTS8 S8 The secure sockets layer mode TCB

If you have global user exit programs that are frequently invoked by user tasks that
run under an open TCB, you are recommended for performance reasons to ensure
that the global user exit programs are fully threadsafe. When you are sure that a
global user exit program is fully threadsafe, define it as such by specifying
CONCURRENCY(THREADSAFE) on the global user exit’s program resource
definition (see “Changes to resource definition” on page 119). This indicates that it it
can be invoked under its caller’s TCB (QR, an open TCB, or any other CICS TCB).
Define global user exit programs that are not threadsafe as quasi-reentrant. This
causes CICS to switch to the QR TCB before invoking the global user exit program,
as in earlier releases.

Chapter 9. Open transaction environment 127

|
|
|

|
|
|

|

|

|

|

|

|
|
|

|
|
|
|
|

||

|
|
|
|
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|
|
|
|
|
|
|
|
|
|

The XPI is updated to provide serialisation function to make it easier for global user
exits to be made threadsafe. See “Changes to the exit programming interface (XPI)”
on page 130 for details.

Global user exit programs are restricted to the CICS permitted programming
interfaces.

Global user exit recovery

There are no new recovery mechanisms for global user exits. API-capable global
user exits can use EXEC CICS HANDLE.

Note that if a global user exit fails while holding an enqueue acquired through the
enqueue/dequeue XPI, the enqueue is freed automatically when the acquiring task
terminates. See “Changes to the exit programming interface (XPI)” on page 130 for
more details.

XPCTA global user exit

An XPCTA global user exit program, invoked when a transaction abend occurs, is
always invoked under the QR TCB. It allows you to attempt to resume the
transaction at a given address, under a given execution key. If that execution key is
key 8, CICS switches to base space before resumption.

If a threadsafe program is in control when the transaction abend occurs, and the
exit requests that the task be resumed, the XPCTA exit is driven under the QR
TCB, but the task is resumed under the TCB under which the failure occurred.

Changes to task-related user exits

An additional standard parameter is passed to all task-related user exits. The task
indicator bits, addressed by UEPTIND, are extended. The UEPTIND parameter now
addresses a three byte area instead of one. The first byte contains an additional bit
setting, X'20' (equated value UEPTUTCB), to indicate an unexpected TCB. This is
set after a failure to switch to the TCB expected by the task-related user exit on a
syncpoint or end-of-task call only. In these two cases, the task-related user exit is
called on the QR TCB with the UEPTUTCB bit set. For all other calls, CICS abends
the transaction without invoking the task-related user exit.

The new second and third bytes addressed by UEPTIND contain a value indicating
the TCB mode of the task-related user exit program’s caller. The symbolic values
representing the modes are the same as those defined for the UEPGIND parameter
(see “Changes to global user exits” on page 127).

Task-related user exit programs can use the new CONCURRENCY option on the
PROGRAM resource definition, (see “Changes to resource definition” on page 119).
Also, the new OPENAPI option on the EXEC CICS ENABLE command (see
“Changes to the system programming interface (SPI)” on page 121) will be enabled
in a future deliverable for use by task-related user exit programs.

The following considerations apply to threadsafe and open API task-related user
exit programs:

v CONCURRENCY(QUASIRENT)

Task-related user exit programs can remain unchanged, in which case they
continue to work as before; that is, they are invoked by CICS under the QR TCB
and have to switch to a private TCB if necessary.

128 CICS TS for OS/390: Release Guide

|
|
|

|
|

|

|
|

|
|
|
|

|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|

|
|
|

v CONCURRENCY(THREADSAFE)

This allows a task-related user exit program to run under the caller’s TCB,
whether it is QR or open, thus avoiding any TCB switching. This could be useful
for a simple task-related user exit which can achieve its function without recourse
to a private or open TCB, confining itself to permitted programming interfaces.

v OPENAPI

OPENAPI, currently disabled, will be available for task-related user exit
programs.

An open API task-related user exit will be invoked by CICS under a
CICS-managed TCB known as an open TCB. A unique open TCB will be
dedicated for the lifetime of the user task that calls the task-related user exit.

An open API task-related user exit program must be threadsafe.

An open API task-related user exit program will be able to use the CICS
permitted programming interfaces (see “Permitted programming interfaces under
the QR TCB” on page 114) and also additional interfaces supported by OTE.

An open API task-related user exit is generally guaranteed to run under its
associated open TCB while it remains in control. If the task-related user exit
relinquishes control (by issuing a request for one of permitted programming
interfaces), the task may switch to a different TCB for the duration of the request.

An open API task-related user exit program can be invoked by quasi-reentrant or
threadsafe PLT programs executing during the final stage of initialization, and
during the first and second stages of quiesce.

General considerations for task-related user exits

There are several factors to consider as a result of the changes that are being
made to the task-related user exit interface.

The design of open API task-related user exit programs can be much simpler than
that for programs that are always invoked under the QR TCB. For example, they
can be designed without the need for privately managed TCBs, and existing
task-related user exits can be reworked to remove such TCBs.

Generally, calls to an open API task-related user exit program will be made under
an L8 mode open TCB, except for the following calls, which will continue to made
under the QR TCB:

v The start of task call

v The FORMAT EDF call

v The CICS termination call

The SPI call will be invoked under the caller’s TCB, because the SPI function is
simple, and can be performed without the need to switch TCB.

An open API task-related user exit will be able to use non-CICS programming
interfaces. If it issues blocking calls, only the issuing task will be held up. As the
open TCB is allocated for the lifetime of a user task, it could also be used to run
threadsafe programs and other open API task-related user exits in the same task.
Therefore, a task-related user exit program must not do anything that could interfere
with the other code running under the same open TCB (for example, it must not
issue an MVS STIMER macro call). Also, an open API task-related user exit
program must leave the TCB in a clean state when returning control to CICS.
Unlike a privately-managed TCB, it cannot rely on the state of the TCB being the
same on a subsequent invocation.

Chapter 9. Open transaction environment 129

|

|
|
|
|

|

|
|

|
|
|

|

|
|
|

|
|
|
|

|
|
|

|

|
|

|
|
|
|

|
|
|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|

An open API task-related user exit program will continue to be invoked in key 8. It
must be threadsafe, and able to work within the user task’s subspace.

Programming considerations

If an open API task-related user exit program uses the CICS programming
interfaces, it must ensure that it first restores at least the following aspects of the
programming environment before invoking any of permitted programming interfaces
(see “Permitted programming interfaces under the QR TCB” on page 114).

v Cross-memory mode (PASN=HASN=SASN)
v ASC mode (Primary)
v Request block (RB) level
v Linkage stack level
v The TCB’s dispatching priority
v Any added ESTAEs cancelled.

In addition, an open API task-related user exit must ensure that at CICS task
termination, the open TCB is in a suitable state to be reused by another transaction;
that is, the TCB must be in a “clean” state). In particular, the task-related user exit
must ensure that all non-CICS resources acquired specifically on behalf of the
terminating task are freed. Such resources could include:
v Dynamically allocated data sets
v OPEN ACBs or DCBs
v STIMERM requests
v MVS-managed storage
v ENQ requests
v Subtasks (by MVS ATTACH requests)
v Explicitly loaded modules
v Owned data spaces
v Added access list entries
v Name/token pairs
v Fixed pages
v Security environment (that is, TCBSENV must be set to zero)

If an open API task-related user exit abends, and does not recover (that is, it allows
the abend to percolate), CICS treats the TCB as unusable, and detaches it when
the task completes. Even so, it is the responsibility of the failing task-related user
exit to ensure that it does not leave the TCB in a state that precludes the task from
invoking all relevant open API task-related user exits for syncpoint and end-of-task.

Note that an open API task-related user exit must be able to share its open TCB
with other open API task-related user exits.

Changes to the exit programming interface (XPI)

The XPI is extended with addition of the DFHNQEDX macro function call. This
provides a serialisation service using CICS enqueue/dequeue (NQ) domain
services. Two request types are supported, ENQUEUE and DEQUEUE. The syntax
of the ENQUEUE request is as follows:

130 CICS TS for OS/390: Release Guide

|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|

ENQUEUE
DFHNQEDX [CALL,]

[CLEAR,
[IN,
FUNCTION(ENQUEUE),
ENQUEUE_NAME1(address,length),
[ENQUEUE_NAME2(address,length),]
MAX_LIFETIME(DISPATCHER_TASK),

[WAIT(YES|NO),]
[PURGEABLE(YES|NO),]
[OUT,
ENQUEUE_TOKEN,
DUPLICATE_REQUEST,
RESPONSE (name1 | *),
REASON(name1 | *)]

ENQUEUE_NAME1(address,length)
High-order part of name to be enqueued.

ENQUEUE_NAME2(address,length)
Low-order part (if any) of name to be enqueued.

MAX_LIFETIME(DISPATCHER_TASK)
MAX_LIFETIME(DISPATCHER_TASK) is required and indicates that all XPI
enqueues are owned by the requesting dispatcher task.

If you use the enqueue/dequeue XPI to achieve threadsafety in your global user
exit progams, you are recommended to free (dequeue) resources during the
invocation of the global user exit program in which they were enqueued.
However, as no recovery services are provided for abending global user exits,
CICS will ensure that any outstanding XPI enqueues are dequeued
automatically when the dispatcher task terminates. Note that if the dispatcher
task is running a CICS transaction, the dispatcher task terminates when the
CICS transaction terminates (whether normally or abnormally).

Today, all enqueues are owned by the requesting transaction. All transactions
contain units of work (UOWs), and these are used to anchor the enqueue
control blocks. The XPI, however, does not require a transaction environment;
indeed, global user exits may be invoked under dispatcher tasks which have no
transactions or UOWs.

WAIT(YES|NO)
Indicates whether the dispatcher task is to wait if the resource is currently
enqueued to another dispatcher task.

PURGEABLE(YES|NO)
The PURGEABLE option indicates whether a purge (or timeout) request against
the task is to be honored if the requesting dispatcher task has to wait for the
enqueue.

ENQUEUE_TOKEN
Enables a subsequent DEQUEUE request to identify the resource by a token
rather than enqueue name, allowing the NQ domain to locate the enqueue
control block directly, and hence more efficiently.

DUPLICATE_REQUEST
Indicates that the requesting dispatcher task already owns the resource being
enqueued.

Chapter 9. Open transaction environment 131

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
||||

|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

DEQUEUE
DFHNQEDX [CALL,]

[CLEAR,
[IN,
FUNCTION(DEQUEUE),
{ENQUEUE_TOKEN,|
ENQUEUE_NAME1(address,length)[ENQUEUE_NAME2(address,length)],}
[OUT,
RESPONSE (name1 | *),
REASON(name1 | *)]

The syntax of the DEQUEUE request is as follows:

The DEQUEUE request must be issued under the dispatcher task which issued the
ENQUEUE.

The parameters ENQUEUE_TOKEN, ENQUEUE_NAME1, and ENQUEUE_NAME2
are the same as in the ENQUEUE function call.

User-replaceable modules

The CONCURRENCY attribute for URMs can be specified as QUASIRENT or
THREADSAFE and is treated in the same way as for normal user application
programs.

CICSPlex SM support

CICSPlex SM supports the open transaction environment by extending its inquiry
function for the following resource types:

v New fields, Force QR and Max open TCBs, added to the CICSRGN2 view.

v A new field, Concurrency, added to the PROGRAMD view.

v Amendments to the PROGRAM view.

v Amendments to the EXITGLUE and EXITTRUE views.

v Amendments to the TASK and TASKD views.

132 CICS TS for OS/390: Release Guide

|

|

|
|
|
|
|
|
|
|
||||

|

|
|

|
|

|

|
|
|

|
|

|
|

|

|

|

|

|

Chapter 10. Long temporary storage queue names

This chapter describes enhancements to the CICS temporary storage facility that
allow you to use up to 16 characters for TS queue names. It covers the following
topics:
v “Overview”

v “Benefits of long temporary storage queue names” on page 134

v “Requirements for long temporary storage queue names” on page 134

v “Changes to CICS externals” on page 134

v “CICSPlex SM support” on page 138

Overview

In earlier releases of CICS it is sometimes difficult to generate unique names using
the conventional 8-character TS queue names. Typically, the generated queue
name would be of the form xxxxtttt, where xxxx is the transaction ID and tttt is the
terminal ID (termid). This convention succeeds only if the termid is unique and one
queue only is required by the transaction.

The CICS temporary storage facility is enhanced to allow TS queue names to be 16
characters long, providing greater flexibility for generating TS queue names that are
unique across a CICSplex.

A longer TS queue name removes existing restrictions, and provides new design
options, such as TS queues based on the user ID. In this way, scratchpad data can
be kept for longer periods.

16-character queue names provide much greater flexibility in user application
programs because they can be generated of the form ttttSSSSuuuuuuuu, where tttt
is the transaction identifier, SSSS is a suffix allowing the use of more than one
queue per transaction, and uuuuuuuu represents the user ID. The TSMODEL prefix
could then be tttt or ttttSSSS. Alternatively, with the increased length of queue
names to 16 characters, you could incorporate the 4-character termid or the
8-character network name instead of the user ID.

Note: Increasing TS queue names to only 16 characters is governed by the use of
the coupling facility for TS data sharing, which imposes a maximum key
length of 16 characters.

Effect on application programs

There are some changes to the application programming interface to accommodate
16-character TS queue names (see “Changes to resource definition” on page 135
for details). However, there are some API commands that use temporary storage
control that are unaffected by the change.

EIB resource name field EIBRSRCE unchanged

There are no changes to the EXEC interface block for long TS queue names. When
a temporary storage control API command is issued, EIBRSRCE, the EXEC

© Copyright IBM Corp. 1998 133

|

interface block that contains the symbolic identifier of the temporary storage queue
name being accessed, continues to contain the first 8 characters of the queue
name.

REQID on BMS and interval control requests unchanged

The REQID provided on the START command for BMS and interval control
requests remains unchanged at 8 characters.

QUEUE option on START requests unchanged

The QUEUE option on START requests remains unchanged at 8 characters.

Shared TS unchanged

There are no changes for shared temporary storage because 16-character queue
names are already supported by this function.

Benefits of long temporary storage queue names

Long temporary storage queue names make it easier to generate unique queue
names to provide the required flexibility in user application programs.

Requirements for long temporary storage queue names

The hardware requirements for this function are the same as for CICS TS generally.

If you use RACF as your external security manager, and your RACF profiles for TS
queues are defined with the CICS region userid as a prefix, you need RACF
OS/390 Release 6, plus PTF UW90545 (for APAR OW35612). This PTF enables
you to define temporary storage resource class profiles with names up to a
maximum length of 25 characters. See “Changes to security” on page 138 for more
information.

If you do not use RACF security for temporary storage queues, or if you use RACF
security without prefixing, you need OS/390 Release 5, the same as for CICS TS
generally.

Changes to CICS externals

This section provides an overview of the changes to CICS externals for temporary
storage queues to be given names up to 16 characters long:
v “Changes to resource definition” on page 135

v “Changes to the application programming interface (API)” on page 135

v “Changes to the system programming interface (SPI)” on page 136

v “Changes to global user exits” on page 136

v “Changes to CICS-supplied transactions” on page 137

v “Changes to monitoring” on page 137

v “Changes to samples” on page 137

v “Changes to utilities” on page 138

134 CICS TS for OS/390: Release Guide

|
|
|
|
|
|

v “Changes to problem determination” on page 138

v “Changes to security” on page 138.

Changes to resource definition

Extending temporary storage queue names to 16 characters is implemented in the
new TSMODEL resource definition panel (see “Chapter 5. Resource definition
online for CICS temporary storage” on page 59 for details). This resource definition
provides the only method for defining recoverable, secure, or remote TS queues
with up to 16-character queue names, using the PREFIX attribute.

The DATAID equivalent of the DFHTST macro remains an 8-character field.

Changes to the application programming interface (API)

A new parameter on the temporary storage API makes it easier for CICS
applications to generate TS queue names that are unique across a CICSplex.

Commands READQ, WRITEQ, and DELETEQ TS

The QNAME option, for specifying a 16-character queue name, is added to the
following commands as an alternative to the QUEUE option:
v WRITEQ TS
v READQ TS
v DELETEQ TS

GG READQ
WRITEQ
DELETEQ

TS QUEUE(8-char_name) options
QNAME(16-char_name)

GH

To exploit 16-character queue names, change your applications to use the QNAME
option, otherwise you can continue to use your existing applications unchanged
using the 8-character QUEUE option.

Function shipping

Function shipping enables application programs to send data to, or retrieve data
from, temporary storage queues located on remote systems.

If an application program issues a request to access a remote queue over an MRO
link using a 16-character queue name, the 8-character queue name is set to binary
zeros and the long queue name is shipped in a separate 16-character field. CICS
returns an INVREQ if the remote region is an earlier release of CICS that cannot
handle the 16-character name.

For non-MRO remote requests, CICS ships the request with a 16-character name. If
the remote region cannot handle the full 16 characters, the first 8 characters only
are used.

Chapter 10. Long temporary storage queue names 135

Changes to the system programming interface (SPI)

The SPI commands EXEC CICS INQUIRE TSQUEUE and EXEC CICS INQUIRE
TASK are enhanced to browse the temporary storage table using a long queue
name, and a new command EXEC CICS SET TSQUEUE is added.

INQUIRE TSQUEUE

On the INQUIRE TSQUEUE command, which retrieves information about a
temporary storage queue, the option TSQNAME has been added as an alternative
to TSQUEUE.

This change is shown in the following fragment of the syntax:

GG INQUIRE TSQUEUE(8-char_name)
TSQNAME(16-char_name)

GH

Browsing TS queues: You can use the INQUIRE TSQUEUE command with
START AT(data-value) to browse TS queues. The data-value operand can specify
queue names greater than 16 characters. Use the TSQNAME option with the NEXT
option on the INQUIRE command if you have application programs using TS
queues with long names.

If you use the existing TSQUEUE option on the INQUIRE NEXT command to
browse a queue, and the next queue name being returned exceeds 8 significant
characters, CICS truncates the queue name to 8 characters, and returns an
INVREQ condition with a RESP2 value of 2.

INQUIRE TASK

A new option, RESNAME, is added to the INQUIRE TASK command as an
alternative to SUSPENVALUE. RESNAME is added to handle 16-character TS
queue names.

If you specify SUSPENDVALUE, and the task you are inquiring about is waiting on
a TSQUEUE with a long queue name, CICS truncates the name to 8 characters
and returns an INVREQ condition with a RESP2 value of 1.

GG INQUIRE TASK(task-id)
SUSPENDVALUE(8-char_res_name)
RESNAME(16-char_res_name)

GH

Changes to global user exits

The introduction of 16-character TS queue names affects the following temporary
storage global user exits:
v XTSEREQ and XTSEREQC
v XTSQRIN and XTSQROUT
v XTSPTIN and XTSPTOUT

136 CICS TS for OS/390: Release Guide

TS EXEC interface program exits, XTSEREQ and XTSEREQC

The information passed in the command-level parameter structure is modified to
indicate whether the application program has specified QUEUE or QNAME on the
TS request. If QNAME is used, TS_ADDR1 is the address of a 16-byte area
containing the name from QNAME. This is indicated by the TS_EIDOPT5 field in
the EID, which is set to X'80'.

TS storage domain exits XTSQRIN and XTSQROUT

The parameter list for the temporary storage domain exits, XTSQRIN and
XTSQROUT, contains the address of the queue name, which now refers a
16-character field.

TS storage domain exits XTSPTIN and XTSPTOUT

TS storage domain exits XTSPTIN and XTSPTOUT remain unchanged because the
TSPT interface does not support long queue names.

Changes to CICS-supplied transactions

There are changes to CEMT and CEBR in support of long TS queue names.

Changes to CEMT

TSQNAME is added as an alias for TSQUEUE on the CEMT INQUIRE TSQUEUE
command. CEMT INQUIRE TSQUEUE|TSQNAME retrieves information about
temporary storage queues, the names of which can be up to 16 characters. Unlike
the TSQUEUE option, TSQNAME cannot be abbreviated to the minimum number of
unique characters. For example, TSQN returns an error as command not valid.

The HVALUE parameter of the CEMT INQUIRE TASK command is modified to
allow for 16-character resource names for tasks suspended for any reason on TS
queues. 8-character names are padded with blanks up to 16 characters.

Changes to CEBR

The CICS-supplied transaction CEBR, which allows you to browse temporary
storage queues and to delete them, is enhanced to support long queue names.

Changes to monitoring

The monitoring interfaces are updated to allow for 16-character resource ID fields
and the monitoring DSECTS are changed.

The sample monitoring utility program DFHœMOLS is changed to allow for
16-character names appearing in exception records.

See “Chapter 6. Monitoring, statistics, and enterprise management changes” on
page 65 for details of all these monitoring changes for long TS queue names.

Changes to samples

The sample program DFH0STAT has been changed to include INQUIRE TSQNAME
statistics. The page layout is altered to accommodate 16-character queue names.

Chapter 10. Long temporary storage queue names 137

Changes to utilities

The CICS Affinities Utility is updated to allow for 16-character queue names.

Changes to problem determination

There are changes to CICS messages.

Those messages that have TS queue names appearing as inserts are changed,
where appropriate, to include the 16-character names.

Changes to security

With releases of RACF earlier than RACF OS/390 Release 5, the maximum length
of profile names in the CICS temporary storage resource class, SCICSTST, is 17
characters. This allows for an 8-byte TS queue name with, optionally, an 8-byte
prefix followed by a period. To enable you to define longer profile names (up to 25
bytes to allow for 16-character TS queue names), you need to apply the required
RACF service PTF to OS/390 Release 6.

Alternatively, you can create your own resource classes by adding new class
descriptors to the installation-defined part (module ICHRRCDE) of the RACF class
descriptor table (CDT), and specify the length on the MAXLNTH parameter of the
ICHERCDE macro.

CICSPlex SM support

CICSPlex SM support for 16-character, non-shared temporary storage queue
names is provided by the new operations views:

v TSQNAME, which shows general information about all 16-character, non-shared
temporary storage queues.

v TSQNAMED, which shows detailed information about a 16-character, non-shared
temporary storage queue.

v TSQNAMES, which shows summary information about 16-character, non-shared
temporary storage queues.

The existing TSQ view remains unchanged and continues to support 8-character
names only.

A new resource table, TSQNAME, is introduced.

138 CICS TS for OS/390: Release Guide

|

|
|

|
|

|
|

|
|

|
|

|
|

|

Chapter 11. EXCI enhancement for resource recovery

This chapter describes enhancements to the external CICS interface (EXCI) to
support OS/390 resource recovery services. It covers the following topics:
v “Overview”

v “Benefits” on page 142

v “Requirements” on page 143

v “Changes to CICS externals” on page 143

v “CICSPlex SM support” on page 146

Overview

The external CICS interface is an application programming interface that enables a
non-CICS program (a client program) running in MVS to call a program (a server
program) running in a CICS region and to pass and receive data by means of a
communications area. The CICS application program is invoked as if linked-to by
another CICS application program.

In earlier releases of CICS, the external CICS interface forces the
SYNCONRETURN option on the DPL_Request call, which means that the server
region always takes a syncpoint on successful completion of the server program.
Issuing a DPL_request call with SYNCONRETURN means there is no coordination
of syncpoints between the EXCI client program and the server program. Also, with
SYNCONRETURN, the server application program is permitted to take explicit
syncpoints during its execution.

Adding support for OS/390 recoverable resource management services (RRMS)
changes the EXCI recovery environment. It introduces the concept of a unit of
recovery (UR). A UR represents an application program’s changes to resources
since the last commit or backout, or, for the first UR, since the beginning of the
application. Support for RRMS enables CICS server regions to register with
resource recovery services (RRS), the MVS syncpoint manager. This support then
enables EXCI client programs to coordinate changes to protected resources within
a unit of recovery, thus ensuring data integrity. See Figure 22 on page 140 for an
illustration of EXCI client and CICS server regions with RRMS.

© Copyright IBM Corp. 1998 139

1. If the CICS system initialization parameter RRMS=YES is specified, CICS
registers with RRMS as a resource manager. This registration occurs during
CICS initialization.

2. When the EXCI client program issues a DPL_Request call in 2-phase commit
mode (a call that omits the SYNCONRETURN option), it receives from RRMS:
v A unit of recovery identifier (URID)
v A context token
v A pass token

3. The URID and the tokens obtained by EXCI on behalf of the client progam are
included on the DPL request passed to the CICS server region. If the DPL
request is the first one within the URID, CICS calls RRS to express an interest
in the UR, attaches a new mirror transaction, and validates the tokens. If the
request is valid, the mirror program links to the specified server application
program. The server program completes its work, which is all performed within
the unit of recovery. This work can include updating recoverable resources in
the local server region, or daisy-chaining to other CICS regions.

4. When the server program completes, it returns the communications area
(COMMAREA) and return codes to the client program.

Note: Steps 3 and 4 can repeated many times for the same UR.

5. When the EXCI client program is ready to commit or back out its changes, the
program invokes RRS to begin the 2-phase commit protocol.

6. RRS acts as coordinator and either:

v Asks the resource managers to prepare to commit all updates within the UR.
(Note that resource managers other than the CICS server region may also
have expressed an interest in the UR.) If all vote yes, RRS tells them to go
ahead and commit the changes. If any vote no, all resource managers are
told to perform backout.

MVS Batch Region CICS Server Region

Recoverable Resource Management Services
(RRMS)

Syncpoint manager (RRS)

(1)
Registration

Get
Token (2)

DPL_Request + token (3)

Server reply (4)

Syncpoint
request (5) Syncpoint

request (6)

CICS
Mirror

CICS
application
program

MVS

EXCI
Client
Program

Interface
External CICS

Recovery Manager

Recoverable EXCI domain

Figure 22. Conceptual view of EXCI client and CICS server region using RRMS. The main
(numbered) steps within a unit of recovery are described in the list following the diagram

140 CICS TS for OS/390: Release Guide

v Tells all the resource managers that expressed an interest in the UR to
perform backout of all the changes made with the UR.

The UR is now complete and CICS detaches the mirror task. If the EXCI client
sends any new DPL requests after this point, EXCI starts a new unit of recovery
and CICS attaches a new mirror transaction.

Resource recovery consists of the protocols and program interfaces that allow an
application program to make consistent changes to multiple protected resources.
The RRMS syncpoint manager , when requested, can coordinate changes to one or
more protected resources, which can be accessed through different resource
managers. RRMS, in conjunction with CICS recovery manager, ensures that all
changes are made or no changes are made. Resources that OS/390 RRMS can
protect include:
v A hierarchical database
v A relational database
v A product-specific resource (such as a CICS file or CICS temporary storage

queue).

Note: RRMS consists of three separate MVS components. These are registration
services, context services, and resource recovery services (RRS), that
collectively are referred to as recoverable resource management services
(RRMS). For information about all these services, see theOS/390 MVS
Programming: Resource Recovery manual.

With RRMS support, EXCI clients can issue DPL_Request calls without the
SYNCONRETURN option, allowing the EXCI client program to control when
updates to recoverable resources are committed. This enhancement to EXCI for
resource recovery means that there are now two modes of operation:

v Without RRMS support, as in earlier releases (the sync-on-return mode). On
completion of each DPL request, updates made by the server program for each
DPL request are committed independently of the client program or any other
server.

v With RRMS transactional support (the 2-phase commit mode). The client
program can issue successive DPL requests, to more than one server program,
in more than one CICS region. All updates initiated by these DPL requests are
part of the same UR. When the client program requests it, the commitment of
updates within the unit of recovery is coordinated by RRMS.

Thus, a client application program can issue EXCI API calls in 2-phase commit
mode, which ensures that all changes to recoverable resources are treated as
part of the same MVS unit of recovery and the same CICS distributed UOW
(identified by its network UOW ID).

For more information about how CICS uses RRMS and about the UR as the scope
of recoverable work, see the CICS Recovery and Restart Guide.

RRMS provides some ISPF panels that allow you view RRS information, an
example of which is shown in Figure 23 on page 142.

Chapter 11. EXCI enhancement for resource recovery 141

Adding RRMS support to CICS regions

To enable a CICS server region to support DPL_Request calls from an EXCI client
in 2-phase commit mode, the CICS region must register with RRS during CICS
initialization. This is controlled by a system initialization parameter, RRMS. See
“Changes to system definition” on page 143 for information about this parameter.

When the first EXCI call in a unit of recovery is received by CICS, there is
additional processing involved notifying RRS of the CICS region’s interest in the unit
of recovery.

Locks acquired by a CICS server region on behalf of a server application program
unit of work are not released when the server program ends. They are retained until
the MVS client application commits the unit of recovery.

RRS

An EXCI client program can issue DPL_Request calls that specify
SYNCONRETURN when the target CICS server resides in another MVS image
within the sysplex. This is not the case when the EXCI client is using 2-phase
commit mode. In this mode, the EXCI client program and its initial CICS server
region must run in the same MVS image as RRS, the syncpoint manager
component of OS/390 RRMS. However, the CICS server application program can
issue other DPL requests to remote CICS regions that reside in other MVS images
within the sysplex.

RRS provides an application programming interface (API) that an EXCI client
program can use. This supports two callable services:
v Application_Commit_UR
v Application_Backout_UR

These callable service and the API are described in the OS/390 MVS Programming:
Resource Recovery manual.

Benefits

All the previous benefits of the EXCI are preserved and, in addition, programs
executing in an MVS environment are able to:

v Coordinate and use CICS with other RRS-enabled resource managers

v Provide a single unit of work capability to clients over multiple calls to CICS
programs and over multiple CICS regions.

RRS
Option ===>

Select an option and press ENTER:

1 Browse an RRS log stream
2 Display/Update RRS related Resource Manager information
3 Display/Update RRS Unit of Recovery information
4 Exit

Figure 23. The main RRS ISPF panel

142 CICS TS for OS/390: Release Guide

Requirements

The hardware requirements for this function are the same as for CICS TS generally.

The software requirement is that you need either OS/390 Version 2 Release 6, or
OS/390 Version 2 Release 5 with a service PTF for APAR UW46914.

Changes to CICS externals

There are changes to a number of CICS externals in support of the RRMS
enhancements to the external CICS interface. The externals affected are:
v “Changes to system definition”

v “Changes to the system programming interface (SPI)”

v “Changes to the external CICS interface” on page 144

v “Changes to CICS-supplied transactions” on page 145

v “Changes to problem determination” on page 145

Changes to system definition

A new system initialization parameter is added to suppport the EXCI enhancements
for resource recovery:

RRMS={NO|YES}
Specifies whether you want CICS to register with MVS resource recovery
services.

Changes to the system programming interface (SPI)

The following SPI commands are new for use with MVS RRS:

EXEC CICS INQUIRE EXCI
Provides an INQUIRE EXCI function equivalent to the existing CEMT INQUIRE
EXCI with the addition of the following option:

URID(data value)
This field contains, when EXCI is using RRMS to coordinate updates, a
32–character string containing the hexadecimal representation of the
RRMS unit of recovery identifier. Note that the absence of a URID (that
is, blanks are returned) indicates that the EXCI DPL_Request call
specified SYNCONRETURN.

EXEC CICS INQUIRE RRMS
Retrieves information about the state of a CICS region’s registration with MVS
RRMS, and the status of RRS in the MVS image. The OPENSTATUS option
returns one of the following CVDA values:

OPEN CICS is registered with RRMS and RRS is active. CICS is able to
accept inbound transactional EXCI work.

CLOSED
CICS is registered with RRMS, but RRS is not active. CICS cannot
accept inbound transactional EXCI work.

Chapter 11. EXCI enhancement for resource recovery 143

NOTAPPLIC
The CICS region does not require RRMS (RRMS=NO is specified as a
system initialization parameter).

There are also changes to some existing SPI commands for use with MVS RRS, as
follows:

v A new CVDA value is added for the WAITCAUSE option of the EXEC CICS
INQUIRE UOW command. RRMS indicates that the UOW is waiting, or has been
shunted because communication has been lost with RRMS.

v A new CVDA value is added for the PROTOCOL option of the EXEC CICS
INQUIRE UOWLINK command. RRMS indicates that the UOW is coordinated by
RRMS. Note that when the PROTOCOL option returns RRMS, the SYSID option
returns blanks.

v The function of EXEC CICS SET UOWLINK DELETE command is extended so
that UOWLINKs associated with RRMS can be deleted when RRS has been cold
started. The syntax is unchanged.

Changes to the external CICS interface

There are changes to the EXCI CALL interface and to the EXEC CICS interface.

The EXCI CALL interface changes

There are changes affecting a number of parameters of the DPL_Request call of
the CICS external interface. These are:

DPL_opts
This parameter is extended to permit DPL_Request calls without the
SYNCONRETURN option. The one-byte input area of the DPL_opts parameter
can have one of the following values:

v X'00'to indicate that the CICS server region must not perform a syncpoint
when the server program returns control to CICS. Furthermore, the CICS
server application program must not take any explicit syncpoints, otherwise it
is abended by CICS.

v X'80' to indicate that the CICS server region is to perform a syncpoint when
the server program returns control to CICS (enforced SYNCONRETURN). In
addition to the implicit syncpoint taken by CICS, the server application
program can take explicit syncpoints.

transid
There are new rules about the use of the transid parameter when DPL_opts
specifies X'00'.

The transid specification must be the same for all EXCI calls in the same MVS
unit of recovery. If you specify transid on the first call, you must specify the
same value for transid on all calls. If you omit transid from the first call, you
must omit it from all calls.

uowid
This parameter must not be specified when DPL_opts specifies X'00'. This is
because EXCI generates one for you.

When DPL_opts specifies X'80' (SYNCONRETURN), the uowid is the APPC
unit-of-work identifier used by the CICS server region and any subordinate
CICS regions.

144 CICS TS for OS/390: Release Guide

userid
There are new rules about the use of the userid parameter when DPL_opts
specifies X'00'.

The userid specification must be the same for all EXCI calls in the same MVS
unit of recovery. If you specify userid on the first call, you must specify the
same value for userid on all calls. If you omit userid from the first call, you must
omit it from all calls.

There are new reason codes for DPL_Request calls that specify X'00' (no
SYNCONRETURN) on the DPL_opts parameter. These are described in the CICS
External Interfaces Guide.

There are also some new abend codes associated with transactional EXCI calls.

The EXEC CICS interface changes

The SYNCONRETURN option of the EXEC CICS LINK PROGRAM(name)
command is now optional. It is a required option in earlier releases. Omitting the
SYNCONRETURN option allows the client program to control syncpoints taken by
the CICS server region on behalf of the server application program.

Also:

v The INVREQ response is no longer returned on an EXEC CICS LINK issued by
an EXCI client program.

v There are some new RESP2 values for EXEC CICS LINK commands associated
with commands that omit SYNCONRETURN.

v There are new abend codes associated with commands that omit
SYNCONRETURN.

The new codes are described in the CICS External Interfaces Guide.

Changes to CICS-supplied transactions

A new CEMT INQUIRE RRMS command is provided to enable you to obtain
information about the state of a CICS region’s registration with the MVS syncpooint
manager, RRS. This is the CEMT equivalent of the EXEC CICS INQUIRE RRMS
command.

The following CEMT commands are enhanced to provide the same function as their
EXEC CICS equivalent commands:

v CEMT INQUIRE EXCI is enhanced with the addition of the URID option.

v CEMT INQUIRE UOW is enhanced with the addition of a new wait cause,
RRMS.

v INQ UOWLINK is enhanced with the addition of a new protocol option, RRMS

The function of CEMT SET UOWLINK DELETE is extended so that UOWLINKs
associated with RRS can be deleted if required. The syntax is unchanged.

Changes to problem determination

To aid problem determination, there are some new messages and abend codes.
These are described in the CICS Messages and Codes, and further information is
provided in the CICS Problem Determination Guide.

Chapter 11. EXCI enhancement for resource recovery 145

CICSPlex SM support

CICSPlex SM support for RRS is provided by:

v A new value of RRMS for the Wait Cause field of the UOWORKD view.

v A new field, RRMS Status, on the CICSRGND view. The RRMS Status may have
the values OPEN, CLOSED, and N/A.

v A new field Protocol on the UOWLINKD view. The Protocol field can either have
the value RRMS or be blank. If the Protocol field has the value RRMS, the
Linked Sysid field is blank.

146 CICS TS for OS/390: Release Guide

Chapter 12. Object-oriented interface to CICS services for C++

This chapter describes the CICS object-oriented programming interface for the C++
programming language. It covers the following topics:
v “Overview”

v “Benefits” on page 148

Overview

The CICS family of products provides robust transaction processing capabilities
across the major hardware platforms that IBM offers, and also across key non-IBM
platforms. It offers a wide range of features for supporting client/server applications,
and allows the use of modern graphical interfaces for presenting information to the
end-user. CICS now supports object-oriented programming and offers CICS users a
way of capitalizing on many of the benefits of object technology while making use of
their investment in CICS skills, data, and applications.

The CICS C++ foundation classes allow an application programmer to access many
of the CICS services that are available through the EXEC CICS procedural
application programming interface (API).

The CICS foundation classes package is supplied in a number of data sets that
contain:
v The header files
v The dynamic link library
v The sample programs and some JCL procedures
v The CICS-supplied side-deck.

The header files

The header files are the C++ class definitions you need to compile CICS C++
foundation class programs. A single header file, icceh, that includes all the other
header files, is supplied in the CICSTS13.CICS.SDFHC370 library.

The file iccmain is also supplied with the C++ header files. This contains the main
function stub that you use when building a foundation class program, and is also
supplied in the CICSTS13.CICS.SDFHC370 library.

The dynamic link library

The dynamic link library (DLL) provides the runtime support that you need to run a
CICS C++ foundation class program. The DLL is supplied as ICCFCDLL in the
CICSTS13.CICS.SDFHLOAD library.

The sample programs

A number of sample programs are provided to help you understand how to use the
C++ foundation classes to create object-oriented application programs. These are
provided in both source and executable form:

v The source program are supplied as members of the
CICSTS13.CICS.SDHSAMP library.

© Copyright IBM Corp. 1998 147

v The executable load modules are supplied as members of the
CICSTS13.CICS.SDHLOAD library.

CICS also provides three JCL procedures that enable you to compile, prelink, and
link a C++ OO program.

The CICS-supplied side-deck

A new CICS library, CICSTS13.CICS.SDFHSDCK, is created when you install CICS
TS. This PDS holds the definition side-deck generated in SYSDEFSD by the
prelinker process run by CICS, and supplied as member, ICCFCIMP. This member
contains the import control statements required by the linkage-editor step when
linking your C++ OO programs.

For more informaiton about the definition side-decks required by your C++
programs, see the OS/390 C/C++ User’s Guide.

Benefits

Object oriented programming allows more realistic models to be built in flexible
programming languages that allow you to define new types or classes of objects, as
well as employing a variety of structures to represent these objects.

Object oriented programming also allows you to create methods (member functions)
that define the behavior associated with objects of a certain type, capturing more of
the meaning of the underlying data.

148 CICS TS for OS/390: Release Guide

Chapter 13. JCICS interface to CICS services for Java

This chapter describes the CICS object oriented interface that provides access to
CICS services from Java application programs. It covers the following topics:
v “Overview”

v “Supplied components” on page 150

v “Benefits of Java language support” on page 150

Overview

CICS provides a new programming interface for use in CICS application programs
written in Java. CICS Java classes, known as JCICS, are provided to give Java
access to CICS services traditionally available through the CICS command-level
procedural API.

See the CICS Application Programming Guide for a full description of the Java
language support.

You can develop CICS Java programs on a workstation, or in the OS/390 UNIX
System Services shell, using an editor of your choice, or in a visual composition
environment such as VisualAge.

The Java language is designed to be portable and architecture-neutral, and the
bytecode generated by compilation requires a machine-specific interpreter for
execution. CICS provides this execution environment in two different ways:

1. Using VisualAge for Java, Enterprise ToolKit for OS/390 to bind the Java
bytecode into OS/390 executable files that are stored in MVS PDSE libraries
and executed by CICS in a Language Environment (LE) run-unit, similarly to
C++.

2. Using an MVS Java Virtual Machine that is executing under CICS control.

There is no CICS translator for CICS Java programs.

JavaBeans

Some of the classes in JCICS may be used as JavaBeans, which means that they
can be customized in an application development tool such as VisualAge for Java,
serialized, and manipulated using the JavaBeans API. The beans in the CICS Java
API are currently:

v Program

v ESDS

v KSDS

v RRDS

v TDQ

v TSQ

v AttachInitiator

v EnterRequest

© Copyright IBM Corp. 1998 149

These beans do not define any events; they consist of properties and methods.
They can be instantiated at run-time in one of three ways:

1. By calling new() for the class itself. (This is the recommended way)

2. By calling Beans.instantiate() for the name of the class, with property values
set manually

3. By calling Beans.instantiate() of a .ser file, with property values set at design
time

If either of the first two options are chosen, then the property values, including the
name of the CICS resource, must be set by invoking the appropriate setter methods
at run-time.

Supplied components

The following jar files are stored in the OS/390 UNIX System Services HFS in the
directory $CICS_HOME/classes:

dfjcics.jar
The JCICS API classes, required for compilation of a Java application
program that uses JCICS to access CICS services.

Note: The JCICS classes can also be used at execution time by a JVM
program to access CICS services.

dfjwrap.jar
Used internally by CICS to support the JCICS interface in a JVM
environment.

Sample programs

Sample programs to demonstrate the use of the JCICS classes are stored in the
HFS in the $CICS_HOME/samples directory and in SDFHSAMP.

JCICS reference documentation

The JCICS classes are documented in JAVADOC HTML. This is stored in the
OS/390 UNIX System Services HFS in the directory $CICS_HOME/docs. You can
read this file using a web browser. The following file is supplied:

dfjcics_docs.zip

Benefits of Java language support

The Java programming language is rapidly growing in popularity. Support for CICS
Java applications allows CICS users to remain at the leading edge of technology,
and to exploit future business opportunities using the Internet, where Java is heavily
used.

150 CICS TS for OS/390: Release Guide

Chapter 14. VisualAge for Java, Enterprise Edition for OS/390

This chapter describes CICS support for Java application programs. It covers the
following topics:
v “Overview”

v “Benefits of Java language support”

v “Requirements” on page 152

v “Changes to CICS externals” on page 152

v “Changes to user tasks” on page 153

Overview

This support uses the VisualAge for Java, Enterprise Toolkit for OS/390 (ET/390)
to enable Java application programs to run under CICS control.

The Java language support is similar to CICS language support for COBOL or C++.
The normal CICS program execution model is used, rather than a Java Virtual
Machine (JVM).

The application program is developed and compiled using a Java compiler (such as
VisualAge for Java or javac) on a workstation or in the OS/390 UNIX System
Services environment. The .class files produced are then processed by the binder
component of ET/390, executing in the OS/390 UNIX System Services environment,
to produce Java program objects that can be loaded by CICS and executed in a
Language Environment (LE) run-unit, similar to C++.

CICS also introduces a new programming interface for use in CICS application
programs written in Java. Classes (known as JCICS) are provided to give Java
access to CICS services traditionally available through the CICS command-level
procedural API.

See the CICS Application Programming Guide for a full description of the Java
language support.

In addition, VisualAge for Java, Enterprise Edition for OS/390 enables you to
develop CICS applications using a workstation Integrated Development
Environment (IDE); export them to the host CICS environment via OS/390 UNIX
System Services, and debug them interactively from the workstation.

Benefits of Java language support

The Java programming language is rapidly growing in popularity. Support for CICS
Java applications allows CICS users to remain at the leading edge of technology,
and to exploit future business opportunities using the Internet, where Java is heavily
used.

Java language support in CICS provided by VisualAge for Java, Enterprise Edition
for OS/390, has the following advantages:

v Object Oriented programming with ease of use

© Copyright IBM Corp. 1998 151

v Application development using interfaces of sufficient standardization and
simplicity to allow the use of visual AD technology, such as Java Beans

v Access to existing CICS applications and data from Java programs

v A state-of-the-art development and debug environment for CICS/TS applications

Requirements

The hardware and software requirements for this function are the same as for CICS
TS generally. In addition:
v VisualAge for Java, Enterprise ToolKit for OS/390 is required to bind and run

CICS Java programs.
v OS/390 UNIX System Services is required to run the VisualAge for Java,

Enterprise ToolKit for OS/390 byte-code binder.

Service PTFs for the following APARs are required before using Java language
support:

v OW31036 (Bind with long object names)

v OW31718 (DFSMS™ 1.4 Invalid loader storage check)

v OW31924 (IEW2333E Invalid syntax in IMPORT control statement)

v OW32111, OW32261, and OW32334 (IEW2900T E913 Binder abnormal
termination)

v OW33782 (DFSMS 1.4 DESERV to set output buffer length for PDSE access)

v OW34052 (Load optimization for C_WSA for DLLs in dynamic LPA)

v PQ08747 (For LE to support double precision floating-point in single thread)

v PQ17512 (0C4 when signal occurs in stack extension boundary)

v PQ19340 (CICS ABEND failure caused by LE condition handler)

Check the CICS Transaction Server for OS/390 Program Directory for later
information about other required service. See also Info APAR II11025 on RETAIN
(which lists the CICS TS and OS/390 Release 5 LE compatibility fixes) and Info
APAR II11597 on RETAIN (for other product required PTFs).

Changes to CICS externals

This section describes the following changes to CICS externals to provide Java
language support using VisualAge for Java, Enterprise Edition for OS/390:
v “Changes to installation”

v “Changes to the application programming interface (API)” on page 153

v “Changes to samples” on page 153

v “Changes to problem determination” on page 153

Changes to installation
v Full function OS/390 UNIX System Services must be active during installation

so that supporting libraries and samples can be stored in the HFS.

v MVS PDSE libraries must be created to hold CICS and user Java program
objects. These libraries must be defined in the CICS DFHRPL concatenation in
the CICS start-up JCL.

152 CICS TS for OS/390: Release Guide

Changes to the application programming interface (API)

There are no changes to the EXEC CICS API. A class library, similar to the CICS
C++ foundation class library is provided to access existing CICS services. See the
CICS Application Programming Guide for more information about using JCICS.

This class library, known as JCICS, is documented in HTML format only and
distributed in dfjcics_docs.zip, which is stored in the HFS during installation.

Changes to samples

Sample programs are provided. See the CICS Application Programming Guide for
more information about running the sample Java programs.

Changes to problem determination

Changes are made to CICS problem determination services to support CICS Java
applications.

Messages

New CICS messages in the DFHCZxxxx range are generated by the Java language
support.

Trace

New CICS trace entries are generated by the Java language support.

Abend codes

New CICS abend codes, AJ01-09 and AJ99 are generated by the Java language
support.

Changes to user tasks
Application development

To build a CICS Java program, you need to:

v Prepare the prerequisite environment. This includes installing the VisualAge
for Java, Enterprise ToolKit for OS/390 and configuring the OS/390 UNIX
System Services shell on your OS/390 system. Note that OS/390 UNIX
System Services must be configured with full function.

v Compile your program. You can develop and compile your Java program
remotely on a workstation or in the OS/390 UNIX System Services shell on
your OS/390 system. The CICS Java API .jar files must be in the
CLASSPATH for your compiler.

v Transfer the compiler output (Java byte-code) to OS/390 UNIX System
Servicesl, if you compiled on a workstation. If you use VisualAge for Java to
develop your application on a workstation, you can use the supplied export
function to transfer your Java byte-code to the OS/390 UNIX System
Services HFS. If you use another compiler, you must transfer your files using
other means, such as ftp or nfs. The files must be transferred in binary
mode.

v Bind the Java bytecode using the VisualAge for Java, Enterprise ToolKit for
OS/390 bytecode binder to produce Java program objects that can be loaded
into CICS and executed as CICS programs. These program objects are

Chapter 14. VisualAge for Java, Enterprise Edition for OS/390 153

stored in MVS PDSE libraries that must be concatenated to the CICS
DFHRPL at run-time. The CICS Java API .jar files must be in the
CLASSPATH for this step.

You can use any suitable compiler, such as javac or VisualAge for Java. The
VisualAge for Java product contains support for the CICS environment,
providing access to the CICS Java classes and commands to export and run
the ET/390 binder.

An integrated development environment (IDE) such as VisualAge for Java
allows control of the process from the workstation.

The CICS Application Programming Guide gives further details.

154 CICS TS for OS/390: Release Guide

Chapter 15. Support for the Java Virtual Machine

This chapter describes CICS support for the Java Virtual Machine. It covers the
following topics:
v “Overview”

v “Benefits” on page 157

v “Requirements” on page 158

v “Changes to CICS externals” on page 158

v “CICSPlex SM support” on page 164

Overview

CICS provides the support you need to run a Java transaction in a CICS region
under the control of an OS/390 Java Virtual Machine (JVM). The CICS JVM support
is complementary to the support for VisualAge for Java, Enterprise ToolKit for
OS/390. However, whereas the support for VisualAge for Java, Enterprise ToolKit
for OS/390 restricts application programs to a subset of the core Java classes and
the CICS API for Java (JCICS), the CICS JVM provides full Java support without
any restrictions. To distinguish between the two types of Java program supported by
CICS, they are referred to in this chapter in the following terms:

JVM program
This is a Java program compiled to bytecode by a standard Java compiler, and
stored in an HFS data set, from which it can be executed by a Java virtual
machine. For use by CICS, the HFS data set must be in a directory identified
by a CLASSPATH statement in the DFHJVM member of the SDFHJENV
environment variables data set.

Java program object
This is a Java program compiled to bytecode by a standard Java compiler,
bound into an executable program object using the VisualAge for Java,
Enterprise ToolKit for OS/390 (ET/390), and stored in a partitioned data set
extended (PDSE) library. For use by CICS, the PDSE must be included in the
DFHRPL library concatenation, the same as CICS application programs written
in the other supported languages.

The JVM support is provided for CICS application programs written in Java and
compiled to bytecode by any standard Java compiler.

In addition to the full set of Java classes, JVM programs executing in the CICS
address space can also use the following Java packages (set of classes):

v java_io, which includes access to HFS files

v java_net, which includes access to OE sockets

v java_rmi, which includes bytecode interpretation

v java_lang, which includes application level threading

v java_awt, which includes windowing support.

With CICS JVM support a JVM program can use the JCICS API with some
restrictions. For example, the JVM program can issue JCICS API calls under the
initial process thread (IPT), but not under any pthreads it has created.

© Copyright IBM Corp. 1998 155

The OS/390 JVM supported by CICS uses services provided by the CICS open
transaction environment (OTE), which is described in “Chapter 9. Open transaction
environment” on page 111. The multiple open TCB support provided by CICS OTE
introduces the J8 mode TCB, which is reserved for use by JVMs. Each CICS
transaction invoking a JVM program runs under its own J8 TCB, with its own JVM.
A new JVM is created for each JVM program invoked by CICS, and when execution
of the user class ends, the JVM is destroyed. Each J8 TCB is set up to use MVS
LE services rather than CICS LE services. Hence programs executing under a J8
mode TCB, including the JVM, have access to standard OS/390 UNIX system
services and MVS LE services.

MVS JVM integration with CICS

CICS program manager treats JVM programs much the same as any other user
application program that is compiled by a language compiler. Program manager
looks after installed program resource definitions, and the program attributes that
can be both set and inquired upon. It is also responsible for program control API
commands, such as LINK, LOAD, XCTL and so on.

JVM programs are loaded from HFS by the JVM itself, and are not loaded directly
from the RPL. The JVM loads the program from HFS using a qualified class name
which is greater than the 8 character program name by which it is referenced by
CICS. Program manager provides the mapping from 8-character name to fully
qualified classname, enabling this association to be made as part of the process of
invoking the program through the JVM.

A JVM program can be used as a CICS application program in the following
situations:

v As the initial program in a transaction, defined in the transaction’s resource
definition

v As a program linked by an EXEC CICS LINK command

v As a program named in an initialization and shutdown program list table (PLT)

v As a program given control by an EXEC CICS XCTL command.

A JVM program could also be used as a CICS program in the following situations,
although these are much less practical than the uses listed above, and are not
recommended:

v As a program named in an EXEC CICS HANDLE ABEND command

v As a user replaceable module (URM).

A JVM program cannot be specified on EXEC CICS LOAD and EXEC CICS
RELEASE commands, because there is no program for CICS to load (from the
DFHRPL library) or to release. These requests fail with PGMIDERR with a new
RESP2 value.

A JVM program cannot be invoked by a COBOL dynamic call, and cannot be
linked-edited with a program compiled in another language.

There are new attributes on the CICS program resource definition for a JVM
program; see “Changes to CICS externals” on page 158 for details.

Note: A Java program object compiled and link-edited into a DFHRPL library is not
defined with the new JVM program attributes. A Java program object is

156 CICS TS for OS/390: Release Guide

treated like any CICS LE program, and you can leave the LANGUAGE
attribute blank on the program resource definition. The actual program
language is deduced at load time.

An illustration of the OS/390 JVM running under CICS is shown in Figure 24 .

Benefits

CICS JVM support:

v Allows you to write Java application programs that use core Java classes that
are not supported by ET/390 Java program objects.

v Enables CICS Transaction Server as a Java application server, allowing
portability of Java applications between platforms

MVS

CICS

QR TCB J8 TCB

TRANSACTION
ATTACH

JAV1

DFHCJVM
program

JVM

JCLASS

DFHCJVM
Destroy

TRANSACTION
DETACH

Figure 24. The OS/390 JVM and CICS

Chapter 15. Support for the Java Virtual Machine 157

Requirements

The hardware and software requirements for CICS JVM are the same as for CICS
TS generally.

To enable a JVM program to use abstract windows toolkit classes, you need one of
the following:

v The X-windows capability provided by OS/390 Unix system services and TCP/IP

v The Remote Abstract Window Toolkit for Java.

Changes to CICS externals

There are changes to a number of CICS externals in support of the OS/390 JVM.
These are described in:

v “Changes to system definition”

v “Changes to resource definition”

v “Changes to the application programming interface” on page 159

v “Changes to the system programming interface” on page 160

v “Changes to global user exits” on page 161

v “Changes to the exit programming interface” on page 161

v “Changes to user-replaceable modules” on page 162

v “Changes to CICS-supplied transactions” on page 163

v “Changes to monitoring and statistics” on page 163

v “Changes to problem determination” on page 163

Changes to system definition

There are no changes to CICS system initialization parameters. Instead, a new
system dataset is introduced, from which CICS obtains the necessary JVM default
options and environment variables. This has a DDNAME of DFHJVM, and refers to
the DFHJVM member of the CICSTS13.CICS.SDFHENV partitioned data set (PDS).
This contains parameters such as CLASSPATH, JAVASTACKSIZE,
JAVA_COMPILER, and LIBPATH. The startup CICS JCL also requires a dummy DD
statement for DFHCJVM.

The DD statements for the environment variables data set and the dummy data set
must be included in the CICS startup JCL as follows:
DFHJVM DD DSN=CICSTS13.CICS.SDFHENV(DFHJVM),DISP=SHR
DFHCJVM DD DUMMY

You can override the environment parameters using the user-replaceable module,
DFHJVMAT.

Changes to resource definition

There are new attributes added to the PROGRAM resource definition type. These
are in the JVM attributes section of the CEDA DEFINE panel, part of which is
shown in Figure 25 on page 159

158 CICS TS for OS/390: Release Guide

The JVM attribute specifies whether the program is to run under the control of a
CICS JVM. Specify YES (or DEBUG) only if the program is a Java bytecode
program. You specify NO if the application program is a Java program object that is
compiled and fully-bound in the CICS DFHRPL library concatenation. For both types
of Java program, leave the program language blank. If you specify JVM(YES) or
JVM(DEBUG) a JVMCLASS name is required, and the program’s concurrency
attribute must be specified as THREADSAFE.

Note: On an INQUIRE PROGRAM command, CICS returns C as the deduced
language for Java program objects, and JAVA for as the CVDA for a JVM
program

The JVMCLASS attribute specifies the main class in the CICS Java program to be
executed by a JVM. On the CICS program resource definition, the JVM class name
is restricted to 255 bytes. If you want to use larger class names, you can override
the class name specified on the program definition, using the DFHJVMAT user
replaceable module.

Changes to the application programming interface

A JVM program can invoke CICS services through the CICS API using the JCICS
Java classes. There are some restrictions when using invoking JCICS classes from
a JVM program. The restrictions affect the following EXEC CICS API commands:

ASSIGN
The PROGRAM, INVOKINGPROG, and RETURNPROG options are not
available in the JCICS classes. On the other hand, if a JVM program calls a
DFHRPL program (through the JCICS LINK or XCTL class) ASSIGN
INVOKINGPROG and ASSIGN RETURNPROG issued by the DFHRPL
program return the name of the calling JVM program.

LINK
The LINK command is supported by the JCICS classes, but a JVM program

OBJECT CHARACTERISTICS CICS RELEASE = 0530
CEDA View PROGram(BILL)
PROGram : BILL
Group : TEST
DEscription :
Language : CObol │ Assembler │ Le370 │ C │ Pli

...

REMOTE ATTRIBUTES

...

JVM ATTRIBUTES
JVM : No No │ Yes │ Debug
JVMClass :

:
:
:
:

SYSID=HT61 APPLID=CICSHT61

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 25. Changes to the CEDA DEFINE PROGRAM panel for JVM programs

Chapter 15. Support for the Java Virtual Machine 159

cannot link to another JVM in the same CICS region because of the restriction
that there can only be one JVM active for a user task. A link request to another
local JVM program fails with an INVREQ response, RESP2 value 41.

A JVM program can link to another JVM program in another CICS region,
where the JVM runs under another task.

A DFHRPL program can invoke a JVM program by issuing an EXEC CICS
LINK command, and can pass COMMAREA.

Accessing the EXEC interface block

Fields in the CICS EXEC interface block (EIB) can be accessed in a JVM program
in the same way as in a compiled and fully-bound JAVA program from the DFHRPL.

Changes to the system programming interface

There are changes to the system programming interface to support JVM programs.
These changes affect the EXEC CICS INQUIRE and SET PROGRAM commands.

INQUIRE PROGRAM

The EXEC CICS INQUIRE PROGRAM command is not supported by the JCICS
classes, and cannot by issued by a JVM program or a Java program object. For the
other supported languages that can issue the INQUIRE PROGRAM command, the
options are extended to include the following:

JVMCLASS
Returns the 255-character class name specified on the program resource
definition.

JVMDEBUG(cvda)
Returns a CVDA value indicating whether or not the JVM is to operate in
debugging mode. The CVDA values are DEBUG and NODEBUG.

LANGDEDUCED(cvda)
This existing option is enhanced to return an additional CVDA—JAVA for JVM
programs. This CVDA does not apply to Java program objects, which CICS
treats as C programs, because in this release of CICS TS with the current level
of LE, CICS is unable to distinguish between C and Java program objects.

Note: It is intended in a future release to report C++ separately, and for Java
program objects to return a CVDA of JAVA.

RUNTIME(cvda)
Returns a CVDA value indicating the run-time environment of the program. The
CVDA values are: JVM for a JVM program; LE370 for a program that uses the
LE run-time libraries; NONLE370 for a program that uses a language-specific
runtime environment; and UNKNOWN for a program that is not yet loaded.

For JVM programs, program options on the INQUIRE PROGRAM command are
affected as follows:

v CEDFSTATUS, DATALOCATION, DYNAMSTATUS, EXECUTIONSET,
REMOTENAME, REMOTESYSTEM, STATUS, and TRANSID are all supported
for JVM programs.

v COBOLTYPE, SHARESTATUS, and LPASTATUS return NOTAPPLIC.

v COPY returns NOTREQUIRED.

160 CICS TS for OS/390: Release Guide

v EXECKEY returns CICSEXECKEY.

v ENTRYPOINT, LOADPOINT, LENGTH, RESOUNT, and USECOUNT return a null
address or zero, as appropriate.

v LANGUAGE returns the language defined on the program resource definition.
Normally this is NOTDEFINED, because CICS determines the language from the
load module when it loads the application program.

v PROGTYPE returns PROGRAM.

SET PROGRAM

The EXEC CICS SET PROGRAM command is not supported by the JCICS
classes, and cannot by issued by a JVM program or a Java program object. For the
other supported languages that can issue the SET PROGRAM command, the
options are extended to include the following:

JVMCLASS(name)
Specifies the 255-character class name of the Java program to be given control
by CICS.

JVMDEBUG(cvda)
Specifies a CVDA value to indicate whether or not the JVM is to operate in
debugging mode.

RUNTIME(cvda)
Specifies a CVDA value to indicate the runtime environment of the program. If
you specify JVM (for a JVM program) you must also specify the JVM class
name. If you specify NOJVM, JVMCLASS is ignored, and the runtime
environment is unknown until CICS loads the program. CICS determines the
runtime environment for a non-JVM program when it establishes the program
language at load-time.

For JVM programs, program options on the SET PROGRAM command are affected
as follows:

v CEDFSTATUS, EXECUTIONSET, and STATUS are supported.

v COPY is not applicable. JVM programs are loaded from HFS by the JVM, and
not by the CICS loader.

v VERSION always returns OLDCOPY.

CREATE and DISCARD commands

The CREATE and DISCARD commands are not supported by the JCICS classes
and cannot be used by any type of Java program. However, you can use these
commands in an application program written in other supported languages to create
and discard program resource definitions for Java programs.

Changes to global user exits

There are no new or changed global user exits for JVM programs, but note that the
XPCFTCH global user exit is not invoked for a JVM program.

Changes to the exit programming interface

The CICS loader domain has nothing to do with JVM programs, which are loaded
from HFS by the JVM, hence XPI loader functions are not supported for JVM
programs.

Chapter 15. Support for the Java Virtual Machine 161

The program management functions of the XPI are supported for JVM programs,
but those parameters that relate the loader attributes of a program are not
applicable. For example, CURRENT_LOAD_POINT, CURRENT_ENTRY_POINT,
and AND LOAD_STATUS are ignored on the SET function and return null values on
INQUIRE.

Changes to user-replaceable modules

There changes to the user-replaceable module (URM) for program autoinstall in
support of JVM programs, and a new URM, DFHJVMAT, is introduced.

Program autoinstall

The parameter list passed to the user-replaceable module for program autoinstall is
extended to include new parameters for JVM programs. The IBM-supplied
copybooks for all the supported languages are updated to inclued these new
parameters. These are DFHPGACD (assembler), DFHPGACO (COBOL),
DFHPGACL (PL/I), and DFHPGACH (C). The added parameters are:
PGAC_JVM
PGAC_JVM_CLASS_LEN
PGAC_JVM_CLASS_DATA
PGAC_JVM_DEBUG

The JVM user-replaceable module, DFHJVMAT

This new URM enables you to modify the execution attributes of the JVM. The
IBM-supplied default environment variables for the CICS JVM are supplied in the
SDFHENV library, in the DFHJVM member, which contains the following:
CHECKSOURCE=NO
CICS_HOME=.
CLASSPATH=/usr/lpp/cicsts///cicsts13///classes/dfjwrap.jar:

/usr/lpp/cicsts///cicsts13///classes/dfjcics.jar:
/usr/lpp/java116/J1.1/lib/classes.zip:.

DISABLEASYNCGC=NO
ENABLECLASSGC=YES
ENABLEVERBOSEGC=NO
INVOKE_DFHJVMAT=YES
JAVASTACKSIZE=409600
JAVA_COMPILER=OFF
JAVA_HOME=/usr/lpp/java116/J1.1
LIBPATH=/usr/lpp/cicsts///cicsts13///lib:

/usr/lpp/java116/J1.1/lib/mvs/native_threads
MAXHEAPSIZE=8000000
MINHEAPSIZE=1000000
NATIVESTACKSIZE=262144
STDERR=dfhjvmerr
STDIN=dfhjvmin
STDOUT=dfhjvmout
VERBOSE=NO
VERIFYMODE=NO

The environment variables are passed to the JVM when it is initialized. You can edit
the DFHJVM member using TSO to modify these global defaults, and add new
parameters.

When a user transaction invokes a JVM program, CICS:

1. Obtains the default values from the DFHJVM member of the SDFHENV data set
(DD name DFHJVM).

162 CICS TS for OS/390: Release Guide

2. Applies the JVMCLASS and JVMDEBUG attributes from the CICS program
definition.

3. Invokes the user replaceable module DFHJVMAT, which can use getenv and
setenv services to read and set all options.

4. Passes the options to the JVM.

For full details of the environment variables used by the CICS JVM, and for
information writing about writing a DFHJVMAT URM, see the CICS Customization
Guide.

Changes to CICS-supplied transactions

There are additional options on the CEMT INQUIRE and SET PROGRAM
commands. These options, JVMCLASS, JVMDEBUG, and RUNTIME, are the same
as the options added to the EXEC CICS INQUIRE and SET PROGRAM
commands.

You can use the CEMT DISCARD command to remove unwanted resource
definitions of Java programs from a CICS region.

Changes to monitoring and statistics

Monitoring data gathered from the program manager domain is also gathered for
JVM programs, but program storage monitoring records are not incremented
because the JVM program does not use CICS storage. Also, the program fetch time
is not recorded, and there is no monitoring of JVM programs fetched from HFS by
the JVM.

The CICS JVM runs on a J8 mode open TCB, and CICS monitoring domain records
the CPU and dispatch time for each J8 mode TCB. This monitoring data should
give some indication of the resource consumed by the task while running under the
J8 TCB, most of which is used by the JVM. This J8 time includes any time spent
processing CICS threadsafe API commands through the JCICS interface (all
threadsafe activity remains on the J8 TCB).

For details of the new monitoring records created for JVM programs, see
“Chapter 6. Monitoring, statistics, and enterprise management changes” on page 65.

Program statistics gathered from the program manager domain are also gathered
for JVM programs. However, the only value recorded for a JVM program is the
number of times used. The other statistics fields are either zero or blank.

The CICS sample statistics program, DFH0STAT, is updated to indicate which
programs are JVM programs.

Changes to problem determination

There are new trace points at initialization and termination of the JVM environment,
and when control passes to the JVM. However, once control passes to the JVM, it
executes as an MVS JVM, and no CICS tracing takes place (unless the JVM
program issues a JCICS call, which is traced just like any other CICS API
command).

Chapter 15. Support for the Java Virtual Machine 163

CICSPlex SM support

CICSPlex SM support for the JVM is provided by:

v New fields, JVM and JVMClass, on the BAS PROGDEF view.

v New fields, Runtime, JVM Class, and JVM Debug, on the operations
PROGRAMD view.

v A new view, PROGRAMJ, which shows the JVM Class value for the named
program.

164 CICS TS for OS/390: Release Guide

Part 5. e-Business enablement for network computing

This Part describes the new function introduced to support network computing over
open computer networks. It covers the following topics:

v “Chapter 16. Bridging to 3270 transactions” on page 167

v “Chapter 17. Support for the secure sockets layer” on page 177

v “Chapter 18. CORBA client support” on page 183

v “Chapter 19. CICS Web support enhancements” on page 187

© Copyright IBM Corp. 1998 165

166 CICS TS for OS/390: Release Guide

Chapter 16. Bridging to 3270 transactions

This chapter describes the enhancements to CICS support for bridging to 3270
transactions. It covers the following topics:
v “Overview”

v “Running 3270 transactions in a bridge environment” on page 171

v “Migration considerations” on page 172

v “Benefits of bridging to 3270 transactions” on page 172

v “Requirements for the 3270 bridge” on page 173

v “Changes to CICS externals” on page 173

Overview

The 3270 bridge provides an interface so that you can run 3270-based CICS
transactions without a 3270 terminal. Commands for the 3270 terminal are
intercepted by CICS and replaced by a messaging mechanism that provides a
bridge between the end-user and the CICS transaction.

With the bridge feature, an end-user or client application that may be executing
outside the CICS environment can use transport mechanisms such as MQSeries or
the Internet to access and run a CICS 3270-based user transaction.

The following diagram shows a CICS user transaction executing in a 3270 bridge
environment.

Client
application

Bridge
monitor

User
transaction

formatter

Bridge exit

CICS

START BREXIT

Transport
mechanism

Figure 26. The CICS 3270 bridge environment

© Copyright IBM Corp. 1998 167

The client application can also be a CICS transaction using, for example, a
temporary storage queue to pass 3270 requests and data to a user transaction
executing in the same CICS region. This provides a similar function to the FEPI
interface.

The user transaction can be an existing 3270 or BMS-based CICS transaction. It
runs unchanged as if it were being driven by a real terminal.

Changes to the 3270 bridge

CICS introduces the following enhancements to the 3270 bridge function currently
provided:

v New options of the START command are provided to initiate a user transaction
and establish the bridge environment. A bridge transaction is no longer needed
for this purpose.

v Some restrictions on the CICS commands issued by a user transaction are
removed. Support is added for:

– START TRANSID TERMID commands, where TERMID is the bridge facility.
Some options are not supported and TRANSID must be local.

– RETURN IMMEDIATE

– INPUTMSG on RETURN, XCTL and LINK

– SET TERMINAL ATISTATUS

v Writing a bridge exit has been simplified by delegating the handling of API
commands to another user-replaceable program, called a formatter. This means
that the bridge exit only needs to handle message input and output.

Components of the new 3270 bridge
User transaction

A user transaction is a 3270 CICS transaction.

CICS 3270 bridge mechanism
The CICS 3270 bridge mechanism is the CICS function that allows a user
transaction to be run without a VTAM 3270 terminal. Terminal input/output
commands are intercepted by a bridge exit that emulates the real terminal by
passing the commands packaged as messages to the end-user or client
application.

Client application
A client application is a program, usually executing outside CICS, and possibly
outside MVS, that uses the CICS 3270 bridge mechanism to run a user
transaction. If a client application runs inside CICS, it can also perform the
functions of a bridge monitor.

Transport mechanism
A transport mechanism is used by the client application to pass messages to
CICS. MQSeries, the Web, CICS temporary storage, and CICS transient data
are all examples of transport mechanisms. Some transport mechanisms have
separately definable queues.

Messages
A message contains information that provides all or part of the data needed to
run a 3270 user transaction. Data originally written to the 3270 screen by the
user transaction is packaged into messages and sent to the client application.
Data originally read from the 3270 screen by the user transaction is obtained
from messages sent by the client application.

168 CICS TS for OS/390: Release Guide

Bridge monitor
A bridge monitor is usually a long-running CICS task that is associated with a
specific transport mechanism, or a specific queue in a transport mechanism.
When a message arrives requesting a CICS user transaction, the bridge
monitor issues a START BREXIT TRANSID command to start the requested
user transaction in a bridge environment where it will execute in association
with the specified bridge exit.

The bridge monitor must ensure that the requested transaction is started, and
started only once. It can receive confirmation messages from the bridge exit
after a successful start.

A bridge monitor can be designed as a long running CICS task, to start any
user transaction, or it can be a short running task that is designed to start only
a single transaction. The CICS Web interface implementation of the 3270 bridge
uses a short running task.

Bridge environment
The bridge environment includes the CICS components that are needed to run
a user transaction using the CICS 3270 bridge mechanism. A bridge exit and a
bridge facility are essential components of the bridge environment.

Bridge exit
A bridge exit is a user replaceable program that emulates the 3270 terminal
API. It usually does this by passing messages to the transport mechanism, so
there is usually a different bridge exit for each transport mechanism.

A bridge exit can be generic if it is designed to run any user transaction, or
specific if it is designed to work with a single user transaction.

In CICS TS Release 2, all 3270 terminal API requests were passed to the
bridge exit. This provides a simple interface for specific bridge exits, but is very
complicated in the generic case.

To reduce the complexity, the bridge exit can be designed to handle some of
the requests, with all the terminal API requests being passed to a formatter,
which is another user-replaceable program.

If used, the name of the formatter is obtained from the BRXA_FORMATTER
field in the bridge exit communication area (BRXA), and the bridge exit is only
called for requests that require input or output of data. If a formatter is not
specified, the bridge exit is called for all requests.

A bridge exit is always called for the following requests:
v User transaction initialization
v User transaction bind
v User transaction termination
v User transaction abnormal termination
v Read and Write message
v Syncpoint requests (optional)

A formatter is called for the following requests:
v SEND (Terminal Control and BMS)
v RECEIVE (Terminal Control and BMS)
v CONVERSE
v FREE
v ISSUE DISCONNECT

Chapter 16. Bridging to 3270 transactions 169

v ISSUE ERASEAUP
v RETRIEVE (in some cases)

All requests made in a bridge exit execute in the same unit of work as the user
transaction. Therefore, any recoverable requests made by the bridge exit are
committed or rolled back at the same time as the user transaction resources.

The bridge exit area, which forms an interface between the bridge exit and
CICS, is extended, and is described fully in CICS External Interfaces Guide.
This interface is defined by CICS and must be used by all bridge exits.

The messaging interface between the bridge exit and the remote resource or
the end user is not defined by CICS. You may define this interface to fit your
own environment.

However, we have defined an interface that is used by both the MQSeries and
the CICS TS/TD sample exits. This interface uses a message header (MQCIH)
and message vectors for each API request. It is described in CICS External
Interfaces Guide. You can use this interface definition as a basis for your own
implementation using other transport mechanisms.

Bridge exit area
The bridge exit area (BRXA) is the communication area between the bridge exit
and CICS. It is a CICS COMMAREA, and is subject to normal length
constraints for a COMMAREA..

Bridge facility
The bridge facility is an emulated 3270 terminal, replacing a real 3270, that is
visible only to the user transaction and does not appear in response to CEMT I
TERM or CEMT I TASK.

It has a dynamically created TERMID that can be used, for example, as the
basis of a unique name for a TD or TS queue.

Sample code provided

The following sample code is available:

DFH0CBRE
A COBOL bridge exit program that uses CICS temporary storage or transient
data queues to pass messages (in MQCIH format) to the end-user application
(another CICS application).

DFH0CBRF
A COBOL bridge exit formatter designed to work with DFH0CBRE. This builds
and interprets BRMQ message vectors.

DFHWBLT
An object code exit that allows you to access a CICS transaction from the
World Wide Web. This exit uses the CICS Web interface support described in
the CICS Internet Guide.

Copybooks
CICS provides a number of copybooks for use with the sample programs:

DFH0CBRD
COBOL copybook used by DFH0CBRE.

DFH0CBRU
COBOL copybook used by DFH0CBRF.

170 CICS TS for OS/390: Release Guide

DFHBRSDx
Copybooks in all supported languages defining the interface between
the bridge monitor and the bridge exit.

DFHBRMHx
Copybooks in all supported languages defining the message header
included in all messages passed between the sample bridge exit and
the client application. Constants are also supplied for these copybooks.

DFHBRMQx
Copybooks in all supported languages defining the command vectors in
the messages passed between the sample bridge exit and the client
application. Constants are also supplied for these copybooks.

See the CICS External Interfaces Guide for more information about the formats
of message headers and vectors.

Security considerations
Bridge monitor transaction

The bridge monitor issuing the EXEC CICS START BREXIT command must
have authority for the following:

1. Surrogate authority to issue a START for the specified USERID.

2. Authority to load the bridge exit specified by the BREXIT parameter. If the
default bridge exit specified in the TRANSACTION resource definition is
used, CICS does not perform a security check.

User transaction
The user transaction, running under the specified USERID, must have the
authority to run the transaction.

Bridge exit
The bridge exit responsible for reading the messages can obtain a password
from the message (note that the user ID is not in the message). The bridge exit
can then issue a VERIFY command with the password. This can be done for all
messages, or just the first.

Running 3270 transactions in a bridge environment

A user transaction is started directly by a bridge monitor transaction using the
START BREXIT TRANSID command.

The user transaction is initialized in a bridge environment; all 3270 terminal
commands are intercepted and passed to the named bridge exit that emulates the
3270 terminal by packaging the commands into messages and passing them to the
transport mechanism for delivery to a client application.

A formatter may be used to package the commands into messages, to simplify the
role of the bridge exit as a message handler only.

The bridge monitor transaction is normally a long running task associated with a
message queue. It looks at the contents of each message to search for requests for
new work, and identifies the name of the user transaction to run. It then starts the
requested transaction and checks that it has started successfully.

Chapter 16. Bridging to 3270 transactions 171

The client application, which may be executing anywhere accessible by the
transport mechanism, extracts the 3270 data from the messages and constructs
reply messages, containing 3270 data and commands, to pass to the bridge exit to
satisfy the terminal commands.

Migration considerations

Bridge exits and transport mechanism monitors written to run on the earlier release
require modification as a result of the following changes.

Changes to the monitor
The monitor (now called a bridge monitor) does not need to start a bridge
transaction, but must use the new START BREXIT TRANSID command to start
the user transaction directly.

Changes to the bridge exit
The following changes affect the bridge exit:

v The initialization call of the bridge exit is now divided into two parts:
non-recoverable (Init) and recoverable (Bind) initialization.

v The retrieval of data in the bridge exit (using EXEC CICS RETRIEVE) is now
replaced by data passed in the BRXA from the BRDATA specified by the
EXEC CICS START BREXIT command.

v The bridge exit can now issue an EXEC CICS VERIFY command for the
password.

v The BRXA-PASSWORD option is withdrawn.

Changes to the bridge transaction
Bridge transaction resource definitions are no longer valid.

CSD migration
The bridge transaction definitions provided in CICS TS Release 2 are moved to
the CSD compatibility group, DFHCOMP7.

Bridge transaction resource definitions are no longer required.

Benefits of bridging to 3270 transactions

The 3270 bridge allows you to introduce new GUI front ends to access existing
3270-based CICS applications without modifying them. This means that you can
concentrate your efforts on the new user interfaces, and avoid, or at least postpone,
rewriting stable mainframe applications.

You don’t need to restructure your applications to separate the business logic from
the presentation logic; the bridge effectively does this for you.

The same existing applications can be used both by 3270 terminals, and by the
new end-user applications. This will, therefore, allow a phased migration of users
from the 3270 applications to the new end-user applications.

Applications written for 3270 terminals can be run on CICS regions without using
VTAM support.

The bridge can process commands faster than existing front end methods, such as
FEPI and EPI, because the terminal emulation is part of the same CICS
transaction.

172 CICS TS for OS/390: Release Guide

Unlike other front-end methods, there is only a single unit of work. This means that
the bridge can use a recoverable MQSeries queue. This greatly simplifies recovery.

Requirements for the 3270 bridge

The hardware and software requirements for bridging to 3270 transactions are the
same as for CICS generally plus, if you intend to use the MQSeries supplied bridge
exit, MQSeries for MVS/ESA™ Version 2.1.

Resource usage

The 3270 bridge mechanism allows you to drive 3270 applications without a real
3270 terminal. Although overall resource usage may not change significantly, the
resources involved may be different.

For example, the real terminal is replaced by a bridge facility, but the storage
required for the definition is the same. A saving occurs if the bridge facility is not
retained for the same length of time as the equivalent real terminal.

The 3270 bridge has some similarity in function to the FEPI interface, but has no
separate controlling task in CICS, and a correspondingly lower task-attach
overhead. The controlling task is now outside CICS, transferring this resource
requirement to another platform. Terminal requests do not need to be processed by
VTAM, as with FEPI, but are passed directly to the bridge exit, saving about 60%
pathlength.

Some additional resource requirements are:

v RACF validation is required each time the bridge exit issues a VERIFY
command, which may occur on each request. This increases the overall
pathlength compared to terminal usage, especially if PassTickets are used.

v Storage is required for the bridge exit, terminal, and state data, including the
bridge exit communication area (BRXA). This remains in storage for the duration
of the transaction, increasing 31-bit task storage usage for the user transaction.

Changes to CICS externals

This section describes the following changes to CICS externals caused by the
enhancements to the 3270 bridge.
v “Changes to resource definition”

v “Changes to the application programming interface (API)” on page 174

v “Changes to the system programming interface (SPI)” on page 175

v “Changes to the exit programming interface (XPI)” on page 176

v “Changes to user-replaceable modules” on page 176

v “Changes to CICS-supplied transactions” on page 176

Changes to resource definition

Changes are made to the TRANSACTION resource definition, as follows:

v The BREXIT parameter is now defined on the user transaction definition. The
bridge transaction introduced in CICS TS Release 2 is no longer required to run

Chapter 16. Bridging to 3270 transactions 173

a transaction in the 3270 bridge environment. Existing definitions are moved to
the CSD compatibility group, DFHCOMP7.

v The BREXIT parameter now defines the default bridge exit to be used for a
transaction started in the bridge environment. This is intended to define a specific
bridge exit.

Changes to the application programming interface (API)

Changes are made to the following interfaces to support the 3270 bridge:
v START BREXIT
v ASSIGN

START BREXIT command

The EXEC CICS START BREXIT command starts a task immediately in the local
CICS region, and initializes the specified transaction (TRANSID) and bridge exit
(BREXIT).

The options available on the EXEC CICS START BREXT command are:

BREXIT(name)
Specifies the name (1-8 characters) of the bridge exit to be associated with the
started task. If no name is specified, the value of the BREXIT parameter on the
TRANSACTION resource definition for TRANSID is used.

BRDATA(data-area)
Specifies the data to be passed to the bridge exit specified by BREXIT when
the task is started.

BRDATALENGTH(data-value)
Specifies a halfword binary data value that is the length of the BRDATA to be
passed to the bridge exit specified by BREXIT when the task is started.

TRANSID(name)
Specifies the symbolic identifier (1–4 characters) of the transaction to be
executed by a task started as the result of a START BREXIT command. The
transaction starts in the 3270 bridge environment, and executes in association
with the bridge exit specified in BREXIT.

USERID(data-value)
Specifies the user ID under whose authority the started transaction is to run.

The exception conditions are:

INVREQ
RESP2 values:

11 An attempt was made to ship a START BREXIT request.

START BREXIT

GG START BREXIT
BREXIT(name)

TRANSID(name)
BRDATA(data-area) BRDATALENGTH(data-value)

G

G
USERID(data-value)

GH

Conditions: INVREQ,LENGERR, NOTAUTH, TRANSIDERR, USERIDERR

174 CICS TS for OS/390: Release Guide

12 A START BREXIT request has failed.

18 A USERID is specified and the CICS external security manager
interface is not initialized.

INVREQ can also occur (but RESP2 is not set) if the START command is not
valid for processing by CICS.

Default action: terminate the task abnormally.

LENGERR
Occurs if BRDATALENGTH is not greater than zero.

Default action: terminate the task abnormally.

NOTAUTH
RESP2 values:

7 A resource security check fails on TRANSID (name).

9 A surrogate user security check fails on USERID (name).

The security access capabilities of the transaction that issued the
command do not allow the command to be performed with the value
specified in the USERID option.

Default action: terminate the task abnormally.

PGMIDERR
occurs if no name is supplied by the BREXIT option and the transaction
definition for TRANSID does not provide a default BREXIT name.

Default action: terminate the task abnormally.

TRANSIDERR
occurs if the transaction identifier specified in a START BREXIT command has
not been defined to CICS.

Default action: terminate the task abnormally.

USERIDERR
RESP2 values:

8 The specified USERID is not known to the external security manager.

10 The external security manager is in a state such that CICS cannot
determine whether a specified USERID is valid.

ASSIGN command

Changes to the ASSIGN command

The BRIDGE option introduced in CICS TS Release 2 is retained but the value
returned has a different meaning. In the earlier release, BRIDGE returns the name
of the bridge transaction. The BRIDGE option now returns the name of the bridge
monitor transaction. The bridge transaction is no longer required to run a
transaction in the 3270 bridge environment.

Changes to the system programming interface (SPI)

The INQUIRE TASK command is changed to support the enhancements to the
3270 bridge.

Chapter 16. Bridging to 3270 transactions 175

Changes to the INQUIRE TASK command

The INQUIRE TASK BRIDGE option introduced in CICS TS Release 2 is retained,
but the value returned has a different meaning. In the earlier rlease, BRIDGE
returns the name of the bridge transaction. The BRIDGE option now returns the
name of the bridge monitor transaction. The bridge transaction is no longer required
to run a transaction in the 3270 bridge environment.

Changes to the exit programming interface (XPI)

The INQUIRE_CONTEXT function is modified to support the enhancements to the
3270 bridge.

Changes to the INQUIRE_CONTEXT command

The value returned by the BRIDGE_TRANSACTION_ID parameter now has a
different meaning. In CICS TS Release 2, BRIDGE_TRANSACTION_ID returns the
name of the bridge transaction. The BRIDGE_TRANSACTION_ID option now
returns the name of the bridge monitor transaction. The bridge transaction is no
longer required to run a transaction in the 3270 bridge environment.

Other parameters of INQUIRE_CONTEXT are unchanged.

Changes to user-replaceable modules

The following changes are made to user-replaceable modules:

v The interface to the existing bridge exit user-replaceable module is extended to
support the enhancements to the 3270 bridge. See CICS External Interfaces
Guide for detailed information about the BRXA interface.

v A formatter user-replaceable module can, optionally, be used to handle all the
API commands, leaving the bridge exit to handle message input and output only.

Changes to CICS-supplied transactions

The CEMT INQUIRE TASK command is changed to support the enhancements to
the 3270 bridge.

Changes to the CEMT INQUIRE TASK command

The INQUIRE TASK BRIDGE option introduced in CICS TS Release 2 is retained,
but the value returned for the BRIDGE option has a different meaning. In the earlier
release, BRIDGE returns the name of the bridge transaction, but now it returns the
name of the bridge monitor transaction. The bridge transaction is no longer required
to run a transaction in the 3270 bridge environment.

176 CICS TS for OS/390: Release Guide

Chapter 17. Support for the secure sockets layer

This chapter describes CICS Web interface support for the secure sockets layer. It
covers the following topics:
v “Overview of SSL”

v “Benefits of secure sockets layer” on page 178

v “Requirements” on page 178

v “Changes to CICS externals” on page 178

Overview of SSL

The secure sockets layer (SSL) is a protocol for exchanging secure information
across an insecure network such as the Internet. It was invented by the Netscape
Communications Corporation and is described in some detail at their website.

Caution
These URLs are subject to change.

(See http://www.netscape.com/newsref/ref/rsa.html for an overview, or
http://home.netscape.com/eng/ssl3/ for a detailed specification).

CICS supports SSL directly using the system SSL function of OS/390 Release 7, so
you do not need an intermediate SSL server between the CICS application and the
Internet.

SSL authentication

When client and server programs communicate using the SSL protocol, an initial
handshake occurs in which the server and client authenticate each other and then
negotiate an encryption technique. After the handshake, all the data that flows
between the client and server is encrypted using the negotiated technique.

The authentication is performed by an exchange of certificates, which are blocks of
data in a format described in ITU-T Standard X.509. The server certificate is
mandatory, but the client certificate is optional—it is up to the server to decide
whether to accept a connection from a client without a certificate.

The X.509 certificates are digitally signed by an external authority known as the
certificate authority. Signing is done by partially encrypting the certificate with the
certificate authority’s private key. A user of the certificate is assured of the origin of
the certificate when it is successfully decrypted by the certificate authority’s public
key. To obtain a certificate, search the Web using a search string such as
certificate authority, and apply to one of the authorities listed.

In CICS, the required server certificate and related information about certificate
authorities are kept in a key database file that is stored within the hierarchical file
system (HFS) of OS/390. The keyring file is created and maintained by the
gskkyman utility shipped with OS/390.

© Copyright IBM Corp. 1998 177

Benefits of secure sockets layer

Using the secure sockets layer when communicating with a client over the Internet
allows you to transfer secure data such as credit card numbers, PIN numbers, or
sensitive financial data without the risk that the data can be intercepted or changed
while in transit.

Furthermore, you can force your clients to identify themselves by requiring that they
have a client certificate, which assures you that they are a particular client who has
obtained a certificate from a recognized certificate authority. You can also configure
your external security manager, such as the Security Server for OS/390 (RACF), to
map requests from certificate holders to specific user IDs, so that you can grant or
deny them access to particular CICS resources, through the normal CICS security
mechanisms.

Using SSL within CICS means that you do not have to purchase, install, or
configure an external Internet server solely for the purpose of providing secure
CICS transactions across the Internet.

Requirements

Secure sockets layer does not require any additional hardware, but performance is
greatly improved if appropriate cryptographic hardware is installed.

The software required for secure sockets layer is OS/390 Release 7, plus the
required PTF for APAR PQ23421 to enable the CICS SSL support.

Changes to CICS externals

There are a number of changes to CICS externals to support the secure sockets
layer:
v “Changes to installation”

v “Changes to system definition” on page 179

v “Changes to application programming interface” on page 180

v “Changes to user-replaceable modules” on page 180

v “Changes to samples” on page 180

v “Changes to CICS-supplied transactions” on page 180

v “Changes to problem determination” on page 181

Changes to installation

To use secure sockets layer, install a key database in the OS/390 UNIX System
Services hierarchical file system (HFS). This file contains your system’s private and
public key pair, together with your server certificate and the certificates for all the
certificate authorities that might have signed the certificates you receive from your
clients.

You create the keyring file using the key management utility gskkyman, which you
execute under the UNIX System Services shell in TSO.

178 CICS TS for OS/390: Release Guide

For further information about gskkyman, see the OS/390 Cryptographic Services
System SSL Programming Guide and Reference, SC24-5877.

Changes to system definition

There are four new system initialization parameters to support secure sockets layer.
These are:

KEYFILE=key-database-path-name
specifies the fully-qualified HFS pathname of the key database file created by
the gskkyman utility program for this CICS region. When you specify this
parameter, the CICS region user ID must be authorized to read the specified
HFS file.

ENCRYPTION={WEAK|NORMAL|STRONG}
specifies the level of encryption you want to use for TCP/IP connections using
the secure sockets layer. The parameter selects the list of ciphers that are
negotiated with the client program to choose the SSL encryption technique,
keysize, and message authentication code (MAC) . You can specify an option
only if you have the underlying encryption support in the OS/390 operating
system. Possible values are:

WEAK
Specifies the following list of ciphers:

v RC4 encryption with a 40-bit key and an MD5 MAC

v RC2 encryption with a 40-bit key and an MD5 MAC

v No encryption with an MD5 MAC

v No encryption with an SHA MAC.

This option is available in all countries with OS/390 Release 7.

NORMAL
Specifies the following list of ciphers:

v DES encryption with a 56-bit key and an SHA MAC

v RC4 encryption with a 40-bit key and an MD5 MAC

v RC2 encryption with a 40-bit key and an MD5 MAC

v No encryption with an MD5 MAC

v No encryption with an SHA MAC.

This option is available with OS/390 Release 8 in all countries except
France.

NORMAL is the default value, but if you specify NORMAL under OS/390
V2R7, and DES encryption is not available, CICS automatically resets it to
WEAK.

STRONG
Specifies the following list of ciphers:

v Triple DES encryption with a 168-bit key and an SHA MAC

v RC4 encryption with a 128-bit key and an MD5 MAC

v RC4 encryption with a 128-bit key and an SHA MAC

v DES encryption with a 56-bit key and an SHA MAC

v RC4 encryption with a 40-bit key and an MD5 MAC

v RC2 encryption with a 40-bit key and an MD5 MAC

v No encryption with an MD5 MAC

Chapter 17. Support for the secure sockets layer 179

#
#
#
#
#
#
#

#
#

#

#

#

#

#

#
#

#

#

#

#

#

#
#

#
#
#

#
#

#

#

#

#

#

#

#

v No encryption with an SHA MAC.

STRONG is available with OS/390 Release 7 in the USA and Canada only.

SSLDELAY={600|number}
Specifies the length of time in seconds for which CICS retains session IDs
for secure socket connections. Session IDs are tokens that represent a
secure connection between a client and an SSL server.

SSLTCBS={8|number
Specifies the number of CICS subtask TCBs to be dedicated to processing
secure sockets layer connections, in the range 0 to 255. The parameter
controls the number of simultaneous SSL connections that CICS can
establish. A value of 0 means that no SSL connections are to be
established.

This number is independent of and in addition to the TCBs specified on the
MAXOPENTCBS system initialization parameter.

Changes to application programming interface

There is a new API command for SSL:
v EXTRACT CERTIFICATE

EXEC CICS EXTRACT CERTIFICATE allows an application program to obtain
information about an inbound client request. The options allow you to obtain details
of any certificates being used for SSL authentication. See the CICS Application
Programming Reference for a full description of this command.

Changes to user-replaceable modules

The userid field (wbra_userid) in the COMMAREA passed to the CICS Web
Interface analyzer user-replaceable module is changed from an output parameter to
an input and output parameter. On input to the Analyzer, if the client has provided a
client certificate, wbra_userid is set to is the userid associated with the certificate, if
one is available. Otherwise, the field is set to binary zeroes. The analyzer may
leave the field unchanged, or may replace it with a different value. The analyzer
program can use the EXEC CICS EXTRACT CERTIFICATE command to extract details
about the client certificate to help choose a different user ID.

If wbra_userid contains a valid userid on return from the analyzer (which may be
the one deduced from the client certificate if the field is left unchanged) that is the
user ID under which the alias transaction will run.

Changes to samples

A new sample COBOL program, DFH0WBCA, is available to demonstrate how to
use client certificates. This uses the EXEC CICS EXTRACT CERTIFICATE command.

Changes to CICS-supplied transactions

A new function of the CEMT SET command CEMT SET TCPIPSERVICE is
introduced for the CICS Web Interface enhancements. It is used to enable a TCP/IP
service for SSL, either with or without client authentication. See the CICS Supplied
Transactions for a full explanation of this function.

180 CICS TS for OS/390: Release Guide

#

#

#
#
#
#

#
#
#
#
#
#

#
#

#

Changes to problem determination

There are new messages and trace entries to aid problem determination.

Messages

The following messages are introduced in support of secure sockets layer:

v A message when the KEYFILE system initialization parameter is specified, but
the specified key database file cannot be opened, for one of the following
reasons:

– The specified key database file does not exist

– The CICS region is not authorized to read the key database file

– The key database file’s password has expired.

v A message when the ENCRYPTION=STRONG system initialization parameter is
specified, but the North American encryption feature is not installed.

v A message when a TCP/IP port is enabled for SSL, but the KEYFILE system
initialization parameter is not specified.

Trace

SSL-related parameters are traced on entry and exit from the sockets domain,
when relevant.

New trace entries in the security domain trace entry to, and exit from, the
ADD_USER_WITH_CERTIFICATE function call, in addition to relevant calls to the external
security manager.

Chapter 17. Support for the secure sockets layer 181

182 CICS TS for OS/390: Release Guide

Chapter 18. CORBA client support

This chapter describes CICS support for IIOP inbound to Java applications. It
covers the following topics:
v “Overview”

v “Benefits” on page 184

v “Requirements” on page 184

v “Changes to CICS externals” on page 184

v “Security” on page 186

v “CICSPlex SM support” on page 186

Overview

CICS introduces support for CORBA clients using the IIOP protocols to access Java
server programs.

The Internet Inter-ORB protocol (IIOP), is an industry standard that can be used to
provide communication between object-oriented application programs executing on
different processors. It is part of the Common Object Request Broker Architecture
(CORBA) specification, supporting distributed objects in a TCP/IP network.

CORBA is an architecture for distributed object middleware that separates client
and server objects with a formal interface definition, and IIOP defines the message
formats and protocols used in a CORBA distributed environment.

CICS supports inbound requests to Java programs, using the IIOP protocol. You
can read about building CICS Java applications using the CICS Java classes in the
CICS Application Programming Guide.

A subset of the full CORBA function is provided, suitable for distributed objects that
have evolved from existing CICS applications and therefore have the following
characteristics:

v State by virtue of their explicit use of CICS resources, rather than state that is
managed by the Object Request Broker(ORB). State is initialized at the start of
each method call and referenced by explicit method parameters.

v Transaction and security contexts managed by CICS facilities, so CORBA
services are not provided.

v CICS services used to reference distributed applications, so outbound object
references are not supported.

v Applications and their interfaces predefined, so the Dynamic Skeleton Interface
(DSI) is not supported.

Each method call is implemented as a CICS transaction, and the existing TOR/AOR
structure is retained. CICS can select the best server to meet the client’s request,
or balance the loading of requests between servers.

For a full description of the IIOP support, see the CICS Internet Guide.

© Copyright IBM Corp. 1998 183

Benefits

This function provides:

v Improved application development productivity. Use of a distributed object model
gives well-defined (strongly typed) interfaces for applications with inheritance and
polymorphism characteristics.

v Stronger type checking at compile time and reduction in application error
compared with the use of untyped COMMAREAS used in CICS ECI calls.
Run-time type checking is also enabled for use in polymorphic implementations.

v The use of vendor-independent client platforms, giving true separation of server
and client environments.

Requirements

The hardware and software requirements for this function are the same as for CICS
TS with:

v VisualAge for Java, Enterprise Edition for OS/390 (ET/390) to bind Java
byte-code into Java program objects that can be run in CICS, or the MVS Java
Virtual Machine (JVM) running in CICS.

v Full function OS/390 UNIX System Services configured to run ET/390.

Service PTFs for the following APARs are required before using Java language
support:

v OW31036 (Bind with long object names)

v OW31718 (DFSMS 1.4 Invalid loader storage check)

v OW31924 (IEW2333E Invalid syntax in IMPORT control statement)

v OW32111, OW32261, and OW32334 (IEW2900T E913 Binder abnormal
termination)

v OW33782 (DFSMS 1.4 DESERV to set output buffer length for PDSE access)

v OW34052 (Load optimization for C_WSA for DLLs in dynamic LPA)

v PQ08747 (For LE to support double precision floating-point in single thread)

v PQ17512 (0C4 when signal occurs in stack extension boundary)

v PQ19340 (CICS ABEND failure caused by LE condition handler)

Changes to CICS externals

This section describes the following changes to CICS externals caused by the IIOP
inbound function.
v “Changes to resource definition” on page 185

v “Changes to the system programming interface (SPI)” on page 185

v “Changes to user-replaceable modules” on page 185

v “Changes to CICS-supplied transactions” on page 185

v “Changes to samples” on page 185

v “Changes to CICS-supplied utilities” on page 185

v “Changes to problem determination” on page 186

184 CICS TS for OS/390: Release Guide

Changes to resource definition

Two new CICS resource definitions are used to support IIOP:.

REQUESTMODEL
provides the connection between an IIOP inbound request and the name of the
CICS transaction that is to be initiated.

TCPIPSERVICE
defines the TCP/IP attributes of the CICS IIOP service. A TCPIPSERVICE
definition is required for each port that CICS will listen on for IIOP requests.

For details of the TCPIPSERVICE and REQUESTMODEL resource definitions, see
the CICS Resource Definition Guide.

Changes to the system programming interface (SPI)

The following new SPI commands are added to support the IIOP inbound function:
v INQUIRE REQUESTMODEL
v CREATE REQUESTMODEL
v DISCARD REQUESTMODEL

For further details of these SPI commands, see the CICS System Programming
Reference

Changes to user-replaceable modules

A new user-replaceable module is called before the selected TRANSID is executed.
This program allows you to examine the incoming IIOP message and assign a
CICS USERID under which the request is run. The program name is defined in the
TCPIPSERVICE definition, defaulting to DFHXOPUS. It is invoked for all IIOP
messages.

Changes to CICS-supplied transactions

CEMT is changed to support the new REQUESTMODEL and TCPIPSERVICE
resources.

The following new transactions are supplied:

CIOD The default transaction used for a method request if no match is found with
any defined REQUESTMODELs.

CIOF The default transaction used for a GenericFactory request.

CIOR This is the initial transaction, attached to process an incoming message.

Changes to samples

Sample Java server and client programs are supplied.

Changes to CICS-supplied utilities
v An IDL to the Java compiler utility is provided in dfjcidl.jar.

v The GenFacIOR utility is provided in dfhcorb.jar for use by client applications.

See the CICS Internet Guide for more information about these utilities.

Chapter 18. CORBA client support 185

Changes to problem determination

Changes are made to CICS problem determination services to support the inbound
IIOP function.

Messages

New CICS messages in the DFHCZxxxx range are issued by the inbound IIOP
function.

Trace

New CICS trace entries are written by the inbound IIOP function.

Abend Codes

New Abend codes, AIOx, are generated by the inbound IIOP function.

Security

The IIOP inbound function invokes the user replaceable module DFHXOPUS to
supply a USERID under which the request will be run, providing powerful attributes
not available to normal end-users. No application code will be executed under the
powerful USERID.

CICSPlex SM support

CICSPlex SM supports IIOP inbound functions for Java by providing:

v A new BAS definition object RQMDEF that associates an inbound IIOP request
with a set of execution characteristics such as security or priority, and with
monitoring and accounting data

v New operate views:

RQMODEL General view of request models.

RQMODELD A detailed view of a specific request model.

RQMODELS A summary view of request models.

v New resource tables:

– CRESRQMD

– ERMCRQMD

– RQMDEF

– RQMINGRP

– RQMODEL

186 CICS TS for OS/390: Release Guide

Chapter 19. CICS Web support enhancements

This chapter describes the enhancements to CICS Web support. It covers the
following topics:
v “Overview”

v “Benefits” on page 188

v “Requirements” on page 189

v “Changes to CICS externals” on page 189

v “CICSPlex SM support” on page 193

Overview

CICS Web support is restructured as a new CICS domain, conforming to the
standard CICS domain architecture. In addition to the restructure, it is further
enhanced by:

v The addition of new EXEC CICS application programming interface commands
for the manipulation of Web entities

v Improvements to the definition and management of HTML templates

v Using the 3270 bridge enhancements in a Web 3270 environment

v Enabling CICS Web support to handle more than 32K of data, inbound and
outbound

v Simplified administration through new resource type, TCPIPSERVICE.

EXEC CICS API for the CICS Web interface

The current interface to the template manager is by means of an EXEC CICS LINK
to program DFHWBTL. A new suite of EXEC CICS commands is provided to allow
user application programs to manipulate templates without the need to link to
DFHWBTL. EXEC CICS commands are also provided to retrieve information from
inbound HTTP requests, and to build HTTP responses.

HTML templates
v HTML templates are now called document templates, and can be stored in the

following places:
– A CICS file
– An extrapartition transient data (TD) queue
– A recoverable auxiliary TS queue
– CICS program storage
– A URM-managed repository (for example, DB2)
– An MVS partioned data set (PDS).

Document templates are defined to CICS in a DOCTEMPLATE resource
definition type. EXEC CICS CREATE and DISCARD commands are extended to
allow installed DOCTEMPLATE resource definitions to be managed dynamically.

Improvements to 3270 support on the Web

Web 3270 transactions can now use EXEC CICS START against the same facility.

© Copyright IBM Corp. 1998 187

Removal of 32KB restriction

In earlier releases, the CWI uses the EXEC CICS LINK command to pass data
between CICS code and user-written programs. EXEC CICS LINK communication
areas (COMMAREAs) have a maximum size of 32KB, so the CWI is also restricted
to 32KB for inbound data (some CWI applications can use a work-around to exceed
32KB of outbound data).

The use of a CICS temporary storage queue to store inbound requests removes the
32KB restriction for inbound data.

TS queues are used to store inbound data and Web documents created by
applications; a TS queue generic prefix is required for each Web TCPIPSERVICE.
The TS queue prefix is defined in the TCPIPSERVICE resource type. Each TS
queue prefix must have a corresponding TSMODEL definition to meet your system
and application requirements. Most Web transactions exchange relatively small
amounts of data Therefore, a TSMODEL defining the TS queues as main TS might
be appropriate. For applications handling large amounts of data, a model specifying
main TS might be unacceptable due to storage constraints.

Support for the HTTP 1.0 Keep-Alive header

HTTP 1.0 persistent connection (Keep-Alive) support improves network
performance (particularly when SSL is being used) by allowing one sockets
connection between CICS and an HTTP client to process multiple HTTP requests.
CICS supports only the HTTP 1.0 Keep-Alive implementation of persistent
connections, not the HTTP 1.1 connection.

To enable HTTP Version 1.0 persistent connection support, set the Socketclose
keyword on the associated TCPIPSERVICE definition either to NO (that is, CICS
does not close the socket), or to a specific interval, after which CICS closes the
socket if no new HTTP request arrives.

When “OK HTTP” responses are returned, this tells the browser that further HTTP
requests can be submitted over the same socket connection.

Simplified administration

Administration is simplified by the introduction of a new resource type,
TCPIPSERVICE, to replace the CWBC transaction and its associated data set,
DFHWBCD, which are now obsolete. See the CICS Transaction Server for OS/390
Migration Guide for more information about migration implications, and the CICS
Resource Definition Guide for information about defining TCPIPSERVICE resource
definitions.

Benefits

The benefits provided by CICS Web support enhancements are:

v CICS Web support now handles more than 32KB of data, inbound and outbound
(see “Removal of 32KB restriction”).

v System administration is simplified by the removal of transaction CWBC, and its
associated VSAM data set, DFHWBCD.

v HTML templates are replaced by document templates, which are a CICS
resource, definable using RDO or the EXEC CICS CREATE command.

188 CICS TS for OS/390: Release Guide

|

|

|
|
|
|
|

|
|
|
|

|
|

v Document templates can be stored in CICS TS and TD queues, load modules,
VSAM files, and other user-managed storage.

v Support of the HTTP 1.0 Keep-Alive header allows CICS Web applications to
take advantage of the significant reduction in network traffic which this header
allows. The improved performance is particularly marked when SSL is used to
secure the HTTP flows.

v Improvements are made to 3270 support on the Web (see “Improvements to
3270 support on the Web” on page 187).

v The new CWI API simplifies the retrieval and building of HTTP requests and
responses (see “EXEC CICS API for the CICS Web interface” on page 187).

Requirements

The hardware requirements for CICS Web support are the same as for CICS TS
generally.

The software required is OS/390 Release 5 or later, plus a required PTF for APAR
PQ21197, to enable you to run CICS with TCPIP=YES. The required PTFs are:

v UQ23629 for OS/390 Version 2 Release 5

v UQ23630 for OS/390 Version 2 Release 6

v UQ23628 for OS/390 Version 2 Release 7

Changes to CICS externals

This section describes the following changes to CICS externals introduced by CICS
Web support enhancements. It consists of:
v “Changes to system definition”

v “Changes to resource definition” on page 190

v “Changes to the application programming interface (API)” on page 190

v “Changes to the system programming interface (SPI)” on page 191

v “Changes to user-replaceable programs” on page 192

v “Changes to CICS-supplied transactions” on page 192

v “Problem determination” on page 192

Changes to system definition

Two new system initialization parameters, TCPIP and DOCCODEPAGE, are
introduced for the CICS Web interface.

TCPIP={YES|NO}
TCPIP=YES, which is the default, specifies that CICS TCPIP services, (HTTP
and IIOP) are to be activated at CICS startup. If you specify TCPIP=NO, these
services cannot be enabled.

DOCCDEPAGE={037|number}
Specifies the default host code page to be used by the CICS document domain
if the HOSTCODEPAGE option is omitted from CICS API DOCUMENT
commands.

Chapter 19. CICS Web support enhancements 189

|
|

|

|

|

|

|
|
|
|

DFHWBCD data set obsolete

The VSAM dataset DFHWBCD, used in earlier releases to store information relating
to the CICS Web interface, is obsolete. It is replaced by the TCPIPSERVICE
resource type (see“Changes to resource definition” for further information). Sample
TCPIPSERVICE definitions are supplied in the CSD group, DFH$SOT.

Changes to resource definition

Two new resource definitions, DOCTEMPLATE and TCPIPSERVICE, have been
introduced.

DOCTEMPLATE

Use this resource definition to define document templates to CICS. Document
templates allow you to perform variable substitution on documents in a manner
similar to that done by BMS for 3270 screens. The template can be retrieved by a
user-replaceable module, or it can reside in any one of the following places:
v An MVS partitioned data set
v A CICS temporary storage queue
v A CICS extrapartition transient data destination
v A CICS load library as a load module

TCPIPSERVICE

Use this resource definition to define which TCP/IP services are to use CICS
internal sockets support. The internal CICS services that can be defined are IIOP
and the CICS Web interface.

The TCPIPSERVICE definition allows you to manage these internal CICS
interfaces, with CICS listening on multiple ports, and with different flavors of CICS
Web or IIOP support on different ports.

Specifying a value other than YES for the Socketclose keyword allows CICS to use
HTTP Version 1.0 persistent connection support.

The XRSINDI global user exit is invoked when DOCTEMPLATE and
TCPIPSERVICE resource types are installed or discarded.

DFHWEB TSMODEL definition

A new TSMODEL resource definition, DFHWEB, is provided in group DFHWEB to
store inbound and outbound data from HTTP requests and responses. This defines
a default TS queue prefix value of DFHWEB. If you use your own TCPIPSERVICE
resource definition that specifies a different TS queue prefix, which is defined in
your own TSMODEL definition, CICS uses that instead.

Changes to the application programming interface (API)

A new set of commands is added to the EXEC CICS API for the CICS Web
interface, generally of the form EXEC CICS WEB verb, plus one EXEC CICS
TCPIP command.

This set of CICS Web support API consists of the following commands:

190 CICS TS for OS/390: Release Guide

|
|

v EXEC CICS TCPIP EXTRACT allows the application to obtain information about
the TCPIP characteristics of the transaction.

v EXEC CICS WEB EXTRACT allows the application to extract information from
the HTTP request sent by the client.

v EXEC CICS WEB ENDBROWSE HTTPHEADER terminates a browse started by
the EXEC CICS WEB STARTBROWSE HTTPHEADER command.

v EXEC CICS WEB READ is used to extract HTTP header information.

v EXEC CICS WEB READNEXT retrieves the next HTTP header in the list of
HTTP headers received on an inbound request.

v EXEC CICS WEB RECEIVE receives data from CICS Web support or business
logic interface into an application-supplied buffer.

v EXEC CICS WEB SEND selects a document or application-supplied buffer for
delivery by CICS Web support or the business logic interface.

v EXEC CICS WEB STARTBROWSE HTTPHEADER signals the start of a browse.

v EXEC CICS WEB WRITE HTTPHEADER allows the application to add HTTP
header information to the HTTP response.

The following commands have been introduced for the creation and management of
CICS documents:

v EXEC CICS DOCUMENT CREATE signals the start of the document creation
process. The document being created can be an empty document or it can be
based on an existing document, a template, or data contained in an application
buffer.

v EXEC CICS DOCUMENT INSERT allows the application to insert document
objects at insertion points (known as bookmarks) within the document.

v EXEC CICS DOCUMENT RETRIEVE allows the application to obtain a copy of
the document in its own buffer, which it can then manipulate directly.

v EXEC CICS DOCUMENT SET allows the application to add symbols and their
associated values to the symbol table.

Changes to the system programming interface (SPI)

There are new system programming interface commands in support of the CICS
Web interface, as follows:

v INQUIRE TCPIP, to retrieve information about CICS internal sockets support.

v SET TCPIP, to open or close CICS internal sockets support.

v INQUIRE TCPIPSERVICE, to retrieve information about TCPIP ports on which
CICS internal TCPIP support is currently listening on behalf of other CICS
services.

v SET TCPIPSERVICE, to update the information relating to a service using CICS
internal TCPIP support.

v CREATE TCPIPSERVICE, to define a TCP/IP service in the local CICS region.

v DISCARD TCPIPSERVICE, to remove a TCP/IP service from the local CICS
region.

v CREATE DOCTEMPLATE, to define a document template in the local CICS
region.

v DISCARD DOCTEMPLATE, to remove a document template from the local CICS
region.

v INQUIRE DOCTEMPLATE, to retrieve information about a document template.

v INQUIRE WEB, to retrieve information about CICS Web support.

Chapter 19. CICS Web support enhancements 191

v SET WEB, to open or close CICS internal sockets support, change Web garbage
collection settings, or change Web 3270 terminal timeout settings.

Changes to user-replaceable programs

There is a new user-replaceable module, the CICS Web error program
(DFHWBEP), which is driven by CICS Web support in the event of a failure in the
course of processing a Web request, and a change to the invocation of the analyzer
program, DFHWBADX.

Web error program (DFHWBEP)

DFHWBEP allows you to modify the HTTP response issued by the CICS Web
interface, or to put out an alternative message. DFHWBEP can overwrite CICS Web
support HTTP response with its own HTTP response, which may be more
meaningful to a user. The maximum length of the response is 32K. If the response
needs to be longer, DFHWBEP must GETMAIN a new area and use that for the
HTTP response. The resultant HTTP response is subject to the same DFHCCNV
conversion as would have been the case for the target program.

CICS Web support analyzer program (DFHWBADX)

The context in which this program is run changes. Previously, the analyzer was only
ever invoked by the one long-running server controller task. It can now be invoked
concurrently by multiple transactions, which perform the function previously
performed by the server Controller.

Changes to CICS-supplied transactions

The following options have been added to the CEMT transaction:

v INQUIRE TCPIP, to inquire on the status of CICS internal TCP/IP support.

v INQUIRE TCPIPSERVICE, to retrieve information about TCP/IP ports on which
CICS internal TCP/IP support is currently listening on behalf of other CICS
services.

v SET TCPIP, to open or close CICS internal sockets support.

v SET TCPIPSERVICE, to modify the status of a service using CICS internal
TCP/IP support.

v INQUIRE WEB, to retrieve information about CICS Web support.

v SET WEB, to open or close CICS internal sockets support, change Web garbage
collection settings, or change Web 3270 terminal timeout settings.

Problem determination

There are changes to the following diagnostic information to aid problem
determination:

v CICS Web support dump formatting is changed for the new Web domain. New
sockets domain dump formatting is added, with dump exit component code SO,
and new document domain dump formatting, with dump exit component code
DH.

v CICS Web support trace points are replaced with new Web domain trace points,
and sockets domain and document domain trace points are added.

v There are new and changed messages and abend codes.

192 CICS TS for OS/390: Release Guide

CICSPlex SM support

CICSPlex SM provides a new inquiry facility for CICS Web support in the form of
two new views:

v DOCTEMP, for HTML document templates. Associated with this general view are
a detail view, DOCTEMPD, and a summary view, DOCTEMPS.

v TCPIPS , for TCP/IP services using CICS internal sockets support. Associated
with this general view are a detail view, TCPIPSD, and a summary view,
TCPIPSS.

There are two new BAS resource definition views:

v DOCDEF, for defining HTML document templates to CICS.

v TCPDEF, for defining which TCP/IP services are to use CICS internal sockets
support.

There are new resource tables:

v CRESDOCT

v CRESTCPS

v DOCDEF

v DOCINGRP

v DOCTEMP

v ERMCDOCT

v ERMCTCPS

v TCPDEF

v TCPINGRP

v TCPIPS

Chapter 19. CICS Web support enhancements 193

194 CICS TS for OS/390: Release Guide

Part 6. Miscellaneous changes

This Part describes a number of miscellaneous changes to CICS TS. They are
described in the following chapter:

v “Chapter 20. Miscellaneous changes” on page 197

© Copyright IBM Corp. 1998 195

196 CICS TS for OS/390: Release Guide

Chapter 20. Miscellaneous changes

In addition to the changes described in earlier chapters of this book, CICS provides
the following enhancements:
v “Removal of runtime support for RCTs”

v “Named counter sequence number facility” on page 198

v “CDBM command file for storing IMS commands” on page 200

v “Enabling USER KEY CICSPlex SM API applications” on page 201

v “Performance improvement for EXEC CICS LINK under LE” on page 201

v “MEMBER option added to INQUIRE TDQUEUE command” on page 201

v “Remove option added to CEDA and DFHCSDUP Commands” on page 201

v “USERDEFINE added to DFHCSDUP Commands” on page 202

v “Euro support” on page 202

v “CICSPlex SM BAS support for FEPI resources” on page 203

Removal of runtime support for RCTs

CICS TS introduced resource definition online support for DB2 resources in
Release 2 while maintaining runtime support for RCTs generated using the
DSNCRCT macro. The RCT runtime support is now removed. This leaves the CSD
definitions and the EXEC CICS CREATE command as the only means of defining
and installing DB2 resources to CICS, using resource types DB2CONN,
DB2ENTRY, and DB2TRAN.

CICS continues to support the use of the DSNCRCT macro for migration purposes,
allowing you to assemble an RCT ready for migration to your CSD.

To start the CICS DB2 attachment facility, install a DB2CONN resource definition to
define the connection, and DB2ENTRY and DB2TRAN definitions for transactions.
The minimum requirement when starting the CICS DB2 attachment facility is that
the required DB2CONN definition is installed. Associated DB2ENTRY and
DB2TRAN definitions can be installed later.

Effect of change on DSNC and INITPARM commands

The removal of runtime support for RCTs changes the syntax of the DSNC STRT
command, and the syntax of the INITPARM command for DB2, as follows:

DSNC STRT {name}
The RCT suffix option is removed from this command, which now allows you to
specify DSNC STRT name, where name is the name of the DB2 subsystem, or
DSNC STRT only. The command requires a DB2CONN connection definition to be
installed first.

INITPARM=(DFHD2INI=‘name’)
The RCT suffix is removed from the syntax of the DFHD2INI parameter. The
only purpose of the INITPARM parameter for DB2 is to provide the name of the
DB2 subsystem when DB2ID is left blank in the DB2CONN resource definition.

© Copyright IBM Corp. 1998 197

Named counter sequence number facility

This section describes the facility for generating unique sequence numbers using
the services of a named counter server. It covers the following topics:
v “Overview”

v “The named counter application programming interface” on page 199

Overview

CICS provides a facility for generating unique sequence numbers for use by
applications in a Parallel Sysplex environment (for example, to allocate a unique
number for orders or invoices). This facility is provided by a named counter server,
which maintains each sequence of numbers as a named counter. Each time a
sequence number is assigned, the corresponding named counter is incremented
automatically so that the next request gets the next number in sequence.

The named counter server is modeled on the other coupling facility servers used by
CICS, and has many features in common with the coupling facility data table server.

A named counter server provides a full set of functions to define and use named
counters. Each named counter consists of:
v A 16-byte name
v A current value
v A minimum value
v A maximum value.

The values are internally stored as 8-byte (doubleword) unsigned binary numbers.
The CICS API provides two sets of named counter commands, one that treats
values as fullword signed binary numbers, and the other that treats values as
doubleword unsigned binary numbers. The callable programming interface allows
the numbers to be treated as any length from 1 to 8 bytes, typically 4 bytes.

Named counters are stored in a pool of named counters, where each pool is a
small coupling facility list structure, with keys but no data. The pool name forms part
of the list structure name. Each named counter is stored as a list structure entry
keyed on the specified name, and each request for the next value requires only a
single coupling facility access.

For information on how to create a list structure for use as a named counter pool,
see the CICS System Definition Guide.

Selecting a named counter server

To reference a named counter, an application program can specify either the actual
name of the pool in which the named counter is stored, or it can specify a pool
selection parameter, which is mapped to the actual pool name by the POOL
parameter specified in the options table, DFHNCOPT. This makes it easy to use a
different pool (for example, to isolate test pools from production pools) without
having to change the pool selection parameter in the application program. To vary
the pool used by a CICS region, either load a different copy of the options table
from STEPLIB, or use a common options table where the pool name selection is
conditional on the job name and CICS APPLID, in addition to the pool name
selection parameter. The options table also supports invocation of a user-specified
program to select the appropriate pool given the pool selection parameter.

198 CICS TS for OS/390: Release Guide

|
|

|
|
|

|

|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|

If the named counter facility can’t find a match in the options table, it uses the
default pool name DFHNC001. You can specify a different default pool name using
the NCPLDFT system initialization parameter.

For information about creating a loadable options table, see the CICS System
Definition Guide.

The named counter application programming interface

You access the named counter through the CICS API, or through a callable
interface which can be used in batch jobs.

Although all named counter values are held internally as double word unsigned
binary numbers, the CICS API provides both a fullword (COUNTER) and
doubleword (DCOUNTER) set of commands, which you should not mix. These
EXEC CICS commandsm allow you to perform the following operations on named
counters:

DEFINE
Defines a new named counter, setting minimum and maximum values, and
specifying the current number at which the counter is to start.

DELETE
Deletes a named counter from its named counter pool.

GET
Gets the current number from the named counter, provided the maximum
number has not already been allocated. The GET command provides two
comparison parameters that allow you to make the result of the command
conditional upon the current number being within a specified range, or being
greater than, or less than, one of the specified comparison values.

QUERY
Queries the named counter to obtain the current, minimum, and maximum
values.

REWIND
Rewinds a named counter that is in the counter-at-limit condition back to its
defined minimum value.

UPDATE
Updates the current value of a named counter to a new current value.

You can use the programming interfaces to a named counter server in all the
supported programming languages—assembler, COBOL, PL/I, and C/C++.

Establishing contact with a named counter server

The first request by a CICS region that addresses a particular pool automatically
establishes a connection to the server for that pool. This connection is associated
with the current MVS TCB (which for CICS is the quasi-reentrant (QR) TCB) and
normally lasts until the TCB terminates at end of job. Multiple TCBs in the same
region can establish independent connections to the same named counter pool.

For more information about the named counter facility, see the CICS Application
Programming Guide and the CICS System Definition Guide.

Chapter 20. Miscellaneous changes 199

|
|
|

|
|

|

|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|

|

|
|
|
|
|

|
|

CDBM command file for storing IMS commands

The CICS-DBCTL operator transaction, CDBM, is enhanced to enable you to store
IMS commands in a file and to issue commands from that file, or by screen input as
before. A mechanism to update and maintain the file is provided.

Note: The CDBM transaction uses basic mapping support (BMS) and therefore this
function is available only through those terminal devices that are supported
by BMS.

Background

CICS regions generally have many IMS databases, and often the same operations
are performed repeatedly, such as starting a group of databases in the morning,
and stopping them at some other time for batch, and then repeating the cycle.
Currently, you either have to type in the whole command each time, and this may
be quite long, or if your databases are named in a generic way, you can abbreviate
the command using the generic form (for example: /STA DB DB* to start all
databases beginning with the letters DB). Many existing IMS systems, however,
have databases with completely variable names, preventing the use of generic
naming.

Overview

A new CICS system file, DFHDBFK, (the CDBM GROUP command file) is
introduced, in which you can store IMS commands for subsequent use. A new
function on the CICS-DBCTL Operator Transaction panel (PF2) brings up a new
panel, the CICS/DBCTL COMMAND GROUP MAINTENANCE panel, which you can
use to add and modify commands. You can also your own methods outside CICS to
maintain the contents of the DFHDBFK file, which is required only if you intend to
use the new facility.

DFHDBFK is a VSAM key-sequenced data set (KSDS), with a key length of 22
bytes, and a maximum record length of 1428 bytes. See Figure 27 for an example
of the DEFINE CLUSTER statements you can use to define this data set.

For more information about creating this data set, see the CICS System Definition
Guide.

The CICS-DBCTL Operator Transaction panel now accepts input of the form:
/GROUP SAMPLE STO

DEFINE CLUSTER (NAME(CICSTS13.CICS.DFHDBFK) -
INDEXED -
RECORDS(100 20) -
RECORDSIZE(1428 1428) -
KEYS(22,0)) -

DATA (-
NAME(CICSTS13.CICS.DFHDBFK) -
CONTROLINTERVALSIZE(2048)) -

INDEX (-
NAME(CICSTS13.CICS.DFHDBFK) -
CONTROLINTERVALSIZE(512))

Figure 27. IDCAMS definition statements for the DFHDBFK data set

200 CICS TS for OS/390: Release Guide

#

#
#
#

#

where SAMPLE STO is the key to a record in DFHDBFK. In this case it is a STOP
command, probably for the same list of databases that can be started using:
/GROUP SAMPLE STA

Using this command facility allows greater numbers of databases to be actioned in
a single command, because the CDBM Operator Transaction screen allows only 4
lines for command input, whereas DFHDBFK has 1406 bytes for IMS command
parameters after the 22 byte record key.

For more information about the CDBM transaction, see the CICS Supplied
Transactions or the CICS IMS Database Control Guide.

Enabling USER KEY CICSPlex SM API applications

CICSPlex SM API programs can now be run under transactions defined with
TASKDATAKEY(USER). The CICSPlex SM program can be defined with an
EXECKEY value of either USER or CICS. The associated transaction can be
defined with a TASKDATAKEY value of either USER or CICS. The TASKDATAKEY
reason of the ENVIRONERROR response is no longer returned.

Performance improvement for EXEC CICS LINK under LE

Migrating your CICS applications to Language Environment (LE) in CICS can
significantly increase system pathlength if your application programs issue large
numbers of EXEC CICS LINK commands. Much of the increase in pathlength is
associated with obtaining and releasing MVS storage for run-unit work areas.

You can minimize the increase in pathlength by enabling CICS and LE to manage
more effectively the storage requirements for LE-conforming application programs.
You do this in CICS by specifying the RUWAPOOL system initialization parameter,
indicating that you want CICS to create a run-unit work areas pool for each task. If
you specifiy RUWAPOOL=YES, CICS creates a pool of storage at task initialization
that can be reused by LE-conforming application programs.

For information about the RUWAPOOL system initialization parameter, see the
CICS System Definition Guide. For information about the impact of LE-conforming
CICS applications that issue EXEC CICS LINK commands, see the CICS
Performance Guide.

MEMBER option added to INQUIRE TDQUEUE command

The option MEMBER(data-area) is added to EXEC CICS INQUIRE TDQUEUE
command. If MEMBER is specified, CICS returns the 1– to 8–character member
name of the partitioned data set used for the named extrapartition transient data
queue. CICS returns blanks if the QSAM data set is not a partitioned data set. The
option is also added to the CEMT INQUIRE TDQUEUE command.

Remove option added to CEDA and DFHCSDUP Commands

Extending the scope of the DELETE command, in an earlier release, to remove
automatically a CSD group from group lists when the group itself was deleted
caused problems for some users. To avoid such problems, a new option, REMOVE,
is added to CEDA DELETE, CEDA MOVE, and to DFHCSDUP DELETE. Only

Chapter 20. Miscellaneous changes 201

when REMOVE is specified does CICS remove a deleted group from all lists that
contain the group, at the point when the group is itself deleted.

USERDEFINE added to DFHCSDUP Commands

The USERDEFINE command, previously only offered from CEDA, is made
available from DFHCSDUP.

Euro support

CICS supports the new European currency unit, the euro.

Data conversion

When data is transferred between CICS systems—by, for example, transaction
routing or function shipping—some or all of the data may need to be converted from
one form of encoding to another. For example, when character data is transferred
from CICS for OS/2® to CICS System/390, it has to be converted from the ASCII
format used by CICS for OS/2 to the EBCDIC format used by System/390. The
same consideration applies whenever character data is transferred between any
ASCII system and CICS System/390 (typically, non-System/390 systems hold
character data in ASCII format).

CICS TS, in common with other CICS System/390 products, supports new client
(ASCII) and server (EBCDIC) code pages that include the euro symbol. All the
client and server code pages supported by CICS System/390 are listed in the CICS
Family: Communicating from CICS on System/390.

BMS support for the Euro

Extensions to the COBOL standard now allow multiple CURRENCY SIGN clauses,
with a new PICTURE SYMBOL phrase that can define a symbol of one or more
characters. For example:

SPECIAL NAMES.
CURRENCY SIGN IS '$' WITH PICTURE SYMBOL '$'.
CURRENCY SIGN IS '£' WITH PICTURE SYMBOL '£'.
CURRENCY SIGN IS 'EUR' WITH PICTURE SYMBOL '#'.

WORKING STORAGE SECTION.
01 USPRICE PIC $.99.99
01 UKPRICE PIC £.99.99
01 ECPRICE PIC #.99.99

PROCEDURE DIVISION
MOVE 12.34 to UKPRICE. value is £12.34
MOVE 12.34 to USPRICE. value is $12.34
MOVE 12.34 to ECPRICE. value is EUR12.34

The DFHMDF macro now supports PICIN and PICOUT picture specifications with
currency symbols other than $, which previously defaulted to the national currency
symbol. LENGTH must be specified when PICOUT specifies a COBOL picture

202 CICS TS for OS/390: Release Guide

|

|
|

|
|

|
|

|

|

|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

containing a currency symbol that will be replaced by a currency sign of length
greater than 1. See CICS Application Programming Reference for details of the
DFHMDF macro.

Support for connection quiesce protocol

CICS supports the connection quiesce protocol (CQP), which CICS invokes
automatically when APPC sessions are being closed. CQP is an exchange of
information that takes place between connected systems to determine whether
there is any outstanding resynchronization to be done. If the exchange shows that
there is no outstanding work on the connection, both systems can:

v Purge its record of the partner’s logname

v Delete any affinity that the connection has.

Successful completion of connection quiesce assures you that a cold start can take
place safely.

There are changes to the CEMT INQUIRE CONNECTION and EXEC CICS
INQUIRE CONNECTION commands to return information about the status of CQP
on connections. The new option is CQP:

CQP(cvda)
returns a CVDA indicating the status of the connection quiesce protocal on the
connection. The CVDA values are:

COMPLETE
The protocol completed successfully when the connection was
released. This reverts to NOTATTEMPTED if the connection is
reacquired.

FAILED
The protocol failed. This can occur for several reasons, such as a
session failure during execution of the protocol, or because the partner
receiving the CQP flow has outstanding work.

NOTATTEMPTED
The connection supports the protocol, but it has not yet been invoked
because the connection status ACQUIRED.

NOTSUPPORTED
The connection does not support the protocol. This could be, for
example, because the partner is a back-level CICS region that does not
have CQP support.

There are new messages, DFHZC4950 and DFHZC4951, to indicate a failure of the
CICS CQP transaction, and two new abend codes, ACQA and ACQB.

CICSPlex SM BAS support for FEPI resources

Changes have been made to the way in which FEPI resources are installed using
CICSPlex SM. The installation function has been removed from the operations
FEPI views. Instead, there are new BAS views for defining and installing FEPI
resources:

v FENODDEF, which describes the physical and operational characteristics of FEPI
nodes.

Chapter 20. Miscellaneous changes 203

|
|
|

|
|

|
|
|
|
|

|

|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|

v FEPOODEF, which describes the physical and operational characteristics of FEPI
pools.

v FEPRODEF, which describes the physical and operational characteristics of FEPI
property sets.

v FETRGDEF, which describes the physical and operational characteristics of FEPI
targets.

New resource tables are introduced:

v FENODDEF

v FEPOODEF

v FEPRODEF

v FETRGDEF

v FNOINGRP

v FPOINGRP

v FPRINGRP

v FTRINGRP

204 CICS TS for OS/390: Release Guide

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

Part 7. Requirements

This Part describes the hardware and software requirements for CICS TS in the
following chapter:

v “Chapter 21. Prerequisite hardware and software for CICS Transaction Server for
OS/390” on page 207

© Copyright IBM Corp. 1998 205

|

206 CICS TS for OS/390: Release Guide

Chapter 21. Prerequisite hardware and software for CICS
Transaction Server for OS/390

This chapter gives some information about related IBM program products that you
need either to use CICS Transaction Server for OS/390, or exploit the new and
changed function. It covers the following topics:
v “Hardware prerequisites”

v “Operating system” on page 208

v “IBM database products” on page 208

v “IBM telecommunications access methods” on page 209

v “IBM external security manager (RACF)” on page 209

v “CICS VSAM Recovery” on page 209

v “Tivoli Performance Reporter for OS/390” on page 209

v “Netview® for MVS/ESA” on page 210

v “Programming languages” on page 210

v “CICS components in object-code-only (OCO) form” on page 210

Hardware prerequisites

To run CICS Transaction Server you need a System/390 processor that supports
OS/390 Version 2 Release 5 or later, and which has enough processor storage to
meet the combined requirements of the host operating system, CICS TS, the
access methods, and the application programs. Suitable processors include:

v All models of the S/390® Parallel Enterprise Servers or S/390 Parallel
Transaction Servers (IBM 9672)

v All models of the Multiprise® 2000

v All models of the ES/9000® Processor Unit 9021, 9121, or 9221

v IBM ES/3090™–9000T processors (models 15T, 17T, 18T, 25T, 28T) that support
IBM Enterprise Systems Architecture/370™(ESA/370) and which must have
optional ESA/390™ facilities

v PC Server System/390 or RS/6000® and System/390 Server-on-Board.

Parallel Sysplex support

Each of the the data-sharing facilities supported by CICS, and the MVS system
logger’s log stream merging facility, all require a Parallel Sysplex environment. For
this you need:
v One or more coupling facilities with their associated coupling links installed (see

“Coupling facilities” on page 208.

v An IBM sysplex timer
v Sufficient DASD paths to support the number of CPCs in the sysplex.

You can use CICS support for data sharing to access the following forms of data:
v IMS databases
v DB2 databases
v VSAM data sets

© Copyright IBM Corp. 1998 207

v CICS temporary storage
v Coupling facility data tables
v Named number counters.

Coupling facilities

A coupling facility can be one of the following:

v A standalone IBM 9674.

v A PR/SM™ logical partition (LPAR) running the coupling facility control code. The
processors that can enable the coupling facility function in an LPAR are:
– ES/9000 711-based models
– ES/9000 511-based models
– S/390 Parallel Enterprise Servers (9672).

The 9121 511-based models require the integrated coupling migration facility
(ICMF) to provide coupling facility functions.

v A PR/SM logical partition (LPAR) with ICMF for both the 9021 711-based and
9121 511-based processors, or for the S/390 Parallel Enterprise Servers (9672).
This latter configuration eliminates the need for coupling links.

In general, a standalone coupling facility is recommended for a production
environment to eliminate a single point of failure, and two coupling facilities are
recommended for high availability.

Sysplex timer

A Parallel Sysplex requires an IBM sysplex timer to provide a common external time
source.

DASD paths

A Parallel Sysplex requires either DASD controllers with enough paths to dedicate
one to each CPC in the sysplex, or an ESCON® director to provide the paths.

Operating system

CICS TS requires OS/390 Version 2 Release 5 (5647–A01) or later. Note that
OS/390 includes, as base elements, many of the products required by CICS TS,
therefore the sections that follow cover only products that are not supplied as part
of OS/390. The following service is also required before you install CICS TS under
OS/390 Release 5:

DFSMS/MVS Binder PTF for APAR OW36582
IEBCOPY PTFs UW49740 and UW54887

IBM database products

CICS supports IMS/ESA® Database Manager and IBM DATABASE 2™ (DB2) as
described in this section.

208 CICS TS for OS/390: Release Guide

IMS/ESA Database Manager

CICS application programs can access IMS databases, through the DBCTL
interface only, using IMS/ESA Database Manager Version 5 Release 1 (5695–176)
or later.

IBM DATABASE 2 (DB2)

CICS application programs can access DB2 databases using DB2 Version 4
(5695–DB2) or later.

IBM telecommunications access methods

VTAM and TCP/IP are both included as exclusive elements of OS/390 Release 5.

TCP/IP OS/390 Release 5 includes TCP/IP CICS Sockets, which enables network
users access to CICS regions. CICS programs can use the TCP/IP “sockets”
application programming interface (API) to communicate with TCP/IP devices.
TCP/IP also enables access to CICS through:

v The CICS ONC RPC support, which enables CICS as a server for Remote
Procedure Call (RPC) requests using the Open Network Communication (ONC)
standard protocol

v DCE/MVS, which enables CICS as a server for Remote Procedure Call requests
using the Distributed Computing Environment (DCE) standard protocol

You can access CICS Transaction Server for OS/390 using ACF/TCAM (DCB)
Version 2.4 (5735–RC3) plus PTFs, or ACF/TCAM (DCB) Version 3.1 (5665–314)
plus PTFs.

IBM external security manager (RACF)

RACF Security Server available with OS/390 Release 5 provides for all CICS TS
security needs except for security of temporary storage queues that use long TS
queue names. If you have application programs that use secure TS queues with
16-character queue names, you need RACF OS/390 Release 6 with a PTF to
support 25-character profile names.

CICS VSAM Recovery

If you use CICS VSAM Recovery (CICSVR) as your VSAM forward recovery utility,
CICSVR Version 2.3 (5695–010) is required.

Tivoli Performance Reporter for OS/390

CICS TS no longer supports earlier versions of the Performance Reporter products
(IBM SystemView® Enterprise Performance Data Manager/MVS (EPDM) or IBM
SystemView Performance Reporter for MVS) and in their place supports Tivoli
Performance Reporter for OS/390 (5695–101). For CICS TS Release 3, you need
Tivoli Performance Reporter Version 1.3 or 1.4, both of which require service PTFs
to enable them to work with CICS TS.

Chapter 21. Prerequisite hardware and software for CICS Transaction Server for OS/390 209

|
|

Netview® for MVS/ESA

For a resource object data manager (RODM) repository that CICSPlex SM exploits
through NetView MultiSystem Manager Version 2 Release 2 (5655–126), CICS TS
supports NetView for MVS/ESA Version 3 Release 1 (5655–007).

Programming languages

CICS Transaction Server for OS/390 supports the following programming languages
and environments:
v High Level Assembler/MVS (5696–234)
v IBM PL/I for MVS & VM (5688–235)
v OS PL/I Optimizing Compiler Version 2 Release 1 (5668–910)
v OS PL/I Optimizing Compiler Version 1 Release 5 (5724–PL1)
v IBM COBOL for MVS & VM (5688–197)
v VS COBOL II (5668–958 and 5668–023) (requires PTF for APAR 43097)
v C/370 (5688–040 and 5688–187)
v IBM C/C++ for MVS (5655–121)
v CSP Version 3 or later
v SAA AD/Cycle COBOL/370 (5688–197)
v SAA AD/Cycle PL/I (5688–235)
v SAA AD/Cycle C/370 (5688–216)
v VisualAge for Java, Enterprize Edition for OS/390

CICS components in object-code-only (OCO) form

Some of the functional areas of CICS are provided, either completely or partially, in
object-code-only form (OCO), without licensed source materials. These areas
include:
v Authorized cross-memory (AXM) server environment
v Autoinstall terminal model manager, AITM
v Business application manager domain
v Catalog domains
v Common Programming Interface functions
v Coupling facility data tables
v Coupling facility data table server
v Directory manager domain
v Dispatcher domain
v Document domain
v Dump domain
v Enqueue domain
v Event manager domain
v EXEC CICS system programming command support
v File control RLS support
v Kernel domain
v Loader domain
v Lock manager domain
v Log manager
v Message domain
v Monitoring domain
v Named counter server
v Offline statistics utility
v Offline system dump formatting routines
v Parameter manager domain

210 CICS TS for OS/390: Release Guide

|

v Partner resource manager
v Program manager domain
v RDO for VSAM files and LSR pools
v Recovery manager
v Resource recovery services (RRS) interface
v SAA communications and resource recovery interfaces
v Scheduler services domain
v Security domain
v Shared data tables
v Sockets domain
v Statistics domain
v Storage manager domain
v Temporary storage data sharing server
v Temporary storage domain
v Timer domain
v Trace domain
v Transaction manager domain
v User domain

Chapter 21. Prerequisite hardware and software for CICS Transaction Server for OS/390 211

212 CICS TS for OS/390: Release Guide

Part 8. Appendixes

© Copyright IBM Corp. 1998 213

214 CICS TS for OS/390: Release Guide

Appendix. Details of changed monitoring records

This appendix contains full details of the CICS monitoring performance data
affected by the changes described in “Chapter 6. Monitoring, statistics, and
enterprise management changes” on page 65.

Selectivity of performance class data fields

You can control the performance data CICS selects by means of DFHMCT
parameters. These parameters (EXCLUDE= and INCLUDE=) apply to the
TYPE=RECORD parameter for performance class monitoring. Each parameter can
specify one or more fields, either specifically by field ID, or generically by group
name. The EXCLUDE parameter is honored before any INCLUDE parameter. A
revised list of field IDs and group names that are eligible for exclusion or inclusion
follows.

Note: Only the fields listed in Table 10 can be selected in this way.

Table 10. Data groups and fields that can be excluded/included
Group Name Field Id Description

DFHCBTS 200 CICS BTS process name
DFHCBTS 201 CICS BTS process type
DFHCBTS 202 CICS BTS process id
DFHCBTS 203 CICS BTS activity id
DFHCBTS 204 CICS BTS activity name
DFHCBTS 205 CICS BTS run process/activity synchronous count
DFHCBTS 206 CICS BTS run process/activity asynchronous count
DFHCBTS 207 CICS BTS link process/activity count
DFHCBTS 208 CICS BTS define process count
DFHCBTS 209 CICS BTS define activity count
DFHCBTS 210 CICS BTS reset process/activity count
DFHCBTS 211 CICS BTS suspend process/activity count
DFHCBTS 212 CICS BTS resume process/activity count
DFHCBTS 213 CICS BTS delete activity, or cancel process/activity, request

count
DFHCBTS 214 CICS BTS acquire process/activity request count
DFHCBTS 215 CICS BTS total process/activity request count
DFHCBTS 216 CICS BTS delete/get/put process container count
DFHCBTS 217 CICS BTS delete/get/put activity container count
DFHCBTS 218 CICS BTS total process/activity container request count
DFHCBTS 219 CICS BTS retrieve reattach request count
DFHCBTS 220 CICS BTS define input event request count
DFHCBTS 221 CICS BTS timer associated event request count
DFHCBTS 222 CICS BTS total event related request count

DFHCICS 25 CICS OO foundation class request count
DFHCICS 103 Transaction exception wait time
DFHCICS 112 Performance record type
DFHCICS 130 Transaction routing sysid
DFHCICS 131 Performance record count
DFHCICS 167 MVS Workload Manager Service Class name
DFHCICS 168 MVS Workload Manager Report Class name

© Copyright IBM Corp. 1998 215

Table 10. Data groups and fields that can be excluded/included (continued)
Group Name Field Id Description

DFHDATA 179 IMS (DBCTL) request count
DFHDATA 180 DB2 request count
DFHDATA 186 IMS (DBCTL) wait time
DFHDATA 187 DB2 Readyq wait time
DFHDATA 188 DB2 Connection wait time
DFHDATA 189 DB2 wait time

DFHDOCH 226 Document handler Create count
DFHDOCH 227 Document handler Insert count
DFHDOCH 228 Document handler Set count
DFHDOCH 229 Document handler Retrieve count
DFHDOCH 230 Document handler Total count
DFHDOCH 240 Document handler total created document length

DFHDEST 41 TD get count
DFHDEST 42 TD put count
DFHDEST 43 TD purge count
DFHDEST 91 TD total count
DFHDEST 101 TD I/O wait time

DFHFEPI 150 FEPI Allocate count
DFHFEPI 151 FEPI Receive count
DFHFEPI 152 FEPI Send count
DFHFEPI 153 FEPI Start count
DFHFEPI 154 FEPI CHARS sent
DFHFEPI 155 FEPI CHARS received
DFHFEPI 156 FEPI Suspend time
DFHFEPI 157 FEPI Allocate time-out count
DFHFEPI 158 FEPI Receive time-out count
DFHFEPI 159 FEPI Total count

DFHFILE 36 FC get count
DFHFILE 37 FC put count
DFHFILE 38 FC browse count
DFHFILE 39 FC add count
DFHFILE 40 FC delete count
DFHFILE 63 FC I/O wait time
DFHFILE 70 FC access-method count
DFHFILE 93 FC total count
DFHFILE 174 RLS FC I/O wait time
DFHFILE 175 RLS File request CPU (SRB) time
DFHFILE 176 CFDT I/O wait time

DFHJOUR 10 JC I/O wait time
DFHJOUR 58 Journal write count
DFHJOUR 172 CICS Logger write count

DFHMAPP 50 BMS MAP count
DFHMAPP 51 BMS IN count
DFHMAPP 52 BMS OUT count
DFHMAPP 90 BMS total count

DFHPROG 55 Program LINK count

216 CICS TS for OS/390: Release Guide

Table 10. Data groups and fields that can be excluded/included (continued)
Group Name Field Id Description

DFHPROG 56 Program XCTL count
DFHPROG 57 Program LOAD count
DFHPROG 71 Initial program name
DFHPROG 72 Program LINK URM count
DFHPROG 73 Program DPL count
DFHPROG 113 Original abend code
DFHPROG 114 Current abend code
DFHPROG 115 Program load time

DFHSOCK 241 Socket (SO) I/O wait time
DFHSOCK 242 Bytes encrypted for secure socket
DFHSOCK 243 Bytes decrypted for secure socket
DFHSOCK 244 Client IP Address

DFHSTOR 33 User-storage high-water-mark (UDSA)
DFHSTOR 54 User-storage getmain-count (UDSA)
DFHSTOR 87 Program-storage high-water-mark - total
DFHSTOR 95 User-storage-occupancy (bytes-ms) (UDSA)
DFHSTOR 105 User-storage getmain-count–above 16MB (EUDSA)
DFHSTOR 106 User-storage high-water-mark–above 16MB (EUDSA)
DFHSTOR 107 User-storage-occupancy (bytes-ms)–above 16MB (EUDSA)
DFHSTOR 108 Program-storage high-water-mark–below 16MB
DFHSTOR 116 User-storage high-water-mark–below 16MB (CDSA)
DFHSTOR 117 User-storage getmain-count–below 16MB (CDSA)
DFHSTOR 118 User-storage-occupancy (bytes-ms)–below 16MB (CDSA)
DFHSTOR 119 User-storage high-water-mark–above 16MB (ECDSA)
DFHSTOR 120 User-storage getmain-count–above 16MB (ECDSA)
DFHSTOR 121 User-storage-occupancy (bytes-ms)–above 16MB (ECDSA)
DFHSTOR 122 Program-storage high-water-mark (ERDSA)
DFHSTOR 139 Program-storage high-water-mark–above 16MB
DFHSTOR 142 Program-storage high-water-mark (ECDSA)
DFHSTOR 143 Program-storage high-water-mark (CDSA)
DFHSTOR 144 Shared storage GETMAIN-count—below 16MB (CDSA and

SDSA)
DFHSTOR 144 Shared storage bytes GETMAINed—below 16MB (CDSA and

SDSA)
DFHSTOR 145 Shared storage bytes FREEMAINed—below 16MB (CDSA

and SDSA)
DFHSTOR 146 Shared storage GETMAIN-count—above 16MB (ECDSA and

ESDSA)
DFHSTOR 147 Shared storage bytes GETMAINed—above 16MB (ECDSA

and ESDSA)
DFHSTOR 148 Shared storage bytes FREEMAINed—above 16MB (ECDSA

and ESDSA)
DFHSTOR 160 Program-storage high-water-mark (SDSA)
DFHSTOR 161 Program-storage high-water-mark (ESDSA)
DFHSTOR 162 Program-storage high-water-mark (RDSA)

DFHSYNC 60 Syncpoint count
DFHSYNC 173 Syncpoint elapsed time
DFHSYNC 177 CFDT server syncpoint wait time
DFHSYNC 196 Syncpoint delay time

Appendix. Details of changed monitoring records 217

Table 10. Data groups and fields that can be excluded/included (continued)
Group Name Field Id Description

DFHTASK 7 User-task dispatch time
DFHTASK 8 User-task CPU time
DFHTASK 14 User-task suspend time
DFHTASK 31 Task number
DFHTASK 59 IC put/initiate count
DFHTASK 66 IC total count
DFHTASK 64 Error flag field
DFHTASK 82 Transaction group ID
DFHTASK 97 Network name of the originating terminal or system
DFHTASK 98 Unit-of-work ID on the originating system
DFHTASK 102 User-task wait-for-dispatch time
DFHTASK 109 Transaction priority
DFHTASK 123 Task global ENQ delay time
DFHTASK 124 3270 Bridge transaction ID
DFHTASK 125 First dispatch delay time
DFHTASK 126 First dispatch delay time due to TRANCLASS
DFHTASK 127 First dispatch delay due to MXT
DFHTASK 128 Lock manager delay time
DFHTASK 129 Task local ENQ delay time
DFHTASK 132 Recovery manager unit-of-work ID
DFHTASK 163 Transaction facility name
DFHTASK 164 Transaction flags
DFHTASK 170 Resource manager interface—elapsed time
DFHTASK 171 Resource manager interface—suspend time
DFHTASK 181 EXEC CICS WAIT EXTERNAL wait time
DFHTASK 182 EXEC CICS WAITCICS and WAIT EVENT wait time
DFHTASK 183 Interval control delay time
DFHTASK 184 “Dispatchable Wait” wait time
DFHTASK 190 RRMS/MVS unit-of-recovery id (URID)
DFHTASK 191 RRMS/MVS wait time
DFHTASK 195 CICS BTS run process/activity synchronous wait time
DFHTASK 248 CICS TCB change modes
DFHTASK 249 User-task QR TCB wait-for-dispatch time
DFHTASK 250 CICS MAXOPENTCBS delay time
DFHTASK 251 CICS TCB attach count
DFHTASK 253 CICS JVM elapsed time
DFHTASK 254 CICS JVM suspend time
DFHTASK 255 User-task QR TCB dispatch time
DFHTASK 256 User-task QR TCB CPU time
DFHTASK 257 User-task MS TCB dispatch time
DFHTASK 258 User-task MS TCB CPU time
DFHTASK 259 User-task L8 TCB CPU time
DFHTASK 260 User-task J8 TCB CPU time
DFHTASK 261 User-task S8 TCB CPU time

DFHTEMP 11 TS I/O wait time
DFHTEMP 44 TS get count
DFHTEMP 46 TS put auxiliary count
DFHTEMP 47 TS put main count
DFHTEMP 92 TS total count
DFHTEMP 178 Shared TS I/O wait time

DFHTERM 9 TC I/O wait time

218 CICS TS for OS/390: Release Guide

Table 10. Data groups and fields that can be excluded/included (continued)
Group Name Field Id Description

DFHTERM 34 TC principal facility input messages
DFHTERM 35 TC principal facility output messages
DFHTERM 67 TC alternate facility input messages
DFHTERM 68 TC alternate facility output messages
DFHTERM 69 TC allocate count
DFHTERM 83 TC principal facility CHARS input
DFHTERM 84 TC principal facility CHARS output
DFHTERM 85 TC alternate facility CHARS input
DFHTERM 86 TC alternate facility CHARS output
DFHTERM 100 IR I/O wait time
DFHTERM 111 VTAM® terminal LU name
DFHTERM 133 TC I/O wait time - LU6.1
DFHTERM 134 TC I/O wait time - LU6.2
DFHTERM 135 TC alternate facility input messages - LU6.2
DFHTERM 136 TC alternate facility output messages - LU6.2
DFHTERM 137 TC alternate facility CHARS input - LU6.2
DFHTERM 138 TC alternate facility CHARS output - LU6.2
DFHTERM 165 Terminal information
DFHTERM 169 Terminal session connection name

DFHWEBB 231 WEB Receive request count
DFHWEBB 232 WEB Characters received
DFHWEBB 233 WEB Send request count
DFHWEBB 234 WEB Characters sent
DFHWEBB 235 WEB Total request count
DFHWEBB 236 WEB Repository read request count
DFHWEBB 237 WEB Repository write request count

Interpreting CICS monitoring

The exception class data and performance class data that has been added or
changed is described in this section. Each of the data fields is presented as a field
description, followed by an explanation of the contents. The field description has the
format shown in Figure 28 on page 220, which is taken from the performance data
group DFHTASK.

Appendix. Details of changed monitoring records 219

Note: References in Figure 28 to the associated dictionary entries apply only to the
performance class data descriptions. Exception class data is not defined in
the dictionary record.

Clocks and time stamps

In the descriptions that follow, the term clock is distinguished from the term time
stamp.

A clock is a 32-bit value, expressed in units of 16 microseconds, accumulated
during one or more measurement periods. The 32-bit value is followed by eight
reserved bits, which are in turn followed by a 24-bit value indicating the number of
such periods.

Neither the 32-bit timer component of a clock nor its 24-bit period count is protected
against wraparound. The timer capacity is about 18 hours, and the period count
runs modulo 16 777 216.

The eight reserved bits have the following significance:

Bits 0, 1, 2, and 3
Used for online control of the clock when it is running, and should always
be zeros on output.

Bits 4 and 7
Not used.

Bits 5 and 6
Used to indicate, when set to 1, that the clock has suffered at least one
out-of-phase start (bit 5) or stop (bit 6).

001 (TYPE-C, 'TRAN', 4 BYTES)
│ │ │ │
│ │ │ Length of the field (as re-
│ │ │ presented by CMODLENG in the
│ │ │ dictionary entry).
│ │ │
│ │ Informal name for the field, as used,
│ │ perhaps, in column headings when the
│ │ monitoring output is postprocessed
│ │ (CMODHEAD of the dictionary entry).
│ │
│ Data type, which may be one of the following:
│ A - a 32-bit count
│ C - a byte string
│ P - a packed decimal value
│ S - a clock comprising a 32-bit accumulation
│ of 16-microsecond units followed by an
│ 8-bit flag followed by a 24-bit count
│ (modulo-16 777 216) of the number of
│ intervals included in the accumulation.
│ T - a time stamp derived directly from the
│ output of an STCK instruction.
│ (CMODTYPE of the dictionary entry)
│
Field identifier by which the field can be individually
excluded or included during MCT preparation (CMODIDNT of
the dictionary entry).

Figure 28. Format of the descriptions of the data fields

220 CICS TS for OS/390: Release Guide

A time stamp is an 8-byte copy of the output of an STCK instruction.

Note: All times produced in the offline reports are in Greenwich Mean Time (GMT),
not local time (assuming your TOD clock is set to GMT). Times produced by
online reporting can be expressed in either GMT or local time.

Performance class data

The performance class data is described below in order of group name. The group
name is always in field CMODNAME of the dictionary entry.

A user task can be represented by one or more performance class monitoring
records, depending on whether the MCT event monitoring option DELIVER or the
system initialization parameters MNCONV=YES or MNSYNC=YES have been
selected. In the descriptions that follow, the term “user task” means that part or
whole of a transaction that is represented by a performance class record, unless
the description states otherwise.

Transaction timing fields

The CMF performance class record provides detailed timing information for each
transaction as it is processed by CICS. A transaction can be represented by one or
more performance class records, depending on the monitoring options selected.
The key transaction timing data fields are described as follows:

v The “Transaction Start time” and “Transaction Stop time” represent the start and
end of a transaction measurement interval. This is normally the period between
transaction attach and detach but the performance class record could represent a
part of a transaction depending on the monitoring options selected. The
“Transaction Response Time” can be calculated by subtracting the transaction
start time from the stop time.

v The “Transaction Dispatch time” is the time the transaction was dispatched.

v The “Transaction CPU time” is the portion of Dispatch time when the task is
using processor cycles.

v The “Transaction Suspend time” is the total time the task was suspended and
includes:
– All task suspend (wait) time, which includes:

- The wait time for redispatch (dispatch wait)
- The wait time for first dispatch (first dispatch delay)
- The total I/O wait and other wait times

v The First Dispatch Delay is then further broken down into:
– First Dispatch Delay due to TRANCLASS limits
– First Dispatch Delay due to MXT limits

The CMF performance class record also provides a more detailed breakdown of the
transaction suspend (wait) time into separate data fields. These include:
v Terminal I/O wait time
v File I/O wait time
v RLS file I/O wait time
v Coupling facility data table (CFDT) time
v Journal I/O wait time
v Temporary storage I/O wait time
v Shared temporary Storage I/O wait time
v Interregion (MRO) I/O wait time
v RRMS/MVS wait time
v Socket I/O wait time

Appendix. Details of changed monitoring records 221

v Transient data I/O wait time
v LU 6.1 I/O wait time
v LU 6.2 I/O wait time
v FEPI suspend time
v Task local ENQ delay time
v Task global ENQ delay time
v RMI suspend time
v Lock manager delay time
v EXEC CICS WAIT EXTERNAL wait time
v EXEC CICS WAITCICS and WAIT EVENT wait time
v Interval control delay time
v “Dispatchable wait” wait time
v IMS (DBCTL) wait time
v DB2 ready queue wait time
v DB2 connection wait time
v DB2 wait time
v CFDT server syncpoint wait time
v Syncpoint delay time
v CICS BTS run process/activity synchronous wait time
v CICS MAXOPENTCBS delay time
v CICS JVM suspend time.

Response time

You can calculate the internal CICS response time by subtracting performance data
field 005 (start time) from performance data field 006 (stop time).

Figure 29 shows the relationship of dispatch time, suspend time, and CPU time with
the response time.

Wait (suspend) times

Table 11 on page 223 lists the CICS performance class wait (suspend) fields.

The performance data fields 009, 010, 011, 63, 100, 101, 123, 128, 129, 133, 134,
156, 171, 174, 176, 177, 178, 181, 182, 183, 184, 186, 187, 188, 189, 191, 195,
196, 241, 250 and 254 all record the elapsed time spent waiting for a particular type
of I/O operation. For example, field 009 records the elapsed time waiting for
terminal I/O. The elapsed time includes not only that time during which the I/O

Response time

S S
T T
A Suspend time Dispatch Time O
R P
T

First T
T dispatch Dispatch CPU time I
I delay wait M
M E
E

Figure 29. Response time relationships

222 CICS TS for OS/390: Release Guide

operation is actually taking place, but also the time during which the access method
is completing the outstanding event control block, and the time subsequent to that
until the waiting CICS transaction is redispatched.

Table 11. Performance class wait (suspend) fields

Field-Id Group Name Description

009 DFHTERM TC I/O wait time

010 DFHJOUR JC I/O wait time

011 DFHTEMP TS I/O wait time

063 DFHFILE FC I/O wait time

100 DFHTERM IR I/O wait time

101 DFHDEST TD I/O wait time

123 DFHTASK Task global ENQ delay time

128 DFHTASK Lock Manager delay time

129 DFHTASK Task local ENQ delay time

133 DFHTERM TC I/O wait time—LU6.1

134 DFHTERM TC I/O wait time—LU6.2

156 DFHFEPI FEPI Suspend time

171 DFHTASK Resource manager interface—suspend time

174 DFHFILE RLS FC I/O wait time

176 DFHFILE CFDT I/O wait time

177 DFHSYNC CFDT server syncpoint time

178 DFHTEMP Shared TS I/O wait time

181 DFHTASK EXEC CICS WAIT EXTERNAL wait time

182 DFHTASK EXEC CICS WAITCICS and WAIT EVENT wait time

183 DFHTASK Interval Control delay time

184 DFHTASK “Dispatchable Wait” wait time

186 DFHDATA IMS (DBCTL) wait time

187 DFHDATA DB2 ready queue wait time

188 DFHDATA DB2 connection time

189 DFHDATA DB2 wait time

191 DFHTASK RRMS/MVS wait time

195 DFHTASK CICS BTS run process/activity synchronous wait time

196 DFHSYNC Syncpoint delay time

241 DFHSOCK Socket I/O wait time

250 DFHTASK CICS MAXOPENTCBS delay time

254 DFHTASK CICS JVM suspend time

Appendix. Details of changed monitoring records 223

As a result of the improvements to the CMF suspend time and wait time
measurements in CICS, it is now possible to perform various calculations on the
suspend time accurately. For example, the "Total I/O wait time" can be calculated as
shown on page 224.
Total I/O wait time = (Terminal control I/O wait +

Temporary storage I/O wait +
Shared temporary storage I/O wait +
Transient data I/O wait +
Journal (MVS logger) I/O wait +
File control I/O wait +
RLS file I/O wait +
CF data table I/O wait +
Socket I/O wait +
Interregion (MRO) I/O wait +
LU6.1 TC I/O wait +
LU6.2 TC I/O wait +
FEPI I/O wait)

The “Other wait time” (that is, uncaptured wait (suspend) time) can be calculated
as:
Total other wait = (First dispatch delay +

Local ENQ delay +
Global ENQ delay +
Interval control delay +
Lock manager delay +
Wait external wait +
Wait CICS/event wait +
Dispatchable wait +
RMI suspend +
CICS BTS run synchronous wait +
CFDT server synchronous wait +
Syncpoint delay time +
CICS MAXOPENTCBS delay +
RRMS/MVS wait)

Uncaptured wait time can be calculated as:
Uncaptured wait time = (Suspend − (Total I/O wait time +

Total other wait time))

Note: The “First Dispatch Delay” performance class data field includes the MXT
and TRANCLASS “First Dispatch Delay” fields.

Wait time

Dispatch and Dispatch and
Suspend time

CPU time CPU time

Dispatch
wait

Figure 30. Wait (suspend) time relationships

224 CICS TS for OS/390: Release Guide

In addition to the transaction “Suspend (wait) Time” breakdown, the CMF
performance class data provides several other important transaction timing
measurements:

v The program load time is the program fetch time (dispatch time) for programs
invoked by the transaction.

v The exception wait time is the accumulated time from the exception conditions as
measured by the CMF exception class records.

v The RMI elapsed time is the elapsed time the transaction spent in all resource
managers invoked by the transaction using the resource manager interface
(RMI).

v The JVM elapsed time is the elapsed time the transaction spent in the JVM.

v The syncpoint elapsed time is the elapsed time the transaction spent processing
a syncpoint.

Performance data in group DFHCBTS

Group DFHCBTS contains the following performance data:

200 (TYPE-C, ‘PRCSNAME’, 36 BYTES)
The name of the CICS business transaction service (BTS) process of which the
user task formed part.

201 (TYPE-C, ‘PRCSTYPE’, 8 BYTES)
The process-type of the CICS BTS process of which the user task formed part.

202 (TYPE-C, ‘PRCSID’, 52 BYTES)
The CICS-assigned identifier of the CICS BTS root activity that the user task
implemented.

203 (TYPE-C, ‘ACTVTYID’, 52 BYTES)
The CICS-assigned identifier of the CICS BTS activity that the user task
implemented.

204 (TYPE-C, ‘ACTVTYNM’, 16 BYTES)
The name of the CICS BTS activity that the user task implemented.

205 (TYPE-A, ‘BARSYNCT’, 4 BYTES)
The number of CICS BTS run process, or run activity, requests that the user
task made in order to execute a child process or activity synchronously.

206 (TYPE-A, ‘BARASYCT’, 4 BYTES)
The number of CICS BTS run process, or run activity, requests that the user
task made in order to execute a child process or activity asynchronously.

207 (TYPE-A, ‘BALKPACT’, 4 BYTES)
The number of CICS BTS link process, or link activity, requests that the user
task issued.

208 (TYPE-A, ‘BADPROCT’, 4 BYTES)
The number of CICS BTS define process requests issued by the user task.

209 (TYPE-A, ‘BADACTCT’, 4 BYTES)
The number of CICS BTS define activity requests issued by the user task.

210 (TYPE-A, ‘BARSPACT’, 4 BYTES)
The number of CICS BTS reset process and reset activity requests issued by
the user task.

211 (TYPE-A, ‘BASUPACT’, 4 BYTES)
The number of CICS BTS suspend process, or suspend activity, requests
issued by the user task.

Appendix. Details of changed monitoring records 225

212 (TYPE-A, ‘BARMPACT’, 4 BYTES)
The number of CICS BTS resume process, or resume activity, requests issued
by the user task.

213 (TYPE-A, ‘BADCPACT’, 4 BYTES)
The number of CICS BTS delete activity, cancel process, or cancel activity,
requests issued by the user task.

214 (TYPE-A, ‘BAACQPCT’, 4 BYTES)
The number of CICS BTS acquire process, or acquire activity, requests issued
by the user task.

215 (TYPE-A, ‘BATOTPCT’, 4 BYTES)
Total number of CICS BTS process and activity requests issued by the user
task.

216 (TYPE-A, ‘BAPRDCCT’, 4 BYTES)
The number of CICS BTS delete, get, or put, container requests for process
data containers issued by the user task.

217 (TYPE-A, ‘BAACDCCT’, 4 BYTES)
The number of CICS BTS delete, get, or put, container requests for activity data
containers issued by the user task.

218 (TYPE-A, ‘BATOTCCT’, 4 BYTES)
Total number of CICS BTS process container and activity container requests
issued by the user task.

219 (TYPE-A, ‘BARATECT’, 4 BYTES)
The number of CICS BTS retrieve-reattach event requests issued by the user
task.

220 (TYPE-A, ‘BADFIECT’, 4 BYTES)
The number of CICS BTS define-input event requests issued by the user task.

221 (TYPE-A, ‘BATIAECT’, 4 BYTES)
The number of CICS BTS timer-associated event requests issued by the user
task.

222 (TYPE-A, ‘BATOTECT’, 4 BYTES)
The total number of CICS BTS event requests issued by the user task.

Performance data in group DFHCICS

Group DFHCICS contains the following performance data:

005 (TYPE-T, ‘START’, 8 BYTES)
Start time of measurement interval. This is one of the following:

v The time at which the user task was attached

v The time at which data recording was most recently reset in support of the
MCT user event monitoring point DELIVER option

v The monitoring options MNCONV, MNSYNC, or FREQUENCY.

For more information, see “Clocks and time stamps” on page 220.

Note: Response Time = STOP − START. For more information, see “Response
time” on page 222.

006 (TYPE-T, ‘STOP’, 8 BYTES)
Finish time of measurement interval. This is either the time at which the user
task was detached, or the time at which data recording was completed in
support of the MCT user event monitoring point DELIVER option or the

226 CICS TS for OS/390: Release Guide

monitoring options MNCONV, MNSYNC or FREQUENCY. For more information,
see “Clocks and time stamps” on page 220.

Note: Response Time = STOP − START. For more information, see “Response
time” on page 222.

025 (TYPE-A, ‘CFCAPICT’, 4 BYTES)
The total number of CICS OO foundation class requests and CICS Java
(JCICS) requests issued by the user task. CICS does not distinguish between
OO class and JCICS requests.

089 (TYPE-C, ‘USERID’, 8 BYTES)
User identification at task creation. This can also be the remote user identifier
for a task created as the result of receiving an ATTACH request across an MRO
or APPC link with attach-time security enabled.

103 (TYPE-S, ‘EXWTTIME’, 8 BYTES)
Accumulated data for exception conditions. The 32-bit clock contains the total
elapsed time for which the user waited on exception conditions. The 24-bit
period count equals the number of exception conditions that have occurred for
this task. For more information, see “Clocks and time stamps” on page 220.

Note: The performance class data field ‘exception wait time’ will be updated
when exception conditions are encountered even when the exception
class is inactive.

112 (TYPE-C, ‘RTYPE’, 4 BYTES)
Performance record type (low-order byte-3):
C Record output for a terminal converse
D Record output for a user EMP DELIVER request
F Record output for a long-running transaction
S Record output for a syncpoint
T Record output for a task termination.

130 (TYPE-C, ‘RSYSID’, 4 bytes)
The name (sysid) of the remote system to which this transaction was routed
either statically or dynamically.

This field also includes the connection name (sysid) of the remote system to
which this transaction was routed when using the CRTE routing transaction.
The field will be null for those CRTE transactions which establish or cancel the
transaction routing session.

Note: If the transaction was not routed or was routed locally, this field is set to
null. Also see the program name (field 71).

131 (TYPE-A, ‘PERRECNT’, 4 bytes)
The number of performance class records written by the CICS Transaction
Server for OS/390 Monitoring Facility (CMF) for the user task.

167 (TYPE-C, ‘SRVCLASS’, 8 bytes)
The MVS Workload Manager (WLM) service class for this transaction. This field
is null if the transaction was WLM-classified in another CICS region.

168 (TYPE-C, ‘RPTCLASS’, 8 bytes)
The MVS Workload Manager (WLM) report class for this transaction. This field
is null if the transaction was WLM-classified in another CICS region.

Appendix. Details of changed monitoring records 227

Performance data in group DFHDATA

Group DFHDATA contains the following performance data:

179 (TYPE-A, ‘IMSREQCT’, 4 BYTES)
Number of IMS (DBCTL) requests issued by the user task.

180 (TYPE-A, ‘DB2REQCT’, 4 BYTES)
Number of DB2 (EXEC SQL and IFI) requests issued by the user task.

186 (TYPE-S, ‘IMSWAIT’, 8 BYTES)
The elapsed time in which the user task waited for DBCTL to service the IMS
requests issued by the user task.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

187 (TYPE-S, ‘DB2RDYQW’, 8 BYTES)
The elapsed time in which the user task waited for a DB2 thread to become
available.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

188 (TYPE-S, ‘DB2CONWT’, 8 BYTES)
The elapsed time in which the user task waited for a CICS DB2 subtask to
become available.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

189 (TYPE-S, ‘DB2WAIT’, 8 BYTES)
The elapsed time in which the user task waited for DB2 to service the DB2
EXEC SQL and IFI requests issued by the user task.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

Performance data in group DFHDOCH

Group DFHDOCH contains the following performance data:

226 (TYPE-A, ‘DHCRECT’, 4 BYTES)
Number of document handler CREATE requests issued by the user task.

227 (TYPE-A, ‘DHINSCT’, 4 BYTES)
Number of document handler INSERT requests issued by the user task.

228 CICS TS for OS/390: Release Guide

228 (TYPE-A, ‘DHSETCT’, 4 BYTES)
Number of document handler SET requests issued by the user task.

229 (TYPE-A, ‘DHRETCT’, 4 BYTES)
Number of document handler RETRIEVE requests issued by the user task.

230 (TYPE-A, ‘DHTOTCT’, 4 BYTES)
Total number of document handler requests issued by the user task.

240 (TYPE-A, ‘DHTOTDCL’, 4 BYTES)
Total length of all documents created by the user task.

Performance data in group DFHFILE

Group DFHFILE contains the following performance data:

036 (TYPE-A, ‘FCGETCT’, 4 BYTES)
Number of file GET requests issued by the user task.

037 (TYPE-A, ‘FCPUTCT’, 4 BYTES)
Number of file PUT requests issued by the user task.

038 (TYPE-A, ‘FCBRWCT’, 4 BYTES)
Number of file browse requests issued by the user task. This number excludes
the START and END browse requests.

039 (TYPE-A, ‘FCADDCT’, 4 BYTES)
Number of file ADD requests issued by the user task.

040 (TYPE-A, ‘FCDELCT’, 4 BYTES)
Number of file DELETE requests issued by the user task.

063 (TYPE-S, ‘FCIOWTT’, 8 BYTES)
Elapsed time in which the user task waited for file I/O. For more information,
see “Clocks and time stamps” on page 220.

070 (TYPE-A, ‘FCAMCT’, 4 BYTES)
Number of times the user task invoked file access-method interfaces. This
number excludes requests for OPEN and CLOSE.

093 (TYPE-A, ‘FCTOTCT’, 4 BYTES)
Total number of file control requests issued by the user task. This number
excludes any request for OPEN, CLOSE, ENABLE, or DISABLE of a file.

174 (TYPE-S, ‘RLSWAIT’, 8 BYTES)
Elapsed time in which the user task waited for RLS file I/O.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

175 (TYPE-S, ‘RLSCPUT’, 8 BYTES)
The RLS File Request CPU (SRB) time field (RLSCPUT) is the SRB CPU time
this transaction spent processing RLS file requests. This field should be added
to the transaction CPU time field (USRCPUT) when considering the
measurement of the total CPU time consumed by a transaction. Also, this field
cannot be considered a subset of any other single CMF field (including
RLSWAIT). This is because the RLS field requests execute asynchronously
under an MVS SRB which can be running in parallel with the requesting
transaction. It is also possible for the SRB to complete its processing before the
requesting transaction waits for the RLS file request to complete.

Appendix. Details of changed monitoring records 229

Note: This clock field could contain a CPU time of zero with a count of greater
than zero. This is because the CMF timing granularity is measured in 16
microsecond units and the RLS file request(s) may complete in less than
that time unit.

176 (TYPE-S, ‘CFDTWAIT’, 8 BYTES)
Elapsed time in which the user task waited for coupling facility data table I/O.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

How EXEC CICS file commands correspond to file control monitoring fields is
shown in Table 12.

Table 12. EXEC CICS file commands related to file control monitoring fields

EXEC CICS command Monitoring fields

READ FCGETCT and FCTOTCT

READ UPDATE FCGETCT and FCTOTCT

DELETE (after READ
UPDATE)

FCDELCT and FCTOTCT

DELETE (with RIDFLD) FCDELCT and FCTOTCT

REWRITE FCPUTCT and FCTOTCT

WRITE FCADDCT and FCTOTCT

STARTBR FCTOTCT

READNEXT FCBRWCT and FCTOTCT

READNEXT UPDATE FCBRWCT and FCTOTCT

READPREV FCBRWCT and FCTOTCT

READPREV UPDATE FCBRWCT and FCTOTCT

ENDBR FCTOTCT

RESETBR FCTOTCT

UNLOCK FCTOTCT

Note: The number of STARTBR, ENDBR, RESETBR, and UNLOCK file control
requests can be calculated by subtracting the file request counts, FCGETCT,
FCPUTCT, FCBRWCT, FCADDCT, and FCDELCT from the total file request
count, FCTOTCT.

Performance data in group DFHPROG

Group DFHPROG contains the following performance data:

055 (TYPE-A, ‘PCLINKCT’, 4 BYTES)
Number of program LINK requests issued by the user task, including the link to
the first program of the user task. This field does not include program LINK
URM (user-replaceable module) requests.

056 (TYPE-A, ‘PCXCTLCT’, 4 BYTES)
Number of program XCTL requests issued by the user task.

230 CICS TS for OS/390: Release Guide

057 (TYPE-A, ‘PCLOADCT’, 4 BYTES)
Number of program LOAD requests issued by the user task.

071 (TYPE-C, ‘PGMNAME’, 8 BYTES)
The name of the first program invoked at attach-time.

For a remote transaction:

v If this CICS definition of the remote transaction does not specify a program
name, this field contains blanks.

v If this CICS definition of the remote transaction specifies a program name,
this field contains the name of the specified program. (Note that this is not
necessarily the program that is run on the remote system.)

For a dynamically-routed transaction, if the dynamic transaction routing program
routes the transaction locally and specifies an alternate program name, this field
contains the name of the alternate program.

For a dynamic program link (DPL) mirror transaction, this field contains the
initial program name specified in the dynamic program LINK request. DPL
mirror transactions can be identified using byte 1 of the transaction flags,
TRANFLAG (164), field.

For an ONC RPC or WEB alias transaction, this field contains the initial
application program name invoked by the alias transaction. ONC RPC or WEB
alias transactions can be identified using byte 1 of the transaction flags,
TRANFLAG (164), field.

072 (TYPE-A, ‘PCLURMCT’, 4 BYTES)
Number of program LINK URM (user-replaceable module) requests issued by,
or on behalf of, the user task.

A user-replaceable module is a CICS-supplied program that is always invoked
at a particular point in CICS processing, as if it were part of the CICS code. You
can modify the supplied program by including your own logic, or replace it
completely with a version that you write yourself.

The CICS-supplied user-replaceable modules are:
v Bridge exit program
v Program error program
v Transaction restart program
v Terminal error program
v Node error program
v Terminal autoinstall programs
v Program autoinstall program
v Dynamic routing program
v CICS-DBCTL interface status program
v CICS-DB2 dynamic plan exit program.

For detailed information on CICS user-replaceable programs, see the CICS
Customization Guide.

073 (TYPE-A, ‘PCDPLCT’, 4 BYTES)
Number of distributed program LINK (DPL) requests issued by the user task.

113 (TYPE-C, ‘ABCODEO’, 4 BYTES)
Original abend code.

Appendix. Details of changed monitoring records 231

114 (TYPE-C, ‘ABCODEC’, 4 BYTES)
Current abend code.

115 (TYPE-S, ‘PCLOADTM’, 8 BYTES)
Elapsed time in which the user task waited for program library (DFHRPL)
fetches. Only fetches for programs with installed program definitions or
autoinstalled as a result of application requests are included in this figure.
However, installed programs residing in the LPA are not included (because they
do not incur a physical fetch from a library).

Performance data in group DFHSOCK

Group DFHSOCK contains the following performance data:

241 (TYPE-S, ‘SOIOWTT’, 8 BYTES)
The elapsed time in which the user task waited for socket I/O.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

242 (TYPE-A, ‘SOBYENCT’, 4 BYTES)
The number of bytes encrypted by the secure sockets layer for the user task.

243 (TYPE-A, ‘SOBYDECT’, 4 BYTES)
The number of bytes decrypted by the secure sockets layer for the user task.

244 (TYPE-C, ‘CLIPADDR’, 16 BYTES)
Client IP address (nnn.nnn.nnn.nnn).

Performance data in group DFHSYNC

Group DFHSYNC contains the following performance data:

060 (TYPE-A, ‘SPSYNCCT’, 4 BYTES)
Number of SYNCPOINT requests issued during the user task.

Notes:

1. A SYNCPOINT is implicitly issued as part of the task-detach processing.

2. A SYNCPOINT is issued at PSB termination for DBCTL.

173 (TYPE-S, ‘SYNCTIME’, 8 BYTES)
Total elapsed time for which the user task was dispatched and was processing
syncpoint requests.

For more information about syncpoint time see “Clocks and time stamps” on
page 220.

177 (TYPE-S, ‘SRVSYWTT’, 8 BYTES)
The elapsed time in which the user task waited for a coupling facility data table
server to process syncpoint requests issued by the user task.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

232 CICS TS for OS/390: Release Guide

196 (TYPE-S, ‘SYNCDLY’, 8 BYTES)
The elapsed time in which the user task waited for a syncpoint request to be
issued by its parent transaction. The user task was executing as a result of a
parent task issuing a CICS BTS run-process or run-activity request to execute a
process or activity synchronously.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

Performance data in group DFHTASK
001 (TYPE-C, ‘TRAN’, 4 BYTES)

Transaction identification.

004 (TYPE-C, ‘T’, 4 BYTES)
Transaction start type. The high-order bytes (0 and 1) are set to:
"TO" Attached from terminal input
"S " Attached by automatic transaction initiation (ATI) without data
"SD" Attached by automatic transaction initiation (ATI) with data
"QD" Attached by transient data trigger level
"U " Attached by user request
"TP" Attached from terminal TCTTE transaction ID
"SZ" Attached by Front End Programming Interface (FEPI)

007 (TYPE-S, ‘USRDISPT’, 8 BYTES)
Total elapsed time during which the user task was dispatched on each CICS
TCB under which the task executed. This can include TCB modes QR, RO, CO,
FO, SZ, RP, SL, SO, L8, J8, and S8. For more information, see “Clocks and
time stamps” on page 220.

008 (TYPE-S, ‘USRCPUT’, 8 BYTES)
Total processor time during which the user task was dispatched on each CICS
TCB under which the task executed. This can include TCB modes QR, RO, CO,
FO, SZ, RP, SL, SO, L8, J8, and S8. For more information, see “Clocks and
time stamps” on page 220.

014 (TYPE-S, ‘SUSPTIME’, 8 BYTES)
Total elapsed wait time for which the user task was suspended by the
dispatcher. This includes:

v The elapsed time waiting for the first dispatch. This also includes any delay
incurred because of the limits set for this transaction’s transaction class (if
any) or by the system parameter MXT being reached.

v The task suspend (wait) time.

v The elapsed time waiting for redispatch after a suspended task has been
resumed.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

031 (TYPE-P, ‘TRANNUM’, 4 BYTES)
Transaction identification number.

Note: The transaction number field is normally a 4-byte packed decimal
number. However, some CICS system tasks are identified by
special-character transaction numbers, as follows:

Appendix. Details of changed monitoring records 233

v III for system initialization task
v TCP for terminal control

These special identifiers are placed in bytes 2 through 4. Byte 1 is a blank
(X’40’) before the terminal control TCP identifier, and a null value (X’00’) before
the others.

059 (TYPE-A, ‘ICPUINCT’, 4 BYTES)
Number of interval control START or INITIATE requests during the user task.

064 (TYPE-A, ‘TASKFLAG’, 4 BYTES)
Task error flags, a string of 32 bits used for signaling unusual conditions
occurring during the user task:

Bit 0 Reserved

Bit 1 Detected an attempt either to start a user clock that was already
running, or to stop one that was not running

Bits 2–31
Reserved

066 (TYPE-A, ‘ICTOTCT’, 4 BYTES)
Total number of interval control START, CANCEL, DELAY, and RETRIEVE
requests issued by the user task.

082(TYPE-C, ‘TRNGRPID’, 28 BYTES)
Transaction group id that is assigned at transaction attach time, and can be
used to correlate the transactions that CICS executes for the same incoming
work request (for example, the CWXN and CWBA transactions for Web
requests). This transaction group ID applies to requests that originate through
the CICS Web, IIOP, or 3270 bridge interface, as indicated by the tranasction
origin in byte 4 of the transaction flags (164, TRANFLAG).

097 (TYPE-C, ‘NETUOWPX’, 20 BYTES)
Fully qualified name by which the originating system is known to the VTAM
network. This name is assigned at attach time using either the NETNAME
derived from the TCT (when the task is attached to a local terminal), or the
NETNAME passed as part of an ISC APPC or IRC attach header. At least three
padding bytes (X'00') are present at the right end of the name.

If the originating terminal is VTAM across an ISC APPC or IRC link, the
NETNAME is the networkid.LUname. If the terminal is non-VTAM, the
NETNAME is networkid.generic_applid.

All originating information passed as part of an ISC LUTYPE6.1 attach header
has the same format as the non-VTAM terminal originators above.

When the originator is communicating over an external CICS interface (EXCI)
session, the name is a concatenation of:

'DFHEXCIU │ . │ MVS Id │ Address Space Id (ASID)'
8 bytes │ 1 byte │ 4 bytes │ 4 bytes

derived from the originating system. That is, the name is a 17-byte LU name
consisting of:

v An 8-byte eye-catcher set to ’DFHEXCIU’.

v A 1-byte field containing a period (.).

v A 4-byte field containing the MVSID, in characters, under which the client
program is running.

234 CICS TS for OS/390: Release Guide

v A 4-byte field containing the address space ID (ASID) in which the client
program is running. This field contains the 4-character EBCDIC
representation of the 2-byte hex address space ID.

098 (TYPE-C, ‘NETUOWSX’, 8 BYTES)
Name by which the unit of work is known within the originating system. This
name is assigned at attach time using either an STCK-derived token (when the
task is attached to a local terminal), or the unit-of-work ID passed as part of an
ISC APPC or IRC attach header.

The first six bytes of this field is a binary value derived from the clock of the
originating system and wrapping round at intervals of several months.

The last two bytes of this field are for the period count. These may change
during the life of the task as a result of syncpoint activity.

Note: When using MRO or ISC, the NETUOWSX field must be combined with
the NETUOWPX field (097) to uniquely identify a task, because the
NETUOWSX field is unique only to the originating CICS system.

102 (TYPE-S, ‘DISPWTT’, 8 BYTES)
Elapsed time for which the user task waited for redispatch. This is the
aggregate of the wait times between each event completion and user-task
redispatch.

Note: This field does not include the elapsed time spent waiting for first
dispatch. The DISPWTT field is a component of the task suspend time,
SUSPTIME (014), field.

109 (TYPE-C, ‘TRANPRI’, 4 BYTES)
Transaction priority when monitoring of the task was initialized (low-order
byte-3).

123 (TYPE-S, ‘GNQDELAY’, 8 BYTES)
The elapsed time waiting for a CICS task control global enqueue.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

124 (TYPE-C, ‘BRDGTRAN’, 4 BYTES)
3270 Bridge transaction identification.

125 (TYPE-S, ‘DSPDELAY’, 8 BYTES)
The elapsed time waiting for first dispatch.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

126 (TYPE-S, ‘TCLDELAY’, 8 BYTES)
The elapsed time waiting for first dispatch which was delayed because of the
limits set for this transaction’s transaction class, TCLSNAME (166), being
reached. For more information, see “Clocks and time stamps” on page 220.

Appendix. Details of changed monitoring records 235

Note: This field is a component of the first dispatch delay, DSPDELAY (125),
field.

127 (TYPE-S, ‘MXTDELAY’, 8 BYTES)
The elapsed time waiting for first dispatch which was delayed because of the
limits set by the system parameter, MXT, being reached.

Note: The field is a component of the first dispatch delay, DSPDELAY (125),
field.

128 (TYPE-S, ‘LMDELAY’, 8 BYTES)
The elapsed time that the user task waited to acquire a lock on a resource. A
user task cannot explicitly acquire a lock on a resource, but many CICS
modules lock resources on behalf of user tasks using the CICS lock manager
(LM) domain.

For more information about CICS lock manager waits, see the CICS Problem
Determination Guide.

For information about times, see “Clocks and time stamps” on page 220 and
“Wait (suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

129 (TYPE-S, ‘ENQDELAY’, 8 BYTES)
The elapsed time waiting for a CICS task control local enqueue.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

132 (TYPE-C, ‘RMUOWID’, 8 BYTES)
The identifier of the logical unit-of-work (unit-of-recovery) for this task. Unit-of
recovery values are used to synchronize recovery operations among CICS and
other resource managers, such as IMS and DB2.

163 (TYPE-C, ‘FCTYNAME’, 4 BYTES)
Transaction facility name. This field is null if the transaction is not associated
with a facility. The transaction facility type (if any) can be identified using byte 0
of the transaction flags, TRANFLAG, (field id 164).

164 (TYPE-A, ‘TRANFLAG’, 8 BYTES)
Transaction flags, a string of 64 bits used for signaling transaction definition and
status information:
Byte 0

Transaction facility identification
Bit 0 Transaction facility name = none X'80'
Bit 1 Transaction facility name = terminal X'40'. If this Bit is set, the

FCTYNAME and TERM fields contain the same terminal id.
Bit 2 Transaction facility name = surrogate X'20'. If this Bit is set, the

FCTYNAME field contains the name of the surrogate terminal
id.

Bit 3 Transaction facility name = destination X'10'
Bit 4 Transaction facility name = 3270 bridge X'08'
Bits 5–7

Reserved

236 CICS TS for OS/390: Release Guide

Byte 1
Transaction identification information
Bit 0 System transaction X'80'
Bit 1 Mirror transaction X'40'
Bit 2 DPL mirror transaction X'20'
Bit 3 ONC RPC alias transaction X'10'
Bit 4 WEB alias transaction X'08'
Bit 5 3270 bridge transaction X'04'
Bits 6 Reserved X'02'
Bits 7 CICS BTS run transaction X'01'

Byte 2
MVS workload manager request (transaction) completion information
Bit 0 Report the total response time for completed work request

(transaction)
Bit 1 Notify that the entire execution phase of the work request is

complete
Bit 2 Notify that a subset of the execution phase of the work request

is complete
Bits 3–7

Reserved
Byte 3

Transaction definition information
Bit 0 Taskdataloc = below (x’80’)
Bit 1 Taskdatakey = cics (x’40’)
Bit 2 Isolate = no (x’20’)
Bit 3 Dynamic = yes (x’10’)
Bits 4–7

Reserved
Byte 4

Transaction origin type
Byte 5

Reserved
Byte 6

Reserved
Byte 7

Recovery manager information
Bit 0 Indoubt wait = no
Bit 1 Indoubt action = commit
Bit 2 Recovery manager - UOW resolved with indoubt action
Bit 3 Recovery manager - shunt
Bit 4 Recovery manager - unshunt
Bit 5 Recovery manager - indoubt failure
Bit 6 Recovery manager - resource owner failure
Bit 7 Reserved

Note: Bits 2 through 6 is reset on a SYNCPOINT request when the
MNSYNC=YES option is specified.

166 (TYPE-C, ‘TCLSNAME’, 8 BYTES)
Transaction class name. This field is null if the transaction is not in a
TRANCLASS.

170 (TYPE-S, ‘RMITIME’, 8 BYTES)
Amount of elapsed time spent in the resource manager interface (RMI). For
more information, see “Clocks and time stamps” on page 220.

Appendix. Details of changed monitoring records 237

171 (TYPE-S, ‘RMISUSP’, 8 BYTES)
Amount of elapsed time the task was suspended by the dispatcher while in the
resource manager interface (RMI). For more information, see “Clocks and time
stamps” on page 220, and “Wait (suspend) times” on page 222.

Note: The field is a component of the task suspend time, SUSPTIME (014),
field and also the RMITIME (170) field.

181 (TYPE-S, ‘WTEXWAIT’, 8 BYTES)
The elapsed time that the user task waited for one or more ECBs, passed to
CICS by the user task using the EXEC CICS WAIT EXTERNAL ECBLIST
command, to be MVS POSTed. The user task can wait on one or more ECBs. If
it waits on more than one, it is dispatchable as soon as one of the ECBs is
posted.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

182 (TYPE-S, ‘WTCEWAIT’, 8 BYTES)
The elapsed time that the user task waited for:

1. One or more ECBs, passed to CICS by the user task using the EXEC CICS
WAITCICS ECBLIST command, to be MVS POSTed. The user task can wait
on one or more ECBs. If it waits on more than one, it is dispatchable as
soon as one of the ECBs is posted.

2. Completion of an event initiated by the same or by another user task. The
event would normally be the posting, at the expiration time, of a timer-event
control area provided in response to an EXEC CICS POST command. The
EXEC CICS WAIT EVENT command provides a method of directly
relinquishing control to some other task until the event being waited on is
completed.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

183 (TYPE-S, ‘ICDELAY’, 8 BYTES)
The elapsed time the user task waited as a result of issuing either:

v An interval control EXEC CICS DELAY command for a specified time
interval, or

v A specified time of day to expire, or

v An interval control EXEC CICS RETRIEVE command with the WAIT option
specified.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

184 (TYPE-S, ‘GVUPWAIT’, 8 BYTES)
The elapsed time that the user task waited as a result of relinquishing control to

238 CICS TS for OS/390: Release Guide

another task. A user task can relinquish control in many ways. Some examples
are application programs that use one or more of the following EXEC CICS API
or SPI commands:

v Using the EXEC CICS SUSPEND command. This command causes the
issuing task to relinquish control to another task of higher or equal
dispatching priority. Control is returned to this task as soon as no other task
of a higher or equal priority is ready to be dispatched.

v Using the EXEC CICS CHANGE TASK PRIORITY command. This command
immediately changes the priority of the issuing task and causes the task to
relinquish control in order for it to be redispatched at its new priority. The task
is not redispatched until tasks of higher or equal priority, and that are also
dispatchable, have been dispatched.

v Using the EXEC CICS DELAY command with INTERVAL(0). This command
causes the issuing task to relinquish control to another task of higher or
equal dispatching priority. Control is returned to this task as soon as no other
task of a higher or equal priority is ready to be dispatched.

v Using the EXEC CICS POST command requesting notification that a
specified time has expired. This command causes the issuing task to
relinquish control to give CICS the opportunity to post the timer-event control
area.

v Using the EXEC CICS PERFORM RESETTIME command to synchronize the
CICS date and time with the MVS system date and time of day.

v Using the EXEC CICS START TRANSID command with the ATTACH option.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

190 (TYPE-C, ‘RRMSURID’, 16 BYTES)
RRMS/MVS unit-of-recovery ID (URID).

191 (TYPE-S, ‘RRMSWAIT’, 8 BYTES)
The elapsed time in which the user task waited indoubt using resource recovery
services for EXCI.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

195 (TYPE-S, ‘RUNTRWTT’, 8 BYTES)
The elapsed time in which the user task waited for completion of a transaction
that executed as a result of the user task issuing a CICS BTS run process, or
run activity, request to execute a process, or activity, synchronously.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

248 (TYPE-A, ‘CHMODECT’, 4 BYTES)
The number of CICS change-TCB modes issued by the user task.

Appendix. Details of changed monitoring records 239

249 (TYPE-S, ‘QRMODDLY’, 8 BYTES)
Elapsed time for which the user task waited for redispatch on the CICS QR
TCB. This is the aggregate of the wait times between each event completion
and user-task redispatch.

Note: This field does not include the elapsed time spent waiting for the first
dispatch. The QRMODDLY field is a component of the task suspend
time, SUSPTIME (014), field.

250 (TYPE-S, ‘MAXOTDLY’, 8 BYTES)
The elapsed time in which the user task waited to obtain a CICS open TCB,
because the region had reached the limit set by the system parameter,
MAXOPENTCBS.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: This field is a component of the task suspend time, SUSPTIME (014),
field.

251 (TYPE-A, ‘TCBATTCT’, 4 BYTES)
Number of CICS TCBs attached by the user task.

253 (TYPE-S, ‘JVMTIME’, 8 BYTES)
Elapsed time spent in the CICS JVM by the user task.

254 (TYPE-S, ‘JVMSUSP’, 8 BYTES)
Elapsed time the task was suspended by the CICS dispatcher while running in
the CICS JVM.

255 (TYPE-S, ‘QRDISPT’, 8 BYTES)
Elapsed time for which the user task was dispatched on the CICS QR TCB. For
more information, see “Clocks and time stamps” on page 220.

256 (TYPE-S, ‘QRCPUT’, 8 BYTES)
Processor time for which the user task was dispatched on the CICS QR TCB.
For more information, see “Clocks and time stamps” on page 220.

257 (TYPE-S, ‘MSDISPT’, 8 BYTES)
Total elapsed time for which the user task was dispatched on each CICS TCB,
mode RO, CO, FO, SZ, RP, SL, or SO. Note that:

v Mode SZ is used only if FEPI is active

v Mode RP is used only if ONC RPC support is active, or the CICS WEB
interface is active

v Modes SO and SL are used only if TCPIP=YES is specified as a system
initialization parameter.

For more information, see “Clocks and time stamps” on page 220.

258 (TYPE-S, ‘MSCPUT’, 8 BYTES)
Total processor time for which the user task was dispatched on each CICS
TCB, mode RO, CO, FO, SZ, RP, SL, or SO. Note that:

v Mode SZ is used only if FEPI is active

v Mode RP is used only if ONC RPC support is active, or the CICS WEB
interface is active

v Modes SO and SL are used only if TCPIP=YES is specified as a system
initialization parameter.

For more information, see “Clocks and time stamps” on page 220.

240 CICS TS for OS/390: Release Guide

259 (TYPE-S, ‘L8CPUT’, 8 BYTES)
Processor time for which the user task was dispatched on the CICS L8 TCB.
For more information, see “Clocks and time stamps” on page 220.

260 (TYPE-S, ‘J8CPUT’, 8 BYTES)
Processor time for which the user task was dispatched on the CICS J8 TCB.
For more information, see “Clocks and time stamps” on page 220.

261 (TYPE-S, ‘S8CPUT’, 8 BYTES)
Processor time for which the user task was dispatched on the CICS S8 TCB.
For more information, see “Clocks and time stamps” on page 220.

Performance data in group DFHTEMP

Group DFHTEMP contains the following performance data:

011 (TYPE-S, ‘TSIOWTT’, 8 BYTES)
Elapsed time for which the user task waited for VSAM temporary storage I/O.
For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: The field is a component of the task suspend time, SUSPTIME (014),
field.

044 (TYPE-A, ‘TSGETCT’, 4 BYTES)
Number of temporary storage GET requests issued by the user task.

046 (TYPE-A, ‘TSPUTACT’, 4 BYTES)
Number of PUT requests to auxiliary temporary storage issued by the user task.

047 (TYPE-A, ‘TSPUTMCT’, 4 BYTES)
Number of PUT requests to main temporary storage issued by the user task.

092 (TYPE-A, ‘TSTOTCT’, 4 BYTES)
Total number of temporary storage requests issued by the user task. This field
is the sum of TS GET, PUT AUXILIARY, PUT MAIN, and DELETE requests
issued by the user task.

178 (TYPE-S, ‘TSSHWAIT’, 8 BYTES)
Elapsed time that the user task waited for an asynchronous shared temporary
storage request to a temporary storage data server to complete.

For more information, see “Clocks and time stamps” on page 220 and “Wait
(suspend) times” on page 222.

Note: The field is a component of the task suspend time, SUSPTIME (014),
field.

Performance data in group DFHWEBB

Group DFHWEBB contains the following performance data:

231 (TYPE-A, ‘WBRCVCT’, 4 BYTES)
Number of CICS Web interface RECEIVE requests issued by the user task.

232 (TYPE-A, ‘WBCHRIN’, 4 BYTES)
Number of characters received by the CICS Web interface RECEIVE requests
issued by the user task.

233 (TYPE-A, ‘WBSENDCT’, 4 BYTES)
Number of CICS Web interface SEND requests issued by the user task.

Appendix. Details of changed monitoring records 241

234 (TYPE-A, ‘WBCHROUT’, 4 BYTES)
Number of characters sent by the CICS Web interface SEND requests issued
by the user task.

235 (TYPE-A, ‘WBTOTCT’, 4 BYTES)
Total number of CICS Web interface requests issued by the user task.

236 (TYPE-A, ‘WBREPRCT’, 4 BYTES)
Number of reads from the repository in shared temporary storage issued by the
user task.

237 (TYPE-A, ‘WBREPWCT’, 4 BYTES)
Number of writes to the repository in shared temporary storage issued by the
user task.

Exception class data

CICS monitoring domain now produces exception records after each of the
following transaction waits has been resolved:
v Wait for coupling facility data table locking request slot
v Wait for coupling facility data table non-locking request slot
v Wait for storage in the CDSA
v Wait for storage in the UDSA
v Wait for storage in the SDSA
v Wait for storage in the RDSA
v Wait for storage in the ECDSA
v Wait for storage in the EUDSA
v Wait for storage in the ESDSA
v Wait for storage in the ERDSA
v Wait for auxiliary temporary storage
v Wait for auxiliary temporary storage string
v Wait for auxiliary temporary storage buffer
v Wait for file string
v Wait for LSRPOOL buffer
v Wait for LSRPOOL string

These records are fixed format. The format of these exception records is as follows:
MNEXCDS DSECT
EXCMNTRN DS CL4 TRANSACTION IDENTIFICATION
EXCMNTER DS XL4 TERMINAL IDENTIFICATION
EXCMNUSR DS CL8 USER IDENTIFICATION
EXCMNTST DS CL4 TRANSACTION START TYPE
EXCMNSTA DS XL8 EXCEPTION START TIME
EXCMNSTO DS XL8 EXCEPTION STOP TIME
EXCMNTNO DS PL4 TRANSACTION NUMBER
EXCMNTPR DS XL4 TRANSACTION PRIORITY

DS CL4 RESERVED
EXCMNLUN DS CL8 LUNAME

DS CL4 RESERVED
EXCMNEXN DS XL4 EXCEPTION NUMBER
EXCMNRTY DS CL8 EXCEPTION RESOURCE TYPE
EXCMNRID DS CL8 EXCEPTION RESOURCE ID
EXCMNTYP DS XL2 EXCEPTION TYPE
EXCMNWT EQU X'0001' WAIT
EXCMNBWT EQU X'0002' BUFFER WAIT
EXCMNSWT EQU X'0003' STRING WAIT

DS CL2 RESERVED
EXCMNTCN DS CL8 TRANSACTION CLASS NAME
EXCMNSRV DS CL8 SERVICE CLASS NAME
EXCMNRPT DS CL8 REPORT CLASS NAME
EXCMNNPX DS CL20 NETWORK UNIT-OF-WORK PREFIX
EXCMNNSX DS XL8 NETWORK UNIT-OF-WORK SUFFIX

242 CICS TS for OS/390: Release Guide

EXCMNTRF DS XL8 TRANSACTION FLAGS
EXCMNFCN DS CL4 TRANSACTION FACILITY NAME
EXCMNCPN DS CL8 CURRENT PROGRAM NAME
EXCMNBTR DS CL4 BRIDGE TRANSACTION ID
EXCMNURI DS XL16 MVS/RRMS Unit of Recovery Id
EXCMNRIL DS F EXCEPTION RESOURCE ID LENGTH
EXCMNRIX DS XL256 EXCEPTION RESOURCE ID (EXTENDED)
* END OF EXCEPTION RECORD ...

Exception data field descriptions

The following is a full list of all the exception record fields, including the three new
fields:

EXCMNTRN (TYPE-C, 4 BYTES)
Transaction identification.

EXCMNTER (TYPE-C, 4 BYTES)
Terminal identification. This field is null if the task is not associated with a
terminal or session.

EXCMNUSR (TYPE-C, 8 BYTES)
User identification at task creation. This can also be the remote user identifier
for a task created as the result of receiving an ATTACH request across an MRO
or APPC link with attach-time security enabled.

EXCMNTST (TYPE-C, 4 BYTES)
Transaction start type. The low-order byte (0 and 1) is set to:
"TO" Attached from terminal input
"S" Attached by automatic transaction initiation (ATI) without data
"SD" Attached by automatic transaction initiation (ATI) with data
"QD" Attached by transient data trigger level
"U" Attached by user request
"TP" Attached from terminal TCTTE transaction ID
"SZ" Attached by Front End Programming Interface (FEPI)

EXCMNSTA (TYPE-T, 8 BYTES)
Start time of the exception.

EXCMNSTO (TYPE-T, 8 BYTES)
Finish time of the exception.

Note: The performance class exception wait time field, EXWTTIME (103), is a
calculation based on subtracting the start time of the exception
(EXCMNSTA) from the finish time of the exception (EXCMNSTO).

EXCMNTNO (TYPE-P, 4 BYTES)
Transaction identification number.

EXCMNTPR (TYPE-C, 4 BYTES)
Transaction priority when monitoring was initialized for the task (low-order byte).

EXCMNLUN (TYPE-C, 8 BYTES)
VTAM logical unit name (if available) of the terminal associated with this
transaction. This field is nulls if the task is not associated with a terminal.

EXCMNEXN (TYPE-A, 4 BYTES)
Exception sequence number for this task.

EXCMNRTY (TYPE-C, 8 BYTES)
Exception resource type.

Appendix. Details of changed monitoring records 243

EXCMNRID (TYPE-C, 8 BYTES)
Exception resource identification.

EXCMNTYP (TYPE-A, 2 BYTES)
Exception type. This field can be set to one of the following values:
X'0001'

Exception due to a wait (EXCMNWT)
X'0002'

Exception due to a buffer wait (EXCMNBWT)
X'0003'

Exception due to a string wait (EXCMNSWT)

EXCMNTCN (TYPE-C, 8 BYTES)
Transaction class name. This field is null if the transaction is not in a transaction
class.

EXCMNSRV (TYPE-C, 8 BYTES)
MVS workload manager service class name for this transaction. This field is null
if the transaction was WLM-classified in another CICS region.

EXCMNRPT (TYPE-C, 8 BYTES)
MVS workload manager report class name for this transaction. This field is null
if the transaction was WLM-classified in another CICS region.

EXCMNNPX (TYPE-C, 20 BYTES)
Fully qualified name by which the originating system is known to the VTAM
network. This name is assigned at attach time using either the NETNAME
derived from the TCT (when the task is attached to a local terminal), or the
NETNAME passed as part of an ISC APPC or IRC attach header. At least three
padding bytes (X'00') are present at the right end of the name.

If the originating terminal is a VTAM device across an ISC APPC or IRC link,
the NETNAME is the networkid.LUname. If the terminal is non-VTAM, the
NETNAME is networkid.generic_applid.

All originating information passed as part of an ISC LUTYPE6.1 attach header
has the same format as the non-VTAM terminal originators above.

When the originator is communicating over an external CICS interface (EXCI)
session, the name is a concatenation of:

DFHEXCIU │ . │ MVS ID │ Address Space Id (ASID)
8 bytes │ 1 byte │ 4 bytes │ 4 bytes

derived from the originating system. That is, the name is a 17-byte LU name
consisting of:

v An 8-byte eye-catcher set to ’DFHEXCIU’.

v A 1-byte field containing a period (.).

v A 4-byte field containing the MVS ID, in characters, under which the client
program is running.

v A 4-byte field containing the address space ID (ASID) in which the client
program is running. This field contains the 4-character EBCDIC
representation of the 2-byte hex address space ID.

EXCMNNSX (TYPE-C, 8 BYTES)
Name by which the unit of work is known within the originating system. This
name is assigned at attach time using either an STCK-derived token (when the
task is attached to a local terminal), or the unit of work ID passed as part of an
ISC APPC or IRC attach header.

244 CICS TS for OS/390: Release Guide

The first six bytes of this field contain a binary value derived from the clock of
the originating system and wrapping round at intervals of several months.

The last two bytes of this field are for the period count. These may change
during the life of the task as a result of syncpoint activity.

Note: When using MRO or ISC, the EXCMNNSX field must be combined with
the EXCMNNPX field to uniquely identify a task, because the
EXCMNNSX field is unique only to the originating CICS system.

EXCMNTRF (TYPE-C, 8 BYTES)
Transaction flags—a string of 64 bits used for signaling transaction definition
and status information:
Byte 0

Transaction facility identification
Bit 0 Transaction facility name = none
Bit 1 Transaction facility name = terminal
Bit 2 Transaction facility name = surrogate
Bit 3 Transaction facility name = destination
Bit 4 Transaction facility name = 3270 bridge
Bits 5–7

Reserved
Byte 1

Transaction identification information
Bit 0 System transaction
Bit 1 Mirror transaction
Bit 2 DPL mirror transaction
Bit 3 ONC RPC alias transaction
Bit 4 WEB alias transaction
Bit 5 3270 bridge transaction
Bits 6–7

Reserved
Byte 2

MVS Workload Manager information
Bit 0 Workload Manager report
Bit 1 Workload Manager notify, completion = yes
Bit 2 Workload Manager notify
Bits 3–7

Reserved
Byte 3

Transaction definition information
Bit 0 Taskdataloc = below
Bit 1 Taskdatakey = cics
Bit 2 Isolate = no
Bit 3 Dynamic = yes
Bits 4–7

Reserved
Byte 4

Reserved
Byte 5

Reserved
Byte 6

Reserved
Byte 7

Recovery manager information
Bit 0 Indoubt wait = no

Appendix. Details of changed monitoring records 245

Bit 1 Indoubt action = commit
Bit 2 Recovery manager - UOW resolved with indoubt action
Bit 3 Recovery manager - shunt
Bit 4 Recovery manager - unshunt
Bit 5 Recovery manager - indoubt failure
Bit 6 Recovery manager - resource owner failure
Bit 7 Reserved

Note: Bits 2 through 6 will be reset on a SYNCPOINT request when
the MNSYNC=YES option is specified.

EXCMNFCN (TYPE-C, 4 BYTES)
Transaction facility name. This field is null if the transaction is not associated
with a facility. The transaction facility type (if any) can be identified using byte 0
of the transaction flags field, EXCMNTRF.

EXCMNCPN (TYPE-C, 8 BYTES)
The name of the currently running program for this user task when the
exception condition occurred.

EXCMNBTR (TYPE-C, 4 BYTES)
3270 Bridge transaction identification.

EXCMNURI (TYPE-C, 16 BYTES)
RRMS/MVS unit-of-recovery ID (URID).

EXCMNRIL (TYPE-A, 4 BYTES)
Exception resource ID length.

EXCMNRIX (TYPE-C, 256 BYTES)
Exception resource ID (extended).

246 CICS TS for OS/390: Release Guide

Definition of terms

reenterable. See reentrant

reentrant. 1. (From the MVS Assembler Services
Guide). The attribute that describes a load module, of
which only one copy is loaded into virtual storage to
satisfy the requirements of any number of tasks. A
single copy of a reentrant load module can be executed
concurrently by any number of tasks. A reentrant load
module is also one that does not modify itself, and must
be link-edited with the RENT attribute.

2. Reenterable (reentrant). (From the DFSMS
Program Management manual). The module is
designed for concurrent execution by multiple tasks. If a
reenterable module modifies its own data areas or other
shared resources in any way, it must use appropriate
serialization methods to prevent interference between
using tasks.

serially reusable. 1. The attribute that describes a
serially reusable load module. Only one copy of a
serially reusable load module is loaded into virtual
storage to satisfy the requirements of any number of
tasks, but only one task can execute the module at any
one time. If the copy is in use when a request is issued
for the module, the task requiring the module is placed
in a wait condition until the module is available.

2. Serially reusable. (From the DFSMS Program
Management manual). The module is designed to be
reused and therefore must contain the necessary logic
to reset control variables and data areas at entry or exit.
A second task may not enter the module until the first
task has finished.

quasi-reentrant. The attribute used to describe CICS
application programs that run under the CICS
quasi-reentrant task control block (QR TCB). This
means that:

v CICS obtains a separate copy of program working
storage for each task that executes application
program code.

v CICS allows only one task at a time to execute
application program code. In this way, CICS ensures
the necessary serialization of user application
programs that access any kind of shared resources,
whether CICS- or user-managed. This means that
different tasks cannot interfere with each other. Thus
the user application program need not be reenterable
strictly according to the DFSMS program
management definition (see reentrant).

Although only one user task can execute an application
program at any one time, a second user task can enter
the program before another task has finished with it,
unlike a serially reusable module as defined by DFSMS.
This is because user applications programs give up
control part way through execution whenever they issue
an EXEC CICS command that causes a wait. Thus a

user program can be in use concurrently by more than
one task, indicated by the use count maintained by
CICS, which can be greater than one.

Whenever an application program receives control, it
should be in the same state as when it relinquished
control on a previous invocation.

© Copyright IBM Corp. 1998 247

248 CICS TS for OS/390: Release Guide

Index

Numerics
3270 bridge 167

ASSIGN 175
benefits 172
BREXIT 173
bridge environment 169
bridge exit 169
bridge exit area 170
bridge facility 170
Bridge monitor 169
CICS 3270 bridge mechanism 168
client application 168
messages 168
migration considerations 172
resource definition 173
START BREXIT 174
TRANSACTION definition 173
transport mechanism 168
user transaction 168

3270 bridge interface 8

A
application support 79, 215

B
BRDATA option

START BREXIT command 174
BRDATALENGTH option

START BREXIT command 174
BREXIT option

START BREXIT command 174
bridge (3270) 167

ASSIGN 175
benefits 172
BREXIT 173
bridge environment 169
bridge exit 169
bridge exit area 170
bridge facility 170
Bridge monitor 169
CICS 3270 bridge mechanism 168
client application 168
messages 168
migration considerations 172
resource definition 173
running a transaction 171
START BREXIT 174
TRANSACTION definition 173
transport mechanism 168
user transaction 168

BTS, CICS business transaction services 5
business transaction

described 81

C
CDBM

/GROUP 200

CDBM (continued)
DFHDBFK 200

CEMT PERFORM
STATISTICS RECORD 68

CEMT PERFORM STATISTICS
TCPIPSERVICE option 68

CICS business transaction services
benefits 88
changes to CICS externals

abend codes 95
API 89
audit points 94
CICS-supplied transactions 93
messages 95
monitoring 94
resource definition 92
system definition 93
system programming 92
trace points 94

client/server processing 86
components of 83
introduction to 81, 83
recovery and restart 86
requirements 88
Sale example application 96
sysplex support 87
Web Interface support 86

CICS business transaction services (BTS) 5
CICS monitoring

clock definition 220
data produced 219
interpreting 219
performance class data 221
time stamp definition 221

CICS supplied transactions
long TS queue names 137

CICS-supplied transactions
CEMT PERFORM STATISTICS RECORD 68

CICS Web interface 187
CICSPlex SM

routing of BTS activities 87
CICST TS Release 3

summary 3
clock

definition 220
for monitoring 220

components of BTS 83
consoles

autoinstall 73
CORBA 8, 183
CORBA client support 8
coupling facility data tables 3, 19

D
DATABASE 2 and CICS 209
databases and CICS 208
DB2 and CICS 209

© Copyright IBM Corp. 1998 249

DEQ 13
DEQ, global 3
DFH£MOLS sample monitoring program 68
DFH0STAT sample statistics program 68
DFHCSDUP

USERDEFINE command 202
DFHDSRP, distributed routing program 54, 94
DFHSTUP utility program 68
DFHTASK performance data 233
DFHWBADX 192
DFHWBCD 190
DFHWBEP 192
DFHWBxx 190
distributed routing program, DFHDSRP 54, 94
DOCTEMPLATE 190
DSRTPGM, system initialization parameter 53, 93
dynamic routing

for DPL requests 41
for START requests 41

dynamic routing for DPL requests 4
benefits 52
changes to CICS externals 52
overview 41
requirements 52

dynamic routing for START requests 4
benefits 52
changes to CICS externals 52
overview 41
requirements 52

E
ENABLE PROGRAM command 121
ENQ 13
ENQ, global 3
enterprise management 65
examples

basic CICS business transaction services
application 96

basic Sale application
root activity 100

exception
class data 242
data field descriptions 243

EXCI resource recovery 6
EXEC CICS COLLECT STATISTICS command 66

F
FORCEQR 119

G
global ENQ and DEQ 3
global user exits

long TS queue names 136
glossary 247

H
hardware prerequisites 207

I
IIOP

inbound to Java applications 183
Inbound to Java applications 8
REQUESTMODEL resource definition 185
TCPIPSERVICE resource definition 185

IMS
and CICS 209

INQ TDQUEUE
Member option 201

interpreting CICS monitoring 219
introduction to BTS 83
INVREQ condition

START BREXIT command 174

J
Java 7, 149, 151

CICS applications 151
classes 149
JavaBeans 149
Javadoc 150
PDSE library 152
samples 150

Java Virtual Machine 155
Javadoc 150
JCICS 7, 149, 151

L
Langauge Environment performance improvement

EXEC CICS LINK 201
LENGERR condition

START BREXIT command 175
long temporary storage queue names

benefits 134
changes to CICS externals 134

API 135
CICS-supplied transactions 137
DFH0STAT sample program 137
function shipping 135
global user exits 136
monitoring 137
resource definition 135
security 138
SPI 136
statistics 137

CICS affinities utility (CUA) 138
introduction 133
problem determination 138
requirements 134
utility changes 138

long TS queue names 6

M
MAXOPENTCBS 118
Member

option of INQ TDQUEUE 201
monitoring and statistics 65

CEMT PERFORM STATISTICS 68

250 CICS TS for OS/390: Release Guide

monitoring and statistics 65 (continued)
changes to externals 66

CICS-supplied transactions 68
sample programs 68
system programming interface 66

EXEC CICS COLLECT STATISTICS command 66
monitoring 65
monitoring data changes 69
overview 65
PERFORM STATISTICS RECORD command 67
performance class data 71
statistics 66
utility programs 68

MVS consoles
autoinstall 73

MVS generic Web server 8

N
network computing 165
NOTAUTH condition

START BREXIT command 175
number counter server

generating unique numbers 198

O
object code only (OCO) 210
object oriented (OO) support for CICS

CICS C++ foundation classes 6
foundation classes for C++ 147
JCICS classes 7

open transaction environment 5, 111
benefits 117
changes to CICS externals 118
overview 111
requirements 118

operating system
level required for CICS Transaction Server for

OS/390 208

P
PERFORM STATISTICS RECORD command 67
performance class data

CICS monitoring 221
fields 71

PGMIDERR condition
START BREXIT command 175

prerequisite software
ACF/VTAM and CICS 209
IBM DATABASE 2 (DB2) 209
IMS/ESA 209
TCAM and CICS 209

prerequisites
hardware 207
MVS 208
OS/390 208

problem determination
long temporary storage queue names 138

PROGRAM, ENABLE command 121

programming languages supported 210

R
RACF

required release for CICS Transaction Server for
OS/390 209

RCT runtime support
CSD definitions only 197

RDO, resource definition online
for temporary storage 59

RDO for temporary storage 4
Remove

option of CEDA DELETE 201
option of CEDA MOVE 201
option of DFHCSDUP 201

REQUESTMODEL resource definition 185
requirements, hardware 207
resource definition online (RDO)

for temporary storage 59
resource recovery service (RRS) 6
resource recovery services (RRS) 139
resource security 209
response time 222
root activity

in basic Sale application 100
RRS, resource recovery services 139

S
Sale example application

root activity 100
sample programs 68
secure socket layer (SSL) 8
secure sockets layer 177
security checking

long temporary storage queue names 138
SSL, secure socket layer 8
summary of CICS Transaction Server for OS/390 1, 11
suspend times 222
sysplex ENQ and DEQ 13
sysplex support, in BTS 87
system initialization parameters

DSRTPGM 53, 93
FORCEQR 119
MAXOPENTCBS 118
TCPIP 189

system management 57

T
TCAM and CICS 209
TCP/IP

CICS requirement 209
TCPIPSERVICE 190
TCPIPSERVICE resource definition 185
temporary storage

benefits of long queue names 134
long queue names 133
requirements for long queue names 134

temporary storage, RDO 4

Index 251

temporary storage queues

DFHWBxx 190

time stamp definition for monitoring 221

Tivoli Global Enterprise Manager

support for 71

transaction timing fields 221

TRANSID option

START BREXITcommand 174

TRANSIDERR condition

START BREXIT command 175

TS queues, long names 6

U
USER KEY applications 201

user-replaceable programs

DFHDSRP, distributed routing program 54, 94

USERDEFINE command

DFHCSDUP 202

USERID option

START BREXIT command 174

USERIDERR condition

START BREXIT command 175

V
VisualAge for Java, Enterprise Edition for OS/390 7,

151

VSAM datasets

DFHWBCD 190

VTAM and CICS 209

W
wait times 222

Web interface 187

Web Interface

introduction 86
secure sockets layer 177

252 CICS TS for OS/390: Release Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which the
information is presented.

To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or
to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring any
obligation to you.

You can send your comments to IBM in any of the following ways:

v By mail, to this address:

Information Development Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
United Kingdom

v By fax:

– From outside the U.K., after your international access code use
44–1962–870229

– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL

– IBMLink
™

: HURSLEY(IDRCF)

– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

v The publication number and title

v The topic to which your comment applies

v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1998 253

����

Program Number: 5655-147

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC34-5352-01

Spine information:

��� CICS TS for OS/390 Release Guide Release 3

