
CICS® Transaction Server for
OS/390®

CICS Application Programming Guide
Release 3

SC33-1687-33

���

CICS® Transaction Server for OS/390®

CICS Application Programming Guide
Release 3

SC33-1687-33

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page xi.

Fourth edition (November 2000)

This edition applies to Release 3 of CICS Transaction Server for OS/390, program number 5655-147, and to all
subsequent versions, releases, and modifications until otherwise indicated in new editions. Make sure you are using
the correct edition for the level of the product.

This edition replaces and makes obsolete the previous edition, SC33-1687-02. Changes since that edition are
indicated by a # sign to the left of a change. Any vertical lines in the left margin indicate a change made between
Version 1 Release 2 and Version 1 Release 3 of CICS Transaction Server for OS/390.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

At the back of this publication is a page entitled “Sending your comments to IBM”. If you want to make comments,
but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories, Information Development,
Mail Point 95, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1989, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices xi
Programming Interface information xii
Trademarks xii

Preface xiii
What this book is about xiii

Who should read this book xiii

Bibliography xv
CICS Transaction Server for OS/390 xv

CICS books for CICS Transaction Server for
OS/390. xv
CICSPlex SM books for CICS Transaction Server
for OS/390 xvi
Other CICS books xvi

Books from related libraries. xvi
DL/I xvi
MVS xvi
DB2 xvii
Screen definition facility II (SDF II) xvii
Common programming interface xvii
Common user access xvii
Programming languages xvii
Teleprocessing Network Simulator (TPNS) . . xviii
Distributed Processing Programming Executive
(DPPX): xviii
Language Environment: xviii
Miscellaneous books. xviii

Determining if a publication is current xviii

Summary of Changes xxi
Changes for this CICS Transaction Server for
OS/390 Release 3 edition xxi
Changes for the CICS Transaction Server for
OS/390 Release 2 edition xxi
Changes for the CICS Transaction Server for
OS/390 Release 1 edition xxi

Part 1. Getting started. 1

Chapter 1. Preparing your application to
run 3
Writing CICS programs 3
Preparing your program 4
Locale support. 5
The translation process 6
Copybooks 7
Specifying translator options 7
Translator options 8
EXEC interface stubs 19

COBOL and PL/I 20
C and C++ 20
Assembler language 20

Preparing BMS maps 20

Chapter 2. Programming in COBOL . . 23
Based addressing 23

WITH DEBUGGING MODE 24
Restrictions 24
Restrictions for 31-bit addressing 26
DL/I CALL interface 26

Mixing languages 27
Calling subprograms from COBOL 28
COBOL with the ANSI 85 COBOL standards . . . 32
Literals intervening in blank lines 33

Translator action. 33
Sequence numbers containing any character . . . 33

Translator action. 33
REPLACE statement 34

Translator action. 34
Batch compilation 34

Translator action. 34
Compiler and linkage editor 34

Nested programs 37
Translator action. 37

Reference modification 40
Translator action. 41

Global variables 41
Translator action. 41

Comma and semicolon as delimiters 41
Translator action. 41

Symbolic character definition 41
Translator action. 41

Summary of restrictions 42
COBOL2 translator option 42

Translator action. 42
COBOL3 translator option 43

Translator action. 43
OO COBOL translator option 43

Translator action. 43
Nesting programs 44

Chapter 3. Programming in C and C++ 45
Data declarations needed for C and C++ 46
Naming EIB fields 46

Data types in EIB fields 46
Restrictions 47

Passing values as arguments. 48
ADDRESS EIB command 50
ADDRESS COMMAREA command 50

C++ considerations 51
Restrictions 51

Chapter 4. Programming in PL/I 53
Restrictions 53
PL/I STAE execution-time option 54
OPTIONS(MAIN) specification 54
PL/I and dynamic storage 54

Chapter 5. Programming in Assembler 57

© Copyright IBM Corp. 1989, 2000 iii

||

Compilers supported 57
Restrictions for 31-bit addressing 57
MVS restrictions 57

Invoking assembler language application
programs with a call 58

Chapter 6. Language Environment . . . 61
Levels of support in Language Environment . . . 61
Abend handling in an LE environment 62
Defining run-time options 62

Part 2. Object Oriented
programming in CICS 63

Chapter 7. Object Oriented (OO)
programming concepts 65
What is OO? 65

Encapsulation 65
Data structures 65

OO Terminology. 66
Accessing CICS services from OO programs . . . 68

Chapter 8. Programming in Java. . . . 69
The JCICS Java classes. 69

Translation 69
JavaBeans 70
Library structure 70
CICS resources 71
Command arguments 71
Using the Java Record Framework. 71
Threads 71

JCICS programming considerations 72
Storage management 72
Abnormal termination in Java 72
Exception handling in Java 72
CICS Intercommunication 75
BMS 75
Terminal Control 76
File control services. 76
Program control services 76
Unit of Work (UOW) services 76
Temporary storage queue services 76
Transient data queue services 77
Environment services 77
Unsupported CICS services 79
System.out and System.err 79

Using JCICS 80
Writing the main method 80
Creating objects 80
Using objects 80

Chapter 9. JCICS sample programs . . 83
Supplied sample components 83
Building the Java samples 84

Building the Java samples for ET/390 84
Building the Java samples for the JVM 85

Building the CICS native applications 85
Resource definitions 85

Running the Hello World sample 85

Running the Program Control sample 86
Running the TDQ sample 86
Running the TSQ sample 86

Chapter 10. Support for VisualAge for
Java, Enterprise ToolKit for OS/390 . . 89
Building a CICS Java program object 90

Preparing prerequisite environment 90
Compiling and binding a program using
VisualAge for Java 91
Developing a Java program object using javac . . 94
Using the ET/390 binder 95

Running a CICS Java program 97
Run-time requirements 97

Using hot-pooling 98
Open Transaction Environment (OTE) TCBs . . 98
Allocating an H8 TCB for hot-pooling 99
Managing the hot-pooling environment . . . 100
Defining hot-pooled Java program objects . . . 101
Programming considerations for Java
hot-pooling 102
Hot-pooling exit program 104
Security 104
Problem determination 104

Interactive debug using the Debug Tool 104

Chapter 11. Using the CICS Java
virtual machine 107
JVM execution environment 107
Running JVM programs 108

Compile-time requirements 109
Run-time requirements 109
CICS-supplied .jar files 110
JVM directory 110
JVM environment variables 110
stdin, stdout and stderr 111

JCICS programming considerations for JVM
programs 111

Java System Properties 112
Using the Abstract Windows Toolkit (AWT) classes 113

Remote Abstract Windows Toolkit 113
Using Remote AWT with CICS 113

Part 3. Application design 115

Chapter 12. Designing efficient
applications 119
Program structure 119

Program size 120
Choosing between pseudoconversational and
conversational design. 120

General programming techniques 123
Virtual storage 123
Reducing paging effects 124
Exclusive control of resources 126
Processor usage 127
Recovery design implications 127
Terminal interruptibility 128
Operational control 129

iv CICS TS for OS/390: CICS Application Programming Guide

||
||

|
||
||
||
||
||
||

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

||
||
||
||
||
||
||
||

||
||
||

|
||
||
||
|
||
||
||
||
||
##
##
##
##
##
#
##
##
##
##
||

|
||
||
||
||
||
||
||
||
||
|
||
||
||
||
||

Operating system waits 129
Runaway tasks 129
Auxiliary trace 130
The NOSUSPEND option 130
Multithreading 131

Storing data within a transaction 134
Transaction work area (TWA) 134
User storage 134
COMMAREA in LINK and XCTL commands 135
Program storage 136

Lengths of areas passed to CICS commands . . . 136
LENGTH options 136
Journal records 136
Data set definitions 136
Recommendation 137

Temporary storage 137
Intrapartition transient data 138
GETMAIN SHARED command 139
Your own data sets 139
Data operations 140

Database operations 140
Data set operations 140
Browsing (in non-RLS mode) 142
Logging 142
Sequential data set access 142

Terminal operations 143
Length of the data stream sent to the terminal 143
Basic mapping support considerations 143
Page-building and routing operations 146
Requests for printed output 148
Additional terminal control considerations . . 148

Chapter 13. Sharing data across
transactions 151
Common work area (CWA). 151

Protecting the CWA 151
TCTTE user area (TCTUA) 154
COMMAREA in RETURN commands 155
Display screen 155

Chapter 14. Affinity 157
What is affinity? 157

Types of affinity 158
Techniques used by CICS application programs to
pass data 159

Safe techniques 159
Unsafe techniques 159
Suspect techniques 160

Safe programming techniques 160
The COMMAREA 160
The TCTUA 161
Using ENQ and DEQ commands with
ENQMODEL resource definitions. 163
BTS containers 164

Unsafe programming techniques 165
Using the common work area 165
Using GETMAIN SHARED storage 166
Using the LOAD PROGRAM HOLD command 166
Sharing task-lifetime storage 168
Using the WAIT EVENT command 169

Using ENQ and DEQ commands without
ENQMODEL resource definitions. 170

Suspect programming techniques. 171
Using temporary storage 171
Using transient data 174
Using the RETRIEVE WAIT and START
commands 175
Using the START and CANCEL REQID
commands 177
Using the DELAY and CANCEL REQID
commands 178
Using the POST and CANCEL REQID
commands 180

Detecting inter-transaction affinities 181
Inter-transaction affinities caused by application
generators 181

Duration and scope of inter-transaction affinities 182
Affinity transaction groups 182
Relations and lifetimes 182

Recommendations 188

Chapter 15. Using CICS documents 189
The DOCUMENT application programming
interface 189

Creating a document 189
Programming with documents 190

Setting symbol values 190
Embedded template commands 191
Using templates in your application 193
The lifespan of a document. 193

Chapter 16. Using named counter
servers 199
Overview. 199

The named counter fields 199
Named counter pools. 200

Named counter options table 200
The named counter API commands 201
The named counter CALL interface 203

Chapter 17. Intercommunication
considerations 205
Design considerations 205

Programming language 206
Transaction routing 206
Function shipping 206
Distributed program link (DPL) 207

Using the distributed program link function . . 208
Examples of distributed program link 210
Programming considerations for distributed
program link 215

Asynchronous processing 219
Distributed transaction processing (DTP) 219
Common Programming Interface Communications
(CPI Communications) 219
External CICS interface (EXCI) 220

Chapter 18. Recovery considerations 223
Journaling 223

Journal records 223

Contents v

|
||
||

||
|
||
||
||
||
||
||
||

|
||
||
||
||
||
||
||

Journal output synchronization 223
Syncpointing 225

Chapter 19. Minimizing errors 229
Protecting CICS from application errors 229
Testing applications 229

Chapter 20. Dealing with exception
conditions. 231
Default CICS exception handling 231
Handling exception conditions by in-line code . . 232

How to use the RESP and RESP2 options . . . 232
An example of exception handling in C . . . 233
An example of exception handling in COBOL 234

Modifying the default CICS exception handling 235
Use of HANDLE CONDITION command . . . 237
Use of the HANDLE CONDITION ERROR
command 237
How to use the IGNORE CONDITION
command 238
Use of the HANDLE ABEND command . . . 239
RESP and NOHANDLE options 240
How CICS keeps track of what to do 240

Chapter 21. Access to system
information 243
System programming commands 243
EXEC interface block (EIB) 243

Chapter 22. Abnormal termination
recovery 245
Creating a program-level abend exit 246
Restrictions on retrying operations 247
Trace 248

Trace entry points 249
Monitoring 250
Dump 250

Part 4. Files and databases 253

Chapter 23. An overview of file control 255
VSAM data sets 255

Key-sequenced data set (KSDS) 256
Entry-sequenced data set (ESDS) 256
Relative record data set (RRDS) 256
Empty data sets 257
VSAM alternate indexes 257
Accessing files in RLS mode 258

BDAM data sets 258
CICS shared data tables 260
Coupling facility data tables 260

Coupling facility data table models 262
Comparison of different techniques for sharing
data 263
Reading records 265

Direct reading (using READ command) . . . 265
Sequential reading (browsing) 267
Skip-sequential processing 269

Updating records 269

Deleting records 270
Deleting single records 270
Deleting groups of records (generic delete) . . 272
Read integrity 272

Adding records. 272
Adding to a KSDS. 272
Adding to an ESDS 272
Adding to an RRDS 273
Records that are already locked 273
Specifying record length 273
Sequential adding of records (WRITE
MASSINSERT command) 273

Review of file control command options 273
The RIDFLD option 273
The INTO and SET options. 274
The FROM option 274
The TOKEN option 275

Avoiding transaction deadlocks 275
VSAM-detected deadlocks (RLS only) 277
Rules for avoiding deadlocks 277

KEYLENGTH option for remote data sets 278

Chapter 24. File control—VSAM
considerations 279
Record identification 279

Key 279
Relative byte address (RBA) and relative record
number (RRN) 279

Locking of VSAM records in recoverable files . . 280
Update locks and delete locks (non-RLS mode
only) 280

Record locking of VSAM records for files accessed
in RLS mode 281

Exclusive locks and shared locks 281
Conditional update requests 284

File control implementation of NOSUSPEND 284
CICS locking for writing to ESDS. 285

Chapter 25. File control—BDAM
considerations 287
Record identification 287

Block reference subfield 287
Physical key subfield 287
Deblocking argument subfield 287

Updating records from BDAM data sets 288
Browsing records from BDAM data sets 288
Adding records to BDAM data sets 289
BDAM exclusive control 290

Chapter 26. Database control 291
DL/I databases 291
DATABASE 2 (DB2) databases. 291

Requests to DB2 291

Part 5. Data communication 293

Chapter 27. Introduction to data
communication 297
Basic CICS terms 298

vi CICS TS for OS/390: CICS Application Programming Guide

||
||
|
||

How tasks are started 299
Which transaction? 300
CICS APIs for terminals 303
Topics elsewhere in this book 303
Where to find more information 304

Chapter 28. The 3270 family of
terminals 305
Background 305

Screen fields. 306
Personal computers 306

The 3270 buffer. 308
Writing to a 3270 terminal 308
3270 write commands 308
Write control character 309

3270 display data: defining 3270 fields 310
Display characteristics 310
3270 field attributes 310
Extended attributes 312
Orders in the data stream 313
Outbound data stream sample. 315

Input from a 3270 terminal 318
Data keys 318
Keyboard control keys 318
Attention keys 318
Reading from a 3270 terminal 319
Inbound field format 320
Input example 320

Unformatted mode 321

Chapter 29. Basic mapping support 323
Other sources on BMS 323

BMS support levels 324
A BMS output example 325
Creating the map 328
Defining map fields: DFHMDF 329
Defining the map: DFHMDI 331
Defining the map set: DFHMSD 331
Rules for writing BMS macros 332
Assembling the map 334
ADS Descriptor. 336
Complex fields 336

Sending mapped output: basics 338
The SEND MAP command 339
Acquiring and defining storage for the maps 339
Initializing the output map 340
Moving the variable data to the map 341
Setting the display characteristics. 341
Control options on the SEND MAP command 343
Options for merging the symbolic and physical
maps 344
Summary: what appears on the screen 346
Positioning the cursor 348
Sending invalid data and other errors 349

Receiving data from a display 349
An input-output example 349
The symbolic input map. 352
Programming simple mapped input 352
The RECEIVE MAP command. 353

Getting storage for mapped input: INTO and
SET. 353
Reading from a formatted screen: what comes in 354
Other information from RECEIVE MAP . . . 355
Processing the mapped input 357
Handling input errors 357
Mapped output after mapped input 359
MAPFAIL and other exceptional conditions . . 360
Formatting other input 361

Support for non-3270 terminals 361
Output considerations for non-3270 devices . . 362
Differences on input 362
Special options for non-3270 terminals 363
Device-dependent maps: map suffixes 363

The MAPPINGDEV facility. 367
SEND MAP with the MAPPINGDEV option . . 367
RECEIVE MAP with the MAPPINGDEV option 368
Sample assembler MAPPINGDEV application 369

Block data 370
Sending mapped output: additional facilities . . . 371

Output disposition options: TERMINAL, SET,
and PAGING 371
BMS logical messages 372
Terminal operator paging: the CSPG transaction 375
Changing your mind: The PURGE MESSAGE
command 376
Logical message recovery 376

Page formation: the ACCUM option 376
Floating maps: how BMS places maps using
ACCUM 377

Page breaks: BMS overflow processing 377
Map placement rules 378
ASSIGN options for cumulative processing . . 380
Input from a composite screen. 380
Performance considerations. 381

Formatting text output 382
The SEND TEXT command. 382
Text logical messages 383
Page format for text messages 383
How BMS breaks text into lines 384
Header and trailer format for text messages . . 385
SEND TEXT extensions: SEND TEXT MAPPED
and SEND TEXT NOEDIT 386

Message routing: the ROUTE command 387
How routing works 387
Specifying destinations for a routed message 388
Route list format 390
Delivery conditions 392
Undeliverable messages 392
Temporary storage and routing 393
Programming considerations with routing . . . 394

Using SET 395
Partition support 396

Uses for partitioned screens 397
How to define partitions 398
3290 character size 399
Programming considerations 400
Establishing the partitioning 400
Partition options for BMS SEND commands . . 401
Determining the active partition 401
Partition options for BMS RECEIVE commands 401

Contents vii

||
||
||
||

ASSIGN options for partitions 402
Partitions and logical messages 402
Partitions and routing 403
New attention identifiers and exception
conditions 403
Terminal sharing 403
Restrictions on partitioned screens 404

Logical device components 404
Defining logical device components 404
Sending data to a logical device component . . 405
LDCs and logical messages 405
LDCs and routing 405

BMS support for other special hardware 406
10/63 magnetic slot reader 406
Field selection features 407
Cursor and pen-detectable fields 407
Outboard formatting 409

Chapter 30. Terminal control 411
Access method support 411
Terminal control commands 412

Data transmission commands 412
Send/receive mode 413
Speaking out of turn 414
Interrupting 415
Terminal waits 415
What you get on a RECEIVE 415
Control commands 416
Finding the right commands 417
Finding out about your terminal 422
EIB feedback on terminal control operations . . 423

VTAM considerations 424
Chaining input data 424
Chaining output data. 425
Handling logical records. 425
Response protocol 426
Using function management headers 426
Preventing interruptions (bracket protocol) . . 427

Sequential terminal support 427
Coding considerations for sequential terminals 428

TCAM considerations 429
Coding for the DCB interface 429
Coding for the ACB interface 430

Batch data interchange 430
Destination selection and identification 432
Definite response 432
Waiting for function completion 432

Chapter 31. CICS support for printing 433
Formatting for CICS printers 433

3270 printers 434
Options for 3270 printers 435
Non-3270 CICS printers 438
Determining the characteristics of a CICS
printer. 439

CICS printers: getting the data to the printer . . . 440
Printing with a START command. 440
Printing with transient data 441
Printing with BMS routing 442

Non-CICS printers. 443
Formatting for non-CICS printers. 443

Non-CICS printers: Delivering the data. . . . 443
CICS API considerations. 443
Notifying the print application 445

Printing display screens 445
CICS print key 445
ISSUE PRINT and ISSUE COPY 446
Hardware print key 446
BMS screen copy 447

Chapter 32. CICS interface to JES . . 449
Creating a spool file 449

Reading input spool files 450
Identifying spool files 451
Some examples of SPOOLOPEN for OUTPUT
with OUTDESCR option. 454
Programming note for spool commands . . . 456
Spool interface restrictions 456

Part 6. CICS management
functions 457

Chapter 33. Interval control 459
Expiration times 459
Request identifiers. 461

Chapter 34. Task control 463
Controlling sequence of access to resources . . . 464

Chapter 35. Program control 467
Application program logical levels 468
Link to another program expecting return 468
Passing data to other programs 469

COMMAREA 469
INPUTMSG 471
Using the INPUTMSG option on the RETURN
command 473
Other ways of passing data. 473
Mixed addressing mode transactions 473
Examples of passing data with the LINK
command 474
Examples of passing data with the RETURN
command 476

Chapter 36. Storage control 479
Overview of CICS storage protection and
transaction isolation 480
Storage protection 480

Terminology. 481
Selecting the execution key for applications . . 481
Defining the execution key 482
Selecting and defining the storage key for
applications 482

Deciding what execution and storage key to
specify 484

User-key applications. 485
CICS-key applications 486

Storage protection exception conditions. 488
Transaction isolation 488

Reducing system outages 488

viii CICS TS for OS/390: CICS Application Programming Guide

Protecting application data 488
Protecting CICS from being passed invalid
addresses. 489
Aiding application development 489

Using transaction isolation 489
MVS subspaces 491

Subspaces and basespaces for transactions. . . 491
The common subspace and shared storage . . 492

Chapter 37. Transient data control 495
Intrapartition queues 495
Extrapartition queues. 496
Indirect queues 496
Automatic transaction initiation (ATI) 497

Chapter 38. Temporary storage
control 499
Temporary storage queues 499
Typical uses of temporary storage control 500

Chapter 39. Security control 503
QUERY SECURITY command 503

Using QUERY SECURITY 503
Non-terminal transaction security 504

Part 7. Testing applications 507

Chapter 40. Testing applications: the
process 509
Preparing the application and system table entries 509
Preparing the system for debugging 509
Single-thread testing 510
Multithread testing 510
Regression testing 510

Chapter 41. Execution diagnostic
facility (EDF). 513
Getting started 513
Where does EDF intercept the program? 514
What does EDF display? 514

The header 515
The body 516
How you can intervene in program execution 522
EDF menu functions 523

How to use EDF 529
Using EDF in single-screen mode. 529
Using EDF in dual-screen mode 531
EDF and remote transactions 531
EDF and non-terminal transactions 532
EDF and DTP programs 532
EDF and distributed program link commands 533
Stopping EDF 533
Overtyping to make changes 533
Restrictions when using EDF 535

Security considerations 536

Chapter 42. Temporary storage
browse (CEBR) 537

How to use the CEBR transaction 537
What does the CEBR transaction display? 539

The header 539
The command area 539
The body 539
The message line 539
The CEBR options on function keys 539

The CEBR commands 540
Using the CEBR transaction with transient data 543
Security considerations 543

Chapter 43. Command-level
interpreter (CECI). 545
How to use CECI 545
What does CECI display? 546

The command line 546
The status line 547
The body 549
The message line 550
CECI options on function keys 550

Additional displays 551
Expanded area 551
Variables 551
The EXEC interface block (EIB) 553
Error messages display 554

Making changes 555
How CECI runs 555

CECI sessions 555
Abends 556
Exception conditions 556
Program control commands 556
Terminal sharing 556
Saving commands 557

Security considerations 558

Part 8. Appendixes 559

Appendix A. CICS commands and
their equivalent obsolete macros . . . 561

Appendix B. OS/VS COBOL 565
Translator options 565
Programming restrictions 565

Restricted OS/VS COBOL language statements 567
Base locator for linkage 567
BLL and chained storage areas 568
BLL and OCCURS DEPENDING ON clauses 569
BLL and large storage areas 570
SERVICE RELOAD statement 571
NOTRUNC compiler option 572
Program segments. 572

Converting to VS COBOL II 573
Based addressing 573
Artificial assignments. 575

Bibliography 575

Index 577

Sending your comments to IBM . . . 589

Contents ix

x CICS TS for OS/390: CICS Application Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.
Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

© Copyright IBM Corp. 1989, 2000 xi

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Programming Interface information
This book is intended to help you learn about application programming techniques
for CICS applications. This book documents General-use Programming Interface
and Associated Guidance Information provided by CICS.

General-use programming interfaces allow the customer to write programs that
obtain the services of CICS.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

BookManager DFSMS MVS/ESA
C/370 eNetwork OS/2
C/MVS ESA/390 OS/390
CICS GDDM OpenEdition
CICS/400 Hiperbatch Parallel Sysplex
CICS/6000 IBM RACF
CICS/ESA IBMLink System/36
CICS/MVS IMS System/38
COBOL/370 IMS/ESA System/390
CUA InfoWindow VisualAge
DATABASE 2 Language Environment VTAM
DB2

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

Other company, product, and service names may be trademarks or service marks
of others.

xii CICS TS for OS/390: CICS Application Programming Guide

Preface

What this book is about
This book gives guidance about the CICS® application programming interface; it
complements the reference information in the CICS Application Programming
Reference manual. For guidance information on debugging CICS applications, see
the CICS Problem Determination Guide.

Who should read this book
This book is mainly for experienced application programmers. Those who are
relatively new to CICS should be able to understand it. If you are a system
programmer or system analyst, you should still find it useful.

What you need to know to understand this book
You must be able to program in COBOL, C, C++, PL/I, or assembler language, and
know about CICS application programming at the CICS Application Programming
Primer (VS COBOL II) level, or you must be able to program in Java.

How to use this book
Read the parts covering what you need to know. (Each part has a full table of
contents to help you find what you want.) The book is a guide, not a reference
manual. On your first reading, it probably helps to work through any one part of it
more or less from start to finish.

Notes on terminology
API refers to the CICS command-level application programming interface

unless otherwise stated.

ASM is sometimes used as the abbreviation for assembler language.

MVS refers to the operating system, which can be either an element of OS/390,
or MVS/Enterprise System Architecture System Product (MVS/ESA SP).

VTAM®

refers to ACF/VTAM.

In the sample programs described in this book, the dollar symbol ($) is used as a
national currency symbol and is assumed to be assigned the EBCDIC code point
X’5B’. In some countries a different currency symbol, for example the pound
symbol (£), or the yen symbol (¥), is assigned the same EBCDIC code point. In
these countries, the appropriate currency symbol should be used instead of the
dollar symbol.

What is not covered in this book
Guidance for usage of the CICS Front End Programming Interface is not discussed
in this book. See the CICS Front End Programming Interface User’s Guide for
background information about FEPI design considerations and programming
information about its API.

Guidance for usage of the EXEC CICS WEB commands is not discussed in this
book. See the CICS Internet Guide for this information.

© Copyright IBM Corp. 1989, 2000 xiii

|
|
|

|
|

xiv CICS TS for OS/390: CICS Application Programming Guide

Bibliography

CICS Transaction Server for OS/390

CICS Transaction Server for OS/390: Planning for Installation GC33-1789
CICS Transaction Server for OS/390 Release Guide GC34-5352
CICS Transaction Server for OS/390 Migration Guide GC34-5353
CICS Transaction Server for OS/390 Installation Guide GC33-1681
CICS Transaction Server for OS/390 Program Directory GI10-2506
CICS Transaction Server for OS/390 Licensed Program Specification GC33-1707

CICS books for CICS Transaction Server for OS/390

General
CICS Master Index SC33-1704
CICS User’s Handbook SX33-6104
CICS Transaction Server for OS/390 Glossary (softcopy only) GC33-1705

Administration
CICS System Definition Guide SC33-1682
CICS Customization Guide SC33-1683
CICS Resource Definition Guide SC33-1684
CICS Operations and Utilities Guide SC33-1685
CICS Supplied Transactions SC33-1686

Programming
CICS Application Programming Guide SC33-1687
CICS Application Programming Reference SC33-1688
CICS System Programming Reference SC33-1689
CICS Front End Programming Interface User’s Guide SC33-1692
CICS C++ OO Class Libraries SC34-5455
CICS Distributed Transaction Programming Guide SC33-1691
CICS Business Transaction Services SC34-5268

Diagnosis
CICS Problem Determination Guide GC33-1693
CICS Messages and Codes GC33-1694
CICS Diagnosis Reference LY33-6088
CICS Data Areas LY33-6089
CICS Trace Entries SC34-5446
CICS Supplementary Data Areas LY33-6090

Communication
CICS Intercommunication Guide SC33-1695
CICS Family: Interproduct Communication SC33-0824
CICS Family: Communicating from CICS on System/390 SC33-1697
CICS External Interfaces Guide SC33-1944
CICS Internet Guide SC34-5445

Special topics
CICS Recovery and Restart Guide SC33-1698
CICS Performance Guide SC33-1699
CICS IMS Database Control Guide SC33-1700
CICS RACF Security Guide SC33-1701
CICS Shared Data Tables Guide SC33-1702
CICS Transaction Affinities Utility Guide SC33-1777

© Copyright IBM Corp. 1989, 2000 xv

CICS DB2 Guide SC33-1939

CICSPlex SM books for CICS Transaction Server for OS/390

General
CICSPlex SM Master Index SC33-1812
CICSPlex SM Concepts and Planning GC33-0786
CICSPlex SM User Interface Guide SC33-0788
CICSPlex SM Web User Interface Guide SC34-5403
CICSPlex SM View Commands Reference Summary SX33-6099

Administration and Management
CICSPlex SM Administration SC34-5401
CICSPlex SM Operations Views Reference SC33-0789
CICSPlex SM Monitor Views Reference SC34-5402
CICSPlex SM Managing Workloads SC33-1807
CICSPlex SM Managing Resource Usage SC33-1808
CICSPlex SM Managing Business Applications SC33-1809

Programming
CICSPlex SM Application Programming Guide SC34-5457
CICSPlex SM Application Programming Reference SC34-5458

Diagnosis
CICSPlex SM Resource Tables Reference SC33-1220
CICSPlex SM Messages and Codes GC33-0790
CICSPlex SM Problem Determination GC33-0791

Other CICS books

CICS Application Programming Primer (VS COBOL II) SC33-0674
CICS Application Migration Aid Guide SC33-0768
CICS Family: API Structure SC33-1007
CICS Family: Client/Server Programming SC33-1435
CICS Family: General Information GC33-0155
CICS 4.1 Sample Applications Guide SC33-1173
CICS/ESA 3.3 XRF Guide SC33-0661

If you have any questions about the CICS Transaction Server for OS/390 library,
see CICS Transaction Server for OS/390: Planning for Installation which discusses both
hardcopy and softcopy books and the ways that the books can be ordered.

Books from related libraries

DL/I
If you use the CICS-DL/I interface, see the following manuals:

IMS/ESA V5 Application Programming: Design Guide, SC26-8016
IMS/ESA V3.1 Application Programming: CICS, SC26-8018
IMS/ESA V3.1 Application Programming: DL/I Calls, SC26-4274
IMS/ESA V3.1 Database Administration Guide, SC26-4281

MVS
For information about MVS, see the following manuals:

VS COBOL II V1.4.0 Installation and Customization for MVS, SC26-4048

xvi CICS TS for OS/390: CICS Application Programming Guide

OS/390 MVS Programming: Extended Addressability Guide, GC28-1769

DB2
For information about executing SQL in a CICS application program, see the
following manuals:

IBM Database 2 V2.3 Application Programming and SQL Guide, SC26-4377
IBM Database 2 V2.3 DB2 Administration Guide, SC26-4 374
IBM Database 2 V2.3 SQL Reference, SC26-4380

The guide describes DB2 and explains how to write application programs that
access DB2 data in a CICS environment. It tells you how to use SQL, as well as
how to prepare, execute, and test an application program.

Screen definition facility II (SDF II)
For information about Screen Definition Facility II, see the following manuals:

Screen Definition Facility II General Information, GH19-6114.
Screen Definition Facility II General Introduction Part 1, SH19-8128
Screen Definition Facility II General Introduction Part 2, SH19-8129
Screen Definition Facility II Primer for CICS/BMS Programs SH19-6118.
Screen Definition Facility II Preparing a Prototype, SH19-6458

Common programming interface
For information about the SAA interface, see the following manuals:

SAA CPI-C Reference, SC09-1308
Common Programming Interface Communications Reference, SC26-4399
SAA Common Programming Interface for Resource Recovery Reference, SC31-6821

Common user access
For information about screens that conform to the CUA standard, see the following
manuals:

SAA: Common User Access. Basic Interface Design Guide, SC26-4583
SAA: Common User Access. Advanced Interface Design Guide, SC26-4582

Programming languages
For information on programming in VS COBOL II, see the following manuals:

VS COBOL II V1.4 Application Programming: Language Reference, GC26-4047
VS COBOL II V1.4 Application Programming Guide, SC26-4045
VS COBOL II Usage in a CICS/ESA and CICS/MVS Environment, GG24-3509
VS COBOL II V1.4 Application Programming Debugging, SC26-4049
VS COBOL II Installation and Customization Guide for MVS, SC26-4048

For information on programming in COBOL/370, see the following manuals:
COBOL/370 General Information, GC26-4762
COBOL/370 Programming Guide, SC26-4767
COBOL/370 Language Reference, SC26-4769
COBOL/370 Planning and Customization, ST00-9734

For information on programming in COBOL for MVS and VM, see the following
manuals:

COBOL for MVS and VM Installation, SC26-4766
COBOL for MVS and VM Programming Guide, SC26-4767

For information on programming in C, see the following manuals:

Bibliography xvii

C/C++ for MVS V3.1 C/MVS Language Reference, SC09-2063
C/C++ for MVS V3.1 C/MVS User’s Guide, SC09-2061
C/MVS Programming Guide, SC09-2062
C/MVS Reference and Summary, SX09-1303

For information on programming in C++, see the following manuals:
C++/MVS Language Reference, SC09-1992
C++/MVS User’s Guide, SC09-1993
C++/MVS Programming Guide, SC09-1994

For information on programming in PL/I, see the following manuals:
OS PL/I Programming V2.3: Language Reference, SC26-4308
OS PL/I Optimizing Compiler Programmer’s Guide, SC33-0006
PL/I MVS & VM Programming Guide, SC26-3113

For information on programming in assembler language, see the following
manuals:

Assembler H Version 2 Application Programming Guide, SC26-4036
Assembler H Version 2 Application Programming Language Reference, GC26-4037

Teleprocessing Network Simulator (TPNS)
TPNS General Information, GH20-2487
TPNS Language Reference, SH20-2489

Distributed Processing Programming Executive (DPPX):
DPPX/370 User’s Guide, SC33-0665

Language Environment:
Language Environment V1.4 Concepts Guide, GC26-4786
Language Environment V1.5 Programming Guide, SC26-4818
Language Environment V1.5 Debugging and Run-Time Messages, SC26-4829

Miscellaneous books
2780 Data Transmission Terminal: Component Description, GA27-3005
8775 Display Terminal: Terminal User’s Guide, GA33-3045
IBM InfoWindow 3471 and 3472 Introduction and Installation Planning Guide,
GA18-2942
3270 Information Display System Data Stream Programmer’s Reference, GA23-0059
3290 Information Display Panel Description and Reference, GA23-0021
8775 Display Terminal Component Description, GA33-3044
IBM CICS/ESA 3.3 3270 Data Stream Device Guide, SC33-0232

Determining if a publication is current
IBM regularly updates its publications with new and changed information. When
first published, both hardcopy and BookManager softcopy versions of a publication
are usually in step. However, due to the time required to print and distribute
hardcopy books, the BookManager version is more likely to have had last-minute
changes made to it before publication.

xviii CICS TS for OS/390: CICS Application Programming Guide

Subsequent updates will probably be available in softcopy before they are available
in hardcopy. This means that at any time from the availability of a release, softcopy
versions should be regarded as the most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on the
Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each reissue
of the collection kit is indicated by an updated order number suffix (the -xx part).
For example, collection kit SK2T-0730-06 is more up-to-date than SK2T-0730-05. The
collection kit is also clearly dated on the cover.

Updates to the softcopy are clearly marked by revision codes (usually a “#”
character) to the left of the changes.

Bibliography xix

xx CICS TS for OS/390: CICS Application Programming Guide

Summary of Changes

Changes for this CICS Transaction Server for OS/390 Release 3 edition
Significant changes for this edition are indicated by vertical lines to the left of the
changes.
v The addition of the JCICS Java classes to access CICS services from Java

application programs. See “The JCICS Java classes” on page 69
v Support for running CICS Java program objects using the VisualAge for Java,

Enterprise ToolKit for OS/390.
This includes performance enhancements that allow the Java program object to
run in a preinitialized OS/390 Language Environment enclave that is reused by
multiple invocations of the program. This feature is known as Hot-pooling.See
“Chapter 10. Support for VisualAge for Java, Enterprise ToolKit for OS/390” on
page 89.

v Support for running CICS Java programs using the CICS Java Virtual Machine
(JVM). See “Chapter 11. Using the CICS Java virtual machine” on page 107.

v The addition of sysplex-wide ENQ and DEQ. See “Using ENQ and DEQ
commands with ENQMODEL resource definitions” on page 163.

v The addition of support for coupling facility data tables (CFDT). See “Coupling
facility data tables” on page 260.

v Support for named counter servers. See “Chapter 16. Using named counter
servers” on page 199.

v Support for documents, and the EXEC CICS DOCUMENT commands. See
“Chapter 15. Using CICS documents” on page 189.

v The programming considerations section has been reorganized into separate
chapters for each supported language, including new chapters for OO and Java
support in CICS.

Changes for the CICS Transaction Server for OS/390 Release 2 edition
Significant changes for this edition are indicated by vertical lines to the left of the
changes.
v The enhancement of the BMS map definition macros to build an Application

Data Structure (ADS) descriptor record in the mapset. See “ADS Descriptor” on
page 336.

v The addition of the MAPPINGDEV option (by APAR) that is specified on the
RECEIVE MAP and SEND MAP commands to allow you to perform mapping
operations for a device that is not the principal facility. See “The MAPPINGDEV
facility” on page 367.

Changes for the CICS Transaction Server for OS/390 Release 1 edition
v The addition of support for the COBOL for MVS and VM (release 1 and 2)

compiler. See “COBOL3 translator option” on page 43.
v The addition of support for object-oriented COBOL. See “OO COBOL translator

option” on page 43.
v The addition of support for VSAM record-level sharing. See “Accessing files in

RLS mode” on page 258.

© Copyright IBM Corp. 1989, 2000 xxi

#
#
#

|
|
|
|

v The addition of support for resource definition online for transient data. See
“Chapter 37. Transient data control” on page 495.

xxii CICS TS for OS/390: CICS Application Programming Guide

Part 1. Getting started

Chapter 1. Preparing your application to run. . . 3
Writing CICS programs 3
Preparing your program 4
Locale support. 5
The translation process 6
Copybooks 7
Specifying translator options 7
Translator options 8
EXEC interface stubs 19

COBOL and PL/I 20
C and C++ 20
Assembler language 20

Preparing BMS maps 20

Chapter 2. Programming in COBOL 23
Based addressing 23

WITH DEBUGGING MODE 24
Restrictions 24
Restrictions for 31-bit addressing 26
DL/I CALL interface 26

Mixing languages 27
Calling subprograms from COBOL 28
COBOL with the ANSI 85 COBOL standards . . . 32
Literals intervening in blank lines 33

Translator action. 33
Sequence numbers containing any character . . . 33

Translator action. 33
REPLACE statement 34

Translator action. 34
Batch compilation 34

Translator action. 34
Compiler and linkage editor 34

Nested programs 37
Translator action. 37

Recognition of nested programs 37
Positioning of comments 38
Nesting—what the application programmer
must do 38
An example of a nested program 39

Reference modification 40
Translator action. 41

Global variables 41
Translator action. 41

Comma and semicolon as delimiters 41
Translator action. 41

Symbolic character definition 41
Translator action. 41

Summary of restrictions 42
COBOL2 translator option 42

Translator action. 42
COBOL3 translator option 43

Translator action. 43
OO COBOL translator option 43

Translator action. 43
Nesting programs 44

Chapter 3. Programming in C and C++ 45
Data declarations needed for C and C++ 46
Naming EIB fields 46

Data types in EIB fields 46
Restrictions 47

Passing values as arguments. 48
ADDRESS EIB command 50
ADDRESS COMMAREA command 50

C++ considerations 51
Restrictions 51

Chapter 4. Programming in PL/I 53
Restrictions 53
PL/I STAE execution-time option 54
OPTIONS(MAIN) specification 54
PL/I and dynamic storage 54

Chapter 5. Programming in Assembler 57
Compilers supported 57
Restrictions for 31-bit addressing 57
MVS restrictions 57

Invoking assembler language application
programs with a call 58

Chapter 6. Language Environment 61
Levels of support in Language Environment . . . 61
Abend handling in an LE environment 62
Defining run-time options 62

© Copyright IBM Corp. 1989, 2000 1

||

||
||

2 CICS TS for OS/390: CICS Application Programming Guide

Chapter 1. Preparing your application to run

This chapter describes what you need to do to make your application run in a
CICS environment.
v “Writing CICS programs”
v “Preparing your program” on page 4
v “The translation process” on page 6
v “Specifying translator options” on page 7
v “Translator options” on page 8
v “Preparing BMS maps” on page 20

Writing CICS programs
You write a CICS program in much the same way as you write any other program.
You can use COBOL, OO COBOL, C, C++, Java, PL/I, or assembler language to
write CICS application programs. Most of the processing logic is expressed in
standard language statements, but you use CICS commands, or the Java and C++
class libraries to request CICS services.

Other chapters in this book tell you the functions that CICS provides and indicate
by example how CICS commands are written. However, you may need to consult
the following sources for detailed descriptions of the CICS commands:
v The CICS Application Programming Reference manual for information about

programming CICS commands, including the full list of options associated with
each command and the exact syntax

v The CICS C++ OO Class Libraries manual for information about the CICS C++
classes

v The Javadoc HTML shipped in dfjcics_docs.zip for information about the JCICS
Java classes

v The CICS Internet Guide for information about writing Web applications to
process HTTP/1.0 requests and responses.

There are a few restrictions on normal language use under CICS and these are
described in “Chapter 2. Programming in COBOL” on page 23, “Chapter 3.
Programming in C and C++” on page 45, “Chapter 4. Programming in PL/I” on
page 53, and “Chapter 8. Programming in Java” on page 69.

CICS allows you to use SQL statements, DLI requests, CPI statements, and the
CICS Front End Programming Interface (FEPI) commands in your program as well
as CICS commands. You need to consult additional manuals for information:
v SQL Reference manual and the Application Programming and SQL Guide (for SQL)
v Application Programming:EXEC DLI Commands manual and the Application

Programming: DL/I Calls manual (for DL/I)
v IBM SAA: CPI Reference manual and the SAA Common Programming Interface for

Resource Recovery Reference manual (for CPI)
v CICS Front End Programming Interface User’s Guide (for programming information

about FEPI commands)

© Copyright IBM Corp. 1989, 2000 3

|

|

|
|
|

|
|

|
|

|
|

Preparing your program
Because the compilers (and assemblers) cannot process CICS commands directly,
an additional step is needed to convert your program into executable code. This
step is called translation, and consists of converting CICS commands into the
language in which the rest of the program is coded, so that the compiler (or
assembler) can understand them.

Java programs that use the VisualAge® for Java, Enterprise ToolKit for OS/390® do
not need to be processed by a CICS translator.

CICS provides a translator program for each of the other languages in which you
may write, to handle both EXEC CICS and EXEC DLI statements. There are three
steps: translation, compilation (assembly), and link-edit. Figure 1 shows the
process.

Note: If you use EXEC SQL, you need additional steps to translate the SQL
statements and bind; see the Application Programming and SQL Guide for
information about these extra steps.

SYSIN

(source

program)

Command-

level

language

translator SYSPUNCH

(translated

source

program)

Object

module

SYSPRINT

(translator

listing)

Load

l ibrary

CICS

Translation

Compilation

assembly)

ink Edit

High-level

language

compiler

(or assembler)

High-level

language

compiler (or

assembler)

l isting

Link-editor

Link-editor

l isting

Figure 1. Preparing an application program

4 CICS TS for OS/390: CICS Application Programming Guide

|
|

CICS provides a procedure to execute these steps in sequence for each of the
languages it supports. The CICS System Definition Guide describes how to use these
procedures, and exactly what they do. Consequently, the additional translation step
has little effect on what you do as a programmer. There are a few points to note,
however:
v You can specify a number of options for the translation process, and you may

need to do this for certain types of programs. If you are using EXEC DLI, for
example, you need to tell the translator this fact. “Specifying translator options”
on page 7 explains how to specify options, and “Translator options” on page 8
defines the options available.

v The translator may produce error messages, and it is as important to check these
messages as it is to check the messages produced by the compiler and
link-editor. See “The translation process” on page 6 for the location of these
messages.

v The compiler (or assembler) reads the translated version of your program as
input, rather than your original source. This affects what you see on your
compiler (assembler) listing. It also means that COPY statements in your source
code must not bring in untranslated CICS commands, because it is too late for
the translator to convert them. (Copying in pretranslated code is possible, but
not recommended; it may produce unpredictable results.)

v EXEC commands are translated into CALL statements that invoke CICS interface
modules. These modules get incorporated into your object module in the
link-edit step, and you see them in your link-edit output listing. You can read
more about these modules in the CICS System Definition Guide.

Locale support
The translator, by default, assumes that programs written in the C language have
been edited with the codeset IBM-1047, also known as the Coded Character Set for
Latin 1/Open Systems.

The codeset may also be specified in a pragma filetag compiler directive at the
start of the application program. The CICS translator scans for the presence of this
directive, but currently CICS provides support only for the default IBM-1047 and
for the codeset for Germany, IBM-273

For example, if the program has been prepared with an editor using the codeset
specific to Germany, it should begin with the following directive:
??=pragma filetag ("IBM-273")

The presence of the pragma filetag implies that the program is compiled with the
IBM® C for MVS/ESA™ compiler.

A comparison of some of the code-points and characters is shown below:

Table 1. C language codesets

Character IBM-1047 IBM-273

\ backslash E0 EC

} right brace D0 DC

{ left brace C0 43

hash 7B 7B

Chapter 1. Preparing your application to run 5

|

|
|
|

|
|
|
|

|
|

|
|

|
|

|

||

|||

|||

|||

|||

|||
|

The translation process
A language translator reads your source program and creates a new one; normal
language statements remain unchanged, but CICS commands are translated into
CALL statements of the form required by the language in which you are coding.
The calls invoke CICS-provided “EXEC” interface modules, which later get
link-edited into your load module, and these in turn invoke the requested services
at execution time.

Java programs that use the VisualAge for Java, Enterprise ToolKit for OS/390 do
not need to be processed by a CICS translator. The translators for all of the other
languages use one input and two output files:

SYSIN
(Translator input) is the file that contains your source program.

If the SYSIN file is defined as a fixed blocked data set, the maximum
record length that the data set can possess is 80 bytes. Passing a fixed
blocked data set with a record length of greater than 80 bytes to the
translator results in termination of translator execution. If the SYSIN file is
defined as a variable blocked data set, the maximum record length that the
data set can possess is 100 bytes. Passing a variable blocked data set with a
record length greater than 100 bytes to the translator causes the translator
to stop with an error.

SYSPUNCH
(Translated source) is the translated version of your source code, which
becomes the input to the compile (assemble) step. In this file, your source
has been changed as follows:
v The EXEC interface block (EIB) structure has been inserted.
v EXEC CICS and EXEC DLI commands have been turned into function

call statements.
v CICS DFHRESP and DFHVALUE built-in functions have been processed.
v A data interchange block (DIB) structure and initialization call have been

inserted if the program contains EXEC DLI statements.

The CICS commands that get translated still appear in the source, but as
comments only. Generally the non-CICS statements are unchanged. The
output from the translator always goes to an 80 byte fixed-record length
data set.

SYSPRINT
(Translator listing) shows the number of messages produced by the
translator, and the highest severity code associated with any message. The
options used in translating your program also appear, unless these have
been suppressed with the NOOPTIONS option.

For COBOL, C, C++, and PL/I programs, SYSPRINT also contains the
messages themselves. In addition, if you specify the SOURCE option of the
translator, you also get an annotated listing of the source in SYSPRINT.
This listing contains almost the same information as the subsequent
compilation listing, and therefore many installations elect to omit it (the
NOSOURCE option). One item you may need from this listing which is
not present in the compile listing, however, is the line numbers, if the
translator is assigning them. Line numbers are one way to indicate points
in the code when you debug with the execution diagnostic facility (EDF). If
you specify the VBREF option, you also get a list of the commands in your

6 CICS TS for OS/390: CICS Application Programming Guide

|

|
|
|

program, cross-referenced by line number, and you can use this as an
alternative to the source listing for EDF purposes.

For assembler language programs, SYSPRINT contains only the translator
options, the message count and maximum severity code. The messages
themselves are inserted into the SYSPUNCH file as comments after the
related statement. This causes the assembler to copy them through to the
assembler listing, where you can check them. You may also see MNOTEs
that are generated by the assembler as the result of problems encountered
by the translator.

Copybooks
The translator does not expand any COPYBOOK members within program source
statements. If the source within any COPYBOOK contains CICS commands, you
must translate it separately before translation and compilation of the program in
which it will be included.

The external program must always be passed through the CICS translator, even if
all the CICS commands are in included copybooks.

Specifying translator options
The translator options you can choose are listed in “Translator options” on page 8.
You can specify your choices in one of two ways:
v List them as suboptions of the XOPTS option on the statement that the compiler

(assembler) provides for specifying options. These statements are:

Language
Statement

COBOL
CBL

COBOL
PROCESS (with LE)

C #pragma
C++ #pragma
PL/I * PROCESS
Assembler

*ASM or *PROCESS¹
v List your options in the PARM operand of the EXEC job control statement for

the translate step. Most installations use catalogued procedures to translate,
compile (assemble) and link CICS programs, and therefore you specify this
PARM field in the EXEC job control statement that invokes the procedure.
For example, if the name of the procedure for COBOL programs is DFHEITCL,
and the name of the translate step within is TRN, you set translator options for
a COBOL program with a statement such as this one:
// EXEC DFHEITCL,PARM.TRN=(VBREF,QUOTE,SPACE(2),NOCBLCARD)

If you specify an option by one method and the same option or an option that
conflicts by the other method, the specifications in the language statement override
those in the EXEC statement. Similarly, if you specify multiple values for a single
option or options that conflict on either type of statement, the last setting takes
precedence. Except for COBOL programs translated with the ANSI85 option, these
statements must precede each source program; there is no way to batch the
processing of multiple programs in other languages.

Chapter 1. Preparing your application to run 7

|
|

Translator options may appear in any order, separated by one or more blanks or by
a comma. If you specify them on the language statement for options, they must
appear in parentheses following the XOPTS parameter, because other options are
ignored by the translator and passed through to the compiler. The following
COBOL example shows both translator and compiler options being passed
together:
CBL LIB XOPTS(QUOTE SPACE(2))

These examples show translator options being passed alone:
#pragma XOPTS(FLAG(W) SOURCE);
* PROCESS XOPTS(FLAG(W) SOURCE);
*ASM XOPTS(NOPROLOG NOEPILOG)

If you use the PARM operand of the EXEC job control statement to specify options,
the XOPTS keyword is unnecessary, because the only options permitted here are
translator options. However, you may use XOPTS, with or without its associated
parentheses. If you use XOPTS with parentheses, be sure to enclose all of the
translator options. For example, the following forms are valid:
PARM=(op1 op2 .. opn)
PARM=(XOPTS op1 op2 .. opn)
PARM=XOPTS(op1 op2 .. opn)

but the following is not valid:
PARM=(XOPTS(op1 op2) opn)

(For compatibility with previous releases, the keyword CICS can be used as an
alternative to XOPTS, except when you are translating batch EXEC DLI programs.)
Remember, if you alter the default margins for C or C++ #PRAGMA card
processing using the PARM operand, the sequence margins should be altered too.
You can do this using the NOSEQUENCE option.

Notes:

1. For assembler programs, *ASM statements contain translator options only.
They are treated as comments by the assembler. *PROCESS statements can
contain translator or assembler options for the High Level assembler, HLASM.
Translator and assembler options must not coexist on the same *PROCESS
statement. *PROCESS and *ASM statements must be at the beginning of the
input and no assembler statements must appear before them. This includes
comments and statements such as “PRINT ON” and “EJECT”. Both *PROCESS
and *ASM statements can be included, in any order. *PROCESS statements
containing only translator options are retained by the translator; *PROCESS
statements containing assembler options are placed in the translated program.

Translator options
You can specify the translator options that apply to all languages except where
stated otherwise. Table 2 on page 18 lists all the translator options, the program
languages that apply, and any valid abbreviations.

If your installation uses the CICS-provided procedures in the distributed form, the
default options are the ones that are underlined or explicitly noted. Many
installations change the defaults, however. You can tell which options get used by
default at your installation by looking at the SYSPRINT translator listing output
from the translate step (see “The translation process” on page 6). If you want an
option that is not the default, you must specify it, as described in “Specifying
translator options” on page 7.

8 CICS TS for OS/390: CICS Application Programming Guide

|

|

|

|
|
|
|
|
|
|
|
|
|

|

|

Note: Translator options for programs to be compiled with OS/VS COBOL are
described in “Appendix B. OS/VS COBOL” on page 565. OS/VS COBOL is
supported for migration purposes to enable you to maintain existing
programs. You are not recommended to write new applications using
OS/VS COBOL.

ANSI85
(COBOL only)

specifies that the translator is to translate COBOL programs that implement the
ANSI85 standards.

Note: This option causes the COBOL2 and NOSEQ options to be used, even if
you have specified SEQ. ANSI85 is implied by either OOCOBOL or
COBOL3 options.

APOST
(COBOL only)

indicates that literals are delineated by the apostrophe (’). This is the
default—QUOTE is the alternative. The same value must be specified for the
translator step and the following compiler step.

The CICS-supplied COBOL copybooks use APOST.

CBLCARD
(COBOL only)

specifies that the translator is to generate a CBL statement. This is the
default—the alternative is NOCBLCARD.

CICS
specifies that the translator is to process EXEC CICS commands. It is the
default specification in the translator. CICS is also an old name for the XOPTS
keyword for specifying translator options, which means that you can specify
the CICS option explicitly either by including it in your XOPTS list or by using
it in place of XOPTS to name the list. The only way to indicate that there are
no CICS commands is to use the XOPTS keyword without the option CICS.
You must do this in a batch DL/I program using EXEC DLI commands. For
example, to translate a batch DL/I program written in assembler language,
specify:
*ASM XOPTS(DLI)

To translate a batch program written in COBOL, containing EXEC API
commands, specify:
CBL XOPTS(EXCI)

COBOL2
(COBOL only)

specifies that the translator is to translate programs compiled by the VS
COBOL II (or later) compilers.

COBOL3
(COBOL only)

specifies that the translator is to translate programs compiled by a Language
Environment conforming compiler. This option implies the ANSI85 and
COBOL2 options.

Chapter 1. Preparing your application to run 9

|
|
|
|
|

|

#
#
#

CPP
(C++ only) specifies that the translator is to translate C++ programs for
compilation by a supported C++ compiler, such as IBM C/C++ for MVS.

CPSM
specifies that the translator is to process EXEC CPSM commands. The
alternative is NOCPSM, which is the default.

DBCS
(COBOL only)

specifies that the source program may contain double-byte characters. It causes
the translator to treat hexadecimal codes X'0E' and X'0F' as shift-out (SO) and
shift-in (SI) codes, respectively, wherever they appear in the program.

For more detailed information about how to program in COBOL using DBCS,
see the section on DBCS character strings in the VS COBOL II Application
Programming: Language Reference manual.

If you specify this option, the COBOL2 option is assumed.

DEBUG
(COBOL, C, C++, and PL/I only)

instructs the translator to produce code that passes the line number through to
CICS for use by the execution diagnostic facility (EDF). DEBUG is the
default—NODEBUG is the alternative.

DLI
specifies that the translator is to process EXEC DLI commands. You must
specify it with the XOPTS option, that is, XOPTS(DLI).

EDF
specifies that the execution diagnostic facility is to apply to the program. EDF
is the default—the alternative is NOEDF.

EPILOG
(Assembler language only)

specifies that the translator is to insert the macro DFHEIRET at the end of the
program being translated. DFHEIRET returns control from the issuing program
to the program which invoked it. If you want to use any of the options of the
RETURN command, you should use RETURN and specify NOEPILOG.

EPILOG is the default—the alternative, NOEPILOG, prevents the translator
inserting the macro DFHEIRET. (See the CICS Application Programming Reference
manual for programming information about the DFHEIRET macro.)

EXCI
specifies that the translator is to process EXEC API commands for the External
CICS Interface (EXCI). These commands must be used only in batch programs,
and so the EXCI translator option is mutually exclusive to the CICS translator
option, or any translator option that implies the CICS option. An error message
is produced if both CICS and EXCI are specified, or EXCI and a translator
option that implies CICS are specified.

10 CICS TS for OS/390: CICS Application Programming Guide

The EXCI option is also mutually exclusive to the DLI option. EXEC API
commands for the External CICS Interface cannot be coded in batch programs
using EXEC DLI commands. An error message is produced if both EXCI and
DLI translator commands are specified.

The EXCI translator option is specified by XOPTS, that is, XOPTS(EXCI).

FE
(COBOL only)

produces translator information messages that print (in hexadecimal notation)
the bit pattern corresponding to the first argument of the translated call. This
bit pattern has the encoded information that CICS uses to determine which
function is required and which options are specified. All diagnostic messages
are listed, whatever the FLAG option specifies. The alternative is NOFE, which
is the default.

FEPI
allows access to the FEPI API commands of the CICS Front End Programming
Interface (FEPI). FEPI is only available if you have installed the CICS Front
End Programming Interface. The alternative is NOFEPI. FEPI commands and
design are not discussed in this book, but are discussed in the CICS Front End
Programming Interface User’s Guide.

FLAG(I, W, E, or S)
(COBOL, C, C++, and PL/I only) Abbreviation: F

specifies the minimum severity of error in the translation which requires a
message to be listed.

I All messages.

W (Default) All except information messages.

E All except warning and information messages.

S Only severe and unrecoverable error messages.

Note: The FE option overrides the FLAG option.

GDS
(C, C++, and assembler language only)

specifies that the translator is to process CICS GDS (generalized data stream)
commands. For programming information about these commands, see the CICS
Application Programming Reference manual.

GRAPHIC
(PL/I only)

specifies that the source program may contain double-byte characters. It causes
the translator to treat hexadecimal codes X'0E' and X'0F' as shift-out (SO) and
shift-in (SI) codes, respectively, wherever they appear in the program.

It also prevents the translator from generating parameter lists that contain the
shift-out and shift-in values in hexadecimal form. Wherever these values
would ordinarily appear, the translator expresses them in binary form, so that
there are no unintended DBCS delimiters in the data stream that the compiler
receives.

Chapter 1. Preparing your application to run 11

If the compiler you are using supports DBCS, you need to prevent unintended
shift-out and shift-in codes, even if you are not using double-byte characters.
You can do this by specifying the GRAPHIC option for the translator, so that it
does not create them, or by specifying NOGRAPHIC on the compile step, so
that the compiler does not interpret them as DBCS delimiters.

For more detailed information about how to program in PL/I using DBCS, see
the PL/I Programming: Language Reference manual.

LENGTH
(COBOL, Assembler and PL/I only)

instructs the translator to generate a default length if the LENGTH option is
omitted from a CICS command in the application program. The alternative is
NOLENGTH.

LINECOUNT(n)
Abbreviation: LC

specifies the number of lines to be included in each page of translator listing,
including heading and blank lines. The value of “n” must be an integer in the
range 1 through 255; if “n” is less than 5, only the heading and one line of
listing are included on each page. The default is 60.

LINKAGE
(COBOL only)

requests the translator to modify the LINKAGE SECTION and PROCEDURE
DIVISION statements in top-level programs according to the existing rules.

This means that the translator will insert a USING DFHEIBLK
DFHCOMMAREA statement in the PROCEDURE DIVISION, if one does not
already exist, and will ensure that the LINKAGE SECTION (creating one if
necessary) contains definitions for DFHEIBLK and DFHCOMMAREA.

DFHEIBLK is defined in upper-case, but if OOCOBOL or COBOL3 are also
specified, a mixed-case version of the EIB structure (DFHEIBLC) is inserted.

LINKAGE is the default—the alternative is NOLINKAGE.

The LINKAGE option has no effect on the translation of classes and methods.

MARGINS(m,n[,c])
(C, C++, and PL/I only) Abbreviation: MAR

specifies the columns of each line or record of input that contain language or
CICS statements. The translator does not process data that is outside these
limits, though it does include it in the source listings.

The option can also specify the position of an American National Standard
printer control character to format the listing produced when the SOURCE
option is specified; otherwise, the input records are listed without any
intervening blank lines. The margin parameters are:

m Column number of left-hand margin.

n Column number of right-hand margin. It must be greater than m.

12 CICS TS for OS/390: CICS Application Programming Guide

|
|
|
|

#
#

Note: When used as a C or C++ compiler option, the asterisk (*) is
allowable for the second argument on the MARGIN option. For
the translator, however, a numeric value between 1 and 100
inclusive must be specified. When the input data set has
fixed-length records, the maximum value allowable for the right
hand margin is 80. When the input data set has variable-length
records, the maximum value allowable is 100.

c Column number of the American National Standard printer control
character. It must be outside the values specified for m and n. A zero
value for c means no printer control character. If c is nonzero, only the
following printer control characters can appear in the source:
(blank)

Skip 1 line before printing.
0 Skip 2 lines before printing.
− Skip 3 lines before printing.
+ No skip before printing.
1 New page.

The default for C and C++ is MARGINS(1,72,0) for fixed-length records, and
for variable-length records it is the same as the record length (1,record
length,0). The default for PL/I is MARGINS(2,72,0) for fixed-length records,
and MARGINS(10,100,0) for variable-length records.

NATLANG(EN or KA)
specifies what language is to be used for the translator message output:

EN (Default) English.

KA Kanji.

(Take care not to confuse this option with the NATLANG API option.)

NOCBLCARD
(COBOL only)

specifies that the translator is not to generate a CBL statement. The parameters
which the CICS translator normally inserts must be set using VS COBOL II’s
IGYCOPT macro. These parameters are RENT, RES, NODYNAM, and LIB.

NOCPSM
specifies that the translator is not to process EXEC CPSM commands. This is
the default—the alternative is CPSM.

NODEBUG
(COBOL, C, C++, and PL/I only)

instructs the translator not to produce code that passes the line number
through to CICS for use by the execution diagnostic facility (EDF).

NOEDF
specifies that the execution diagnostic facility is not to apply to the program.
There is no performance advantage in specifying NOEDF, but the option can
be useful to prevent commands in well-debugged subprograms appearing on
EDF displays.

NOEPILOG
(Assembler language only)

Chapter 1. Preparing your application to run 13

instructs the translator not to insert the macro DFHEIRET at the end of the
program being translated. DFHEIRET returns control from the issuing program
to the program which invoked it. If you want to use any of the options of the
EXEC CICS RETURN command, you should use EXEC CICS RETURN and
specify NOEPILOG. NOEPILOG prevents the translator inserting the macro
DFHEIRET. The alternative is EPILOG, which is the default. (See the CICS
Application Programming Reference manual for programming information about
the DFHEIRET macro.)

NOFE
(COBOL only)

does not produce translator information messages that print the bit pattern
corresponding to the first argument of the translated call. NOFE is the
default—the alternative is FE.

NOFEPI
disallows access to the FEPI API commands of the CICS Front End
Programming Interface (FEPI). NOFEPI is the default—the alternative is FEPI.

NOLENGTH
(COBOL, Assembler and PL/I only)

instructs the translator not to generate a default length if the LENGTH option
is omitted from a CICS command in the application program. The default is
LENGTH.

NOLINKAGE
(COBOL only) requests the translator not to modify the LINKAGE SECTION
and PROCEDURE DIVISION statements to supply missing DFHEIBLK and
DFHCOMMAREA statements.

This means that you can provide COBOL copybooks to define a COMMAREA
and use the EXEC CICS ADDRESS command.

LINKAGE is the default.

NONUM
(COBOL only)

instructs the translator not to use the line numbers appearing in columns one
through six of each line of the program as the line number in its diagnostic
messages and cross-reference listing, but to generate its own line numbers.
NONUM is the default—the alternative is NUM.

NOOPSEQUENCE
(C, C++, and PL/I only) Abbreviation: NOS

specifies the position of the sequence field in the translator output records. The
default for C and C++ is OPSEQUENCE(73,80) for fixed-length records and
NOOPSEQUENCE for variable-length records. For PL/I, the default is
OPSEQUENCE(73,80) for both types of records.

NOOPTIONS
Abbreviation: NOP

instructs the translator not to include a list of the options used during this
translation in its output listing.

14 CICS TS for OS/390: CICS Application Programming Guide

|
|
|

|
|

NOPROLOG
(Assembler language only)

instructs the translator not to insert the macros DFHEISTG, DFHEIEND, and
DFHEIENT into the program being assembled. These macros define local
program storage and initialize at program entry. (See the CICS Application
Programming Reference manual for programming information about these
“prolog” macros.)

NOSEQ
(COBOL only)

instructs the translator not to check the sequence field of the source statements,
in columns 1-6. The alternative, SEQ, is the default. If SEQ is specified and a
statement is not in sequence, it is flagged.

If you specify the ANSI85 option for COBOL, the translator does no sequence
checking and the SEQ or NOSEQ option is ignored.

NOSEQUENCE
(C, C++, and PL/I only) Abbreviation: NSEQ

specifies that statements in the translator input are not sequence numbered and
that the translator must assign its own line numbers.

The default for fixed-length records is SEQUENCE(73,80). For variable-length
records in C and C++, the default is NOSEQUENCE and for variable-length
records in PL/I the default is SEQUENCE(1,8).

NOSOURCE
(C, C++ and PL/I only)

instructs the translator not to include a listing of the translated source program
in the translator listing.

NOSPIE
prevents the translator from trapping irrecoverable errors; instead, a dump is
produced. You should use NOSPIE only when requested to do so by the IBM
support center.

NOVBREF
(COBOL, C, C++ and PL/I only)

instructs the translator not to include a cross-reference of commands with line
numbers in the translator listing. (NOVBREF used to be called NOXREF; for
compatibility, NOXREF is still accepted.) NOVBREF is the default—the
alternative is VBREF.

NUM
(COBOL only)

instructs the translator to use the line numbers appearing in columns one
through six of each line of the program as the line number in its diagnostic
messages and cross-reference listing. The alternative is NONUM, which is the
default.

OOCOBOL
(OO COBOL only)

Chapter 1. Preparing your application to run 15

instructs the translator to recognize the object-oriented COBOL (OO COBOL)
syntax. The phrases:
v CLASS-ID xxx...xxx
v END CLASS xxx...xxx
v METHOD-ID xxx...xxx
v END METHOD xxx...xxx

are recognized but their correct usage is not monitored. The translator
considers each class as a separate unit of compilation. This option implies the
ANSI85, COBOL2, and COBOL3 options.

OPMARGINS(m,n[,c])
(C, C++ and PL/I only) Abbreviation: OM

specifies the translator output margins, that is, the margins of the input to the
following compiler. Normally these are the same as the input margins for the
translator. For a definition of input margins and the meaning of “m”, “n”, and
“c”, see MARGINS. The default for C and C++ is OPMARGINS(1,72,0) and for
PL/I, the default is OPMARGINS(2,72,0).

The maximum “n” value allowable for the OPMARGINS option is 80. The
output from the translator is always of a fixed-length record format.

If the OPMARGINS option is used to set the output from the translator to a
certain format, it may be necessary to change the input margins for the
compiler being used. If the OPMARGINS value is allowed to default this is not
necessary.

OPSEQUENCE(m,n)
(C, C++, and PL/I only) Abbreviation: OS

specifies the position of the sequence field in the translator output records. For
the meaning of “m” and “n”, see SEQUENCE. The default for C and C++ is
OPSEQUENCE(73,80) for fixed-length records and NOOPSEQUENCE for
variable-length records. For PL/I, the default is OPSEQUENCE(73,80) for both
types of records.

OPTIONS
Abbreviations: OP

instructs the translator to include a list of the options used during this
translation in its output listing.

PROLOG
(Assembler language only)

instructs the translator to insert the macros DFHEISTG, DFHEIEND, and
DFHEIENT into the program being assembled. These macros define local
program storage and initialize at program entry. (See the CICS Application
Programming Reference manual for programming information about these
“prolog” macros.) PROLOG is the default—the alternative is NOPROLOG.

QUOTE
(COBOL only)

indicates that literals are delineated by the double quotation mark (”). The
same value must be specified for the translator step and the following compiler
step.

16 CICS TS for OS/390: CICS Application Programming Guide

The CICS-supplied COBOL copybooks use APOST, the default, instead of
QUOTE.

SEQ
(COBOL only)

instructs the translator to check the sequence field of the source statements, in
columns 1-6. SEQ is the default—the alternative is NOSEQ. If a statement is
not in sequence, it is flagged.

If you specify the ANSI85 option for COBOL, the translator does no sequence
checking and the SEQ option is ignored.

SEQUENCE(m,n)
(C, C++, and PL/I only) Abbreviation: SEQ

specifies that statements in the translator input are sequence numbered and the
columns in each line or record that contain the sequence field. The translator
uses this number as the line number in error messages and cross-reference
listings. No attempt is made to sort the input lines or records into sequence. If
no sequence field is specified, the translator assigns its own line numbers. The
SEQUENCE parameters are:

m Leftmost sequence number column.

n Rightmost sequence number column.

The sequence number field must not exceed eight characters and must not
overlap the source program (as specified in the MARGINS option).

The default for fixed-length records is SEQUENCE(73,80). For variable-length
records in C and C++ the default is NOSEQUENCE and for variable-length
records in PL/I the default is SEQUENCE(1,8).

SOURCE
(C, C++, and PL/I only)

instructs the translator to include a listing of the translated source program in
the translator listing. SOURCE is the default—the alternative is NOSOURCE.

SP
must be specified for application programs that contain special (SP) CICS
commands or they will be rejected at translate time. These commands are
ACQUIRE, COLLECT, CREATE, DISABLE, DISCARD, ENABLE, EXTRACT,
INQUIRE, PERFORM, RESYNC, and SET. They are generally used by system
programmers. For programming information about these commands, see the
CICS System Programming Reference manual.

SPACE(1 or 2 or 3)
(COBOL only)

indicates the type of spacing to be used in the output listing: SPACE(1)
specifies single spacing, SPACE(2) double spacing, and SPACE(3) triple
spacing. SPACE(3) is the default.

SPIE
specifies that the translator is to trap irrecoverable errors. SPIE is the
default—the alternative is NOSPIE.

Chapter 1. Preparing your application to run 17

SYSEIB
indicates that the program is to use the system EIB instead of the application
EIB. The SYSEIB option allows programs to execute CICS commands without
updating the application EIB, making that aspect of execution transparent to
the application. However, this option imposes restrictions on programs using
it, and should be used only in special situations.

A program translated with the SYSEIB option must:
v Execute in AMODE(31), as the system EIB is assumed to be located in

“TASKDATALOC(ANY)” storage.
v Obtain the address of the system EIB using the ADDRESS EIB command (if

the program is translated with the SYSEIB option, this command
automatically returns the address of the system EIB).

v Be aware that the use of the SYSEIB option implies the use of the
NOHANDLE option on all CICS commands issued by the program.
(Commands should use the RESP option as required.)

VBREF
(COBOL, C, C++, and PL/I only)

specifies whether the translator is to include a cross-reference of commands
with line numbers in the translator listing. (VBREF used to be called XREF, and
is still accepted.)

Table 2. Translator options applicable to programming language

Translator option COBOL C C++ PL/I Assembler

ANSI85 X

APOST or QUOTE X

CBLCARD or NOCBLCARD X

CICS X X X X X

COBOL2 X

COBOL3 X

CPP X

CPSM or NOCPSM X X X X X

DBCS X

DEBUG or NODEBUG X X X X

DLI X X X X X

EDF or NOEDF X X X X X

EPILOG or NOEPILOG X

EXCI X X X X X

FE or NOFE X

FEPI or NOFEPI X X X X X

FLAG(I or W or E or S) X X X X

GDS X X X

GRAPHIC X

LENGTH or NOLENGTH X X X

LINECOUNT(n) X X X X X

LINKAGE or NOLINKAGE X

18 CICS TS for OS/390: CICS Application Programming Guide

Table 2. Translator options applicable to programming language (continued)

Translator option COBOL C C++ PL/I Assembler

MARGINS(m,n) X X X

NATLANG X X X X X

NUM or NONUM X

OOCOBOL X

OPMARGINS(m,n[,c]) X X X

OPSEQUENCE(m,n) or
NOOPSEQUENCE

X X X

OPTIONS or NOOPTIONS X X X X X

PROLOG or NOPROLOG X

QUOTE or APOST X

SEQ or NOSEQ X

SEQUENCE(m,n) or NOSEQUENCE X X X

SOURCE or NOSOURCE X X X

SP X X X X X

SPACE(1 or 2 or 3) X

SPIE or NOSPIE X X X X X

SYSEIB X X X X X

VBREF or NOVBREF X X X X

EXEC interface stubs
Application programs that use the CICS EXEC programming interface must
contain an interface to CICS. This takes the form of an EXEC interface module or
stub , which is a function-dependent piece of code used by the CICS high-level
programming interface. The stub, provided in the SDFHLOAD library, must be
link-edited with your application program to provide communication between
your code and the CICS EXEC interface program, DFHEIP. These stubs are invoked
during execution of EXEC CICS and EXEC DLI commands.

Java application programs that use the VisualAge for Java, Enterprise ToolKit for
OS/390 do not need EXEC interface stubs, but there are stubs for each of the other
supported programming languages. LE-conforming languages require the DFHELII
interface module. Otherwise, you should use the following interface modules for
the assembler, C, COBOL, and PL/I programming languages:

Table 3. Non-LE conforming language stubs

Language Interface module name

ASSEMBLER DFHEAI and DFHEA10

C DFHELII

COBOL DFHECI

PL/I DFHPL1OI supplied by PL/I (and DFHEPI
which is part of the PL/I DFHPLIO1

module).

For further information about the EXEC interface stubs, see the CICS System
Definition Guide.

Chapter 1. Preparing your application to run 19

|
|
|

COBOL and PL/I
Each EXEC command is translated into a COBOL CALL statement or PL/I CALL
statement (as appropriate) by the command translator. The external entry point
invoked by the CALL statement is resolved to an entry in the stub.

The VS COBOL II command-level interface has an assembler language stub in the
VS COBOL II library. Similarly, a PL/I application program must include a
PL/I-supplied stub as well as the EXEC interface stub. This stub is included by
automatic library call.

C and C++
These programs must include the EXEC interface stub called DFHELII. There is no
library stub. The stub must be link-edited with your application program to
provide communication between your code and the EXEC interface program
(DFHEIP).

For C and C++, each EXEC CICS command is translated by the command
translator into a C or C++ function invocation. The external entry point is invoked
by the function and is resolved by an entry in the stub.

Assembler language
Each EXEC command is translated into an invocation of the DFHECALL macro by
the command translator and the external entry point invoked by DFHECALL is
resolved to an entry in the stub.

Preparing BMS maps
If your program uses BMS maps, you need to create the maps. The traditional
method for doing this is to code the map in BMS macros and assemble these
macros.

You actually do the assembly twice, with different output options.
v One assembly creates a set of definitions. You copy these definitions into your

program using the appropriate language statement, and they allow you to refer
to the fields in the map by name.

v The second assembly creates an object module that is used when your program
actually executes.

The process is illustrated in Figure 2 on page 21.

20 CICS TS for OS/390: CICS Application Programming Guide

CICS provides a procedure for assembling maps that produces both of the required
assemblies. See the CICS System Definition Guide for details about assembling maps.

There are also several products that produce the same two outputs from input that
you express interactively. These include Screen Definition Facility II (SDF II). For
more information about SDF II, see the Screen Definition Facility II Primer for
CICS/BMS Programs and Screen Definition Facility II General Information manuals.

Whatever way you produce maps, you need to create a map before you compile
(assemble) any program that uses it. In addition, if you change the map, you
usually need to recompile (reassemble) all programs that use it. Some changes
affect only the physical map and are not reflected in the corresponding symbolic
map used by the program. One of these is a change in field position that does not
alter the order of the fields. However, changes in data type, field length, field
sequence, and others do affect the symbolic map, and it is always safest to
recompile (reassemble).

BMS macro

statements

defining

map set

Ty p e =

MAP

Ty p e =

DSECT
Assembler

Assembler

Link Editor

Copy

l ibrary

Assembler

listing

Link edit

l isting

CICS load

l ibrary

Object

module

l ibrary

Assembler

listing

Figure 2. Preparing a map

Chapter 1. Preparing your application to run 21

22 CICS TS for OS/390: CICS Application Programming Guide

Chapter 2. Programming in COBOL

For programming in COBOL language, you can find information about appropriate
compilers in the CICS Transaction Server for OS/390 Migration Guide or the relevant
COBOL manuals.

Note: OS/VS COBOL is supported for migration purposes to enable you to
maintain existing programs. You are not recommended to write new
applications using OS/VS COBOL. For information about OS/VS COBOL
language considerations and restrictions, see “Appendix B. OS/VS COBOL”
on page 565. References to COBOL in this chapter do not always apply to

OS/VS COBOL.

With COBOL and COBOL/370 you must use only EXEC CICS commands to
invoke operating system services. Some COBOL statements must not be used.
Some features of COBOL that are of interest to the CICS programmer are:
v Simplified based addressing using cell pointer variables and the ADDRESS

special register.
v The ability to use COBOL CALL statements to call assembler language and other

COBOL programs.
v The LENGTH special register, which CICS uses to deduce the length of data

items.
v The ability to use the RETURN-CODE special register in a CICS application

program. This register allows you to set and access return codes in COBOL
programs.

v There is no need for the SERVICE RELOAD statement. If included, it is ignored.

Users of COBOL with DBCS should not use the copybook DFHTCADS in their
programs; copybook DFHCAKJ should be used instead.

With compiler option DATA(24), working storage is allocated below the 16MB line.
With compiler option DATA(31), working storage is allocated either above or
below the 16MB line.

Based addressing
CICS application programs need to access data dynamically when the data is in a
CICS internal area, and only the address is passed to the program. Examples are:
v CICS areas such as the CWA, TWA, and TCTTE user area (TCTUA), accessed

using the ADDRESS command
v Input data, obtained by EXEC CICS commands such as READ and RECEIVE

with the SET option

COBOL provides a simple method of obtaining addressability to the data areas
defined in the LINKAGE SECTION using pointer variables and the ADDRESS
special register. Figure 3 on page 24 gives an example of this.

The ADDRESS special register holds the address of a record defined in the
LINKAGE SECTION with level 01 or 77. This register can be used in the SET
option of any command in ADDRESS mode. These commands include GETMAIN,

© Copyright IBM Corp. 1989, 2000 23

|

|
|
|
|
|
|

|

LOAD, READ, and READQ. For programming information, including a complete
list of these commands, see the CICS Application Programming Reference manual.

Figure 3 shows the use of ADDRESS special registers in COBOL. If the records in
the READ or REWRITE commands are of fixed length, no LENGTH option is
required. This example assumes variable-length records. After the read, you can get
the length of the record from the field named in the LENGTH option (here,
LRECL-REC1). In the REWRITE command, you must code a LENGTH option if
you want to replace the updated record with a record of a different length.

WITH DEBUGGING MODE
If a “D” is placed in column seven of a COBOL EXEC CICS command, that “D” is
also found in the translated CALL statements. This translated command is only
executed if WITH DEBUGGING MODE is specified. A “D” placed on any line
other than the first line of the EXEC CICS statement is not required and is ignored
by the translator.

Restrictions
This section describes COBOL language elements that you cannot use under CICS,
or whose use is restricted or can cause problems under CICS.

In general, neither the CICS translator nor the COBOL compiler detects the use of
COBOL words affected by the following restrictions. The use of a restricted word
in a CICS environment may cause a failure at execution time. However, COBOL
provides IGYCCICS, a table of words reserved for CICS. This allows the COBOL
compiler to flag any occurrences of COBOL reserved words that conflict with CICS
restrictions. How to use and create installation-specific COBOL reserved word
tables is documented in the VS COBOL II Installation and Customization for MVS
and COBOL/370 Planning and Customization manuals.

The following restrictions apply to a COBOL program that is to be used as a CICS
application program. (See the appropriate COBOL programming guide for more
information about these functions.)

WORKING-STORAGE SECTION.
77 LRECL-REC1 PIC S9(4) COMP.
LINKAGE SECTION.
01 REC-1.

02 FLAG1 PIC X.
02 MAIN-DATA PIC X(5000).
02 OPTL-DATA PIC X(1000).

01 REC-2.
02 ...

PROCEDURE DIVISION.
EXEC CICS READ UPDATE...

SET(ADDRESS OF REC-1)
LENGTH(LRECL-REC1)
END-EXEC.

IF FLAG1 EQUAL X'Y'
MOVE OPTL-DATA TO
EXEC CICS REWRITE...

FROM(REC-1)
END-EXEC.

Figure 3. Addressing CICS data areas in locate mode

24 CICS TS for OS/390: CICS Application Programming Guide

|
|
|
|
|

v If no IDENTIFICATION DIVISION is present, only the CICS commands are
expanded.
If the IDENTIFICATION DIVISION only is present, only DFHEIVAR,
DFHEIBLK, and DFHCOMMAREA are produced.

v Statements that produce variable-length areas, such as OCCURS DEPENDING
ON, should be used with caution within the WORKING-STORAGE SECTION.

v If you have any CICS applications written in COBOL, you may need to review
the COBOL run-time options in use at your installation. In particular, if your
applications are not coded to ensure that working storage is properly initialized
(for example, cleared with binary zeros before sending maps), you should use
the WSCLEAR run-time option. The default, as supplied in the COBOL module
IGZEOPD (alias of IGZ9OPD) is NOWSCLEAR.
The WSCLEAR function is included in VS COBOL II Version 1 Release 3 as
supplied. For information about customizing run-time options, see the VS
COBOL II Installation and Customization for MVS manual.

v You cannot use entry points in COBOL in CICS.
v When a debugging line is to be used as a comment, it must not contain any

unmatched quotation marks.
v Do not use COBOL statements that invoke operating system functions. Instead,

use CICS commands.
v Do not use EXEC CICS commands in a Declaratives Section. If coded, they are

ignored by the translator.
v Do not use the following statements:

ACCEPT READ
CLOSE REWRITE
DELETE STOP “literal”
DISPLAY START
MERGE WRITE
OPEN

v There are restrictions on the use of the SORT statement. See the VS COBOL II
Application Programming Guide or the COBOL for MVS and VM Programming
Guide for information.

v Do not use:
– USE declaratives (except USE FOR DEBUGGING). You may specify USE FOR

DEBUGGING, but it has no effect because the DEBUG LE option is ignored in
CICS.

– ENVIRONMENT DIVISION and FILE SECTION entries associated with data
management, because CICS handles data management

– User-specified parameters to the main program
v Do not use the following compiler options:

DYNAM
NOLIB (if program is to be translated)
NORENT
NORES

v The use of the FDUMP compiler option results in a very large increase in
program size. Therefore, short-of-storage problems may occur when using this
option. For more information about the FDUMP option, see the VS COBOL II
Application Programming Guide or the COBOL3 Application Programming Guide.

1. where “literal” does not identify a contained subprogram

Chapter 2. Programming in COBOL 25

#
#

|
|
|

v Use TRUNC(OPT) for handling binary data items if they conform to the
PICTURE definitions, otherwise use TRUNC(BIN). (TRUNC(STD) is the default
and TRUNC(BIN) is slower.)

v The length of working storage, plus 80 bytes for storage accounting and save
areas, must not exceed 64KB when the VS COBOL II compiler option DATA(24)
is used. If, however, the compiler option DATA(31) is used, up to 128MB are
available.

v If the DLI option is specified and an ENTRY statement immediately follows the
PROCEDURE DIVISION header, it is recommended that the ENTRY statement
be terminated with a period (.).

v COBOL and PL/I application programs cannot be link-edited together. For
further information about using COBOL with other languages, see the VS
COBOL II Application Programming Guide.

v The following compiler options have no effect in a CICS environment:
ADV
FASTSRT
OUTDD

v If you use HANDLE CONDITION or HANDLE AID, you can avoid addressing
problems by using SET(ADDRESS OF A-DATA) or SET(A-POINTER) where
A-DATA is a structure in the LINKAGE SECTION and A-POINTER is defined
with the USAGE IS POINTER clause.

Restrictions for 31-bit addressing
These restrictions apply to a COBOL program running above the 16MB line:
v If the receiving program is link-edited with AMODE(31), addresses passed to it

must be 31-bits long (or 24-bits long with the left-most byte set to zeros).
v If the receiving program is link-edited with AMODE(24), addresses passed to it

must be 24-bits long.

DL/I CALL interface
You should make the following changes to programs that use CALL DL/I:
v Remove BLL cells for addressing the user interface block (UIB) and program

control blocks (PCBs).
v Retain the DLIUIB declaration and at least one PCB declaration in the LINKAGE

SECTION.
v Change the PCB call to specify the UIB directly, as follows:

CALL 'CBLTDLI' USING PCB-CALL
PSB-NAME
ADDRESS OF DLIUIB.

v Obtain the address of the required PCB from the address list in the UIB.

Figure 4 on page 27 illustrates the whole of the above process. The example in the
figure assumes that you have three PCBs defined in the PSB and want to use the
second PCB in the database CALL. Therefore, when setting up the ADDRESS
special register of the LINKAGE SECTION group item PCB, the program uses 2 to
index the working-storage table, PCB-ADDRESS-LIST. To use the nth PCB, you use
the number n to index PCB-ADDRESS-LIST.

26 CICS TS for OS/390: CICS Application Programming Guide

|
|
|

Mixing languages
A run unit is a running set of one or more programs that communicate with each
other by COBOL static or dynamic CALL statements. In a CICS environment, a run
unit is entered at the start of a CICS task, or invoked by a LINK or XCTL
command. A run unit can be defined as the execution of a single entry in the
processing program table (PPT) even though for dynamic CALL, the subsequent
PPT entry is needed for the called program.

An LE (Language Environment) run-unit can support a mixture of language levels,
but if you are not using LE a COBOL run unit can contain only:
v COBOL programs compiled with the same compiler
v Assembler language routines

CICS supports only COBOL-to-COBOL and COBOL-to-assembler calls.

WORKING-STORAGE SECTION.
77 PCB-CALL PIC X(4) VALUE 'PCB '.
77 GET-HOLD-UNIQUE PIC X(4) VALUE 'GHU '.
77 PSB-NAME PIC X(8) VALUE 'CBLPSB'.
77 SSA1 PIC X(40) VALUE SPACES.
01 DLI-IO-AREA.

02 DLI-IO-AREA1 PIC X(99).
*
LINKAGE SECTION.

COPY DLIUIB.
01 OVERLAY-DLIUIB REDEFINES DLIUIB.

02 PCBADDR USAGE IS POINTER.
02 FILLER PIC XX.

01 PCB-ADDR-LIST.
02 PCB-ADDRESS-LIST USAGE IS POINTER

OCCURS 10 TIMES.
01 PCB.

02 PCB-DBD-NAME PIC X(8).
02 PCB-SEG-LEVEL PIC XX.
02 PCB-STATUS-CODE PIC XX.

*
PROCEDURE DIVISION.
*SCHEDULE THE PSB AND ADDRESS THE UIB

CALL 'CBLTDLI' USING PCB-CALL PSB-NAME ADDRESS OF DLIUIB.
*
*MOVE VALUE OF UIBPCBAL, ADDRESS OF PCB ADDRESS LIST (HELD IN UIB)
*(REDEFINED AS PCBADDR, A POINTER VARIABLE), TO
*ADDRESS SPECIAL REGISTER OF PCB-ADDR-LIST TO PCBADDR.

SET ADDRESS OF PCB-ADDR-LIST TO PCBADDR.
*MOVE VALUE OF SECOND ITEM IN PCB-ADDRESS-LIST TO ADDRESS SPECIAL
*REGISTER OF PCB, DEFINED IN LINKAGE SECTION.

SET ADDRESS OF PCB TO PCB-ADDRESS-LIST(2).
*PERFORM DATABASE CALLS

........
MOVE TO SSA1.
CALL 'CBLTDLI' USING GET-HOLD-UNIQUE PCB DLI-IO-AREA SSA1.

*CHECK SUCCESS OF CALLS
IF UIBFCTR IS NOT EQUAL LOW-VALUES THEN

...... error diagnostic code
........
IF PCB-STATUS-CODE IS NOT EQUAL SPACES THEN

...... error diagnostic code
........

Figure 4. Using the DL/I CALL interface

Chapter 2. Programming in COBOL 27

|
|
|
|

|

However, a CICS transaction can consist of many run units, each of which can be
at a different language level. This means that a single transaction can consist of
programs compiled by different compilers (including non-COBOL compilers),
provided that programs compiled by different compilers communicate with each
other only using LINK or XCTL commands.

Calling subprograms from COBOL
In a CICS system, when control is transferred from the active program to an
external program, but the transferring program remains active and control can be
returned to it, the program to which control is transferred is called a subprogram.

There are three ways of transferring control to a subprogram:

EXEC CICS LINK
The calling program contains a command in one of these forms:
EXEC CICS LINK PROGRAM('subpgname')
EXEC CICS LINK PROGRAM(name)

In the first form, the called subprogram is explicitly named as a nonnumeric
literal within quotation marks. In the second form, name refers to the COBOL
data area with length equal to that required for the name of the subprogram.

Static COBOL call
The calling program contains a COBOL statement of the form:
CALL 'subpgname'

The called subprogram is explicitly named as a literal string.

Dynamic COBOL call
The calling program contains a COBOL statement of the form:
CALL identifier

The identifier is the name of a COBOL data area that must contain the name of
the called subprogram.

Table 4 on page 29 gives the rules governing the use of the three ways to call a
subprogram. This table refers to CICS application logical levels. Each LINK
command creates a new logical level, the called program being at a level one lower
than the level of the calling program (CICS is taken to be at level 0). Figure 5 on
page 32 shows logical levels and the effect of RETURN commands and CALL
statements in linked and called programs.

The term run unit, used in Figure 5 on page 32, is defined under the heading
“Mixing languages” on page 27. When control is passed by a XCTL command, the
program receiving control cannot return control to the calling program by a
RETURN command or a GOBACK statement, and is therefore not a subprogram.

In an ANSI85 unit of compilation, a called nested program is internal to the calling
program, and is therefore not a subprogram. See “Nesting—what the application
programmer must do” on page 38.

The CALL has the following form:
CALL 'PROG' USING DFHEIBLK DFHCOMMAREA

PARM1 PARM2...

or

28 CICS TS for OS/390: CICS Application Programming Guide

CALL identifier USING DFHEIBLK DFHCOMMAREA
PARM1 PARM2...

In the called program PROG or identifier, the CICS translator inserts DFHEIBLK
and DFHCOMMAREA into the LINKAGE SECTION and into the USING list of
the PROCEDURE DIVISION statement. You code the PROCEDURE DIVISION
statement normally, as follows:
PROCEDURE DIVISION USING PARM1 PARM2...

and the translator inserts DFHEIBLK and DFHCOMMAREA into this statement
before PARM1.

Table 4. Rules governing methods of calling subprograms

LINK Static COBOL CALL Dynamic COBOL
CALL

Translation The linked
subprogram must be
translated if it, or any
subprogram invoked
from it, contains
CICS function.

The called subprogram must be translated if
it contains CICS commands or references to
the EXEC interface block (DFHEIBLK) or to
the CICS communication area
(DFHCOMMAREA).

Link-editing (You
must always use the
NODYNAM
compiler option (the
default) when you
compile a COBOL
program that is to
run with CICS, even
if the program issues
dynamic calls.)

The linked
subprogram must be
compiled and
link-edited as a
separate program.

The called
subprogram must be
link-edited with the
calling program to
form a single load
module (but the
programs can be
compiled separately).
This can produce
large program
modules, and it also
stops two programs
that call the same
program from
sharing a copy of
that program.

The called
subprogram must be
compiled and
link-edited as a
separate load
module. It can reside
in the link pack area
or in a library that is
shared with other
CICS and non-CICS
regions at the same
time.

CICS system
definition data set
(CSD) entries
without program
autoinstall (If you
use program
autoinstall, you do
not need an entry in
the CSD.)

The linked
subprogram must be
defined using RDO.
If the linked
subprogram is
unknown or
unavailable, even
though autoinstall is
active, the LINK fails
with the PGMIDERR
condition.

The calling program must be defined in the
CSD. If program A calls program B and then
program B attempts to call program A,
COBOL issues a message and an abend
(1015).

The subprogram is
part of the calling
program so no CSD
entry is required.

The called
subprogram must be
defined in the CSD.
If the called
subprogram cannot
be loaded or is
unavailable even
though autoinstall is
active, COBOL issues
a message and
abends (1029).

Chapter 2. Programming in COBOL 29

Table 4. Rules governing methods of calling subprograms (continued)

LINK Static COBOL CALL Dynamic COBOL
CALL

Return from called
subprogram

The linked
subprogram must
return using either
RETURN or the
COBOL statement
GOBACK.

The called subprogram must return using
the COBOL statement GOBACK or EXIT
PROGRAM. The use of RETURN in the
called subprogram terminates the calling
program.

Language of called
subprogram

Any language
supported by CICS.

COBOL or assembler language.

Contents of called or
linked subprogram

Any function supported by CICS for the language (including calls
to external databases, for example, DB2® and DL/I) with the
exception that an assembler language subprogram cannot CALL a
lower level subprogram.

Passing parameters
to the subprogram

Data can be passed by any of the standard CICS methods
(COMMAREA, TWA, TCTUA, TS queues) if the called or linked
subprogram is processed by the CICS translator.

If the COMMAREA
is used, its address
must be passed in
the LINK command.
If the linked
subprogram uses
24-bit addressing,
and the
COMMAREA is
above the 16MB line,
CICS copies it to
below the 16MB line,
and recopies it on
return.

The CALL statement may pass DFHEIBLK
and DFHCOMMAREA as the first two
parameters, if the called program is to issue
EXEC CICS requests, or the called program
can issue EXEC CICS ADDRESS commands.
The COMMAREA is optional but if other
parameters are passed, a dummy commarea
must also be passed.

In an ANSI85 unit of
compilation, a nested
program is not a
subprogram, and the
above rule can be
varied. See
“Nesting—what the
application
programmer must
do” on page 38.

If the called
subprogram uses
24-bit addressing and
any parameter is
above the 16MB line,
COBOL issues a
message and abends
(1033). See the VS
COBOL II Application
Programming
Debugging manual for
information about
this abend code.

Storage On each entry to the
linked subprogram, a
new initialized copy
of its working
storage is provided,
and the run unit is
reinitialized (in some
circumstances, this
can cause a
performance
degradation).

On the first entry to the called subprogram
within a CICS logical level, a new initialized
copy of its working storage is provided. On
subsequent entries to the called subprogram
at the same logical level, the same
WORKING STORAGE is provided in its
last-used state, that is, no storage is freed,
acquired, or initialized. If performance is
unsatisfactory with LINK commands,
COBOL calls may give improved results.

30 CICS TS for OS/390: CICS Application Programming Guide

|
|

|
|

|
|
|
|
|
|
|
|

Table 4. Rules governing methods of calling subprograms (continued)

LINK Static COBOL CALL Dynamic COBOL
CALL

CICS condition/AID
and abend handling

On entry to the
called subprogram,
no abend or
condition handling is
active. Within the
subprogram, the
normal CICS rules
apply. In order to
establish an abend or
condition handling
environment, that
exists for the
duration of the
subprogram, a new
HANDLE command
should be issued on
entry to the
subprogram. The
environment so
created remains in
effect until either a
further HANDLE
command is issued,
or the subprogram
returns control to the
caller.

If the dynamic COBOL CALL fails, CICS
abend handling is not invoked, and you
may get a COBOL abend code (1013).

For COBOL calls without Language
Environment/370 and COBOL calls with
Language Environment/370 and
CBLPSHPOP ON:

On entry to the called subprogram, no
abend or condition handling is active.
Within the subprogram, the normal CICS
rules apply. On entry to the called
subprogram, COBOL issues a PUSH
HANDLE to stack the calling program’s
condition or abend handlers. In order to
establish an abend or condition handling
environment that exists for the duration of
the subprogram, a new HANDLE command
should be issued on entry to the
subprogram. The environment that this
creates remains in effect until either a
further HANDLE command is issued or the
subprogram returns control to the caller.
When control is returned to the calling
program from the subprogram, COBOL
unstacks the condition and abend handlers
using a POP HANDLE.

For COBOL calls with Language
Environment/370 and CBLPSHPOP OFF:

The condition/AID and abend handling for
the calling program remain in effect.

Location of called or
linked program

Can be remote. Must be local. Must be local.

Chapter 2. Programming in COBOL 31

|
|
|
|

|
|

|
|

COBOL with the ANSI 85 COBOL standards
COBOL supports the ANSI85 COBOL standards. The CICS translator option
ANSI85 supports most of these standards. If invoked with the ANSI85 option, the
translator uses the COBOL2 option. The OOCOBOL and COBOL3 options imply
both the ANSI85 and COBOL2 options.

CICS support for these standards takes the form of changes to the translator.
Because the translator is not a compiler, it is not affected by all the ANSI85
standards.

The standards that affect the translator are:

CICS Level
0

Program U
GOBACK
...
STOP RUN
...

EXEC CICS RETURN
Run ... Level
Unit CALL Program V 1
A ... GOBACK

... ...

... EXEC CICS RETURN
EXEC CICS LINK

...

Program W
GOBACK
...
STOP RUN

Run ...
Unit EXEC CICS RETURN
B ...

CALL Program X
... GOBACK
... ...
... EXEC CICS RETURN

EXEC CICS XCTL
... Level

2

Program Y
CALL Program Z
... GOBACK
... ...
GOBACK STOP RUN

Run
Unit STOP RUN EXEC CICS RETURN
C ...

EXEC CICS RETURN

Figure 5. Flow of control between COBOL programs, run units, and CICS

32 CICS TS for OS/390: CICS Application Programming Guide

v Literals intervening in blank lines
v Sequence numbers containing any character
v Lower-case characters supported in all COBOL words
v REPLACE statement
v Batch compilation
v Nested programs
v Reference modification
v Global variables
v Interchangeability of comma, semicolon, and space
v Symbolic character definition

If a standard is not fully supported by the translator, a programming restriction
applies. These standards are described under their appropriate headings, and each
description is followed by a Translator action. “Summary of restrictions” on
page 42 summarizes this information. The translator actions assume that you have
specified the ANSI85 translator option.

The term unit of compilation means a section of source input from which the
compiler produces a single object program. A unit of compilation can contain a
program and other programs nested within it.

Literals intervening in blank lines
Blank lines can appear anywhere in a COBOL source program. A blank line is a
line that contains only blanks between margin C (the continuation column) and
margin R (the last character in the line) inclusive.

Translator action
If blank lines occur within literals in a COBOL source program, the translator
eliminates them from the translated output but includes them in the translated
listing.

(If the ANSI85 option is not specified, a blank line in a literal causes a translator
error.)

Sequence numbers containing any character
In a COBOL source program, the sequence number field can contain any character
in the computer’s character set. The sequence number fields need not be in any
order and need not be unique.

Translator action
The translator makes no check on the contents or sequence of the sequence number
fields.

If you specify the SEQ translator option, the translator issues a message saying that
the SEQ option has no effect when you specify the ANSI85 option. See page 17 for
more information about this option.

Chapter 2. Programming in COBOL 33

REPLACE statement
COBOL programs can include the REPLACE statement, which allows the
replacement of identified text by defined substitution text. The text to be replaced
and inserted is specified as in the REPLACING option of the COPY statement, and
can be pseudo-text, an identifier, a literal, or a COBOL word. REPLACE statements
are processed after COPY statements.

Translator action
The translator accepts REPLACE statements but does not translate text between
pseudo-text delimiters, with the exception of CICS built-in functions (DFHRESP
and DFHVALUE), which are translated wherever they occur. CICS commands
should not be placed between pseudo-text delimiters.

Batch compilation
Separate COBOL programs can be compiled together as one input file. An END
PROGRAM header statement terminates each program and is optional for the last
program in the batch.

Translator action
The translator accepts separate COBOL programs in a single input file, and
interprets END PROGRAM header statements according to the ANSI85 standards.

Translator options specified as parameters when invoking the translator are in
effect for the whole batch, but can be overridden for a unit of compilation by
options specified in the CBL or PROCESS card that initiates the unit.

The options for a unit of compilation are determined according to the following
order of priority:
1. Options specified in the CBL or PROCESS card that initiates the unit
2. Options specified when the translator is invoked
3. Default options

For more information about compilation, see the CICS System Definition Guide.

Compiler and linkage editor
If you are using batch compilation, you must take some additional action to ensure
that compilation and linkage editing are successful, as follows:
v Include the compiler NAME option as a parameter in the JCL statement that

invokes the compiler or in a CBL statement for each top-level (nonnested)
program. This causes the inclusion of a NAME statement at the end of each
program. See Figure 6 on page 35 for more information.

v Edit the compiler output to add INCLUDE and ORDER statements for the CICS
COBOL stub to each object module. These statements cause the linkage editor to
include the stub at the start of each load module. These statements can be
anywhere in the module, though by convention they are at the start. You may
find it convenient to place them at the end of the module, immediately before
each NAME statement. Figure 7 on page 36 shows the output from Figure 6 after
editing in this way.

For batch compilation you must vary the procedure described in the CICS System
Definition Guide. The following is a suggested method:

34 CICS TS for OS/390: CICS Application Programming Guide

1. Split the supplied cataloged procedure DFHEITCL into two procedures; PROC1
containing the translate and compilation steps (TRN and COB), and PROC2
containing the linkage editor step LKED.

2. In PROC1, add the NAME option to the parameters in the EXEC statement for
the compiler, which then looks like this:
//COB EXEC PGM=IGYCRCTL,
// PARM='....,NAME,....',
// REGION=1024K

3. In PROC1, change the name and disposition of the compiler output data set
&&LOADSET. At least remove the initial && from the data set name and
change the disposition to CATLG. The SYSLIN statement should then read:
//SYSLIN DD DSN=LOADSET,
// DISP=(NEW,CATLG),UNIT=&WORK,
// SPACE=(80,(250,100))

4. Run PROC1.

5. Edit the compiler output in the data set LOADSET to add the INCLUDE and
ORDER statements as shown in Figure 7 on page 36. If you use large numbers
of programs in batches, you should write a simple program or REXX EXEC to
insert the ORDER and INCLUDE statements.

Note: For Language Environment/370 applications, a different COBOL stub
should be used and the order statement in Figure 7 on page 36 should be
changed. The new sequence of statements reads as follows:
INCLUDE SDFHCOB(DFHELII)
ORDER DFHELII
NAME PROGA(R)

To use the new stub, the procedure DFHEITCL (DFHEITVL for COBOL
users) should be changed. The line that reads STUB=DFHEILIC should
be changed to STUB=DFHEILID and the line LIB=SDFHCOB should be
changed to LIB=SDFHC370. An alternative method would be to specify
STUB=DFHEILID when invoking the procedure to include DFHELII.
This can be done by passing the stub value as a parameter when
invoking the procedure as follows:
// EXEC PROC=DFHEITCL

or
// EXEC PROC=DFHEITCL,STUB=DFHEILID,LIB=SDFHC370

.................

....program a....

.................
NAME PROGA(R)

.................

.................

....program b....

.................

.................
NAME PROGB(R)

.................

....program c....

.................
NAME PROGC(R)

Figure 6. Compiler output before editing

Chapter 2. Programming in COBOL 35

6. In PROC2, add a DD statement for the library that includes the CICS stub. The
standard name of this library is CICSTS13.CICS.SDFHCOB. The INCLUDE
statement for the stub refers to this library by the DD name. In Figure 7, it is
assumed you have used the DD name SDFHCOB. The suggested statement is:
//SDFHCOB DD DSN=CICSTS13.CICS.SDFHCOB,
// DISP=SHR

7. In PROC2, replace the SYSLIN concatenation with the single statement:
//SYSLIN DD DSN=LOADSET,
// DISP=(OLD,DELETE)

In this statement it is assumed that you have renamed the compiler output data
set LOADSET.

8. Run PROC2.

....program a....

.................
INCLUDE SDFHCOB(DFHECI)
ORDER DFHECI
NAME PROGA(R)

.................

.................

....program b....

.................

.................
INCLUDE SDFHCOB(DFHECI)
ORDER DFHECI
NAME PROGB(R)

.................

....program c....

.................
INCLUDE SDFHCOB(DFHECI)
ORDER DFHECI
NAME PROGC(R)

Figure 7. Linkage editor input

36 CICS TS for OS/390: CICS Application Programming Guide

Nested programs
Under the ANSI85 standard:
v COBOL programs can contain COBOL programs.
v Contained programs are included immediately before the END PROGRAM

statement of the containing program.
v A contained program can also be a containing program, that is, it can itself

contain other programs.
v Each contained or containing program is terminated by an END PROGRAM

statement.

For an explanation of valid calls to nested programs and of the COMMON
attribute of a nested program, see the VS COBOL II Application Programming Guide.
An example of a nested program is given in “An example of a nested program” on
page 39.

Translator action
The translator treats top-level and nested programs differently.

The translator translates a top-level program (a program that is not contained by
any other program) in the normal way, with one addition. The translator uses the
GLOBAL storage class for all translator-generated variables in the
WORKING-STORAGE SECTION.

The translator translates nested or contained programs in a special way as follows:
v A DATA DIVISION and LINKAGE SECTION are added if they do not already

exist.
v Declarations for DFHEIBLK (EXEC interface block) and DFHCOMMAREA

(communication area) are inserted into the LINKAGE SECTION.
v EXEC CICS commands and CICS built-in functions are translated.
v The PROCEDURE DIVISION statement is not modified.
v No translator-generated temporary variables, used for pre-call assignments, are

inserted in the WORKING-STORAGE SECTION.

Recognition of nested programs
If the ANSI85 option is specified, the translator interprets that the input source
starts with a top-level program if the first noncomment record is any of the
following:
v IDENTIFICATION DIVISION statement
v CBL card
v PROCESS card

If the first record is none of these, the translator treats the input as part of the
PROCEDURE DIVISION of a nested program. The first CBL or PROCESS card
indicates the start of a top-level program and of a new unit of compilation. Any
IDENTIFICATION DIVISION statements that are found before the first top-level
program indicate the start of a new nested program.

The practical effect of these rules is that nested programs cannot be held in
separate files and translated separately. A top-level program and all its directly-
and indirectly- contained programs constitute a single unit of compilation and
should be submitted together to the translator.

Chapter 2. Programming in COBOL 37

Positioning of comments
The translator treats comments that follow an END PROGRAM statement as
belonging to the next program in the input source. Comments that precede an
IDENTIFICATION DIVISION statement appear in the listing after the
IDENTIFICATION DIVISION statement.

To avoid confusion always place comments:
v After the IDENTIFICATION DIVISION statement that initiates the program to

which they refer

and

v Before the END PROGRAM statement that terminates the program to which
they refer.

Nesting—what the application programmer must do
1. Submit a top-level containing program and all its directly and indirectly

contained programs as a single unit of compilation.
2. In each nested program that contains EXEC CICS commands, CICS built-in

functions, or references to the EIB or COMMAREA, code DFHEIBLK and
DFHCOMMAREA as the first two parameters of the PROCEDURE DIVISION
statement as follows:
PROCEDURE DIVISION USING DFHEIBLK

DFHCOMMAREA PARM1 PARM2 ...

3. In every call to a nested program that contains EXEC CICS commands, CICS
built-in functions, or references to the EIB or COMMAREA, code DFHEIBLK
and DFHCOMMAREA as the first two parameters of the CALL statement as
follows:
CALL 'PROGA' USING DFHEIBLK

DFHCOMMAREA PARM1 PARM2 ...

4. For every call that forms part of the control hierarchy between the top-level
program and a nested program that contains EXEC CICS commands, CICS
built-in functions, or references to the EIB or COMMAREA, code DFHEIBLK
and COMMAREA as the first two parameters of the CALL For a PROCEDURE
DIVISION statements in the calling and called programs respectively code
DFHEIBLK and DFHCOMMAREA. This is necessary to allow addressability to
the EIB and COMMAREA to be passed to programs not directly contained by
the top-level program.

5. If it is not necessary to insert DFHEIBLK and DFHCOMMAREA in the
PROCEDURE DIVISION of a nested program for any of the reasons given
above (2, 3, and 4), calls to that program should not include DFHEIBLK and
COMMAREA in the parameter list of the CALL statement.

38 CICS TS for OS/390: CICS Application Programming Guide

An example of a nested program
A unit of compilation (see Figure 8) consists of a top-level program W and three
nested programs, X, Y, and Z, all directly contained by W.

Program W
During initialization and termination, calls Y and Z to do initial CICS
processing and non-CICS file access. Calls X to do main processing.

Program X
Calls Z for non-CICS file access and Y for CICS processing.

Program Y
Issues CICS commands. Calls Z for non-CICS file access.

Program Z
Accesses files in batch mode.

Applying the rules:
v Y must be COMMON to enable a call from X.
v Z must be COMMON to enable calls from X and Y.
v Y issues CICS commands, therefore:

– All calls to Y must have DFHEIBLK and a COMMAREA as the first two
parameters.

– Y’s PROCEDURE DIVISION statement must have DFHEIBLK and
DFHCOMMAREA as the first two parameters.

v Though X does not access the EIB or the communication area, it calls Y, which
issues CICS commands. Therefore the call to X must have DFHEIBLK and a
COMMAREA as the first two parameters and X’s PROCEDURE DIVISION
statement must have DFHEIBLK and DFHCOMMAREA as its first two
parameters.

Figure 9 on page 40 illustrates the points in “Nesting—what the application
programmer must do” on page 38.

PROGRAM W

PROGRAM X PROGRAM Y PROGRAM Z

Figure 8. Nested program example—nesting structure

Chapter 2. Programming in COBOL 39

Reference modification
Reference modification supports a method of referencing a substring of a character
data item by specifying the starting (leftmost) position of the substring in the data
item and, optionally the length of the substring. The acceptable formats are:
data-name (starting-position:)
data-name (starting-position: length)

IDENTIFICATION DIVISION.
PROGRAM-ID.W....
PROCEDURE DIVISION....

CALL Z....
CALL Y USING DFHEIBLK

COMMAREA....
CALL X USING DFHEIBLK

COMMAREA....
IDENTIFICATION DIVISION.
PROGRAM-ID.X....
PROCEDURE DIVISION USING

DFHEIBLK DFHCOMMAREA....
CALL Z....
CALL Y USING DFHEIBLK

COMMAREA....
END PROGRAM X.
IDENTIFICATION DIVISION.
PROGRAM-ID.Y IS COMMON...
PROCEDURE DIVISION USING

DFHEIBLK DFHCOMMAREA....
CALL Z....
EXEC CICS

END PROGRAM Y.
IDENTIFICATION DIVISION.
PROGRAM-ID.Z IS COMMON...
PROCEDURE DIVISION....
END PROGRAM Z.

END PROGRAM W.

Figure 9. Nested program example—coding

40 CICS TS for OS/390: CICS Application Programming Guide

Data-name can be subscripted or qualified or both. Both starting-position and
length can be arithmetic expressions.

Translator action
The translator accepts reference modification wherever the name of a character
variable is permitted in a COBOL program or in an EXEC CICS command.

Note: If a CICS command uses reference modification in defining a data value, it
must include a LENGTH option to specify the data length. Otherwise the
translator generates a COBOL call with a LENGTH register reference in the
form:
LENGTH OF (reference modification)

This is rejected by the compiler.

Global variables
The GLOBAL variable storage class is supported. A variable defined with the
GLOBAL variable storage class in a top-level program (see 37) can be referred to in
any of its nested programs, whether directly or indirectly contained.

Translator action
The translator accepts the GLOBAL keyword.

Comma and semicolon as delimiters
A separator comma is a comma followed by a space. A separator semicolon is a
semicolon followed by a space. A separator comma or a separator semicolon can
be used as a separator wherever a space alone can be used. (VS COBOL II Release
1.2 restricts the use of commas and semicolons to positions specifically defined in
individual statement formats.)

Translator action
The translator accepts the use in COBOL statements of a separator comma or a
separator semicolon wherever a space can be used. For example, the translator
accepts the statement:
IDENTIFICATION; DIVISION

The translator does not support the use of the separator comma and separator
semicolon as delimiters in EXEC CICS commands. The only acceptable word
delimiter in an EXEC CICS command continues to be a space.

Symbolic character definition
Symbolic characters can be defined in the SPECIAL-NAMES paragraph after the
ALPHABET clause. A symbolic character is a program-defined word that
represents a 1-character figurative constant.

Translator action
The translator accepts the use of symbolic characters as specified in the standard.

Note: In general, the compiler does not accept the use of figurative constants and
symbolic characters as arguments in CALL statements. For this reason, do

Chapter 2. Programming in COBOL 41

not use figurative constants or symbolic constants in EXEC CICS commands,
which are converted into CALL statements by the translator. There is one
exception to this restriction: a figurative constant is acceptable in an EXEC
CICS command as an argument to pass a value if it is of the correct data
type. For example, a numeric figurative constant can be used in the
LENGTH option.

Summary of restrictions
The following is a summary of the programming restrictions associated with CICS
translator support for the ANSI85 COBOL standards:
v With the ANSI85 option, the translator varies the rule for parameters to be

passed by a static COBOL call. For details, see “Nesting—what the application
programmer must do” on page 38.

v A REPLACE statement must not contain an EXEC CICS command in
pseudo-text.

v Programs cannot use a comma or semicolon as a word separator in a CICS
command.

v Programs cannot use a symbolic character as an argument in a CICS command.
v Comments should not precede the IDENTIFICATION DIVISION statement or

follow the END PROGRAM statement.
v CICS commands that use reference modification to define a character data value

must include a LENGTH option to define the data length.
v A name that must match an external definition, for example a file name or a

transaction ID, must be coded in the same case as the external definition.

COBOL2 translator option
If you are using the COBOL2 option you must use the VS COBOL II Compiler
(5668-958 and 5668-023) to process your COBOL application programs.

This compiler is a licensed program that conforms to the standard set by American
National Standard COBOL, X3.23-1974.

When you translate this program, you must use the COBOL2 translator option. For
information about translating your program and preparing it for execution, see
“Chapter 1. Preparing your application to run” on page 3.

Lower-case characters can occur anywhere in any COBOL word, including
user-defined names, system names, and reserved words. A lower-case character can
be used wherever an upper-case character is required by a COBOL compiler that
does not conform to the ANSI85 standards.

Translator action
The translator listing and output preserve the case of COBOL text as entered.

In addition, the translator accepts mixed case in:
v Translator options
v EXEC CICS commands, both for keywords and for arguments to keywords

(If the ANSI85 option is not specified, the translator expects COBOL words to
consist entirely of upper-case characters.)

42 CICS TS for OS/390: CICS Application Programming Guide

Notes:

1. The translator does not translate lower-case text into upper-case. Some names
in COBOL text, for example, file names and transaction IDs, must match with
externally defined names. Such names should always be entered in the same
case as the external definition.

2. CBL and PROCESS statements must be in upper case.

COBOL3 translator option
If you are using the COBOL3 option you must use Language Environment
conforming compilers to process your application programs.

You can use either the COBOL3 or OOCOBOL translator option, depending on
whether the program contains OO COBOL syntax. For information about
translating your program and preparing it for execution, see “Chapter 1. Preparing
your application to run” on page 3.

Lower-case characters can occur anywhere in any COBOL word, including
user-defined names, system names, and reserved words.

Translator action
The translator listing and output preserve the case of COBOL text as entered.

In addition, the translator accepts mixed case in:
v Translator options
v EXEC CICS commands, both for keywords and for arguments to keywords
v CBL and PROCESS statements
v Compiler directives such as EJECT and SKIP1

The translator does not translate lower-case text into upper-case. Some names in
COBOL text, for example file names and transaction IDs, must match with
externally defined names. Such names must always be entered in the same case as
the external definition.

If you specify the LINKAGE translator option, or allow it to default, a mixed-case
version of the EIB structure (DFHEIBLC) is inserted into the LINKAGE SECTION.

OO COBOL translator option
If you are using the OOCOBOL option, you must use a Language Environment
conforming compiler to process your application programs.

For information about translating your program and preparing it for execution, see
“Chapter 1. Preparing your application to run” on page 3.

Lower-case characters can occur anywhere in any COBOL word, including
user-defined names, system names, and reserved words.

Translator action
The translator listing and output preserve the case of COBOL text as entered.

In addition, the translator accepts mixed case in:
v Translator options
v EXEC CICS commands, both for keywords and for arguments to keywords

Chapter 2. Programming in COBOL 43

#
#

#
#

#
#

v CBL and PROCESS statements
v Compiler directives such as EJECT and SKIP1

The translator does not translate lower-case text into upper-case. Some names in
COBOL text, for example file names and transaction IDs, must match with
externally defined names. Such names should always be entered in the same case
as the external definition.

If you specify the LINKAGE translator option, or allow it to default, a mixed-case
version of the EIB structure (DFHEIBLC) is inserted into the LINKAGE SECTION.

The translator considers each class to be a separate unit of compilation.

The translator does not monitor correct use of syntax. It makes the following
assumptions about a user program:
v Classes and methods are correctly terminated.
v A class encapsulates only methods.
v Methods do not encapsulate anything else.
v A unit of compilation contains either a class or a program.

The translator rejects any EXEC statements that appear in the PROCEDURE
DIVISION of a class.

The translator checks that a DATA DIVISION statement and a WORKING
STORAGE SECTION both exist in a class definition.

Nesting programs
For OO COBOL, use the DFHEIBLC copybook, which is a lower-case version of
DFHEIBLK. Apart from case, DFHEIBLC is the same as DFHEIBLK in all other
respects except that the top-level name is 01 dfheiblk. instead of 01 EIBLK.

44 CICS TS for OS/390: CICS Application Programming Guide

#
#

Chapter 3. Programming in C and C++

For programming in C, you can find information about appropriate compilers in
the CICS Transaction Server for OS/390 Migration Guide or the relevant C or C++
manual.

All the EXEC CICS commands available in COBOL, PL/I, and assembler language
applications are also supported in C and C++ applications, with the exception of
those commands related to nonstructured exception handling:
v HANDLE ABEND LABEL(label)
v HANDLE AID
v HANDLE CONDITION
v IGNORE CONDITION
v PUSH HANDLE
v POP HANDLE

Use of these commands is diagnosed by the translator.

C++ applications can also use the CICS C++ OO classes to access CICS services,
instead of the EXEC CICS interface. See the CICS C++ OO Class Libraries manual,
for more information about this interface.

In a C or C++ application, every EXEC CICS command is treated as if it had the
NOHANDLE or RESP option specified. This means that the set of “system action”
transaction abends that result from a condition occurring but not being handled, is
not possible in a C or C++ application. Control always flows to the next
instruction, and it is up to the application to test for a normal response.

HANDLE ABEND PROGRAM commands are allowed, but you cannot use PUSH
HANDLE or POP HANDLE.

If you want any OVERFLOW condition to be indicated in the RESP field on return
from a SEND MAP command with the ACCUM option, you should specify the
NOFLUSH option.

C and C++ language programs must be link-edited with the attributes
AMODE(31), and may reside above the 16MB line in the same way as PL/I
programs. See “PL/I and dynamic storage” on page 54 for information about PL/I
programs.

In C and C++, working storage consists of the stack and the heap. The location of
the stack and heap, with respect to the 16MB line, is controlled by the
ANYWHERE and BELOW options on the stack and heap run time options. The
default is that both the stack and heap are located above the 16MB line.

On return from a C or C++ language application, any value passed by C or C++
by the exit function or the return statement is saved in EIBRESP2.

A set of sample application programs is provided in Table 5 on page 46 to show
how EXEC CICS commands can be used in a program written in the C or C++
language.

© Copyright IBM Corp. 1989, 2000 45

|
|
|

Table 5. Sample programs

Sample program Map set Map source Transaction ID

DFH$DMNU Operator
instruction (3270)

DFH$DGA DFH$DMA DMNU

DFH$DALL Update (3270) DFH$DGB DFH$DMB DINQ, DADD, DUPD

DFH$DBRW Browse (3270) DFH$DGC DFH$DMC DBRW

DFH$DREN Order entry
(3270)

DFH$DGK DFH$DMK DORD

DFH$DCOM Order entry
queue print (3270)

DFH$DGL DFH$DML DORQ

DFH$DREP Report (3270) DFH$DGD DFH$DMD DREP

The transaction and program definitions are provided in group DFH$DFLA in the
CSD and should be installed using the command:
CEDA INSTALL GROUP(DFH$DFLA)

The following record description files are provided as C or C++ language header
files:

DFH$DFIL—FILEA record descriptor
DFH$DL86—L860 record descriptor

Data declarations needed for C and C++
The following data declarations are provided by CICS for C and C++:
v Execution interface block definitions (EIB)
v BMS screen attributes definitions—C and C++ versions of the DFHBMSCA,

DFHMSRCA, and DFHAID files are supplied by CICS, and may be included by
the application programmer when using BMS.

v DL/I support—a C language version of DFHDIB is included by the DLI
translator if the translator option has been specified. (You have to include
DLIUIB if the CALL DLI interface is used.)

The EIB declarations are enclosed in #ifndef and #endif lines, and are included in
all translated files. The C or C++ compiler ignores duplicated declarations. The
inserted code contains definitions of all the fields in the EIB, coded in C and C++.

Naming EIB fields
Within a C or C++ application program, fields in the EIB are referred to in lower
case and fully qualified as, for example, “dfheiptr->eibtrnid”, in contrast to
EIBTRNID as used in other CICS applications.

Data types in EIB fields
The following mapping of data types is used:
v Halfword binary integers are defined as “short int”
v Fullword binary integers are defined as “long int”
v Single-character fields are defined as “unsigned char”
v Character strings are defined as “unsigned char” arrays

46 CICS TS for OS/390: CICS Application Programming Guide

Restrictions
The following list describes some of the restrictions that exist in various versions of
the C run-time libraries. You should check the relevant language guide for more
specific details about those that apply to your installation:
v CICS does not support extended precision floating point.
v C and C++ languages do not support packed decimal data. The application has

access to packed decimal data using the character string data type. No C or C++
standard library functions are available to perform arithmetic on this data, but
you may write your own.

v You can easily use HOURS, MINUTES, and SECONDS options. You may define
expiration times using TIME or INTERVAL options if you provide functions to
handle them in your application.

v You can enter all CICS keywords in mixed case, except for CICS keywords on
#pragma directives, which must be in upper case only.

v You must specify the LENGTH option from commands that support the
LENGTH option (for example, READ, READNEXT, READPREV, and WRITE
commands).

v All native C and C++ functions are allowed in the source program, but the
following functions are not recommended. Some are not executable and result in
return codes or pointers indicating that the function has failed. Some may work
but impact the performance or execution of CICS.
– CDUMP
– CSNAP
– CTEST
– CTRACE
– CLOCK
– CTDLI
– SVC99
– SYSTEM
– SETLOCALE

The following commands are supported only if you use a Language
Environment (LE) conforming compiler:
– FETCH
– RELEASE

For further information see the User’s Guide. Native C or C++ functions are
implemented in the C or C++ run-time library.

v Native C or C++ file operations operate only on files opened with type=memory
specified. I/O to CICS-supported access methods must use the CICS API.

v The string handling functions in the C or C++ standard library use a null
character as an end-of-string marker. Because CICS does not recognize a null as
an end-of-string marker, you must take care when using C or C++ functions, for
example strcmp, to operate on CICS data areas.

v Two arguments, argc and argv, are normally passed to a C or C++ main
function. argc denotes how many variables have been passed; argv is an array of
zero-terminated variable strings. In CICS, the value of argc is 1, argv[0] is the
transaction ID, and argv[1] is NULL.

v Where CICS expects a fixed-length character string such as a program name,
map name, or queue name, you must pad the literal with blanks up to the
required length if it is shorter than expected.

Chapter 3. Programming in C and C++ 47

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#

#

#

#
#

For EXEC DLI commands, the SEGMENT name is padded by the translator if a
literal is passed.

v Take care not to use field names, which, though acceptable to the assembler
compiler, cause the C or C++ compiler to abend. These include $, #, and @. See
the relevant user’s guide for more information.

v In C and C++ there is a STACK option with a 4KB default and suboptions of
ANY and below. Additionally there are ANYHEAP (for heap storage above the
16MB line) and BELOWHEAP to control heap allocations. There is a heap
manager that optimizes allocations.

Passing values as arguments
Arguments in C and C++ language are copied to the program stack at run time,
where they are read by the function. These arguments can either be values in their
own right, or they can be pointers to areas of memory that contain the data being
passed. Passing a pointer is also known as passing a value by reference.

Other languages, such as COBOL and PL/I, pass their arguments by reference,
which means that the compiler passes a list of addresses pointing to the arguments
to be passed. This is the call interface supported by CICS. To pass an argument by
reference, you prefix the variable name with &, unless it is already a pointer, as in
the case when an array is being passed.

As part of the build process, the compiler may convert arguments from one data
type to another. For example, an argument of type char may be converted to type
short or type long.

When you send values from a C or C++ program to CICS, the translator takes the
necessary action to generate code that results in an argument list of the correct
format being passed to CICS. The translator does not always have enough
information to enable it to do this, but in general, if the argument is a
single-character or halfword variable, the translator makes a precall assignment to
a variable of the correct data type and passes the address of this temporary
variable in the call.

When you receive data from CICS, the translator prefixes the receiving variable
name with &, which causes the C or C++ compiler to pass it values by reference
rather than by value (with the exception of a character string name, which is left
unchanged). Without the addition of &, the compiler would copy the receiving
variable and then pass the address of the copy to CICS. Any promotion occurring
during this copying could result in data returned by CICS being lost.

Table 6 shows the rules that apply when passing values as arguments in EXEC
CICS commands.

Table 6. Rules for passing values as arguments in EXEC CICS commands

Data type Usage Coding the argument

Character literal Data-value (S) The user must specify
the character literal
directly. The
translator takes care
of any required
indirection.

48 CICS TS for OS/390: CICS Application Programming Guide

Table 6. Rules for passing values as arguments in EXEC CICS commands (continued)

Data type Usage Coding the argument

Character variable (char) Data-area (R) The user must specify
a pointer to the
variable, possibly by
prefixing the variable
name with &.

Data-value (S) The user must specify
the character variable
directly. The
translator takes care
of any required
indirection.

Character string literal Name (S) The user can either
code the string
directly as a literal
string or use a
pointer which points
to the first character
of the string.

Character string variable Data-area (R) Name (S) Whether receiving or
sending, the
argument should be
the name of the
character array
containing the
string—the address of
the first element of
the array.

Integer variable (short, long, or
int)

Data-area (R) The user must specify
a pointer to the
variable, possibly by
prefixing the variable
name with &.

Data-value (S) The user must specify
the name of the
variable. The
translator looks after
any indirection that is
required.

Integer constant (short, long, or
int)

Data-value (S) The user must specify
the integer constant
directly. The
translator takes care
of any required
indirection.

Structure or union Data-area (S) Data-area (R) The user must code
the address of the
start of the structure
or union, possibly by
prefixing its name
with &.

Chapter 3. Programming in C and C++ 49

Table 6. Rules for passing values as arguments in EXEC CICS commands (continued)

Data type Usage Coding the argument

Array (of anything) Data-area (R) Data-value (S) The translator does
nothing. You must
code the address of
the first member of
the array. This is
normally done simply
by coding the name
of the array, which
the compiler
interprets as the
address of the first
member.

Pointer (to anything) Ptr-ref (R) Data-area (S) Whether receiving or
sending, the
argument should be
the name of the
variable that denotes
the address of
interest. The
translator takes care
of the extra level of
indirection that is
necessary to allow
CICS to update the
pointer.

Note: (R) indicates “Receiver”, where data is being received from CICS; (S) indicates
“Sender”, where data is being passed to CICS.

ADDRESS EIB command
The address of the exec interface block (EIB) is not passed as an argument to a C
or C++ main function. This means that C and C++ functions must use the
ADDRESS EIB command to obtain the address of the EIB.

Addressability is achieved by using the command:
EXEC CICS ADDRESS EIB(dfheiptr);

or by passing the EIB address or particular fields therein as arguments to the
CALL statement that invokes the external procedure.

If access to the EIB is required, an ADDRESS EIB command is required at the
beginning of each application. This applies to any commands that include RESP or
RESP2 options.

ADDRESS COMMAREA command
The address of the communication area is not passed as an argument to a C or
C++ main function. This means that C and C++ functions must use ADDRESS
COMMAREA to obtain the address of the communications area.

50 CICS TS for OS/390: CICS Application Programming Guide

C++ considerations
C++ supports object-oriented programming and you can use this language in the
same way as you would use the C language. You must specify that the translator is
to translate C++ using the CPP option.

C++ programs must also be defined as Language Environment/370. See
“Chapter 6. Language Environment” on page 61 for information about this
environment.

Restrictions
C++ uses ‘//’ for single line comments. Do not put a comment in the middle of an
EXEC CICS command. For instance, this example does not work:
EXEC CICS SEND TEXT FROM(errmsg)

LENGTH(msglen) // Send error message to screen
RESP(rcode)
RESP2(rcode2);

These examples are valid:
EXEC CICS SEND TEXT FROM(errmsg)

LENGTH(msglen)
RESP(rcode)
RESP2(rcode2); //Send error message to screen

EXEC CICS SEND TEXT FROM(errmsg)
LENGTH(msglen) /* Send error message to screen */
RESP(rcode)
RESP2(rcode2);

Chapter 3. Programming in C and C++ 51

52 CICS TS for OS/390: CICS Application Programming Guide

Chapter 4. Programming in PL/I

For information about suitable compilers for PL/I, you should see the CICS
Transaction Server for OS/390 Migration Guide or the relevant PL/I manual.

Restrictions
The following restrictions apply to a PL/I program that is to be used as a CICS
application program. Refer to the PL/I Optimizing Compiler Programmer’s Guide for
more guidance information about these facilities.
v You cannot use the multitasking built-in functions:

COMPLETION
PRIORITY
STATUS

v You cannot use the multitasking options:
EVENT
PRIORITY
TASK

v You should not use the PL/I statements:
READ LOCATE
WRITE DELETE
GET UNLOCK
PUT STOP
OPEN HALT
CLOSE EXIT
DISPLAY DELAY
REWRITE

The following commands are supported only if you use a Language
Environment (LE) conforming compiler:
FETCH
RELEASE

You are provided with EXEC CICS commands for the storage and retrieval of
data, and for communication with terminals. (However, you can use CLOSE,
PUT, and OPEN, for SYSPRINT.)

Refer to the PL/I Optimizing Compiler Programmer’s Guide for more guidance
information about when the use of these PL/I statements is necessary and the
consequences of using them.

v You cannot use PL/I Sort/Merge.
v You cannot use static storage (except for read-only data).
v If you declare a variable with the STATIC attribute and EXTERNAL attribute

you should also include the INITIAL attribute. If you do not, such a declaration
generates a common CSECT that cannot be handled by CICS.

v You cannot use the PL/I 48-character set option in EXEC CICS statements.
v Do not define variables or structures with variable names that are the same as

variable names generated by the translator. These begin with DFH. Care must be
taken with the LIKE keyword to avoid implicitly generating such variable
names.

v All PROCEDURE statements must be in upper case, with the exception of the
PROCEDURE name, which may be in lower case.

© Copyright IBM Corp. 1989, 2000 53

#
#

#
#

#

v The suboptions of the XOPTS option of the *PROCESS statement must be in
upper case.

v If a CICS command uses the SUBSTR built-in function in defining a data value,
it must include a LENGTH option to specify the data length. If it does not, the
translator generates a PL/I call including an invocation of the CSTG built-in
function in the form:
CSTG(SUBSTR(..,..,..))

This is rejected by the compiler.

PL/I STAE execution-time option
If this option is specified, an abend occurring in the transaction is handled by PL/I
error handling routines, and the transaction may terminate normally, in which
case, CICS facilities, such as dynamic transaction backout (DTB), are not invoked.

If you issue an ABEND command with the STAE option specified, you can
suppress the dump by using the NODUMP option. To get a meaningful abend
code, you must also use the ABCODE option.

Alternatively, specify the NOSTAE option, which bypasses PL/I routines handling
the abend, allowing a meaningful abend code to be issued.

Further information about PL/I and the STAE option is given in the CICS Recovery
and Restart Guide.

OPTIONS(MAIN) specification
If OPTIONS(MAIN) is specified in an application program, that program can be
the first program of a transaction, or control can be passed to it by means of a
LINK or XCTL command.

In application programs where OPTIONS(MAIN) is not specified, it cannot be the
first program in a transaction, nor can it have control passed to it by an LINK or
XCTL command, but it can be link-edited to a main program.

PL/I and dynamic storage
If your program is running LE-enabled, storage allocation is performed in
accordance with the LE-run-time options you have established. For more
information about running PL/I applications as LE-enabled programs, refer to the
PL/I for MVS and VM Programming Guide.

If you are using PL/I and your load module requires more than 64KB of dynamic
storage to initialize, this results in the PL/I abend, APLG. With MVS, this limit is
increased to one megabyte for areas that you allocate explicitly above the 16MB
line using a GETMAIN command with the FLENGTH option. However, you
should be aware that all automatic storage and DSA for PL/I save areas are below
the 16MB line even when the program is specified as AMODE(31) and
RMODE(ANY). This is because PL/I has to do a single GETMAIN operation below
the line for this storage and CICS has a restriction of 64KB in a single GETMAIN
operation below the 16MB line. The ISA size should be sufficient to satisfy all
storage allocation. To estimate this size, activate the REPORT option during the test
phase. This option tells you if the ISA size is sufficient or if you need to perform
GETMAIN operations during program processing.

54 CICS TS for OS/390: CICS Application Programming Guide

You can avoid this problem happening in an ESA AMODE(31) environment by
coding your program as follows. Instead of making your biggest PL/I structures
and arrays AUTOMATIC, define them as BASED on a POINTER variable, which
you initialize using GETMAIN SET (pointer) FLENGTH(length). (Note that you
must use FLENGTH instead of LENGTH.)

For example, suppose you have a PL/I program with these arrays declared:
DCL A(10,10) FLOAT

and
DCL B(100,10) CHAR(100)

These arrays need 400 (that is, 10 x 10 x 4) and 100000 (that is, 100 x 10 x 100),
respectively.

You code your PL/I program as illustrated in Figure 10.

This prevents a PL/I abend (APLG) occurring, and means that your program can
use storage above the line that would otherwise have been needed below the line.

DCL (APOINTER, BPOINTER) POINTER;
DCL A(10,10) FLOAT BASED(APOINTER),

B(100,10) CHAR(100) BASED(BPOINTER),
CSTG BUILTIN;

EXEC CICS GETMAIN
SET(APOINTER)
FLENGTH(CSTG(A));

EXEC CICS GETMAIN
SET(BPOINTER)
FLENGTH(CSTG(B));

Figure 10. Example of a PL/I program with arrays declared

Chapter 4. Programming in PL/I 55

56 CICS TS for OS/390: CICS Application Programming Guide

Chapter 5. Programming in Assembler

The following instructions cannot be used in an assembler language program that
is to be used as a CICS application program:
COM Identify blank common control section.
ICTL Input format control.
OPSYN

Equate operation code.

Working storage is allocated either above or below the 16MB line, according to the
value of the DATALOCATION parameter on the PROGRAM definition in the CSD.

When using BAKR instructions (branch and stack) to provide linkage between
assembler programs, take care that the linked-to program does not issue EXEC
CICS requests. If CICS receives control and performs a task switch before the
linked-to program returns by a PR instruction (program return), then other tasks
might be dispatched and issue further BAKR / PR calls. These modify the
linkage-stack and result in the wrong environment being restored when the
original task issues its PR instruction.

Compilers supported
For programming in assembler language, you can find information about
appropriate compilers in the CICS Transaction Server for OS/390 Migration Guide or
the relevant assembler manual.

Restrictions for 31-bit addressing
The following restrictions apply to an assembler language application program
executing in 31-bit mode:
v The interval control command WAIT EVENT is not supported when the

associated event control block (ECB) resides above the 16MB line. Instead, you
can use the task control command WAIT EXTERNAL ECBLIST.

v The COMMAREA option is restricted in a mixed addressing mode transaction
environment. For a discussion of the restriction, see “Mixed addressing mode
transactions” on page 473.

MVS restrictions
The following restrictions apply to an assembler language application program that
uses access registers to exploit the extended addressability of ESA/370 processors:
v You must be in primary addressing mode when invoking any CICS service. The

primary address-space must be the home address-space. All parameters passed
to CICS must reside in the primary address-space.

v CICS does not always preserve access registers. You must save them before you
invoke a CICS service, and restore them before using the access registers again.

For more guidance information about using access registers, see the OS/390 MVS
Programming: Extended Addressability Guide.

© Copyright IBM Corp. 1989, 2000 57

Invoking assembler language application programs with a call
Assembler language application programs that contain commands can have their
own RDO program definition. Such programs can be invoked by COBOL, C or
C++, PL/I, or assembler language application programs using LINK or XCTL
commands (see “Chapter 35. Program control” on page 467). However, because
programs that contain commands are invoked by a system standard call, they can
also be invoked by a COBOL, C, C++, or PL/I CALL statement or by an assembler
language CALL macro.

A single CICS application program, as defined in an RDO program definition, may
consist of separate CSECTs compiled or assembled separately, but linked together.

An assembler language application program that contains commands can be linked
with other assembler language programs, or with programs in one, and only one,
of the high-level languages (COBOL, C, C++, or PL/I). When you do this, the
high-level language program must be listed ahead of the assembler language
program when you link edit, and the RDO program definition must specify that
high-level language.

If an assembler language program contains command-level calls, and is called from
a high-level language program, it requires its own CICS interface stub. The
message MSGIEW024I is issued, but this can be ignored.

Because assembler language application programs containing commands are
always passed the parameters EIB and COMMAREA when invoked, the CALL
statement or macro must pass these two parameters followed, optionally, by other
parameters.

For example, the PL/I program in file PLITEST PLI calls the assembler language
program ASMPROG, which is in file ASMTEST ASSEMBLE. The PL/I program
passes three parameters to the assembler language program, the EIB, the
COMMAREA, and a message string.

The assembler language program performs an EXEC CICS SEND TEXT command,
which displays the message string passed from the PL/I program.

PLIPROG:PROC OPTIONS(MAIN);
DCL ASMPROG ENTRY EXTERNAL;
DCL COMA CHAR(20), MSG CHAR(14) INIT('HELLO FROM PLI');
CALL ASMPROG(DFHEIBLK,COMA,MSG);
EXEC CICS RETURN;
END;

Figure 11. PLITEST PLI

DFHEISTG DSECT
MSG DS CL14
MYRESP DS F
ASMPROG CSECT

L 5,8(1)
L 5,0(5)
MVC MSG,0(5)
EXEC CICS SEND TEXT FROM(MSG) LENGTH(14) RESP(MYRESP)
END

Figure 12. ASMTEST ASSEMBLE

58 CICS TS for OS/390: CICS Application Programming Guide

For this to work, first link edit the assembler language program, as follows:

and then link the PL/I and assembler language programs together:

An assembler language application program that is called by another begins with
the DFHEIENT macro and ends with the DFHEIRET macro. The CICS translator
inserts these for you, so if the program contains EXEC CICS commands and is to
be passed to the translator, as in the example just given, you do not need to code
these macros.

INCLUDE SYSLIB(DFHEAI)
INCLUDE OBJECT
NAME ASMTEST(R)

INCLUDE SYSLIB(DFHPL1OI)
INCLUDE OBJECT
INCLUDE SYSLIB(ASMTEST)
NAME PLITEST(R)

Chapter 5. Programming in Assembler 59

60 CICS TS for OS/390: CICS Application Programming Guide

Chapter 6. Language Environment

Language Environment® can be used in a CICS environment. It provides a
run-time library that establishes a common execution environment for
programming languages.

Support for new languages under CICS will be dependent upon Language
Environment. See the Language Environment Concepts Guide for more information.

Levels of support in Language Environment
Language Environment provides two different levels of support, depending on the
compiler used.

See the CICS System Definition Guide for more information about compilers.

Fully LE-conforming support
If an application program is compiled by a fully-conforming compiler, that
program is said to be LE-conforming. A fully-conforming program can take
advantage of Language Environment services on a CICS system. A
fully-conforming program cannot execute without Language Environment
support. The following fully LE-conforming compilers are available:
v OS/390 C/C++
v C/C++ for MVS/ESA
v AD/CYCLE C/370™

v COBOL for OS/390 & VM
v COBOL for MVS & VM
v AD/CYCLE for COBOL/370
v PL/I for MVS & VM
v AD/CYCLE PL/I for MVS & VM

Compatibility support
Language Environment also supports programs that are not compiled with
LE-conforming compilers. This means that programs can be defined in the PPT
as Language Environment, and can then run correctly without being
recompiled.

The language of a compatibility support program does not have to be defined
as Language Environment, but the Language Environment libraries must be
above all the other language libraries in the JCL concatenation to ensure that
the programs are processed by Language Environment.

Language Environment provides some callable services in CICS. These services are
available only to fully LE-conforming programs. For guidance and reference
information about these services, see the Language Environment library. (See page
“Language Environment:” on page xviii for details about the Language
Environment manuals.)

© Copyright IBM Corp. 1989, 2000 61

Abend handling in an LE environment
If you run CICS PL/I programs in conjunction with Language Environment/370,
your CICS abend handlers will be given an LE Abend Code, rather than a PL/I
Abend Code.

To avoid the need to change your programs, you can use the Language
Environment supplied sample program, CEEWUCHA, to modify the LE user
abend handler to return PL/I Abend Codes.

Defining run-time options
Language Environment provides run-time options to control your program’s
processing. You can set the default values for most of these options at installation
time and over-ride them using the CEEUOPT macro or with statements in your
program source code.

62 CICS TS for OS/390: CICS Application Programming Guide

|

|
|
|

|
|
|

|

|
|
|
|

Part 2. Object Oriented programming in CICS

Chapter 7. Object Oriented (OO) programming
concepts 65
What is OO? 65

Encapsulation 65
Data structures 65

OO Terminology. 66
Accessing CICS services from OO programs . . . 68

Chapter 8. Programming in Java 69
The JCICS Java classes. 69

Translation 69
JavaBeans 70
Library structure 70
CICS resources 71
Command arguments 71
Using the Java Record Framework. 71
Threads 71

JCICS programming considerations 72
Storage management 72
Abnormal termination in Java 72
Exception handling in Java 72

CICS error handling commands 73
CICS conditions 74

CICS Intercommunication 75
BMS 75
Terminal Control 76
File control services. 76
Program control services 76
Unit of Work (UOW) services 76
Temporary storage queue services 76
Transient data queue services 77
Environment services 77
Unsupported CICS services 79
System.out and System.err 79

Using JCICS 80
Writing the main method 80
Creating objects 80
Using objects 80

Chapter 9. JCICS sample programs 83
Supplied sample components 83
Building the Java samples 84

Building the Java samples for ET/390 84
Building the Java samples for the JVM 85

Building the CICS native applications 85
Resource definitions 85

Running the Hello World sample 85
Running the Program Control sample 86
Running the TDQ sample 86
Running the TSQ sample 86

Chapter 10. Support for VisualAge for Java,
Enterprise ToolKit for OS/390. 89
Building a CICS Java program object 90

Preparing prerequisite environment 90

Using PDSE libraries 91
Compiling and binding a program using
VisualAge for Java 91

Configuring your workstation and host
environments 91
Creating the package and project 92
Writing the main method 93
Setting up ET/390 properties 93
Exporting and binding the executable program
object 94
Running the CICS transaction 94

Developing a Java program object using javac . . 94
Using the IBM Java Record Framework . . . 94

Using the ET/390 binder 95
hpj command options 95
Handling Resource Files 96
Setting Java System Properties 96

Running a CICS Java program 97
Run-time requirements 97

Using hot-pooling 98
Open Transaction Environment (OTE) TCBs . . 98
Allocating an H8 TCB for hot-pooling 99
Managing the hot-pooling environment . . . 100

Defining Language Environment run-time
options 100
Allocating storage 101

Defining hot-pooled Java program objects . . . 101
THREADSAFE 102

Programming considerations for Java
hot-pooling 102

Static storage and static initializers 102
Programming interfaces 103
Protection keys 103
Exit programming interface (XPI). 103

Hot-pooling exit program 104
Security 104
Problem determination 104

Interactive debug using the Debug Tool 104

Chapter 11. Using the CICS Java virtual
machine 107
JVM execution environment 107
Running JVM programs 108

Compile-time requirements 109
Run-time requirements 109
CICS-supplied .jar files 110
JVM directory 110
JVM environment variables 110
stdin, stdout and stderr 111

JCICS programming considerations for JVM
programs 111

Java System Properties 112
Using the Abstract Windows Toolkit (AWT) classes 113

Remote Abstract Windows Toolkit 113
Using Remote AWT with CICS 113

© Copyright IBM Corp. 1989, 2000 63

|
||
||
||
||
||
||

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

||
||
||
||
||
||
||
||
||
||
||

|
||
||
||

##
|
||
|
||
||
||
||
|
||
||
||
||
||
||
||
||
||
||
##
##
##
##
#
##
##
##
##
#
##
##
##
##
##
##
##
##
||

|
||
||
||
||
||
||
||
||
||
|
||
||
||
||
||

64 CICS TS for OS/390: CICS Application Programming Guide

Chapter 7. Object Oriented (OO) programming concepts

This chapter may help introduce object-oriented (OO) programming to
programmers who are familiar with CICS.

The aim is to explain the OO concepts needed to make sense of the descriptions of
the CICS interface functions that can be used by OO languages. The description is
in terms that should be understood by programmers who are unfamilar with OO,
but familiar with programming CICS in COBOL, PLI or Assembler.

The OO languages supported by CICS are C++ and Java and they share much of
the terminology. The following sections are applicable to both.

What is OO?
Although we speak of ’OO languages’ and ’non-OO languages’, the OO language
can only influence the way in which a program is constructed by restricting some
techniques and enabling others. It is possible to use some of the OO techniques
available in a language without making programs completely object-oriented and
this partial use of OO is a good way of becoming familiar with OO techniques if
you have been used to non-OO languages. To describe what OO is, we can look at
the ways of achieving the same ends using OO techniques and non-OO techniques.

Encapsulation
The great advantage of an OO language is that it encourages the construction of
programs that have strong encapsulation of function; OO enables more complex
functions to be securely encapsulated. Encapsulation means that users of a function
need not be so aware of the internal details of the function. Also, at a lower level,
type checking of access to fields can be made more rigorous, less error prone and
better diagnostics can be provided by the compiler and run-time. Encapsulation
and run-time type analysis together also enable easy reuse and customization of
code through inheritance techniques. (See the “OO Terminology” on page 66 for a
brief explanation of inheritance).

Data structures
What kind of complexity does OO take care of? Traditionally, non-OO programs
refer to, map and manipulate storage areas and their contents as fields within
structures such as COMMAREAs, file and database records and BMS symbolic
maps. This is quite satisfactory for structures that have a fixed format. Compilers
provide good checking of the correct access and processing of the fields, and
run-time allocation of storage areas for structures that are declared as part of the
program stack (that is, automatic storage in PL/I and working storage in COBOL).
Complexity arises when structures are linked together with pointers. In this case,
the storage for structures may need to be allocated explicitly with GETMAIN
commands, and the layout or linkage of the areas may change depending on the
input data. Perhaps using weakly typed fields such as char or PIC to contain the
variable data. These kinds of logic must be hand-built (and hand-checked!) by
non-OO programmers.

In comparison, fully-fledged OO programs always refer to the data through an
abstract type definition (often the summit of a hierarchy of definitions) and storage
layout is completely hidden within components that need not reveal the layout

© Copyright IBM Corp. 1989, 2000 65

|

|

|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

(and complexity) to calling programs; calling programs need only a simple object
reference to use the component. OO languages keep track of data types, provide
run-time checking and control program logic based on the types. This greater
power and accuracy in data description also makes modification and maintenance
of the programs more reliable compared to programs with hand-built logic.

In CICS, each execution of a program has its own environment. If all the data in
the program fits into variables on the program stack or into areas directly
referenced and managed by CICS or the compiler, such as temporary storage or a
database records, non-OO techniques are sufficient, and the OO features of a
language will not be needed. If you need to manipulate data references, deal with
aggregates such as lists, or manage data using tokens created within your own
program, OO provides helpful techniques and ready-made library functions.

OO Terminology
To be more precise in the description of OO, some new terminology is needed.
This summary is not the whole story of OO, and in particular, the techniques of
inheritance and virtual functions that are at the heart of OO need further detail. A
guide book on the Java or C++ languages will provide more information.

object
Informally speaking, an object is a piece of data (an example is an area of
storage) the contents of which can be manipulated only by a set of strictly
defined interfaces. The important point is that the data is an atom as far as the
users of the interfaces are concerned. The behavior of the data is completely
described by the interfaces and cannot be manipulated or interrogated any
other way (such as by getting direct addressability to the storage). OO
languages do provide ways (as part of the interface definitions) to access data
fields within the object, but this access is strictly controlled.

An OO application consists of one or more components that define the objects
(data and interfaces) that are instantiated at run-time. In OO systems every
object is formally a sub-class of the system-defined Object type.

types
Datatypes in OO langages are not really very different from datatypes in other
languages; they declare to the compiler the operations that are permitted on
the program variables. Strong typing is an important feature of OO languages
because it allows the compiler and run-time environment to give more help to
the programmer. There are two kinds of type in OO languages:

Base types
These are the simplest types, often relating to the hardware on which the
program runs.

User-defined types
These are complex types constructed from the base types. In some
languages, such as C++, user-defined types that are kept in explicitly
allocated storage areas are a half-way house to an OO style of
programming. Objects are user-defined types whose storage is
automatically managed, and whose contents are accessible only through
routines (methods) that the compiler and run-time environment control. In
Java, user-defined types can only exist as objects.

object reference
An object reference is a variable that contains:
v A pointer to the storage that contains the object.

66 CICS TS for OS/390: CICS Application Programming Guide

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

|

v The type of the object. In some kinds of OO program (such as lists or tables),
which act as managers of other objects, the type of a parameter might be
determined at run-time, so the type must be carried with the object
reference.

class
The word class is a term in the Java and C++ languages that is used to declare
a set of variables and methods that define an object. In other words, a class is
the unit of programming that defines an object. In Java, the compiled code is
called a .class file. This term is also used to imply that all objects in the same
class are similar in terms of their data contents. They may, in fact, be different
in certain aspects by virtue of being specialized in ways which do not affect
the basic behavior of the class.

method
A method is the OO term for a procedure, function or subroutine.

constructor
A constructor is the function that allocates and initializes storage for an object.
C++ also has the concept of destructors.

interface
An interface to an OO component describes the constructor function, the
method names and their respective parameter lists.

implementation
The term implementation has no special meaning in OO, but because of the
strong typing and strict interface definitions used in OO, the behavior (such as
the performance) of particular implementations can be distinguished more
precisely from the interface definition.

inheritance
Inheritance is a large, and often controversial, subject that is easiest to describe
with a particular example. If a design requires some behavior that is similar to
a class that has already been written, the new design can be implemented by
extending the existing class. The new class inherits the old class, and adds data
and methods of its own. The new class is said to be a sub-class of the old
class. Remarkably, by virtue of run-time type analysis, OO languages allow the
sub-class to be used anywhere the old class was used.

Inheritance is particularly useful because it allows reuse of code, without the
need to completely understand the code that is being reused. Documentation
of the Java and C++ languages will contain information about the specific
behavior of inheritance in the respective languages.

instance
An instance of a class is the result of a particular run-time invocation of the
class. An instance can also be called an object. All of the instances created by
the same component are said to be of the same class.

signature
The signature of a method is the list of datatypes that make the parameter list.

static variables
Data items that are declared in a class, which have a single copy that is shared
by all instances of the object defined by the class, are known as static variables.
By constrast, the data that is particular to an instance of a class is called an
instance variable. Static variables are also sometimes known as class variables
or class fields.

Chapter 7. Object Oriented (OO) programming concepts 67

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

Accessing CICS services from OO programs
CICS provides class libraries for use with Java and C++ programs:

C++ OO Class libraries
Described in the CICS C++ OO Class Libraries manual.

CICS Java classes (JCICS)
Described in “Chapter 8. Programming in Java” on page 69.

68 CICS TS for OS/390: CICS Application Programming Guide

|
|

|

|
|

|
|

Chapter 8. Programming in Java

You can write Java application programs that use CICS services and execute under
CICS control. You can develop Java programs on a workstation, or in the OS/390
UNIX System Services shell, using an editor of your choice, or in a visual
composition environment such as VisualAge.

CICS provides a Java class library, known as JCICS, supplied in dfjcics.jar. JCICS
allows you to access CICS resources and integrate your Java programs with
programs written in other languages. Most of the functions of the CICS EXEC API
are supported. See “The JCICS Java classes” for a description of the JCICS API.

The Java language is designed to be portable and architecture-neutral, and the
bytecode generated by compilation requires a machine-specific interpreter for
execution. CICS provides this execution environment in two different ways:
1. Using VisualAge for Java, Enterprise ToolKit for OS/390 to bind the Java

bytecode into OS/390 executable files that are stored in MVS PDSE libraries
and executed by CICS in a Language Environment (LE) run-unit, similarly to
C++.

2. Using an MVS Java Virtual Machine that is executing under CICS control.

You can read about VisualAge for Java, Enterprise ToolKit for OS/390 in
“Chapter 10. Support for VisualAge for Java, Enterprise ToolKit for OS/390” on
page 89 and the CICS JVM in “Chapter 11. Using the CICS Java virtual machine”
on page 107.

This chapter tells you how to use the JCICS classes to access CICS services. It
contains the following topics:
v “The JCICS Java classes”
v “JCICS programming considerations” on page 72
v “Using JCICS” on page 80

The JCICS Java classes
The CICS Java class library, JCICS, supports most of the functions of the EXEC
CICS API commands, with the restrictions described in “JCICS programming
considerations” on page 72.

The JCICS classes are documented in JAVADOC HTML in dfjcics_docs.zip. This is
provided by CICS in the OS/390 UNIX System Services HFS, in the
$CICS_HOME/docs directory, during installation of CICS. Also included is an
HTML tutorial example on using VisualAge for Java with CICS. You should
download this file in binary mode to a workstation, to a file system that can
support long names, such as OS/2 HPFS, FAT32 or NTFS. You can then unzip it,
and read it with a Web browser, starting at index.htm.

Translation
There is no CICS translator needed for Java programs.

© Copyright IBM Corp. 1989, 2000 69

|

|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|

|

JavaBeans
Some of the classes in JCICS may be used as JavaBeans, which means that they can
be customized in an application development tool such as VisualAge for Java,
serialized, and manipulated using the JavaBeans API. The beans in the CICS Java
API are currently:
v Program
v ESDS
v KSDS
v RRDS
v TDQ
v TSQ
v AttachInitiator
v EnterRequest

These beans do not define any events; they consist of properties and methods.
They can be instantiated at run-time in one of three ways:
1. By calling new for the class itself. (This is the recommended way.)
2. By calling Beans.instantiate() for the name of the class, with property values

set manually.
3. By calling Beans.instantiate() of a .ser file, with property values set at

design time.

If either of the first two options are chosen, then the property values, including the
name of the CICS resource, must be set by invoking the appropriate setter methods
at run-time.

Library structure
JCICS library components fall into one of four categories:
v Interfaces
v Classes
v Exceptions
v Errors

Interfaces
Some interfaces are provided to define sets of constants. For example, the
TerminalSendBits interface provides a set of constants that can be used to
construct a java.util.BitSet.

Classes
The supplied classes provide most of the JCICS function. The API class is an
abstract class that provides for common initialization for every class that
corresponds to a part of the CICS API, except for ABENDs and exceptions. For
example, the Task class provides a set of methods and variables that
correspond to a CICS task.

Errors and Exceptions
Java defines both exceptions and errors as subclasses of the class Throwable.
JCICS defines CicsError as a subclass of Error and it provides the superclass
for all other CICS error classes. These are used for severe errors.

70 CICS TS for OS/390: CICS Application Programming Guide

|

|
|
|
|

|

|

|

|

|

|

|

|

|
|

|

|
|

|
|

|
|
|

|

|

|

|

|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

JCICS defines CicsException as a subclass of Exception. CicsException
provides the superclass for all CICS exception classes. This includes the
CicsConditionException classes such as InvalidQueueIdException, which
represents the QIDERR condition.

CICS resources
CICS resources, such as programs or temporary storage queues, are represented by
instances of the appropriate Java class, identified by the values of various
properties such as name and, for some classes, a SYSID.

Resources must be defined to CICS in the usual way, using CEDA. See the CICS
Resource Definition Guide for information about defining CICS resources. It is
possible to use implicit remote access by defining a resource locally to point to a
remote resource.

The resource name and SYSID, if appropriate, are never specified in any method
call, they are always taken from the object against which the method is invoked.

Command arguments
Parameters such as the COMMAREA in a link() are passed as arguments to the
appropriate methods. Many of the methods are overloaded, that is, they have
different versions that take either a different number of arguments or arguments of
a different type. There may be one method that has no arguments, or the minimum
mandatory arguments, and another that has all of the arguments. For example,
there are the following different link() methods in the Program class:

link()
This version does a simple LINK without a COMMAREA or any other options.

link(com.ibm.cics.server.CommAreaHolder)
This version does a simple LINK with a COMMAREA but without any other
options.

link(com.ibm.cics.server.CommAreaHolder, int)
This version does a distributed LINK with a COMMAREA and
DATALENGTH.

link(com.ibm.record.IByteBuffer)
This version does a LINK with an object that implements the IByteBuffer
interface of the Java Record Framework supplied with VisualAge for Java.

Using the Java Record Framework
The main purpose of Java Record Framework is to provide run-time support for
accessing application record data (such as VSAM, or COMMAREAs).

You can use the framework as the base for record-oriented file input/output, as
well as for record-based message passing schemes. You can use the framework for
new applications, and for applications accessing existing files.

The Java Record Framework is part of VisualAge for Java. You can find out more
about it in the VisualAge documentation, which is supplied in HTML format with
the product.

Threads
Only one thread (the initial thread) can access the CICS API. You can create other
threads but you must route all requests to the CICS API through the initial thread.

Chapter 8. Programming in Java 71

|
|
|
|

|

|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|

|
|

|
|
|

|
|
|

|

|
|

Additionally, you must ensure that all threads other than the original thread have
terminated before doing any of the following:
v the equivalent of a LINK
v the equivalent of an XCTL
v the equivalent of a RETURN
v the equivalent of a SYNCPOINT
v returning an AbendException to the CICS Java wrapper

Note: Threads are not suppoerted by ET/390.

JCICS programming considerations
Some of the options and services available through the EXEC CICS API are not
accessible from JCICS. This section lists these restrictions.

Storage management
No support is provided for explicit storage management using CICS services (such
as EXEC CICS GETMAIN). You should find that the standard Java storage
management facilities are sufficient to meet the needs for task-private storage.

Sharing of data between tasks must be accomplished using CICS resources.

Java commands that read data support only the equivalent of the SET option on
EXEC CICS commands. The data returned is automatically copied from CICS
storage to a Java object.

Names are generally represented as Java strings or byte arrays, and you must
ensure that they are of the necessary length.

Abnormal termination in Java
ABEND

To initiate an ABEND from a CICS Java program, you invoke the
Task.abend(String) method, supplying an ABEND code. This will cause an
abend condition to be set in CICS and an AbendException to be thrown. If the
AbendException is not caught within a higher level of the application object, or
handled by an ABEND-handler registered in the calling program (if any), then
CICS will terminate and roll-back the transaction.

ABEND CANCEL
To initiate an ABEND that cannot be handled, you invoke the
Task.forceAbend(String) method, supplying an ABEND code. As described
above, this will cause an AbendCancelException to be thrown which can be
caught in Java. If you do so, you must rethrow the exception to complete
ABEND_CANCEL processing, so that when control returns to CICS, it will
terminate and roll back the transaction. You should only catch
AbendCancelException for notification purposes and then you should re-throw
it.

Exception handling in Java
CICS ABENDs and exceptions are integrated into the Java exception-handling
architecture. All regular CICS ABENDs are mapped to a single Java exception,
AbendException, whereas each CICS condition is mapped to a separate Java
exception.

72 CICS TS for OS/390: CICS Application Programming Guide

|
|

|

|

|

|

|

|

|
|

|
|

|

|
|
|

|

|
|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

This leads to an ABEND-handling model in Java that is similar to the other
programming languages; a single handler is given control for every ABEND, and
the handler has to query the particular ABEND and then decide what to do.

If the exception representing a condition is caught by CICS itself, it is turned into
an ABEND, just as happens with COBOL if a handler is not defined for a
particular condition.

The exception-handling in Java is fully integrated with the ABEND and
condition-handling in other languages, so that ABENDs can propagate between
Java and non-Java programs, in the standard language-independent way. A
condition is mapped to an ABEND before it leaves the program that caused or
detected the condition.

In addition, there are several differences to the abend-handling model for other
programming languages, resulting from the nature of the Java exception-handling
architecture and the implementation of some of the technology underlying the Java
API:
v ABENDs that are considered unhandleable in other programming languages can

be caught by Java. These ABENDs typically occur during SYNCPOINT
processing. To avoid these ABENDs interrupting Java applications they are
mapped to an extension of an unchecked exception and therefore they do not
have to be declared or caught.

v Several internal CICS events, such as program termination are also mapped to
Java exceptions and can therefore again be caught by a Java application. Again,
to avoid interrupting the normal case these are mapped to extensions of an
unchecked exception and so do not have to be caught or declared.

Note: Do not use the LE runoption TRAP=OFF as this will disable Abend
Handling in JCICS.

There are three CICS-related class hierarchies of exceptions:
1. CicsError which extends java.lang.Error and is the base for AbendError and

UnknownCicsError.
2. CicsRuntimeException which extends java.lang.RuntimeException and is in

turn extended by:

AbendException
represents a normal CICS ABEND.

EndOfProgramException
indicates that a linked-to program has terminated normally.

TransferOfControlException
indicates that a linked-to program has terminated because it has issued an
XCTL.

3. CicsException which extends java.lang.Exception and has the subclass:

CicsConditionException.
the base class for all CICS conditions.

CICS error handling commands
CICS condition handling is integrated into the Java exception architecture as
described above. The way that each command is supported is described below:

Chapter 8. Programming in Java 73

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

|
|

|
|

|
|

|
|

|
|
|

|

|
|

|
|
|

HANDLE ABEND
To handle an ABEND generated by a program in any CICS supported
language, you can use a Java try-catch statement, with AbendException
appearing in a catch clause.

HANDLE CONDITION
To handle a specific condition, such as PGMIDERR, you can use a catch clause
that names the appropriate exception, in this case InvalidProgramException.
Alternatively, you can use a catch clause naming CicsConditionException if all
CICS conditions are to be caught.

IGNORE CONDITION
This command is not relevant in Java applications.

POP and PUSH HANDLE
These commands are not relevant in Java applications. The Java exceptions
used to represent CICS ABENDs and conditions are caught by any catch block
in scope.

CICS conditions
The condition-handling model in Java is different from other CICS programming
languages.

In COBOL, you can define an exception-handling label for each condition, and if
that condition occurs during the processing of a CICS command, control transfers
to the label.

In C and C++, you cannot define an exception-handling label for a condition; the
RESP field in the EIB must be checked after each CICS command to detect a
condition.

In Java, any condition returned by a CICS command is mapped into a Java
exception. You can include all CICS commands in a try-catch block and do specific
processing for each condition, or have a single null catch clause if the particular
exception is not relevant. Alternatively, you can let the condition propagate, to be
handled by a catch clause at a larger scope.

The mapping between CICS conditions and Java exceptions is shown in the
following table:

Table 7. Java exception mapping

CICS condition Java Exception CICS condition Java Exception

ALLOCERR AllocationErrorException CBIDERR InvalidControlBlockIdException

CCERROR CCERRORException DISABLED FileDisabledException

DSIDERR FileNotFoundException DSSTAT DestinationStatusChangeException

DUPKEY DuplicateKeyException DUPREC DuplicateRecordException

END EndException ENDDATA EndOfDataException

ENDFILE EndOfFileException ENDINPT EndOfInputIndicatorException

ENQBUSY ResourceUnavailableException ENVDEFERR InvalidRetrieveOptionException

EOC EndOfChainIndicatorException EODS EndOfDataSetIndicatorException

EOF EndOfFileIndicatorException ERROR ErrorException

EXPIRED TimeExpiredException FILENOTFOUND FileNotFoundException

FUNCERR FunctionErrorException IGREQID InvalidREQIDPrefixException

74 CICS TS for OS/390: CICS Application Programming Guide

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 7. Java exception mapping (continued)

CICS condition Java Exception CICS condition Java Exception

IGREQCD InvalidDirectionException ILLOGIC LogicException

INBFMH InboundFMHException INVERRTERM InvalidErrorTerminalException

INVEXITREQ InvalidExitRequestException INVLDC InvalidLDCException

INVMPSZ InvalidMapSizeException INVPARTNSET InvalidPartitionSetException

INVPARTN InvalidPartitionException INVREQ InvalidRequestException

INVTSREQ InvalidTSRequestException IOERR IOErrorException

ISCINVREQ ISCInvalidRequestException ITEMERR ItemErrorException

JIDERR InvalidJournalIdException LENGERR LengthErrorException

MAPERROR MapErrorException MAPFAIL MapFailureException

NAMEERROR NameErrorException NODEIDERR InvalidNodeIdException

NOJBUFSP NoJournalBufferSpaceException NONVAL NotValidException

NOPASSBKRD NoPassbookReadException NOPASSBKWR NoPassbookWriteException

NOSPACE NoSpaceException NOSPOOL NoSpoolException

NOSTART StartFailedException NOSTG NoStorageException

NOTALLOC NotAllocatedException NOTAUTH NotAuthorisedException

NOTFND RecordNotFoundException NOTOPEN NotOpenException

OPENERR DumpOpenErrorException OVERFLOW MapPageOverflowException

PARTNFAIL PartitionFailureException PGMIDERR InvalidProgramIdException

QBUSY QueueBusyException QIDERR InvalidQueueIdException

QZERO QueueZeroException RDATT ReadAttentionException

RETPAGE ReturnedPageException ROLLEDBACK RolledBackException

RTEFAIL RouteFailedException RTESOME RoutePartiallyFailedException

SELNERR DestinationSelectionErrorException SESSBUSY SessionBusyException

SESSIONERR SessionErrorException SIGNAL InboundSignalException

SPOLBUSY SpoolBusyException SPOLERR SpoolErrorException

STRELERR STRELERRException SUPPRESSED SuppressedException

SYSBUSY SystemBusyException SYSIDERR InvalidSystemIdException

TASKIDERR InvalidTaskIdException TCIDERR TCIDERRException

TERMERR TerminalException TERMIDERR InvalidTerminalIdException

TRANSIDERR InvalidTransactionIdException TSIOERR TSIOErrorException

UNEXPIN UnexpectedInformationException USERIDERR InvalidUserIdException

WRBRK WriteBreakException WRONGSTAT WrongStatusException

CICS Intercommunication
APPC unmapped conversation support is not available from the JCICS API.

BMS
BMS is not supported by the JCICS API, apart from SEND TEXT and SEND
CONTROL, which are supported as part of Terminal Control.

Chapter 8. Programming in Java 75

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

|

|

|

|
|

Terminal Control
This functional area is partially supported by JCICS:

CONVERSE (terminal)
This command is supported.

RECEIVE (terminal)
This command is supported.

SEND (terminal)
This command is supported.

SEND CONTROL
This command is supported.

SEND TEXT
This command is supported.

File control services
JCICS provides support for all types of files, including browsing.

Program control services
JCICS support for the CICS program control commands is described below:

LINK
The LINK command is fully supported by the link() methods in the Program
class.

RETURN
Only the pseudo-conversational aspects of this command are supported. You
do not need to call CICS simply to return; you can just terminate your Java
application normally. The pseudo-conversational aspects are supported by the
setNextTransaction and setNextCOMMAREA methods in the
TerminalPrincipalFacility class.

XCTL
This command is fully supported by the xctl() methods in the Program class.

SUSPEND
This command is not supported.

Unit of Work (UOW) services
The SYNCPOINT command is fully supported by the commit() and rollback()
methods in the Task class.

Temporary storage queue services
JCICS support for the temporary storage commands is described below. All options
are supported except INTO.

DELETEQ TS
You can delete a temporary storage queue (TSQ) using the delete() method in
the TSQ class.

READQ TS
You can read a specific item from a TSQ using the readItem() method in the
TSQ class. This method takes as parameters an integer identifying the item to
be read, and an instance of an ItemHolder that contains a byte array containing
the data read. The storage for this byte array is created by CICS and it can be
garbage-collected by Java normally.

76 CICS TS for OS/390: CICS Application Programming Guide

|

|

|
|

|
|

|
|

|
|

|
|

|

|

|

|

|
|
|

|
|
|
|
|
|

|
|

|
|

|

|
|

|

|
|

|
|
|

|
|
|
|
|
|

You can read the next item using the readNextItem() method in the TSQ class.
This method takes as a parameter an instance of an ItemHolder which contains
a byte array containing the data read. The storage for this byte array is created
by CICS and it can be garbage-collected by Java normally.

WRITEQ TS
You can write a new item to a TSQ using the writeItem() or
writeItemConditional() method in the TSQ class.

You can rewrite an existing item to a TSQ using the rewriteItem() or
rewriteItemConditional() method in the TSQ class.

The Conditional methods use the NOSUSPEND API option to ensure that an
exception is thrown if resources are unavailable. The task is not suspended.

Transient data queue services
JCICS support for the transient data commands is described below. All options are
supported except INTO.

DELETEQ TD
You can delete a transient data queue (TDQ) using the delete() method in the
TDQ class.

READQ TD
You can read from a TDQ using the readData() or the readDataConditional()
method in the TDQ class. These methods take as a parameter an instance of a
DataHolder that contains a byte array containing the data read. The storage for
this byte array is created by CICS and it can be garbage-collected by Java
normally.

The Conditional method uses the NOSUSPEND API option to ensure that an
exception is thrown if resources are unavailable. The task is not suspended.

WRITEQ TD
You can write to a TDQ using the writeData() method in the TDQ class.

Environment services
The only commands and options that are supported are:
v ADDRESS
v ASSIGN
v INQUIRE SYSTEM
v INQUIRE TASK
v INQUIRE TERMINAL/NETNAME

ADDRESS
The following support is provided for the ADDRESS options:

COMMAREA
The COMMAREA is passed automatically to a program by the
CommAreaHolder argument to the main() method.

EIB Access to EIB values is provided by methods on the appropriate
objects. For example, the eibtrnid field is returned by the
getTransactionName() method of the Task class, and the eibaid is
returned by the getAIDbyte() method of the
TerminalPrincipalFacilityExtended class.

Chapter 8. Programming in Java 77

|
|
|
|

|
|
|

|
|

|
|

|

|
|

|
|
|

|
|
|
|
|
|

|
|

|
|

|

|
|
|
|
|
|

|
|

|
|
|

|#
#
#
#
#

TCTUA
A copy of the TCTUA can be obtained using the getTCTUA() method of
the TerminalPrincipalFacility class.

TWA A copy of the TWA can be obtained using the getTWA() method of the
Task class.

CWA not supported.

ACEE not supported.

ASSIGN
The following support is provided for the ASSIGN options:

ABCODE
You can find the current ABEND code by calling the getABCODE()
method on the AbendException that was caught.

APPLID
You can find the APPLID by calling the getAPPLID() method in the
Region class.

FACILITY
You can find the name of the task’s principal facility by calling the
getName() method on the task’s principal facility, which in turn can be
found by calling the getPrincipalFacility() method on the current
Task object.

FCI You can find the FCI value calling the getFCI() method on the current
Task object.

QNAME
You can find the QNAME value by calling the getQNAME() method on
the current Task object.

STARTCODE
You can find the STARTCODE value by calling the getSTARTCODE()
method on the current Task object.

SYSID
You can find the SYSID by calling the getSYSID() method in the
Region class.

USERID
The USERID value can be found by calling the getUSERID() method on
the current Task object, or on the object representing the task’s
principal facility.

No other ASSIGN options are supported.

INQUIRE SYSTEM
The following support is provided for the INQUIRE SYSTEM options:

APPLID
You can find the APPLID by calling the getAPPLID() method in the
Region class.

SYSID
You can find the SYSID by calling the getSYSID() method in the
Region class.

No other INQUIRE SYSTEM options are supported.

78 CICS TS for OS/390: CICS Application Programming Guide

|
|
|

||
|

||

||

|
|

|
|
|

|
|
|

|
|
|
|
|

||
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|

|
|
|

|
|
|

|

INQUIRE TASK
The following support is provided for the INQUIRE TASK options:

FACILITY
You can find the name of the task’s principal facility by calling the
getName() method on the task’s principal facility, which in turn can be
found by calling the getPrincipalFacility() method on the current
Task object.

FACILITYTYPE
You can determine the type of facility by using the Java instanceof
operator to check the class of the returned object reference.

STARTCODE
You can find the STARTCODE value by calling the getSTARTCODE()
method on the current Task object.

TRANSACTION
You can find the name of the transaction that the task is executing by
calling the getTransactionName() method on the current Task object.

USERID
You can find the USERID value by calling the getUSERID() method on
the current Task object, or on the object representing the task’s
principal facility.

No other INQUIRE TASK options are supported.

INQUIRE TERMINAL or NETNAME
The following support is provided for the INQUIRE TERMINAL or
NETNAME options:

USERID
You can find the USERID value by calling the getUSERID() method on
the current Task object, or on the object representing the task’s
principal facility

No other INQUIRE TERMINAL or NETNAME options are supported.

Unsupported CICS services
v APPC unmapped conversations
v DUMP services
v Journal services
v Serialization services
v Storage services
v Timer services
v CBTS

System.out and System.err
If a task has a terminal as a principal facility then CICS automatically creates two
Java PrintWriters that can be used as standard out and standard error streams and
are mapped to the task’s terminal. If the task does not have a terminal as its
principal facility, the streams are sent to System.out and System.err. The two
streams are public fields in the Task called out and err. System.out and System.err
are mapped to the LE transient data destinations CESO and CESE respectively.

Chapter 8. Programming in Java 79

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

Using JCICS
You use the classes from the JCICS library in the normal way. Your applications
declare a reference of the required type and a new instance of a class is created
using the new operator. You then name CICS resources using the setName method
to supply the name of the underlying CICS resource.

Once created, you can manipulate objects using standard Java constructs. Methods
of the declared objects may be invoked in the usual way. Details of the methods
supported for each class are available on-line in the supplied HTML JAVADOC
files.

Writing the main method
CICS will attempt to pass control to method main(CommAreaHolder) in the class
specified on the hpj -main option and then, if this is not found, it will try to
invoke main(String[]) from that class.

Creating objects
To create an object you need to:
v Declare a reference, for example:

TSQ tsq;

v Use the new operator to create an object
tsq = new TSQ()

v Use the setName method to give it a name
tsq.setName("JCICSTSQ");

Using objects
The following example shows how you create a TSQ object and invoke the delete
method on the temporary storage queue object you have just created, catching the
exception thrown if the queue is empty:

//Define the package name
package unit_test;
//Import the JCICS package
import com.ibm.cics.server.*;
//Import the Java I/O package
import java.io.*;
//Declare the class
public class JCICSTSQ {

//Define the main method
public static void main(CommAreaHolder cah) {

//Declare a new TSQ
TSQ tsq = new TSQ();
//Get a reference to the CICS task
Task task = Task.getTask();

//Get the transaction name
String transaction = task.getTransactionName();
String message = "Transaction name is - "+transaction;

//Set the name of the TSQ
tsq.setName("JCICSTSQ");
try {

//Try and delete it
try {tsq.delete();}

80 CICS TS for OS/390: CICS Application Programming Guide

|
|

|
|
|
|

|
|
|
|

|

|
|
|

|

|

|

|
|

|

|
|

|

|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

//Ignore QIDERR condition
catch(InvalidQueueIdException e) {

System.out.println("QIDERR ignored!");}
//Write an item to the queue
tsq.writeItem(message.getBytes());

}
//Catch anything else thrown and report it
catch(Throwable t) {

System.out.println("Unexpected throwable!"+t.toString());
}
//Return to caller
return;

}
}

Chapter 8. Programming in Java 81

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

82 CICS TS for OS/390: CICS Application Programming Guide

Chapter 9. JCICS sample programs

Sample programs are provided to demonstrate the use of JCICS classes and the
combination of Java with CICS programs in other languages.

The Java source is shipped in OS/390 UNIX System Services HFS with makefiles
to build the sample programs to execute in the CICS JVM, or to invoke the ET/390
binder to create Java program objects that can be loaded and executed by CICS.

The sample programs are run by entering a transaction on a 3270 CICS screen. The
following sample programs are provided:

HelloWorld samples
Two simple ’Hello World’ programs are supplied, one uses only Java services
and the other uses JCICS. The JCICS sample demonstrates the use of the JCICS
TerminalPrincipalFacility class.

ProgramControl sample
This sample demonstrates the use of the JCICS Program class. A transaction,
JPC1, invokes a Java class that constructs a COMMAREA and LINKs to a C
program (DFH$LCCA) that processes the COMMAREA, updates it and
returns. The Java program then checks the data in the COMMAREA and
schedules a pseudoconversational transaction to be started with the changed
data in its COMMAREA.

The started transaction executes another Java class that reads the COMMAREA
and validates it again.

This sample also shows you how to convert ASCII characters in the Java code
to and from the equivalent EBCDIC used by the native CICS program.

TDQ transient data sample
This sample shows you how to use the TDQ class. It consists of a single
transaction, JTD1, which invokes a single Java class, TDQ.ClassOne.
TDQ.ClassOne writes some data to a transient data queue, reads it and then
deletes the queue.

TSQ temporary storage sample
This sample shows you how to use the TSQ class. It consists of a single
transaction, JTS1, which invokes a single Java class, TSQ.ClassOne, and uses an
AUXILIARY temporary storage queue. This sample also shows you how to
build a ’Common’ class as a dll, which can be shared with other Java
programs.

Supplied sample components
The Java source and makefiles are stored in the OS/390 UNIX System Services
HFS during CICS installation, in the following directories:
v $CICS_HOME/samples/dfjcics contains the makefiles for VisualAge for Java,

Enterprise ToolKit for OS/390 and the JVM.
v $CICS_HOME/samples/dfjcics/examples contains the Java source

$CICS_HOME is an environment variable defining the installation directory prefix:
/usr/lpp/cicsts/<username>

© Copyright IBM Corp. 1989, 2000 83

|

|

|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|

|
|

Where username is a name you can choose during the installation of CICS,
defaulting to cicsts13.

The following CICS C language programs are stored in SDFHSAMP during CICS
installation. They are LINKed by the Java sample programs.
v DFH$LCCA
v DFH$JSAM

Note: In the names of sample programs and files described in this book, the dollar
symbol ($) is used as a national currency symbol and is assumed to be
assigned the EBCDIC code point X’5B’. In some countries a different
currency symbol, for example the pound symbol (£), or the yen symbol (¥),
is assigned the same EBCDIC code point. In these countries, the appropriate
currency symbol should be used instead of the dollar symbol.

Building the Java samples
The following steps assume that you are building the samples in the OS/390 UNIX
System Services environment. Before you can build the samples, you need to
define the following environment variables:

$CICS_HOME
The installation directory prefix of CICS TS.

$JAVA_HOME
The installation directory prefix of the JDK.

Building the Java samples for ET/390
If you are using ET/390, build the samples as follows:
1. Change directory to samples/dfjcics
2. Type make hpj to build all the samples, or alternatively,

make -f <sample name>.mak hpj

where sample name is the name of the specific sample you want to build.

The makefiles invoke javac and the ET/390 binder to build Java program
objects in a PDSE library. The program objects are stored with the following
8-character short names:

DFJ$JHE1
Hello World sample

DFJ$JHE2
Hello World sample

DFJ$JPC1
Program control sample

DFJ$JPC2
Program control sample

DFJ$JTD1
Transient data sample

DFJ$JTS1
Temporary storage sample

DFJ$JTSC
Temporary storage sample

84 CICS TS for OS/390: CICS Application Programming Guide

|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|

|

|

|

|

|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

The makefiles require a system environment variable $LIB_PREFIX to specify
the library where the resulting executable program is written. You can define
this in the OS/390 UNIX System Services shell using (for example):

export LIB_PREFIX=MYUSERID.TEST

to build the sample programs into MYUSERID.TEST.LOAD. Alternatively, you
can change the makefiles to set an output PDSE name explicitly.

Building the Java samples for the JVM
If you are using the JVM, build the samples as follows:
1. Change directory to samples/dfjcics
2. Type make jvm to build all the samples, or alternatively,

make -f <sample name>.mak jvm

where sample name is the name of the specific sample you want to build.

The makefiles invoke javac and store the output files in the
$CICS_HOME/samples/dfjcics/examples HFS directory.

Building the CICS native applications
Translate and compile the supplied C programs, DFH$LCCA and DFH$JSAM, and
link them into a load library in the CICS DFHRPL concatenation.

Resource definitions
CICS Resource definitions for all the sample PROGRAMS and TRANSACTIONS
are supplied in the groups DFH$JAVA and DFH$JVM. If you are using ET/390 to
run the samples, you need to install DFH$JAVA. If you are running the samples in
the CICS JVM, you need to install DFH$JVM. You should not install both, as they
define the same PROGRAM and TRANSACTION names, with different attributes.

If you want to run the samples alternately with ET/390 and with the JVM, you can
install the DFH$JVM group and then use the CEMT SET PROGRAM (or EXEC
CICS SET PROGRAM) RUNTIME (NOJVM) or RUNTIME (JVM) commands to
alternate between the two modes.

See the CICS Supplied Transactions for more information about using the CEMT SET
PROGRAM RUNTIME command.

Running the Hello World sample
This sample uses the following Java classes:
v HelloWorld (PROGRAM name DFJ$JHE1)
v HelloCICSWorld (PROGRAM name DFJ$JHE2)

and the following C language CICS program:
v DFH$JSAM

Run the JHE1 CICS transaction to execute the Java standard application, or the
JHE2 transaction to execute the JCICS application. You should receive the
following message from JHE1 on System.out:
Hello from a regular Java application

and the following message from JHE2 on Task.out:

Chapter 9. JCICS sample programs 85

|
|
|

|

|
|

|

|

|

|

|

|

|
|

|
|

|
|

|

|
|
|
|
|

|
|
|
|

|
|

|
|

|

|

|

|

|

|
|
|

|

|

Hello from a Java CICS application

Note: System.out is the CESO TD queue when running with ET/390. Task.out is
your terminal if you are running the transaction from a terminal.

Running the Program Control sample
This sample uses the following Java classes:
v ProgramControlClassOne (PROGRAM name DFJ$JPC1)
v ProgramControlClassTwo (PROGRAM name DFJ$JPC2)

and the following C language program:
v DFH$LCCA

Run the JPC1 CICS transaction to execute the sample. You should receive the
following messages on Task.out:

Entering ProgramControlClassOne.main()
About to link to C program
Leaving ProgramControlClassOne.main()

If you now clear the screen, you should see:
Entering ProgramControlClassTwo.main()
data received correctly
Leaving ProgramControlClassTwo.main()

Running the TDQ sample
This sample uses the following Java class:
v TDQ.ClassOne (PROGRAM name DFJ$JTD1)

and the following C language CICS program:
v DFH$JSAM

Run the JTD1 CICS transaction to execute the sample. You should receive the
following messages on Task.out:

Entering examples.TDQ.ClassOne.main()
Entering writeFixedData()
Leaving writeFixedData()
Entering writeFixedData()
Leaving writeFixedData()
Entering readFixedData()
Leaving readFixedData()
Entering readFixedDataConditional()
Leaving readFixedDataConditional()
Leaving examples.TDQ.ClassOne.main()

Running the TSQ sample
This sample uses the following Java class:
v TSQ.ClassOne (PROGRAM name DFJ$JTS1)
v TSQ.Common (PROGRAM name DFJ$JTSC)

Run the JTS1 CICS transaction to execute the sample. You should receive the
following messages on Task.out:

86 CICS TS for OS/390: CICS Application Programming Guide

|

|
|

|
|

|

|

|

|

|

|
|

|
|
|

|

|
|
|

|
|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|

|
|

Entering TSQ.ClassOne.main()
Entering TSQ_Common.writeFixedData()
Leaving TSQ_Common.writeFixedData()
Entering TSQ_Common.serializeObject()
Leaving TSQ_Common.serializeObject()
Entering TSQ_Common.updateFixedData()
Leaving TSQ_Common.updateFixedData()
Entering TSQ_Common.writeConditionalFixedData()
Leaving TSQ_Common.writeConditionalFixedData()
Entering TSQ_Common.updateConditionalFixedData()
Leaving TSQ_Common.updateConditionalFixedData()
Entering TSQ_Common.readFixedData()
Leaving TSQ_Common.readFixedData()
Entering TSQ_Common.deserializeObject()
Leaving TSQ_Common.deserializeObject()
Entering TSQ_Common.readFixedConditionalData()
Number of items returned is 3
Leaving TSQ_Common.readFixedConditionalData()
Entering TSQ_Common.deleteQueue()
Leaving TSQ_Common.deleteQueue()
Leaving TSQ.ClassOne.main()

Chapter 9. JCICS sample programs 87

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

88 CICS TS for OS/390: CICS Application Programming Guide

Chapter 10. Support for VisualAge for Java, Enterprise ToolKit
for OS/390

Java application programs can be run under CICS control in CICS Transaction
Server for OS/390 Release 3 and later releases, using the VisualAge for Java,
Enterprise ToolKit for OS/390 (ET/390).

This Java language application support is similar to CICS language support for
COBOL or C++. The normal CICS program execution model is used, where the
environment is initialized for every task, rather than a Java Virtual Machine (JVM).

You can develop Java programs on a workstation, or in the OS/390 UNIX System
Services shell, using an editor of your choice, or in a visual composition
environment such as VisualAge. You then compile your program using a compiler
such as VisualAge for Java, or javac.

The Java byte-code produced by the compiler is then transferred (if necessary) to
OS/390 UNIX System Services, and processed by the ET/390 bytecode binder, to
produce OS/390 Java executable files (jll or exe) that are called Java program
objects in this book. The Java program objects are stored in MVS PDSE libraries
and can be loaded and executed by CICS.

CICS loads the program object from the PDSE and executes it in a Language
Environment (LE) run-unit, or enclave, similarly to C++, using run-time support in
the CICS region provided by the Java run-time component of ET/390.

To improve performance, frequently used Java program objects can be run in a
preinitialized OS/390 Language Environment enclave that is reused by multiple
invocations of the program. The program is not executed under control of the
quasi-reentrant (QR) MVS task control block (TCB) used by other CICS tasks, but
uses a special class of TCB, known as an H8 TCB. This feature is known as
hot-pooling.

See “Using hot-pooling” on page 98 for more information about hot-pooling and
see the CICS Transaction Server for OS/390 Release Guide for a description of the
Open Transaction Environment and the use of the QR TCB in CICS.

The following diagram shows the development process and components involved
in creating a CICS Java program using VisualAge for Java, Enterprise ToolKit for
OS/390.

© Copyright IBM Corp. 1989, 2000 89

|

|

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

#
#
#
#
#
#

#
#
#

|
|
|
|

If you use VisualAge for Java to develop your program, panels and commands are
provided to automate this process for you, and also provide a remote interactive
debug facility.

This chapter tells you how to develop a Java application using the JCICS API and
describes what you need to do to make your application run in a CICS/ESA®

environment. It contains the following topics:
v “Building a CICS Java program object”
v “Using the ET/390 binder” on page 95
v “Running a CICS Java program” on page 97

Building a CICS Java program object
To build a CICS Java program object, you need to:
v Prepare the prerequisite environment
v Compile your program
v Transfer Java bytecode to the OS/390 UNIX System Services shell on your ESA

system (if not already compiled there)
v Bind the Java bytecode using the VisualAge for Java, Enterprise ToolKit for

OS/390

This section describes what you need to do to perform these steps.

Preparing prerequisite environment
To build a CICS Java program object, you will require the following environment:
v An MVS/ESA system configured with Full Function OS/390 UNIX System

Services (previously known as OpenEdition®)
v CICS Transaction Server for OS/390 Release 3 with Language Environment(LE)

active
v A Java compiler such as javac, installed on OS/390 UNIX System Services, or on

a workstation that can connect to the OS/390 UNIX System Services
environment to transfer data, or VisualAge for Java installed on a workstation

v The VisualAge for Java, Enterprise ToolKit for OS/390 installed on ESA

Source.java

dfjcics.jar

executable
exe or jll

dfjcics.jar
classpath

classpath

bytecode.class bytecode.class

PDSE

nfs or ftp

MVSUNIX SYSTEM SERVICES
MVS

(or UNIX SYSTEM SERVICES)
WORKSTATION

hpj

javac

Figure 13. Creating a CICS Java program object

90 CICS TS for OS/390: CICS Application Programming Guide

|
|
|

|
|
|
|
|
|

|
|

|

|

|

|
|

|
|

|

|

|

|
|

|
|

|
|
|

|

v The following CICS-supplied file in the CLASSPATH of the Java compiler and
ET/390.

dfjcics.jar
The CICS Java classes

dfjcics.jar is stored in the OS/390 UNIX System Services HFS, in the
$CICS_HOME/classes directory, during installation of CICS.

Note: $CICS_HOME is an environment variable, defining the installation
directory prefix:

/usr/lpp/cicsts/<username>

Where username is a name you can choose during CICS installation,
defaulting to cicsts13.

v A PDSE library defined on your ESA system, to hold the CICS Java program
object that you are building

v If you use the Java Record Framework supplied with VisualAge for Java, you
must ensure that the following .jar files are in the CLASSPATH when you use
the ET/390 binder. These are supplied with ET/390 as:
– $IBMHPJ_HOME/lib/recjava.jar
– $IBMHPJ_HOME/lib/eablib.jar

Using PDSE libraries
PDSE libraries are similar to PDS libraries. They contain directories and members,
but allow long-name aliases for the 8-byte Primary Member names. You can use
them either for data, or for programs (but not a mix of both), and combine both
PDS and PDSE libraries in the same concatenation.

If the long-name alias for a CICS Java IIOP program object is modified, the change
may not be immediately effective, if CICS has saved the alias in cache storage. You
can avoid this delay by issuing a CEMT SET PROGRAM() NEWCOPY or CEMT
SET PROGRAM() PHASEIN command for any program in the system. Issuing an
EXEC CICS SET PROGRAM() NEWCOPY or EXEC CICS SET PROGRAM()
PHASEIN command from an application program will have a similar effect.

Compiling and binding a program using VisualAge for Java
You can develop and compile your Java program remotely on a workstation using
VisualAge for Java (VAJ) as follows. The following steps are described in more
detail in an HTML tutorial example provided in dfjcics_docs.zip.

Configuring your workstation and host environments

Create the Install data file: To compile and bind your program from a
workstation, you need a file that describes where the ET/390 bytecode binder is
installed in your OS/390 UNIX System Services environment. There is a sample
install data file javaInstall.data in your ET/390 install tree.

You will need a version of this file that reflects your installation.

Copy the file to your home directory and modify it. The @@HPJHostName: and
@@HPJCICSRegion: stanzas will need to be changed to include your hostname
and the APPLID of your CICS region.

Chapter 10. Support for VisualAge for Java, Enterprise ToolKit for OS/390 91

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|
|

|

|

#
#
#
#
#

#
#
#
#
#
#

|

|
|
|

|

|
|
|
|

|

|
|
|
|

VisualAge will ftp this file from your host environment. You will also need to
make sure that you can mount an OS/390 UNIX System Services sub-directory
from your workstation. VisualAge writes some temporary files to the /tmp
sub-directory on your host system, so you need write access to /tmp from your
USERID.

See the VisualAge for Java documentation for more information about this file.

Add an OS/390 Host Session: From the VisualAge Workbench:
v Select Workspace -> Tools -> ET/390 -> Host sessions

v Select Add

Enter the information appropriate to your host system and USERID, select Retrieve
and then Add.

If you change the information in your data file at any time, you will need to
Retrieve and then Refresh this for VisualAge.

Provide LOGON information for OS/390: From the VisualAge Workbench:
v Select Workspace -> Tools -> ET/390 -> Logon Data

v Enter your UNIX System Services USERID and password

From an MS DOS command prompt, mount your host drive as a binary drive,
preserving filename case, for example:
nfs link q: \\winmvs52\/hfs/u/myhome,binary myuserid /M:p

You will be prompted for your UNIX System Services logon password.

Importing the JCICS Java classes: Add the IBM Java Record Library feature to
your VAJ workspace and then import the JCICS classes, dfjcics.jar. You may need
to FTP the file from your host environment to your workstation.

Creating the package and project
From the Quick Start Menu or Workbench tool bar:
v Select Create a new class/interface

v Enter the project and package name. In the following steps we use the testhello
project and cicshello package as examples

v Enter the Class Name, for example, HelloCics. (If necessary enter the Superclass
Name: java.lang.object)

v Select Next> to move to the Attributes panel

@@HPJHostName: winmvs52.hursley.ibm.com
@@HPJHome: /usr/lpp/hpj
@@HPJBinderExecutablesPDSE: HPJ.SHPJMOD
@@HPJBinderMessagesPDSE: HPJ.SHPJMOD
@@HPJLERuntimeBind:CEE.SCEELKED:CEE.SCEELKEX:CEE.SCEEOBJ:CEE.SCEECPP
@@HPJLERuntimeRun: CEE.SCEERUN
@@HPJRuntime: HPJ.SHPJMOD
@@HPJDebugger: HPJ.DEBUG.VISUAL.SEQAMOD
@@HPJProfiler:
@@HPJJavaHome: /usr/lpp/java/J1.1
@@HPJPICLHome:
@@HPJCICSRegion: IYKC57

Figure 14. Sample Java install data file

92 CICS TS for OS/390: CICS Application Programming Guide

|
|
|
|
|

|

|

|

|

|
|

|
|

|

|

|

|
|

|

|

|
|
|

|
|

|

|
|

|
|

|

v Select the AddPackage button and find the package com.ibm.cics.server to add
an import statement for it. Check the appropriate modifiers, as follows:
– main (String[])
– public
– Methods which must be implemented
– Copy constructors from Superclass

The SmartGuide will create the package, and class and stubs for the constructor
and main methods. From the Workspace, press the Packages tag and select
cicshello package, the HelloCics class and the main method.

Writing the main method
The source window displays the stub code for the main method that the
SmartGuide wrote for you. Change the parameters of the method from:
public static void main(String args[]) {

to:
public static void main(CommAreaHolder cah) {

In the body of the method, enter your main method, for example:
// Insert code to start the application here
Task t = Task.getTask();
if (t == null) {

System.out.println("Can't get Task for application");
}
else {

t.out.println("Hello from a CICS application");
}

Setting up ET/390 properties

You need to set up the package properties in VisualAge for Java:
v Select Packages -> Tools -> ET/390 -> Properties

Export and Bind Session:

v Enter the UNIX System Services path name for the dfjcics.jar package in the
Bind CLASSPATH field:
$CICS_HOME/classes/dfjcics.jar

If you are using the Java Record Framework, add the following text to Bind
CLASSPATH.
$IBMHPJ_HOME/lib/recjava.jar:$IBMHPJ_HOME/lib/eablib.jar

v When you are building a CICS Java application, the Java program object will be
written to a PDSE member. You need to use TSO to allocate a PDSE to receive
the program object. You also need to ensure that the PDSE is included in the
DFHRPL of the JCL that you use to start your CICS region. Enter the PDSE data
set name in the Directory for executable or DLL field, prefixed with double
slashes (//). Enclose fully qualified data set names within single quotation
marks (’). for example, //’mypdse.test.load’

v Enter the APPLID in the CICS region field Make sure the CICS APPLID in your
data file on your host system matches the APPLID for your CICS region.

Bind Options:

v Specify the PDSE member name in the PDSE member name field

Chapter 10. Support for VisualAge for Java, Enterprise ToolKit for OS/390 93

|
|

|

|

|

|

|
|
|

|
|
|

|

|

|

|

|
|
|
|
|
|
|
|

|

|

|

|

|
|

|

|
|

|
|

|
|
|
|
|
|
|

|
|

|

|

v Specify the main class name in Main class name

v Check Rebuild all and CICS Application

Exporting and binding the executable program object
v Select Packages->Tools->ET/390->Export and Bind

Running the CICS transaction
v Submit the JCL to start your CICS region
v Logon to your CICS region, for example:

logon applid(iyzazcaa)

v Define a TRANSACTION, PROGRAM and GROUP for your executable program
object. For example, using the CICS supplied CEDA transaction:
ceda define transaction (andy) group(newgroup) program(cichell)
ceda define program(cichell) group(newgroup)

(See the CICS Resource Definition Guide for information about CICS resource
definition, and the CICS Supplied Transactions for information about using
CEDA.)

v Install the group, for example:
ceda i group(newgroup)

v Run the transaction andy. You should see the response:
Hello from a CICS transaction

If you do not see the output, look in the job log from your CICS region to see
what went wrong. This is where output written to standard out in a CICS Java
application appears (for example System.out.println(″An output string.″);).

If you check the Refresh CICS Program button in your Bind Options properties
you will need to install the group DFHœEXCI in your CICS region. For
example:
ceda i group(DFHœEXCI)

This will enable you to modify your Java source and export and bind your
package without having to recycle your CICS region to pick up your changes.

Developing a Java program object using javac
You can develop and compile your Java program remotely on a workstation or in
the OS/390 UNIX System Services shell on your mainframe ESA system as follows:
1. Add the the following file to your CLASSPATH:

v dfjcics.jar

2. Write and compile your program
3. Transfer your resultant .class files to OS/390 UNIX System Services (if

required) using ftp or nfs. The files must be transferred in binary mode
4. Bind your .class files into Java program objects using the ET/390 binder as

described in “Using the ET/390 binder” on page 95.

Using the IBM Java Record Framework
If you use the Java Record Framework supplied with VisualAge for Java, you must
ensure the following .jar files are in the CLASSPATH when you issue the hpj
command. These are supplied with ET/390 as:

$IBMHPJ_HOME/lib/recjava.jar
$IBMHPJ_HOME/lib/eablib.jar

94 CICS TS for OS/390: CICS Application Programming Guide

|

|

|
|

|
|

|

|

|
|

|
|

|
|
|

|

|

|

|

|
|
|

|
|
|

|

|
|

|

|
|

|

|

|

|
|

|
|

|
|
|
|

|
|

Also, add the following options to the end of your hpj command:
-exclude=com.ibm.record.* -exclude=com.ibm.ivj.eab.record.*

Using the ET/390 binder
You run the ET/390 binder in the OS/390 UNIX System Services shell, and use the
hpj command to bind your Java byte-code into a Java program object that can run
in the CICS environment, and store them in an ESA PDSE library. Note that you
will need an OS/390 UNIX System Services region of at least 200MB.

The following example shows the use of the hpj command to build a Java program
object in the QUERYEMP member of the PDSE FRED.LOADLIB:
hpj -o="//'FRED.LOADLIB(QUERYEMP)'"

abc.staff.queryDB.queryMain

hpj command options
The VisualAge for Java, Enterprise ToolKit for OS/390 documentation contains full
details of the hpj command. The following options are particularly relevant to the
CICS environment:

-exe
A program that is invoked by EXEC CICS LINK, or as the first program in a
transaction, must have a main entry point and must be bound using the hpj
-exe option.

-main
A CICS exe must have a class containing a main method with a signature of
either:
public static void main(CommAreaHolder)
or
public static void main (String [])

The ET/390 binder will generate main entry code for the first class containing
a main (String []) method. To generate main entry code for a different class you
should specify the -main option.

-jll
A program that is effectively a class library, that is, it contains a collection of
classes and methods to be invoked by other Java programs, must be bound
with the -jll option, supplying an -alias for each package included in the
program. The ET/390 run-time support can then find these classes, as required,
by issuing a load request for the package. The program is loaded into CICS by
its short 8-byte name, also known as the Primary Member Name (QUERYEMP
in the above example).

CORBA objects (invoked by IIOP requests) must be created as jlls, using the
hpj -jll option. The CICS supplied Object Request Broker (ORB) code contains
the main entry point.

-alias
An alias name is made from the Java package name with a .jll extension. For
example, if the Java DLL is built from all the classes in the Java package,
abc.staff.queryDB, you should specify an alias name of abc/staff/queryDB.jll.
Classes with no package declaration must be in the exe, or in a jll that has
already been loaded for a named package.

-lerunopts
Language Environment (LE) run time options can be set using -lerunopts. For

Chapter 10. Support for VisualAge for Java, Enterprise ToolKit for OS/390 95

|

|

|

|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

example, you may find that run-time performance is improved by turning off
the Java garbage collection routines. You do this by setting the following LE
run option in the hpj command:
-lerunopts="(envar('IBMHPJ_OPTS=-Xskipgc'))"

Note: Java Garbage collection is always set to ’OFF’ for hot-pooled Java
program objects.

-nofollow
CICS applications need either -nofollow or -exclude=com.ibm.*
-exclude=org.omg.* to ensure that the CICS supplied classes are not included
in the application program object.

-o -o must be used to build the Java program object into a PDSE.

To find a class that is not already loaded, CICS searches the PDSE directories
for a long name (alias), to obtain the corresponding short name. CICS loader
then loads the first member with the short name, so you must take care that
the correct member is found, by having no duplicate short name mappings in
the DFHRPL concatenation. Note that it is invalid to have duplicate class
names loaded.

Handling Resource Files
If a .jar or .zip file contains resource files (such as JavaBeans stored as object
serializations) that are required by the CICS program at run time, you must bind
these resource files into a Java DLL in a PDSE member or bind them with the Java
program object. You can use the hpj command’s -resource option to help you bind
HFS resource files to a PDSE member, as follows:
1. Package all referenced resource files into one or more .jar or .zip files
2. Specify the -resource option in an hpj command to create a PDSE Java DLL

containing all the resource files

To access the resource files in this PDSE Java DLL, you must concatenate the PDSE
containing the Java DLL to DFHRPL and define the DLL as a PROGRAM to CICS.
You can also use the -resource option to bind the resource files with the Java
classes that use them into a Java program object that is written to a PDSE member.

See the VisualAge for Java documentation for further details.

Setting Java System Properties
System property values can be obtained using the System.getProperty(String s)
method call. When you are using ET/390 these properties are initialized from the
following sources:
1. Language Environment (LE) ENVAR run-time environment variables. You can

set these when binding the CICS Java program with the -lerunopts option of
the hpj command.
See the ET/390 documentation for full details of the hpj command.
The following system properties can be set using -lerunopts:

user.language
Set by the environment variables LC_ALL, LC_CTYPE or LANG.

user.timezone
Set by the environment variable TZ.

2. CICS task and user-specific property values, set during initialization of the Java
environment for CICS programs. The following System Properties values are set

96 CICS TS for OS/390: CICS Application Programming Guide

|
|
|

|
|

#
#

#
|
|
|

||

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|
|
|

|

|
|
|
|

|
|
|

|

|

|
|

|
|

|
|

for CICS:

Table 8. CICS specific property values

System property Value

java.version 1.1.6

java.vendor IBM Corporation

java.vendor.url null

java.home null

java.class.version 45.3

java.class.path

os.name OS/390

os.arch 390

os.version 5

file.separator /

path.separator :

line.separator

user.dir constant value ″″

user.home constant value ″″

user.name ″″

Running a CICS Java program
CICS Java programs can be invoked:
v By EXEC CICS LINK commands issued by other CICS non-Java programs
v By other Java programs using a link method on a program.
v By entering a TRANSID on a CICS-attached terminal, such as a 3270
v By an IIOP request from a client. See the CICS Internet Guide manual for

information about CICS support for incoming IIOP requests.

Run-time requirements
Language Environment

Language Environment (LE) is required to execute CICS Java programs bound
by the ET/390 binder.

Storage
Memory requirements to run Java programs using ET/390 are higher than for
conventional programs. You should set the system initialization parameter
EDSALIM to a high value (such as 100MB) when starting CICS, otherwise a
Short-on-Storage condition may occur. Note that this must be set by SIT
override, not using CEMT SET commands.

DFHRPL
The following libraries must be concatenated with DFHRPL at run-time:
v PDSEs containing your CICS Java programs, bound with the ET/390 binder
v PDSEs containing Java resource files (such as JavaBeans)
v The SDFJLOAD PDSE library, containing the JCICS run-time support. These

programs are stored in SDFJLOAD, and bound with the ET/390 binder,

Chapter 10. Support for VisualAge for Java, Enterprise ToolKit for OS/390 97

|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

|
|

|

|

|

|

|
|

|

|
|
|

|
|
|
|
|
|

|
|

|

|

|
|

during installation of CICS. If you need to remain at the Release 1 level of
ET/390, you should use the SDFJLOD1 library instead

v The HPO.SHPOMOD PDSE containing the ET/390 run-time library. This
PDSE is built during the installation of VisualAge for Java, Enterprise
ToolKit for OS/390

Resource Definition
All program resources must be defined to CICS using CEDA , and INSTALLed
before use (or autoinstalled). See the CICS Resource Definition Guide for
information about defining CICS resources.
v User programs must be defined to CICS by the short 8-byte name, as LE

PROGRAMs.
v VisualAge for Java, Enterprise ToolKit for OS/390 run-time dlls must be

defined to CICS. Member HPOSCSD in the SHPOJCL dataset supplied with
ET/390 should be used as input to DFHCSDUP to define the ET/390
run-time dlls. The HPOJAVA predefined group is supplied. You should add
it to GRPLIST or install it before using ET/390.

v JCICS run-time programs are defined in the DFHJAVA group. This is already
included in DFHLIST.

Using hot-pooling
When you execute a Java program object, the Language Environment run-unit or
enclave is built and initialized for each invocation. You can reduce this performance
overhead for frequently run Java program objects by requesting that a
preinitialized and persistent enclave is reused for multiple invocations of the
program.

This feature is known as hot-pooling.

CICS uses the PIPI preinitialization services of OS/390 Language Environment to
build the enclave and executes the Java program object under control of a special
class of Task Control Block (TCB) in the CICS region that is reserved for
hot-pooling requests. Work done under these TCBs (known as H8 TCBs) runs
concurrently with work done under the usual CICS quasi-reentrant TCB (QR)
where most CICS transactions are executed.

Note: Use of hot-pooling requires that an enabling PTF is installed on the
VisualAge for Java, Enterprise ToolKit for OS/390 product. See the CICS
Transaction Server for OS/390 Release Guide for details of the required service
level. Programs to be hot-pooled should be rebound using this updated
version.

See the OS/390 Language Environment Programming Guide SC28-1939 for a
description of the PIPI services.

Open Transaction Environment (OTE) TCBs
In earlier releases of CICS, user applications operate in a restricted, or “closed”,
environment. Although they can use the functionally-rich CICS programming
interfaces, direct invocation of other services is not supported. This is because CICS
runs user transactions under a single MVS TCB, known as the CICS
quasi-reentrant (QR) TCB. Direct invocation of other services outside the scope of
the CICS permitted interfaces could interfere with CICS own use of its QR TCB. In
particular, services which result in the suspension (“blocking”) of the QR TCB
would cause all CICS tasks to wait.

98 CICS TS for OS/390: CICS Application Programming Guide

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|

|
#

#
#
#
#
#

#

#
#
#
#
#
#

#
#
#
#
#

#
#

#

#
#
#
#
#
#
#
#

In CICS TS Release 3 , the Open Transaction Environment (OTE) was added,
providing support for a new type of open TCB, allowing CICS transactions to use
non-CICS services within the CICS address space, without interference to other
transactions.

OTE distinguishes several kinds of open TCB, given 2-character names or modes.
For example, J8 TCBs are created to run interpretive Java programs under a Java
Virtual Machine (JVM) and H8 TCBs are created to run hot-pooled Java program
objects. Each mode has a specific purpose, and is handled by CICS in a different
way. CICS decides which mode to use, not the application program. A CICS task is
allowed at most one TCB of each mode, which it keeps from the time it is allocated
to the end of the task. The TCB then becomes free, and CICS may allocate it to
another task, or destroy it.

The CICS system initialization parameter MAXOPENTCBS limits the total number
of OTE TCBs of all modes. There can be any number of H8 TCBs up to the
MAXOPENTCBS limit, as long as CICS has enough storage to meet their demands.

The following Venn diagram shows the possible states for H8 TCBs, and how they
relate to other OTE TCBs. An H8 TCB is allocated and active if a program is running
on it; it is idle if the program has ended but the TCB still belongs to the task.

Allocating an H8 TCB for hot-pooling
The following steps show how CICS chooses an H8 TCB for an invocation of
program progname in transaction transid. CICS associates progname and transid
with an H8 TCB when it is allocated. In choosing a TCB to allocate, CICS searches
first for an exact match of transid and progname, then attempts to create a new
TCB, then accepts a best match on progname only, then accepts no match at all.
1. If the transaction already has an H8 TCB allocated, it must be used.
2. If there is a free H8 TCB, which has both progname and transid, it is allocated.

This is an exact match.
3. If there are currently fewer than MAXOPENTCBS, a new H8 TCB is created,

and associated with progname and transid. This is new.

Other modes

H8 TCBs

Allocated

to tasks

Active

Idle

Not yet created
(presently fewer

than MAXOPENTCBS)

OTE TCBs

Free

Figure 15. H8 TCB Allocation states

Chapter 10. Support for VisualAge for Java, Enterprise ToolKit for OS/390 99

#
#
#
#

#
#
#
#
#
#
#
#

#
#
#

#
#
#
##

#

#
#
#
#
#

#

#
#

#
#

4. If there is a free H8 TCB that matches progname only, it is used. This is a best
match.

5. If there is a free H8 TCB that does not match progname or transid, it is used.
This is no match.

6. If there is a free OTE TCB of another mode, it is destroyed and an H8 TCB is
created. This is called stealing, and although costly on performance, it allows
the request to be satisfied.

7. If there is no available TCB, the task is suspended until one becomes free.

Note: This allocation sequence implies the following possibilities:
1. There can be several H8 TCBs associated with the same program and

transaction names. This is useful when there is a high throughput of the
same transaction.

2. There can be H8 TCBs with several independent programs loaded into
their enclaves, which are therefore capable of running one of several
transactions.

3. A long-running task can keep an idle TCB from being used by other
tasks.

Managing the hot-pooling environment
A hot-pooled enclave is initialized the first time that CICS attempts to load a Java
program object that has been defined with the Hotpool attribute. An H8 TCB is
allocated to execute the program, as described above. Subsequent invocations of
the same program reuse the enclave and run under the same TCB until it is
terminated for one of the following reasons:
v The Language Environment storage heap grows as programs reuse the enclave

until the predefined heap size limit approaches. CICS then terminates the enclave
when the current program completes. You can extend this threshold by adjusting
the heap size in the Language Environment RUNOPTS options that are used at
enclave creation. CICS provides a user replaceable module, DFHAPH8O, which
you can modify to reset RUNOPTS options. See “Defining Language
Environment run-time options” for more information about DFHAPH8O.

v When CICS recognizes a short-on-storage (SOS) condition, each H8 TCB is
terminated when the owning task ends.

v When SET PROGRAM NEWCOPY, PHASEIN , NOTHOTPOOL, or DISABLED
is issued for any program (even non-Java programs), all H8 TCBs are terminated
when the current task ends, because CICS does not track all programs that are
loaded into an enclave. Subsequent invocation of a HOTPOOL program will
cause a new hot-pooled enclave to be built and a new H8 TCB allocated.

v The program running on the TCB abends.

Defining Language Environment run-time options
Language Environment run-time options are parameters used during enclave
initialization to control certain aspects of the program execution. Default values are
set during installation, but you can change these for hot-pooling initialization
using the user supplied module DFHAPH8O. This module is called during
initialization of the Language Environment PIPI enclave. See the OS/390 Language
Environment Programming Guide SC28-1939,and the source of DFHAPH8O in
DFHSAMP for details of the Language Environment options that can be reset.

See also the comments in the CICS-supplied DFHAPH8O module for examples of
how to set these options.

100 CICS TS for OS/390: CICS Application Programming Guide

#
#

#
#

#
#
#

#

#

#
#
#

#
#
#

#
#

#

#
#
#
#
#

#
#
#
#
#
#
#

#
#

#
#
#
#
#

#

#
#
#
#
#
#
#
#

#
#

Note: Java Garbage collection is always set to ’OFF’ for hot-pooled Java program
objects.

See the CICS Customization Guide for more information about user replaceable
modules and DFHAP8O.

CICS programs can include a CEEUOPTS CSECT to supply Language Environment
run-time options to control the program’s execution. CEEUOPTS is ignored for
programs run in a hot-pooling environment, because the enclave is preinitialized
and run-time options only take effect during initialization.

Allocating storage
The number of H8 TCBs that can be supported in any one CICS region is
dependent on the amount of storage available. The main restriction is
below-the-line storage. Using the default LE options set in DFHAPH8O, an H8
TCB and its associated LE Enclave storage requires 20K of below the line DSA and
6K of below the line MVS storage. This storage is in addition to any other current
requirements.

You can calculate the number of TCBs that your CICS region can support by
looking at the current peak storage requirements. You can do this by running the
supplied STAT transaction, which shows storage values that can be used to
calculate the current availability of DSA and MVS storage. For example:
Current DSA Limit 6,144K (set by DSALIM in the SIT)
Current DSA Used. 3,596K

(Current DSA Limit) - (Current DSA Used) = (DSA available) 6144K-3596K = 2548K

The above figures show the amount of CICS DSA storage available to be used for
TCBs (at 20K per TCB). You should not use all of this available storage when
calculating how many TCBs can be supported. Leave a buffer of about 500K. For
the example shown we would recommend a maximum of 100 TCBs.

You must also ensure that there is enough MVS storage to support the requirement
of 6K per TCB (600K for our example) in the private region. This storage can also
be displayed by the STAT transaction as shown below:
Private Area storage available below 16Mb : 1,990K

In this case there is 1990K available which will support the 600K requirement for
100 TCBs in our example. Again do not use all of the available storage in this area,
leave a buffer of 500K. The number of TCBs needs to be adjusted so that that you
do not over commit storage demands in either the DSA or the MVS private region.
You may find that there is not enough available DSA because the DSA limit has
been set too low. Using the above statistics you can calculate how much higher the
DSA limit can be set. As you increase the DSA limit, the Private Area storage
below 16Mb, decreases. Adjust the DSA limit to get the right balance between DSA
and Private area storage. Remember to take these statistics at peak time because
there are other users such as DB2 who take storage from this Private area.

In summary adjust the DSA limit the best you can and then set the number of
TCBs to the lesser of (DSA available - 500K)/20K or (Private available - 500K)/6K.
If you still need more TCBs to satisfy your throughput requirements, you may
need to spread the applications across multiple CICS regions.

Defining hot-pooled Java program objects
You define a Java program object as eligible for hot-pooling by specifying the
Hotpool (Yes) attribute on the PROGRAM resource definition.

Chapter 10. Support for VisualAge for Java, Enterprise ToolKit for OS/390 101

#
#

#
#

#
#
#
#

#
#
#
#
#
#
#

#
#
#
#

#
#
#

#
#
#
#

#
#
#

#

#
#
#
#
#
#
#
#
#
#

#
#
#
#

#

#
#

For Java server programs that are invoked by IIOP requests, the DFJIIOP program
must be defined with Hotpool(Yes) if you want to use hot-pooling. This means that
to exploit hotpooling for IIOP calls, the PROGRAM definition DFJIIOP must be
copied from the CICS supplied group DFHIIOP to another group and modified.
When installed this definition will have the effect of switching on hotpooling for
all program objects invoked over IIOP using Java to Java calls.

The Hotpool attribute specifies whether a Java program object main program is to
be run in a preinitialized enclave under an H8 TCB. The default is NO, which
causes the Java program object to be run under the QR TCB. Programs defined
with Hotpool must be built as .exe files, not .jlls.

If Hotpool (Yes) is specified, then the following PROGRAM attributes are ignored.
v JVM attributes
v RELOAD
v USAGE
v EXECKEY
v REMOTENAME
v REMOTESYSTEM
v TRANSID
v LANGUAGE other than LE370

The Hotpool option is not supported by autoinstall.

You are recommended to define hot-pooled programs in advance and pre-load
them before they are required, to achieve better performance.

THREADSAFE
Programs must be THREADSAFE to use Java hot-pooling. Any native programs
called by hot-pooled Java programs must be defined as THREADSAFE.

Programming considerations for Java hot-pooling
Because of the way that hot-pooled programs are run and reused in a preinitialized
environment, there are some restrictions and modification you may need to make.

Static storage and static initializers

Some Java programs may need modification for use with hot-pooling, as
hot-pooling keeps programs loaded in an enclave and reuses them without
reinitializing the static storage for each invocation of the program. This means that
your program must reinitialize its own static storage, if it depends on the state of a
changeable class field. Static initializers are run only at load time and are not rerun
for each program invocation.

With hot-pooling, class variables exist through a number of CICS tasks, and their
value may not be predictable. This is true for class variables in all classes, both
application and system classes, and includes classes which may affect the
application, but are not used explicitly (including those used in static initializers).
For example:
v A stock exchange program may reset the default time-zone (if not prohibited by

a security manager), and do calculations based on this time-zone. Subsequent
invocations of the program will use the new default time-zone, which may not
be appropriate.

102 CICS TS for OS/390: CICS Application Programming Guide

#
#
#
#
#
#

#
#
#
#

#

#

#

#

#

#

#

#

#

#

#
#

#
#
#

#

#
#

#

#
#
#
#
#
#

#
#
#
#
#

#
#
#
#

v A program may update the system properties object in java.lang.System (if not
prohibited by a security manager). Subsequent invocations of the program will
use the new properties which may not be appropriate in this case.

Avoiding static storage reuse problems: Review and modify existing programs to
identify and eliminate changeable class fields and static initializers. Consider the
following guidelines:
v Define a class field as private and final whenever possible. Be aware that a native

method can write to a final class field, and a non-private method can obtain the
object referenced by the class field and can change the state of the object or
array.

v Be aware of system-loaded classes that use changeable class fields.

Note: CICS provides a security manager, so you cannot use your own to restrict
access to changeable fields.

Programming interfaces
There are some restrictions when using JCICS classes in a hot-pooled Java
program, or when issuing EXEC CICS LINK, LOAD, or XCTL for a hot-pooled
Java program object. These restrictions are:

LINK
If you link to a program defined with Hotpool (Yes), it will be run under an
H8 TCB.

You cannot nest links to hot-pooled Java program objects. INVREQ is returned
if you attempt to link to a hot-pooled Java program object while there is
already a hot-pooled Java program object on the link stack.

LOAD
If you issue an EXEC CICS LOAD for a hot-pooled Java program object, the
command is executed, but the requested program is loaded into the current
enclave. The Hotpool attribute is not relevant.

XCTL
If you transfer control to a program defined with Hotpool (Yes), it will be run
under an H8 TCB. INVREQ is returned if you attempt to transfer control to a
hot-pooled Java program object while there is already a hot-pooled Java
program object on the program stack.

Protection keys
Hot-pooled Java program objects can only run in key 8, non-subspace mode. All
storage acquired in the enclave by Language Environment is in key 8. The
TRANSACTION attribute TASKDATAKEY(USER) has no effect.

A hot-pooled Java program object can use JCICS to link to a key 9 program
because it is passed a copy of the COMMAREA built in storage acquired by EXEC
CICS GETMAIN. The COMMAREA cannot contain any pointers to key 8 storage
unless a native method has built them.

Exit programming interface (XPI)
The loader ACQUIRE_PROGRAM call can be used with hot-pooled Java program
objects, but the Hotpool PROGRAM attribute is ignored.

The value of the Hotpool attribute can be retrieved and set using the HOTPOOL
keyword of the INQUIRE_PROGRAM and SET_PROGRAM calls.

Chapter 10. Support for VisualAge for Java, Enterprise ToolKit for OS/390 103

#
#
#

#
#
#

#
#
#
#

#

#
#

#
#
#
#

#
#
#

#
#
#

#
#
#
#

#
#
#
#
#

#
#
#
#

#
#
#
#

#
#
#

#
#

Hot-pooling exit program
The DFHJHPAT user replaceable module is called before each program is started.
This is an optional program that you can use for your own purposes, such as
tracing. The module must be called DFHJHPAT and must be written in the C
language. The following parameters are passed to this module when it is called:

int jhpatFormat
char *progname
char *transid
void *env

Where:

jhpatFormat
This parameter is set to 1. Other values are reserved.

*progname
contains the program name in a null-terminated string.

*transid
contains the transaction identifier in a null-terminated string.

*env
is a pointer to the JNIEnv

Note: The Java program object may need to call a native program to access any
variables that you set with setenv commands in this module.

Security
CICS program security checking occurs only once when a program is first loaded
into an enclave. Subsequent reuse of the same program does not cause an
additional check.

Native MVS resources, such as HFS files and sockets are checked by MVS using
the address space USERID, not that of the end-user.

Problem determination
Messages generated by Language Environment are sent to stderr, which CICS
routes to the CESE destination. Application output to stderr is also routed to CESE.

Interactive debug using the Debug Tool
ET/390 extends the VisualAge for Java tool set by including an interactive
debugger. The debugger lets you debug your Java program object code as it runs
in CICS. The debugger’s graphical user interface at the workstation lets you step
through your source code and change the contents of memory, variables, registers,
and the stack.

The Debug Tool is shipped with VisualAge for Java Enterprise Edition for OS/390
V2. (product number 5655-JAV). This includes a copy of the workstation VisualAge
product that contains the Remote Debugger for JAVA. You will need your system
administrator to help set up this debug environment:
v Install the Debug Tool
v Add the supplied CICS resource definitions to the CICS CSD, and install them
v Update the CICS startup jobstream to include the **.SEQAMOD library in the

DFHRPL concatenation

104 CICS TS for OS/390: CICS Application Programming Guide

#

#
#
#
#

#
#
#
#

#

#
#

#
#

#
#

#
#

#
#

#

#
#
#

#
#

#

#
#

|
|

|
|
|
|
|

|
|
|
|

|

|

|
|

v Make the Debug Tool module EQA00DYN accessible to CICS. This could be by
authorized libraries in the STEPLIB concatenation, by a JOBLIB, or by an OS/390
LINKLST dataset

v Activate TCP/IP Sockets for CICS. Note that this feature is not the same as the
CICS Transaction Server Socket Domain (controlled by the CICS definition
parameter TCPIP=YES)

v Link the CEEBXITA module provided with the Debug Tool, EQADCCXT, into a
debug version of CEECCICS for use in the CICS regions where you want to
enable remote debugging. See the OS/390 Language Environment Customization
guide for information on how to build CEEBXITA into a CEECCICS under
SMP/E control.

v Use the VisualAge Workbench to export your Java program object with debug
options

v Start the Debug listener on your selected workstation
v Run the DTCN transaction to enable debugging for your program at your

workstation
v Run the program that you defined for your Java program object. The remote

debugger will be invoked on your workstation, displaying the source of your
main method

All these steps are fully described in the VisualAge and CICS TS tutorial supplied
in HTML format in dfjcics_docs.zip. You will find further useful information in the
following manuals:

OS/390 eNetwork Communications Server: IP CICS Sockets Guide Version 2
Release 5, Document Number SC31-8518
IBM TCP/IP for MVS: CICS TCP/IP Socket Interface Guide and Reference,

Document Number SC31-7131
OS/390 Language Environment Customization, Document Number SC28-1941
Debug Tool Users Guide and Reference
The VisualAge for Java, Enterprise ToolKit for OS/390 documentation, supplied
in HTML format with the product

Chapter 10. Support for VisualAge for Java, Enterprise ToolKit for OS/390 105

|
|
|

|
|
|

|
|
|
|
|

|
|

|

|
|

|
|
|

|
|
|

|
|

|
|

|

|

|
|

106 CICS TS for OS/390: CICS Application Programming Guide

Chapter 11. Using the CICS Java virtual machine

Java application programs can be run under CICS control in CICS Transaction
Server for OS/390 Release 3 and later releases, using the MVS Java Virtual
Machine (JVM), which runs inside CICS unchanged.

You can write CICS applications in Java and compile them to byte-code using any
standard Java compiler, such as VisualAge for Java, or javac, using the full set of
core Java classes, including the following packages (set of classes) that are not
supported fully using the VisualAge for Java, Enterprise ToolKit for OS/390:
v java.io (includes access to HFS files)
v java.net (includes access to OS/390 UNIX System Services (OpenEdition)

sockets)
v java.rmi (includes byte-code interpretation)
v java.lang (includes application level threading)
v java.awt (includes windowing support)

In this book we call Java programs that run under JVM control, JVM programs, to
distinguish them from Java program objects, that is, Java programs that have been
processed by the binder from the VisualAge for Java, Enterprise ToolKit for
OS/390.

JVM programs can use JCICS calls to access CICS services, but you can only issue
these calls from the initial process thread (IPT), and not under any pthreads
created by your Java application. See “Using JCICS” on page 80 for information
about using JCICS.

JVM execution environment
In earlier releases of CICS, user applications operate in a restricted, or “closed”,
environment. Although they can use the functionally-rich CICS programming
interfaces, direct invocation of other services is not supported. This is because CICS
runs user transactions under a single MVS Task Control Block (TCB), known as the
CICS quasi-reentrant (QR) TCB. Direct invocation of other services outside the
scope of the CICS permitted interfaces is not supported, because such actions
could interfere with CICS own use of its QR TCB. In particular, services which
result in the suspension (“blocking”) of the QR TCB would cause all CICS tasks to
wait.

To remove these restrictions, CICS Transaction Server for OS/390 Release 3
introduces a new type of open TCB for use by MVS Java virtual machines invoked
by CICS, which run in the CICS address space.

This new type of TCB is called a J8 TCB. A task running under its own open TCB
is allowed to invoke restricted services, such as blocking services, without
interfering with the QR TCB, or causing it to wait. For example, invoking an MVS
JVM under a unique open TCB allows the JVM to run a user Java application
program that uses Java classes such as java.io, java.net, and java.awt.

Each CICS transaction invoking a JVM program will run under its own J8 open
TCB with its own Java Virtual Machine. The JVM is created for use by each

© Copyright IBM Corp. 1989, 2000 107

|

|

|
|
|

|
|
|
|

|

|
|

|

|

|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

transaction and on completion of execution of the user class, the JVM is destroyed.
Each J8 TCB is defined to use MVS Language Environment (LE) services, rather
than CICS/LE services. As a result, programs executing under a J8 TCB, including
the JVM, have access to OS/390 UNIX System Services and MVS LE services.

Running JVM programs
JVM programs are identified to CICS by the JVM attribute on the PROGRAM
resource definition. (Note that CICS Java programs that are processed by the
binder from the VisualAge for Java, Enterprise ToolKit for OS/390 should not have
the JVM attribute defined as YES.)

JVM programs are not stored in CICS DFHRPL libraries, and are not loaded by the
CICS loader. They are stored in the OS/390 UNIX System Services HFS, and are
loaded directly by the JVM. The JVM does not use the 8-character CICS
PROGRAM name, it needs a qualified class name. You must define this class name
in the JVMCLASS attribute of the PROGRAM resource definition. CICS uses the
PROGRAM resource definition to associate the program name and class name
when the program is invoked.

JVM programs can be used as CICS programs in the following ways:
v as the initial program in a transaction, defined in the TRANSACTION resource

definition
v as the program specified in an EXEC CICS LINK command
v as the program specified in an EXEC CICS XCTL command
v as the program specified in an EXEC CICS HANDLE ABEND PROGRAM

command
v as initialization and shutdown PLT programs
v as user replaceable modules (URMs)

JVM programs CANNOT be specified in EXEC CICS LOAD and RELEASE
commands, and CANNOT be used in the following ways:
v as Task related user exit programs (TRUEs must be written in Assembler

language)
v as Global user exit programs (GLUEs must be written in Assembler language)
v in a COBOL dynamic call
v via a static call (linkedited with a program in another language)

The following diagram shows the execution flow of a transaction JAV1 defined
with PROGRAM(JAVAPROG), where the program JAVAPROG is defined with
JVM(YES) and JVMclass (JCLASS):

108 CICS TS for OS/390: CICS Application Programming Guide

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|

|

|

|
|

|

|

|
|

|
|

|

|

|

|
|
|
|

Compile-time requirements
You can compile Java applications on a workstation and then port them to the
OS/390 UNIX System Services HFS, or you can compile them directly in the
OS/390 UNIX System Services shell. You can use any Java-compliant compiler,
such as javac or VisualAge for Java.

The following files must be in the CLASSPATH when you compile:
v The directory containing your user Java source
v The CICS-supplied dfjcics.jar file containing the JCICS classes, if your program

uses JCICS

Run-time requirements
The following files must be in the CLASSPATH at run-time, in the following order:
v The directory containing your compiled programs (.class files)
v The CICS-supplied dfjwrap.jar file
v The CICS-supplied dfjcics.jar file
v The CICS-supplied dfjcorb.jar file

MVS

CICS

QR TCB J8 TCB

TRANSACTION
ATTACH

JAV1

DFHCJVM
program

JVM

JCLASS

DFHCJVM
Destroy

TRANSACTION
DETACH

Figure 16. JVM transaction flow

Chapter 11. Using the CICS Java virtual machine 109

|

|
|
|
|

|

|

|
|

|

|

|

|

|

|

The CICS start-up jobstream must contain the following DD statements:

DFHJVM
defining the SDFHENV dataset containing default JVM environment
variables. For example:
DFHJVM DD DSN=CICSTS13.SDFHENV(DFHJVM),DISP=SHR

DFHCJVM
defined as DUMMY, to prevent the JVM program reading SYSIN

The JVM uses MVS LE services, so the LE SCEERUN library must be in STEPLIB,
or in the linklist. Note that you can define both SCEERUN in the STEPLIB and
SCEECICS in DFHRPL in the same CICS jobstream.

Note: Full function OS/390 UNIX System Services must be enabled and running
on your MVS system.

CICS-supplied .jar files
The dfjwrap.jar and dfjcics.jar files are stored in the OS/390 UNIX System Services
HFS in a directory called $CICS_HOME/classes during CICS installation.
$CICS_HOME is an environment variable defining the installation directory prefix:
/usr/lpp/cicsts/<username>

Where username is a name you can choose during CICS installation, defaulting to
cicsts13.

JVM directory
You can define the JVM directory using the JAVADIR parameter of the DFHISTAR
post-installation job. The default is java/J1.1. The full directory pathname is made
up as follows:
/usr/lpp/javadir

Hence the default pathname for the JVM directory is:
/usr/lpp/java/J1.1

JVM environment variables
You can set the same environment variables to control the execution of the JVM
that can be set for the MVS JVM from the command line of an OS/390 UNIX
System Services shell. The environment variable settings are obtained by CICS
from the following sources when the JVM is initialized:
1. Default values are obtained from the SDFHENV partitioned dataset that is

distributed with CICS. This dataset is defined in the CICS start-up jobstream
with the DDNAME of DFHJVM. You can edit this dataset with TSO to change
the defaults. You can define the member name of SDFHENV using the
JVMNAME parameter of the DFHISTAR post-installation job. The default is
DFHJVM.

2. CICS_PROGRAM_CLASS and JVM_DEBUG attributes are obtained from the
CICS PROGRAM definition.

3. The user replaceable module DFHJVMAT is called. This program can use the
MVS LE services getenv and setenv to read and set any of the options defined
in SDFHENV.

4. After return from DFHJVMAT, CICS issues getenv for the CICS_PROGRAM_CLASS
environment variable. Any value found (supplied by DFHJVMAT) will be used

110 CICS TS for OS/390: CICS Application Programming Guide

|

|
|
|

|

|
|

|
|
|

|
|

|

|
|
|

|

|
|

|

|
|
|

|

|

|

|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

in place of the JVMCLASS value from the PROGRAM definition. This allows
you to define a JVMCLASS name that is longer than the 255 character limit
allowed in the PROGRAM definition.

See the description of the DFHJVMAT user replaceable module in the CICS
Customization Guide and see the CICS System Definition Guide for a list of the default
values supplied by CICS.

stdin, stdout and stderr
You can set environment variables to define the directory and files where stdin,
stdout and stderr are written. If you specify a file that does not exist, it will be
created.

If you specify a stdout or stderr file that already exists, output is appended to it.

If a stdout or stderr file is empty on completion of the JVM program, it is deleted.

If the stdin file was created by CICS because it did not already exist, it is deleted
on completion. If the stdin file was created by you, it is not deleted.

JCICS programming considerations for JVM programs
Some of the options and services available through the EXEC CICS API are not
accessible from JCICS. See “JCICS programming considerations” on page 72 for
further information about JCICS. The following additional considerations apply to
the JVM execution environment:

ASSIGN
ASSIGN PROGRAM, INVOKINGPROG and RETURNPROG are not supported
by JCICS. When these ASSIGN options are issued from a non-Java program
(COBOL or C, for example) that has been LINKed or XCTLed to from a JVM
program, ASSIGN will return the PROGRAM name correctly.

HANDLE ABEND
HANDLE ABEND is not provided by the JCICS classes, because the Java error
handling model is used in a JVM program or a CICS JAVA program that is run
using the VisualAge for Java, Enterprise ToolKit for OS/390. A JVM program
may be specified in the PROGRAM option of the EXEC CICS HANDLE
ABEND PROGRAM command, issued within a non-Java compiled CICS
application.

LINK
LINK is provided by the JCICS classes. A JVM program can be specified in the
PROGRAM option of the EXEC CICS LINK issued by a non-Java compiled
program, and all parameters are supported. The COMMAREA is passed
automatically to a program by the CommAreaHolder argument to the main()
method. A JVM program cannot LINK to another JVM program on the same
CICS system, because only one JVM can be active for a transaction. (A link to a
remote JVM program (a DPL) from a JVM program is supported, because a
separate transaction is involved).

LOAD
LOAD is not supported in the JCICS classes, so a JVM program cannot request
a CICS LOAD. An attempt to issue an EXEC CICS LOAD for a JVM program
will fail with PGMIDERR.

RELEASE
RELEASE is not supported in the JCICS classes so a JVM program cannot

Chapter 11. Using the CICS Java virtual machine 111

|
|
|

|
|
|

|

|
|
|

|

|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

request a CICS RELEASE. An attempt to issue an EXEC CICS RELEASE for a
JVM program will fail with INVREQ RESP2=6.

XCTL
XCTL is supported in the JCICS classes, so a JVM program can transfer control
to a non-Java compiled program. You can also issue the EXEC CICS XCTL
command to transfer control from a non-Java compiled program to a JVM
program.

Note: You can also transfer control from a JVM program to another JVM
program, because the JVM for the first program will be terminated
before starting the JVM for the second program.

EIB
Access to EIB values is provided by methods on the appropriate objects. For
example, the eibtrnid field is returned by the GetTransactionName() method
of the JCICS Task class.

Java System Properties
If you want to add system properties to the Java properties list for use by a Java
program running under a JVM, you need to create an HFS file called
user.properties. Each line should contain one system property. For example,
sp1=value1 specifies a system property called sp1 and assigns a value of value1 to
it. Note that you should not define user properties with the prefix cics.

You must include the directory containing user.properties in the CLASSPATH for
the JVM, as specified in the DFHJVM member of the SDFHENV dataset.

The CICS wrapper reads your user.properties file and sets the values in the Java
properties list before the user class is invoked. A Java application can retrieve the
system properties using the System.getProperty method.

CICS sets the following system property values during the initialization of the JVM
environment:

Table 9. CICS JVM property values

System property Value Source

user.dir CICS_HOME set by CICS from the value of CICS_HOME
in SDFHENV

user.home $HOME set by the JVM to value of $HOME

user.name user account name set by JVM to the account name under
which the CICS job is running

java.version 1.1.6 set by JVM

java.vendor IBM Corporation set by JVM

java.vendor.url http://www.ibm.com/ set by JVM

java.home JAVA_HOME set from value of JAVA_HOME in
SDFHENV

java.class.version 45.3 set by JVM

java.class.path CLASSPATH set from value of CLASSPATH in
SDFHENV

os.name OS/390 set by JVM

os.arch 390 set by JVM

112 CICS TS for OS/390: CICS Application Programming Guide

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|

|
|

|
|
|

|
|

||

|||

|||
|

|||

|||
|

|||

|||

|||

|||
|

|||

|||
|

|||

|||

Table 9. CICS JVM property values (continued)

System property Value Source

os.version 5 set by JVM

file.separator / set by JVM

path.separator : set by JVM

line.separator set by JVM

Note: Where the source of a value is SDFHENV, the initial setting in SDFHENV
may be overidden by the user replaceable module DFHJVMAT, and it is this
value that will be used.

Using the Abstract Windows Toolkit (AWT) classes
Operation of a JVM inside CICS under its own J8 TCB allows you full use of the
Java classes. This includes use of the Abstract Windows Toolkit (AWT) classes.
There are at least two ways a JVM program can use the AWT classes directly and
have windows presentation logic output on a workstation. One is to use the
X-windows capability of OS/390 UNIX System Services and TCPIP, the other is to
use a pure Java solution called Remote Abstract Window Toolkit for Java.

Remote Abstract Windows Toolkit
The Remote Abstract Window Toolkit for Java is an implementation of AWT for
Java that allows any Java application running on one host to display its GUI
components on a remote host, and to receive all the events that are posted to its
component in the remote host. It allows Java applications to run unchanged in a
Client/Server mode.

Remote AWT for Java implements all AWT APIs without using any native code, in
a client-server manner that is transparent to the Java application. The host that
executes the AWT APIs is not required to use graphics; all graphics services are
provided by using Remote AWT for Java to a remote host.

The remote presentation and event posting are transparent to the application. This
means that any Java application that runs with native AWT on a single host, will
run in the same way with Remote AWT for Java, without making any
modification. Thus, Remote AWT can be used as a CICS solution.

Using Remote AWT with CICS
To use the remote AWT with a JVM program in CICS, you will need to perform
the following steps:
v Install the Remote AWT server code on the ″remote host″, that is, the

workstation where the windows output is to be displayed. This is a reversal of
the traditional client-server model, in that the JVM within CICS is the client, and
the remote workstation is the server. The remote AWT server code running in
the workstation is Java code running in a JVM. This could be in a Java enabled
Web Browser. You can choose the port number to be used for communication
with the host.

v Install the Remote AWT client code on the System/390® host so that it can be
used by the JVM within CICS. Once installed, the directories containing the
Remote AWT Client classes must be added to the CLASSPATH environment

Chapter 11. Using the CICS Java virtual machine 113

|

|||

|||

|||

|||

|||
|

|
|
|

|
|

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|

|
|
|
|
|
|
|

|
|
|

variable in SDFHENV. Note that the directories containing the Remote AWT
classes must be before the JDK classes, because the Remote AWT classes replace
some of the standard AWT classes.

v Make the JVM use AWT by setting the following Java system properties:
– Set awt.toolkit to com.ibm.rawt.client.CToolkit
– Set JdkVersion to the level of JDK in use on the client
– Set RmtAwtServer to the IP address of the remote server and the port number

used by the server

You can use the EXEC CICS INQUIRE WEB commands to find the workstation IP
address, and can use a constant port number across workstations, hard coded
according to installation standards.

114 CICS TS for OS/390: CICS Application Programming Guide

|
|
|

|

|

|

|
|

|
|
|

Part 3. Application design

Chapter 12. Designing efficient applications . . 119
Program structure 119

Program size 120
Choosing between pseudoconversational and
conversational design. 120

General programming techniques 123
Virtual storage 123
Reducing paging effects 124

Locality of reference 124
Working set 125
Reference set 125

Exclusive control of resources 126
Processor usage 127
Recovery design implications 127
Terminal interruptibility 128
Operational control 129
Operating system waits 129
Runaway tasks 129
Auxiliary trace 130
The NOSUSPEND option 130
Multithreading 131

Quasi-reentrant application programs . . . 131
Threadsafe programs 132
Non-reentrant programs 133

Storing data within a transaction 134
Transaction work area (TWA) 134
User storage 134
COMMAREA in LINK and XCTL commands 135
Program storage 136

Lengths of areas passed to CICS commands . . . 136
LENGTH options 136
Journal records 136
Data set definitions 136
Recommendation 137

Temporary storage 137
Intrapartition transient data 138
GETMAIN SHARED command 139
Your own data sets 139
Data operations 140

Database operations 140
Data set operations 140

VSAM data sets 140
BDAM data sets 141

Browsing (in non-RLS mode) 142
Logging 142
Sequential data set access 142

Terminal operations 143
Length of the data stream sent to the terminal 143
Basic mapping support considerations 143

Avoid turning on modified data tags (MDTs)
unnecessarily 143
Use FRSET to reduce inbound traffic . . . 144
Do not send blank fields to the screen . . . 144
Address CICS areas correctly 144
Use the MAPONLY option when possible 145

Send only changed fields to an existing
screen 145
Design data entry operations to reduce line
traffic 145
Compress data sent to the screen 145
Use nulls instead of blanks 146
Use methods that avoid the need for nulls or
blanks 146

Page-building and routing operations 146
Sending multipage output 146
Sending messages to destinations other than
the input terminal 147
Sending pages built from multiple maps . . 148
Using the BMS page-copy facility. 148

Requests for printed output 148
Additional terminal control considerations . . 148

Use only one physical SEND command per
screen 148
On BTAM, avoid the WAIT option on a
SEND command 149
Use the CONVERSE command 149
Limit the use of message integrity options 149
Avoid using the DEFRESP option on SEND
commands 149
Avoid using unnecessary transactions . . . 149
Send unformatted data without maps . . . 149

Chapter 13. Sharing data across transactions 151
Common work area (CWA). 151

Protecting the CWA 151
TCTTE user area (TCTUA) 154
COMMAREA in RETURN commands 155
Display screen 155

Chapter 14. Affinity 157
What is affinity? 157

Types of affinity 158
Inter-transaction affinity 158
Transaction-system affinity 158

Techniques used by CICS application programs to
pass data 159

Safe techniques 159
Unsafe techniques 159
Suspect techniques 160

Safe programming techniques 160
The COMMAREA 160
The TCTUA 161

Using the TCTUA in an unsafe way 162
Using ENQ and DEQ commands with
ENQMODEL resource definitions. 163

Overview of sysplex enqueue and dequeue 163
Benefits 164

BTS containers 164
Unsafe programming techniques 165

Using the common work area 165
Using GETMAIN SHARED storage 166

© Copyright IBM Corp. 1989, 2000 115

||
||
||

|
||
||
||
||

Using the LOAD PROGRAM HOLD command 166
Sharing task-lifetime storage 168
Using the WAIT EVENT command 169
Using ENQ and DEQ commands without
ENQMODEL resource definitions. 170

Suspect programming techniques. 171
Using temporary storage 171

Naming conventions for remote queues . . 173
Exception conditions for globally accessible
queues 174

Using transient data 174
Exception conditions for globally accessible
queues 175

Using the RETRIEVE WAIT and START
commands 175
Using the START and CANCEL REQID
commands 177
Using the DELAY and CANCEL REQID
commands 178
Using the POST and CANCEL REQID
commands 180

Detecting inter-transaction affinities 181
Inter-transaction affinities caused by application
generators 181

Duration and scope of inter-transaction affinities 182
Affinity transaction groups 182
Relations and lifetimes 182

The global relation 183
The LUname (terminal) relation 184
The userid relation 185
The BAPPL relation 186

Recommendations 188

Chapter 15. Using CICS documents 189
The DOCUMENT application programming
interface 189

Creating a document 189
The BINARY parameter 189
The TEXT parameter 189
Inserting one document into another . . . 190
Using document templates 190

Programming with documents 190
Setting symbol values 190
Embedded template commands 191
Using templates in your application 193
The lifespan of a document. 193

Retrieving the document without control
information 194
Using multiple calls to construct a document 195
Bookmarks and inserting data 196
Replacing data in the document 196
Codepages and codepage conversion . . . 197

Chapter 16. Using named counter servers . . . 199
Overview. 199

The named counter fields 199
Named counter pools. 200

Named counter options table 200
The named counter API commands 201
The named counter CALL interface 203

Chapter 17. Intercommunication considerations 205
Design considerations 205

Programming language 206
Transaction routing 206
Function shipping 206
Distributed program link (DPL) 207

Using the distributed program link function . . 208
Examples of distributed program link 210
Programming considerations for distributed
program link 215

Issuing multiple distributed program links
from the same client task 215
Sharing resources between client and server
programs 215
Mixing DPL and function shipping to the
same CICS system. 215
Mixing DPL and DTP to the same CICS
system 216
Restricting a program to the distributed
program link subset 216
Determining how a program was invoked 216
Accessing user-related information with the
ASSIGN command 216
Exception conditions for LINK command . . 217

Asynchronous processing 219
Distributed transaction processing (DTP) 219
Common Programming Interface Communications
(CPI Communications) 219
External CICS interface (EXCI) 220

Chapter 18. Recovery considerations 223
Journaling 223

Journal records 223
Journal output synchronization 223

Syncpointing 225

Chapter 19. Minimizing errors 229
Protecting CICS from application errors 229
Testing applications 229

Chapter 20. Dealing with exception conditions 231
Default CICS exception handling 231
Handling exception conditions by in-line code . . 232

How to use the RESP and RESP2 options . . . 232
Use of RESP and DFHRESP in COBOL and
PL/I 232
Use of RESP and DFHRESP in C and C++ 233
Use of DFHRESP in assembler. 233

An example of exception handling in C . . . 233
An example of exception handling in COBOL 234

Modifying the default CICS exception handling 235
Use of HANDLE CONDITION command . . . 237
Use of the HANDLE CONDITION ERROR
command 237
How to use the IGNORE CONDITION
command 238
Use of the HANDLE ABEND command . . . 239
RESP and NOHANDLE options 240
How CICS keeps track of what to do 240

How to use PUSH HANDLE and POP
HANDLE commands. 241

116 CICS TS for OS/390: CICS Application Programming Guide

||

||
|
||
||
||
||
||
||
||
||
||
||
||
|
||
||
||
||
||

||
||
||
||
||
||
||

Chapter 21. Access to system information. . . 243
System programming commands 243
EXEC interface block (EIB) 243

Chapter 22. Abnormal termination recovery . . 245
Creating a program-level abend exit 246
Restrictions on retrying operations 247
Trace 248

Trace entry points 249
System trace entry points 249
User trace entry points 249
Exception trace entry points 249
User exception trace entry points 249

Monitoring 250
Dump 250

Part 3. Application design 117

118 CICS TS for OS/390: CICS Application Programming Guide

Chapter 12. Designing efficient applications

In this chapter, design changes are suggested that can improve performance and
efficiency without much change to the application program itself.
v “Program structure”
v “General programming techniques” on page 123
v “Storing data within a transaction” on page 134
v “Lengths of areas passed to CICS commands” on page 136
v “EXEC interface stubs” on page 19
v “Data operations” on page 140
v “Terminal operations” on page 143

Other aspects of application design (such as productivity, readability of the code,
usability, standards, and the effort involved) are not discussed but you should
always try to consider these when deciding what to improve, and how to improve
it. In order of priority, you should think about:
1. Application and system design
2. Task design
3. Program design
4. Program coding

If you have a performance problem that applies in a particular situation, try to
isolate the changes you make so that their effects apply only in that situation. After
fixing the problem and testing the changes, use them in your most commonly-used
programs and transactions, where the effects on performance are most noticeable.

Program structure
Two main aspects of design you should consider are:
v Program size
v Whether to write conversational or pseudoconversational applications

The original versions of CICS ran on machines without virtual storage. Storage
sizes were generally very small by current standards and consequently, storage
was almost always the critical resource. As a result, CICS programmers were
encouraged to keep everything as small as possible: programs, data areas,
GETMAIN commands, and so on. Programs were loaded on demand, and one
copy of the program was shared among all concurrent users.

With the virtual storage concept and the trend toward much larger and less
expensive storage, this constraint on storage eased somewhat. Virtual storage
seemed almost unlimited at first, although there was still often a shortage of the
underlying real storage. Eventually, CICS systems grew so much in volume and
complexity that even virtual storage became a constraint, but the trade-off of
storage resources against others definitely shifted during this time. Whereas
extensive programming efforts and long instruction sequences would once have
been invested to save even a modest amount of storage, now both CICS as a
system, and the application programmers using it, are willing to trade some
storage for processor savings and additional function. Some indications of this are:
v Many programs that are now kept resident in virtual storage, rather than being

loaded on demand.
v There is much more extensive use of high-level programming languages.

© Copyright IBM Corp. 1989, 2000 119

v The EXEC CICS interface, which requires larger control blocks than the macro
interface, but saves enormously in programming effort.

Program size
The early emphasis on small programs led CICS programmers to break up
programs into units that were as small as possible, and to transfer control using
the XCTL command, or link using the LINK command, between them. In current
systems, however, it is not always better to break up programs into such small
units, because there is CICS processing overhead for each transfer and, for LINK
commands, there is also storage overhead for the register save areas (RSAs).

For modestly-sized blocks of code that are processed sequentially, inline code is
most efficient. The exceptions to this rule are blocks of code that are:
v Fairly long and used independently at several different points in the application
v Subject to frequent change (in which case, you balance the overhead of LINK or

XCTL commands with ease of maintenance)
v Infrequently used, such as error recovery logic and code to handle uncommon

data combinations

If you have a block of code that for one of these reasons, has to be written as a
subroutine, the best way of dealing with this from a performance viewpoint is to
use a closed subroutine within the invoking program (for example, code that is
dealt with by a PERFORM command in COBOL). If it is needed by other
programs, it should be a separate program. A separate program can be called, with
a CALL statement (macro), or it can be kept separate and processed using an
XCTL or a LINK command. Execution overhead is least for a CALL, because no
CICS services are invoked; for example, the working storage of the program being
called is not copied. A called program, however, must be linked into the calling
one and so cannot be shared by other programs that need it unless you use special
COBOL, C/370, or PL/I facilities. A called subroutine is loaded as part of each
program that CALLs it and hence uses more storage. Thus, subsequent transactions
using the program may or may not have the changes in the working storage made
to the called program. This depends entirely on whether CICS has loaded a new
copy of the program into storage.

Overhead (but also flexibility) is highest with the XCTL and LINK commands.
Both processor and storage requirements are much greater for a LINK command
than for an XCTL command. Therefore, if the invoking program does not need to
have control returned to it after the invoked program is processed, it should use an
XCTL command. The load module resulting from any application program can
occupy up to 16MB of main storage, although this is not recommended. You may
get an abend code of APCG if your program occupies all the available storage in
the dynamic storage area (DSA).

Choosing between pseudoconversational and conversational
design

In a conversational transaction, the length of time spent in processing each of a
user’s responses is extremely short when compared to the amount of time waiting
for the input. A conversational transaction is one that involves more than one input
from the terminal, so that the transaction and the user enter into a conversation. A
nonconversational transaction has only one input (the one that causes the
transaction to be invoked). It processes that input, responds to the terminal and
terminates.

120 CICS TS for OS/390: CICS Application Programming Guide

Processor speeds, even allowing for accessing data sets, are considerably faster
than terminal transmission times, which are considerably faster than user response
times. This is especially true if users have to think about the entry or have to enter
many characters of input. Consequently, conversational transactions tie up storage
and other resources for much longer than nonconversational transactions.

A pseudoconversational transaction sequence contains a series of
nonconversational transactions that look to the user like a single conversational
transaction involving several screens of input. Each transaction in the sequence
handles one input, sends back the response, and terminates.

Before a pseudoconversational transaction terminates, it can pass data forward to
be used by the next transaction initiated from the same terminal, whenever that
transaction arrives. A pseudoconversational transaction can specify what the next
transaction is to be, and it does this by setting the transaction identifier of the
transaction that handles the next input. However, you should be aware that if
another transaction is started for that device, it may interrupt the
pseudoconversational chain you have designed.

No transaction exists for the terminal from the time a response is written until the
user sends the next input and CICS starts the next transaction to respond to it.
Information that would normally be stored in the program between inputs is
passed from one transaction in the sequence to the next using the COMMAREA or
one of the other facilities that CICS provides for this purpose. (See “Chapter 13.
Sharing data across transactions” on page 151 for details.)

There are two major issues to consider in choosing between conversational and
pseudoconversational programming.
v The effect of the transaction on contention resources, such as storage and

processor usage. Storage is required for control blocks, data areas, and programs
that make up a transaction, and the processor is required to start, process, and
terminate tasks. Conversational programs have a very high impact on storage,
because they last so long, relative to the sum of the transactions that make up an
equivalent pseudoconversational sequence. However, there is less processor
overhead, because only one transaction is initiated instead of one for every
input.

v The effect on exclusive-use resources, such as records in recoverable data sets,
recoverable transient data queues, enqueue items, and so on. Again, a
conversational transaction holds on to these resources for much longer than the
corresponding sequence of nonconversational transactions. From this point of
view, pseudoconversational transactions are better for quick responses, but
recovery and integrity implications may mean that you prefer to use
conversational transactions.

CICS ensures that changes to recoverable resources (such as data sets, transient
data, and temporary storage) made by a unit of work (UOW) are made completely
or not at all. A UOW is equivalent to a transaction, unless that transaction issues
SYNCPOINT commands, in which case a UOW lasts between syncpoints. For a
more detailed description of syncpoints and UOWs, see the CICS Recovery and
Restart Guide.

When a transaction makes a change to a recoverable resource, CICS makes that
resource unavailable to any other transaction that wants to change it until the

Chapter 12. Designing efficient applications 121

original transaction has completed. In the case of a conversational transaction, the
resources in question may be unavailable to other terminals for relatively long
periods.

For example, if one user tries to update a particular record in a recoverable data
set, and another user tries to do so before the first one finishes, the second user’s
transaction is suspended. This has advantages and disadvantages. You would not
want the second user to begin updating the record while the first user is changing
it, because one of them is working from what is about to become an obsolete
version of the record, and these changes erase the other user’s changes. On the
other hand, you also do not want the second user to experience the long,
unexplained wait that occurs when that transaction attempts to READ for UPDATE
the record that is being changed.

If you use pseudoconversational transactions, however, the resources are only very
briefly unavailable (that is, during the short component transactions). However,
unless all recoverable resources can be updated in just one of these transactions,
recovery is impossible because UOWs cannot extend across transactions. So, if you
cannot isolate updates to recoverable resources in this way, you must use
conversational transactions.

The previous example poses a further problem for pseudoconversational
transactions. Although you could confine all updating to the final transaction of
the sequence, there is nothing to prevent a second user from beginning an update
transaction against the same record while the first user is still entering changes.
This means that you need additional application logic to ensure integrity. You can
use some form of enqueuing, or you can have the transaction compare the original
version of the record with the current version before actually applying the update.

You should be aware of one further difference between conversational and
pseudoconversational transactions. After a user begins a conversational transaction,
no messages can be delivered to that user’s terminal from any source except the
transaction being processed. Broadcast messages, and messages sent by other
transactions, are not displayed until the conversational transaction has ended. In a
pseudoconversational sequence, however, such messages are delivered as soon as
no transaction is running for that user’s terminal, which may be immediately after
any screen in the sequence. This has advantages and disadvantages. You may find
it a problem if you are not able to send messages to users immediately; for
example, if you have to shut down the system at an unscheduled time. However,
users of pseudoconversational transactions may find it annoying to have a data
entry screen overlaid by a message. The unexpected change in the screen may even
cause the next transaction in the sequence to fail. If this seems likely, you should
design your transaction screens so that messages can only occur in a specific area.

There are factors other than performance overhead to consider when choosing
between pseudoconversational and conversational design for CICS applications.
The method you choose can affect how you write the application programs. You
may need extra CICS requests for pseudoconversations, particularly if you are
updating recoverable files. After you have done this, however, operational control
(performance monitoring, capacity planning, recovery, system shutdown, and
distributing system messages) may be much easier.

122 CICS TS for OS/390: CICS Application Programming Guide

General programming techniques
To know how programming techniques can affect the performance and efficiency
of the CICS system, it is necessary to understand a little about the environment in
which CICS operates. Here the following factors are considered:
v Virtual storage
v Reducing paging effects
v Exclusive control of resources
v Processor usage
v Recovery design implications
v Terminal interruptibility
v Operational control
v Operating system waits
v Runaway tasks
v Auxiliary trace
v NOSUSPEND option
v Multithreading

Virtual storage
A truly conversational CICS task is one that converses with the terminal user for
several or many interactions, by issuing a terminal read request after each write
(for example, using either a SEND command followed by a RECEIVE command, or
a CONVERSE command). This means that the task spends most of its extended life
waiting for the next input from the terminal user.

Any CICS task requires some virtual storage throughout its life and, in a
conversational task, some of this virtual storage is carried over the periods when
the task is waiting for terminal I/O. The storage areas involved include the TCA
and associated task control blocks (including EIS or EIB, JCA, and LLA—if used)
and the storage required for all programs that are in use when any terminal read
request is issued. Also included are the work areas (such as copies of COBOL
working storage) associated with this task’s use of those programs.

With careful design, you can sometimes arrange for only one very small program
to be retained during the period of the conversation. The storage needed could be
shared by other users. You must multiply the rest of the virtual storage
requirement by the number of concurrent conversational sessions using that code.

By contrast, a pseudoconversational sequence of tasks requires almost all of its
virtual storage only for the period actually spent processing message pairs.
Typically, this takes a period of 1—3 seconds in each minute (the rest being time
waiting for operator input). The overall requirement for multiple concurrent users
is thus perhaps five percent of that needed for conversational tasks. However, you
should allow for data areas that are passed from each task to the next. This may be
a COMMAREA of a few bytes or a large area of temporary storage. If it is the
latter, you are normally recommended to use temporary storage on disk rather
than in main storage, but that means adding extra temporary storage I/O
overhead in a pseudoconversational setup, which you do not need with
conversational processing.

The extra virtual storage you need for conversational applications usually means
that you need a correspondingly greater amount of real storage. The paging you
need to control storage involves additional overhead and virtual storage. The

Chapter 12. Designing efficient applications 123

adverse effects of paging increase as transaction rates go up, and so you should
minimize its use as much as possible. See Reducing paging effects for information
about doing so.

Reducing paging effects
Reducing paging effects is a technique used by CICS in a virtual-storage
environment. The key objective of programming in this environment is the
reduction of page faults. A page fault occurs when a program refers to instructions
or data that do not reside in real storage, in which case the page in virtual storage
that contains the instructions or data referred to must be paged into real storage.
The more paging required, the lower the overall system performance.

Although an application program may be able to communicate directly with the
operating system, the results of such action are unpredictable and can degrade
performance.

An understanding of the following terms is necessary for writing application
programs to be run in a virtual-storage environment:

Locality of reference
The consistent reference, during the execution of the application program,
to instructions and data within a relatively small number of pages
(compared to the total number of pages in a program) for relatively long
periods.

Working set
The number and combination of pages of a program needed during a
given period.

Reference set
Direct reference to the required pages, without intermediate storage
references that retrieve useless data.

Locality of reference
Keep the instructions processed and data used in a program within a relatively
small number of pages (4096-byte segments). This quality in a program is known
as “locality of reference”. You can do this by:
v Making the execution of the program as linear as possible.
v Keeping any subroutines you use in the normal execution sequence as close as

possible to the code that invokes them.
v Placing code inline, even if you have to repeat it, if you have a short subroutine

that is called from only a small number of places.
v Separating error-handling and other infrequently processed code from the main

flow of the program.
v Separating data used by such code from data used in normal execution.
v Defining data items (especially arrays and other large structures) in the order in

which they are referred to.
v Defining the elements within a data structure in the approximate order in which

they are referred to. For example, in PL/I, all the elements of one row are
stored, then the next row, and so on. You should define an array so that you can
process it by row rather than by column.

v Initializing data as close as possible to where it is first used.
v Avoiding COBOL variable MOVE operations because these expand into

subroutine calls.

124 CICS TS for OS/390: CICS Application Programming Guide

v Issuing as few GETMAIN commands as possible. It is generally better for the
program to add up its requirements and do one GETMAIN command than to do
several smaller ones, unless the durations of these requirements vary greatly.

v Avoiding use of the INITIMG option on a GETMAIN command, if possible. It
causes an immediate page reference to the storage that is obtained, which might
otherwise not occur until much later in the program, when there are other
references to the same area.

Note: Some of the suggestions above may conflict with your installation’s
programming standards if these are aimed at the readability and
maintainability of the code, rather than speed of execution in a
virtual-storage environment. Some structured programming methods, in
particular modular programming techniques, make extensive use of the
PERFORM command in COBOL (and the equivalent programming
techniques in C/370, PL/I, and assembler language) to make the structure of
the program clear. This may also result in more exceptions to sequential
processing than are found in a nonstructured program. Nevertheless, the
much greater productivity associated with structured code may be worth the
possible loss of locality of reference.

Working set
The working set is the number and combination of pages of a program needed
during a given period. To minimize the size of the working set, the amount of
storage that a program refers to in a given period should be as small as possible.
You can do this by:
v Writing modular programs and structuring the modules according to frequency

and anticipated time of reference. Do not modularize merely for the sake of size;
consider duplicate code inline as opposed to subroutines or separate modules.

v Using separate subprograms whenever the flow of the program suggests that
execution is not be sequential.

v Not tying up main storage awaiting a reply from a terminal user.
v Using command-level file control locate-mode input/output rather than

move-mode. Use of multiple temporary storage queues is restricted. For
programming information about temporary storage restrictions when using
locate-mode input/output with the SET option, see the in commands, see the
CICS Application Programming Reference manual.

v In COBOL programs, specifying constants as literals in the PROCEDURE
DIVISION, rather than as data variables in the WORKING STORAGE section.

v In C, C++, and PL/I programs, using static storage for constant data.
v Avoiding the use of LINK commands where possible, because they generate

requests for main storage.

Reference set
Try to keep the overall number of pages that a program uses during normal
operation as small as possible. These pages are termed the reference set, and they
give an indication of the real storage requirement of the program. You can reduce
the reference set by:
v Specifying constants in COBOL programs as literals in the PROCEDURE

DIVISION, rather than as data variables in the WORKING STORAGE SECTION.
The reason for this is that there is a separate copy of working storage for every
task executing the program, whereas literals are considered part of the program
itself, of which only one copy is used in CICS.

v Using static storage in C, C++, and PL/I for data that is genuinely constant, for
the same reason as in the previous point.

Chapter 12. Designing efficient applications 125

v Reusing data areas in the program as much as possible. You can do this with the
REDEFINES clause in COBOL, the union clause in C and C++, based storage in
PL/I, and ORG or equivalents in assembler language. In particular, if you have a
map set that uses only one map at a time, code the DFHMSD map set definition
without specifying either the STORAGE=AUTO or the BASE operand. This
allows the maps in the map set to redefine one another.

v Using the COBOL RES option. COBOL subroutines coded with this option are
not link-edited into the calling program, but instead are loaded on their first use.
They can then be shared by any other COBOL program requiring them.

v Using the PL/I shared library (PLISHRE) for such subroutines.

Refer to data directly by:
v Avoiding long searches for data in tables
v Using data structures that can be addressed directly, such as arrays, rather than

structures that must be searched, such as chains
v Avoiding methods that simulate indirect addressing

No attempt should be made to use overlays (paging techniques) in an application
program. System paging is provided automatically and has superior performance.
The design of an application program for a virtual-storage environment is similar
to that for a real environment. The system should have all modules resident so that
code on pages not referred to need not be paged in.

If the program is dynamic, the entire program must be loaded across adjacent
pages before execution begins. Dynamic programs can be purged from storage if
they are not being used and an unsatisfied storage request exists. Allowing
sufficient dynamic area to prevent purging is more expensive than making them
resident, because a dynamic program does not share unused space on a page with
another program.

Exclusive control of resources
The very fundamental and powerful recovery facilities that CICS provides have
performance implications. CICS serializes updates to recoverable resources so that
if a transaction fails, its changes to those resources can be backed out
independently of those made by any other transaction. Consequently, a transaction
updating a recoverable resource gets control of that resource until it terminates or
indicates that it wants to commit those changes with a SYNCPOINT command.
Other transactions requiring the same resource must wait until the first transaction
finishes with it.

The primary resources that produce these locking delays are data sets, DL/I
databases, temporary storage, and transient data queues. The unit where protection
is based is the individual record (key) for data sets, the program specification block
(PSB) for DL/I databases, and the queue name for temporary storage. For transient
data, the “read” end of the queue is considered a separate resource from the
“write” end (that is, one transaction can read from a queue while another is
writing to it).

To reduce transaction delays from contention for resource ownership, the length of
time between the claiming of the resource and its release (the end of the UOW)
should be minimized. In particular, conversational transactions should not own a
critical resource across a terminal read.

126 CICS TS for OS/390: CICS Application Programming Guide

Note: Even for nonrecoverable data sets, VSAM prevents two transactions from
reading the same record for update at the same time. This enqueue ends as
soon as the update is complete, however, rather than at the end of the UOW.
Even this protection for a BDAM data set, can be relinquished by defining
them with “no exclusive control” (SERVREQ=NOEXCTL) in the file control
table.

This protection scheme can also produce deadlocks as well as delays, unless
specific conventions are observed. If two transactions update more than one
recoverable resource, they should always update the resources in the same order. If
they each update two data sets, for example, data set “A” should be updated
before data set “B” in all transactions. Similarly, if transactions update several
records in a single data set, they should always do so in some predictable order
(low key to high, or conversely). You might also consider including the TOKEN
keyword with each READ UPDATE command. See “The TOKEN option” on
page 275 for information about the TOKEN keyword. Transient data, temporary
storage, and user journals must be included among such resources. The CICS
Recovery and Restart Guide contains further information on the extent of resource
protection.

It may be appropriate here to note the difference between CICS data sets on a
VSAM control interval, and VSAM internal locks on the data set. Because CICS has
no information about VSAM enqueue, a SHARE OPTION 4 control interval that is
updated simultaneously from batch and CICS can result in, at best, reduced
performance and, at worst, an undetectable deadlock situation between batch and
CICS. You should avoid such simultaneous updates between batch and CICS. In
any case, if a data set is updated by both batch and CICS, CICS is unable to ensure
data integrity.

Processor usage
Pseudoconversational tasks require a new task to be created to process each
message-pair, and to be deleted when that task has finished. The additional
processor usage that this requires is also known as the ATTACH/DETACH
overhead. These may include the cost of initializing a new work area for the
program that is first entered. (In a conversational task, this area is retained
permanently, as already mentioned.)

There may also be extra processor overhead because of extra requests needed to
retrieve data passed from the previous task of the pseudoconversation, and
possibly to pass data to the next task.

Recovery design implications
Many applications require a succession of interactions with the user to get all the
data needed to create a file record. For example, creating an order involves header
information such as customer number, date created, and date required.

Some installations may require that only complete orders are entered on the file. A
conversational application might create a partial order record and then update it in
stages, as the terminal operator enters items. If all the updates are to be committed
and backed out together, this means retaining the protective enqueues on records
throughout the conversation until the order is complete. You may need to protect
both the current order being entered and the stock records that have been
decreased by the number of items ordered. Thus, a whole series of enqueues could
be carried forward through the conversation for several minutes, and any other

Chapter 12. Designing efficient applications 127

user making a conflicting request might wait without warning until the end of the
order. This also means that ENQ areas are held in virtual storage for this time.

If you are also using IMS™, you must keep the PSB in question scheduled from
just before the first insert or get update request until the end of the order to keep
the ENQs. This is a fairly large control block, and it is associated with others that
manage a thread into IMS. To allow multiple conversational users to do a long
series of updates would mean a very large allocation of threads into IMS (the
maximum is 255), and a lot of virtual storage for the control blocks.

Lastly, if the conversation went on to another order, presumably a syncpoint would
be taken to commit the previous one. This could affect the ability of the program
to restart after an IMS deadlock abend. (The DFHREST module would need to be
modified to get over this possibility, so that it can be restarted even though an
intervening syncpoint has occurred.)

In a pseudoconversational implementation, the above approach is quite impossible
because updates on one task are committed independently of any other. Therefore,
an order that must be complete “in one piece” must be created by just one task.
However many interactions it takes to get all the necessary input, the final task has
to be the one that creates the order. Data supplied earlier in the conversation must
be saved somewhere between transactions—usually in temporary storage on disk.
That is, you must incur extra overhead in input/output to temporary storage while
the order is built up.

If the operator is taking orders over the telephone, with no written backup
material on paper, the TS data itself should be made recoverable to avoid the
remote client having to dictate the order over again.

To summarize the issue: recovery places separate design constraints on both
implementations, but the performance cost of the pseudoconversational approach
is usually more acceptable.

Terminal interruptibility
When a conversational task is running, CICS allows nothing else to send messages
to that task’s terminal. This has advantages and disadvantages. The advantage is
that unexpected messages (for example, broadcasts) cannot interrupt the
user-machine dialogue and, worse, corrupt the formatted screen. The disadvantage
is that the end user cannot then be informed of important information, such as the
intention of the control operator to shut down CICS after 10 minutes. More
importantly, the unwitting failure of the end user to terminate the conversation
may in fact prevent or delay a normal CICS shutdown.

Pseudoconversational applications can allow messages to come through between
message pairs of a conversation. This means that notices like shutdown warnings
can be delivered. This might disturb the display screen contents, and can
sometimes interfere with transaction sequences controlled by the RETURN
command with the TRANSID option. However, this can be prevented by forcing
the terminal into NOATI status during the middle of a linked sequence of
interactions (like building one order in the example above), or by judiciously
allowing space at the top or bottom of the screen for use by any message being
sent to the screen. The ERRATT option is useful here, but does not control all
messages generated by CICS.

128 CICS TS for OS/390: CICS Application Programming Guide

The main problem is that CICS shutdown could occur in mid sequence—in our
example, when an order is only partly built. This is because CICS cannot
distinguish between the last CICS task of a user transaction and any other. You can
guard against this by ensuring that users are warned of any intended shutdown
sufficiently far in advance, so they do not start work that they might not complete
in time.

Operational control
The CICS system initialization parameter MXT specifies the maximum number of
user tasks that can exist in a CICS system at the same time. MXT is invaluable for
avoiding short-on-storage (SOS) conditions and for controlling contention for
resources in CICS systems. It works by delaying the creation of user tasks to
process input messages, if there are already too many activities in the CICS system.
In particular, the virtual storage occupied by a message awaiting processing is
usually much less than that needed for the task to process it, so you save virtual
storage by delaying the processing of the message until you can do so quickly.

Transaction classes are useful in limiting the number of tasks of a particular
user-defined type, or class, if these are heavy resource users.

To summarize, although conversational tasks may be easier to write, they have
serious disadvantages—both in performance (especially the need for virtual
storage) and in their effect on the overall operability of the CICS systems
containing them. Processors are now larger, with more real storage and more
power than in the past, and this makes conversational tasks less painful in small
amounts; but if you use conversational applications, you may rapidly run into
virtual storage constraint. If you run application programs above the line, you will
probably encounter ENQ problems before running into virtual storage constraints.

Operating system waits
You should avoid using facilities that cause operating system waits. All CICS
activity stops when one of these waits occurs, and all transactions suffer response
delays. The chief sources of such waits are:
v Extrapartition transient data sets. (See “Sequential data set access” on page 142.)
v Those COBOL, C, C++, and PL/I language facilities that you should not use in

CICS programs and for which CICS generally provides alternative facilities. For
guidance information about the language restrictions, see “Chapter 2.
Programming in COBOL” on page 23, “Chapter 3. Programming in C and C++”
on page 45, and “Chapter 4. Programming in PL/I” on page 53.

v SVCs and assembler language macros that invoke operating system services,
such as write-to-operator (WTO).

Runaway tasks
CICS only resets a task’s runaway time (ICVR) when a task is suspended. An
EXEC CICS command cannot be guaranteed to cause a task to suspend during
processing because of the unique nature of each CICS implementation. The
runaway time may be exceeded causing a task to abend AICA. This abend can be
prevented by coding an EXEC CICS SUSPEND command in the application This
causes the dispatcher to suspend the task that issued the request and allow any
task of higher priority to run. If there is no task ready to run, the program that
issued the suspend is resumed. For further information about abend AICA, see the
CICS Problem Determination Guide.

Chapter 12. Designing efficient applications 129

Auxiliary trace
Use auxiliary trace to review your application programs. For example, it can show
up any obviously unnecessary code, such as a data set browse from the beginning
of a data set instead of after a SETL, too many or too large GETMAIN commands,
failure to release storage when it is no longer needed, unintentional logic loops,
and failure to unlock records held for exclusive control that are no longer needed.

The NOSUSPEND option
The default action for the ENQBUSY, NOJBUFSP, NOSPACE, NOSTG, QBUSY,
SESSBUSY, and SYSBUSY conditions is to suspend the execution of the application
until the required resource (for example, storage) becomes available, and then
resume processing the command. The commands that can give rise to these
conditions are: ALLOCATE, ENQ, GETMAIN, WRITE JOURNALNAME, WRITE
JOURNALNUM, READQ TD, and WRITEQ TS.

On these commands, you can use the NOSUSPEND option (also known as the
NOQUEUE option in the case of the ALLOCATE command) to inhibit this waiting
and cause an immediate return to the instruction in the application program
following the command.

CICS maintains a table of conditions referred to by the HANDLE CONDITION
and IGNORE CONDITION commands in a COBOL application program2.
Execution of these commands either updates the existing entry, or causes a new
entry to be made if the condition has not yet been the subject of such a command.
Each entry indicates one of the three states described below:
v A label is currently specified, as follows:

HANDLE CONDITION condition(label)

v The condition is to be ignored, as follows:
IGNORE CONDITION

v No label is currently specified, as follows:
HANDLE CONDITION

When the condition occurs, the following tests are made:
1. If the command has the NOHANDLE or RESP option, control returns to the

next instruction in the application program. Otherwise, the condition table is
scanned to see what to do.

2. If an entry for the condition exists, this determines the action.
3. If no entry exists and the default action for this condition is to suspend

execution:
v If the command has the NOSUSPEND or NOQUEUE option, control returns

to the next instruction.
v If the command does not have one of these options, the task is suspended.

4. If no entry exists and the default action for this condition is to abend, a second
search is made looking for the ERROR condition:
v If found, this entry determines the action.
v If ERROR is searched for and not found, the task is abended.

For programming information about the use of the NOSUSPEND option, see the
CICS Application Programming Reference manual.

2. HANDLE CONDITION and IGNORE CONDITION commands are not supported for C and C++ programs.

130 CICS TS for OS/390: CICS Application Programming Guide

Multithreading
Multithreading is a technique that allows a single copy of an application program
to be processed by several transactions concurrently. For example, one transaction
may begin to execute an application program. When an EXEC CICS command is
reached, causing a CICS WAIT and call to the dispatcher, another transaction may
then execute the same copy of the application program. (Compare this with
single-threading, which is the execution of a program to completion: processing of
the program by one transaction is completed before another transaction can use it.)

Multithreading requires that all CICS application programs be reentrant; that is,
they must be serially reusable between entry and exit points. CICS application
programs using the EXEC CICS interface obey this rule automatically. For COBOL,
C, and C++ programs, reentrancy is ensured by a fresh copy of working storage
being obtained each time the program is invoked. You should always use the
RENT option on the compile or pre-link utility even for C and C++ programs that
do not have writable statics and are naturally reentrant. Temporary variables and
DFHEPTR fields inserted by the CICS translator are usually defined as writable
static variables and require the RENT option. For these programs to stay reentrant,
variable data should not appear as static storage in PL/I, or as a DC in the
program CSECT in assembler language.

As well as requiring that your application programs are complied and link-edited
as reentrant, CICS also identifies programs as being either quasi-reentrant or
threadsafe. These attributes are discussed in the following sections.

Quasi-reentrant application programs
CICS runs user programs under a CICS-managed task control block (TCB). If your
programs are defined as quasi-reentrant (on the CONCURRENCY attribute of the
program resource definition), CICS always invokes them under the CICS
quasi-reentrant (QR) TCB. The requirements for a quasi-reentrant program in a
multithreading context are less stringent than if the program were to execute
concurrently on multiple TCBs.

CICS requires that an application program is reentrant so that it guarantees
consistent conditions. In practice, an application program may not be truly
reentrant; CICS expects “quasi-reentrancy”. This means that the application
program should be in a consistent state when control is passed to it, both on entry,
and before and after each EXEC CICS command. Such quasi-reentrancy guarantees
that each invocation of an application program is unaffected by previous runs, or
by concurrent multi-threading through the program by multiple CICS tasks.

For example, application programs could modify their executable code, or the
variables defined within the program storage, but these changes must be undone,
or the code and variables reinitialized, before there is any possibility of the task
losing control and another task executing the same program.

CICS quasi-reentrant user programs (application programs, user-replaceable
modules, global user exits, and task-related user exits) are given control by the
CICS dispatcher under the QR TCB. When running under this TCB, a program can
be sure that no other quasi-reentrant program can run until it relinquishes control
during a CICS request, at which point the user task is suspended, leaving the
program still “in use”.The same program can then be reinvoked for another task,
which means the application program can be in use concurrently by more than one
task, although only one task at a time can actually be executing.

Chapter 12. Designing efficient applications 131

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

To ensure that programs cannot interfere with each others working storage, CICS
obtains a separate copy of working storage for each execution of an application
program. Thus, if a user application program is in use by 11 user tasks, there are
11 copies of working storage in the appropriate dynamic storage area (DSA).

Quasi-reentrancy allows programs to access globally shared resources—for
example, the CICS common work area (CWA)—without the need to protect those
resources from concurrent access by other programs. Such resources are effectively
locked exclusively to the running program, until it issues its next CICS request.
Thus, for example, an application can update a field in the CWA without using
compare and swap (CS) instructions or locking (enqueuing on) the resource.

Note: The CICS QR TCB provides protection through exclusive control of global
resources only if all user tasks that access those resources run under the QR
TCB. It does not provide automatic protection from other tasks that execute
concurrently under another (open) TCB.

Take care if a program involves lengthy calculations: because an application
program retains control from one EXEC CICS command to the next, the processing
of other transactions on the QR TCB is completely excluded. However, you can use
the task-control SUSPEND command to allow other transaction processing to
proceed; see “Chapter 34. Task control” on page 463 for details. Note that runaway
task time interval is controlled by the transaction definition and the system
initialization parameter ICVR. CICS purges a task that does not return control
before expiry of the IVCR-specified interval.

Threadsafe programs
In the CICS open transaction environment, threadsafe application programs and
open task-related user exits, global user exit programs, and user-replaceable
modules cannot rely on quasi-reentrancy, because they can run concurrently on an
open TCB. Furthermore, even quasi-reentrant programs are at risk if they access
resources that can also be accessed by a user task running concurrently under an
open TCB. This means that the techniques used by user programs to access shared
resources must take into account the possibility of simultaneous access by other
programs. Programs that use appropriate serialization techniques when accessing
shared resources are described as threadsafe. (The term fully reentrant is also used
sometimes, but this can be misunderstood, hence threadsafe is the preferred term.)
For most resources, such as files, transient data queues, temporary storage queues,
and DB2 tables, CICS processing automatically ensures access in a threadsafe
manner. However, for any other resources, such as shared storage, which are
accessed directly by user programs, it is the responsibility of the user program to
ensure threadsafe processing. Typical examples of shared storage are the CICS
CWA, global user exit global work areas, and storage acquired by EXEC CICS
GETMAIN SHARED commands.

Note: When identifying programs that use shared resources, you should also
include any program that modifies itself. Such a program is effectively
sharing storage and should be considerd at risk.

Techniques that you can use to provide threadsafe processing when accessing a
shared resource are as follows:
v Retry access, if the resource has been changed concurrently by another program,

using the compare and swap instruction.
v Enqueue on the resource, to obtain exclusive control and ensure that no other

program can access the resource, using:

132 CICS TS for OS/390: CICS Application Programming Guide

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

– An EXEC CICS ENQ command, in an application program
– An XPI ENQUEUE function call to the CICS enqueue (NQ) domain, in a

global user exit program
– An MVS service such as ENQ (in an open API task-related user exit only

when L8 TCBs are enabled for use).
v Perform accesses to shared resources only in a program that is defined as

quasirent, by linking to the quasirent program using the EXEC CICS LINK
command.
This technique applies to threadsafe application programs and open API
task-related user exits only. A linked-to program defined as quasi-reentrant runs
under the QR TCB and can take advantage of the serialization provided by CICS
quasi-reentrancy. Note that even in quasi-reentrant mode, serialization is
provided only for as long as the program retains control and does not wait (see
“Quasi-reentrant application programs” on page 131 for more information).

v Place all transactions that access the shared resource into a restricted transaction
class (TRANCLASS), one that is defined with the number of active tasks
specified as MAXACTIVE(1).
This last approach effectively provides a very coarse locking mechanism, but
may have a severe impact on performance.

Note: Although the term threadsafe is defined in the context of individual
programs, a user application as a whole can only be considered threadsafe if
all the application programs that access shared resources obey the rules. A
program that is written correctly to threadsafe standards cannot safely
update shared resources if another program that accesses the same resources
does not obey the threadsafe rules.

Non-reentrant programs
There is nothing to prevent non-reentrant application programs being executed by
CICS. However, such an application program would not provide consistent results
in a multi-threading environment.

To use non-reentrant application programs, or tables or control blocks that are
modifiable by the execution of associated application programs, specify the
RELOAD(YES) option on their resource definition. RELOAD(YES) results in a fresh
copy of the program or module being loaded into storage for each request. This
option ensures that multithreading tasks that access a non- reentrant program or
table each work from their own copy of the program, and are unaffected by
changes made to another version of the program by other concurrent tasks running
in the CICS region.

For information about RELOAD(YES), see the CICS Resource Definition Guide.

CICS/ESA loads any program link-edited with the RENT attributes into a CICS
read-only dynamic storage area (DSA). CICS uses the RDSA for RMODE(24)
programs, and the ERDSA for RMODE(ANY) programs.By default, the storage for
these DSAs is allocated from read-only key-0 protected storage, protecting any
modules loaded into them from all except programs running in key-zero or
supervisor state.(If CICS initializes with the RENTPGM=NOPROTECT system
initialization parameter, it does not use read-only key-0 storage, and use CICS-key
storage instead.)

If you want to execute a non-reentrant program or module, it must be loaded into
a non-read-only DSA. The SDSA and ESDSA are user-key storage areas for
non-reentrant user-key programs and modules.

Chapter 12. Designing efficient applications 133

|

|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

For more information about CICS DSAs, refer to the CICS System Definition Guide.

Storing data within a transaction
CICS provides a variety of facilities for storing data within and between
transactions. Each one differs according to how available it leaves data to other
programs within a transaction and to other transactions; in the way it is
implemented; and in its overhead, recovery, and enqueuing characteristics.

Storage facilities that exist for the lifetime of a transaction include:
v Transaction work area (TWA)
v User storage (by a GETMAIN command issued without the SHARED option)
v COMMAREA
v Program storage

All of these areas are main storage facilities and come from the same basic
source—the dynamic storage areas (DSAs) and extended dynamic storage areas
(EDSAs). None of them is recoverable, and none can be protected by resource
security keys. They differ, however, in accessibility and duration, and therefore
each meets a different set of storage needs.

Transaction work area (TWA)
The transaction work area (TWA) is allocated when a transaction is initiated, and is
initialized to binary zeroes. It lasts for the entire duration of the transaction, and is
accessible to all local programs in the transaction. Any remote programs that are
linked by a distributed program link command do not have access to the TWA of
the client transaction. The size of the TWA is determined by the TWASIZE option
on the transaction resource definition. If this size is nonzero, the TWA is always
allocated. See the CICS Resource Definition Guide for more information about
determining the TWASIZE.

Processor overhead associated with using the TWA is minimal. You do not need a
GETMAIN command to access it, and you address it using a single ADDRESS
command. The TASKDATAKEY option governs whether the TWA is obtained in
CICS-key or user-key storage. (See “Chapter 36. Storage control” on page 479 for a
full explanation of CICS-key and user-key storage.) The TASKDATALOC option of
the transaction definition governs whether the acquired storage can be above the
16MB line or not.

The TWA is suitable for quite small data storage requirements and for larger
requirements that are both relatively fixed in size and are used more or less for the
duration of the transaction. Because the TWA exists for the entire transaction, a
large TWA size has much greater effect for conversational than for
nonconversational transactions.

User storage
User storage is available to all the programs in a transaction, but some effort is
required to pass it between programs using LINK or XCTL commands. Its size is
not fixed, and it can be obtained (using GETMAIN commands) just when the
transaction requires it and returned as soon as it is not needed. Therefore, user
storage is useful for large storage requirements that are variable in size or are
shorter-lived than the transaction.

134 CICS TS for OS/390: CICS Application Programming Guide

|

|

See “Chapter 36. Storage control” on page 479 for information about how
USERDATAKEY and CICSDATAKEY override the TASKDATAKEY option of the
GETMAIN command.

The SHARED option of the GETMAIN command causes the acquired storage to be
retained after the end of the task. The storage can be passed in the communication
area from one task to the next at the same terminal. The first task returns the
address of the communication area in the COMMAREA option of the RETURN
command. The second task accesses the address in the COMMAREA option of the
ADDRESS command. You must use the SHARED option of the GETMAIN
command to ensure that your storage is in common storage.

The amount of processor overhead involved in a GETMAIN command means that
you should not use it for a small amount of storage. You should use the TWA for
the smaller amounts or group them together into a larger request. Although the
storage acquired by a GETMAIN command may be held somewhat longer when
using combined requests, the processor overhead and the reference set size are
both reduced.

COMMAREA in LINK and XCTL commands
A communication area (COMMAREA) is a facility used to transfer information
between two programs within a transaction or between two transactions from the
same terminal. For information about using COMMAREA between transactions,
see “COMMAREA in RETURN commands” on page 155.

Information in COMMAREA is available only to the two participating programs,
unless those programs take explicit steps to make the data available to other
programs that may be invoked later in the transaction. When one program links to
another, the COMMAREA may be any data area to which the linking program has
access. It is often in the working storage or LINKAGE SECTION of that program.
In this area, the linking program can both pass data to the program it is invoking
and receive results from that program. When a program transfers control (an XCTL
command) to another, CICS may copy the specified COMMAREA into a new area
of storage, because the invoking program and its control blocks may no longer be
available after it transfers control. In either case, the address of the area is passed
to the program that is receiving control, and the CICS command-level interface sets
up addressability. See “Chapter 35. Program control” on page 467 for further
information.

CICS ensures that any COMMAREA is addressable by the program that receives it,
by copying below the 16MB line and/or to the USERKEY storage where necessary,
depending on the addressing mode and EXECKEY attributes of the receiving
program. See “Chapter 36. Storage control” on page 479 for more information about
EXECKEY.

CICS contains algorithms designed to reduce the number of bytes to be
transmitted. The algorithms remove some trailing binary zeros from the
COMMAREA before transmission and restore them after transmission. The
operation of these algorithms is transparent to the application programs, which
always see the full-size COMMAREA.

The overhead for using COMMAREA in an LINK command is minimal; it is
slightly more with the XCTL and RETURN commands, when CICS creates the
COMMAREA from a larger area of storage used by the program.

Chapter 12. Designing efficient applications 135

Program storage
CICS creates a separate copy of the variable area of a CICS program for each
transaction using the program. This area is known as program storage. This area is
called the WORKING-STORAGE SECTION in COBOL, automatic storage in C,
C++, and PL/I, and the DFHEISTG section in assembler language. Like the TWA,
this area is of fixed size and is allocated by CICS without you having to issue a
GETMAIN command. The EXEC CICS interface sets up addressability
automatically. Unlike the TWA, however, this storage lasts only while the program
is being run, not for the duration of the transaction. This makes it useful for data
areas that are not required outside the program and that are either small or, if
large, are fixed in size and are required for all or most of the execution time of the
program.

Lengths of areas passed to CICS commands
When a CICS command includes a LENGTH option, it usually accepts the length
as a signed halfword binary value. This places a theoretical upper limit of 32KB on
the length. In practice, the limits are less than this and vary for each command.
The limits depend on data set definitions, recoverability requirements, buffer sizes,
and local networking characteristics.

LENGTH options
In COBOL, C, C++, PL/I, and assembler language, the translator deals with
lengths. See the CICS Application Programming Reference manual for programming
information, including details of when you need to specify the LENGTH option.
You should not let the length of your CICS commands exceed 24KB, if possible.

Many commands involve the transfer of data between the application program and
CICS. In all cases, the length of the data to be transferred must be provided by the
application program.

In most cases, the LENGTH option must be specified if the SET option is used; the
syntax of each command and its associated options show whether this rule applies.

There are options on the WAIT EXTERNAL command and a number of QUERY
SECURITY commands that give the resource status or definition. CICS supplies the
values associated with these options, hence the name, CICS-value data areas. The
options are shown in the syntax of the commands with the term “cvda” in
parentheses. For programming information about CVDAs, see the CICS Application
Programming Reference manual.

For journal commands, the restrictions apply to the sum of the LENGTH and
PFXLENG values. (See “Journaling” on page 223.)

Journal records
For journal records, the journal buffer size may impose a limit lower than 64KB.
Note that the limit applies to the sum of the LENGTH and PFXLENG values.

Data set definitions
For temporary storage, transient data, and file control, the data set definitions can
impose limits lower than 24KB. For details, see the CICS System Definition Guide
(for information about defining data sets) and the CICS Resource Definition Guide
(for information about RDO for files).

136 CICS TS for OS/390: CICS Application Programming Guide

Recommendation
For any command in any system, 24KB is a good working limit for LENGTH
specifications. Subject to user-specified record and buffer sizes, this limit is
unlikely either to cause an error or to place a constraint on applications.

You will probably not find a 24KB limit too much of a hindrance; online programs
do not often handle such large amounts of data, for the sake of efficiency and
response time.

Note: The value in the LENGTH option should never exceed the length of the data
area addressed by the command.

Temporary storage
Temporary storage is the primary CICS facility for storing data that must be
available to multiple transactions.

Data items in temporary storage are kept in queues whose names are assigned
dynamically by the program storing the data. A temporary storage queue
containing multiple items can be thought of as a small data set whose records can
be addressed either sequentially or directly, by item number. If a queue contains
only a single item, it can be thought of as a named scratch-pad area.

Temporary storage data sharing means that main or auxiliary storage can be
replaced by one or more temporary storage pools.

Temporary storage is implemented by the following methods:
v By using a particular queue that is determined by what is specified on the

command that creates the first item
v By specifying the MAIN option so that the queue is kept in main storage, in

space taken from the dynamic storage area
v By using the AUXILIARY option so that the queue is written to an

entry-sequenced VSAM data set

Whichever method you use, CICS maintains an index of items in main storage.

Note that if the QNAME option matches the prefix of an installed TSMODEL
resource definition, the MAIN or AUXILIARY value specified in the TSMODEL
takes precedence over that specified in the command.

See CICS System Programming Reference for more information about the use of
TSMODELs to define temporary storage queues.

The addition of temporary storage data sharing gives another type of temporary
storage queue that can be supported concurrently. These temporary storage queues
can be defined as local, remote, or shared, and they can be stored in TS pools in
the coupling facility.

These methods have characteristics that you should bear in mind:
v Main temporary storage requires much more virtual storage than auxiliary. In

general, you should use it only for small queues that have short lifetimes or are
accessed frequently. Auxiliary temporary storage is specifically designed for
relatively large amounts of data that have a relatively long lifetime or are

Chapter 12. Designing efficient applications 137

|
|
|

|
|

accessed infrequently. You may find it useful to establish a cutoff point of a
lifetime of one second to decide which queues should be in main storage and
which should be in auxiliary.

v You can make queues in auxiliary storage recoverable, but not queues in main
storage:

v Shared temporary storage applies only to non-recoverable queues.
– Only one transaction at a time can update a recoverable temporary storage

queue. So, if you choose to make queues recoverable, bear in mind the
probability of enqueues.

– You should ensure that there are enough buffers and VSAM strings to
eliminate as much contention as possible.

v If a task tries to write to temporary storage and there is no space available, CICS
normally suspends it, although the task can regain control in this situation by
using either a HANDLE CONDITION NOSPACE command, or the RESP or
NOHANDLE option on the WRITEQ TS command. If suspended, the task is not
resumed until some other task frees the necessary space in main storage or the
VSAM data set. This can produce unexplained response delays, especially if the
waiting task owns exclusive-use resources, in which case all other tasks needing
those resources must also wait.

v It can be more efficient to use main temporary storage exclusively in very
low-volume systems that have no need for recovery. You need to balance the
needs for additional main storage requirement for the VSAM access method and
a larger temporary storage program with the need for main storage for the
temporary storage records.

The following points apply to temporary storage in general:
v You must use an EXEC CICS command every time data is written to or read

from a temporary storage queue, and CICS must find or insert the data using its
internal index. This means that the overhead for using main temporary storage
is greater than for the CWA or TCTUA. With auxiliary storage, (often the most
frequently used), there is usually data set I/O as well, which increases overhead
even more.

v You need not allocate temporary storage until it is required; you need keep it
only as long as it is required, and the item size is not fixed until you issue the
command that creates it. This makes it a good choice for relatively high-volume
data and data that varies in length or duration.

v The fact that temporary storage queues can be named as they are created
provides a very powerful form of direct access to saved data. You can access
scratch-pad areas for terminals, data set records, and so on, simply by including
the terminal name or record key in the queue name.

v Resource protection is available for temporary storage.

Intrapartition transient data
Intrapartition transient data has some characteristics in common with auxiliary
temporary storage. (See “Sequential data set access” on page 142 for information
about extrapartition transient data.) Like temporary storage, intrapartition
transient data consists of queues of data, kept together in a single data set, with an
index that CICS maintains in main storage.

You can use transient data for many of the purposes for which you would use
auxiliary temporary storage, but there are some important differences:

138 CICS TS for OS/390: CICS Application Programming Guide

v Transient data does not have the same dynamic characteristics as temporary
storage. Unlike temporary storage queues, transient data queues cannot be
created at the time data is written by an application program. However,
transient data queues can be defined and installed using RDO while CICS is
running.

v Transient data queues must be read sequentially. Each item can be read only
once. After a transaction reads an item, that item is removed from the queue and
is not available to any other transaction. In contrast, items in temporary storage
queues may be read either sequentially or directly (by item number). They can
be read any number of times and are not removed from the queue until the
entire queue is purged.
These two characteristics make transient data inappropriate for scratch-pad data
but suitable for queued data such as audit trails and output to be printed. In
fact, for data that is read sequentially once, transient data is preferable to
temporary storage.

v Items in a temporary storage queue can be changed; items in transient data
queues cannot.

v Transient data queues are always written to a data set. (There is no form of
transient data that corresponds to main temporary storage.)

v You can define transient data queues so that writing items to the queue causes a
specific transaction to be initiated (for example, to process the queue).
Temporary storage has nothing that corresponds to this “trigger” mechanism,
although you may be able to use a START command to perform a similar
function.

v Transient data has more recovery options than temporary storage. Transient data
queues can be physically or logically recoverable.

v Because the commands for intrapartition and extrapartition transient data are
identical, you can switch between the two types of data set. To do this, change
only the transient data queue definitions and not your application programs
themselves. Temporary storage has no corresponding function of this kind.

GETMAIN SHARED command
Storage acquired using the SHARED option of the GETMAIN command is not
released when the acquiring task ends. This enables one task to leave data in
storage for use by another task. The storage is not released until a FREEMAIN
command is issued, either by the acquiring task or by another task.

Your own data sets
You can also use your own data sets to save data between transactions. This
method probably has the largest overhead in terms of instructions processed,
buffers, control blocks, and user programming requirements, but does provide
extra functions and flexibility. Not only can you define data sets as recoverable
resources, but you can log changes to them for forward recovery. You can specify
the number of strings for the data set, (as well as on the temporary storage and
transient data sets), to ensure against access contention, and you can use resource
security.

Chapter 12. Designing efficient applications 139

Data operations
CICS supports:
v DL/I database operations
v VSAM and BDAM data set operations
v Browsing
v Logging
v Sequential data set access

Database operations
The following recommendations apply to using DL/I with CICS:
v Use command codes with CALL level and keywords with command level to

reduce the number of requests whenever appropriate. See the CICS IMS Database
Control Guide for more information. For example, a DL/I path call is more
efficient than a number of individual DL/I calls. With individual DL/I calls, the
GN call gives the best performance. Although several DL/I calls may get their
information from the DL/I or VSAM buffers, some of the instructions have to be
processed within a DL/I call. You should, therefore, consider the number of
DL/I calls needed for the processing of a transaction.

v It is more efficient to use qualified segment-search areas (SSAs) than to check on
“segment found” in the application program.

v Scheduling calls should be issued at the latest possible time, so as to minimize
the time that the transaction has exclusive control of the PSB. (This control is
released at the end of the UOW, which occurs at the next TERM call, explicit
SYNCPOINT command, or the syncpoint implicit in task termination.)

v Be aware of the effects of explicit syncpointing on performance and recovery. See
the CICS Performance Guide for more details of the performance implications.

Data set operations
The efficiency of database and data set operations is an important factor in the
performance of any CICS system.

In VSAM, the main impact on efficiency, and thus on response time, comes from
contention for serial-use resources (record keys, control intervals, and strings), and
for storage use and processor overhead. As is usual in these situations, any
improvements you make in one area may be at the expense of other areas.

VSAM data sets
To minimize contention delays using VSAM data sets:
v Minimize the time that VSAM resources are reserved for exclusive use. The

exclusive use enqueue is the way CICS and VSAM prevent concurrent updates.
If you use VSAM record-level sharing, described in “Accessing files in RLS
mode” on page 258, VSAM locks a record that has been requested for update, so
that no other transaction can attempt to update the record at the same time. If
the file is recoverable, VSAM releases the lock at the next syncpoint. If the file is
not recoverable, VSAM releases the lock when the request is complete. The
recoverability of a file, is defined in the integrated catalog facility (ICF) catalog.
If you do not use VSAM record-level sharing, CICS serializes update requests by
base cluster record key. VSAM serializes by enqueuing on the control interval
(CI), so that no transaction can update a record in the same control interval as
another record being updated. The VSAM hold for exclusive use ends when the
request is complete in VSAM terms. For example, in an update operation,
exclusive use that starts with the READ command with the UPDATE option and

140 CICS TS for OS/390: CICS Application Programming Guide

ends when VSAM has completed the REWRITE command. For nonrecoverable
data sets, the CICS exclusive use ends at the same time. For recoverable data
sets, however, it does not end until the task ends or issues a SYNCPOINT
command. Recoverability is specified in the data set definition in the file control
table (FCT). See the CICS Resource Definition Guide for more information about
the FCT.
Table 10 shows which requests require exclusive use and when that reservation
terminates. This table applies only if you are not using record-level sharing.

Table 10. Requests that require exclusive use and when reservation terminates

Command Released by VSAM at

READ.. UPDATE REWRITE/DELETE/UNLOCK

WRITE.. MASSINSERT UNLOCK

WRITE Completion of WRITE

DELETE.. RIDFLD Completion of DELETE

v Hold position in a VSAM data set for as short a time as possible. Table 11 shows
which commands hold position and when the hold is released.

Table 11. Commands that hold position and when hold is released

Command Released by VSAM at

READ.. UPDATE REWRITE/DELETE/UNLOCK

WRITE.. MASSINSERT UNLOCK

STARTBR ENDBR

Each request in progress against a VSAM data set requires at least one string.
Requests that hold position tie up a string until a command is issued to release
the hold position. Requests that do not hold position release the string as soon
as that request is complete.

To minimize processor overhead when using VSAM data sets:
v Use the MASSINSERT option if you are adding many records in sequence. This

improves performance by minimizing processor overheads and therefore
improves the response times. For ESDSs and KSDSs, adding records with
MASSINSERT causes CICS to use sequential VSAM processing. This changes the
way VSAM places records within control intervals when a split is required,
resulting in fewer splits and less unused space within the affected CIs.

v Use skip sequential processing if you are reading many records in sequence
whose keys are relatively close together but not necessarily adjacent. (Skip
sequential processing begins with a start browse (STARTBR command).) Each
record is retrieved with an READNEXT command, but the key feedback area
pointed to by RIDFLD is supplied with the key of the next requested record
before the READNEXT command is issued.

v Use the GENERIC option on the DELETE command when deleting a group of
records whose keys start with a common character string. CICS internally
optimizes a generic DELETE.

BDAM data sets
BDAM data sets are less efficient than VSAM because CICS has to do some
single-thread processing and issue some operating system waits to handle BDAM

Chapter 12. Designing efficient applications 141

data set requests. Therefore, if possible, you should use a relative record VSAM
data set or an entry-sequenced data set addressed by relative byte address (RBA)
in place of a BDAM data set.

If you are using BDAM data sets in update mode, you should be aware that
performance is affected dramatically by the means of data set integrity you choose.

If you specify exclusive control in file control table SERVREQ operands for a
BDAM data set, CICS requests the operating system to prevent concurrent updates.
However, this involves significant overhead.

Browsing (in non-RLS mode)
A data set browse is often the source of the output in transactions that produce a
large number of output screens, which can monopolize system resources. A long
browse can put a severe load on the system, locking out other transactions and
increasing overall response time, in addition to the overhead needed for BMS, task
control, and terminals. This is because CICS control philosophy is based on the
assumption that the terminal operator initiates a transaction that accesses a few
data records, processes the information, and returns the results to the operator.
This process involves numerous waits that enable CICS to do multitasking.
However, CICS is not an interrupt-driven multitasking system, so tasks that
involve small amounts of I/O relative to processing can monopolize the system
regardless of priority. A browse of a data set with many records in a control
interval is just such a transaction.

You can prevent this by issuing DELAY or SUSPEND commands periodically, so
that other tasks can get control. If the browse produces paged output, you should
consider breaking the transaction up in one of the ways suggested in
“Page-building and routing operations” on page 146.

Logging
CICS provides options to log some or all types of activity against a data set.
Logging updates enables you to reconstruct data sets from backup copies, if
necessary. You may also want to log reads for security reasons. Again, you have to
balance the need for data integrity and security against the performance effects of
logging. These are the actual operations needed to do the logging and the possible
delays caused because of the exclusive control that logging implies.

Sequential data set access
CICS provides a number of different sequential processing options. Temporary
storage and intrapartition transient data queues (already discussed in “Temporary
storage” on page 137 and in “Intrapartition transient data” on page 138) are the
most efficient to use, but they must be created and processed entirely within CICS.

Extrapartition transient data is the CICS way of handling standard sequential
(QSAM/BSAM) data sets. It is the least efficient of the three forms of sequential
support listed, because CICS has to issue operating system waits to process the
data sets, as it does when handling BDAM. Moreover, extrapartition transient data
sets are not recoverable. VSAM ESDSs, on the other hand, are recoverable within
limitations, and processing is more efficient. The recovery limitation is that records
added to an ESDS during an uncompleted UOW cannot be removed physically
during the backout process, because of VSAM restrictions. They can, however, be
flagged as deleted by a user exit routine.

142 CICS TS for OS/390: CICS Application Programming Guide

CICS journals provide another good alternative to extrapartition transient data,
although only for output data sets. Journals are managed by the MVS system
logger, but flexible processing options permit very efficient processing. Each
journal command specifies operation characteristics, for example, synchronous or
asynchronous, whereas extrapartition operations are governed entirely by the
parameters in the transient data queue definition.

Transactions should journal asynchronously, if possible, to minimize task waits in
connection with journaling. However, if integrity considerations require that the
journal records be physically written before end of task, you must use a
synchronous write. If there are several journal writes, the transaction should use
asynchronous writes for all but the last logical record, so that the logical records
for the task are written with a minimum number of physical I/Os and only one
wait.

You can use journals for input (in batch) as well as output (online) while CICS is
running. The supplied batch utility DFHJUP can be used for access to journal data,
for example, by printing or copying. Note that reading a journal in batch involves
the following restrictions:
v Access to MVS system logger log stream data is provided through a subsystem

interface, LOGR.
v Reading records from a journal is possible offline by means of a batch job only.

Terminal operations
There are some design factors, related to communicating with terminals, that may
affect performance.

Length of the data stream sent to the terminal
Good screen design and effective use of 3270 hardware features can significantly
affect the number of bytes transmitted on a teleprocessing link. It is particularly
important to keep the number of bytes as small as possible because, in most cases,
this is the slowest part of the path a transaction takes. The efficiency of the data
stream therefore affects both response time and line usage.

Basic mapping support considerations
When building a formatted data stream with basic mapping support (BMS), you
should bear in mind, the factors described in the following sections.

Avoid turning on modified data tags (MDTs) unnecessarily
The MDT is the bit in the attribute byte that determines whether a field should be
transmitted on a READ MODIFIED command (the command used by CICS for all
but copy operations).

The MDT for a field is normally turned on by the 3270 hardware when the user
enters data into a field. However, you can also turn the tag on when you send a
map to the screen, either by specifying FSET in the map or by sending an override
attribute byte that has the tag on. You should never set the tag on in this way for a
field that is constant in the map, or for a field that has no label (and is not sent to
the program that receives the map).

Also, you do not normally need to specify FSET for an ordinary input field. This is
because, as already mentioned, the MDT is turned on automatically in any field in
which the user enters data. This is then included in the next RECEIVE command.

Chapter 12. Designing efficient applications 143

These tags remain on, no matter how many times the screen is sent, until explicitly
turned off by the program (by the FRSET, ERASEAUP, or ERASE option, or by an
override attribute with the tag off).

You can store information, between inputs, that the user did not enter on the
screen. This is an intended reason for turning the MDT on by a program. However,
this storage technique is appropriate only to small amounts of data, and is more
suitable for local than for remote terminals, because of the transmission overhead
involved. For example, this technique is particularly useful for storing default
values for input fields. In some applications, the user must complete a screen in
which some fields already contain default values. A user who does not want to
change a default just skips that field. The program processing the input has to be
informed what these defaults are. If they are always the same, they can be
supplied as constants in the program. If they are variable, however, and depend on
earlier inputs, you can simply save them on the screen by turning the MDT on
with FSET in the map that writes the screen. The program reading the screen then
receives the default value from a user who does not change the field and the new
value from a user who does.

Note: The saved values are not returned to the screen if the CLEAR, PA1, PA2, or
PA3 key is pressed.

Use FRSET to reduce inbound traffic
If you have a screen with many input fields, which you may have to read several
times, you can reduce the length of the input data stream by specifying FRSET
when you write back to the screen in preparation for the next read. FRSET turns
off the MDTs, so that fields entered before that write are not present unless the
user reenters them the next time. If you are dealing with a relatively full screen
and a process where there may be a number of error cycles (or repeat
transmissions for some other reason), this can be a substantial saving. However,
because only changed fields are sent on subsequent reads, the program must save
input from each cycle and merge the new data with the old. This is not necessary
if you are not using FRSET, because the MDTs remain on, and all fields are sent
regardless of when they were entered.

Do not send blank fields to the screen
Sending fields to the screen that consist entirely of blanks or that are filled out on
the right by trailing blanks usually wastes line capacity. The only case where BMS
requires you to do this is when you need to erase a field on the screen that
currently contains data, or to replace it with data shorter than that currently on the
screen, without changing the rest of the screen.

This is because, when BMS builds the data stream representing your map, it
includes blanks (X'40') but omits nulls (X'00'). This makes the output data stream
shorter. BMS omits any field whose first data character is null, regardless of
subsequent characters in the field.

BMS requires you to initialize to nulls any area to be used to build a map. This is
done by moving nulls (X'00') to the mapnameO field in the symbolic map
structure. See “Initializing the output map” on page 340 for more information. BMS
uses nulls in attribute positions and in the first position of data to indicate that no
change is to be made to the value in the map. If you are reusing a map area in a
program or in a TIOA, you should take special care to clear it in this way.

Address CICS areas correctly
There are several ways to check that CICS areas are addressed correctly. Ensure
that:

144 CICS TS for OS/390: CICS Application Programming Guide

v Each COBOL program with a LINKAGE SECTION structure that exceeds 4KB
has the required definition and the setting of more than one contiguous BLL cell.

v Every BLL pointer points to an area that is a 01-level item.
v Call level DL/I is only used with PSBs that are correctly addressed.

Use the MAPONLY option when possible
The MAPONLY option sends only the constant data in a map, and does not merge
any variable data from the program. The resulting data stream is not always
shorter, but the operation has a shorter path length in BMS. When you send a
skeleton screen to be used for data entry, you can often use MAPONLY.

Send only changed fields to an existing screen
Sending only changed fields is important when, for example, a message is added
to the screen, or one or two fields on an input screen are highlighted to show
errors. In these situations, you should use the DATAONLY option to send a map
that consists of nulls except for the changed fields. For fields where the only the
attribute byte has changed, you need send only that byte, and send the remaining
fields as nulls. BMS uses this input to build a data stream consisting of only the
fields in question, and all other fields on the screen remain unchanged.

It may be tempting to ignore this advice and send an unnecessarily long data
stream. For example, when a program that is checking an input screen for errors
finds one, there are two options.
v It can simply add the error information to the input map (highlighted attributes,

error messages, and so on) and resend it.
v It can build an entirely new screen, consisting of just the error and message

fields.

The former is slightly easier to code (you do not need to have two map areas or
move any fields), but it may result in very much longer transmissions because the
output data stream contains the correct input fields as well as the error and
message fields. In fact, it may even be longer than the original input stream
because, if there were empty or short fields in the input, BMS may have replaced
the missing characters with blanks or zeros.

With the 3270 hardware, if the input stream for a terminal exceeds 256 bytes, the
terminal control unit automatically breaks it up into separate transmissions of 256
bytes maximum. This means that a long input stream may require several physical
I/O operations. Although this is transparent to the application program, it does
cause additional line and processor overhead. The output stream is generally sent
in a single transmission.

Design data entry operations to reduce line traffic
Often, users are required to complete the same screen several times. Only the data
changes on each cycle; the titles, field labels, instructions, and so on remain
unchanged. In this situation, when an entry is accepted and processed, you can
respond with a SEND CONTROL ERASEAUP command (or a map that contains
only a short confirmation message and specifies the ERASEAUP option). This
causes all the unprotected fields on the screen (that is, all the input data from the
last entry) to be erased and to have their MDTs reset. The labels and other text,
which are in protected fields, are unchanged, the screen is ready for the next
data-entry cycle, and only the necessary data has been sent.

Compress data sent to the screen
When you send unformatted data to the screen, or create a formatted screen
outside BMS, you can compress the data further by inserting set buffer address

Chapter 12. Designing efficient applications 145

(SBA) and repeat-to-address (RA) orders into the data stream. SBA allows you to
position data on the screen, and RA causes the character following it to be
generated from the current point in the buffer until a specified ending address.
SBA is useful whenever there are substantial unused areas on the screen that are
followed by data. RA is useful when there are long sequences of the same
character, such as blanks or dashes, on the screen. However, you should note that
the speed with which RA processes is not uniform across all models of 3270
control units. You should check how it applies to your configuration before use.

CICS provides an exit that is driven just before output is sent to a terminal (XTC
OUT). You may want to add SBA and RA substitutions to this exit to compress the
data stream using a general subroutine. This has the dual benefit of removing
compression logic from your application program and of applying to all output
data streams, whether they are produced by BMS or not.

Use nulls instead of blanks
You should note that, outside BMS, nulls have no special significance in an output
data stream. If you need a blank area on a screen, you can send either blanks or
nulls to it; they take up the same space in the output stream. However, if the blank
field is likely to be changed by the user and subsequently read, use nulls, because
they are not transmitted back.

Use methods that avoid the need for nulls or blanks
For any large area of a screen that needs to be blank, you should consider methods
other than transmitting blanks or nulls; for example, when using BMS, putting
SBA and RA orders directly into the data stream, or using the ERASE and
ERASEAUP options.

Page-building and routing operations
BMS page-building facilities provide a powerful and flexible tool for building and
displaying long messages, sending messages to multiple destinations, and
formatting a single message for several devices with different physical
characteristics. However, as for any high-function tool, it requires a substantial
overhead, as mentioned in “Browsing (in non-RLS mode)” on page 142. You may
need the page-building option (ACCUM) when:
v Sending messages whose length exceeds the capacity of the output device

(multipage output)
v Using destinations other than the input terminal
v Sending pages built from multiple maps
v Using the BMS page-copy facility

Sending multipage output
Transactions that produce very large output messages, consisting of many
screen-size pages, tend to tax system resources. First, all the pages have to be
created, which involves processor activity, execution of the CSPG transaction, and
data set I/O activity. The pages must then be saved in temporary storage. If the
terminal user looks at every page in a message, a large number of transactions are
run to process the paging requests, each of which needs line and processor
overhead. Obviously some overhead is caused by the size and complexity of the
transaction, and it may be unavoidable. Indeed, if several users are scrolling
rapidly through paged output at the same time, the transactions needed can
monopolize a system.

If users really need to see all the pages, and need to scroll backward and forward
frequently, it may be more efficient to produce all the pages at the same time and

146 CICS TS for OS/390: CICS Application Programming Guide

present them using “traditional” CICS paging services. However, if users need
only a few of the pages, or can easily specify how far back or forward in the
message they would like to scroll, there are two choices:
1. First, construct a pseudoconversational transaction to produce just one screen of

output. The first time this transaction is run, it produces the first page of the
many-page output. The output screen contains space for users to indicate the
page they want next. The transaction always sets the next transaction identifier
to point to itself, so that it can display the requested page when it is next run.
You will probably want to give users some of the options that CICS provides
(such as one page forward, one page back, and skip to a selected page) and
some relevant to the application, such as a data set key at which to begin the
next page of output.

2. The alternative is to page-build a multipage output message with the ACCUM
option, but to limit the number of pages in the message (say to five). Users
page through the subset pages with the usual CICS page commands. On the
last screen of the output, you add an indication that there is more output and a
place for them to indicate whether they want to see the next segment. As in the
first example, the next transaction identifier is set to the original transaction so
that, if CICS does not receive a paging command, it invokes that transaction.

Sending messages to destinations other than the input terminal
If you need to send a message to a terminal other than the input terminal
associated with a task, BMS routing may be the most efficient way of doing so.
This is especially so if the message must be sent to multiple destinations or if it
involves multiple pages. Routing is the recommended method if the message
recipients need CICS paging commands to access it.

However, if neither of the above conditions apply, you have a choice of two other
methods of delivering output to a terminal not associated with the transaction.
1. You can use a START command, with the TERMID option, to specify the

terminal to which you want to write and the FROM option to specify the data
you want to send. Your own transaction is the started transaction. It issues an
RETRIEVE command for the message and then sends it to its own terminal. See
the CICS Application Programming Reference manual for programming
information about the START command.

2. Similarly, you can put messages destined for a particular terminal on to an
intrapartition transient data queue. The definition for the transient data queue
must specify:
v The destination as a TERMINAL
v The terminal identifier
v A trigger level
v A transaction name

Your own transaction reads the transient data queue and sends the message to
its terminal. It repeats this sequence until the queue is empty, and then
terminates. The trigger level you specified means that it is invoked every time
the specified number of messages have been placed on the queue. The
CICS/ESA Sample Applications Guide describes the DFHœTDWT sample program
that performs this function.

Note: Because of the overhead associated with routing messages (by whatever
means), you should use facilities such as ROUTE=ALL with caution.

Chapter 12. Designing efficient applications 147

Sending pages built from multiple maps
Although you can easily build a screen gradually using different maps, you can
sometimes avoid considerable overhead by not using page-building operations,
especially where there is only one screen of output and no other need for paging.
An example of this is an application whose output consists of a header map,
followed by a variable number of detail segments, sent with a second map, and
finally a trailer map following the detail. Suppose the average output screen for
such an application contains eight (2-line) detail segments, plus header and trailer,
and all this fits on a single screen. Writing this screen with page-building requires
11 BMS calls (header, details, trailer, and page-out) whereas, if the program builds
the output screen internally, it only needs one call.

Using the BMS page-copy facility
Because the individual pages that make up an accumulated BMS message are
saved in temporary storage, BMS enables the terminal user to copy individual
pages to other terminals. However, if the ability to copy is the only reason for
using page-building, you should consider using either the 3274 control unit copy
facilities or the CICS copy key facility instead.

The 3274 copy facilities require no participation from CICS and no transmission,
and are by far the most efficient method. The CICS copy key facility does have an
overhead (see “Requests for printed output”), although of a different type from the
BMS copy facility. It also has destination restrictions that do not apply to BMS
copying.

Requests for printed output
A CICS print request asks CICS to copy what is on the requesting screen to the
first available printer on the same control unit. The overhead involved depends on
whether a printer is available, and whether the requesting terminal is remote or
local to CICS.

If no printer is available, and the request is from a remote or a local device:
v CICS reads the buffer to the display terminal. This involves transmitting every

position on the screen, including nulls.
For requests from a local device, the READ BUFFER command takes place at
channel speeds, so that the large input message size does not increase response
time too much, and does not monopolize the line.

v An error task is generated so that the terminal error program can dispose of the
message. If a printer is available and the request is from a local device, this step
is not needed.

v The 3270 print task (CSPP) is attached to write the entire buffer to the printer
when it is available.

If a printer is available, and the request is from a remote device, CICS sends a very
short data stream to the control unit asking for a copy of the requesting device
buffer to be sent to the output device buffer.

Additional terminal control considerations
The following sections describe additional points to consider when using the CICS
terminal control services.

Use only one physical SEND command per screen
We mentioned earlier that it is usually more efficient to create a screen with a
single call to BMS, than to build the screen with a series of SEND MAP ACCUM

148 CICS TS for OS/390: CICS Application Programming Guide

commands. It is important to send the screen in a single physical output to the
terminal. It is very inefficient to build a screen in parts and send each part with a
separate command, because of the additional processor overhead of using several
commands and the additional line and access method overhead.

On BTAM, avoid the WAIT option on a SEND command

Note: CICS does not support BTAM. You can run BTAM transactions on CICS if
you initiate them from a system that supports BTAM transactions, and use
transaction routing to CICS Transaction Server for OS/390 Release 3.

If your program is pseudoconversational, it has only one SEND command, by
definition. (See “Choosing between pseudoconversational and conversational
design” on page 120.) Unless you require notification to this program of an error
on the SEND command, omit the WAIT option. This allows CICS task control to
reclaim the control blocks and user storage for your program long before it would
otherwise be able to do so. Indeed, use of the WAIT option reduces substantially
the savings effected by pseudoconversational programming.

Use the CONVERSE command
Use the CONVERSE command rather than the SEND and RECEIVE commands (or
a SEND, WAIT, RECEIVE command sequence if your program is conversational).
They are functionally equivalent, but the CONVERSE command crosses the CICS
services interface only once, which saves processor time.

Limit the use of message integrity options
Like specifying the WAIT option on the final SEND command of a transaction, the
MSGINTEG option of CEDA requires CICS to keep the transaction running until
the last message has been delivered successfully.

The PROTECT option of the PROFILE definition implies message integrity and
causes the system to log all input and output messages, which adds to I/O and
processor overhead.

Avoid using the DEFRESP option on SEND commands
Avoid using the DEFRESP option on SEND commands, unless the transaction must
verify successful delivery of the output message. It delays termination of the
transaction in the same way as MSGINTEG.

Avoid using unnecessary transactions
Avoid situations that may cause users to enter an incorrect transaction or to use
the CLEAR key unnecessarily, thus adding to terminal input, task control
processing, terminal output, and overhead. Good screen design and standardized
PF and PA key assignments should minimize this.

Send unformatted data without maps
If your output to a terminal is entirely or even mostly unformatted, you can send
it using terminal control commands rather than BMS commands (that is, using a
BMS SEND command without the MAP or TEXT options).

Chapter 12. Designing efficient applications 149

150 CICS TS for OS/390: CICS Application Programming Guide

Chapter 13. Sharing data across transactions

CICS facilities for sharing data across transactions include:
v “Common work area (CWA)”
v “TCTTE user area (TCTUA)” on page 154
v “COMMAREA in RETURN commands” on page 155
v “Display screen” on page 155

With the exception of COMMAREA and the display screen, data stored in these
facilities is available to any transaction in the system. Subject to resource security
and storage protection restrictions, any transaction may write to them and any
transaction may read them.

The use of some of these facilities may cause inter-transaction affinities. See
“Chapter 14. Affinity” on page 157 for more information about transaction
affinities.

Common work area (CWA)
The common work area (CWA) is a single control block that is allocated at system
startup time and exists for the duration of that CICS session. The size is fixed, as
specified in the system initialization parameter, WRKAREA. The CWA has the
following characteristics:
v There is almost no overhead in storing or retrieving data from the CWA.

Command-level programs must issue one ADDRESS command to get the
address of the area but, after that, they can access it directly.

v Data in the CWA is not recovered if a transaction or the system fails.
v It is not subject to resource security.
v CICS does not regulate use of the CWA. All programs in all applications that use

the CWA must follow the same rules for shared use. These are usually set down
by the system programmers, in cooperation with application developers, and
require all programs to use the same “copy” module to describe the layout of
the area.
You must not exceed the length of the CWA, because this causes a storage
violation. Furthermore, you must ensure that the data used in one transaction
does not overlay data used in another. One way to protect CWA data is to use
the storage protection facility that protects the CWA from being written to by
user-key applications. See “Protecting the CWA” for more information.

v The CWA is especially suitable for small amounts of data, such as status
information, that are read or updated frequently by multiple programs in an
application.

v The CWA is not suitable for large-volume or short-lived data because it is
always allocated.

Protecting the CWA
The CWAKEY system initialization parameter allows you to specify whether the
CWA is to be allocated from CICS-key or user-key storage. See the CICS System
Definition Guide for details about the CWAKEY parameter.

© Copyright IBM Corp. 1989, 2000 151

If you want to restrict write access to the CWA, you can specify CWAKEY=CICS.
This means that CICS allocates the CWA from CICS-key storage, restricting
application programs defined with EXECKEY(USER) to read-only access to the
CWA. The only programs allowed to write to a CWA allocated from CICS-key
storage are those you define with EXECKEY(CICS).

Because any program that executes in CICS key can also write to CICS storage,
you should ensure that such programs are thoroughly tested to make sure that
they do not overwrite CICS storage.

If you want to give preference to protecting CICS rather than the CWA, specify
CWAKEY=USER for the CWA, and EXECKEY(USER) for all programs that write to
the CWA. This ensures that if a program exceeds the length of the CWA it does not
overwrite CICS storage. For more information about storage protection, see
“Chapter 36. Storage control” on page 479.

Figure 17 illustrates a particular use of the CWA where the CWA itself is protected
from user-key application programs by CWAKEY=CICS. In this illustration, the
CWA is not used directly to store application data and constants. The CWA
contains pairs of application identifiers and associated addresses, with the address
fields containing the addresses of data areas that hold the application-related data.
For protection, the CWA is defined with CWAKEY=CICS, therefore the program
which in this illustration is a program defined in the program list table post
initialization (PLTPI) list, and that loads the CWA with addresses and application
identifiers must be defined with EXECKEY(CICS). Any application programs
requiring access to the CWA should be defined with EXECKEY(USER), thereby
ensuring the CWA is protected from overwriting by application programs. In
Figure 17, one of the data areas is obtained from CICS-key storage, while the other
is obtained from user-key storage.

In the sample code shown in Figure 18 on page 153, the program list table
post-initialization (PLTPI) program is setting up the application data areas, with
pointers to the data stored in the CWA.

CWA
(defined with
CWAKEY=CICS)

appl1_id Application
Storage Area

ptr_ref1 (for appl1)
(obtained from

appl2_id CICS-key storage)

ptr_ref2
Application
Storage Area
(for appl2)
(obtained from
user-key storage)

The CWA is initialized by an AMODE(31) PLTPI program,
which obtains storage for application-related
tables, and stores the addresses of the GETMAINed
storage in the CWA.

Figure 17. Example of use of CWA in CICS-key storage. This illustrates how the CWA can be
used to reference storage that is obtained in user-key or CICS-key storage for use by
application programs, while the CWA itself is protected by being in CICS-key storage.

152 CICS TS for OS/390: CICS Application Programming Guide

ID DIVISION.
PROGRAM-ID. PLTPROG.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 APPLID PIC X(8) VALUE SPACES.
77 SYSID PIC X(4) VALUE SPACES.
01 COMM-DATA.

03 AREA-PTR USAGE IS POINTER.
03 AREA-LENGTH PIC S9(8) COMP.

LINKAGE SECTION.
01 COMMON-WORK-AREA.

03 APPL-1-ID PIC X(4).
03 APPL-1-PTR USAGE IS POINTER.
03 APPL-2-ID PIC X(4).
03 APPL-2-PTR USAGE IS POINTER.

PROCEDURE DIVISION.
MAIN-PROCESSING SECTION.
* Obtain APPLID and SYSID values

EXEC CICS ASSIGN APPLID(APPLID)
SYSID(SYSID)

END-EXEC.
* Set up addressability to the CWA

EXEC CICS ADDRESS
CWA(ADDRESS OF COMMON-WORK-AREA)

END-EXEC.
* Get 12KB of CICS-key storage for the first application ('APP1')

MOVE 12288 TO AREA-LENGTH.
EXEC CICS GETMAIN SET(AREA-PTR)

FLENGTH(AREA-LENGTH)
SHARED

END-EXEC.
* Initialize CWA fields and link to load program
* for storage area 1.

MOVE 'APP1' TO APPL-1-ID.
SET APPL-1-PTR TO AREA-PTR.
EXEC CICS LINK PROGRAM('LOADTAB1')

COMMAREA(COMM-DATA)
END-EXEC.

Figure 18. Sample code for loading the CWA (Part 1 of 2). This example illustrates how to
create global data for use by application programs, with addresses of the data stored in the
CWA—for example, by a PLTPI program. The first data area is obtained from CICS-key
storage, which is the default on a GETMAIN command issued by a PLTPI program, the
second from user-key storage by specifying the USERDATAKEY option. The CWA itself is in
CICS-key storage, and PLTPROG is defined with EXECKEY(CICS).

Chapter 13. Sharing data across transactions 153

TCTTE user area (TCTUA)
The TCT user area (TCTUA) is an optional extension to the terminal control table
entry (TCTTE). Each entry in the TCT specifies whether this extension is present
and, if so, how long it is (by means of the USERAREALEN attribute of the
TYPETERM resource definition used for the terminal). See the CICS Resource
Definition Guide for more information about the TYPETERM resource definition.

The system initialization parameters TCTUALOC and TCTUAKEY specify the
location and storage key for all TCTUAs.
v TCTUALOC=BELOW or ANY specifies whether you want 24- or 31-bit

addressability to the TCTUAs, and whether TCTCUAs must be stored below the
16MB line or may be either above or below the line.

v TCTUAKEY=USER or CICS specifies whether you want the TCTUAs allocated
from user-key or CICS-key storage.

TCTUAs have the following characteristics in common with the CWA:
v Minimal processor overhead (only one ADDRESS command needed)
v No recovery
v No resource security
v No regulation of use by CICS
v Fixed length
v Unsuitability for large-volume or short-lived data

Unlike the CWA, however, the TCTUA for a particular terminal is usually shared
only among transactions using that terminal. It is therefore useful for storing small
amounts of data of fairly standard length between a series of transactions in a
pseudoconversational sequence. Another difference is that it is not necessarily
permanently allocated, because the TCTUA only exists while the TCTTE is set up.
For non-autoinstall terminals the TCTUA is allocated from system startup; for
autoinstall terminals the TCTUA is allocated when the TCTTE is generated.

Using the TCTUA in this way does not require special discipline among using
transactions, because data is always read by the transaction following the one that

* Get 2KB of user-key storage for the second application ('APP2')
MOVE 2048 TO AREA-LENGTH.
EXEC CICS GETMAIN SET(AREA-PTR)

FLENGTH(AREA-LENGTH)
SHARED
USERDATAKEY

END-EXEC.
* Initialize CWA fields and link to load program
* for storage area 2.

MOVE 'APP2' TO APPL-2-ID.
SET APPL-2-PTR TO AREA-PTR.
EXEC CICS LINK PROGRAM('LOADTAB2')

COMMAREA(COMM-DATA)
END-EXEC.
EXEC CICS RETURN
END-EXEC.

MAIN-PROCESSING-EXIT.
GOBACK.

Figure 18. Sample code for loading the CWA (Part 2 of 2). This example illustrates how to
create global data for use by application programs, with addresses of the data stored in the
CWA—for example, by a PLTPI program. The first data area is obtained from CICS-key
storage, which is the default on a GETMAIN command issued by a PLTPI program, the
second from user-key storage by specifying the USERDATAKEY option. The CWA itself is in
CICS-key storage, and PLTPROG is defined with EXECKEY(CICS).

154 CICS TS for OS/390: CICS Application Programming Guide

wrote it. However, if you use TCTUAs to store longer-term data (for example,
terminal or operator information needed by an entire application), they require the
same care as the CWA to ensure that data used in one transaction does not overlay
data used in another. You should not exceed the length of the allocated TCTUA,
because this produces a storage violation.

COMMAREA in RETURN commands
The COMMAREA option of the RETURN command is designed specifically for
passing data between successive transactions in a pseudoconversational sequence.
It is implemented as a special form of user storage, although the EXEC interface,
rather than the application program, issues the GETMAIN and FREEMAIN
requests.

The COMMAREA is allocated from the CICS shared subpool in main storage, and
is addressed by the TCTTE, between tasks of a pseudoconversational application.
The COMMAREA is freed unless it is passed to the next task.

The first program in the next task has automatic addressability to the passed
COMMAREA, as if the program had been invoked by either a LINK command or
an XCTL command (see “COMMAREA in LINK and XCTL commands” on
page 135). You can also use the COMMAREA option of the ADDRESS command to
obtain the address of the COMMAREA.

For a COMMAREA passed between successive transactions in a
pseudoconversational sequence in a distributed environment, VTAM imposes a
limit of 32KB on the size of the total data length. This limit applies to the entire
transmitted package, which includes control data added by VTAM. The amount of
control data increases if the transmission uses intermediate links.

To summarize:
v Processor overhead is low (equivalent to using COMMAREA with an XCTL

command and approximately equal to using main temporary storage).
v It is not recoverable.
v There is no resource security.
v It is not suitable for very large amounts of data (because main storage is used,

and it is held until the terminal user responds).
v As with using COMMAREA to transfer data between programs, it is available

only to the first program in a transaction, unless that program explicitly passes
the data or its address to succeeding programs.

Display screen
You can also store data between pseudoconversational transactions from a 3270
display terminal on the display screen itself. For example, if users make errors in
data that they are asked to enter on a screen, the transaction processing the input
usually points out the errors on the screen (with highlights or messages), sets the
next transaction identifier to point to itself (so that it processes the corrected input),
and returns to CICS.

The transaction has two ways of using the valid data. It can save it (for example,
in COMMAREA), and pass it on for the next time it is run. In this case, the
transaction must merge the changed data on the screen with the data from
previous entries. Alternatively, it can save the data on the screen by not turning off
the modified data tags of the keyed fields.

Chapter 13. Sharing data across transactions 155

Saving the data on the screen is very easy to code, but it is not very secure. You
are not recommended to save screens that contain large amounts of data as errors
may occur because of the additional network traffic needed to resend the
unchanged data. (This restriction does not apply to locally-attached terminals.)

Secondly, if the user presses the CLEAR key, the screen data is lost, and the
transaction must be able to recover from this. You can avoid this by defining the
CLEAR key to mean CANCEL or QUIT, if this is appropriate for the application
concerned.

Data other than keyed data may also be stored on the screen. This data can be
protected from changes (except those caused by CLEAR) and can be nondisplay, if
necessary.

156 CICS TS for OS/390: CICS Application Programming Guide

Chapter 14. Affinity

CICS transactions and programs use many different techniques to pass data from
one to another. Some of these techniques require that the transactions or programs
exchanging data must execute in the same CICS region. This imposes restrictions
on the regions to which transactions and distributed program link (DPL) requests
can be dynamically routed. If transactions or programs exchange data in ways that
impose such restrictions, there is said to be an affinity among them. This chapter
describes:
v “What is affinity?”
v “Techniques used by CICS application programs to pass data” on page 159
v “Safe programming techniques” on page 160
v “Unsafe programming techniques” on page 165
v “Suspect programming techniques” on page 171
v “Detecting inter-transaction affinities” on page 181
v “Duration and scope of inter-transaction affinities” on page 182
v “Recommendations” on page 188

What is affinity?
Transactions, program-link requests, EXEC CICS START requests, and CICS
business transaction services (BTS) activities can all be dynamically routed.

You can use a dynamic routing program to dynamically route:
v Transactions started from terminals
v Transactions started by eligible terminal-related EXEC CICS START commands
v Eligible CICS-to-CICS DPL requests
v Eligible program-link requests received from outside CICS.

You can use a distributed routing program to dynamically route:
v Eligible BTS processes and activities. (BTS is described in the CICS Business

Transaction Services manual.)
v Eligible non-terminal-related EXEC CICS START requests.

For detailed introductory information about dynamic and distributed routing, see
the CICS Intercommunication Guide.

Important
The following sections talk exclusively about affinities between transactions.
Keep in mind throughout the chapter that:
v Affinities can also exist between programs. (Although, strictly speaking, we

could say that it is the transactions associated with the programs that have
the affinity.) This may impose restrictions on the regions to which
program-link requests can be routed.

v The sections on safe, unsafe, and suspect programming techniques apply to
the routing of program-link and START requests, as well as to the routing
of transactions.

© Copyright IBM Corp. 1989, 2000 157

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
||

Types of affinity
There are two types of affinity that affect dynamic routing:
v Inter-transaction affinity
v Transaction-system affinity

Inter-transaction affinity
Transaction affinity among two or more CICS transactions is caused by the
transactions using techniques to pass information between one another, or to
synchronize activity between one another, in a way that requires the transactions to
execute in the same CICS region. This type of affinity is inter-transaction affinity,
where a set of transactions share a common resource and/or coordinate their
processing. Inter-transaction affinity, which imposes restrictions on the dynamic
routing of transactions, can occur in the following circumstances:
v One transaction terminates, leaving ‘state data’ in a place that a second

transaction can only access by running in the same CICS region as the first
transaction.

v One transaction creates data that a second transaction accesses while the first
transaction is still running. For this to work safely, the first transaction usually
waits on some event, which the second transaction posts when it has read the
data created by the first transaction. This technique requires that both
transactions are routed to the same CICS region.

v Two transactions synchronize, using an event control block (ECB) mechanism.
Because CICS has no function shipping support for this technique, this type of
affinity means the two transactions must be routed to the same CICS region.

Note: The same is true if two transactions synchronize, using an enqueue (ENQ)
mechanism, unless you have used appropriate ENQMODEL resource
definitions (see the CICS Resource Definition Guide for a description of
ENQMODELs) to give sysplex-wide scope to the ENQs.

Transaction-system affinity
There is another type of transaction affinity that is not an affinity among
transactions themselves. It is an affinity between a transaction and a particular
CICS region, where the transaction interrogates or changes the properties of that
CICS region—transaction-system affinity.

Transactions with affinity to a particular system, rather than another transaction,
are not eligible for dynamic routing. In general, they are transactions that use
INQUIRE and SET commands, or have some dependency on global user exit
programs, which also have an affinity with a particular CICS region.

Using INQUIRE and SET commands and global user exits: There is no remote
(that is, function shipping) support for INQUIRE and SET commands, nor is there
a SYSID option on them, hence transactions using these commands must be routed
to the CICS regions that own the resources to which they refer. In general, such
transactions cannot be dynamically routed to any target region, and therefore
transactions that use INQUIRE and SET should be statically routed.

Global user exits running in different CICS regions cannot exchange data. It is
unlikely that user transactions pass data or parameters by means of user exits, but
if such transactions do exist, they must run in the same target region as the global
user exits.

158 CICS TS for OS/390: CICS Application Programming Guide

|

|
|
|

|
|
|
|

|

|

Techniques used by CICS application programs to pass data
From the point of view of inter-transaction affinity in a dynamic or distributed
routing environment, the programming techniques used by your application
programs can be considered in three broad categories:
v Those techniques that are generally safe and do not cause inter-transaction

affinities
v Those techniques that are inherently unsafe
v Those techniques that are suspect in that they may, or may not, create affinities

depending on exactly how they are implemented

Safe techniques
The programming techniques in the generally safe category are:
v The use of the communication area (COMMAREA), supported by the CICS API

on a number of CICS commands. However, it is the COMMAREA option on the
CICS RETURN command only that is of interest in a dynamic or distributed
routing environment with regard to transaction affinity, because it is the
COMMAREA on a RETURN command that is passed to the next transaction in a
pseudoconversational transaction.

v The use of a TCT user area (TCTUA) that is optionally available for each
terminal defined to CICS.

v Synchronization or serialization of tasks using CICS commands:
– ENQ / DEQ,provided that you have used appropriate ENQMODEL resource

definitions (see “Using ENQ and DEQ commands with ENQMODEL resource
definitions” on page 163 and the CICS Resource Definition Guide for a
description of ENQMODELs) to give sysplex-wide scope to the ENQs.

v The use of containers to pass data between CICS Business Transaction Services
(BTS) activities. Container data is saved in an RLS-enabled BTS VSAM file.

For more information about the COMMAREA and the TCTUA, see “Safe
programming techniques” on page 160.

Unsafe techniques
The programming techniques in the unsafe category are:
v The use of long-life shared storage:

– The common work area (CWA)
– GETMAIN SHARED storage
– Storage obtained by a LOAD PROGRAM HOLD

v The use of task-lifetime local storage shared by synchronized tasks
It is possible for one task to pass the address of some task-lifetime storage to
another task.
It may be safe for the receiving task to use the passed address, provided the
owning task does not terminate. It is possible, but ill-advised, to use a CICS
task-synchronization technique to allow the receiving task to prevent the
sending task from terminating (or freeing the storage in some other way) before
the receiver has finished with the address. However, such designs are not robust
because there is a danger of the sending task being purged by some outside
agency.
See “Sharing task-lifetime storage” on page 168 for more details.

v Synchronization or serialization of tasks using CICS commands:
– WAIT EVENT / WAIT EXTERNAL / WAITCICS

Chapter 14. Affinity 159

|

|

|

|

|
|

– ENQ / DEQ,unless you have used appropriate ENQMODEL resource
definitions (see “Using ENQ and DEQ commands with ENQMODEL resource
definitions” on page 163 and the CICS Resource Definition Guide for a
description of ENQMODELs) to give sysplex-wide scope to the ENQs.

For more information about unsafe programming techniques, see “Unsafe
programming techniques” on page 165.

Suspect techniques
Some programming techniques may, or may not, create affinity depending on
exactly how they are implemented. A good example is the use of temporary
storage. Application programs using techniques in this category must be checked
to determine whether they work without restrictions in a dynamic or distributed
routing environment. The programming techniques in the suspect category are:
v The use of temporary storage queues with restrictive naming conventions
v Transient data queues and the use of trigger levels
v Synchronization or serialization of tasks using CICS commands:

– RETRIEVE WAIT / START
– START / CANCEL REQID
– DELAY / CANCEL REQID
– POST / CANCEL REQID

v INQUIRE and SET commands and global user exits

For more information about suspect programming techniques, see “Suspect
programming techniques” on page 171.

Safe programming techniques
Some techniques for passing data between transactions are generally safe in that
they do not create inter-transaction affinity. These involve the use of a
communication area (COMMAREA), a terminal control table user area (TCTUA),
or BTS containers.

However, to remain free from affinity, COMMAREAs, TCTUAs, and BTS
containers must not contain addresses. Generally the storage referenced by such
addresses would have to be long-life storage, the use of which is an unsafe
programming technique in a dynamic transaction routing environment.

The use of the COMMAREA and TCTUA for passing data between transactions is
discussed further in the following sections.

The COMMAREA
The use of the COMMAREA option on the RETURN command is the principal
example of a safe programming technique that you can use to pass data between
successive transactions in a CICS pseudoconversational transaction. CICS treats the
COMMAREA as a special form of user storage, even though it is CICS that issues
the GETMAIN and FREEMAIN requests for the storage, and not the application
program.

CICS ensures that the contents of the COMMAREA specified on a RETURN
command are always made available to the first program in the next transaction.
This is true even when the sending and receiving transactions execute in different
target regions. In a pseudoconversation, regardless of the target region to which a
dynamic routing program chooses to route the next transaction, CICS ensures the

160 CICS TS for OS/390: CICS Application Programming Guide

|

|

|

|

|
|

COMMAREA specified on the previous RETURN command is made available in
the target region. This is illustrated in Figure 19.

Some general characteristics of a COMMAREA are:
v Processor overhead is low.
v It is not recoverable.
v The length of a COMMAREA on a RETURN command can vary from

transaction to transaction, up to a theoretical upper limit of 32 763 bytes.
(However to be safe, you should not exceed 24KB (1KB = 1024 bytes), as
recommended in the CICS Application Programming Reference manual, because of
a number of factors that can reduce the limit from the theoretical maximum.)

v CICS holds a COMMAREA in CICS main storage until the terminal user
responds with the next transaction. This may be an important consideration if
you are using large COMMAREAs, because the number of COMMAREAs held
by CICS relates to terminal usage, and not to the maximum number of tasks in a
region at any one time.

v A COMMAREA is available only to the first program in the next transaction,
unless that program explicitly passes the data to another program or a
succeeding transaction.

The COMMAREA used in a pseudoconversational transaction, as shown in
Figure 19, can be passed from transaction to transaction across a CICSplex, and,
provided the COMMAREA contains only data and not addresses of storage areas,
no inter-transaction affinity is created.

The TCTUA
The TCTUA is an optional extension to the terminal control table entry (TCTTE),
each entry specifying whether the extension is present, and its length. You specify
that you want a TCTUA associated with a terminal by defining its length on the
USERAREALEN parameter of a TYPETERM resource definition. This means that
the TCTUAs are of fixed length for all the terminals created using the same
TYPETERM definition.

TOR1
(1) Using DTR,

routes TRN1
to AOR1.

(2) Using DTR,
routes TRN2
to AOR2

AOR1 AOR2

Executes TRN1 Executes TRN2

TRN1 terminates TRN2 has access
with to the COMMAREA

EXEC CICS RETURN data passed by
COMMAREA(DATA) TRN1
TRANSID(TRN2)

Figure 19. The use of a COMMAREA by a pseudoconversation in a dynamic transaction
routing environment

Chapter 14. Affinity 161

A terminal control table user area (TCTUA) is safe to use in a dynamic transaction
routing environment as a means of passing data between successive transactions in
a pseudoconversational transaction. Like the COMMAREA, the TCTUA is always
accessible to transactions initiated at a user terminal, even when the transactions in
a pseudoconversation are routed to different target regions. This is illustrated in
Figure 20. Some other general characteristics of TCTUAs are:
v Minimal processor overhead (only one CICS command is needed to obtain the

address).
v It is not recoverable.
v The length is fixed for the group of terminals associated with a given

TYPETERM definition. It is suitable only for small amounts of data, the
maximum size allowed being 255 bytes.

v If the terminal is autoinstalled, the TCTUA lasts as long as the TCTTE, the
retention of which is determined by the AILDELAY system initialization
parameter. The TCTTE, and therefore any associated TCTUA, is deleted when
the AILDELAY interval expires after a session between CICS and a terminal is
ended.
If the terminal is defined to CICS by an explicit terminal definition, the TCTTE
and its associated TCTUA are created when the terminal is installed and remain
until the next initial or cold start of CICS.

Note that the TCTUA is available to a dynamic routing environment in the routing
region as well as application programs in the target region. It can be used store
information relating to the dynamic routing of a transaction. For example, you can
use the TCTUA to store the name of the selected target region to which a
transaction is routed.

Using the TCTUA in an unsafe way
The EXEC CICS ADDRESS TCTUA(ptr-ref) provides direct addressability to the
TCTUA, and this is how each task requiring access to a TCTUA should obtain the

TOR1
(1) Using DTR,

routes TRN1
to AOR1.

(2) Using DTR,
routes TRN2
to AOR2

AOR1 AOR2

Executes TRN1 Executes TRN2
which: which:

(1) Gets TCTUA (1) Gets address
address of the TCTUA

(2) Stores data
in TCTUA (2) Accesses the
for next data stored
transaction by TRN1.

(3) Ends with
EXEC CICS RETURN
TRANSID(TRN2)

Figure 20. The use of a TCTUA by a pseudoconversation in a dynamic routing environment

162 CICS TS for OS/390: CICS Application Programming Guide

|
|
|
|
|
|

|

TCTUA address. If tasks attempt to pass the address of their TCTUAs in some
other way, such as in a temporary storage queue, or to use the TCTUA itself to
pass addresses of other storage areas, the TCTUA ceases to provide a safe
programming technique for use in a dynamic transaction routing environment.

It is also possible for a task to obtain the TCTUA of a principal facility other than
its own, by issuing an INQUIRE TERMINAL command that names the terminal
associated with another task (the INQUIRE TERMINAL command returns the
TCTUA address of the specified terminal). Using the TCTUA address of a terminal
other than a task’s own principal facility is another example an unsafe use of the
TCTUA facility. Depending on the circumstances, particularly in a dynamic routing
environment , the TCTUA of a terminal that is not the inquiring task’s principal
facility could be deleted after the address has been obtained. For example, in an
target region, an INQUIRE TERMINAL command could return the TCTUA address
associated with a surrogate terminal that is running a dynamically routed
transaction. If the next transaction from the terminal is routed to a different target
region, the TCTUA address ceases to be valid.

Using ENQ and DEQ commands with ENQMODEL resource
definitions

The ENQ and DEQ commands are used to serialize access to a shared resource. In
earlier releases of CICS, these commands were limited to the scope of CICS tasks
running in the same region, and could not be used to serialize access to a resource
shared by tasks in different regions. Now, provided that the ENQs and DEQs are
supported by appropriate ENQMODEL resource definitions (see the CICS Resource
Definition Guide for a description of ENQMODELs) they can have sysplex-wide
scope.

This is primarily of interest to the system programmer who will determine
transaction routing decisions, but application programmers should be aware of the
advantages now available.

Overview of sysplex enqueue and dequeue
Changes to the CICS enqueue/dequeue function extend the CICS application
programming interface to provide an enqueue mechanism that serializes access to
a named resource across a specified set of CICS regions operating within a sysplex.
This applies equally to a CICSplex within a single MVS image and to a CICSplex
that resides in more than one MVS. (Note that sysplex-wide enqueue is supported
only for a resource, and not for an enqueue on an address.)

Local enqueues within a single CICS region are managed within the CICS address
space. Sysplex-wide enqueues that affect more than one CICS region are managed
by Global Resource Services (GRS). The main points of the changes to the CICS
enqueue/dequeue mechanism are as follows:
v Sysplex enqueue and dequeue expands the scope of an EXEC CICS ENQ|DEQ

command from region to sysplex, by introducing a new CICS resource definition
type, ENQMODEL, to define resource names that are to be sysplex-wide.

v ENQSCOPE, an attribute of the ENQMODEL resource definition, defines the set
of regions that share the same enqueue scope.

v When an EXEC CICS ENQ (or DEQ) command is issued for a resource whose
name matches that of an installed ENQMODEL resource definition, CICS checks
the value of the ENQSCOPE attribute to determine whether the scope is local or
sysplex-wide, as follows:

Chapter 14. Affinity 163

|

|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|

– If the ENQSCOPE attribute is left blank (the default value), CICS treats the
ENQ|DEQ as local to the issuing CICS region.

– If the ENQSCOPE is non-blank, CICS treats the ENQ|DEQ as sysplex-wide,
and passes a queue name and the resource name to GRS to manage the
enqueue. The resource name is as specified on the EXEC CICS ENQ|DEQ
command, and the queue name is made up by prefixing the 4-character
ENQSCOPE with the letters DFHE.

v The CICS regions that need to use sysplex-wide enqueue/dequeue function
must all have the required ENQMODELs defined and installed.
The recommended way to ensure this is for the CICS regions to share a CSD,
and for the initialization group lists to include the same ENQMODEL groups.

Changes have been made to the CICS Affinity Utility to make it easier to create
affinity groups for enqueues by address separately from enqueues by name.

Existing applications can use sysplex enqueues simply by defining appropriate
ENQMODELs, without any change to the application programs.

Benefits
Sysplex enqueue provides the following benefits:
v Eliminates one of the most common causes of inter-transaction affinity.
v Enables better exploitation of a parallel sysplex providing better

price/performance, capacity, and availability.
v Reduces the need for inter-transaction affinity rules in dynamic and distributed

routing programs thereby lowering the systems management cost of exploiting
parallel sysplex.

v Enables serialization of concurrent updates to shared temporary storage queues,
performed by multiple CICS tasks across the sysplex.

v Makes it possible to prevent interleaving of records written by concurrent tasks
in different CICS regions to a remote transient data queue.

v Allows the single-threading and synchronization of tasks across the sysplex. It is
not designed for the locking of recoverable resources.

BTS containers
A container is owned by a BTS activity. Containers cannot be used outside of an
activity; for more information, see the CICS Business Transaction Services. A
container may be used to pass data between BTS activities or between different
activations of the same activity. An activity uses GET and PUT container to update
the container’s contents. CICS ensures that the appropriate containers are available
to an activity by saving all the information (including containers) associated with a
BTS activity in an RLS-enabled VSAM file. For this reason, note that a BTS
environment cannot extend outside a sysplex (see CICS Business Transaction
Services), but you can use dynamic routing within a sysplex passing data in
containers.

Some general characteristics of containers are:
v An activity may own any number of containers; you are not limited to one.
v There is no size restriction.
v They are recoverable.
v They exist in main storage only while the associated activity is executing.

Otherwise they are held on disk. Therefore, you do not need to be overly
concerned with their storage requirements, unlike terminal COMMAREAs.

164 CICS TS for OS/390: CICS Application Programming Guide

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|
|

|
|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|

|

|

|

|

|
|
|

Unsafe programming techniques
Some CICS application programming techniques, notably those that pass, or
obtain, addresses to shared storage, create an affinity between transactions.

The programming techniques that are generally unsafe are described in the
following sections.

Using the common work area
The CWA in a CICS region is created (optionally) during CICS initialization, exists
until CICS terminates, and is not recovered on a CICS restart (warm or
emergency). The ADDRESS CWA(ptr-ref) command provides direct addressability
to the CWA.

A good example of how the use of long-life shared storage such as the CWA can
create affinity is when one task stores data in the CWA, and a later task reads the
data from it. Clearly, the task retrieving the data must run in the same target
region as the task that stored the data, or it references a completely different
storage area in a different address space. This restricts the workload balancing
capability of the dynamic or distributed routing program, as shown in Figure 21.

However, if the CWA contains read-only data, and this data is replicated in more
than one target region, it is possible to use the CWA and continue to have the full
benefits of dynamic routing. For example, you can run a program during the
post-initialization phase of CICS startup (a PLTPI program) that loads the CWA
with read-only data in each of a number of selected target regions. In this way, all
transactions routed to target regions loaded with the same CWA data have equal
access to the data, regardless of which of the target regions to which the
transactions are routed. With CICS subsystem storage protection, you can ensure

TOR
If the dynamic routing program

DTR routes TRN2 to AOR3 as shown,
program TRN2 will fail to access the

data stored for it by TRN1.

AOR1 AOR2 AOR3

CWA CWA CWA

TRN1 writes TRN2 fails
data to CWA to read the
intended TRN1 data
for TRN2 from the CWA

CWA

Figure 21. Illustration of inter-transaction affinity created by use of the CWA. The dynamic
routing program needs to be aware of this CWA affinity, and ensure it routes TRN2 to the
same target region as TRN1.

Chapter 14. Affinity 165

|

the read-only integrity of the CWA data by requesting the CWA from CICS-key
storage, and define all the programs that read the CWA to execute in user key.

Using GETMAIN SHARED storage
Shared storage is allocated by a GETMAIN SHARED command, and remains
allocated until explicitly freed by the same, or by a different, task. Shared storage
can be used to exchange data between any CICS tasks that run during the lifetime
of the shared storage. Transactions designed in this way must execute in the same
CICS region to work correctly. The dynamic or distributed routing program should
ensure that transactions using shared storage are routed to the same target region.

Figure 22 illustrates the use of shared storage.

If the two transactions shown in Figure 22 are parts of a pseudoconversational
transaction, the use of shared storage should be replaced by a COMMAREA
(provided that the amount of storage fits within the COMMAREA size limits).

Using the LOAD PROGRAM HOLD command
A program (or table) that CICS loads in response to a LOAD PROGRAM HOLD
command remains in directly addressable storage until explicitly released by the
same, or by a different, task. Any CICS tasks that run while the loaded program
(table) is held in storage can use the loaded program’s storage to exchange data,
provided that:

TOR In this example, the TOR
must route TRN2 to AOR1,

DTR because it needs access
program to shared storage obtained

by TRN1 in that region.

AOR1 AOR2

Executes TRN1
which:

(1) GETMAINs some
SHARED storage

(2) Stores data in
shared storage

(3) WRITEs address
to a TS queue

Executes TRN2
Terminates which:

(leaving shared
storage still (1) READs address
allocated) from TS queue

(2) Reads data from
shared storage

(3) FREEMAINs the
shared storage

Terminates

Figure 22. Illustration of inter-transaction affinity created by use of shared storage. The
dynamic transaction routing program needs to be aware of this affinity, and ensure it routes
TRN2 to the same target region as TRN1.

166 CICS TS for OS/390: CICS Application Programming Guide

|

v The program is not loaded into read-only storage, or
v The program is not defined to CICS with RELOAD(YES)

Although you could use a temporary storage queue to make the address of the
loaded program’s storage available to other tasks, the more usual method would
be for other tasks to issue a LOAD PROGRAM command also, with the
SET(ptr_ref) option so that CICS can return the address of the held program.

The nature of the affinity caused by the use of the LOAD PROGRAM HOLD
command is virtually identical to that caused by the use of GETMAIN SHARED
storage (see Figure 22 on page 166 and Figure 23), and the same rule applies: to
preserve the application design, the dynamic or distributed routing program must
ensure that all transactions that use the address of the loaded program (or table)
are routed to the same target region.

Note: This rule applies also to programs defined with the RESIDENT option on
the resource definition for the loaded program (whether or not the HOLD
option is specified on the LOAD command). However, regardless of affinity
considerations, it is unsafe to use the RESIDENT option to enable
transactions to share data, because programs defined with RESIDENT are
subject to SET PROGRAM(program_name) NEWCOPY commands, and can
therefore be changed.

TOR
In this example, the TOR

DTR must route to AOR1 all other
program transactions that require

access to the program (table)
loaded by TRN1.

AOR1 AOR2

Executes TRN1
which:

(1) Issues LOAD
PROGRAM HOLD
command.

(2) Terminates. Executes other
transactions

that:

(1) Issue LOAD
PROGRAM with
SET option.

(2) Read data from
the loaded
program (table)

(3) Terminate.

Figure 23. Illustration of inter-transaction affinity created by use of shared storage. The
dynamic routing program needs to be aware of this affinity, and ensure it routes TRN2 to the
same target region as TRN1.

Chapter 14. Affinity 167

The rule also applies to a non-resident, non-held, loaded program where the
communicating tasks are synchronized.

Sharing task-lifetime storage
The use of any task-lifetime storage belonging to one task can be shared with
another task, provided the owning task can pass the address to the other task in
the same CICS address space. This technique creates an affinity among the
communicating tasks, and requires that any task retrieving and using the passed
address must execute in the same target region as the task owning the task-lifetime
storage.

For example, it is possible to use a temporary storage queue to pass the address of
a PL/I automatic variable, or the address of a COBOL working-storage structure
(see Figure 24 for an example).

For two tasks to share task-lifetime storage belonging to one of them requires that
the tasks are synchronized in some way. See Table 12 for commands that provide
ways of suspending and resuming a task that passes the address of its local
storage.

Table 12. Methods for suspending and resuming (synchronizing) tasks

Suspending operation Resuming operation

WAIT EVENT, WAIT EXTERNAL, WAITCICS POST

RETRIEVE WAIT START

DELAY CANCEL

POST CANCEL

TOR

DTR
program

AOR

TRN1

1. Stores the address
of task-lifetime
storage (in TS
queue) for TRN2

2. Suspends until TRN2 TRN2
completes

. 1. Reads address from TS
(waiting) queue.

. 2. Accesses the storage.

. 3. Resumes TRN1.
3. Continues.

Figure 24. Illustration of inter-transaction affinity created by use of task-lifetime storage. TRN2
must execute in the same target region as TRN1. Also, TRN1 must not terminate until TRN2
has finished using its task-lifetime storage.

168 CICS TS for OS/390: CICS Application Programming Guide

Table 12. Methods for suspending and resuming (synchronizing) tasks (continued)

Suspending operation Resuming operation

START CANCEL

ENQ DEQ

Some of these techniques themselves require that the transactions using them must
execute in the same target region, and these are discussed later in this chapter.
However, even in those cases where tasks running in different target regions can
be synchronized, it is not safe to pass the address of task-lifetime storage from one
to the other. Even without dynamic routing, designs that are based on the
synchronization techniques shown in Table 12 on page 168 are fundamentally
unsafe because it is possible that the storage-owning task could be purged.

Notes:

1. Using synchronization techniques, such as RETRIEVE WAIT/START, to allow
sharing of task-lifetime storage is unsafe in CICS Version 2 because the task
issuing, for example, the RETRIEVE WAIT could be purged by a CEMT SET
TASK(...) PURGE command. In CICS/ESA Version 3 and later, the SPURGE
parameter on the transaction definition could be used to protect the first task,
but even so the design is not recommended.

2. No inter-transaction affinity is caused in those cases where the task sharing
another task’s task-lifetime storage is started by an START command, except
when the START command is function-shipped or routed to a remote system.

Using the WAIT EVENT command
The WAIT EVENT command is used to synchronize a task with the completion of
an event performed by some other CICS or MVS task.

The completion of the event is signalled (posted) by the setting of a bit pattern into
the event control block (ECB). Both the waiting task and the posting task must
have direct addressability to the ECB, hence both tasks must execute in the same
target region. The use of a temporary storage queue is one way that the waiting
task can pass the address of the ECB to another task.

This synchronization technique is illustrated in Figure 25 on page 170.

Chapter 14. Affinity 169

|

If TRN2 shown in Figure 25 executed in a different target region from TRN1, the
value of ptr-ref would be invalid, the post operation would have unpredictable
results, and the waiting task would never be resumed. For this reason, a dynamic
or distributed routing program must ensure that a posting task executes in the
same target region as the waiting task to preserve the application design.

The same considerations apply to the use of WAIT EXTERNAL and WAITCICS
commands for synchronizing tasks.

Using ENQ and DEQ commands without ENQMODEL resource
definitions

The ENQ and DEQ commands are used to serialize access to a shared resource.
These commands only work for CICS tasks running in the same region, and cannot
be used to serialize access to a resource shared by tasks in different regions, unless
they are supported by appropriate ENQMODEL resource definitions (see “Using
ENQ and DEQ commands with ENQMODEL resource definitions” on page 163
and the CICS Resource Definition Guide for a description of ENQMODELs) so that
they have sysplex-wide scope.

Note that any ENQ that does not specify the LENGTH option is treated as an
enqueue on an address and therefore has only local scope.

The use of ENQ and DEQ for serialization (without ENQMODEL definitions to
give sysplex-wide scope) is illustrated in Figure 26 on page 171.

TOR

DTR
program

AOR

TRN1

1. Stores the address
of ECB in temporary
storage queue for
TRN2

2. Suspends with WAIT TRN2
EVENT ECADDR(ptr-ref)

. 1. At end of processing,

. (completion of event)
(waiting) reads address of ECB

. from TS queue.

. 2. Posts ECB (by MVS POST

. or 'hand-posted')

. 3. Returns control to CICS
3. Resumed by CICS

Figure 25. Illustration of inter-transaction affinity created by use of WAIT EXTERNAL
command. TRN2 must execute in the same target region as TRN1.

170 CICS TS for OS/390: CICS Application Programming Guide

|

|

|
|

If TRN2 shown in Figure 26 executed in a different target region from TRN1, TRN2
would not be suspended while TRN1 accessed the shared resource. For this reason,
a dynamic or distributed routing program must ensure that all tasks that enqueue
on a given resource name must execute in the same target region to preserve the
application design. TRN2 would, of course, be serialized with other CICS tasks
that issue ENQ commands on the same resource name in its target region.

Suspect programming techniques
Some CICS application programming techniques may create an affinity between
transactions depending on how they are implemented.

The programming techniques that may be suspect are described in the following
sections.

Using temporary storage
CICS application programs commonly use temporary storage (TS) queues to hold
temporary application data, and to act as scratch pads.

Sometimes a TS queue is used to pass data between application programs that
execute under one instance of a transaction (for example, between programs that
pass control by a LINK or XCTL command in a multi-program transaction). Such
use of a TS queue requires that the queue exists only for the lifetime of the
transaction instance, and therefore it does not need to be shared between different
target regions, because a transaction instance executes in one, and only one, target
region.

TOR

DTR
program

AOR

TRN1

1. Issues ENQ command
on resource name TRN2
of shared resource

1. Issues ENQ command on
2. Modifies or uses resource name of shared

shared resource resource
.
. 2. Suspended by CICS while

resource in use by TRN1
3. Issues DEQ command

on shared resource. 3. Resumed by CICS when
resource free

Figure 26. Illustration of inter-transaction affinity created by use of ENQ/DEQ commands.
TRN2 must execute in the same target region as TRN1.

Chapter 14. Affinity 171

Note: This latter statement is not strictly true in the case of a multi-program
transaction, where one of the programs is linked by a distributed program
link command and the linked-to program resides in a remote system. In this
case, the program linked by a DPL command runs under another CICS task
in the remote region. The recommended method for passing data to a DPL
program is by a COMMAREA, but if a TS queue is used for passing data in
a DPL application, the queue must be shared between the two regions.

Sometimes a TS queue holds information that is specific to the target region, or
holds read-only data. In this case the TS queue can be replicated in each target
region, and no sharing of data between target regions is necessary.

However, in many cases a TS queue is used to pass data between transactions, in
which case the queue must be globally accessible to enable the transactions using
the queue to run in any dynamically selected target region. It is possible to make a
temporary storage queue globally accessible by function shipping TS requests to a
queue-owning region (QOR), provided the TS queue can be defined as remote.
Shared queues are defined by using a temporary storage pool in a coupling facility.
Shared temporary storage applies only to non-recoverable queues. You can make
queues in auxiliary storage recoverable, but not queues in main storage.

In a pseudoconversational transaction, you can change the program to use a
COMMAREA to pass data between the phases of the conversation. However, using
temporary storage data-sharing avoids inter-transaction affinity by being able to
use dynamic routing to any target region. Shared temporary storage queue
requests for specific SYSIDs are routed in the same way as remote queue requests.
The SYSID value defined to shared TS pools is TST TYPE=SHARED.

The methods for specifying TS pool make it easy to migrate queues from a QOR to
a TS data-sharing pool. You can use the temporary storage global user exit,
XTSEREQ, to modify the SYSID on a TS request so that it references a TS
data-sharing pool. See Figure 27 for an illustration of a temporary storage
data-sharing server.

172 CICS TS for OS/390: CICS Application Programming Guide

Naming conventions for remote queues
To define a queue as remote you must include an entry for the queue in a
temporary storage table (TST), or use an appropriate TSMODEL. TS queue names
are frequently generated dynamically, but they can also be unique fixed names.
v The TST naming convention allows for dynamic names by accepting generic

names formed by a constant prefix, to which a CICS application program can
add a variable suffix. (Generic names are formed from the leading characters of
the 8-character queue names and can be up to seven characters long. Names in a
TST entry using all eight characters specify unique TS queues.)

v The names of TS queues defined by TSMODEL resource definitions may have a
prefix of up to 16 characters (using a specified set of character) if defined by the
Prefix or Remoteprefix option, or of up to 32 characters (using any hexadecimal
string) if defined by the XPrefix or XRemoteprefix option. The CICS Resource
Definition Guide has more information about Prefix, Remoteprefix, XPrefix and
XRemoteprefix.

The usual convention is a 4-character prefix (for example, the transaction identifier)
followed by a 4-character terminal identifier as the suffix. This generates queue
names that are unique for a given terminal. Such generic queue names can be
defined easily as remote queues that are owned, for example, by:
v A QOR (thus avoiding transaction affinity problems)
v Shared queues residing in temporary storage data-sharing queue pools
v Remote queues that are owned by an target region, or in a temporary storage

data-sharing queue pool

Remote queues and shared queues can be defined in the same way for application
programs, but requests for specific SYSIDs are routed to a temporary storage data
server by means of TST TYPE=SHARED. However, if the naming convention for

TOR

DTR
program

DFHTSTXX

Prefix| Sysid

AAAA* CICQ
AOR1 AOR2 AOR3 AOR4 ABCD* CICQ

XXXX* CICQ
TST=XX TST=XX TST=XX TST=XX ZZZZ* CICQ

Sysid Pool

CICQ DFHXQTS1

DFHXQMN
TS Server

Coupling
Facility

Figure 27. Example of the use of the temporary storage data-sharing server

Chapter 14. Affinity 173

|

|
|
|
|
|
|

dynamically named queues does not conform to this rule, the queue cannot be
defined as remote, and all transactions that access the queue must be routed to the
target region where the queue was created. Furthermore, a TS queue name cannot
be changed from a local to a remote queue name using the global user exits for TS
requests.

See Figure 28 for an illustration of the use of a remote queue-owning region.

Exception conditions for globally accessible queues
When you eliminate inter-transaction affinity relating to TS queues by the use of a
global QOR, you must also take care to review exception condition handling. This
is because some exception conditions can occur that previously were not possible
when the transactions and the queue were local in the same region. This situation
arises because the target region and QOR can fail independently, causing
circumstances where:
v The queue already exists, because only the target region failed while the QOR

continued.
v The queue is not found, because only the QOR failed while the target region

continued.

Using transient data
Another form of data queue that CICS application programs commonly use is the
transient data queue (TD). The dynamic transaction routing considerations for TD
queues have much in common with those for temporary storage. To enable
transactions that use a TD queue that needs to be shared, to be dynamically routed
to an target region, you must ensure that the TD queues are globally accessible.

All transient data queues must be defined to CICS, and must be installed before
the resources become available to a CICS region. These definitions can be changed
to support a remote transient data queue-owning region (QOR).

TOR

DTR
program

DFHTSTXX

Prefix Sysid
AOR1 AOR2 AOR3 AOR4

AAAA* CICQ
TST=XX TST=XX TST=XX TST=XX ABCD* CICQ

XXXX* CICQ
ZZZZ* CICQ

ROR

Figure 28. Using remote queues to avoid inter-transaction affinity relating to temporary
storage. This example shows a combined file-owning and queue-owning region. Separate
regions can be used, but these require special care during recovery operations because of
‘in-doubt’ windows that can occur when recovering data managed independently by file
control and temporary storage control.

174 CICS TS for OS/390: CICS Application Programming Guide

However, there is a restriction for TD queues that use the trigger function. The
transaction to be invoked when the trigger level is reached must be defined as a
local transaction in the region where the queue resides (in the QOR). Thus the
trigger transaction must execute in the QOR. However, any terminal associated
with the queue need not be defined as a local terminal in the QOR. This does not
create an inter-transaction affinity.

Figure 29 illustrates the use of a remote transient data queue-owning region.

Exception conditions for globally accessible queues
When you eliminate inter-transaction affinity relating to TD queues by the use of a
global QOR, there should not be any new exception conditions (other than
SYSIDERR if there is a system definition error or failure).

Using the RETRIEVE WAIT and START commands
The use of some synchronization techniques permit the sharing of task-lifetime
storage between two synchronized tasks. For example, the RETRIEVE WAIT and
START commands could be used for this purpose, as illustrated in Figure 30 on
page 176.

In this example, TRN1 is designed to retrieve data from an asynchronous task,
TRN2, and therefore must wait until TRN2 makes the data available. Note that for
this mechanism to work, TRN1 must be a terminal-related transaction.

The steps are as follows:
1. TRN1 writes data to a TS queue, containing its TRANSID and TERMID.

TOR

DTR
program

TDQ defn.

Queue Syst.
AOR1 AOR2 AOR3 AOR4

AAAA CICQ
ABCD CICQ
XXXX CICQ
ZZZZ CICQ

TDQ definition

Queue Trig. Tran. Term.
FOR QOR

(CICQ) AAAA nn BBBB Tnnn
ABCD nn CCCC Pnnn
XXXX
ZZZZ

Figure 29. Using remote queues to avoid inter-transaction affinity relating to transient data.
The transient data queue definitions installed in the target regions are defined as owned by
the QOR (CICQ). All the transient data queue definitions installed in the QOR are local, some
with trigger levels.

Chapter 14. Affinity 175

2. To cause itself to suspend, TRN1 issues a RETRIEVE WAIT command, which
causes CICS to suspend the task until the RETRIEVE can be satisfied, which is
not until TRN2 issues a START command with data passed by the FROM
parameter.

3. However, TRN2 can only issue a START command to resume TRN1 if it knows
the TRANSID and TERMID of the suspended task (TRN1 in our example).
Thus it reads the TS queue to obtain the information written by TRN1. Using a
temporary storage queue is one way that this information can be passed by the
suspending task.

4. Using the information from the TS queue, TRN2 issues the START command
for TRN1, causing CICS to resume TRN1 by satisfying the outstanding
RETRIEVE WAIT.

In the example of task synchronization using RETRIEVE WAIT and START
commands shown in Figure 30, the START command that satisfies the RETRIEVE
WAIT must:
v Be issued in same target region as the transaction (TRN1 in our example) issuing

the RETRIEVE WAIT command, or
v Specify the SYSID of the target region where the RETRIEVE WAIT command

was executed, or
v Specify a TRANSID (TRN1 in our example) that is defined as a remote

transaction residing on the target region that executed the RETRIEVE WAIT
command.

An application design based on the remote TRANSID technique only works for
two target regions. An application design using the SYSID option on the START
command only works for multiple target regions if all target regions have

TOR

DTR
program

AOR

TRN1

1. Stores its TRANSID
and TERMID in a TS
queue for TRN2

2. Suspends by issuing TRN2
a RETRIEVE WAIT

. 1. Reads TRANSID & TERMID

. of TRN1 from TS queue
(suspended) .

. (process)

. .
3. Resumes TRN1 by issuing

3. Resumes. START with FROM option.

Figure 30. Illustration of task synchronization using RETRIEVE WAIT and START commands

176 CICS TS for OS/390: CICS Application Programming Guide

connections to all other target regions (which may not be desirable). In either case,
the application programs need to be modified: there is no acceptable way to use
this programming technique in a dynamic or distributed routing program except
by imposing restrictions on the routing program. In general, this means that the
dynamic or distributed routing program has to ensure that TRN2 has to execute in
the same region as TRN1 to preserve the application design.

Using the START and CANCEL REQID commands
Using this CICS application programming technique, one transaction issues a
START command to start another transaction after a specified interval. Another
transaction (not the one requested on the START command) determines that it is
no longer necessary to run the requested transaction, (which is identified by the
REQID parameter) and cancels the START request. Note that the cancel is only
effective if the specified interval has not yet expired.

A temporary storage queue is one way that the REQID can be passed from task to
task.

Note: To use this technique, the CANCEL command must specify the REQID
option, but the START command need not. This is because, provided the
NOCHECK option is not specified on the START command, CICS generates
a REQID for the request and stores it in the EXEC interface block (EIB) in
field EIBREQID.

Figure 31 illustrates this programming technique.

TOR

DTR
program

AOR

TRN1

1. Starts TRNX and
obtains the REQID

2. Writes the REQID for
the START request to
a TS queue

3. Terminates.
(suspended)

TRN2

1. Reads REQID from TS

2. Cancels TRNX using REQID

Figure 31. Illustration of the use of the START and CANCEL REQID commands

Chapter 14. Affinity 177

Using this application programming technique, the CANCEL command that
cancels the START request must:
v Be issued in same target region that the START command was executed in, or
v Specify the SYSID of the target region where the START command was executed,

or
v Specify a TRANSID (TRNX in our example) that is defined as a remote

transaction residing on the target region where the START command was
executed.

Note: A START command is not necessarily executed in the same region as the
application program issuing the command. It can be function shipped (or, in
the case of a non-terminal-related START, routed) and executed in a different
CICS region. The above rules apply to the region where the START
command is finally executed.

An application design based on the remote TRANSID technique only works for
two target regions. An application design using the SYSID option on the cancel
command only works for multiple target regions if all target regions have
connections to all other target regions. In either case, the application programs
need to be modified: there is no acceptable way to use this programming technique
in a dynamic or distributed routing program except by imposing restrictions on the
routing program.

In general, this means that the dynamic or distributed routing program has to
ensure that TRN2 executes in the same region as TRN1 to preserve the application
design, and also that TRNX is defined as a local transaction in the same region.

Using the DELAY and CANCEL REQID commands
Using this CICS application programming technique, one task can resume another
task that has been suspended by a DELAY command.

A DELAY request can only be cancelled by a different task from the one issuing
the DELAY command, and the CANCEL command must specify the REQID
associated with DELAY command. Both the DELAY and CANCEL command must
specify the REQID option to use this technique.

The steps involved in this technique using a temporary storage queue to pass the
REQID are as follows:
1. A task (TRN1) writes a predefined DELAY REQID to a TS queue. For example:

EXEC CICS WRITEQ TS
QUEUE('DELAYQUE')
FROM(reqid_value)

2. The task waits on another task by issuing a DELAY command, using the
reqid_value as the REQID. For example:
EXEC CICS DELAY

INTERVAL(1000)
REQID(reqid_value)

3. Another task, TRN2, reads the REQID of the DELAY request from TS queue
called ‘DELAYQUE’.

4. TRN2 completes its processing, and resumes TRN1 by cancelling the DELAY
request.

The process using a TS queue is illustrated in Figure 32 on page 179.

178 CICS TS for OS/390: CICS Application Programming Guide

|
|

|

|

Another way to pass the REQID when employing this technique would be for
TRN1 to start TRN2 using the START command with the FROM and TERMID
options. TRN2 could then obtain the REQID with the RETRIEVE command, using
the INTO option.

Using this application programming technique, the CANCEL command that
cancels the DELAY request must:
v Be issued in same target region as the DELAY command was executed in, or
v Specify the SYSID of the target region where the DELAY command was

executed, or
v Specify a TRANSID (TRN1 in our example) that is defined as a remote

transaction residing on the target region where the DELAY command was
executed.

An application design based on the remote TRANSID technique only works for
two target regions. An application design using the SYSID option on the cancel
command only works for multiple target regions if all target regions have
connections to all other target regions. In either case, the application programs
need to be modified: there is no acceptable way to use this programming technique
in a dynamic or distributed routing environment except by imposing restrictions
on the routing program.

If the CANCEL command is issued by a transaction that is initiated from a
terminal, it is possible that the transaction could be dynamically routed to the
wrong target region.

TOR

DTR
program

AOR

TRN1

1. Writes DELAY command
REQID to TS queue for
use by TRN2

2. Issues DELAY to wait TRN2
until TRN2 issues
CANCEL command 1. Reads REQID of DELAY

. from TS queue

. .
(suspended) (process)

. .

. 2. Completes processing

.

. 3. Resumes TRN1 by
3. Resumes. CANCELing the DELAY.

Figure 32. Illustration of the use of the DELAY and CANCEL REQID commands

Chapter 14. Affinity 179

|

Using the POST and CANCEL REQID commands
The CICS POST command is used to request notification that a specified time has
expired. Another transaction (TRN2) can force notification, as if the specified time
has expired, by issuing a CANCEL of the POST request.

The time limit is signalled (posted) by CICS by setting a bit pattern in the event
control block (ECB). To determine whether notification has been received, the
requesting transaction (TRN1) has either to test the ECB periodically, or to issue a
WAIT command on the ECB.

A TS storage queue is one way that can be used to pass the REQID of the POST
request from task to task.

Figure 33 illustrates this technique.

If this technique is used, the dynamic or distributed routing program has to ensure
that TRN2 executes in the same CICS region as TRN1 to preserve the application
design.

The CANCEL command that notifies the task that issued the POST must:
v Be issued in same target region that the POST command was executed in, or
v Specify the SYSID of the target region where the POST command was executed,

or
v Specify a TRANSID (TRN1 in our example) that is defined as a remote

transaction residing on the target region where the POST command was
executed.

TOR

DTR
program

AOR

TRN1

1. Issues POST command
2. Stores REQID of POST

in TS queue for use TRN2
by TRN2

. 1. Reads REQID of POST
(process) request

. .

. (process)

. .
3. Periodically check 2. Completes processing

if posted 3. Resumes TRN1 by
4. Resumes when time CANCELing the POST.

expired, or when POST
cancelled by TRN2.

Figure 33. Illustration of the use of the POST command

180 CICS TS for OS/390: CICS Application Programming Guide

An application design based on the remote TRANSID technique only works for
two target regions. An application design using the SYSID option on the cancel
command only works for multiple target regions if all target regions have
connections to all other target regions. In either case, the application programs
need to be modified: there is no acceptable way to use this programming technique
in a dynamic or distributed routing program except by imposing restrictions on the
routing program.

In general, this means that the dynamic or distributed routing program has to
ensure that TRN2 executes in the same region as TRN1 to preserve the application
design.

Clearly, there is no problem if the CANCEL is issued by the same task that issued
the POST. If a different task cancels the POST command, it must specify REQID to
identify the particular instance of that command. Hence the CANCEL command
with REQID is indicative of an inter-transaction affinity problem. However, REQID
need not be specified on the POST command because CICS automatically generates
a REQID and pass it to the application in EIBREQID.

Detecting inter-transaction affinities
To manage transaction affinities in a dynamic routing environment, you must first
discover which transactions have affinities. How do you do this?

The recommended way is to use the Transaction Affinities Utility to detect
affinities. The CICS Transaction Affinities Utility Guide describes the utility and how
to use it.

Note: If you dynamically route program-link requests, you must discover which
programs (or their associated transactions) have affinities. You cannot use
the Transaction Affinities Utility to do this.

If you do not use the utility, you can use one of the following methods to detect
affinities, although you are strongly recommended to use the utility.
v Review application design, paying particular attention to the techniques used for

inter-transaction communication.
v Search the source of application programs, looking for instances of the EXEC

CICS commands that can give rise to inter-transaction affinity.
v Run a trace analysis program that can analyze CICS auxiliary trace. For example,

if you run the CICS trace utility program, DFHTUP, with the ABBREV option to
format CICS auxiliary trace output, you can analyze the resulting abbreviated
trace data to find instances of suspect commands.

Inter-transaction affinities caused by application generators
Application generators may give rise to particularly difficult problems of
inter-transaction affinity:
v The affinity may be hidden from the application programmer.
v The application generator may have a different concept of a transaction to CICS:

it is affinity among CICS transactions that is of concern, because these are the
entities that are dynamically routed.

v Some application generators use a single transaction code for all transactions
within an application, making it difficult for the router to select those instances
of transactions that have affinities.

Chapter 14. Affinity 181

|

|
|
|

|

Duration and scope of inter-transaction affinities
When planning your dynamic routing strategy, and planning how to manage
inter-transaction affinities, it is important to understand the concepts of affinity
relations and affinity lifetimes. The relations and lifetimes of inter-transaction
affinities must be taken into account when designing a dynamic or distributed
routing program, because they define the scope and duration of inter-transaction
affinities. Clearly, the ideal situation for a dynamic or distributed routing program
is for there to be no inter-transaction affinities at all, which means there are no
restrictions in the choice of available target regions for dynamic routing. However,
even when inter-transaction affinities do exist, there are limits to the scope of these
affinities, the scope of the affinity being determined by affinity relation and affinity
lifetime.

Understanding the relations and lifetimes of transaction affinities is important in
deciding how to manage them in a dynamic routing environment.

Affinity transaction groups
In order to manage affinities within a dynamic routing environment, you must first
categorize transactions by their affinity. One way to do this is to place transactions
in groups, where a group is a set of transactions that have inter-transaction affinity.
Each affinity transaction group (or affinity group, for short) thus represents a
group of transactions that have an affinity with one another. Defining affinity
groups is one way that a dynamic or distributed routing program can determine to
which target region a transaction should be routed.

Clearly, the more inter-transaction affinity you have in a given CICS workload, the
less effective a dynamic routing program can be in balancing the workload across a
CICSplex. To minimize the impact of inter-transaction affinity, affinities within an
affinity group can characterized by their relation and lifetime. These relation and
lifetime attributes determine the scope and duration of an affinity.

Thus, ideally, an affinity transaction group consists of an affinity group identifier, a
set of transactions that constitute the affinity group, with the affinity relation and
affinity lifetime associated with the group.

Relations and lifetimes
When you create an affinity group, you should assign to the group the appropriate
affinity relation and affinity lifetime attributes. The relation determines how the
dynamic or distributed routing program is to select a target region for a transaction
instance associated with the affinity, and the lifetime determines when the affinity
is ended.

There are four possible affinity relations that you can assign to your affinity
groups:
1. Global
2. LUname
3. Userid
4. BAPPL

These are described in the following sections, together with the permitted lifetimes
for each relation.

182 CICS TS for OS/390: CICS Application Programming Guide

|

|

The global relation
A group of transactions whose affinity relation is defined as global is one where all
instances of all transactions in the group that are initiated from any terminal, by
any START command, or by any CICS BTS process, must execute in the same
target region for the lifetime of the affinity. The affinity lifetime for global relations
can be as follows:

System
The affinity lasts for as long as the target region exists, and ends whenever
the target region terminates (at a normal, immediate, or abnormal
termination).

Permanent
The affinity extends across all CICS restarts. This is the most restrictive of
all the inter-transaction affinities. If you are running CICSPlex SM, this
affinity lasts for as long as any CMAS involved in managing the CICSplex
using the workload is active.

An example of a global inter-transaction affinity with a lifetime of permanent is
where the transaction uses (reads and/or writes) a local, recoverable, temporary
storage queue, and where the TS queue name is not derived from the terminal.
(You can only specify that a TS queue is recoverable in the CICS region in which
the queue is local.)

Generally, transactions in this affinity category are not suitable candidates for
dynamic routing and you should consider making them statically routed
transactions.

An example of a global relation is illustrated in Figure 34.

In this example, the first instance of transid GGGG, from any terminal, starts a
permanent-lifetime affinity. The first instance of GGGG can be routed to any
suitable target region (AOR1 through AOR6), but all other instances, from any
terminal, must be routed to whichever target region is selected for GGGG.

Terminal

User TOR
enters
tranid Calls DTR DTR program Affinity group
GGGG program

1. Checks affinity Relation: GLOBAL
Routes GGGG groups for GGGG Lifetime: PERM
to AOR2 2. Start global

affinity for Transids: GGGG
transid GGGG

3. Select AOR from
candidate list

4. Records choice
of AOR (for
example, AOR2)
for this group. GGGG sent to AOR2

AOR1 AOR2 AOR3 AOR4 AOR5 AOR6
GGGG

Figure 34. Managing inter-transaction affinity with global relation and permanent lifetime

Chapter 14. Affinity 183

|
|
|

|
|
|

|
|
|

The LUname (terminal) relation
A group of transactions whose affinity relation is defined as LUname is one where
all instances of all transactions in the group that are associated with the same
terminal must execute in the same target region for the lifetime of the affinity. The
affinity lifetime for LUname relations can be as follows:

Pseudoconversation
The affinity lasts for the whole pseudoconversation, and ends when the
pseudoconversation ends at the terminal. Each transaction must end with
an EXEC CICS RETURN TRANSID, not with the pseudoconversation
mode of END.

Logon The affinity lasts for as long as the terminal remains logged-on to CICS,
and ends when the terminal logs off.

System
The affinity lasts for as long as the target region exists, and ends whenever
the target region terminates (at a normal, immediate, or abnormal
termination).

Permanent
The affinity extends across all CICS restarts. If you are running
CICSPlex SM, this affinity lasts for as long as any CMAS involved in
managing the CICSplex using the workload is active.

Delimit
The affinity continues until a transaction with a pseudoconversation mode
of END is encountered.

A typical example of transactions that have an LUname relation are those that:
v Use a local TS queue to pass data between the transactions in a

pseudoconversation, and
v The TS queue name is derived, in part, from the terminal name (see “Naming

conventions for remote queues” on page 173 for information about TS queue
names).

These types of transaction can be placed in an affinity group with a relation of
terminal and lifetime of pseudoconversation. When the dynamic routing program
detects the first transaction in the pseudoconversation initiated by a specific
terminal (LUname), it is free to route the transaction to any target region that is a
valid candidate for that transaction. However, any subsequent transaction within
the affinity group that is initiated at the same terminal must be routed to the same
target region as the transaction that started the pseudoconversation. When the
affinity ends (at the end of the pseudoconversation on a given terminal), the
dynamic routing program is again free to route the first transaction to any
candidate target region.

This form of affinity is manageable and does not impose too severe a constraint on
dynamic transaction routing, and may occur commonly in many CICSplexes. It can
be managed easily by a dynamic routing program, and should not inhibit the use
of dynamic routing.

This example is illustrated in Figure 35 on page 185.

184 CICS TS for OS/390: CICS Application Programming Guide

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

In this example, each instance of transid AAAA from a terminal starts a
pseudoconversational-lifetime affinity. AAAA can be routed to any suitable target
region (AOR1 through AOR6), but other transactions in the group from the same
terminal (IGKS201 in this example) must be routed to whichever target region is
selected for AAAA.

The userid relation
A group of transactions whose affinity relation is defined as userid is one where
all instances of the transactions that are initiated from a terminal, by a START
command, or by a CICS BTS activity, and executed on behalf of the same userid,
must execute in the same target region for the lifetime of the affinity. The affinity
lifetime for userid relations can be as follows:

Pseudoconversation
The affinity lasts for the whole pseudoconversation, and ends when the
pseudoconversation ends for that userid. Each transaction must end with
an EXEC CICS RETURN TRANSID, not with the pseudoconversation
mode of END.

Signon
The affinity lasts for as long as the user is signed on, and ends when the
user signs off. Note this lifetime is only possible in those situations where
only one user per userid is permitted. Signon lifetime cannot be detected if
multiple users are permitted to be signed on with the same userid at the
same time (at different terminals).

System
The affinity lasts for as long as the target region exists, and ends whenever
the target region terminates (at a normal, immediate, or abnormal
termination).

Permanent
The affinity extends across all CICS restarts. If you are running
CICSPlex SM, this affinity lasts for as long as any CMAS involved in
managing the CICSplex using the workload is active.

LUNAME= TOR
IGKS201
User Calls DTR DTR program Affinity group
enters program
tranid 1. Checks affinity Relation: LUNAME
AAAA Routes AAAA groups for AAAA Lifetime: PCONV

to AOR4 2. Detects start
of pseudoconv. Transids: AAAA

3. Selects an AOR BBBB
from candidate .
list. .

4. Records choice ZZZZ
of AOR (for
example, AOR4)
for this group. AAAA on IGKS201

sent to AOR4

AOR1 AOR2 AOR3 AOR4 AOR5 AOR6

AAAA

Figure 35. Managing inter-transaction affinity with LUname relation and pseudoconversation
lifetime

Chapter 14. Affinity 185

|
|
|

|
|
|
|

|
|
|

Delimit
The affinity continues until a transaction with a pseudoconversation mode
of END is encountered.

A typical example of transactions that have a userid relation is where the userid is
used dynamically to identify a resource, such as a TS queue. The least restrictive of
the affinities in this category is one that lasts only for as long as the user remains
signed on.

An example of an affinity group with the userid relation and a signon lifetime is
shown in Figure 36.

In this example, any instance of a transaction from a terminal starts a sign-on
lifetime affinity. It can be routed to any suitable target region (AOR1 through
AOR6), but other transactions in the group for the same user (ANOTHER in this
example) must be routed to whichever target region is selected for the first
instance of a transaction in the group.

The BAPPL relation
A group of transactions whose affinity relation is defined as BAPPL is one where
all instances of all transactions in the group that are associated with the same BTS
process are to be directed to the same target region. The affinity lifetimes for
BAPPL relations can be as follows:

Process
The affinity lasts for as long as the associated process exists.

Activity
The affinity lasts for as long as the associated activity exists.

System
The affinity lasts for as long as the target region exists, and ends whenever
the target region terminates (at a normal, immediate, or abnormal
termination).

Userid= TOR
ANOTHER
User Calls DTR DTR program Affinity group
enters program
tranid 1. Checks affinity Relation: USERID
WWWW Routes WWWW groups for WWWW Lifetime: SIGNON

to AOR4 2. Detects start
of pseudoconv. Transids: WWWW

3. Selects an AOR XXXX
from candidate .
list. .

4. Records choice YYYY
of AOR (for
example, AOR4)
for this group. WWWW sent to AOR4

for user=ANOTHER

AOR1 AOR2 AOR3 AOR4 AOR5 AOR6

WWWW

Figure 36. Managing inter-transaction affinity with userid relation and sign-on lifetime

186 CICS TS for OS/390: CICS Application Programming Guide

|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

Permanent
The affinity extends across all CICS restarts. If you are running
CICSPlex SM, this affinity lasts for as long as any CMAS involved in
managing the CICSplex using the workload is active.

A typical example of transactions that have a BAPPL relation is where a local
temporary storage queue is used to pass data between the transactions within a
BTS activity or process.

An example of an affinity group with the BAPPL relation is shown in Figure 37.

In this example, the first instance of BTS transaction BAP1 starts a BAPPL–activity
affinity. The first instance of BAP1 can be routed to any suitable target region
(AOR1 through AOR6), but all other instances of the activity must be routed to
whichever target region is selected for BAP1.

Although BTS itself does not introduce any affinities, and discourages
programming techniques that do, it does support existing code that may introduce
affinities. You must define such affinities to workload management. It is
particularly important to specify each affinity’s lifetime. Failure to do this may
restrict unnecessarily the workload management routing options.

It is important to note that a given activity can be run both synchronously and
asynchronously. Workload management is only able to honour invocations that are
made asynchronously. Furthermore, you are strongly encouraged not to create
these affinities, particularly activity and process affinities, because these affinities
are synchronized across the BTS-set. This could have serious performance impacts
on your systems.

You should also note that, with CICSPlex SM, the longest time that an affinity can
be maintained is while a CMAS involved in the workload is active; that is, an

Dynamic routing
program

1. Checks affinity
groups for BAP1.

2. Start BAPPL
affinity for
transid BAP1

3. Select target
region from
candidate list

4. Record choice
of target
region (for
example, AOR4)
for this group.

AOR2 AOR3 AOR4 AOR5 AOR6

BAP1
Transid
started
activity
BAPPL

routing

AOR 1

dynamic
Calls

program

Routes BAP1
to AOR4

Affinity group

Relation: BAPPL
Lifetime: ACTIVITY

Transid : BAP1

Sent BAP1 to AOR4

Figure 37. Managing inter-transaction affinity with BAPPL relation and activity lifetime

Chapter 14. Affinity 187

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

affinity of PERMANENT. If there is a total system failure, or a planned shutdown,
affinities will be lost, but activities in CICS will be recovered from the BTS RLS
data set.

Recommendations
The best way to deal with inter-transaction affinity is to avoid creating
inter-transaction affinity in the first place.

Where it is not possible to avoid affinities, you should:
v Make the inter-transaction affinity easily recognizable, by using appropriate

naming conventions, and
v Keep the lifetime of the affinities as short as possible.

Even if you could avoid inter-transaction affinities by changing your application
programs, this is not absolutely necessary provided you include logic in your
dynamic and distributed routing programs to cope with the affinities. Finally, you
can statically route the affected transactions.

188 CICS TS for OS/390: CICS Application Programming Guide

|
|
|

|
|
|

Chapter 15. Using CICS documents

This chapter introduces CICS documents. It tells you what you need to consider
when writing applications that use documents as a means of formatting
information.

The document handler domain allows you to build up formatted data areas,
known as documents. Some examples of how these formatted areas, or documents,
can be used, are:
v constructing a COMMAREA
v Sending HTML data to be displayed by a Web browser.
v Creating standard formats for printing (for example, using your own letterhead,

address, and so on).

The DOCUMENT application programming interface
This section explains the function and use of the commands in the DOCUMENT
application programming interface:
v EXEC CICS DOCUMENT CREATE
v EXEC CICS DOCUMENT INSERT
v EXEC CICS DOCUMENT RETRIEVE
v EXEC CICS DOCUMENT SET

Creating a document
To create an empty document, use the EXEC CICS DOCUMENT CREATE
command. This has a mandatory DOCTOKEN parameter requiring a 16–byte
data-area. The document handler domain uses the DOCTOKEN operand to return
a token, which is used to identify the document on subsequent calls. The following
example creates an empty document, and returns the token in the variable
MYDOC:
EXEC CICS DOCUMENT CREATE

DOCTOKEN(MYDOC)

To create a document with data, use the EXEC CICS DOCUMENT CREATE
command in any of the following ways:
v Specify the BINARY parameter
v Specify the TEXT parameter
v Insert one document into another document
v Use document templates

The BINARY parameter
Use this parameter to add to the document the contents of a data-area that must
not undergo conversion to a client code page when the data is sent.
EXEC CICS DOCUMENT CREATE

DOCTOKEN(MYDOC1)
BINARY(DATA-AREA)

The TEXT parameter
Use this parameter to add the specified contents to the document. For example, if
you define a character string variable called DOCTEXT and initialise it to This is an
example of text to be added to a document, you can use the following command to
create a document consisting of this text string:

© Copyright IBM Corp. 1989, 2000 189

|

|

|
|
|

|
|
|
#
|
|
|

|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

EXEC CICS DOCUMENT CREATE
DOCTOKEN(MYDOC2)
TEXT(DOCTEXT)
LENGTH(53)

Inserting one document into another
To insert an existing documentinto a new document, you can use the EXEC CICS
DOCUMENT CREATE command with the FROMDOC option. The following
example does this:
EXEC CICS DOCUMENT CREATE

DOCTOKEN(MYDOC3)
FROMDOC(MYDOC2)

where MYDOC2 and MYDOC3 are 16–character variables. MYDOC2 must contain
the token returned by a previous EXEC CICS DOCUMENT CREATE command.

This results in two identical documents, each containing the text This is an example
of text to be added to a document.

Using document templates
Portions of the data which make up a document can be created off-line and then
inserted directly into the document. These are known as templates; they are CICS
resources, defined using RDO.

Templates can contain a mixture of static data with symbols embedded in the data,
which are substituted at run time when the template is inserted into the document.
An example of this is when a programmer creates HTML web pages using an
HTML editor. The output from the HTML editor can then be made accessible to
CICS Web Interface applications using templates.

Programming with documents
This section covers the following topics:
v Symbols and symbol lists
v Embedded DOCTEMPLATE commands
v Using DOCTEMPLATEs in your application
v The lifespan of a document
v Retrieving the document without control information
v Using multiple calls to construct a document
v Bookmarks and inserting data
v Replacing data in the document
v Codepages and codepage conversion

Setting symbol values
The application program needs to define values for the symbols that will be
substituted when the template is used. These values can be defined on the EXEC
CICS DOCUMENT CREATE or the EXEC CICS DOCUMENT SET commands. The
symbols that are set are associated with a particular document and cannot be used
in a different document.

The DOCUMENT CREATE and DOCUMENT SET commands both take a
SYMBOLLIST operand which allows several symbols to be defined in a single
command. The SYMBOLLIST operand is a character string consisting of one or
more definitions with single byte separators. By default, the separator is an
ampersand, but you can override this by using the DELIMITER option of the
DOCUMENT SET or DOCUMENT CREATE commands. A definition consists of a
name, an equals sign, and a value. Here is an example:

190 CICS TS for OS/390: CICS Application Programming Guide

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

mytitle=New Authors&auth1=Halliwell Sutcliffe&auth2=Stanley
Weyman

This example defines three symbols. The first symbol called mytitle will have the
value ’New Authors’. The second symbol called auth1 will have the value
’Halliwell Sutcliffe’ and the last symbol called auth2 will contain the value ’Stanley
Weyman’.

The following rules apply when setting symbols using a SYMBOLLIST. The name
must contain only uppercase and lowercase letters, numbers and the special
characters dollar (’$’), underscore (’_’), hyphen (’-’), pound (’#’), period (’.’) and at
sign (’@’). The name is case-sensitive, so uppercase letters are regarded as different
from lowercase letters.

The values in the symbol list can contain any characters except the symbol
separator (which defaults to an ampersand, but can be overridden by use of the
DELIMITER option). The following restrictions on the use of the percent sign (″%″)
and the plus sign (″+″) apply unless the UNESCAPED option of DOCUMENT
CREATE or DOCUMENT SET has been specified.. A percent sign must be followed
by two characters that are hexadecimal digits (that is, 0–9, a-f, and A-F). When the
value is put into the symbol table, a plus sign is interpreted as a space, a percent
sign and the two hexadecimal digits following it are interpreted as the EBCDIC
equivalent of the single ASCII character denoted by the two digits, and the
remaining characters are left as they are. If you want a plus sign in the value in the
symbol table, you must put %2B in the value in the symbol list. If you want a
percent sign in the value in the symbol table, you must put in the value %25 in the
symbol list. If you want an ampersand in the value in the symbol table, you must
put %26 in the value in the symbol list. If you want a space in the value in the
symbol table, the value in your symbol list may contain a space, a plus sign, or a
%20.

The DOCUMENT SET command allows you to set individual symbol values with
the SYMBOL and VALUE options. Ampersands have no special significance when
used in the VALUE option. The restrictions on the use of the plus sign and percent
sign for SYMBOLLISTS also apply to the VALUE option unless the UNESCAPED
option of the DOCUMENT SET has been specified.

The following example shows you how you can pass symbol values to the
document handler containing embedded plus signs, percent signs, and
ampersands, none of which are to undergo unescape processing:
EXEC CICS DOCUMENT CREATE

DOCTOKEN(ATOKEN)
DELIMITER('!')
SYMBOLLIST('COMPANY=BLOGGS & SON!ORDER=NUTS+BOLTS')
LISTLENGTH(37)
UNESCAPED

Here the symbol COMPANY has a value of ’BLOGGS & SON’, and the symbol
ORDER has a value of ’NUTS+BOLTS’. The delimiter used in this example is ’!’,
but it is best to use a non-printable character that does not appear in the symbol
value. The use of the UNESCAPED option ensures that the plus sign in
’NUTS+BOLTS’ does not get converted to a space.

Embedded template commands
The Document Handler recognises three commands that can be embedded in the
template. These commands follow the syntax rules for Server Side Include

Chapter 15. Using CICS documents 191

|
|

|
|
|
|

|
|
|
|
|

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#

#
#
#

#
#
#
#
#
#

#
#
#
#
#

|

#
#

commands. A Server Side Include command starts with the characters left angle
bracket, exclamation mark, hyphen, hyphen, pound followed by the command and
it is terminated with the characters hyphen, hyphen, right angle bracket. For
example:
(e.g. <!--#command -->).

The characters used to start and end the Server Side Include must be in codepage
037, otherwise the command will be ignored. The hexadecimal equivalents for
these character sequences are X’4C5A60607B’ and X’60606E’.

The three commands that are supported are #set, #echo and #include.

#set
The #set command is used to set the values of symbols and is useful for setting
up default values for symbols. The #set command in the template will be
ignored if the symbol has already been given a value using the EXEC CICS
DOCUMENT SET command. If a previous #set command has been used to
assign a value to the symbol, the value will be overriden. A symbol which has
been assigned a value using the EXEC CICS DOCUMENT SET command can
only be changed by issuing another EXEC CICS DOCUMENT SET command.

#echo

The #echo command identifies a symbol that must be substituted when the
template is inserted into the document. The string containing the #echo
command will be completely replaced by the value associated with the symbol.
If no symbol has been defined with that name, the #echo command will
remain in the output data.

An alternative method to using the #echo command is to specify the symbol
name, preceding it with an ampersand and terminating it with a semicolon. If
we set a symbol called ASYM and give it a value of ’sample’, the following
two templates will give the same result after substitution:
Template 1:

This is an example template.
<!--#set var=ASYM value='sample'-->
This is a <!--#echo var=ASYM--> symbol.

Template 2:
This is an example template.
<!--#set var=ASYM value='sample'-->
This is a &ASYM; symbol.

Result of substitution:
This is an example template.
This is a sample symbol.

#include

The #include command allows a template to be embedded within another
template. Up to 32 levels of embedding are allowed.

For example:
<!--#include template=templatename-->

where templatename is the name of the template (the 48 byte name) defined in
the doctemplate definition. The templatename can also be enclosed in double
quotes.

192 CICS TS for OS/390: CICS Application Programming Guide

#
#
#
#

#

#
#
#

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|

#

#

#
#
#

Using templates in your application
If you have created a template and defined it to CICS, the following example
shows how you can use the template to create the contents of a document. The
following template is created and defined to CICS with the name
ASampleTemplate.
<!--#set var=ASYM value='DFLTUSER'-->
This is a sample document which has been created by user
<!--#echo var=ASYM-->.

In the application program, you can define a 48-byte variable called
TEMPLATENAME and initialize it to a value of ’ASampleTemplate’. Once again
you must define a 16-byte field for the document token (in this example,
ATOKEN). You can then issue the command to create the document.
EXEC CICS DOCUMENT CREATE

DOCTOKEN(ATOKEN)
TEMPLATE(TEMPLATENAME)

This will result in a document being created with the content “ This is a sample
document which has been created by user DFLTUSER.”.

To change the symbol to another value, you can issue the EXEC CICS
DOCUMENT CREATE command with the SYMBOLLIST option:
EXEC CICS DOCUMENT CREATE

DOCTOKEN(ATOKEN)
TEMPLATE(TEMPLATENAME)
SYMBOLLIST('ASYM=Joe Soap')
LISTLENGTH(13)

This will result in a document being created with the content “This is a sample
document which has been created by user Joe Soap.”.

The lifespan of a document
Documents created by an application exist only for the length of the CICS task in
which they are created. This means that when the last program in the CICS task
returns control to CICS, all documents created during the task’s lifetime are
deleted. It is the application’s responsibility to save a document before terminating
if the document is going to be used in another task. You can obtain a copy of the
document by using the EXEC CICS DOCUMENT RETRIEVE. The application can
then save this copy to a location of its choice, such as a temporary storage queue.
The copy can then be used to recreate the document.

The following sequence of commands show how a document can be created,
retrieved and stored on a temporary storage queue, assuming that the following
variables have been defined and initialised in the application program:
v A 16-byte field ATOKEN to hold the document token
v A 20-byte buffer DOCBUF to hold the retrieved document
v A fullword binary field called FWORDLEN to hold the length of the data

retrieved
v A halfword binary field called HWORDLEN to hold the length for the

temporary storage WRITE command.
EXEC CICS DOCUMENT CREATE

DOCTOKEN(ATOKEN)
TEXT('A sample document.')
LENGTH(18)

Chapter 15. Using CICS documents 193

|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

EXEC CICS DOCUMENT RETRIEVE
DOCTOKEN(ATOKEN)
INTO(DOCBUF)
LENGTH(FWORDLEN)
MAXLENGTH(20)

EXEC CICS WRITEQ TS
QUEUE('AQUEUE')
FROM(DOCBUF)
LENGTH(HWORDLEN)

You can now use the following sequence of commands to recreate the document in
the same or another application.
EXEC CICS READQ TS

QUEUE('AQUEUE')
INTO(DOCBUF)
LENGTH(HWORDLEN)

EXEC CICS DOCUMENT CREATE
DOCTOKEN(ATOKEN)
FROM(DOCBUF)
LENGTH(FWORDLEN)

When the document is retrieved, the data that is delivered to the application buffer
is stored in a form which contains control information necessary to reconstruct an
exact replica of the document. The document that is created from the retrieved
copy is therefore identical to the original document. To help the application
calculate the size of the buffer needed to hold a retrieved document, each
document command which alters the size of the document has a DOCSIZE option.
This is a fullword value which gives the maximum size that the buffer must be to
contain the document when it is retrieved. This size is calculated to include all the
control information and data. The size should not be taken as an accurate size of
the document as the actual length delivered to the application can often be slightly
smaller than this size. The length delivered will however never exceed the length
in the DOCSIZE option.

The above example introduced the use of the FROM option on the DOCUMENT
CREATE command. The data passed on the FROM option was the buffer returned
to the application when the DOCUMENT RETRIEVE command was issued. It is
possible for the application to supply data on the FROM option that did not
originate from the DOCUMENT RETRIEVE command. When this happens, the
document handler treats the data as a template and parses the data for template
commands and symbols.

Retrieving the document without control information
The document data containing control information is only useful to an application
that wishes to recreate a copy of the original document. It is possible to issue a
DOCUMENT RETRIEVE command and ask for the control information to be
omitted. The following command sequence uses the DATAONLY option on the
DOCUMENT RETRIEVE command to instruct the Document Handler to return
only the data. This example assumes that the following variables have been
defined and initialised in the application program:
v A 16-byte field ATOKEN to hold the document token
v A 20-byte buffer DOCBUF to hold the retrieved document
v A fullword binary field called FWORDLEN to hold the length of the data

retrieved.
EXEC CICS DOCUMENT CREATE

DOCTOKEN(ATOKEN)
TEXT('A sample document.')
LENGTH(18)

194 CICS TS for OS/390: CICS Application Programming Guide

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

EXEC CICS DOCUMENT RETRIEVE
DOCTOKEN(ATOKEN)
INTO(DOCBUF)
LENGTH(FWORDLEN)
MAXLENGTH(20)
DATALENGTH

When the commands have executed, the buffer DOCBUF will contain the string “A
sample document.”.

Using multiple calls to construct a document
Once a document has been created, the contents can be extended by issuing one or
more EXEC CICS DOCUMENT INSERT commands. The options on the EXEC
CICS DOCUMENT INSERT command work in the same way as the equivalent
commands on the EXEC CICS DOCUMENT CREATE command. The following
sequence of commands shows an empty document being created followed by two
INSERT commands:
EXEC CICS DOCUMENT CREATE

DOCTOKEN(ATOKEN)

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
TEXT('Sample line 1. ')
LENGTH(15)

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
TEXT('Sample line 2. ')
LENGTH(15)

The document resulting from the above commands will contain:
Sample line 1. Sample line 2.

You can use the DOCUMENT RETRIEVE and DOCUMENT INSERT commands to
insert a whole document into an existing document. The following variables must
first be defined and initialized in the application program:
v A 16-byte field RTOKEN which contains the document token of the document

to be retrieved
v A buffer DOCBUF of sufficient length to hold the retrieved document
v A fullword binary field called RETRIEVLEN to hold the length of the data

retrieved
v A fullword binary field called MAXLEN to hold the maximum amount of data

the buffer can receive, i.e. the length of DOCBUF
v A 16-byte field ITOKEN which contains the document token of the document

that is being inserted into

The following sequence of commands shows a document indicated by RTOKEN
being inserted into another document indicated by ITOKEN:

EXEC CICS DOCUMENT RETRIEVE
DOCTOKEN(RTOKEN)
INTO(DOCBUF)
LENGTH(RETRIEVLEN)
MAXLENGTH(MAXLEN)

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ITOKEN)
FROM(DOCBUF)
LENGTH(RETRIEVLEN)

Chapter 15. Using CICS documents 195

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|

|

#
#
#

#
#

#

#
#

#
#

#
#

#
#

#
#
#
#
#
#
#
#
#
#
#
#

The retrieved document is inserted at the end of the document specified in the
DOCUMENT INSERT command, and all the control information of the retrieved
document will be present in the second document. The LENGTH parameter of the
DOCUMENT INSERT command must be equal to the value returned from the
DOCUMENT RETRIEVE command into the field RETRIEVLEN.

The DOCUMENT INSERT command allows an operand called SYMBOL to be
used to add blocks of data to the document. SYMBOL must contain the name of a
valid symbol whose value has been set. The Document Handler inserts the value
that is associated with the symbol into the document.

Bookmarks and inserting data
The sequence in which an application inserts data into a document might not
reflect the desired sequence that the data should appear in the document.
Bookmarks allow the application to insert blocks of data in any order yet still
control the sequence of the data in the document. A bookmark is a label that the
application inserts between blocks of data. Note: a bookmark cannot be inserted in
the middle of a block of data.

The following example creates a document with two blocks of text and a
bookmark:
EXEC CICS DOCUMENT CREATE

DOCTOKEN(ATOKEN)
TEXT('Pre-bookmark text. ')
LENGTH(19)

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
BOOKMARK('ABookmark ')

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
TEXT('Post-bookmark text. ')
LENGTH(20)

The document will now contain:
Pre-bookmark text. <ABookmark>Post-bookmark text.

Note that the text <ABookmark> does not appear in the document content but
serves merely as a pointer to that position in the document. To add data to this
document, you can insert text at the bookmark as follows:
EXEC CICS DOCUMENT INSERT

DOCTOKEN(ATOKEN)
TEXT('Inserted at a bookmark. ')
LENGTH(25)
AT('ABookmark ')

Logically, the data of the document will contain the following (Note that in this
instance, only the data is being shown and not the position of the bookmark).
Pre-bookmark text. Inserted at a bookmark. Post-bookmark text.

If the AT option is omitted, the data is always appended to the end of the
document. A special bookmark of ’TOP’ can be used to insert data at the top of the
document, making it unnecessary to define a bookmark which will mark the top of
the document.

Replacing data in the document
The following example shows how data between two bookmarks can be replaced:

196 CICS TS for OS/390: CICS Application Programming Guide

#
#
#
#
#

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

|

|

|
|
|

|
|
|
|
|

|
|

|

|
|
|
|

|
|

EXEC CICS DOCUMENT CREATE
DOCTOKEN(ATOKEN)

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
TEXT('Initial sample text. ')
LENGTH(21)

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
BOOKMARK('BMark1 ')

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
TEXT('Text to be replaced. ')
LENGTH(21)

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
BOOKMARK('BMark2 ')

EXEC CICS DOCUMENT INSERT
DOCTOKEN(ATOKEN)
TEXT('Final sample text. ')
LENGTH(19)

At this point the logical structure of the document will be as follows:
Initial sample text. <BMark1>Text to be replaced. <BMark2>Final
sample text.

You can now issue the command to replace the text between the two bookmarks,
BMark1 and BMark2:
EXEC CICS DOCUMENT INSERT

DOCTOKEN(ATOKEN)
TEXT('Replacement Text. ')
LENGTH(18)
AT('BMark1 ')
TO('BMark2 ')

The document now has the following logical structure:
Initial sample text. <BMark1>Replacement Text. <BMark2>Final
sample text.

Codepages and codepage conversion
The documents that an application creates may be transmitted to systems running
on other platforms, especially when applications running under the CICS Web
interface use the Document Handler to generate Web pages. To assist the
application with the problem of converting data from the codepages used on the
host to the codepages used on the target system, the Document Handler allows the
application to specify the codepages being used on each system. When the EXEC
CICS DOCUMENT CREATE and EXEC CICS DOCUMENT INSERT commands are
used, the TEXT, FROM, TEMPLATE and SYMBOL options can have a
HOSTCODEPAGE option coded to indicate the codepage for that block of data,
since the data being added with these options is seen as being textual data. Each
block can be specified in a different codepage. When the EXEC CICS DOCUMENT
RETRIEVE command is issued, the CLNTCODEPAGE option tells the Document
Handler to convert all the individual blocks from their respective host codepages
into a single client codepage.

Chapter 15. Using CICS documents 197

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|

|
|

|
|

|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

198 CICS TS for OS/390: CICS Application Programming Guide

Chapter 16. Using named counter servers

This chapter describes the services provided by CICS named counter servers,
covering the following topics:
v “Overview”
v “Named counter pools” on page 200
v “The named counter API commands” on page 201
v “The named counter CALL interface” on page 203

Overview
CICS provides a facility for generating unique sequence numbers for use by
application programs in a Parallel Sysplex® environment. This facility is controlled
by a named counter server, which maintains each sequence of numbers as a named
counter. Each time a sequence number is assigned, the corresponding named
counter is incremented automatically. By default, the increment is 1, ensuring that
the next request gets the next number in sequence. You can vary the increment
when using the EXEC CICS GET command to request the next number.

There are various uses for this facility, such as obtaining a unique number for
documents (for example, customer orders, invoices, and despatch notes), or for
obtaining a block of numbers for allocating customer record numbers in a
customer file.

In a single CICS region, there are various methods you can use to control the
allocation of a unique number. For example, you could use the CICS common
work area (CWA) to store a number that is updated by each application program
that uses the number. The problem with the CWA method is that the CWA is
unique to the CICS address space, and cannot be shared by other regions that are
running the same application. A CICS shared data table could be used to provide
such a service, but the CICS regions would all have to reside in the same MVS
image. The named counter facility overcomes all the sharing difficulties presented
by other methods by maintaining its named counters in the coupling facility, and
providing access through a named counter server running in each MVS image in
the sysplex. This ensures that all CICS regions throughout the Parallel Sysplex
have access to the same named counters.

The named counter fields
Each named counter consists of:

The counter name
The name can be up to 16-bytes, comprising the characters A
through Z, 0 through 9, $ @ # and _. Names less than 16 bytes
should be padded with trailing blanks.

The current value
The next number to be assigned to a requesting application
program.

The minimum value
Specifies the minimum number for a counter, and the number to
which a counter is reset by the server in response to a REWIND
command.

© Copyright IBM Corp. 1989, 2000 199

|

|

|
|

|

|

|

|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|

|
|
|

|
|
|
|

The maximum value
Specifies the maximum number that can be assigned by a counter,
after which the counter must be explicitly reset by a REWIND
command (or automatically by the WRAP option).

All values are stored internally as 8-byte (doubleword) binary numbers. The EXEC
CICS interface allows you use them as either fullword signed binary numbers or
doubleword unsigned binary numbers. This can give rise to overflow conditions if
you define a named counter using the doubleword command (see “The named
counter API commands” on page 201) and request numbers from the server using
the signed fullword version of the command.

Named counter pools
A named counter is stored in a named counter pool, which resides in a list
structure in a coupling facility. Each pool, even if its list structure is defined with
the minimum size of 256KB, can hold up to a thousand named counters.

You create a named counter pool by defining the coupling facility list structure for
the pool, and then starting the first named counter server for the pool. Pool names
are of 1 to 8 bytes from the same character set for counter names. Although pool
names can be made up from any of the allowed characters, names of the form
DFHNCxxx are recommended.

You can create different pools to suit your needs. You could create a pool for use
by production CICS regions (for example, called DFHNCPRD), and others for test
and development regions (for example, using names like DFHNCTST and
DFHNCDEV). See “Named counter options table” for information about how you
can use logical pool names in your application programs, and how these are
resolved to actual pool names at runtime.

Defining a list structure for a named counter server, and starting a named counter
server, is explained in the CICS System Definition Guide.

Named counter options table
The POOL(name) parameter is optional on all the EXEC CICS COUNTER and
DCOUNTER commands (see “The named counter API commands” on page 201 for
more information). If you specify the POOL parameter, it can refer to either an
actual or a logical pool name. Whether you specify a POOL parameter or omit it,
CICS resolves the actual pool name by reference to the named counter options
table, which is loaded from the link list.

The named counter options table, DFHNCOPT, provides several methods for
determining the actual pool name referenced by a named counter API command,
all of which are described in the CICS System Definition Guide. This also describes
the DFHNCO macro that you can use to create your own options table.

This section discusses how the POOLSEL parameter in the default options table
works in conjunction with the POOL(name) option on the API. The default options
table is supplied in source and object form. The pregenerated version is in
hlq.SDFHLINK, and the source version, which is supplied in the hlq.SDFHSAMP
library (where hlq represents the high-level qualifier for the library names,
established at CICS installation time), contains the following entries:

DFHNCO POOLSEL=DFHNC*,POOL=YES
DFHNCO POOL=
END DFHNCOPT

200 CICS TS for OS/390: CICS Application Programming Guide

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

The default options table entries work as follows:

POOLSEL=DFHNC*
This pool selection parameter defines a generic logical pool name
beginning with the letters DFHNC. If any named counter API request
specifies a pool name that matches this generic name, the pool name is
determined by the POOL= operand in the DFHNCO entry. Because this is
POOL=YES in the default table, the name passed on the POOL(name)
option of the API command is taken to be an actual name. Thus, the
default options table specifies that all logical pool names beginning with
DFHNC are actual pool names.

POOL=
This entry in the default table is the 'default' entry. Because the POOLSEL
parameter is not specified, it defaults to POOLSEL=*, which means it is
taken to match any value on a POOL parameter that does not find a more
explicit match. Thus, any named counter API request that:
v Secifies a POOL value that begins with other than DFHNC, or
v Omits the POOL name parameter altogether

is mapped to the the default pool (indicated by a POOL= options table
parameter that omits a name operand).

You can specify the default pool name to be used by a CICS region by
specifying the NCPLDFT system initialization parameter. If NCPLDFT is
omitted, the pool name defaults to DFHNC001.

You can see from the above that you do not need to create you own options table,
and named counter API commands do not need to specify the POOL option, if:
v You use pool names of the form DFHNCxxx, or
v Your CICS region uses only one pool that can be defined by the NCPLDFT

system initialization parameter.

Notes:

1. DFHNCOPT named counter options tables are not suffixed. A CICS region
loads the first table found in the MVS link list.

2. There must be a named counter server running, in the same MVS image as
your CICS region, for each named counter pool used by your application
programs.

The named counter API commands
Although all named counter values are held internally as doubleword unsigned
binary numbers, the CICS API provides both a fullword (COUNTER) and
doubleword (DCOUNTER) set of commands, which you should not mix. These
EXEC CICS commands allow you to perform the following operations on named
counters:

DEFINE
Defines a new named counter, setting minimum and maximum values, and
specifying the current number at which the counter is to start.

DELETE
Deletes a named counter from its named counter pool.

GET
Gets the current number from the named counter, provided the maximum
number has not already been allocated.

Chapter 16. Using named counter servers 201

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|
|

|
|
|

|
|

|

|
|

|

|
|

|
|
|

|
|

|
|
|
|
|

|
|
|

|
|

|
|
|

Using the WRAP option: If the maximum number has been allocated to a
previous request, the counter is in a counter-at-limit condition and the request
fails, unless you specify the WRAP option. This option specifies that a counter
in the the counter-at-limit condition is to be reset automatically to its defined
minimum value. After the reset, the minimum value is returned as the current
number, and the counter is updated ready for the next request.

Using the INCREMENT option: By default, a named counter is updated by an
increment of 1, after the server has assigned the current number to a GET
request. If you want more than one number at a time, you can specify the
INCREMENT option, which effectively reserves a block of numbers from the
current number. For example , if you specify INCREMENT(50), and the server
returns 100 025:
v Your application program can use 100 025 through 100 074
v As a result of updating the current number (100 025) by 50, the current

number is left at 100 075 ready for the next request.

This example assumes that updating the current value by the INCREMENT(50)
option does not exceed the maximum value by more than 1. If the range of
numbers between the current value and the maximum value plus 1 is less than
the specified increment, the request fails unless you also specify the REDUCE
option.

Using the REDUCE option: To ensure that a request does not fail because the
remaining range of numbers is too small to satisfy your INCREMENT value
(the current number is too near the maximum value), specify the REDUCE
option. With the reduce option, the server automatically adjusts the increment
to allow it to assign all the remaining numbers, leaving the counter in the
counter-at-limit condition.

Using both the WRAP and REDUCE options: If you specify both options,
only one is effective depending on the state of the counter:
v If the counter is already at its limit when the server receives the GET

request, the REDUCE option has no effect and the WRAP option is obeyed.
v If the counter is not quite at its limit when the server receives the GET

request, but the remaining range is too small for increment, the REDUCE
option is obeyed and the WRAP option has no effect.

Using the COMPAREMIN and COMPAREMAX options: You can use these
options to make the named counter GET (and UPDATE) operation conditional
upon the current number being within a specified range, or being greater than,
or less than, one of the specified comparison values.

QUERY
Queries the named counter to obtain the current, minimum, and maximum
values. Note that you cannot use more than one named counter command in a
way that is atomic, and you cannot rely on the information returned on a
QUERY command not having been changed by another task somewhere in the
sysplex. Even the CICS sysplex-wide ENQ facility cannot lock a counter for
you, because a named counter could be accessed by a batch application
program using the named counter CALL interface. If you want to make an
operation conditional upon the current value being within a certain range, or
greater than, or less than, a certain number, use the COMPAREMIN and
COMPAREMAX parameters on your request.

202 CICS TS for OS/390: CICS Application Programming Guide

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

REWIND
Rewinds a named counter that is in the counter-at-limit condition back to its
defined minimum value.

UPDATE
Updates the current value of a named counter to a new current value. For
example, you could set the current value to the next free key in a database.
Like the GET command, this can be made conditional by specifying
COMPAREMIN and COMPAREMAX values.

The named counter CALL interface
In addition to the CICS named counter API, CICS provides a call interface that you
can use from a batch application to access the same named counters. This could be
important where you have an application that uses both CICS and batch programs,
and both need to access the same named counter to obtain unique numbers from a
specified range. The named counter CALL interface is described in the CICS System
Definition Guide.

Chapter 16. Using named counter servers 203

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

204 CICS TS for OS/390: CICS Application Programming Guide

Chapter 17. Intercommunication considerations

This chapter provides only a summary of what you need to consider when writing
applications that communicate with other CICS systems. For further information,
see the CICS Intercommunication Guide.

You can run application programs in a CICS intercommunication environment
using one or more of the following:

Transaction routing
enables a terminal in one CICS system to run a transaction in another CICS
system, see “Transaction routing” on page 206.

Function shipping
enables your application program to access resources in another CICS
system, see “Function shipping” on page 206.

Distributed program link (DPL)
enables an application program running in one CICS region to link to
another application program running in a remote CICS region, see
“Distributed program link (DPL)” on page 207.

Asynchronous processing
enables a CICS transaction to start another transaction in a remote system
and optionally pass data to it, see “Asynchronous processing” on page 219.

Distributed transaction processing (DTP)
enables a CICS transaction to communicate with a transaction running in
another system. There are two interfaces available for DTP; command-level
EXEC CICS and the SAA interface for DTP known as Common
Programming Interface Communications (CPI Communications), see
“Distributed transaction processing (DTP)” on page 219.

Common Programming Interface Communications (CPI-C)
provides DTP on APPC connections and defines an API that can be used
on multiple system platforms, see “Common Programming Interface
Communications (CPI Communications)” on page 219.

External CICS interface (EXCI)
enables a non-CICS program running in MVS to allocate and open sessions
to a CICS system, and to issue DPL requests on these sessions. In CICS
Transaction Server for OS/390 Release 3, CICS supports MVS resource
recovery services (RRS) in applications that use the external CICS interface.
see “External CICS interface (EXCI)” on page 220.

The intercommunication aspects of the CICS Front End Programming Interface
(FEPI) are not discussed in this book. See the CICS Front End Programming Interface
User’s Guide for details about FEPI.

Design considerations
If your application program uses more than one of these facilities, you obviously
need to bear in mind the design considerations for each one. Also, if your program
uses more than one intersystem session for distributed transaction processing, it
must control each session according to the rules for that type of session.

© Copyright IBM Corp. 1989, 2000 205

|
|
|

Programming language
Generally speaking, you can use COBOL, C, C++, PL/I, or assembler language to
write application programs that use CICS intercommunication facilities. There is,
however, an exception. You can only use C, C++, or assembler language for DTP
application programs that hold APPC unmapped conversations using the EXEC
CICS API.

Transaction routing
Transactions that can be invoked from a terminal owned by another CICS system,
or that can acquire a terminal owned by another CICS system during transaction
initiation, must be able to run in a transaction routing environment.

Generally, you can design and code such a transaction just like one used in a local
environment. However, there are a few restrictions related to basic mapping
support (BMS), pseudoconversational transactions, and the terminal on which your
transaction is to run. All programs, tables, and maps that are used by a transaction
must reside on the system that owns the transaction. (You can duplicate them in as
many systems as you need.)

Some CICS transactions are related to one another, for example, through common
access to the CWA or through shared storage acquired using a GETMAIN
command. When this is true, the system programmer must ensure that these
transactions are routed to the same CICS system. You should avoid (where
possible) any techniques that might create inter-transaction affinities that could
adversely affect your ability to perform dynamic transaction routing.

To help you identify potential problems with programs that issue these commands,
you can use the Transaction Affinities Utility. See the CICS Transaction Affinities
Utility Guide for more information about this utility and “Chapter 14. Affinity” on
page 157 for more information about transaction affinity.

When a request to process a transaction is transmitted from one CICS system to
another, transaction identifiers can be translated from local names to remote
names. However, a transaction identifier specified in a RETURN command is not
translated when it is transmitted from the transaction-owning system to the
terminal-owning system.

Function shipping
You code a program to access resources in a remote system in much the same way
as if they were on the local system. You can use:

DL/I calls (EXEC DLI commands)
to access data associated with a remote CICS system.

File control commands
to access files on remote systems. Note that requests which contain the
TOKEN keyword may not be function-shipped.

Temporary storage commands
to access data from temporary storage queues on remote systems.

Transient data commands
to access transient data queues on remote systems.

206 CICS TS for OS/390: CICS Application Programming Guide

Three additional exception conditions can occur with remote resources. They occur
if the remote system is not available (SYSIDERR), if a request is invalid
(ISCINVREQ), or if the mirror transaction abends (ATNI for ISC connections and
AZI6 for MRO).

Distributed program link (DPL)
The distributed program link function enables a CICS program (the client program)
to call another CICS program (the server program) in a remote CICS region. There
are several reasons why you might want to design your application to use
distributed program link. Some of these are:
v To separate the end-user interface (for example, BMS screen handling) from the

application business logic, such as accessing and processing data, to enable parts
of the applications to be ported from host to workstation more readily

v To obtain performance benefits from running programs closer to the resources
they access, and thus reduce the need for repeated function shipping requests

v To offer a simple alternative, in many cases, to writing distributed transaction
processing (DTP) applications

There are several ways in which you can specify that the program to which an
application is linking is remote:
1. By specifying the remote system name on a LINK command
2. By specifying the remote system name on the installed program resource

definition3

3. By specifying the remote system name using the dynamic routing program (if
the installed program definition specifies DYNAMIC(YES) or there is no
installed program definition)3

4. By specifying the remote system name in a XPCREQ global user exit

The basic flow in distributed program link is described in the CICS
Intercommunication Guide. The following terms, illustrated in Figure 38 on page 208,
are used in the discussion of distributed program link:

Client region
The CICS region running an application program that issues a link to a
program in another CICS region.

Server region
The CICS region to which a client region ships a link request.

Client program
The application program that issues a remote link request.

Server program
The application program specified on the link request, and which is
executed in the server region.

3. By “installed program definition” we mean a program definition that has been installed statically, by means of autoinstall, or by
an EXEC CICS CREATE command.

Chapter 17. Intercommunication considerations 207

|
|
|

Using the distributed program link function
The distributed program link function provides a number of options. You can
specify:
v The name of the remote system (the server region).
v The name of the server program, if it is known by a different name in the server

region.
v That you want to run the linked program locally, but restrict it to the distributed

program link subset of the application programming interface (API) for testing
purposes. (Server programs cannot use the entire CICS API when executed
remotely; the restrictions are listed in Table 14 on page 218.)

v That the server program takes a syncpoint independently from the client.
v The name of the transaction you want the program to run under in the server

region.
v The data length of the COMMAREA being passed.

A server program can itself issue a distributed program link and act as a client
program with respect to the program it links to.

The options shown in Table 13 on page 209 are used on the LINK command and
the program resource definition in support of the distributed program link facility.

Client Region Server Region
(SYSIDNT=CICX) (SYSIDNT=CICY)

Transaction AC20 Transaction AC20

Client program CICS mirror program
(PROG1) (DFHMIRS)

EXEC CICS LINK invoke program2

PROGRAM('PROG2')
SYSID('CICY')
TRANSID ('AC20') Server program
END-EXEC (PROG2)

Application
code

EXEC CICS RETURN

Return to PROG1

Figure 38. Illustration of distributed program link

208 CICS TS for OS/390: CICS Application Programming Guide

Table 13. Options on LINK command and program resource definitions to support DPL

Where specified Keyword Description

LINK command
options

DATALENGTH Specifies the length of the
contiguous area of storage (from the
start of the COMMAREA) that the
application is sending to a server
program.

SYSID Specifies the name of the
connection to the server region to
which you want the client region to
ship the program link request.
Note: A remote SYSID specified on
the LINK command overrides a
REMOTESYSTEM name specified
on the program resource definition
or a sysid returned by the dynamic
routing program.

SYNCONRETURN Specifies that you want the server
region to take a syncpoint on
successful completion of the server
program.
Note: This option is unique to the
LINK command and cannot be
specified on the program resource
definition.

TRANSID Specifies the name of the
transaction that the server region is
to attach for execution of the server
program.
Note: TRANSID specified on the
LINK command overrides any
TRANSID specified on the program
resource definition.

Chapter 17. Intercommunication considerations 209

|
|
|
|
|
|
|

Table 13. Options on LINK command and program resource definitions to support
DPL (continued)

Where specified Keyword Description

Program resource
definition options

REMOTESYSTEM Specifies the name of the
connection to the server region
(SYSID) to which you want the
client region to ship the program
link request.

REMOTENAME Specifies the name by which the
program is known in the server
region (if different from the local
name).

DYNAMIC Specifies whether the program link
request can be dynamically routed.
For detailed information about the
dynamic routing of DPL requests,
see the CICS Intercommunication
Guide.

EXECUTIONSET Specifies whether the program is
restricted to the distributed
program link subset of the CICS
API.
Note: This option is unique to the
program definition and cannot be
specified on the LINK command.

TRANSID Specifies the name of the
transaction that the server region is
to attach for execution of the server
program.

Note: Programming information, including the full syntax of the LINK command,
is in the CICS Application Programming Reference manual, but note that for a
distributed program link you cannot specify the INPUTMSG or
INPUTMSGLEN options.

Examples of distributed program link
A COBOL example of a distributed program link command is shown in Figure 39
on page 211. The numbers down the right-hand side of the example refer to the

numbered sections, following the figure, which give information about each option.

Important
If the SYSID option of the LINK command specifies the name of a remote
region, any REMOTESYSTEM, REMOTENAME, or TRANSID attributes
specified on the program definition or returned by the dynamic routing
program have no effect.

210 CICS TS for OS/390: CICS Application Programming Guide

||
|
|
|
|
|

|
|
|
|

1. The program name of the server program

A program may have different names in the client and server regions. The
name you specify on the LINK command depends on whether or not you
specify the SYSID option.
If you specify the name of a remote region on the SYSID option of the LINK
command, CICS ships the link request to the server region without reference to
the REMOTENAME attribute of the program resource definition in the client
region, nor to any program name returned by the dynamic routing program. In
this case, the PROGRAM name you specify on the LINK command must be the name
by which the program is known in the server region.
If you do not specify the SYSID option on the LINK command, or you specify
the name of the local client region, the PROGRAM name you specify on the LINK
command must be the name by which the program is known in the client region. CICS
looks up the program resource definition in the client region. Assuming that
the REMOTESYSTEM option of the installed program definition specifies the
name of a remote region, the name of the server program on the remote region
is obtained from:
a. The REMOTENAME attribute of the program definition
b. If REMOTENAME is not specified, the PROGRAM option of the LINK

command.

If the program definition specifies DYNAMIC(YES), or there is no installed
program definition, the dynamic routing program is invoked and can accept or
change the name of the server program.

2. The communication data area (COMMAREA)

To improve performance, you can specify the DATALENGTH option on the
LINK command. This allows you to specify the amount of COMMAREA data
you want the client region to pass to the server program. Typically, you use this
option when a large COMMAREA is required to hold data that the server
program is to return to the client program, but only a small amount of data
needs to be sent to the server program by the client program, as in the
example.

3. The remote system ID (SYSID)

You can specify the 4-character name of the server region to which you want
the application region to ship a program link request using any of the
following:
v The SYSID option of the LINK command
v The REMOTESYSTEM option of the program resource definition
v The dynamic routing program.

The rules of precedence are:
a. If the SYSID option on the EXEC CICS LINK command specifies a remote

CICS region, CICS ships the request to the remote region.

EXEC CICS LINK PROGRAM('DPLPROG') 1
COMMAREA(DPLPROG-DATA-AREA)
LENGTH(24000) 2
DATALENGTH(100)
SYSID('CICR') 3
TRANSID('AC20') 4
SYNCONRETURN 5

END-EXEC.

Figure 39. COBOL example of a distributed program link

Chapter 17. Intercommunication considerations 211

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|

If the program definition specifies DYNAMIC(YES)—or there is no program
definition—the dynamic routing program is invoked for notification
only—it cannot re-route the request.

b. If the SYSID option is not specified or specifies the same name as the local
CICS region:
1) If the program definition specifies DYNAMIC(YES)—or there is no

installed program definition—the dynamic routing program is invoked,
and can route the request.
The REMOTESYSTEM option of the program definition, if specified,
names the default server region passed to the dynamic routing program.

Note: If the REMOTESYSTEM option names a remote region, the
dynamic routing program cannot route the request locally.

2) If the program definition specifies DYNAMIC(NO), CICS ships the
request to the remote system named on the REMOTESYSTEM option. If
REMOTESYSTEM is not specified, CICS runs the program locally.

The name you specify is the name of the connection definition installed in the
client region defining the connection with the server region. (CICS uses the
connection name in a table look-up to obtain the netname (VTAM APPLID) of
the server region.) The name of the server region you specify can be the name
of the client region, in which case the program is run locally.

If the server region is unable to load or run the requested program (DPLPROG
in our example), CICS returns the PGMIDERR condition to the client program
in response to the link request. Note that EIBRESP2 values are not returned
over the link for a distributed program link request where the error is detected
in the server region. For errors detected in the client region, EIBRESP2 values
are returned.

You can also specify, or modify, the name of a server region in an XPCREQ
global user exit program. See the CICS Customization Guide for programming
information about the XPCREQ global user exit point.

4. The remote transaction (TRANSID) to be attached

The TRANSID option is available on both the LINK command and the program
resource definition. This enables you to tell the server region the transaction
identifier to use when it attaches the mirror task under which the server
program runs. If you specify the TRANSID option, you must define the
transaction in the server region, and associate it with the supplied mirror
program, DFHMIRS. This option allows you to specify your own attributes on
the transaction definition for the purpose of performance and fine tuning. For
example, you could vary the task priority and transaction class attributes.
If the installed program definition specifies DYNAMIC(YES), or there is no
installed program definition, the dynamic routing program is invoked and
(provided that the SYSID option of the LINK command did not name a remote
region) can change the value of the TRANSID attribute. The order of
precedence is:
a. If the SYSID option of the LINK command specified a remote region, a

TRANSID supplied on the LINK
b. A TRANSID supplied by the dynamic routing program
c. A TRANSID supplied on the LINK command
d. The TRANSID attribute of the program definition.
e. The mirror TRANSID, CSMI.

212 CICS TS for OS/390: CICS Application Programming Guide

|
|
|

|
|

|
|
|

|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

You are recommended to specify the transaction identifier of the client program
as the transaction identifier for the server program. This enables any statistics
and monitoring data you collect to be correlated correctly under the same
transaction.

The transaction identifier used on a distributed link program request is passed
to the server program as follows:
v If you specify your own transaction identifier for the distributed link

program request, this is passed to the server program in the EIBTRNID field
of the EIB.

v EIBTRNID is set to the TRANSID value as specified in the DPL API or server
resource definition. Otherwise, it defaults to the client’s transaction code,
which is the same value that is in the client’s EIBTRNID.

5. The SYNCONRETURN option for the server program

When you specify the SYNCONRETURN option, it means that the resources on
the server are committed in a separate logical unit of work immediately before
returning control to the client; that is, an implicit syncpoint is issued for the
server just before the server returns control to the client. Figure 40 on page 214
provides an example of using distributed program link with the
SYNCONRETURN option. The SYNCONRETURN option is intended for use
when the client program is not updating any recoverable resources, for
example, when performing screen handling. However, if the client does have
recoverable resources, they are not committed at this point. They are committed
when the client itself reaches a syncpoint or in the implicit syncpoint at client
task end. You must ensure that the client and server programs are designed
correctly for this purpose, and that you are not risking data integrity. For
example, if your client program has shipped data to the server that results in
the server updating a database owned by the server region, you only specify an
independent syncpoint if it is safe to do so, and when there is no dependency
on what happens in the client program. This option has no effect if the server
program runs locally in the client region unless EXECUTIONSET(DPLSUBSET)
is specified. In this case, the syncpoint rules governing a local link apply.
Without the SYNCONRETURN option, the client commits the logical unit of
work for both the client and the server resources, with either explicit
commands or the implicit syncpoint at task end. Thus, in this case, the server
resources are committed at the same time as the client resources are committed.
Figure 41 on page 214 shows an example of using distributed program link
without the SYNCONRETURN option.

Chapter 17. Intercommunication considerations 213

|

Note: This includes three logical units of work: one for the client and two for the
server. The client resources are committed separately from the server.

Client

U
Update O
resources W

1 LINK Server

SYNCONRETURN Update U
resources O

W
SYNCPOINT 2
(explicit)

Update U
resources O

W
SYNCPOINT 3

Client (implicit)

Update U
resources O

W
SYNCPOINT 1

Figure 40. Using distributed program link with the SYNCONRETURN option

Client

U
Update O
local W
resources 1 LINK Server

U
Update O
resources W

Client 1

U RETURN
Update O
local W
resources 1 LINK Server

U
Update O
resources W

Client 1

Update RETURN
local U
resources O

W
SYNCPOINT 1
(implicit

or
explicit)

Figure 41. Using distributed program link without the SYNCONRETURN option

214 CICS TS for OS/390: CICS Application Programming Guide

Note: The implicit or explicit syncpoint causes all client and server resources to be
committed. There is only one logical unit of work because the client is
responsible for determining when both the client and server resources are
committed.

You need to consider the case when the client has a HANDLE ABEND command.
When the client is handling abends in the server, the client gets control when the
server abends. This is also true when the SYNCONRETURN option has been
specified on the LINK command. In this case, it is recommended that the client
issues an abend after doing the minimum of cleanup. This causes both the client
logical unit of work and the server logical unit of work to be backed out.

Programming considerations for distributed program link
There are some factors you should consider when writing application programs
that use distributed program link.

Issuing multiple distributed program links from the same client
task
A client task cannot request distributed program links to a single CICS server
region using more than one transaction code in a single client unit of work unless
the SYNCONRETURN option is specified. It can issue multiple distributed
program links to one CICS server system with the same or the default transaction
code.

Sharing resources between client and server programs
The server program does not have access to the lifetime storage of tasks on the
client, for example, the TWA. Nor does it necessarily have access to the resources
that the client program is using, for example, files, unless the file requests are
being function shipped.

Mixing DPL and function shipping to the same CICS system
Great care should be taken when mixing function shipping and DPL to the same
CICS system, from the same client task. These are some considerations:
v A client task cannot function ship requests and then use distributed program

link with the SYNCONRETURN option in the same session (same logical unit of
work or system initialization parameter MROFSE=YES specified). The
distributed program link fails with an INVREQ response. In this case EIBRESP2
is set to 14.

v A client task cannot function ship requests and then use distributed program
link with the TRANSID option in the same client logical unit of work. The
distributed program link fails with an INVREQ response. In this case, EIBRESP2
is set to 15.

v Any function-shipped requests that follow a DPL request with the
SYNCONRETURN option runs in a separate logical unit of work from the server
logical unit of work.

v Any function-shipped requests running that follow a DPL request with the
TRANSID option to the same server region runs under the transaction code
specified on the TRANSID option, instead of under the default mirror
transaction code. The function-shipped requests are committed as part of the
overall client logical unit of work when the client commits.

v Any function-shipped requests running before or after a DPL request without
the SYNCONRETURN or TRANSID options are committed as part of the overall
client logical unit of work when the client commits.

Chapter 17. Intercommunication considerations 215

|
|
|
|
|

See the CICS Intercommunication Guide for more information about function
shipping.

Mixing DPL and DTP to the same CICS system
Care should be taken when using both DPL and DTP in the same application,
particularly using DTP in the server program. For example, if you have not used
the SYNCONRETURN option, you must avoid taking a syncpoint in the DTP
partner which requires the DPL server program to syncpoint.

Restricting a program to the distributed program link subset
When a program executes as the result of a distributed program link, it is
restricted to a subset of the full CICS API called the distributed program link
subset. The commands that are prohibited in a server program are summarized in
Table 14 on page 218.

You can specify, in the program resource definition only, that you want to restrict a
program invoked by a local LINK command to this subset with the
EXECUTIONSET(DPLSUBSET) option. The use of any prohibited commands can
then be detected before an application program is used in a distributed
environment. The EXECUTIONSET(DPLSUBSET) option should be used for very
early testing purposes only, and should never be used in production.

When the server program is running locally the following considerations apply:
v If EXECUTIONSET(DPLSUBSET) is specified on the server program then the

SYNCONRETURN option causes an implicit syncpoint to be taken in the local
server program, prior to returning control to the client program. In this case,
because the server program is running locally, both the client and server
resources are committed. However, it should be noted that SYNCONRETURN is
intended for use when the client has no recoverable resources.

v If EXECUTIONSET(FULLAPI) is specified on the server program, the
SYNCONRETURN option is ignored.

v The TRANSID and DATALENGTH options are ignored when processing the
local link, but the format of the arguments is checked, for example, the
TRANSID argument cannot be all blank.

Determining how a program was invoked
The 2-byte values returned on the STARTCODE option of the ASSIGN command
are extended in support of the distributed program link function enabling the
server program to find out that it is restricted to the distributed program link
subset. See the CICS Application Programming Reference manual for programming
information about EXEC CICS commands.

Accessing user-related information with the ASSIGN command
The values returned with the USERID and OPID keywords of the ASSIGN
command in the server program depend on the way the ATTACHSEC option is
defined for the connection being used between the client CICS region and the
server CICS region. For example, the system could be defined so that the server

Client Server DTP partner

DPL DTP

Figure 42. Example of mixing DPL and DTP

216 CICS TS for OS/390: CICS Application Programming Guide

program could access the same USERID and OPID values as the client program or
could access different values determined by the ATTACHSEC option.

If ATTACHSEC(LOCAL) is specified, the userid to which the OPID and USERID
parameters correspond is one of the following, in the order shown:
1. The userid specified on the USERID parameter (for preset security) of the

SESSIONS resource definition, if present
2. The userid specified on the SECURITYNAME parameter of the connection

resource definition, if present and no preset security userid is defined on the
sessions

3. The userid specified on the DFLTUSER system initialization parameter of the
server region, if neither the sessions nor connection definitions specify a userid

If any value other than LOCAL is specified for ATTACHSEC, the signed-on userid
is the one received in the function management header (FMH5) from the client
region.

See the CICS RACF Security Guide for more information about link security and the
ATTACHSEC parameter.

Another security-related consideration concerns the use of the CMDSEC and
RESSEC options of the ASSIGN command. These are attributes of the transaction
definition for the mirror transaction in the server region. They can be different
from the definitions in the client region, even if the same TRANSID is used.

Exception conditions for LINK command
There are error conditions introduced in support of DPL.

Exception conditions returned to the client program: Condition codes returned
to a client program describe such events as “remote system not known” or “failure
to commit” in the server program. There are different reasons, identified by
EIBRESP2 values, for raising the INVREQ and LENGERR conditions on a LINK
command. The ROLLEDBACK, SYSIDERR, and TERMERR conditions may also be
raised. See the CICS Application Programming Reference manual for programming
information about these commands.

If the mirror transaction in the remote region fails, the application program that
issued the DPL request can handle the abend of the mirror, and commit its own
local resources, only if both the following are true:
1. The application program explicitly handles the abend caused by the mirror’s

failure, and either:
v Takes an implicit syncpoint by normal transaction termination

or
v Issues an explicit syncpoint request.

2. The remote mirror transaction performed no recoverable work within the scope
of the application program’s unit of work. That is, the mirror was invoked only
for a distributed program link (DPL) request with SYNCONRETURN.

In all other cases—that is, if the application program does not handle the abend, or
the mirror does any recoverable work (for example, a file update, even to a
non-recoverable file)—CICS forces the transaction to be backed out.

Chapter 17. Intercommunication considerations 217

|
|
|

|
|
|

|
|

|
|
|

|
|
|

The PGMIDERR condition is raised on the HANDLE ABEND PROGRAM, LOAD,
RELEASE, and XCTL commands if the local program definition specifies that the
program is remote. This exception is qualified by an EIBRESP2 value of 9.

Exception conditions returned to the server program: The INVREQ condition
covers the use of prohibited API commands. INVREQ is returned, qualified by an
EIBRESP2 value of 200, to a server program if it issues one of the prohibited
commands summarized in Table 14. If the server program does not handle the
INVREQ condition, the default action is to abend the mirror transaction under
which the server program is running with abend code ADPL.

For programming information about the DPL-related exception conditions, see the
CICS Application Programming Reference manual.

Table 14. API commands prohibited in programs invoked by DPL

Command Options

ADDRESS ACEE

ASSIGN ALTSCRNHT ALTSCRNWD APLKYBD APLTEXT BTRANS
COLOR DEFSCRNHT DEFSCRNWD DELIMITER
DESTCOUNT DESTID DESTIDLENG DS3270 DSSCS
EWASUPP EXTDS FACILITY FCI GCHARS GCODES GMMI
HILIGHT INPARTN KATAKANA LDCMNEM LDCNUM
MAPCOLUMN MAPHEIGHT MAPLINE MAPWIDTH
MSRCONTROL NATLANGINUSE NEXTTRANSID
NUMTAB OPCLASS OPSECURITY OUTLINE PAGENUM
PARTNPAGE PARTNS PARTNSET PS QNAME SCRNHT
SCRNWD SIGDATA SOSI STATIONID TCTUALENG
TELLERID TERMCODE TERMPRIORITY TEXTKYBD
TEXTPRINT UNATTEND USERNAME USERPRIORITY
VALIDATION

CONNECT PROCESS all

CONVERSE all

EXTRACT ATTRIBUTES all

EXTRACT PROCESS all

FREE all

HANDLE AID all

ISSUE ABEND CONFIRMATION ERROR PREPARE SIGNAL
PRINT ABORT ADD END ERASE NOTE QUERY RECEIVE
REPLACE SEND WAIT

LINK INPUTMSG INPUTMSGLEN

PURGE MESSAGE all

RECEIVE all

RETURN INPUTMSG INPUTMSGLEN

ROUTE all

SEND CONTROL MAP PARTNSET TEXT TEXT(MAPPED)
TEXT(NOEDIT) PAGE

SIGNOFF all

SIGNON all

SYNCPOINT Can be issued in server region if SYNCONRETURN specified
on LINK

WAIT TERMINAL all

218 CICS TS for OS/390: CICS Application Programming Guide

|

Table 14. API commands prohibited in programs invoked by DPL (continued)

Command Options

XCTL INPUTMSG INPUTMSGLEN

The following commands are also restricted but can be used in the server region if
SYNCONRETURN is specified on the LINK:
v CPIRR COMMIT
v CPIRR BACK
v EXEC DLI TERM
v CALL DLI TERM

Where only certain options are prohibited on the command, they are shown. All
the APPC commands listed are prohibited only when they refer to the principal
facility. One of these, the CONNECT PROCESS command, causes an error even if
it refers to the principal facility in a non-DPL environment. It is included here
because, if a CONNECT PROCESS command refers to its principal facility in a
server program, the exception condition raised indicates a DPL error.

Asynchronous processing
The response from a remotely initiated transaction is not necessarily returned to
the task that initiated the transaction, which is why the processing is referred to as
asynchronous. Asynchronous processing is useful when you do not need or want
to tie up local resources while having a remote request processed. For example,
with online inquiry on remote databases, terminal operators can continue entering
inquiries without having to wait for an answer to the first one.

You can start a transaction on a remote system using a START command just like a
local transaction. You can use the RETRIEVE command to retrieve data that has
been stored for a task as a result of a remotely issued START, CANCEL, SEND, or
RECEIVE command, as if it were a local transaction.

Distributed transaction processing (DTP)
The main advantage of DTP is that it allows the two transactions to have exclusive
control of a session and to “converse”. DTP is particularly useful when you need
remote resources to be processed remotely or if you need to transfer data between
systems. It also allows you to design very flexible and efficient applications. DTP
can be used with either EXEC CICS or CPI Communications. You can use C, C++,
and assembler language in DTP application programs that hold LU type 6.2
unmapped conversations using the EXEC CICS API as well as applications that use
the CICS intercommunication facilities.

DTP can be used with a variety of partners, including both CICS and non-CICS
platforms, as long as they support APPC. For further information about DTP, see
the CICS Distributed Transaction Programming Guide and CICS Family: Interproduct
Communication manuals.

Common Programming Interface Communications (CPI
Communications)

CPI Communications provides an alternative API to existing CICS APPC support.
CPI Communications provides DTP on APPC connections and can be used in
COBOL, C, C++, PL/I, and assembler language.

Chapter 17. Intercommunication considerations 219

CPI Communications defines an API that can be used in APPC networks that
include multiple system platforms, where the consistency of a common API is seen
to be of benefit.

The CPI Communications interface can converse with applications on any system
that provides an APPC API. This includes applications on CICS platforms. You
may use EXEC CICS APPC API commands on one end of a conversation and CPI
Communications commands on the other.

CPI Communications requires specific information (side information) to begin a
conversation with partner program. CICS implementation of side information is
achieved using the partner resource which your system programmer is responsible
for maintaining.

The application’s calls to the CPI Communications interface is resolved by
link-editing it with the CICS CPI Communications stub (DFHCPLC). You can find
information about how to do this in CICS System Definition Guide.

The CPI Communications API is defined as a general call interface. The interface is
described in the Common Programming Interface Communications Reference manual.

External CICS interface (EXCI)
The external CICS interface is an application programming interface that enables a
non-CICS program (a client program) running in MVS to call a program (a server
program) running in a CICS region and to pass and receive data by means of a
communications area. The CICS program is invoked as if linked-to by another
CICS program.

This programming interface allows a user to allocate and open sessions (pipes) to a
CICS system and to pass distributed program link (DPL) requests over them. CICS
interregion communication (IRC) supports these requests and each pipe maps onto
one MRO session.

For programming information about EXCI, see the CICS External Interfaces Guide
manual.

A client program that uses the external CICS interface can operate multiple
sessions for different users (either under the same or separate TCBs) all coexisting
in the same MVS address space without knowledge of, or interference from, each
other.

The external CICS interface provides two forms of programming interface:
v The EXCI CALL interface consists of six commands that allow you to:

– Allocate and open sessions to a CICS system from non-CICS programs
running under MVS

– Issue DPL requests on these sessions from the non-CICS programs
– Close and de-allocate the sessions on completion of the DPL requests

v The EXEC CICS interface provides:
– A single composite command (LINK PROGRAM) that performs all six

commands of the EXCI CALL interface in one invocation

The command takes the same form as the distributed program link command of
the CICS command-level application programming interface.

220 CICS TS for OS/390: CICS Application Programming Guide

CICS supports MVS resource recovery services (RRS) in applications that use the
external CICS interface. This means that:
v The unit of work within which the CICS server program changes recoverable

resources may now become part of the MVS unit of recovery associated with the
EXCI client program.

v The CICS server unit of work may be committed when the server program
returns control to the client or continues over multiple EXCI DPL calls, until the
EXCI client decides to commit or backout the unit of recovery.

Chapter 17. Intercommunication considerations 221

|
|

|
|
|

|
|
|

|

222 CICS TS for OS/390: CICS Application Programming Guide

Chapter 18. Recovery considerations

This chapter is about two available techniques which help recover or reconstruct
events or data changes during CICS execution:
v “Journaling”
v “Syncpointing” on page 225

Journaling
CICS provides facilities for creating and managing journals during CICS
processing. Journals may contain any and all data the user needs to facilitate
subsequent reconstruction of events or data changes. For example, a journal might
act as an audit trail, a change-file of database updates and additions, or a record of
transactions passing through the system (often referred to as a log). Each journal
can be written from any task.

Journal control commands are provided to allow the application programmer to:
v Create a journal record (WRITE JOURNALNAME or WRITE JOURNALNUM

command)
v Synchronize with (wait for completion of) journal output (WAIT

JOURNALNAME or WAIT JOURNALNUM command)

Exception conditions that occur during execution of a journal control command are
handled as described in “Chapter 20. Dealing with exception conditions” on
page 231. (The earlier JFILEID option is supported for compatibility purposes only.)

Journal records
Each journal is identified by a name or number known as the journal identifier.
This number may range from 1 through 99. The name DFHLOG is reserved for the
journal known as the system log.

When a journal record is built, the data is moved to the journal buffer area. All
buffer space and other work areas needed for journal operations are acquired and
managed by CICS. The user task supplies only the data to be written to the
journal. Log manager is designed so that the application programmer requesting
output services does not have to be concerned with the detailed layout and precise
contents of journal records. The programmer has to know only which journal to
use, what user data to specify, and which user-identifier to supply.

Journal output synchronization
When a synchronous journal record is created by issuing the WRITE
JOURNALNAME or WRITE JOURNALNUM command with the WAIT option, the
requesting task can wait until the output has been completed. By specifying that
this should happen, the application programmer ensures that the journal record is
written on the external storage device associated with the journal before processing
continues; the task is said to be synchronized with the output operation.

The application programmer can also request asynchronous journal output. This
causes a journal record to be created in the journal buffer area but allows the
requesting task to retain control and thus to continue with other processing. The

© Copyright IBM Corp. 1989, 2000 223

task may check and wait for output completion (that is, synchronize) later by
issuing the WAIT JOURNALNAME or WAIT JOURNALNUM command.

Note: In some cases, a SHUTDOWN IMMEDIATE can cause user journal records
to be lost, if they have been written to a log manager buffer but not to
external storage. This is also the case if the CICS shut-down assist
transaction (CESD) forces SHUTDOWN IMMEDIATE during a normal
shutdown, because normal shutdown is hanging. To avoid the risk of losing
journal records, you are recommended to issue CICS WAIT JOURNALNUM
requests periodically, and before ending your program.

Without WAIT, CICS does not write data to the log stream until it has a full buffer
of data, or until some other unrelated activity requests that the buffer be hardened,
thus reducing the number of I/O operations. Using WAIT makes it more difficult
for CICS to calculate accurately log structure buffer sizes. For CF log streams, this
could lead to inefficient use of storage in the coupling facility.

The basic process of building journal records in the CICS buffer space of a given
journal continues until one of the following events occurs:
v For system logs:

– Whenever the system requires it to ensure integrity and to permit a future
emergency restart

– The log stream buffer is filled
v For user journals:

– The log stream buffer is filled (or, if the journal resides on SMF, when the
journal buffer is filled)

– A request specifying the WAIT option is made (from any task) for output of a
journal record

– An EXEC CICS SET JOURNALNAME command is issued
– An EXEC CICS DISCARD JOURNALNAME command is issued
– Any of the above occurring for any other journal which maps onto the same

log stream
– On a normal shutdown

v For forward recovery logs:
– The log stream buffer is filled
– At syncpoint (first phase)
– On file closure

v For autojournals:
– The log stream buffer is filled
– A request specifying the WAIT option is made (from any task) for output of a

journal record
– On file closure

v For the log-of-logs (DFHLGLOG):
– On file OPEN and CLOSE requests

When any one of these occurs, all journal records present in the buffer, including
any deferred output resulting from asynchronous requests, are written to the log
stream as one block.

The advantages that may be gained by deferring journal output are:
v Transactions may get better response times by waiting less.

224 CICS TS for OS/390: CICS Application Programming Guide

|

|
|
|
|
|
|
|

|

v The load of physical I/O requests on the host system may be reduced.
v Log streams may contain fewer but larger blocks and so better utilize primary

storage.

However, these advantages are achievable only at the cost of greater programming
complexity. It is necessary to plan and program to control synchronizing with
journal output. Additional decisions that depend on the data content of the journal
record and how it is to be used must be made in the application program. In any
case, the full benefit of deferring journal output is obtained only when the load on
the journal is high.

If the journal buffer space available at the time of the request is not sufficient to
contain the journal record, the NOJBUFSP condition occurs. If no HANDLE
CONDITION command is active for this condition, the requesting task loses
control, the contents of the current buffer are written, and the journal record is
built in the resulting freed buffer space before control returns to the requesting
task.

If the requesting task is not willing to lose control (for example, if some
housekeeping must be performed before other tasks get control), a HANDLE
CONDITION command should be issued. If the NOJBUFSP condition occurs, no
journal record is built for the request, and control is returned directly to the
requesting program at the location provided in the HANDLE CONDITION
command. The requesting program can perform any housekeeping needed before
reissuing the journal output request.

Journal commands can cause immediate or deferred output to the journal. System
log records are distinguished from all other records by specifying
JOURNALNAME(DFHLOG) on the request. User journal records are created using
some other JOURNALNAME or a JOURNALNUM. All records must include a
journal type identifier, (JTYPEID). If the user journaling is to the system log, the
journal type identifier (according to the setting of the high-order bit) also serves to
control the presentation of these to the global user exit XRCINPT at a warm or
emergency restart. Records are presented during the backward scan of the log as
follows:
v For in-flight or in-doubt tasks only (high-order bit off)
v For all records encountered until the scan is terminated (high-order bit on)

See the CICS Customization Guide for information about the format and structure of
journal records. See the section on emergency restart in the CICS Recovery and
Restart Guide for background information and a description of the recovery process.

Syncpointing
To facilitate recovery in the event of abnormal termination of a CICS task or of
failure of the CICS system, the system programmer can, during CICS table
generation, define specific resources (for example, files) as recoverable. If a task is
terminated abnormally, these resources are restored to the condition they were in
at the start of the task, and can then be rerun. The process of restoring the
resources associated with a task is termed backout.

If an individual task fails, backout is performed by the dynamic transaction
backout program. If the CICS system fails, backout is performed as part of the
emergency restart process. See the CICS Recovery and Restart Guide which describes
these facilities, which in general have no effect on the coding of application
programs.

Chapter 18. Recovery considerations 225

However, for long-running programs, it may be undesirable to have a large
number of changes, accumulated over a period of time, exposed to the possibility
of backout in the event of task or system failure. This possibility can be avoided by
using the SYNCPOINT command to split the program into logically separate
sections known as units of work (UOWs); the end of an UOW is referred to as a
synchronization point (syncpoint). For more information about syncpoints, see the
CICS Recovery and Restart Guide.

If failure occurs after a syncpoint but before the task has been completed, only
changes made after the syncpoint are backed out.

Alternatively, you can use the SAA Resource Recovery interface instead of the
SYNCPOINT command. This provides an alternative API to existing CICS resource
recovery services. You may wish to use the SAA Resource Recovery interface in
networks that include multiple SAA platforms, where the consistency of a common
API is seen to be of benefit. In a CICS system, the SAA Resource Recovery
interface provides the same function as the EXEC CICS API.4

The SAA Resource Recovery interface is implemented as a call interface, having
two call types:

SRRCMIT
Commit—Equivalent to SYNCPOINT command.

SRRBACK
Backout—Equivalent to SYNCPOINT ROLLBACK command.

For further information about the SAA Resource Recovery interface, see SAA
Common Programming Interface for Resource Recovery Reference manual.

UOWs should be entirely logically independent, not merely with regard to
protected resources, but also with regard to execution flow. Typically, an UOW
comprises a complete conversational operation bounded by SEND and RECEIVE
commands. A browse is another example of an UOW; an ENDBR command must
therefore precede the syncpoint.

In addition to a DL/I termination call being considered to be a syncpoint, the
execution of a SYNCPOINT command causes CICS to issue a DL/I termination
call. If a DL/I PSB is required in a subsequent UOW, it must be rescheduled using
a program control block (PCB) call or a SCHEDULE command.

With distributed program link (DPL), it is possible to specify that a syncpoint is
taken in the server program, to commit the server resources before returning
control to the client. This is achieved by using the SYNCONRETURN option on
the LINK command. For programming information about the SYNCONRETURN
option, see ″The SYNCONRETURN option for the server program″ on page 5 on
page 213 and the CICS Application Programming Reference manual.

A BMS logical message, started but not completed when a SYNCPOINT command
is processed, is forced to completion by an implied SEND PAGE command.
However, you should not rely on this because a logical message whose first page is
incomplete is lost. You should also code an explicit SEND PAGE command before
the SYNCPOINT command or before termination of the transaction.

4. Full SAA Resource Recovery provides some return codes that are not supported in its CICS implementation. (See the CICS
appendix in the SAA Common Programming Interface for Resource Recovery Reference manual.)

226 CICS TS for OS/390: CICS Application Programming Guide

Consult your system programmer if syncpoints are to be issued in a transaction
that is eligible for transaction restart.

Chapter 18. Recovery considerations 227

228 CICS TS for OS/390: CICS Application Programming Guide

Chapter 19. Minimizing errors

This chapter describes ways of making your applications error-free. Some of these
suggestions apply not only to programming, but also to operations and systems.

What often happens is that, when two application systems that run perfectly by
themselves are run together, performance goes down and you begin experiencing
“lockouts” or waits. The scope of each system has not been defined well enough.

The key points in a well-designed application system are:
v At all levels, each function is defined clearly with inputs and outputs well-stated
v Resources that the system uses are adequately-defined
v Interactions with other systems are known

Protecting CICS from application errors
There are various tools and techniques you can use to minimize errors in your
application programs. In general:
v You can use the storage protection facility to prevent CICS code and control

blocks from being overwritten accidentally by your application programs. You
can choose whether you want to use this facility by means of CICS system
initialization parameters. See the CICS System Definition Guide for more
information about this facility.

v Consider using standards that avoid problems that may be caused by techniques
such as the use of GETMAIN commands.

Testing applications
The following general rules apply to testing applications:
v Do not test on a production CICS system—use a test system, where you can

isolate errors without affecting “live” databases.
v Have the testing done by someone other than the application developer, if

possible.
v Document the data you use for testing.
v Test your applications several times. See “Chapter 40. Testing applications: the

process” on page 509 for more information about testing applications.
v Use the CEDF transaction for initial testing. See “Chapter 41. Execution

diagnostic facility (EDF)” on page 513 for more information about using CEDF.
v Use stress or volume testing to catch problems that may not arise in a

single-user environment. Teleprocessing Network Simulator (TPNS, licensed
program number 5740-XT4) is a good tool for doing this.
TPNS is a telecommunications testing package that enables you to test and
evaluate application programs before you install them. You can use TPNS for
testing logic, user exit routines, message logging, data encryption, and
device-dependencies, if these are used in application programs in your
organization. It is useful in investigating system performance and response
times, stress testing, and evaluating TP network design. For further information,
see the TPNS General Information manual.

v Test whether the application can handle correct data and incorrect data.
v Test against complete copies of the related databases.

© Copyright IBM Corp. 1989, 2000 229

v Consider using multiregion operation. (See the CICS Intercommunication Guide for
more information.)

v Before you move an application to the production system, it is a good idea to
run a final set of tests against a copy of the production database to catch any
errors.

In particular, look for destroyed storage chains.

Assembler language programs (if not addressing data areas properly) can be
harder to identify because they can alter something that affects (and abends)
another transaction.

For more information about solving a problem, see the CICS Problem Determination
Guide.

230 CICS TS for OS/390: CICS Application Programming Guide

Chapter 20. Dealing with exception conditions

This chapter contains information about:
v Default CICS exception handling
v “Handling exception conditions by in-line code” on page 232
v “Modifying the default CICS exception handling” on page 235

Java
This chapter does not apply to CICS Java programs. Exception handling in
Java programs is described in “Exception handling in Java” on page 72.

Every time you process an EXEC CICS command in one of your applications, CICS
automatically raises a condition, or return code, to tell you what happened. You
can choose to have this condition, which is usually NORMAL, passed back by the
CICS EXEC interface program to your application. It is sometimes called a RESP
value, because you may get hold of it by using the RESP option in your command.
Alternatively, you may obtain this value by reading it from the EXEC interface
block (EIB).

If something out of the ordinary happens, you get an exception condition, which
simply means a condition other than NORMAL. By testing this condition, you can
find out what has happened and, possibly, why.

Many exception conditions have an additional (RESP2) value associated with them,
which gives further information. You may obtain this RESP2 value either by using
the RESP2 option in your command in addition to the RESP option, or by reading
it from the EIB.

Not all conditions denote an error situation, even if they are not NORMAL. For
example, if you get an ENDFILE condition on a READNEXT command during a
file browse, it might be exactly what you expect. For information about all possible
conditions and the commands on which they can occur, see the CICS Application
Programming Reference manual.

Default CICS exception handling
If your application is written in a language other than C, C++, or Java and you do
not specify otherwise, CICS uses its built-in exception handling whenever an
exception condition occurs. If your application is written in C or C++, CICS itself
takes no action when an exception condition occurs and it is left to the application
to handle it. See “Handling exception conditions by in-line code” on page 232 for
information on handling exception conditions.

The most common action by CICS is to cause an abend of some type to happen.
The particular behaviors for each condition and for each command are detailed in
the CICS Application Programming Reference and CICS System Programming Reference
manuals.

Sometimes you will be satisfied with the CICS default exception handling, in
which case you need do nothing. More often you will prefer some other course of
action.

© Copyright IBM Corp. 1989, 2000 231

|
|

|

These are the different ways of turning off the default CICS handling of exception
conditions.
v Turn off the default CICS handling of exception conditions on a particular EXEC

CICS command call by specifying the NOHANDLE option.
v Alternatively, turn off the default CICS handling of exception conditions by

specifying the RESP option on the command. This, of itself, switches off the
default CICS exception handling in the same way as NOHANDLE does. It also
causes the variable named by the argument of RESP to be updated with the
value of the condition returned by the command. This is described in more
detail in “Handling exception conditions by in-line code”.

v Write your application program in C or C++.

If the default CICS exception handling is turned off you should ensure that your
program copes with anything that may happen in the command call.

The traditional, but no longer recommended, way to specify some other course of
action is available only if you are programming in a language other than C or C++:
it is to use combinations of the HANDLE ABEND, HANDLE CONDITION, and
IGNORE CONDITION commands to modify the default CICS exception handling.
This is described in “Modifying the default CICS exception handling” on page 235.

Handling exception conditions by in-line code
This section describes the method of handling exception conditions which is
recommended for new applications and is the only available choice if your
programs are in C or C++ language. If your program is not written in C or C++, it
involves either using the NOHANDLE option or specifying the RESP option on
EXEC CICS commands, which prevents CICS performing its default exception
handling. Additionally, the RESP option makes the value of the exception condition
directly available to your program, for it to take remedial action.

If your program is written in C or C++, in-line code is the only means you have of
handling exception conditions.

If you use the NOHANDLE or RESP option, you should ensure that your program
can cope with whatever condition may arise in the course of executing the
commands. The RESP value is available to enable your program to decide what to
do and more information which it may need to use is carried in the EXEC interface
block (EIB). In particular, the RESP2 value is contained in one of the fields of the
EIB. See the CICS Application Programming Reference manual for more information
on the EIB. Alternatively, if your program specifies RESP2 in the command, the
RESP2 value is returned by CICS directly.

The DFHRESP built-in translator function makes it very easy to test the RESP
value. It allows, you to examine RESP values symbolically. This is easier than
examining binary values that are less meaningful to someone reading the code.

How to use the RESP and RESP2 options
The argument of RESP is a user-defined fullword binary data area (long integer).
On return from the command, it contains a value corresponding to the condition
that may have been raised. Normally its value is DFHRESP(NORMAL).

Use of RESP and DFHRESP in COBOL and PL/I
Here is an example of an EXEC CICS call in COBOL which uses the RESP option.
A PL/I example would be similar, but would end in “;” instead of END-EXEC.

232 CICS TS for OS/390: CICS Application Programming Guide

EXEC CICS WRITEQ TS FROM(abc)
QUEUE(qname)
NOSUSPEND
RESP(xxx)
END-EXEC.

An example of using DFHRESP to check the RESP value is:
IF xxx=DFHRESP(NOSPACE) THEN ...

Use of RESP and DFHRESP in C and C++
Here is an example of an EXEC CICS call in C, which uses the RESP option,
including the declaration of the RESP variable:
long response;...
EXEC CICS WRITEQ TS FROM(abc)

QUEUE(qname)
NOSUSPEND
RESP(response);

An example of using DFHRESP to check the RESP value is:
if (response == DFHRESP(NOSPACE))
{...
}

Use of DFHRESP in assembler
An example of a test for the RESP value in assembler language is:

CLC xxx,DFHRESP(NOSPACE)
BE ...

An example of exception handling in C
The following example is a typical function which could be used to receive a BMS
map and to cope with exception conditions:

The ReadAccountMap function has two arguments:

int ReadAccountMap(char *mapname, void *map)
{

long response;
int ExitKey;
EXEC CICS RECEIVE MAP(mapname)

MAPSET("ACCOUNT")
INTO(map)
RESP(response);

switch (response)
{
case DFHRESP(NORMAL):

ExitKey = dfheiptr->eibaid;
ModifyMap(map);
break;

case DFHRESP(MAPFAIL):
ExitKey = dfheiptr->eibaid;
break;

default:
ExitKey = DFHCLEAR;
break;

}
return ExitKey;

}

Figure 43. An example of exception handling in C

Chapter 20. Dealing with exception conditions 233

1. mapname is the variable which contains the name of the map which is to be
received.

2. map is the address of the area in memory to which the map is to be written.

The RESP value will be returned in response. The declaration of response sets up the
appropriate type of automatic variable.

The EXEC CICS statement asks for a map of the name given by mapname, of the
mapset ACCOUNT, to be read into the area of memory to which the variable map
points, with the value of the condition being held by the variable response.

The condition handling can be done by using if statements. However, to improve
readability, it is often better, as here, to use a switch statement, instead of
compound if ... else statements. The effect on program execution time is negligible.

Specific cases for two conditions:
1. A condition of NORMAL is what is normally expected. If a condition of

NORMAL is detected in the example here, the function then finds out what key
the user pressed to return to CICS and this value is passed to ExitKey. The
program then makes some update to the map held in memory by the
ModifyMap function, which need not concern us further.

2. A condition of MAPFAIL, signifying that the user has made no updates to the
screen, is also fairly normal and is specifically dealt with here. In this case the
program again updates ExitKey but does not call ModifyMap.

In this example, any other condition is held to be an error. The example sets
ExitKey to DFHCLEAR—the same value that it would have set if the user had
cleared the screen—which it then returns to the calling program. By checking the
return code from ReadAccountMap, the calling program would know that the map
had not been updated and that some remedial action is required.

An example of exception handling in COBOL
The following example is a typical function which could be used to receive a BMS
map and to cope with exception conditions:

03 RESPONSE PIC S9(8) BINARY.
03 EXITKEY PIC X(4) COMP-3....
EXEC CICS RECEIVE MAP(MAPNAME)

MAPSET('ACCOUNT')
INTO(MAP)
RESP(RESPONSE)
END-EXEC.

IF (RESPONSE NOT = DFHRESP(NORMAL)) AND
(RESPONSE NOT = DFHRESP(MAPFAIL))
MOVE DFHCLEAR TO EXITKEY

ELSE
MOVE EIBAID TO EXITKEY
IF RESPONSE = DFHRESP(NORMAL)

GO TO MODIFYMAP.
END-IF....

MODIFYMAP....

Figure 44. An example of exception handling in COBOL

234 CICS TS for OS/390: CICS Application Programming Guide

MAPNAME is the variable which contains the name of the map which is to be
received.

The RESP value is returned in RESPONSE. RESPONSE is declared as a fullword
binary variable in the data section.

The EXEC CICS statement asks for a map of the name given by MAPNAME, of the
mapset ACCOUNT, to be read, with the value of the condition being held by the
variable RESPONSE.

The condition handling is done by using IF ... statements. If the condition is
neither NORMAL nor MAPFAIL the program behaves as if the user had cleared
the screen.

If the condition is either NORMAL or MAPFAIL the program saves the value of
the key which the user pressed to exit the screen in EXITKEY. In addition, if the
condition is NORMAL, the program branches to MODIFYMAP to perform some
additional function.

Modifying the default CICS exception handling
CICS provides the following EXEC CICS commands which modify the default
CICS exception handling and one which modifies the way CICS handles abends:

Note: These commands cannot be used in C, C++, or Java programs. The rest of
this chapter is not relevant for these languages.

HANDLE CONDITION
Specify the label to which control is to be passed if a condition occurs.

IGNORE CONDITION
Specify that no action is to be taken if a condition occurs.

HANDLE ABEND
Activate, cancel, or reactivate an exit for abnormal termination processing.

An abend is the commonest way in which CICS handles exception conditions.

The current effect of IGNORE CONDITION, HANDLE ABEND, and HANDLE
CONDITION may be suspended by using PUSH HANDLE and reinstated by
using POP HANDLE.

All the commands mentioned above are described in the For details, see the CICS
Application Programming Reference manual. You have two ways of passing control to
a specified label:
1. Use a HANDLE CONDITION condition(label) command, where condition is

the name of an exception condition
2. Use a HANDLE CONDITION ERROR(label) command

The HANDLE CONDITION command sets up some CICS code to name conditions
that interest you, and then uses this code to pass control to appropriate sections of
your application if those conditions arise. So with an active HANDLE
CONDITION command, control goes to whichever label you specified for that
particular condition.

The same condition can arise, in some cases, on many different commands, and for
a variety of reasons. For example, you can get an IOERR condition during file

Chapter 20. Dealing with exception conditions 235

control operations, interval control operations, and others. One of your first tasks,
therefore, is to sort out which command has raised a particular condition; only
when you have discovered that, can you begin to investigate why it has happened.
This, for many programmers, is reason enough to start using the RESP option in
their new CICS applications. Although you need only one HANDLE CONDITION
command to set your error-handling for several conditions, it can sometimes be
awkward to pinpoint exactly which of several HANDLE CONDITION commands
is currently active when a CICS command fails somewhere in your code.

If a condition which you have not named arises, CICS takes the default action,
unless this is to abend the task, in which case it raises the ERROR condition. If you
name the condition but leave out its label, any HANDLE CONDITION command
for that condition is deactivated, and CICS reverts to taking the default action for
it, if and when it occurs.

The need to deal with all conditions is a common source of errors when using the
HANDLE CONDITION command. When using an unfamiliar command, you
should read the CICS Application Programming Reference manual to find out which
exception conditions are possible. Even if you then issue HANDLE commands for
all of these, you may not finish all the error-handling code adequately. The
outcome is sometimes an error-handling routine that, by issuing a RETURN
command, allows incomplete or incorrect data changes to be committed.

The best approach is to use the HANDLE CONDITION command, but to let the
system default action take over if you cannot see an obvious way round a
particular problem.

Bearing in mind the distinction between an error condition, a condition that merely
causes a wait (see page 240 for examples of conditions that cause a wait), and the
special case of SEND MAP command overflow processing (see the CICS Application
Programming Reference manual), a HANDLE CONDITION command is active after
a HANDLE CONDITION condition(label), or HANDLE CONDITION
ERROR(label) command has been run in your application.

If no HANDLE CONDITION command is active for a condition, but one is active
for ERROR, control passes to the label for ERROR, if the condition is an error, not
a wait.

If you use HANDLE CONDITION commands, or are maintaining an application
that uses them, do not include any commands in your error routine that can cause
the same condition that gave you the original branch to the routine, because you
will cause a loop.

Take special care not to cause a loop on the ERROR condition itself. You can avoid
a loop by reverting temporarily to the system default action for the ERROR
condition. Do this by coding a HANDLE CONDITION ERROR command with no
label specified. At the end of your error processing routine, you can reinstate your
error action by including a HANDLE CONDITION ERROR command with the
appropriate label. If you know the previous HANDLE CONDITION state, you can
do this explicitly. In a general subroutine, which might be called from several
different points in your code, the PUSH HANDLE and POP HANDLE command
may be useful—see “How to use PUSH HANDLE and POP HANDLE commands”
on page 241.

236 CICS TS for OS/390: CICS Application Programming Guide

Use of HANDLE CONDITION command
Use the HANDLE CONDITION command to specify the label to which control is
to be passed if a condition occurs. You must include the name of the condition and
you must ensure that the HANDLE CONDITION command is executed before the
command that may give rise to the associated condition.

You cannot include more than 16 conditions in the same command. You must
specify any additional conditions in further HANDLE CONDITION commands.
You can also use the ERROR condition within the same list to specify that all other
conditions are to cause control to be passed to the same label.

The HANDLE CONDITION command for a given condition applies only to the
program in which it is specified. The HANDLE CONDITION command:
v Remains active while the program is running, or until:

– An IGNORE CONDITION command for the same condition is met, in which
case the HANDLE CONDITION command is overridden

– Another HANDLE CONDITION command for the same condition is met, in
which case the new command overrides the previous one

v Is temporarily deactivated by the NOHANDLE or RESP option on a command

When control passes to another program, by a LINK or XCTL command, the
HANDLE CONDITION commands that were active in the calling program are
deactivated. When control returns to a program from a program at a lower logical
level, the HANDLE CONDITION commands that were active in the higher-level
program before control was transferred from it are reactivated, and those in the
lower-level program are deactivated. (Refer to “Chapter 35. Program control” on
page 467 for information about logical levels.)

The following example shows you how to handle conditions, such as DUPREC,
LENGERR, and so on, that can occur when you use a WRITE command to add a
record to a data set. Suppose that you want DUPREC to be handled as a special
case; that you want standard system action (that is, to terminate the task
abnormally) to be taken for LENGERR; and that you want all other conditions to
be handled by the error routine ERRHANDL. You would code:
EXEC CICS HANDLE CONDITION

ERROR(ERRHANDL)
DUPREC(DUPRTN) LENGERR

END-EXEC.

In a PL/I application program, a branch to a label in an inactive procedure or in
an inactive begin block, caused by a condition, produces unpredictable results.

In an assembler language application program, if a HANDLE condition and the
command that caused the condition are at the same logical level, the registers are
restored to their values in the application program at the point where the
command that caused the condition was issued. However, when the command that
causes a condition occurs at a lower logical level, the registers are restored to the
values saved in DFHEISTG when control is passed from the HANDLE
CONDITION level.

Use of the HANDLE CONDITION ERROR command
Figure 45 shows the first of only two HANDLE CONDITION commands used in
program ACCT01:

Chapter 20. Dealing with exception conditions 237

It passes control to the paragraph at label OTHER-ERRORS if any condition arises
for a command that does not specify NOHANDLE or RESP.

The HANDLE CONDITION ERROR command is the first command executed in
the procedure division of this COBOL program. This is because a HANDLE
CONDITION command must be processed before any CICS command is processed
that can raise the condition being handled. Note, however, that your program does
not see the effects when it processes the HANDLE CONDITION command; it only
sees them later, if and when it issues a CICS command that actually raises one of
the named conditions.

In this, and the other ACCT programs, you generally use the RESP option. All the
commands specifying the RESP option have been written with a “catch-all” test (IF
RESPONSE NOT = DFHRESP(NORMAL) GO TO OTHER-ERRORS) after any
explicit tests for specific conditions So any exceptions, other than those you might
particularly “expect”, take control to the paragraph at OTHER-ERRORS in each
program. Those relatively few commands that do not have RESP on them take
control to exactly the same place if they result in any condition other than
NORMAL because of this HANDLE CONDITION ERROR command.

How to use the IGNORE CONDITION command
Just as you can arrange for control to pass to a particular label for a specific
condition with a HANDLE CONDITION command, so you can have the program
continue when a specific condition occurs. You do this by setting up an IGNORE
CONDITION command to ignore one or more of the conditions that can
potentially arise on a command. The IGNORE CONDITION command means that
no action is to be taken if a condition occurs; control returns to the instruction
following the command and return codes are set in the EIB. The following example
ignores the MAPFAIL condition:

EXEC CICS IGNORE CONDITION MAPFAIL
END-EXEC.

While a single EXEC CICS command is being processed, it can raise several
conditions.5 CICS checks these and passes back to your application program the
first one that is not ignored (by your IGNORE CONDITION command). CICS
passes back only one exception condition at a time to your application program.

An IGNORE CONDITION command for a given condition applies only to the
program you put it in, and it remains active while the program is running, or until
a later HANDLE CONDITION command naming the same condition is met, in
which case the IGNORE CONDITION command is overridden.

5. For example, you may have a file control command that is not only invalid but also applies to a file not defined in the file control
table.

PROCEDURE DIVISION.
*
* INITIALIZE.
* TRAP ANY UNEXPECTED ERRORS.

EXEC CICS HANDLE CONDITION
ERROR(OTHER-ERRORS)
END-EXEC.

*

Figure 45. Trapping the unexpected with the HANDLE CONDITION ERROR command

238 CICS TS for OS/390: CICS Application Programming Guide

You can choose an IGNORE CONDITION command if you have a program
reading records that are sometimes longer than the space you provided, but you
do not consider this an error and do not want anything done about it. You might,
therefore, code IGNORE CONDITION LENGERR before issuing READ commands.

You can also use an IGNORE CONDITION ERROR command to catch any
condition considered as an error for which there is no currently active HANDLE
CONDITION command that includes a label. When an error occurs, control is
passed to the next statement and it is up to the program to check for return codes
in the EIB. See page 240 for examples of conditions that are not considered as
errors.

You can also switch from ignoring a condition to handling it, or to using the
system default action. For example, you could code:
* MIXED ERROR PROCESSING

EXEC CICS IGNORE CONDITION LENGERR
END-EXEC....
EXEC CICS HANDLE CONDITION DUPREC(DUPRTN)

LENGERR
ERROR(ERRHANDL)
END-EXEC.

Because this code initially ignores condition LENGERR, nothing happens if the
program raises a LENGERR condition; the application simply continues its
processing. Of course, if the fact that LENGERR has arisen means that the
application cannot sensibly continue, you have a problem.

Later in the code, you can explicitly set condition LENGERR to the system default
action by naming it in a HANDLE CONDITION command without a label. When
this command has been executed, the program no longer ignores condition
LENGERR, and if it subsequently occurs, it now causes the system default action.
The point about mixing methods is that you can, and that each condition is treated
separately.

You cannot code more than 16 conditions in the same command. You must specify
additional conditions in further IGNORE CONDITION commands.

Use of the HANDLE ABEND command

Note to Java, C and C++ programmers
Handle ABEND is not applicable to Java programs. Although HANDLE
ABEND is supported in C and C++ when used with the PROGRAM option,
it is not helpful in the context of this chapter because exception conditions in
C and C++ programs do not cause abends.

The HANDLE ABEND command activates or reactivates a program-level abend
exit within your application program; you can also use this command to cancel a
previously activated exit. For more information see the CICS Application
Programming Reference manual.

HANDLE ABEND lets you supply your own code to be executed when an abend
is processed. This means that your application can cope with the abnormal
situation in an orderly manner and carry on executing. You provide the user exit
programs and rely on CICS calling them when required.

Chapter 20. Dealing with exception conditions 239

The flow of control during abend processing is shown in Figure 46 on page 248.

RESP and NOHANDLE options
You can temporarily deactivate the effect of any HANDLE CONDITION command
by using the RESP or NOHANDLE option on a command. The way to use these
options is described in “Handling exception conditions by in-line code” on
page 232. If you do this, you lose the ability to use any system default action for
that command. In other words, you have to do your own “catch-all” error
processing.

How CICS keeps track of what to do
CICS has a table of the conditions referred to by HANDLE CONDITION and
IGNORE CONDITION commands in your application. Each execution of one of
these commands either updates an existing entry in this table, or causes CICS to
make a new entry if this is the first time the condition has been quoted in such a
command. Each entry tells CICS what to do by indicating one of the three
exception-handling states your application can be in, namely:
1. Let the program continue, with control coming straight back from CICS to the

next instruction following the command that has failed in your program. You
can then find out what happened by testing, for example, the RESP value that
CICS returns after executing a command. The result of this test enables you
decide what to do next. For details, see “Handling exception conditions by
in-line code” on page 232.
This is the recommended method, which is the approach taken in the “File A”
sample programs referred to in the Sample Applications Guide and in the COBOL
sample ACCT application in the CICS Application Programming Primer (VS
COBOL II). It is also the recommended approach for any new CICS
applications. It lends itself to structured code and removes the need for implied
GOTOs that CICS required in the past.

2. Pass control to a specified label if a named condition arises. You do this by
using a HANDLE CONDITION command or HANDLE CONDITION ERROR
command to name both the condition and the label of a routine in your code to
deal with it. For details, see “Use of HANDLE CONDITION command” on
page 237 and “Use of the HANDLE CONDITION ERROR command” on
page 237.

3. Taking the CICS system default action, where for most conditions, this is to
terminate the task abnormally and means that you do nothing by way of
testing or handling conditions.

For the conditions ENQBUSY, NOJBUFSP, NOSTG, QBUSY, SESSBUSY, and
SYSBUSY, the normal default is to force the task to wait until the required resource
(for example, storage) becomes available, and then resume processing the
command. You can change this behavior to ignoring the condition by using the
NOSUSPEND option. For the condition NOSPACE, the normal default is to wait if
processing a WRITEQ TS command, but to abend the task if processing a WRITEQ
TD, WRITE, or REWRITE command. Coding the WRITEQ TS command with the
NOSUSPEND option makes it ignore any NOSPACE condition that arises. For
more information see the CICS Application Programming Reference manual.

CICS keeps a table of these conditions for each link level. Essentially, therefore,
each program level has its own HANDLE state table governing its own condition
handling.

This behavior is modified by two more EXEC CICS commands:

240 CICS TS for OS/390: CICS Application Programming Guide

How to use PUSH HANDLE and POP HANDLE commands
PUSH HANDLE

Suspends the current effect of HANDLE CONDITION, IGNORE
CONDITION, HANDLE ABEND and HANDLE AID commands.

POP HANDLE
Reinstates the effect of HANDLE CONDITION, IGNORE CONDITION,
HANDLE ABEND and HANDLE AID commands to what they were before
the previous PUSH HANDLE was called.

CICS also keeps a table of conditions for each PUSH HANDLE command which
has not been countermanded by a matching POP HANDLE command.

When each condition occurs, CICS performs the following sequence of tests:
1. If the command has the RESP or NOHANDLE option, control returns to the

next instruction in your application program. Otherwise, CICS scans the
condition table to see what to do.

2. If an entry for the condition exists, this determines the action.
3. If no entry exists and the default action for this condition is to suspend

execution:
a. If the command has the NOSUSPEND or NOQUEUE option, control returns

to the next instruction.
b. If the command does not have one of these options, the task is suspended.

4. If no entry exists and the default action for this condition is to abend, a second
search is made, this time for the ERROR condition:
a. If found, this entry determines the action.
b. If ERROR cannot be found, the task is abended. You can choose to handle

abends. For information about the HANDLE ABEND command, see the
CICS Application Programming Reference manual.

Note: The OVERFLOW condition on a SEND MAP command is an exception to
the above rules. See the CICS Application Programming Reference manual for
more information.

The commands ALLOCATE, ENQ, GETMAIN, WRITE JOURNALNAME, WRITE
JOURNALNUM, READQ TD, and WRITEQ TS can all raise conditions for which
the default action is to suspend your application program until the specified
resource becomes available. So, on these commands, you have the NOSUSPEND
option to inhibit this waiting and return immediately to the next instruction in
your application program.

Some conditions can occur during the execution of a number of unrelated
commands. If you want the same action for all occurrences, code a single
HANDLE CONDITION command at the start of your program.

Note: As using RESP implies NOHANDLE, be careful when using RESP with the
RECEIVE command, because it overrides the HANDLE AID command as
well as the HANDLE CONDITION command. This means that PF key
responses are ignored, and is the reason for testing them earlier in the ACCT
code. See “The HANDLE AID command” on page 356.

Chapter 20. Dealing with exception conditions 241

242 CICS TS for OS/390: CICS Application Programming Guide

Chapter 21. Access to system information

You can write many application programs using the CICS command-level interface
without any knowledge of, or reference to, the fields in the CICS control blocks
and storage areas. However, you might need to get information that is valid
outside the local environment of your application program. You use the ADDRESS
and ASSIGN commands to access such information. For programming information
about these commands, see the CICS Application Programming Reference manual.

When using the ADDRESS and ASSIGN commands, various fields can be read but
should not be set or used in any other way. This means that you should not use
any of the CICS fields as arguments in CICS commands, because these fields may
be altered by the EXEC interface modules.

System programming commands
The INQUIRE, SET, and PERFORM commands allow application programs to
access information about CICS resources. The application program can retrieve and
modify information for CICS data sets, terminals, system entries, mode names,
system attributes, programs, and transactions. These commands plus the spool
commands of the CICS interface to JES, are primarily for the use of the system
programmer. For programming information, see the CICS System Programming
Reference manual.

EXEC interface block (EIB)
In addition to the usual CICS control blocks, each task in a command-level
environment has a control block known as the EXEC interface block (EIB)
associated with it. An application program can access all of the fields in the EIB by
name. The EIB contains information that is useful during the execution of an
application program, such as the transaction identifier, the time and date (initially
when the task is started, and subsequently, if updated by the application program
using ASKTIME), and the cursor position on a display device. The EIB also
contains information that is helpful when a dump is used to debug a program. For
programming information about EIB fields, see the CICS Application Programming
Reference manual.

© Copyright IBM Corp. 1989, 2000 243

244 CICS TS for OS/390: CICS Application Programming Guide

Chapter 22. Abnormal termination recovery

Java
This chapter does not apply to CICS Java programs. Abnormal termination
recovery in Java programs is described in “Abnormal termination in Java” on
page 72.

This chapter describes some ways of managing abnormal termination:
v “Creating a program-level abend exit” on page 246
v “Restrictions on retrying operations” on page 247
v “Trace” on page 248
v “Monitoring” on page 250
v “Dump” on page 250

CICS provides a program-level abend exit facility so that you can write exits of
your own which can receive control during abnormal termination of a task. The
“cleanup” of a program that has started but not completed normally is an example
of a function performed by such an abend exit.

Here are some causes of abnormal terminations:
v A user request by, for example:

EXEC CICS ABEND ABCODE(...)

v A CICS request as a result of an invalid user request. For example, an invalid
FREEMAIN request gives the transaction abend code ASCF.

v A program check, in which case the system recovery program (DFHSRP) is
driven, and the task abends with code ASRA.

v An operating system abend, in which case DFHSRP is driven, and the task
abends with code ASRB.

v A looping task, in which case DFHSRP is driven, and the task abends with code
AICA.

Note: If an ASRB or ASRA is detected in CICS code, CICS produces a dump
before calling your HANDLE ABEND exit.

See the CICS Problem Determination Guide for full details about fixing problems, and
see the CICS Messages and Codes for information about the transaction abend codes
for abnormal terminations that are initiated by CICS, their meanings, and your
responses.

The HANDLE ABEND command activates or reactivates a program-level abend
exit within your application program; you can also use this command to cancel a
previously activated exit.

When activating an exit, you must use the PROGRAM option to specify the name
of a program to receive control, or (except for C, C++, and PL/I programs) the
LABEL option to specify a routine label to which control branches when an
abnormal termination condition occurs. Using an ON ERROR block in PL/I is the
equivalent of using the HANDLE ABEND LABEL command.

© Copyright IBM Corp. 1989, 2000 245

|
|
|

A HANDLE ABEND command overrides any preceding such command in any
application program at the same logical level. Each application program of a
transaction can have its own abend exit, but only one abend exit at each logical
level can be active. (Logical levels are explained in “Chapter 35. Program control”
on page 467.)

When a task terminates abnormally, CICS searches for an active abend exit, starting
at the logical level of the application program in which the abend occurred, and
proceeding to successively higher levels. The first active abend exit found, if any, is
given control. This procedure is shown in Figure 46 on page 248, which also shows
how subsequent abend processing is determined by the user-written abend exit.

If CICS finds no abend exit, it passes control to the abnormal condition program to
terminate the task abnormally. This program invokes the user replaceable program
error program, DFHPEP. See the CICS Customization Guide for programming
information about how to customize DFHPEP.

CICS deactivates the exit upon entry to the exit routine or program to prevent
recursive abends in an abend exit. If you wish to retry the operation, you can
branch to a point in the program that was in control at the time of the abend and
issue a HANDLE ABEND RESET command to reactivate the abend exit. You can
also use this command to reactivate an abend exit (at the logical level of the
issuing program) that was canceled previously by a HANDLE ABEND CANCEL
command. You can suspend the HANDLE ABEND command by means of the
PUSH HANDLE and POP HANDLE commands as described in “How to use
PUSH HANDLE and POP HANDLE commands” on page 241.

Note that when an abend is handled, the dynamic transaction backout program is
not be invoked. If you need the dynamic transaction backout program, you take an
implicit or explicit syncpoint or issue SYNCPOINT ROLLBACK or issue an
ABEND command.

Where the abend is the result of a failure in a transaction running in an
IRC-connected system, for example AZI2, the syncpoint processing may abend
ASP1 if it attempts to use the same IRC connection during its backout processing.

The HANDLE ABEND command cannot intercept ASPx or APSJ abend codes.

Creating a program-level abend exit
You can either define abend exits by using RDO or by using the program
autoinstall exit. If you use the autoinstall method, the program definition is not
available at the time of the HANDLE ABEND. This may mean that a program
functions differently the first time it is invoked. If the program is not defined at the
time the HANDLE ABEND is issued, and program autoinstall is active, the
security check on the name of the program is the only one which takes place.
Other checks occur at the time the abend program is invoked. If the autoinstall
fails, the task abends APCT and control is passed to the next higher level.

Abend exit programs can be coded in any supported language, but abend exit
routines must be coded in the same language as their program.

For abend exit routines, the addressing mode and execution key are set to the
addressing mode and execution key in which the HANDLE ABEND command has
been issued.

246 CICS TS for OS/390: CICS Application Programming Guide

Upon entry to an abend exit program, no addressability can be assumed other than
that normally assumed for any application program coded in that language. There
are no register values for C, C++, or PL/I languages as these languages do not
support HANDLE ABEND label.

Upon entry to an abend exit routine, the register values are:

COBOL
Control returns to the HANDLE ABEND command with the registers restored;
a COBOL GOTO is then executed.

Assembler
Reg 15

Abend label.
Reg 0-14

Contents at the time of the last CICS service request.

There are three means of terminating processing in an abend exit routine or
program, as listed below. It is recommended that when abend routines and
programs are called by CICS internal logic they should terminate with an abend
because further processing is likely to cause more problems.
1. Using a RETURN command to indicate that the task is to continue running

with control passed to the program on the next higher logical level. If no such
program exists, the task is terminated normally, and any recoverable resources
are committed.

2. Using an ABEND command to indicate that the task is to be abnormally
terminated with control passed either to an abend exit specified for a program
on a higher logical level or, if there is not one, to the abnormal condition
program for abnormal termination processing.

3. Branching to retry an operation. When you are using this method of retrying an
operation, and you want to reenter the original abend exit routine or program
if a second failure occurs, the abend exit routine or program should issue the
HANDLE ABEND RESET command before branching. This is because CICS has
disabled the exit routine or program to prevent it reentering the abend exit.

In the case of an abend caused by a timeout on an outstanding RECEIVE
command, it is important to let the CICS abend continue, so that CICS can cancel
the RECEIVE.

Restrictions on retrying operations
If an abend occurs during the invocation of a CICS service, you should be aware
that issuing a further request for the same service may cause unpredictable results,
because the reinitialization of pointers and work areas, and the freeing of storage
areas in the exit routine, may not have been completed.

You should not try to recover from ATNI or ATND abends by attempting further
I/O operations. Either of these abends results in a TERMERR condition, requiring
the session to be terminated in all cases.

You should not try to issue terminal control commands while recovering from an
AZCT abend, as CICS has not fully cleaned up from the RTIMOUT, and an
indefinite wait can occur.

Chapter 22. Abnormal termination recovery 247

#
#
#

If intersystem communication is being used, an abend in the remote system may
cause a branch to the specified program or label, but subsequent requests to use
resources in the remote system fails.

If an abend occurs as a result of a BMS command, control blocks are not tidied up
before control is returned to the BMS program, and results are unpredictable if the
command is retried.

Trace
CICS trace is a debugging aid for application programmers, system programmers,
and IBM field engineers. It produces trace entries in response to trace commands.
The trace entries can be sent to any trace destination that is currently active. The
destinations are:
v Internal trace table
v Auxiliary trace data set
v Generalized trace facility (GTF) data set

For information about trace destinations, see the CICS Problem Determination Guide.

You can:

Task ABEND

Deactivate

the exit

Action taken in

exit program

or routine

Look at the next

higher level

Terminate the task

abnormally

Terminate the task

normal ly

Exit to program

at the next higher

leve l

ABEND

Is there

an exit active

at this level?

Is

application

program at highest

level?

Is

application

program at highest

level?

Yes

Yes

Yes

No

No

No

RETURN

Transfer control

to program or

branch to label

Figure 46. ABEND exit processing

248 CICS TS for OS/390: CICS Application Programming Guide

v Specify user trace entry points (ENTER TRACENUM). (The earlier ENTER
TRACEID command is supported for compatibility purposes. See the CICS for
MVS/ESA 4.1 Migration Guide for details.)

v Switch CICS internal trace on or off using the SET TRACEDEST, SET
TRACEFLAG, and SET TRACETYPE commands.
(TRACE ON and TRACE OFF are supported for compatibility only, and for
programming information you should see the CICS Application Programming
Reference manual.)
You can still use the TRACE command to control tracing of current CICS
components. (Components that are new since CICS/ESA 3.3 are dealt with by
the SET TRACETYPE command—see the programming information in the CICS
System Programming Reference manual.)

Trace entry points
The points at which trace entries are produced during CICS operation are of four
types: system trace entry points, user trace entry points, exception trace entry
points, and user exception trace entry points. See the CICS Problem Determination
Guide for more information about tracing.

System trace entry points
These are points within CICS at which trace control requests are made. The most
important system trace entry points for application programmers are for the EXEC
interface program. These produce entries in the trace table whenever a CICS
command is processed.

Two trace entries are made: the first when the command is issued, and the second
when CICS has performed the required function and is about to return control to
your application program. Between them, these two trace entries allow you to trace
the flow of control through an application, and to check which exception
conditions, if any, occurred during its execution. The ABEND, RETURN,
TRACEFLAG, and XCTL commands produce single entries only. For programming
information about these commands, see the CICS Application Programming Reference
manual.

User trace entry points
These are additional points within your application program that you can include
in the trace table to allow complete program debugging. For example, you could
specify an entry for a program loop containing a counter value showing the
number of times that the loop had been entered.

A trace entry is produced wherever the ENTER command is run. Each trace entry
request, which can be given a unique identifier, causes data to be placed in the
trace table.

Exception trace entry points
These are additional points where CICS has detected an exception condition. These
are made from specific points in the CICS code, and data is taken from areas that
might provide some information about the cause. Exception trace entry points do
not have an associated “level” attribute; trace calls are only ever made from them
when exception conditions occur.

User exception trace entry points
These are trace entries that are always written to the internal trace table (even if
internal tracing is set off), but are written to other destinations only if they are
active. You can identify them by the character string *EXCU in any formatted trace
output produced by the CICS utility programs. See the CICS Problem Determination

Chapter 22. Abnormal termination recovery 249

Guide for general information about user exception trace entry points;
programming information is in the CICS Customization Guide.

Monitoring
CICS monitoring provides information about the performance of your application
transactions.

You should use the MONITOR command for user event monitoring points.

In addition to the monitoring data collected from a system defined elsewhere,
monitoring points (EMPs) within CICS, a user application program can contribute
data to user fields within the CICS monitoring records. You can do this by using
the MONITOR POINT command to invoke user-defined EMPs. At each of these
EMPs, you can add or change up to 4096 bytes of your own data in each
performance monitoring record. In those 4096 bytes, you can have any combination
of the following:
v In the range 0 through 256 counters
v In the range 0 through 256 clocks
v A single 256-byte character string

For example, you could use these user EMPs to count the number of times a
certain event occurs, or to time the interval between two events. For programming
information about monitoring, see the CICS Customization Guide; for background
information, see the CICS Performance Guide.

Dump
CICS dump allows you to specify areas of main storage to be dumped, by means
of the DUMP TRANSACTION command, onto a sequential data set, which can be
either on disk or tape.

The PERFORM DUMP command allows you to request a system dump. See the
CICS System Programming Reference manual for programming information about
PERFORM DUMP.

You can format the contents of the dump data set and you can print them offline
using the CICS dump utility program (DFHDU530) for transaction dumps or the
interactive problem control system (IPCS) for system dumps. Instructions on using
these programs are given in the CICS Operations and Utilities Guide.

Only one dump control command is processed at a time. If you issue additional
dump control commands, while another task is taking a transaction dump, activity
within the tasks associated with those commands is suspended until the dump is
completed. Remaining dump commands are processed in the order in which they
are made. Using the DUMP TRANSACTION command causes some fields (for
example, EIBFN and EIBRCODE) in the EIB and the TCA to be overwritten. See
the CICS Application Programming Reference manual for programming information
about DUMP TRANSACTION.

Options on the DUMP TRANSACTION command allow you to dump the
following areas of main storage in various combinations:
v Task-related storage areas: selected main storage areas related to the requesting

task. You would normally use a dump of these areas to test and debug your
application program. (CICS automatically provides this service if the related task
is terminated abnormally.)

250 CICS TS for OS/390: CICS Application Programming Guide

v CICS control tables:
– File control table (FCT)
– Destination control table (DCT)
– Program control table (PCT)
– Processing program table (PPT)
– System initialization table (SIT)
– Terminal control table (TCT)

A dump of these tables is typically the first dump taken in a test in which the
base of the test must be established; subsequent dumps are usually of the
task-related storage type.

v It is sometimes appropriate during execution of a task to have a dump of both
task-related storage areas and CICS control tables. Specifying one CICS control
tables dump and a number of task-related storage dumps is generally more
efficient than specifying a comparable number of complete dumps. However,
you should not use this facility excessively because CICS control tables are
primarily static areas.

v In addition, the DUMP TRANSACTION command used with the three options,
SEGMENTLIST, LENGTHLIST, and NUMSEGMENTS, allows you to dump a
series of task-related storage areas simultaneously.

Program storage is not dumped for programs defined with the attribute
RELOAD(YES).

You also get a list of the CICS nucleus modules and active PPT programs, indexed
by address, at the end of the printed dump.

Chapter 22. Abnormal termination recovery 251

252 CICS TS for OS/390: CICS Application Programming Guide

Part 4. Files and databases

Chapter 23. An overview of file control 255
VSAM data sets 255

Key-sequenced data set (KSDS) 256
Entry-sequenced data set (ESDS) 256
Relative record data set (RRDS) 256
Empty data sets 257
VSAM alternate indexes 257
Accessing files in RLS mode 258

Some RLS limitations. 258
BDAM data sets 258
CICS shared data tables 260
Coupling facility data tables 260

Coupling facility data table models 262
Comparison of different techniques for sharing
data 263
Reading records 265

Direct reading (using READ command) . . . 265
Direct reading from a KSDS 265
Direct reading from an ESDS 266
Direct reading from an RRDS 266
Direct reading by way of a path 266
Read integrity (in RLS mode) 266

Sequential reading (browsing) 267
Browsing through a KSDS 268
Browsing through an ESDS. 268
Browsing through an RRDS 268
Browsing using a path 269
Browse integrity (in RLS mode) 269
Ending the browse 269
Simultaneous browse operations 269

Skip-sequential processing 269
Updating records 269
Deleting records 270

Deleting single records 270
Updating and deleting records in a browse
(VSAM RLS only) 271

Deleting groups of records (generic delete) . . 272
Read integrity 272

Adding records. 272
Adding to a KSDS. 272
Adding to an ESDS 272
Adding to an RRDS 273
Records that are already locked 273
Specifying record length 273
Sequential adding of records (WRITE
MASSINSERT command) 273

Review of file control command options 273
The RIDFLD option 273
The INTO and SET options. 274
The FROM option 274
The TOKEN option 275

Avoiding transaction deadlocks 275
VSAM-detected deadlocks (RLS only) 277
Rules for avoiding deadlocks 277

KEYLENGTH option for remote data sets 278

Chapter 24. File control—VSAM considerations 279
Record identification 279

Key 279
Relative byte address (RBA) and relative record
number (RRN) 279

RBA 279
RRN 280

Locking of VSAM records in recoverable files . . 280
Update locks and delete locks (non-RLS mode
only) 280

Record locking of VSAM records for files accessed
in RLS mode 281

Exclusive locks and shared locks 281
Exclusive locks 282
Shared locks. 282
Lock duration 282
Active and retained states for locks 283

Conditional update requests 284
File control implementation of NOSUSPEND 284

CICS locking for writing to ESDS. 285

Chapter 25. File control—BDAM considerations 287
Record identification 287

Block reference subfield 287
Physical key subfield 287
Deblocking argument subfield 287

Updating records from BDAM data sets 288
Browsing records from BDAM data sets 288
Adding records to BDAM data sets 289
BDAM exclusive control 290

Chapter 26. Database control 291
DL/I databases 291
DATABASE 2 (DB2) databases. 291

Requests to DB2 291

© Copyright IBM Corp. 1989, 2000 253

||
||
|
||

254 CICS TS for OS/390: CICS Application Programming Guide

Chapter 23. An overview of file control

This chapter provides an overview of the following facilities:
v “VSAM data sets”
v “BDAM data sets” on page 258
v “CICS shared data tables” on page 260
v “Reading records” on page 265
v “Updating records” on page 269
v “Deleting records” on page 270
v “Adding records” on page 272
v “Review of file control command options” on page 273
v “Avoiding transaction deadlocks” on page 275
v “KEYLENGTH option for remote data sets” on page 278

Java and C++
The application programming interface described in this part of the book is
the EXEC CICS API, which is not used in Java programs. For information
about Java programs using the JCICS classes to access files managed by CICS,
see “The JCICS Java classes” on page 69 and the JCICS Javadoc html
documentation. For information about C++ programs using the CICS C++
classes see the CICS C++ OO Class Libraries manual.

CICS file control offers you access to data sets that are managed by either a virtual
storage access method (VSAM) or a basic direct access method (BDAM).

CICS file control lets you read, update, add, and browse data in VSAM and BDAM
data sets and delete data from VSAM data sets. You can also access CICS shared
data tables and coupling facility data tables using file control.

A CICS application program reads and writes its data in the form of individual
records. Each read or write request is made by a CICS command.

To access a record, the application program must identify both the record and the
data set that holds it. It must also specify the storage area into which the record is
to be read or from which it is to be written.

VSAM data sets
CICS supports access to the following types of data set:
v Key-sequenced data set (KSDS)
v Entry-sequenced data set (ESDS)
v Relative record data set (RRDS) (both fixed and variable record lengths)

VSAM data sets are held on direct access storage devices (DASD) auxiliary storage.
VSAM divides its data set storage into control areas (CA), which are further
divided into control intervals (CI). Control intervals are the unit of data
transmission between virtual and auxiliary storage. Each one is of fixed size and,
in general, contains a number of records. A KSDS or ESDS can have records that
extend over more than one control interval. These are called spanned records.

© Copyright IBM Corp. 1989, 2000 255

|
|
|
|
|
|

|
|

Key-sequenced data set (KSDS)
A key-sequenced data set has each of its records identified by a key. (The key of
each record is simply a field in a predefined position within the record.) Each key
must be unique in the data set.

When the data set is initially loaded with data, or when new records are added,
the logical order of the records depends on the collating sequence of the key field.
This also fixes the order in which you retrieve records when you browse through
the data set.

To find the physical location of a record in a KSDS, VSAM creates and maintains
an index. This relates the key of each record to the record’s relative location in the
data set. When you add or delete records, this index is updated accordingly.

With releases of DFSMS/MVS 1.4 and later, a data set can be greater than 4GB in
size if it is defined as extended format and extended addressability in the storage
class. CICS supports, in both RL and non-RLS mode, KSDS data sets that are
defined with these extended attributes.

Entry-sequenced data set (ESDS)
An entry-sequenced data set is one in which each record is identified by its
relative byte address (RBA).

Records are held in an ESDS in the order in which they were first loaded into the
data set. New records added to an ESDS always go after the last record in the data
set. You may not delete records or alter their lengths. After a record has been
stored in an ESDS, its RBA remains constant. When browsing, records are retrieved
in the order in which they were added to the data set.

With releases of DFSMS/MVS 1.5 and later, a data set can be greater than 4GB in
size if it is defined as extended format and extended addressability in the storage
class. However, CICS does not support ESDS data sets that are defined with these
extended attributes. Attempts to open data sets defined with the extended attribute
fail with error message DFHFC0966, codes 8504, 0008,0068.

Relative record data set (RRDS)
A relative record data set has records that are identified by their relative record
number (RRN). The first record in the data set is RRN 1, the second is RRN 2, and
so on.

Records in an RRDS can be fixed or variable length records, and the way in which
VSAM handles the data depends on whether the data set is a fixed or variable
RRDS. A fixed RRDS has fixed-length slots predefined to VSAM, into which
records are stored. The length of a record on a fixed RRDS is always equal to the
size of the slot. VSAM locates records in a fixed RRDS by multiplying the slot size
by the RRN (which you supply on the file control request), to calculate the byte
offset from the start of the data set.

A variable RRDS, on the other hand, can accept records of any length up to the
maximum for the data set. In a variable RRDS VSAM locates the records by means
of an index.

A fixed RRDS generally offers better performance. A variable RRDS offers greater
function.

256 CICS TS for OS/390: CICS Application Programming Guide

#
#
#
#

#
#
#
#
#

With releases of DFSMS/MVS 1.5 and later, a data set can be greater than 4GB in
size if it is defined as extended format and extended addressability in the storage
class. However, CICS does not support RRDS or VRRDS data sets that are defined
with these extended attributes. Attempts to open data sets defined with the
extended attribute fail with error message DFHFC0966, codes 8504, 0008,0068.

Empty data sets
An empty data set is a data set that has not yet had any records written to it.
VSAM imposes several restrictions on an empty data set that is opened in non-RLS
access mode. However, CICS hides all these restrictions from you, allowing you to
use an empty data set in the same way as a data set that contains data, regardless
of the access mode.

VSAM alternate indexes
Sometimes you want to access the same set of records in different ways. For
example, you may have records in a personnel data set that have as their key an
employee number. No matter how many Smiths you have, each of them has a
unique employee number. Think of this as the primary key.

If you were producing a telephone directory from the data set, you would want to
list people by name rather than by employee number. You can identify records in a
data set with a secondary (alternate) key instead of the primary key described
above. So the primary key is the employee number, and the employee name is the
alternate key. Alternate keys are just like the primary key in a KSDS—fields of
fixed length and fixed position within the record. You can have any number of
alternate keys per base file and, unlike the primary or base key, alternate keys need
not be unique.

To continue the personnel example, the employee’s department code might be
defined as a further alternate key.

VSAM allows KSDS and ESDS (but not RRDS) data sets to have alternate keys.
When the data set is created, one secondary or alternate index is built for each
alternate key in the record and is related to the primary or base key. To access
records using an alternate key, you must define a further VSAM object, an
alternate index path. The path then behaves as if it were a KSDS in which records
are accessed using the alternate key.

When you update a record by way of a path, the corresponding alternate index is
updated to reflect the change. However, if you update the record directly by way
of the base, or by a different path, the alternate index is only updated if it has been
defined to VSAM (when created) to belong to the upgrade set of the base data set.
For most applications, you probably want your alternate index to be in the
upgrade set.

A CICS application program disregards whether the file it is accessing is a path or
the base. In a running CICS system, access to a single base data set can be made
by way of the base and by any of the paths defined to it, if each access route is
defined in the file control table (FCT).

It is also possible for a CICS application program to access a file that has been
directly defined as an alternate index rather than a path. This results in index data
being returned to the application program rather than file data. This operation is
not supported for files opened in record-level sharing (RLS) mode.

Chapter 23. An overview of file control 257

#
#
#
#
#

Accessing files in RLS mode
Record-level sharing (RLS) is a VSAM function, provided by DFSMS™ Version 1
Release 3 and later releases, that enables VSAM data to be shared, with full update
capability, between many applications running in many CICS regions.

With RLS, CICS regions that share VSAM data sets can reside in one or more MVS
images within an MVS parallel sysplex. RLS also provides some benefits when
data sets are being shared between CICS regions and batch jobs.

If you open a file in RLS mode, locking takes place at the record level instead of
the Control-Interval level, thus reducing the risk of deadlocks.

CICS supports record-level sharing (RLS) access to the following types of VSAM
data set:
v Key sequenced data sets (KSDS)
v Entry sequenced data sets (ESDS)
v Relative record data sets (RRDS), for both fixed and variable length records

However, if you are using KSDS, you cannot use the relative byte address (RBA) to
access files.

Note: If you issue the SET FILE EMPTY command for a file that specifies RLS
mode, the request is accepted but is ignored all the time the file is opened in
RLS mode. If you close and switch the file to non-RLS mode, the data set is
then reset to empty (provided it is defined as reusable on its IDCAMS
definition).

Some RLS limitations
Most types of data set are eligible to participate in VSAM record level sharing and
most CICS applications can benefit from this mode of access. However, there are
some limitations that could affect some applications. The following types of file,
data set, or method of access are not supported in RLS mode:
v RBA access to a KSDS
v Key-range data sets
v Temporary data sets
v VSAM clusters with the IMBED attribute
v Direct opening of an alternate index
v Opening individual components of a cluster
v Access to catalogs or to VVDS data sets
v CICS-maintained data tables
v Hiperbatch™

BDAM data sets
CICS supports access to keyed and nonkeyed BDAM data sets. BDAM support
uses the physical nature of a record on a DASD device. BDAM data sets consist of
unblocked records with the following format:

258 CICS TS for OS/390: CICS Application Programming Guide

|

|
|
|
|
|

|

Keyed BDAM files have a physical key identifying the BDAM record. The count
area contains the physical key length, the physical data length, and the record’s
data location.

CICS can define a further structure on top of BDAM data sets, introducing the
concept of blocked-data sets:

The data portion of the physical record is viewed as a block containing logical
records. CICS supports the retrieval of logical records from the data part of the
physical record. CICS also supports unblocked records (where the structure reverts
to the original BDAM concept of one logical record per physical record).

To retrieve data from a physical record in a BDAM file under CICS, a record
identification field (RIDFLD) has to be defined to specify how the physical record
should be retrieved. This may be done using the physical key, by relative address,
or by absolute address.

If the data set is defined to CICS as being blocked, individual records within the
block can be retrieved (deblocked) in two addressing modes: by key or by relative
record.

Deblocking by key uses the key of the logical record (that is, the key contained in
the logical record) to identify which record is required from the block. Deblocking
by relative record uses the record number in the block, relative to zero, of the
record to be retrieved.

You specify the key or relative record number used for deblocking in a subfield of
the RIDFLD option used when accessing CICS BDAM files. The addressing mode
for CICS BDAM files is set in the FCT using the RELTYPE keyword.

For more details about record identification and BDAM record access, see
“Chapter 25. File control—BDAM considerations” on page 287.

Physical
Count (recorded) Data

key

Physical record

Figure 47. Format of unblocked records in a BDAM data set

Count Physical Data
key

logrec 1 logrec 2

Physical record

Figure 48. Blocked-data set

Chapter 23. An overview of file control 259

CICS shared data tables
The file control commands can access shared data tables. Shared data tables offer a
method of constructing, maintaining, and gaining rapid access to data records
contained in tables held in virtual storage, above the 16MB line. Each shared data
table is associated with a VSAM KSDS, known as its source data set. For more
information about shared data tables, see the CICS Shared Data Tables Guide.

A table is defined using the CEDA DEFINE FILE panel or the DFHFCT macro.
When a table is opened, CICS builds it by extracting data from the table’s
corresponding source data set and loading it into virtual storage above the 16MB
line.

CICS supports two types of shared data table, as follows:

CICS-maintained tables (CMTs)
This type of data table is kept in synchronization with its source data set
by CICS. All changes to the data table are reflected in the source data set.
Similarly all changes to the source data set are reflected in the data table.

Note that the source for a CICS-maintained data table cannot be a file
opened in RLS access mode.

User-maintained tables (UMTs)
This type of data table is completely detached from its source data set after
it has been loaded. Changes to the table are not automatically reflected in
the source data set.

The full file control API appropriate to VSAM KSDS data sets is supported for
CICS-maintained data tables. Requests that cannot be satisfied by reference to the
data table result in calls to VSAM to access the source data set. Tables defined to
be recoverable are supported with full integrity.

A subset of the file control API is supported for user-maintained tables. For
programming information about the commands, you should see the CICS
Application Programming Reference manual where they are listed separately under
the file control command name, followed by UMT. For example, the information
on writing a record to a user-maintained table is given under WRITE(UMT). A
table defined as recoverable participates in dynamic transaction backout but is not
recovered at restart or XRF takeover.

Coupling facility data tables
The CICS file control commands can access coupling facility data tables (CFDTs).
Coupling facility data tables provide a method of file data sharing, without the
need for a file-owning region, and without the need for VSAM RLS support. CICS
coupling facility data table support is designed to provide rapid sharing of
working data across a sysplex, with update integrity. The data is held in a coupling
facility, in a table that is similar in many ways to a shared user-maintained data
table. A coupling facility data table is different from a UMT in one important
respect in that initial loading from a VSAM source data set is optional . You can
specify LOAD(NO) and load the table by writing data directly from a user
application program. The API used to store and retrieve the data is based on the
file control API used for user-maintained data tables. Read access and write access
to CFDTs have similar performance, making this form of table particularly useful
for informal shared data. Informal shared data is characterised as:

260 CICS TS for OS/390: CICS Application Programming Guide

|

|
|
|
|
|
|
|
|
|
|
|
|
|

v Data that is relatively short-term in nature (it is either created as the application
is running, or is initially loaded from an external source)

v Data volumes that are not usually very large
v Data that needs to be accessed fast
v Data of which the occasional loss can be tolerated by user applications
v Data that commonly requires update integrity.

Typical uses might include sharing scratchpad data between CICS regions across a
sysplex, or sharing of files for which changes do not have to be permanently
saved. There are many different ways in which applications use informal shared
data, and most of these could be implemented using coupling facility data tables.
Coupling facility data tables are particularly useful for grouping data into different
tables, where the items can be identified and retrieved by their keys. For example,
you could use a record in a coupling facility data table to maintain the next free
order number for use by an order processing application. Other examples are:
v Look-up tables of telephone numbers or the numbers of stolen credit cards
v Working data consisting of a few items, such as a subset of customers from a

customer list
v Information that is specific to the user of the application, or that relates to the

terminal from which the application is being run
v Data extracted from a larger file or database for further processing.

Coupling facility data tables allow various types of access to your informal data:
read-only, single updater, multiple updaters, sequential access, random access,
random insertion and deletion.

For many purposes, because it is global in scope, coupling facility data tables can
offer significant advantages over resources such as the CICS common work area
(CWA).

To an application program, a CFDT appears much like a sysplex-wide
user-maintained data table: a CFDT is accessed using the same subset of the API as
a UMT (that is, the full file control API except for the MASSINSERT and RBA
options). However, a CFDT is restricted to a maximum key-length of 16 bytes.

Note the following comparisons with user-maintained data tables:
v Updates to a CFDT, like updates to a UMT, are not reflected in the base VSAM

data set (if the table was initially loaded from one). Updates are made to the
CFDT only.

v A CFDT is loaded once only, when the table is first created in the coupling
facility data table, and remains in existence in the coupling facility, even when
the last file referring to the CFDT is closed (whereas a UMT is deleted each time
the owning region terminates). You can force a reload of a CFDT from the
original source data set only by first deleting the table from the CFDT pool6,
using a CFDT server DELETE TABLE command. The first file opened against the
CFDT after the delete operation causes the server to reload the table.

v The access rules for a UMT that is in the course of loading allow any direct read
request to be satisfied either from the table (if the record has already been
loaded) or from the source data set, but reject any update request, or imprecise

6. A coupling facility data table pool is defined as a coupling facility list structure, and can hold more than one data table (see the
CICS System Definition Guide for information about creating a list structure for coupling facility data tables).

Chapter 23. An overview of file control 261

|
|

|

|

|

|

|
|
|
|
|
|
|
|

|

|
|

|
|

|

|
|
|

|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|
|

read or browse request, with the LOADING condition. For a CFDT, any request
is allowed during loading, but requests succeed only for records that are within
the key range already loaded.

Coupling facility data table models
There are two models of coupling facility data table:

Contention model
This gives optimal performance, but requires programs that are written to
handle the situation where the data has been changed since it issued a
read-for-update request. The new CHANGED response can occur on a
REWRITE or DELETE command. There is also a new use for the existing
NOTFND response, which may be returned to indicate to the application
program that the record has been deleted since the program issued the
read-for-update request.

Note: It might be possible to use existing programs with the contention
model if you are sure they cannot receive the CHANGED or
NOTFND exceptions on a REWRITE or DELETE. An example of this
could be where an application program operates only on records
that relate to the user of the program, and therefore no other user
could be updating the same records.

Locking model
This model is API-compatible with existing programs that conform to the
UMT subset of the file control API. The locking model can be:

Non-recoverable
For updates to non-recoverable CFDTs, locks do not last until
syncpoint (they are released on completion of the file control
request) and updates are not backed out if a unit of work fails

Recoverable
CFDTs are recoverable in the event of a unit of work failure, and in
the event of a CICS region failure, a CFDT server failure, and an
MVS failure (updates made by units of work that were in-flight at
the time of the failure are backed out).

The recoverable locking model supports in-doubt and backout
failures: if a unit of work fails when backing out an update to the
CFDT, or if it fails in-doubt during syncpoint processing, the locks
are converted to retained locks and the unit of work is shunted.

CFDTs cannot be forward recoverable. A CFDT does not survive
the loss of the CF structure in which it resides.

You specify the update model you want for each table on its file resource
definition, enabling different tables to use different models.

262 CICS TS for OS/390: CICS Application Programming Guide

|
|
|

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

Comparison of different techniques for sharing data
This topic indicates when you should consider using a coupling facility data table
by comparing, in tabular form, the various CICS techniques that you can use for
different situations.

Table 15. Techniques for sharing scratchpad data

Constraints and factors Single Region Single MVS Sysplex

Technique no longer
recommended (too
restrictive)

TWA — —

Recommended method for
single area for each
transaction

COMMAREA COMMAREA COMMAREA

Existing application
programs use temporary
storage (TS) queues

Local TS queue Remote TS queue Shared TS queue

Existing programs use
UMT

Random insert and
delete required

Multiple types of
data stored

UMT Remote UMT
CFDT (contention

model)

In Table 15, different techniques are considered for passing scratchpad data
between phases of a transaction, where only one task is accessing the data at a
time, but the data may be passed from a task in one region to a task in another.
Note that ‘remote UMT’ means a shared user-maintained data table that is
accessed from AORs either by function shipping where necessary (that is, for
update accesses) or by SDT cross-memory sharing for non-update accesses. The
table shows that, within a Parallel Sysplex, a coupling facility data table is the best
solution for random insertion and deletion of data, and where multiple types of
data need to be stored. Without these constraints, shared TS queues are a more
appropriate choice if the application programs are already using temporary
storage.

Table 16. Techniques for sharing queues of data

Constraints and factors Single Region Single MVS Sysplex

Read-only at head,
write-only at tail
Triggering required

Local transient
data (TD)

Remote TD Remote TD

Process batches of items
TS queue or UMT

Remote TS or remote
UMT

Shared TS or
CFDT

Delete each item after
processing. Random insert
and delete required.

UMT Remote UMT CFDT

In Table 16, different techniques for sharing queues of data are shown, where
information is stored in a specific sequence, to be processed by another application
program or task in the same sequence. The CICS transient data and temporary
storage queue facilities are recommended in the majority of cases, with a few
instances where data tables provide a more appropriate solution for handling
sequenced data.

Chapter 23. An overview of file control 263

|

|
|
|

||

||||

|
|
|
|||

|
|
|
|||

|
|
|
|||

|
|
|
|
|
|

||||

|

|
|
|
|
|
|
|
|
|
|
|

||

||||

|
|
|

|
|||

||||
|
|

|
|
|
|||

|

|
|
|
|
|
|

Table 17. Techniques for sharing control records

Constraints and factors Single
Region

Single MVS Sysplex

Technique no longer
recommended

CWA MVS CSA —

Single updating region,
single record

TS queue or
UMT

Remote TS queue or
UMT

Shared TS queue or
CFDT (contention

model)

Multiple updating regions
or multiple records

UMT Remote UMT CFDT

In Table 17, different techniques for managing control records are shown. This
illustrates where a central control record is used to make information available to
all transactions. For example, this may contain the next unused order number, or
customer number, to make it easier for programs to create new records in a keyed
file or database. (For this type of application, you should also consider the named
counter function, which is also a sysplex-wide facility. See “Chapter 16. Using
named counter servers” on page 199 for details.)

The table shows that within an MVS image, if there is a single region that makes
all the updates to a single record, you can use a UMT without any function
shipping overheads.

Where there are multiple regions updating the control record, or there is more than
one control record to update, then a coupling facility data table is the only solution
within a Parallel Sysplex environment, and it could also be more effective than
function shipping the updates to a UMT within a single MVS.

Table 18. Techniques for sharing keyed data

Constraints and factors Single
Region

Single MVS Sysplex

Read-only or rarely updated UMT UMT Replicated UMT

Single updating region
UMT UMT

Replicated UMT or
CFDT

Multiple updating regions
Recoverable (backout only)

UMT
Remote UMT or

CFDT
CFDT

In Table 18, different techniques for sharing keyed data are shown. This covers
applications that use data similar in structure to a conventional keyed file, but
where the information does not need to be stored permanently, and the
performance benefits are sufficient to justify the use of main storage or coupling
facility resources to store the relevant data.

This kind of data is most appropriately accessed using the file control API, which
means that within a Parallel Sysplex, the solution is to use:
v A replicated user-maintained data table where the highest performance is

required, and where access is either read-only, or updates are rare and you can
arrange to make these from a single region and refresh the replicated UMT in
other regions

v A coupling facility data table.

264 CICS TS for OS/390: CICS Application Programming Guide

||

||
|
||

|
||||

|
|||
|
|

|
|
|

|
||||

|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

||

||
|
||

||||

|||||

|
||
|
||

|

|
|
|
|
|

|
|

|
|
|
|

|

Note that recovery support for UMTs is limited to transaction backout after a
failure. For coupling facility data tables, recovery is also provided for CICS and
CFDT server failures, and also for in-doubt failures,

Reading records
This section describes the facilities available to application programs for accessing
data sets. Although VSAM data sets, are discussed, most of the facilities apply
equally to BDAM.

A file can be defined in the file definition as containing either fixed-length or
variable-length records. Fixed-len

th records should be defined only if:
v The definition of the VSAM data set (using access method services) specifies an

average record size that is equal to the maximum record size

and

v All the records in the data set are of that length.

For direct reading and browsing, if the file contains fixed-length records, and if the
application program provides an area into which the record is to be read, that area
must be of the defined length. If the file contains variable-length records, the
command must also specify the length of the area provided to hold them (which
should normally be the maximum length of records in the file).

For fixed-length records and for records retrieved into storage provided by CICS
(when you use the SET option), you need not specify the LENGTH argument.
However, although the LENGTH argument is optional, you are recommended to
specify it when using the INTO option, because it causes CICS to check that the
record being read is not too long for the available data area. If you specify
LENGTH, CICS uses the LENGTH field to return the actual length of the record
retrieved.

Direct reading (using READ command)
You read a record in the file with the READ command. This must identify the
record you want and say whether it is to be read into an area of storage provided
by your application program (READ INTO), or into CICS SET storage acquired by
file control (READ SET). If the latter, the address of the data in the CICS SET
storage is returned to your program.

CICS SET storage normally remains valid until the next syncpoint, or the end of
the task, or until next READ against the same file, whichever comes first.

Direct reading from a KSDS
When reading from a KSDS, you can identify the record you want uniquely by
specifying its full key, or you can retrieve the first (lowest key) record whose key
meets certain requirements. There are two options that qualify your key value;
GENERIC and GTEQ.

The GENERIC option indicates that you require a match on only a part of the key;
when you specify the GENERIC option, you also must specify the KEYLENGTH
option, to say how many positions of the key, starting from the left, must match.
For the READ command, CICS uses only the first KEYLENGTH option characters.

Chapter 23. An overview of file control 265

|
|
|

The GTEQ option indicates that you want the first record whose key is “greater
than or equal to” the key you have specified. You can use GTEQ with either a full
or a generic key.

The opposite of the GTEQ option is the EQUAL option (the default), which means
that you want only a record whose key matches exactly that portion (full or
generic) of the key that you have specified.

Direct reading from an ESDS
When reading from an ESDS, the individual record you want is identified by an
RBA. Because the RBA of a record in an ESDS cannot change, your application
program can keep track of the values of the RBAs corresponding to the records it
wants to access. An RBA must always point to the beginning of a record. There is
no equivalent to the GENERIC or GTEQ options that you can use to position
approximately in a KSDS.

Direct reading from an RRDS
When reading from an RRDS, the record to be retrieved is identified by its relative
record number. The application program must know the RRN values of the records
it wants. There is no equivalent to the GENERIC or GTEQ options that you can
use to position approximately in a KSDS.

Direct reading by way of a path
If a KSDS or an ESDS has an alternate index and an alternate index path (and an
appropriate entry in the FCT), you can retrieve a record in the file by using the
alternate key that you set up in the alternate index. The GENERIC option and the
GTEQ (greater than or equal to) option still work in the same way as for a read
from a KSDS using the primary key.

If the alternate key in a READ command is not unique, the first record in the file
with that key is read and you get the DUPKEY condition. To retrieve other records
with the same alternate key, you have to start a browse operation at this point.

Read integrity (in RLS mode)
CICS supports three options to control read integrity with RLS. You can specify
these options on the file control API. Alternatively, if the application request does
not specify any of the options (UNCOMMITTED, CONSISTENT, or REPEATABLE),
the value from the file resource definition is used. These options are:

UNCOMMITTED
There is no read integrity and shared locks are not used for read requests. (See
“Record locking of VSAM records for files accessed in RLS mode” on page 281
for information about shared and exclusive locks.) This is the default and is the
way in which file control works for files that are opened in non-RLS mode.

CONSISTENT
A request to read a record is queued if the record is being updated by another
task. The read completes only when the update is complete, and the updating
unit of work (UOW) relinquishes its exclusive lock. UOWs and syncpoints are
discussed in “Syncpointing” on page 225.

REPEATABLE
Processing of the read request is the same as for consistent read requests.
However, in this case, the reader holds on to its shared lock until syncpoint.
This applies to both recoverable and non-recoverable files. This ensures that a
record read in a UOW cannot be modified while the UOW makes further read

266 CICS TS for OS/390: CICS Application Programming Guide

requests. It is particularly useful when you issue a series of related read
requests and you want to ensure that none of the records is modified before
the last record is read.

Note: Specify read integrity only when an application cannot tolerate ‘stale’ data.
This is because RLS uses locks to support read integrity, and as a result your
applications could encounter deadlocks that do not occur in releases of CICS
that do not support read integrity. This is particularly important if you
define read integrity on file resource definitions. The application programs
that reference these files may have been written for releases of CICS that do
not support read integrity, and are not designed to deal with deadlock
conditions on read-only file accesses.

If you specify either CONSISTENT or REPEATABLE, you can also specify the
NOSUSPEND option on a READ command to ensure that the request does not
wait if the record is locked by VSAM with an active lock. See “Active and retained
states for locks” on page 283 for more information about active locks.

Sequential reading (browsing)
You start a browse with the STARTBR command, identifying a particular record in
the same way as for a direct read. However, the STARTBR command only
identifies the starting position for the browse; it does not retrieve a record.

The READNEXT command reads records sequentially from this starting point. On
completion of each READNEXT command, CICS returns the full key of the record
it retrieved in the field specified in the RIDFLD option. (Be sure to provide a field
as long as the full key, even if you use a STARTBR command with a shorter
generic key.)

As in the case of a direct read, the record may be read into an area supplied by the
application program (when you use the INTO option), or into storage provided by
CICS (when you use the SET option). In the latter case, the CICS storage addressed
by the SET pointer remains valid until the next operation in the browse, or until
the browse ends, syncpoint, or end of task, whichever occurs first.

You can also browse backwards in the file, by using READPREV commands
instead of READNEXT commands, and you can switch from one direction to the
other at any time. The READPREV command is like the READNEXT command,
except that the records are read sequentially backward from the current position.
As you switch from one direction to the other, you retrieve the same record twice,
unless you reposition.

When the browse has started, you can change the current browse position either
by using a RESETBR command, or a READNEXT command, or a READPREV
command. The RESETBR command can also be used for other purposes, however.

For VSAM, but not for BDAM, you can reposition simply by varying the value in
RIDFLD when you issue the next READNEXT or READPREV command. When
you change RIDFLD, the record identifier must be in the same form as on the
previous STARTBR or RESETBR command (key, RBA, or RRN). In addition, you
can change the length of a generic key by specifying a KEYLENGTH in your
READNEXT command, which is different from the current generic key length and
not equal to the full length. If you change the length of a generic key in this way,
you reposition to the generic key specified by RIDFLD option.

Chapter 23. An overview of file control 267

|
|

RESETBR command must be used to change the browse position in a BDAM file.
If you wish to change the form of the key from key to RBA or vice versa, you must
use a RESETBR command. You must also use a RESETBR command to switch
between generic and full keys or between “equal to” and “greater than or equal
to” searches. You can also only use X'FF' characters to point to the last record in
the file if you are using a RESETBR or STARTBR command.

Under certain conditions, CICS uses VSAM skip-sequential processing when you
change the key in this way, as explained in “Skip-sequential processing” on
page 269.

Browsing through a KSDS
You can use a generic key on the STARTBR command when browsing through a
KSDS. However, the browse can only continue forward through the file. If you
process a READPREV command during such a browse, you get the INVREQ
condition.

You can use the options “key equal to” and “key greater than or equal to” on the
STARTBR command and they have the same meaning as on the READ command.
However, the STARTBR command assumes that you want to position at the key
specified or the first key greater if that key does not exist. That is, option GTEQ is
the default for the STARTBR command, whereas EQUAL is the default for the
READ command.

You can start a forward browse through a KSDS at the start of the file by
specifying a key of hexadecimal zeros, or by specifying options GENERIC, GTEQ,
and KEYLENGTH(0) on the STARTBR, RESETBR, READNEXT, or READPREV
command. (In the latter case, you need the RIDFLD keyword although its value is
not used and, after the command completes, CICS is using a generic key length of
one.)

You can start from the end of the data set by specifying a complete key of X'FF'
characters on the STARTBR or RESETBR command. This points to the last record
in the file ready for a backward browse.

A STARTBR, RESETBR, or READNEXT command having the option
KEYLENGTH(0) is always treated as if KEYLENGTH(1) and a partial key of one
byte of binary zeros have been specified.

Browsing through an ESDS
Positioning for a browse in an ESDS is identical to that for reading. If you want to
begin reading at the beginning of the data set, use an RBA of low values (X'00'),
and to begin at the end, use high values (X'FF').

Browsing through an RRDS
You can use the GTEQ option on a STARTBR command when browsing through
an RRDS. It is the default, even though on a direct READ this option has no effect.
A direct read command with the GTEQ option that specifies an RRN that does not
exist returns the NOTFND condition, because only the EQUAL option is taken.
However, a STARTBR GTEQ command using the same RRN completes
successfully, and sets a pointer to the relevant position in the data set for the start
of the browse. The first record in the file is identified using an RRN of 1, and the
last record by high values (X'FF').

268 CICS TS for OS/390: CICS Application Programming Guide

Browsing using a path
Browsing can also use an alternate index path to a KSDS or an ESDS. The browse
is just like that for a KSDS, but using the alternate key. The records are retrieved in
alternate key order.

If the alternate key is not unique, the DUPKEY condition is raised for each
retrieval operation except the last occurrence of the duplicate key. For example, if
there are three records with the same alternate key, DUPKEY is raised on the first
two, but not the third. The order in which records with duplicate alternate keys are
returned is the order in which they were written to the data set. This is true
whether you are using a READNEXT or a READPREV command. For this reason,
you cannot retrieve records with the same alternate key in reverse order.

Browse integrity (in RLS mode)
The options UNCOMMITTED, CONSISTENT, REPEATABLE, and NOSUSPEND,
discussed in “Read integrity (in RLS mode)” on page 266, also apply to the CICS
browse commands.

Ending the browse
Trying to browse past the last record in a file raises the ENDFILE condition. Stop a
browse with the ENDBR command. You must issue the ENDBR command before
performing an update operation on the same file (a READ UPDATE, DELETE with
RIDFLD, or WRITE command). If you do not, you get unpredictable results,
possibly including deadlock within your own transaction.

Simultaneous browse operations
CICS allows a transaction to perform more than one browse on the same file at the
same time. You distinguish between browse operations by including the REQID
option on each browse command.

Skip-sequential processing
When possible, CICS uses VSAM “skip-sequential” processing to speed browsing.
Skip-sequential processing applies only to forward browsing of a file when
RIDFLD is specified in key form. CICS uses it when you increase the key value in
RIDFLD on your READNEXT command and make no other key-related
specification, such as KEYLENGTH. In this situation, VSAM locates the next
desired record by reading forward through the index, rather than repositioning
from scratch. This method is faster if the records you are retrieving are relatively
close to each other but not necessarily adjacent; it can have the opposite effect if
the records are very far apart in a large file. If you know that the key you are
repositioning to is much higher in the file, and that you may incur a long index
scan, you may wish to consider using a RESETBR command which forces a
reposition from scratch.

Updating records
To update a record, you must first retrieve it using one of the file control read
commands that specifies the UPDATE option. The record is identified in exactly
the same way as for a direct read. In a KSDS or ESDS, the record may (as with a
direct read) be accessed by way of a file definition that refers either to the base, or
to a path defined to it. For files opened in RLS mode you can specify the
NOSUSPEND option as well as the UPDATE option on an EXEC CICS command
to ensure that the request does not wait if the record is already locked by VSAM
with an active lock.

Chapter 23. An overview of file control 269

After modification by the application program, the record is written back to the
data set using the REWRITE command, which does not identify the record being
rewritten. Within a unit of work, each REWRITE command should be associated
with a previous READ UPDATE by a common keyword (TOKEN). You can have
one READ UPDATE without a TOKEN outstanding at any one time. Attempts to
perform multiple concurrent update requests within a unit of work, upon the same
data set without the use of TOKENS, are prevented by CICS. If you want to release
the string held by a READ UPDATE without rewriting or deleting the record, use
the UNLOCK command. The UNLOCK command releases any CICS storage
acquired for the READ command, and releases VSAM resources held by the READ
command. If TOKEN is specified with the UNLOCK command, CICS attempts to
match this with an outstanding READ UPDATE whose TOKEN has the same
value. (For more explanation about the TOKEN option, see “The TOKEN option”
on page 275.)

For both update and non-update commands, you must identify the record to be
retrieved by the record identification field specified in the RIDFLD option.
Immediately on completion of a READ UPDATE command, the RIDFLD data area
is available for reuse by the application program.

A record retrieved as part of a browse operation can only be updated during the
browse if the file is opened in RLS mode (see “Updating and deleting records in a
browse (VSAM RLS only)” on page 271). For files opened in non-RLS mode, the
application program must end the browse, read the desired record with a READ
UPDATE command, and perform the update. Failure to end the browse before
issuing the READ UPDATE command may cause a deadlock.

The record to be updated may (as in the case of a direct read) be read into an area
of storage supplied by the application program or into storage set by CICS. For a
READ UPDATE command, CICS SET storage remains valid until the next
REWRITE, UNLOCK, DELETE without RIDFLD, or SYNCPOINT command,
whichever is encountered first.

For a KSDS, the base key in the record must not be altered when the record is
modified. Similarly, if the update is being made by way of a path, the alternate key
used to identify the record must not be altered either, although other alternate keys
may be altered. If the file definition allows variable-length records, the length of
the record may be changed.

The length of records in an ESDS, a fixed-length RRDS, or a fixed-length KSDS
must not be changed on update.

For a file defined to CICS as containing fixed-length records, the length of record
being rewritten must equal the original length. For variable-length records, you
must specify the LENGTH option with both the READ UPDATE and the
REWRITE commands. The length must not be greater than the maximum defined
to VSAM.

Deleting records
Records can never be deleted from an ESDS.

Deleting single records
You delete a single record in a KSDS or RRDS in one of three ways:

270 CICS TS for OS/390: CICS Application Programming Guide

|
|

1. Retrieve it for update with a READ UPDATE command, and then issue a
DELETE command without specifying the RIDFLD option.

2. Issue a DELETE command specifying the RIDFLD option.
3. For a file opened in RLS mode, retrieve the record with a READNEXT or

READPREV command with the UPDATE option, and then issue a DELETE
command. This method is described in “Updating and deleting records in a
browse (VSAM RLS only)”.

If a full key is provided with the DELETE command, a single record with that key
is deleted. So, if the data set is being accessed by way of an alternate index path
that allows non-unique alternate keys, only the first record with that key is
deleted. After the deletion, you know whether further records exist with the same
alternate key, because you get the DUPKEY condition if they do.

Updating and deleting records in a browse (VSAM RLS only)
For files accessed in RLS mode, you can specify the UPDATE option on a
READNEXT or READPREV command and then update or delete the record by
issuing a DELETE or REWRITE command. If the browse command returns a
TOKEN, the TOKEN remains valid only until the next browse request. The
TOKEN is invalidated by REWRITE, DELETE, or UNLOCK commands, that
specify the same value for TOKEN or by the commands READNEXT, READPREV,
or ENDBR that specify the same REQID. If you issue many READNEXT
commands with the UPDATE and TOKEN options, the TOKENS invalidate each
other and only the last one will be usable. (For more explanation about the
TOKEN option, see “The TOKEN option” on page 275.)

Use of the UPDATE option in a browse is subject to the following rules:
v You can specify UPDATE within a browse only if the file is accessed in RLS

mode. If you specify UPDATE for a file accessed in non-RLS mode, CICS returns
an INVREQ condition.

v You can specify UPDATE only on the READNEXT and READPREV commands,
not on the STARTBR or RESETBR commands.

v CICS supports only one TOKEN in a browse sequence, and the TOKEN value
on each READNEXT or READPREV command overwrites the previous value.

v You can mix update and non-update requests within the same browse.
v You must specify on the REWRITE, DELETE, or UNLOCK command the

TOKEN to be returned by the corresponding READNEXT or READPREV
command.

Locks for UPDATE: Specifying UPDATE on a READNEXT or READPREV
command acquires an exclusive lock. The duration of these exclusive locks within
a browse depends on the action your application program takes and on whether
the file is recoverable or not.
v If the file is recoverable and you decide to DELETE or REWRITE the last record

acquired by a read for update in a browse (using the associated token), the
VSAM exclusive lock remains active until completion of the UOW. That is, until
successful syncpoint or rollback.

v If the file is not recoverable and you decide to DELETE or REWRITE the last
record acquired, the lock is released either when you next issue an ENDBR
command or when you issue a subsequent READNEXT or READPREV
command. This is explained more fully in “Record locking of VSAM records for
files accessed in RLS mode” on page 281.

Chapter 23. An overview of file control 271

v If you decide not to update the last record read, CICS frees the exclusive lock
either when your program issues another READNEXT or READPREV command
in the browse, or ends the browse.

Note: An UNLOCK command does not free an RLS exclusive lock held by VSAM
against a record acquired during a browse operation. An UNLOCK within a
browse simply invalidates the TOKEN returned by the last request. Another
READNEXT or READPREV in the browse also invalidates the TOKEN for
the record read by the previous READNEXT or READPREV UPDATE
command. Therefore, it’s not necessary to use UNLOCK in an application
program that decides not to update a particular record.

Deleting groups of records (generic delete)
You can use a generic key with the DELETE command. Then, instead of deleting a
single record, all the records in the file whose keys match the generic key are
deleted with the single command. However, this cannot be used if the
KEYLENGTH value is equal to the length of the whole key (even if duplicate keys
are allowed). The number of records deleted is returned to the application program
if the NUMREC option is included with the command. If access is by way of an
alternate index path, the records deleted are all those whose alternate keys match
the generic key.

Read integrity
The NOSUSPEND option discussed in “Read integrity (in RLS mode)” on page 266,
also applies to the CICS browse commands when you are using them to update a
file.

Adding records
Add new records to a file with the WRITE command. They must always be written
from an area provided by the application program.

Adding to a KSDS
When adding a record to a KSDS, the base key of the record identifies the position
in the data set where the record is to be inserted. Although the key is part of the
record, CICS also requires the application program to specify the key separately
using the RIDFLD option on the WRITE command.

A record added to a KSDS by way of an alternate index path is also inserted into
the data set in the position determined by the base key. However, the command
must also include the alternate index key as the record identifier.

Adding to an ESDS
A record added to an ESDS is always added to the end of the file. You cannot
insert a record in an ESDS between existing records. After the operation is
completed, the relative byte address in the file where the record was placed is
returned to the application program.

When adding a record to an ESDS by way of an alternate index path, the record is
also placed at the end of the data set. The command must include the alternate
index key in the same way as for a KSDS path.

272 CICS TS for OS/390: CICS Application Programming Guide

Adding to an RRDS
To add a record to an RRDS, include the relative record number as a record
identifier on the WRITE command. The record is then stored in the file in the
position corresponding to the RRN.

Records that are already locked
The NOSUSPEND option, described in “Read integrity (in RLS mode)” on page 266
also applies to the WRITE command for a file opened in RLS mode.

Specifying record length
When writing to a fixed-length file, the record length must match the value
specified at the time the file was created. In this case, you need not include the
length with the command, although you may do so to check whether the length
agrees with that originally defined to VSAM. If the file is defined as containing
variable-length records, the command must always include the length of the
record.

Sequential adding of records (WRITE MASSINSERT command)
MASSINSERT on a WRITE command offers potential improved performance where
there is more than one record to add to a KSDS, ESDS, or path. The performance
improvement is only obtained when the keys in successive WRITE MASSINSERT
requests are in ascending order.

A MASSINSERT is completed by the UNLOCK command. This ensures that all the
records are written to the file and the position is released. Always issue an
UNLOCK command before performing an update operation on the same data set
(read update, delete with RIDFLD, or write). If you do not, you may get
unpredictable results, possibly including a deadlock.

Without an UNLOCK command, the MASSINSERT is completed when a syncpoint
is issued, or at task termination.

Note: A READ command does not necessarily retrieve a record that has been
added by an incomplete MASSINSERT operation.

See “VSAM data sets” on page 140 for more information about MASSINSERT.

Review of file control command options
Some of the file control command options you may specify are:
v RIDFLD
v INTO or SET
v FROM
v TOKEN

Use of the LENGTH option varies, depending on how you use the other options.

The RIDFLD option
Whatever you do to a record (read, add, delete, or start a browse), you identify the
record by the RIDFLD option, except when you have read the record for update
first. However, there is no RIDFLD for ENDBR, REWRITE, and UNLOCK

Chapter 23. An overview of file control 273

commands. Further, during a browse using READNEXT or READPREV
commands, you must include the RIDFLD option to give CICS a way to return the
identifier of each record retrieved.

The RIDFLD option identifies a field containing the record identification
appropriate to the access method and the type of file being accessed.

The RIDFLD option by itself is not always enough to identify a specific record in
the file. So, when retrieving records from a KSDS, or from a KSDS or ESDS by way
of an alternate index path, or when setting a starting position for a browse in this
type of data set, you can have one or both of the further options GTEQ and
GENERIC with your command.

With READNEXT or READPREV commands, the application program would not
usually set the RIDFLD field. After each command, CICS updates this field with
the actual identifier of the record retrieved. (You can alter the RIDFLD value to set
a new position from which to continue the browse.)

The INTO and SET options
With the READ, READNEXT, or READPREV command, the record is retrieved and
put in main storage according to your INTO and SET options.

The INTO option specifies the main storage area into which the record is to be put.

For fixed-length records, you need not include the LENGTH option. If you do, the
length specified must exactly match the defined length; otherwise, you get the
LENGERR condition.

For variable-length records, always specify (in the LENGTH option) the longest
record your application program accepts (which must correspond to the value
defined as the maximum record size when the data set was created); otherwise,
you get the LENGERR condition. LENGERR occurs if the record exceeds the length
specified, and the record is then truncated to that length. After the record retrieval,
if you include the LENGTH option, the data area specified in it is set to the actual
record length (before any truncation occurs).

The SET option specifies a pointer to the buffer in main storage acquired by CICS
to hold the record. When using the SET option, you need not include the LENGTH
option. If you do include it, the data area specified is set to the actual record
length after the record has been retrieved.

The FROM option
When you add records (using the EXEC CICS WRITE command), or update
records (using the REWRITE command), specify the record to be written with the
FROM option.

The FROM option specifies the main storage area that contains the record to be
written. In general, this area is part of the storage owned by your application
program. With the REWRITE command, the FROM area is usually (but not
necessarily) the same as the corresponding INTO area on the READ UPDATE
command. The length of the record can be changed when rewriting to a KSDS
with variable-length records.

Always include the LENGTH option when writing to a file with variable-length
records. If the value specified exceeds the maximum allowed in the cluster

274 CICS TS for OS/390: CICS Application Programming Guide

definition, LENGERR is raised when the command is executed. LENGERR is also
raised if the LENGTH option is omitted when accessing a file with variable-length
records.

When writing to a file with fixed-length records, CICS uses the length specified in
the cluster definition as the length of the record to be written, so you need not
have the LENGTH option. If you do, its value is checked against the defined value
and you get a LENGERR condition if the values do not match.

The TOKEN option
The TOKEN option is a unique value within a task that is supplied by CICS on
any valid read for update command, and you return this to CICS with an
associated REWRITE, DELETE, or UNLOCK command. For each file that is being
updated by a task, at any one time you can have only one outstanding read
request with the UPDATE option that does not specify the TOKEN option.

You can perform multiple concurrent updates on the same data set using the same
task by including the TOKEN option with a read for update command, and
specifying the token on the associated REWRITE, DELETE, or the UNLOCK
command. Note that, for files accessed in non-RLS mode, a set of concurrent
updates fails if more than one record is being updated in the same CI, irrespective
of the TOKEN associated with the request. Also, only one token remains valid for
a given REQID on a browse, and that is the one returned on the last READNEXT
or READPREV command (see “Updating and deleting records in a browse (VSAM
RLS only)” on page 271).

You can function ship a read for update request containing the TOKEN option.
However, if you function ship a request specifying TOKEN to a member of the
CICS family of products that does not recognize this keyword, the request fails.

Avoiding transaction deadlocks
Design your applications so as to avoid transaction deadlocks. A deadlock occurs if
each of two transactions (for example, A and B) needs exclusive use of some
resource (for example, a particular record in a data set) that the other already
holds. Transaction A waits for the resource to become available. However, if
transaction B is not in a position to release it because it, in turn, is waiting on some
resource held by A, both are deadlocked and the only way of breaking the
deadlock is to cancel one of the transactions, thus releasing its resources.

A transaction may have to wait for a resource for several reasons while executing
file control commands:
v For both VSAM and BDAM data sets, any record that is being modified is held

in exclusive control by the access method for the duration of the request. (With
VSAM files accessed in non-RLS mode, not just the record but the complete
control interval containing the record is held in exclusive control. With files
accessed in RLS mode, only the record is locked.)

v If a transaction has modified a record in a recoverable file, CICS (or VSAM if the
file is accessed in RLS mode) locks that record to the transaction even after the
request that performed the change has completed. The transaction can continue
to access and modify the same record; other transactions must wait until the
transaction releases the lock, either by terminating or by issuing a syncpoint
request. For more information, see “Syncpointing” on page 225.

Chapter 23. An overview of file control 275

Whether a deadlock actually occurs depends on the relative timing of the
acquisition and release of the resources by different concurrent transactions.
Application programs may continue to be used for some time before meeting
circumstances that cause a deadlock; it is important to recognize and allow for the
possibility of deadlock early in the application program design stages.

Here are examples of different types of deadlock found in recoverable data sets:
v Two transactions running concurrently are modifying records within a single

recoverable file, through the same FCT entry, as follows:

Transaction 1 has acquired the record lock for record 1 (even though it has
completed the READ UPDATE command with an UNLOCK command).
Transaction 2 has similarly acquired the record lock for record 2. The
transactions are then deadlocked because each wants to acquire the CICS lock
held by the other. The CICS lock is not released until syncpoint.

v Two transactions running concurrently are modifying two recoverable files as
follows:

Here, the record locks have been acquired on different files as well as different
records; however, the deadlock is similar to the first example.

v Two transactions running concurrently are modifying a single recoverable KSDS,
through the same FCT entry, as follows:

Suppose records one and two are held in the same control interval (CI) for a file
accessed in non-RLS mode. The first READ UPDATE has acquired VSAM
exclusive control of the CI holding record one. The DELETE operation has
completed and acquired the CICS record lock on record three. The WRITE
operation must wait for the lock on record three to be released before it can
complete the operation. Finally, the last READ UPDATE must wait for the
VSAM exclusive control lock held by transaction one to be released.

v A transaction is browsing through a VSAM file (opened in non-RLS mode) that
uses shared resources (LSRPOOLID not equal to NONE in the file resource
definition). Before the ENDBR command, the transaction issues a further request
to update the current record or another record that happens to be in the same
control interval. Because VSAM already holds shared control of the control
interval on behalf of the first request, the second request wants exclusive control
of the control interval and therefore enters deadlock. Depending upon the level
of VSAM support that you have, the transaction either waits indefinitely or
abends with an AFCG abend code.

Transaction 1 Transaction 2
READ UPDATE record 1 DELETE record 2
UNLOCK record 1

WRITE record 2 READ UPDATE record 1
REWRITE record 1

Transaction 1 Transaction 2
READ UPDATE file 1, record 1 READ UPDATE file 2, record 2
REWRITE file 1, record 1 REWRITE file 2, record 2

READ UPDATE file 2, record 2 READ UPDATE file 1, record 1
REWRITE file 2, record 2 REWRITE file 1, record 1

Transaction 1 Transaction 2
READ UPDATE record 1 DELETE record 3

WRITE record 3 READ UPDATE record 2

276 CICS TS for OS/390: CICS Application Programming Guide

For VSAM files accessed in non-RLS mode, CICS detects deadlock situations, and a
transaction about to enter a deadlock is abended with the abend code AFCF if it is
deadlocked by another transaction, or with abend code AFCG if it has deadlocked
itself.

VSAM-detected deadlocks (RLS only)
With files accessed in RLS mode, deadlocks can arise between two different CICS
regions, possibly running under different MVS images. In these cases, deadlock
detection and resolution cannot be performed by CICS, and therefore it is
performed by VSAM.

If VSAM detects an RLS deadlock condition it returns a deadlock exception
condition to CICS, causing CICS file control to abend the transaction with an
AFCW abend code. CICS also writes messages and trace entries that identify the
members of the deadlock chain.

However, VSAM cannot detect a cross-resource deadlock (for example, a deadlock
arising from use of RLS and DB2 resources) where another resource manager is
involved. A cross-resource deadlock is resolved by VSAM when the timeout period
expires, and the waiting request is timed out. In this situation, VSAM cannot
determine whether the timeout is caused by a cross-resource deadlock, or a
timeout caused by another transaction acquiring an RLS lock and not releasing it.
In the event of a timeout, CICS writes trace entries and messages to identify the
holder of the lock for which a timed-out transaction is waiting.

All file control requests issued in RLS mode have an associated timeout value. This
timeout value is that defined by DTIMEOUT if DTIMEOUT is active for the
transaction, or FTIMEOUT from the system initialization table if DTIMEOUT is not
active.

Rules for avoiding deadlocks
You can avoid deadlocks by following these rules:
v All applications that update (modify) multiple resources should do so in the

same order. For instance, if a transaction is updating more than one record in a
data set, it can do so in ascending key order. A transaction that is accessing more
than one file should always do so in the same predefined sequence of files.
If a data set has an alternate index, beware of mixing transactions that perform
several updates by the base key with transactions that perform several updates
by the alternate key. Assume that the transactions that perform updates always
access records in ascending key sequence. Then transactions that perform all
updates by the base key will not deadlock with other transactions that perform
all updates by the base key. Likewise, transactions that perform all updates by
the alternate key do not deadlock with other transactions that perform all
updates by the alternate key. But transactions that perform all updates by the
base key may deadlock with transactions that perform all updates by the
alternate key. This is because the key that is locked is always the base key.
Consequently, a transaction performing updates by the alternate key may be
acquiring locks in a different order to a transaction performing updates by the
base key.

v An application that issues a READ UPDATE command should follow it with a
REWRITE, DELETE without RIDFLD, or UNLOCK command to release the
position before doing anything else to the file, or should include the TOKEN
option with both parts of each update request.

Chapter 23. An overview of file control 277

v A sequence of WRITE MASSINSERT commands must terminate with the
UNLOCK command to release the position. No other operation on the file
should be performed before the UNLOCK command has been issued.

v An application must end all browses on a file by means of ENDBR commands
(thereby releasing the VSAM lock) before issuing a READ UPDATE, WRITE, or
DELETE with RIDFLD command, to the file.

KEYLENGTH option for remote data sets
In general, file control commands need the RIDFLD and KEYLENGTH options.
The KEYLENGTH option can be specified explicitly in the command, or
determined implicitly from the file definition.

For remote files for which the SYSID option has been specified, the KEYLENGTH
option must be specified if the RIDFLD option is passing a key to file control. If
the remote file is being browsed, the KEYLENGTH option is not required for the
READNEXT or READPREV command.

For a remote BDAM file, where the DEBKEY or DEBREC options have been
specified, KEYLENGTH (when specified explicitly) should be the total length of
the key (that is, all specified subfields).

278 CICS TS for OS/390: CICS Application Programming Guide

Chapter 24. File control—VSAM considerations

This chapter explains how to perform:
v “Record identification”
v “Locking of VSAM records in recoverable files” on page 280
v “Record locking of VSAM records for files accessed in RLS mode” on page 281
v “Active and retained states for locks” on page 283
v “CICS locking for writing to ESDS” on page 285

Record identification
You identify records in data sets by:
v Key
v Relative byte address (RBA) and relative record number (RRN)

Key
Generally, if you use a key, you can specify either a complete key or a generic
(partial) key. The exceptions to this rule are when you write a record to a KSDS or
when you write a record by an alternate index path. In either of these cases you
must specify the complete key in the RIDFLD option of the command.

When you use a generic key, you must specify its length in the KEYLENGTH
option and you must specify the GENERIC option on the command. A generic key
cannot have a key length equal to the full key length. You must define it to be
shorter than the complete key.

You can also specify the GTEQ option on certain commands, for both complete
and generic keys. The command then positions at, or applies to, the record with
the next higher key if a matching key cannot be found. When accessing a data set
by way of an alternate index path, the record identified is the one with the next
higher alternate key when a matching record cannot be found.

Even when using generic keys, always use a storage area for the record
identification field that is equal in length to the length of the complete key. During
a browse operation, after retrieving a record, CICS copies into the record
identification area the actual identifier of the record retrieved. CICS returns a
complete key to your application, even when you specified a generic key on the
command. For example, a generic browse through a KSDS returns the complete
key to your application on each READNEXT and READPREV command.

Relative byte address (RBA) and relative record number (RRN)
You can use the RBA and RRN options on most commands that access data sets. In
effect, they define the format of the record identification field (RIDFLD). Unless
you specify either the RBA or the RRN, the RIDFLD option should hold a key to
be used for accessing a KSDS (or a KSDS or ESDS by way of an alternate index).

RBA
RBA specifies that the record identification field contains the relative byte address
of the record to be accessed. A relative byte address is used to access an ESDS, and
it may also be used to access a KSDS that is not opened in RLS access mode. All
file control commands that refer to an ESDS base, and specify the RIDFLD option,
must also specify the RBA option.

© Copyright IBM Corp. 1989, 2000 279

Note: If a KSDS is accessed in this way, the RBA of the record may change during
the transaction as a result of another transaction adding records to, or
deleting records from, the same data set.

RRN
RRN specifies that the record identification field contains the relative record
number of the record to be accessed. The first record in the data set is number one.
All file control commands that refer to an RRDS, and specify the RIDFLD option,
must also specify the RRN option.

Locking of VSAM records in recoverable files
Earlier, the prevention of transaction deadlocks in terms of the record locks
acquired whenever records in a recoverable file are modified was explained. These
locks are acquired by VSAM if the file is accessed in record-level sharing (RLS)
mode, and by CICS if not. The locks are held on behalf of the transaction doing the
change until it issues a syncpoint request or terminates (at which time a syncpoint
is automatically performed). For VSAM recoverable file processing, note the
following:
v Whenever a VSAM record is obtained for modification or deletion, CICS file

control (or VSAM in the case of RLS) locks the record with an ENQUEUE
request using the primary record identifier as the enqueue argument.
If a record is modified by way of a path, the enqueue uses the base key or the
base RBA as an argument. So CICS permits only one transaction at a time to
perform its request, the other transactions having to wait until the first has
reached a syncpoint.

v For the READ UPDATE and REWRITE-related commands the record lock is
acquired as soon as the READ UPDATE command has been issued.
For a DELETE command that has not been preceded by a READ UPDATE
command, or for a WRITE command, the record lock is acquired at the time the
VSAM command is executed.
For a WRITE MASSINSERT command (which consists of a series of WRITE
commands), a separate record lock is acquired at the time each individual
WRITE command is performed. Similarly, for a DELETE GENERIC command,
each record deleted acquires a separate lock on behalf of the transaction issuing
the request.

Update locks and delete locks (non-RLS mode only)
The record locks referred to above are known as update locks, because they are
acquired whenever a record is updated (modified). A further type of lock (a delete
lock) may also be acquired by file control whenever a DELETE, WRITE, or WRITE
MASSINSERT command is being performed for a recoverable KSDS or a
recoverable path over a KSDS. A delete operation therefore may acquire two
separate locks on the record being deleted.

The separate delete lock is needed because of the way file control does its write
operations. Before executing a WRITE MASSINSERT command to a KSDS or
RRDS, file control finds and locks the empty range into which the new record or
records are to go. The empty range is locked by identifying the next existing record
in the data set and acquiring its delete lock.

The empty range is locked to stop other requests simultaneously adding records
into it. Moreover, the record defining the end of the empty range cannot be
removed during the add operation. If another transaction issues a request to add

280 CICS TS for OS/390: CICS Application Programming Guide

records into the empty range or to delete the record at the end of the range, the
delete lock makes the transaction wait until the WRITE or WRITE MASSINSERT
command is complete. The record held with a delete lock may, however, be
updated by another transaction during the write operation if it is in another CI.

Unlike an update lock, a delete lock is held only for the duration of a delete or
write operation, or a sequence of WRITE MASSINSERT commands terminated by
an UNLOCK command. A WRITE MASSINSERT command that adds records to
the file into more than one empty range releases the previous delete lock as it
moves into a new empty range.

The CICS enqueuing mechanism is only for updates and deletes and does not
prevent a read request being satisfied before the next syncpoint. The integrity of a
READ command in these circumstances is not guaranteed.

Record locking of VSAM records for files accessed in RLS mode
Files opened in RLS mode can be accessed by many CICS regions simultaneously.
This means it is impractical for the individual CICS regions to attempt to control
record locking, and therefore VSAM maintains a single central lock structure using
the lock-assist mechanism of the MVS coupling facility. This central lock structure
provides sysplex-wide locking at a record level—control interval (CI) locking is not
used. This is in contrast to the locks for files in non-RLS mode, the scope of which
is limited to a single CICS region, and that are either CI locks or CICS ENQs.

Record locks within RLS are owned by a named UOW within a named CICS
region. The lock owner name is the APPLID of the CICS region, plus the UOW id.
For example, when CICS makes a request that may create a lock, CICS passes to
VSAM the UOW id. This enables VSAM to build the lock name using the UOW id,
the record key, and the name of the CICS region.

CICS releases all locks on completion of a UOW using a VSAM interface.

When more than one request requires an exclusive lock against the same resource,
VSAM queues the second and subsequent requests until the resource is freed and
the lock can be granted. However, VSAM does not queue requests for resources
locked by a retained lock (see “Active and retained states for locks” on page 283).

Note: For MASSINSERT operations on a file opened in RLS access mode, CICS
acquires a separate update lock at the time each individual WRITE
command is issued. Unlike the non-RLS mode operation (described under
“Locking of VSAM records in recoverable files” on page 280) CICS does not
acquire the separate delete lock in addition to the update lock. There is no
equivalent to range locking for the MASSINSERT function for files opened
in non-RLS mode.

Exclusive locks and shared locks
VSAM supports two types of lock for files accessed in RLS mode:
1. Exclusive locks
2. Shared locks

Exclusive locks can be active or retained; shared locks can only be active (see
“Active and retained states for locks” on page 283). Note that there are no delete
locks in RLS mode.

Chapter 24. File control—VSAM considerations 281

Exclusive locks
Exclusive locks protect updates to file resources, both recoverable and
non-recoverable. They can be owned by only one transaction at a time. Any
transaction that requires an exclusive lock must wait if another task currently owns
an exclusive lock or a shared lock against the requested resource.

Shared locks
Shared locks support read integrity (see “Read integrity (in RLS mode)” on
page 266). They ensure that a record is not in the process of being updated during
a read-only request. Shared locks can also be used to prevent updates of a record
between the time that a record is read and the next syncpoint.

A shared lock on a resource can be owned by several tasks at the same time.
However, although several tasks can own shared locks, there are some
circumstances in which tasks can be forced to wait for a lock:
v A request for a shared lock must wait if another task currently owns an

exclusive lock on the resource.
v A request for an exclusive lock must wait if other tasks currently own shared

locks on this resource.
v A new request for a shared lock must wait if another task is waiting for an

exclusive lock on a resource that already has a shared lock.

Lock duration
Shared locks for repeatable read requests, for recoverable and non-recoverable data
sets, are held until the next syncpoint.

Exclusive locks against records in a non-recoverable data set remain held only for
the duration of the request—that is, they are acquired at the start of a request and
released on completion of it. For example, a lock acquired by a WRITE request is
released when the WRITE request is completed, and a lock acquired by a READ
UPDATE request is released as soon as the following REWRITE or DELETE
request is completed. Exceptionally, locks acquired by sequential requests may
persist beyond the completion of the immediate operation. Sequential requests are
WRITE commands that specify the MASSINSERT option and browse for update
requests. A lock acquired by a WRITE command with the MASSINSERT option is
always released by the time the corresponding UNLOCK command completes, but
may have been released by an earlier request in the WRITE MASSINSERT
sequence. The exact request in the sequence that causes the lock to be released is
not predictable. Similarly, a lock acquired by a READNEXT UPDATE command
may still exist after the following DELETE or REWRITE command completes.
Although this lock is guaranteed to be released by the time the subsequent ENDBR
command completes, it may be released by some intermediate request in the
browse sequence.

If a request is made to update a recoverable data set, the associated exclusive lock
must remain held until the next syncpoint. This ensures that the resource remains
protected until a decision is made to commit or back out the request. If CICS fails,
VSAM continues to hold the lock until CICS is restarted.

282 CICS TS for OS/390: CICS Application Programming Guide

Active and retained states for locks
VSAM RLS supports active and retained states for locks. The difference between
these two types of lock is that whereas a request for a resource that has an active
lock is queued until the resource becomes available, a request for a resource that
has a retained lock fails immediately.

The active state is applicable to both exclusive and shared locks. However, only
exclusive locks against recoverable resources can have their state changed from
active to retained. The important characteristic of these states is that they
determine whether or not a task must wait for a lock:
v A request for a lock is made to wait if there is already an active lock against the

requested resource, except in two cases:
1. A request for a shared lock does not have to wait if the current active lock is

also a shared lock, and there are no exclusive lock requests waiting.
2. An update request that specifies NOSUSPEND does not wait for a lock if an

active lock already exists. In this case, CICS returns an exception condition
indicating that the “record is busy”.

v A request for a lock is rejected immediately with the LOCKED condition if there
is a retained lock against the requested resource.

When a lock is first acquired, it is an active lock. It is then either released, the
duration of the lock depending on the type of lock, or if an event occurs which
causes a UOW to fail temporarily and which would therefore cause the lock to be
held for an abnormally long time, it is converted into a retained lock. The types of
event that can cause a lock to become retained are:
v Failure of the CICS system, the VSAM server or the whole MVS system
v A unit of work entering the backout failed state
v A distributed unit of work becoming indoubt owing to the failure of either the

coordinating system or of links to the coordinating system

If a UOW fails, VSAM continues to hold the exclusive record locks that were
owned by the failed UOW for recoverable data sets. To avoid new requests being
made to wait for locks owned by the failed UOW, VSAM converts the active locks
owned by the failed UOW into retained locks. Retaining locks ensures that data
integrity for the locked records is maintained until the UOW is completed.

Exclusive recoverable locks are also converted into retained locks in the event of a
CICS failure, to ensure data integrity is maintained until CICS is restarted and
performs recovery.

Task 1 Task 2
CICS: READ(filea) UPDATE KEY(99)
VSAM: grants exclusive lock - key 99

CICS: READ(filea) KEY(99)
with integrity

VSAM: Queues request for shared lock
CICS: REWRITE(filea) KEY(99)
VSAM: holds exclusive lock until syncpoint

CICS: task completes and takes syncpoint
VSAM: frees exclusive lock

VSAM grants shared lock to task 2

Figure 49. Illustration of lock contention between CICS tasks on a recoverable data set

Chapter 24. File control—VSAM considerations 283

Exclusive recoverable locks are also converted into retained locks if the VSAM
data-sharing server (SMSVSAM) fails (the conversion is carried out by the other
servers in the Sysplex, or by the first server to restart if all servers have failed).
This means that a UOW does not itself have to fail in order to hold retained RLS
locks.

Any shared locks owned by a failed CICS region are discarded, and therefore an
active shared lock can never become retained. Similarly, active exclusive
non-recoverable locks are discarded. Only locks that are both exclusive and apply
to recoverable resources are eligible to become retained.

Conditional update requests
On file control update requests against files opened in RLS mode, you can avoid
waiting for a lock by making your request conditional upon being given a lock
immediately. You do this by specifying the NOSUSPEND option on the request. If
another task already holds an active lock, CICS returns the RECORDBUSY
condition instead of queueing your request.

You can specify NOSUSPEND on READ, READNEXT, READPREV, WRITE,
REWRITE, and DELETE commands.

It is important to distinguish between the LOCKED and RECORDBUSY responses:
v A LOCKED response occurs when a request attempts to access a record that is

locked by a retained lock.
v A RECORDBUSY response occurs when a request attempts to access a record

that is locked by an active lock. Remember that this could be caused by a
DEADLOCK, in which case retries may not work. It may be necessary to issue a
SYNCPOINT with or without rollback to resolve the condition.

Note: Requests that specify NOSUSPEND wait for at least 1 second before CICS
returns the RECORDBUSY response.

If you do not specify NOSUSPEND on your request, CICS causes it to wait for a
lock if the record is already locked by an active lock. If you specify NOSUSPEND,
your request receives a RECORDBUSY response if the record is locked by an active
lock.

If you issue a request (with or without the NOSUSPEND option) against a record
locked by a retained lock, CICS returns a LOCKED response.

File control implementation of NOSUSPEND
There is a slight difference in the way that NOSUSPEND works on file control
commands compared with the way that NOSUSPEND works on other CICS
commands. If you issue HANDLE CONDITION(RECORDBUSY) it does not cause
NOSUSPEND to be assumed on subsequent file control requests. On the other
hand, specifying HANDLE CONDITION(QBUSY) causes NOSUSPEND to be
assumed on subsequent transient data commands even when it is not explicitly
specified.

284 CICS TS for OS/390: CICS Application Programming Guide

CICS locking for writing to ESDS
CICS write operations to ESDS are single threaded, for both RLS and non-RLS
mode access. However, the lock held for serialization can be held for slightly
longer for RLS-mode access compared with non-RLS mode. You can compensate
for the possible increase in overhead by increasing the task priority of those
transactions that add new records to ESDS files. It is possible that when you switch
an ESDS RLS mode from non-RLS mode that you might see an increase in
time-outs for those transactions that add new records.

Chapter 24. File control—VSAM considerations 285

286 CICS TS for OS/390: CICS Application Programming Guide

Chapter 25. File control—BDAM considerations

This chapter explains how to perform the following functions and also looks at
BDAM exclusive control.
v “Record identification”
v “Updating records from BDAM data sets” on page 288
v “Browsing records from BDAM data sets” on page 288
v “Adding records to BDAM data sets” on page 289
v “BDAM exclusive control” on page 290

Record identification
You identify records in BDAM data sets by a block reference, a physical key
(keyed data set), or a deblocking argument (blocked-data set). The record
identification (in the RIDFLD option) has a subfield for each item. These subfields,
when used, must be in the above order.

Note: When using EDF, only the first of the above three fields (the block reference
subfield) is displayed.

Block reference subfield
This is one of the following:
v Relative block address: 3-byte binary, beginning at relative block zero

(RELTYPE=BLK).
v Relative track and record (hexadecimal format): 2-byte TT, 1-byte R

(RELTYPE=HEX).
The 2-byte TT begins at relative track zero. The 1-byte R begins at relative record
one.

v Relative track and record (zoned decimal format): 6-byte TTTTTT, 2-byte RR
(RELTYPE=DEC).

v Actual (absolute) address: 8-byte MBBCCHHR (RELTYPE operand omitted).

The system programmer must specify the type of block reference you are using in
the RELTYPE operand of the DFHFCT TYPE=FILE system macro that defines the
data set.

Physical key subfield
You only need this if the data set has been defined to contain recorded keys. If
used, it must immediately follow the block reference. Its length must match the
length specified in the BLKKEYL operand of the DFHFCT TYPE=FILE system
macro that defines the data set.

Deblocking argument subfield
You only need this if you want to retrieve specific records from a block. If used, it
must immediately follow the physical key (if present) or the block reference. If you
omit it, you retrieve an entire block.

The deblocking argument can be a key or a relative record number. If it is a key,
specify the DEBKEY option on a READ or STARTBR command and make sure its
length matches that specified in the KEYLEN operand of the DFHFCT TYPE=FILE

© Copyright IBM Corp. 1989, 2000 287

system macro. If it is a relative record number, specify the DEBREC option on a
READ or STARTBR command. It is a 1-byte binary number (first record=zero).

The examples in Figure 50 assume a physical key of four bytes and a deblocking
key of three bytes.

Updating records from BDAM data sets
You cannot change the record length of a variable blocked or unblocked BDAM
record on a REWRITE command which specifies deblocking. You cannot change
the record length of an undefined format BDAM record on a REWRITE command
either.

Browsing records from BDAM data sets
The record identification field must contain a block reference (for example, TTR or
MBBCCHHR) that conforms to the addressing method defined for the data set.
Processing begins with the specified block and continues with each subsequent
block until you end the browse.

If the data set contains blocked records, processing begins at the first record of the
first block and continues with each subsequent record, regardless of the contents of
the record identification field.

In other words, CICS uses only the information held in the TTR or MBBCCHHR
subfield of the RIDFLD to identify the record. It ignores all other information, such
as physical key and relative record, or logical key.

After the READNEXT command, CICS updates the RIDFLD with the complete
identification of the record retrieved. For example, assume a browse is to be started
with the first record of a blocked, keyed data set, and deblocking by logical key is
to be performed. Before issuing the STARTBR command, put the TTR (assuming
that is the addressing method) of the first block in the record identification field.
After the first READNEXT command, the record identification field might contain

Byte Number

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RELBLK# N Search by relative block;
deblock by relative record

RELBLK# KEY Search by relative block;
deblock by key

T T R PH KEY KEY Search by relative track
and record and key;
deblock by key

M B B C C H H R N Search by actual address;
deblock by relative record

T T T T T T R R PH KEY KEY Search by zoned decimal
relative track and record
and key; deblock by key

T T R KEY Search by relative track
and record; deblock by key

Figure 50. Examples of BDAM record identification

288 CICS TS for OS/390: CICS Application Programming Guide

X'0000010504', where X'000001' represents the TTR value, X'05' represents the block
key, (of length 1), and X'04' represents the logical record key.

Now assume that a blocked, nonkeyed data set is being browsed using relative
record deblocking and the second record from the second physical block on the
third relative track is read by a READNEXT command. Upon return to the
application program, the record identification field contains X'00020201', where
X'0002' represents the track, X'02' represents the block, and X'01' represents the
number of the record in the block relative to zero.

Note: Specify the options DEBREC and DEBKEY on the STARTBR command when
browsing blocked-data sets. This enables CICS to return the correct contents
in the RIDFLD. Specifying DEBREC on the STARTBR command causes the
relative record number to be returned. Specifying DEBKEY on the STARTBR
command causes the logical record key to be returned.

Do not omit DEBREC or DEBKEY when browsing a blocked file. If you do,
the logical record is retrieved from the block, the length parameter is set
equal to the logical record length, but the RIDFLD is not updated with the
full identification of the record. Do not use this method.

Compare this with what happens if you omit the DEBREC or DEBKEY
option when reading from a blocked BDAM data set. In this case, you
retrieve the whole block, and the length parameter is set equal to the length
of the block.

Adding records to BDAM data sets
When adding records to a BDAM data set, bear in mind the following:
v When adding undefined or variable-length records (keyed or nonkeyed), you

must specify the track on which each new record is to be added. If space is
available on the track, the record is written following the last previously written
record, and the record number is put in the “R” portion of the record
identification field of the record. The track specification may be in any format
except relative block. If you use zoned-decimal relative format, the record
number is returned as a 2-byte zoned decimal number in the seventh and eighth
positions of the record identification field.
The extended search option allows the record to be added to another track if no
space is available on the specified track. The location at which the record is
added is returned to the application program in the record identification field
being used.
When adding records of undefined length, use the LENGTH option to specify
the length of the record. When an undefined record is retrieved, the application
program must find out its length.

v When adding keyed fixed-length records, you must first format the data set with
dummy records or “slots” into which the records may be added. You signify a
dummy record by a key of X'FF's. The first byte of data contains the record
number.

v When adding nonkeyed fixed-length records, give the block reference in the
record identification field. The new records are written in the location specified,
destroying the previous contents of that location.

v When adding keyed fixed-length records, track information only is used to
search for a dummy key and record, which, when found, is replaced by the new

Chapter 25. File control—BDAM considerations 289

key and record. The location of the new record is returned to the application
program in the block reference subfield of the record identification field.
For example, for a record with the following identification field:
0 3 0 ALPHA
T T R KEY

the search starts at relative track three. When control is returned to the
application program, the record identification field is:
0 4 6 ALPHA

showing that the record is now record six on relative track four.
v When adding variable-length blocked records you must include a 4-byte record

description field (RDF) in each record. The first two bytes specify the length of
the record (including the 4-byte RDF); the other two bytes consist of zeros.

BDAM exclusive control
When a blocked record is read for update, CICS maintains exclusive control of the
containing block. An attempt to read a second record from the block before the
first is updated (by a REWRITE command), or before exclusive control is released
(by an UNLOCK command), causes a deadlock.

290 CICS TS for OS/390: CICS Application Programming Guide

Chapter 26. Database control

This chapter introduces DL/I databases and “DATABASE 2 (DB2) databases”.

DL/I databases
You get a logical view of the database in terms of a hierarchy of segments. DL/I
lets you manipulate these segments without needing to know how they are
organized. DL/I databases are processed by the IBM licensed program Information
Management System/Enterprise Systems Architecture (IMS/ESA) Version 3 and
later.

CICS has two programming interfaces to DL/I. We recommend that you use the
higher-level EXEC DLI interface. It is straight-forward, works with EDF, and can
fully exploit a 31-bit environment. The lower-level DL/I programming interface is
the DL/I CALL interface.

This book does not discuss EXEC DLI commands. See “Books from related
libraries” on page xvi for the books you need.

DATABASE 2 (DB2) databases
DATABASE 2™ databases also provide data independence, offering a logical view
of the database as a series of tables that you can interrelate more or less as you
wish. DB2 lets you manipulate these tables without needing to know how they are
organized. DB2 databases are processed by the IBM licensed program DATABASE
2, (DB2), Version 2 and later, Program Number 5665-DB2.

CICS has one interface to DB2—the EXEC SQL interface, which offers powerful
statements for manipulating sets of tables—thus relieving the application program
of record-by-record (segment-by-segment, in the case of DL/I) processing.

CICS applications that process DB2 tables can also access DL/I databases. Any
CICS resources (files, transient data, and so on), DL/I, and DB2 can be accessed
from within one transaction. See the CICS IMS Database Control Guide for
information about what databases and resources you can access.

For information about SQL commands, which are not discussed in this book, see
the SQL Reference manual.

Requests to DB2
Requests from CICS applications to DB2 are made using EXEC SQL commands.
DB2 runs in its own address space, like DBCTL. The CICS-DB2 and the
CICS-DBCTL interfaces are similar in that they both use the task-related user exit
interface (also known as the resource manager interface (RMI)) and have a
two-phase commit process. However, they differ in a number of respects. For
example, The CICS-DB2 interface uses the task-related user exit interface (also
known as the resource manager interface (RMI)) and has a two-phase commit
process. CICS supports DBCTL and remote DL/I, and has to determine at PSB
schedule time which of them is being used.

© Copyright IBM Corp. 1989, 2000 291

When an application issues an EXEC SQL command, the following processing
takes place:
1. The RMI is invoked from a stub that is link-edited to the application.
2. If this is the first DB2 request from this task, the RMI sets up a task interface

element (TIE).
3. The RMI invokes the DB2 task-related user exit.

The processing steps are illustrated in Figure 51. and are the responsibility of DB2, until
control is returned to the RMI

EXEC SQL request

Invoke RMI

First

request for

DB2 from this

task?

Set up task interface

element (TIE)

Invoke DB2

task-related user exit

Service request

Suspend task that

made DB2 request

Return response and

any data to

applications

Resume task that

made DB2 request

Return control to RMI

Return control

to application

Application

Application

RMI

DB2

RMI

N Y

Figure 51. How EXEC SQL requests are processed

292 CICS TS for OS/390: CICS Application Programming Guide

Part 5. Data communication

Chapter 27. Introduction to data communication 297
Basic CICS terms 298
How tasks are started 299
Which transaction? 300
CICS APIs for terminals 303
Topics elsewhere in this book 303
Where to find more information 304

Chapter 28. The 3270 family of terminals . . . 305
Background 305

Screen fields. 306
Personal computers 306

PCs as 3270s. 307
The 3270 buffer. 308

Writing to a 3270 terminal 308
3270 write commands 308
Write control character 309

3270 display data: defining 3270 fields 310
Display characteristics 310
3270 field attributes 310

Protection 311
Modification. 311
Intensity 311
Base color 312

Extended attributes 312
Orders in the data stream 313

The start field order 313
The modify field order 314
The set buffer address order 314
The set attribute order 315

Outbound data stream sample. 315
Input from a 3270 terminal 318

Data keys 318
Keyboard control keys 318
Attention keys 318

The AID 319
Reading from a 3270 terminal 319
Inbound field format 320
Input example 320

Unformatted mode 321

Chapter 29. Basic mapping support 323
Other sources on BMS 323

BMS support levels 324
Minimum BMS 324
Standard BMS 324
Full BMS 324

A BMS output example 325
Creating the map 328
Defining map fields: DFHMDF 329
Defining the map: DFHMDI 331
Defining the map set: DFHMSD 331
Rules for writing BMS macros 332
Assembling the map 334

Physical and symbolic map sets 334
The SDF II alternative 335

Grouping maps into map sets 335
ADS Descriptor. 336
Complex fields 336

Composite fields: the GRPNAME option . . 336
Repeated fields: the OCCURS option . . . 337

Sending mapped output: basics 338
The SEND MAP command 339
Acquiring and defining storage for the maps 339

BASE and STORAGE options 340
Initializing the output map 340
Moving the variable data to the map 341
Setting the display characteristics. 341

Changing the attributes 342
Attribute value definitions: DFHBMSCA . . 343

Control options on the SEND MAP command 343
Other BMS SEND options: WAIT and LAST 344

Options for merging the symbolic and physical
maps 344

MAPONLY option. 344
DATAONLY option 345
The SEND CONTROL command 345

Summary: what appears on the screen 346
What you start with 346
What is sent 346
Where the values come from 347
Outside the map 348
Using GDDM and BMS 348

Positioning the cursor 348
Sending invalid data and other errors 349

Receiving data from a display 349
An input-output example 349
The symbolic input map. 352
Programming simple mapped input 352
The RECEIVE MAP command. 353
Getting storage for mapped input: INTO and
SET. 353
Reading from a formatted screen: what comes in 354

Modified data 354
Upper case translation 355

Other information from RECEIVE MAP . . . 355
The attention identifier: what caused
transmission. 355
The HANDLE AID command 356
Finding the cursor. 356

Processing the mapped input 357
Handling input errors 357

Flagging errors 358
Saving the good input 358
Rechecking 359

Mapped output after mapped input 359
MAPFAIL and other exceptional conditions . . 360

EOC condition 361
Formatting other input 361

Support for non-3270 terminals 361
Output considerations for non-3270 devices . . 362
Differences on input 362

© Copyright IBM Corp. 1989, 2000 293

Special options for non-3270 terminals 363
Device-dependent maps: map suffixes 363

Device dependent support: DDS 364
Finding out about your terminal 367

The MAPPINGDEV facility. 367
SEND MAP with the MAPPINGDEV option . . 367
RECEIVE MAP with the MAPPINGDEV option 368
Sample assembler MAPPINGDEV application 369

Block data 370
Sending mapped output: additional facilities . . . 371

Output disposition options: TERMINAL, SET,
and PAGING 371
BMS logical messages 372

Rules for logical messages 372
Ending a logical message: the SEND PAGE
command 373
PAGING options: RETAIN and RELEASE 374
The AUTOPAGE option 375

Terminal operator paging: the CSPG transaction 375
Changing your mind: The PURGE MESSAGE
command 376
Logical message recovery 376

Page formation: the ACCUM option 376
Floating maps: how BMS places maps using
ACCUM 377

Page breaks: BMS overflow processing 377
Map placement rules 378
ASSIGN options for cumulative processing . . 380
Input from a composite screen. 380
Performance considerations. 381

Minimizing path length 381
Reducing message lengths 382

Formatting text output 382
The SEND TEXT command. 382
Text logical messages 383
Page format for text messages 383
How BMS breaks text into lines 384
Header and trailer format for text messages . . 385
SEND TEXT extensions: SEND TEXT MAPPED
and SEND TEXT NOEDIT 386

Message routing: the ROUTE command 387
How routing works 387
Specifying destinations for a routed message 388

Eligible terminals 388
Destinations specified with OPCLASS only 389
OPCLASS and LIST omitted 389
Route list provided 389

Route list format 390
Delivery conditions 392
Undeliverable messages 392
Temporary storage and routing 393

Message identification 393
Programming considerations with routing . . . 394

Routing and page overflow. 394
Routing with SET 394
Interleaving a conversation with message
routing 395

Using SET 395
Partition support 396

Uses for partitioned screens 397
Scrolling 397

Data entry 398
Lookaside 398
Data comparison 398
Error messages 398

How to define partitions 398
3290 character size 399
Programming considerations 400
Establishing the partitioning 400
Partition options for BMS SEND commands . . 401
Determining the active partition 401
Partition options for BMS RECEIVE commands 401
ASSIGN options for partitions 402
Partitions and logical messages 402
Partitions and routing 403
New attention identifiers and exception
conditions 403
Terminal sharing 403
Restrictions on partitioned screens 404

Logical device components 404
Defining logical device components 404
Sending data to a logical device component . . 405
LDCs and logical messages 405
LDCs and routing 405

BMS support for other special hardware 406
10/63 magnetic slot reader 406
Field selection features 407

Trigger field support 407
Cursor and pen-detectable fields 407

Selection fields 408
Attention fields. 408
BMS input from detectable fields 409

Outboard formatting 409

Chapter 30. Terminal control 411
Access method support 411
Terminal control commands 412

Data transmission commands 412
Send/receive mode 413

Contention for the terminal. 413
RETURN IMMEDIATE 414

Speaking out of turn 414
Interrupting 415
Terminal waits 415
What you get on a RECEIVE 415

Input chaining 416
Logical messages 416
NOTRUNCATE option 416
Print key 416

Control commands 416
Finding the right commands 417
Finding out about your terminal 422
EIB feedback on terminal control operations . . 423

VTAM considerations 424
Chaining input data 424
Chaining output data. 425
Handling logical records. 425
Response protocol 426
Using function management headers 426

Inbound FMH 426
Outbound FMH 427

Preventing interruptions (bracket protocol) . . 427

294 CICS TS for OS/390: CICS Application Programming Guide

||
||
||
||

Sequential terminal support 427
Coding considerations for sequential terminals 428

Print formatting 429
GOODNIGHT convention 429

TCAM considerations 429
Coding for the DCB interface 429

Sending to another terminal 430
Coding for the ACB interface 430

Batch data interchange 430
Destination selection and identification 432

Selection by named data set 432
Selection by medium 432

Definite response 432
Waiting for function completion 432

Chapter 31. CICS support for printing 433
Formatting for CICS printers 433

3270 printers 434
Options for 3270 printers 435

PRINT option and print control bit 435
ERASE 436
Line width options: L40, L64, L80, and
HONEOM 436
NLEOM option. 436
FORMFEED 437
PRINTERCOMP option 438

Non-3270 CICS printers 438
SCS input 439

Determining the characteristics of a CICS
printer. 439

BMS page size, 3270 printers 439
Supporting multiple printer types 440

CICS printers: getting the data to the printer . . . 440
Printing with a START command. 440
Printing with transient data 441

Task that wants to print (on printer PRT1): 442
Task that gets triggered: 442

Printing with BMS routing 442
Non-CICS printers. 443

Formatting for non-CICS printers. 443
Non-CICS printers: Delivering the data. . . . 443
CICS API considerations. 443
Notifying the print application 445

Printing display screens 445
CICS print key 445
ISSUE PRINT and ISSUE COPY 446
Hardware print key 446
BMS screen copy 447

Chapter 32. CICS interface to JES. 449
Creating a spool file 449

Reading input spool files 450
Identifying spool files 451
Some examples of SPOOLOPEN for OUTPUT
with OUTDESCR option. 454

COBOL 454
PL/I 455
C 455
ASSEMBLER 456

Programming note for spool commands . . . 456
Spool interface restrictions 456

Part 5. Data communication 295

296 CICS TS for OS/390: CICS Application Programming Guide

Chapter 27. Introduction to data communication

This part of the manual covers CICS facilities for communicating with the
terminals through which the users access CICS applications.

CICS supports communication with other applications as well as with terminals,
including other CICS regions, IMS/DC, and any program that understands one of
the standard protocols that CICS uses for the purpose. Communications between
applications are different in character from those with a terminal, however, and
require a different application programming interface. CICS provides several sets
of commands for this purpose. They are not covered in this manual; you will find
them instead in the CICS Distributed Transaction Programming Guide.

Java and C++
The application programming interface described in this part of the book is
the EXEC CICS API, which is not used in Java programs. For information
about Java programs using the JCICS classes to access CICS data
communication services, see “The JCICS Java classes” on page 69 and the
JCICS Javadoc html documentation. For information about C++ programs
using the CICS C++ classes see the CICS C++ OO Class Libraries manual.

This chapter introduces the subject of data communications, preparing the ground
for the remaining chapters in this part of the book. It explains:
v “Basic CICS terms” on page 298
v “How tasks are started” on page 299
v “Which transaction?” on page 300
v “CICS APIs for terminals” on page 303
v “Topics elsewhere in this book” on page 303
v “Where to find more information” on page 304

© Copyright IBM Corp. 1989, 2000 297

|
|
|
|
|
|

Basic CICS terms
Here are several terms that are used throughout this part of the book:

Terminal
A hardware device from which data can enter or leave CICS over a
communication channel. It is usually some combination of keyboard,
display screen and print mechanism. It may also be a control unit or a
processor emulating a terminal, but it is not another application. The
material in this part, together with descriptions of the commands cited
here, tells you how to program for the wide variety of terminals which
CICS supports. The commands are described in the CICS Application
Programming Reference manual.

Logical unit (LU)
The VTAM term for the end point of a data transmission. That is, VTAM
transmits data from one LU to another. (VTAM is an access method for
terminals; see “Access method support” on page 411.) An LU may be a
terminal, but it may also be a host application (CICS or IMS/DC, among
others). VTAM distinguishes between different categories of end points by
defining seven types of logical unit. Types 1, 2, and 3 are generally what
would be called terminals. Type 0 may be a terminal, or it may be a
control unit or processor using a very simple communications protocol.
Type 4 is a programmable control unit. Type 6.1 and Type 6.2 (APPC) are
reserved for program-to-program communications (the type not covered in
this chapter). In this section, the term logical unit is used to mean
specifically a terminal connected under VTAM, and terminal when the
access method is not important.

Transaction
When CICS is described as an online transaction processing system,
transaction is used in the ordinary sense of an interaction between two
participants. Making an airline reservation, posting a payment, sending a
bill are all examples.

However, transaction also has a specific meaning in CICS, which applies to
the material in this section and throughout the manual. It means the
processing executed for one specific type of request. A request type may
represent a whole process, like making an airline reservation, or a
subcomponent of that process, like selecting a seat. Your application design
defines what constitutes a request type, and you describe each one to CICS
with a TRANSACTION definition. This definition tells CICS several things
about the work to be done; the key one is what program to invoke first.
(You only have to tell CICS where to start in the TRANSACTION
definition; execution flow is controlled by the programs themselves
thereafter.)

Transactions are identified by a transaction identifier (or, often, transaction
code), a 1- to 4-character code by which both users and programs indicate
the type of processing to be performed.

Task You will also see the word task used extensively here. This word also has a
specific meaning in CICS: it is one instance of the execution of a particular
transaction type. That is, one execution of a transaction, with a particular
set of data, usually on behalf of a particular user at a particular terminal.

Principal facility
If you have looked at the programming information for the commands for
terminals in the CICS Application Programming Reference manual, you may

298 CICS TS for OS/390: CICS Application Programming Guide

have noticed that there is no way to indicate which terminal you are talking
about. That is because CICS allows a task to communicate directly with
only one terminal, namely its principal facility. CICS assigns the principal
facility when it initiates the task, and the task “owns” the facility for its
duration. No other task can use that terminal until the owning task ends. If
a task needs to communicate with a terminal other than its principal
facility, it must do so indirectly, by creating another task that has the
terminal as its principal facility. This requirement arises most commonly in
connection with printing, and how you can create such a task is explained
in “CICS printers: getting the data to the printer” on page 440.7

Alternate facility
Although a task may communicate directly with only one terminal, it can
also establish communications with one or more remote systems. It does
this by asking CICS to assign a conversation with that system to it as an
alternate facility. The task “owns” its alternate facilities in the same way
that it owns its principal facility. Ownership lasts from the point of
assignment until task end or until the task releases the facility.

How tasks are started
Work is started in CICS—that is, tasks are initiated—in one of two ways:
1. From unsolicited input
2. By automatic task initiation (ATI)

Automatic task initiation occurs when:
v An existing task asks CICS to create another one. The START command, the

IMMEDIATE option on a RETURN command (discussed in “RETURN
IMMEDIATE” on page 414), and the SEND PAGE command (in “Ending a
logical message: the SEND PAGE command” on page 373) all do this.

v CICS creates a task to process a transient data queue (see “Automatic transaction
initiation (ATI)” on page 497).

v CICS creates a task to deliver a message sent by a BMS ROUTE request (see
“Message routing: the ROUTE command” on page 387). The CSPG tasks you see
after using the CICS-supplied transaction CMSG are an example of this. CMSG
uses a ROUTE command which creates a CSPG transaction for each target
terminal in your destination list.

The primary mechanism for initiating tasks, however, is unsolicited input. When a
user transmits input from a terminal which is not the principal facility of an
existing task, CICS creates a task to process it. The terminal that sent the input
becomes the principal facility of the new task.

Unsolicited inputs from other systems are handled in the same way: CICS creates a
task to process the input, and assigns the conversation over which the input
arrived as the principal facility. (Thus a conversation with another system may be
either a principal or alternate facility. In the case where a task in one CICS region
initiates a conversation with another CICS region, the conversation is an alternate
facility of the initiating task, but the principal facility of the partner task created by
the receiving system. By contrast, a terminal is always the principal facility.)

7. You can specify a terminal destination other than your principal facility in a SEND command if the destination is under TCAM
control, an apparent exception to this rule. This is possible because communications with TCAM terminals are always queued.
Thus your task does not write directly to the destination terminal, but instead writes to a queue that will be delivered to it
subsequently by TCAM (see “TCAM considerations” on page 429). BMS routing, described in “Message routing: the ROUTE
command” on page 387, is another form of indirect access to other terminals by queues.

Chapter 27. Introduction to data communication 299

Not all tasks have a principal facility. Tasks that result from unsolicited input
always do, by definition, but a task that comes about from automatic task initiation
may or may not need one. When it does, CICS waits to initiate the task until the
requested facility is available for assignment to the task.

Which transaction?
Having received an unsolicited input, how does CICS decide what to do with it?
That is, what transaction should the task created to process it execute? The short
answer is that the previous task with the same principal facility usually tells CICS
what transaction to execute next just before it ends, by the TRANSID option on its
final RETURN. This is almost always the case in a pseudoconversational
transaction sequence, and usually in menu-driven applications as well. Failing that,
and in any case to get a sequence started, CICS interprets the first few characters
of the input as a transaction code. However, it is more complicated than that; the
exact process goes as follows. The step numbers indicate the order in which the
tests are made and refer to Figure 52 on page 301, a diagram of this logic.

300 CICS TS for OS/390: CICS Application Programming Guide

0. On the very first input from a terminal, CICS sometimes schedules a
preliminary task before creating one to process the input. This task
executes the CICS-supplied “query” transaction, CQRY, which causes the

3270

print request

key?

Term ina l

supported by

paging?

Attach

FMH present?

Transaction
specified by
TRANSID of
RETURN?

3270?

Term ina l

input begins

with tranid?

Paging

command

entered?

PA, PF, LPA,

or OPID?

TASKREQ=

specified?

Initiate printing

Initiate specified

transaction

Init iate

transaction

specified in

attach FMH

Initiate

transaction

specified by

terminal input

Initiate CSPG

Initiate

transaction

specified by

term input AID

Send

"invalid tranid"

message

to terminal

1

2

3

4

5

6

7

0

Term ina l

defined as to

be queried?

Has query

been run to this

term inal?

Initiate CQRY
Yes

Yes

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes Yes

No
NoNo

No

No

No

No

No

No

No

Transaction
specified by

TCT
TRANSID?

Initiate specified

transaction

Global user exit XZCATT in

module DFHZATT is invoked

at these points.

*

*

*

*

*

*

*

*

*

*

Figure 52. Determining which transaction to execute

Chapter 27. Introduction to data communication 301

terminal to transmit an encoded description of some of its hardware
characteristics—extended attributes, character sets, and so on.

CQRY allows the system programmer to simplify maintenance of the
terminal network by omitting these particulars from the terminal
definitions. It occurs only if the terminal definition so specifies, and has no
effect on the subsequent determination of what transaction to use to
process the input, which goes as follows.

1. If the terminal is a 3270 and the input is the “print request key”, the
CICS-supplied transaction that prints the contents of the screen, CSPP, is
initiated. See “CICS print key” on page 445 for more information about this
feature. For this purpose, a “3270 logical unit” or any other device that
accepts the 3270 data stream counts as a 3270.

2. If full BMS support is present, the terminal is of a type supported by BMS
terminal paging, and the input is a paging command, the CICS-supplied
transaction CSPG is initiated to process the request. BMS support levels are
explained in “BMS support levels” on page 324, and the same section
contains a list of the terminals that BMS supports. The PGRET, SKRxxxx,
PGCHAIN, PGCOPY, and PGPURGE options in the system initialization
table define the paging commands. As paging requires full BMS, this step
is skipped if the CICS system contains less than that level.

3. If the terminal definition indicates that a specific transaction should be
used to process all unsolicited inputs from that terminal, the indicated
transaction is executed. (If present, this information appears in the
TRANSACTION attribute of the TERMINAL definition.)

4. If the previous task at the terminal specified the TRANSID option of the
RETURN command that ended it, the transaction named is executed.

5. If an attach function management header is present in the input, the attach
names in the header are converted to a 4-character CICS transaction
identifier, and that transaction is executed.

6. If the terminal is a 3270, and the attention identifier is defined as a
transaction, that transaction is executed. “Attention keys” on page 318
explains attention identifiers. You define one as a transaction identifier
with the TASKREQ attribute of the corresponding TRANSACTION
definition.

7. If all of the preceding tests fail, the initial characters of the input are used
to identify the transaction to be executed. The characters used are the first
ones (up to four) after any control information in the data stream and
before the first field separator character. Field separators are defined in the
FLDSEP option of the system initialization table (the default is a blank).

If there are no such characters in the input, as occurs when you use the
CLEAR key, for example, or if there is no transaction definition that
matches the input, CICS cannot determine what transaction to execute and
sends an “invalid transaction identification” message to the terminal.

Note: This logic for deciding which transaction to execute applies only to tasks
initiated to process unsolicited inputs. For automatic transaction initiation,
the transaction is always known. You specify it in the TRANSID option
when you create a task with a START or RETURN IMMEDIATE. Similarly,
you specify what transaction should be used to process a transient data
queue in the queue definition. Tasks created to route messages always
execute the CICS-supplied transaction CSPG.

302 CICS TS for OS/390: CICS Application Programming Guide

CICS APIs for terminals
The CICS application programming interface contains two sets of commands for
communicating with terminals:
1. Terminal control commands
2. Basic Mapping Support (BMS)

Terminal control is the more basic of the two. It gives you flexibility and function,
at the cost of more programming. In particular, if you code at the terminal control
level, you need to build the device data stream in your application.

BMS lets you communicate with a terminal at a much higher language level. It
formats your data, and you do not need to know the details of the data stream. It
is thus easier to code initially and easier to maintain, especially if your application
has to support new types of terminal. However, BMS pathlengths are longer (BMS
itself uses terminal control), and BMS does not support all the terminal types that
terminal control does. BMS is the subject of “Chapter 29. Basic mapping support”
on page 323, and “Chapter 30. Terminal control” on page 411 covers terminal
control.

Finally, you can use CPI-C “sockets” calls to communicate with terminals or other
systems. This interface is covered in “Chapter 17. Intercommunication
considerations” on page 205.

Topics elsewhere in this book
Although BMS and terminal control are discussed separately, some of the
discussion in the BMS chapter applies to terminal control as well. These topics
have been covered where they naturally arise and you should be aware of them if
you are using only one interface. They include:
v EIB (execute interface block) fields that contain information specific to terminal

operations, discussed in “EIB feedback on terminal control operations” on
page 423.

v ASSIGN command options specific to terminals. You can use these to find out
the characteristics of the principal facility for your task. See “Finding out about
your terminal” on page 422.

v DFHBMSCA, a useful set of attribute byte definitions in a CICS-supplied
copybook (see “Attribute value definitions: DFHBMSCA” on page 343).

v “The HANDLE AID command” on page 356. HANDLE AID lets you specify
program flow based on the key used to transmit the input.

v “Performance considerations” on page 381.
v What happens when you send an invalid data stream, in “Sending invalid data

and other errors” on page 349.
v Send-receive conventions, in “Send/receive mode” on page 413 and “Preventing

interruptions (bracket protocol)” on page 427.
v Translation of mixed case input to uppercase, in “Upper case translation” on

page 355.
v Saving input data between tasks in a pseudoconversational sequence, discussed

in “Saving the good input” on page 358.

If you are not familiar with 3270s and you plan to code for one or to use BMS on
any terminal, read “Chapter 28. The 3270 family of terminals” on page 305. You do
not have to read the whole chapter; we have noted shortcuts for BMS users. There
is also material on special features of 3270s in the BMS chapter, in “BMS support

Chapter 27. Introduction to data communication 303

for other special hardware” on page 406, and 3270 printers are covered in
“Chapter 31. CICS support for printing” on page 433. You should also read
“Personal computers” on page 306 if you are using a personal computer as a
terminal or as the client in a client-server configuration.

Where to find more information
The commands cited in the chapters that follow are described fully in the CICS
Application Programming Reference manual, and you should use that manual in
conjunction with this one.

304 CICS TS for OS/390: CICS Application Programming Guide

Chapter 28. The 3270 family of terminals

This chapter helps you to understand 3270 facilities and operation, so that you can
use these terminals to best advantage in creating the end-user interface for your
application. Some appreciation of the 3270 is also crucial to understanding BMS,
because so many facilities of BMS exploit features of the 3270.

This chapter contains the following information:
v “Background”
v “The 3270 buffer” on page 308
v “3270 display data: defining 3270 fields” on page 310
v “Input from a 3270 terminal” on page 318
v “Unformatted mode” on page 321

The 3270 is a family of display and printer terminals, with supporting control
units, that share common characteristics and use the same encoded data format to
communicate between terminal and host processor. This data format is known as
the 3270 data stream.

The 3270 is a complex device with many features and capabilities. Only basic
operations are covered here and the emphasis is on the way CICS supports the
3270. For a comprehensive discussion of 3270 facilities, programming and data
stream format, see the IBM 3270 Information Display System Data Stream
Programmer’s Reference manual. Programmers using terminal control commands still
need to consult the IBM 3270 Information Display System Data Stream Programmer’s
Reference manual for details. The IBM CICS/OS/VS 3270 Data Stream Device Guide
also contains much important information. It is primarily intended for
programmers using terminal control, but contains information that may be helpful
for BMS programmers as well. BMS support for a few special features is discussed
in the BMS chapter. (See page “BMS support for other special hardware” on
page 406 for more information.)

Although the discussion in this chapter is focused on display terminals, most of
the material applies equally to 3270 printers. A 3270 printer accepts the same data
stream as a 3270 display and simply delivers the screen image in hardcopy form.
Most of the differences relate to input, which is (mostly) lacking on printers.

However, additional formatting facilities are available for use with printers, and
there are special considerations in getting your printed output to the desired
printer. For more information see “Chapter 31. CICS support for printing” on
page 433.

Background
The development of the 3270 coincided with, and in part caused, the explosive
growth of online transaction processing that began in the late 1960s. Consequently,
the 3270 was a major influence in the design of transaction processing systems
such as CICS.

The earliest terminal devices for online processing were adaptations of the teletype,
the original and most basic computer terminal. Output was typed, and structure in
the input typed by the operator was determined entirely by program convention,
without any assists from the hardware. Cathode-ray tube terminals brought a

© Copyright IBM Corp. 1989, 2000 305

revolutionary improvement in output speed, allowing a complexity of application
not previously possible, but formatting on early CRTs was not much more
sophisticated than on their hard-copy predecessors.

Screen fields
The 3270 transformed the user interface by introducing the concept of fields on a
display screen. Each field on the screen has a starting position and individual
attributes, such as display intensity, color, and whether or not you can key data
into it. Fields introduce structure into the communication between program and
terminal operator in the same way that fields in a file record provide structure for
interaction between programs and data.

Organizing a screen display into fields has many advantages:
v The screen is easier to read, because fields can have different display

characteristics.
v Data entry is enhanced by providing clear visual and keyboard cues about the

order and format of the information required. The screen can be as explicit as a
standard “fill-in-the-blanks” paper form. (Keyboard facilities reinforce the
structure imposed by the fields. The keyboard locks if the operator tries to key
into the wrong place. There are keys that tab from one field to the next, another
that erases just the current field, and so on.)

v The length of the outbound data stream is reduced, because you send only
nonblank (that is, nonspacer) data.

v The inbound data stream is also reduced, because the host normally reads only
the changed fields.

Personal computers
The advent of personal computers (PCs) and intelligent workstations brought a
second revolution in terminal display function. These terminals differ from 3270s
in two important respects:
v They are generally “all points addressable”. That is, you can address any point

on the display raster, just as you can on a television screen. A typical display
might contain a grid of 640 by 480 points in the space normally used to display
a single character on an earlier display. Moreover, a whole palette of colors and
intensities is available at each point.
In contrast, a 3270 screen is divided into an array of character positions,
typically 24 down and 80 across. Each position consists of an array of raster
points, but you cannot address them individually. You can only select a
character, from a set of about 190 choices, for each position. Some terminals
allow you to select from several character sets and to load new sets, allowing a
rudimentary form of graphics, but essentially you are working with a terminal

Billing information on customer:

Reference Number KRK123456

Full Name Phileas Arthur Fogg

Amount Owed $40.07

Figure 53. Part of a formatted screen, showing fields. Each block of text on the screen is a
separate field. The fields on the left were filled in by program; those on the right were
completed by an operator.

306 CICS TS for OS/390: CICS Application Programming Guide

that displays text, numbers and symbols. You get some control of how the
characters are displayed, but the choices are very limited in comparison with a
PC display.

v The second difference is what makes the first possible. Personal computers and
intelligent workstations contain a processor, memory, and programming (that is,
“intelligence”) that make it possible to communicate with this very much more
complex hardware through a relatively simple programming interface and
minimum long-distance transmission of data.

These characteristics make possible a much higher-function end-user interface than
that of the 3270. You can draw pictures, select from a variety of fonts, scale images
in size, and so on. If you are writing a new application, and all of your users
access it from such terminals, you may want to take advantage of this function to
create the most efficient end-user interface possible for your application.

CICS cannot provide this type of function directly, but it does provide a number of
ways for a task to communicate with a workstation, so that you can use a software
package tailored for your particular workstation in combination with CICS. One
popular approach is to use one of these packages, executing on the PC, to build
your screens and handle the interactions with your user—that is, to implement the
“front end” of your application. This code can then communicate with the part of
your application that does the actual processing—the “back end” or “business
logic” part—executing under CICS on the host. Communication between the two
parts of the application can be done in several ways, depending on what your
workstation supports:
v You can use one of the SNA application-to-application protocols, such as APPC.
v You can use the CPI-C “sockets” interface (see “Chapter 17. Intercommunication

considerations” on page 205).
v You can use CICS on the workstation and use CICS facilities to communicate, or

even distribute the business logic between the host and the workstation. CICS
runs on many of these platforms, including OS/2, AIX, OS/400, and others.
When you do this, you can execute specific commands on the host (file
operations, for example), or whole programs, or whole tasks. Executing
commands remotely is called function shipping, executing a program remotely
is called a distributed program link, and executing the whole task remotely is
called transaction routing. See the CICS Intercommunication Guide for a full
discussion of the possibilities, and the CICS Distributed Transaction Programming
Guide for implementation details.

v You can use the terminal in emulation mode, a technique explained in “PCs as
3270s”.

If some of your users have 3270s or other nonprogrammable terminals, on the
other hand, or if you are modifying an existing 3270 application, you need to use
one of the CICS APIs for terminals. See “CICS APIs for terminals” on page 303 for
information on which to base your choice.

PCs as 3270s
Although there is a different programming interface for a PC display, you can use
PCs as “3270” terminals. Almost all PCs have programs available that emulate a
3270. These programs convert output in 3270 data stream format into the set of PC
instructions that produces the same display on the screen, and similarly convert
keyboard input into the form that would have come from a 3270 with the same
screen contents.

Chapter 28. The 3270 family of terminals 307

Under an emulator, the PC display has essentially the same level of function as a
real 3270. This limits your access to the more powerful PC hardware, although an
emulator program often gives you a means to switch easily from its control to
other programs that use the display in full function mode. Moreover, the hardware
on a particular PC does not always permit exact duplication of 3270 function (the
keyboard may be different, for example). Consequently, your PC may not always
behave precisely as described in this chapter or in the IBM 3270 Information Display
System Data Stream Programmer’s Reference manual, although the differences are
usually minor.

The 3270 buffer
Communication with a 3270 device occurs through its character buffer, which is a
hardware storage mechanism similar to the memory in a processor. Output to the
3270 is sent to the buffer. The buffer, in turn, drives the display of a display
terminal and the print mechanism of a printer terminal.

Conversely, keyboard input reaches the host through the buffer, as explained in
“Input from a 3270 terminal” on page 318.

Each position on the screen corresponds to one in the buffer, and the contents of
that buffer position determine what is displayed on the screen. When the screen is
formatted in fields, the first position of each field is used to store certain display
characteristics of the field and is not available to display data (it appears blank). In
the original models of the 3270, this byte was sufficient to store all of the display
characteristics. In later models, which have more types of display characteristics,
the additional information is kept in an area of buffer storage not associated with a
fixed position on the screen. There is more about display characteristics on page
310.

Writing to a 3270 terminal
To create a 3270 display, you send a stream of data that consists of:
v A write command (one byte)
v A write control character or WCC (one byte)
v Display data (variable number of bytes)

The WCC and display data are not always present; the write command determines
whether a WCC follows and whether data may or must be present.

When you use BMS, CICS builds the entire data stream for you. The WCC is
assembled from options in the SEND command, and the write command is
selected from other SEND options and information in the PROFILE of the
transaction being executed. Display data is built from map or text data that you
provide, which BMS translates into 3270 format for you.

When you use terminal control commands, such as SEND, CICS still supplies the
write command, built from the same information. However, you provide the WCC
and you must express the display data in 3270 format.

3270 write commands
Even though CICS supplies the write command, you need to know the
possibilities, so that you can select the options that produce the one you want.
There are five 3270 commands that send data or instructions to a terminal:
v Write
v Erase/write

308 CICS TS for OS/390: CICS Application Programming Guide

|

v Erase/write alternate
v Erase all unprotected fields
v Write structured fields

The 3270 write command sends the data that follows it to the 3270 buffer, from
which the screen (or printer) is driven. Erase/write and erase/write alternate also
do this, but they erase the buffer first (that is, they set it entirely to null values).
They also determine the buffer size (the number of rows and columns on the
screen), if the terminal has a feature called alternate screen size.

Terminals with this feature have two sizes, default size and alternate size. The
erase/write command causes the default size to be used in subsequent operations
(until the next erase/write or erase/write alternate command), and erase/write
alternate selects the alternate size, as the names suggest.

CICS uses the plain write command to send data unless you include the ERASE
option on your SEND command. If you specify ERASE DEFAULT on your SEND,
CICS uses erase/write instead (setting the screen to default size), and ERASE
ALTERNATE causes CICS to use erase/write alternate (setting alternate size). If
you specify ERASE without DEFAULT or ALTERNATE, CICS looks at the
PROFILE definition associated with the transaction you are executing to decide
whether to use erase/write or erase/write alternate.

The erase unprotected to address command causes a scan of the buffer for
unprotected fields (these are defined more precisely in “3270 field attributes” on
page 310). Any such fields that are found are set to nulls. This selective erasing is
useful in data entry operations, as explained in “The SEND CONTROL command”
on page 345. No WCC or data follows this command; you send only the

command.

Write structured fields causes the data that follows to be interpreted as 3270
structured fields. Structured fields are required for some of the advanced function
features of the 3270. They are not covered here, but you can write them with
terminal control SEND commands containing the STRFIELD option. See the IBM
CICS/OS/VS 3270 Data Stream Device Guide if you wish to do this.

Write control character
The byte that follows a 3270 write, erase/write or erase/write alternate command
is the write control character or WCC. The WCC tells the 3270 whether or not to:
v Sound the audible alarm
v Unlock the keyboard
v Turn off the modified data tags
v Begin printing (if terminal is a printer)
v Reset structured fields
v Reset inbound reply mode

In BMS, CICS creates the WCC from the ALARM, FREEKB, FRSET, and PRINT
options on your SEND MAP command. If you use terminal control commands,
you can specify your WCC explicitly, using the CTLCHAR option. If you do not,
CICS generates one that unlocks the keyboard and turns off the modified data tags
(these are explained shortly, in “Modification” on page 311).

Chapter 28. The 3270 family of terminals 309

3270 display data: defining 3270 fields
Display data consists of a combination of characters to be displayed and
instructions to the device on how and where to display them. Under ordinary
circumstances, this data consists of a series of field definitions, although it is
possible to write the screen without defining fields, as explained in “Unformatted
mode” on page 321.

After a write command that erases, you need to define every field on the screen.
Thereafter, you can use a plain write command and send only the fields you want
to change.

To define a field, you need to tell the 3270:
v How to display it
v What its contents are
v Where it goes on the screen (that is, its starting position in the buffer)

Display characteristics
Each field on the screen has a set of display characteristics, called attributes.
Attributes tell the 3270 how to display a field, and you need to understand what
the possibilities are whether you are using BMS or terminal control commands.
Attributes fall into two categories:

Field attributes
These include:
v Protection (whether the operator can modify the field or not)
v Modification (whether the operator did modify the field)
v Display intensity

All 3270s support field attributes; “3270 field attributes” explains your
choices for them.

Field attributes are stored in the first character position of a field. This byte
takes up a position on the screen and not only stores the field attributes,
but marks the beginning of the field. The field continues up to the next
attributes byte (that is, to the beginning of the next field). If the next field
does not start on the same line, the current one wraps from the end of the
current line to the beginning of the next line until another field is
encountered. A field that has not ended by the last line returns to the first.

Extended field attributes
(Usually shortened to extended attributes). These are not present on all
models of the 3270. Consequently, you need to be aware of which ones are
available when you design your end-user interface. Extended attributes
include special forms of highlighting and outlining, the ability to use
multiple symbol sets and provision for double-byte character sets. Table 19
on page 312 lists the seven extended attributes and the values they can

take.

3270 field attributes
As noted above, the field attributes byte holds the protection, modification and
display intensity attributes of a field. Your choices for each of these attributes are
described here using the terms that BMS uses in defining formats. If you use
terminal control commands, you need to set the corresponding bits in the
attributes byte to reflect the value you choose. (See the IBM 3270 Information

310 CICS TS for OS/390: CICS Application Programming Guide

Display System Data Stream Programmer’s Reference manual for the bit assignments.
See also “Attribute value definitions: DFHBMSCA” on page 343 for help from CICS
in this area.)

Protection
There are four choices for the protection attribute, using up two bit positions in the
attributes byte. They are:

Unprotected
The operator can enter any data character into an unprotected field.

Numeric-only
The effect of this designation depends on the keyboard type of the
terminal. On a data entry keyboard, a numeric shift occurs, so that the
operator can key numbers without shifting. On keyboards equipped with
the “numeric lock” special feature, the keyboard locks if the operator uses
any key except one of the digits 0 through 9, a period (decimal point), a
dash (minus sign) or the DUP key. This prevents the operator from keying
alphabetic data into the field, although the receiving program must still
inspect the entry to ensure that it is a number of the form it expects.
Without the numeric lock feature, numeric-only allows any data into the
field.

Protected
The operator cannot key into a protected field. Attempting to do so locks
the keyboard.

Autoskip
The operator cannot key into an autoskip field either, but the cursor
behaves differently. (The cursor indicates where the operator’s next
keystroke will go; for more information about this, see “Input from a 3270
terminal” on page 318.) Whenever the cursor is being advanced to a new
field (either because the previous field filled or because a field advance key
was used), the cursor skips over any autoskip fields in its path and goes to
the first field that is either unprotected or numeric-only.

Modification
The second item of information in the field attributes byte occupies only a single
bit, called the modified data tag or MDT. The MDT indicates whether the field
has been modified or not. The hardware turns on this bit automatically whenever
the operator makes any change to the field contents. The MDT bit is very
important because, for the read command that CICS normally uses, it determines
whether the field is included in the inbound data or not. If the bit is on (that is, the
field was changed), the 3270 sends the field; if not, the field is not sent.

You can also turn the MDT on by program, when you send a field to the screen.
Using this feature ensures that a field is returned on a read, even if the operator
cannot or does not change it. The FRSET option on BMS SEND commands allows
you to turn off the tags for all the fields on the screen by program; you cannot
turn off individual tags by program. If you are using terminal control commands,
you turn on a bit in the WCC to turn off an individual tag.

Intensity
The third characteristic stored in the attributes byte is the display intensity of the
field. There are three mutually exclusive choices:

Normal intensity
The field is displayed at normal brightness for the device.

Chapter 28. The 3270 family of terminals 311

Bright The field is displayed at higher than normal intensity, so that it appears
highlighted.

Nondisplay
The field is not displayed at all. The field may contain data in the buffer,
and the operator can key into it (provided it is not protected or autoskip),
but the data is not visible on the screen.

Two bits are used for display intensity, which allows one more value to be
expressed than the three listed above. For terminals that have either of the
associated special hardware features, these same two bits are used to determine
whether a field is light-pen detectable or cursor selectable. Because there are only
two bits, not all combinations of intensity and selectability are possible. The
compromise is that bright fields are always detectable, nondisplay fields are never
detectable, and normal intensity fields may be either. “Cursor and pen-detectable
fields” on page 407 contains more information about these features.

Base color
Some terminals support base color without, or in addition to, the extended colors
included in the extended attributes. There is a mode switch on the front of such a
terminal, allowing the operator to select base or default color. Default color shows
characters in green unless field attributes specify bright intensity, in which case
they are white. In base color mode, the protection and intensity bits are used in
combination to select among four colors: normally white, red, blue, and green; the
protection bits retain their protection functions as well as determining color.

Extended attributes
In addition to the field attributes just described, some 3270 terminals have
extended attributes as well. Table 19 lists the types of extended attributes in the
first column and the possible values for each type in the second column.

Table 19. 3270 extended attributes

Attribute type Values

Extended color Blue, red, pink, green, turquoise, yellow, neutral

Extended highlighting Blinking, reverse video, underscoring

Field outlining Lines over, under, left and right, in any combination

Background transparency Background transparent, background opaque

Field validation Field must be entered; field must be filled; field triggers
input

Programmed symbol sets Number identifying the symbol set
Note: The control unit associated with a terminal contains
a default symbol set and can store up to five additional
ones. To use one of these others, you need to load the
symbol set into the controller prior to use. You can use a
terminal control SEND command to do this.

SO/SI creation Shift characters indicating double-byte characters may be
present; shift characters are not present

The IBM 3270 Information Display System Data Stream Programmer’s Reference manual
contains details about extended attributes and explains how default values are
determined. You can use ASSIGN and INQUIRE commands to determine which
extended attributes your particular terminal has. These commands are described in
“Finding out about your terminal” on page 422.

312 CICS TS for OS/390: CICS Application Programming Guide

Some models of the 3270 also allow you to assign extended attribute values to
individual characters within a field that are different from the value for the field as
a whole. Generally, you need to use terminal control commands to do this, because
BMS does not make explicit provision for character attributes. However, you can
insert the control sequences for character attributes in text output under BMS, as
explained in “How BMS breaks text into lines” on page 384. “The set attribute
order” on page 315 describes the format of such a sequence.

Orders in the data stream
The next several sections tell you how to format outbound data to express the
attributes, position, and contents of a field. You need to know this information if
you are writing to a 3270 using terminal control commands. If you are using BMS,
all this is done for you, and you can move on to “Input from a 3270 terminal” on
page 318.

When you define a field in the 3270 data stream, you begin with a start field (SF)
or a start field extended (SFE) order. Orders are instructions to the 3270. They tell
it how to load its buffer. They are one byte long and usually are followed by data
in a format specific to the order.

The start field order
The SF order is supported on all models and lets you specify the field attributes
and the display contents of a field, but not extended attributes. To define a field
with SF, you insert a sequence in the data stream as in Figure 54.

If you need to specify extended attributes, and your terminal supports them, you
use the start field extended order instead. SFE requires a different format, because
of the more complex attribute information. Extended attributes are expressed as
byte pairs. The first byte is a code indicating which type of attribute is being
defined, and the second byte is the value for that attribute. The field attributes are
treated collectively as an additional attribute type and also expressed as a byte
pair. Immediately after the SFE order, you give a 1-byte count of the attribute
pairs, then the attribute pairs, and finally the display data. The whole sequence is
shown in Figure 55 on page 314.

1D F0 D4 C5 D5 E4
(M E N U)

Display data: word "MENU"

Field attributes: autoskip, normal intensity, MDT off

SF order

Figure 54. Field definition using SF order

Chapter 28. The 3270 family of terminals 313

The modify field order
When a field is on the screen, you can change it with a command almost identical
in format to SFE, called modify field (MF). The only differences from SFE are:
v The field must already exist.
v The command code is X'2C' instead of X'29'.
v You send only the attributes you want to change from their current values, and

you send display data only if you want to change it.
v A null value sets an attribute back to its default for your particular terminal

(you accomplish the same thing in an SFE order by omitting the attribute).

For example, to change the “menu” field of earlier examples back to the default
color for the terminal and underscore it, you would need the sequence in
Figure 56.

The set buffer address order
The SF and SFE orders place the field they define at the current position in the
buffer, and MF modifies the field at this position. Unless the field follows the last
character sent (that is, begins in the current buffer position), you need to precede

29 02 C2 0F C0 F0 D4 C5 D5 E4
(M E N U)

Display data: word "MENU"

Field attributes: autoskip,
normal intensity, MDT off

Attribute code for field attributes

Field outlining value for box around field

Attribute code for field outlining

Count of attribute pairs to follow

SFE order

Figure 55. Field definition using SFE order

2C 02 41 F4 42 00

Value to set to terminal default

Attribute code for foreground color

Extended highlighting value for underscore

Attribute code for extended highlighting

Count of attribute pairs to follow

MF order

Figure 56. Changing field attributes within an MF order

314 CICS TS for OS/390: CICS Application Programming Guide

these orders with a set buffer address (SBA) order to indicate where you want to
place or change a field. To do this, you send an SBA order followed by a 2-byte
address, as in Figure 57.

The address in the figure is a “12-bit” address for position 112 (X'70'), which is row
2, column 33 on an 80-column screen. Note that counting starts in the first row and
column (the zero position) and proceeds along the rows. There are two other
addressing schemes used: “14-bit” and “16-bit”. Buffer positions are numbered
sequentially in all of them, but in 12- and 14-bit addressing, not all the bits in the
address are used, so that they do not appear sequential. (The X'70' (B'1110000') in
the figure appears as B'110000' in the low-order six bits of the rightmost byte of the
address and B'000001' in the low-order six bits of the left byte.) The IBM 3270
Information Display System Data Stream Programmer’s Reference manual explains how
to form addresses.

After an SF, SFE, or MF order, the current buffer address points to the first position
in the buffer you did not fill—right after your data, if any, or after the field
attributes byte if none.

The set attribute order
To set the attributes of a single character position, you use a set attribute (SA)
order for each attribute you want to specify. For example, to make a character
blink, you need the sequence in Figure 58.

The attributes you specify with SA orders are assigned to the current buffer
position, in the same way that field definitions are placed at the current buffer
position, so you generally need to precede your SAs with SBA sequences.

Outbound data stream sample
This section shows you an annotated example of the data stream required to paint
a particular 3270 screen, to reinforce the explanation of how the data stream is
built.

11 C1 F0

Buffer address (row 2, column 33)

SBA order

Figure 57. SBA sequence

28 41 F1

Extended highlighting value for blinking

Attribute code for extended highlighting

SA order

Figure 58. SA sequence to make a character blink

Chapter 28. The 3270 family of terminals 315

|
|

Figure 59 shows an example screen that is part of an application that keeps track of
cars used by the employees at a work site, and is used to record a new car. The
only inputs are the employee identification number, the license plate (tag) number,
and, if the car is from out-of-state, the licensing state.

Note: This is an unrealistically simple screen, designed to keep the explanation
manageably short. It does not conform to generally accepted standards of
screen design, and you should not use it as a model.

There are eight fields on this screen:
1. Screen title, “Car Record”, on line 1, column 26
2. Label field, “Employee No:” (line 3, column 1), indicating what the operator is

to enter into the next field
3. An input field for the employee number (line 3, column 14), six positions long
4. Label field, “Tag. No:”, at line 3, column 21
5. An input field (tag number) at line 3, column 31, eight positions long
6. Label field, “State:”, at line 3, column 40
7. An input field (state), at line 3, column 49, two positions long
8. A field to mark the end of the previous (state) input field, at line 3, column 52

Table 20 shows the outbound data stream:

Table 20. 3270 output data stream

Bytes Contents Notes

1 X'F5' The 3270 command that starts the data stream, in this
case erase/write.

2 X'C2' WCC; this value unlocks the keyboard, but does not
sound the alarm or reset the MDTs.

3 X'11' SBA order to position first field at ...

4-5 X'40D6' Address of line 1, column 23 on 24 by 80 screen, using
12-bit addressing.

6 X'1D' SF order to begin first field definition.

7 X'F8' Field attributes byte; this combination indicates a field
which is autoskip and bright, with the MDT initially
off.

8-17 ‘Car record’ Display contents of the field.

18-20 X'11C260' SBA sequence to reset the current buffer position to
line 3, column 1 for second field.

21 X'1D' SF order for second field.

22 X'F0' Field attributes byte: autoskip, normal intensity, MDT
off.

23-34 ‘Employee No:’ Display contents of field.

Car Record
Employee No: ______ Tag No: ________ State: __

Figure 59. Example of a data-entry screen

316 CICS TS for OS/390: CICS Application Programming Guide

Table 20. 3270 output data stream (continued)

Bytes Contents Notes

35 X'29' SFE order to start fourth field. SFE is required, instead
of SF, because you need to specify extended attributes.
This field starts immediately after the previous one left
off, so you do not have to precede it with an SBA
sequence.

36 X'02' Count of attribute types that are specified (two here:
field outlining and field attributes).

37 X'41' Code indicating attribute type of extended
highlighting.

38 X'F4' Extended highlighting value indicating underscoring.

39 X'C0' Code indicating attribute type of field attributes.

40 X'50' Field attributes value for numeric-only, normal
intensity, MDT off. Any initial data for this field would
appear next, but there is none.

41 X'13' Insert cursor (IC) order, which tells the 3270 to place
the cursor at the current buffer position. We want it at
the start of the first field which the operator has to fill
in, which is the current buffer position.

42-44 X'11C2F4' SBA sequence to position to line 3, column 21, to leave
the six positions required for an employee number.
The beginning of the “Tag No” label field marks the
end of the employee number input field, so that the
user is aware immediately if he tries to key too long a
number.

45 X'1D' SF order to start field.

46 X'F0' Field attributes byte: autoskip, normal intensity, MDT
off.

47-55 ‘ Tag No:’ Display data. We attach two leading blanks to the label
for more space between the fields. (We could have
used a separate field, but this is easier for only a few
characters.)

56 X'29' SFE (the next field is another input field, where we
want field outlining, so we use SFE again).

57 X'02' Count of attribute types.

58-59 X'41F4' Code for extended highlighting with value of
underscoring.

60-61 X'C040' Code for field attributes and attributes of unprotected,
normal intensity, MDT off.

62-64 X'11C3C7' SBA sequence to reposition to line 3, column 40,
leaving eight positions for the tag.

65 X'1D' SF to start field.

66 X'F0' Field attributes byte: autoskip, normal intensity, MDT
off.

67-74 ‘ State:’ Field data (two leading blanks again for spacing).

75-80 X'290241F4C040' SFE order and attribute specifications for state input
field (attributes are identical to those for tag input
field).

Chapter 28. The 3270 family of terminals 317

Table 20. 3270 output data stream (continued)

Bytes Contents Notes

81-82 X'0000' The (initial) contents of the state field. We could have
omitted this value as we did for other input fields, but
we would need an SBA sequence to move the current
buffer position to the end of the field, and this is
shorter.

83 X'1D' SF. The last field indicates the end of the previous one,
so that the user does not attempt to key more than two
characters for the state code. It has no initial data, just
an attributes byte. This kind of field is sometimes
called a “stopper” field.

84 X'F0' Field attributes byte: autoskip, normal intensity, MDT
off.

Note: If you use terminal control commands and build your own data stream, the
data you provide in the FROM parameter of your SEND command starts at
byte 3 in the table above; CICS supplies the write command and the WCC
from options on your SEND command.

Input from a 3270 terminal
As explained earlier, keyboard input reaches the host through the buffer. There are
many different keyboard arrangements available for 3270 terminals, but in any
arrangement, a key falls into one of three categories:
v Data key
v Keyboard control key
v Attention key

Data keys
The data keys include all the familiar letters, numbers, punctuation marks and
special characters. Depressing a data key simply changes the content of the buffer
(and therefore the screen) at the point indicated by the cursor. The cursor is a
visible pointer to the position on the screen (that is, in the buffer) where the next
data keystroke is be stored. As the operator keys data, the cursor advances to the
next position on the screen, skipping over fields defined with the autoskip
attribute on the screens that have been formatted.

Keyboard control keys
Keyboard control keys move the cursor to a new position, erase fields or
individual buffer positions, cause characters to be inserted, or otherwise change
where or how the keyboard modifies the buffer.

Attention keys
The keys in the previous groups, Data and Keyboard control keys, cause no
interaction with the host; they are handled entirely by the device and its control
unit. An attention key, on the other hand, signals that the buffer is ready for
transmission to the host. If the host has issued a read to the terminal, the usual
situation in CICS, transmission occurs at this time.

There are five types of attention key:
v ENTER
v PF (program function) key

318 CICS TS for OS/390: CICS Application Programming Guide

v CLEAR
v PA (program attention) key
v CNCL (cancel key, present only on some keyboard models)

In addition to pressing an attention key, there are other operator actions that cause
transmission:
v Using an identification card reader
v Using a magnetic slot reader or hand scanner
v Selecting an attention field with a light pen or the cursor select key
v Moving the cursor out of a trigger field

Trigger field capability is provided with extended attributes on some terminal
models, but all the other actions listed above require special hardware, and in most
cases the screen (buffer) must be set up appropriately beforehand. We talk about
these features in “BMS support for other special hardware” on page 406. For this
chapter, we concentrate on standard features.

The AID
The 3270 identifies the key that causes transmission by an encoded value in the
first byte of the inbound data stream. This value is called the attention identifier
or AID.

Ordinarily, the key that the terminal operator chooses to transmit data is dictated
by the application designer. The designer assigns specific meanings to the various
attention keys, and the user must know these meanings in order to use the
application. (Often, there are only a few such keys in use: ENTER for normal
inputs, one PF key to exit from control of the application, another to cancel a
partially completed transaction sequence, for example. Where there are a number
of choices, you may want to list the key definitions on the screen, so that the user
does not have to memorize them.)

There is an important distinction between two groups of attention keys, which the
application designer must keep in mind. The ENTER and PF keys transmit data
from the buffer when the host issues a “read modified” command, the command
normally used by CICS. CLEAR, CNCL and the PA keys do not, although you do
get the AID (that is, the identity of the key that was used). These are called the
short read keys. They are useful for conveying simple requests, such as “cancel”,
but not for those that require accompanying data. In practice, many designers use
PF keys even for the nondata requests, and discard any accompanying data.

Note: The CLEAR key has the additional effect of setting the entire buffer to nulls,
so that there is literally no data to send. CLEAR also sets the screen size to
the default value, if the terminal has the alternate screen size feature, and it
puts the screen into unformatted mode, as explained in “Unformatted
mode” on page 321.

Reading from a 3270 terminal
There are two basic read commands for the 3270:
v Read buffer
v Read modified

For either command, the inbound data stream starts with a 3-byte read header
consisting of:
v Attention identifier (AID), one byte
v Cursor address, two bytes

Chapter 28. The 3270 family of terminals 319

As noted in the previous section, the AID indicates which action or attention key
causes transmission. The cursor address indicates where the cursor was at the time
of transmission. CICS stores this information in the EIB, at EIBAID and
EIBCPOSN, on the completion of any RECEIVE command.

The read buffer command brings in the entire buffer following the read header,
and the receiving program is responsible for extracting the information it wants
based on position. It is intended primarily for diagnostic and other special
purposes, and CICS uses it in executing a RECEIVE command only if the BUFFER
option is specified. CICS never uses read buffer to read unsolicited terminal input,
so the BUFFER option cannot be used on the first RECEIVE of a transaction
initiated in this way.

With read modified, the command that CICS normally uses, much less data is
transmitted. For the short read keys (CLEAR, CNCL and PAs), only the read
header comes in. For other attention keys (ENTER and PFs), the fields on the
screen that were changed (those with the MDT on, to be precise) follow the read
header. We describe the format in the next section. When transmission occurs
because of a trigger field, light pen detect or cursor select, the amount and format
of the information is slightly different; these special formats are described in “BMS
support for other special hardware” on page 406. Input from a program attention
key on an SCS printer is also an exception; see “SCS input” on page 439 for a
description of that data stream.

Inbound field format
The next several sections describe the format in which the 3270 transmits data,
which you need to understand if you are using terminal control commands. If you
are using BMS, you can skip to “Unformatted mode” on page 321, because BMS
translates the input for you.

Each modified field comes in as follows:
v SBA order
v Two-byte address of the first data position of field
v SF order
v Field contents

Only the non-null characters in the field are transmitted; nulls are skipped,
wherever they appear. Thus if an entry does not fill the field, and the field was
initially nulls, only the characters keyed are transmitted, reducing the length of the
inbound data. Nulls (X'00') are not the same as blanks (X'40'), even though they are
indistinguishable on the screen. Blanks get transmitted, and hence you normally
initialize fields to nulls rather than to blanks, to minimize transmission.

A 3270 read command can specify that the terminal should return the attribute
values along with the field contents, but CICS does not use this option.
Consequently, the buffer address is the location of the first byte of field data, not
the preceding attributes byte (as it is in the corresponding outbound data stream).

Note: Special features of the 3270 for input, such as the cursor select key, trigger
fields, magnetic slot readers, and so on, produce different input formats. See
“Field selection features” on page 407 for details.

Input example
To illustrate an inbound data stream, we assume that an operator using the screen
shown in Figure 59 on page 316 did the following:

320 CICS TS for OS/390: CICS Application Programming Guide

v Put “123456” in the employee identifier field
v Put “ABC987” in the tag number
v Pressed ENTER, without filling in the state field

Here is the resulting inbound data stream:

Table 21. 3270 input data stream

Bytes Contents Notes

1 X'7D' AID, in this case the ENTER key.

2-3 X'C3C5' Cursor address: line 3, column 38, where the operator left it
after the last data keystroke.

4 X'11' SBA, indicating that a buffer address follows.

5-6 X'C26E' Address of line 3, column 15, which is the starting position of
the field to follow.

7-12 ‘123456’ Input, the employee number entered by the operator.

13-15 X'11C3D1' SBA sequence indicating a buffer address of line 3, column 32.

16 X'1D' SF, indicating another input field follows.

17-22 ‘ABC987’ Input field: plate number. Notice that only six characters came
in from a field that was eight long, because an operator left
the remaining positions null.

Note that the third input field (the state code) does not appear in the input data
stream. This is because its MDT did not get turned on; it was set off initially, and
the operator did not turn it on by keying into the field. Note also that no SF is
required at byte 7 because CICS normally issues a Read Modified All.

Unformatted mode
Even though the high function of the 3270 revolves around its field structure, it is
possible to use the 3270 without fields, in what is called unformatted mode. In this
mode, there are no fields defined, and the entire screen (buffer) behaves as a single
string of data, inbound and outbound, much like earlier, simpler terminals.

When you write in unformatted mode, you define no fields in your data, although
you can include SBA orders to direct the data to a particular positions on the
screen. Data that precedes any SBA order is written starting at the current position
of the cursor. (If you use an erase or write command, the cursor is automatically
set to zero, at the upper left corner of the screen.)

When you read an unformatted screen, the first three bytes are the read header
(the AID and the cursor address), just as when you read a formatted screen. The
remaining bytes are the contents of the entire buffer, starting at position zero.
There are no SBA or SF orders present, because there are no fields. If the read
command was read modified, the nulls are suppressed, and therefore it is not
always possible to determine exactly where on the screen the input data was
located.

You cannot use a BMS RECEIVE MAP command to read an unformatted screen.
BMS raises the MAPFAIL condition on detecting unformatted input, as explained
in “MAPFAIL and other exceptional conditions” on page 360. You can read
unformatted data only with a terminal control RECEIVE command in CICS.

Chapter 28. The 3270 family of terminals 321

Note: The CLEAR key puts the screen into unformatted mode, because its sets the
buffer to nulls, thereby erasing all the attributes bytes that demarcate fields.

322 CICS TS for OS/390: CICS Application Programming Guide

Chapter 29. Basic mapping support

This chapter describes the services BMS provides, and how to use them. We start
with the simplest situation and build from there.
v “Sending mapped output: basics” on page 338
v “Receiving data from a display” on page 349
v “Support for non-3270 terminals” on page 361
v “The MAPPINGDEV facility” on page 367
v “Sending mapped output: additional facilities” on page 371
v “Page formation: the ACCUM option” on page 376
v “Floating maps: how BMS places maps using ACCUM” on page 377
v “Formatting text output” on page 382
v “Message routing: the ROUTE command” on page 387
v “Using SET” on page 395
v “Partition support” on page 396
v “Logical device components” on page 404
v “BMS support for other special hardware” on page 406

Java and C++
The application programming interface described in this part of the book is
the EXEC CICS API, which is not used in Java programs. For information
about Java programs using the JCICS classes to access BMS services, see “The
JCICS Java classes” on page 69 and the JCICS Javadoc html documentation.
For information about C++ programs using the CICS C++ classes see the
CICS C++ OO Class Libraries manual.

Basic mapping support (BMS) is an application programming interface between
CICS programs and terminal devices. As noted on page 303, BMS is one of two
sets of commands for this purpose. The other one, terminal control, is described in
“Chapter 30. Terminal control” on page 411.

For many applications, BMS has several advantages. First, BMS removes device
dependencies from the application program. It interprets device-independent
output commands and generates device-dependent data streams for specific
terminals. It also transforms incoming device-dependent data into
device-independent format. These features eliminate the need to learn complex
device data streams. They also allow you to use the same program for a variety of
devices, because BMS determines the device information from the terminal
definition, not from the application program.

Second, BMS separates the design and preparation of formats from application
logic, reducing the impact of one on the other. Both of these features make it easier
to write new programs and to maintain existing code.

Other sources on BMS
We do not cover every detail of BMS here. See the CICS Application Programming
Reference manual for details on the syntax and operation of BMS commands. You
may also find it helpful to read “Chapter 31. CICS support for printing” on
page 433, and “Chapter 28. The 3270 family of terminals” on page 305. Also, some

© Copyright IBM Corp. 1989, 2000 323

|

|
|
|
|
|
|

situations require terminal control commands, rather than BMS. These are
described in “Chapter 30. Terminal control” on page 411.

BMS support levels
There are three levels of BMS support: minimum, standard, and full. Most
installations use full BMS. If yours does, you can use all the features we describe
in this chapter and not concern yourself with levels. If your installation uses
minimum or standard BMS, you should note the features that require levels
beyond yours. They are summarized here, and they are noted again whenever a
facility that is not in minimum BMS is covered. The CICS Application Programming
Reference manual also classifies BMS commands and options by level.

Minimum BMS
Minimum BMS supports all the basic functions for 3270 terminals, including
everything described in our example and in the discussion of simple mapped
output and mapped input.

Note: Minimum BMS has a substantially shorter path length than standard or full
BMS. It is included in the larger versions and invoked as a kind of “fast
path” on commands do not require function beyond what it provides.
Specifically, it is used for SEND MAP and SEND CONTROL commands
without the ACCUM, PAGING, SET, OUTPARTN, ACTPARTN, LDC, MSR,
or REQID options, and for RECEIVE MAP commands, when your principal
facility is a 3270 display or printer whose definition does not include
outboard formatting. You can tell whether a particular BMS request used the
fast path by looking at the CICS trace table. When fast path is used, the
trace table contains duplicate entries for the BMS entry and exit code.

Standard BMS
Standard BMS adds:
v Support for terminals other than 3270s
v Text output commands
v Support for special hardware features: partitions, logical devices codes, magnetic

slot readers, outboard formatting, and so on
v Additional options on the SEND command: NLEOM and FMHPARM

Standard BMS supports these terminals:
v Sequential terminals (composed of card readers, line printers, tape or disk)
v TCAM terminals (see “Access method support” on page 411)
v TWX Model 33/35
v 1050
v 2740-1 (no buffer receive), 2740-2, 2741
v 2770
v 2780
v 2980, models 1, 2 and 4
v 3270
v 3600 (3601) LU
v 3650 (3653 and 3270 host conversational LUs)
v 3650 interpreter LU
v 3767/3770 interactive LU
v 3770 batch LU
v 3780
v LU type 4

Full BMS
Full BMS is required for:

324 CICS TS for OS/390: CICS Application Programming Guide

v Sending BMS output other than directly to your own terminal (the SET and
PAGING options, and BMS routing)

v Messages built cumulatively, with multiple BMS SEND commands (the ACCUM
and PAGING options)

Some CICS platforms do not support all the features of BMS. Table 22 shows the
approximate level of support in each, for general guidance. However, there are
differences among platforms even at the same level, usually imposed by
differences in execution environment. These are described in detail, by function, in
CICS Family: API Structure. If your application may eventually move to another
platform, or there is a chance that the end-user interface part of it may get
distributed to one, you should consult that manual.

Table 22. BMS support across IBM platforms

Platform BMS support

CICS OS/2® Minimum plus SEND TEXT of standard

CICS/400® Minimum plus SEND TEXT of standard

CICS/6000® Minimum plus SEND TEXT of standard

CICS/VSE, CICS/DOS/VS Full

CICS/ESA, CICS/MVS, CICS
Transaction Server for OS/390

Full

A BMS output example
To create a formatted screen, BMS takes a list of data items from a program and
displays them on the screen (or printed page) according to a predefined format. It
merges variable data supplied by the program with constant data in the format
(titles, labels for variable fields, default values for these fields). It builds the data
stream for the terminal to which you are writing, to show this merged data in the
designated screen positions, with the proper attributes (color, highlighting, and so
on). You do not have to know anything about the data stream, and you do not
need to know much about the format to write the required CICS commands.

Note: For simplicity, this chapter is mainly concerned with display screens, but
most of it applies equally to printers. “Chapter 31. CICS support for
printing” on page 433 discusses differences between displays and printers
and covers additional considerations that apply to printing. Furthermore, the
examples and discussion assume a standard 3270 terminal because BMS is
designed to support the features of the 3270. Other terminals are discussed
in “Support for non-3270 terminals” on page 361.

You define the formats, called maps, separately from the programs that use them.
This allows you to reposition fields, change their attributes, and change the
constant text without modifying your programs. If you add or remove variable
data, of course, you need to change the programs which use the affected fields.

The basics of how this works are explained by an atypically simple example. In
real life, requirements are always more complex, but this gives you the essentials
without too much confusing detail. There are more realistic and complete BMS
examples among the CICS sample applications. These programs are included in
source form on the CICS distribution tape. More information can be found in the
Sample Applications Guide.

Chapter 29. Basic mapping support 325

This example assumes that you need to write the code for a transaction used in a
department store that checks a customer’s balance before a charge sale is
completed. The transaction is called a “quick check”, because all it does is check
that the customer’s account is open and that the current purchase is permissible,
given the state of the account. The program for the output part of this transaction
gets an account number as input, and produces the screen shown in Figure 60 in
response:

The program uses the input account number to retrieve the customer’s record from
the account file. From the information in this record, it fills in the account number
and customer name in the map, and computes the maximum charge allowed from
the credit limit, outstanding balance, and purchases posted after the last billing
period. If the amount comes out negative, you are supposed to show a value of
zero and add an explanatory message. You also need to alert the clerk if the charge
card is listed as lost, stolen or canceled with a message as shown in Figure 61:
This message is to be highlighted, to draw the clerk’s attention to it.

The first thing you must do is define the screen. We explain how to do so for this
particular map in “Creating the map” on page 328. For the moment, however, let
us assume that one of the outputs of this process is a data structure like the one in
Figure 62. (We show the COBOL-coded version of the structure, because we are
using COBOL to code our examples. However, BMS produces the structure in any
language that CICS supports.) The map creation process stores this source code in
a library from which you copy it into your program.

QCK Quick Customer Account Check
Account: 0000005
Name: Thompson Chris
Max charge: $500.00

Figure 60. Normal “quick check” output screen

QCK Quick Customer Account Check
Account: 0000005
Name: Thompson Chris
Max charge: $0.00
STOLEN CARD - SECURITY NOTIFIED

Figure 61. “Quick check” output screen with warning message

326 CICS TS for OS/390: CICS Application Programming Guide

The data names in this structure come from the map definition. You assign names
to the fields that the program may have to change in any way. For our example,
this category includes the fields where you display the account number, last name,
first name, maximum charge, and explanatory message. It does not include any of
the field labels or screen titles that never change, such as “Quick Customer
Account Check” and “Account”.

Each field that you name on the screen generates several fields in the data
structure, which are distinguished by a 1-character suffix added to the name you
assigned in the map. Two appear here, the “A” suffix for the field attributes byte
and the “O” suffix for the output data. If we were creating a map to use special
device features like color and highlighting, or were using the map for input as well
as output, there would be many more. We tell you about these other fields in
“Setting the display characteristics” on page 341 and “Receiving data from a
display” on page 349.

The key fields for this particular exercise are the ones suffixed with “O”. These are
where you put the data that you want displayed on the screen. You use the “A”
subfields if you want to change how the data is displayed. In our example, we use
MSGA to highlight the message if our customer is using a dubious card.

Here is an outline of the code that is needed for the example. You have to copy in
the data structure (Figure 62) produced by creating the map, and the COPY
QCKSET statement in the third line does this. (Ordinarily, you would use a copy
statement for the account record format too. We show it partly expanded here so
that you can see its contents.)

01 QCKMAPO.
02 FILLER PIC X(12).
02 FILLER PICTURE X(2).
02 ACCTNOA PICTURE X.
02 ACCTNOO PIC X(7).
02 FILLER PICTURE X(2).
02 SURNAMEA PICTURE X.
02 SURNAMEO PIC X(15).
02 FILLER PICTURE X(2).
02 FNAMEA PICTURE X.
02 FNAMEO PIC X(10).
02 FILLER PICTURE X(2).
02 CHGA PICTURE X.
02 CHGO PIC $,$$0.00
02 FILLER PICTURE X(2).
02 MSGA PICTURE X.
02 MSGO PIC X(30).

Figure 62. Symbolic map for “quick check”

Chapter 29. Basic mapping support 327

Creating the map
BMS provides three assembler language macro instructions (macros) for defining
maps. This method of map definition is still widely used, and we are about to
explain how to do it. However, there are also other products for creating maps
which exploit the facilities of the display terminal to make the map creation
process easier. They produce the same outputs as the BMS macros, generally with
less programmer effort.

One of these is the Screen Definition Facility II (SDF II). SDF II allows you to build
your screens directly from a display station, testing the appearance and usability as
you go. You can find out more about SDF II in Screen Definition Facility II General
Introduction Part 1 and Screen Definition Facility II General Introduction Part 2.

The three assembler macros used to define BMS maps are:

DFHMDF
defines an individual field on a screen or page.

DFHMDI
defines a single map as a collection of fields.

DFHMSD
groups single maps into a map set.

The explanation of this process begins by telling you how to define individual
fields. Then we explain how to go from the fields to a complete map, and from a
map to a map set (the assembly unit). BMS is designed principally for 3270-type
terminals, although it supports nearly all types. See “Chapter 28. The 3270 family
of terminals” on page 305 for information on 3270 terms.

WORKING-STORAGE SECTION.
C COPY IN SYMBOLIC MAP STRUCTURE.

01 COPY QCKSET.
01 ACCTFILE-RECORD.

02 ACCTFILE-ACCTNO PIC S9(7).
02 ACCTFILE-SURNAME PIC X(15).
02 ACCTFILE-FNAME PIC X(10).
02 ACCTFILE-CREDIT-LIM PIC S9(7) COMP-3.
02 ACCTFILE-UNPAID-BAL PIC S9(7) COMP-3.
02 ACCTFILE-CUR-CHGS PIC S9(7) COMP-3.
02 ACCTFILE-WARNCODE PIC X....

PROCEDURE DIVISION....
EXEC CICS READ FILE (ACCT) INTO (ACCTFILE-RECORD) RIDFLD (CKNO)

... END-EXEC.
MOVE ACCTFILE-ACCTNO TO ACCTNOO.
MOVE ACCTFILE-SURNAME TO SURNAMEO.
MOVE ACCTFILE-FNAME TO FNAMEO.
COMPUTE CHGO = ACCTFILE-CREDIT-LIM - ACCTFILE-UNPAID-BAL

- ACCTFILE-CUR-CHGS.
IF CHGO < ZERO, MOVE ZERO TO CHGO

MOVE 'OVER CHARGE LIMIT' TO MSGO.
IF ACCTFILE-WARNCODE = 'S', MOVE DFHBMBRY TO MSGA

MOVE 'STOLEN CARD - SECURITY NOTIFIED' TO MSGO
EXEC CICS LINK PROGRAM('NTFYCOPS') END-EXEC.

EXEC CICS SEND MAP ('QCKMAP') MAPSET ('QCKSET') END-EXEC.
EXEC CICS RETURN END-EXEC.

328 CICS TS for OS/390: CICS Application Programming Guide

Defining map fields: DFHMDF
You should design the layout of your screen before you attempt to code any
macros. After you have done that, you define each field on the screen (page) with
a DFHMDF macro. In it, you indicate:
v The position of the field on the screen
v The length of the field
v The default contents (unless you always intend to provide them in the program)
v The field display attributes, governing whether and what the operator can key

into the field, whether the cursor stops there, the intensity of the characters, and
the initial state of the modified data tag

v For some terminals, extended display attributes, such as color, underlining,
highlighting

v The name by which you refer to the field in your program, if you ever modify
its contents or attributes

Fields that are referenced by the application must be allocated field names. The
length of the field name and the characters that may be used to form field names
must conform to the following rules. (Note that these rules apply to
currently-supported compilers and assemblers.)

The characters used must be valid for names of assembler ordinary symbols. This
character set consists of the alphabetic characters A - Z (upper or lower case), $, #,
@, numeric digits 0 - 9, and the underscore (_) character.

There is one exception to this rule. The hyphen (-) character may be used in field
names provided that:
v The mapset is only used by application programs written in COBOL.
v The mapset is generated using the High Level Assembler.

The first character of the field name must be alphabetic, but the other characters
can be any from the character set described above.

In addition, the characters used in field names must conform to the character set
supported by the programming language of the application using the map. For
example, if the application language is COBOL, you cannot use the @ character.
You should refer to the appropriate Language Reference manual for information
about these character sets.

The DFHMDF macro allows the length of field names to be from one through 30
characters. DFHMDF derives additional variable names by appending one of
several additional characters to the defined name to generate a symbolic
description map. These derived names may therefore be up to 31 characters in
length. The assembler, PL/1, and C languages all support variable names of at
least 31 characters. However the COBOL language only allows up to 30 characters,
which means that field names used in maps must not exceed 29 characters for
COBOL applications. For example, the following field definition is valid for all
languages except COBOL:
ThisIsAnExtremelyLongFieldName DFHMDF LENGTH=10,POS=(2,1)

and the following field definition is only valid for COBOL:
Must-Not-Exceed-29-Characters DFHMDF LENGTH=10,POS=(2,1) "

Chapter 29. Basic mapping support 329

Not all the options for field definition are described here; the rest are described in
the CICS Application Programming Reference manual.

Figure 63 shows the field definitions for the map we considered in Figure 61 on
page 326.

1. The POS (position) parameter indicates the row and column position of the
field, relative to the upper left corner of the map, position (1,1). It must be
present. Remember that every field begins with a field attributes byte; POS
defines the location of this byte; the contents of the field follow immediately to
the right.

2. The LENGTH option tells how many characters long the field is. The length
does not include the attributes byte, so each field occupies one more column
than its LENGTH value. In the case of the first field in our map, for example,
the attributes byte is in row 1, column 1, and the display data is in columns
2-4. Fields can be up to 256 characters long and can wrap from one line to
another. (Take care with fields that wrap if your map is smaller than your
screen. See “Outside the map” on page 348 for further information.)

3. The ATTRB (attributes) option sets the field attributes of the field, which we
discussed in “3270 field attributes” on page 310. It is not required; BMS uses a
default value of (ASKIP, NORM)—autoskip protection, normal intensity,
modified data tag off—if you omit it. There are other options for each of the
extended attributes, none of which was used in this map; these are described in
“Setting the display characteristics” on page 341.

4. The INITIAL value for the field is not required either. You use it for label and
title fields that have a constant value, such as ‘QCK’, and to assign a default
value to a field, so that the program does not always have to supply a value.

5. The PICOUT option on the definition of the field CHG tells BMS what sort of
PICTURE clause to generate for the field. It lets you use the edit facilities of
COBOL or PL/I directly, as you move data into the map. If you omit PICOUT,
and also the numeric (NUM) attribute, BMS assumes character data. Figure 62
on page 327 shows the effects of the PICOUT option for CHG and, in the other

fields, its absence. You can omit the LENGTH option if you use PICOUT,
because BMS infers the length from the picture.

6. The GRPNAME and OCCURS options do not appear in our simple example,
because they are for more complex problems. GRPNAME allows you to
subdivide a map field within the program for processing, and OCCURS lets
you define adjacent, like map fields so that you can treat them as an array in
the program. These options are explained in “Complex fields” on page 336 after
some further information about maps.

DFHMDF POS=(1,1),LENGTH=3,ATTRB=(ASKIP,BRT),INITIAL='QCK'
DFHMDF POS=(1,26),LENGTH=28,ATTRB=(ASKIP,NORM), X

INITIAL='Quick Customer Account Check'
DFHMDF POS=(3,1),LENGTH=8,ATTRB=(ASKIP,NORM),INITIAL='Account:'

ACCTNO DFHMDF POS=(3,13),LENGTH=7,ATTRB=(ASKIP,NORM)
DFHMDF POS=(4,1),LENGTH=5,ATTRB=(ASKIP,NORM),INITIAL='Name:'

SURNAME DFHMDF POS=(4,13),LENGTH=15,ATTRB=(ASKIP,NORM)
FNAME DFHMDF POS=(4,30),LENGTH=10,ATTRB=(ASKIP,NORM)

DFHMDF POS=(5,1),LENGTH=11,ATTRB=(ASKIP,NORM),INITIAL='Max charge:'
CHG DFHMDF POS=(5,13),ATTRB=(ASKIP,NORM),PICOUT='$,$$0.00'
MSG DFHMDF LENGTH=20,POS=(7,1),ATTRB=(ASKIP,NORM)

Figure 63. BMS map definitions

330 CICS TS for OS/390: CICS Application Programming Guide

Defining the map: DFHMDI
After all the fields on your map are defined, you tell BMS that they form a single
map by preceding them with a DFHMDI macro. This macro tells BMS:
v The name of the map
v The size, in rows and columns
v Where it appears on the screen (you can put several maps on one screen)
v Whether it uses 3270 extended display attributes and, if so, which ones
v The defaults for these extended attributes for fields where you have not assigned

specific values on the DFHMDF macro
v Device controls associated with sending the map (such as whether to sound the

alarm, unlock the keyboard)
v The type of device the map supports, if you intend to create multiple versions of

the map for different types of devices (see “Device-dependent maps: map
suffixes” on page 363)

The map name and size are the critical information on a DFHMDI macro but, for
documentation purposes, you should specify your other options explicitly rather
than letting them default. The DFHMDI macro for our example might be:
QCKMAP DFHMDI SIZE=(24,80),LINE=1,COLUMN=1,CTRL=ALARM

We have named the map QCKMAP. This is the identifier we use in SEND MAP
commands. It is 24 lines long, 80 columns wide, and starts in the first column of
the first line of the display. We have also indicated that we want to sound the
alarm when the map is displayed.

Defining the map set: DFHMSD
You need one more macro to create a map: DFHMSD, which defines a map set.
Maps are assembled in groups called map sets. Typically you group all the maps
used by a single transaction or several related transactions. (We discuss reasons for
grouping maps further in “Grouping maps into map sets” on page 335.) A map set
need not contain more than one map, incidentally, and in our simple example, the
map set consists of just the “quick check” map.

One DFHMSD macro is placed in front of all the map definitions in the map set. It
gives:
v The name of the map set
v Whether you are using the maps for output, input, or both
v Defaults for map characteristics that you did not specify on the DFHMDI macros

for the individual maps
v Defaults for extended attributes that you did not specify in either the field or

map definitions
v Whether you are creating physical or symbolic maps in the current assembly

(see “Physical and symbolic map sets” on page 334)
v The programming language of programs that use the maps
v Information about the storage that is used to build the maps

Here’s the DFHMSD macro we need at the beginning of our example:
QCKSET DFHMSD TYPE=MAP,STORAGE=AUTO,MODE=OUT,LANG=COBOL,TIOAPFX=YES

This map set definition tells BMS that the maps in it are used only for output, and
that the programs using them are written in COBOL. It assigns the name QCKSET
to the map set. TIOAPFX=YES causes inclusion of a 12-byte “prefix” field at the

Chapter 29. Basic mapping support 331

beginning of each symbolic map (you can see the effect in the second line in
Figure 62 on page 327). You always need this filler in command language programs
and you should specify it explicitly, as the default is sometimes omission. MAP
and STORAGE are explained in “Sending mapped output: basics” on page 338.

You need another DFHMSD macro at the end of your map definitions, to tell the
assembler that it has reached the end of last map in the map set:

DFHMSD TYPE=FINAL

Rules for writing BMS macros
Because a BMS macro is an assembler language statement, you have to follow
assembler syntax rules. We do not try to explain those in full here; you can find
them in Assembler H Version 2 Application Programming Language Reference manual.
Instead we give you a set of rules that work, although they are more restrictive
than the actual rules.
1. Start names in column 1. Map and map set names may be up to seven

characters long. The maximum length for field names (the DFHMDF macro)
depends on the programming language. BMS creates labels by adding
1-character suffixes to your field names. These labels must not be longer than
the target language allows, because they get copied into the program. Hence
the limit for a map field name is 29 characters for COBOL, 30 for Pl/I and
Assembler H, and 7 for Assembler F. For C and C++, it is 30 if the map is
copied into the program as an internal data object, and six if it is an external
data object (see “Acquiring and defining storage for the maps” on page 339 for
more information about copying the map).

2. Start the macro identifier in column 10, or leave one blank between it and the
name if the name exceeds eight positions. For field definitions, the identifier is
always DFHMDF; for map definitions, DFHMDI; and for the map set macros
that begin and end the map set, DFHMSD.

3. The rest of the field description consists of keywords (like POS for the
position parameter) followed by values. The CICS Application Programming
Reference manual lists the possible keywords and tells you how to express the
values. Sometimes a keyword does not have a value, but if it does, an equals
sign (=) always separates the keyword from its value.

4. Leave one blank after your macro identifier and then start your keywords.
They can appear in any order.

5. Separate keywords by one comma (no blanks), but do not put a comma after
the last one.

6. Keywords can extend through column 71. If you need more space, stop after
the comma that follows the last keyword that fits entirely on the line and
resume in column 16 of the next line.

7. Initial values (the INITIAL, XINIT, and GINIT keywords) are exceptions to the
rule, because they may not fit even if you start on a new line. Except when
double-byte characters are involved, you can split them at any point after the
first character of the initial value itself. When you split in this way, use all of
the columns through 71 and continue in column 16 of the next line.
Double-byte character set (DBCS) data is more complicated to express than
ordinary single-byte (SBCS) data. See Step 12 if you have DBCS initial values.

8. Surround initial values by single quote marks. If you need a single quote
within your text, use two successive single quotes (the assembler removes the
extra one). Ampersands also have special significance to the assembler, and
you use the same technique: use two ampersands where you want one, and
the assembler removes the extra.

332 CICS TS for OS/390: CICS Application Programming Guide

9. If you use more than one line for a macro, put a character (any one except a
blank) in column 72 of all lines except the last.

10. If you want comments in your map, use comment lines between macros, not
among the lines that make up a single macro. Comment lines have an asterisk
in column 1 and a blank in column 72. Your comments can appear anywhere
among columns 2-71.

11. Use upper case only, except for values for the INITIAL parameter and in
comments.

12. For initial values containing DBCS. If you have initial data that is entirely
DBCS, use the GINIT keyword for your data and specify the keyword PS=8 as
well. If your data contains both DBCS and SBCS characters, that is, if it is
mixed, use INITIAL and specify SOSI=YES. (We need to explain a third
alternative, XINIT, because you may find it in code you are maintaining. You
should use GINIT and INITIAL if possible, however, as XINIT is more
difficult to use and your data is not validated as completely. XINIT can be
used for either pure or mixed DBCS. XINIT with PS=8 follows the rules for
GINIT, and XINIT with SOSI=YES follows those for INITIAL (mostly, at least).
The main difference is that you express your data in hexadecimal with XINIT,
but you use ordinary characters for GINIT and INITIAL.)
This is how you write DBCS initial values:
v You enclose your data with single quotes, as you do with the ordinary

INITIAL parameter.
v You use two ordinary characters for each DBCS character in your constant

(two pairs of hexadecimal digits with XINIT) and one for each SBCS
character (one pair with XINIT).

v You bracket each DBCS character string with a shift-out (SO) character
immediately preceding and a shift-in (SI) character immediately after. SO is
hexadecimal X'0E', which appears as ‘<’ on most keyboards, and SI is X'0F'
(‘>’). (XINIT with PS=8 is an exception; the SO/SI brackets are implied and
you do not key them.) For example, all of these define the same initial
value, which is entirely DBCS. (Ignore the LENGTH values for the moment;
we explain those in a moment.)

GINIT='<D1D2D3D4D5>',PS=8,LENGTH=10
INITIAL='<D1D2D3D4D5>',SOSI=YES,LENGTH=12
XINIT='C4F1C4F2C4F3C4F4C4F5',PS=8,LENGTH=10
XINIT='0EC4F1C4F2C4F3C4F4C4F50F',SOSI=YES,LENGTH=12

v SBCS and DBCS sequences can follow each other in any combination with
INITIAL (and XINIT with SOSI=YES). If we add ‘ABC’ in front of the DBCS
string in the previous example, and ‘def’ following the string, we have:

INITIAL='ABC<D1D2D3D4D5>def',SOSI=YES,LENGTH=18
XINIT='C1C2C30EC4F1C4F2C4F3C4F4C4F50F848586',SOSI=YES,LENGTH=18

v To calculate the length of your initial value, count two for each DBCS
character and one for each SBCS character, whether you express them in
ordinary characters or hexadecimal pairs. With GINIT (and XINIT with
PS=8), you do not count the SO and SI characters, but with INITIAL (and
XINIT with SOSI=YES), you add one for each SO and for each SI. (Note the
different LENGTH values for the same constants in the examples above.) In
all cases, your LENGTH value must not exceed 256.

v For GINIT and INITIAL, if your constant does not fit on one line, you use
“extended” continuation rules, which are a little different from the ones
described earlier. With extended continuation, you can stop after any full
character (SBCS character, DBCS pair, or the SI ending a DBCS string)
within your initial value. If you are in the middle of a DBCS string, add an
SI (the SOs and SIs on one line must balance). Then fill out the line through

Chapter 29. Basic mapping support 333

column 72 with a continuation character. Any character will do, so long as
it is different from the last meaningful character on the line. If you have
stopped within a DBCS string, put an SO character in column 16 of the next
line and resume in 17; otherwise just resume in 16, thus:
GXMPL1 DFHMDF POS=(02,21),LENGTH=20,PS=8,GINIT='<D1D2D3D4D5D6>******

<D7D8D9D0>'
IXMPL1 DFHMDF POS=(02,21),LENGTH=23,PS=8,INITIAL='abc<D1D2D3D4>ABC**

DEFGHIJ'

You cannot use extended continuation with XINIT; use the rules described
in Step 7.

v If your LENGTH specification exceeds the length of the initial value you
provide, the value is filled out on the right with DBCS blanks to your
LENGTH value if you have used GINIT (or XINIT with PS=8). If you have
used INITIAL, the fill character is an SBCS blank if the last part of the
constant was SBCS, a DBCS blank if the last part was DBCS. If you use
XINIT with SOSI=YES, the fill character is always an SBCS blank.

Assembling the map
Before you start coding, you must assemble and link edit your map set. You
usually have to assemble twice, to create the map set in two different forms. The
TYPE option in the DFHMSD macro tells the assembler the form to produce in any
particular assembly.

Physical and symbolic map sets
A TYPE=MAP assembly, followed by a link-edit, produces a load module called
the physical map set. The physical map set contains format information in
encoded form. CICS uses it at execution time for constant fields and to determine
how to merge in the variable data from the program. The physical map set
normally is stored in the same library as your application programs, and it requires
a MAPSET resource definition within CICS, just as a program requires a
PROGRAM resource definition.

The output of a TYPE=DSECT assembly is a series of data structures, collectively
called the symbolic map set, coded in the source language specified in the LANG
option. There is a structure for each map used for input, called the symbolic input
map, and one for each map used for output, called the symbolic output map.

Symbolic map sets are used at compile (assembly) time. You copy them into your
program, and they allow you to refer to the fields in the maps by name and to
pass the variable data in the form dictated by the physical map set. We have
already shown you an example of a symbolic output map in COBOL (see Figure 62
on page 327) and used it in the example code. Symbolic map sets are usually

stored in the library your installation defines for source code that gets copied into
programs. Member names are usually the same as the map set names, but they
need not be.

You need the TYPE=DSECT assembly before you compile or assemble your
program. You can defer the TYPE=MAP assembly and link-edit until you are ready
to test, because the physical map set is not used until execution time. However,
because you must do both eventually, many installations provide a catalogued
procedure to do this automatically; the procedure copies the source file for the map
set and processes it once using TYPE=MAP and again using TYPE=DSECT. You
also can use the SYSPARM option in your assembler procedure to override the
TYPE value in a particular assembly. See the Assembler H Version 2 Application

334 CICS TS for OS/390: CICS Application Programming Guide

Programming Language Reference manual for a description of SYSPARM in
connection with map assemblies, and “Preparing BMS maps” on page 20 for more
information about assembling maps.

Notes:

1. The fact that symbolic map sets are coded in a specific language does not
prevent you from using the same map in programs coded in different
languages. You simply assemble with TYPE=DSECT for each LANG value you
need, taking care to store the outputs in different libraries or under different
names. The LANG value does not affect the TYPE=MAP assembly, which need
be done only once.

2. If you modify an existing map in a way that affects the symbolic map, you
must recompile (reassemble) any programs using it, so that the compilation uses
the symbolic structure that corresponds to the new physical structure. Changes
to unnamed map fields do not affect the symbolic map, but addition, deletion,
rearrangement, and length changes of named fields do. (Rearrangement refers
to the DFHMDF macros; the order of the fields on the screen does not affect the
symbolic map, although it is more efficient to have the DFHMDF macros in
same order as the fields on the screen.) So make changes to the DSATTS option
in the map definition—this option states the extended attributes you may want
to change by program. It is always safest to recompile, of course.

The SDF II alternative
None of these assembly or link-edit steps is required if you use the IBM licensed
program Screen Definition Facility II. SDF II produces creates both the symbolic
map set and the physical map set in the final step of the interactive map creation
process. SDF II can run under either MVS (Program 5665-366) or VM (5664-307).
Refer to the Screen Definition Facility II Primer for CICS/BMS Programs, the Screen
Definition Facility II General Introduction Part 1, and the Screen Definition Facility II
General Introduction Part 2. More information can be found in the Screen Definition
Facility II General Information and Screen Definition Facility II Primer for CICS/BMS
Programs.

Grouping maps into map sets
Because they are assembled together, all of the physical maps in a map set
constitute a single load module. BMS gains access to all of them with a single load
request, issued on the first use of the map set in the task. No further loads are
required unless you request a map in a different set, in which case BMS releases
the old map set and loads the new one. If you go back to the first map set
subsequently, it gets loaded again. Loading and deleting does not necessarily
involve I/O, but you should consider the path length when grouping your maps
into map sets. Generally, if maps are used together, they should be in the same
map set; those not used together should be in different map sets.

The limit to the number of maps in a set is 9 998, but you should also keep the
size of any given load module reasonable. So you might keep infrequently used
maps separate from those normally used in a given process.

Similarly, all of the symbolic maps for a map set are in a single symbolic structure.
This affects the amount of storage you need while using the maps, as explained in
“BASE and STORAGE options” on page 340. Depending on the programming
language, it also may affect high-level names, and this may be a reason for
separating or combining maps as well.

Chapter 29. Basic mapping support 335

ADS Descriptor
The symbolic map generated by the BMS macros is also known as the application
data structure (ADS).

Physical maps produced by CICS Transaction Server for OS/390 Release 3 also
include an ADS descriptor in the output load module. This is provided to allow
interpretation of the BMS Application Data Structure (the structure used by the
application program for the data in SEND and RECEIVE MAP requests), without
requiring your program to include the relevant DSECT or copybook at compile
time.

The ADS descriptor contains a header with general information about the map,
and a field descriptor for every field that appears in the ADS (corresponding to
every named field in the map definition macro). It can be located in the mapset
from an offset field in DFHMAPDS.

The ADS descriptor is generated for all maps. You can choose to map the long or
short form of the ADS by specifying the DSECT=ADS|ADSL option. The default is
ADS,the short (normal) form. The long form of the ADS aligns all fields on 4-byte
boundaries and is required for some interfaces with other products, such as
MQSeries.

Map sets generated with CICS releases before CICS Transaction Server for OS/390
Release 2 do not contain the ADS descriptor.

The format of the ADS descriptor is contained in the following copybooks:

Table 23. ADS descriptor copybooks

Language Copybook

Assembler DFHBRARD

C DFHBRARH

PL/I DFHBRARL

COBOL DFHBRARO

For further information about the ADS descriptor, see the CICS External Interfaces
Guide.

If you need to reassemble maps but have no access to the source, a utility
program, DFHBMSUP, is provided in CICS Transaction Server for OS/390 Release
3 to recreate BMS macro source from a mapset load module.

See the CICS Operations and Utilities Guide for more information about DFHBMSUP.

Complex fields
The symbolic maps we have shown so far consisted of a fixed set of fields for each
named map field (the A and O subfields, and so on, in Figure 62 on page 327).
Such fields are the most common, but BMS provides two options for field
definition which produce slightly different structures, to account for two common
programming situations.

Composite fields: the GRPNAME option
Sometimes, you have to refer to subfields within a single field on the display. For
example, you may have a date field that appears on the screen like this:

336 CICS TS for OS/390: CICS Application Programming Guide

|
|
|
|
|

03-17-92

It is one field on the screen (with one attributes byte, just before the digit “0”), but
you must be able to manipulate the month, day, and year components separately
in your program.

You can do this with a “group field”, using the GRPNAME option of the DFHMDF
macro. To create one, you code a DFHMDF macro for each of the component
subfields; each definition names the same group field in the GRPNAME option. To
define the date above as a group field starting at the beginning of line 10, for
example, we would write:
MO DFHMDF POS=(10,1),LENGTH=2,ATTRB=BRT,GRPNAME=DATE
SEP1 DFHMDF POS=(10,3),LENGTH=1,GRPNAME=DATE,INITIAL='-'
DAY DFHMDF POS=(10,4),LENGTH=2,GRPNAME=DATE
SEP2 DFHMDF POS=(10,6),LENGTH=1,GRPNAME=DATE,INITIAL='-'
YR DFHMDF POS=(10,7),LENGTH=2,GRPNAME=DATE

These definitions produce the following in the symbolic output map:
02 DATE.

03 FILLER PICTURE X(2).
03 MOA PICTURE X.
03 MOO PIC X(2).
03 SEP1 PIC X(1).
03 DAO PIC X(2).
03 SEP2 PIC X(1).
03 YRO PIC X(2).

Several rules must be observed when using a group field:
v There is only one attributes byte; it precedes the whole group field and applies

to the whole field. You specify it just once, on the DFHMDF macro for the first
subfield, MO here.

v Because there is only one attributes byte, the cursor behaves as if the group field
were a single field. In our example, the cursor does not move from the last
position of month to the first of day, or day to year, skipping over the hyphens.
This is because the group really is a single field as far as the hardware goes; it is
subdivided only for program access to the component subfields.

v Although subfields after the first do not have an attributes byte, you define the
POS option as if they did, as shown in the example. That is, POS points to one
character before the subfield begins, and can overlap the last character of the
previous subfield, as occurs in our example.

v Although all the component subfields are adjacent in this example, they do not
have to be. There can be gaps between the subfields, provided you do not define
any other field in the gap. The group field spans all the columns from its first
subfield to its last, and you must put the component DFHMDF macros in the
order the subfields appear on the screen. The group ends with the first
DFHMDF macro that does not specify its name.

v You must assign a field name to every subfield, even if you do not intend to
refer to it (as we did in the SEP1 and SEP2 subfields in the example).

v You cannot use the OCCURS option (explained in the next section) for a group
field or any of its components.

Repeated fields: the OCCURS option
Sometimes a screen contains a series of identical fields that you want to treat as an
array in your program. Suppose, for example, that you need to create a display of
40 numbers, to be used when a clerk assigns an unused telephone number to a
new customer. (The idea is to give the customer some choice.) You also want to

Chapter 29. Basic mapping support 337

highlight numbers which have been in service recently, to warn the customer of
the possibility of calls to the previous owner.

You can define the part of your screen which shows the telephone numbers with a
single field definition:
TELNO DFHMDF POS=(7,1),LENGTH=9,ATTRB=NORM,OCCURS=40

This statement generates 40 contiguous but separate display fields, starting at
position (7,1) and proceeding across the rows for as many rows as required (five,
in our case). We have chosen a length that (with the addition of the attributes byte)
divides the screen width evenly, so that our numbers appear in vertical columns
and are not split across row boundaries. The attributes you specify, and the initial
value as well, apply to each field.

The description of these fields in the symbolic map looks like this in COBOL:
02 TELNOG OCCURS 40.

03 FILLER PICTURE X(2).
03 TELNOA PICTURE X.
03 TELNOO PIC X(9).

This structure lets you fill the map from an array in your program (or any other
source) as follows:

PERFORM MOVENO FOR I FROM 1 THROUGH 40.
...

MOVENO.
MOVE AVAIL-NO (I) TO TELNOO (I).
IF DAYS-SINCE-USE (I) < 90, MOVE DFHBMBRY to TELNOA (I).

(DFHBMBRY is a CICS-supplied constant for setting the field intensity to bright;
we explain more in “Attribute value definitions: DFHBMSCA” on page 343.)

Labels for OCCURS fields vary slightly for the different languages that CICS
supports, but the function is the same.

Each element of an array created by the OCCURS option is a single map field. If
you need to repeat a series of fields (an array of structures, in other words), you
cannot use OCCURS. To use such an array in a program, you must define all of
the fields individually, without OCCURS, to produce the necessary physical map.
Then you can modify the resulting symbolic map, replacing the individual field
definitions with an array whose elements are the structure you need to repeat. You
must ensure that the revised symbolic map has exactly the same field structure as
the original, of course. An alternative is to use SDF II, which allows you to define
such an array directly.

Sending mapped output: basics
When you have assembled your symbolic map set, you are ready to code. We have
explained by example how you get data from an application program to a map.
We discuss that process in greater detail now, describing all the steps that must be
performed, and telling you more about the options you have.

You must do the following steps to produce mapped output:
1. Acquire storage in which to build the map.
2. Copy the symbolic map set so that it defines the structure of this storage.
3. Initialize it.
4. Move the output data into the map structure.

338 CICS TS for OS/390: CICS Application Programming Guide

5. Set the field attributes.
6. Write the map to the screen with a SEND MAP command, adding any device

control information required.

We tell you about the final step—the SEND MAP command itself—first, because
you need to know what it does in order to understand what you need to do
beforehand. Then the tasks you need to complete before you issue it are described.

The SEND MAP command
The SEND MAP command tells BMS:
v Which map to use (MAP option), and where to find that map (the MAPSET

option)
v Where to find the variable data for the map (FROM option) and how to merge it

with the values from the map (MAPONLY and DATAONLY)
v Which device controls to include in the data stream, and other control options
v Where to put the cursor, if you want to override the position in the map

definition (the CURSOR option)
v Whether the message is complete or is built cumulatively (the ACCUM option)
v What to do with the formatted output (TERMINAL, SET and PAGING options)

The MAP and MAPSET options are self-explanatory, and we cover most of the rest
as we describe the programming steps that precede a simple SEND MAP. The last
two topics require a knowledge of BMS logical message facilities, which we take
up in “Output disposition options: TERMINAL, SET, and PAGING” on page 371.

Until we get to that point, we assume the defaults: that each SEND MAP creates
one message, and we are sending that message to our own terminal. The CICS
Application Programming Reference manual describes this command in more detail.

Acquiring and defining storage for the maps
The first step in creating mapped output is to provide storage in which to arrange
the variable map data that your program passes to BMS. If you place the map
structure in working storage, CICS does the allocation for you. (CICS allocates a
private copy of working storage for each execution of a program, so that data from
one task does not get confused with that from another, as explained in “Program
storage” on page 136.) To use working storage, copy the symbolic map set there
with the language statement provided for the purpose:

COPY in COBOL and assembler
%INCLUDE in PL/I
#include in C and C++

Working storage is the WORKING-STORAGE SECTION in COBOL, automatic
storage in PL/I, C, C++, and DFHEISTG in a CICS assembler program. For
example:

WORKING-STORAGE SECTION.
...
01 COPY QCKSET.
...

Alternatively, you can obtain and release map set storage as you need it, using
CICS GETMAIN commands. (GETMAIN is discussed in “Chapter 36. Storage
control” on page 479.) In this case you copy the map into storage addressed by a
pointer variable (the LINKAGE SECTION in COBOL, based storage in PL/I, C,
and C++, a DSECT in assembler). On return from the GETMAIN, you use the

Chapter 29. Basic mapping support 339

address returned in the SET option to associate the storage with the data structure,
according to the facilities of the programming language.

We used working storage in the example back on page 325, but we could have
used a GETMAIN. If we had, the code we just showed you would change to:

LINKAGE SECTION.
...
01 COPY QCKSET.
...
PROCEDURE DIVISION.
...
MOVE LENGTH OF QCKMAPO TO LL.
EXEC CICS GETMAIN SET(ADDRESS OF QCKMAPO)

LENGTH(LL) END-EXEC.
...

The length you need on your GETMAIN command is the length of the variable
whose name is the map name suffixed by the letter “O”. In COBOL, PL/I, C, and
C++, you can use language facilities to determine this length, as in the example
above. In assembler, it is defined in an EQUate statement whose label is the map
name suffixed by “L”.

BASE and STORAGE options
Two options on the DFHMSD map set definition macro affect how storage for
maps is defined: BASE and STORAGE=AUTO (the STORAGE option always has
the value AUTO). You can use either one or neither, so there are three possibilities.
If you specify neither for a map set containing several maps, the symbolic
structures for the maps are defined so that they overlay one another. If you specify
STORAGE=AUTO, they do not; each occupies separate space. Thus
STORAGE=AUTO requires more storage.

However, when you use maps that overlay one another in a single program, you
must use them serially or compensate for the reuse of storage by programming.
Unless storage is a major issue, STORAGE=AUTO simplifies programming and
reduces the risk of error.

In PL/I, C, and C++, STORAGE=AUTO has the additional effect of defining the
map as automatic storage (storage that CICS allocates); the absence of
STORAGE=AUTO causes these compilers to assume based storage, for which you
generally incur the overhead of an additional GETMAIN. BMS assigns the name
BMSMAPBR to the associated pointer variable, unless you specify another name
with the BASE option.

The third possibility, BASE, lets you use the same storage for all the maps in
multiple map sets. Its effect varies slightly with the programming language, but
essentially, all the maps in map sets with the same BASE value overlay one
another. In COBOL, BASE=xxxx causes the 01 levels (that is, each individual map)
to contain a REDEFINES xxxx clause. In PL/I, C, and C++, it designates each map
as storage based on the pointer variable xxxx. BASE cannot be used when the
programming language is assembler.

Initializing the output map
Before you start building your output, make sure that the map storage is initialized
to nulls, so that data left there by a previous process is not used inadvertently. If
you have read data input data using this same map, or one that overlays it, you
need to ensure that you have processed or saved this data first, of course. The
relationship between input and output maps is discussed in “The symbolic input

340 CICS TS for OS/390: CICS Application Programming Guide

map” on page 352, and using the same map you used for input is discussed in
“Mapped output after mapped input” on page 359.

You initialize by moving nulls (X’00’) into the structure. The symbolic map
structures are defined so that you can refer to the whole map area by the name of
the map suffixed by the letter O. You can see this in Figure 62 on page 327, and, in
fact, the statement:

MOVE LOW-VALUES TO QCKMAPO.

would clear the area in which we built the map in the “quick check” example. If
you are using the map for both input and output, it may be easier to clear the map
one field at a time, as you edit the input (see “Handling input errors” on page 357).

When you obtain map storage with a CICS GETMAIN instruction, another way to
initialize is to use the INITIMG option.

Moving the variable data to the map
Having obtained storage for your map, established the relationship of the map
structure to the storage, and initialized, you are finally ready to create your output.
There are two parts to it: the data itself and its display attributes. We tell you
about the data first and get to the attributes right after.

In the usual case, an output display consists of some constant or default data
(provided by the physical map) and some variable data (provided by the program).
For each field that you want to supply by program, you move the data into the
field in the symbolic map whose name is the name assigned in the map suffixed
by the letter O. See the code on page 327 for an example.

If you do not supply a value for a field (that is, you leave it null, as initialized),
BMS ordinarily uses the initial value assigned in the map, if any. Constants (that is,
fields without names) also get the initial values specified in the map. However, the
DATAONLY and MAPONLY options on the SEND MAP command modify the
way in which program and map data are merged; we explain these options in
“Options for merging the symbolic and physical maps” on page 344 and
summarize the exact rules in “Summary: what appears on the screen” on page 346.

Setting the display characteristics
Display attributes are the second component of the output data. (See “3270 field
attributes” on page 310 for information about attributes.) In the “quick check”
example on page 327, we show how 3270 field attributes for a map field are
defined with the ATTRB option, and how BMS generates the “A” subfield to let
you override the map value by program if you name the field.

BMS always provides the A subfield, because all 3270 devices support field
attributes. Many 3270s also have some of the extended attributes shown in Table 24
on page 342. BMS supports each of these attributes individually in much the same

way that it does field attributes collectively. You can assign attribute values in your
DFHMDF field definitions, and, if you name the field, BMS generates a subfield in
the symbolic map, so that you can override the map-assigned value in your
program. There is a separate subfield for each type of extended attribute.

You can request subfields for the extended attributes by specifying the required
attribute in the DSATTS option of DFHMDI or DFHMSD. You must also include
the list of extended attributes in the the MAPATTS option (even if these attribute
types do not appear in any DFHMDF macro).

Chapter 29. Basic mapping support 341

|
|
|
|

Table 24. BMS attribute types. The columns show the types of attributes, the name of the
associated MAPATTS and DSATTS value, and the suffix of the associated subfields in the
symbolic map.

Attribute type MAPATTS, DSATTS value Subfield suffix

Field attributes None (default) A

Color COLOR C

Highlighting HILIGHT H

Outlining OUTLINE U

Background transparency TRANSP T

Validation VALIDN V

Double-byte character capability SOSI M

Programmed symbols PS P

Note: If you use programmed symbols, you need to ensure that a suitable symbol
set has been sent to the device first, unless you choose one that is
permanently loaded in the device. You can use a terminal control SEND
command to do this (see “Data transmission commands” on page 412). The
IBM 3270 Information Display System Data Stream Programmer’s Reference
manual describes what to send.

The types of attributes that apply depend on the features of your principal
facility at the time of execution. If you specify a value for an attribute that
the terminal does not possess, BMS ignores it. If you are supporting
different terminal types, however, you may need to use different techniques
to get the same visual clarity. You can find out what kind of terminal you
are using with the ASSIGN and INQUIRE commands, explained in “Finding
out about your terminal” on page 422. There are also provisions in BMS for
keeping your program independent of the terminal type; see
“Device-dependent maps: map suffixes” on page 363.

Changing the attributes
Here is an example of how this works. Suppose that the terminals in our “quick
check” application have color and highlighting capabilities. We might decide to
show the maximum charge allowed in a different color from the rest of the screen,
because this field is of most interest to the clerk. We might also make the warning
message red, because when it appears at all, it is important for the clerk to notice
it. And when we really want to get the clerk’s attention, because the card is stolen,
we could change the attributes in the program to make the message blink. To add
these features, we need to change our map definition as follows:
QCKMAP DFHMDI SIZE=(24,80),..., X

MAPATTS=(COLOR,HILIGHT),COLOR=GREEN,HILIGHT=OFF,DSATTS=HILIGHT

The MAPATTS option tells BMS that we specify color and highlighting in the map
(or in the program, because any attribute listed in DSATTS must be included in
MAPATTS as well). The COLOR and HILIGHT values indicate that fields with no
color assigned should be green and that highlighting should be off if not specified.
The only field definitions that we need to change are the ones that are not green or
are highlighted:
CHG DFHMDF POS=(5,13),LENGTH=8,ATTRB=(ASKIP,NORM),PICOUT='$,$$0.00', X

COLOR=WHITE
MSG DFHMDF LENGTH=20,POS=(7,1),ATTRB=(ASKIP,NORM),COLOR=RED

342 CICS TS for OS/390: CICS Application Programming Guide

The DSATTS option tells BMS that we want to alter the highlighting of some fields
at execution time, and therefore it should produce “H”-suffix subfields in the
symbolic map to let us do that. Each named field gets the extra subfield; the
message field, for example, expands from the current three lines in Figure 62 on
page 327 to:

02 FILLER PICTURE X(2).
02 MSGH PICTURE X.
02 MSGA PICTURE X.
02 MSGO PIC X(30).

The program statement we need to produce the blinking is:
MOVE DFHBLINK to MSGH.

In general, BMS takes attribute values from the program if you supply them and
from the map if you do not (that is, if you leave the program value null, as
initialized). However, the MAPONLY and DATAONLY options on the SEND MAP
command affect attribute values as well as field data, as explained in “Where the
values come from” on page 347.

Attribute value definitions: DFHBMSCA
The 1-byte values required to set attribute values are bit combinations defined by
3270 hardware. They are hard to remember and, in some languages, clumsy to
express. To solve this problem, CICS provides source code that you can copy into
your program. The code, named DFHBMSCA, defines all the commonly used
values for all attributes and assigns meaningful names to each combination.
DFHBLINK in the line of code above is an example. To define DFHBLINK, we
simply copy DFHBMSCA into our working storage, thus:

WORKING-STORAGE SECTION.
...
01 COPY DFHBMSCA.

There is a separate version of DFHBMSCA for each programming language, but
the value names are the same in all versions. The CICS Application Programming
Reference manual lists and defines all the value names. If you need an attribute
combination not included in DFHBMSCA, you can determine the value by
referring to the IBM 3270 Information Display System Data Stream Programmer’s
Reference; if you make frequent use of the value, you may want to modify
DFHBMSCA to include it.

Note: In assembler language only, the values are defined with EQUates, so you
use MVI rather than MVC instructions.

Control options on the SEND MAP command
There are many control options for the BMS SEND commands. Some apply only to
particular devices or special features of BMS, and we defer describing these until
we get to the associated device support or feature. The following device control
options, however, apply generally:
v ERASE, ERASEAUP, and FRSET all modify the contents of the device buffer, if

the terminal has one, before writing your output into it. ERASE sets the entire
buffer to nulls (X‘00’). If the terminal has the alternate screen size feature,
ERASE also sets the buffer size. Therefore, the first SEND MAP in a task
normally specifies the ERASE option, both to clear the buffer and to select the
buffer size. (See “3270 write commands” on page 308 for more information about
alternate screen size.)

Chapter 29. Basic mapping support 343

ERASEAUP (erase all unprotected fields) sets the contents of all fields in the
buffer that are unprotected (that is, fields which the operator can change) to
nulls. This is useful for data entry, as we explain in “DATAONLY option” on
page 345.
FRSET (field reset) turns off the modified data tag of all fields in the buffer
(“Saving the good input” on page 358 and “Modification” on page 311 explain
more about this option).

v FREEKB (free keyboard) unlocks the keyboard when the output is sent to the
terminal. You usually want to do this on a display terminal.

v ALARM sounds the audible alarm, if the terminal has one.
v FORMFEED, PRINT, L40, L64, L80, and HONEOM are specific to printing and

are explained in “Options for 3270 printers” on page 435. NLEOM also is used
mainly in printing, and is explained in the same section. NLEOM requires
standard BMS.

Some of these options can also be specified in the map itself, in particular, the
options that are expressed in the 3270 write control character and coded in the
CTRL option of the DFHMDI or DFHMSD macros: PRINT, FREEKB, ALARM,
FRSET, L40, L64, L80, HONEOM.

Note: CTRL options are always treated as a group, so if you include any of them
on your SEND MAP command, BMS ignores the values for all of them in
your map definition and uses only those in the command. As we noted
earlier, you can also send device control options separate from your map
data, using a SEND CONTROL command. You can use any option on SEND
CONTROL that you can use on SEND MAP, except those that relate
expressly to data, such as NLEOM.

Other BMS SEND options: WAIT and LAST
When a task writes to a terminal with a BMS or terminal control SEND command
CICS normally schedules the transmission and then makes the task ready for
execution again. Actual transmission occurs somewhat later, depending on terminal
type, access method and other activity in the system. If you want to ensure that
transmission is complete before your program regains control, use the WAIT
option.

WAIT can increase response time slightly, because it prevents overlap between
processing and output transmission for a task. (Overlap occurs only until a
subsequent SEND, RECEIVE, or end of task, however, because CICS finishes one
terminal operation completely before starting another.)

You can improve response time slightly for some terminals by using the LAST
option. LAST indicates that the output you are sending is the last output for the
task. This knowledge allows CICS to combine transmission of the data with the
VTAM end-of-bracket flow that occurs at end of task.

Options for merging the symbolic and physical maps
So far, we have assumed that every display consists of some constant data
(provided by the physical map) and some variable data (provided by the program
and structured according to the symbolic map). Sometimes, however, one or more
of these components is missing.

MAPONLY option
For example, a menu map may not need any data supplied by program. In such a
case, you code the MAPONLY option in place of the FROM option on your SEND

344 CICS TS for OS/390: CICS Application Programming Guide

MAP command. BMS then takes all the information from the physical map,
sending the initial values for both the constant (unnamed) and named fields. You
do not need to copy the symbolic map set into a program that always sends the
map with MAPONLY, and, in fact, you can skip the TYPE=DSECT map set
assembly if all programs use all the maps in the set in this way.

MAPONLY is also the way you get an input-only map to the screen.

DATAONLY option
The opposite situation is also possible: the program can supply all the data and not
need any constant or default values from the map. This happens on the second
and subsequent displays of a map in many situations: data entry applications,
inquiry applications where the operator browses through a series of records
displayed in identical format, and screens which are redisplayed after detection of
an error in the input.

BMS takes advantage of this situation if you indicate it with the DATAONLY
option. You still need to tell BMS which map and map set you are using for
positioning information, but BMS sends only those fields which have non-null
attribute or data values in the symbolic map. Other fields and attribute values are
left unchanged.

The SEND CONTROL command
There are also occasions when you do not need to send data at all, but you do
need to send device controls. For example, you might need to erase the screen or
sound the alarm. You do this with a SEND CONTROL command listing the
options you need,

Consider a program in a data entry application. When first initiated, it displays the
data entry map to format the screen with the input fields, the associated labels,
screen headings and instructions. This first SEND MAP command specifies
MAPONLY, because the program sends no variable data. Thereafter, the program
accepts one set of data input. If the input is correct, the program files it and
requests another. It still does not need to send any variable data. What it needs to
do is to erase the input from the screen and unlock the keyboard, to signal the
operator to enter the next record.

EXEC CICS SEND CONTROL ERASEAUP FREEKB END-EXEC

does this. (See “Control options on the SEND MAP command” on page 343 for a
description of these and other device control options.)

If there are errors, the program does need to send variable data, to tell the operator
how to fix the problem. This one changes the attributes of the fields in error to
highlight them and sends a message in a field provided for the purpose. Here, our
program uses the DATAONLY option, because the map is already on the screen.
(We tell you more about handling input errors in “Handling input errors” on
page 357.)

You should use MAPONLY, DATAONLY, and SEND CONTROL when they apply,
especially when response time is critical, as it is in a data entry situation.
MAPONLY saves path length, DATAONLY reduces the length of the outbound
data stream, and SEND CONTROL does both.

Chapter 29. Basic mapping support 345

|

Summary: what appears on the screen
The interaction of physical map definition options, SEND MAP options, program
data and merge options is sufficiently complex that a summary of the rules for
determining what appears on the screen after a SEND MAP is in order.

The contents of the screen (buffer) are determined by:
v What was there before your SEND MAP command
v The fields (field attributes, extended attributes, and display data) that get sent

from your SEND MAP command
v Where the several values for these field elements come from

We discuss the possibilities in that order.

What you start with
The first thing that happens on a SEND MAP command is that the entire screen
(buffer) is cleared to nulls if the ERASE option is present, regardless of the size or
origin of your map. On terminals that have the alternate screen size feature, the
screen size is set as well, as explained in “3270 write commands” on page 308. The
screen is in unformatted state, with no fields defined and no display data. If
ERASEAUP is present, all of the unprotected fields on the screen are erased, but
the field structure and attributes of all fields and the contents of protected fields
are unchanged.

ERASE and ERASEAUP are honored before your SEND MAP data is loaded into
the buffer. If neither of these options appears on the SEND MAP, the screen buffer
starts out as it was left after the previous write operation, modified by whatever
the operator did. In general, the positions of the fields (that is, of the attributes
bytes) and their attributes are unchanged, but the data content of unprotected
fields may be different. Furthermore, if the operator used the CLEAR key, the
whole buffer is cleared to nulls and the screen is in unformatted state, just as if
you had included the ERASE option.

What is sent
Secondly, BMS changes only those positions in the buffer within the confines of
your map. Outside that area, the contents of the buffer are unchanged, although it
is possible for areas outside your map to change in appearance, as explained in
“Outside the map” on page 348.

Within the map area, what is sent depends on whether the DATAONLY option is
present. In the usual case, where it is not present, BMS sends every component
(field attributes, extended attributes, display data) of every field in your map. This
creates a field at the position specified in the POS operand and overlays the
number of bytes specified in the LENGTH field from POS. Buffer positions
between the end of the display data and the next attributes byte (POS value) are
left unchanged. (There may or may not be fields (attributes bytes) in these
intervening spaces if you did not ERASE after the last write operation that used a
different map.)

The values for these field elements come from the program, the map or defaults, as
explained in the next section.

If DATAONLY is present, on the other hand, BMS sends only those fields, and only
those components for them, that the program provides. Other screen data is
unchanged.

346 CICS TS for OS/390: CICS Application Programming Guide

Where the values come from
The values that determine screen contents may come from four sources:
v Program
v Map
v Hardware defaults
v Previous screen contents

BMS considers each component of each map field separately, and takes the value
from the program, provided:
v The MAPONLY option has not been used.
v The field has a name in the map, so that the symbolic output map contains the

corresponding set of subfields from which to get the data. The field attributes
value comes from the program subfield whose name is the map field name
suffixed by A. The display data comes from the subfield of the same name
suffixed by O, and the extended attribute values come from the same-named
subfields suffixed by the letter that identifies the attribute (see Table 24 on
page 342). In the case of the extended attributes, the attribute must also appear
among DSATTS in order for the symbolic map to contain the corresponding
subfield.

v A value is present. The definition of “present” varies slightly with the field
component:
– For field attributes bytes, the value must not be null (X'00') or one of the

values that can be left over from an input operation (X'80', X'02', or X'82').
– For extended attribute bytes, the value must not be null.

Note: BMS sends only those extended attribute values that the terminal is
defined as supporting. Values for other extended attributes are omitted
from the final data stream.

– For display data, the first character of the data must not be null.

If any of these conditions is not met, the next step depends on whether
DATAONLY is present. With DATAONLY, BMS stops the process here and sends
only the data it got from the program. BMS does this in such a way that
components not changed by program are not changed on the screen. In particular,
extended attributes values are not changed unless you specify a new value or ask
for the hardware default. (A value of X'FF' requests the hardware default for all
extended attributes except background transparency, for which you specify X'F0' to
get the hardware default.)

Without DATAONLY, if one of the conditions above is not met, BMS takes the data
from the map, as follows:
v For field attributes, it takes the value in the ATTRB option for the field. If none

is present, BMS assumes an ATTRB value of (ASKIP,NORM).
v For extended attributes, BMS takes the value from:

– The corresponding option in the DFHMDF field definition
– If it is not specified there, the value is taken from the corresponding option in

the DFHMDI map definition
– If it is not there either, the value is taken from the corresponding option in

the DFHMSD map set definition

(If no value is specified anywhere, BMS does not send one, and this causes the
3270 to use its hardware default value.)

v For display data, from the initial value in the map (the INITIAL, XINIT, or
GINIT option). If there is no initial value, the field is set to nulls.

Chapter 29. Basic mapping support 347

Outside the map
We have assumed, so far, that your map is the same size as your screen or printer
page. It need not be. Your application may use only a part of the screen area, or
you may want to build your output incrementally, or both.

BMS logical messages allow you to build a screen from several maps, sending it
with a single terminal write. You use the ACCUM option to do this, which we
cover in “BMS logical messages” on page 372. Even without using ACCUM, you
can build a screen from several maps if the terminal is a 3270-like device with a
buffer. You do this with multiple SEND MAP commands written to different areas
of the screen (buffer), not erasing after the first command. Each SEND MAP causes
output and may produce a momentary “blink” at a display device. For this reason,
and to eliminate the path length of extra I/O, you may prefer to use logical
messages for such composite screens.

Outside the map just sent, the contents of the buffer are unchanged, except for the
effects of ERASE and ERASEAUP cited earlier. In general, this means that the
corresponding areas of the screen are unchanged. However, a screen position
outside the map may get its attributes from a field within the map. This occurs if
you do not define a field (using a different map) beyond the boundary of the map
and before the position in question. If you change the attributes of the field inside
your map governing this position outside, the appearance of the position may
change, even though the contents do not.

Using GDDM and BMS
One use of the buffer overlay technique we just described is the creation of screens
containing a mixture of BMS and Graphical Data Display Manager (GDDM®)
output. You generally write the BMS output first, followed by the GDDM. You can
leave space in the BMS map for the GDDM output, or you can create a “graphic
hole” in any display by writing a map with no fields in it to the position where
you want the hole. Such a map is called a “null map,” and its size (height and
width) correspond to the size of the hole.

If you use GDDM to combine graphics with BMS output, you need to include a
GDDM PSRSRV call to prevent GDDM from corrupting programmed symbol sets
that BMS may be using.

Positioning the cursor
Usually, you set the initial position for the cursor in the map definition by
including “insert cursor” (IC) in the ATTRB values of the field where you want it.
(Cursor position is not important for the output-only maps we have been
discussing, but it becomes important as soon as you use a map for input too.)

The CURSOR option on the SEND MAP command allows you to override this
specification, if necessary, when the map is displayed. If you specify
CURSOR(value), BMS places the cursor in that absolute position on the screen.
Counting starts in the first row and column (the zero position), and proceeds
across the rows. Thus, to place the cursor in the fourth column of the third row of
an 80-column display, you code CURSOR(163).

Specifying CURSOR without a value signals BMS that you want “symbolic cursor
positioning”. You do this by setting the length subfield of the field where you want
the cursor to minus one (-1). Length subfields are not defined on output-only
maps, so you must define your map as INOUT to use symbolic cursor positioning.
(We tell you about length subfields in “Reading from a formatted screen: what

348 CICS TS for OS/390: CICS Application Programming Guide

comes in” on page 354, and about INOUT maps in “Receiving data from a
display”.) If you mark more than one field in this way, BMS uses the first one it
finds.

Symbolic cursor positioning is particularly useful for input-output maps when the
terminal operator enters incorrect data. If you validate the fields, setting the length
of any in error to -1, BMS places the cursor under the first error when you
redisplay. “Processing the mapped input” on page 357 shows this technique.

You can position the cursor with a SEND CONTROL command also, but only by
specifying an absolute value for CURSOR; if you omit CURSOR on SEND
CONTROL, the cursor is not moved.

Sending invalid data and other errors
The exceptional conditions that can occur on SEND MAP and SEND CONTROL
commands are listed with the descriptions of these commands in the CICS
Application Programming Reference manual. Most of them apply only to the
advanced BMS options: logical messages, partitions, and special devices.

However, it is also possible to send invalid data to a terminal. BMS does not check
the validity of attribute and data values in the symbolic map, although it does not
attempt to send an extended attribute, like color, to a terminal not defined to
support that attribute.

The effects of invalid data depend on both the particular terminal and the nature
of the incorrect data. Sometimes invalid data can be interpreted as a control
sequence, so that the device accepts the data but produces the wrong output;
sometimes the screen displays an error indicator; and sometimes an ATNI abend
occurs. The point at which your task is notified of an ATNI depends on whether or
not you specified the WAIT option (see “Other BMS SEND options: WAIT and
LAST” on page 344).

Receiving data from a display
Formatted screens are as important for input as for output. Data entry applications
are an obvious example, but most other applications also use formatted input, at
least in part. On input, BMS does for you approximately the reverse of what it
does on output: it removes device control characters from the data stream and
moves the input fields into a data structure, so that you can address them by
name.

Maps can be used exclusively for input, exclusively for output (the case we have
already covered), or for both. Input-only maps are relatively rare, and we cover
them as a special case of an input-output map, pointing out differences where they
occur.

An input-output example
Before we explain the details of the input structure, let us re-examine the “quick
check” example. Suppose that it is against our policy to let a customer charge up
to the limit over and over again between the nightly runs when new charges are
posted to the accounts. We want a new transaction that augments “quick check”
processing by keeping a running total for the day.

In addition, we want to use the same screen for both input and output, so that
there is only one screen entry per customer. In the new transaction, “quick

Chapter 29. Basic mapping support 349

update,” the clerk enters both the account number and the charge at the same
time. The normal response is:
When we reject a transaction, we leave the input information on the screen, so that

the clerk can see what was entered along with the description of the problem:
(Here again, we are oversimplifying to keep our maps short for ease of

explanation.)

The map definition we need for this exercise is:
You can see that the map field definitions for this input-output map are very

similar to those for the output-only “quick check” map, if we allow for changes to
the content of the screen. The differences to note are:
v The MODE option in the DFHMSD map set definition is INOUT, indicating that

the maps in this map set are used for both input and output. INOUT causes
BMS to generate a symbolic structure for input as well as for output for every
map in the map set. If this had been an input-only map, we would have said
MODE=IN, and BMS would have generated only the input structures.

v We put names on the fields from which we want input (ACCTNO and CHG) as
well as those to which we send output (MSG). As in an output-only map, we
avoid naming constant fields to save space in the symbolic map.

v The input fields, ACCTNO and CHG, are unprotected (UNPROT), to allow the
operator to key data into them.

v IC (insert cursor) is specified for ACCTNO. It positions the cursor at the start of
the account number field when the map is first displayed, ready for the first

QUP Quick Account Update
Current charge okay; enter next
Account: _______
Charge: $ _______

Figure 64. Normal “quick update” response

QUP Quick Account Update
Charge exceeds maximum; do not approve
Account: 482554
Charge: $ 1000.00

Figure 65. “Quick update” error response

QUPSET DFHMSD TYPE=MAP,STORAGE=AUTO,MODE=INOUT,LANG=COBOL,TERM=3270-2
QUPMAP DFHMDI SIZE=(24,80),LINE=1,COLUMN=1,CTRL=FREEKB

DFHMDF POS=(1,1),LENGTH=3,ATTRB=(ASKIP,BRT),INITIAL='QUP'
DFHMDF POS=(1,26),LENGTH=20,ATTRB=(ASKIP,NORM), X

INITIAL='Quick Account Update'
MSG DFHMDF LENGTH=40,POS=(3,1),ATTRB=(ASKIP,NORM)

DFHMDF POS=(5,1),LENGTH=8,ATTRB=(ASKIP,NORM), X
INITIAL='Account:'

ACCTNO DFHMDF POS=(5,14),LENGTH=6,ATTRB=(UNPROT,NUM,IC)
DFHMDF POS=(5,21),LENGTH=1,ATTRB=(ASKIP),INITIAL=' '
DFHMDF POS=(6,1),LENGTH=7,ATTRB=(ASKIP,NORM),INITIAL='Charge:'

CHG DFHMDF POS=(6,13),ATTRB=(UNPROT,NORM),PICIN='$$$$0.00'
DFHMDF POS=(6,21),LENGTH=1,ATTRB=(ASKIP),INITIAL=' '
DFHMSD TYPE=FINAL

Figure 66. Map definition for input-output map

350 CICS TS for OS/390: CICS Application Programming Guide

item that the operator has to enter. (You can override this placement when you
send the map; IC just provides the default position.)

v Just after the ACCTNO field, there is a constant field consisting of a single
blank, and a similar one after the CHG field. These are called “stopper” fields.
Normally, they are placed after each input field that is not followed immediately
by some other field. They prevent the operator from keying data beyond the
space you provided, into an unused area of the screen.
If you define the stopper field as “autoskip”, the cursor jumps to the next
unprotected field after the operator has filled the preceding input field. This is
convenient if most of the input fields are of fixed length, because the operator
does not have to advance the cursor to get from field to field.
If you define the stopper field as “protected,” but not “autoskip,” the keyboard
locks if the operator attempts to key beyond the end of the field. This choice
may be preferable if most of the input fields are of variable length, where one
usually has to use the cursor advance key anyway, because it alerts the operator
to the overflow immediately. Whichever you choose, you should use the same
choice throughout the application if possible, so that the operator sees a
consistent interface.

v The CHG field has the option PICIN. PICIN produces an edit mask in the
symbolic map, useful for COBOL and PL/I, and implies the field length. See the
CICS Application Programming Reference manual for details on using PICIN.

Figure 67 shows the symbolic map set that results from this INOUT map
definition.
The second part of this structure, starting at QUPMAPO, is the symbolic output

map—the structure required to send data back to the screen. Apart from the fields
we redefined, it looks almost the same as the one you would have expected if we
had specified MODE=OUT instead of MODE=INOUT. See Figure 60 on page 326
for a comparison. The main difference is that the field attributes (A) subfield
appears to be missing, but we explain this in a moment.

01 QUPMAPI. ─┐
02 FILLER PIC X(12). │
02 FILLER PICTURE X(2). │
02 MSGL COMP PIC S9(4). │
02 MSGF PICTURE X. │
02 FILLER REDEFINES MSGF. │

03 MSGA PICTURE X. │
02 MSGI PIC X(40). │
02 ACCTNOL COMP PIC S9(4). │ Symbolic
02 ACCTNOF PICTURE X. │ input map
02 FILLER REDEFINES ACCTNOF. │

03 ACCTNOA PICTURE X. │
02 ACCTNOI PIC X(6). │
02 CHGL COMP PIC S9(4). │
02 CHGF PICTURE X. │
02 FILLER REDEFINES CHGF. │

03 CHGA PICTURE X. │
02 CHGI PIC X(7) PICIN '$,$$0.00'. ─┘

01 QUPMAPO REDEFINES QUPMAPI. ─┐
02 FILLER PIC X(12). │
02 FILLER PICTURE X(3). │
02 MSGO PIC X(40). │ Symbolic
02 FILLER PICTURE X(3). │ output map
02 ACCTNO PICTURE X(6). │
02 FILLER PICTURE X(3). │
02 CHGO PIC X. ─┘

Figure 67. Symbolic map for “quick update”

Chapter 29. Basic mapping support 351

The symbolic input map
The first part of the structure, under the label QUPMAPI, is new. This is the
symbolic input map—the structure required for reading data from a screen
formatted with map QUPMAP. For each named field in the map, it contains three
subfields. As in the symbolic output map, each subfield has the same name as the
map field, suffixed by a letter indicating its purpose. The suffixes and subfields
related to input are:

L the length of the input in the map field.

F the flag byte, which indicates whether the operator erased the field and
whether the cursor was left there.

I the input data itself.

The input and output structures are defined so that they overlay one another field
by field. That is, the input (I) subfield for a given map field always occupies the
same storage as the corresponding output (O) subfield. Similarly, the input flag (F)
subfield overlays the output attributes (A) subfield. (For implementation reasons,
the order of the subfield definitions varies somewhat among languages. In COBOL,
the definition of the A subfield moves to the input structure in an INOUT map, but
it still applies to output, just as it does in an output-only map. In assembler, the
input and output subfield definitions are interleaved for each map field.)

BMS uses dummy fields to leave space in one part of the structure for subfields
that do not occur in the other part. For example, there is always a 2-byte filler in
the output map to correspond to the length (L) subfield in the input map, even in
output-only maps. If there are output subfields for extended attributes, such as
color or highlighting, BMS generates dummy fields in the input map to match
them. You can see examples of these fields (FILLERs in COBOL) in both Figure 60
on page 326 and Figure 67 on page 351.

The correspondence of fields in the input and output map structures is very
convenient for processes in which you use a map for input and then write back in
the same format, as you do in data entry transactions or when you get erroneous
input and have to request a correction from the operator.

Programming simple mapped input
The programming required for mapped input is similar to that for mapped output,
except, of course, that the data is going in the opposite direction. You define your
maps and assemble them first, as for mapped output. In the program or programs
reading from the terminal, you:
1. Acquire the storage to which the symbolic map set corresponds.
2. Copy the symbolic map set to define the structure of this storage.
3. Format the input data with a RECEIVE MAP command.
4. Process the input.

We tell you more about these tasks and related topics in the paragraphs that
follow, starting with the RECEIVE MAP command. We also develop the code for
the “quick update” transaction.

If the transaction also calls for mapped output, as “quick update” and most other
transactions do, you simply continue with the steps outlined before, in “Sending
mapped output: basics” on page 338. Some considerations and shortcuts for
mapped input are described in “Mapped output after mapped input” on page 359.

352 CICS TS for OS/390: CICS Application Programming Guide

The RECEIVE MAP command
The RECEIVE MAP command causes BMS to format terminal input data and make
it accessible to your application program. It tells BMS:
v Which map to use in formatting the input data stream—that is, what format is

on the screen and what data structure the program expects (the MAP option)
v Where to find this map (MAPSET option)
v Where to get the input (TERMINAL or FROM option)
v Whether to suppress translation to upper case (ASIS option)
v Where to put the formatted input data (the INTO and SET options)

The MAP and MAPSET options together tell BMS which map to use, and they
work exactly as they do on a SEND MAP command.

BMS gets the input data to format from the terminal associated with your task (its
principal facility), unless you use the FROM option. FROM is an alternative to
TERMINAL, the default, used in relatively unusual circumstances (see “Formatting
other input” on page 361).

BMS also translates lower case input to upper case automatically in some cases; we
explain how to control translation in “Upper case translation” on page 355.

You tell BMS where to put the formatted input with the INTO or SET option,
which we cover in the next section. For the full syntax of the RECEIVE MAP
command, see the CICS Application Programming Reference manual.

Getting storage for mapped input: INTO and SET
When you issue a RECEIVE MAP command, BMS needs storage in which to build
the input map structure. You can provide this space yourself, either in the working
storage of your program or with a CICS GETMAIN. These are the same choices
you have for allocating storage in which to build an output map, and you use
them the same way (see “Acquiring and defining storage for the maps” on
page 339 for details and examples). For either, you code the INTO option on your
RECEIVE command, naming the variable into which the formatted input is to be
placed. For our “quick update”, for example, the required command is:

EXEC CICS RECEIVE MAP('QUPMAP') MAPSET('QUPSET')
INTO(QUPMAPI) END-EXEC.

Usually, the receiving variable is the area defined by the symbolic input map, to
which BMS assigns the map name suffixed by the letter “I”, as shown above. You
can specify some other variable if you wish, however.

For input operations, you have a third choice for acquiring storage. If you code the
SET option, BMS acquires the storage for you at the time of the RECEIVE
command and returns the address in the pointer variable named in the SET option.
So we could have coded the RECEIVE MAP command in “quick update” like this:

LINKAGE SECTION.
...
01 QUPMAP COPY QUPMAP.
...
PROCEDURE DIVISION.
...
EXEC CICS RECEIVE MAP('QUPMAP') MAPSET('QUPSET')

SET(ADDRESS OF QUPMAPI) END-EXEC.
...

Chapter 29. Basic mapping support 353

Storage obtained in this way remains until task end unless you issue a FREEMAIN
to release it (see “Chapter 36. Storage control” on page 479).

Reading from a formatted screen: what comes in
As we noted earlier, we explain receiving input from a terminal in terms of 3270
devices. You should also read “Support for non-3270 terminals” on page 361 if you
are writing for non-3270 terminals.

CICS normally reads a 3270 screen with a “read modified” command8. The data
transmitted depends on what the operator did to cause transmission:
v The ENTER key or a PF key
v CLEAR, CNCL or a PA key (the “short read” keys)
v Field selection: cursor select, light pen detect or a trigger field

You can tell which event occurred, if you need to know; we explain how in “The
attention identifier: what caused transmission” on page 355. You can also find more
detail on 3270 input operations in “Input from a 3270 terminal” on page 318.

The short read keys transmit only the attention identifier (the identity of the key
itself). No field data comes in, and there is nothing to map. For this reason, short
read keys can cause the MAPFAIL condition, as explained on page 360. Field
selection features transmit field data, but in most cases not the same data as the
ENTER and PF keys, which we describe in the paragraphs that follow. See “BMS
support for other special hardware” on page 406 for the exceptions if you plan to
use these features.

Most applications are designed for transmission by the ENTER key or a PF key.
When one of these is used to transmit, all of the fields on the screen that have been
modified, and only those fields, are transmitted.

Modified data
As we explained in “Modification” on page 311, a 3270 screen field is considered
modified only if the “modified data tag” (MDT), one of the bits in the field
attributes byte, is on. The terminal hardware turns on this bit if the operator
changes the field in any way—entering data, changing data already there, or
erasing. You can also turn it on by program when you send the map, by including
MDT among the ATTRB values for the field. You do this when you want the data
in a particular field to be returned even if the operator does not change it.

You can tell whether there was input from a particular map field by looking at the
corresponding length (L) subfield. If the length is zero, no data was read from that
field. The associated input (I) subfield contains all nulls (X'00'), because BMS sets
the entire input structure to nulls before it performs the input mapping operation.
The length is zero either if the modified data tag is off (that is, the field was sent
with the tag off and the operator did not change it) or if the operator erased the
field. You can distinguish between these two situations, if you care, by inspecting
the flag (F) subfield. It has the high-order bit on if the field contains nulls but the
MDT is on (that is, the operator changed the field by erasing it). See “Finding the
cursor” on page 356 for more information about the flag subfield.

If the length is nonzero, data was read from the field. Either the operator entered
some, or changed what was there, or the field was sent with the MDT on. You may
find the data itself in the corresponding input (I) subfield. The length subfield tells

8. CICS provides an option, BUFFER, for the terminal control RECEIVE command, with which you can capture the entire contents
of a 3270 screen. See “Reading from a 3270 terminal” on page 319 if you need to do this.

354 CICS TS for OS/390: CICS Application Programming Guide

how many characters were sent. A 3270 terminal sends only non-null characters, so
BMS knows how much data was keyed into the field. Character fields are filled
out with blanks on the right and numeric fields are filled on the left with zeros
unless you specify otherwise in the JUSTIFY option of the field definition. BMS
assumes that a field contains character data unless you indicate that it is numeric
with ATTRB=NUM. See the CICS Application Programming Reference manual for
details of how these options work.

Upper case translation
CICS converts lower case input characters to upper case automatically under some
circumstances. The definition of the terminal and the transaction together
determine whether translation occurs. See the UCTRAN option of the PROFILE
and the TYPETERM definitions in CICS Resource Definition Guide for how these
specifications interact.

You can suppress this translation by using the ASIS option on your RECEIVE MAP
command, except on the first RECEIVE in a task initiated by terminal input. (The
first RECEIVE may be either a RECEIVE MAP (without FROM) or a terminal
control RECEIVE.) CICS has already read and translated this input, and it is too
late to suppress translation. (Its arrival caused the task to be invoked, as explained
in “How tasks are started” on page 299.) Consequently, ASIS is ignored entirely in
pseudoconversational transaction sequences, where at most one RECEIVE MAP
(without FROM) occurs per task, by definition. For the same reason, you cannot
use ASIS with the FROM option (see “Formatting other input” on page 361).

Other information from RECEIVE MAP
In addition to the data on the screen, the RECEIVE MAP command tells you where
the operator left the cursor and what key caused transmission. This information
becomes available in the EIB on completion of the RECEIVE MAP command.
EIBAID identifies the transmit key (the “attention identifier” or AID), and
EIBCURSR tells you where the cursor was left.

The attention identifier: what caused transmission
This information is part of the input in many applications, and you may also need
it to interpret the input correctly.

For example, in the “quick update” transaction, we need some method for
allowing the clerk to exit our transaction, and we have not yet provided for this.
Suppose that we establish the convention that pressing PF12 causes you to leave
control of the transaction. We would then code the following after our RECEIVE
MAP command:

IF EIBAID = DFHPF12,
EXEC CICS SEND CONTROL FREEKB ERASE END-EXEC
EXEC CICS RETURN END-EXEC.

This would end the transaction without specifying which one should be executed
next, so that the operator would regain control. The SEND CONTROL command
that precedes the RETURN unlocks the keyboard and clears the screen, so that the
operator is ready to enter the next request.

The hexadecimal values that correspond to the various attention keys are defined
in a copy book called DFHAID. To use these definitions, you simply copy DFHAID
into your working storage, in the same way that you copy DFHBMSCA to use the
predefined attributes byte combinations (see “Attribute value definitions:
DFHBMSCA” on page 343). The contents of the DFHAID copy book are listed in
the CICS Application Programming Reference manual.

Chapter 29. Basic mapping support 355

The HANDLE AID command
You can also use a HANDLE AID command to identify the attention key used
(unless you are writing in C or C++, which does not support HANDLE AID
commands). HANDLE AID works like other HANDLE commands; you issue it
before the first RECEIVE command to which it applies, and it causes a program
branch on completion of subsequent RECEIVEs if a key named in the HANDLE
AID is used.

For example, an alternative to the “escape” code just shown would be:
EXEC CICS HANDLE AID PF12(ESCAPE) END-EXEC.
...
EXEC CICS RECEIVE MAP('QUPMAP') MAPSET('QUPSET') ...
...

ESCAPE.
EXEC CICS SEND CONTROL FREEKB ERASE END-EXEC
EXEC CICS RETURN END-EXEC.

HANDLE AID applies only to RECEIVE commands in the same program. The
specification for a key remains in effect until another HANDLE AID in the same
program supersedes it by naming a new label for the key or terminates it by
naming the key with no label. A RESP, RESP2, or NOHANDLE option on a
RECEIVE command exempts that particular command from the effects of
HANDLE AID specifications, but they remain in effect otherwise.

If you have a HANDLE active for an AID received during an input operation,
control goes to the label specified in the HANDLE AID, regardless of any
exceptional condition that occurs and whether or not a HANDLE CONDITION is
active for that exception. HANDLE AID can thus mask an exceptional condition if
you check for it with HANDLE CONDITION. For this reason you may prefer to
use an alternative test for the AID or exceptional conditions or both. You can check
EIBAID for the AID and use the RESP option or check EIBRESP for exceptions. You
need to be especially aware of MAPFAIL in this respect, as noted on page 360.

Finding the cursor
In some applications, you need to know where the operator left the cursor at the
time of sending. There are two ways of finding out. If your map specifies
CURSLOC=YES, BMS turns on the seventh (X'02') bit in the flag subfield of the
map field where the cursor was left. This only works, of course, if the cursor is left
in a map field to which you assigned a name.

Also, because the flag subfield is used to indicate both cursor presence and field
erasure, you need to test the bits individually if you are looking for one in
particular: the X'80' bit for field erasure and the X'02' bit for the cursor. If you are
using a language in which it is awkward to test bits, you can test for combinations.
A value of X'80' or X'82' signals erasure; either X'02' or X'82' indicates the cursor.
The DFHBMSCA definitions described in the CICS Application Programming
Reference manual include all of these combinations.

You can also determine the position of the cursor from the EIBCPOSN field in the
EIB. This is the absolute position on the screen, counting from the upper left
(position zero) and going across the rows. Thus a value of 41 on a screen 40
characters wide would put the cursor in the second row, second column. Avoid
this method if possible, because it makes your program sensitive to the placement
of fields on the screen and to the terminal type.

356 CICS TS for OS/390: CICS Application Programming Guide

Processing the mapped input
To illustrate how the input subfields are used, we return to “quick update”. After
we have the input, we need to do some checks on it before continuing. First, we
require that the charge be entered (that is, that the input length be greater than
zero), and be positive and numeric.

IF CHGL = 0, MOVE -1 TO CHGL
MOVE 1 TO ERR-NO

ELSE IF CHGI NOT > ZERO OR CHGI NOT NUMERIC,
MOVE DFHUNIMD TO CHGA,
MOVE -1 TO CHGL
MOVE 2 TO ERR-NO.

The 'MOVE -1' statements here and following put the cursor in the first field in
error when we redisplay the map, as explained in “Positioning the cursor” on
page 348. The message number tells us what message to put in the message area; 1
is “enter a charge”, and so on through 6, for “charge is over limit”. We do these
checks in roughly ascending order of importance, to ensure that the most basic
error is the one that gets the message. At the end of the checking, we know that
everything is okay if ERR-NO is zero.

An account number must be entered, as well as the charge. If we have one
(whatever the condition of the charge), we can retrieve the customer’s account
record to ensure that the account exists:

IF ACCTNOL = 0, MOVE -1 TO ACCTNOL
MOVE 3 TO ERR-NO

ELSE EXEC CICS READ FILE (ACCT) INTO (ACCTFILE-RECORD)
RIDFLD (ACCTNOI) UPDATE RESP(READRC) END-EXEC

IF READRC = DFHRESP(NOTFOUND), MOVE 4 TO ERR-NO,
MOVE DFHUNIMD TO ACCTNOA
MOVE -1 TO ACCTNOL

ELSE IF READRC NOT = DFHRESP(NORMAL) GO TO HARD-ERR-RTN.

If we get this far, we continue checking, until an error prevents us from going on.
We need to ensure that the operator gave us a good account number (one that is
not in trouble), and that the charge is not too much for the account:

IF ERR-NO NOT > 2
IF ACCTFILE-WARNCODE = 'S', MOVE DFHBMBRY TO MSGA

MOVE 5 TO ERR-NO
MOVE -1 TO ACCTNOL
EXEC CICS LINK PROGRAM('NTFYCOPS') END-EXEC

ELSE IF CHGI > ACCTFILE-CREDIT-LIM - ACCTFILE-UNPAID-BAL
- ACCTFILE-CUR-CHGS

MOVE 6 TO ERR-NO
MOVE -1 TO ACCTNOL.

IF ERR-NO NOT = 0 GO TO REJECT-INPUT.

Handling input errors
As illustrated in “quick update,” above, whenever you have operator input to
process, there is almost always a possibility of incorrect data, and you must
provide for this contingency in your code. Usually, what you need to do when the
input is wrong is:
v Notify the operator of the errors. Try to diagnose all of them at once; it is

annoying to the operator if you present them one at a time.
v Save the data already entered, so that the operator does not have to rekey

anything except corrections.
v Arrange to recheck the input after the operator makes corrections.

Chapter 29. Basic mapping support 357

Flagging errors
In the preceding code for the “quick update” transaction, we used the message
field to describe the error (the first one, anyway). We highlighted all the fields in
error, provided there was any data in them to highlight, and we set the length
subfields to -1 so that BMS would place the cursor in the first bad field. We send
this information using the same map, as follows:

REJECT-INPUT.
MOVE LOW-VALUES TO ACCTNOO CHGO.
EXEC CICS SEND MAP('QUPMAP') MAPSET('QUPSET') FROM(QUPMAPO)

DATAONLY END-EXEC.

Notice that we specify the DATAONLY option. We can do this because the
constant part of the map is still on the screen, and there is no point in rewriting it
there. We cleared the output fields ACCTNOO and CHGO, to avoid sending back
the input we had received, and we used a different attributes combination to make
the ACCTNO field bright (DFHUNIMD instead of DFHBMBRY). DFHUNIMD
highlights the field and leaves the modified data tag on, so that if the operator
resends without changing the field, the account number is retransmitted.

Saving the good input
The next step is to ensure that whatever good data the operator entered gets
saved. One easy technique is to store the data on the screen. You do not have to do
anything additional to accomplish this; once the MDT in a field is turned on, as it
is the first time the operator touches the field, it remains on, no matter how many
times the screen is read. Tags are not turned off until you erase the screen, turn
them off explicitly with the FRSET option on your SEND, or set the attributes
subfield to a value in which the tag is off.

The drawback to saving data on the screen is that all the data is lost if the operator
uses the CLEAR key. If your task is conversational, you can avoid this hazard by
moving the input to a safe area in the program before sending the error
information and asking for corrections. In a pseudoconversational sequence, where
the component tasks do not span interactions with the terminal, the equivalent is
for the task that detects the error to pass the old input forward to the task that
processes the corrected input. You can forward data through a COMMAREA on
the RETURN command that ends a task, by writing to temporary storage, or in a
number of other ways (see “Chapter 13. Sharing data across transactions” on
page 151 for possibilities).

In addition to avoiding the CLEAR key problem, storing data in your program or
in a temporary storage queue reduces inbound transmission time, because you
transmit only changed fields on the error correction cycles. (You must specify
FRSET when you send the error information to prevent the fields already sent and
not corrected from coming in again.) You can also avoid repeating field audits
because, after the first time, you need to audit only if the user has changed the
field or a related one.

However, these gains are at the expense of extra programming and complexity, and
therefore the savings in line time or audit path length must be considerable, and
the probability of errors high, to justify this choice. You must add code to merge
the new input with the old, and if you have turned off the MDTs, you need to
check both the length and the flag subfield to determine whether the operator has
modified a map field. Fields with new data have a nonzero length; those which
had data and were subsequently erased have the high-order bit in the flag subfield
on.

358 CICS TS for OS/390: CICS Application Programming Guide

|
|

A good compromise is to save the data both ways. If the operator clears the screen,
you use the saved data to refresh it; otherwise you simply use the data coming in
from the screen. You do not need any merge logic, but you protect the operator
from losing time over an unintended CLEAR.

For our “quick update” code, with its minimal audits and transmissions, we
choose the “do nothing” approach and save the information on the screen.

Rechecking
The last requirement is to ensure that the input data is rechecked. If your task is
conversational, this simply means repeating the audit section of your code after
you have received (and merged, if necessary) the corrected input. In a
pseudoconversational sequence, you usually repeat the transaction that failed. In
the example, because we saved the data on the screen in such a way that corrected
data is indistinguishable from new data, all we need to do is arrange to execute
the same transaction against the corrected data, thus:

EXEC CICS RETURN TRANSID('QUPD') END-EXEC.

where ‘QUPD’ is the identifier of the “quick update” transaction.

Mapped output after mapped input
If your transaction makes it through its input audits and the attendant hazards, the
processing specific to mapped input is complete. The next step, frequently, is to
prepare and send the transaction output. In general, if the output is to be mapped,
you follow the steps outlined in “Sending mapped output: basics” on page 338.
However, the acquisition of storage for building the map may be affected by the
input mapping you have already done. If the output and input maps are different,
but in the same map set or in map sets defined to overlay one another, you have
already done the storage acquisition during your input mapping process. If your
output and input maps overlay one another, you need to ensure that you save any
map input you still need and clear the output structure to nulls before you start
building the output map. If this is awkward, you may want to define the maps so
that they do not overlay one another. (See “BASE and STORAGE options” on
page 340 for your choices in this regard.)

Your transaction may also call for using the same map for output as input. This is
routine in code that handles input errors, as we have already seen, and also in
simple transactions like “quick update”. One-screen data-entry transactions are
another common example.

When you are sending new data with a map already on the screen, you can reduce
transmission with the DATAONLY option, and you may need only the SEND
CONTROL command. See “Options for merging the symbolic and physical maps”
on page 344 for a discussion of these options.

For the “quick update” transaction, however, we need to fill in the message field
with our “go” response (and update the file with the charge to finish our
processing):

MOVE 'CURRENT CHARGE OKAY; ENTER NEXT' TO MSGO
ADD CHGI TO ACCTFILE-CUR-CHGS
EXEC CICS REWRITE FILE('ACCT') FROM (ACCTFILE-RECORD)....

We also need to erase the input fields, so that the screen is ready for the next
input. We have to do this both on the screen (the ERASEAUP option erases all
unprotected fields) and in the output structure (because the output subfield
overlays the input subfield and the input data is still there).

Chapter 29. Basic mapping support 359

MOVE LOW-VALUES TO ACCTNOO CHGO.
EXEC CICS SEND MAP('QUPMAP') MAPSET('QUPSET') FROM(QUPMAPO)

DATAONLY ERASEAUP END-EXEC.

Finally, we can return control to CICS, specifying that the same transaction is to be
executed for the next input.

EXEC CICS RETURN TRANSID('QUPD') END-EXEC.

MAPFAIL and other exceptional conditions
The exceptional conditions that can occur on a RECEIVE command are all listed in
the CICS Application Programming Reference manual, and most are self-explanatory.
One of them warrants discussion, however, because it can result from a simple
operator error. This is MAPFAIL, which occurs when no usable data is transmitted
from the terminal or when the data transmitted is unformatted (in the 3270
sense—see “Unformatted mode” on page 321). MAPFAIL occurs on a RECEIVE
MAP if the operator has used the CLEAR key or one of the PA keys. It also occurs
if the operator uses ENTER or a PF key from a screen where:
v No fields defined in the map have the modified data tag set on (this means the

operator did not key anything and you did not send any fields with the tags
already set, so that no data is returned on the read), and

v The cursor was not left in a field defined in the map and named, or the map did
not specify CURSLOC=YES.

Pressing ENTER prematurely or a “short read” key accidentally is an easy mistake
for the operator to make. In the interest of user friendliness, you may want to
refresh the screen after MAPFAIL instead of ending the transaction in error.

MAPFAIL also occurs if you issue a RECEIVE MAP without first formatting with a
SEND MAP or equivalent in the current or a previous task, and can occur if you
use a map different from the one you sent. This might signal an error in logic, or it
might simply mean that your transaction is in its startup phase. For instance, in
our “quick update” example, we have not made any provision for getting
started—that is, for getting an empty map onto the screen so that the operator can
start using the transaction. We could use a separate transaction to do this, but we
might as well take advantage of the code we need to refresh the screen after a
MAPFAIL. What we need is:

IF RCV-RC = DFHRESP(MAPFAIL)
MOVE 'PRESS PF12 TO QUIT THIS TRANSACTION' TO MSGO
EXEC CICS SEND MAP('QUPMAP') MAPSET('QUPSET')

FROM(QUPMAPO) END-EXEC.

We are reminding the operator how to escape, because attempts to do this may
have caused the MAPFAIL in the first place. If we had not wanted to send this
message, or if it was the default in the map, we could have used the MAPONLY
option:

EXEC CICS SEND MAP('QUPMAP') MAPSET('QUPSET') MAPONLY END-EXEC.

When MAPFAIL occurs, the input map structure is not cleared to nulls, as it is
otherwise, so it is important to test for this condition if your program logic
depends on this clearing.

You can issue a HANDLE CONDITION command to intercept MAPFAIL, as you
can other exception conditions. If you do, and you also have a HANDLE AID
active for the AID you receive, however, control goes to the label specified for the
AID and not that for MAPFAIL, as explained in “The HANDLE AID command” on
page 356

360 CICS TS for OS/390: CICS Application Programming Guide

page 356. In this situation you will be unaware of the MAPFAIL, even though you
issued a HANDLE for it, unless you also test EIBRESP.

EOC condition
EOC is another condition that you encounter frequently using BMS. It occurs when
the end-of-chain (EOC) indicator is set in the request/response unit returned from
VTAM. EOC does not indicate an error, and the BMS default action is to ignore
this condition.

Formatting other input
Although the data that you format with a RECEIVE MAP command normally
comes from a terminal, you can also format data that did not come from a
terminal, or that came indirectly. For example, you might not know which map to
use until you receive the input and inspect some part of it. This can happen when
you use special hardware features like partitioning or logical device codes, and
also in certain logic situations. You might also need to format data that was read
from a formatted screen by an intermediate process (without mapping) and later
passed to your transaction.

The FROM option of the RECEIVE MAP command addresses these situations.
FROM tells BMS that the data has already been read, and only the translation from
the native input stream to the input map structure is required.

Because the input has already been read, you need to specify its length if you use
FROM, because BMS cannot get this information from the access method, as it
does normally. If the data came originally from a RECEIVE command in another
task, the length on the RECEIVE MAP FROM command should be the length
produced by that original RECEIVE.

For the same reason, you cannot suppress translation to upper case with the ASIS
option when you use FROM. Moreover, BMS does not set EIBAID and EIBCURSR
after a RECEIVE FROM command.

And finally, BMS does not know from what device the input came, and it assumes
that it was your current principal facility. (You cannot even use RECEIVE FROM
without a principal facility, even though no input/output occurs.) If the data came
from a different type of device, you have to do the mapping in a transaction with a
similar principal facility to get the proper conversion of the input data stream.

Note: You cannot map data read with a terminal control RECEIVE with the
BUFFER option, because the input data is unformatted (in the 3270 sense). If
you attempt to RECEIVE MAP FROM such input, MAPFAIL occurs.

Support for non-3270 terminals
Minimum BMS supports only 3270 displays and printers. This category includes
the 3178, 3290, 8775 and 5520, LU type 2 and LU type 3 devices, and any other
terminal that accepts the 3270 data stream. The IBM 3270 Information Display System
Data Stream Programmer’s Reference manual contains a full list. Standard BMS
expands 3270 support to SCS printers (3270 family printers not using the 3270 data
stream) and all of the terminal types listed in Table 25 on page 365.

Because of functional differences among these terminal types, it is not possible to
make BMS work in exactly the same way for each of them. The sections which
follow outline the limitations in using BMS on devices which lack the hardware
basis for certain features.

Chapter 29. Basic mapping support 361

Output considerations for non-3270 devices
Because BMS separates the device-dependent content of the output data stream
from the logical content, there are only a few differences between 3270 and
non-3270 devices that you need to consider in creating BMS output.

The primary difference between 3270 and non-3270 devices is that the 3270 is
field-oriented, and most others are not. Consequently, there are neither field
attributes nor extended attributes associated with output fields sent to non-3270
terminals. BMS can position the output in the correct places, field by field, but the
field structure is not reflected in the data stream. BMS can even emulate some field
attributes on some terminals (it may underline a highlighted field, for example),
but there is no modified data tag, no protection against keying into the field, and
so on.

If you specify attributes on output that the terminal does not support, BMS simply
ignores them. You do not need to worry about them, provided the output is
understandable without the missing features.

Differences on input
The absence of field structure has more impact on input operations, because many
of the features of BMS depend on the ability to read—by field—only those fields
that were modified. If the hardware does not provide the input field-by-field with
its position on the screen, you must provide equivalent information.

You can do this in either of two ways. The first is to define a field-separator
sequence, one to four characters long, in the FLDSEP option of the map definition.
You place this sequence between each field of your input and supply the input
fields in the same order as they appear on the screen or page. You must supply
every field on the screen, up to the last one that contains any data. If there is no
input in a field, it can consist of only the terminating field-separator sequence. On
hardcopy devices, input cannot overlay the output because of paper movement.
On displays that emulate such terminals, the same technique is generally used.
Input fields are entered in an area reserved for the purpose, in order, separated by
the field-separator sequence.

The second method is to include control characters in your input. If you omit the
FLDSEP option from your map, BMS uses control characters to calculate the
position of the data on the “page” and maps it accordingly. The control characters
that BMS recognizes are:

NL new line X’15’
IRS interchange record separator X’1E’
LF line feed X’25’
FF form feed X’0C’
HT horizontal tab X’05’
VT vertical tab X’0B’
CR carriage return X’0D’
RET return on the TWX X’26’
ETB end text block X’26’
ESC escape, for 2780 X’27’

When you read data of this kind with a RECEIVE MAP command, there are some
differences from true 3270 input:
v The flag byte (F subfield) is not set; it contains a null. You cannot determine

whether the operator erased the field or whether the cursor was left in the field.

362 CICS TS for OS/390: CICS Application Programming Guide

v You cannot preset a modified data tag on output to ensure that a field is
returned on input.

Special options for non-3270 terminals
BMS provides some additional formatting options for non-3270 devices, to take
advantage of device features that shorten the data stream. These include:
v Vertical and horizontal tabs. You can position your output with horizontal and

vertical tab orders if the device supports them. The tab characters are defined by
the HTAB and VTAB options in the map set definition. When you want to
position to the next horizontal tab, you include the HTAB character in your data;
you position to the next vertical tab by supplying the VTAB character in your
data. BMS translates these characters to the tab sequence required by your
particular principal facility.
Before you use tabs in BMS output, your task or some earlier task at the same
terminal must have set the tabs in the required positions. This is usually done
with a terminal control SEND command, described in “Data transmission
commands” on page 412.

v Outboard formatting. Some logical units can store format information and
participate in the formatting process. This allows BMS to send much less data
(essentially the symbolic map contents) and delegate the work of merging the
physical and symbolic maps to the logical unit. See “Outboard formatting” on
page 409 for details.

v NLEOM (new line, end of message). Standard BMS also gives you the option of
requesting that BMS format your output with blanks and new-line (NL)
characters rather than 3270 buffer control orders. This technique gives you more
flexibility in page width settings on printers, as explained in “NLEOM option”
on page 436.

Device-dependent maps: map suffixes
Because the position, default attributes, and default contents of map fields appear
only in the physical map and not in the symbolic map, you can use a single
program to build maps that contain the same variable information but different
constant information in different arrangements on the screen. This is very
convenient if the program you are writing must support multiple devices with
different characteristics.

You do this by defining multiple maps with the same names but different
attributes and layout, each with a different suffix.

Suppose, for example, that some of the clerks using the “quick update” transaction
use 3270 Model 2s (as we have assumed until now), and the rest use a
special-purpose terminal that has only 3 rows and 40 columns. The format we
designed for the big screen will not do for the small one, but the information will
fit if we rearrange it:
We need the following map definition:

QUP Quick Account Update:
Current charge okay; enter next
Acct: _______ Charge: $ _______

Figure 68. “Quick update” for the small screen

Chapter 29. Basic mapping support 363

|
|

The symbolic map set produced by assembling this version of the map is identical
to the one shown in “An input-output example” on page 349, because the fields
with names have the same names and same lengths, and they appear in the same
order in the map definition. (They do not need to appear in the same order on the
screen, incidentally; you can rearrange them, provided you keep the definitions of
named fields in the same order in all maps.) You only need one copy of the
symbolic map and you can use the same code to build the map.

CICS will select the physical map to use from the value coded in the ALTSUFFIX
option of the TYPETERM resource definition for the terminal from which the
transaction is being run. You also need to specify SCRNSZE(ALTERNATE) in the
transaction PROFILE resource definition. See CICS Resource Definition Guide for
information about the TYPETERM and PROFILE resource definitions.

You might use this technique to distinguish among standard terminals used for
special purposes. For example, if an application were used by both English and
French speakers, you could create two sets of physical maps, one with the
constants in French and the other in English. You would assign each a suffix, and
specify the English suffix as the ALTSUFFIX value in the definitions of the English
terminals and the French suffix for French terminals. Transactions using the map
would point to a PROFILE that specified alternate screen size. Then when you sent
the map, BMS would pick the version with the suffix that matched the terminal
(that is, in the appropriate language).

Another way to provide device dependent maps is to allow BMS to generate a
suffix based on the terminal type, and select the physical map to use to match the
terminal in the current execution when you issue SEND MAP or RECEIVE MAP.

Device dependent support: DDS
The BMS feature that does this is called “device dependent support” (DDS). DDS
is an installation option that works as follows.

When you assemble your map sets, you specify the type of terminal the maps are
for in the TERM option. This causes the assembler to store the physical map set
under the MAPSET name suffixed by the character for that type of terminal9.
When you issue SEND MAP or RECEIVE MAP with DDS active, BMS adds a
1-character suffix to the name you supply in the MAPSET option. It chooses the
suffix based on the definition of your terminal, and thus loads the physical map
that corresponds to the terminal for any given execution.

9. You also can use JCL or the link-edit NAME statement to control the member name under which a map set is stored.

QUPSET DFHMSD TYPE=MAP,STORAGE=AUTO,MODE=INOUT,LANG=COBOL,SUFFIX=9
QUPMAP DFHMDI SIZE=(3,40),LINE=1,COLUMN=1,CTRL=FREEKB

DFHMDF POS=(1,1),LENGTH=24,ATTRB=(ASKIP,BRT), X
INITIAL='QUP Quick Account Update'

MSG DFHMDF LENGTH=39,POS=(2,1),ATTRB=(ASKIP,NORM)
DFHMDF POS=(3,1),LENGTH=5,ATTRB=(ASKIP,NORM), X

INITIAL='Acct:'
ACCTNO DFHMDF POS=(3,11),LENGTH=6,ATTRB=(UNPROT,NUM,IC)

DFHMDF POS=(3,18),LENGTH=1,ATTRB=(ASKIP),INITIAL=' '
DFHMDF POS=(3,20),LENGTH=7,ATTRB=(ASKIP,NORM),INITIAL='Charge:'

CHG DFHMDF POS=(3,29),LENGTH=7,ATTRB=(UNPROT,NORM),PICIN='$$$$0.00'
DFHMDF POS=(3,37),LENGTH=1,ATTRB=(ASKIP),INITIAL=' '
DFHMSD TYPE=FINAL

Figure 69. Map definition

364 CICS TS for OS/390: CICS Application Programming Guide

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

BMS defines the suffixes used for the common terminal types. A 3270 Model 2
with a screen size of 24 rows and 80 columns is assigned the letter ‘M,’ for
example. The type is determined from the TYPETERM definition if it is one of the
standard types shown in Table 25.

Table 25. Terminal codes for BMS

Code Terminal or logical unit

A CRLP (card reader input, line printer output) or TCAM terminal

B Magnetic tape

C Sequential disk

D TWX Model 33/35

E 1050

F 2740-1, 2740-2 (without buffer receive)

G 2741

H 2740-2 (with buffer receive)

I 2770

J 2780

K 3780

L 3270-1 displays (40-character width)

M 3270-2 displays (80-character width), LU type 2s

N 3270-1 printers

O 3270-2 printers, LU type 3s

P All interactive LUs, 3767/3770 Interpreter LU, 3790 full function LU, SCS
printer LU

Q 2980 Models 1 and 2

R 2980 Model 4

U 3600 (3601) LU

V 3650 Host Conversational (3653) LU

W 3650 Interpreter LU

X 3650 Host Conversational (3270) LU

Y 3770 Batch LU, 3770 and 3790 batch data interchange LUs, LU type 4s

blank 3270-2 (default if TERM omitted)

An installation can also define additional terminal types, such as the miniature
screen described above. The system programmer does this by assigning an
identifier to the terminal type and specifying it in the ALTSUFFIX option of the
TYPETERM definition for the terminals. When you create a map for such a
terminal, you specify this identifier in the SUFFIX option, instead of using the
TERM option. Transactions using the map must also point to a PROFILE that
specifies alternate screen size, so that ALTSUFFIX is used.

With DDS, the rules BMS uses for selecting a physical map are:
v BMS adds the ALTSUFFIX value in the terminal definition to your map set

name, provided that definition specifies both ALTSUFFIX and ALTSCREEN, and
provided that the screen size for the transaction is the alternate size (either
because the transaction PROFILE calls for alternate size, or because the default
and alternate sizes are the same).

Chapter 29. Basic mapping support 365

v If these conditions are not met, or if BMS cannot find a map with that suffix, it
attempts to find one with the suffix that corresponds to the terminal type in the
terminal definition.

v If BMS cannot find that map either, it looks for one with no suffix. (A blank
suffix indicates an all-purpose map, suitable for any terminal that might use it.)

Without DDS, BMS always looks first (and only) for an unsuffixed map.

Device-dependent support is an installation option for BMS, set by the system
programmer in the system initialization table. Be sure that it is included in your
system before taking advantage of it; you should know whether it is present, even
if you are supporting only one device type.

With DDS in the system, there is an efficiency advantage in creating suffixed map
sets, even if you are supporting only one device type, because you prevent BMS
from attempting to load a map set that does not exist before defaulting to the
universal one (the blank suffix).

Without DDS, on the other hand, it is unnecessary to suffix your maps, because
BMS looks for the universal suffix (a blank) and fails to locate suffixed maps.

366 CICS TS for OS/390: CICS Application Programming Guide

Finding out about your terminal
Because of the overall design of BMS, and device-dependent support in particular,
you generally do not need to know much about your terminal to format for it.
However, if you need to know the characteristics of your principal facility, you can
use the ASSIGN and INQUIRE commands. You can tell, for example, whether your
terminal supports a particular extended attribute, what national language is in use,
screen size and so on. This type of information applies whether you are using BMS
or terminal control to communicate with your terminal. You need it more often for
terminal control, and so we describe the options that apply in that chapter, in
“Finding out about your terminal” on page 422.

There are also ASSIGN options specific to BMS, but you need them most often
when you use the ACCUM option, and so we describe them later, in “ASSIGN
options for cumulative processing” on page 380.

The MAPPINGDEV facility
Minimum BMS function assumes that the principal facility of your task is the
mapping device that performs input and output mapping operations for the
features and status that is defined in the TCTTE (Terminal Control Table entry).

The principal facility for transactions using BMS function should have a device
type supported by BMS. However, the MAPPINGDEV facility is an extension of
minimum BMS that allows you to perform mapping operations for a device that is
not the principal facility. When the MAPPINGDEV request completes, the mapped
data is returned to the application. BMS does not have any communication with
the MAPPINGDEV device.

You can specify the MAPPINGDEV option on the RECEIVE MAP command (see
the CICS Application Programming Reference manual) and the SEND MAP command,
(see the CICS Application Programming Reference manual) but not on any other BMS
command.

The TERMID specified in the MAPPINGDEV option must represent a device in the
3270 family supported by BMS. If the device is partitioned, it is assumed to be in
base state. Outboard formatting is ignored.

Data is mapped in exactly the same way as for minimum BMS, and there is no
need to change mapset definitions or to re-generate mapsets.

SEND MAP with the MAPPINGDEV option
Your SEND MAP commands that have the MAPPINGDEV option must also
specify the SET option. (The SET option provides BMS with a pointer that sets the
address of the storage area that contains the mapped output datastream.)

If you have storage protection active, the data is returned in storage in the key
specified in the TASKDATAKEY option of the transaction definition. The storage is
located above or below the line depending on which TASKDATALOC option of the
transaction definition you have specified.

The storage area is in task-related user storage but in the format of a TIOA
(Terminal Input/Output Area). The application can reference the storage area using
the DFHTIOA copybook. The TIOATDL field, at offset 8, contains the length of the
datastream that starts at TIOADBA, at offset 12, in the storage area. The length
value placed in TIOATDL does not include the length of the 4-byte page control

Chapter 29. Basic mapping support 367

|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|

|
|
|

|
|
|
|

|
|
|
|
|

area, which contains information such as the extended attributes that have been
used in the datastream and can be referenced using the DFHPGADS copybook.

The storage area usually has a length greater than the datastream because the
storage area is allocated before the exact length of the output datastream is
determined. This storage area is in a form that can be used in a SEND TEXT
MAPPED command.

If you are familiar with using the SET option without the MAPPINGDEV option,
(see “Protection” on page 311 for details) you know that the datastream is returned
to the application indirectly by a list of pages. However, when MAPPINGDEV is
specified, a direct pointer to the storage area containing the datastream is returned
to your application.

When the SEND MAP MAPPINGDEV command completes its processing, the
storage area is under the control of the application and remains allocated until the
end of the transaction unless your application FREEMAINs it. You are advised to
FREEMAIN these storage areas, for long-running transactions but CICS frees these
areas when the task terminates.

RECEIVE MAP with the MAPPINGDEV option
You must specify the FROM option when using the MAPPINGDEV option on the
RECEIVE MAP command. BMS needs the FROM option to supply a formatted
3270 input datastream that is consistent with the datastream returned via a
Terminal Control RECEIVE command (that is, a normal input 3270 datastream).
The only difference is that it does not start with an AID and input cursor address
because this information is removed from the input datastream by terminal control,
but there are options on the RECEIVE MAP command that allow you to specify an
AID value and input cursor position when the MAPPINGDEV option is specified.
If the datastream contains an AID and input cursor address, they are ignored by
BMS.

When neither option is specified, BMS assumes that the input data operation was
terminated with the ENTER key, and returns the appropriate AID value to the
application from the EIBAID field. BMS also assumes that the input cursor was
positioned at the home address and returns a value of zero to the application from
the EIBCPOSN field.

The new AID option of the RECEIVE MAP command allows your application to
specify an AID value which, if specified, overrides the default value of ENTER.
Whether provided by the application, or defaulted by BMS, the AID value that you
established causes control to be passed, when applicable, to the routine registered
by a previous HANDLE AID request issued by the application.

The new CURSOR option of the RECEIVE MAP command allows your application
to specify an input cursor position which, if specified, overrides the default value
of zero. Whether provided by the application, or defaulted by BMS, the input
cursor value is used in cursor location processing when you define the map with
CURSLOC=YES.

As with the minimum BMS RECEIVE MAP command, the mapped data is
returned to your application by the INTO or SET option. If neither option is
specified, the CICS translator attempts to apply a default INTO option by
appending the character ’I’ to the map name.

368 CICS TS for OS/390: CICS Application Programming Guide

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

When you use the SET option with the MAPPINGDEV option, it must provide a
pointer variable that BMS sets with the address of the storage area containing the
mapped input datastream. The data is returned in task-related user storage. If
storage protection is active, the data is returned in storage in the key specified by
the TASKDATAKEY option of the transaction definition. The storage is located
above or below the line depending on the TASKDATALOC option of your
transaction definition.

When the RECEIVE MAP MAPPINGDEV command completes its processing
successfully, the storage area is returned by the SET option and is under the
control of the application and remains allocated until the end of the transaction
unless your application FREEMAINs it. You are advised to FREEMAIN these
storage areas, for long-running transactions but CICS frees these areas when the
task terminates.

Sample assembler MAPPINGDEV application
Figure 70 on page 370 is a modification of the FILEA operator instruction sample
program, and uses the same mapset named DFH$AGA.

This application is only intended to demonstrate how to code the keywords
associated with the MAPPINGDEV facility, and as a means of testing this function.
It is not offered as a recommended design for applications that make use of the
MAPPINGDEV facility.

Chapter 29. Basic mapping support 369

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|
|
|

|

Block data
BMS provides an alternate format for the symbolic map, called block data format,
that may be useful in specific circumstances. In block data format, the symbolic
output map is an image of the screen or page going to the terminal. It has the
customary field attributes (A) and output value (O) subfields for each named map
field, but the subfields for each map field are separated by filler fields such that

DFH$AMNX CSECT
*

DFHREGS
DFHEISTG DSECT
OUTAREA DS 0CL512

DS CL8
OUTLEN DS H

DS H
OUTDATA DS CL500
INLEN DS H
INAREA DS CL256
PROOF DS CL60

COPY DFH$AGA
COPY DFHBMSCA

DFH$AMNU CSECT
EXEC CICS HANDLE AID PF3(PF3_ROUTINE)

*
XC DFH$AGAS(DFH$AGAL),DFH$AGAS
MVC MSGO(L'APPLMSG),APPLMSG
EXEC CICS SEND MAP('DFH$$AGA') FROM(DFH$AGAO) ERASE

MAPPINGDEV(EIBTRMID) SET(R6)
MVC OUTAREA(256),0(R6)
MVC OUTAREA+256(256),256(R6)
EXEC CICS SEND TEXT MAPPED FROM(OUTDATA) LENGTH(OUTLEN)

*
EXEC CICS RECEIVE INTO(INAREA) LENGTH(INLEN)

MAXLENGTH(MAXLEN)
*

EXEC CICS RECEIVE MAP('DFH$AGA') SET(R7) LENGTH(INLEN)
MAPPINGDEV(EIBTRMID) FROM(INAREA)
CURSOR(820) AID(=C'3')

*
XC PROOF,PROOF
MVC PROOF(25),=C'You just keyed in number '
MVC PROOF+25(6),KEYI-DFH$$AGAI(R7)

FINISH DS 0H
EXEC CICS SEND TEXT FROM(PROOF) LENGTH(60) ERASE FREEKB
TM MSGF-DFH$AGAI(R7),X'02'
BNO RETURN
XC PROOF,PROOF
MVC PROOF(33),=C'Input cursor located in MSG field'
EXEC CICS SEND TEXT FROM(PROOF) LENGTH(60) ERASE FREEKB

*
* THE RETURN COMMAND ENDS THE PROGRAM.
*
RETURN DS 0H

EXEC CICS RETURN
*
PF3_ROUTINE DS 0H

XC PROOF,PROOF
MVC PROOF(30),=C'RECEIVE MAP specified AID(PF3)'
B FINISH

MAXLEN DC H'256'
APPLMSG DC C'This is a MAPPINGDEV application'

END

Figure 70. ASM example of a MAPPINGDEV application

370 CICS TS for OS/390: CICS Application Programming Guide

|

their displacement in the symbolic map structure corresponds to their position on
the screen. There are no length subfields, and symbolic cursor positioning is
unavailable as a consequence.

For example, the symbolic map for the “quick check” screen in Figure 61 on
page 326 would look like this in block data format (assuming a map 80 columns
wide). Compare this with the normal “field data”. format (in Figure 62 on
page 327) from the same map definition.
You can set only the field attributes in the program; BMS ignores the DSATTS

option in the map and does not generate subfields for the extended attributes in
block data format. You can use block data for input as well. The input map is
identical in structure to the output map, except that the flag (F) replaces the field
attributes (A) subfield, and the input (I) replaces the output (O) subfield, as in field
format.

Block data format may be useful if the application program has built or has access
to a printer page image which it needs to display on a screen. For most situations,
however, the normal field data format provides greater function and flexibility.

Sending mapped output: additional facilities
In our examples so far, each SEND MAP produces one output message, of one
screen or page, delivered immediately to your principal facility. In this section, we
describe features of BMS that let you go beyond these basic messages, including:
v Additional disposition options for the message
v Messages of more than one page
v Composite pages, built with multiple BMS SEND commands
v Routing your message to terminals other than your own

We also cover the second type of BMS output, text, in the process, as these
additional facilities apply to text as well as mapped output.

Output disposition options: TERMINAL, SET, and PAGING
The only disposition option we have described up to this point is TERMINAL,
which sends the output to the principal facility of your task. TERMINAL is the
default value that you get if you do not specify another disposition. There are,
however, two other possibilities:
1. BMS can return the formatted output stream to the task rather than sending it

to the terminal. You use the SET disposition option to request this. You might

01 QCKMAPO.
02 FILLER PIC X(12). <---TIOAPFX still present
02 FILLER PICTURE X(192). <---Spacer to
02 ACCTNOA PICTURE X. <---Position (3,13)
02 ACCTNOO PIC X(7).
02 FILLER PICTURE X(72). <---Spacer to
02 SURNAMEA PICTURE X. <---Position (4,13)
02 SURNAMEO PIC X(15).
02 FNAMEA PICTURE X. <---Position (4,30), no
02 FNAMEO PIC X(10). preceding spacer required
02 FILLER PICTURE X(52). <---Spacer to
02 CHGA PICTURE X. <---Position (5,13)
02 CHGO PIC $,$$0.00
02 FILLER PICTURE X(139). <---Spacer to
02 MSGA PICTURE X. <---Position (7,1).
02 MSGO PIC X(30).

Figure 71. Symbolic map for “quick check” in block data format

Chapter 29. Basic mapping support 371

do so to defer transmission or to modify the data stream to meet special
requirements. “Acquiring and defining storage for the maps” on page 339
explains how and when to use SET.

2. You can ask BMS to store and manage your output in CICS temporary storage
for subsequent delivery to your terminal. This option, PAGING, implies that
your message may contain more than one screen or page, and is particularly
useful when you want to send a message to a display terminal that exceeds its
screen capacity. BMS saves the entire message in temporary storage until you
indicate that it is complete. Then it provides facilities for the operator to page
through the output at the terminal. You can use PAGING for printers as well as
displays, although you do not need the operator controls, and sometimes
TERMINAL is just as satisfactory.

When you use PAGING, the output still goes to your principal facility, though
indirectly, as just described. Full BMS also provides a feature, routing, that lets you
send your message to another terminal, or several, in place of or in addition to
your own. We tell you about routing in “Message routing: the ROUTE command”
on page 387, after we cover the prerequisites.

Note: Both PAGING and SET and related options require full BMS. TERMINAL is
the only disposition available in minimum and standard BMS.

BMS logical messages
The disposition options do not affect the correspondence between SEND MAP
commands and pages of output. You get one page for each SEND MAP command,
unless you also use a second feature of full BMS, the ACCUM option. ACCUM
allows you to build pages piecemeal, using more than one map, and like PAGING,
it allows your message to exceed a page. You do not have to worry about page
breaks or about tailoring your output to a specific page or screen capacity. BMS
handles these automatically, giving you control at page breaks if you wish. Details
on cumulative page building are in “Page formation: the ACCUM option” on
page 376.

As soon as you create an output message of more than one page, or a single page
composed of several different maps, you are doing something BMS calls
cumulative mapping. PAGING implies multiple pages, and ACCUM implies both
multiple and composite pages, and so at the first appearance of either of these
options, BMS goes into cumulative mapping mode and begins a logical message.
The one-to-one correspondence between SEND commands and messages ends, and
subsequent SEND MAPS simply add to the current logical message. Individual
pages within the message are still disposed of as soon as they are complete, but
they all belong to the same logical message, which continues until you tell BMS to
end it.

Rules for logical messages
When you start a logical message, you need to observe a number of rules:
v You can build only one logical message at a time. If you are routing this

message, BMS may create more than one logical message internally, but in terms
of content, there is only one. After you complete the message and dispose of it,
you can build another in the same task, using different options if you wish.

v Options related to message management must be the same on all commands
that build the message. These are:
– the disposition option: PAGING, TERMINAL, or SET
– the option governing page formation: ACCUM should be present on all

commands or absent on all

372 CICS TS for OS/390: CICS Application Programming Guide

– the identifier for the message in CICS temporary storage: the REQID option
value.

Switching options mid-message results in the INVREQ condition or, in the case
of REQID, the IGREQID condition.

v The ERASE, ERASEAUP, NLEOM, and FORMFEED options are honored if they
are used on any of the BMS commands that contribute to the page.

v The values of the CURSOR, ACTPARTN, and MSR options for the page are
taken from the most recent SEND MAP command, if they are specified there,
and from the map if not.

v The 3270 write control character (WCC) from the most recent SEND MAP
command is used. The WCC is assembled from the ALARM, FREEKB, PRINT,
FRSET, L40, L64, L80, and HONEOM options in the command whenever any of
them is specified. Otherwise, it is built from the same options in the map;
options from the command are never mixed with those in the map.

v The FMHPARMs from all commands used to build the message are included.
v You can use both SEND MAP and SEND CONTROL commands to build a

logical message, as long as the options noted above are consistent. You can also
build a logical message with a combination of SEND TEXT and SEND
CONTROL commands. (SEND TEXT is an alternative to SEND MAP for
formatting text output, covered in “The SEND TEXT command” on page 382.)
However, you cannot mix SEND MAP and SEND TEXT in the same message
unless you are using partitions or logical device codes, subjects covered in
“Partition support” on page 396 and “Logical device components” on page 404
respectively.
There are also two special forms of SEND TEXT which allow combined mapping
and text output, but to which other restrictions apply. See “SEND TEXT
extensions: SEND TEXT MAPPED and SEND TEXT NOEDIT” on page 386 for
details.

v While you are building a logical message, you can still converse with your
terminal. You cannot use BMS commands to write to the terminal unless you are
also routing, but you can use BMS RECEIVE MAP commands and terminal
control SEND and RECEIVE commands.

Ending a logical message: the SEND PAGE command
When you have completed a logical message, you notify BMS with a SEND PAGE
command. If you used the ACCUM option, SEND PAGE causes BMS to complete
the current page and dispose of it according to the disposition option you
established, as it has already done for any previous pages. If your disposition is
TERMINAL, this last page is written to your principal facility; if SET, it is returned
to the program; and if PAGING, it is written to temporary storage. If your
disposition was PAGING, BMS also arranges delivery of the entire message to your
principal facility. Options on the SEND PAGE command govern how this is done,
as explained in PAGING options: RETAIN and RELEASE.

A SYNCPOINT command or the end of your task also ends a logical message,
implicitly rather than explicitly. Where possible, BMS behaves as if you had issued
SEND PAGE before your SYNCPOINT or RETURN, but you lose the last page of
your output if you used the ACCUM option. Consequently, you should code
SEND PAGE explicitly.

Finally, you can delete a logical message using the PURGE MESSAGE command,
described on page 376.

Chapter 29. Basic mapping support 373

|

PAGING options: RETAIN and RELEASE
When you complete a logical message with a disposition of PAGING, BMS
arranges to deliver the entire logical message, which it has accumulated in
temporary storage. The display or printing of pages can be done inline,
immediately after the SEND PAGE command, but it is more common to schedule a
separate task for the purpose. In either case, CICS supplies the programs required.
These programs allow a terminal operator to control the display of the message,
paging back and forth, displaying particular pages, and so on. When a separate
task is used, it executes pseudoconversationally under transaction code CSPG.
When the display is inline, the work is done (by the same CICS-supplied
programs) within the task that created the message, which becomes conversational
as a result.

You indicate how and when the message is sent by specifying RETAIN, RELEASE,
or neither on your SEND PAGE command. The most common choice, and the
default, is neither. It causes CICS to schedule the CICS-supplied transaction CSPG
to display the message and then return control to the task. The CSPG transaction is
queued with any others waiting to be executed at your terminal, which execute in
priority sequence as the terminal becomes free. In the ordinary case, where no
other tasks waiting, CSPG executes as soon as the creating task ends.

Note: The terminal must be defined as allowing automatic transaction initiation
for CICS to start CSPG automatically (ATI(YES) in the associated
TYPETERM definition). If it is not, the operator has to enter the transaction
code CSPG or one of the paging commands to get the process started when
neither RELEASE nor RETAIN is specified.

The RELEASE option works similarly, but your task does not regain control after
SEND PAGE RELEASE. Instead, BMS sends the first page of the message to the
terminal immediately. It then ends your task, as if a CICS RETURN had been
executed in the highest level program, and starts a CSPG transaction at your
terminal so that the operator can display the rest of the pages. The CSPG code
executes pseudoconversationally, just as it does if you specify neither RELEASE
nor RETAIN, and the original task remains pseudoconversational if it was
previously.

There are two other distinctions between RELEASE and using neither option:
v RELEASE allows you to specify the transaction identifier for the next input from

the terminal, after the operator is through displaying the message with CSPG.
v RELEASE also permits the terminal operator to chain the output from multiple

transactions (see “Terminal operator paging: the CSPG transaction” on page 375).

SEND PAGE RETAIN causes BMS to send the message immediately. When this
process is complete, your task resumes control immediately after the SEND PAGE
command. When the terminal is a display, BMS provides the same operator
facilities for paging through the message as the CSPG transaction does, but within
the framework of your task. The code that BMS uses for this purpose issues
RECEIVE commands to get the operator’s display requests, and this causes your
task to become conversational.

Note: If an error occurs during the processing of a SEND PAGE command, the
logical message is not considered complete and no attempt is made to
display it. BMS discards the message in its cleanup processing, unless you
arrange to regain control after an error. If you do, you can either delete the
logical message with a PURGE command or retry the SEND PAGE. You
should not retry unless the error that caused the failure has been remedied.

374 CICS TS for OS/390: CICS Application Programming Guide

The AUTOPAGE option
Your SEND PAGE command also tells BMS how to deliver the pages to the
terminal. For display terminals, you want CSPG to send one page at a time, at the
request of the terminal operator. For printers, you want to send one page after
another. You control this with the AUTOPAGE or NOAUTOPAGE option on your
SEND PAGE command. NOAUTOPAGE lets the terminal operator control the
display of pages; AUTOPAGE sends the pages in ascending sequence, as quickly as
the device can accept them. If you specify neither, BMS determine which is
appropriate from the terminal definition.

Note: If your principal facility is a printer, you can sometimes use a disposition of
TERMINAL rather than PAGING, because successive sends to a printer do
not overlay one another as they do on a display. TERMINAL has less
overhead, especially if you do not need ACCUM either, and thus avoid
creating a logical message.

Terminal operator paging: the CSPG transaction
The CICS-supplied paging transaction, CSPG, allows a user at a terminal to display
individual pages of a logical message by entering page retrieval requests. Your
systems staff define the transaction identifiers for retrieval and other requests
supported by CSPG in the system initialization table; sometimes program function
keys are used to minimize operator effort.

Retrieval can be sequential (next page or previous page) or random (a particular
page, first page, last page). In addition to page retrieval, CSPG supports the
following requests:

Page copy
Copy the page currently on display to another terminal. BMS reformats the
page if the target terminal has a different page size or different formatting
characteristics, provided the terminal is of a type supported by BMS.

Message query
List the messages waiting to be displayed at the terminal with CSPG. The
list contains the BMS-assigned message identifier and, for a routed
message, the message title, if the sender provided one.

Purge message
Delete the logical message.

Page chaining
Suspend the current CSPG transaction after starting to display a message,
execute one or more other transactions, and then resume the original CSPG
display. An intervening transaction may itself produce BMS or terminal
output. If this output is a BMS logical message created with the PAGING
and RELEASE or RETAIN options, this message is “chained” to the
original one, and the operator can switch between one and the other.

Switch to autopage
Switch from NOAUTOPAGE display mode to AUTOPAGE mode. For
terminals that combine a keyboard and hard copy output, this allows an
operator to purge or print a message based on inspection of specific pages.

The process of examining pages continues until the operator signals that the
message can be purged. CSPG provides a specific request for this purpose, as
noted above. If the SEND PAGE command contained the option OPERPURGE, this
request is the only way to delete the message and get control back from CSPG.

Chapter 29. Basic mapping support 375

If OPERPURGE is not present, however, any input from the terminal that is not a
CSPG request is interpreted as a request to delete the message and end CSPG. If
the message was displayed with the RETAIN option, the non-CSPG input that
terminates the display can be accessed with a BMS or terminal control RECEIVE
when the task resumes execution. See the CICS Supplied Transactions manual for
detailed information about the CSPG transaction.

Changing your mind: The PURGE MESSAGE command
You also can delete an incomplete logical message if for some reason you decide
not to send it. You use the PURGE MESSAGE command in place of SEND PAGE.
PURGE MESSAGE causes BMS to delete the current logical message and
associated control blocks, including any pages already written to CICS temporary
storage. You can create other logical messages subsequently in the same task, if
you wish.

Logical message recovery
Logical messages created with a disposition of PAGING are kept in CICS
temporary storage between creation and delivery. BMS constructs the temporary
storage queue name for a message from the 2-character REQID on the SEND
commands, followed by a six-position number to maintain uniqueness. If you do
not specify REQID, BMS uses a value of two asterisks (**).

Temporary storage can be a recoverable resource, and therefore logical messages
with a disposition of PAGING can be recovered after a CICS abend. In fact,
because CICS bases the recoverability of temporary storage on generic queue
names, you can make some of your messages recoverable and others not, by your
choice of REQID for the message. The conditions under which logical messages are
recoverable are described in the CICS Recovery and Restart Guide.

Routed messages are eligible for recovery, as well as messages created for your
principal facility. We explain routing in “Message routing: the ROUTE command”
on page 387.

Page formation: the ACCUM option
The ACCUM option allows you to build your output cumulatively, from any
number of SEND MAP commands and less-than-page-size maps. Without it, each
SEND MAP command corresponds to one page (if the disposition is PAGING), or
a whole message (if TERMINAL or SET). With ACCUM, however, BMS formats
your output but does not dispose of it until either it has accumulated more than
fits on a page or you end the logical message. You can intercept page breaks if you
wish, or you can let BMS handle them automatically. Floating maps: how BMS
places maps using ACCUM and “Page breaks: BMS overflow processing” on
page 377 explain how BMS arranges maps on a page with ACCUM and what you
can do at a page break.

Page size is determined by the PAGESIZE or ALTPAGE value in the terminal
definition. PAGESIZE is used if the PROFILE under which your transaction is
running specifies the default screen size, and ALTPAGE is used if it indicates
alternate screen size. (Unlike screen size, page size is not affected by the DEFAULT
and ALTERNATE options that you can include with the ERASE command.)

376 CICS TS for OS/390: CICS Application Programming Guide

Floating maps: how BMS places maps using ACCUM
In our example map on page 331, we described placing maps on a screen or page
absolutely, by specifying the number of the line and column for the upper left
corner. However, maps can float. That is, they can be positioned relative to maps
already written to the same page and to any edge of the page. Floating maps save
program logic when you need to support multiple screen sizes or build pages
piecemeal out of headers, detail lines and trailers, where the number of detail lines
depends on the data.

The BMS options that allow you to do this are:
v JUSTIFY
v HEADER and TRAILER
v Relative values (NEXT and SAME) for the LINE and COLUMN options

When you are building a composite screen with the ACCUM option, the position
on the screen of any particular map is determined by:
v The space remaining on the screen at the time it is sent
v The JUSTIFY, LINE and COLUMN option values in the map definition

The space remaining on the page, in turn, depends on:
v Maps already placed on the current page.
v Whether you are participating in “overflow processing”, that is, the processing

that occurs at page breaks. If you are, the sizes of the trailer maps in your map
sets are also a factor.

The placement rules we are about to list apply even if you do not specify ACCUM,
although JUSTIFY values of FIRST and LAST are ignored. However, without
ACCUM, each SEND MAP corresponds to a separate page, and thus the space
remaining on the page is always the whole page.

Page breaks: BMS overflow processing
When you build a mapped logical message, you can ask BMS to notify you when a
page break is about to occur; that is, when the map you just sent does not fit on
the current page. This is very useful when you are forming composite pages with
ACCUM. It allows you to put trailer maps at the bottom of the current page and
header maps at the top of the next one, number your pages, and so on.

BMS gives your program control at page breaks if either:
v You have issued a HANDLE CONDITION command naming a label for the

OVERFLOW condition, or
v You specify the NOFLUSH option with either the RESP or the NOHANDLE

option on your SEND MAP commands.

Either of these actions has two effects:
v The calculation of the space remaining on the page changes. Unless the map you

are sending is itself a trailer map, BMS assumes that you eventually want one on
the current page. It therefore reserves space for the largest trailer in the same
map set. (The largest trailer map is the one containing the TRAILER option that
has the most lines.) If you do not intercept page breaks (or if you send a trailer
map), BMS uses the true end of the page to determine whether the current map
fits.

v The flow of control changes if the map does not fit on the current page. On
detecting this situation, BMS raises the OVERFLOW condition. Then it returns
control to your task without processing the SEND MAP command that caused

Chapter 29. Basic mapping support 377

the overflow. Control goes to the location named in the HANDLE CONDITION
command if you used one. With NOFLUSH, control goes to the statement after
the SEND MAP as usual, and you need to test the RESP value or EIBRESP in the
EIB to determine whether overflow occurred.

When your program gets control after overflow, it should:
v Add any trailer maps that you want on the current page. BMS leaves room for

the one with the most lines in the map set you just used. If this is not the right
number of lines to reserve, or if you are using several map sets, you can ensure
the proper amount by including a dummy map in any map set that may apply.
The dummy map must specify TRAILER and contain the number of lines you
wish to reserve; you do not need to use it in any SEND MAP commands.

v Write any header maps that you want at the top of the next page.
v Resend the map that caused the overflow in the first place. You must keep track

of the data and map name at the time the overflow occurs; BMS does not save
this information for you. Note that if you have several SEND MAP commands
which might cause overflow, the program logic required to determine which one
you need to reissue is more complex if you use HANDLE CONDITION
OVERFLOW than if you use NOFLUSH.

Once OVERFLOW is turned on, BMS suspends returning control to your program
when the output does not fit on the current page, although it still uses overflow
rules for calculating the remaining space. OVERFLOW remains on until BMS
processes the first SEND MAP naming a map which is not a header or a trailer.
This allows you to send your trailers and headers without disabling your
HANDLE CONDITION for OVERFLOW or changing your response code tests,
and reinstates your overflow logic as soon as you return to regular output.
(Resending the map that originally caused overflow is usually the event that turns
off the overflow condition.)

If you do not intercept overflows, BMS does not notify your program when a page
break occurs. Instead, it disposes of the current page according to the disposition
option you have established and starts a new page for the map that caused the
overflow.

Map placement rules
The primary placement of maps on the screen is from top to bottom. You can place
maps side-by-side where space permits, provided you maintain the overall flow
from top to bottom. The precise rules for a given SEND MAP ACCUM command
are as follows:
1. The highest line on which the map might start is determined as follows:

a. If the map definition contains JUSTIFY=FIRST, BMS goes immediately to a
new page (at Step 5), unless the only maps already on the page are headers
placed there during overflow processing. In this case, BMS continues at Step
1c.

b. If the map specifies JUSTIFY=LAST, BMS starts the map on the lowest line
that allows it to fit on the page. If the map is a trailer map or you are not
intercepting overflows or you are already in overflow processing, BMS uses
all the space on the page. Otherwise, BMS places the map as low on the
page as it can while still retaining room for the largest trailer map. If the
map fits vertically using this starting line, processing continues at Step 3
(the LINE option is ignored if JUSTIFY=LAST); if not, overflow occurs (Step
5).

378 CICS TS for OS/390: CICS Application Programming Guide

Note: JUSTIFY=BOTTOM is the same as JUSTIFY=LAST for output
operations with ACCUM. (There are differences without ACCUM and
for input mapping; see the CICS Application Programming Reference
manual).

c. If there is no vertical JUSTIFY value (or after any overflow processing
caused by JUSTIFY=FIRST has been completed), the LINE operand is
checked. If an absolute value for LINE is given, that line is used, provided it
is at or below the starting line of the map most recently placed on the page.
If the value is above that point, BMS goes to a new page at Step 5.
If LINE=NEXT, the first completely unused line (below all maps currently
on the page) is used. If LINE=SAME, the starting line of the map sent most
recently is used.

2. BMS now checks that the map fits vertically on the screen, given its tentative
starting line. Here again, BMS uses all of the space remaining if the map is a
trailer map, if you are not intercepting overflows or if you are already in
overflow processing. Otherwise, BMS requires that the map fit and still leave
space for the largest trailer map. If the map does not fit vertically, BMS starts a
new page (Step 5).

3. Next, BMS checks whether the map fits horizontally, assuming the proposed
starting line. In horizontal positioning, the JUSTIFY option values of LEFT and
RIGHT come into play. LEFT is the default, and means that the COLUMN
value refers to the left-hand side of the map. A numeric value for COLUMN
tells where the left edge of the map should start, counting from the left side of
the page. COLUMN=NEXT starts the map in the first unused column from the
left on the starting line. COLUMN=SAME means the left-hand column of the
map most recently placed on the screen which also specified JUSTIFY=LEFT
and which was not a header or trailer map.
JUSTIFY=RIGHT means that the COLUMN value refers to the right-hand edge
of the map. A numeric value tells where the right edge of the map should start,
counting from the right. COLUMN=NEXT means the first available column from
the right, and COLUMN=SAME is the right-hand column of the map most
recently placed which had JUSTIFY=RIGHT and was not a header or trailer.
If the map does not fit horizontally, BMS adjusts the starting line downward,
one line at a time, until it reaches a line where the map does fit or overflow
occurs. Processing resumes with the vertical check (Step 2) after each
adjustment of the starting line.

4. If the map fits, BMS adds it to the current page and updates the available
space, using the following rules:
v Lines above the first line of the map are completely unavailable.
v If the map specifies JUSTIFY=LEFT, the columns from the left edge of the

page through the right-most column of the map are unavailable on the lines
from the top of the map through the last line on the page that has anything
on it (whether from this map or an earlier one).

v If the map specifies JUSTIFY=RIGHT, the columns between the right-hand
edge of the page and the left-hand edge of the map are unavailable on the
lines from the top of the map through the last line of the page that has
anything on it.

Figure 72 on page 380 shows how the remaining space is reduced with each
new map placed.

5. When the current map does not fit on a page, BMS determines whether it
should return control to your program. If you have asked for control at
overflow and you are not already in overflow processing, BMS returns control
as described in “Page breaks: BMS overflow processing” on page 377.

Chapter 29. Basic mapping support 379

Otherwise, BMS disposes of the current page according to the disposition
option you have established, starts a new page, and resumes processing for the
map that would not fit at Step 1.

ASSIGN options for cumulative processing
To help you manage the complexities of building a composite screen, CICS
provides ASSIGN command options that relate specifically to cumulative
processing:

MAPCOLUMN
MAPHEIGHT
MAPLINE
MAPWIDTH

All apply to the map most recently sent. MAPHEIGHT and MAPWIDTH are the
size (number of rows and columns) and MAPLINE and MAPCOLUMN are the
origin of the map (the position of the upper left corner).

Input from a composite screen
You can read mapped input from a screen built from multiple maps, but there are
restrictions. First, you can specify only one map in your RECEIVE MAP command,
whereas the screen may have been written with several.

Second, BMS cannot know how to position a floating map for input and assumes
that the map in your RECEIVE MAP command was written to an empty screen.
Thus LINE or COLUMN values of NEXT or SAME are interpreted differently on
input than on output. JUSTIFY=LAST is ignored altogether; you should use

3 10 50 78

Waste (space unavailable) after Map 1 placed

3
MAP 1 Waste Waste (space unavailable) after

(Map 2) Map 3 placed
6 LINE=3

COL=3 MAP 2 MAP 3
JUSTIFY Waste after
=LEFT LINE=6 Map 4 placed LINE=SAME

COL=NEXT COL=3
14 JUSTIFY JUSTIFY=

=LEFT MAP 4 RIGHT

Waste LINE=14
after COL=31
Map 2 JUSTIFY=

RIGHT
Waste after Map 4

Space still available

Figure 72. Successive placement of maps on a page, showing space made unavailable by
each

380 CICS TS for OS/390: CICS Application Programming Guide

JUSTIFY=BOTTOM if you want to place a map at the bottom of the screen and
read data back from it. See the CICS Application Programming Reference manual for
the exact rules.

Performance considerations
There are three components to the overall efficiency of the part of your application
that the end user sees: processor path length, communications line utilization, and
user time. Path length and line time used to be paramount, and much design and
programming effort has been invested in minimizing them.

As online systems have evolved, however, the emphasis has shifted steadily to
making things as easy, pleasant and quick for the user as possible, at the expense
of the other factors if necessary. Also, as processors have become cheaper,
designers have been willing to expend cycles to reduce programming and
maintenance effort as well as to make the user interface better.

We have already given you references on elements of good design for the user
interface, in “Personal computers” on page 306, and usually these should be your
overriding considerations. In this section, we point out some ways that you can
reduce path length and line time as well. You need to judge for yourself whether
and to what extent the savings justify extra programming effort or a less general
design.

Minimizing path length
Ordinarily, the number of instructions executed in a single CICS command is large
in comparison to the number of instructions in the application program that
invoked it. Consequently, the path length for a given task ordinarily depends more
on the number and type of CICS commands than on anything else, and commands
are the most fertile area for tuning. Commands vary by type, of course, and path
length for any given command may vary considerably with circumstances.

For BMS, some recommendations are:
v Build screens (pages) with a single command when practical. Avoid building a

composite screen with the ACCUM feature when a modest amount of additional
programming accomplishes the same function, and avoid building a composite
screen by multiple physical writes, as described in “Outside the map” on
page 348, except in unusual circumstances.

v Avoid producing more output at one time than the user is likely to inspect.
Some transactions—inquiries, especially—produce many pages of output for
certain input values. When this happens, the user usually narrows the search
and repeats the inquiry, rather than page through the initial output. To avoid the
path length of producing output that is never viewed, you can limit it to some
reasonable number of pages, inform the user on the last page that there is more,
and save the information required to restart the search from that point if the
user requests it. The extra programming is minimal; see “Chapter 13. Sharing
data across transactions” on page 151 for ways to save the restart data.

v Use commands that are on the BMS “fast path” if possible. (See “Minimum
BMS” on page 324 for the commands and terminal types that qualify.)

v Use terminal control commands for very simple inputs an outputs, where you
do not need BMS formatting or other function. If path length is critical, you may
want to use terminal control entirely. However, the advantages of BMS over
terminal control in terms of flexibility, initial programming effort and
maintainability are significant, and usually outweigh the path length penalty.

Chapter 29. Basic mapping support 381

Reducing message lengths
You can take advantage of 3270 hardware to reduce the length of both inbound
and outbound messages. If the bandwidth in any link between the terminal and
the processor is constrained, you get better response overall with shorter messages.
However, the time for any given transmission depends on the behavior of other
users of those links at the time, and so you may not see improvement directly.
Here are some of the possibilities for reducing the length of a 3270 datastream:
v Avoid turning on MDTs unnecessarily when you send a screen, because they

cause the associated input fields to be transmitted on input. Ordinarily, you do
not need to set the tag on, because the hardware does this when the user enters
input into the field. The tag remains on, no matter how many times the screen is
transmitted, until explicitly turned off by program (by FRSET, ERASEAUP, or
ERASE, or by an override attribute byte with the tag off). The only time you
need to set it on by program is when you want to store data on the screen in a
field that the user does not modify, or when you highlight a field in error and
you want the field returned whether or not the user changes it. In this case you
need to turn on the MDT as well as the highlighting.

v Use FRSET to reset the MDTs when you do not want input on a screen
retransmitted (that is, when you have saved it and the user does not need to
change it on a subsequent transmission of the same screen). (See “Saving the
good input” on page 358 for more.)

v Do not initialize input fields to blanks when you send the screen because, on
input, blanks are transmitted and nulls are not. Hence the data stream is
shortened by the unused positions in each modified field if you initialize with
nulls. The appearance on the screen is the same, and the data returned to the
program is also the same, if you map the input.

v For single-screen data entry operations, use ERASEAUP to clear data from the
screen, rather than resending the screen.

v If you are updating a screen, send only the changed fields, especially if the
changes are modest, as when you highlight fields in error or add a message to
the screen. In BMS, you can use the DATAONLY option, both to shorten the data
stream and reduce the path length (see “DATAONLY option” on page 345). To
highlight a field, in fact, you send only the new attribute byte; the field data
remains undisturbed on the screen.

v If you are using terminal control commands, format with set buffer address
(SBA) and repeat-to-address (RA) orders, rather than spacing with blanks and
nulls. (BMS does this for you.)

Formatting text output
If the output you are sending to the terminal is simply text, and you do not need
to format the screen for subsequent input, you do not need to create a map. BMS
provides a different command expressly for this purpose: SEND TEXT, which
formats without maps.

When you use SEND TEXT, BMS breaks your output into pages of the proper
width and depth for the terminal to which it is directed. Lines are broken at word
boundaries, and you can add header and trailer text to each page if you wish. Page
size is determined as it is for other BMS output (see “Ending a logical message: the
SEND PAGE command” on page 373).

The SEND TEXT command
Except for the different type of formatting performed, the SEND TEXT command is
very similar to SEND MAP. You specify the location of the text to be formatted in

382 CICS TS for OS/390: CICS Application Programming Guide

the FROM option and its length in the LENGTH option. Nearly all the options that
apply to mapped output apply to text output as well, including:

Device controls
FORMFEED, ERASE, PRINT, FREEKB, ALARM, CURSOR.

Formatting options
NLEOM, L40, L64, L80, HONEOM.

Disposition options
TERMINAL, PAGING, SET.

Page formation option
ACCUM.

In general, these options have the same meaning on a SEND TEXT command as
they do on a SEND MAP command, although you should always refer to the CICS
Application Programming Reference manual for the precise meanings. The SEND
TEXT command itself requires standard BMS; options like ACCUM, PAGING and
SET that require full BMS in a mapped environment also require full BMS in a text
environment.

There are also options for SEND TEXT that correspond to functions associated with
the map in a SEND MAP context. These are HEADER, TRAILER, JUSTIFY,
JUSFIRST and JUSLAST. We explain how they work in “Page format for text
messages”.

Two SEND MAP options that do not carry over to SEND TEXT are ERASEAUP
and NOFLUSH. ERASEAUP does not apply because text uses fields only
minimally, and NOFLUSH does not apply because BMS does not raise the
OVERFLOW condition on text output.

Text logical messages
The presence of either the ACCUM or PAGING option on a SEND TEXT command
signals BMS that you are building a logical message, just as it does in a SEND
MAP command. Text logical messages are subject to the same rules as mapped
logical messages (see page 372). In particular, you can use both SEND TEXT and
SEND CONTROL commands to build your message, but you cannot mix in SEND
MAPs, except as noted there. You also end your message in the same way as a
mapped message (see “BMS logical messages” on page 372).

Page format for text messages
Page formation with SEND TEXT is somewhat different from page formation with
SEND MAP. First, a single SEND TEXT command can produce more output than
fits on a screen or a printer page (SEND MAP never does this). BMS sends the
whole message, which means that you can deliver a multi-page message to a
printer without using logical facilities. You cannot use the same technique for
displays, however, because even though BMS delivers the whole message, the
component screens overlay one another, generally too quickly for anyone to read.

If you specify ACCUM, BMS breaks the output into pages for you, and the second
difference is that unless you specify a disposition of SET, your task does not get
control at page breaks. Instead, when the current page has no more room, BMS
simply starts a new one. It adds your header and trailer, if any, automatically, and
does not raise the OVERFLOW condition. This is true whether you produced the
pages with a single SEND TEXT command or you built the message piecemeal,
with several. The only situation in which your task is informed of a page break is

Chapter 29. Basic mapping support 383

when the disposition is SET. In this case, BMS raises the RETPAGE condition to tell
you that one or more pages are complete, as explained in “Using SET” on
page 395.

Here are the details of how BMS builds pages of text with ACCUM:
1. Every message starts on page 1, which is initially empty.
2. If you specify the HEADER option, BMS starts every page with your header

text. BMS numbers your pages in the header or trailer if you wish. (Header
format and page numbering are explained on page 385.)

3. If you specify one of the justification options (JUSTIFY, JUSFIRST, JUSLAST),
BMS starts your text on the indicated line. JUSFIRST begins your text on the
first line after the header, or the top line if there is no header. JUSTIFY=n starts
your text on line n, and JUSLAST starts it on the lowest line that allows both it
and your trailer (if any) to fit on the current page. If the contents of the current
page prevent BMS from honoring the justification option there, BMS goes to a
new page first, at step 6.
Justification applies only to the start of the data for each SEND TEXT
command; when the length of your data requires an additional page, BMS
continues your text on it in the first available position there.

4. If you do not specify justification, BMS starts your text in the first position
available. On the first SEND TEXT of the message, this works out the same as
JUSFIRST. Thereafter, your text follows one character after the text from the
previous SEND TEXT of the current logical message. (The intervening character
is an attributes byte on 3270 terminals, a blank on others.)

5. Having determined the starting position, BMS continues down the page,
breaking your data into lines as explained in “How BMS breaks text into lines”,
until it runs out of space or data. If you have specified a trailer, the available
space is reduced by the requirement for the trailer. If the data is exhausted
before the space, processing ends at this point. The message is completed when
you indicate that you are finished with a SEND PAGE or PURGE MESSAGE
command.

6. If you text does not fit on the current page, BMS completes it by adding your
trailer text, if any, at the bottom and disposes of it according to the disposition
option you have established (TERMINAL, PAGING, or SET), just as it does for
a mapped logical message. The trailer is optional, like the header; you use the
TRAILER option to specify it (see “Header and trailer format for text
messages” on page 385).

7. BMS then goes to a new page and repeats from step 2 with the remaining data.

How BMS breaks text into lines
In breaking the text into lines, BMS uses the following rules:
1. Ordinarily, each line starts with what appears to be a blank. On a 3270 device,

this is the attributes byte of a field that occupies the rest of the line on the
screen or printed page. For other devices, it is simply a blank or a carriage
control character.
An exception occurs if the task creating the output is running under a PROFILE
that specifies PRINTERCOMP(YES) and the output device is a 3270 printer. In
this case, no character is reserved at the beginning of each line. See
“PRINTERCOMP option” on page 438.

2. BMS copies your text character for character, including all blanks, with two
exceptions that occur at line end:

384 CICS TS for OS/390: CICS Application Programming Guide

v If a line ends in the middle of a word, BMS fills out the current line with
blanks and places the word that would not fit in the first available position
of the next line. For this purpose, a “word” is any string of consecutive
nonblank characters.

v If two words are separated by a single blank, and first one fits on the current
line without leaving room for the blank, the blank is removed and the next
line starts at the beginning of the second word.

3. You can embed new-line (NL) characters and other print format orders as well
as blanks to control the format, if the destination terminal is a printer. NLs and
tabs are particularly useful with columnar data, and BMS does not filter or
even interpret these characters. However, print format orders do not format
displays; see “3270 printers” on page 434 for more information about using
them.

4. You can also include set attribute (SA) order sequences in your output. (Each
one sets the attributes of a single character in the data stream, as explained in
“The set attribute order” on page 315.) BMS abends the task unless SA
sequences are exactly three bytes long and represent a valid attribute type.
However, if you use a valid SA sequence to a terminal that does not support
the attribute, BMS removes the SA sequence and then sends the message.
Attributes set with SA orders remain until overridden by subsequent orders or
until another SEND TEXT command, which resets them to their default values.
You should not include 3270 orders other than SA in your text. BMS treats
them as display data and they do not format as intended; they may even cause
a terminal error.

Header and trailer format for text messages
To place a header on the pages of a text message, you point to a block of data in
the following format in the HEADER option:
You use the same format for trailer text, but you point to it with the TRAILER

option. Here:

LL is the length of the header (trailer) data, not including the four bytes of LL,
P, and C characters. LL should be expressed in halfword binary form.

P is the page-number substitution character (see PNFLD below). Use a blank
if you do not want page numbers.

C is a reserved 1-byte field.

TEXT is the header (trailer) text to be placed at the top (bottom) of each page of
output. Use new-line characters (X'15') to indicate where line breaks should
occur if you want multiple lines.

PNFLD
is the page number field within your header (trailer) text. If you want to
number the pages of your output, choose a character that does not
otherwise appear in your header (trailer) text. Place this character in the
positions where the page number is to appear. You can use from one to
five adjacent positions, depending on how large you expect your page
numbers to get (32,767 is the maximum BMS allows). Place the same
character in the P field above, to tell BMS where to make the substitution.

L L P C PNFLD

< TEXT >

Chapter 29. Basic mapping support 385

Do not use X'0C', X'15', X'17', X'26', or X'FF' for P; these values are reserved
for other purposes. If you do not want page numbering, simply place a
blank (X'40') in P.

When you are building a logical message, you should repeat your HEADER and
TRAILER options on each SEND TEXT command, so that they are present when
the page breaks occur, and you need to specify the trailer again on the SEND
PAGE command that terminates the message.

Here is an example of a COBOL definition for a header that simply numbers the
pages, leaving room for a number up to 99.

EXEC CICS SEND TEXT FROM (OUTPUT-AREA)
HEADER(HEADER-TEXT) PAGING ACCUM END-EXEC.

where:

Screens built with SEND TEXT are not designed for extensive input from the
terminal operator. However, you can interpret the attention identifier and read
simple inputs—such as those used in the CSPG transaction to control the page
display—if the field structure on the screen is suitable and the operator knows or
can see what is expected. (A new field starts at each line, as well as at the first
character of the text sent with each SEND TEXT command that made up the
message. The fields defined are unprotected, alphameric and normal intensity, so
that the operator can key into them.) Normally a terminal control RECEIVE is used
in this situation; you can use RECEIVE MAP only if you can build a map with a
field structure matching that of the screen.

SEND TEXT extensions: SEND TEXT MAPPED and SEND
TEXT NOEDIT

BMS provides two special forms of the SEND TEXT command that allow you to
use some of the message delivery facilities of BMS for output that is already
formatted. SEND TEXT MAPPED sends a page of device-dependent data previously
built by BMS and captured with the SET option. You may have used either SEND
MAP or SEND TEXT commands to build the page originally. See “Using SET” on
page 395 for details.

SEND TEXT NOEDIT is similar, but is used to send a page of device-dependent
output built by the program or some method other than BMS.

You can deliver such pages to your own principal facility individually, using a
disposition of TERMINAL, or you can include them in a logical message built with
the PAGING option. In a logical message, these forms can be mixed with ordinary
SEND TEXT commands or with SEND MAP10 commands, as long as each BMS
SEND represents a separate page (that is, the ACCUM option is not used).

You can also use these commands in a routing environment (described in
“Message routing: the ROUTE command” on page 387). Whether you are routing

10. The usual restriction against mixing text with mapped output in the same logical method does not apply here, because the page
is already formed.

01 HEADER-TEXT
02 HEADER-LL PIC S9(4) COMP VALUE +11.
02 HEADP PIC X VALUE '@'.
02 FILLER PIC X VALUE LOW-VALUE.
02 HEADING PIC X(11) VALUE 'PAGE NO. @@'.

386 CICS TS for OS/390: CICS Application Programming Guide

or sending to your own terminal, you must ensure that the data stream is
appropriate to the destinations; BMS does not check before transmission, other
than to remove 3270 attributes that the destination does not support.

None of the page-formatting options, ACCUM, JUSTIFY, JUSFIRST, JUSLAST,
HEADER, and TRAILER, apply to either of these commands, because the page is
already formatted and built, by definition.

The primary difference between the MAPPED and NOEDIT forms is that SEND
TEXT MAPPED uses the 4-byte page control area (PGA) that BMS appends to the
end of pages returned by the SET option. This area tells BMS the write command
and write control character to be used, which extended attributes were used on the
page, and whether the page contains formfeeds, data in SCS format, 14- or 16-bit
buffer addresses, structured fields and FMHs. It allows BMS to deliver a page built
for one device to one with different hardware characteristics, as might be required
for a page copy or a routing operation. With SEND TEXT NOEDIT, you specify
this type of information on the command itself. You should use SEND TEXT
MAPPED for output created with BMS, and NOEDIT for output formatted by
other means. You cannot include structured fields in the output with either SEND
TEXT MAPPED or SEND TEXT NOEDIT, incidentally; you must use a terminal
control SEND for such output.

The LENGTH option for a SEND TEXT MAPPED command should be set from the
TIOATDL value returned when the page was built, which does not include the
PGA (see “Using SET” on page 395). If you copy the page for later use with SEND
TEXT MAPPED, however, you must be sure to copy the PGA as well as the page
itself (TIOATDL + 4 bytes in all).

Message routing: the ROUTE command
The message routing facilities of BMS allow you to send messages to terminals
other than the principal facility of your task (your task does not even need to have
a principal facility). Routing does not give your task direct control of these
terminals, but instead causes the scheduling of a task for each destination to
deliver your message. These tasks execute the CICS-supplied transaction CSPG, the
same one used for delivery of messages with a disposition of PAGING to your
own terminal. Thus the operator at a display terminal who receives a routed
message uses CSPG requests to view the message. (See “Terminal operator paging:
the CSPG transaction” on page 375 for more information about CSPG.)

Message routing is useful for message-switching and broadcasting applications,
and also for printing (see “CICS printers: getting the data to the printer” on
page 440). It is the basis for the CICS-supplied transaction CMSG, with which
terminal users can send messages to other terminals and users. The CICS Supplied
Transactions manual explains how to use CMSG and what you can do with it.

How routing works
To route a message, you start by issuing a ROUTE command. This command tells
BMS where to send the message, when to deliver it, what to do about errors, and
other details. Then you build your message. It can be a mapped or text message,
but it must be a logical message (that is, either ACCUM or PAGING present), and
the disposition must be either PAGING or SET, not TERMINAL. PAGING is the
more common choice and is assumed in the discussion that follows. We explain
SET in a routing context in “Routing with SET” on page 394.

Chapter 29. Basic mapping support 387

Your ROUTE command is in effect until you end your message with a SEND
PAGE command, and you must not issue another one until this occurs. (If you
issue ROUTE while building your message you get an invalid request response; if
you issue a second ROUTE before you start your logical message, it simply
replaces the first one.) You can also terminate a message with PURGE MESSAGE,
if you decide you do not want to send it. PURGE MESSAGE causes the routing
environment established with your ROUTE command to be discarded, along with
your logical message.

Specifying destinations for a routed message
You can specify destinations for your routed message in three different ways:
v You can request that certain classes of operators receive the message, by using

the OPCLASS option of the ROUTE command. Classes are associated with an
operator in the RACF® user definition or a CICS sign-on table entry.

v You can name particular operators who are to receive the message by using a
route list, to which you point with the LIST option of the ROUTE command.
Operators are identified by a 3-character OPIDENT value, which is also assigned
in the RACF definition or a sign-on table entry.

v You can name particular terminals which are to receive the message; this is also
done with a route list. Terminals are identified by their 4-character TERMID
value, and, for terminal types to which they apply, a 2-character logical device
code.

Note: If you need to know the identifier or operator class values for the operator
signed on at your principal facility to specify the destination of your routed
message, you can use the ASSIGN command with the OPID or OPCLASS
options to find out.

Eligible terminals
To format a message properly for a particular destination, BMS needs to know the
characteristics of the terminal for which it is formatting. This is true even for
destinations that you designate by operator or operator class. The first step in
processing a route list, therefore, is to translate your destinations to a list of
terminals to which the message may be delivered. This “eligible terminal” list
combines the information in your route list and your OPCLASS specification with
the state of the terminal network at the time of the ROUTE command.

Later, when your message is ready for delivery, BMS uses this list to decide which
terminals actually get your message. A terminal must be on the list to receive the
message, but its presence there does not guarantee delivery. There may be operator
restrictions associated with the terminal and, because delivery occurs later in time,
the status or even the nature of the terminal may have changed.

Both at the time the list is built and at the time of delivery, BMS is restricted to the
terminal definitions installed in its own CICS region (where the routing task is
running, or ran) and may not have all of the terminal definitions you expect. First,
terminals that are autoinstalled may not be logged on either at the time of the
ROUTE, excluding them from inclusion on the list, or at the times sending is
attempted, preventing delivery.

In a multiple-region environment, there is the additional possibility that terminals
known to one region may not be known to another. (It depends on how they are
defined, as explained in the CICS Resource Definition Guide.) In particular, if a
terminal definition is shared among regions by designating it as SHIPPABLE in the
region that owns it, the terminal is not defined in any other region until something

388 CICS TS for OS/390: CICS Application Programming Guide

occurs to cause shipment there. This usually happens the first time the terminal
routes a transaction to the region in question. Consequently, a ROUTE in this
region cannot include the terminal before the first such event occurs.

The following sections describe how BMS builds the list of eligible terminals. This
occurs at the time of the ROUTE command:

Destinations specified with OPCLASS only
If you specified operator classes (the OPCLASS option) but no route list, BMS
scans all the terminal definitions in the local system. Any terminal that meets all
these conditions gets on the eligible terminal list:
v The terminal is of a type supported by BMS.
v The terminal can receive routed messages not specifically addressed to it

(ROUTEDMSGS (ALL) in the terminal definition).
v An operator is signed on at the terminal.
v The operator belongs to one of the operator classes in your OPCLASS list.

The resulting entry is marked so that delivery occurs only when and if an operator
belonging to at least one of the operator classes in your OPCLASS list is signed on.
(This operator does not have to be the one that was signed on at ROUTE time.)

OPCLASS and LIST omitted
If you specify neither operator classes nor a route list, BMS puts every terminal
that meets the first two tests above on the list, and sets no operator restrictions on
delivery. In a network where many terminals are eligible to receive all routed
messages, this is a choice you almost certainly want to avoid.

Route list provided
If you provide a route list, BMS builds its list from yours instead of scanning the
terminal definitions. Each of your entries is processed as follows. Processing
includes setting a status flag in the list entry to tell you whether the entry was
used or skipped and why.
v If the entry contains a terminal identifier but no operator identifier, the terminal

goes on the eligible list, provided it is defined, of a type supported by BMS, and
eligible to receive routed messages. If BMS cannot find the terminal definition, it
sets the “entry skipped” and “invalid terminal identifier” bits (X'C0') in the
status flag of the route list entry; if the terminal exists but is not supported by
BMS or is not allowed to received any routed messages, the “entry skipped” and
“terminal not supported under BMS” bits get set (X'A0').

Note: The eligibility of a terminal to receive routed messages is governed by the
ROUTEDMSGS option in the terminal definition. Three values are
possible: a terminal may be allowed to receive all routed messages, only
messages routed to it by terminal or operator name, or no routed
messages at all. If you specified OPCLASS as well as a route list, BMS
checks whether an operator belonging to one of the classes you listed is
signed on at the terminal. If not, BMS sets the “operator not signed on”
bit (X'10') in the status flag for the entry to inform you, but includes the
terminal anyway. There are no operator restrictions associated with the list
entry, even when you specify operator classes.

v If the entry contains both a terminal and an operator identifier, the terminal
identifier is checked in the same way as it is without an operator identifier, and
the same errors can occur. If the terminal passes these tests, it goes on the
eligible list. However, the entry is marked such that the message can be
delivered only when the operator named is signed on at the same terminal.

Chapter 29. Basic mapping support 389

If this operator is not signed on to the terminal at the time of the ROUTE
command, BMS notifies you by turning on the “operator not signed on” bit
(X'10') in the status flag, but the terminal goes on the delivery list regardless of
sign-on status. (OPCLASS is ignored entirely when an operator identifier is
present.)

v If the entry contains only an operator identifier, BMS searches the terminal
definitions until it finds one where the operator is signed on. (The operator may
be signed on at additional terminals, but BMS ignores these.) If this terminal is
of a type not supported by BMS, or if the terminal cannot receive routed
messages, BMS sets the “entry skipped” and “operator signed on at
unsupported terminal” bits (X'88') in the status flag. It also fills in the terminal
identifier in your route list. If the terminal is suitable, BMS treats the entry as if
you had specified both that terminal and operator identifier, as described above.
If the operator is not signed on anywhere, BMS sets the “entry skipped” and
“operator not signed on” bits (X'90') in the status flag.

Route list format
BMS requires a fixed format for route lists. Each entry in the list is 16 bytes long,
as follows:

Table 26. Standard route list entry format

Bytes Contents

0-3 Terminal or logical unit identifier (four characters, including trailing blanks), or
blanks

4,5 LDC mnemonic (two characters) for logical units with LDC support, or blanks

6-8 Operator identifier, or blanks

9 Status flag for the route entry

10-15 Reserved; must contain blanks

Either a terminal or an operator identifier must be present in each entry. A Logical
Device Component(LDC) may accompany either; see “LDCs and routing” on
page 405 for more information about LDCs.

The entries in the route list normally follow one another in sequence. However,
they do not all have to be adjacent. If you have a discontinuity in your list, you
end each group of successive entries except the last group with an 8-byte chain
entry that points to the first entry in the next group. This entry looks like this:

Table 27. Route list chain entry format

Bytes Contents

0,1 −2 in binary halfword format (X'FFFE')

2,3 Reserved

4-7 Address of the first entry in the next group of contiguous entries

The end of the entire list is signalled by a 2-byte entry containing a halfword value
of −1 (X'FFFF').

Your list may consist of as many groups as you wish. There is an upper limit on
the total number of destinations, but it depends on many variables; if you exceed
it, BMS abends your task with abend code ABMC.

390 CICS TS for OS/390: CICS Application Programming Guide

On return from a ROUTE command, BMS raises condition codes to signal errors in
your list:

RTESOME
means that at least one of the entries in your route list could not be used
and was skipped. The default action is to continue the routing operation,
using the destinations that were processed successfully.

RTEFAIL
means that none of the destinations in your list could be used, and
therefore no routing environment has been set up. The default action is to
return control to your task. You should test for this condition,
consequently, because with no routing environment, a subsequent BMS
SEND command goes to the principal facility, which is probably not your
intention.

In addition to the general information reflected by RTESOME and RTEFAIL, BMS
tells you what it did with each entry in your list by setting the status flag (byte 9).
A null value (X'00') means that the entry was entirely correct. The high-order bit
tells you whether the entry was used or skipped, and the other bits tell you exactly
what happened. Here are the meanings of each bit being on:

ENTRY SKIPPED (X'80')
The entry was not used. When this bit is on, another bit is also on to indicate
the reason.

INVALID TERMINAL IDENTIFIER (X'40')
There is no terminal definition for the terminal named in the entry. The entry
is skipped.

TERMINAL NOT SUPPORTED UNDER BMS (X'20')
The terminal named in the route list entry is of a type not supported by BMS,
or it is restricted from receiving routed messages. The entry is skipped.

OPERATOR NOT SIGNED ON (X'10')
The operator named in the entry is not signed on. Any of these conditions
causes this flag to be set:
v Both an operator identifier and a terminal identifier were specified, and the

operator was not signed on at the terminal. The entry is not skipped.
v An operator identifier was specified without a terminal identifier, and the

operator was not signed on at any terminal. The entry is skipped.
v OPCLASS was specified on the ROUTE command, a terminal identifier was

specified in the route list entry, and the operator signed on at the terminal
did not have any of the specified operator classes. The entry is not skipped.

OPERATOR SIGNED ON AT UNSUPPORTED TERMINAL (X'08')
Only an operator identifier was specified in the route list entry, and that
operator was signed on at a terminal not supported by BMS or not eligible to
receive routed messages. The entry is skipped. The name of the terminal is
returned in the terminal identifier field of the entry.

INVALID LDC MNEMONIC (X'04')
Either of these conditions causes this flag to be set:
v The LDC mnemonic specified in the route list is not defined for this

terminal. That is, the terminal supports LDCs but it has no LDC list, or its
LDC list is extended but does not contain this entry.

v The device type for this LDC entry is different from that of the first entry in
the route list with an LDC (only one LDC device type is allowed, as
explained in “LDCs and routing” on page 405).

Chapter 29. Basic mapping support 391

The entry is skipped.

Note: CICS provides source code which defines a standard route list entry and the
values you need to test status flag bit combinations. You can insert this code
into your program with a COPY or INCLUDE of the member DFHURLDS,
in the same way you can include the BMS attention identifier or attribute
byte definitions.

Delivery conditions
We have just explained how BMS determines the terminals eligible to receive your
routed message. Actual delivery occurs later in time, much later in some cases,
depending on the scheduling options in your ROUTE command (INTERVAL,
TIME, AFTER and AT). You can request delivery immediately, after an interval of
time has elapsed, or at a particular time of day.

When the appointed time arrives, BMS attempts to deliver the message to every
terminal on the eligible terminal list. All the following conditions must be met for
the message to be delivered to any particular terminal:
v The terminal must be defined as a type supported by BMS, and the same type

as when the ROUTE command was processed11. (Where there is a long delay
between creation and delivery of a message, it is possible for the terminal
defined with a particular TERMID to change characteristics or disappear,
especially in an autoinstall environment.)

v The terminal must be in service and available (that is, there cannot be a task
running with the terminal as its principal facility).

v The terminal must be eligible for automatic transaction initiation, or the terminal
operator must request delivery of the message with the CSPG transaction.

Note: If several messages accumulate for delivery to a particular terminal, there
is no guarantee that the operator will view them in any particular order.
In fact, the CSPG transaction allows the operator to control delivery order
in some situations. If a specific sequence of pages is required, you must
send them as one message.

v If the delivery list entry restricts delivery to a particular operator or to operators
in certain classes, the operator signed on at the terminal must qualify. (See “How
routing works” on page 387 for the OPCLASS and LIST specifications that
produce these restrictions.)

v The purge delay must not have expired, as explained in the next section.

Undeliverable messages
If BMS cannot deliver a message to an eligible terminal, it continues to try
periodically until one of the following conditions occurs:
v A change in terminal status allows the message to be sent.
v The message is deleted by the destination terminal operator.
v The purge delay elapses.

The purge delay is the period of time allowed for delivery of a message once it is
scheduled for delivery. After this interval elapses, the message is discarded. The
purge delay is a system-wide value, set by the PRGDLY option in the system
initialization table. Its use is optional; if the systems programmer sets PRGDLY to
zero, messages are kept indefinitely.

11. A 3270 terminal need not have exactly the same extended attributes that it had at the time the ROUTE command was issued,
because BMS removes unsupported attributes from the data stream at the time of delivery.

392 CICS TS for OS/390: CICS Application Programming Guide

When BMS purges a message in this fashion, it sends an error message to the
terminal you specify in ERRTERM. (If you use ERRTERM without a specific
terminal name, it sends the message to the principal facility of the task that
originally created the message. If you omit ERRTERM altogether, no message is
sent.)

Temporary storage and routing
Between creation and delivery of a routed message with a disposition of PAGING,
BMS stores the message in CICS temporary storage, just as it does in the case of an
ordinary PAGING message. Consequently, you can make your routed messages
recoverable by your choice of the REQID option value, just as in the case of a
nonrouted message. (See “Logical message recovery” on page 376.)

If you are routing to more than one type of terminal, BMS builds a separate logical
message for each type, with the appropriate device-dependent data stream, and
uses a separate temporary storage queue for each type.

Note: For terminal destinations that have the alternate screen size feature, where
two message formats are possible, BMS chooses the default size if the profile
under which the task creating the message specifies default size, and
alternate size if the profile specifies alternate size.

All of the logical messages use the same REQID value, however, so that you can
still choose whether they are recoverable or not.

BMS also uses temporary storage to store the list of terminals eligible to receive
your message and to keep track of whether delivery has occurred. When all of the
eligible terminals of a particular type have received a message, BMS deletes the
associated logical message. When all of the destinations have received delivery, or
the purge delay expires, BMS erases all of the information for the message,
reporting the number of undeliverable messages by destination to the master
terminal operator message queue.

Message identification
You can assign a title to your routed message if you wish. The title is not part of
the message itself, but is included with the other information that BMS maintains
about your message in CICS temporary storage. Titles are helpful in situations
where a number of messages may accumulate for an operator or a terminal,
because they allow the operator to control the order in which they are displayed.
(See the “query” option of the CSPG command in the CICS Supplied Transactions
manual.)

To assign a title, use the TITLE option of the ROUTE command to point to a data
area that consists of the title preceded by a halfword binary length field. The
length includes the 2-byte length field and has a maximum of 64, so the title itself
may be up to 62 characters long. For example:

01 MSG-TITLE.
02 TITLE-LENGTH PIC S9(4) COMP VALUE +19.
02 TITLE-TEXT PIC X(17) VALUE 'MONTHLY INVENTORY'.

...
EXEC CICS ROUTE TITLE(MSG-TITLE)....

Figure 73. Assigning a title

Chapter 29. Basic mapping support 393

Programming considerations with routing
For the most part, you build a routed message in the same way you do a
nonrouted message. However, because BMS builds a separate logical message for
each terminal type among your destinations, there are differences. The first
involves page overflow.

Routing and page overflow
Because different types of terminals have different page capacities, page overflow
may occur at different times for different types. If you are using SEND MAP
commands and intercepting overflows, your program gets control when overflow
occurs for each page of each logical message that BMS is creating in response to
your ROUTE.

If you want to number your pages or do page-dependent processing at overflow
time, you may need to keep track of information for each terminal type separately.
Data areas kept for this purpose are called overflow control areas. You can tell
how many such areas you need (that is, how many different terminal types
appeared in your ROUTE command) by issuing an ASSIGN command with the
DESTCOUNT option after your ROUTE and before any BMS command that could
cause overflow. Issued at this time, ASSIGN DESTCOUNT returns a count of the
logical messages that BMS builds.

When overflow occurs, you can use the same command to determine for which
logical message overflow occurred. At this time ASSIGN DESTCOUNT returns the
relative number of that message among those BMS is building for this ROUTE
command. If you are using overflow control areas, this number tells you which
one to use. If you use ASSIGN PAGENUM at this time, BMS returns the number of
the page that overflowed as well.

To handle the complication of different overflow points for different terminal types,
the processing you need to do on overflow in a routing environment is:
v Determine which logical message overflowed with ASSIGN DESTCOUNT

(unless you are doing very simple overflow processing).
v Send your trailer maps for the current page, followed by headers for the next

page, as you do in a non-routing environment (see “Page breaks: BMS overflow
processing” on page 377). While the OVERFLOW condition is in force, these
SEND MAP commands apply only to the logical message that overflowed (you
would not want them in a logical message where you were mid-page, and BMS
makes no assumptions about different terminal types that happen to have the
same page capacity).

v Reissue the command that caused the overflow, as you do in a non-routing
environment. After you do, however, you must retest for overflow and repeat
the whole process, until overflow does not occur. This procedure ensures that
you get the trailers and headers and the map that caused the overflow into each
of the logical messages that you are building.

Routing with SET
When you specify a disposition of SET in a routing environment, no messages are
sent to the destinations in your route list, because the pages are returned to your
program as they are completed. However, the ROUTE command is processed in
the usual way to determine these destinations and the terminal types among them.
BMS builds a separate logical message for each type, as usual, and returns a page
to the program each time one is completed for any of the terminal types. BMS
raises the OVERFLOW and RETPAGE conditions as it does with a disposition of

394 CICS TS for OS/390: CICS Application Programming Guide

PAGING. Consequently, ROUTING with SET allows you to format messages for
terminal types other than that of your principal facility.

Interleaving a conversation with message routing
While you are building a message to be routed, you can use BMS SEND
commands as well as RECEIVE MAP and terminal control commands to converse
with your principal facility. (Without routing, you cannot use BMS SENDs, as
noted in “Rules for logical messages” on page 372.) Such SEND commands must
have a disposition option of TERMINAL rather than PAGING or SET, and must
not specify ACCUM. The associated inputs and outputs are processed directly and
do not interfere with your logical message, even if your terminal is one of the
destinations of the message.

Using SET
When you specify a disposition of SET for a BMS message, BMS formats your
output and returns it in the form of a device-dependent data stream. No terminal
I/O occurs, although the returned data stream usually is sent to a terminal
subsequently.

There are several reasons for asking BMS to format a data stream without sending
it. You might want to do any of the following:
v Edit the data stream to meet the requirements of a device with special features

or restrictions not explicitly supported by CICS.
v Compress the data stream, based on standard 3270 features or special device

characteristics.
v Forward the data stream to a terminal not connected directly to CICS. For

example, you might want to pass data to a 3270 terminal attached to a system
connected to CICS by an APPC link. You can format the data with SET and send
the resulting pages to a partner program across the link. If the terminal is of a
different type from your principal facility, you can define a dummy terminal of
the appropriate type and then ROUTE to that terminal with SET to get the
proper formatting, as explained in “Routing with SET” on page 394.

BMS returns formatted output by setting the pointer variable named in the SET
option to the address of a page list. This list consists of one or more 4-byte entries
in the following format, each corresponding to one page of output.

Table 28. Page list entry format

Bytes Contents

0 Terminal type (see Table 25 on page 365)

1-3 Address of TIOA containing the formatted page of output

An entry containing -1 (X'FF') in the terminal type signals the end of the page list.
Notice that the addresses in this list are only 24 bits long. If your program uses
31-bit addressing, you must expand a 24-bit address to a full word by preceding it
with binary zeros before using it as an address.

Chapter 29. Basic mapping support 395

Each TIOA (terminal input-output area) is in the standard format for these areas:

Table 29. TIOA format

Field name Position Length Contents

TIOASAA 0 8 CICS storage accounting information (8 bytes)

TIOATDL 8 2 Length of field TIOADBA in halfword binary
format

(unnamed) 10 2 Reserved field

TIOADBA 12 TIOATDL Formatted output page

(unnamed) TIOATDL +
12

4 Page control area, required for the SEND
TEXT MAPPED command (if used)

The reason that BMS uses a list to return pages is that some BMS commands
produce multiple pages. SEND MAP does not, but SEND TEXT can. Furthermore,
if you have established a routing environment, BMS builds a separate logical
message for each of the terminal types among your destinations, and you may get
pages for several different terminal types from a single BMS command. The
terminal type tells you to which message a page belongs. (Pages for a given type
are always presented in order.) If you are not routing, the terminal type is always
that of your principal facility.

If you are not using the ACCUM option, pages are available on return from the
BMS command that creates them. With ACCUM, however, BMS waits until the
available space on the page is used. BMS turns on the RETPAGE condition to
signal your program that pages are ready. You can detect RETPAGE with a
HANDLE CONDITION command or by testing the response from the BMS
command (in EIBRESP or the value returned in the RESP option).

You must capture the information in the page list whenever BMS returns one,
because BMS reuses the list. You need save only the addresses of the pages, not the
contents. BMS does not reuse the pages themselves, and, in fact, moves the storage
for them from its control to that of your task. This allows you to free the storage
for a page when you are through with it. If you do this, the DATA or
DATAPOINTER option in your FREEMAIN command should point to the
TIOATDL field, not to TIOASAA.

Partition support
Partitions are the first of several special hardware features that BMS supports.
Standard BMS is required for partitions.

Some IBM displays allow you to divide the screen into areas which you can write
to and read from separately, as if they were independent screens. The areas are
called partitions, and features of BMS that allow you to take advantage of the
special hardware are collectively called “partition support”.

The IBM 3290 display, which is a member of the 3270 family, and the IBM 8775 are
the primary examples of devices that support partitioning. You should consult the
device manuals12 to understand the full capabilities of a partitioned device, but the
essential features are these:

12. IBM 3290 Information Display Panel Description and Reference for the 3290 and IBM 8775 Display Terminal Component Description for
the 8775.

396 CICS TS for OS/390: CICS Application Programming Guide

v You can divide the physical screen into any arrangement of one to eight
non-overlapping rectangular areas. The areas are independent from one other, in
the sense that the operator can clear them separately, the state of the keyboard
(locked or unlocked) is maintained separately for each, and you write to and
read from them one at a time.

v Only one partition is active at any given time. This is the one containing the
cursor. The operator is restricted to keying into this partition, and the cursor
wraps at partition boundaries. When a key that transmits data is depressed (the
ENTER key or one of the program function keys), data is transmitted only from
the active partition.

v The operator can change the active partition at any time by using the “jump”
key; your program can also, as explained in “Determining the active partition”
on page 401.

v BMS also writes to only one partition on a given SEND, but you can issue
multiple SENDs and you do not have to write to the active partition.

v The partition configuration is sent to the device as a data stream, so that you can
change the partitions for each new task or even within a task. The BMS
construct that defines the partitions is called a partition set and is described in
“How to define partitions” on page 398.

v You also can use the terminal in base state (without partitions) and you can
switch from partitioned to base state with the same command that you use to
change partition arrangements.

v When you specify how to partition the screen area, you also divide up the
hardware buffer space from which the screen is driven. In partitioned devices,
the capacity of the buffer is generally greater than that of the screen, so that
some partitions can be assigned extra buffer space. The screen area allocated to a
partition is called its viewport and the buffer storage is called its presentation
space.
BMS uses the presentation space as its page size for the partition, so that you
can send as much data as fits there, even though not all of it can be on display
at once. Keys on the device allow the operator to scroll the viewport of the
partition vertically to view the entire presentation space. Scrolling occurs
without any intervention from the host.

v Some partitioned devices allow you to choose among character sets of different
sizes. We talk about this in “3290 character size” on page 399.

In spite of the independence of the partitions, the display is still a single terminal
to CICS. You cannot have more than one task at a time with the terminal as its
principal facility, although you can use the screen space cooperatively among
several pseudoconversational transaction sequences if they use the same partition
set (see “Terminal sharing” on page 403).

Note: The 3290 can be configured internally so that it behaves as more than one
logical unit (to CICS or any other system); this definition is separate from
the partitioning that may occur at any one of those logical terminals.

Uses for partitioned screens
Partitioned screens are particularly useful in certain types of application. For
example:

Scrolling
For transactions that produce more output than fits on a single screen, scrolling is
an alternative to BMS terminal paging (see “Output disposition options:
TERMINAL, SET, and PAGING” on page 371). For example, you can define a

Chapter 29. Basic mapping support 397

partition set that consists of just one partition, where the viewport is the whole
screen and the presentation space is the entire buffer. You can write to the entire
buffer as a single page, and the operator can scroll through the data using the
terminal facilities. Response time is to scrolling requests is very short, because
there is no interaction with the host. You are limited to the capacity of the buffer,
of course.

You may also want to scroll just part of the screen and use some partitions for
fixed data.

Data entry
Another good use for a partitioned screen is “heads down” data entry, where the
operator’s productivity depends on how fast the application can process an input
and reopen the keyboard for the next. With a partitioned screen, you can divide
the screen into two identical entry screens. The operator fills one, presses Enter,
and then fills the second one while the data entry transaction is processing the first
input. If the input is good, the program simply erases it in preparation for the next
entry; if not, there is still an opportunity for the operator to make corrections
without losing subsequent work. The CICS 4.1 Sample Applications Guide contains
an example of such a data entry transaction.

Lookaside
In many online operations, the operator sometimes needs to execute a second
transaction in order to finish one in progress. Order entry is an example, where the
operator may have to look up codes or prices to complete an entry. Many inquiries
are similar. The initial inquiry brings back a summary list of hits. The operator
selects one and asks for further detail, then may need to select another for detail,
and so on. In such cases, a partitioned screen allows the operator to do the second
task while keeping the output of the first, which is needed later, on the screen. The
CICS 4.1 Sample Applications Guide also contains an example of a lookaside
transaction.

“Help” text is still another example of “lookaside”. If you allocate one partition of
the screen to this text, the operator can get the required tutorial information
without losing the main screen.

Data comparison
Applications in which the operator needs to compare two or more sets of data
simultaneously are also excellent candidates for a partitioned screen. Partitioning
allows a side-by-side comparison, and the scrolling feature makes it possible to
compare relatively large documents or records.

Error messages
If you partition a screen and allocate one area to error messages and other
explanatory text, usability is enhanced because the operator always knows where
to look for messages, and the main screen areas are never overwritten with such
information. CICS sends its own messages to such a partition if you designate one
in your partition set, as we explain in “How to define partitions”.

How to define partitions
Each partitioning of a screen is defined by a partition set, which is a collection of
screen areas (partitions) intended for display together on a screen. You define a
partition set with assembler macros, just as you do map sets. There are two of
them: DFHPSD and DFHPDI.

398 CICS TS for OS/390: CICS Application Programming Guide

The partition set definition begins with a DFHPSD (partition set definition) macro,
which defines:
v The name of the partition set
v Screen size (BMS makes sure that the partition viewports do not exceed the total

space available)
v Default character cell size (we talk about cell size in “3290 character size”)
v The partition set suffix, used to associate the partition set with a particular

screen size (see “Establishing the partitioning” on page 400)

After the initial DFHPSD macro, you define each partition (screen area) with a
DFHPDI macro. DFHPDI specifies:
v The identifier of the partition within the partition set.
v Where the partition is located on the screen.
v Its viewport size (in lines and columns).
v The presentation space associated with the viewport (that is, the amount of

buffer space allocated), also in lines and columns. Because scrolling is strictly
vertical, BMS requires that the width of the presentation space match the width
of the viewport.

v The character size to be used.
v The map set suffix associated with the partition, used to select the map set

appropriate for the partition size.
v Whether the partition may receive CICS error messages (BMS sends certain error

messages that it generates to a partition so designated, if there is one).

You end the partition set with a second DFHPSD macro, containing only the
option TYPE=FINAL. See the CICS Application Programming Reference manual for
full details on DFHPSD and DFHPDI.

Because these are assembler macros, you need to follow assembler format rules in
creating them. See “Rules for writing BMS macros” on page 332 if you are not
familiar with assembler language. After you do, you need to assemble and
link-edit your partition set. The resulting load module can be placed in the same
library as your map sets, or in a separate library if your installation prefers. Your
systems staff also need to define each partition set to the system with a
PARTITION definition.

3290 character size
The 3290 hardware allows you to use up to eight different character sets, of
different sizes. Two sets come with the hardware; the others can be loaded with a
terminal control SEND command. (Refer to the IBM 3290 Information Display Panel
Description and Reference manual for details.)

Each character occupies a rectangular cell on the screen. Cell size determines how
many lines and columns fit on the screen, or in a particular partition of the screen,
because you can specify cell size by partition. Cells are measured in pels (picture
elements), both vertically and horizontally. The smallest cell allowed is 12 vertical
pels by 6 horizontal pels. The 3290 screen is 750 pels high and 960 pels wide.
Using the minimum cell size, therefore, you can fit 62 characters vertically (that is,
have 62 lines), and 160 characters horizontally (for 160 columns). (The 3290 always
selects the character set that best fits your cell size, and places the character at the
top left corner of the cell.)

Partition sizes are expressed in lines and columns, based on the cell size you
specify for the partition, which is expressed in pels. (The name of the option is

Chapter 29. Basic mapping support 399

CHARSZE, but it is really cell size.) To make sure your partitions fit on the screen,
you need to work out your allocation in pels, although BMS tells you when you
assemble if your partitions overlap or does not fit on the screen. The partition
height is the product of the number of rows in the partition and the vertical
CHARSZE dimension; the partition width is the product of the number of columns
and the horizontal CHARSZE value.

If you do not specify a CHARSZE size in your DFHPDI partition definition, BMS
uses the default given in the DFHPSD partition set definition. If DFHPSD does not
specify CHARSZE either, BMS uses the default established for the terminal when it
was installed. If you specify cell size for some but not all partitions, you must
specify a default for the partition set too, so that you do not mix your choices with
the installation default.

Programming considerations
Partitions affect programming in several areas, as we explain in the sections that
follow. These include:
v Partition set loading
v BMS SEND command options
v The active partition
v BMS RECEIVE commands and options
v ASSIGN options
v Logical messages
v Routing
v Attention identifiers and exception conditions

Nonetheless, BMS partition support is designed to have as little impact as possible
on existing applications that get executed at a partitioned terminal. We talk about
this in “Terminal sharing” on page 403. In addition, options and commands specific
to partitions are ignored when executed at a terminal that does not support
partitions or that is in base state at the time of the command.

Establishing the partitioning
You can tell BMS which partition set to load for a particular transaction by naming
it in the PARTITIONSET option of the TRANSACTION definition. If you do this,
and the named partition set is not already loaded at the terminal, BMS adds the
partition definitions to your data on the first BMS SEND in the task.

You can also direct BMS not to change the partitions from their current state
(PARTITIONSET=KEEP in the TRANSACTION definition) or indicate that you
load the partitions yourself (PARTITIONSET=OWN). If you do not specify any
PARTITIONSET value, BMS sets the terminal to base state (no partitions) at the
time it initiates the transaction.

Whatever the PARTITIONSET value associated with the transaction, a task can
establish new partitions at almost any time with a SEND PARTNSET command,
except that you cannot issue the command while you are building a logical
message.

SEND PARTNSET does not send anything to the terminal immediately. Instead,
BMS remembers to send the partition information along with the next BMS
command that sends data or control information, just as it sends a partition set
named in the PARTITIONSET option of the TRANSACTION definition on the first
BMS SEND. Consequently, you must issue a SEND MAP, SEND TEXT or SEND

400 CICS TS for OS/390: CICS Application Programming Guide

CONTROL command before you issue a RECEIVE or RECEIVE MAP that depends
on the new partitions. See the CICS Application Programming Reference manual for
full details on SEND PARTNSET.

Note: You can get an unexpected change of partitions in the following situation. If
CICS needs to send an error message to your terminal, and the current
partition set does not include an error partition, CICS returns the terminal to
base state, clear the screen, and write the message. For this reason, it is a
good idea to designate one partition as eligible for error messages in every
partition set.

When BMS loads a partition set, it suffixes the name requested with the letter that
represents your terminal type if device-dependent support is in effect, in order to
load the one appropriate to your terminal. It takes suffix from the ALTSUFFIX
option value of the TYPETERM definition associated with your terminal. Partition
set suffixing is analogous to map set suffixing, and the same sequence of steps is
taken if there is no partition set with the right suffix (see “Device-dependent maps:
map suffixes” on page 363).

Partition options for BMS SEND commands
As noted earlier, when you write to a partitioned screen, you write to only one
partition, and the effects of your command are limited to that partition. ERASE
and ERASEAUP clear only within the partition, and FREEKB unlocks the keyboard
only when the partition becomes active.

You can specify the partition to which you are sending with either the PARTN
option in your map definition or with the OUTPARTN option on your SEND MAP.
OUTPARTN overrides PARTN. If you don’t specify either, BMS chooses the first
partition in the set.

The use of partitions affects the suffixing of map set names that we described in
“Device-dependent maps: map suffixes” on page 363. The map set suffix is taken
from the MAPSFX value for the partition instead of being determined as described
in that section.

Determining the active partition
When you send to a partition, you can move the cursor to that partition or another
one. A value of ACTIVATE in the PARTN option of the map definition puts the
cursor in the partition to which you are writing. If you specify ACTPARTN on
your BMS SEND command, you can name any partition (not necessarily the one to
which you are writing), and you override the ACTIVATE specification. Both
ACTIVATE and ACTPARTN unlock the keyboard for the active partition, as well as
placing the cursor there. If neither is present, the cursor does not move and the
keyboard is not unlocked.

Although you can make a partition active by placing the cursor there when you
send, you do not have the last word on this subject, because the operator can use
the jump key on the terminal to move the cursor to another partition. This can
complicate receiving data back from the terminal, but BMS provides help, as we
are about to explain.

Partition options for BMS RECEIVE commands
When you issue a RECEIVE MAP command, you can tell BMS from which
partition you expect data (that is, which partition you expect to be active) with

Chapter 29. Basic mapping support 401

either the PARTN option in the map definition or with the INPARTN option on
your RECEIVE MAP. INPARTN overrides PARTN. If you do, and the operator
transmits from a different partition than the one you named, BMS repositions the
cursor in the partition you named, unlocks the keyboard and repeats the RECEIVE
command. It also sends a message to the error partition (the one with
ATTRB=ERROR) asking the operator to use the right partition. (No message is sent
if there is no error partition.) The input from the wrong partition is discarded,
although it is not lost, because it can be reread later. BMS does this up to three
times; if the operator persists for a fourth round, BMS raises the PARTNFAIL
condition.

You do not have to specify an input partition; sometimes there is only one that
allows input, and sometimes the same map applies to all. If you issue RECEIVE
MAP without INPARTN and there is no PARTN option in the map, BMS accepts
data from any partition and map it with the map named in the command. You also
can determine the partition afterward, if you need to, with an ASSIGN command
containing the INPARTN option.

INPARTN is not set until after the first BMS operation, however, and so if you
need to know which partition is sending to select the right map, you need another
approach. In this situation, you can issue a RECEIVE PARTN command, which
reads data unmapped and tells you which partition sent it. Then you issue a
RECEIVE MAP command using the map that matches the partition with the
FROM option, using the map that matches the partition. RECEIVE MAP with
FROM maps data already read, as explained in “Formatting other input” on
page 361.

ASSIGN options for partitions
In addition to the INPARTN option just described, there are three other ASSIGN
options to help you in programming for a partitioned terminal. The PARTNS
option tells you whether the terminal associated with your task supports
partitions, and the PARTNSET option returns the name of the current partition set
(blanks if none has been established). The fourth ASSIGN option, PARTNPAGE
applies only to logical messages, which we talk about in “Partitions and logical
messages”.

Partitions and logical messages
When you build a BMS logical message for a terminal for which partitions have
been established, you can direct the pages of the message to multiple partitions.
You can even send text output to some partitions and mapped output to others,
provided you do not mix them in the same partition. (This is an exception to the
normal rule against mixing text and mapped output in a logical message.)

When the output is displayed, the first page for each partition is displayed initially.
The pages are numbered by partition, and CSPG commands that the operator
enters into a particular partition apply only to that partition, with the exception of
the page purge command. The purge command deletes the entire logical message
from all partitions.

On each BMS SEND that contributes to the message, you specify the partition to
which the output goes. If you are not using ACCUM, BMS builds a page for that
partition. If you are using ACCUM, BMS puts the output on the current page for
that partition. Page overflows therefore occur by partition. If you are intercepting
overflows and are not sure in which partition the overflow occurred, you can use
the PARTNPAGE option of the ASSIGN command to find out.

402 CICS TS for OS/390: CICS Application Programming Guide

Note: Because BMS uses both the page size and partition identifiers in building a
logical message, you cannot change the partitions mid-message.

The bookkeeping required to handle page overflow when you are distributing
pages among partitions is analogous to that required in a routing environment (see
“Routing and page overflow” on page 394). In particular, you need to ensure that
you finish overflow processing for one partition before doing anything that might
cause overflow in another. Failure to do so can cause program loops as well as
incorrect output.

Partitions and routing
You cannot route a logical message written to multiple partitions. BMS ignores the
OUTPARTN and ACTPARTN options on BMS SEND commands in a routing
environment.

You can route an ordinary message to a terminal that supports partitions, but BMS
builds the message and the CSPG transaction displays it using the terminal in base
(unpartitioned) state.

New attention identifiers and exception conditions
Partitioned terminals have a CLEAR PARTITION key that clears the active
partition in the same way that the CLEAR key clears the whole screen (CLEAR
still does this on a partitioned terminal). You may need to check for this additional
attention identifier in your program logic. The CLEAR PARTITION AID value is
included in DFHAID (see “The attention identifier: what caused transmission” on
page 355).

There are also some new exception conditions associated with partitions, and new
ways to get some of the old ones. The new ones include INVPARTN (naming a
partition that does not exist in the partition set), INVPARTNSET (naming a module
that is not a partition set), and PARTNFAIL (receiving from a partition other than
the one the operator transmitted from). They are all described in the CICS
Application Programming Reference manual with the commands to which they apply.

Terminal sharing
With proper planning, you can share a terminal among several processes by
assigning each a separate partition. You cannot have more than one task in
progress at once at a terminal, of course, but you can interleave the component
tasks of several pseudoconversational transaction sequences at a partitioned
terminal.

To take a very simple example, suppose you decide to improve response time for
an existing pseudoconversational data entry transaction by letting the operator
enter data in two partitions (see “Data entry” on page 398). You could modify the
application to work on two records at once, or you could simply modify it to send
to the same partition from which it got its input. Then you could run it
independently from each partition.

You can establish the partitions with the PARTITIONSET option in the
TRANSACTION definition (all of the transactions involved, if there are several in
the sequence). As noted earlier, BMS does not reload the partitions as long as each
transaction has the same PARTITIONSET value. Alternatively, you could establish
the partitions with a preliminary transaction (for example, one that displayed the
first entry screen in both partitions) and use a PARTITIONSET value of KEEP for

Chapter 29. Basic mapping support 403

the data entry transactions. Whenever you share a partitioned screen, whether
among like transactions or different ones, you need to ensure that one does not the
destroy the partition set required by another. Also, if two different CICS systems
may share the same screen, they should name partition sets in common, so that
BMS does not reload the partitions when it should not.

If the hypothetical data entry transaction sequence uses the TRANSID option on
the RETURN command to specify the next transaction identifier, you would need
to make another small change, because the option applies to the whole terminal,
not the partition. One solution would be to place the next transaction identifier in
the first field on the screen (turning on the modified data tag in the field
definition) and remove the TRANSID from the RETURN. CICS would then
determine the next transaction from the input, as described in “How tasks are
started” on page 299.

Restrictions on partitioned screens
We have already noted that you cannot route to a terminal in partitioned state. You
also cannot use partitions and logical device codes together (LDCs are described in
“Logical device components”). In addition, you cannot use partitions in
combination with GDDM, although you can use partitions with outboard formats
(see “Outboard formatting” on page 409).

Logical device components
Logical device components (LDCs) are another special hardware feature supported
by BMS. Like partitions, LDCs require standard BMS.

A terminal that supports LDCs is one that consists of multiple functional
components (logical devices) controlled through a single point (the logical unit).
The components might be a printer, reader, keyboard and display, representing a
remote work station, or they might be multiple like devices, such as word
processing stations or passbook printers. The IBM 3601 logical unit, the 3770 batch
logical unit, 3770, and 3790 batch data interchange logical units, and LU type 4
logical units all support logical device components.

Because the logical unit is a single entity to CICS, but consists of components that
can be written and read independently, the CICS application programming
interface for LDC terminals looks similar to that for partitioned terminals, each
LDC corresponding to one partition in a partition set. There are many differences,
of course, and you should consult the CICS manual that describes CICS support
for your particular terminal type (see “Where to find more information” on
page 304 for a list). The sections which follow describe the major differences that
affect programming, which are: .
v LDC definition
v SEND command options
v Logical messages
v Routing

Defining logical device components
The logical device components for a terminal are defined by a list called an LDC
table. The TYPETERM component of the TERMINAL definition points to the table,
which may be individual to the logical unit or shared by several logical units that
have the same components. The table itself is defined with DFHTCT TYPE=LDC
(terminal control) macros. (See CICS Resource Definition Guide for descriptions of
both TYPETERM and the DFHTCT macros.)

404 CICS TS for OS/390: CICS Application Programming Guide

An LDC table contains the following information for each logical device
component of the logical unit:
v A 2-character logical device identifier. These identifiers are usually standard

abbreviations, such as CO for console and MS for a magnetic stripe encoder, but
they need not be.

v A 1-character device code, indicating the device type (console, card reader, word
processing station). Codes are assigned by CICS from the device type and other
information provided in the macro.

v A BMS page size. BMS uses this size, rather than one associated with the logical
unit, because different logical devices have different page sizes.

v A BMS page status (AUTOPAGE or NOAUTOPAGE); see “The AUTOPAGE
option” on page 375.

Sending data to a logical device component
You direct BMS output to a specific logical device component of a terminal by
naming it in the LDC option of your SEND MAP, SEND TEXT, or SEND
CONTROL command or the LDC option of your mapset. A value in the command
overrides one in the map set. If the LDC does not appear in either place, BMS uses
a default that varies with the terminal type (see the LDC option discussion of the
CICS Application Programming Reference manual for specifics.

LDCs and logical messages
When you build a BMS logical message for your own terminal, you can distribute
pages of the message among different logical device components in the same way
that you can direct pages to a logical message to different partitions. BMS
accumulates pages separately for each logical device component in the same way
that it does for partitions (see “Partitions and logical messages” on page 402). You
can include both text and mapped output in the message, provided you do not
send both to one LDC. Page overflow occurs by LDC, and terminal operator
paging commands operate on a logical device component basis.

When retrieving pages, the operator (or user code in the device controller) must
indicate the LDC to which the request applies, because not all devices have
keyboards. As in the case of partitions, a message purge request deletes the entire
message, from all LDCs. See the CICS Supplied Transactions manual for more detail
on page retrieval for logical devices.

If you are intercepting page overflows, you can tell which LDC overflowed by
issuing an ASSIGN command with either the LDCMNEM or LDCNUM option.
Both identify the device which overflowed, the first by its 2-character name and
the second by the 1-byte numeric identifier. You can determine the page number
for the overflowing device with ASSIGN PAGENUM, just as with a partitioned
device.

There is one restriction associated with LDCs and page overflow that is unique to
LDCs. After overflow occurs, you must send both a trailer map for the current
page and a header for the next one to the LDC that overflowed. BMS raises the
INVREQ (invalid request) condition if you fail to do this.

LDCs and routing
Routing is supported in an LDC environment, provided the message goes to the
same component type for every destination that supports LDCs. (You cannot route
a multiple-LDC message.)

Chapter 29. Basic mapping support 405

You can supply the LDC value in several ways:
v If you use the LDC option on your ROUTE command, the value supplied

overrides all other sources and is used for all eligible destinations to which
LDCs apply.

v If you specify an LDC in a route list entry (and not in the ROUTE command),
that value is used for the associated destination. (If you specify both and they do
not agree, the ROUTE list value is used and the discrepancy is flagged in the
status flag of the entry.)

v If you specify neither, the value is determined from terminal and system LDC
tables in the same way as it is in a non-routing environment when you omit the
LDC from the BMS SEND command. (The value on the SEND command is
ignored when routing is in effect.)

BMS support for other special hardware
In addition to partitions and LDCs, BMS provides support these other special
hardware features:
v 10/63 magnetic slot reader
v Field selection features: cursor select, light pen, trigger fields
v Outboard formatting

The magnetic slot reader and outboard formatting both require standard BMS.
Support for the cursor select key, light pen and trigger fields is included in
minimum.

10/63 magnetic slot reader
Some IBM display terminals support a magnetic slot reader (MSR), a device that
reads data from small magnetic cards, as an optional feature. The MSR has
indicator lights and an audible alarm to prompt operator actions. Some terminals
control the MSR themselves, but others, such as the IBM 8775 and the IBM 3643,
let you control the functions of the reader by program.

CICS provides an ASSIGN command option, MSR, that tells you whether the
principal facility of your task has an MSR or not.

With BMS, you can control the state of such an MSR by using the MSR option of
the BMS SEND commands. This option transmits four bytes of control data to the
attached MSR, in addition to display data sent to the terminal. BMS provides a
copybook, DFHMSRCA, containing most of the control sequences you might need.
The CICS Application Programming Reference manual describes the supplied
constants and explains the structure of the control data, so that you can expand the
list if you need to.

The control sequence that you send to an MSR affects the next input from the
device; hence it has no effect until a RECEIVE command is issued. Input from
MSRs is placed in the device buffer and transmitted in the same way as keyboard
input. If the MSR input causes transmission, you can detect this by looking at the
attention identifier in EIBAID. A value of X'E6' indicates input from the MSR, and
X'E7' signals input from the MSR extended (a second MSR that may be present).
See the IBM 3270 Information Display System Data Stream Programmer’s Reference
manual for information on how to format a screen for MSR input and other details
on these devices.

406 CICS TS for OS/390: CICS Application Programming Guide

Field selection features
BMS supports several special hardware features that allow the operator to enter
and transmit input by selecting a field on the screen:
v Trigger fields
v Cursor selectable fields
v Light pen detection

Trigger field support
Trigger fields are a special hardware feature of certain types of terminal, such as
the 8775. A field defined as a trigger field causes the terminal to transmit its
contents if the operator moves the cursor out of the field when it is primed. The
field gets primed when the operator moves the cursor into it and enters data or
uses either the DELETE or ERASE EOF keys. It becomes unprimed after it causes
transmission, or if the operator uses the ERASE INPUT key, or after a send to the
terminal (if you are using partitions, the send must be to the partition that contains
the trigger field to have this effect).

You define a field as a trigger field by setting the VALIDN extended attribute to a
value of TRIGGER, either in the map or by program override.

Only the field itself is sent when a trigger field causes transmission; other fields
are not sent, even if they have been modified. You can detect a transmission
caused by a trigger field by checking the attention identifier, which has a value of
X'7F'.

Terminals that support the validation feature buffer the keyboard, so that the
operator can continue to enter data while the host is processing an earlier
transmission. The program processing such inputs needs to respond quickly, so
that the operator does not exceed the buffer capacity or enter a lot of data before
an earlier error is diagnosed.

The customary procedure is for the program receiving the input to check the
contents of the trigger field immediately. If correct, the program simply unlocks the
keyboard to let the operator continue (a BMS SEND command containing the
FREEKB option does this). If the field is in error, you may wish to discard the
stored keystrokes, in addition to sending a diagnostic message. Any of the
following actions does this:
v A BMS SEND command that contains ERASE, ERASEAUP, or ACTPARTN or

that lacks FREEKB
v A BMS SEND directed to a partition other than the one containing the trigger

field (where partitions are in use)
v A RECEIVE MAP, RECEIVE PARTITION or terminal control RECEIVE command
v Ending the task

See the IBM 3270 Information Display System Data Stream Programmer’s Reference
manual for more information about trigger fields.

Cursor and pen-detectable fields
BMS also supports detectable fields, another special hardware feature available on
some terminals. There are two hardware mechanisms for detectable fields: the
“cursor select” key and the light pen. A terminal has either the key or a pen, not
both. Both work the same way and, as the key succeeded the pen, we talk about
the key.

Chapter 29. Basic mapping support 407

For a field to be detectable, it must have certain field attributes, and the first
character of the data, known as the designator character, must contain one of five
particular values. You can have other display data after the designator character if
you wish.

The bits in the field attributes byte that govern detectability also control brightness.
High intensity (ATTRB=BRT) fields are detectable if the designator character is one
of the detectable values. Normal intensity fields may or may not be detectable; you
have to specify ATTRB=DET to make them so; nondisplay (ATTRB=DRK) fields
cannot be detectable.

As usual, you can specify attributes and designator characters either in the map
definition or by program override. However, DET has a special effect when it
appears in an input-only map, as we explain in a moment.

Note that because high-intensity fields have, by definition, the correct field
attributes for detectability, the terminal operator can make an unprotected
high-intensity field detectable by keying a designator character into the first
position of the field.

Selection fields
There are two types of detectable field, selection and attention fields; the type is
governed by the designator character. A selection field is defined by a designator
character of either a question mark (?) or a greater-than sign (>). The convention is
that (?) means the operator has not selected whatever the field represents, and (>)
means he has. The hardware is designed around this convention, but it is not
enforced, and you can use another if it suits. You can initialize the designator to
either value and initialize the modified data tag off or on with either value.

Every time the operator presses the cursor select key when the cursor is in a
selection field, the designator switches from one value to the other (? changes to >
and > changes to ?). The MDT is turned on when the designator goes from ? to >
and off when the designator goes from > to ?, regardless of its previous state. This
allows the operator to change his mind about a field he has selected (by pressing
cursor select under it again) and gives him ultimate control over the status of the
MDT. The MDT governs whether the field is included when transmission occurs,
as it does for other fields. No transmission occurs at this time, however; selection
fields do not of themselves cause transmission; that is the purpose of attention
fields.

Attention fields
Attention fields are defined by a designator character of blank, null,13 or
ampersand. In contrast to a selection field, when the cursor select key is pressed
with the cursor in an attention field, transmission occurs.

If the designator character is an ampersand, the effect of pressing the cursor select
key is the same as depressing the ENTER key. However, if the designator is blank
or null, what gets transmitted is the address of every field with the MDT on, the
position of the cursor, and an attention identifier of X'7E'. The contents of these
fields are not transmitted, as they are with the ENTER key (or a cursor select with

13. A null in the data stream has the same effect as a blank in this function, but in BMS you should use a blank, because BMS does
not transmit nulls in some circumstances, and because you cannot override the first position of a field with a null (see “Where
the values come from” on page 347).

408 CICS TS for OS/390: CICS Application Programming Guide

an ampersand designator). In either case, the fields with the MDT bit on may be
selection fields or normal fields which the operator changed or which were sent
with the MDT on.

BMS input from detectable fields
After transmission caused by a cursor-select attention field with a blank or null
designator, BMS tells you which fields were transmitted (that is, had the MDT on)
by setting the first position of the corresponding input (I) subfield to X'FF'. The
first position is otherwise set to X'00'. You can tell which attention field caused
transmission from this value if it was the only one transmitted, or from the
position of the cursor otherwise.

If transmission is caused by a cursor-select attention field with an ampersand
designator (or by the ENTER key or a PF key), the I subfield contains the contents
of the field if the MDT is on and the L subfield reflects its length, as usual, except
in one case: if you specify the DET attribute for a field in an input-only map (that
is, MODE=IN, DATA=FIELD), BMS reserves only one byte in the symbolic map for
the input subfield, rather than the number indicated by the LENGTH option. After
a RECEIVE MAP naming such a map, this I subfield contains X'FF' with a length
of 1 if the field is selected (that is, if its MDT was on), and a null (X'00') if not.
BMS supplies no other input for the field, even if some was transmitted.

Consequently, if you need to receive data from a detectable field as well as
knowing whether it was selected or not, you need to avoid the use of DET in an
input-only map. You can define the map as INOUT, even if you do not use it for
output, or you can set the DET attribute in the program rather than the map. For
high-intensity fields, you do not need to specify DET, because BRT implies DET.

You also need to ensure that the data gets transmitted. When the cause of
transmission is the ENTER key, a PF key, or an attention field with an ampersand
designator character, field data gets transmitted. It does not when the cause is an
attention field with a blank or null designator.

See the IBM 3270 Information Display System Data Stream Programmer’s Reference
manual for more information about detectable fields.

Outboard formatting
Outboard formatting is a technique for reducing the amount of line traffic between
the host processor and an attached subsystem. The reduction is achieved by
sending only variable data across the network. This data is combined with constant
data, such as a physical map, by a program within the subsystem. The formatted
data can then be displayed.

You can use outboard formatting with a 3650 Host Communication Logical Unit,
an 8100 Series processor with DPPX and DPS Version 2, or a terminal attached
through a 3174 control unit. Maps used by the 3650 must be redefined using the
3650 transformation definition language before they can be used. For more
information, see the section describing BMS in the IBM CICS/OS/VS 3650/3680
Guide. Maps to be used with the 8100 must be generated on the 8100 using either
an SDF II utility or the interactive map definition component of the DPS Version 2.

If a program in the host processor sends a lot of mapped data to subsystems, you
can reduce line traffic by telling BMS to transmit only the variable data in maps.
The subsystem must then perform the mapping operation when it receives the
data. BMS prefixes the variable data with information that identifies the subsystem
map to be used to format the data.

Chapter 29. Basic mapping support 409

Terminals that support outboard formatting have OBFORMAT(YES) in their
TYPETERM definition. When a program issues a SEND MAP command for such a
terminal, and the specified map definition contains OBFMT=YES, BMS assumes
that the subsystem is going to format the data and generates an appropriate data
stream. If you send a map that has OBFMT=YES to a terminal that does not
support outboard formatting, BMS ignores the OBFMT operand.

See “Batch data interchange” on page 430 for more information about
programming some of the devices that support outboard formatting.

410 CICS TS for OS/390: CICS Application Programming Guide

Chapter 30. Terminal control

This chapter contains the following details:
v “Terminal control commands” on page 412
v “VTAM considerations” on page 424
v “Sequential terminal support” on page 427
v “TCAM considerations” on page 429
v “Batch data interchange” on page 430

Terminal control is the second of two methods that CICS provides for programs to
communicate with terminals. The other interface is BMS, described in “Chapter 29.
Basic mapping support” on page 323.

Terminal control commands apply to a variety of devices, reducing the sensitivity
of programs to the terminals they support and to the access methods controlling
the terminals. In addition to the commands themselves, CICS provides the data
translation, synchronization of input and output operations, and session control
needed to read from or write to a terminal or logical unit. This helps insulate you
from the APIs of the individual communications access methods, which are
complex and very different from one another.

BMS insulates you even more from the characteristics of particular devices and the
mechanics of communication than does terminal control, but at the cost of some
flexibility and function. For example, BMS path lengths are longer, and BMS does
not support as many terminal types as does terminal control. See “CICS APIs for
terminals” on page 303 for a comparison of BMS and terminal control.

Access method support
CICS Transaction Server for OS/390 Release 3 supports terminals directly through
interfaces to the following access methods:

Virtual Telecommunications Access Method (VTAM)

Telecommunications Access Method (TCAM) for the queued or ‘DCB’
interface only
Basic Graphics Access Method (BGAM) for graphics terminals using GDDM
Sequential Access Method (SAM) for terminals simulated by sequential
devices

CICS supports operating system consoles as terminals too, but through operating
system services rather than through an access method. The terminal control
interface to a console is the same as to other terminals (though certain consoles
might have certain restrictions), but BMS is not available. You can find a full list of
the terminals supported by CICS in the CICS Resource Definition Guide.

Earlier releases of CICS also supported terminals through:

BTAM Basic Telecommunications Access Method (BTAM).

TCAM
Telecommunications Access Method (TCAM)—the VTAM-like ‘ACB’
interface.

© Copyright IBM Corp. 1989, 2000 411

You can still execute transactions under CICS from terminals using these access
methods. However, the terminals themselves must be attached to a CICS system at
an earlier level which supports the access method. A transaction running under
CICS communicates with a local surrogate for the remote terminal, and the two
CICS systems manage the correspondence between the surrogate and the real
terminal. The transaction is invoked either when the CICS that owns the terminal
routes the transaction to the CICS region, or by automatic transaction initiation
(ATI) in the CICS region. With ATI, this region arranges assignment of the terminal
as principal facility for the transaction through the CICS region that owns the
terminal.

Terminal control commands
The commands described in this chapter apply only to the principal facility of the
task issuing them, where that facility is one of the following:
v A device connected through BTAM, SAM, or the DCB interface of TCAM
v An LU Type 0, 1, 2, 3, or 4 connected through VTAM or the ACB interface of

TCAM

Note: This chapter does not cover program-to-program communication, whether
directed to the alternate or principal facility. This is covered in a separate
manual, APPC commands are covered in the CICS Distributed Transaction
Programming Guide.

Terminal control commands fall into four groups:
v Basic data transmission commands: RECEIVE, SEND, and CONVERSE
v Commands that send device controls, synchronize transmission, end a session,

or perform similar control functions
v Commands to tell you about your terminal: ASSIGN and INQUIRE.
v Special device group commands: the batch data interchange (BDI) commands

We discuss each of these groups in the sections that follow.

Data transmission commands
There are three commands that transmit data to and from the terminal or logical
unit that is the principal facility of your task:

RECEIVE
reads data from the terminal.

SEND
writes data to the terminal.

CONVERSE
writes data to the terminal, waits for input, and reads the input.

CONVERSE is essentially a combination of SEND and RECEIVE and is usually the
equivalent of SEND followed by RECEIVE. In certain cases you must use
CONVERSE instead of SEND and RECEIVE, for example, sending structured-field
data to certain 3270 devices. In other cases you must use SEND and RECEIVE,
because CONVERSE is not provided; these are noted in Table 32 on page 420.

The SEND, RECEIVE, and CONVERSE commands are fully described in the CICS
Application Programming Reference manual. They are broken down by device group,

412 CICS TS for OS/390: CICS Application Programming Guide

because the options for different devices and access methods vary considerably.
“Finding the right commands” on page 417 tells you which device group to use for
your particular device.

Send/receive mode
The terminals and logical units covered in this chapter all operate in “half-duplex,
flip-flop” mode. This means, essentially, that at any given moment, one partner in
a conversation is in send mode (allowed to send data or control commands) and
the other is in receive mode (restricted to receiving). This protocol is formally
defined and enforced under VTAM. CICS observes the same conventions for
terminals attached under other access methods, but both the hardware and the
access methods work differently, so that not all operations are identical.

When a terminal is the principal facility of a task, its conversation partner is the
task. When it is not associated with a task, its conversation partner is the terminal
control component of CICS. Between tasks, under VTAM, the conversation is left in
a neutral state where either partner can send first. Ordinarily the terminal goes
first, sending the unsolicited input that initiates a task (see “How tasks are started”
on page 299).

This transmission also reverses the send/receive roles; thereafter the terminal is in
receive mode and CICS, represented by the task that was attached, is in send
mode. The task starts and remains in send mode, no matter how many SENDs it
executes, until it explicitly changes the direction of the conversation. One way in
which you can put the task in receive mode is by specifying the INVITE option on
a SEND command. After SEND with INVITE, the task is in receive mode and must
issue a RECEIVE before sending to the terminal again. You can also put the task in
receive mode simply by issuing a RECEIVE, without a preceding INVITE; INVITE
simply optimizes transmissions.

Note that the first RECEIVE command in a task initiated by unsolicited input does
not count in terms of send/receive mode, because the input message involved has
long since transmitted (it started the task). This RECEIVE just makes the message
accessible to the task, and sets the related EIB fields.

ATI tasks—those initiated automatically by CICS—also start out in send mode, just
like tasks started by unsolicited input.

Note that if a task is executing normally and performing non-terminal operations
when a VTAM/network error occurs, the task is unaware of the error and
continues processing until it attempts the next terminal control request. It is at this
point that the task receives the TERMERR. If the task does not issue any further
terminal control request, it will not receive the TERMERR or ABEND.

Contention for the terminal
CICS satisfies requests for automatic task initiation (ATI) as soon as the terminal
required as principal facility is available. When a task ends at a terminal, and CICS
has an ATI request for that terminal, there may be contention between CICS, which
wants to initiate the ATI task, and the terminal user, who wants to initiate a certain
task by unsolicited input. In this situation, CICS always sets itself up as contention
loser. That is, if the terminal sends unsolicited input quickly enough after the end
of the previous transaction, CICS creates a task to process it and delay fulfilling the
ATI request. This is intentional—it gives the user priority in contention situations.

Chapter 30. Terminal control 413

RETURN IMMEDIATE
However, you sometimes need to execute a sequence of particular tasks in
succession at a terminal without allowing the user to intervene. CICS provides a
way for you to do this, with the IMMEDIATE option on the RETURN command
that ends the task. With RETURN IMMEDIATE, CICS initiates a task to execute the
transaction named in the TRANSID option immediately, before honoring any other
waiting requests for tasks at that terminal and without accepting input from the
terminal. The old task can even pass data to the new one. The new task accesses
this data with a RECEIVE, as if the user had initiated the task with unsolicited
input, but no input/output occurs. This RECEIVE, like the first one in a task
initiated by unsolicited input, has no effect on send/receive status; it just makes
the passed data available to the new task. If the terminal is using bracket protocol
(explained in “Preventing interruptions (bracket protocol)” on page 427), CICS does
not end the bracket at the end of the first task, as it ordinarily does, but instead
continues the bracket to include the following task. Consequently, the automatic
opening of the keyboard at the end of bracket between tasks does not occur.

Speaking out of turn
It is usually clear to users when they are supposed to “talk” (key and transmit),
and when they are supposed to “listen” (wait for output), because the application
makes this clear. On 3270 displays and many other terminals, the keyboard locks
after the user has transmitted to reinforce this convention. It remains locked until
the task unlocks it, which it usually does on a SEND before a RECEIVE, or on the
last SEND in the task. This means the user has to do something particular (press
the keyboard reset key) in order to break protocol.

What happens if the user does this? For terminals under BTAM, which is
supported by CICS Version 2 and earlier, CICS provides two choices for an input it
does not expect. CICS can either discard it or save it for use on the next occasion
that an input is required (or acceptable) from that terminal. You specify one of
these options using the PUNSOL system generation parameter; the option you
choose is applied globally to all BTAM terminals.

For terminals connected under VTAM, violating this protocol causes the task to
abend (code ATCV) unless read-ahead queueing is in force. Read-ahead queueing
allows the logical unit and the task to send and receive at any time; CICS saves
input messages in temporary storage until the task needs them. Inputs not read by
task end are discarded. Read-ahead queueing is applied at the transaction level (it
is specified in the RAQ option of the PROFILE under which the transaction runs).
It applies only to LU type 4 devices, and is provided for compatibility reasons, to
allow a transaction to support both BTAM-connected and VTAM-connected
terminals in the same way. In general, it should not be used except to handle this
situation.

For devices connected under the DCB interface of TCAM, the send/receive rules
are complicated by the fact that messages get queued on their way to and from the
terminal. For the ACB interface, supported under earlier releases of CICS, different
exceptional circumstances may occur. See the CICS Intercommunication Guide for
details of send/receive restrictions for both interfaces.

Sequential terminals also differ from others in send/receive rules. Because the
input is a pre-prepared file, CICS simply provides input messages whenever the
task requests them, and it is impossible to break protocol. If the input is
improperly prepared, or is not what the task is programmed to handle, it is

414 CICS TS for OS/390: CICS Application Programming Guide

possible for the task to get out of synchronization with its inputs, to exhaust them
prematurely, or to fail to read some of them.

Interrupting
Both VTAM and BTAM provide a mechanism for a terminal in receive mode to tell
its partner that it would like to send. This is the “signal” data flow in VTAM,
which is detected on the next SEND, RECEIVE or ISSUE DISCONNECT command
from the task. When a signal flow occurs, CICS raises the SIGNAL condition and
sets EIBSIG in the EIB. CICS default action for the SIGNAL condition is to ignore
it. For the signal to have any effect, the task must first detect the signal and then
honor it by changing the direction of the conversation. In BTAM, the
corresponding flow is a reverse interrupt (RVI), which the terminal sends in place
of the usual positive acknowledgment (ACK).

On a 3270 display terminal and some others, the ATTENTION key is the one that
generates the interrupt. Not all terminals have this feature, however, and in VTAM,
the bind image must indicate support for it as well, or VTAM ignores the
interrupts.

Terminal waits
When a task issues a SEND command without specifying WAIT, CICS can defer
transmission of the output to optimize either its overall terminal handling or the
transmissions for your task. When it does this, CICS saves the output message and
makes your task dispatchable, so that it can continue executing. The ISSUE COPY
and ISSUE ERASE commands, which also transmit output, work similarly without
WAIT.

If you use the WAIT option, CICS does not return control to your task until the
output operation is complete. This wait lengthens the elapsed time of your task,
with attendant effects on response time and memory occupancy, but it ensures that
your task knows whether there has been an error on the SEND before continuing.
You can avoid some of this wait and still check the completion of the operation if
you have processing to do after your SEND. You issue the SEND without WAIT,
continue processing, and then issue a WAIT TERMINAL command at the point
where you need to know the results of your SEND.

When you issue a RECEIVE command that requires transmission of input, your
task always waits, because the transmission must occur before the RECEIVE can be
completed. However, there are cases where a RECEIVE does not correspond to
terminal input/output. The first RECEIVE in a task initiated by unsolicited
terminal input is the most frequent example of this, but there are others, as
explained in the next section.

Also, when you issue any command involving your terminal, CICS ensures that
the previous command is complete (this includes any deferred transmissions),
before processing the new one.

What you get on a RECEIVE
We use the terms “input message” and “transmission” to mean both what the
terminal sent and what the application received. For the most common types of
terminals, these are equivalent. A 3270 display, for example, sends whatever was
changed in its buffer as a single entity, and the task associated with the terminal
normally gets the entire message in response to a single RECEIVE command.

Chapter 30. Terminal control 415

However, input messages and physical transmissions are not always equivalent,
and there are several factors that can affect the one-to-one relationship of either to
RECEIVE commands. These are:
v VTAM chaining
v Logical records
v NOTRUNCATE option
v “Print” PA key

Input chaining
Some SNA devices break up long input messages into multiple physical
transmissions, a process called “chaining”. CICS assembles the component
transmissions into a single input message or present them individually, depending
on how the terminal associated with the task has been defined. This affects how
many RECEIVEs you need to read a chained input message. Details on inbound
chaining are explained in “Chaining input data” on page 424.

Logical messages
Just as some devices break long inputs into multiple transmissions, others block
short inputs and send them in a single transmission. Here again, CICS provides an
option about who deblocks, CICS or the receiving program. This choice also affects
how much data you get on a single RECEIVE. (See “Handling logical records” on
page 425 for more on this subject.)

NOTRUNCATE option
Still another exception to the one-input-message-per-RECEIVE rule occurs when
the length of the input data is greater than the program expects. If this occurs and
the RECEIVE command specifies NOTRUNCATE, CICS saves the excess data and
uses it to satisfy subsequent RECEIVE commands from the program with no
corresponding read to the terminal. If you are using NOTRUNCATE, you should
issue RECEIVEs until the field EIBCOMPL in the EIB is set on (that is, set to X'FF').
CICS turns on EIBCOMPL when no more of the input message is available.

Without NOTRUNCATE, CICS discards the excess data, turns on EIBCOMPL, and
raises the LENGERR condition. It reports the true length of the data, before
truncation, in the data area named in the LENGTH option, if you provide one.

Print key
If your CICS system has a PA key defined as a “print” key, another exception to
the normal send/receive sequence can occur. If the task issues a RECEIVE, and the
user presses the “print” key in response, CICS intercepts this input, does the
necessary processing to fulfil the request, and puts the terminal in receive mode
again. The user must send another input to satisfy the original RECEIVE. (See
“CICS print key” on page 445 for more information about the “print” key.)

Control commands
In addition to data transmission commands, the CICS API for terminals includes a
series of commands that send instructions or control information, rather than data,
to the terminal or to the access method controlling it. These commands are listed
in the table below, along with a brief description of their function. Not all of these
commands apply to all terminals, and for some, different forms apply to different
terminals. See Finding the right commands before going to the descriptions in the
CICS Application Programming Reference manual.

The terminal in the table below is always the principal facility of the task issuing
the command, except where explicitly stated otherwise. It may be a logical unit of
a type not ordinarily considered a terminal.

416 CICS TS for OS/390: CICS Application Programming Guide

Table 30. Control commands for terminals and logical units

Command Action

FREE Releases the terminal from the task, so that the terminal may be
used in another task before the current one ends.

ISSUE COPY Copies the buffer contents of the terminal named in the TERMID
option to the buffer of the terminal owned by the task. Both
terminals must be 3270s.

ISSUE DISCONNECT Schedules termination of the session between CICS and the
terminal at the end of the task.

ISSUE ENDFILE Sends an end-of-file notification to the terminal (for 3740 data
entry systems only).

ISSUE ENDOUTPUT Sends an end-of-output notification to the terminal (for 3740 data
entry systems only).

ISSUE EODS Sends an end-of-data-set function management header (for 3650
interpreter logical units only).

ISSUE ERASEAUP Erases all the unprotected fields of the terminal (for 3270 devices
only).

ISSUE LOAD Instructs the terminal to load the program named in the
PROGRAM option (for 3650 interpreter logical units only).

ISSUE PASS Schedules disconnection of the terminal from CICS and its
transfer to the VTAM application named in the LUNAME option,
at the end of the issuing task.

ISSUE PRINT Copies the terminal buffer to the first printer eligible for a print
request (for 3270 displays only).

ISSUE RESET Disconnects the line to which the terminal is attached, at task end,
(for switched lines under BTAM only).

WAIT SIGNAL Suspends the issuing task until its terminal sends a SIGNAL
dataflow command.

WAIT TERMINAL Suspends the issuing task until the previous terminal operation
has completed.

Finding the right commands
Hardware and access method sensitivity is one of the major distinctions between
using BMS and using terminal control commands to communicate with a terminal.
BMS shields an application from hardware dependencies at the expense of some
loss of function, whereas terminal control provides all the function.

The result of providing full function is that not all terminal control commands
apply to all devices. Some commands require that you know what type of terminal
you have, to determine the options that apply and the exceptional conditions that
can occur. For some commands, you also need to know what access method is in
use. The two tables that follow tell you which commands apply to which terminal
and access method combinations. If you need to support several types of terminals,
you can find out which type your task has as its principal facility using the
commands described in “Finding out about your terminal” on page 422.

To use the tables, look up the terminal type that your program must support in the
first column of Table 31 on page 418. Use the value in the second column to find
the corresponding command group in the first column of Table 32 on page 420. The
second column of this table tells you the access method, and the third tells you the
commands you can use. The commands themselves are described in full in the

Chapter 30. Terminal control 417

CICS Application Programming Reference manual. Where there is more than one
version of a command in that manual, the table tells you which one to use. This
information appears in parentheses after the command, just as it does in the
manual itself.

Table 31. Devices supported by CICS

Device Use commands for

1050 (1051, 1052, 1053, 1056) 2741

2260, 2265 2260

2740, 2741 2741

2770, 2780 System/3

2980 2980

3101 (supported as TWX 33/35) 3767

3230 (VTAM) 3767

3230 (non-VTAM) 2741

3270 displays, 3270 printers (VTAM SNA) LU type 2/3

3270 displays, 3270 printers (VTAM non-SNA) 3270 logical

3270 displays, 3270 printers (non-VTAM) 3270 display

SCS printers (VTAM) SCS

3600 Pipeline mode (VTAM) 3600 pipeline

3601 (VTAM) 3600-3601

3614 (VTAM) 3600-3614

3600 Non-VTAM 3600 BTAM

3630, attached as 3600 (3631, 3632, 3633, 3643, 3604) Use 3600 entry

3641, 3644, 3646, 3647 (VTAM, attached as 3767) 3767

3643 (VTAM, attached as LU type 2) LU type 2/3

3642, 3645 (VTAM, attached as SCS printer) SCS

3650 interpreter LU 3650 interpreter

3650 host conversational LU (3270) 3650-3270

3650 host conversational LU (3653) 3650-3653

3650 host command LU (3680, 3684) 3650-3680

3650 interpreter LU 3650 interpreter

3650 host conversational LU (3270) 3650-3270

3650 host conversational LU (3653) 3650-3653

3650 host command LU (3680, 3684) 3650-3680

3660 System/3

3730 3790 full function or inquiry

3735 3735

3740, 3741 3740

3767 interactive LU (VTAM) 3767

3767 non-VTAM 2741

3770 Interactive LU (VTAM) 3767

3770 Full function LU 3790 full function or inquiry

418 CICS TS for OS/390: CICS Application Programming Guide

Table 31. Devices supported by CICS (continued)

Device Use commands for

3770 Batch LU (3771, 3773, 3774) (VTAM) 3770

3770 Non-VTAM (3775, 3776, 3777) (supported as 2770) System/3

3780 System/3

3790 Full function or inquiry 3790 full function or inquiry

3790 3270 display LU 3790 3270-display

3790 SCS printer 3790 SCS

3790 3270 printer 3790 3270-printer

4700 (supported as 3600) Use 3600 entry

5100 2741

5110, attached as 2770 System/3

5230, 5231, 5260, 5265 (supported as 3741) 3740

5280 attached as 3741 3740

5280 attached as 3270 Use 3270 entry

5520 VTAM, supported as 3790 full-function LU 3790 full function or inquiry

5520 non-VTAM, supported as 2770 System/3

5550 (supported as 3270) Use 3270 entry

5937 (supported as 3270) Use 3270 entry

6670 VTAM LU type 4

6670 non-VTAM, supported as 2770 System/3

8130, 8140 under DPCX (supported as 3790) 3790 full function or inquiry

8100 DPPX/BASE using Host Presentation Services or Host
Transaction Facility (attached as 3790)

3790 full function or inquiry

8100 DPPX/DSC, DPCX/DSC, including 8775 attach
(supported as 3270)

LU type 2/3

8775 LU type 2/3

8815 APPC14

CMCST 2741

Displaywriter supported as 3270 Use 3270 entry

Displaywriter supported as APPC APPC14

INTLU (interactive LU) 3767

Office System/6 (6640, 6670), attached as 2770 System/3

PC, PS/2, attached as 3270 Use 3270 entry

Scanmaster APPC14

Series/1 supported as 3650 pipeline 3600 pipeline

Series/1 supported as 3790 full-function LU 3790 full function or inquiry

System/3 (5406, 5408, 5410, 5412, 5415) System/3

System/7 (5010) System/7

System/32 (5320) VTAM, supported as 3770 Use 3770 entry

System/32 (5320) non-VTAM, supported as 2770 System/3

System/34 (5340) VTAM, supported as 3770 Use 3770 entry

Chapter 30. Terminal control 419

Table 31. Devices supported by CICS (continued)

Device Use commands for

System/34 (5340) non-VTAM System/3

System/36™ (supported as System/34) Use System/34 entry

System/38™ (5381) VTAM, attached as 3770 Use 3770 entry

System/38 (5381) VTAM, attached as APPC APPC14

System/38 (5381) non-VTAM System/3

TWX 33/35 VTAM NTO 3767

TWX 33/35 non-VTAM 2741

WTTY VTAM NTO 3767

WTTY non-VTAM 2741

Table 32. Terminal control commands by device type

Device group
name

Access methods Commands applicable

2260 non-VTAM RECEIVE (2260), SEND (2260), CONVERSE (2260),
ISSUE DISCONNECT (default), ISSUE RESET

2741 non-VTAM RECEIVE (2741), SEND (2741), CONVERSE (2741),
ISSUE RESET

2980 non-VTAM RECEIVE (2980), SEND (2980)

3270 display non-VTAM RECEIVE (3270 display), SEND (3270 display),
CONVERSE (3270 display), ISSUE COPY (3270
display), ISSUE DISCONNECT (default), ISSUE
ERASEAUP, ISSUE PRINT, ISSUE RESET

LU type 2/3
(3270 SNA)

VTAM RECEIVE (LU type 2/3), SEND (LU type 2/3),
CONVERSE (LU type 2/3), ISSUE COPY (3270
logical), ISSUE DISCONNECT (default), ISSUE
ERASEAUP, ISSUE PASS, ISSUE PRINT

3270 logical (3270
non-SNA)

VTAM RECEIVE (3270 logical), SEND (3270 logical),
CONVERSE (3270 logical), ISSUE COPY (3270
logical), ISSUE DISCONNECT (default), ISSUE
ERASEAUP, ISSUE PASS, ISSUE PRINT

SCS VTAM SEND (SCS), CONVERSE (SCS), ISSUE
DISCONNECT (default), ISSUE PASS

3600 pipeline VTAM RECEIVE (3600 pipeline), SEND (3600 pipeline),
ISSUE DISCONNECT (default), ISSUE PASS

3600-3601 VTAM RECEIVE (3600-3601), SEND (3600-3601),
CONVERSE (3600-3601), ISSUE DISCONNECT
(default), ISSUE PASS, WAIT SIGNAL

3600-3614 VTAM RECEIVE (3600-3614), SEND (3600-3614),
CONVERSE (3600-3614), ISSUE DISCONNECT
(default), ISSUE PASS

3600 BTAM non-VTAM RECEIVE (3600 BTAM), SEND (3600 BTAM),
CONVERSE (3600 BTAM), ISSUE RESET

14. CICS Distributed Transaction Programming Guide.

420 CICS TS for OS/390: CICS Application Programming Guide

Table 32. Terminal control commands by device type (continued)

Device group
name

Access methods Commands applicable

3650 interpreter VTAM RECEIVE (3650), SEND (3650 interpreter),
CONVERSE (3650 interpreter), ISSUE DISCONNECT
(default), ISSUE EODS, ISSUE LOAD, ISSUE PASS

3650-3270 VTAM RECEIVE (3650), SEND (3650-3270), CONVERSE
(3650-3270), ISSUE DISCONNECT (default), ISSUE
ERASEAUP, ISSUE PASS, ISSUE PRINT

3650-3653 VTAM RECEIVE (3650), SEND (3650-3653), CONVERSE
(3650-3653), ISSUE DISCONNECT (default), ISSUE
PASS

3650-3680 VTAM RECEIVE (3650), RECEIVE (3790 full function or
inquiry), SEND (3650-3680), SEND (3790 full
function or inquiry), CONVERSE(3650-3680), ISSUE
DISCONNECT (default), ISSUE PASS

3735 non-VTAM RECEIVE (3735), SEND (3735), CONVERSE (3735),
ISSUE DISCONNECT (default), ISSUE RESET

3740 non-VTAM RECEIVE (3740), SEND (3740), CONVERSE (3740),
ISSUE DISCONNECT (default), ISSUE ENDFILE,
ISSUE ENDOUTPUT, ISSUE RESET

3767 VTAM RECEIVE (3767), SEND (3767), CONVERSE (3767),
ISSUE DISCONNECT (default), ISSUE PASS, WAIT
SIGNAL

3770 VTAM RECEIVE (3770), SEND (3770), CONVERSE (3770),
ISSUE DISCONNECT (default), ISSUE PASS, WAIT
SIGNAL

3790 full function
or inquiry

VTAM RECEIVE (3790 full function or inquiry), SEND (3790
full function or inquiry), CONVERSE (3790 full
function or inquiry), ISSUE DISCONNECT (default),
ISSUE PASS, WAIT SIGNAL

3790 3270-display VTAM RECEIVE (3790 3270-display), SEND (3790
3270-display), CONVERSE (3790 3270-display),
ISSUE DISCONNECT (default), ISSUE ERASEAUP,
ISSUE PASS, ISSUE PRINT

3790 3270-printer VTAM SEND (3790 3270-printer), ISSUE DISCONNECT
(default), ISSUE ERASEAUP, ISSUE PASS

3790 SCS VTAM SEND (3790 SCS), ISSUE DISCONNECT (default),
ISSUE PASS

LU type 4 VTAM RECEIVE (LU type 4), SEND (LU type 4),
CONVERSE (LU type 4), ISSUE DISCONNECT
(default), ISSUE PASS, WAIT SIGNAL

Outboard
controllers (batch
data interchange)

VTAM ISSUE ABORT, ISSUE ADD, ISSUE END, ISSUE
ERASE, ISSUE NOTE, ISSUE QUERY, ISSUE
RECEIVE, ISSUE REPLACE, ISSUE SEND, ISSUE
WAIT

System/3 non-VTAM RECEIVE (System/3), SEND (System/3),
CONVERSE (System/3)

System/7 non-VTAM RECEIVE (System/7), SEND (System/7),
CONVERSE (System/7), ISSUE DISCONNECT
(default), ISSUE RESET

Chapter 30. Terminal control 421

Table 32. Terminal control commands by device type (continued)

Device group
name

Access methods Commands applicable

All others VTAM RECEIVE (VTAM default), SEND (VTAM default),
CONVERSE (VTAM default), ISSUE PASS

All others non-VTAM RECEIVE (non-VTAM default), SEND (non-VTAM
default), CONVERSE (non-VTAM default)

Finding out about your terminal
Some applications must support more than one type of terminal, and sometimes
the types are sufficiently different that they require separate code. If you are
writing such a program, and you need to determine what sort of terminal it is
currently communicating with, you can use the ASSIGN command to find out.

ASSIGN returns a variety of information about the executing task, including a
number of fields that describe its principal facility. Table 33 lists the ones that relate
directly to terminal control operations. There are other ASSIGN options that relate
to BMS and to other aspects of the task. You can find details on all ASSIGN
options in the CICS Application Programming Reference manual. The “terminal” cited
in column 2 of the table is always the principal facility of the task.

Table 33. ASSIGN command options for terminals

ASSIGN option Information returned

ALTSCRNHT
ALTSCRNWD

The alternate height and width of the terminal screen (from its
terminal definition); see also SCRNHT and SCRNWD

APLKYBD Whether terminal has an APL keyboard

APLTEXT Whether terminal has the APL text feature

BTRANS Whether terminal has background transparency capability

COLOR Whether terminal has extended color capability

DEFSCRNHT
DEFSCRNWD

The default height and width of the terminal screen (from its
terminal definition); see also SCRNHT and SCRNWD

DELIMITER The data-link control character for the terminal (for 3600 terminals
only)

DESTID
DESTIDLENGTH

The identifier of the outboard destination and its length (for BDI
operations only)

DSSCS Whether the terminal is an SCS data stream device

DS3270 Whether the terminal is a 3270 data stream device

EXTDS Whether the terminal supports “query structured field” orders

EWASUPP Whether the terminal supports “erase write alternate” orders (i.e. has
alternate screen size capability)

FACILITY The 4-character identifier of the terminal

FCI The type of principal facility associated with the task (terminal,
queue, and so on)

GCHARS
GCODES

The graphic character set global identifier and the code page global
identifier associated with the terminal

HILIGHT Whether the terminal has extended highlight capability

KATAKANA Whether the terminal supports Katakana

LANGINUSE The 3-character mnemonic

422 CICS TS for OS/390: CICS Application Programming Guide

Table 33. ASSIGN command options for terminals (continued)

ASSIGN option Information returned

MSRCONTROL Whether the terminal supports magnetic slot reader control

NATLANGINUSE The national language in use for the current task

NETNAME The 8-character identifier of the terminal in the VTAM network

NUMTAB Number of tabs required to position the print element in the correct
passbook area (for 2980s only)

OPID
OPCLASS

Operator identifier code and operator class of user signed on at
terminal

OUTLINE Whether the terminal has field outlining capability

PARTNS Whether the terminal supports screen partitions

PS Whether the terminal has programmed symbols capability

SCRNHT
SCRNWD

Height and width of the terminal screen for the current task

SIGDATA SIGNAL data received from the terminal

SOSI Whether the terminal has mixed EBCDIC/double-byte character set
capability

STATIONID
TELLERID

Station and teller identifier of the terminal (for 2980s only)

TERMCODE Type and model number of the terminal

TERMPRIORITY Terminal priority value

TEXTKYBD Whether the terminal has the TEXTKYBD feature

TEXTPRINT Whether the terminal has the TEXTPRINT feature

UNATTEND Whether the terminal is unattended

USERID
USERNAME
USERPRIORITY

The 8-character identifier, 20-character name and priority of the user
signed on at the terminal

VALIDATION Whether the terminal has validation capability

You can also use the INQUIRE TERMINAL command to find out about your own
terminal or any other terminal. INQUIRE TERMINAL returns information from the
terminal definition, whereas ASSIGN describes the use of that terminal in the
current task. For many options, however, particularly the hardware characteristics,
the information returned is the same. INQUIRE TERMINAL is described in the
CICS System Programming Reference manual.

EIB feedback on terminal control operations
CICS reports the results of processing terminal control commands, including those
generated by BMS, in the EIB. Because of the complexity of terminal operations,
many EIB fields are specific to terminal commands. Those that apply to the
principal facility are listed in Table 34. (Other fields relate only to LU type 6.1,
APPC and MRO operations; see the CICS Application Programming Reference manual
for programming information about these.)

EIB fields are posted when CICS returns control to your task, and they always
describe the most recent command to which they apply. This means that if you are

Chapter 30. Terminal control 423

conducting program-to-program communication over an alternate facility and
using your principal facility, you need to check the EIB before results from one
overlay those of the other.

It also means that when a task is initiated by unsolicited input from the terminal,
or by a RETURN IMMEDIATE in the previous task at the same terminal, the EIB
fields that describe the input are not set at task start. You must issue a RECEIVE to
gain access to the input and post the EIB fields.

Note: If you are interested only in the EIB values and not the data itself, omit both
the INTO and SET options from your RECEIVE.

Here are the fields that apply to the principal facility:

Table 34. EIB fields that apply to terminal control commands

Field Contents

EIBAID The attention identifier (AID) from the last input operation (3270s only, see
“The AID” on page 319)

EIBATT Whether the input contains attach header data (an attach FMH)

EIBCOMPL Whether the RECEIVE command just issued used all the input data, or
more RECEIVEs are required (see “Chaining output data” on page 425)

EIBCPOSN Cursor position at time of last input operation (3270s only)

EIBEOC Whether an end-of-chain indicator appeared in the input from the last
RECEIVE

EIBFMH Whether user data just received or retrieved contains an FMH

EIBFREE Whether the facility just used has been freed

EIBRCODE,
EIBRESP,
EIBRESP2

CICS response code values from the previously issued command
Note: For output commands in which transmission can be deferred, these
values reflect only the initial CICS processing of the command, not the
eventual transmission (see “Terminal waits” on page 415).

EIBSIG Whether the terminal has sent a SIGNAL

EIBTRMID (CICS) identifier of the terminal

VTAM considerations
Under VTAM, communication with logical units is governed by the conventions
(protocols) which vary with the type of logical unit. This section describes the
options provided by CICS to enable applications to conform to and make best use
of these protocols,

The subsystem guides listed in “Where to find more information” on page 304
explain which protocols apply to which logical units.

Chaining input data
As noted earlier, some SNA devices segment long input messages for transmission.
Each individual segment is called a request unit (RU), and the entire logical
message is called a chain. CICS provides an option in the terminal definition,
BUILDCHAIN, that governs who assembles the chain. If the BUILDCHAIN value
for the terminal is YES, CICS assembles the chain and presents the entire message
to the program in response to a single RECEIVE command. This choice ensures
that the whole chain is complete and available before it is presented to the
application.

424 CICS TS for OS/390: CICS Application Programming Guide

If BUILDCHAIN=NO, the application assembles the chain. CICS provides one RU
for each RECEIVE. The application can tell when it has received the last RU in the
chain, because CICS raises the EOC (end-of-chain) condition at that time. CICS
raises this condition even when there is only one RU in the chain, or when it
assembles the chain, or when the input is from a terminal that does not support
inbound chaining, like a 3270 display. An EOC condition is not considered an
error; the CICS default action when it occurs is to ignore the condition.

EOC may occur simultaneously with either the EODS (end-of-data-set) or INBFMH
(inbound-FMH) conditions, or both. Either condition takes precedence over EOC in
determining where control goes if both it and EOC are the subject of active
HANDLE CONDITION commands.

Chaining output data
VTAM supports the chaining of outbound as well as inbound terminal data. If the
length of an output message exceeds the outbound RU size, and the terminal
supports outbound chaining, CICS breaks the message into RU-size segments and
transmits them separately.

Your application can take advantage of the fact that chaining is permitted by
passing a single output message to CICS bit by bit across several SEND
commands. To do this, you specify the CNOTCOMPL (“chain not complete”)
option on each SEND except the one that completes the message. (Your message
segments do not have to be any particular length; CICS assembles and transmits as
many RUs as are required.) The PROFILE definition under which your transaction
is running must specify CHAINCONTROL=YES in order for you to do this.

Note: Options that apply to a complete logical message (that is, the whole chain)
must appear only on the first SEND command for a chain. These include
FMH, LAST, and, for the 3601, LDC.

Handling logical records
As noted earlier, some devices block input messages and send multiple inputs in a
single transmission. CICS allows you to specify whether CICS or the application
should deblock the input. The choice is expressed in the LOGREC option of the
PROFILE under which the current transaction is executing.

With LOGREC (NO), CICS provides the entire input message in response to a
RECEIVE (assuming the input is not chained or BUILDCHAIN=YES). The user is
responsible for deblocking the input. If BUILDCHAIN=NO, a RECEIVE retrieves
one RU of the chain at a time. In general, logical records do not span RUs, so that
a single RU contains one or more complete logical records. The exception is LU
type 4 devices, where a logical record may start in one RU and continue in
another; for this reason, BUILDCHAIN=YES is recommended if you do your own
deblocking for these devices.

If the PROFILE specifies LOGREC (YES), CICS provides one logical record in
response to each RECEIVE command (whether or not CICS is assembling input
chains).

If an RU contains more than one logical record, the records are separated by new
line (NL) characters, X'15', interrecord separators (IRS characters), X'1E', or
transparent (TRN) characters, X'35'. If NL characters are used, they are not
removed when the data is passed to the program and appear at the end of the
logical record. If IRS characters are used, however, they are removed. If the

Chapter 30. Terminal control 425

delimiter is a transparent character, the logical record can contain any characters,
including NL and IRS, which are considered normal data in transparent mode. The
terminating TRN is removed, however. CICS limits logical records separated by
TRNs to 256 characters.

Response protocol
Under VTAM, CICS allows the use of either definite response or exception
response protocol for outbound data.

Under exception response, a terminal acknowledges a SEND only if an error
occurred. If your task is using exception response, CICS does not wait for the last
SEND in the task (which may be the only SEND) to complete before terminating
your task. Consequently, if an error does occur, it may not be possible to report it
to your task. When this happens, the error is reported to a CICS-supplied task
created for the purpose.

Definite response requires that the terminal acknowledge every SEND, and CICS
does not terminate your task until it gets a response on the last SEND. Using
definite response protocol has some performance disadvantages, but it may be
necessary in some applications.

The MSGINTEG option of the PROFILE under which a task is running determines
which response mode is used. However, if you select MSGINTEG (NO) (exception
response), you can still ask for definite response on any particular SEND by using
the DEFRESP option. In this way, you can use definite response selectively, paying
the performance penalty only when necessary.

Using function management headers
SNA architecture defines a particular type of header field that accompanies some
messages, called a function management header (FMH). It conveys information
about the message and how it should be handled. For some logical units, use of an
FMH is mandatory, for others it is optional, and in some cases FMHs cannot be
used at all. In particular, FMHs do not apply to LU type 2 and LU type 3
terminals, which are the most common 3270 devices.

The subsystem guides listed in “Where to find more information” on page 304 tell
you which devices accept or require FMHs, and exactly how to format them. FMH
data must conform to SNA format specifications; otherwise ATCY abends or
unpredictable results can occur.

Inbound FMH
When an FMH is present in an input message, CICS consults the PROFILE
definition under which the transaction is executing to decide whether to remove it
or pass it on to the application program that issued the RECEIVE. The PROFILE
can specify that no FMHs are to be passed, that only the FMH indicating the end
of the data set should be passed, or that all FMHs are to be passed. There is also
an option that causes the FMH to be passed to the batch data interchange
program.

If an FMH is present, it occupies the initial bytes of the input message; its length
varies by device type. CICS sets the EIBFMH field in the EIB on (X'FF') to tell you
that one is present, and it also raises the INBFMH condition, which you can detect
through a HANDLE CONDITION command or by testing the RESP value.

426 CICS TS for OS/390: CICS Application Programming Guide

Outbound FMH
On output, the FMH can be built by the application program or by CICS. If your
program supplies the FMH, you place it at the front of your output data and
specify the FMH option on your SEND command. If CICS is to build the FMH,
you reserve the first three bytes of the message for CICS to fill in and omit the
FMH option. CICS builds an FMH only for devices that require one; you must
supply it for devices for which it is optional.

Preventing interruptions (bracket protocol)
Brackets are an SNA protocol for ensuring that a conversation between two LUs is
not interrupted by a request from a third LU. CICS uses bracket protocol to
prevent interruption of the conversation between a CICS task and its principal
facility for the duration of the task. If the task has an alternate facility, bracket
protocol is used there also, for the same reason. The logical unit begins the bracket
if it sends unsolicited input to initiate the task, and CICS begins the bracket if it
initiates the task automatically. CICS ends the bracket at task end, unless the
IMMEDIATE option appears on the final RETURN command. RETURN
IMMEDIATE lets you initiate another task at your principal facility without
allowing it to enter input. CICS does this by not ending the bracket between the
ending task and its successor when brackets are in use.

CICS requires the use of brackets for many devices under VTAM. For others, the
use of brackets is determined by the value of the BRACKET option in the terminal
definition. In general, bracket protocol is transparent to an application program,
but it is still possible to optimize flows related to bracket protocol using the LAST
option on the SEND command. If you know that a particular SEND is the last
command for the terminal in a task, you can improve performance by adding the
LAST option. LAST allows VTAM to send the “end-of-bracket” indicator with the
data and saves a separate transmission to send it at task end. If you are sending
the last output in a program-built chain (using CNOTCOMPL), LAST must be
specified on the first SEND for the chain in order to be effective.

If your task has significant work to do or may experience a significant delay after
its last SEND, you may want to issue a FREE command. FREE releases the
terminal for use in another task.

Sequential terminal support
One of the many types of terminal that CICS supports is not really a terminal at
all, but a pair of sequential devices or files simulating a terminal. One of the pair
represents the input side of the terminal, and might be a card reader, a spool file or
a SAM file on tape or DASD. The other represents the output, and might be a
printer, a punch, spool or SAM file. Many device-type combinations are allowed,
and either of the pair can be missing; that is, you can have an input-only or
output-only sequential terminal.

You read from and write to the devices or files that constitute a sequential terminal
with terminal control commands, specifically RECEIVE, SEND, and CONVERSE.
(BMS supports sequential terminals too; see “Special options for non-3270
terminals” on page 363.)

The original purpose of sequential terminal support was to permit application
developers to test online code before they had access to real terminals. This
requirement rarely occurs any more, but sequential terminals are still useful for:

Chapter 30. Terminal control 427

Printing
See “CICS API considerations” on page 443. Sequential terminals are
particularly useful for output that is sometimes directed to a low-speed
CICS printer, for which BMS or terminal control commands are required,
and sometimes directed to a high-speed system printer (spool or transient
data commands). If you define the high-speed printer as a sequential
terminal, you can use terminal control or BMS commands, and you can use
the same code for both types of printers. (If there are differences in the
device data streams, you need to use BMS for complete transparency.)

Regression testing
Tests run from sequential terminals leave a permanent record of both input
and output. This encourages systematic and verifiable initial testing. Also,
it allows you to repeat tests after modifications, to ensure that a given set
of inputs produces the same set of outputs after the change as before.

Initialization
Some installations use a sequential terminal to execute one or more
initialization transactions, in preference to program list table programs.
Transactions initiated from a sequential terminal begin execution as soon as
the terminal is in service, and they continue as quickly as CICS can process
them until the input is exhausted. Hence the inputs from a sequential
terminal can be processed immediately after startup, if the sequential
terminal is initially in service, at some later time (when it is put in service)
or even as part of a controlled shutdown.

Coding considerations for sequential terminals
The input data submitted from a sequential terminal must be in the form in which
it would come from a telecommunication device. For example, the first record
usually starts with a transaction code, to tell CICS what transaction to execute. The
transaction code must start in the first position of the input, just as it must on a
real terminal. Note that this limits the ability to test applications that require input
in complex formats. For example, there is no provision for expressing a formatted
3270 input stream as a sequential file, because of all the complex control sequences.
However, you can use an unformatted 3270 data stream (or any other similar
stream) for input, and you can still use BMS to format your output.

When you build the input file, you place an end-of-data indicator (EODI) character
after each of your input records. The EODI character is defined in the system
initialization table; the default value is a backslash (‘\’, X'E0'), but your installation
may have defined some other value.

CICS observes only your EODI characters in processing the input stream; it pays
no attention to record structure of the input file or device, so that one of your
inputs can span records in the input file. Similarly, you do not start each input on
a new physical record, but immediately after the EODI terminating the previous
one.

The length of an input record (the number of characters between EODIs) should
not exceed the size of the input buffer (the INAREAL value in the LINE
component of the sequential terminal definition). If it does, the transaction that
attempts to RECEIVE the long record abends, and CICS positions the input file
after the next EODI before resuming input processing.

An end-of-file marker in the input also acts as an EODI indicator. Any RECEIVE
command issued after end-of-file is detected also causes an abend.

428 CICS TS for OS/390: CICS Application Programming Guide

Print formatting
If the definition of a sequential terminal indicates that the output half is a line
printer, you can write multiple lines of output with a single SEND. For this type of
device, CICS breaks your output message into lines after each new line character
(X'15') or after the number of characters defined as the line length, whichever
occurs first. Line length is defined by the LPLEN value in the terminal definition.
Each SEND begins a new line.

GOODNIGHT convention
CICS continues to initiate transactions from a sequential terminal until it (or the
transactions themselves) have exhausted all the input or until the terminal goes out
of service. To prevent CICS from attempting to read beyond the end of the input
file (which causes a transaction abend), the last transaction executed can put the
terminal out of service after its final output. Alternatively (and this is usually
easier), the last input can be a CESF GOODNIGHT transaction, which signs the
terminal off and puts it out of service. You cannot normally enter further input
from a sequential terminal once CICS has processed its original input, without
putting it out of service.

TCAM considerations
TCAM allows multiple applications to share a single terminal network, much as
VTAM allows multiple applications to share an SNA network. Many TCAM
applications are entirely user-written, but CICS and TSO (the time-sharing option
of MVS) can also be TCAM applications.

TCAM originally supported only the binary synchronous (BSC) and asynchronous
(start-stop) devices that BTAM does; applications using these terminals do so
through the ‘DCB’ interface of TCAM. TCAM now includes support for SNA
devices; applications access these terminals through the ‘ACB’ interface of TCAM.

Coding for the DCB interface
CICS allows direct use of the DCB interface of TCAM. Under this interface, CICS
sees a TCAM terminal as a pair of queues—one from which it reads input
messages, and a second to which it sends output messages—very similar to a
sequential terminal. TCAM does all the management of the actual terminals,
through a “message control program” (MCP) that you must supply. The
requirements for an MCP and full details of the CICS-TCAM interface are
described in the CICS Intercommunication Guide.

Although the CICS-TCAM interface screens you from some hardware details, it
does require that the data streams sent to and from the terminal be in the correct
form for the device. Therefore, you need to format the data stream according to the
device type, just as you do when you use terminal control commands for a
CICS-attached device. To do this, you use essentially the same terminal control
commands for TCAM-managed terminals as for BTAM-managed terminals of the
same type. That is, you use Table 31 on page 418 and Table 32 on page 420 in the
same way as you would for a terminal managed locally or remotely by CICS.

There are some exceptions to the commands and options you can use, however.
Most arise from the fact that you are writing to and reading from the terminal
indirectly, through queues, and may be sharing the terminal with other
applications outside of CICS. Specifically:
v You cannot use the BUFFER option of the RECEIVE command.
v The conditions ENDINPT and EOF do not occur.
v The ISSUE RESET command cannot be used.

Chapter 30. Terminal control 429

v The ISSUE COPY and ISSUE PRINT commands for the 3270 cannot be used.

Other restrictions may be imposed by the particular MCP associated with your
terminal, and you must also observe any similar rules that exist at your
installation.

Sending to another terminal
One option on SEND and CONVERSE commands is available only for TCAM
terminals, and it can be very useful, particularly for message switching. This is the
DEST option. You can use it to SEND to a terminal other than the principal facility
of your task, provided that terminal is a TCAM terminal. As in the case of a
TCAM principal facility, you need to ensure that you send the data in the correct
format for the hardware and observe any restrictions imposed by its MCP.

Coding for the ACB interface
CICS does not support the ACB interface of TCAM. To use a terminal through this
interface, you need to do so through an older version of CICS, as explained in
“Access method support” on page 411. In general, you use the same terminal
control commands and options for such a device as you would if it were attached
through VTAM. However, the path between your CICS application program and
the terminal is much more complex, and consequently there are many more
programming possibilities. You should consult the CICS Intercommunication Guide
and your own systems staff before designing applications for the ACB interface.

Batch data interchange
Many installations have a host computer and database at a central location, linked
to other computers at branch offices. They do not necessarily contain CICS, but
they can communicate with CICS in the host system. The CICS batch data
interchange program provides for communication between an application program
and a named data set (or destination) that is part of a batch data interchange
logical unit in an outboard controller, or with a selected medium on a batch logical
unit or an LU type 4 logical unit. This medium indicates the required device such
as a printer or console.

The term “outboard controller” is a generalized reference to a programmable
subsystem, such as the IBM 3770 Data Communication System, the IBM 3790 Data
Communication System, or the IBM 8100 System running DPCX, which uses SNA
protocols. (Details of SNA protocols and the data sets that can be used are given in
CICS/OS/VS IBM 3767/3770/6670 Guide and CICS/OS/VS IBM 3790/3780/8100 Guide.)
Figure 74 on page 431 gives an overview of batch data interchange.

430 CICS TS for OS/390: CICS Application Programming Guide

The following batch data interchange commands are provided:

ISSUE QUERY
Initiate transfer of a data set to the CICS application program.

ISSUE RECEIVE
Read a record from a data set or read data from an input medium.

ISSUE SEND
Transmit data to a named data set or to a selected medium.

ISSUE ADD
Add a record to a data set.

ISSUE REPLACE
Update (replace) a record in a data set.

ISSUE ERASE
Delete a record from a data set.

ISSUE END
Terminate processing of a data set.

ISSUE ABORT
Terminate processing of a data set abnormally.

ISSUE NOTE
Request the next record number in a data set.

ISSUE WAIT
Wait for an operation to be completed.

Where the controller is an LU type 4 logical unit, only the ISSUE ABORT, ISSUE
END, ISSUE RECEIVE, ISSUE SEND, and ISSUE WAIT commands can be used.

Where the data set is a DPCX/DXAM data set, only the ISSUE ADD, ISSUE
ERASE, and ISSUE REPLACE commands can be used.

Refer to “Chapter 20. Dealing with exception conditions” on page 231 for
information about how to deal with any exception conditions that occur during
execution of a batch data interchange command.

System with CICS

CICS

Batch

Interchange

Program

Programmable

subsystem

Card

Device

Printer

Term ina ls

Data can be moved

across this link

Figure 74. CICS batch data interchange

Chapter 30. Terminal control 431

Destination selection and identification
All batch data interchange commands except ISSUE RECEIVE include options that
specify the destination. This is either a named data set in a batch data interchange
logical unit, or a selected medium in a batch logical unit or LU type 4 logical unit.

Selection by named data set
The DESTID and DESTIDLENG options must always be specified, to supply the
data set name and its length (up to a maximum of eight characters). For
destinations having diskettes, the VOLUME and VOLUMELENG options may be
specified, to supply a volume name and its length (up to a maximum of six
characters); the volume name identifies the diskette that contains the data set to be
used in the operation. If the VOLUME option is not specified for a multidiskette
destination, all diskettes are searched until the required data set is found.

Selection by medium
As an alternative to naming a data set as the destination, various media can be
specified by means of the CONSOLE, PRINT, CARD, or WPMEDIA1–4 options.
These media can be specified only in an ISSUE ABORT, ISSUE END, ISSUE SEND,
or ISSUE WAIT command.

Definite response
CICS uses terminal control commands to carry out the functions specified in batch
data interchange commands. For those commands that cause terminal control
output requests to be made, the DEFRESP option can be specified. This option has
the same effect as the DEFRESP option of the SEND terminal control command;
that is, to request a definite response from the outboard controller, irrespective of
the specification of message integrity for the CICS task (by the system
programmer). The DEFRESP option can be specified for the ISSUE ADD, ISSUE
ERASE, ISSUE REPLACE, and ISSUE SEND commands.

Waiting for function completion
For those batch data interchange commands that cause terminal control output
requests to be made, the NOWAIT option can be specified. This option has the
effect of allowing CICS task processing to continue; unless the NOWAIT option is
specified, task activity is suspended until the batch data interchange command is
completed. The NOWAIT option can be specified only on the ISSUE ADD, ISSUE
ERASE, ISSUE REPLACE, and ISSUE SEND commands.

After a batch data interchange command with the NOWAIT option has been
issued, task activity can be suspended, by the ISSUE WAIT command, at a suitable
point in the program to wait for the command to be completed.

432 CICS TS for OS/390: CICS Application Programming Guide

Chapter 31. CICS support for printing

This chapter explains how to work with both CICS and non-CICS printers in the
following information sections:
v “Formatting for CICS printers”
v “CICS printers: getting the data to the printer” on page 440
v “Non-CICS printers” on page 443
v “Printing display screens” on page 445

CICS does not provide special commands for printing, but there are options on
BMS and terminal control commands that apply only to printers, and for some
printers you use transient data or SPOOL commands. We cover the factors that
determine the API and the choices you have in the sections that follow.

There are two issues associated with printing that do not usually occur in other
types of end-user communication:
1. There are additional formatting considerations, especially for 3270 printers
2. The task that needs to print may not have direct access to the printer.

In addition, there are two distinct categories of printer, which have different
application programming interfaces:

CICS printers
Printers defined as terminals to CICS and managed directly by CICS. They
are usually low-speed devices located near the end users, suitable for
printing on demand of relatively short documents. The 3289 and 3262 are
usually attached as CICS printers.

Non-CICS printers
Printers managed by the operating system or another application. These
printers are usually high-speed devices located at the central processing
site, appropriate for volume printing that does not have to be available
immediately. They may also be advanced function or other printers that
require special connections, management, or sharing.

Because of the differences in the programming interface, we discuss the two
groups separately, although there are formatting and access issues in both cases.
We describe CICS printers first, followed by non-CICS printers; the last section of
this chapter covers a special category of printing, the copying of display screens to
printers.

Formatting for CICS printers
The application programming interface for writing to a printer terminal is
essentially the same as for writing to a display. (This section does not discuss the
problem of arranging that your task have the printer as its principal facility; this is
discussed in “CICS printers: getting the data to the printer” on page 440.)

You can use terminal control commands (SENDs) for any CICS printer, and most
of them are supported by BMS too (SEND MAP, SEND TEXT, and SEND
CONTROL). “BMS support levels” on page 324 lists the devices that BMS supports.
For printers that are components of an outboard controller or LU Type 4, you can
use batch data interchange (BDI) commands as well as terminal control and BMS.
BDI commands are described in “Batch data interchange” on page 430.

© Copyright IBM Corp. 1989, 2000 433

The choice between using BMS and terminal control is based on the same
considerations as it is for a display terminal. Like displays, printers differ widely
from one another, both in function and in the implementation of that function, and
the differences are reflected in the data streams and device controls they accept.

When you use terminal control commands, your application code must format the
output in the manner required by the printer. For line printers and similar devices,
formatting has little programming impact. For high-function printers, however, the
data stream often is very complex; formatting requires significant application code
and introduces device dependencies into program logic.

For some of these terminals, coding effort is greatly reduced by using BMS, which
relieves the programmer of creating or even understanding device data streams.
BMS also removes most data stream dependencies from the application code so
that the same program can support many types of printers, or a mixture of printers
and displays, without change. BMS does not remove all device dependencies and
imposes a few restrictions on format. It also involves extra path length; the amount
depends on how many separate BMS requests you make, the complexity of your
requests, and the corresponding path length avoided in your own program.

3270 printers
Most of the additional format controls for printers that BMS provides are for a
specific type of CICS printer, the 3270 printer. A 3270 printer is any printer that
accepts the 3270 data stream— it is the hardcopy equivalent of a 3270 display. It
has a page buffer, corresponding to the display buffer of a 3270 display device.
(See “The 3270 buffer” on page 308 for an introductory discussion of the 3270 data
stream.) We discuss 3270 printers first and defer the simpler, non-3270 printers,
until “Non-3270 CICS printers” on page 438.

A 3270 printer accepts two different types of formatting instructions: buffer control
orders and print format orders. Buffer control orders are executed as they are
received by the control unit, and they govern the way in which the buffer is filled.
These are same orders that are used to format a 3270 display screen. We have
already described some of the important ones in “Orders in the data stream” on
page 313. For example, SBA (set buffer address) tells the control unit where in the
buffer to place the data that follows, SF (start field), which signals an attributes
byte and possibly field data, and so on. You can find a complete list in the IBM
3270 Information Display System Data Stream Programmer’s Reference manual.

In contrast, print format orders are not executed when they are received, but
instead are stored in the buffer along with the data. These orders—NL (new line),
FF (form feed), and so on—are interpreted only during a print operation, at which
time they control the format of the printed output. (They have no effect on
displays, other than to occupy a buffer position; they look like blanks on the
screen.)

If you are writing to a 3270 printer, you can format with either buffer control
orders or print format orders or a mixture of both. We show an example of
formatting with buffer control orders in “Outbound data stream sample” on
page 315. If you send this same data stream to a 3270 printer, it prints an image of
the screen shown in Figure 59 on page 316. You might choose to format printed
output with buffer control orders so that you can send the same data stream to a
display and a printer.

434 CICS TS for OS/390: CICS Application Programming Guide

On the other hand, you might choose to format with print format orders so that
you can send the same stream to a 3270 printer and a non-3270 printer (print
format orders are the same as the format controls on many non-3270 printers). See
the discussion of the NLEOM option on page 436 for more details about this
choice.

Here is a data stream using print format orders that produces the same printed
output as the data stream on page 315, which uses buffer control orders.

Table 35. Example of data stream using print control orders

Bytes Contents Notes

1 X'FF' “Formfeed” (FF) order, to cause printer to space to
a new page.

2-23 blanks 22 blanks to occupy columns 1-22 on first line.

24-33 Car Record Text to be printed, which appears in the next
available columns (23-32) on line 1.

34 X'1515' Two successive “new line” (NL) orders, to position
printer to beginning of third line.

35-80 Employee No: ______ Tag
________ State: __

Text to be printed, starting at first position of line
3.

81 X'19' “End-of-message” (EM) print order, which stops
the printing.

Notice that the field structure is lost when you use print format orders. This does
not matter ordinarily, because you do not use the printer for input. However, even
if you format with print control orders, you might need to use buffer control
orders as well, to assign attributes like color or underscoring to an area of text.

Options for 3270 printers
For BMS, the special controls that apply to 3270 printers take the form of
command options:
v PRINT
v ERASE
v L40, L64, L80 and HONEOM
v NLEOM
v FORMFEED

In terminal control commands, ERASE is also expressed as an option, but the other
controls are expressed directly in the data stream. The IBM CICS/OS/VS 3270 Data
Stream Device Guide and the IBM 3270 Information Display System Data Stream
Programmer’s Reference tell you how to encode them; the discussion that follows
explains what they do.

PRINT option and print control bit
Writing to a 3270 display or printer updates the device buffer. On a display, the
results are reflected immediately on the screen, which is a driven from the buffer.
For a printer, however, there might be no visible effect, because printing does not
occur until you turn on the appropriate bit in the “write control character”. (The
WCC is part of the 3270 data stream; see “Write control character” on page 309.)
For BMS, you turn on the print bit by specifying the PRINT option on a SEND
MAP, SEND TEXT, or SEND CONTROL command, or in the map used with SEND
MAP. If you are using terminal control SENDs, you must turn on the print bit with
the CTLCHAR option.

Chapter 31. CICS support for printing 435

A terminal write occurs on every terminal control SEND, and on every SEND
MAP, SEND TEXT and SEND CONTROL unless you are using the ACCUM or
PAGING options. ACCUM delays writing until a page is full or the logical
message is ended. When you use ACCUM, you should use the same print options
on every SEND command for the same page. PAGING defers the terminal writes
to another task, but they are generated in the same way as without PAGING.

The fact that printing does not occur until the print bit is on allows you to build
the print buffer in stages with multiple writes and to change data or attribute bytes
already in the buffer. That is, you can use the hardware to achieve some of the
effects that you get with the ACCUM option of BMS. The NLEOM option affects
this ability, however; see the discussion below.

ERASE
Like the 3270 display buffer, the 3270 printer buffer is cleared only when you use a
write command that erases. You do this by specifying the ERASE option, both for
BMS and terminal control SENDs. If the printer has the alternate screen size
feature, the buffer size is set at the time of the erase, as it is for a display.
Consequently, the first terminal write in a transaction should include erasing, to set
the buffer to the size required for the transaction and to clear any buffer contents
left over from a previous transaction.

Line width options: L40, L64, L80, and HONEOM
In addition to the print bit, the write control character contains a pair of bits that
govern line length on printing. If you are using terminal control commands, you
use the CTLCHAR option to set these bits. For BMS, the default is the one
produced by the HONEOM option, which stands for “honor end-of-message”.
With this setting, the printer formats according to the buffer control and print
format orders only, stopping printing at the first EM (end-of-message) character in
the buffer. Only if you attempt to print beyond the maximum width for the device
(the platen width) does the printer move to a new line on its own.

However, you also can specify that the line length is a fixed at 40, 64, or 80
characters (the L40, L64 and L80 options, respectively). If you do, the printer
ignores certain print format orders, moves to a new line when it reaches the
specified line size, and prints the entire buffer. The print format orders that are
ignored are NL (new line), CR (carriage return), and EM (end-of-message). Instead
they are simply printed, as graphics.

If you use L40, L64, or L80 under BMS, you should use only the value that
corresponds to the page width in your terminal definition (see “Determining the
characteristics of a CICS printer” on page 439). The reason is that BMS calculates
buffer addresses based on the page size, and these addresses are wrong if you use
a different page width.

NLEOM option
BMS ordinarily uses buffer control orders, rather than print format orders, to
format for a 3270 printer, whether you are using SEND TEXT or SEND MAP.
However, you can tell BMS to use print format orders only, by specifying the
NLEOM option. If you do, BMS formats the data entirely with blanks and NL
(new line) characters, and inserts an EM (end-of-message) character after your
data. NLEOM implies HONEOM. (NLEOM support requires standard BMS; it is
not available in minimum BMS.)

436 CICS TS for OS/390: CICS Application Programming Guide

You might want to do this in order to maintain compatibility with an SCS printer
(print format orders are compatible with the corresponding SCS control characters).
There are also operational differences that might cause you to choose or avoid
NLEOM. They are:

Blank lines: The 3270 printer suppresses null lines during printing. That is, a line
that has no data fields and appears blank on the display screen is omitted when
the same map is sent to a printer. Under BMS, you can force the printed form to
look exactly like the displayed form by placing at least one field on every line of
the screen; use a field containing a single blank for lines that would otherwise be
empty. Specifying NLEOM also has this effect, because BMS uses a new line
character for every line, whether or not there is any data on it.

Multiple sends: With NLEOM, data from successive writes is simply stacked in
the buffer, since it does not contain positioning information. However, BMS adds
an EM (end-of-message) character at the end of data on each SEND with NLEOM,
unless you are using the ACCUM option. When printing occurs, the first EM
character stops the printing, so that only the data from the first SEND with
NLEOM (and any unerased data up to that point in the buffer) gets printed. The
net effect is that you cannot print a buffer filled with multiple SEND commands
with NLEOM unless you use the ACCUM option.

Page width: BMS always builds a page of output at a time, using an internal
buffer whose size is the number of character positions on the page. (See
“Determining the characteristics of a CICS printer” on page 439 for a discussion of
how BMS determines the page size.) If you are using buffer control orders to
format, the terminal definition must specify a page width of 40, 64, 80 or the
maximum for the device (the platen size); otherwise your output might not be
formatted correctly. If you are using NLEOM, on the other hand, the terminal
definition may specify any page width, up to the platen size.

Total page size: If you are using buffer control orders, the product of the number
of lines and the page width must not exceed the buffer size, because the buffer is
used as an image of the page. Unused positions to the right on each line are
represented by null characters. If you use NLEOM, however, BMS does not restrict
page size to the buffer capacity. BMS builds the page according to the page size
defined for the terminal and then compresses the stream using new-line characters
where possible. If the resulting stream exceeds the buffer capacity, BMS uses
multiple writes to the terminal to send it.

FORMFEED
The FORMFEED option causes BMS to put a form feed print format order (X'0C')
at the beginning of the buffer, provided that the printer is defined as capable of
advancing to the top of the form (with the FORMFEED option in the associated
TYPETERM definition). CICS ignores a form feed request for a printer defined
without this feature.

If you issue a SEND MAP using a map that uses position (1,1) of the screen, you
overwrite the order and lose the form feed. This occurs whether you are using
NLEOM or not.

If you use FORMFEED and ERASE together on a SEND CONTROL command, the
results depend on whether NLEOM is present. Without NLEOM, SEND
CONTROL FORMFEED ERASE sends the form feed character followed by an
entire page of null lines. The printer suppresses these null lines, replacing them
with a single blank line. With NLEOM, the same command sends the form feed

Chapter 31. CICS support for printing 437

character followed by one new line character for each line on the page, so that the
effect is a full blank page, just as it is on a non-3270 printer.

PRINTERCOMP option
When you SEND TEXT to a printer, there is one additional option that affects page
size. This is the PRINTERCOMP option, which is specified in the PROFILE
associated with the transaction you are executing, rather than on individual SEND
TEXT commands. (In the default profile that CICS provides, the PRINTERCOMP
value is NO.)

Under PRINTERCOMP(NO), BMS produces printed output consistent with what it
would send to a 3270 display. For the display, BMS precedes the text from each
SEND TEXT command with an attribute byte, and it also starts each line with an
attribute byte. These attribute bytes take space on the screen, and therefore BMS
replaces them with blanks for printers if PRINTERCOMP is NO. If
PRINTERCOMP is YES, BMS suppresses these blanks, allowing you to use the full
width of the printer and every position of the buffer. New line characters that you
embed in the text are still honored with PRINTERCOMP(YES), as they are with
PRINTERCOMP(NO).

You should use PRINTERCOMP(NO) if you can, for compatibility with display
devices and to ensure consistent results if the application uses different printer
types, even though it reduces the usable line width by one position.

Non-3270 CICS printers
A non-3270 printer is any printer that does not accept the 3270 data stream, such
as an SNA character set (SCS) printer. The terminology is somewhat confusing,
because a non-3270 printer can be a 3270-family device, and many devices, like the
3287 and 3262, can be either 3270 printers or SCS (non-3270) printers, depending
on how they are defined at the control unit.

There are special considerations for non-3270 printers, although not so many as for
3270 printers. Non-3270 printers do not have page buffers, and therefore do not
understand buffer control orders. Formatting is accomplished entirely with print
control orders. For compatibility with 3270 printers, BMS formats for them by
constructing an image of a page in memory, and always prints a full page at a
time. However, you can define any size page, provided you do not exceed the
platen width, as there is no hardware buffer involved. BMS transmits as many
times as required to print the page, just as it does for a 3270 printer using the
NLEOM option.

BMS formats for these printers with blanks and NL (new line) characters. It uses
form feed (FF) characters as well if the definition of your terminal indicates form
feed support.

BMS also uses horizontal tabs to format if the terminal definition has the
HORIZFORM option and the map contains HTAB specifications. Similarly, it uses
vertical tabs if the terminal definition specifies VERTICALFORM and your map
includes VTAB. Tab characters can shorten the data stream considerably. If tabs are
used, BMS assumes that the current task, or some earlier one, has already set the
tabs on the printer. On an SCS printer, you set the tabs with a terminal control
SEND command, as explained in the IBM CICS/OS/VS 3270 Data Stream Device
Guide. For other non-3270 printers, you should consult the appropriate device
guide.

438 CICS TS for OS/390: CICS Application Programming Guide

SCS input
SCS printers also have limited input capability, in the form of “program attention”
keys. These keys are not like the PA keys described in “Attention keys” on
page 318, however. Instead they transmit an unformatted data stream consisting of
the characters ‘APAK nn’, where “nn” is the 2-digit PA key number—‘APAK 01’
for PA key 1, for example.

You can capture such input by defining a transaction named ‘APAK’ (APAK is the
transaction identifier, not the TASKREQ attribute value, because SCS inputs do not
look like other PA key inputs.) A program invoked by this transaction can
determine which PA key was pressed by issuing a RECEIVE and numeric positions
of the input.

Determining the characteristics of a CICS printer
If you are writing a program that supports more than one type of CICS printer,
you may need to determine the characteristics of a particular printer. As we
explained in connection with terminals generally, you can use the ASSIGN and
INQUIRE TERMINAL commands for this purpose. Table 33 on page 422 lists the
ASSIGN options that apply to terminals, including several that are specific to
printers.

The INQUIRE TERMINAL options that apply specifically to printers and the
corresponding parameters in the terminal definition are shown in Table 36:

Table 36. INQUIRE TERMINAL options for printers

INQUIRE
option

Source in TERMINAL
or TYPETERM
definition

Description

PAGEHT x of PAGESIZE(x,y) Number of lines per page (for alternate screen
size terminals, reflects default size)

PAGEWD y of PAGESIZE(x,y) Number of characters per line (for alternate
screen size terminals, reflects default size)

DEFPAGEHT x of PAGESIZE(x,y) Number of lines per page in default mode
(alternate screen size terminals only)

DEFPAGEWD y of PAGESIZE(x,y) Number of characters per line in default mode
(alternate screen size terminals only)

ALTPAGEHT x of ALTPAGE(x,y) Number of lines per page in alternate mode
(alternate screen size terminals only)

ALTPAGEWD y of ALTPAGE(x,y) Number of characters per line in alternate
mode (alternate screen size terminals only)

DEVICE DEVICE The device type (see the CICS System
Programming Reference for possible values)

TERMMODEL TERMMODEL The model number of the terminal (either 1 or
2)

BMS page size, 3270 printers
BMS uses both the terminal definition and the profile of the transaction that is
running to determine the page size of a CICS printer. The profile is used when the
terminal has the alternate screen size feature, to determine whether to use default
or alternate size. (The default profile in CICS specifies “default” size for the
screen.) Table 37 on page 440 lists the values used.

Chapter 31. CICS support for printing 439

Table 37. Priority of parameters defining BMS page size. BMS uses the first value in the
appropriate column that has been specified in the terminal definition.

Terminals with
alternate screen size,
using alternate size

Terminals with alternate screen
size, using default size

Terminals without alternate
screen size feature

ALTPAGE PAGESIZE PAGESIZE

ALTSCREEN DEFSCREEN TERMMODEL

DEFSCREEN TERMMODEL (12,80)

TERMMODEL (12,80)

(12,80)

The definition of a “page” is unique to BMS. If you are printing with terminal
control SEND commands, you define what constitutes a page, within the physical
limits of the device, by your print format. If you need to know the buffer size to
determine how much data you can send at once, you can determine this from the
SCRNHT and SCRNWD values returned by the ASSIGN command.

Supporting multiple printer types
When you are writing programs to support printers that have different page sizes,
it is not always possible to keep device dependencies like page size out of the
program. However, BMS helps with this problem in two ways.
1. You can refer to a map generically and have BMS select the map that was

designed for the terminal associated with your task (see the discussion of map
suffixes in “Device-dependent maps: map suffixes” on page 363).

2. If you are using SEND TEXT, BMS breaks the text into lines at word
boundaries, based on the page size of the receiving terminal. You can also
request header and trailer text on each page.

CICS printers: getting the data to the printer
As we noted at the start of the chapter, the second issue that frequently arises in
printing concerns ownership of the printer. Requests for printing often originate
from a user at a display terminal. The task that processes the request and generates
the printed output is associated with the user’s terminal and therefore cannot send
output directly to the printer.

If your task does not own the printer it wants to use, it must create another task,
which does, to do the work. These are the ways to do this:
1. Create the task with a START command.
2. Write to an intrapartition transient data queue that triggers the task.
3. Direct the output to the printer in a BMS ROUTE command.
4. Use the ISSUE PRINT command, if you need only a screen copy, and

conditions suit.

Details on the first three methods follow. Screen copies are covered in “Printing
display screens” on page 445.

Printing with a START command
The first technique for creating the print task is to issue a START command in the
task that wants to print. The command names the printer as the terminal required
by the STARTed task in the TERMID option and passes the data to be printed, or

440 CICS TS for OS/390: CICS Application Programming Guide

instructions on where to find it, in the FROM option. START causes CICS to create
a task whose principal facility is the designated terminal when that terminal is
available.

The program executed by the STARTed task, which you must supply, retrieves the
data to be printed (using a RETRIEVE command), and then writes it to its terminal
(the printer) with SEND, SEND MAP, or SEND TEXT commands. For example:

The task associated with the printer loops until it exhausts all the data sent to it, in
case another task sends data to the same printer before the current printing is
done. Doing this saves CICS the overhead of creating new tasks for outputs that
arrive while earlier ones are still being printed; it does not change what finally gets
printed, as CICS creates new tasks for the printer as long as there are unprocessed
START requests.

Printing with transient data
The second method for creating the print task involves transient data. A CICS
intrapartition transient data queue can be defined to have a property called a
“trigger”. When the number of items on a queue with a trigger reaches the trigger
value, CICS creates a transaction to process the queue. The queue definition tells
CICS what transaction this task executes and what terminal, if any, it requires as its
principal facility.

You can use this mechanism to get print data from the task that generates it to a
task that owns the printer. A transient data queue is defined for each printer where
you direct output in this way. A task that wants to print puts its output on the
queue associated with the required printer (using WRITEQ TD commands). When
enough items are on the queue and the printer is available, CICS creates a task to
process the queue. (For this purpose, the trigger level of “enough” is usually
defined as just one item.) The triggered task retrieves the output from the queue
(with READQ TD commands) and writes it to its principal facility (the printer),
with SEND, SEND MAP, or SEND TEXT commands.

As in the case of a STARTed printer task, you have to provide the program
executed by the task that gets triggered. The sample programs distributed with
CICS contain a complete example of such a program, called the “order queue print
sample program”. The CICS 4.1 Sample Applications Guide describes this program in
detail, but the essentials are as follows:

...
(build output in OUTAREA, formatted as expected by the STARTed task)

EXEC CICS START TRANSID(PRNT) FROM(OUTAREA) TERMID(PRT1)
LENGTH(OUTLNG) END-EXEC....

Figure 75. Task that wants to print (on printer PRT1)

...
EXEC CICS RETRIEVE INTO(INAREA) LENGTH(INLNG) END-EXEC....

(do any further data retrieval and any formatting required)
EXEC CICS SEND TEXT FROM(INAREA) LENGTH(INLNG) ERASE PRINT END-EXEC....

(repeat from the RETRIEVE statement until a NODATA condition arises)

Figure 76. STARTed task (executing transaction PRNT)

Chapter 31. CICS support for printing 441

Task that wants to print (on printer PRT1):
...

(do any formatting or other processing required)
EXEC CICS WRITEQ TD QUEUE(‘PRT1’) FROM(OUTAREA)

LENGTH(OUTLNG) END-EXEC....

Task that gets triggered:
...
EXEC CICS ASSIGN QNAME(QID) END-EXEC.
EXEC CICS READQ TD QUEUE(QID) INTO(INAREA) LENGTH(INLNG)

RESP(RESPONSE) END-EXEC.
IF RESPONSE = DFHRESP(QZERO) GO TO END-TASK....

(do any error checking, further data retrieval and formatting required)
EXEC CICS SEND FROM(INAREA) LENGTH(INLNG) END-EXEC....

(repeat from READQ command)

The print task determines the name of its queue using an ASSIGN command
rather than a hard-coded value so that the same code works for any queue
(printer).

Like its START counterpart, this task loops through its read and send sequence
until it detects the QZERO condition, indicating that the queue is empty. While this
is just an efficiency issue with the STARTed task, it is critical for transient data;
otherwise unprocessed queue items can accumulate under certain conditions. (See
“Automatic transaction initiation (ATI)” on page 497 for details on the creation of
tasks to process transient data queues with triggers.)

If you use this technique, you need to be sure that output to be printed as a single
unit appears either as a single item or as consecutive items on the queue. There is
no fixed relationship between queue items and printed outputs; packaging
arrangements are strictly between the programs writing the queue and the one
reading it. However, if a task writes multiple items that need to be printed
together, it must ensure that no other task writes to the queue before it finishes.
Otherwise the printed outputs from several tasks may be interleaved.

If the TD queue is defined as recoverable, CICS prevents interleaving. Once a task
writes to a recoverable queue, CICS delays any other task that wants to write until
the first one commits or removes what it has written (by SYNCPOINT or end of
task). If the queue is not recoverable, you need to perform this function yourself.
One way is to ENQUEUE before writing the first queue item and DEQUEUE after
the last. (See “Chapter 37. Transient data control” on page 495 for a discussion of
transient data queues.)

Printing with BMS routing
A task also can get output to a printer other than its principal facility with BMS
routing. This technique applies only to BMS logical messages (the ACCUM or
PAGING options) and thus is most appropriate when you are already building a
logical message.

When you complete a routed message, CICS creates a task for each terminal
named in a route list. This task has the terminal as its principal facility, and uses
CSPG, the CICS-supplied transaction for displaying pages, to deliver the output to
the printer. So routing is similar in effect to using START commands, but CICS

442 CICS TS for OS/390: CICS Application Programming Guide

provides the program that does the printing. (See “Message routing: the ROUTE
command” on page 387 for more information about routing.)

Non-CICS printers
Here are the steps to use a printer managed outside CICS:
1. Format your output in the manner required by the application or subsystem

that controls the printer you wish to use.
2. Deliver the output to the application or subsystem that controls the printer in

the form required by that application.
3. If necessary, notify that application that the output is ready for printing.

Formatting for non-CICS printers
For some printers managed outside CICS, you can format output with BMS, as we
explain in “CICS API considerations”. However, for most printers, you need to
meet the format requirements of the application that drives the printer. This may
be the device format or an intermediate form dictated by the application. For
conventional line printers, formatting is simply a matter of producing line images
and, sometimes, adding carriage-control characters.

Non-CICS printers: Delivering the data
Print data is usually conveyed to an application outside of CICS by placing the
data in an intermediate file, accessible to both CICS and the application. The type
of file, as well as the format within the file, is dictated by the receiving application.
It is usually one of those listed in the first column of Table 38. The second column
of the table shows which groups of CICS commands you can use to create such
data.

Table 38. Intermediate files for transferring print data to non-CICS printers

File type Methods for writing the data

Spool files CICS spool commands (SPOOLOPEN, SPOOLWRITE, etc.) Transient
data commands (WRITEQ TD) Terminal control and BMS
commands (SEND, SEND MAP, etc.)

BSAM CICS spool commands (SPOOLOPEN, SPOOLWRITE, etc.) Transient
data commands (WRITEQ TD)

VSAM CICS file control commands (WRITE)

DB2 EXEC SQL commands

IMS EXEC DLI commands or CALL DLI statements

CICS API considerations
If you are using VSAM, DB2, or IMS, the CICS application programming
commands you can use are determined by the type of file you are using.

For BSAM and spool files, however, you have a choice. The CICS definition of the
file (or its absence) determines which commands you use. The file may be:
v An extra-partition transient data queue (see “Chapter 37. Transient data control”

on page 495 for information on transient data queues)
v The output half of a sequential terminal (see “Sequential terminal support” on

page 427 and “Support for non-3270 terminals” on page 361)
v A spool file (see “Chapter 32. CICS interface to JES” on page 449)

Chapter 31. CICS support for printing 443

Both transient data queue definitions and sequential terminal definitions point to
an associated data definition (DD) statement in the CICS start-up JCL, and it is this
DD statement that determines whether the file is a BSAM file or a spool file. Files
created by CICS spool commands do not require definition before use and are
spool files by definition.

If the printing application accepts BSAM or spool file input, there are several
factors to consider in deciding how to define your file to CICS:

System definitions
Files created by the SPOOLOPEN command do not have to be defined to
CICS or the operating system, whereas transient data queues and
sequential terminals must be defined to both before use.

Sharing among tasks
A file defined as a transient data queue is shared among all tasks. This
allows you to create a print file in multiple tasks, but it also means that if
your task writes multiple records to the queue that must be printed
together (lines of print for a single report, for example), you must include
enqueue logic to prevent other tasks from writing their records between
yours. This is the same requirement that was cited for intrapartition queues
in “Printing with transient data” on page 441. In the case of extra-partition
transient data, however, CICS does not offer the recoverability solution,
and your program must prevent the interspersing itself.

In contrast, a file created by a SPOOLOPEN can be written only by the
task that created it. This eliminates the danger of interleaving output, but
also prevents sharing the file among tasks.

A spool file associated with a sequential terminal can be written by only
one task at a time (the task that has the terminal as its principal facility).
This also prevents interleaving, but allows tasks to share the file serially.

Release for printing
Both BSAM and spool files must be closed in order for the operating
system to pass them from CICS to the receiving application, and therefore
printing does not begin until the associated file is closed. Files created by
SPOOLOPEN are closed automatically at task end, unless they have
already been closed with a SPOOLCLOSE command. In contrast, an
extrapartition transient data queue remains open until some task closes it
explicitly, with a SET command. (It must be reopened with another SET if
it is to be used subsequently.) So transient data gives you more control
over release of the file for processing, at the cost of additional
programming.

A file that represents the output of a sequential terminal does not get
closed automatically (and so does not get released for printing) until CICS
shutdown, and CICS does not provide facilities to close it earlier. If you
use a sequential terminal to pass data to a printer controlled outside of
CICS, as you might do in order to use BMS, you should be aware of this
limitation.

Formatting
If you define your file as a sequential terminal, you can use BMS to format
your output. This feature allows you to use the same maps for printers
managed outside of CICS—for example, line printers managed by the MVS
job entry subsystem (JES)—that you use for CICS display and printer
terminals.

444 CICS TS for OS/390: CICS Application Programming Guide

If you choose this option, remember that BMS always sends a page of
output at a time, using the page size in the terminal definition, and that
the data set representing the output from a sequential terminal is not
released until CICS shutdown.

Spool file limits
Operating systems identify spool files by assigning a sequential number.
There is an upper limit to this number, after which numbers are reused.
The limit is usually very large, but it is possible for a job that runs a very
long time (as CICS can) and creates a huge number of spool files (as an
application under CICS can) to exceed the limit. If you are writing an
application that generates a very large number of spool files, consult your
systems programmer to ensure that you are within system limits. A new
spool file is created at each SPOOLOPEN statement and each open of a
transient data queue defined as a spool file.

Notifying the print application
When you deliver the data to a print application outside CICS, you might need to
notify the application that you have data ready to process. You do not need to do
this if the application runs automatically and knows to look for your data. For
example, to print on a printer owned by the MVS job entry system (JES), all you
need to do is create a spool file with the proper routing information. JES does the
rest.

However, sometimes you need to submit a job to do the processing, or otherwise
signal an executing application that you have work for it.

To submit a batch job from a CICS task, you need to create a spool file which
contains the JCL for the job, and you need to direct this file to the JES internal
reader. You can create the file in any of the three ways listed for spool files in
Table 38 on page 443, although if you use a sequential terminal, the job does not
execute until CICS shuts down, as noted earlier. For files written with spool
commands, the information that routes the file to the JES internal reader is
specified in the SPOOLOPEN command. For transient data queues and sequential
terminals, the routing information appears on the first record in the file, the “JOB
card”.

The output to be printed can be embedded in the batch job (as its input) or it can
be passed separately through any form of data storage that the job accepts.

Printing display screens
If your printing requirement is simply to copy a display screen to a printer, you
have choices additional to those already described. Some of these are provided by
the terminal hardware itself, and some by CICS. Some of the CICS support also
depends on hardware features, and so your options depend on the type of
terminals involved and, in some cases, the way in which they are defined to CICS.
See the CICS Resource Definition Guide for more detail on copying.

CICS print key
The first such option is the CICS print key (also called the local copy key). This
allows a user to request a printed copy of a screen by pressing a program attention
key, provided the terminal is a 3270 display or a display in 3270 compatibility
mode. Print key support is optional in CICS; the system programmer decides

Chapter 31. CICS support for printing 445

whether to include it and what key is assigned. The default is PA1. (See the PRINT
option in the CICS System Definition Guide.)

The print key copies the display screen to the first available printer among those
defined as eligible. Which printers are eligible depends on the definition of the
display terminal from which the request originates, as follows:
v For VTAM 3270 displays defined without the “printer-adapter” feature, the

printers named in the PRINTER and ALTPRINTER options of the terminal
definition are eligible. PRINTER is be used if available; ALTPRINTER is second
choice. If both are unavailable, the request is queued for execution when
PRINTER becomes available.

v For the 3270 compatibility mode of the 3790 and a 3650 host conversational
(3270) logical unit, the same choices apply.

v For a BTAM 3270 display, any printer on the same control unit is eligible,
provided it is defined to CICS with the PRINT feature and has a buffer at least
the size of the display buffer. CICS chooses the first one in the table that is
available. If none are, the request is not queued but discarded.

v For VTAM 3270 displays defined with the printer-adapter feature, copying is
limited to printers on the same control unit as the display. The printer
authorization matrix within the control unit determines printer eligibility.

v For a 3270 compatibility mode logical unit of the 3790 with the printer-adapter
feature, the 3790 determines eligibility and allocates a printer for the copy.

v For a 3275 with the printer-adapter feature, the print key prints the data
currently in the 3275 display buffer on the 3284 attached to the display.

Where CICS chooses the printer explicitly, as it does in the first three cases above,
the printer has to be in service and not attached to a task to be “available” for a
CICS print key request. Where a control unit or subsystem makes the assignment,
availability and status are determined by the subsystem. The bracket state of the
device usually determines whether it is available or not.

ISSUE PRINT and ISSUE COPY
An application can initiate copying a screen to a printer as well as the user, with
the ISSUE PRINT and ISSUE COPY commands. ISSUE PRINT simulates the user
pressing the CICS print key, and printer eligibility and availability are the same as
for CICS print key requests.

There is also a command you can use to copy a screen in a task that owns the
printer, as opposed to the task that owns the terminal which is to be copied. This
is the ISSUE COPY command. It copies the buffer of the terminal named in the
TERMID option to the buffer of the principal facility of the issuing task. The
method of copying and the initiation of printing once the copy has occurred is
controlled by the “copy control character” defined in the CTLCHAR option of the
ISSUE COPY command; see the IBM CICS/OS/VS 3270 Data Stream Device Guide for
the bit settings in this control character. The terminal whose buffer is copied and
the printer must both be either 3270 logical units or BTAM 3270s, and they must
be on the same control unit.

Hardware print key
Some 3270 terminals also have a hardware print key. Pressing this key copies the
screen to the first available and eligible printer on the same control unit as the
display. This function is performed entirely by the control unit, whose
configuration and terminal status information determine eligibility and availability.

446 CICS TS for OS/390: CICS Application Programming Guide

If no printer is available, the request fails; the user is notified by a symbol in the
lower left corner of the screen and must retry the request later.

BMS screen copy
Both the CICS and hardware print keys limit screen copies to a predefined set of
eligible printers, and if more than one printer is eligible, the choice depends on
printer use by other tasks. For screens created as part of a BMS logical message, a
more general screen copy facility is available. Users can print any such screen with
the “page copy” option of the CICS-supplied transaction for displaying logical
messages, CSPG. With page copy, you name the specific printer to receive the
output, and it does not have to be on the same control unit as the display. CSPG is
described in the CICS Supplied Transactions manual.

Chapter 31. CICS support for printing 447

448 CICS TS for OS/390: CICS Application Programming Guide

Chapter 32. CICS interface to JES

CICS provides a programming interface to JES (the Job Entry Subsystem
component of MVS) that allows CICS applications to create and retrieve spool
files. Spool files are managed by JES and are used to buffer output directed to
low-speed peripheral devices (printers, punches, and plotters) between the job that
creates them and actual processing by the device. Input files from card readers are
also spool files and serve as buffers between the device and the jobs that use the
data.

The interface consists of five commands:
v SPOOLOPEN INPUT, which opens a file for input
v SPOOLOPEN OUTPUT, which opens a file for output
v SPOOLREAD, which retrieves the next record from an input file
v SPOOLWRITE, which adds one record to an output file
v SPOOLCLOSE, which closes the file and releases it for subsequent processing by

JES

“Input” and “output” here refer to the CICS point of view here; what is spool
output to one job is always spool input to another job or JES program.

These commands can be used with either the JES2 or JES3 form of JES, although
some restrictions apply to each (see “Spool interface restrictions” on page 456). The
term JES refers to both.

You can use the spool commands to do the following types of things:
v Create an (output) file for printing or other processing by JES. JES manages most

of the “unit record” facilities of the operating system, including high-speed
printers, and card readers. In order to use these facilities, you pass the data to be
processed to JES in a spool file.

v Submit a batch job to MVS. Spool files directed to the JES “internal reader” are
treated as complete jobs and executed.

v Create an (output) file to pass data to another job (outside of your CICS), that
runs under MVS.

v Retrieve data passed from such a job.
v Create a file to pass data to another operating system, such as VM, VSE/ESA, or

an MVS system other than the one under which your CICS is executing.
v Retrieve a file sent from such a remote system.

Creating a spool file
To create an output spool file, a task starts by issuing a SPOOLOPEN OUTPUT
command. The NODE and USERID options on the command tell JES what to do
with the file when it is complete, and there are other options to convey formatting
and other processing to JES if appropriate.

You can also use this parameter to specify that your output is written to the MVS
internal reader. To use SPOOLXXX commands for this purpose, specify
USERID(“INTRDR”) and also use an explicit node name. Do not use NODE('*').
INTRDR is an IBM-reserved name identifying the internal reader. If you specify

© Copyright IBM Corp. 1989, 2000 449

USERID(“INTRDR”), the output records written by your SPOOLWRITE commands
must be JCL statements, starting with a JOB statement. Also ensure that you
specify the NOCC option on the SPOOLOPEN command. The system places your
output records for the internal reader into a buffer in your address space. When
this buffer is full, JES places the contents on the spool; later, JES retrieves the job
from the spool. (See “Identifying spool files” on page 451 for more information
about the naming of spool files, and the CICS Application Programming Reference
manual for full information.) CICS returns an identifier for the file to the task by
the TOKEN option of the same command.

Thereafter, the task puts data into the file with SPOOLWRITE commands that
specify the token value that was returned on the SPOOLOPEN OUTPUT
command. Spool files are sequential; each SPOOLWRITE adds one record to the
file. When the file is complete, the task releases the file to JES for delivery or
processing by issuing a SPOOLCLOSE with the token that identifies the file.

A task can create multiple output spool files, and it can have more than one open
at a time; operations on different files are kept separate by the token. However, a
spool file cannot be shared among tasks, or across logical units of work in the
same task. It can be written only by the task that opened it, and if that task fails to
close the file before a SYNCPOINT command or task end, CICS closes it
automatically at these points.

Reading input spool files
The command sequence for reading a spool file is similar to that for creating one.
You start with a SPOOLOPEN INPUT command that selects the file. Then you
retrieve each record with a SPOOLREAD command. When the file is exhausted or
you have read as much as required, you end processing with a SPOOLCLOSE
command. CICS provides you with a token to identify the particular file when you
open it, just as it does when you open an output file, and you use the token on all
subsequent commands against the file.

Similar to an output spool file, an input spool file is exclusive to the task that
opened it. No other task can use it until the first one closes it. The file must be
read in the same logical unit of work that opened it, and CICS closes it
automatically at a SYNCPOINT command or at task end if the task does has not
done so. However, you can close the file in such a way that your task (or another
one) can read it again from the beginning.

In contrast to output files, a task can have only one spool file open for input at
once. Moreover, only one CICS task can have a file open for input at any given
time. This single-threading of input spool files has several programming
implications:
v A task reading a spool file should keep it open for as little time as possible, and

should close it explicitly, rather than letting CICS do so as part of end-of-task
processing. You might want to transfer the file to another form of storage if your
processing of individual records is long.

v If another task is reading a spool file, your SPOOLOPEN INPUT command fails
with a SPOLBUSY condition. This is not an error; you should wait briefly and
try again.

v If you read multiple input files, you should delay your task briefly between
closing one and opening the next, to avoid monopolizing the input thread and
locking out other tasks that need it.

450 CICS TS for OS/390: CICS Application Programming Guide

Identifying spool files
Input spool files are identified by the USERID and CLASS options on the
SPOOLOPEN INPUT command.

On input, the USERID is the name of a JES external writer. An external writer is a
name defined to JES at JES startup representing a group of spool files that have the
same destination or processing. For files that JES processes itself, an external writer
is usually associated with a particular hardware device, for example, a printer. The
names of these writers are reserved for JES use.

For the transfer of files between applications, as occurs when a CICS task reads a
spool file, the only naming requirement is that the receiver (the CICS task) know
what name the sender used, and that no other applications in the receiver’s
operating system use the same name for another purpose. To ensure that CICS
tasks do not read spool files that were not intended for them, CICS requires that
the external writer name that you specify match its own VTAM applid in the first
four characters. Consequently, a job or system directing a file to CICS must send it
to an external writer name that begins with the first four characters of the CICS
applid.

JES categorizes the files for a particular external writer by a 1-character CLASS
value. If you specify a class on your SPOOLOPEN INPUT command, you get the
first (oldest) file in that class for the external writer you name. If you omit the
class, you get the oldest file in any class for that writer. The sender assigns the
class; ‘A’ is used when the sender does not specify a class.

On output, you identify the destination of a SPOOL file with both a NODE and a
USERID value. The NODE is the name of the operating system (for example, MVS,
VM) as that system is known to VTAM in the MVS system in which your CICS is
executing).

The meaning of USERID varies with the operating system. In VM, it is a particular
user; in MVS, it may be a JES external writer or another JES destination, a TSO
user, or another job executing on that system.

One such destination is the JES internal reader, which normally has the reserved
name INTRDR. If you want to submit a job to an MVS system, you write a spool
file to its internal reader. This file must contain all the JCL statements required to
execute the job, in the same form and sequence as a job submitted through a card
reader or TSO.

Chapter 32. CICS interface to JES 451

The following example shows a COBOL program using SPOOLOPEN for an
internal reader.

In this example, you must specify the NOCC option (to prevent use of the first
character for carriage control) and use JCL record format.

OUTDESCR specifies a pointer variable to be set to the address of a field that
contains the address of a string of parameters to the OUTPUT statement of MVS
JCL.

The following example shows a COBOL program using the OUTDESCR operand:

DATA DIVISION.
WORKING-STORAGE SECTION.

01 OUTPUT-FIELDS.
03 OUTPUT-TOKEN PIC X(8) VALUE LOW-VALUES.
03 OUTPUT-NODE PIC X(8) VALUE 'MVSESA31'.
03 OUTPUT-USERID PIC X(8) VALUE 'INTRDR '.
03 OUTPUT-CLASS PIC X VALUE 'A'.

PROCEDURE DIVISION.
EXEC CICS SPOOLOPEN OUTPUT

TOKEN(OUTPUT-TOKEN)
USERID(OUTPUT-USERID)
NODE(OUTPUT-NODE)
CLASS(OUTPUT-CLASS)
NOCC
PRINT
NOHANDLE

END-EXEC.

Figure 77. An example of a COBOL program using SPOOLOPEN

452 CICS TS for OS/390: CICS Application Programming Guide

Notes:

1. It is essential to code a GETMAIN command.
2. L-FILLER is not a parameter passed by the calling program. The BLL for

L-FILLER is then substituted by the SET ADDRESS. The address of the
getmained area is then moved to the first word pointed to by L-FILLER being
L-ADDRESS (hence pointing to itself). L-ADDRESS is then changed by plus 4
to point to the area (L-OUTDIS) just behind the address. L-OUTDIS is then
filled with the OUTDESCRIPTOR DATA. Hence W-POINTER points to an area
that has a pointer pointing to the OUTDESCR data.

If you want to the job you submit to execute as soon as possible, you should end
your spool file with a record that contains /*EOF in the first five characters. This
statement causes JES to release your file for processing, rather than waiting for
other records to fill the current buffer before release.

WORKING-STORAGE SECTION.
01 F.
02 W-POINTER USAGE POINTER.
02 W-POINTER1 REDEFINES W-POINTER PIC 9(9) COMP.
01 RESP1 PIC 9(8) COMP.
01 TOKENWRITE PIC X(8).
01
01 W-OUTDIS.
02 F PIC 9(9) COMP VALUE 43.
02 F PIC X(14) VALUE 'DEST(A20JES2)'.
02 F PIC X VALUE ' '.
02 F PIC X(16) VALUE 'WRITER(A03CUBI)'.
02 F PIC X VALUE ' '.
02 F PIC X'11' VALUE 'FORMS(BILL)'.
LINKAGE SECTION.
01 DFHCOMMAREA PIC X.
01 L-FILLER.
02 L-ADDRESS PIC 9(9) COMP.
02 L-OUTDIS PIC X(1020).
PROCEDURE DIVISION.

EXEC CICS GETMAIN SET(W-POINTER) LENGTH(1024)
END-EXEC.

SET ADDRESS OF L-FILLER TO W-POINTER.
MOVE W-POINTER1 TO L-ADDRESS.
ADD 4 TO L-ADDRESS.
MOVE W-OUTDIS TO L-OUTDIS.
EXEC CICS SPOOLOPEN

OUTPUT
PRINT
RECORDLENGTH(1000)
NODE('*')
USERID('*')
OUTDESCR(W-POINTER)
TOKEN(TOKENWRITE)
RESP(RESP1)
NOHANDLE

END-EXEC.
EXEC CICS SPOOLWRITE

.

.

.

Chapter 32. CICS interface to JES 453

Some examples of SPOOLOPEN for OUTPUT with OUTDESCR
option

COBOL

DATA DIVISION.
WORKING-STORAGE SECTION.
01 OUTDES.

05 FILLER PIC X(14) VALUE
'WRITER(MYPROG)'.

01 RESP PIC 9(8) COMP.
01 RESP2 PIC 9(8) COMP.
01 TOKEN PIC X(8).
01 OUTLEN PIC S9(8) COMP VALUE +80.
77 OUTPRT PIC X(80) VALUE

'SPOOLOPEN FUNCTIONING'.
01 PARMSPTR USAGE IS POINTER.
01 PARMS-POINT REDEFINES PARMSPTR PIC S9(8) COMP.
LINKAGE SECTION.
01 PARMS-AREA.

03 PARMSLEN PIC S9(8) COMP.
03 PARMSINF PIC X(14).
03 PARMADDR PIC S9(8) COMP.

PROCEDURE DIVISION.
EXEC CICS GETMAIN SET(ADDRESS OF PARMS-AREA)

LENGTH(80) END-EXEC.
SET PARMSPTR TO ADDRESS OF PARMS-AREA.
MOVE PARMS-POINT TO PARMADDR.
SET PARMSPTR TO ADDRESS OF PARMADDR.
MOVE 14 TO PARMSLEN.
MOVE OUTDES TO PARMSINF.
EXEC CICS SPOOLOPEN OUTPUT

NODE ('*')
USERID ('*')
RESP(RESP) RESP2(RESP2)
OUTDESCR(PARMSPTR)
TOKEN(TOKEN)
END-EXEC.

EXEC CICS SPOOLWRITE
FROM(OUTPRT)
RESP(RESP) RESP2(RESP2)
FLENGTH(OUTLEN)
TOKEN(TOKEN)
END-EXEC.

EXEC CICS SPOOLCLOSE
TOKEN(TOKEN)
RESP(RESP) RESP2(RESP2)
END-EXEC.

454 CICS TS for OS/390: CICS Application Programming Guide

PL/I

C

DCL
RESP FIXED BIN(31),
RESP2 FIXED BIN(31),
TOKEN CHAR(8),
OUTLEN FIXED BIN(31) INIT(80),
OUTPRT CHAR(80) INIT('SPOOLOPEN FUNCTIONING'),
PARMADDR POINTER,
PARMSPTR POINTER;

DCL
1 PARMS,

2 PARMSLEN FIXED BIN(31) INIT(14),
2 PARMSINF CHAR(14) INIT('WRITER(MYPROG)')

ALIGNED;
PARMADDR=ADDR(PARMS);
PARMSPTR=ADDR(PARMADDR);
EXEC CICS SPOOLOPEN OUTPUT NODE('*') USERID('*')

TOKEN(TOKEN) OUTDESCR(PARMSPTR) RESP(RESP)
RESP2(RESP2);

EXEC CICS SPOOLWRITE FROM(OUTPRT) FLENGTH(OUTLEN)
RESP(RESP) RESP2(RESP2) TOKEN(TOKEN);

EXEC CICS SPOOLCLOSE TOKEN(TOKEN) RESP(RESP)
RESP2(RESP2);

#define PARMS struct _parms
PARMS
{

int parms_length;
char parms_info[200];
PARMS * pArea;

};
PARMS ** parms_ptr;
PARMS parms_area;
char userid[8]= "*";
char node[8]= "*";
char token[8];
long rcode1, rcode2;
/* These lines will initialize the outdescr area and
set up the addressing */
parms_area.parms_info[0]= '\0';
parms_area.pArea = &parms_area;
parms_ptr = &parms_area.pArea;
/* And here is the command with ansi carriage controls
specified and no class*/
EXEC CICS SPOOLOPEN OUTPUT

NODE (node)
USERID (userid)

OUTDESCR (parms_ptr)
TOKEN (token)

ASA
RESP (rcode1)
RESP2 (rcode2);

Chapter 32. CICS interface to JES 455

ASSEMBLER

Programming note for spool commands
You must specify either RESP or NOHANDLE on all spool commands. If you do
not, your program abends. These options are described in the CICS Application
Programming Reference manual, but they do not appear explicitly in the syntax
boxes or the option lists for the spool commands. The list of conditions that can
occur for each command includes RESP values.

Spool interface restrictions
There are internal limits in JES that you should consider when you are designing
applications. Some apply to JES2, some to JES3 and some to both. In particular:
v JES2 imposes an upper limit on the total number of spool files that a single job

(such as CICS) can create. If CICS exceeds this limit during its execution,
subsequent SPOOLOPEN OUTPUT commands fail with the ALLOCERR
condition.

v JES3 does not impose such a limit explicitly, but for both JES2 and JES3, some
control information for each file created persists for the entire execution of CICS.
For this reason, creating very large numbers of spool files can stress JES
resources; you should consult your system programmer before designing such
an application.

v Spool files require other resources (buffers, queue elements, disk space) until
they are processed. You need to consult your systems staff if you are producing
very large files or files that may wait a long time for processing at their
destinations.

v Code NODE(’*’) and USERID(’*’) to specify the local spool file and to enable the
OUTDESCR operand to override the NODE and USERID operands. Do not use
NODE(’*’) with any other userid. If the NODE and USERID operands specify
explicit identifiers, the OUTDESCR operands cannot override them.

OUTPRT DC CL80'SPOOLOPEN FUNCTIONING'
PARMSPTR EQU 6
RESP DC F'0'
RESP2 DC F'0'
TOKEN DS 2F
OUTPTR DC A(PARMSLEN)
PARMSLEN DC F'14'
PARMSINF DC C'WRITER(MYPROG)'

LA PARMSPTR,OUTPTR
EXEC CICS SPOOLOPEN OUTPUT OUTDESCR(PARMSPTR)

NODE('*') USERID('*') RESP(RESP)
RESP2(RESP2) TOKEN(TOKEN)

EXEC CICS SPOOLWRITE FROM(OUTPRT)
TOKEN(TOKEN) RESP(RESP) RESP2(RESP2)

EXEC CICS SPOOLCLOSE TOKEN(TOKEN) RESP(RESP)
RESP2(RESP2)

456 CICS TS for OS/390: CICS Application Programming Guide

Part 6. CICS management functions

Chapter 33. Interval control 459
Expiration times 459
Request identifiers. 461

Chapter 34. Task control 463
Controlling sequence of access to resources . . . 464

Chapter 35. Program control 467
Application program logical levels 468
Link to another program expecting return 468
Passing data to other programs 469

COMMAREA 469
INPUTMSG 471
Using the INPUTMSG option on the RETURN
command 473
Other ways of passing data. 473
Mixed addressing mode transactions 473
Examples of passing data with the LINK
command 474
Examples of passing data with the RETURN
command 476

Chapter 36. Storage control 479
Overview of CICS storage protection and
transaction isolation 480
Storage protection 480

Terminology. 481
Selecting the execution key for applications . . 481
Defining the execution key 482
Selecting and defining the storage key for
applications 482

System-wide storage areas 482
Task lifetime storage 482
Program working storage specifically for exit
and PLT programs. 483
Passing data by a COMMAREA 483
The GETMAIN command 483

Deciding what execution and storage key to
specify 484

User-key applications. 485
CICS-key applications 486

Tables 488
Map sets and partition sets 488

Storage protection exception conditions. 488
Transaction isolation 488

Reducing system outages 488
Protecting application data 488
Protecting CICS from being passed invalid
addresses. 489
Aiding application development 489

Using transaction isolation 489
MVS subspaces 491

Subspaces and basespaces for transactions. . . 491
The common subspace and shared storage . . 492

Chapter 37. Transient data control 495
Intrapartition queues 495
Extrapartition queues. 496
Indirect queues 496
Automatic transaction initiation (ATI) 497

Chapter 38. Temporary storage control 499
Temporary storage queues 499
Typical uses of temporary storage control 500

Chapter 39. Security control. 503
QUERY SECURITY command 503

Using QUERY SECURITY 503
Security protection at the record or field level 503
CICS-defined resource identifiers 504
SEC system initialization parameter 504
Programming hints 504

Non-terminal transaction security 504

© Copyright IBM Corp. 1989, 2000 457

458 CICS TS for OS/390: CICS Application Programming Guide

Chapter 33. Interval control

The CICS interval control facility provides functions that are related to time.

Java and C++
The application programming interface described in this chapter is the EXEC
CICS API, which is not used in Java programs. For information about Java
programs using the JCICS classes to access Interval Control services, see “The
JCICS Java classes” on page 69 and the JCICS Javadoc html documentation.
For information about C++ programs using the CICS C++ classes, see the
CICS C++ OO Class Libraries manual.

Using interval control commands, you can:
v Start a task at a specified time or after a specified interval, and pass data to it

(START command)15.
v Retrieve data passed on a START command (RETRIEVE command)15.
v Delay the processing of a task (DELAY command).
v Request notification when a specified time has expired (POST command).
v Wait for an event to occur (WAIT EVENT command).
v Cancel the effect of previous interval control commands (CANCEL command).
v Request the current date and time of day (ASKTIME command).
v Select the format of date and time (FORMATTIME command). Options are

available that help you to handle dates in the twenty-first century. Programming
information about these is in the CICS Application Programming Reference manual.

Note: On a lightly used system, the interval time specified can be exceeded by as
much as a quarter of a second.

If you use WAIT EVENT, START, RETRIEVE with the WAIT option, CANCEL,
DELAY, or POST commands, you could create inter-transaction affinities that
adversely affect your ability to perform dynamic transaction routing.

To help you identify potential problems with programs that issue these commands,
you can use the Transaction Affinities Utility. See the CICS Transaction Affinities
Utility Guide for more information about this utility and “Chapter 14. Affinity” on
page 157 for more information about transaction affinity.

Expiration times
The time at which a time-controlled function is to be started is known as the
expiration time. You can specify expiration times absolutely, as a time of day
(using the TIME option), or as an interval that is to elapse before the function is to
be performed (using the INTERVAL option). For the DELAY command, you can
use the FOR and UNTIL options; and for the POST and START commands, you

15. Do not use EXEC CICS START TRANSID() TERMID(EIBTRMID) to start a remote transaction. Use EXEC CICS RETURN
TRANSID() IMMEDIATE instead. START, used in this way, ties up communications resources unnecessarily and can lead to
performance degradation across the connected regions.

© Copyright IBM Corp. 1989, 2000 459

|
|
|
|
|
|

can use the AFTER and AT options. See the CICS Application Programming Reference
manual for programming information about these commands.

Note: The C and C++ languages do not provide the support for the packed
decimal types used by the TIME and INTERVAL options.

You use an interval to tell CICS when to start a transaction in a specified number
of hours, minutes, and seconds from the current time. A nonzero INTERVAL value
always indicates a time in the future—the current time plus the interval you
specify. The hours may be 0–99, but the minutes and seconds must not be greater
than 59. For example, to start a task in 40 hours and 10 minutes, you would code:
EXEC CICS START INTERVAL(401000)

You can use an absolute time to tell CICS to start a transaction at a specific time,
again using hhmmss. For example, to start a transaction at 3:30 in the afternoon,
you would code:
EXEC CICS START TIME(153000)

An absolute time is always relative to the midnight before the current time and
may therefore be earlier than the current time. TIME may be in the future or the
past relative to the time at which the command is executed. CICS uses the
following rules:
v If you specify a task to start at any time within the previous six hours, it starts

immediately. This happens regardless of whether the previous six hours includes
a midnight. For example:
EXEC CICS START TIME(123000)

This command, issued at 05:00 or 07:00 on Monday, expires at 12:30 on the same
day.
EXEC CICS START TIME(020000)

This command, issued at 05:00 or 07:00 on Monday expires immediately because
the specified time is within the preceding six hours.
EXEC CICS START TIME(003000)

This command, issued at 05:00 on Monday, expires immediately because the
specified time is within the preceding six hours. However, if it is issued at 07:00
on Monday, it expires at 00:30 on Tuesday, because the specified time is not
within the preceding six hours.
EXEC CICS START TIME(230000)

This command, issued at 02:00 on Monday, expires immediately because the
specified time is within the preceding six hours.

v If you specify a time with an hours component that is greater than 23, you are
specifying a time on a day following the current one. For example, a time of
250000 means 1 a.m. on the day following the current one, and 490000 means 1
a.m. on the day after that.

If you do not specify an expiration time or interval option on the DELAY, POST, or
START command, CICS responds using the default of INTERVAL(0), which means
immediately.

460 CICS TS for OS/390: CICS Application Programming Guide

Because each end of an intersystem link may be in a different time zone, you
should use the INTERVAL form of expiration time when the transaction to be
started is in a remote system.

If the system fails, the times associated with unexpired START commands are
remembered across the restart.

Note: If your expiration time falls within a possible CICS shutdown, you should
consider whether your task should test the status of CICS before attempting
to run. You can do this using the INQUIRE SYSTEM CICSSTATUS
command described in the CICS RACF Security Guide. During a normal
shutdown, your task could run at the same time as the PLT programs with
consequences known only to you. See the CICS System Programming Reference
manual for programming information.

Request identifiers
As a means of identifying the request and any data associated with it, a unique
request identifier is assigned by CICS to each DELAY, POST, and START
command. You can specify your own request identifier by means of the REQID
option. If you do not, CICS assigns (for POST and START commands only) a
unique request identifier and places it in field EIBREQID in the EXEC interface
block (EIB). You should specify a request identifier if you want the request to be
canceled at some later time by a CANCEL command.

Chapter 33. Interval control 461

462 CICS TS for OS/390: CICS Application Programming Guide

Chapter 34. Task control

The CICS task control facility provides functions that synchronize task activity, or
that control the use of resources.

Java and C++
The application programming interface described in this chapter is the EXEC
CICS API, which is not used in Java programs. For information about Java
programs using the JCICS classes to access Task Control services CICS, see
“The JCICS Java classes” on page 69 and the JCICS Javadoc html
documentation. For information about C++ programs using the CICS C++
classes, see the CICS C++ OO Class Libraries manual.

CICS assigns priorities based on the value set by the CICS system programmer.
Control of the processor is given to the highest-priority task that is ready to be
processed, and is returned to the operating system when no further work can be
done by CICS or by your application programs.

You can:
v Suspend a task (SUSPEND command) to enable tasks of higher priority to

proceed. This can prevent processor-intensive tasks from monopolizing the
processor. When other eligible tasks have proceeded and terminated or
suspended processing, control is returned to the issuing task; that is, the task
remains dispatchable.

v Schedule the use of a resource by a task (ENQ and DEQ commands). This is
sometimes useful in protecting a resource from concurrent use by more than one
task; that is, by making that resource serially reusable. Each task that is to use
the resource issues an enqueue command (ENQ). The first task to do so has the
use of the resource immediately but, if a HANDLE CONDITION ENQBUSY
command has not been issued, subsequent ENQ commands for the resource,
issued by other tasks, result in those tasks being suspended until the resource is
available.
If the NOSUSPEND option is coded on the ENQ command, control is always
returned to the next instruction in the program. By inspecting the contents of the
EIBRESP field, you can see whether the ENQ command was successful or not.
Each task using a resource should issue a dequeue command (DEQ) when it has
finished with it. However, when using the enqueue/dequeue mechanism, there
is no way to guarantee that two or more tasks issuing ENQ and DEQ commands
issue these commands in a given sequence relative to each other. For a way to
control the sequence of access, see “Controlling sequence of access to resources”
on page 464.

v Change the priority assigned to a task (CHANGE TASK PRIORITY command).
v Wait for events that post MVS format ECBs when they complete.

Two commands are available, WAITCICS and WAIT EXTERNAL. These
commands cause the issuing task to be suspended until one of the ECBs has
been posted; that is, until one of the events has occurred. The task can wait on
one or more ECBs. If it waits on more than one, it is dispatchable as soon as one
of the ECBs is posted. You must ensure that each ECB is cleared (set to binary
zeros) no later than the earliest time it could be posted. CICS cannot do this for

© Copyright IBM Corp. 1989, 2000 463

|
|
|
|
|
|

you. If you wait on an ECB that has been previously posted and is not
subsequently cleared, your task is not suspended and continues to run as
though the WAITCICS or WAIT EXTERNAL command had not been issued.
WAIT EXTERNAL usually has less overhead, but the associated ECBs must
always be posted using the MVS POST facility or by an optimized post (using
the compare and swap (CS) instruction). They must never be posted by any
other method. If you are in any doubt about the method of posting, use the
WAITCICS command. When dealing with ECBs passed on a WAIT EXTERNAL
command, CICS extends the ECBs and uses the MVS POST exit facility. A given
ECB must not be waited on by more than one task at once (or appear twice in
one task’s ECBLIST). Failure to follow this rule leads to an INVREQ response.
WAITCICS must be used if ECBs are to be posted by any method other than the
MVS POST facility or by an optimized post. For example, if your application
posts the ECB by moving a value into it, WAITCICS must be used. (The
WAITCICS command can also be used for ECBs that are posted using the MVS
POST facility or optimized post.) Whenever CICS goes into an MVS WAIT, it
passes a list to MVS of all the ECBs being waited on by tasks that have issued a
WAITCICS command. The ECBLIST passed by CICS on the MVS WAIT contains
duplicate addresses, and MVS abends CICS.
If you use MVS POST, WAIT EXTERNAL, WAITCICS, ENQ, or DEQ commands,
you could create inter-transaction affinities that adversely affect your ability to
perform dynamic transaction routing.
To help you identify potential problems with programs that issue this command,
you can use the Transaction Affinities Utility. See the CICS Transaction Affinities
Utility Guide for more information about this utility and “Chapter 14. Affinity”
on page 157 for more information about transaction affinity.

Storage for the timer-event control area on WAIT EVENT must reside in shared
storage if you have specified ISOLATE(YES).
If CICS is executing with or without transaction isolation, CICS checks that the
timer-event control area and the ECBs are not in read-only storage.

Controlling sequence of access to resources
If you want a resource to be accessed by two or more tasks in a specific order,
instead of the ENQ and DEQ commands, use one or more WAITCICS commands
in conjunction with one or more hand-posted ECBs.

To hand-post an ECB, a CICS task sets a 4-byte field to either the cleared state of
binary zeros, or the posted state of X'40008000'. The task can use a START
command to start another task and pass the address of the ECB. The started task
receives the address through a RETRIEVE command.

Either task can set the ECB or wait on it. Use the ECB to control the sequence in
which the tasks access resources. Two tasks can share more than one ECB if
necessary. You can extend this technique to control as many tasks as you wish.

Note: Only one task can wait on a given ECB at any one time.

The example in Figure 78 on page 465 shows how two tasks can sequentially access
a temporary storage queue by using hand-posted ECBs and the WAITCICS
command.

464 CICS TS for OS/390: CICS Application Programming Guide

|
|

The example uses two ECBs, (ECB1 and ECB2), addressed by the pointers
illustrated in Table 39.

In theory, these tasks could exchange data through the temporary storage queue
for ever. In practice, some code would be included to close the process down in an
orderly way.

Table 39. Example of task control
Task A Task B

Delete temporary storage queue
Clear ECB1 (set to X'00000000')
Clear ECB2
EXEC CICS START TASK B and pass the
addresses of PTR_ECB1_ADDR_LIST and
PTR_ECB2_ADDR_LIST.

EXEC CICS RETRIEVE the addresses passed.

START OF LOOP: START OF LOOP:
EXEC CICS WAITCICS Write to TS queue

ECBLIST(PTR_ECB1_ADDR_LIST Post ECB1 (set to X'40008000')
NUMEVENTS(1) EXEC CICS WAITCICS

Clear ECB1 ECBLIST(PTR_ECB2_ADDR_LIST
Read TS queue NUMEVENTS(1)
< act on data from queue > Clear ECB2
Delete TS queue Read TS queue
Write to TS queue < act on data from queue >
Post ECB2 Delete TS queue
Go to START OF LOOP Go to START OF LOOP

“Chapter 20. Dealing with exception conditions” on page 231 describes how the
exception conditions that can occur during processing of a task control command
are handled.

PTR_ECB1_ADDR_LIST

A(ECB1_ADDR_LIST)

ECB1_ADDR_LIST ECB1

A(ECB1)

PTR_ECB2_ADDR_LIST

A(ECB2_ADDR_LIST)

ECB2_ADDR_LIST ECB2

A(ECB2)

Figure 78. Two tasks sequentially accessing a temporary storage queue

Chapter 34. Task control 465

466 CICS TS for OS/390: CICS Application Programming Guide

Chapter 35. Program control

This chapter contains the following information:
v “Application program logical levels” on page 468
v “Link to another program expecting return” on page 468
v “Passing data to other programs” on page 469

The CICS program control facility governs the flow of control between application
programs in a CICS system.

Java and C++
The application programming interface described in this chapter is the EXEC
CICS API, which is not used in Java programs. For information about Java
programs using the JCICS classes to access program control services, see “The
JCICS Java classes” on page 69 and the JCICS Javadoc html documentation.
For information about C++ programs using the CICS C++ classes, see the
CICS C++ OO Class Libraries manual.

The name of the application referred to in a program control command must have
been defined as a program to CICS. You can use program control commands to:
v Link one of your application programs to another, anticipating subsequent

return to the requesting program (LINK command). The COMMAREA and
INPUTMSG options of this command allow data to be passed to the requested
application program.

v Link one of your application programs to another program in a separate CICS
region, anticipating subsequent return to the requesting program (LINK
command). The COMMAREA option of this command allows data to be passed
to the requested application program. This is referred to as distributed program
link (DPL). (You cannot use the INPUTMSG and INPUTMSGLEN options of the
LINK command when using DPL. See the CICS Application Programming
Reference manual for programming information, including details about this
restriction.) For more information about DPL, see “Chapter 17.
Intercommunication considerations” on page 205.

v Transfer control from one of your application programs to another, with no
return to the requesting program (XCTL command). The COMMAREA and
INPUTMSG options of this command allow data to be passed to the requested
application program. (You cannot use the INPUTMSG and INPUTMSGLEN
options of the XCTL command when using DPL. See the CICS Application
Programming Reference manual for programming information, including details
about this restriction.)

v Return control from one of your application programs to another, or to CICS
(RETURN command). The COMMAREA and INPUTMSG options of this
command allow data to be passed to a newly initiated transaction. (You cannot
use the INPUTMSG and INPUTMSGLEN options of the RETURN command
when using DPL. See the CICS Application Programming Reference manual for
programming information, including details about this restriction.)

v Load a designated application program, table, or map into main storage (LOAD
command).

© Copyright IBM Corp. 1989, 2000 467

|
|
|
|
|
|

If you use the HOLD option with the LOAD and RELEASE command to load a
program, table or map that is not read-only, you could create inter-transaction
affinities that could adversely affect your ability to perform dynamic transaction
routing.
To help you identify potential problems with programs that issue these
commands, you can use the Transaction Affinities Utility. See the CICS
Transaction Affinities Utility Guide for more information about this utility and see
“Chapter 14. Affinity” on page 157 for more information about transaction
affinity.

v Delete a previously loaded application program, table, or map from main
storage (RELEASE command).

You can use the RESP option to deal with abnormal terminations.

Application program logical levels
Application programs running under CICS are executed at various logical levels.
The first program to receive control within a task is at the highest logical level.
When an application program is linked to another, expecting an eventual return of
control, the linked-to program is considered to reside at the next lower logical
level. When control is simply transferred from one application program to another,
without expecting return of control, the two programs are considered to reside at
the same logical level.

Link to another program expecting return
The LINK command is used to pass control from an application program at one
logical level to an application program at the next lower logical level. If the
program receiving control is not already in main storage, it is loaded. When the
RETURN command is processed in the linked program, control is returned to the
program initiating the link at the next sequential process instruction.

The linked program operates independently of the program that issues the LINK
command with regard to handling exception conditions, attention identifiers, and
abends. For example, the effects of HANDLE commands in the linking program
are not inherited by the linked-to program, but the original HANDLE commands
are restored on return to the linking program. You can use the HANDLE ABEND
command to deal with abnormal terminations in other link levels. See the CICS
Application Programming Reference manual for programming information about this
command. Figure 79 on page 469 shows the concept of logical levels.

468 CICS TS for OS/390: CICS Application Programming Guide

Passing data to other programs
You can pass data to another program when control is passed to that other
program using a program control command.

COMMAREA
The COMMAREA option of the LINK and XCTL commands specifies the name of
a data area (known as a communication area) in which data is passed to the
program being invoked.

In a similar manner, the COMMAREA option of the RETURN command specifies
the name of a communication area in which data is passed to the transaction
identified in the TRANSID option. (The TRANSID option specifies a transaction
that is initiated when the next input is received from the terminal associated with
the task.) For programming information about the length of the communication
area, see the CICS Application Programming Reference manual.

The invoked program receives the data as a parameter. The program must contain
a definition of a data area to allow access to the passed data.

Figure 79. Application program logical levels

Chapter 35. Program control 469

In a receiving COBOL program, you must give the data area the name
DFHCOMMAREA. In this COBOL program, if a program passes a COMMAREA
as part of a LINK, XCTL, or RETURN command, either the working-storage or the
LINKAGE SECTION can contain the data area. A program receiving a
COMMAREA should specify the data in the LINKAGE SECTION. This applies
when the program is either of the following:
v The receiving program during a LINK or XCTL command where a

COMMAREA is passed
v The initial program, where the RETURN command of a previously called task

specified a COMMAREA and TRANSID

In a C or C++ program that is receiving a COMMAREA, the COMMAREA must
be defined as a pointer to a structure. The program then must issue the ADDRESS
COMMAREA command to gain addressability to the passed data.

In a PL/I program, the data area can have any name, but it must be declared as a
based variable, based on the parameter passed to the program. The pointer to this
based variable should be declared explicitly as a pointer rather than contextually
by its appearance in the declaration for the area. This prevents the generation of a
PL/I error message. No ALLOCATE statement can be processed within the
receiving program for any variable based on this pointer. This pointer must not be
updated by the application program.

In an assembler language program, the data area should be a DSECT. The register
used to address this DSECT must be loaded from DFHEICAP, which is in the
DFHEISTG DSECT.

The receiving data area need not be of the same length as the original
communication area; if access is required only to the first part of the data, the new
data area can be shorter. However, it must not be longer than the length of the
communication area being passed. If it is, your transaction may inadvertently
attempt to read data outside the area that has been passed. It may also overwrite
data outside the area, which could cause CICS to abend.

To avoid this happening, your program should check whether the length of any
communication area that has been passed to it is as expected, by accessing the
EIBCALEN field in the EIB of the task. If no communication area has been passed,
the value of EIBCALEN is zero; otherwise, EIBCALEN always contains the value
specified in the LENGTH option of the LINK, XCTL, or RETURN command,
regardless of the size of the data area in the invoked program. You should ensure
that the value in EIBCALEN matches the value in the DSECT for your program,
and make sure that your transaction is accessing data within that area.

You may also add an identifier to COMMAREA as an additional check on the data
that is being passed. This identifier is sent with the sending transaction and is
checked for by the receiving transaction.

When a communication area is passed using a LINK command, the invoked
program is passed a pointer to the communication area itself. Any changes made
to the contents of the data area in the invoked program are available to the
invoking program, when control returns to it. To access any such changes, the
program names the data area specified in the original COMMAREA option.

When a communication area is passed using an XCTL command, a copy of that
area is made unless the area to be passed has the same address and length as the

470 CICS TS for OS/390: CICS Application Programming Guide

area that was passed to the program issuing the command. For example, if
program A issues a LINK command to program B, which in turn issues an XCTL
command to program C, and if B passes to C the same communication area that A
passed to B, program C will be passed addressability to the communication area
that belongs to A (not a copy of it), and any changes made by C will be available
to A when control returns to it.

When a lower-level program, which has been accessed by a LINK command,
issues the RETURN command, control passes back one logical level higher than the
program returning control. If the task is associated with a terminal, the TRANSID
option can be used at the lower level to specify the transaction identifier for the
next transaction to be associated with that terminal. The transaction identifier
comes into play only after the highest logical level has relinquished control to CICS
using the RETURN command and input is received from the terminal. Any input
entered from the terminal, apart from an attention key, is interpreted wholly as
data. You may use the TRANSID option without COMMAREA when returning
from any link level, but it can be overridden on a later RETURN command. If a
RETURN command fails at the top level because of an invalid COMMAREA, the
TRANSID becomes null. Also, you can specify COMMAREA or IMMEDIATE only
at the highest level, otherwise you get an INVREQ with RESP2=2.

In addition, the COMMAREA option can be used to pass data to the new task that
is to be started.

The invoked program can determine which type of command invoked it by
accessing field EIBFN in the EIB. This field must be tested before any CICS
commands are issued. If the program was invoked by a LINK or XCTL command,
the appropriate code is found in the EIBFN field. If it was invoked by a RETURN
command, no CICS commands have been issued in the task, and the field contains
zeros.

INPUTMSG
The INPUTMSG option of the LINK, XCTL, and RETURN commands is another
way of specifying the name of a data area to be passed to the program being
invoked. For programming information about the use of these commands, see the
CICS Application Programming Reference manual. In this case, the invoked program
gets the data by processing a RECEIVE command. This option enables you to
invoke (“front-end”) application programs that were written to be invoked directly
from a terminal, and which contain RECEIVE commands, to obtain initial terminal
input.

If program that has been accessed by means of a LINK command issues a
RECEIVE command to obtain initial input from a terminal, but the initial RECEIVE
request has already been issued by a higher-level program, there is no data for the
program to receive. In this case, the application waits on input from the terminal.
You can ensure that the original terminal input continues to be available to a
linked program by invoking it with the INPUTMSG option.

When an application program invokes another program, specifying INPUTMSG on
the LINK (or XCTL or RETURN) command, the data specified on the INPUTMSG
continues to be available even if the linked program itself does not issue an
RECEIVE command, but instead invokes yet another application program. See
Figure 80 on page 472 for an illustration of INPUTMSG.

Chapter 35. Program control 471

Notes:

1. In this example, the “real” first RECEIVE command is issued by program A. By
linking to program B with the INPUTMSG option, it ensures that the next
program to issue a RECEIVE request can also receive the terminal input. This
can be either program B or program C.

2. If program A simply wants to pass on the unmodified terminal input that it
received, it can name the same data area for the INPUTMSG option that it used
for the RECEIVE command. For example:
EXEC CICS RECEIVE

INTO(TERMINAL-INPUT)...
EXEC CICS LINK

PROGRAM(PROGRAMB)
INPUTMSG(TERMINAL-INPUT)...

3. As soon as one program in a LINK chain issues a RECEIVE command, the
INPUTMSG data ceases to be available to any subsequent RECEIVE command.
In other words, in the example shown, if B issues a RECEIVE request before
linking to C, the INPUTMSG data area is not available for C.

4. This method of communicating data from one program to another can be used
for any kind of data—it does not have to originate from a user terminal. In our
example, program A could move any data into the named data area, and
invoke program B with INPUTMSG referencing the data.

5. The “terminal-data” passed on INPUTMSG also ceases to be available when
control is eventually returned to the program that issued the link with
INPUTMSG. In our example, if C returns to B, and B returns to A, and neither
B nor C issues a RECEIVE command, the data is assumed by A to have been
received. If A then invokes another program (for example, D), the original
INPUTMSG data is no longer available to D, unless the INPUTMSG option is
specified.

Transaction
input from
terminal

CICS
invokes
application

RECEIVE input from terminal

Program LINK to B with INPUTMSG

A

Program LINK to C
LINK to D

B

Program Program

D C

Figure 80. Use of INPUTMSG in a linked chain

472 CICS TS for OS/390: CICS Application Programming Guide

6. The INPUTMSG data ceases to be available when a SEND or CONVERSE
command is issued.

Using the INPUTMSG option on the RETURN command
You can specify INPUTMSG to pass data to the next transaction specified on a
RETURN command with the TRANSID option. To do this, the RETURN command
must be issued at the highest logical level to return control to CICS, and the
command must also specify the IMMEDIATE option. If you specify INPUTMSG
with TRANSID, and do not also specify IMMEDIATE, the next real input from the
terminal overrides the INPUTMSG data, which is therefore lost. See the CICS
Application Programming Reference manual for programming information about the
RETURN command.

If you specify INPUTMSG with TRANSID some time after a SEND command, the
SEND message is immediately flushed out to the terminal.

The other use for INPUTMSG, on a RETURN command without the TRANSID
option, is intended for use with a dynamic transaction routing program. See the
CICS Customization Guide for programming information about the user-replaceable
dynamic transaction routing program.

Other ways of passing data
Data can also be passed between application programs and transactions in other
ways. For example, the data can be stored in a CICS storage area outside the local
environment of the application program, such as the transaction work area (TWA).
Another way is to store the data in temporary storage; see “Chapter 38. Temporary
storage control” on page 499 for details.

Mixed addressing mode transactions
CICS supports the use of the LINK, XCTL, and RETURN commands between
programs with different addressing modes and between programs with the same
addressing mode.

The following restrictions apply to programs passing data using a communication
area named by the COMMAREA option:
v Addresses passed within a communication area to an AMODE(31) program

must be 31 bits long. Do not use 3-byte addresses with flag data packed into the
top byte, unless the called program is specifically designed to ignore the top
byte.

v Addresses passed as data to an AMODE(24) program must be below the 16MB
line if they are to be interpreted correctly by the called program.

These restrictions apply to the address of the communication area itself, and also
to addresses within it. However, a communication area above the 16MB line can be
passed to an AMODE(24) subprogram. CICS copies the communication area into
an area below the 16MB line for processing. It copies it back again when control
returns to the linking program. See “Chapter 36. Storage control” on page 479 for
information about copying CICS-key storage.

CICS does not validate any data addresses passed within a communication area
between programs with different addressing modes.

Chapter 35. Program control 473

Examples of passing data with the LINK command
Figures 81 to 84 show how, in COBOL, C, C++, PL/I, and assembler language, the
LINK command causes data to be passed to the program being linked to; the
XCTL command is coded in a similar way.

Invoking program
IDENTIFICATION DIVISION.
PROGRAM ID. 'PROG1'....
WORKING-STORAGE SECTION.
01 COM-REGION.

02 FIELD PICTURE X(3)....
PROCEDURE DIVISION.

MOVE 'ABC' TO FIELD.
EXEC CICS LINK PROGRAM('PROG2')

COMMAREA(COM-REGION)
LENGTH(3) END-EXEC....

Invoked program
IDENTIFICATION DIVISION.
PROGRAM-ID. 'PROG2'....
LINKAGE SECTION.
01 DFHCOMMAREA.

02 FIELD PICTURE X(3).

...
PROCEDURE DIVISION.

IF EIBCALEN GREATER ZERO
THEN

IF FIELD EQUALS 'ABC' ...

Figure 81. COBOL example—LINK command

Invoking program
main()
{

unsigned char field[3];
memcpy(field, "ABC", 3);
EXEC CICS LINK PROGRAM("PROG2")

COMMAREA(field)
LENGTH(sizeof(field));

}
Invoked program

main()
{

unsigned char *commarea;
EXEC CICS ADDRESS COMMAREA(commarea) EIB(dfheiptr);
if (dfheiptr->eibcalen > 0)
{

if (memcmp(commarea, "ABC", 3) == 0)
{...

Figure 82. C example—LINK command. In this example, the COMMAREA contains a
character string. For an example of a COMMAREA that contains a structure, see Figure 86
on page 477.

474 CICS TS for OS/390: CICS Application Programming Guide

Invoking program
PROG1: PROC OPTIONS(MAIN);
DCL 1 COM_REGION AUTOMATIC,

2 FIELD CHAR(3),...
FIELD='ABC';
EXEC CICS LINK PROGRAM('PROG2')

COMMAREA(COM_REGION) LENGTH(3);
END;

Invoked program

PROG2:
PROC(COMM_REG_PTR) OPTIONS(MAIN);
DCL COMM_REG_PTR PTR;
DCL 1 COM_REGION BASED(COMM_REG_PTR),

2 FIELD CHAR(3),...
IF EIBCALEN>0 THEN DO;

IF FIELD='ABC' THEN
END;...

END;

Figure 83. PL/I example—LINK command

Invoking program

DFHEISTG DSECT
COMREG DS 0CL20
FIELD DS CL3...
PROG1 CSECT...

MVC FIELD,=C'XYZ'
EXEC CICS LINK
PROGRAM('PROG2')
COMMAREA(COMREG) LENGTH(3)...
END

Invoked program

COMREG DSECT
FIELD DS CL3...
PROG2 CSECT...

L COMPTR,DFHEICAP
USING COMREG,COMPTR
CLC FIELD,=C'ABC'...
END

Figure 84. ASM example—LINK command

Chapter 35. Program control 475

Examples of passing data with the RETURN command
Figures 85 to 88 show how in COBOL, C, C++, PL/I, and assembler language, the
RETURN command is used to pass data to a new transaction.

Invoking program

IDENTIFICATION DIVISION.
PROGRAM-ID. 'PROG1'....
WORKING-STORAGE SECTION.
01 TERMINAL-STORAGE.

02 FIELD PICTURE X(3).
02 DATAFLD PICTURE X(17)....

PROCEDURE DIVISION.
MOVE 'XYZ' TO FIELD.
EXEC CICS RETURN TRANSID('TRN2')

COMMAREA(TERMINAL-STORAGE)
LENGTH(20) END-EXEC....

Invoked program

IDENTIFICATION DIVISION.
PROGRAM-ID. 'PROG2'...
LINKAGE SECTION.
01 DFHCOMMAREA.

02 FIELD PICTURE X(3).
02 DATAFLD PICTURE X(17)....

PROCEDURE DIVISION.
IF EIBCALEN GREATER ZERO
THEN

IF FIELD EQUALS 'XYZ'
MOVE 'ABC' TO FIELD.

EXEC CICS RETURN END-EXEC.

Figure 85. COBOL example—RETURN command

476 CICS TS for OS/390: CICS Application Programming Guide

Invoking program
struct ter_struct
{

unsigned char field[3];
unsigned char datafld[17];

};
main()
{

struct ter_struct ter_stor;
memcpy(ter_stor.field,"XYZ",3);
EXEC CICS RETURN TRANSID("TRN2")

COMMAREA(&ter_stor)
LENGTH(sizeof(ter_stor));

}
Invoked program

struct term_struct
{

unsigned char field[3];
unsigned char datafld[17];

};
main()
{

struct term_struct *commarea;
EXEC CICS ADDRESS COMMAREA(commarea) EIB(dfheiptr);
if (dfheiptr->eibcalen > 0)
{

if (memcmp(commarea->field, "XYZ", 3) == 0)
memcpy(commarea->field, "ABC", 3);

}
EXEC CICS RETURN;

}

Figure 86. C example—RETURN command

Invoking program

PROG1: PROC OPTIONS(MAIN);
DCL 1 TERM_STORAGE,

2 FIELD CHAR(3),...
FIELD='XYZ';
EXEC CICS RETURN TRANSID('TRN2')

COMMAREA(TERM_STORAGE);
END;

Invoked program

PROG2:
PROC(TERM_STG_PTR) OPTIONS(MAIN);
DCL TERM_STG_PTR PTR;
DCL 1 TERM_STORAGE

BASED(TERM_STG_PTR),
2 FIELD CHAR(3),...

IF EIBCALEN>0 THEN DO;
IF FIELD='XYZ' THEN FIELD='ABC';
END;

EXEC CICS RETURN;
END;

Figure 87. PL/I example—RETURN command

Chapter 35. Program control 477

Invoking program

DFHEISTG DSECT
TERMSTG DS 0CL20
FIELD DS CL3
DATAFLD DS CL17...
PROG1 CSECT...

MVC FIELD,=C'ABC'
EXEC CICS RETURN
TRANSID('TRN2')
COMMAREA(TERMSTG)...
END

Invoked program

TERMSTG DSECT
FIELD DS CL3
DATAFLD DS CL17...
PROG2 CSECT...

CLC EIBCALEN,=H'0'
BNH LABEL2
L COMPTR,DFHEICAP
USING TERMSTG,COMPTR
CLC FIELD,=C'XYZ'
BNE LABEL1
MVC FIELD,=C'ABC'

LABEL1 DS 0H...
LABEL2 DS 0H...

END

Figure 88. ASM example—RETURN command

478 CICS TS for OS/390: CICS Application Programming Guide

Chapter 36. Storage control

This chapter explains about storage protection in the following sections:
v “Overview of CICS storage protection and transaction isolation” on page 480
v “Storage protection” on page 480
v “Deciding what execution and storage key to specify” on page 484
v “Storage protection exception conditions” on page 488
v “Transaction isolation” on page 488
v “Using transaction isolation” on page 489
v “MVS subspaces” on page 491

The CICS storage control facility controls requests for main storage to provide
intermediate work areas and other main storage needed to process a transaction.

Java and C++
The application programming interface described in this chapter is the EXEC
CICS API, which is not used in Java programs. For information about Java
programs using the JCICS classes to access storage control services, see “The
JCICS Java classes” on page 69 and the JCICS Javadoc html documentation.
For information about C++ programs using the CICS C++ classes, see the
CICS C++ OO Class Libraries manual.

CICS makes working storage available within each command-level program
automatically, without any specific request from the application program, and
provides other facilities for intermediate storage, both within and among tasks.
“Chapter 12. Designing efficient applications” on page 119 describes storage within
individual programs. If you need working storage in addition to the working
storage provided automatically by CICS, however, you can use the following
commands:
v GETMAIN to get and initialize main storage
v FREEMAIN to release main storage

You can initialize the acquired main storage to any bit configuration by supplying
the INITIMG option on the GETMAIN command; for example, zeros or EBCDIC
blanks.

CICS releases all main storage associated with a task when the task is ended
normally or abnormally. This includes any storage acquired, and not subsequently
released, by your application program, except for areas obtained with the SHARED
option. This option of the GETMAIN command prevents storage being released
automatically when a task completes.

If you use the GETMAIN command with the SHARED option, and the FREEMAIN
command, you could create inter-transaction affinities that adversely affect the
ability to perform dynamic transaction routing.

To help you identify potential problems with programs that issue these commands,
you can use the Transaction Affinities Utility. See the CICS Transaction Affinities
Utility Guide for information about this utility and see “Chapter 14. Affinity” on
page 157 for information about transaction affinity.

© Copyright IBM Corp. 1989, 2000 479

|
|
|
|
|
|

If there is no storage available when you issue your request, CICS suspends your
task until space is available, unless you specify the NOSUSPEND option. While the
task is suspended, it may be canceled (timed out) if the transaction definition
specifies SPURGE(YES) and DTIMOUT(mmss). NOSUSPEND returns control to
your program if storage is not available, allowing you to do alternative processing,
as appropriate.

Overview of CICS storage protection and transaction isolation
Storage control is affected by storage protection introduced in CICS/ESA 3.3 and
transaction isolation introduced in CICS/ESA 4.1.

Storage protection protects CICS code and control blocks from applications, and
transaction isolation protects tasks from each other.

The ESA/390™ subsystem storage protection facility works in a way that enables
you to prevent CICS code and control blocks from being overwritten accidentally
by your application programs. It does not provide protection against deliberate
overwriting of CICS code or control blocks. CICS cannot prevent an application
obtaining the necessary access (execution key) to modify CICS storage.

Transaction isolation extends this storage protection to provide protection for
transaction data. Accidental overwrites of the transaction data by an application
program of another transaction can affect the reliability and availability of your
CICS system and the integrity of the data in the system.

The use of storage protection is optional. You choose whether you want to use
storage protection facilities by means of CICS system initialization parameters
described in the CICS System Definition Guide. For information about transaction
isolation, see “Transaction isolation” on page 488.

Storage protection
CICS allows you to run your application programs in either user-key or CICS-key
storage. (See “Terminology” on page 481 for definitions of the terms user key and
CICS key.) CICS storage is automatically protected from being overwritten by
application programs that execute in user-key storage (the default). The concept of
isolating CICS code and control blocks (CICS internal data areas) from user
application programs is illustrated in Figure 89 on page 481.

480 CICS TS for OS/390: CICS Application Programming Guide

The terms in Figure 89 relating to storage keys and execution keys are explained
under “Terminology”.

Terminology
When you are running with the storage protection facility active, CICS separates
storage into two categories:

CICS-key storage
is used for CICS system code and control blocks and, at the discretion of the
installation, other code and data areas that require protection from overwriting.

In a CICS region with transaction isolation active, a CICS-key program has
read/write access to CICS-key and user-key storage.

User-key storage
is where application programs and their data areas normally reside.

There are two associated execution modes:
1. CICS system programs run in CICS key. CICS-key execution allows a program

read-write access to both CICS-key and user-key storage.
2. Application programs normally execute in user key. User-key execution allows

a program read-write access to user-key storage, but only read access to
CICS-key storage.

The terms “user key” and “CICS key” thus apply both to storage and to the
execution of programs with respect to that storage. They are reflected in the
resource definition keywords. These keywords are described in transactions, see
the CICS Resource Definition Guide for more information.

Selecting the execution key for applications
The execution key controls the type of access your application programs have to
CICS-key storage. The default is that application programs are given control in
user key. You should define CICS key only for those programs where it is essential
that they execute in CICS key. The programs you might select to run in CICS key
are typically those that are written by system programmers, and are usually
designed to provide special function in support of user applications. Such

CICS
READ/ (CICS-key) READ/
WRITE WRITE

CICS-key storage User-key storage

CICS code and User application
control blocks programs and data areas

READ READ/WRITE
only

User
Application
programs
(User-key)

Figure 89. Protecting CICS code and control blocks from user application programs

Chapter 36. Storage control 481

programs are generally considered to be an extension of CICS rather than part of
an application. Some examples of such programs are described in “CICS-key
applications” on page 486.

The storage protection facility does not protect CICS code and control blocks from
being overwritten by this type of program, or by ordinary application programs
that you choose to execute in CICS key.

Defining the execution key
To run your programs in CICS key, you should use the execution key parameter
(EXECKEY) on the program resource definition. See “Deciding what execution and
storage key to specify” on page 484 for an explanation of EXECKEY. The EXECKEY
parameter determines the key in which CICS passes control to an application
program.

Selecting and defining the storage key for applications
CICS enables you to choose between user-key storage and CICS-key storage for a
number of CICS data areas and application program data areas that your
applications can use. Depending on the data area, you select the storage key by:
v System initialization parameters
v Resource definition option
v Selecting an option on the GETMAIN command

Defining the storage key for storage areas that your applications need to access is
described in the following sections.

System-wide storage areas
For each CICS region, your installation can choose between user-key and CICS-key
storage for the common work area (CWA) and for the terminal control table user
areas (TCTUAs). If these areas are in user-key storage, all programs have
read-write access to them; if they are in CICS-key storage, user-key application
programs are restricted to read-only access. The storage keys for the CWA and the
TCTUAs are set by the system initialization parameters CWAKEY and TCTUAKEY,
respectively. In both cases the default option is that CICS obtains user-key storage.

See the CICS Resource Definition Guide for information about how to specify these
and other storage-protection-related system initialization parameters.

Task lifetime storage
You can also specify whether user-key or CICS-key storage is used for the storage
that CICS acquires at transaction attach time, and for those elements of storage
directly related to the individual application programs in a transaction. You do this
by means of the TASKDATAKEY option on the transaction resource definition. This
governs the type of storage allocated for the following storage areas:
v The transaction work area (TWA) and the EXEC interface block (EIB)
v The copies of working storage that CICS obtains for each execution of an

application program
v Any storage obtained for an application program in response to:

– Explicit storage requests by means of an GETMAIN command
– Implicit storage requests as a result of a CICS command that uses the SET

option

For information about how to specify the TASKDATAKEY parameter, see the CICS
Resource Definition Guide.

482 CICS TS for OS/390: CICS Application Programming Guide

Figure 90 on page 484 shows what TASKDATAKEY controls for both task lifetime
storage and program working storage.

See the CICS Application Programming Reference manual for programming
information about EXEC CICS commands; see the CICS Resource Definition Guide
for information about specifying the TASKDATAKEY option on the transaction
resource definition.

Program working storage specifically for exit and PLT programs
CICS uses the TASKDATAKEY option of the calling transaction to determine the
storage key for the storage acquired for global user exits, task-related user exits,
user-replaceable modules, and PLT programs. For programming information about
storage key, including details of how this affects the different types of program, see
the CICS Customization Guide.

Passing data by a COMMAREA
In a pseudoconversational application, CICS ensures that a COMMAREA you
specify on a RETURN command is always accessible in read-write mode to the
next program in the conversation. The same is true when passing a COMMAREA
within a transaction that comprises more than one program (using a LINK or
XCTL command). CICS ensures that the target program has read-write access to
the COMMAREA.

The GETMAIN command
The GETMAIN command provides USERDATAKEY and CICSDATAKEY options
to enable the application program to explicitly request user-key or CICS-key
storage, regardless of the TASKDATAKEY option specified on the associated
transaction resource definition. For example, this option allows application
programs, which are executing with TASKDATAKEY(CICS) specified, to obtain
user-key storage for passing to, or returning to, a program executing in user key.

CICS-key storage obtained by GETMAIN commands issued in a program defined
with EXECKEY(CICS) can be freed explicitly only if the FREEMAIN command is
issued by a program defined with EXECKEY(CICS). If an application program
defined with EXECKEY(USER) attempts to free CICS-key storage using
FREEMAIN commands, CICS returns the INVREQ condition. However, an
application can free user-key storage with FREEMAIN commands regardless of the
EXECKEY option.

All task lifetime storage acquired by an application, whether in CICS key or user
key, is freed by CICS at task termination. You can also specify
STORAGECLEAR(YES) on this option of the associated transaction resource
definition. This clears the storage and so prevents another task accidentally
viewing sensitive data.

For programming information about commands, see the CICS Application
Programming Reference manual; for information about defining, see the CICS
Resource Definition Guide.

Chapter 36. Storage control 483

Notes:

1. The TASKDATAKEY option ensures the TWA and EIB are allocated from
user-key storage, required for PROGRAM1, which executes in user
key—specified by EXECKEY(USER).

2. PROGRAM1 executes in user key (controlled by EXECKEY), and has its
working storage obtained in user-key storage (controlled by the
TASKDATAKEY option). Any other storage the program obtains by means of
GETMAIN commands or by using the SET option on a CICS command is also
obtained in user-key storage.

3. PROGRAM2 executes in CICS key (controlled by EXECKEY), but has its
working storage obtained in user-key storage, which again is controlled by the
TASKDATAKEY option.

4. PROGRAM2 issues an explicit GETMAIN command using the CICSDATAKEY
option and, because it executes in CICS key, can store data into the CICS-key
protected storage before returning control to PROGRAM1.

5. PROGRAM1 cannot write to the CICS-key protected storage that PROGRAM2
acquired, but can read what PROGRAM2 wrote there.
When deciding whether you need to specify EXECKEY(CICS) and
TASKDATAKEY(CICS), you must consider all the reasons that make these
options necessary.

Programs that modify their storage protection key should ensure they are running
in the correct key when attempting to access storage. CICS can only use the
EXECKEY defined in the program definition when invoking a program.

Deciding what execution and storage key to specify
When you are running CICS with storage protection, the majority of your
application programs should execute in user key, with all their storage obtained in
user key. You only need to define EXECKEY(CICS) on program definitions, and
TASKDATAKEY(CICS) on the associated transaction definitions, for those

Transaction:- TRANID(A123) TASKDATAKEY(USER)
- PROGRAM(PROGRAM1)

Program: - PROGRAM1 EXECKEY(USER)
- PROGRAM2 EXECKEY(CICS)

(1)
Task lifetime storage allocated from user-key storage

EXEC interface block (EIB) Transaction work area (TWA)

(2) (3) (4)
PROGRAM1 PROGRAM2

EXEC CICS LINK CICS-key
EXECKEY EXECKEY storage
(USER) PROGRAM(PROGRAM2) (CICS) obtained

(5) by a
GETMAIN

Working Working
storage in storage in
user-key user-key

Figure 90. Illustration of the use of the TASKDATAKEY and EXECKEY options

484 CICS TS for OS/390: CICS Application Programming Guide

programs that use facilities that are not permitted in user key, or for any special
“system-type” transactions or vendor packages.

You should only specify TASKDATAKEY(CICS) for those transactions where all the
component programs have EXECKEY(CICS), and for which you want to protect
their task lifetime and working storage from being overwritten by user-key
applications. For example, the CICS-supplied transactions such as CEDF are
defined with TASKDATAKEY(CICS).

Note that you cannot specify EXECKEY(USER) on any programs that form part of
a transaction defined with TASKDATAKEY(CICS) because, in this situation, a
user-key program would not be able to write to its own working storage.
Transactions abend with an AEZD abend if any program is defined with
EXECKEY(USER) within a transaction defined with TASKDATAKEY(CICS),
regardless of whether storage protection is active.

You cannot define a program so that it inherits its caller’s execution key. The
execution key and data storage keys are derived for each program from its
program and associated transaction resource definitions respectively, which you
either specify explicitly or allow to default; the default is always user key. Table 40
summarizes the various combinations of options.

Table 40. Combinations of KEY options

EXECKEY TASKDATAKEY Recommended usage and comments

USER USER For normal applications using the CICS API

USER CICS Not permitted. CICS abends any program
defined with EXECKEY(USER) invoked
under a transaction defined with
TASKDATAKEY(CICS).

CICS USER For programs that need to issue restricted
MVS requests or modify CICS-key storage.

CICS CICS For transactions (and component programs)
that function as extensions to CICS, such as
the CICS-supplied transactions, or which
require the same protection.

User-key applications
For most applications you should define your programs with EXECKEY(USER),
and the related transactions with TASKDATAKEY(USER). To obtain the maximum
benefits from the CICS storage protection facility, you are recommended to run
your application programs in user key storage. Specifying USER on these options
has the following effect:

EXECKEY(USER)
This specifies that CICS is to give control to the program in user key when
it is invoked. Programs defined with EXECKEY(USER) are restricted to
read-only access to CICS-key storage. These include:
v Storage belonging to CICS itself
v CICS-key storage belonging to user transactions defined with

TASKDATAKEY(CICS)
v Application programs defined with EXECKEY(CICS) and thus loaded

into CICS-key storage

Chapter 36. Storage control 485

v In a CICS region where transaction isolation is active, a user-key
program has read/write access to the user-key task-lifetime storage of its
own transaction and any shared DSA storage

TASKDATAKEY(USER)
This specifies that all task lifetime storage, such as the transaction work
area (TWA) and the EXEC interface block (EIB), is obtained from the
user-key storage.

It also means that all storage directly related to the programs within the
transaction is obtained from user-key storage.

However, user-key programs of transactions defined with ISOLATE(YES)
have access only to the user-key task-lifetime storage of their own task.

USER is the default for both the EXECKEY and TASKDATAKEY options, therefore
you do not need to make any changes to resource definitions for existing
application programs.

CICS-key applications
Most application programs can be defined with EXECKEY(USER), which is the
default value, and this is the option you are recommended to use in the majority
of cases. These include programs that use DL/I or DB2 and programs that access
vendor products through the resource manager interface (RMI) or a LINK
command.

However, some application programs need to be defined with EXECKEY(CICS)
because they need to use certain facilities that are listed later. Widespread use of
EXECKEY(CICS) diminishes the protection offered by the storage protection facility
because there is no protection of CICS code and control blocks from being
overwritten by application programs that execute in CICS key. The ISOLATE
attribute in the transaction definition does not provide any protection against
application programs that execute in CICS key—that is, from programs defined
with EXECKEY(CICS). Any application program causing a protection exception
when defined with EXECKEY(USER) must be examined to determine why it is
attempting to modify storage it is not allowed to modify. You should change a
program’s definition to EXECKEY(CICS) only if you are satisfied that the
application program legitimately uses the facilities described below.
v The program uses MVS macros or services directly, rather than through the CICS

API. The only MVS macros that are supported in user-key programs are SPIE,
ESPIE, POST, WAIT, WTO, and WTOR. It is also possible to issue GTF trace
requests from an EXECKEY(USER) program. If a program uses any other MVS
macro or service, it must be defined with EXECKEY(CICS). Some particular
examples are:
– Use of dynamic allocation (DYNALLOC macro, SVC 99)
– Use of MVS GETMAIN and FREEMAIN or STORAGE requests
– Use of MVS OPEN, CLOSE, or other file access requests

Direct use of some MVS macros and services is undesirable, even in a CICS
application defined with EXECKEY(CICS). This is because they may cause MVS
to suspend the whole CICS region until the request is satisfied.

Some COBOL, PL/I, C, and C++ language statements, and compiler options,
cause operating system functions to be invoked. See “Chapter 2. Programming in
COBOL” on page 23, “Chapter 3. Programming in C and C++” on page 45, and
“Chapter 4. Programming in PL/I” on page 53 for information about which of
these should not be used in CICS application programs. It is possible that some

486 CICS TS for OS/390: CICS Application Programming Guide

of these functions may have worked in previous releases of CICS, or at least
may not have caused the application to fail. They do not work when the
program is defined with EXECKEY(USER). When the use of prohibited options
or statements is the cause of a protection exception, you should remove these
from the program rather than simply redefine the program with
EXECKEY(CICS). The use of prohibited statements and options can have other
side effects on the overall execution of CICS, and these should be removed.

v The program needs to modify the CWA, and the CWA is in CICS-key storage
(CWAKEY=CICS).
If you decide to protect the CWA by specifying CWAKEY(CICS), you should
restrict the programs that are permitted to modify the CWA to as few as
possible, perhaps only one. See “Common work area (CWA)” on page 151 for
information about how you can control access to a protected CWA.

v The program needs to modify the TCTUA, and the TCTUAs are in CICS-key
storage (TCTUAKEY=CICS).
See “TCTTE user area (TCTUA)” on page 154 for information about using
TCTUAs in a storage protection environment.

v The program can be invoked from PLT programs, from transactions defined with
TASKDATAKEY(CICS), from task-related or global user exits programs, or from
user-replaceable programs.

v The program modifies CICS control blocks—for example, some vendor products
that do need to manipulate CICS control blocks. These must be defined with
EXECKEY(CICS).

v The program provides user extensions to CICS and requires protection and data
access similar to CICS system code. For example, you may consider that such
programs are a vital part of your CICS installation, and that their associated
storage, like CICS storage, should be protected from ordinary application
programs.

v CICS always gives control in CICS key to the following types of user-written
program, regardless of the option specified on their program resource
definitions:
– Global user exits (GLUEs)
– Task-related user exits (TRUEs)
– User-replaceable modules (URMs)
– Program list table (PLT) programs

CICS ensures that when control is passed to a PLT program, a global or
task-related user exit, or a user-replaceable program, the first program so
invoked executes in CICS key, regardless of the EXECKEY specified on its
program resource definition. However, if this first program LINKs or XCTLs to
other programs, these programs execute under the key specified in their
program definitions. If these subsequent programs are required to write to
CICS-key data areas, as often occurs in this type of situation, they must be
defined as EXECKEY(CICS).

In a CICS region with transaction isolation active, these TRUEs and GLUEs run
in either base space or subspace (see “MVS subspaces” on page 491), depending
on the current mode when CICS gives control to the exit program. They can also
modify any application storage. The URMs and PLT programs execute in base
space.

For programming information about the execution of GLUEs, TRUEs, URMs, and
PLT programs in a CICS region running with storage protection, see the CICS
Customization Guide.

Chapter 36. Storage control 487

If two transactions have an affinity by virtue of sharing task lifetime storage, the
transactions must be defined as ISOLATE(NO), or the programs must be defined
as EXECKEY(CICS). You can use the CICS Transaction Affinities Utility to check
the causes of transaction affinity. See the CICS Transaction Affinities Utility Guide for
more information about this utility. The first of these options is the recommended
option, because CICS system code and data is still protected.

Tables
In addition to executable programs, you can define tables, map sets, and partition
sets as program resources. EXECKEY has less relevance to these objects, because
they are not actually executed. However, EXECKEY does control where
non-executable objects are loaded, and thus affects whether other programs can
store into them.

Map sets and partition sets
Map sets are not reentrant (BMS itself updates fields in maps when calculating
absolute screen positions). However, map sets should not be modified by
application programs; they must be modified only by CICS, which always executes
in CICS key. CICS always loads map sets and partition sets into CICS-key storage.

Storage protection exception conditions
If an application program executing in user key attempts to modify CICS-key
storage, a protection exception occurs. The protection exception is processed by
normal CICS program error handling, and the offending transaction abends with
an ASRA abend. The exception condition appears to the transaction just as if it had
attempted to reference any other protected storage. CICS error handling checks
whether the reference is to a CICS-key dynamic storage area (DSA), and sends a
message (DFHSR0622) to the console. Otherwise, CICS does not treat the failure
any differently from any other ASRA abend. See the CICS Problem Determination
Guide for more information about the storage protection exception conditions.

Transaction isolation
Transaction isolation uses the MVS subspace group facility to offer protection
between transactions. This ensures that an application program associated with one
transaction cannot accidentally overwrite the data of another transaction.

Some of the benefits of transaction isolation, and its associated support are:
v Reducing system outages
v Protecting application data
v Protecting CICS from application programs that pass invalid addresses
v Aiding application development

Reducing system outages
Transaction isolation prevents data corruption and unplanned CICS system outages
caused by coding errors in user-key application programs that cause the storage of
user-key transactions to be accidentally overwritten. Prevention of accidental
transaction data overwrites significantly improves the reliability and availability of
CICS regions.

Protecting application data
If an application program overwrites CICS code or data, CICS can fail as a result.
If an application program overwrites another application program’s code, that
other application program is likely to fail. Whereas this is a serious interruption in

488 CICS TS for OS/390: CICS Application Programming Guide

a production region, the effect is immediate and the program can generally be
recovered so that the terminal user can retry the failed transaction. However, if an
application program of one transaction overwrites the data of another transaction,
the results often are not immediately apparent; the erroneous data can be written
to a database and the error may remain undetected until later, when it may be
impossible to determine the cause of the error. The consequences of a data
overwrite are often much more serious than a code overwrite.

Protecting CICS from being passed invalid addresses
CICS also protects itself against applications that pass invalid addresses that would
result in CICS causing storage violations. This occurs when an application program
issues an EXEC CICS command that causes CICS to modify storage on the
program’s behalf, but the program does not own the storage. In earlier releases,
CICS did not check ownership of the storage referenced by the passed address,
and executed such commands with consequent storage violations.

CICS validates the start address of the storage, and establishes that the application
program has write access to the storage that begins with that address, before
executing the command.

This address checking is controlled using the CMDPROT system initialization
parameter. If a program passes an invalid address to CICS as an output field on
the API, an AEYD abend occurs. It is completely independent of storage protection
and transaction isolation.

Aiding application development
Transaction isolation aids application development in the testing and debugging
phase. If an application tries to overwrite CICS or another application, or if it tries
to pass a storage address it does not own for CICS to write to, CICS immediately
abends the task and reports the rogue program’s name and the area it tried to
overwrite. This saves much time trying to debug what is a common problem in
application development environments.

Using transaction isolation
Transaction isolation is built on top of storage protection, which means that
STGPROT=YES must be specified. Transaction isolation makes use of parameters
introduced by storage protection, these being EXECKEY and TASKDATAKEY.

In addition to being able to specify the storage and execution key for user
transactions, you can also specify whether you want transaction isolation. You can
control transaction isolation globally for the whole CICS region by means of the
TRANISO system initialization parameter. For individual transactions, the
ISOLATE option of the transaction resource definition allows you to specify the
level of protection that should apply to each transaction and program.
ISOLATE [YES or NO]

The defaults for these options mean that, in most cases, no changes to resource
definition are needed for existing applications. However, where necessary,
protection can be tailored to allow transactions to continue to function where they
fail to meet the criteria for full protection, which is the default. This means that the
transaction’s user-key task lifetime storage is protected from the user-key programs
of other transactions, but not from CICS-key programs. See Figure 91 on page 490
for an illustration of this.

Chapter 36. Storage control 489

A user-key program invoked by transaction A (TXNA) may read and write to
TXNA’s user-key task lifetime storage and to shared user storage. Moreover, TXNA
has no access to transaction B’s (TXNB) user-key task lifetime storage.

If a transaction is defined as ISOLATE(NO), its user-key task lifetime is visible to
all other transactions also defined as ISOLATE(NO). It is, however, protected from
transactions defined as ISOLATE(YES).

TXNA
User-key
program

READ READ/ READ/
WRITE WRITE

CICS-key shared TXNA TXNB
User-key User-key User-key

storage storage task lifetime task lifetime
storage storage

READ READ/ READ/
WRITE WRITE

TXNB
User-key
program

Figure 91. TXNA and TXNB are two transactions defined as ISOLATE(YES)

TXNA
User-key
program

READ READ/ READ/ READ/
WRITE WRITE WRITE

CICS-key shared TXNA TXNB
User-key User-key User-key

storage storage task lifetime task lifetime
storage storage

READ/ READ/ READ/ READ/
WRITE WRITE WRITE WRITE

TXNB
User-key
program

Figure 92. TXNA and TXNB are two transactions defined as ISOLATE(NO) and have
read/write to each other’s task lifetime storage

490 CICS TS for OS/390: CICS Application Programming Guide

MVS subspaces
MVS/ESA 5.2 introduces the subspace group facility, which can be used for storage
isolation to preserve data integrity within an address space.

The subspace-group facility uses hardware to provide protection for transaction
data. A subspace-group is a group of subspaces and a single base space, where the
base space is the normal MVS address space as in releases prior to MVS/ESA 5.1.

The subspace-group facility provides a partial mapping of the underlying base
space, so that only specified areas of storage in the base space are exposed in a
particular subspace. Thus each subspace represents a different subset of the storage
in the base space. Transaction isolation, when specified, ensures that programs
defined with EXECKEY(USER) execute in their own subspace, with appropriate
access to any shared storage, or to CICS storage. Thus a user transaction is limited
to its own “view” of the address space.

Programs defined with EXECKEY(CICS) execute in the base space, and have the
same privileges as in CICS/ESA 3.3.

Subspaces and basespaces for transactions
In general, transaction isolation ensures that user-key programs are allocated to
separate (unique) subspaces, and have:
v Read and write access to the user-key task-lifetime storage of their own tasks,

which is allocated from one of the user dynamic storage areas (UDSA or
EUDSA)

v Read and write access to shared storage; that is, storage obtained by GETMAIN
commands with the SHARED option (SDSA or ESDSA)

v Read access to the CICS-key task-lifetime storage of other tasks (CDSA or
ECDSA)

v Read access to CICS code

CICS key

TXNA
User-key
program

READ READ/ READ/ READ/
WRITE WRITE WRITE

CICS-key shared TXNA TXNB
User-key User-key User-key

storage storage task lifetime task lifetime
storage storage

READ/ READ/ READ/ READ/
WRITE WRITE WRITE WRITE

TXNB
User-key
program

Figure 93. TXNA and TXNB defined as ISOLATE(YES) to a CICS-key program which has
read/write access to both CICS- and user-key storage

Chapter 36. Storage control 491

v Read access to CICS control blocks that are accessible by the CICS API

They do not have any access to user-key task-lifetime storage of other tasks.

The defaults for new transaction resource definition attributes specify that existing
application programs operate with transaction isolation (the default for the
ISOLATE option is YES). Existing applications should run unmodified provided
they conform to transaction isolation requirements.

However, a minority of applications may need special definition if they:
v Issue MVS macros directly, or
v Modify CICS control blocks, or
v Have a legitimate need for one task to access, or share, another task’s storage

Some existing transactions may share task-lifetime storage in various ways, and
this sharing may prevent them running isolated from each other. To allow such
transactions to continue to execute, a single common subspace is provided in
which all such transactions can execute. They are then isolated from the other
transactions in the system that are running in their own subspaces, but able to
share each other’s data within the common subspace. See “The common subspace
and shared storage” for more information.

CICS-key programs execute in the base space and so have read/write access to all
CICS-key storage and user-key storage.

The common subspace and shared storage
You might have some transactions where the application programs access one
another’s storage in a valid way. One such case is when a task waits on one or
more event control blocks (ECBs) that are later posted, either by an MVS POST or
“hand posting”, by another task.

For example, a task can pass the address of a piece of its own storage to another
task (by a temporary storage queue or some other method) and then WAIT for the
other task to post an ECB to say that it has updated the storage. Clearly, if the
original task is executing in a unique subspace, the posting task fails when
attempting the update and to post the ECB, unless the posting task is executing in
CICS key.

CICS supports the following methods to ensure that transactions that need to share
storage can continue to work in the subspace-group environment:
v You can specify that all the related transactions are to run in the common

subspace. The common subspace allows tasks that need to share storage to
coexist, while isolating them from other transactions in the system. Transactions
assigned to the common subspace have the following characteristics:
– They have read and write access to each other’s task-lifetime storage.
– They have no access of any kind to storage of transactions that run in unique

subspaces.
– They have read access only to CICS storage.

Any group of related transactions that work in user key in CICS/ESA 4.1 should
work under CICS Transaction Server for OS/390 Release 3 if defined with
ISOLATE(NO) to ensure they run in the common subspace. This provides

492 CICS TS for OS/390: CICS Application Programming Guide

|
|

|
|
|
|
|
|

support for migration, allowing the separation of transactions into their own
unique subspaces to be staged gradually after installing CICS and related
support.

v You can ensure that the common storage is in SHARED storage by obtaining the
storage with the SHARED option.

v You can ensure that the application programs of the transactions that are sharing
storage are all defined with EXECKEY(CICS). This ensures that their programs
execute in base space, where they have read/write access to all storage.
However, this method is not recommended because it does not give any storage
protection.

You can use the Transaction Affinities Utility to help you identify transactions that
include the commands such as WAIT EVENT, WAITCICS, WAIT EXTERNAL, and
MVS POST. See the CICS Transaction Affinities Utility Guide manual for more
information about this utility.

Chapter 36. Storage control 493

494 CICS TS for OS/390: CICS Application Programming Guide

Chapter 37. Transient data control

This chapter describes the three different queues in CICS and also explains
automatic transaction initiation:
v “Intrapartition queues”
v “Extrapartition queues” on page 496
v “Indirect queues” on page 496
v “Automatic transaction initiation (ATI)” on page 497

Java and C++
The application programming interface described in this chapter is the EXEC
CICS API, which is not used in Java programs. For information about Java
programs using the JCICS classes to access transient data services, see “The
JCICS Java classes” on page 69 and the JCICS Javadoc html documentation.
For information about C++ programs using the CICS C++ classes, see the
CICS C++ OO Class Libraries manual.

The CICS transient data control facility provides a generalized queuing facility.
Data can be queued (stored) for subsequent internal or external processing.
Selected data, specified in the application program, can be routed to or from
predefined symbolic transient data queues: either intrapartition or extrapartition.

Transient data queues are intrapartition if they are associated with a facility
allocated to the CICS region, and extrapartition if the data is directed to a
destination that is external to the CICS region. Transient data queues must be
defined and installed before first reference by an application program.

You can:
v Write data to a transient data queue (WRITEQ TD command)
v Read data from a transient data queue (READQ TD command)
v Delete an intrapartition transient data queue (DELETEQ TD command)

If the TD keyword is omitted, the command is assumed to be for temporary
storage. (See “Chapter 38. Temporary storage control” on page 499 for more
information about temporary storage.)

Intrapartition queues
“Intrapartition” refers to data on direct-access storage devices for use with one or
more programs running as separate tasks. Data directed to or from these internal
queues is referred to as intrapartition data; it must consist of variable-length
records. Intrapartition queues can be associated with either a terminal or an output
data set. Intrapartition data may ultimately be transmitted upon request to the
terminal or retrieved sequentially from the output data set.

Typical uses of intrapartition data include:
v Message switching
v Broadcasting
v Database access
v Routing of output to several terminals (for example, for order distribution)

© Copyright IBM Corp. 1989, 2000 495

|
|
|
|
|
|

v Queuing of data (for example, for assignment of order numbers or priority by
arrival)

v Data collection (for example, for batched input from 2780 Data Transmission
Terminals)

There are three types of intrapartition transient data queue:
v Non-recoverable Non-recoverable intrapartition transient data queues are

recovered only on a warm start of CICS. If a unit of work (UOW) updates a
non-recoverable intrapartition queue and subsequently backs out the updates,
the updates made to the queue are not backed out.

v Physically recoverable Physically recoverable intrapartition transient data
queues are recovered on warm and emergency restarts. If a UOW updates a
physically recoverable intrapartition queue and subsequently backs out the
updates, the updates made to the queue are not backed out.

v Logically recoverable Logically recoverable intrapartition transient data queues
are recovered on warm and emergency restarts. If a UOW updates a logically
recoverable intrapartition queue and subsequently backs out the changes it has
made, the changes made to the queue are also backed out. On a warm or an
emergency restart, the committed state of a logically recoverable intrapartition
queue is recovered. In-flight UOWs are ignored.
If an application is trying to issue a read, write, or delete request and suffers an
indoubt failure, it may receive a LOCKED response if WAIT(YES) and
WAITACTION(REJECT) are specified in the queue definition.

Extrapartition queues
Extrapartition queues (data sets) reside on any sequential device (DASD, tape,
printer, and so on) that are accessible by programs outside (or within) the CICS
region. In general, sequential extrapartition queues are used for storing and
retrieving data outside the CICS region. For example, one task may read data from
a remote terminal, edit the data, and write the results to a data set for subsequent
processing in another region. Logging data, statistics, and transaction error
messages are examples of data that can be written to extrapartition queues. In
general, extrapartition data created by CICS is intended for subsequent batched
input to non-CICS programs. Data can also be routed to an output device such as a
printer.

Data directed to or from an external destination is referred to as extrapartition data
and consists of sequential records that are fixed-length or variable-length, blocked
or unblocked. The record format for an extrapartition destination must be defined
in the DCT by the system programmer and the queue must be defined in the
queue definition. (See the CICS Resource Definition Guide for details about queue
defintions.)

Indirect queues
Intrapartition and extrapartition queues can be used as indirect queues. Indirect
queues provide some flexibility in program maintenance in that data can be routed
to one of several queues with only the transient data definition, and not the
program itself, having to be changed.

When a transient data definition has been changed, application programs continue
to route data to the queue using the original symbolic name; however, this name is
now an indirect queue that refers to the new symbolic name. Because indirect
queues are established by using transient data resource definitions, the application

496 CICS TS for OS/390: CICS Application Programming Guide

programmer does not usually have to be concerned with how this is done. Further
information about transient data resource definition is in the CICS Resource
Definition Guide.

Automatic transaction initiation (ATI)
For intrapartition queues, CICS provides the option of automatic transaction
initiation (ATI).

A basis for ATI is established by the system programmer by specifying a nonzero
trigger level for a particular intrapartition destination. (See the CICS Resource
Definition Guide for more information about trigger levels.) When the number of
entries (created by WRITEQ TD commands issued by one or more programs) in
the queue reaches the specified trigger level, a transaction specified in the
definition of the queue is automatically initiated. Control is passed to a program
that processes the data in the queue; the program must issue repetitive READQ TD
commands to deplete the queue.

When the queue has been emptied, a new ATI cycle begins. That is, a new task is
scheduled for initiation when the specified trigger level is again reached, whether
or not execution of the earlier task has ended.

If an automatically initiated task does not empty the queue, access to the queue is
not inhibited. The task may be normally or abnormally ended before the queue is
emptied (that is, before a QZERO condition occurs in response to a READQ TD
command). If the contents of the queue are to be sent to a terminal, and the
previous task completed normally, the fact that QZERO has not been reached
means that trigger processing has not been reset and the same task is reinitiated. A
subsequent WRITEQ TD command does not trigger a new task if trigger
processing has not been reset.

If the contents of the queue are to be sent to a file, the termination of the task has
the same effect as QZERO (that is, trigger processing is reset). The next WRITEQ
TD command initiates the trigger transaction (if the trigger level has been reached).

If the trigger level of a queue is zero, no task is automatically initiated.

If a queue is logically recoverable, initiation of the trigger transaction is deferred
until the next syncpoint.

If the trigger level has already been exceeded because the last triggered transaction
abended before clearing the queue, or because the transaction was never started
because the MXT limit was reached, another task is not scheduled. This is because
QZERO has not been raised to reset trigger processing. The task that has already
been scheduled is reinitiated as soon as possible. If the contents of a queue are
destined for a file, the termination of the task resets trigger processing and means
that the next WRITEQ TD command triggers a new task.

To ensure that an automatically initiated task completes when the queue is empty,
the application program should test for a QZERO condition in preference to some
other application-dependent factor (such as an anticipated number of records).
Only the QZERO condition indicates an emptied queue.

If the contents of a queue are to be sent to another system, the session name is
held in EIBTERMID. If a transaction (started with a destination of system) abends,
a new transaction is started in the same way as a terminal.

Chapter 37. Transient data control 497

If you use ATI with a transient data trigger mechanism, it could create
inter-transaction affinities that adversely affect your ability to perform dynamic
transaction routing. See “Chapter 14. Affinity” on page 157 for more information
about transaction affinity.

A trigger transaction is shunted if it suffers from an indoubt failure. Another
trigger transaction is not attached until the shunted UOW commits or backs out
the changes it has made following resynchronization.

498 CICS TS for OS/390: CICS Application Programming Guide

Chapter 38. Temporary storage control

This chapter contains information about:
v “Temporary storage queues”
v “Typical uses of temporary storage control” on page 500

The CICS temporary storage control facility provides the application programmer
with the ability to store data in temporary storage queues, either in main storage,
in auxiliary storage on a direct-access storage device, or in a temporary storage
data sharing pool. Data stored in a temporary storage queue is known as
temporary data.

Java and C++
The application programming interface described in this chapter is the EXEC
CICS API, which is not used in Java programs. For information about Java
programs using the JCICS classes to access temporary storage services, see
“The JCICS Java classes” on page 69 and the JCICS Javadoc html
documentation. For information about C++ programs using the CICS C++
classes, see the CICS C++ OO Class Libraries manual.

You can:
v Write data to a temporary storage queue (WRITEQ TS command).
v Update data in a temporary storage queue (WRITEQ TS REWRITE command).
v Read data from a temporary storage queue (READQ TS command).
v Read the next data from a temporary storage queue (READQ TS NEXT

command).
v Delete a temporary storage queue (DELETEQ TS command).

The TS keyword may be omitted; temporary storage is assumed if it is not
specified.

Exception conditions that occur during execution of a temporary storage control
command are handled as described in “Chapter 20. Dealing with exception
conditions” on page 231.

If you use these commands, you could create inter-transaction affinities that
adversely affect your ability to perform dynamic transaction routing.

To help you identify potential problems with programs that issue these commands,
you can use the scanner and detector components of the Transaction Affinities
Utility. See the CICS Transaction Affinities Utility Guide for more information about
this utility and “Chapter 14. Affinity” on page 157 for more information about
transaction affinity.

Temporary storage queues
Temporary storage queues are identified by symbolic names that may be up to 16
characters, assigned by the originating task. Temporary data can be retrieved by
the originating task or by any other task using the symbolic name assigned to it.
To avoid conflicts caused by duplicate names, a naming convention should be

© Copyright IBM Corp. 1989, 2000 499

|
|
|
|
|
|

|
|

established; for example, the operator identifier or terminal identifier could be
used as a suffix to each programmer-supplied symbolic name. Specific items
(logical records) within a queue are referred to by relative position numbers.

Temporary storage queues remain intact until they are deleted by the originating
task, by any other task, or by an initial or cold start; before deletion, they can be
accessed any number of times. Even after the originating task is terminated,
temporary data can be accessed by other tasks through references to the symbolic
name under which it is stored.

Temporary data can be stored either in main storage or in auxiliary storage.
Generally, main storage should be used if the data is needed for short periods of
time; auxiliary storage should be used if the data is to be kept for long periods of
time. Data stored in auxiliary storage is retained after CICS termination and can be
recovered in a subsequent restart, but data in main storage cannot be recovered.
Main storage might be used to pass data from task to task, or for unique storage
that allows programs to meet the requirement of CICS that they be quasi-reentrant
(that is, serially reusable between entry and exit points of the program).

Temporary storage data sharing provides another type of temporary storage queue
that can be supported concurrently. The temporary storage queues can be defined
as local, remote, or shared, and they can be stored in temporary storage pools in
the coupling facility.

Typical uses of temporary storage control
A temporary storage queue that has only one record can be treated as a single unit
of data that can be accessed using its symbolic name. Using temporary storage
control in this way provides a typical scratch-pad capability. This type of storage
should be accessed using the READQ TS command with the ITEM option; not
doing so may cause the ITEMERR condition to be raised.

In general, temporary storage queues of more than one record should be used only
when direct access or repeated access to records is necessary; transient data control
provides facilities for efficient handling of sequential data sets.

Some uses of temporary storage queues are:

Terminal paging
A task could retrieve a large master record from a direct-access data set,
format it into several screen images (using BMS), store the screen images
temporarily in auxiliary storage, and then ask the terminal operator which
“page” (screen image) is desired. The application programmer can provide
a program (as a generalized routine or unique to a single application) to
advance page by page, advance or back up a relative number of pages, and
so on.

A suspend data set
Suppose a data collection task is in progress at a terminal. The task reads
one or more units of input and then allows the terminal operator to
interrupt the process by some kind of coded input. If not interrupted, the
task repeats the data collection process. If interrupted, the task writes its
incomplete data to temporary storage and terminates. The terminal is now
free to process a different transaction (perhaps a high-priority inquiry).
When the terminal is available to continue data collection, the operator

500 CICS TS for OS/390: CICS Application Programming Guide

initiates the task in a “resume” mode, causing the task to recall its
suspended data from temporary storage and continue as though it had not
been interrupted.

Preprinted forms
An application program can accept data to be written as output on a
preprinted form. This data can be stored in temporary storage as it arrives.
When all the data has been stored, it can first be validated and then
transmitted in the order required by the format of the preprinted form.

Chapter 38. Temporary storage control 501

502 CICS TS for OS/390: CICS Application Programming Guide

Chapter 39. Security control

Java and C++
The application programming interface described in this chapter is the EXEC
CICS API, which is not used in Java programs. For information about Java
programs using the JCICS classes to access security control services, see “The
JCICS Java classes” on page 69 and the JCICS Javadoc html documentation.
For information about C++ programs using the CICS C++ classes, see the
CICS C++ OO Class Libraries manual.

To avoid attempting accesses that would cause security violations, it can be useful
for an application to determine the security authorization of the terminal user. The
QUERY SECURITY command provides a way of doing this.

This chapter gives some guidance on the use of the QUERY SECURITY command.
For additional guidance, see the CICS RACF Security Guide. It also describes some
aspects of non-terminal security. For programming information about EXEC CICS
commands, see the CICS Application Programming Reference manual.

QUERY SECURITY command
QUERY SECURITY is effective with RACF or any equivalent external security
manager (ESM). You can use this command to query whether the terminal user has
access to resources that are defined to the external security manager. These can be:
v Resources in CICS resource classes
v Resources in user-defined resource classes

The terminal user in this context is the user invoking the transaction that contains
the QUERY SECURITY command.

In response to a QUERY SECURITY command, CICS returns information about the
terminal user’s security authorizations. CICS obtains this information from the
external security manager. You can code the application to proceed in different
ways depending on the user’s permitted accesses.

You specify the type of resource that you are querying by the CICS resource type
name. For example, if you want to query a user’s authorization to access a file,
you can specify RESTYPE(‘FILE’). To identify a particular file within the type, you
specify the RESID parameter.

Using QUERY SECURITY
A typical use of the QUERY SECURITY command is to check whether a user is
authorized to use a particular transaction before displaying the transaction code in
a menu.

Security protection at the record or field level
Another use for QUERY SECURITY is to enable you to control access to data at the
record or field level. The normal CICS resource security checking for file resources,
for example, works only at the file level. To control access to individual records, or
even fields within records, you can use QUERY SECURITY. For this purpose, your
security administrator must define resource profile names, with appropriate access

© Copyright IBM Corp. 1989, 2000 503

|
|
|
|
|
|

authorizations, for the records or fields that you want to protect. These profiles are
defined in user resource classes defined by the administrator, not in CICS resource
classes.

To query these classes and resources, the QUERY SECURITY command uses the
RESCLASS and RESID options (RESCLASS and RESTYPE are mutually exclusive
options). You can use the CVDA values returned by QUERY SECURITY to
determine whether to access the record or field.

CICS-defined resource identifiers
In all cases except for the SPCOMMAND resource type, the resource identifiers are
user-defined. However, for the SPCOMMAND type, the identifiers are fixed by
CICS. The CICS RACF Security Guide details the possible RESID values for the
SPCOMMAND resource type.

SEC system initialization parameter
The setting of the SEC system initialization parameter affects the CVDA values
returned by the QUERY SECURITY command. The SEC system initialization
parameters are described in more detail in the CICS RACF Security Guide.

Programming hints
v A transaction can use the QUERY SECURITY command to query a number of

resources in order to prepare a list of resources to which the terminal user has
access. The use of this technique could generate up to four resource violation
messages for each query on a resource that the transaction is not authorized to
access. These messages appear on the system console, the CSCS TD queue, and
the SMF log data set. If you want to suppress these messages, code NOLOG in
the QUERY SECURITY command.

v If a transaction accesses the same resource many times in one execution, you can
probably improve performance by defining the transaction with RESSEC(NO) in
the transaction resource definition. You can then code the transaction to issue a
single QUERY SECURITY command, and to permit access to the resource
according to the CVDA values returned. For detailed guidance, see the CICS
RACF Security Guide.

Non-terminal transaction security
CICS can now protect, against unauthorized use, resources used in transactions
that are not associated with a terminal. These transactions are of three types:
v Transactions that are started by a START command and that do not specify a

terminal ID.
v Transactions that are started, without a terminal, as a result of the trigger level

being reached for an intrapartition transient data queue.
v The CICS internal transaction (CPLT), which runs during CICS startup, to

execute programs specified in the program list table (PLT). This transaction
executes both first and second phases of PLTs.

Also, resource security checking can now be carried out for PLT programs that are
run during CICS shutdown. PLT shutdown programs execute as part of the
transaction that requests the shutdown, and therefore run under the authorization
of the user issuing the shutdown command.

The START command handles security for non-terminal transactions started by the
START command.

504 CICS TS for OS/390: CICS Application Programming Guide

A surrogate user who is authorized to attach a transaction for another user, or
cause it to be attached, or who inherits all the resource access authorizations for
that transaction, can act for the user.

CICS can issue up to three surrogate user security checks on a single START
command, depending on the circumstances:
1. The userid of the transaction that issues the START command, if USERID is

specified
2. The userid of the CEDF transaction, if the transaction that issues the START

command is being run in CEDF dual-screen mode
3. The CICS region userid of the remote system, if the START command is

function shipped to another CICS system and link security is in effect.

A separate surrogate user security check is done for each of these userids, as
required, before the transaction is attached.

For programming information about the USERID option, USERIDERR condition,
and INVREQ, and NOTAUTH conditions, see the CICS Application Programming
Reference manual.

Chapter 39. Security control 505

506 CICS TS for OS/390: CICS Application Programming Guide

Part 7. Testing applications

Chapter 40. Testing applications: the process 509
Preparing the application and system table entries 509
Preparing the system for debugging 509
Single-thread testing 510
Multithread testing 510
Regression testing 510

Chapter 41. Execution diagnostic facility (EDF) 513
Getting started 513
Where does EDF intercept the program? 514
What does EDF display? 514

The header 515
The body 516

At program initiation. 516
At the start of execution of a CICS command 516
At the end of execution of a command . . . 518
At program and task termination. 520
At abnormal termination 521

How you can intervene in program execution 522
EDF menu functions 523

How to use EDF 529
Using EDF in single-screen mode. 529

Checking pseudoconversational programs 530
Using EDF in dual-screen mode 531
EDF and remote transactions 531
EDF and non-terminal transactions 532
EDF and DTP programs 532
EDF and distributed program link commands 533
Stopping EDF 533
Overtyping to make changes 533

EDF responses 535
Restrictions when using EDF 535

Parameter list stacking 536
Security considerations 536

Chapter 42. Temporary storage browse (CEBR) 537
How to use the CEBR transaction 537
What does the CEBR transaction display? 539

The header 539
The command area 539
The body 539
The message line 539
The CEBR options on function keys 539

The CEBR commands 540
Using the CEBR transaction with transient data 543
Security considerations 543

Chapter 43. Command-level interpreter (CECI) 545
How to use CECI 545
What does CECI display? 546

The command line 546
The status line 547

Command syntax check 547
About to execute command 548
Command execution complete. 549

The body 549
The message line 550
CECI options on function keys 550

Additional displays 551
Expanded area 551
Variables 551

Defining variables 552
The EXEC interface block (EIB) 553
Error messages display 554

Making changes 555
How CECI runs 555

CECI sessions 555
Abends 556
Exception conditions 556
Program control commands 556
Terminal sharing 556
Saving commands 557

Security considerations 558

© Copyright IBM Corp. 1989, 2000 507

##

508 CICS TS for OS/390: CICS Application Programming Guide

Chapter 40. Testing applications: the process

Java
This part of the book is not relevant for Java application programs.

You have to do two main tasks before you can test and debug an application:
1. “Preparing the application and system table entries”
2. “Preparing the system for debugging”

This chapter contains information about the following methods of testing:
v “Single-thread testing” on page 510
v “Multithread testing” on page 510
v “Regression testing” on page 510

Preparing the application and system table entries
To prepare the application and system table entries you should do the following:
1. Translate, assemble or compile, and link-edit each program. Make sure that

there are no error messages on any of these three steps for any program
before you begin testing.

2. Use the DEBUG and EDF options on your translator step, so that you can use
translator statement numbers with execution diagnostic facility (EDF) displays.

3. Use the COBOL compiler options CLIST and DMAP so that you can relate
storage locations in dumps and EDF displays to the original COBOL source
statements, and find your variables in working storage.

4. Use the RDO DEFINE PROFILE command to generate a profile for your
transactions to use, and make sure the definitions are INSTALLed.

5. Use the RDO DEFINE TRANSACTION command for each transaction in your
application, and make sure the definitions are INSTALLed.

6. If your system does not use program autoinstall, use the RDO DEFINE
PROGRAM command for each program used in the application, and make
sure the definitions are INSTALLed.

7. If your system does not use program autoinstall, use the RDO DEFINE
MAPSET command for each map set in the application, and make sure each
definition is INSTALLed.

8. Use the RDO DEFINE FILE command, or put an entry in the FCT, for each
file used. If you use RDO, make sure the definitions are INSTALLed.

9. Build at least a test version of each of the files required.
10. Define each of the transient data destinations to be used by the application.
11. Put job control DD cards in the startup job stream for each file used in the

application.
12. Prepare some test data.

Preparing the system for debugging
To prepare the system for debugging you should do the following:
1. Make sure that EDF is available in your system, by including group DFHEDF

in the list you specify in the GRPLIST system initialization

© Copyright IBM Corp. 1989, 2000 509

|

2. Set up appropriate tracing options for your application. For details about
setting up tracing options, see the CICS Problem Determination Guide.

3. Make sure that transaction dumping is enabled for all transaction dump codes,
and that system dumping is enabled for all system dump codes. These are,
anyway, the default settings. For information about setting up dump options,
see the CICS Problem Determination Guide.

4. Be prepared to print the dumps. Have a DFHDU530 job stream or procedure
ready, and have the CICS dump data sets defined in your startup procedure.

5. Contact your system programmer for information about SDUMP data sets
available on your system and access to JCL for processing them.

6. Enable CICS to detect loops, by setting the ICVR parameter in the SIT to a
number greater than zero. Something between five and ten seconds (ICVR=5000
to ICVR=10000) is usually a workable value.

7. Generate statistics. For more information about using statistics, see the CICS
Performance Guide.

Single-thread testing
A single-thread test takes one application transaction at a time, in an otherwise
“empty” CICS system, and sees how it behaves. This enables you to test the
program logic, and also shows whether or not the basic CICS information (such as
resource definition) is correct. It is quite feasible to test this single application in
one CICS region while your normal, online production CICS system is active in
another.

Multithread testing
A multithread test involves several concurrently active transactions. Naturally, all
the transactions are in the same CICS region, so you can readily test the ability of a
new transaction to coexist with them.

You may find that a transaction that works perfectly in its single-thread testing still
fails in the multithread test. It may also cause other transactions to fail, or even
terminate CICS.

Regression testing
A regression test is used to make sure that all the transactions in a system
continue to do their processing in the same way both before and after changes are
applied to the system. This is to ensure that fixes applied to solve one problem do
not cause further problems. It is a good idea to build a set of miniature files to
perform your tests on, because it is much easier to examine a small data file for
changes.

A good regression test exercises all the code in every program; that is, it explores
all tests and possible conditions. As your system develops to include more
transactions, more possible conditions, and so on, add these to your test system to
keep it in step. The results of each test should match those from the previous
round of testing. Any discrepancies are grounds for suspicion. You can compare
terminal output, file changes, and log entries for validity.

Sequential terminal support (described in “Sequential terminal support” on
page 427), can be useful for regression testing. When you have a module that has
worked for some time and is now being modified, you need to rerun your old

510 CICS TS for OS/390: CICS Application Programming Guide

tests to ensure that the function still works. Sequential terminal support makes it
easy to maintain a “library” of old test cases and to rerun them when needed.

Sequential terminal support allows you to test programs without having to use a
telecommunication device. System programmers can specify that sequential devices
be used as terminals (using the terminal control table (TCT)). These sequential
devices may be card readers, line printers, disk units, or magnetic tape units. They
can also be combinations of sequential devices such as:
v A card reader and line printer (CRLP)
v One or more disk or tape data sets as input
v One or more disk or tape data sets as output

You can prepare a stream of transaction test cases to do the basic testing of a
program module. As the testing progresses, you can generate additional
transaction streams to validate the multiprogramming capabilities of the programs
or to allow transaction test cases to run concurrently.

Chapter 40. Testing applications: the process 511

512 CICS TS for OS/390: CICS Application Programming Guide

Chapter 41. Execution diagnostic facility (EDF)

This chapter contains the following information:
v “Getting started”
v “Where does EDF intercept the program?” on page 514
v “What does EDF display?” on page 514
v “How to use EDF” on page 529
v “Security considerations” on page 536

You can use the execution diagnostic facility (EDF) to test an application program
online, without modifying the program or the program-preparation procedure. The
CICS execution diagnostic facility is supported by the CICS-supplied transaction,
CEDF, which invokes the DFHEDFP program.

Note: You can also invoke CEDF indirectly through another CICS-supplied
transaction, CEDX, which enables you to specify the name of the transaction
you want to debug. When this chapter refers to the CEDF transaction (for
example, when it explains about CICS starting a new CEDF task below)
remember that it may have been invoked by the CEDX command.

The names of your programs should not begin with the letters “DFH” because this
prefix is used for CICS system modules and samples. Attempting to use EDF on a
CICS-supplied transaction has no effect. However, you can use EDF with CICS
sample programs and some user-replaceable modules. (For example, you can use
EDF to debug DFHPEP.)

EDF intercepts the execution of CICS commands in the application program at
various points, allowing you to see what is happening. Each command is
displayed before execution, and most are displayed after execution is complete.
Screens sent by the application program are preserved, so you can converse with
the application program during testing, just as a user would on a production
system.

If you want to work through an example of EDF, see the CICS Application
Programming Primer (VS COBOL II), which guides you through a sample EDF
session.

Each time EDF interrupts the execution of the application program a new CEDF
task is started. Each CEDF task is short lived, lasting only long enough for the
appropriate display to be processed.

Getting started
The terminal that you are using for the EDF interaction must be in transceive
(ATI/TTI) status and be able to send and receive data. This is the most common
status for display terminals, but you can find out by asking your system
programmer to check its status, or you can use CEMT.

For a transaction initiated at a terminal, you can use EDF on the same terminal as
the transaction you are testing, or on a different one. On the same terminal, you
must start by clearing the screen and entering the transaction code CEDF,
otherwise you may get unpredictable results. The message THIS TERMINAL: EDF

© Copyright IBM Corp. 1989, 2000 513

MODE ON is displayed at the top of an empty screen. You clear the screen again
and run your transaction in the normal way.

If you are using two terminals, you enter CEDF tttt at one, naming the second in
tttt. Then you run your transaction on the second terminal.

If you are testing a non-terminal transaction, enter CEDX trnx at your EDF terminal,
naming the transaction in trnx. EDF invoked by the CEDX transaction intercepts a
named transaction that starts after you issue the CEDX command, and ignores
instances of the specified transaction that are already running. Each time EDF
interrupts the execution of the application program running under trnx, a new
CEDF task is started (even though EDF was invoked by CEDX).

“How to use EDF” on page 529 gives all the details.

Where does EDF intercept the program?
When a transaction runs under EDF control, EDF intercepts it at the following
points, allowing you to interact with it:
v At program initiation, after the EXEC interface block (EIB) has been updated,

but before the program is given control.
v At the start of the execution of each CICS command. This interrupt happens

after the initial trace entry has been made, but before the command has been
performed. Both standard CICS commands and the Front End Programming
Interface (FEPI) commands are intercepted. EXEC DLI and EXEC SQL
commands and any requests processed through the resource manager interface
are also intercepted at this point.

v At the end of the execution of every command except for ABEND, XCTL, and
RETURN commands (although these commands could raise an error condition
that EDF displays). EDF intercepts the transaction when it finishes processing
the command, but before the HANDLE CONDITION mechanism is invoked,
and before the response trace entry is made.

v At program termination.
v At normal task termination.
v When an ABEND occurs and after abnormal task termination.

Note: For a program translated with the option NOEDF, these intercept points still
apply, apart from before and after the execution of each command. For a
program with CEDF defined as NO on its resource definition or by the
program autoinstall exit, the program initiation and termination screens are
suppressed as well.

What does EDF display?
All EDF displays have the same general format, but the contents depend on the
point at which the task was interrupted. The display indicates which of these
interception points has been reached and shows information relevant to that point.
Figure 94 on page 515 shows a typical display; it occurred after execution of a
SEND MAP command.

514 CICS TS for OS/390: CICS Application Programming Guide

Note: �1�Header �2�Body �3�Message line �4�Menu of functions

The display consists of a header, a body (the primary display area), a message line,
and a menu of functions you can select at this point. If the body does not fit on
one screen, EDF creates multiple screens, which you can scroll through using PF7
and PF8. The header, menu, and message areas are repeated on each screen.

The header
The header shows:
v The identifier of the transaction being executed
v The name of the program being executed
v The internal task number assigned by CICS to the transaction
v The applid of the CICS region where the transaction is being executed
v A display number
v STATUS, that is, the reason for the interception by EDF

TRANSACTION: AC20 PROGRAM: DFH0VT1 TASK: 00032 APPLID: 1234567 DISPLAY:00
STATUS: COMMAND EXECUTION COMPLETE �1�
EXEC CICS SEND MAP
MAP ('T1 ')
FROM ('...'...)
LENGTH (154)
MAPSET ('DFH0T1 ')
CURSOR �2�
TERMINAL
ERASE
NOFLUSH
NOHANDLE

OFFSET:X'002522' LINE:00673 EIBFN=X'1804'
RESPONSE: NORMAL EIBRESP=0 �3�

ENTER: CONTINUE �4�
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 94. Typical EDF display

Chapter 41. Execution diagnostic facility (EDF) 515

The body
The body or main part of the display contains the information that varies with the
point of intercept.

At program initiation
At program initiation, as shown in Figure 95, EDF displays the COMMAREA (if
any) and the contents of the principal fields in the EIB. For programming
information about these EIB fields, see the CICS Application Programming Reference
manual. If there isn’t a COMMAREA, line 4 on the screen is left blank and
EIBCALEN has a value of zero.

At the start of execution of a CICS command
At the start of execution of a CICS command, EDF displays the command,
including keywords, options, and argument values, as shown in Figure 96 on
page 517. You can display the information in hexadecimal or character form (and
switch from one to the other) by pressing PF2. If character format is requested,
numeric arguments are shown in signed numeric character format.

TRANSACTION: AC20 PROGRAM: DFH0VT1 TASK: 00032 APPLID: 1234567 DISPLAY:00
STATUS: PROGRAM INITIATION

COMMAREA = '3476559873'
EIBTIME = 92920
EIBDATE = 91163
EIBTRNID = 'AC20'
EIBTASKN = 32
EIBTRMID = 'S246'

EIBCPOSN = 4
EIBCALEN = 10
EIBAID = X'7D' AT X'032F059A'
EIBFN = X'0000' AT X'032F059B'
EIBRCODE = X'000000000000' AT X'032F059D'
EIBDS = '........'

+ EIBREQID = '........'

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: UNDEFINED

Figure 95. Typical EDF display at program initiation

516 CICS TS for OS/390: CICS Application Programming Guide

Figure 97 shows a similar screen for the start of execution of an EXEC SQL
command running with DB2 version 2.3.

In addition to options and values, the command is identified by its hexadecimal
offset within the program. If the program was translated with the DEBUG
translator option, the line number also appears, as shown in Figure 96. (See
“Translator options” on page 8 for information about this option.)

At the start of an EXEC SQL or EXEC DLI command, the body of the EDF display
shows you the parameter list of the CALL to which your command translates. If a
DLI command generates multiple CALL statements, you see only the last CALL
statement.

TRANSACTION: AC20 PROGRAM: DFH0VT1 TASK: 00032 APPLID: 1234567 DISPLAY:00
STATUS: ABOUT TO EXECUTE COMMAND
EXEC CICS SEND MAP
MAP ('T1 ')
FROM ('...'..)
LENGTH (154)
MAPSET ('DFH0T1 ')
CURSOR
TERMINAL
ERASE
NOFLUSH
NOHANDLE

OFFSET:X'002522' LINE:00673 EIBFN=X'1804'

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : UNDEFINED
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 96. Typical EDF display at start of execution of a CICS command

TRANSACTION: LOKO PROGRAM: TLOKO TASK: 00082 APPLID: 1234567 DISPLAY:00
STATUS: ABOUT TO EXECUTE COMMAND
CALL TO RESOURCE MANAGER DSNCSQL
EXEC SQL UPDATE
DBRM=TLOK0, STMT=00242, SECT=00001
IVAR 001: TYPE=CHAR, LEN=00010 AT X'001E5A99'

DATA=X'F0F0F0F0F0F1F0F0F0F0'

OFFSET:X'000298' LINE: UNKNOWN EIBFN= X'0A02'
ENTER: CONTINUE
PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 97. Typical SQL display at start of execution of a SQL command

Chapter 41. Execution diagnostic facility (EDF) 517

At the end of execution of a command
At the end of execution of a command, EDF provides a display in the same
format as at the start of the command. At this point, you can see the effects of
executing the command, in the values of the variables returned or changed and in
the response code. EDF does not provide this display for the ABEND, XCTL, and
RETURN commands (although these commands could raise an error condition that
EDF displays). The completion screen corresponding to the about to execute screen
in Figure 96 on page 517 is shown in Figure 98.

For CICS commands, response codes are described both by name (for example,
NORMAL or NOTFND) and by the corresponding EIBRESP value in decimal form.
For DL/I, the response code is a 2-character DL/I status code, and there is no
EIBRESP value. Programming information, including a list of EIBRESP codes, is in
the CICS Application Programming Reference manual, and DL/I codes are
documented in the Application Programming: EXEC DLI Commands.

Figure 99 and Figure 100 show typical screens for an EXEC DLI command.

TRANSACTION: AC20 PROGRAM: DFH0VT1 TASK: 00054 APPLID: 1234567 DISPLAY:00
STATUS: COMMAND EXECUTION COMPLETE
EXEC CICS SEND MAP
MAP ('T1 ')
FROM ('..'...)
LENGTH (154)
MAPSET ('DFH0T1 ')
CURSOR
TERMINAL
ERASE
NOFLUSH
NOHANDLE

OFFSET:X'002522' LINE:00673 EIBFN=X'1804'
RESPONSE: NORMAL EIBRESP=0

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 98. Typical EDF display at completion of a CICS command

518 CICS TS for OS/390: CICS Application Programming Guide

Figure 101 on page 520 shows a typical screen for an EXEC SQL command at
completion.

TRANSACTION: XDLI PROGRAM: UPDATE TASK: 00111 APPLID: 1234567 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
EXEC DLI GET NEXT
USING PCB (+00003)
FIRST
SEGMENT ('A ')
INTO (' ')
SEGLENGTH (+00012)
FIRST
VARIABLE
+SEGMENT ('B ')

OFFSET:X'000246' LINE: 00000510 EIBFN:X'000C'
RESPONSE: 'AD'

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 99. Typical EDF display at completion of a DLI command (screen one)

TRANSACTION: XDLI PROGRAM: UPDATE TASK: 00111 APPLID: 1234567 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
EXEC DLI GET NEXT
+
FIRST
SEGMENT ('C ')
SEGLENGTH (+00010)
LOCKED
INTO ('SMITH ')
WHERE (ACCOUNT = '12345')
FIELDLENGTH (+00005)

OFFSET:X'000246' LINE: 00000510 EIBFN:X'000C'
RESPONSE: 'AD'

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 100. Typical EDF display at completion of a DLI command (screen two)

Chapter 41. Execution diagnostic facility (EDF) 519

At program and task termination
At program termination and normal task termination, there is no body
information; all the pertinent information is in the header. Figure 102 and
Figure 103 on page 521 show typical screens for program and task termination.

TRANSACTION: LOKO PROGRAM: TLOKO TASK: 00111 APPLID: 1234567 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
CALL TO RESOURCE MANAGER DSNCSQL
EXEC SQL UPDATE
PLAN=TLOK0, DBRM=TLOK0, STMT=00242, SECT=00001
SQL COMMUNICATION AREA:
SQLCABC = 136 AT X'001E5A18'
SQLCODE = 000 AT X'001E5A1C'
SQLERRML = 000 AT X'001E5A20'
SQLERRMC = '' AT X'001E5A22'
SQLERRP = 'DSN' AT X'001E5A68'
SQLERRD(1-6) = 000, 000, 00001, -1, 00000, 000 AT X'001E5A70'
SQLWARN(0-A) = '_ _ _ _ _ _ _ _ _ _ _' AT X'001E5A88'
SQLSTATE = 00000 AT X'001E5A93'

OFFSET:X'000298' LINE: UNKNOWN EIBFN= X'0A02'
RESPONSE:

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : UNDEFINED PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 101. Typical SQL display at completion of an SQL command

TRANSACTION: AC20 PROGRAM: DFH0VT1 TASK: 00054 APPLID: 1234567 DISPLAY:00
STATUS: PROGRAM TERMINATION

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : UNDEFINED
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: ABEND USER TASK

Figure 102. Typical EDF display at program termination

520 CICS TS for OS/390: CICS Application Programming Guide

At abnormal termination
When an abend or abnormal task termination occurs, EDF displays the screens
shown in Figure 104 and Figure 105 on page 522.

TRANSACTION: AC20 TASK: 00054 APPLID: 1234567 DISPLAY: 00
STATUS: TASK TERMINATION

CONTINUE EDF? (ENTER YES OR NO) REPLY: YES
ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: UNDEFINED

Figure 103. Typical EDF display at task termination

TRANSACTION: AC20 PROGRAM: DFH0VT1 TASK:00054 APPLID: 1234567 DISPLAY: 00
STATUS: AN ABEND HAS OCCURRED

COMMAREA = '1287656678'
EIBTIME = 135510
EIBDATE = 91163
EIBTRNID = 'AC20'
EIBTASKN = 76
EIBTRMID = 'S232'
EIBCPOSN = 4
EIBCALEN = 10
EIBAID = X'7D' AT X'032F059A'
EIBFN = X'1804' SEND AT X'032F059B'
EIBRCODE = X'000000000000' AT X'032F059D'
EIBDS = '........'

+ EIBREQID = '........'

ABEND : ABCD

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: UNDEFINED

Figure 104. Typical EDF display when an abend occurs

Chapter 41. Execution diagnostic facility (EDF) 521

The body displays the COMMAREA and the values of the fields in the EIB as well
as the following items:
v The abend code
v If the abend code is ASRA (that is, a program interrupt has occurred), the

program status word (PSW) at the time of interrupt, and the source of the
interrupt as indicated by the PSW

v If the PSW indicates that the instruction giving rise to the interrupt is within the
application program, the offset of that instruction

How you can intervene in program execution
The power of EDF lies in what you can do at each of the intercept points. For
example, you can:
v Change the argument values before a command is executed. For CICS

commands, you cannot change the actual command, or add or delete options,
but you can change the value associated with any option. You can also suppress
execution of the command entirely using NOOP. See page 534 for further details.

v Change the results of a command, either by changing the argument values
returned by execution or by modifying the response code. This allows you to
test branches of the program that are hard to reach using ordinary test data (for
example, what happens on an input/output error). It also allows you to bypass
the effects of an error to check whether this eliminates a problem.

v Display the working storage of the program, the EIB, and for DL/I programs,
the DIB.

v Invoke the command interpreter (CECI). Under CECI you can execute
commands that are not present in the program to gain additional information or
change the execution environment.

v Display any other location in the CICS region.
v Change the working storage of the program and most fields in the EIB and the

DIB. EDF stops your task from interfering with other tasks by preventing you
from changing other areas of storage.

TRANSACTION: AC20 TASK: 00054 APPLID: 1234567 DISPLAY: 00
STATUS: ABNORMAL TASK TERMINATION

COMMAREA = '2934564671'
EIBTIME = 135510
EIBDATE = 91163
EIBTRNID = 'AC20'
EIBTASKN = 76
EIBTRMID = 'S232'
EIBCPOSN = 4
EIBCALEN = 10
EIBAID = X'7D' AT X'032F059A'
EIBFN = X'1804' SEND AT X'032F059B'
EIBRCODE = X'000000000000' AT X'032F059D'
EIBDS = '........'

+ EIBREQID = '........'

ABEND : ABCD
CONTINUE EDF? (ENTER YES OR NO) REPLY: YES
ENTER: CONTINUE
PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: EIB DISPLAY PF12: UNDEFINED

Figure 105. Typical EDF display at abnormal task termination

522 CICS TS for OS/390: CICS Application Programming Guide

v Display the contents of temporary storage and transient data queues.
v Suppress EDF displays until one or more of a set of specific conditions is

fulfilled. This speeds up testing.
v Retrieve up to 10 previous EDF displays or saved screens.
v Switch off EDF mode and run the application normally.
v Abend the task.

The first two types of changes are made by overtyping values in the body of the
command displays. “Overtyping to make changes” on page 533 tells you how to
do this. You use the function keys in the menu for the others; “EDF menu
functions” tells you exactly what you can do and how to go about it.

EDF menu functions
The function keys that you can use at any given time are displayed in a menu at
the bottom of every EDF display (see Figure 94 on page 515). The function of the
ENTER key for that display is also shown. Functions that apply to all displays are
always assigned to the same key, but definitions of some keys depend on the
display and the intercept point. To select an option, press the indicated function
key. Where a terminal has 24 function keys, EDF treats PF13 through PF24 as
duplicates of PF1 through PF12 respectively. If your terminal has no PF keys, place
the cursor under the option you want and press the ENTER key.

ABEND USER TASK
terminates the task being monitored. EDF asks you to confirm this action by
displaying the message “ENTER ABEND CODE AND REQUEST ABEND
AGAIN”. After entering the code at the position indicated by the cursor, the
user must request this function again to abend the task with a transaction
dump identified by the specified code. If you enter “NO”, the task is abended
without a dump and with the 4-character default abend code of four question
marks (????).

TRANSACTION: DLID PROGRAM: DLID TASK: 00049 APPLID: IYAHZCIB DISPLAY:00
ADDRESS: 00000000

WORKING STORAGE IS NOT AVAILABLE
ENTER: CURRENT DISPLAY
PF1 : UNDEFINED PF2 : BROWSE TEMP STORAGE PF3 : UNDEFINED
PF4 : EIB DISPLAY PF5 : INVOKE CECI PF6 : USER DISPLAY
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : UNDEFINED
PF10: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: REMEMBER DISPLAY

Figure 106. Typical EDF display from which CECI can be invoked

Chapter 41. Execution diagnostic facility (EDF) 523

Abend codes beginning with the character A are reserved for use by CICS.
Using a CICS abend code may cause unpredictable results.

You cannot use this function if an abend is already in progress or the task is
terminating.

BROWSE TEMP STORAGE
produces a display of the temporary storage queue CEBRxxxx, where xxxx is
the terminal identifier of the terminal running EDF. This function is only
available from the working storage (PF5) screen. You can then use CEBR
commands, discussed in “The CEBR commands” on page 540, to display or
modify temporary storage queues and to read or write transient data queues.

CONTINUE
redisplays the current screen if you have made any changes, incorporating the
changes. If you had not made changes, CONTINUE causes the transaction
under test to resume execution up to the next intercept point. To continue,
press ENTER.

CURRENT DISPLAY
redisplays the current screen if you have made any changes, with the changes
incorporated. If you have not made changes, it causes EDF to display the
command screen for the last intercept point. To execute this function, press
ENTER from the appropriate screen.

DIB DISPLAY
shows the contents of the DL/I interface block (DIB). This function is only
available from the working-storage screen (PF5). See the Application
Programming: EXEC DLI Commands manual for information on DIB fields.

EIB DISPLAY
displays the contents of the EIB. See Figure 95 on page 516 for an example of
an EIB display. For programming information about the EIB, see the CICS
Application Programming Reference manual. If COMMAREA exists, EDF also
displays its address and one line of data in the dump format.

INVOKE CECI
accesses CECI. This function is only available from the working storage (PF5)
screen. See Figure 106 on page 523 for an example of the screen from which
CECI is invoked. You can then use CECI commands, discussed in “Chapter 43.
Command-level interpreter (CECI)” on page 545. These CECI commands
include INQUIRE and SET commands against the resources referenced by the
original command before and after command execution. See page 535 for
restrictions when running CECI in dual-screen mode. The use of CECI from
this panel is similar to the use of CEBR within CEDF.

END EDF SESSION
ends the EDF control of the transaction. The transaction continues running
from that point but no longer runs in EDF mode.

NEXT DISPLAY
is the reverse of PREVIOUS DISPLAY. When you have returned to a previous
display, this option causes the next one forward to be displayed and the
display number to increase by one.

PREVIOUS DISPLAY
causes the previous display to be sent to the screen. This is the previous
command display, unless you saved other displays. The number of the display
from the current intercept point is always 00. As you request previous displays,
the display number decreases by 1 to −01 for the first previous display, −02 for

524 CICS TS for OS/390: CICS Application Programming Guide

the one before that, and so on, down to the oldest display, −10. When no more
previous screens are available, the PREVIOUS option disappears from the
menu, and the corresponding function key becomes inoperative.

REGISTERS AT ABEND
displays storage containing the values of the registers should a local ASRA
abend occur. The layout of the storage is:
v Register values (0 through 15)
v PSW at abend (8 bytes)

In some cases, when a second program check occurs in the region before EDF
has captured the values of the registers, this function does not appear on the
menu of the abend display. If this happens, a second test run generally proves
to be more informative.

REMEMBER DISPLAY
places a display that would not usually be kept in memory, such as an EIB
display, in the EDF memory. (EDF automatically saves the displays at the start
and completion of each command.) The memory can hold up to 10 displays.
The displays are numbered in reverse chronological order (that is, −10 is the
oldest display, and −01 is the newest). All pages associated with the display are
kept in memory and can be scrolled when recalled. Note, however, that if you
save a working-storage display, only the screen on view is saved.

SCROLL BACK
applies to an EIB, DIB, or command display that does not all fit on one screen.
When the screen on view is not the first one of the display, and there is a plus
sign (+) before the first option or field, you can view previous screens in the
display by selecting SCROLL BACK. See Figure 95 on page 516 for an example.

SCROLL FORWARD
applies to an EIB, DIB, or command display that does not all fit on one screen.
When this happens, a plus sign (+) appears after the last option or field in the
display, to show that there are more screens. Using SCROLL FORWARD brings
up the next screen in the display.

SCROLL BACK FULL
has the same function for displays of working storage as the SCROLL BACK
option for EIB and DIB displays. SCROLL BACK FULL gives a
working-storage display one full screen backward, showing addresses lower in
storage than those on the current screen.

SCROLL FORWARD FULL
has the same function for displays of working storage as the SCROLL
FORWARD option for EIB and DIB displays. SCROLL FORWARD FULL gives
a working-storage display one full screen forward, showing addresses higher
in storage than those on the current screen.

SCROLL BACK HALF
is similar to SCROLL BACK FULL, except that the display of working storage
is reversed by only half a screen.

SCROLL FORWARD HALF
is similar to SCROLL FORWARD FULL, except that the display of working
storage is advanced by only half a screen.

STOP CONDITIONS
produces the menu screen shown in Figure 107 on page 526. You use this
screen to tell EDF when to resume its displays after you have pressed the
SUPPRESS DISPLAYS key. You can use STOP CONDITIONS and SUPPRESS

Chapter 41. Execution diagnostic facility (EDF) 525

DISPLAYS together to cut down on the interaction between you and EDF
when you are checking a program that you know is partly working.

You can specify any or all of these events as STOP CONDITIONS:
v A specific type of function and option, such as READNEXT file or ENQ

resource, is encountered, for example, FEPI ADD or GDS ASSIGN.
v The command at a specific offset or on a specific line number (assuming the

program has been translated with the DEBUG option) is encountered.
v Any DL/I error status occurs, or a particular DLI error status occurs.
v A specific exception condition occurs. If CICS exception condition is

specified as ERROR (the default), EDF redisplays a screen in response to any
ERROR condition (for example, NOTOPEN, EOF, or INVREQ). If you
specify a specific condition such as EOF, EDF redisplays the screen only
when an EOF condition arises, provided that ANY CICS CONDITION is left
as the default NO.
If this field is changed to YES, EDF overrides the CICS exception conditions
and redisplays a screen whenever any command results in a non-zero
EIBRESP value such as NOTOPEN, EOF, or QBUSY.

v Any exception condition occurs for which the CICS action is to raise
ERROR; for example, INVREQ or NOTFND.

v An abend occurs.
v The task ends normally.
v The task ends abnormally.

You do not always have to set STOP CONDITIONS in order to use the
SUPPRESS DISPLAYS function, because EDF sets a default in the following
fields on the assumption that you usually want to resume displays if any of
them occurs:
v CICS exception condition
v Transaction abend
v Normal task termination

TRANSACTION: AC20 PROGRAM: DFH0VT1 TASK: 0086 APPLID: 1234567 DISPLAY: 00
DISPLAY ON CONDITION:-

COMMAND: EXEC CICS
OFFSET: X'......'
LINE NUMBER:
CICS EXCEPTION CONDITION: ERROR
ANY CICS CONDITION NO
TRANSACTION ABEND YES
NORMAL TASK TERMINATION YES
ABNORMAL TASK TERMINATION YES

DLI ERROR STATUS:
ANY DLI ERROR STATUS

ENTER: CURRENT DISPLAY
PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : UNDEFINED PF8 : UNDEFINED PF9 : UNDEFINED
PF10: UNDEFINED PF11: UNDEFINED PF12: REMEMBER DISPLAY

Figure 107. Typical EDF display for STOP CONDITIONS

526 CICS TS for OS/390: CICS Application Programming Guide

v Abnormal task termination

These are the options described in Figure 107 on page 526. You can turn off
any of the defaults that do not apply when you bring up the STOP
CONDITIONS menu, as well as adding conditions specific to your program.

When you use an offset for STOP CONDITIONS, you must specify the offset of
the BALR instruction corresponding to a command. The offset can be
determined from the code listing produced by the compiler or assembler. In
COBOL, C, C++, or PL/I, you must use the compiler option that produces the
assembler listing to determine the relevant BALR instruction.

When you use a line number, you must specify it exactly as it appears on the
listing, including leading zeros, and it must be the line on which a command
starts. If you have used the NUM or the SEQUENCE translator options, the
translator uses your line numbers as they appear in the source. Otherwise, the
translator assigns line numbers.

Line numbers can be found in the translator listing (SYSPRINT in the
translator step) if you have used either the SOURCE or VBREF translator
options. If you have used the DEBUG translator option, as you must to use
line numbers for STOP CONDITIONS, the line number also appears in your
compilation (assembly) listing, embedded in the translated form of the
command, as a parameter in the CALL statement.

You can tell EDF to stop suppressing displays at DL/I commands as well as at
CICS commands. You do this by overtyping the qualifier “CICS” on the
command line with “DLI” and entering the type of DL/I command at which
you want suppression to stop. You must be executing a DL/I program or have
executed one earlier in the same task. You can suppress DL/I commands as
early as the program initiation panel.

You can also stop suppression when a particular DL/I status code occurs. For
information about the status codes that you can use, see the list of codes in the
DL/I interface block (DIB) in the Application Programming: EXEC DLI Commands
manual.

SUPPRESS DISPLAYS
suppresses all EDF displays until one of the specified STOP CONDITIONS
occurs. When the condition occurs, however, you still have access to the 10
previous command displays, even though they were not actually sent to the
screen when they were originally created.

SWITCH HEX/CHAR
switches displays between character and hexadecimal form. The switch applies
only to the command display, and has no effect on previously remembered
displays, STOP CONDITIONS displays, or working-storage displays.

In DL/I command displays which contain the WHERE option, only the key
values (the expressions following each comparison operator) can be converted
to hexadecimal.

UNDEFINED
means that the indicated function key is not defined for the current display at
the current intercept point.

USER DISPLAY
causes EDF to display what would be on the screen if the transaction was not

Chapter 41. Execution diagnostic facility (EDF) 527

running in EDF mode. (You can use it only for single terminal checkout.) To
return to EDF after using this key, press the ENTER key.

WORKING STORAGE
allows you to see the contents of the working-storage area in your program, or
of any other address in the CICS region. Figure 108 shows a typical
working-storage screen.

The working-storage contents are displayed in a form similar to that of a dump
listing, that is, in both hexadecimal and character representation. The address of
working storage is displayed at the top of the screen. You can browse through the
entire area using the scroll commands, or you can simply enter a new address at
the top of the screen. This address can be anywhere within the CICS region. The
working-storage display provides two additional scrolling keys, and a key to
display the EIB (the DIB if the command is a DL/I command).

The meaning of “working storage” depends on the programming language of the
application program, as follows:

COBOL
All data storage defined in the WORKING-STORAGE section of the program

C, C++ and PL/I
The dynamic storage area (DSA) of the current procedure

Assembler language
The storage defined in the current DFHEISTG DSECT

Assembler language programs do not always acquire working storage; it may not
be necessary, for example, if the program does not issue CICS commands. You may
get the message “Register 13 does not address DFHEISTG” when you LINK to
such a program. The message does not necessarily mean an error, but there is no
working storage to look at.

TRANSACTION: AC20 PROGRAM: DFH0VT1 TASK: 00030 APPLID: 1234567 DISPLAY:00
ADDRESS: 035493F0 WORKING STORAGE
035493F0 000000 E3F14040 00000000 00010000 00000000 T1
03549400 000010 00000000 00000000 F1000000 000000001.......
03549410 000020 F0000000 00000000 F0000000 00000000 0.......0.......
03549420 000030 F0000000 00000000 F0000000 00000000 0.......0.......
03549430 000040 00000000 00000000 00000000 00000000
03549440 000050 D7C1D5D3 00000000 D9C5C3C4 00000000 PANL....RECD....
03549450 000060 D3C9E2E3 00000000 C8C5D3D7 00000000 LIST....HELP....
03549460 000070 84000000 00000000 A4000000 00000000 d.......u.......
03549470 000080 82000000 00000000 C4000000 00000000 b.......D.......
03549480 000090 E4000000 00000000 C2000000 00000000 U.......B.......
03549490 0000A0 D5000000 00000000 E2000000 00000000 N.......S.......
035494A0 0000B0 7B000000 00000000 6C000000 00000000 #.......%.......
035494B0 0000C0 4A000000 00000000 F1000000 00000000 ¢.......1.......
035494C0 0000D0 F2000000 00000000 F3000000 00000000 2.......3.......
035494D0 0000E0 00000000 00000000 C4C6C8F0 E5C1C240DFH0VAB
035494E0 0000F0 C4C6C8F0 E5E3C2D3 C4C6C8F0 E5D3C9D6 DFH0VTBLDFH0VLIO

ENTER: CURRENT DISPLAY
PF1 : UNDEFINED PF2 : BROWSE TEMP STORAGE PF3 : UNDEFINED
PF4 : EIB DISPLAY PF5 : INVOKE CECI PF6 : USER DISPLAY
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : UNDEFINED
PF10: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: REMEMBER DISPLAY

Figure 108. Typical EDF display for working-storage

528 CICS TS for OS/390: CICS Application Programming Guide

Except for COBOL programs, working storage starts with a standard format save
area; that is, registers 14 to 12 begin at offset 12 and register 13 is stored at offset 4.

Working storage can be changed at the screen; either the hexadecimal section or
the character section can be used. Also, the ADDRESS field at the head of the
display can be overtyped with a hexadecimal address; storage starting at that
address is then displayed when ENTER is pressed. This allows any location in the
address space to be examined. Further information on the use of overtyping is
given in “Overtyping to make changes” on page 533.

If the program storage examined is not part of the working storage of the program
currently executing (which is unique to the particular transaction under test), the
corresponding field on the screen is protected to prevent the user from overwriting
storage that might belong to or affect another task.

If the initial part of a working-storage display line is blank, the blank portion is
not part of working storage. This can occur because the display is doubleword
aligned.

At the beginning and end of a task, working storage is not available. In these
circumstances, EDF generates a blank storage display so that the user can still
examine any storage area in the region by overtyping the address field.

Note that if you terminate a PL/I or Language Environment/370 program with an
ordinary non-CICS return, EDF does not intercept the return, and you are not able
to see working storage. If you use a RETURN command instead, you get an EDF
display before execution and at program termination.

If you are using a Language Environment/370-enabled program, working storage
is freed at program termination if the program is terminated using a non-CICS
return. In this case, working storage is not available for display.

How to use EDF
You can run EDF by invoking either the CEDF or CEDX transaction.

If you are testing a non-terminal transaction, use the CEDX transaction, which
enables you to specify the name of the transaction.

If you are testing a transaction that is associated with a terminal, you can run EDF
either on the same terminal as the transaction to be tested (this is called
“single-screen mode”), or on a different terminal (“dual-screen mode”). For
dual-screen mode use the CEDF transaction to specify the terminal identifier.
Generally, you can use whichever method you prefer, but there are a few situations
in which one or the other is required. You must use single-screen mode for remote
transactions. See “Restrictions when using EDF” on page 535 for other conditions
which affect your choice.

Using EDF in single-screen mode
When you use EDF with just one terminal, the EDF inputs and outputs are
interleaved with those from the transaction. This sounds complicated, but works
quite easily in practice. The only noticeable peculiarity is that when a SEND
command is followed by a RECEIVE command, the display sent by the SEND
command appears twice: once when the SEND is executed, and again when the

Chapter 41. Execution diagnostic facility (EDF) 529

RECEIVE is executed. It is not necessary to respond to the first display, but if you
do, EDF preserves anything that was entered from the first display to the second.

You start EDF by:
v Entering transaction code CEDF from a cleared screen, or
v Pressing the appropriate PF key (if one has been defined for EDF)

Next, you start the transaction to be tested by:
1. Pressing the CLEAR key to clear the screen
2. Entering the transaction code of the transaction you want to test

When both EDF and the user transaction are sharing the same terminal, EDF
restores the user transaction display at the following times:
v When the transaction requires input from the operator
v When you change the transaction display
v At the end of the transaction
v When you suppress the EDF displays
v When you request USER DISPLAY

To enable restoration, user displays are remembered at the following times:
1. At start of task, before the first EDF screen for the task is displayed
2. Before the next EDF screen is displayed, if the user display has been changed
3. On leaving SCREEN SUPPRESS mode

If a program has been translated with option NOEDF, or has NO specified for
CEDF in its resource definition, it is not possible for EDF to ascertain when the
user display is being changed. This means that, unless either situation 1 or 3 also
apply, the next EDF screen to be displayed overwrites any user display sent by this
program without saving it first, so that it cannot be later restored.

When EDF restores the transaction display, it does not sound the alarm or affect
the keyboard in the same way as the user transaction. The effect of the user
transaction options is seen when the SEND command is processed, but not when
the screen is restored. When you have NOEDF specified in single-screen mode,
you should take care that your program does not send and receive data because
you will not see it.

When EDF restores the transaction display on a device that uses color,
programmed symbols, or extended highlighting, these attributes are no longer
present and the display is monochrome without the programmed symbols or
extended highlighting. Also, if the inbound reply mode in the application program
is set to “character” to enable the attribute-setting keys, EDF resets this mode,
causing these keys to be disabled. If these changes prevent your transaction from
executing properly, you should test in a dual-screen mode.

If you end your EDF session part way through the transaction, EDF restores the
screen with the keyboard locked if the most recent RECEIVE command has not
been followed by a SEND command; otherwise, the keyboard is unlocked.

Checking pseudoconversational programs
EDF makes a special provision for testing pseudoconversational transactions from
a single terminal. If the terminal came out of EDF mode between the several tasks
that make up a pseudoconversational transaction, it would be very hard to do any
debugging after the first task. So, when a task terminates, EDF asks the operator

530 CICS TS for OS/390: CICS Application Programming Guide

whether EDF mode is to continue to the next task. If you are debugging a
pseudoconversational task, press enter, as the default is “yes”. If you have finished,
reply “no”.

Using EDF in dual-screen mode
In dual-screen mode, you use one terminal for EDF interaction and another for
sending input to, and receiving output from, the transaction under test.

You start by entering, at the EDF terminal, the transaction CEDF tttt, where tttt is
the name of the terminal on which the transaction is to be tested.

The message that CEDF gives in response to this depends on whether there is
already a transaction running on the second terminal. If the second terminal is not
busy, the message displayed at the first terminal is:
TERMINAL tttt: EDF MODE ON

and nothing further happens until a transaction is started on the second terminal,
when the PROGRAM INITIATION display appears.

You can also use EDF in dual-screen mode to monitor a transaction that is already
running on the second terminal. If, for example, you believe a transaction at a
specific terminal to be looping, you can go to another terminal and enter a CEDF
transaction naming the terminal at which this transaction is running. The message
displayed at the first terminal is:
TERMINAL tttt: TRANSACTION RUNNING: EDF MODE ON

EDF picks up control at the next EXEC CICS command executed, and you can then
observe the sequence of commands that are causing the loop, assuming that at
least one EXEC CICS command is executed.

EDF and remote transactions
You cannot use EDF in dual-screen mode if the transaction under test, or the
terminal that invokes it, is owned by another CICS region.

Furthermore, if the remote CICS region is earlier than CICS/ESA 3.1.1, you cannot
run the transaction directly under EDF by invoking CEDF in the TOR. In this
situation, you must use the routing transaction, CRTE. You enter CEDF at the
terminal, clear the screen, and then enter CRTE followed by the system identifier
(SYSIDNT) of the remote CICS region. This action causes CICS to route subsequent
inputs to the remote region, and you can then enter the transaction identifier of the
transaction you want to test. The CICS Supplied Transactions manual explains how
to use CRTE.

If a remote transaction abends while under EDF using a CRTE routing session,
EDF displays the abnormal task termination screen, followed by message
DFHAC2206 for the user transaction. The CRTE session is not affected by the user
task abend. Also, if you opted to continue with EDF after the abend, your terminal
remains in EDF mode within the CRTE routing session.

There is a difference in execution as well. For remote transactions, EDF purges its
memory of your session at the termination of each transaction, whether EDF is to
be continued or not. This means that any options you have set and any saved
screens are lost between the individual tasks in a pseudoconversational sequence.

Chapter 41. Execution diagnostic facility (EDF) 531

EDF and non-terminal transactions
You can use EDF to test transactions that execute without a terminal: for example,
transactions started by an EXEC CICS START command, or transactions initiated
by a transient data trigger-level. To test non-terminal transactions, use the CEDX
trnx command, where trnx is the transaction identifier.

To test a transaction using CEDX:
v The terminal you use for the EDF displays, at which you enter the CEDX

command, must be logged on to the CICS region in which the specified
transaction is to execute.

v The CEDX command must be issued before the specified transaction is started
by CICS. Other instances of the same transaction that are already executing
when you issue the CEDX command are ignored.

When you use CEDX to debug a transaction, CICS controls the EDF operation by
modifying the definition of the transaction specified on the CEDX command, to
reference a special transaction class, DFHEDFTC. When you switch off EDF (using
CEDX tranid,OFF) CICS modifies the transaction definition back to its normal
transaction class.

EDF and DTP programs
You can also test a transaction that is using distributed transaction processing
across a remote link by telling EDF to monitor the session on the link. You can do
this on either (or both) of the participating systems that are running under CICS
and has EDF installed. (You cannot do this if the transaction has been routed from
another CICS region because you must use single-screen mode for remote
transactions.)

For APPC and MRO links, you can name the system identifier (sysid) of the
remote system:
CEDF sysid

This causes EDF to associate itself with any transaction attached across any session
belonging to the specified system.

For APPC, MRO, and LU6.1 links, you can use the session identifier (sessionid)
that the transaction is using:
CEDF sessionid

You can determine the session identifier with the CEMT INQUIRE TERMINAL
transaction, but this means that the transaction must be running and have reached
the point of establishing a session before you start EDF.

If a transaction using distributed transaction processing also has a terminal
associated with it, or if you can invoke it from a terminal (even though it does not
use one), you can use EDF to test it in the ordinary way from that terminal.

When you have finished testing the transaction on the remote system, you should
turn off EDF on that SYSID or sessionid before logging off from CICS with CESF.
For example:
CEDF sysid,OFF

Failure to do this could cause another transaction using a link to that system to be
suspended.

532 CICS TS for OS/390: CICS Application Programming Guide

EDF and distributed program link commands
You can use EDF, in single- or dual-terminal mode, to test a transaction that
includes a distributed program link (DPL) command. However, EDF displays only
the DPL command invocation and response screens. CICS commands issued by the
remote program are not displayed, but a remote abend, and the message a remote
abend has occurred is returned to the EDF terminal, along with the SYSID of the
system from which the abend was received. After control is returned to your local
program, EDF continues to test as normal, but the PSW is not displayed if the
abend is in a remote program.

Stopping EDF
If you want to end EDF control of a terminal, the method you use depends on
where you are in the testing. If the transaction under test is still executing and you
want it to continue, but without EDF, press the END EDF SESSION function key. If
you have reached the task termination intercept, EDF asks if you want to continue.
If you do not, overtype the reply as NO (YES is the default). If no transaction is
executing at the terminal, clear the screen and enter:
CEDF ,OFF

(The space and comma are required.)

If you are logging off from dual-screen mode, clear the screen and enter CEDF
tttt,OFF.

In all these cases, the message THIS TERMINAL: EDF MODE OFF is displayed at
the top of an empty screen.

Overtyping to make changes
Most of the changes you make with EDF involve changing information in memory.
You do this simply by typing over the information shown on the screen with the
information you want used instead. You can change any area where the cursor
stops when you use the tab keys, except for the menu area at the bottom.

When you change the screen, you must observe the following rules:
v On CICS command screens, any argument value can be overtyped, but not the

keyword of the argument. An optional argument cannot be removed, nor can an
option be added or deleted.

v When you change an argument in the command display (as opposed to the
working storage screen), you can change only the part shown on the display. If
you attempt to overtype beyond the value displayed, the changes are not made
and no diagnostic message is generated. If the argument is so long that only part
of it appears on the screen, you should change the area in working storage to
which the argument points. (To determine the address, display the argument in
hexadecimal format; the address of the argument location also appears.)

v In character format, numeric values always have a sign field, which can be
overtyped with a minus or a blank only.

v When an argument is to be displayed in character format, some of the characters
may not be displayable (including lowercase characters). EDF replaces each
nondisplayable character with a period. When overtyping a period, you must be
aware that the storage may in fact contain a character other than a period. You
should not overtype any character with a period; if you do, the change is

Chapter 41. Execution diagnostic facility (EDF) 533

ignored and no diagnostic message is issued. If you need to overtype a character
with a period, you can do so by switching the display to hexadecimal format,
using PF2, and overtyping with X'4B'.

v When storage is displayed in both character and hexadecimal format and
changes are made to both, the value of the hexadecimal field takes precedence
should the changes conflict; no diagnostic message is issued.

v The arguments for some commands, such as HANDLE CONDITION, are
program labels rather than numeric or character data. The form in which EDF
displays (and accepts modifications to) these arguments depends on the
programming language in use:
– For COBOL, a null argument is displayed: for example, ERROR (), and

because of this, you cannot modify it.
– For C and C++, labels are not valid.
– For PL/I, the address of the label constant is used; for example, ERROR

(X'001D0016').
– For assembler language, the address of the program label is used; for

example, ERROR (X'00030C').

If no label value is specified on a HANDLE CONDITION command, EDF
displays the condition name alone without the parentheses.

v The response field can be overtyped with the name of any exception condition,
including ERROR, that can occur for the current function, or with the word
NORMAL. The effect when EDF continues is that the program takes whatever
action has been prescribed for the specified response. You can get the same effect
by changing the EIBRESP field in the EIB display to the corresponding values. If
you change the EIBRESP value or the response field on the command execution
complete screen, EIBRCODE is updated. EIBRESP appears on second EIB screen
and is the only one you can change (EIBRCODE protected). You can get the
same effect by changing the EIBRESP value on the EIB display; EDF changes
related values in the EIB and command screens accordingly if you do this.

v If uppercase translation is not specified for the terminal you are using you must
take care to always enter uppercase characters.

v Any command can be overtyped with NOOP or NOP before processing; this
suppresses processing of the command. Use of the ERASE EOF key, or
overtyping with blanks, gives the same effect. When the screen is redisplayed
with NOOP, the original verb line can be restored by erasing the whole verb line
with the ERASE EOF key and pressing the ENTER key.

When you overtype a field representing a data area in your program, the change is
made directly in application program storage and is permanent. However, if you
change a field that represents a constant (a program literal), program storage is not
changed, because this may affect other parts of the program that use the same
constant or other tasks using the program. The command is executed with the
changed data, but when the command is displayed after processing, the original
argument values reappear. For example, suppose you are testing a program
containing a command coded:
EXEC CICS SEND MAP(‘MENU’) END-EXEC.

If you change the name MENU to MENU2 under EDF before executing the
command, the map actually used is MENU2, but the map displayed on the
response is MENU. (You can use the “previous display” key to verify the map
name you used.) If you process the same command more than once, you must
enter this type of change each time.

534 CICS TS for OS/390: CICS Application Programming Guide

EDF responses
The response of EDF to any keyboard entry follows the rules listed below, in the
order shown:
1. If the CLEAR key is used, EDF redisplays the screen with any changes ignored.
2. If invalid changes are made, EDF accepts any valid changes and redisplays the

screen with a diagnostic message.
3. If the display number is changed, EDF accepts any other changes and shows

the requested display.
4. If a PF key is used, EDF accepts any changes and performs the action requested

by the PF key. Pressing ENTER with the cursor under a PF key definition in the
menu at the bottom of the screen is the same as pressing a PF key.

5. If the ENTER key is pressed and the screen has been modified (other than the
REPLY field), EDF redisplays the screen with changes included.

6. If the ENTER key is pressed and the screen has not been modified (other than
the REPLY field), the effect differs according to the meaning of the ENTER key.
If the ENTER key means CONTINUE, the user transaction continues to execute.
If it means CURRENT DISPLAY, EDF redisplays the current status display.

Restrictions when using EDF
There are some restrictions on the use of EDF that make it preferable or even
necessary to use one particular screen mode:
v EDF can be used only in single-screen mode when running a remote transaction.
v VM PASSTHRU is not supported by EDF when testing in single-screen mode.
v In single-screen mode, neither the user transaction nor CEDF should specify

message journaling, because the messages interfere with the EDF displays.
Message journaling is controlled by the profile definition for each transaction.

v In single screen mode, the CEDF transaction should not specify PROTECT=YES
in its profile definition. If this option is specified, message protection for the
CEDF transaction is ignored. The user transaction can still specify the
PROTECT=YES option even when running under CEDF. This restriction does
not apply to dual-screen mode.

v If a SEND LAST command is issued, EDF is ended before the command is
processed if you are using single-screen mode.

v If you want to test an application program that uses screen partitions, or that
does its own request unit (RU) chaining, you must run in dual-screen mode.

v In single-screen mode, if the profile for the user transaction specifies
INBFMH=ALL or INBFMH=DIP, the profile for CEDF must have the same
INBFMH value. Otherwise the user transaction abends ADIR. Dual-screen mode
does not require the profiles to match in this respect.

v If the inbound reply mode is set to “character” to enable the attribute setting
keys, EDF disables the keys in single-screen mode.

v When using CECI under EDF in dual-screen mode, you should be aware that
certain commands (for example, ASSIGN and ADDRESS) are issued against the
EDF terminal and not the transaction terminal. See page 524 for information
about how to invoke CECI from CEDF.

v TCAM terminals are supported by EDF, but only in dual-screen mode, and
provided that the terminals are not pooled.

v When using EDF in dual-screen mode, you should avoid starting a second task
at the EDF terminal, for example by issuing a START command. Because EDF is

Chapter 41. Execution diagnostic facility (EDF) 535

a pseudoconversational transaction, it does not prevent a second task from
starting at the terminal it is using. This may lead to a deadlock in certain
circumstances.

v When using EDF screen suppression in dual screen mode, commands that cause
a long wait, such as DELAY, WAIT, or a second RECEIVE, may cause EDF to
appear as if it had finished. If the task is ABENDed, EDF is reactivated at the
monitoring terminal.

Other restrictions apply to both screen modes:
v If a transaction issues the FREE command, EDF is switched off without warning.
v To test a user transaction executing on a remote CICS at a release level earlier

than CICS/ESA 3.1.1, you must run the transaction under control of CRTE, as
explained in “EDF and remote transactions” on page 531.

v EDF does not intercept calls to the CPI Communications interface (CPI-C) or the
SAA Resource Recovery interface (CPI-RR). You can test transactions that use
CPI calls under EDF, but you cannot see EDF displays at the call points.

v User application programs that are to be debugged using EDF must be
assembled (or compiled) with the translator option EDF, which is the default. If
you specify NOEDF, the program cannot be debugged using EDF. There is no
performance advantage in specifying NOEDF, but the option can be useful to
prevent commands in well debugged subprograms appearing on EDF displays.

v When processing a SIGNON command, CEDF suppresses display of the
password value to reduce the risk of accidental disclosure.

Parameter list stacking
CEDF only has one level of stacking for its copies of the EXEC CICS parameter list.
This means that if an application calls an EXEC-capable global user exit or
user-replaceable module (URM), the parameter list for the EXEC CICS commands
issued by the global user exit or URM may overlay the parameter list for EXEC
CICS commands issued by the main program.

Security considerations
EDF is such a powerful tool that your installation may restrict its use with
attach-time security. (The external security manager used by your installation
defines the security attributes for the EDF transaction.) If this has been done, and
you are not authorized to use CEDF, you cannot initiate the transaction.

For guidance on using security, see your system programmer or the CICS RACF
Security Guide.

536 CICS TS for OS/390: CICS Application Programming Guide

|
|

#
#
#
#
#
#

Chapter 42. Temporary storage browse (CEBR)

This chapter contains the following information:
v “How to use the CEBR transaction”
v “What does the CEBR transaction display?” on page 539
v “The CEBR commands” on page 540
v “Using the CEBR transaction with transient data” on page 543
v “Security considerations” on page 543

You can use the browse transaction (CEBR) to browse temporary storage queues
and delete them. You can also use the CEBR transaction to transfer the contents of
a transient data queue to temporary storage in order to look at them, and to
reestablish the transient data queue when you have finished. The CEBR commands
that perform these transfers allow you to add records to a transient data queue
and remove all records from a transient data queue. See “The CEBR commands”
on page 540 and “The CEBR options on function keys” on page 539 for more
information about their use.

How to use the CEBR transaction
You start the CEBR transaction by entering the transaction identifier CEBR,
followed by the name of the queue you want to browse. You can choose a name of
up to 16 characters. For example, to display the temporary storage queue named
AXBYQUEUENAME111 you type CEBR AXBYQUEUENAME111 and press ENTER. CICS
responds with a display of the queue, for example, as shown in Figure 109 on
page 538.

Alternatively, you can start the CEBR transaction from the CEDF transaction. You
do this by pressing PF5 from the initial CEDF screen (see Figure 94 on page 515)
which takes you to the working-storage screen, and then pressing PF2 from that
screen to browse temporary storage (that is, invoke the CEBR transaction). CEBR
can also be started from CEMT I TSQ by entering ’b’ at the queue to be browsed.
The CEBR transaction responds by displaying the temporary storage queue whose
name consists of the four letters CEBR followed by the four letters of your terminal
identifier. (CICS uses this same default queue name if you invoke the CEBR
transaction directly and do not supply a queue name.) The result of invoking the
CEBR transaction without a queue name or from an EDF session at terminal S21A
is shown in Figure 110. If you enter the CEBR transaction from the CEDF
transaction, you return to the EDF panel when you press PF3 from the CEBR
screen.

© Copyright IBM Corp. 1989, 2000 537

|
|
|
|
|

|
|

|
|

CEBR TSQ AXBYQUEUENAME111 SYSID CIJP REC 1 OF 3 COL 1 OF 5
ENTER COMMAND ===>

************************** TOP OF QUEUE *******************************
00001 HELLO
00002 HELLO
00003 HELLO

************************* BOTTOM OF QUEUE *****************************

PF1 : HELP PF2 : SWITCH HEX/CHAR PF3 : TERMINATE BROWSE
PF4 : VIEW TOP PF5 : VIEW BOTTOM PF6 : REPEAT LAST FIND
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : UNDEFINED
PF10: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: UNDEFINED

Figure 109. Typical CEBR display of temporary storage queue contents

CEBR TSQ AXBYQUEUEAME1AA SYSID CIJP REC 1 OF 0 COL 1 OF 0 �1�
ENTER COMMAND ===> �2�

************************** TOP OF QUEUE *******************************
************************* BOTTOM OF QUEUE *****************************

�3�

TS QUEUE AXBYQUEUEAME1AA DOES NOT EXIST �4�
PF1 : HELP PF2 : SWITCH HEX/CHAR PF3 : TERMINATE BROWSE �5�

PF4 : VIEW TOP PF5 : VIEW BOTTOM PF6 : REPEAT LAST FIND
PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : UNDEFINED
PF10: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: UNDEFINED

Note: �1�Header �2�Command area �3�Body �4�Message line �5�Menu of options

Figure 110. Typical CEBR display of default temporary storage queue

538 CICS TS for OS/390: CICS Application Programming Guide

What does the CEBR transaction display?
As shown in Figure 110 on page 538, a CEBR transaction display consists of a
header, a command area, a body (the primary display area), a message line, and a
menu of functions you can select at this point.

The header
The header shows:
v The transaction being run, that is, CEBR.
v The identifier of the temporary storage queue (AXBYQUEUEAME111 in

Figure 109 on page 538 and (AXBYQUEUEAME1AA in Figure 110 on page 538).
You can overtype this field in the header if you want to switch the screen to
another queue.

v The system name that corresponds to a temporary storage pool name or to a
remote system. If you have not specified one, the name of the local system is
displayed. You can overtype this field in the header if you want to browse a
shared or remote queue.

v The number of the highlighted record.
v The number of records in the queue (three in AXBYQUEUEAME111 and none in

AXBYQUEUEAME1AA)
v The position in each record at which the screen starts (position 1 in both cases)

and the length of the longest record (22 for queue AXBYQUEUEAME111 and
zero for queue AXBYQUEUEAME1AA).

The command area
The command area is where you enter commands that control what is to be
displayed and what function is to be performed. These commands are described in
“The CEBR commands” on page 540. You can also modify the screen with function
keys shown in the menu of options at the bottom of the screen. The function keys
are explained in “The CEBR options on function keys”.

The body
The body is where the queue records are shown. Each line of the screen
corresponds to one queue record. If a record is too long for the line, it is truncated.
You can change the portion of the record that is displayed, however, so that you
can see an entire record on successive screens. If the queue contains more records
than will fit on the screen, you can page forward and backward through them, or
specify at what record to start the display, so that you can see all the records you
want.

The message line
CEBR uses the message line between the body and menu to display messages to
the user, such as the “Does not exist” message in Figure 110 on page 538.

The CEBR options on function keys
The function keys that you can use at any time are displayed at the bottom of
every CEBR transaction screen. The keys have the same meaning on all screens. If
your terminal does not have PF keys, you can simulate their use by placing the
cursor under the description and pressing ENTER. Where a terminal has 24
function keys, the CEBR transaction treats PF13 through PF24 as duplicates of PF1
through PF12 respectively.

Chapter 42. Temporary storage browse (CEBR) 539

|
|

PF1 HELP
Displays a help screen that lists all the commands you can use when the CEBR
transaction is running. You can return to the main screen by pressing ENTER.

PF2 SWITCH HEX/CHAR
Switches the screen from character to hexadecimal format, and back again.

PF3 TERMINATE BROWSE
Terminates the CEBR transaction. If you entered the CEBR transaction directly,
it frees up your terminal for the next transaction. If you entered from an EDF
session, it returns you to the working-storage screen from which you entered.
If you entered from CEMT I TSQ, it returns you to the CEMT screen.

PF4 VIEW TOP
Displays the first records in the queue and has the same effect as the TOP
command.

PF5 VIEW BOTTOM
Displays the last records in the queue and has the same effect as the BOTTOM
command.

PF6 REPEAT LAST FIND
Repeats the previous FIND command.

PF7 SCROLL BACK HALF
Moves the display backward by one-half the number of records that fit on the
screen, so that the records on the top half of the screen move to the bottom
half.

PF8 SCROLL FORWARD HALF
Advances the display by one-half the number of records that fit on the screen,
so that the records on the bottom half of the screen move to the top half.

PF9 VIEW RIGHT (or VIEW LEFT)
Changes the screen to show the columns immediately after (to the right of) or
before (to the left of) the columns currently on display. The key is not defined
if the entire record fits on one line of the screen. It moves you to the right until
the end of the record is reached, and then reverses to move left back to the
beginning of the record. You can also use the COLUMN command to change
the column at which the display begins.

PF10 SCROLL BACK FULL
Moves the screen backward by the number of records that fit on the screen, to
show the records immediately before those currently on display.

PF11 SCROLL FORWARD FULL
Advances the screen by the number of records that will fit on the screen, to
show the records immediately after those currently on display.

The CEBR commands
Here is a list of the CEBR commands that you can use to view and manipulate the
records in the temporary storage queue.

BOTTOM
(Abbreviation: B)

Shows the last records in the temporary storage queue (as many as fill up the
body of the screen, with the last record on the last line).

COLUMN nnnn
(Abbreviation: C nnnn)

540 CICS TS for OS/390: CICS Application Programming Guide

|

Displays the records starting at character position (column) nnnn of each
record. The default starting position, assumed when you initiate the CEBR
transaction, is the first character in the record.

FIND /string
(Abbreviation: F /string)

Finds the next occurrence of the specified string. The search starts in the record
after the current record. The current record is the one that is highlighted. In the
initial display of a queue, the current record is set to one, and therefore the
search begins at record two.

If the string is found, the record containing the string becomes the highlighted
line, and the display is changed to show this record on the second line. If you
cannot see the search string after a successful FIND, it is in columns of the
record beyond those on display; use the scroll key or the COLUMN command
to shift the display right or left to show the string.

For example:
FIND /05-02-93

locates the next occurrence of the string “05-02-93” The / character is a
delimiter. It does not have to be /, but it must not be a character that appears
in the search argument. For example, if the string you were looking for was
“05/02/93” instead of “05-02-93”, you could not use the following:

FIND /05/02/93

There is a slash in the search string. The following examples would work:
FIND X05/02/93 or FIND S05/07/93

Any delimiter except a / or one of the digits in the string works. If there are
any spaces in the search string, you must repeat the delimiter at the end of the
string. For example:

FIND /CLARE JACKSON/

The search string is not case-sensitive. When you have entered a FIND
command, you can repeat it (that is, find the next occurrence of the string) by
pressing PF6.

GET xxxx
(Abbreviation: G xxxx)

Transfers the named transient data queue to the end of the temporary storage
queue currently on display. This enables you to browse the contents of the
queue. xxxx must be either the name of an intrapartition transient data queue,
or the name of an extrapartition transient data queue that has been opened for
input. See “Using the CEBR transaction with transient data” on page 543 for
more information about browsing transient data queues.

LINE nnnn
(Abbreviation: L nnnn)

Starts the body of the screen at the queue record one prior to nnnn, and sets
the current line to nnnn. (This arrangement causes a subsequent FIND
command to start the search after record nnnn.)

Chapter 42. Temporary storage browse (CEBR) 541

PURGE
Deletes the queue being browsed.

Do not use PURGE to delete the contents of an internally generated queue,
such as a BMS logical message.

Note: If you purge a recoverable temporary storage queue, no other task can
update that queue (add a record, change a record, or purge) until your
task ends.

PUT xxxx
(Abbreviation: P xxxx)

Copies the temporary storage queue that is being browsed to the named
transient data queue. xxxx must be either the name of an intrapartition
transient data queue, or the name of an extrapartition transient data queue that
has been opened for output. See “Using the CEBR transaction with transient
data” on page 543 for more information about creating or restoring a transient
data queue.

QUEUE xxxxxxxxxxxxxxxx
(Abbreviation: Q xxxxxxxx)

Changes the name of the queue you are browsing. The value that you specify
can be in character format using up to 16 characters (for example, QUEUE
ABCDEFGHIJKLMNOP) or in hexadecimal format (for example, QUEUE
X'C1C2C3C4'). The CEBR transaction responds by displaying the data that is in
the named queue.

You can also change the queue name by overtyping the current value in the
header.

SYSID xxxx
(Abbreviation: S xxxx)

Changes the name of the temporary storage pool or remote system where the
queue is to be found.

You can also change this name by overtyping the current SYSID value in the
header.

Note: If ISC is not active in the CICS system on which the CEBR transaction is
running then the SYSID will default to the local SYSID.

TERMINAL xxxx
(Abbreviation: TERM xxxx)

Changes the name of the queue you are browsing, but is tailored to
applications that use the convention of naming temporary storage queues that
are associated with a terminal by a constant in the first four characters and the
terminal name in the last four. The new queue name is formed from the first
four characters of the current queue name, followed by xxxx.

TOP
(Abbreviation: T)

Causes the CEBR transaction to start the display at the first record in the
queue.

542 CICS TS for OS/390: CICS Application Programming Guide

|

|

|
|

|

Using the CEBR transaction with transient data
The GET command reads each record in the transient data queue that you specify
and writes it at the end of the temporary storage queue you are browsing, until the
transient data queue is empty. You can then view the records that were in the
transient data queue. When you have finished your inspection, you can copy the
temporary storage queue back to the transient data queue (using the PUT
command). This usually leaves the transient data queue as you found it, but not
always. Here are some points you need to be aware of when using the GET and
PUT commands:
v If you want to restore the transient data queue unchanged after you have

browsed it, make sure that the temporary storage queue on display at the time
of the GET command is empty. Otherwise, the existing temporary storage
records is copied to the transient data queue when the subsequent PUT
command is issued.

v After you get a transient data queue and before you put it back, other tasks may
write to that transient data queue. When you issue your PUT command, the
records in the temporary storage queue are copied after the new records, so that
the records in the queue are no longer in the order in which they were originally
created. Some applications depend on sequential processing of the records in a
queue.

v After you get a recoverable transient data queue, no other task can access that
queue until your transaction ends. If you entered the CEBR transaction from the
CEDF transaction, the CEDF transaction must end, although you can respond
“yes” to the “continue” question if you are debugging a pseudoconversational
sequence of transactions. If you invoked the CEBR transaction directly, you must
end it.

v Likewise, after you issue a PUT command to a recoverable transient data queue,
no other task can access that queue until your transaction ends.

The GET and PUT commands do not need to be used as a pair. You can add to a
transient data queue from a temporary storage queue with a PUT command at any
time. If you are debugging code that reads a transient data queue, you can create a
queue in temporary storage (with the CECI transaction, or the CEBR GET
command, or by program) and then refresh the transient data queue as many times
as you like from temporary storage. Similarly, you can empty a transient data
queue by using a GET command without a corresponding PUT command.

Security considerations
Some installations restrict the use of the CEBR transaction, particularly in
production systems, to prevent modifications that were not intended or not
authorized. Installations also may protect individual resources, including
temporary storage and transient data queues. If you are using the CEBR
transaction and experience an abend described as a security failure, you probably
have attempted to access a queue to which your user ID is not authorized.

Chapter 42. Temporary storage browse (CEBR) 543

544 CICS TS for OS/390: CICS Application Programming Guide

Chapter 43. Command-level interpreter (CECI)

This chapter contains the following information:
v “How to use CECI”
v “What does CECI display?” on page 546
v “Additional displays” on page 551
v “Making changes” on page 555
v “How CECI runs” on page 555
v “Security considerations” on page 558

You can use the command-level interpreter (CECI) transaction to check the syntax
of CICS commands and process these commands interactively on a 3270 screen.
CECI allows you to follow through most of the commands to execution and
display the results. It also provides you with a reference to the syntax of the whole
of the CICS command-level application programming and system programming
interface.

CECI interacts with your test system to allow you to create or delete test data,
temporary storage queues, or to deliberately introduce wrong data to test out error
logic. You can also use CECI to repair corrupted database records on your
production system.

How to use CECI
You start the command-level interpreter by entering either of two transaction
identifiers, CECS or CECI, followed by the name of the command you want to test.
You can list command options too, although you can also do this later. For
example:
CECS READ FILE('FILEA')

or
CECI READ FILE('FILEA')

CICS responds with a display of the command and its associated functions,
options, and arguments, as shown in Figure 111 on page 546. If you leave out the
command, CECI provides a list of possible commands to get you started. You can
use any of the commands described for programming purposes in the CICS
Application Programming Reference and CICS System Programming Reference manuals.
CECI also supports the FEPI commands provided for the CICS Front End
Programming Interface.

© Copyright IBM Corp. 1989, 2000 545

If you use the transaction code CECS, the interpreter simply checks your command
for correct syntax. If you use CECI, you have the option of executing your
command once the syntax is correct. (CICS uses two transaction identifiers to allow
different security to be assigned to syntax checking and execution.)

What does CECI display?
All CECI screens have the same basic layout. As shown in Figure 111, CECI
displays consist of a command input line, a status line, the body or main part of
the screen, a message line, and a menu of functions you can select at this point.

The command line
The command line is the first line of the screen. You enter the command you want
to process or whose syntax you want to check here. This can be the full or
abbreviated syntax. The rules for entering and abbreviating the command are:
v The keywords EXEC CICS are optional.
v The options of a command can be abbreviated to the number of characters

sufficient to make them unique. Valid abbreviations are shown in uppercase
characters in syntax displays in the body of the screen.

v The quotes around character strings are optional, and all strings of characters are
treated as character-string constants unless they are preceded by an ampersand
(&), in which case they are treated as variables.

v Options of a command that receive a value from CICS when the command is
processed are called receivers, and need not be specified. The value received
from CICS is included in the syntax display, and stored in the variable if one has
been specified, after the command has been processed.

v If you issue a CECI command with two of the keywords in conflict, CECI
ignores the first keyword and issues an error message, such as this one, from a
READ command:
E INTO option conflicts with SET option and is ignored

READ FILE('FILEA') �1�
STATUS: COMMAND SYNTAX CHECK NAME= �2�
EXEC CICS READ
File('FILEA ')
< SYsid() > �3�
SEt() | Into()
< Length() >
RIdfld()
< Keylength() < GEneric > >
< RBa | RRn | DEBRec | DEBKey >
< GTeq | Equal >
< Update < Token() > >

S Option RIDFLD has been omitted or specified with an invalid value,
the command cannot be executed. �4�

PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF�5�

Note: �1�Command line�2�Status line�3�Body�4�Message line�5�Menu of functions

Figure 111. Typical CECI display for command syntax check

546 CICS TS for OS/390: CICS Application Programming Guide

v If you put a question mark in front of your command, the interpreter stops after
the syntax check, even if you have used the transaction code CECI. If you want
to proceed with execution, remove the question mark.

The following example shows the abbreviated form of a command. The file control
command:
EXEC CICS READ FILE('FILEA') RIDFLD('009000') INTO(&REC)

can be entered on the command input line, as:
READ FIL(FILEA) RID(009000)

or at a minimum, as:
READ F(FILEA) RI(009000)

In the first form, the INTO specification creates a variable, &REC, into which the
data is to be read. However, INTO is a receiver (as defined above) and you can
omit it. When you do, CICS creates a variable for you automatically.

The status line
As you go through the process of interpreting a command, CECI presents a
sequence of displays. The format of the body of the screen is essentially the same
for all; it shows the syntax of the command and the option values selected. The
status line on these screens tells you where you are in the processing of the
command, and is one of:
v COMMAND SYNTAX CHECK
v ABOUT TO EXECUTE COMMAND
v COMMAND EXECUTION COMPLETE
v COMMAND NOT EXECUTED

From any of these screens, you can select additional displays. When you do, the
body of the screen shows the information requested, and the status line identifies
the display, which may be any of:
v EXPANDED AREA
v VARIABLES
v EXEC INTERFACE BLOCK
v SYNTAX MESSAGES

These screens are described in “Additional displays” on page 551. You can request
them at any time during processing and then return to the command interpretation
sequence.

There is also one input field in the status line called NAME=. This field is used to
create and name variables, as explained in “Variables” on page 551 and “Saving
commands” on page 557.

Command syntax check
When the status line shows command syntax check (as shown in Figure 111 on
page 546), it indicates that the command entered on the command input line has
been syntax checked but is not about to be processed. This is always the status if
you enter CECS or if you precede your command with a question mark. It is also
the status when the syntax check of the command gives severe error messages.

Chapter 43. Command-level interpreter (CECI) 547

In addition, you get this status if you attempt to execute one of the commands that
the interpreter cannot execute. Although any command can be syntax-checked,
using either CECS or CECI, the interpreter cannot process the following commands
any further:
v EXEC CICS commands that depend upon an environment that the interpreter

does not provide:
FREE
FREEMAIN
GETMAIN
HANDLE ABEND
HANDLE AID
HANDLE CONDITION
IGNORE CONDITION
POP HANDLE
PUSH HANDLE
SEND LAST
SEND PARTNSET
WAITCICS
WAIT EVENT
WAIT EXTERNAL

v BMS commands that refer to partitions (because the display cannot be restored
after the screen is partitioned)

v EXEC DLI
v CPI Communication (CPI-C) commands
v SAA Resource Recovery interface (CPI-RR) commands

About to execute command
This display (as shown in Figure 112) appears when none of the reasons for
stopping at command syntax check applies.

If you press the ENTER key at this point without changing the screen, CECI
executes the command. You can still modify it at this point, however. If you do,

READ FILE('FILEA') RIDFLD('009000')
STATUS: ABOUT TO EXECUTE COMMAND NAME=
EXEC CICS READ
File('FILEA ')
< SYsid() >
SEt() | Into()
< Length() >
RIdfld('009000')
< Keylength() < GEneric > >
< RBa | RRn | DEBRec | DEBKey >
< GTeq | Equal >
< Update < Token() > >

PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 112. Typical CECI display for about to execute command

548 CICS TS for OS/390: CICS Application Programming Guide

CECI ignores the previous command and processes the new one from scratch. This
means that the next screen displayed is command syntax check if the command
cannot be executed or else about to execute command if the command is correct.

Command execution complete
This display (as shown in Figure 113) appears after the interpreter has executed a
command, in response to the ENTER key from an unmodified about to execute
command screen.

The command has been processed and the results are displayed on the screen.

Any receivers, whether specified or not, together with their CICS-supplied values,
are displayed intensified.

The body
The body of command syntax check, about to execute command, and command
execution complete screens contains information common to all three displays.

The full syntax of the command is displayed. Options specified in the command
line or assumed by default are intensified, to show that they are used in executing
the command, as are any receivers. The < > brackets indicate that you can select
an option from within these brackets. If you make an error in your syntax, CECI
diagnoses it in the message area that follows the body, described in “The message
line” on page 550. If there are too many diagnostic messages, the rest of the
messages can be displayed using PF9.

Arguments can be displayed in either character or hexadecimal format. You can
use PF2 to switch between formats. In character format, some characters are not
displayable (including lowercase characters on some terminals); CECI shows them
as periods. You need to switch to hexadecimal to show the real values, and you
need to use caution when modifying them, as explained in “Making changes” on
page 555.

INQUIRE FILE NEXT
STATUS: COMMAND EXECUTION COMPLETE NAME=
EXEC CICS INquire File('DFHCSD ')
< STArt | END | Next >
< ACcessmethod(+0000000003) >
< ADd(+0000000041) >
< BAsedsname(' ') >
< BLOCKFormat(+0000000016) >
< BLOCKKeylen(-0000000001) >
< BLOCKSize(-0000000001) >
< BRowse(+0000000039) >
< DElete(+0000000043) >
< DIsposition(+0000000027) >
< DSname('CFV01.CICS03.PSK.CSD ') >
< EMptystatus(+0000000032) >
< ENAblestatus(+0000000033) >
< EXclusive(+0000000001) >
< Fwdrecstatus(+0000000361) >
< Journalnum(+00000) >

+ < KEYLength(+0000000000) >

RESPONSE: NORMAL EIBRESP=+0000000000 EIBRESP2=+0000000000
PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 113. Typical CECI display for command execution complete

Chapter 43. Command-level interpreter (CECI) 549

If the value of an option is too long for the line, only the first part is displayed
followed by “...” to indicate there is more. You can display the full value by
positioning the cursor at the start of the option value and pressing ENTER. This
produces an expanded display described in “Expanded area” on page 551.

If the command has more options than can fit on one screen, a plus sign (+)
appears at the left-hand side of the last option of the current display to indicate
that there are more. An example of this is shown in Figure 113 on page 549. You
can display additional pages by scrolling with the PF keys.

The message line
CECI uses the message line to display error messages. After execution of a
command, the message line shows the response code. Figure 111 on page 546
shows an error message, where the user has omitted a required field. The S that
precedes the message indicates that it is severe (bad enough to prevent execution).
There are also warning messages (flagged by W) and error messages (flagged by
E), which provide information without preventing execution. E messages indicate
option combinations unusual enough that they may not be intended and warrant a
review of the command before you proceed with execution.

Where there are multiple error messages, CECI creates a separate display
containing all of them, and uses the message line to tell you how many there are,
and of what severity. You can get the message display with PF9, as explained in
“Additional displays” on page 551.

Figure 113 on page 549 shows the second use of the message line, to show the
result of executing a command. CECI provides the information in both text
(NORMAL in the example in Figure 113 on page 549) and in decimal form (the
EIBRESP and EIBRESP2 value).

CECI options on function keys
The single line at the foot of the screen provides a menu indicating the effect of the
PF keys for the display.

The PF keys are described below. If the terminal has no PF keys, the same effect
can be obtained by positioning the cursor under the required item in the menu and
pressing ENTER.

PF1 HELP
displays a HELP panel giving more information on how to use the command
interpreter and on the meanings of the PF keys.

PF2 HEX
(SWITCH HEX/CHAR) switches the display between hexadecimal and
character format. This is a mode switch; all subsequent screens stay in the
chosen mode until the next time this key is pressed.

PF3 END
(END SESSION) ends the current session of the interpreter.

PF4 EIB
(EIB DISPLAY) shows the contents of the EXEC interface block (EIB). An
example of this screen is shown in Figure 115 on page 554.

PF5 VAR
(VARIABLES) shows all the variables associated with the current command

550 CICS TS for OS/390: CICS Application Programming Guide

interpreter session, giving the name, length, and value of each. See Variables
for more information about the use of this PF key.

PF6 USER
(USER DISPLAY) shows the current contents of the user display panel (that is,
what would appear on the terminal if the commands processed thus far had
been executed by an ordinary program rather than the interpreter). This key is
not meaningful until a terminal command is executed, such as SEND MAP.

PF7 SBH
(SCROLL BACK HALF) scrolls the body half a screen backward.

PF8 SFH
(SCROLL FORWARD HALF) scrolls the body half a screen forward.

PF9 MSG
(DISPLAY MESSAGES) shows all the messages generated during the syntax
check of a command.

PF10 SB
(SCROLL BACK) scrolls the body one full screen backward.

PF11 SF
(SCROLL FORWARD) scrolls the body one full screen forward.

Additional displays
Additional screens of information are available when you press the relevant PF
key. You can get back to your original screen by pressing ENTER from an
unmodified screen.

Expanded area
This display uses the whole of the body of the screen to display a variable selected
with the cursor. The cursor can be positioned at the start of the value of an option
on a syntax display, or under the ampersand of a variable in a variables display.
Pressing ENTER then gives the expanded area display. The scrolling keys can be
used to display all the information if it exceeds a full screen.

Variables
Figure 114 on page 552 shows the result of requesting a variables display, obtained
by pressing PF5. For each variable associated with the current interpreter session, it
shows the name, length, and value.

Chapter 43. Command-level interpreter (CECI) 551

The first three variables displayed are created for you by CECI and always appear
unless you explicitly delete them. They are designed to help you create command
lists, as described in “Saving commands” on page 557, as well as to serve as
examples.

After these three, you see any variables that you have created. The fourth one in
Figure 114, &REC, is the result of executing:
READ FILE('FILEA') RID('009000') INTO(&REC)

Normally, the value supplied for an option in the command line is taken as a
character string constant. However, sometimes you need to specify a variable to
represent this value, as when you want to connect two commands through option
values.

For example, to change a record with CECI, you might first enter:
EXEC CICS READ UPDATE INTO(&REC)

FILE('FILEA') RID('009000')

You would then modify the record as required by changing the variable &REC,
and then enter:
EXEC CICS REWRITE FROM(&REC) FILE('FILEA')

The ampersand (&) in the first position tells CECI that you are specifying a
variable.

A variable is also useful when the values of the options cause the command to
exceed the line length of the command input area. Creating variables with the
required values and specifying the variable names in the command overcomes the
line length limitation.

Defining variables
Variables can have a data type of character, fullword, halfword, or packed decimal,
and you can create them in any of the following ways:

READ FILE('FILEA') RIDFLD('009000')INTO(&REC)
VARIABLES LENGTH DATA
&DFHC +00016 THIS IS A SAMPLE
&DFHW +00046 EXEC CICS WRITEQ QUEUE(' CIS200') FROM(&DFHC)
&DFHR +00045 EXEC CICS READQ QUEUE(' CIS200') INTO(&DFHC)
&REC +00080 482554 D694 72 WIDGET, .007 TEST 100

PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 9 MSG

Figure 114. Typical CECI display of variables associated with a CECI session

552 CICS TS for OS/390: CICS Application Programming Guide

v By naming the variable in a receiver (&REC in Figure 114 on page 552, for
example). The variable is created when the command is processed. The data
type and length are implied by the option.

v By adding new entries to the list of variables already defined. To create a new
variable, simply type its name and length in the appropriate columns on the first
unused line of the variables display, and then press ENTER. For character
variables, use the length with which the variable has been defined. For fullwords
or halfwords, type F or H. For packed variables, use the length in bytes,
preceded by a P.
Character variables are initialized to blanks. The others are initialized to zero in
the appropriate form. Once a variable is created, you can change the value by
modifying the data field on the variables display.

v By using the NAME field on the status line when you have produced an
expanded area display of a particular option. You do this by positioning the
cursor under the option on a syntax display and pressing ENTER. Then you
assign the variable name you want associated with the displayed option value
by typing it into the NAME field and pressing ENTER again.

v By copying an existing variable. You do this by obtaining an expanded area
display of the variable to be copied, overkeying the name displayed with the
name of the new variable, and pressing ENTER.

v By using the NAME field directly on a syntax display. This creates a character
variable whose contents are the character string on the command line, for use in
command lists as explained in “Saving commands” on page 557.

You can also delete a variable, although you do not usually need to, as CECI
discards all variables at session end. To delete one before session end, position the
cursor under the ampersand that starts the name, press ERASE EOF, and then
press ENTER.

The EXEC interface block (EIB)
You can display the EIB associated with the CECI transaction by pressing PF4.
Figure 115 on page 554 shows an example of the contents of the EXEC interface
block (EIB).

Chapter 43. Command-level interpreter (CECI) 553

The fields in the EIB are described for programming purposes in the CICS
Application Programming Reference manual.

Error messages display
When there are more messages than CECI can display on the message line, you
can display all of them by pressing PF9.

READ FILE('FILEA') RIDFLD('009000')
EXEC INTERFACE BLOCK

EIBTIME = +0124613
EIBDATE = +0091175
EIBTRNID = 'CECI'
EIBTASKN = +0000046
EIBTRMID = 'S200'
EIBCPOSN = +00004
EIBCALEN = +00000
EIBAID = X'7D'
EIBFN = X'0000'
EIBRCODE = X'000000000000'
EIBDS = '........'
EIBREQID = '........'
EIBRSRCE = ' '
EIBSYNC = X'00'
EIBFREE = X'00'
EIBRECV = X'00'
EIBATT = X'00'
EIBEOC = X'00'

+ EIBFMH = X'00'

PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 115. Typical CECI display of the EIB

READ
SYNTAX MESSAGES
S FILE must be specified.
S RIDFLD must be specified.

PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 10 SB 11 SF

Figure 116. Typical CECI display of the message display

554 CICS TS for OS/390: CICS Application Programming Guide

Making changes
Until CICS executes a command, you can change it by changing the contents of the
command line, by changing the option values shown in the syntax display in the
body, or by changing the values of variables on the variables screen. (You can still
make changes after a command is executed, but, unless they are in preparation for
another command, they have no effect.)

When you make your changes in the command line or on the variables screen,
they last for the duration of the CECI transaction. If you make them in the body of
the syntax screen, however, they are temporary. They last only until the command
is executed and are not reflected in the command line.

As noted earlier, not all characters are displayable on all terminals. When the
display is in character rather than hexadecimal format, CECI shows these
characters as periods (X'4B'). When you overtype a period, you should be aware
that the current value may not be a period but an undisplayable character.

Furthermore, you cannot change a character to a period when the display is in
character mode. If you attempt this, CECI ignores your change, and does not issue
a diagnostic message. To make such a change, you have to switch the display to
hexadecimal and enter the value (X'4B') that represents a period.

There is a restriction on changes in hexadecimal format as well. If you need to
change a character to a blank, you cannot enter the code (X'40') from a
hexadecimal display. Again, your change is ignored and CECI does not issue a
message. Instead, you must switch to character mode and blank out the character.

After every modification, CECI rechecks your syntax to ensure that no errors have
appeared. It restarts processing at the command syntax check if there are any
execution-stoppers, and at about to execute command if not. Only after you press
ENTER on an unmodified about to execute command screen does CECI execute
your command.

How CECI runs
There are several things you should know about how the interpreter works, in
order to use it properly. These include:
v CECI sessions
v Abends
v Exception conditions
v Program control commands
v Terminal sharing
v Saving commands

CECI sessions
The interpreter runs as a transaction, using programs supplied by CICS. It is
conversational, which means that everything you do between the start of a session
(entering CECI) and the end (PF3) is a single logical unit of work in a single task.
This means that locks and enqueues produced by commands you execute remain
for the duration of your session. If you read a record for update from a recoverable
file, for example, that record is not available to any other task until you end CECI.

Chapter 43. Command-level interpreter (CECI) 555

Abends
CECI executes all commands with the NOHANDLE option, so that execution
errors do not ordinarily cause abends.

CECI also issues a HANDLE ABEND command at the beginning of the session, so
that it does not lose control even if an abend occurs. Consequently, when you get
one, CECI handles it and there is no resource backout. If you are doing a series of
related updates to protected resources, you need to be sure that you do not do
some of them and then find you cannot complete the others. If you find yourself in
this situation, you can execute a SYNCPOINT ROLLBACK command or an
ABEND command with the CANCEL option to remove the effects of your earlier
commands on recoverable resources.

Exception conditions
For some commands, CECI may return exception conditions even when all
specified options are correct. This occurs because, on some commands, CECI uses
options that you do not specify explicitly. For example, the ASSIGN command
always returns the exception condition INVREQ under CECI. Even though it may
return the information you requested correctly, it will have attempted to get
information from other options, some of which are invalid.

Program control commands
Because the interpreter is itself an application program, the interpretation of some
program control commands may produce different results from an application
program executing those commands. For example, ABEND command is
intercepted, as noted above, unless you use the CANCEL option.

If you execute a LINK command, the target program executes, but in the
environment of the interpreter, which may not be the one expected. In particular, if
you modify a user display during a linked-to program, the interpreter will not be
aware of the changes.

Similarly, if you interpret an XCTL command, CECI passes control to the named
program and never gets control back, so that the CECI session is ended.

Terminal sharing
When the command being interpreted is one that uses the same screen as the
interpreter, the command interpreter manages the sharing of the screen between
the interpreter display and the user display.

The user display is restored:
v When the command being processed requires input from the operator
v When the command being processed is about to modify the user display
v When USER DISPLAY is requested

Thus, when a SEND command is followed by a RECEIVE command, the display
sent by the SEND command appears twice, once when the SEND command is
processed, and again when the RECEIVE command is processed. It is not necessary
to respond to the SEND command, but, if a response is made, the interpreter stores
it and redisplays it when the screen is restored for the RECEIVE command.

556 CICS TS for OS/390: CICS Application Programming Guide

When the interpreter restores the user display, it does not sound the alarm or affect
the keyboard in the same way as when a SEND command is processed. This is
similar to EDF (see “Using EDF in single-screen mode” on page 529 for more
information).

Saving commands
Sometimes you may want to execute a command, or a series of commands, under
CECI, repeatedly. One technique for doing this is to create a temporary storage
queue containing the commands. You then alternate reading the command from
the queue and executing it.

CECI provides shortcuts both for creating the queue and for executing commands
from it. To create the queue:
1. Start a CECI session.
2. Enter the first (or next) command you want to save on the command line, put

&DFHC in the NAME field in the status line, and press ENTER. This action
causes the usual syntax check, and it also stores your command as the value of
&DFHC, which is the first of those three variables that CECI always defines for
you. (See Figure 114 on page 552.) If you select the variables display at this
point, you will see that &DFHC is the value of your command.

3. After the syntax is correct but before execution (on the about to execute
command screen), change the command line to &DFHW and press ENTER.
This causes CECI to use the value of &DFHW for the command to be executed.
&DFHW is the second of the variables CECI supplies, and it contains a
command to write the contents of variable &DFHC (that is, your command) to
the temporary storage queue named “ CItttt”, where “tttt” is the name of your
terminal and two blanks precede the letters “CI”.

4. Execute this WRITEQ command (through the command execution complete
screen). This stores your command on the queue.

5. If you want to save more than one command, repeat steps 2 to 4 for each.

When you want to execute the saved commands from the list, do the following:
1. Enter &DFHR on the command line and press ENTER. &DFHR is the last of

the CECI-supplied variables, and it contains a command to read the queue that
was written earlier. Execute this command; it brings the first (next) of the
commands you saved into the variable &DFHC.

2. Then enter &DFHC on the command line and press ENTER. CECI replaces the
command line with the value of &DFHC, which is your command. Press
ENTER to execute your command.

3. Repeat these two steps, alternating &DFHR and &DFHC on the command line,
until you have executed all of the commands you saved.

You can vary this procedure to suit your needs. For example, you can skip
commands in the sequence by simply skipping step (2). You can change the
options of the saved command before executing it in the same way as a command
entered normally.

If you want to repeat execution of the saved sequence, you need to specify the
option ITEM(1) on the first execution of the READQ command, in order to
reposition your read to the beginning of the queue.

Chapter 43. Command-level interpreter (CECI) 557

Security considerations
The interpreter is such a powerful tool that your installation may restrict its use
with attach-time security. (The external security manager used by your installation
defines the security attributes for the CECI and CECS transactions.) If this has been
done, and you are not authorized to use the interpreter transaction you select, you
will not be able to initiate the transaction.

558 CICS TS for OS/390: CICS Application Programming Guide

Part 8. Appendixes

© Copyright IBM Corp. 1989, 2000 559

560 CICS TS for OS/390: CICS Application Programming Guide

Appendix A. CICS commands and their equivalent obsolete
macros

This appendix provides a list of the CICS commands available to the application
programmer. These commands replace the CICS macro instructions, which are now
obsolete. This list gives a command that performs the same function as the
obsolete macro instruction. Command options may have different defaults or
functions from macro-level operands having similar names. Some CICS macros do
not have an equivalent command; for example, there is only one CICS built-in
function that can be invoked by a command.
Macro Command

DFHBFTCA -

DFHBIF
TYPE=DEEDIT BIF DEEDIT
TYPE=PHONETIC1

DFHBMS
TYPE=CHECK RESP option
TYPE=IN RECEIVE MAP
TYPE=MAP RECEIVE MAP FROM
TYPE=OUT SEND TEXT
TYPE=OUT,MAP= SEND MAP
TYPE=PAGEBLD SEND MAP ACCUM
TYPE=PAGEOUT SEND PAGE
TYPE=PURGE PURGE MESSAGE
TYPE=RETURN SEND{MAP|TEXT} SET
TYPE=ROUTE ROUTE
TYPE=STORE SEND{MAP|TEXT} PAGING
TYPE=TEXTBLD SEND TEXT ACCUM

DFHDC
TYPE=CICS DUMP TABLES
TYPE=COMPLETE DUMP COMPLETE
TYPE=PARTIAL
LIST=PROGRAM DUMP PROGRAM
LIST=TERMINAL DUMP TERMINAL
LIST=TRANSACTION DUMP STORAGE
LIST=SEGMENT DUMP FROM
TYPE=TRANSACTION DUMP[TASK]

DFHDI
TYPE=ABORT ISSUE ABORT
TYPE=ADD ISSUE ADD
TYPE=CHECK RESP option
TYPE=END ISSUE END
TYPE=ERASE ISSUE ERASE
TYPE=NOTE ISSUE NOTE
TYPE=QUERY ISSUE QUERY

TYPE=RECEIVE ISSUE RECEIVE
TYPE=REPLACE ISSUE REPLACE
TYPE=SEND ISSUE SEND
TYPE=WAIT ISSUE WAIT

DFHEMP
TYPE=ENTRY ENTER TRACEID MONITOR

DFHFC
TYPE=CHECK RESP option

© Copyright IBM Corp. 1989, 2000 561

TYPE=DELETE DELETE RIDFLD
(DL/I types) -
TYPE=ESETL ENDBR
TYPE=GET READ
TYPE=GET,
TYPOPER=UPDATE READ UPDATE
TYPE=GETAREA -
TYPE=GETNEXT READNEXT
TYPE=GETPREV READPREV
TYPE=PUT,
TYPOPER=DELETE DELETE
TYPE=PUT,
TYPOPER=NEWREC WRITE
TYPE=PUT,
TYPOPER=UPDATE REWRITE
TYPE=RELEASE UNLOCK
TYPE=RESETL RESETBR
TYPE=SETL STARTBR

DFHIC
TYPE=CANCEL CANCEL
TYPE=CHECK RESP option
TYPE=GET RETRIEVE
TYPE=GETIME ASKTIME
TYPE=INITIATE START
TYPE=POST POST

TYPE=PUT START FROM
TYPE=RETRY RETRIEVE
TYPE=WAIT DELAY
DFHJC
TYPE=CHECK RESP option
TYPE=GETJCA -
TYPE=PUT JOURNALNUM WAIT
TYPE=WAIT WAIT JOURNALNUM
TYPE=WRITE WRITE JOURNALNUM
TYPE=GETB -
TYPE=GETF -
TYPE=OPEN,INPUT -
TYPE=OPEN,OUTPUT SET JOURNALNUM OPENOUT
TYPE=CLOSE SET JOURNALNUM CLOSE
TYPE=NOTE -
TYPE=POINT -

DFHKC
TYPE=ATTACH -
TYPE=CHAP EXEC CICS CHANGE TASK PRIORITY
TYPE=DEQ DEQ
TYPE=ENQ ENQ
TYPE=NOPURGE -
TYPE=PURGE -
TYPE=WAIT SUSPEND
TYPE=WAIT,ECADDR WAIT EVENT

DFHKP -
TYPE=CHECK -
TYPE=RTBOCTL -
TYPE=RTBODATA -
TYPE=RTBOEND -

DFHMDF -

DFHMDI -

DFHMSD -

562 CICS TS for OS/390: CICS Application Programming Guide

DFHPC
TYPE=ABEND ABEND
TYPE=CHECK RESP option
TYPE=COBADDR -
TYPE=DELETE RELEASE
TYPE=LINK LINK
TYPE=LOAD LOAD
TYPE=RESETXIT HANDLE ABEND RESET
TYPE=RETURN RETURN
TYPE=SETXIT HANDLE ABEND
TYPE=XCTL XCTL

DFHSC
TYPE=FREEMAIN FREEMAIN
TYPE=GETMAIN GETMAIN

DFHSP
TYPE=USER SYNCPOINT
TYPE=ROLLBACK SYNCPOINT ROLLBACK

DFHTC
CTYPE=CHECK RESP option
CTYPE=COMMAND -
TYPE=CBUFF SEND CBUFF
TYPE=CONVERSE CONVERSE
TYPE=COPY ISSUE COPY
TYPE=DISCONNECT ISSUE DISCONNECT
TYPE=EODS ISSUE EODS
TYPE=ERASEAUP ISSUE ERASEAUP
TYPE=GET RECEIVE
TYPE=PAGE -
TYPE=PASSBK SEND PASSBK
TYPE=PRINT ISSUE PRINT
TYPE=PROGRAM ISSUE LOAD
TYPE=PUT SEND WAIT
TYPE=READ RECEIVE(WAIT assumed)
TYPE=READB RECEIVE BUFFER
TYPE=READL RECEIVE LEAVEKB
TYPE=RESET ISSUE RESET
TYPE=SIGNAL WAIT SIGNAL
TYPE=WAIT WAIT TERMINAL
TYPE=WRITE SEND
TYPE=WRITEL SEND LEAVEKB

DFHTD
TYPE=CHECK RESP option
TYPE=FEOV -
TYPE=GET READQ TD
TYPE=PURGE DELETEQ TD
TYPE=PUT WRITEQ TD

DFHTR
TYPE=ENTRY ENTER
TYPE=OFF2 SET TRACEDEST

SET TRACEFLAG
TYPE=ON SET TRACETYPE

DFHTS
TYPE=CHECK RESP option
TYPE=GET3 READQ TS
TYPE=GETQ READQ TS
TYPE=PURGE DELETEQ TS
TYPE=PUT3 WRITEQ TS
TYPE=PUTQ WRITEQ TS
TYPE=RELEASE DELETEQ TS

Appendix A. CICS commands and their equivalent obsolete macros 563

Language Command

COBOL CALL 'DFHPHN' USING lang name phon.
C/370 In the program prior to the main()[statement, code:

#pragma linkage(DFHPHN,OS)
void DFHPHN();

In the program AFTER the main(){ statement, code:

DFHPHN(lang,name,phon);
PL/I CALL DFHPHN (lang,name,phon);
Assembler CALL DFHPHN,(lang,name,phon)

Notes:

1.

You can no longer use this macro to perform phonetic conversion of
16-character names. For online code, you must supply the name to be
converted as input to DFHPHN. DFHPHN is supplied in
CICSTS13.CICS.ADFHLOAD. The result is a 4-byte phonetic equivalent. The
general form of this routine is as follows: The “lang” is a symbolic reference to
a 1-byte argument indicating the programming language being used. This is
X'F0' for COBOL, C/370, and assembler, and X'F1' for PL/I. If an error occurs
during the processing of this request, then X'50' is returned in this argument; if
no error occurs, X'00' is returned. This argument must be reset to indicate the
programming language, before it can be reused. The “name” is a symbolic
reference to the field that contains the 16-character name you want to convert.
The “phon” is a symbolic reference to the field that contains the 4-byte phonetic
equivalent of the name passed from the subroutine to the calling program.
The phonetic code conversion subroutine (DFHPHN) also assists you to load
and access data sets offline. The steps in creating such a data set would
typically be:
a. Create the keys

1) Read a record from the source data set
2) Generate the “phon” using a call to the DFHPHN subroutine
3) Write the record to a temporary sequential data set

b. Sort the temporary data set on the 4-byte phonetic code
c. Load the key-sequenced VSAM data set

1) Read the sorted temporary data set
2) Write to the keyed data set

2.

TYPE=OFF and TYPE=ON have been replaced by SET TRACEDEST, SET
TRACEFLAG, and SET TRACETYPE.

3.

Because single units of information cannot be handled by the command-level
interface, data stored by a DFHTS TYPE=PUT macro cannot be retrieved by a
READQ TS command or be deleted by a DELETEQ TS command. Conversely,
data stored by a WRITEQ TS command cannot be retrieved by a DFHTS
TYPE=GET macro.

564 CICS TS for OS/390: CICS Application Programming Guide

Appendix B. OS/VS COBOL

This appendix describes various considerations and restrictions that apply when
using OS/VS COBOL. It is provided for migration purposes to enable you to
support existing OS/VS COBOL programs.

You are not recommended to write new programs with OS/VS COBOL.

For information about the expiration of support for old compilers, and guidance on
migration, see the CICS Transaction Server for OS/390 Migration Guide.

For information about writing CICS applications with other COBOL compilers, see
“Chapter 2. Programming in COBOL” on page 23.

Translator options
The following translator options are applicable to OS/VS COBOL:
v APOST|QUOTE
v CICS
v DEBUG|NODEBUG
v DLI
v EDF|NOEDF
v FE|NOFE
v FEPI|NOFEPI
v FLAG[(I|W|E|S)]
v LANGLVL(1)|LANGLVL(2)
v LINECOUNT(n)
v NATLANG
v NUM|NONUM
v OPT|NOOPT
v OPTIONS|NOOPTIONS
v QUOTE|APOST
v SEQ|NOSEQ
v SOURCE|NOSOURCE
v SP
v SPACE(1|2|3)
v SPIE|NOSPIE
v SYSEIB
v VBREF|NOVBREF

Programming restrictions
The following restrictions apply to an OS/VS COBOL program that is to be used
as a CICS application program.
v You cannot use the entries in the environment division and data division that

are normally associated with data management. However, you still need to code
the headers for both of these divisions.

v You cannot use the special options:
REPORT WRITER
SEGMENTATION
SORT
TRACE

© Copyright IBM Corp. 1989, 2000 565

v You cannot use compiler options that require the use of operating system
services:
COUNT
DYNAM
ENDJOB
FLOW
STATE
SYMDUMP
TEST

Note: Do not use SYST if this would cause a corresponding DD card to be
required.

v You cannot use COBOL statements that require the use of operating system
services:
ACCEPT SIGN IS SEPARATE
CURRENT-DATE STOP 'literal'
DATE STOP RUN
DAY STRING
DISPLAY TIME
EXHIBIT UNSTRING
INSPECT USE FOR DEBUGGING

Note: A COBOL GOBACK is needed to satisfy the compiler’s need for a logical
“end of program”. The translator expands all CICS commands to COBOL
CALLs, so the compiler expects a return to the calling program. Control
actually returns to CICS after the RETURN command.

v You should not use the COBOL statements:
CLOSE
OPEN
READ
WRITE

because you are provided with CICS commands for the storage and retrieval of
data, and for communication with terminals.

v The CICS translator does not support the use of the extended source program
library facility. This includes the compiler-directing statements BASIS, INSERT,
and DELETE.

v When you link-edit separate COBOL routines together, only the first can invoke
CICS, DL/I, or DB216.

v If both the identification and procedure divisions are presented to the translator
in the form of a source program or copybook, the following coding is produced
or expanded:

DFHEIVAR
inserted at the end of the WORKING-STORAGE SECTION

DFHEIBLK
inserted at the start of the LINKAGE SECTION as the first 01 level in
the section

DFHCOMMAREA
generated, if not specified, as the second 01 level in the section.

If no identification division is present, only the CICS commands are expanded.

16. IBM Trademark.

566 CICS TS for OS/390: CICS Application Programming Guide

If the identification division only is present, only DFHEIVAR, DFHEIBLK, and
DFHCOMMAREA are produced.

v When a debugging line is to be used as a comment, it must not contain any
unmatched quotes.

v Statements that produce variable-length areas, such as “OCCURS DEPENDING
ON” cannot be used within the working storage section.

v Do not mix RES and NORES programs in the same run unit. When an OS/VS
COBOL RES program uses a COBOL CALL statement to invoke an OS/VS
COBOL NORES program, or vice versa, COBOL run-time control blocks may
become corrupted, causing this or later tasks to abend.

Restricted OS/VS COBOL language statements
Restricted OS/VS COBOL language statements that result in a call to MVS
GETMAIN services, but which worked on earlier releases, may not work when
CICS storage protection is active. See “MVS subspaces” on page 491 for
information about storage control. For example, if a CICS application program
written in OS/VS COBOL is defined with EXECKEY(USER), and it issues a
restricted COBOL verb that results in an MVS GETMAIN, it abends with an 0C4
abend. In these cases it is not the application program itself that appears to cause
the 0C4, but the OS/VS COBOL routines that execute statements such as INSPECT.

Programs that are written to the documented CICS application programming
interface, and which observe the documented restrictions, continue to work
correctly.

Base locator for linkage
The base locator for linkage (BLL) mechanism is used to address storage outside
the working-storage section of an application program. It operates by addressing
the storage as if it were a parameter to the program. The storage must be defined
by means of an 01-level data definition in the linkage section of the program. The
COBOL compiler generates code to address the storage using the parameter list.
When the program is invoked, CICS sets up the parameter list in such a way that
the parameter list is itself addressable by the application program.

The parameter list must be defined as the first parameter to the program, unless a
communication area is being passed to the program, in which case the
DFHCOMMAREA definition must precede it.

In the following example, the first 02-level data name (that is, FILLER) is set up by
CICS to provide addressability to the other fields in the parameter list. The other
data names are known as BLL cells, and address the remaining parameters of the
program. There is a one-to-one correspondence between the 02-level data names of
the parameter list definition and the 01-level data definitions in the linkage section:

Appendix B. OS/VS COBOL 567

In this example, A-POINTER addresses A-DATA, B-POINTER addresses B-DATA,
and C-POINTER addresses C-DATA. The data names chosen for the BLL cells and
for the data areas that they address are not significant, but the names must be
defined in the correct order, so that the necessary correspondence is established.

If a BLL cell is named in the SET option of a CICS command, subsequent reference
to the corresponding data definition name address the storage supplied by CICS as
a result of processing the command. For example, suppose that a program is
required to read a variable-length record from a file, examine part of it, and update
it; all of this is to be done without providing storage for the record within the
program. Using the data definitions shown in Figure 117, the program could be
written as follows:

CICS reads the record into an internal buffer and supplies the address of the
record in the buffer to the application program. The application program updates
the record in the buffer and rewrites the record to the data set.

If you have defined an area in the LINKAGE SECTION, you must establish the
addressability to that area before it is used. The area itself must be a valid and
active CICS area.

BLL and chained storage areas
If access is needed to a series of chained storage areas (that is, areas each of which
contain a pointer to the next area in the chain), an artificial paragraph name must
be inserted immediately following any statement that establishes addressability to
one of the storage areas. For example:

LINKAGE SECTION.
01 PARMLIST.

02 FILLER PIC S9(8) COMP.
02 A-POINTER PIC S9(8) COMP.
02 B-POINTER PIC S9(8) COMP.
02 C-POINTER PIC S9(8) COMP.

01 A-DATA.
02 PARTNO PIC 9(4).
02 QUANTITY PIC 9(4) .
02 DESCRIPTION PIC X(100).

01 B-DATA PIC X.
01 C-DATA PIC X.

Figure 117. How FILLER provides addressability to fields in parameter lists.

EXEC CICS READ UPDATE FILE('FILEA')
RIDFLD(PART-REQD) SET(A-POINTER)
LENGTH(A-LRECL) END-EXEC.

IF A-LRECL LESS THAN 8 GO TO ERRORS.
IF QUANTITY GREATER ZERO

SUBTRACT 1 FROM QUANTITY
EXEC CICS REWRITE FILE('FILEA')

FROM(A-DATA) LENGTH(A-LRECL)
END-EXEC.

Figure 118. Reading and updating a record without providing storage

568 CICS TS for OS/390: CICS Application Programming Guide

In this example, storage areas mapped or defined by USERAREA are chained. The
first MOVE statement establishes addressability to the next area in the chain. The
second MOVE statement moves data from the newly addressed area, but only
because a paragraph name follows the first MOVE statement. If no paragraph
name is inserted, the reference to FIELD is taken as being to the storage area that
is addressed when the first MOVE statement refers to NEXTAREA. Insertion of a
paragraph name causes the compiler to generate code to reestablish addressability
through USERPTR, so that the reference to FIELD (and the next reference to
NEXTAREA) is to the newly addressed storage area.

BLL and OCCURS DEPENDING ON clauses
If the object of an OCCURS DEPENDING ON clause is defined in the linkage
section, a special technique is required to ensure that the correct value is used at
all times. In the following example, FIELD-COUNTER is defined in the linkage
section. The MOVE FIELD-COUNTER TO FIELD-COUNTER statement ensures
that unpredictable results do not occur when referring to DATA.

LINKAGE SECTION.
01 PARMLIST.

.

.
02 USERPTR PIC S9(8) COMP.
.
.

01 USERAREA.
02 FIELD PIC X(4).
02 NEXTAREA PIC S9(8) COMP.
.
.

PROCEDURE DIVISION.
.
.
MOVE NEXTAREA TO USERPTR.

ANYNAME.
MOVE FIELD TO TESTVAL.
.
.

Figure 119. An example to establish addressability to storage areas

Appendix B. OS/VS COBOL 569

The MOVE statement referring to FIELD-COUNTER causes the compiler to
reestablish the value it uses to compute the current number of occurrences of
FIELDS and ensures that it can determine the displacement of DATA correctly.

BLL and large storage areas
If an area greater than 4096 bytes is defined in the linkage section (but not as part
of an OCCURS DEPENDING ON clause), additional statements may be required to
establish addressability to the extra area. The ADD statement is placed after the
statement that establishes addressability to the data area. No additional
corresponding 01-level data name definition is added, so the usual one-to-one
correspondence of BLL cells to the data areas they address is not maintained. The
extra statements are shown in the following example:

LINKAGE SECTION.
.
.

01 FILE-REC.
.
.
02 FIELD-COUNTER PIC 9(4) COMP.
02 FIELDS PIC X(5) OCCURS 1 TO 5

TIMES DEPENDING ON
FIELD-COUNTER.

02 DATA PIC X(20).
.
.

PROCEDURE DIVISION.
.
.
EXEC CICS READ FILE('FILEA')

RIDFLD(KEYVAL)
SET(RECPTR)
END-EXEC.

MOVE FIELD-COUNTER TO FIELD-COUNTER.
MOVE DATA TO DATA-VAL.
.
.

Figure 120. An example of how FIELD-COUNTER is defined in linkage section

570 CICS TS for OS/390: CICS Application Programming Guide

No additional BLL cell is required if DFHCOMMAREA itself is larger than 4096
bytes.

SERVICE RELOAD statement
If an application program is to be compiled using the full OS COBOL Version 4
compiler, or the OS/VS COBOL compiler, a special compiler control statement
must be inserted at appropriate places within the program to ensure addressability
to a particular area defined in the linkage section. This control statement has the
form:
SERVICE RELOAD fieldname

where “fieldname” is the symbolic name of a specific storage area that is also
defined in an 01-level statement in the linkage section. The SERVICE RELOAD
statement must be used following each statement that modifies addressability to an
area defined in the linkage section, that is, whenever the contents of a BLL cell are
changed in any way.

When using HANDLE CONDITION or HANDLE AID commands, SERVICE
RELOAD statements should be specified at the start of the paragraph. Its name is
specified in the HANDLE command for all those BLL cells that may have been
altered from the time when the first HANDLE command activated the exit routine,
up to and including any CICS command that can cause the HANDLE exit to be
invoked.

If the BLL mechanism is used (described earlier in the chapter, addressability to the
parameter list must be established at the start of the procedure division. This is
done by adding a SERVICE RELOAD PARMLIST statement at the start of the
procedure division in the earlier examples.

For example, after a locate-mode input operation, the SERVICE RELOAD statement
must be issued to establish addressability to the data. If areas larger than 4096
bytes are being addressed, the secondary BLL cells must first be reset before the
SERVICE RELOAD statement is processed. (Resetting a BLL cell is described under
“BLL and large storage areas” on page 570.) If an address is moved into a BLL cell,

LINKAGE SECTION.
01 PARMLIST.

.

.
02 FRPTR PIC S9(8) COMP.
02 FRPTR1 PIC S9(8) COMP.
.
.

01 FILE-REC.
02 FIELD1 PIC X(4000).
02 FIELD2 PIC X(1000).
02 FIELD3 PIC X(400).

PROCEDURE DIVISION.
.
.
EXEC CICS READ FILE('FILEA')

RIDFLD(KEYVAL)
SET(FRPTR)
END-EXEC.

ADD 4096 FRPTR GIVING FRPTR1.

Figure 121. Additional statements required to establish addressability

Appendix B. OS/VS COBOL 571

addressability must be established in the same way. An example for the SERVICE
RELOAD statement is as follows:

If an address is moved into a BLL cell, addressability must be established in the
same way, for example:

If areas larger than 4096 bytes are being addressed, the secondary BLL cells must
be reset before the SERVICE RELOAD statement has been executed. (Resetting a
BLL cell is described under “BLL and large storage areas” on page 570.)

NOTRUNC compiler option
If an argument to a command is greater than 9999 in value, the NOTRUNC
compiler option must be specified to ensure successful completion.

Program segments
Segments of programs to be copied into the procedure division can be translated
by the command language translator, stored in their translated form, and later
copied into the program to be compiled.

LINKAGE SECTION.
01 PARMLIST.

.

.
02 FRPTR PIC S9(8) COMP.
02 FRPTR1 PIC S9(8) COMP.
02 TSPTR PIC S9(8) COMP.

01 FILE-REC.
02 FIELD1 PIC X(4000).
02 FIELD2 PIC X(1000).
02 FIELD3 PIC X(400).

01 TS-REC.
02 FIELD1 PIC X(4000).

PROCEDURE DIVISION.
.
.
EXEC CICS HANDLE CONDITION

ERROR(GIVEUP)
LENGERR(BADLENG)
END-EXEC.

EXEC CICS READ FILE('FILEA')
RIDFLD(PART-REQD)
SET(FRPTR)
LENGTH(A-LRECL)
END-EXEC.

ADD 4096 FRPTR GIVING FRPTR1.
SERVICE RELOAD FILE-REC.
MOVE FRPTR TO TSPTR.
SERVICE RELOAD TS-REC.
.
.

BADLENG.
ADD 4096 FRPTR GIVING FRPTR1.
SERVICE RELOAD FILE-REC.

Figure 122. An example of a service reload statement

MOVE B-POINTER TO A-POINTER.
SERVICE RELOAD A-DATA.

572 CICS TS for OS/390: CICS Application Programming Guide

Subsequent copying or manipulating of statements originally inserted by the CICS
translator in an application program may produce unpredictable results.

Converting to VS COBOL II
Many of the changes in the CICS-COBOL interface occur because VS COBOL II
simplifies the procedures. This means that you do not need to use some
CICS-specific OS/VS COBOL programming techniques. Of the changes described
in this section, the only one that is mandatory is the replacement (removal) of all
PROCEDURE DIVISION references to BLL cells.

Based addressing
You no longer need to define and manipulate BLL cells. Indeed, you cannot
manipulate BLL cells for base address manipulation, as in the management of
chained lists. You should review programs that use the CICS SET option and BLL
cells, and make the following changes:
v Remove, from the linkage section, the entire structure defining BLL cells and the

FILLER field. See Table 41 on page 574 for further information.
v Revise code that deals with chained storage areas to take advantage of the

ADDRESS special register and POINTER variables.
v Change every SET(BLL cell) option in CICS commands to SET(ADDRESS OF

A-DATA) or SET(A-POINTER) where A-DATA is a structure in the linkage
section and A-POINTER is defined with the USAGE IS POINTER clause.

v Remove all SERVICE RELOAD statements.
v Remove all program statements needed in OS/VS COBOL to address structures

in the linkage section longer than 4KB. A typical statement is:
ADD 4096, D-PTR1 GIVING D-PTR2.

v Remove artificial paragraph names where BLL cells are used to address chained
storage areas. (See “BLL and chained storage areas” on page 568.)

v Review any program that uses BMS map data structures in its linkage section.
VS COBOL II makes it easier to handle such maps, and also eliminates one
disadvantage of having maps in working storage. The points to consider are:
– In OS/VS COBOL programs, working storage is part of the compiled and

saved program. Placing the maps in the linkage section thus reduces the size
of the saved program, saving library space. In VS COBOL II, working storage
is not part of the compiled program but is acquired dynamically. This
eliminates one disadvantage of placing maps in working storage.

– If your map is in the linkage section, you can acquire and release the map
storage dynamically with CICS GETMAIN and FREEMAIN commands. This
helps you to optimize storage use, and can be useful in a long conversational
transaction. This advantage of linkage section maps still applies in VS COBOL
II.

– If your map is in the linkage section, you must issue a CICS GETMAIN
command to acquire storage for the map. With OS/VS COBOL, you must
determine the necessary amount of storage, which must be sufficient for the
largest map in your map sets. This can be difficult to determine, and probably
involves examining all the map assemblies. With VS COBOL II, use the
LENGTH special register:
EXEC CICS GETMAIN

SET(ADDRESS OF DATAREA)
LENGTH(LENGTH OF DATAREA)

– In VS COBOL II, the actual processing of maps in the linkage section is
simplified by the elimination of BLL cells.

Appendix B. OS/VS COBOL 573

Table 41. Addressing CICS data areas in locate mode

OS/VS COBOL VS COBOL II

WORKING-STORAGE SECTION.
77 LRECL-REC1 PIC S9(4) COMP.
LINKAGE SECTION.
01 BLLCELLS.

02 FILLER PIC S9(8) COMP.
02 BLL-REC1A PIC S9(8) COMP.
02 BLL-REC1B PIC S9(8) COMP.
02 BLL-REC2 PIC S9(8) COMP.

01 REC-1.
02 FLAG1 PIC X.
02 MAIN-DATA PIC X(5000).
02 OPTL-DATA PIC X(1000).

01 REC-2.
02
.
.

PROCEDURE DIVISION.
EXEC CICS READ UPDATE.

.

.
SET(BLL-REC1A)
LENGTH(LRECL-REC1)
END-EXEC.

ADD 4096 BLL-REC1A GIVING BLL-REC1B.
SERVICE RELOAD REC-1.
IF FLAG1 EQUAL X'Y '

MOVE OPTL-DATA TO ...
EXEC CICS REWRITE...

FROM(REC-1)
LENGTH(LRECL-REC1)
END-EXEC.

WORKING-STORAGE SECTION.
77 LRECL-REC1 PIC S9(4) COMP.

LINKAGE SECTION.
01 REC-1.

02 FLAG1 PIC X.
02 MAIN-DATA PIC X(5000).
02 OPTL-DATA PIC X(1000).

01 REC-2.
02 ...
.
.

PROCEDURE DIVISION.
EXEC CICS READ UPDATE

.

.
SET(ADDRESS OF REC-1)
LENGTH(LRECL-REC1)
END-EXEC.

IF FLAG1 EQUAL X'Y'
MOVE OPTL-DATA TO
EXEC CICS REWRITE

.

.
FROM(REC-1)
END-EXEC.

This table shows the replacement of BLL cells and SERVICE RELOAD in OS/VS
COBOL by the use of ADDRESS special registers in VS COBOL II. If the records in
the READ or REWRITE commands are fixed length, VS COBOL II does not require
a LENGTH option. This example assumes variable-length records. After the read,
you can get the length of the record from the field named in the LENGTH option
(here, LRECL-REC1). In the REWRITE command, you must code a LENGTH
option if you want to replace the updated record with a record of a different
length.

Table 42 on page 575 shows the old and new methods of processing BMS maps in
the linkage section. In this example, it is assumed that the OS/VS COBOL program
has been compiled with the LANGLVL(1) option, and that the following map set
has been installed:
MAPSET1 DFHMSD TYPE=DSECT,

TERM=2780,LANG=COBOL,
STORAGE=AUTO,
MODE=IN

The new ADDRESS special register used in the example is described under “Based
addressing” on page 23.

574 CICS TS for OS/390: CICS Application Programming Guide

Table 42. Addressing BMS map sets in the linkage section

OS/VS COBOL VS COBOL II

WORKING-STORAGE SECTION.
77 FLD0 PIC X VALUE IS LOW-VALUE.
LINKAGE SECTION.
01 BLLCELLS.

02 FILLER PIC S9(8) COMP.
02 BLL-DATAA PIC S9(8) COMP.

01 DATA1 COPY MAPSET1.
PROCEDURE DIVISION.
EXEC CICS GETMAIN LENGTH(1000)

SET(BLL-DATAA)
INITIMG(FLD0)
END-EXEC.

WORKING-STORAGE SECTION.
77 FLD0 PIC X VALUE IS LOW-VALUE.
LINKAGE SECTION.
COPY MAPSET1.
01 MAP1

02 FILLER PIC X(12).
02 FILLER1L COMP PIC S9(4).
.
.
02 FIELD90 PIC X(20).

PROCEDURE DIVISION
EXEC CICS GETMAIN

FLENGTH(LENGTH OF MAP1I)
SET(ADDRESS OF MAP1I)
INITIMG(FLD0)
END-EXEC.

The highlighted material describes the contents of the MAP1I COBOL copybook.

Artificial assignments
Remove artificial assignments from an OCCURS DEPENDING ON object to itself.
These are needed in OS/VS COBOL to ensure addressability.

Bibliography
For information on programming in OS/VS COBOL, see the following manuals:

OS/VS COBOL Compiler and Library Programmer’s Guide, SC28-6483
VS COBOL for OS/VS Reference Language, GC26-3857.

Appendix B. OS/VS COBOL 575

576 CICS TS for OS/390: CICS Application Programming Guide

Index

Numerics
10/63 magnetic slot reader 406
31-bit mode transaction 473
3262 printer 433
3270 430
3270 bridge

ADS descriptor 336
3270 display 415
3270 family 305, 322

attention keys 318
attributes, extended 312
base color 312
buffer 308
color, base 312
data stream 305
data stream, outbound 315
data stream orders 313
display characteristics 310
emulating 306
extended attributes 312
field attributes 310
field format, inbound 320
fields 310
inbound field format 320
input from 318
intensity 311
MDT 311
modified data tag 311
orders in data stream 313
outbound data stream 315
protection 311
reading from 319
screen fields 306
terminal, writing to 308
unformatted mode 321
write control character 309
writing to terminal 308

3270 printer 434
options 435

3270 screen field 354
3289 printer 433
3290 display 396

character size 399
3601 logical unit 404
3770 batch data interchange logical

unit 404
3770 batch logical unit 404
3790 batch data interchange logical

unit 404

A
abend 235
abend, PL/I 55
ABEND command 246
abend exit facility 245
abend exit program 246
abend exit routine 246
Abend handling and LE 62
abend user task, EDF 523
abnormal termination recovery 245

abstract windows toolkit (AWT) 113
using with CICS 113

ACB interface of TCAM 430
ACCEPT command 25
ACCEPT statement 566
access to system information

EXEC interface block (EIB) 243
ACCUM option 339, 372, 436
ACK 415
acknowledgment 415
active partition 401
ACTPARTN option 373, 401
adding records 272
ADDRESS command 243
ADDRESS COMMAREA command 470
addressing of CICS areas 144
ADS descriptor 336
affinity 157
AFTER option 459
ALARM option 344
ALLOCATE command 130

inhibit wait, NOSUSPEND
option 130

ALLOCERR condition 456
alternate

facility 299
index 257
key 257

ALTPAGE value 376
ANSI85 option 9
ANSI85 standards

COBOL 32
APAK transaction 439
APCG 120
API

application programming
interface 243

subset for DPL 216
APLG 55
APOST option 9
application program logical levels 32
application programming interface

(API) 243
application programs

asynchronous processing 219
design considerations 119
distributed program link 207
distributed transaction

processing 219
function shipping 206
intercommunication

considerations 205
logical levels 468
program structure 119
testing 509
transaction routing 206
translation 4, 19
writing 3

area, dynamic storage 120
argc 47
argv 47

ASIS option 355
ASKTIME command 459
assembler language 5

31-bit mode 57
applications 125
CALL statement 58
programming techniques 57
restrictions 57

Assembler language 20
DFHECALL macro 20

assembly 4
assembly, TYPE=DSECT 334
ASSIGN command 243, 422, 439

DESTCOUNT option 394
MAPCOLUMN option 380
MAPHEIGHT option 380
MAPLINE option 380
MAPWIDTH option 380
MSR option 406
options 422
PAGENUM option 394

asynchronous journal output 223
asynchronous processing 205, 219
AT option 459
ATI 299, 413, 497
ATNI 207
attention field 408
attention identifier 355
ATTENTION key 415
automatic task initiation 299, 413
automatic transaction initiation 497
AUTOPAGE option 375
auxiliary storage

temporary data 500
auxiliary temporary storage 137
auxiliary trace 130
AZI6 207

B
backout of resources 225
BAKR 57
BASE option 340
batch compilation 34
batch data interchange 430

definite response 432
DEFRESP option 432
destination identification 432
ISSUE WAIT command 432
NOWAIT option 432

BDAM 141
browsing operations 288
data sets 258, 287
exclusive control 290
updating operations 288

BDI 433
BGAM 411
blank fields 144
blank lines

COBOL II 33
BLL (base locator linkage)

cells 26

© Copyright IBM Corp. 1989, 2000 577

BLL (base locator linkage) (continued)
chained storage areas 568
large storage areas 570
OCCURS DEPENDING ON

clauses 569
storage addressing 567

block, Execution interface 46
block references 287
blocked-data set 259
BMS 323, 410, 434

assembling map 334
assembly, TYPE=DSECT 334
BMS support levels 324
complex fields 336
composite fields 336
copy facility 148
creating map 328
cursor, finding the 356
cursor position 348
data, moving to map 341
data streams 143
DFHMDF macro 328, 329
DFHMDI macro 328, 331
DFHMSD macro 328, 331
display, receiving data from 349
EOC condition 361
field, group 337
fields 327
fields, complex 336
fields, composite 336
fields, repeated 337
finding the cursor 356
full 324
group field 337
GRPNAME option 336
initializing output map 340
invalid data 349
link-edit 334
macro 328
macros, rules for writing 332
map 325
map, assembling 334
map, creating 328
map, initializing output 340
map, moving data to 341
map, physical 334
map, symbolic 334
map sets 335
mapping input data 353
maps 143, 144, 148
maps, storage 339
MAPSET resource definition 334
MDT 354
message lengths, reducing 382
minimizing path length 381
minimum 324
modified data tag (MDT) 143
moving data to map 341
multimap screens 148
OCCURS option 337
output example 325
output map, initializing 340
page building operations 146
page routing operations 146
path length, minimizing 381
performance considerations 381
physical map 334

BMS 323, 410, 434 (continued)
preparing 20
PROGRAM resource definition 334
receiving data from display 349
reducing message lengths 382
repeated fields 337
routing 442
rules for writing macros 332
screen copy 447
SEND MAP command 338
standard 324
storage for maps 339
support across platforms 325
symbolic map 334
terminals supported 324
TYPE=DSECT assembly 334
upper case translation 355

BOTTOM command, CEBR
transaction 540

BRACKET option 427
bracket protocol, LAST option 427
bridge (3270)

ADS descriptor 336
brightness 408
browse operation

BDAM 288
BROWSE TEMP STORAGE option,

CEDF 524
browse transaction 537
browsing 142

DELAY 142
records 267
SUSPEND 142

BTAM 411
BUFFER option 429
BUILDCHAIN 424

C
C++ considerations 51
C and C++ restrictions 47
C language considerations

addressing EIB 50
data declarations 46
LENGTH option default 136
naming EIB fields 46

CALL command 25
CALL statement

assembler language 58
in COBOL 28, 32

CANCEL command 459
CARD option 432
CBLCARD option 9
CDUMP 47
CEBR transaction 537, 543

body 539
BOTTOM command 540
browse transaction 537
CEBR initiation 537
COLUMN command 540
command area 539
displays 539
FIND command 541
GET command 541
header 539
initiation 537
LINE command 541
message line 539

CEBR transaction 537, 543 (continued)
PURGE command 542
PUT command 542
QUEUE command 542
security considerations 543
SYSID command 542
temporary storage browse 537
TERMINAL command 542
TOP command 542
transient data 543

CECI transaction
about to execute command 548
ampersand (&) 552
body 549
command execution complete 549
command input 546
command input line 546
command line 546
command syntax check 547
EIB 553
ENTER key 550
expanded area 551
information area 549
introduction 545
invoking 545
making changes 555
message line 550
messages display 554
PF key values area 550
program control 556
screen layout 546
security considerations 558
status area 547
terminal sharing 556
variables 551

CECS transaction 545
CEDF transaction 513, 536

abend user task 523
body 516
browse temporary storage 524
display register 525
displays 514
DPL 533
dual-screen mode 531
EDF transaction 513
functions 514
header 515
invoke CECI 524
invoking 513
modifying execution 533
non-terminal transactions 532
options on function (PF) keys 523
overtyping displays 533
PF key 514
program labels 534
pseudoconversational programs 530
remote-linked programs 532
remote transactions 531
security 536
single-screen mode 529

CEEWUCHA 62
CESF, GOODNIGHT transaction 429
chained storage area 568
chaining 416
chaining of data 424, 425
checkout, program 513
CICS areas, addressing 144

578 CICS TS for OS/390: CICS Application Programming Guide

CICS dump utility program 250
CICS-key storage 481
CICS-maintained table 260
CICS option 9
CICS printer 433

determining characteristics of 439
CICSDATAKEY option 134, 483
CLASS option 451
CLEAR

key 403
PARTITION AID value 403
PARTITION key 403

CLEAR key 156
client region 207
CLOCK 47
CLOSE command 25
CMT 260
CNOTCOMPL option 425
COBOL 23, 44

31-bit addressing 26
ADDRESS register 23
addressing CICS data areas 23
ANSI85 programming restrictions 42
ANSI85 standards 32, 33, 34, 37, 40,

41, 42
base locator for linkage (BLL) 567
BMS data structures 573
CALL statement 28, 32
calling subprograms 28, 32
comma and semicolon delimiters 41
compiler options not used under

CICS 25
compilers supported 23
DL/I CALL interface 26
elimination of SERVICE RELOAD

statement 23
global variables 41
LENGTH register 23
lower-case characters, ANSI85 42
program segments 572
programming restrictions

summary 42
reference modification, ANSI85 40
REPLACE statement, ANSI85 34
RES option 126
reserved word table 24
restrictions 24, 124, 565
RETURN CODE register 23
run unit 27, 32
sequence numbers, ANSI85 33
symbolic characters 41
WITH DEBUGGING MODE 24

COBOL2 option 9
COBOL3 option 9
COLUMN

command, CEBR transaction 540
COM assembler instruction 57
comma and semicolon delimiters,

COBOL 41
lower-case characters 42

command, SYNCPOINT 226
command language translator 6
commands supported in C++ 51
COMMAREA 121, 123, 134, 135

LINK command 467
option 155, 467, 469, 471

common work area (CWA) 151

common work area (CWA) 151
(continued)

protecting 151
communication area

DFHCOMMAREA 567
compilation 4
compiler 5
compilers supported

assembler 57
COBOL 23
LE 61

complex fields 336
composite fields 336
condition, exception 231
CONNECT PROCESS command 219
CONSISTENT option

READ command 266
READNEXT command 269
READPREV command 269

CONSOLE option 432
contention for resources 121
contention for terminal 413
control

exclusive of BDAM 290
of VSAM blocks 280

conversation partner 413
conversational programming 120, 149
CONVERSE command 149, 412, 427

DEST option 430
copy facility

BMS 148
copybook translation 7
COUNT option 566
counter name

named counters 199
coupling facility data tables 260
coupling facility list structure

current value 200
CPI-C 205, 219

references 3
CPI Communications stub 220
CPSM option 10
CQRY transaction 302
CSNAP 47
CSPG transaction 374, 375, 442, 447
CSPP transaction 302
CTDLI 47
CTEST 47
CTLCHAR option 435, 436
CTRACE 47
CURRENT-DATE statement 566
cursor, finding the 356
cursor-detectable field 407
CURSOR option 339, 348, 373
cursor position 348
cursor positioning, symbolic 349
CVDA 136, 504

CICS-value data area 136
CWA 151
CWAKEY parameter 151

D
data

chaining 424
definition 124
initialization 124
passing to other program 469

data (continued)
records 136
storing within transaction 134

data, moving to map 341
data, reading from a display 353
DATA(24) 26
DATA(31) 26
data interchange block 6
data sets 140

access from CICS application
programs 265

batch data interchange 430
BDAM 258, 287
blocked 259
empty 257
sequential 142
user 139
VSAM 279

data storing within transaction 134
data streams

compressing 145
inbound 144
RA order 145
repeat-to-address orders (SBA) 145
SBA order 145
set buffer address order 145

data tables
coupling facility 260
shared 260

database
DB2 291
DL/I 291

DATABASE 2 (DB2) 291
DATAONLY option 145, 339, 345
date field of EIB 243
DATE statement 566
DAY statement 566
DB2 291

request processing 291
task related user exit 291

DBCS option 10
DCB interface of TCAM 414
DDS 364
deadlock 127

prevention 280
deadlocks 277
DEBKEY option 289
deblocking argument 287
DEBREC option 288, 289
DEBUG option 10
debugging 513
default

action for condition 231
deferred journal output 224
definite response protocol

terminal control 426
DEFRESP option 149, 432

terminal control 426
DELAY command 459
DELETE command 25
DELETEQ TD command 495
DELETEQ TS command 499
deleting records 270
DEQ command 463
DEQUEUE command 442

Index 579

design considerations of applications
exclusive control of resources 126,

127
designator character 408
DEST option 430
DESTCOUNT option 394
DESTID option 432
DESTIDLENG option 432
destination identification 432
detectable field 407
device-dependent maps 363
device dependent support 364
DFHAID 46
DFHBMSCA 46, 343
DFHBMSCA definitions 356
DFHBMSUP 336
DFHCOMMAREA 25, 469
DFHCOMMAREA communication

area 567
DFHCPLC 220
DFHDU41 250
DFHEDF group 509
DFHEIBLK 25
DFHEIEND macro 15, 16
DFHEIENT macro 15, 16, 59
DFHEIP 20
DFHEIRET macro 10, 14, 59
DFHEISTG macro 15, 16
DFHEIVAR 25
DFHELII 20
DFHFCT macro 260
DFHMDF macro 328, 329

display characteristics 341
DSATTS option 341
MAPATTS option 341

DFHMDI macro 328, 331
DFHMIRS program 212
DFHMSD macro 328, 331

BASE option 340
STORAGE option 340

DFHMSRCA 46, 406
DFHNC001

default named counter pool 201
DFHNCO macro

named counter options table 200
DFHNCOPT

named counter options table 200
DFHPDI macro 399
DFHPEP program 246
DFHPSD macro 398
DFHRESP function

translator action 34
DFHRESP translator function 6, 232
DFHURLDS 392
DFHVALUE 6
DFHVALUE function

translator action 34
DIB 6
direct terminal 395
display

register, EDF 525
screens 155

DISPLAY
statement 566

display, reading from 353
display characteristics 341
DISPLAY command 25

distributed program link 467
DL/I 26, 291

database operations 140
EXEC DLI interface 291
references 3
segment-search area (SSA) 140
syncpoints 226

DLI 11, 46
DLI option 10
DLIUIB 46
DOCTEMPLATE resource 190
documents

creating 189
DOCTEMPLATE 190
HTML 189

domains
document domain 189

DPL 205, 207, 226, 467, 533
client region 207
COMMAREA option 211
DPL API subset 216
exception conditions 217
independent syncpoints 213
options 208
programming considerations 215
REMOTENAME option 211
REMOTESYSTEM option 211
server program 211
server region 207, 211
SYSID option 211
TRANSID option 212

DSA 120
DSATTS option 341
DTP 205, 219
DUMP TRANSACTION command 250
DUPKEY condition 269
DYNAM option 566
dynamic

program 126
storage area 120
transaction backout program 246
transaction routing 473

E
ECBLIST 464
EDF 6, 10, 513

EDF option 10
EDF option 10
EIB 6, 46, 231, 413

application 18
description 243
EIBCALEN field 470
EIBCOMPL field 416
EIBFN field 471
EIBSIG field 415
EIBTRNID field 213
SYSEIB option 18
system 18
terminal control feedback 423

empty data sets 257
end-of-data indicator character 428
ENDBR command 269
ENDINPT condition 429
ENDJOB option 566
ENQ command 130, 463
ENQBUSY condition 130

ENQUEUE command 442
enqueuing

in a VSAM file 127
VSAM internal 127

entry point, trace 249
entry-sequenced data set (ESDS) 256
EOC condition 361, 425
EODI character 428
EODS condition 425
EOF condition 429
EPILOG option 10
EQUAL option 266
ERASE option 343, 373, 436
ERASEAUP option 343, 373, 383
ERRATT option 128
ESDS (entry-sequenced data set) 256
events

monitoring point 250
exception condition

description 231
exception conditions

HANDLE CONDITION
command 236, 237

IGNORE CONDITION
command 238

exception trace entry point 249
EXCI

CALL 220
communications 220
option 10

EXCI - external call interface 205
exclusive control of records

BDAM 290
VSAM 280
VSAM RLS 281

exclusive resources 126, 127
EXEC DLI commands 48
EXEC DLI interface 291
EXEC interface block 6
EXEC interface stubs 19
EXEC SQL commands 291
EXEC SQL interface 291
EXECKEY 135, 151
EXECKEY parameter 482
execution diagnostic facility 6, 10, 513
Execution interface block 46
EXHIBIT statement 566
expiration time

specifying 459
external call interface (EXCI) 205
External CICS interface (EXCI) 220
extrapartition queues 496
extrapartition transient data 139, 142

F
FDUMP 25
FE option 11
FEPI

references 3
FEPI - Front End Programming

Interface 205
FEPI option 11
FETCH 47
field

blank 144
group 337

fields
BMS 327

580 CICS TS for OS/390: CICS Application Programming Guide

fields (continued)
complex 336
composite 336
repeated 337

file control
BDAM data sets 287
overview 255
VSAM data sets 279

FIND command, CEBR transaction 541
finding the cursor 356
flag byte, route list 391
FLAG option 11
flip-flop mode 413
floating maps 377
FLOW option 566
FMH 426

inbound 426
option 427
outbound 427

FMHPARM option 373
FOR option 459
formatted screen, reading from a 354
FORMATTIME command 459
FORMFEED option 373, 437
FREE command 427
FREEKB option 344
FREEMAIN command 479
FROM option 274, 339
Front End Programming Interface

(FEPI) 205
FRSET option 343
function (PF) keys, CEBR

transaction 539
function management header

description 426
function-ship 275
function shipping 206
Function shipping 205
functions, EDF 514

G
GDDM 348
GDS option 11
generic delete 272
generic key 265
GENERIC option 265, 279
GET command, CEBR transaction 541
GETMAIN command 134

CICSDATAKEY option 134, 483
INITIMG option 125, 479
NOSUSPEND option 479
SHARED option 134, 139, 479
TASKDATAKEY option 134
USERDATAKEY option 134, 483

GETMAIN requests (MVS)
OS/VS COBOL language

restrictions 567
global user exits 483
global variables, COBOL 41
GOODNIGHT transaction, CESF 429
GRAPHIC option 11
group field 337
GRPNAME option 336
GTEQ option 265, 279

H
half-duplex mode 413
HANDLE ABEND command 232, 235,

245
HANDLE AID command 356
HANDLE CONDITION command 232,

235, 241
HANDLE CONDITION ERROR

command 237
HOLD option 467
HONEOM option 436
horizontal tabs 438
hot-pooling 98

I
ICTL (input format control) 57
ICVR parameter 510
identification

BDAM record 287
VSAM record 279

IGNORE CONDITION command 232,
235, 238

IGREQID condition 373
IGYCCICS 24
IGZ9OPD 25
IGZEOPD 25
IMMEDIATE option 414, 427, 471
IMS 128
INBFMH condition 425
inbound

data streams 144
index, alternate 257
indirect queues 496
initializing output map 340
INITIMG option 125, 479
input

format control (ICTL) 57
input data

chaining of 424
input data sets 6
input map, symbolic 352
INPUTMSG option 467, 471, 473
INQUIRE command 243
INQUIRE TERMINAL command 423,

439
INRTN option 402
INSPECT statement 566
inter-transaction affinity

affinity life times 182
affinity transaction groups 182
caused by application generators 181
detecting 181
programming techniques 159
recommendations 188
relations and lifetimes 182

global relation 183
terminal relation 184
userid relation 185

safe programming techniques 160
the COMMAREA 160
the TCTUA 161
using BTS containers 164
using DEQ with

ENQMODEL 163
using ENQ with

ENQMODEL 163

inter-transaction affinity (continued)
suspect programming techniques

DELAY and CANCEL REQID
commands 178

global user exits 158
INQUIRE and SET

commands 158
POST command 180
RETRIEVE WAIT and START

commands 175
START and CANCEL REQID

commands 177
transient data 174

temporary storage data-sharing
temporary storage 171

unsafe programming techniques 165
the CWA 165
using DEQ 170
using ENQ 170
using LOAD PROGRAM

HOLD 166
using shared storage 166
using task lifetime storage 168
using WAIT EVENT 169

interactive debugging
CECI transaction 545
CECS transaction 545
CEDF transaction 513

interactive problem control system 250
intercommunication 205
interface block, Execution 46
interface stubs, EXEC 19
interleaving conversation with message

routing 395
interregion communication 220
interrupting 415
interval control 459

cancel interval control command 459
DELAY command 459
delay processing of a task 459
expiration time 459
POST command 459
specifying request identifier 461
START command 459
starting a task 459

INTERVAL option 459
INTO option 274
intrapartition queues 495
intrapartition transient data 138
INVITE option 413
invoking EDF 513
INVPARTN condition 403
INVPARTNSET condition 403
INVREQ condition 373
IPCS 250
IRC 220
ISA (initial storage area) size 54
ISCINVREQ 207
ISSUE ABORT command 431

CARD option 432
CONSOLE option 432
PRINT option 432
WPMEDIA1–4 option 432

ISSUE ADD command 431
ISSUE COPY command 415, 430, 446
ISSUE DISCONNECT command 415
ISSUE END command 431

Index 581

ISSUE END command 431 (continued)
CARD option 432
CONSOLE option 432
PRINT option 432
WPMEDIA1–4 option 432

ISSUE ERASE command 415, 431
ISSUE NOTE command 431
ISSUE PRINT command 430, 446
ISSUE QUERY command 431
ISSUE RECEIVE command 431
ISSUE REPLACE command 431
ISSUE RESET command 429
ISSUE SEND command 431

CARD option 432
CONSOLE option 432
PRINT option 432
WPMEDIA1–4 option 432

ISSUE WAIT command 431, 432
CARD option 432
CONSOLE option 432
PRINT option 432
WPMEDIA1–4 option 432

J
Java 69, 83

ABEND handling 72
abnormal termination 72
ADDRESS 77
ASSIGN 78
building a program 90
Class 70
class library (JCICS) 69
command arguments 71
compilation 91, 94
condition handling 74
Debug Tool 104
DFHRPL requirements 97
Errors 70
ET/390 95
exception handling 72
Exceptions 70
hot-pooling 98
INQUIRE SYSTEM 78
INQUIRE TASK 79
INQUIRE TERMINAL or

NETNAME 79
interface 70
Java Record Framework 71
JavaBeans 70
javac 94
JCICS programming

considerations 72
JVM 107
prerequisites 90
PrintWriter 79
resource definition 71
run-time requirements 97
running 97
sample program components 83
sample programs 83
source-level debug 104
storage management 72
System.err 79
System.out 79
System Properties 96
threads 71

Java 69, 83 (continued)
transient data 77
translation 69
unsupported CICS services 79
VisualAge for Java 91

Java API (JCICS) 69
Java hot-pooling

H8 TCB 99
storage usage 101

Java Virtual Machine (JVM) 107
JCICS 72

APPC 75
BMS 75
creating objects 80
file control 76
HANDLE commands 73
program control 76
sample program components 83
sample programs 83
temporary storage 76
Terminal Control 76
UOWs 76
Using 80
using objects 80

JES 243, 449
Job Entry Subsystem component of

MVS 449
journal

records 136, 223
journal control

output synchronization 223
journal identifier 225
journal type identifier 225
journaling 143, 223, 225
JOURNALNAME 225
JOURNALNUM 225
JTYPEID 225
JUSFIRST option 384
JUSLAST option 384
JUSTIFY option 384
JVM

compile-time requirements 109
directory 110
execution options 110
invoking JVM programs 108
Java system properties 112
JAVADIR 110
open TCB 107
programming considerations 111
run-time requirements 109
running JVM programs 108
stderr 111
stdin 111
stdout 111
supplied .jar files 110
using the AWT 113

K
key

alternate (secondary) 257
generic 265
hardware print 446

key-sequenced data set (KSDS) 256
KEYLENGTH option, remote data

set 278

keys
physical 287

KSDS (key-sequenced data set) 256

L
language considerations

assembler 57, 59
C and C++ 45, 53
COBOL 23, 44
Java 69, 83
PL/I 53, 55

Language Environment 61
LAST option 344, 427

bracket protocol 427
LDC 404
LDCMNEM option 405
LDCNUM option 405
LE run-time options 62
LENGERR condition 416
LENGTH option 12, 136, 416
LENGTH register, COBOL 23
LENGTHLIST option

multiple dumps of task-related
storage areas 251

levels, application program logical 468
light pen-detectable field 407
LINE command

CEBR transaction 541
line length on printing 436
line traffic reduction 145
LINECOUNT option 12
LINK command 120, 134, 468

COMMAREA option 467, 469, 471
IMMEDIATE option 471
in COBOL 28, 32
INPUTMSG option 467, 471
TRANSID option 471

link-edit 4, 5
link-edit of map 334
LINK PROGRAM 220
link to program, expecting return 468
LINKAGE option 12
LIST option 388
LOAD command

HOLD option 467
local copy key 445
locale support 5
locality of reference 124
logging 142
logical device component 404
logical levels, application program 28,

32, 468
logical messages, rules for 372
logical record presentation 425
logical unit 298
logical unit of work (LUW)

database operations, control of
PSB 140

description 121
recoverable resources 121
syncpoints used 225

logical units (LUs)
facilities for 424

lookaside transaction 398
LU 298
LU type 4

batch data interchange 431

582 CICS TS for OS/390: CICS Application Programming Guide

LU type 4 (continued)
device 414
logical record presentation 425

LUs (logical units)
facilities for 424

M
macro instructions 561
magnetic slot reader, 10/63 406
main storage 120

temporary data 500
main temporary storage 137
map

BMS 325
creating 328
initializing output 340
link-edit 334
moving data to 341
sets 335
symbolic input 352
symbolic output 351

MAPATTS option 341
MAPCOLUMN option 380
MAPFAIL condition 354, 360
MAPHEIGHT option 380
MAPLINE option 380
MAPONLY option 145, 339, 344
MAPPED option 386
mapping input data 353
maps

BMS 144, 148
device-dependent 363
floating 377
sets 125

MAPSET option 339
MAPSET resource definition 334
MAPWIDTH option 380
MARGINS option 12
MASSINSERT option 141, 273
MDT 143, 354
MERGE command 25
message routing 387
message title 393
messages, undeliverable 392
mixed addressing mode transaction 473
modified data tag 143, 354
modifying execution, EDF 533
modular program 125
MONITOR command 250
MONITOR POINT command 250
monitoring application performance 250
moving data to map 341
MSGINTEG option 149
MSR 406
MSR option 373, 406
multimap screens 148
multipage outputs 146
multithread testing 510
multithreading 131
MVS subspace 491
MVS transaction 473
MXT parameter 129

N
named counters 199

CICS API 201

named counters 199 (continued)
counter name 199
coupling facility list structure 200
current value 199
DFHNC001 201
DFHNCO macro 200
maximum value 200
minimum value 199
named counter fields 199
options table 200
overview 199
pools 200

NATLANG option 13
nested programs 37
NLEOM option 373, 435, 436
NOAUTOPAGE option 375
NOCBLCARD option 13
NOCPSM option 13
NODE option 449
NODEBUG option 13
NOEDF option 13
NOEDIT option 386
NOEPILOG option 13
NOFE option 14
NOFEPI option 14
NOFLUSH option 377, 383
NOHANDLE option 232, 240
NOJBUFSP condition 130
NOLENGTH option 14
NOLINKAGE option 14
non-CICS printer 433
Non-CICS printer 443
non-terminal transactions

EDF 532
nonconversational programming 120
NONUM option 14
NOOPSEQUENCE option 14
NOOPTIONS option 14
NOPROLOG option 15
NOQUEUE option 130
NOSEQ option 15
NOSEQUENCE option 15
NOSOURCE option 15
NOSPACE condition 240
NOSPIE option 15
NOSUSPEND option 130

GETMAIN command 479
READ command 266
READNEXT command 269, 272
READPREV command 269, 272
WRITE command 273

NOTRUNC compiler option 572
NOTRUNCATE option 416
NOVBREF option 15
NOWAIT option 432
NOWSCLEAR 25
NOXREF option 15
null values, use of 146
NUM option 15
NUMREC option 272
NUMSEGMENTS option

multiple dumps of task-related
storage areas 251

O
object oriented programming 65
OCCURS option 337
OO programming 65

class 67
constructor 67
datatypes 66
encapsulation 65
implementation 67
inheritance 67
instance 67
interface 67
method 67
object 66
object reference 65, 66
signature 67
static variables 67
terminology 66

OOCOBOL option 15
OPCLASS option 388
OPEN command 25
Open Transaction Environment 98
operating system waits 129
OPID option 388
OPIDENT value 388
OPMARGINS option 16
OPSEQUENCE option 16
OPSYN (equate operation code) 57
options

HANDLE CONDITION
command 237

on function keys, EDF 523
OPTIONS(MAIN) specification 54
OPTIONS option 16
OS/VS COBOL considerations 565
outboard controller 430
outboard formatting 409
output data, chaining of 425
output map, initializing 340
output map, symbolic 351
OVERFLOW condition 377
overlays 126
overtyping EDF displays 533

P
PA key 439
page break 377
page building operations 146
page fault 124
page overflow 394
page routing operations 146
PAGENUM option 394
PAGESIZE value 376
paging

reducing effects 124
PAGING option 339, 371, 372, 436
partition, active 401
partitions 396
partitions, defining 398
PARTITIONSET option 400
PARTN option 402
partner, conversation 413
partners, range of 219
PARTNFAIL condition 403
PARTNPAGE option 402

Index 583

passing control, anticipating return
(LINK) 468

passing data to other program 469
pen-detectable field 407
PERFORM command 243
PERFORM DUMP command 250
PF (program function) key 514, 539, 550
phonetic command equivalent

macro equivalent 561
physical keys 287
PL/I abend 55
PL/I language considerations

OPTIONS(MAIN) specification 54
restrictions 53
STAE option 54

PLT program 483
POP HANDLE command 235, 246
POST command 459
preprinted form 501
presentation space 397
PRGDLY option 392
principal facility 298
print control bit 435
print formatting 429
print key 416, 445
print key, Hardware 446
PRINT option 432
printed output, requests for 148
printer

3270 434
options 435

CICS 433
determining characteristics of 439

non-CICS 433
Non-CICS 443
SCS 437

PRINTERCOMP option 438
printing 433, 447

CICS API considerations 443
line length on 436
START command 440
transient data 441
with BMS routing 442

program
size 120
source 6
testing 513

program control
linking to another program 468
passing data to another program 469
program logical levels 468

program design
conversational 120, 149
nonconversational 120
pseudoconversational 120

program labels in EDF 534
PROGRAM option 245
PROGRAM resource definition 334
program segments

COBOL 572
program storage 136
programming techniques

assembler 57, 59
C and C++ 45, 53
COBOL 23, 44, 565
general 120, 123
Java 69, 83

programming techniques (continued)
PL/I 53, 55
structure 119

PROLOG option 16
PROTECT option 149
pseudoconversational programming 120
PURGE command, CEBR

transaction 542
purge delay 392
PURGE MESSAGE command 376, 388
PUSH HANDLE command 235, 246
PUT command, CEBR transaction 542

Q
QBUSY condition 130
QUERY SECURITY command 503

NOLOG option 504
RESCLASS option 504
RESID option 504
RESTYPE option 504

query transaction 302
queue

temporary storage 499
QUEUE command, CEBR

transaction 542
queues

extrapartition 496
intrapartition 495
transient data 495

QUOTE option 16
QZERO condition 497

R
RACF 503
range of partners 219
RBA (relative byte address) 256, 279
RDF 290
read-ahead queueing 414
READ command 25, 269

CONSISTENT option 266
NOSUSPEND option 266
REPEATABLE option 266
UNCOMMITTED option 266

reading data from a display 353
reading from a formatted screen 354
reading records 265
READNEXT command 267

CONSISTENT option 269
NOSUSPEND option 269, 272
REPEATABLE option 269
UNCOMMITTED option 269

READPREV command 267
CONSISTENT option 269
NOSUSPEND option 269, 272
REPEATABLE option 269
UNCOMMITTED option 269

READQ TD command 130, 495
READQ TS command 499

ITEM option 500
RECEIVE command 149, 412, 413, 415,

427
BUFFER option 429
MAPFAIL condition 360

RECEIVE MAP command 353
ASIS option 355

RECEIVE PARTN command 402
record

identification 279, 287
locking 280
locking (RLS) 281

record description field 290
record-level sharing (RLS)

accessing files in RLS mode 258
record locking 281
records

adding 272
adding to BDAM data set 289
browsing 265
deleting 270
journal 223
length of 136
reading 265
updating 269
writing 269, 272

recoverable resources 121
exclusive use 121

recovery
of resources 126, 127
problem avoidance 229
sequential terminal support 427
syncpoint 225

reduction of line traffic 145
reentrancy 131
Reference modification 40
reference set 125
regression testing 510
relative byte address (RBA) 256, 279
relative record data set (RRDS) 256
relative record number (RRN) 256, 279
RELEASE 47
RELEASE command

HOLD option 467
RELEASE option 374
RELTYPE keyword 259
remote abstract windows toolkit

(AWT) 113
remote data set, KEYLENGTH

option 278
remote-linked programs

DPL 533
EDF 532

remote transactions, EDF 531
REMOTENAME option 211
REMOTESYSTEM option 211
REPEATABLE option

READ command 266
READNEXT command 269
READPREV command 269

repeated fields 337
REPLACE statement 34
REPORT WRITER option 565
REQID option 269, 373, 393, 461
request/response unit (RU) 424
RERUN command 25
RES option, COBOL 126

shared library (PLISHRE) 126
RESCLASS option 504
RESETBR command 267
RESID option 504
resources

contention 121
control of 121

584 CICS TS for OS/390: CICS Application Programming Guide

resources (continued)
controlling sequence of access to 464
exclusive control of 126
exclusive use 121
recoverable 121, 126, 127

RESP option 232, 240
deactivating NOHANDLE 237

RESP value 231
RESP2 option 232
RESP2 value 231, 232
restrictions

31-bit mode 57
assembler language 57
COBOL 565
PL/I 53

RESTYPE option 504
RETPAGE condition 384, 396
RETRIEVE command 459, 464
RETURN CODE register, COBOL 23
RETURN command 135, 471

COMMAREA option 155, 467
ERRATT option 128
IMMEDIATE option 414, 427
INPUTMSG option 467, 471, 473
TRANSID option 128

reverse interrupt 415
REWRITE command 25, 269
RIDFLD option 259, 267, 273
ROUTE command 387

LIST option 388
page overflow 394
TITLE option 393

route list 388
LIST option 390, 391
segment chain entry format 390
standard entry format 390

ROUTEDMSGS option 389
routing, Transaction 205
routing terminals 395
RRDS (relative record data set) 256
RRN (relative record number) 256, 279
RTEFAIL condition 391
RTESOME condition 391
RU (request/response unit) 424
rules for logical messages 372
run unit in COBOL 27, 32
runaway tasks 129
RVI 415

S
SAA Resource Recovery 226
SAM 411
screen, reading from a formatted 354
screen copy, BMS 447
screen field, 3270 354
SCS

printer 437
SCS input 439
SDF II 21, 328, 335
SEC system initialization option 504
security 503, 505

CICS-defined resource identifiers 504
EDF 536
programming hints 504
record or field level 503
SEC system initialization option 504
SPCOMMAND resource type 504

SEGMENTATION option 565
SEGMENTLIST option

multiple dumps of task-related
storage areas 251

segments, program
COBOL 572

selection field 408
SEND command 149, 412, 415, 427

CNOTCOMPL option 425
CTLCHAR option 435
DEST option 430
FMH option 427
INVITE option 413
LAST option 427
MSR option 406

SEND CONTROL command 345, 433
SEND MAP command 338, 433

ACCUM option 339, 372
ALARM option 344
CURSOR option 339, 348
DATAONLY option 339
ERASE option 343
ERASEAUP option 343, 383
FREEKB option 344
FROM option 339
LAST option 344
MAPONLY option 339
MAPSET option 339
NOFLUSH option 377, 383
PAGING option 339
SET option 339
TERMINAL option 339, 371
WAIT option 344

SEND PAGE command 226, 373, 387
AUTOPAGE option 375
NOAUTOPAGE option 375
RELEASE option 374

SEND PARTNSET command 400
SEND TEXT command 382, 433

MAPPED option 386
NOEDIT option 386

SEQ option 17
sequence of access to resources,

controlling 464
SEQUENCE option 17
sequential terminal support 427, 511
server

program 211
region 207, 211

SERVICE RELOAD
elimination, COBOL 23

SERVICE RELOAD statement 571
SERVICE RELOAD statement,

COBOL 571
SESSBUSY condition 130
SET

command 243, 371
option 274

SET option 339, 371
SETLOCALE 47
shared control of records

VSAM RLS 281
shared data tables 260
SHARED option 134, 139

GETMAIN command 479
SHARED option 135

shared storage 139

sharing data across transactions 151
SIGN IS SEPARATE statement 566
SIGNAL condition 415
simultaneous browse 269
single-screen mode, EDF 529
single-thread testing 510
single-threading 131
size, program 120
SORT option 565
SOURCE option 17
source program 6
SP option 17
space, presentation 397
SPACE option 17
SPCOMMAND resource type 504
SPIE option 17
SPOLBUSY condition 450
spool

commands 243
file 449

SPOOLCLOSE command 449
SPOOLOPEN

examples 454
SPOOLOPEN command 444, 449

NODE option 449
TOKEN option 449
USERID option 449

SPOOLREAD command 449
SPOOLWRITE command 449
SPURGE parameter 169
SQL 3
SQL interface, EXEC 291
STAE option, PL/I 54
START command 25, 440, 459, 464
STARTBR command 267
STATE option 566
static storage 125
status flag byte, route list 391
STOP command 25
STOP literal statement 566
STOP RUN statement 566
storage

CICS-key 481
main 120
program 136
shareable 479
static 125
temporary 137
user 134
user-key 481

storage area, dynamic 120
storage control 479
STORAGE option 340
storage protection 480
STRING statement 566
stubs, EXEC interface 19
subprogram, calling from COBOL 28, 32
subroutines 124
subspace 491
SUSPEND command 463
suspend data set 500
SVC99 47
symbolic

input map 352
output map 351

symbolic cursor positioning 349
SYMDUMP option 566

Index 585

synchronize action
journal output 223

SYNCONRETURN option 213, 219
SYNCPOINT command 226, 373

ROLLBACK option 246
syncpointing 225, 227
syncpointing, DPL 213
SYSEIB option 18
SYSID command, CEBR transaction 542
SYSID option 211
SYSIDERR 207
SYSIN 6
SYSPRINT 6
SYSPUNCH 6
SYSTEM 47
system information, access to 243
system trace entry point 249

T
tabs, horizontal 438
tabs, vertical 438
task control 463

sequence of access to resources 464
task-related user exit 483
TASKDATAKEY option 134, 482
TASKDATALOC option 18, 134
TCAM 411, 429

ACB interface of 430
DCB interface of 414

TCB
for hot-pooling 98

TCTUA 154, 482
TCTUAKEY 154, 482
TCTUALOC 154
techniques, programming 120, 123
temporary data 499
temporary storage

auxiliary 137, 500
browse transaction, CEBR 537
data 499
main 137, 500
queue 499

TERM option 364
TERMID value 388
terminal

contention for 413
option 339
performance 143
sharing 556
support, sequential 427
wait 415

TERMINAL
option 371

TERMINAL command, CEBR
transaction 542

terminal control
bracket protocol, LAST option 427
break protocol 414
chaining of input data 424
chaining of output data 425
definite response 426
facilities for logical units 424
FMH, inbound 426
FMH, outbound 427
function management header

(FMH) 426
interrupting 415

terminal control (continued)
logical record presentation 425
map input data 353
print formatting 429
protocol, break 414
read-ahead queueing 414
table user area (TCTUA) 154

Terminal control 411, 432
commands 412
conversation partner 413
flip-flop mode 413
half-duplex mode 413
partner, conversation 413

TERMINAL option 371
TEST option 566
testing applications

multithread testing 510
preparing application table

entries 509
preparing system table entries 509
preparing the system 509
regression testing 510
sequential terminal support 511
single-thread testing 510
using sequential devices 427, 511

time field of EIB 243
TIME statement 566
TIOATDL value 387
title, message 393
TITLE option 393
TOKEN option 275, 449
TOP command, CEBR transaction 542
trace

description 248
trace entry point 249

TRACE option 565
TRANISO 489
transaction

affinity 206, 459, 464, 468, 479, 487
deadlock 275
routing 205, 206
routing, dynamic 473

transaction affinity 157, 188
inter-transaction affinity 158
transaction-system affinity 158

transaction identifier
CEBR 537
CECI 545
CEDF transaction 513

transaction isolation 480
transaction-system affinity 158
transaction work area 134
transactions

conversational 120
nonconversational 120
pseudoconversational 120

TRANSID option 128, 212, 471
transient data 441

extrapartition 139, 142
intrapartition 138
queue 138, 174

transient data control
automatic transaction initiation

(ATI) 497
queues 495, 496

translation 4, 19
ANSI85 option 9

translation 4, 19 (continued)
APOST option 9
CBLCARD option 9
CICS option 9
COBOL2 option 9
COBOL3 option 9
CPSM option 10
DBCS option 10
DEBUG option 10
DLI option 10
EDF option 10
EPILOG option 10
EXCI option 10
FE option 11
FEPI option 11
FLAG option 11
GDS option 11
GRAPHIC option 11
LENGTH option 12
line numbers 6
LINECOUNT option 12
LINKAGE option 12
MARGINS option 12
NATLANG option 13
NOCBLCARD option 13
NOCPSM option 13
NODEBUG option 13
NOEDF option 13
NOEPILOG option 13
NOFE option 14
NOFEPI option 14
NOLENGTH option 14
NOLINKAGE option 14
NONUM option 14
NOOPSEQUENCE option 14
NOOPTIONS option 14
NOPROLOG option 15
NOSEQ option 15
NOSEQUENCE option 8, 15
NOSOURCE option 6, 15
NOSPIE option 15
NOVBREF option 15
NOXREF option 15
NUM option 15
OOCOBOL option 15
OPMARGINS option 16
OPSEQUENCE option 16
options 7, 8
OPTIONS option 16
PROLOG option 16
QUOTE option 16
SEQ option 17
SEQUENCE option 17
SOURCE option 6, 17
SP option 17
SPACE option 17
SPIE option 17
SYSEIB option 18
VBREF option 7, 18
XOPTS keyword 7
XREF option 18

translator data sets 6
trigger field 407
TRUNC option 26
TS queue 172
TST TYPE=SHARED 173
TWA 134

586 CICS TS for OS/390: CICS Application Programming Guide

TWASIZE option 134
TYPE=DSECT assembly 334

U
UMT 260
UNCOMMITTED option

READ command 266
READNEXT command 269
READPREV command 269

undeliverable messages 392
unit of compilation, COBOL

description 33
start of, nested programs 37
submitting to translator 38
translator options for 34

unit of work 226
UNLOCK command 273
UNSTRING statement 566
UNTIL option 459
UOW 226
update operation, BDAM 288
UPDATE option 269
updating records 269
upgrade set 257
upper case translation in BMS 355
user

data sets 139
storage 134
trace entry point 249

user-key storage 481
user-maintained table 260
user-replaceable module 483
USERDATAKEY option 134, 483
USERID option 449, 451

V
validity of reference 124
variables, CECI/CECS 551
VBREF option 18
vertical tabs 438
viewport 397
virtual storage 123
virtual storage environment 120, 123
VisualAge for Java Enterprise Toolkit for

OS/390 89
VOLUME option 432
VOLUMELENG option 432
VSAM

data sets 140, 279
enqueues 127
MASSINSERT option 141
processor overhead 141

VTAM 411, 413

W
wait, terminal 415
WAIT EVENT command 169, 459, 464
WAIT EXTERNAL command 170, 463
WAIT JOURNALNUM command

synchronize with journal output 223
WAIT option 224, 344, 415
WAIT TERMINAL command 415
WAITCICS command 170, 463
waits, operating system 129

WITH DEBUGGING MODE 24

working set 124

working storage 23, 45, 48, 57

WPMEDIA1–4 option 432

WRITE command 25, 272

NOSUSPEND option 273

WRITE JOURNALNAME
command 130, 223

WRITE JOURNALNUM command 130,
223

create a journal record 223

WRITEQ TD command 495

WRITEQ TS command 499

writing records 269, 272

WRKAREA parameter 151

WSCLEAR 25

X
XCTL command 120, 134, 135

COMMAREA option 467, 469
INPUTMSG option 467, 471

XOPTS keyword 7

XPCREQ global user exit 207, 212

XREF option 18

XTC OUT exit 146

XTSEREQ, global user exit 173

Index 587

588 CICS TS for OS/390: CICS Application Programming Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To request additional publications, or to ask questions or make comments about
the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

Information Development Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–870229
– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink

™

: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:
v The publication number and title
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1989, 2000 589

����

Program Number: 5655-147

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1687-33

Spine information:

��� CICS TS for OS/390 CICS Application Programming Guide Release 3

	Contents
	Notices
	Programming Interface information
	Trademarks

	Preface
	What this book is about
	Who should read this book
	What you need to know to understand this book
	How to use this book
	Notes on terminology
	What is not covered in this book

	Bibliography
	CICS Transaction Server for OS/390
	CICS books for CICS Transaction Server for OS/390
	CICSPlex SM books for CICS Transaction Server for OS/390
	Other CICS books

	Books from related libraries
	DL/I
	MVS
	DB2
	Screen definition facility II (SDF II)
	Common programming interface
	Common user access
	Programming languages
	Teleprocessing Network Simulator (TPNS)
	Distributed Processing Programming Executive (DPPX):
	Language Environment:
	Miscellaneous books

	Determining if a publication is current

	Summary of Changes
	Changes for this CICS Transaction Server for OS/390 Release 3 edition
	Changes for the CICS Transaction Server for OS/390 Release 2 edition
	Changes for the CICS Transaction Server for OS/390 Release 1 edition

	Part 1. Getting started
	Chapter 1. Preparing your application to run
	Writing CICS programs
	Preparing your program
	Locale support
	The translation process
	Copybooks
	Specifying translator options
	Translator options
	EXEC interface stubs
	COBOL and PL/I
	C and C++
	Assembler language

	Preparing BMS maps

	Chapter 2. Programming in COBOL
	Based addressing
	WITH DEBUGGING MODE
	Restrictions
	Restrictions for 31-bit addressing
	DL/I CALL interface

	Mixing languages
	Calling subprograms from COBOL
	COBOL with the ANSI 85 COBOL standards
	Literals intervening in blank lines
	Translator action

	Sequence numbers containing any character
	Translator action

	REPLACE statement
	Translator action

	Batch compilation
	Translator action
	Compiler and linkage editor

	Nested programs
	Translator action
	Recognition of nested programs
	Positioning of comments
	Nesting—what the application programmer must do
	An example of a nested program

	Reference modification
	Translator action

	Global variables
	Translator action

	Comma and semicolon as delimiters
	Translator action

	Symbolic character definition
	Translator action

	Summary of restrictions
	COBOL2 translator option
	Translator action

	COBOL3 translator option
	Translator action

	OO COBOL translator option
	Translator action
	Nesting programs

	Chapter 3. Programming in C and C++
	Data declarations needed for C and C++
	Naming EIB fields
	Data types in EIB fields

	Restrictions
	Passing values as arguments
	ADDRESS EIB command
	ADDRESS COMMAREA command

	C++ considerations
	Restrictions

	Chapter 4. Programming in PL/I
	Restrictions
	PL/I STAE execution-time option
	OPTIONS(MAIN) specification
	PL/I and dynamic storage

	Chapter 5. Programming in Assembler
	Compilers supported
	Restrictions for 31-bit addressing
	MVS restrictions
	Invoking assembler language application programs with a call

	Chapter 6. Language Environment
	Levels of support in Language Environment
	Abend handling in an LE environment
	Defining run-time options

	Part 2. Object Oriented programming in CICS
	Chapter 7. Object Oriented (OO) programming concepts
	What is OO?
	Encapsulation
	Data structures

	OO Terminology
	Accessing CICS services from OO programs

	Chapter 8. Programming in Java
	The JCICS Java classes
	Translation
	JavaBeans
	Library structure
	CICS resources
	Command arguments
	Using the Java Record Framework
	Threads

	JCICS programming considerations
	Storage management
	Abnormal termination in Java
	Exception handling in Java
	CICS error handling commands
	CICS conditions

	CICS Intercommunication
	BMS
	Terminal Control
	File control services
	Program control services
	Unit of Work (UOW) services
	Temporary storage queue services
	Transient data queue services
	Environment services
	Unsupported CICS services
	System.out and System.err

	Using JCICS
	Writing the main method
	Creating objects
	Using objects

	Chapter 9. JCICS sample programs
	Supplied sample components
	Building the Java samples
	Building the Java samples for ET/390
	Building the Java samples for the JVM

	Building the CICS native applications
	Resource definitions

	Running the Hello World sample
	Running the Program Control sample
	Running the TDQ sample
	Running the TSQ sample

	Chapter 10. Support for VisualAge for Java, Enterprise ToolKitfor OS/390
	Building a CICS Java program object
	Preparing prerequisite environment
	Using PDSE libraries

	Compiling and binding a program using VisualAge for Java
	Configuring your workstation and host environments
	Creating the package and project
	Writing the main method
	Setting up ET/390 properties
	Exporting and binding the executable program object
	Running the CICS transaction

	Developing a Java program object using javac
	Using the IBM Java Record Framework

	Using the ET/390 binder
	hpj command options
	Handling Resource Files
	Setting Java System Properties

	Running a CICS Java program
	Run-time requirements

	Using hot-pooling
	Open Transaction Environment (OTE) TCBs
	Allocating an H8 TCB for hot-pooling
	Managing the hot-pooling environment
	Defining Language Environment run-time options
	Allocating storage

	Defining hot-pooled Java program objects
	THREADSAFE

	Programming considerations for Java hot-pooling
	Static storage and static initializers
	Programming interfaces
	Protection keys
	Exit programming interface (XPI)

	Hot-pooling exit program
	Security
	Problem determination

	Interactive debug using the Debug Tool

	Chapter 11. Using the CICS Java virtual machine
	JVM execution environment
	Running JVM programs
	Compile-time requirements
	Run-time requirements
	CICS-supplied .jar files
	JVM directory
	JVM environment variables
	stdin, stdout and stderr

	JCICS programming considerations for JVM programs
	Java System Properties

	Using the Abstract Windows Toolkit (AWT) classes
	Remote Abstract Windows Toolkit
	Using Remote AWT with CICS

	Part 3. Application design
	Chapter 12. Designing efficient applications
	Program structure
	Program size
	Choosing between pseudoconversational and conversationaldesign

	General programming techniques
	Virtual storage
	Reducing paging effects
	Locality of reference
	Working set
	Reference set

	Exclusive control of resources
	Processor usage
	Recovery design implications
	Terminal interruptibility
	Operational control
	Operating system waits
	Runaway tasks
	Auxiliary trace
	The NOSUSPEND option
	Multithreading
	Quasi-reentrant application programs
	Threadsafe programs
	Non-reentrant programs

	Storing data within a transaction
	Transaction work area (TWA)
	User storage
	COMMAREA in LINK and XCTL commands
	Program storage

	Lengths of areas passed to CICS commands
	LENGTH options
	Journal records
	Data set definitions
	Recommendation

	Temporary storage
	Intrapartition transient data
	GETMAIN SHARED command
	Your own data sets
	Data operations
	Database operations
	Data set operations
	VSAM data sets
	BDAM data sets

	Browsing (in non-RLS mode)
	Logging
	Sequential data set access

	Terminal operations
	Length of the data stream sent to the terminal
	Basic mapping support considerations
	Avoid turning on modified data tags (MDTs) unnecessarily
	Use FRSET to reduce inbound traffic
	Do not send blank fields to the screen
	Address CICS areas correctly
	Use the MAPONLY option when possible
	Send only changed fields to an existing screen
	Design data entry operations to reduce line traffic
	Compress data sent to the screen
	Use nulls instead of blanks
	Use methods that avoid the need for nulls or blanks

	Page-building and routing operations
	Sending multipage output
	Sending messages to destinations other than the input terminal
	Sending pages built from multiple maps
	Using the BMS page-copy facility

	Requests for printed output
	Additional terminal control considerations
	Use only one physical SEND command per screen
	On BTAM, avoid the WAIT option on a SEND command
	Use the CONVERSE command
	Limit the use of message integrity options
	Avoid using the DEFRESP option on SEND commands
	Avoid using unnecessary transactions
	Send unformatted data without maps

	Chapter 13. Sharing data across transactions
	Common work area (CWA)
	Protecting the CWA

	TCTTE user area (TCTUA)
	COMMAREA in RETURN commands
	Display screen

	Chapter 14. Affinity
	What is affinity?
	Types of affinity
	Inter-transaction affinity
	Transaction-system affinity

	Techniques used by CICS application programs to pass data
	Safe techniques
	Unsafe techniques
	Suspect techniques

	Safe programming techniques
	The COMMAREA
	The TCTUA
	Using the TCTUA in an unsafe way

	Using ENQ and DEQ commands with ENQMODEL resourcedefinitions
	Overview of sysplex enqueue and dequeue
	Benefits

	BTS containers

	Unsafe programming techniques
	Using the common work area
	Using GETMAIN SHARED storage
	Using the LOAD PROGRAM HOLD command
	Sharing task-lifetime storage
	Using the WAIT EVENT command
	Using ENQ and DEQ commands without ENQMODEL resourcedefinitions

	Suspect programming techniques
	Using temporary storage
	Naming conventions for remote queues
	Exception conditions for globally accessible queues

	Using transient data
	Exception conditions for globally accessible queues

	Using the RETRIEVE WAIT and START commands
	Using the START and CANCEL REQID commands
	Using the DELAY and CANCEL REQID commands
	Using the POST and CANCEL REQID commands

	Detecting inter-transaction affinities
	Inter-transaction affinities caused by application generators

	Duration and scope of inter-transaction affinities
	Affinity transaction groups
	Relations and lifetimes
	The global relation
	The LUname (terminal) relation
	The userid relation
	The BAPPL relation

	Recommendations

	Chapter 15. Using CICS documents
	The DOCUMENT application programming interface
	Creating a document
	The BINARY parameter
	The TEXT parameter
	Inserting one document into another
	Using document templates

	Programming with documents
	Setting symbol values
	Embedded template commands
	Using templates in your application
	The lifespan of a document
	Retrieving the document without control information
	Using multiple calls to construct a document
	Bookmarks and inserting data
	Replacing data in the document
	Codepages and codepage conversion

	Chapter 16. Using named counter servers
	Overview
	The named counter fields

	Named counter pools
	Named counter options table

	The named counter API commands
	The named counter CALL interface

	Chapter 17. Intercommunication considerations
	Design considerations
	Programming language

	Transaction routing
	Function shipping
	Distributed program link (DPL)
	Using the distributed program link function
	Examples of distributed program link
	Programming considerations for distributed program link
	Issuing multiple distributed program links from the same clienttask
	Sharing resources between client and server programs
	Mixing DPL and function shipping to the same CICS system
	Mixing DPL and DTP to the same CICS system
	Restricting a program to the distributed program link subset
	Determining how a program was invoked
	Accessing user-related information with the ASSIGN command
	Exception conditions for LINK command

	Asynchronous processing
	Distributed transaction processing (DTP)
	Common Programming Interface Communications (CPICommunications)
	External CICS interface (EXCI)

	Chapter 18. Recovery considerations
	Journaling
	Journal records
	Journal output synchronization

	Syncpointing

	Chapter 19. Minimizing errors
	Protecting CICS from application errors
	Testing applications

	Chapter 20. Dealing with exception conditions
	Default CICS exception handling
	Handling exception conditions by in-line code
	How to use the RESP and RESP2 options
	Use of RESP and DFHRESP in COBOL and PL/I
	Use of RESP and DFHRESP in C and C++
	Use of DFHRESP in assembler

	An example of exception handling in C
	An example of exception handling in COBOL

	Modifying the default CICS exception handling
	Use of HANDLE CONDITION command
	Use of the HANDLE CONDITION ERROR command
	How to use the IGNORE CONDITION command
	Use of the HANDLE ABEND command
	RESP and NOHANDLE options
	How CICS keeps track of what to do
	How to use PUSH HANDLE and POP HANDLE commands

	Chapter 21. Access to system information
	System programming commands
	EXEC interface block (EIB)

	Chapter 22. Abnormal termination recovery
	Creating a program-level abend exit
	Restrictions on retrying operations
	Trace
	Trace entry points
	System trace entry points
	User trace entry points
	Exception trace entry points
	User exception trace entry points

	Monitoring
	Dump

	Part 4. Files and databases
	Chapter 23. An overview of file control
	VSAM data sets
	Key-sequenced data set (KSDS)
	Entry-sequenced data set (ESDS)
	Relative record data set (RRDS)
	Empty data sets
	VSAM alternate indexes
	Accessing files in RLS mode
	Some RLS limitations

	BDAM data sets
	CICS shared data tables
	Coupling facility data tables
	Coupling facility data table models

	Comparison of different techniques for sharing data
	Reading records
	Direct reading (using READ command)
	Direct reading from a KSDS
	Direct reading from an ESDS
	Direct reading from an RRDS
	Direct reading by way of a path
	Read integrity (in RLS mode)

	Sequential reading (browsing)
	Browsing through a KSDS
	Browsing through an ESDS
	Browsing through an RRDS
	Browsing using a path
	Browse integrity (in RLS mode)
	Ending the browse
	Simultaneous browse operations

	Skip-sequential processing

	Updating records
	Deleting records
	Deleting single records
	Updating and deleting records in a browse (VSAM RLS only)

	Deleting groups of records (generic delete)
	Read integrity

	Adding records
	Adding to a KSDS
	Adding to an ESDS
	Adding to an RRDS
	Records that are already locked
	Specifying record length
	Sequential adding of records (WRITE MASSINSERT command)

	Review of file control command options
	The RIDFLD option
	The INTO and SET options
	The FROM option
	The TOKEN option

	Avoiding transaction deadlocks
	VSAM-detected deadlocks (RLS only)
	Rules for avoiding deadlocks

	KEYLENGTH option for remote data sets

	Chapter 24. File control—VSAM considerations
	Record identification
	Key
	Relative byte address (RBA) and relative record number (RRN)
	RBA
	RRN

	Locking of VSAM records in recoverable files
	Update locks and delete locks (non-RLS mode only)

	Record locking of VSAM records for files accessed in RLS mode
	Exclusive locks and shared locks
	Exclusive locks
	Shared locks
	Lock duration
	Active and retained states for locks

	Conditional update requests
	File control implementation of NOSUSPEND

	CICS locking for writing to ESDS

	Chapter 25. File control—BDAM considerations
	Record identification
	Block reference subfield
	Physical key subfield
	Deblocking argument subfield

	Updating records from BDAM data sets
	Browsing records from BDAM data sets
	Adding records to BDAM data sets
	BDAM exclusive control

	Chapter 26. Database control
	DL/I databases
	DATABASE 2 (DB2) databases
	Requests to DB2

	Part 5. Data communication
	Chapter 27. Introduction to data communication
	Basic CICS terms
	How tasks are started
	Which transaction?
	CICS APIs for terminals
	Topics elsewhere in this book
	Where to find more information

	Chapter 28. The 3270 family of terminals
	Background
	Screen fields
	Personal computers
	PCs as 3270s

	The 3270 buffer
	Writing to a 3270 terminal
	3270 write commands
	Write control character

	3270 display data: defining 3270 fields
	Display characteristics
	3270 field attributes
	Protection
	Modification
	Intensity
	Base color

	Extended attributes
	Orders in the data stream
	The start field order
	The modify field order
	The set buffer address order
	The set attribute order

	Outbound data stream sample

	Input from a 3270 terminal
	Data keys
	Keyboard control keys
	Attention keys
	The AID

	Reading from a 3270 terminal
	Inbound field format
	Input example

	Unformatted mode

	Chapter 29. Basic mapping support
	Other sources on BMS
	BMS support levels
	Minimum BMS
	Standard BMS
	Full BMS

	A BMS output example
	Creating the map
	Defining map fields: DFHMDF
	Defining the map: DFHMDI
	Defining the map set: DFHMSD
	Rules for writing BMS macros
	Assembling the map
	Physical and symbolic map sets
	The SDF II alternative
	Grouping maps into map sets

	ADS Descriptor
	Complex fields
	Composite fields: the GRPNAME option
	Repeated fields: the OCCURS option

	Sending mapped output: basics
	The SEND MAP command
	Acquiring and defining storage for the maps
	BASE and STORAGE options

	Initializing the output map
	Moving the variable data to the map
	Setting the display characteristics
	Changing the attributes
	Attribute value definitions: DFHBMSCA

	Control options on the SEND MAP command
	Other BMS SEND options: WAIT and LAST

	Options for merging the symbolic and physical maps
	MAPONLY option
	DATAONLY option
	The SEND CONTROL command

	Summary: what appears on the screen
	What you start with
	What is sent
	Where the values come from
	Outside the map
	Using GDDM and BMS

	Positioning the cursor
	Sending invalid data and other errors

	Receiving data from a display
	An input-output example
	The symbolic input map
	Programming simple mapped input
	The RECEIVE MAP command
	Getting storage for mapped input: INTO and SET
	Reading from a formatted screen: what comes in
	Modified data
	Upper case translation

	Other information from RECEIVE MAP
	The attention identifier: what caused transmission
	The HANDLE AID command
	Finding the cursor

	Processing the mapped input
	Handling input errors
	Flagging errors
	Saving the good input
	Rechecking

	Mapped output after mapped input
	MAPFAIL and other exceptional conditions
	EOC condition

	Formatting other input

	Support for non-3270 terminals
	Output considerations for non-3270 devices
	Differences on input
	Special options for non-3270 terminals
	Device-dependent maps: map suffixes
	Device dependent support: DDS
	Finding out about your terminal

	The MAPPINGDEV facility
	SEND MAP with the MAPPINGDEV option
	RECEIVE MAP with the MAPPINGDEV option
	Sample assembler MAPPINGDEV application

	Block data
	Sending mapped output: additional facilities
	Output disposition options: TERMINAL, SET, and PAGING
	BMS logical messages
	Rules for logical messages
	Ending a logical message: the SEND PAGE command
	PAGING options: RETAIN and RELEASE
	The AUTOPAGE option

	Terminal operator paging: the CSPG transaction
	Changing your mind: The PURGE MESSAGE command
	Logical message recovery

	Page formation: the ACCUM option
	Floating maps: how BMS places maps using ACCUM
	Page breaks: BMS overflow processing
	Map placement rules
	ASSIGN options for cumulative processing
	Input from a composite screen
	Performance considerations
	Minimizing path length
	Reducing message lengths

	Formatting text output
	The SEND TEXT command
	Text logical messages
	Page format for text messages
	How BMS breaks text into lines
	Header and trailer format for text messages
	SEND TEXT extensions: SEND TEXT MAPPED and SENDTEXT NOEDIT

	Message routing: the ROUTE command
	How routing works
	Specifying destinations for a routed message
	Eligible terminals
	Destinations specified with OPCLASS only
	OPCLASS and LIST omitted
	Route list provided

	Route list format
	Delivery conditions
	Undeliverable messages
	Temporary storage and routing
	Message identification

	Programming considerations with routing
	Routing and page overflow
	Routing with SET
	Interleaving a conversation with message routing

	Using SET
	Partition support
	Uses for partitioned screens
	Scrolling
	Data entry
	Lookaside
	Data comparison
	Error messages

	How to define partitions
	3290 character size
	Programming considerations
	Establishing the partitioning
	Partition options for BMS SEND commands
	Determining the active partition
	Partition options for BMS RECEIVE commands
	ASSIGN options for partitions
	Partitions and logical messages
	Partitions and routing
	New attention identifiers and exception conditions
	Terminal sharing
	Restrictions on partitioned screens

	Logical device components
	Defining logical device components
	Sending data to a logical device component
	LDCs and logical messages
	LDCs and routing

	BMS support for other special hardware
	10/63 magnetic slot reader
	Field selection features
	Trigger field support

	Cursor and pen-detectable fields
	Selection fields
	Attention fields
	BMS input from detectable fields

	Outboard formatting

	Chapter 30. Terminal control
	Access method support
	Terminal control commands
	Data transmission commands
	Send/receive mode
	Contention for the terminal
	RETURN IMMEDIATE

	Speaking out of turn
	Interrupting
	Terminal waits
	What you get on a RECEIVE
	Input chaining
	Logical messages
	NOTRUNCATE option
	Print key

	Control commands
	Finding the right commands
	Finding out about your terminal
	EIB feedback on terminal control operations

	VTAM considerations
	Chaining input data
	Chaining output data
	Handling logical records
	Response protocol
	Using function management headers
	Inbound FMH
	Outbound FMH

	Preventing interruptions (bracket protocol)

	Sequential terminal support
	Coding considerations for sequential terminals
	Print formatting
	GOODNIGHT convention

	TCAM considerations
	Coding for the DCB interface
	Sending to another terminal

	Coding for the ACB interface

	Batch data interchange
	Destination selection and identification
	Selection by named data set
	Selection by medium

	Definite response
	Waiting for function completion

	Chapter 31. CICS support for printing
	Formatting for CICS printers
	3270 printers
	Options for 3270 printers
	PRINT option and print control bit
	ERASE
	Line width options: L40, L64, L80, and HONEOM
	NLEOM option
	FORMFEED
	PRINTERCOMP option

	Non-3270 CICS printers
	SCS input

	Determining the characteristics of a CICS printer
	BMS page size, 3270 printers
	Supporting multiple printer types

	CICS printers: getting the data to the printer
	Printing with a START command
	Printing with transient data
	Task that wants to print (on printer PRT1):
	Task that gets triggered:

	Printing with BMS routing

	Non-CICS printers
	Formatting for non-CICS printers
	Non-CICS printers: Delivering the data
	CICS API considerations
	Notifying the print application

	Printing display screens
	CICS print key
	ISSUE PRINT and ISSUE COPY
	Hardware print key
	BMS screen copy

	Chapter 32. CICS interface to JES
	Creating a spool file
	Reading input spool files
	Identifying spool files
	Some examples of SPOOLOPEN for OUTPUT with OUTDESCRoption
	COBOL
	PL/I
	C
	ASSEMBLER

	Programming note for spool commands
	Spool interface restrictions

	Part 6. CICS management functions
	Chapter 33. Interval control
	Expiration times
	Request identifiers

	Chapter 34. Task control
	Controlling sequence of access to resources

	Chapter 35. Program control
	Application program logical levels
	Link to another program expecting return
	Passing data to other programs
	COMMAREA
	INPUTMSG
	Using the INPUTMSG option on the RETURN command
	Other ways of passing data
	Mixed addressing mode transactions
	Examples of passing data with the LINK command
	Examples of passing data with the RETURN command

	Chapter 36. Storage control
	Overview of CICS storage protection and transaction isolation
	Storage protection
	Terminology
	Selecting the execution key for applications
	Defining the execution key
	Selecting and defining the storage key for applications
	System-wide storage areas
	Task lifetime storage
	Program working storage specifically for exit and PLT programs
	Passing data by a COMMAREA
	The GETMAIN command

	Deciding what execution and storage key to specify
	User-key applications
	CICS-key applications
	Tables
	Map sets and partition sets

	Storage protection exception conditions
	Transaction isolation
	Reducing system outages
	Protecting application data
	Protecting CICS from being passed invalid addresses
	Aiding application development

	Using transaction isolation
	MVS subspaces
	Subspaces and basespaces for transactions
	The common subspace and shared storage

	Chapter 37. Transient data control
	Intrapartition queues
	Extrapartition queues
	Indirect queues
	Automatic transaction initiation (ATI)

	Chapter 38. Temporary storage control
	Temporary storage queues
	Typical uses of temporary storage control

	Chapter 39. Security control
	QUERY SECURITY command
	Using QUERY SECURITY
	Security protection at the record or field level
	CICS-defined resource identifiers
	SEC system initialization parameter
	Programming hints

	Non-terminal transaction security

	Part 7. Testing applications
	Chapter 40. Testing applications: the process
	Preparing the application and system table entries
	Preparing the system for debugging
	Single-thread testing
	Multithread testing
	Regression testing

	Chapter 41. Execution diagnostic facility (EDF)
	Getting started
	Where does EDF intercept the program?
	What does EDF display?
	The header
	The body
	At program initiation
	At the start of execution of a CICS command
	At the end of execution of a command
	At program and task termination
	At abnormal termination

	How you can intervene in program execution
	EDF menu functions

	How to use EDF
	Using EDF in single-screen mode
	Checking pseudoconversational programs

	Using EDF in dual-screen mode
	EDF and remote transactions
	EDF and non-terminal transactions
	EDF and DTP programs
	EDF and distributed program link commands
	Stopping EDF
	Overtyping to make changes
	EDF responses

	Restrictions when using EDF
	Parameter list stacking

	Security considerations

	Chapter 42. Temporary storage browse (CEBR)
	How to use the CEBR transaction
	What does the CEBR transaction display?
	The header
	The command area
	The body
	The message line
	The CEBR options on function keys

	The CEBR commands
	Using the CEBR transaction with transient data
	Security considerations

	Chapter 43. Command-level interpreter (CECI)
	How to use CECI
	What does CECI display?
	The command line
	The status line
	Command syntax check
	About to execute command
	Command execution complete

	The body
	The message line
	CECI options on function keys

	Additional displays
	Expanded area
	Variables
	Defining variables

	The EXEC interface block (EIB)
	Error messages display

	Making changes
	How CECI runs
	CECI sessions
	Abends
	Exception conditions
	Program control commands
	Terminal sharing
	Saving commands

	Security considerations

	Part 8. Appendixes
	Appendix A. CICS commands and their equivalent obsoletemacros
	Appendix B. OS/VS COBOL
	Translator options
	Programming restrictions
	Restricted OS/VS COBOL language statements
	Base locator for linkage
	BLL and chained storage areas
	BLL and OCCURS DEPENDING ON clauses
	BLL and large storage areas
	SERVICE RELOAD statement
	NOTRUNC compiler option
	Program segments

	Converting to VS COBOL II
	Based addressing
	Artificial assignments

	Bibliography

	Index
	Sending your comments to IBM

