
CICS® Transaction Server for OS/390®

CICS Internet Guide
Release 3

SC34-5445-31

���

CICS® Transaction Server for OS/390®

CICS Internet Guide
Release 3

SC34-5445-31

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page ix.

Second Edition (June 2000)

This edition replaces and makes obsolete the previous edition, SC34-5445–00. The technical changes for this edition
are summarized under “Summary of changes” on page xxiii and are indicated by a # to the left of a change.
Changes from the previous edition are indicated by a vertical bar.

This book is based on the CICS Internet and External Interfaces Guide, SC33–1944, which remains current for CICS
Transaction Server for OS/390 Release 2.

Order publications through your IBM representative or IBM branch office serving your locality. Publications are not
stocked at the address given below.

At the back of the publication is a page entitled “Sending your comments to IBM”. If you want to make comments,
but the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,
Mail Point 095,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Abstract vii

Notices ix
Programming interface information x
Trademarks x

Preface xiii
What this book is about xiii
How to use this book xiii
What you need to know to understand this book xiii
Notes on terminology. xiii
Determining if a publication is current xiii

Figures xv

Tables xvii

Bibliography xix
CICS Transaction Server for OS/390 xix

CICS books for CICS Transaction Server for
OS/390 xix
CICSPlex SM books for CICS Transaction Server
for OS/390 xx
Other CICS books xx

Non-CICS books. xx
OS/390 UNIX System Services xx
OS/390 eNetwork Communications Server . . xxi
Language Environment xxi
Miscellaneous xxi

Information on the World Wide Web. xxi
HTTP/1.0. xxi
HTML xxii
Secure sockets layer (SSL) xxii
CORBA xxii

Summary of changes. xxiii
Changes for this edition xxiii

Part 1. Overview 1

Chapter 1. Introduction 3
General concepts 7
Distributed computing 7

Security support 8
TCP/IP protocols 9

TCP/IP internet addresses and ports 10
Programming models 11
Comparing mechanisms 11

Accessing CICS from the Web 11
CICS and Java 12
CICS Transaction Gateway for OS/390 12
Inbound IIOP support of CORBA clients. . . . 12

Application design 13

Separating business and presentation logic . . . 13

Chapter 2. How this book is organized 15

Part 2. CICS Web support 17

Chapter 3. Introduction to CICS Web
support 19
Types of requester 19
Types of service 20
Processing examples 20
Control flow in request processing. 21

Using CICS Web support to call a program . . . 21
Using CICS Web support to run a
terminal-oriented transaction 23

Data flow in request processing 24
Using the CICS Web support commarea method
to call a program 24

Chapter 4. Planning for CICS Web
support 27
Prerequisites for using CICS Web support 28

OS/390 28
CICS 28
OS/390 eNetwork Communications Server . . . 28

URL format 29
Operations tasks. 29

Chapter 5. Configuring CICS Web
support 31
System initialization parameters 31
Defining resources to CICS 32

CICS supplied resource definitions 32
DOCTEMPLATE definitions 32
TCPIPSERVICE definitions 34
TRANSACTION definitions for extra alias
transactions 34
PROGRAM definitions for user-replaceable
programs 35
Setting up a PDS for the template manager . . . 35
Defining a conversion table 36

Configuring the OS/390 eNetwork Communications
Server 37

Reserving ports for CICS Web support 38
Specifying a name server 38

Enabling lightpen support 38
Running the sample application 39

Chapter 6. The CICS WebServer Plugin 41
Configuring the IBM WebSphere Application Server
for OS/390 41

© Copyright IBM Corp. 1994, 2000 iii

||
||

||

||
||
||

||
||
||
||
||
||

||
||
||
||

||
||

|
||
||
||
||

||
|
||

Chapter 7. Writing an analyzer for CICS
Web support 45
The analyzer 45
Inputs 45
Outputs 46
Processing 46
Code page considerations for Web API applications 47
Code page considerations for Web commarea
applications 48
Performance considerations 48
The default analyzer 48

Chapter 8. Writing a converter 51
The converter. 51
Writing a converter—general 51

Inputs 51
Outputs 51
Processing 52
Performance considerations 52

Writing a converter—Decode 52
Inputs 52
Outputs 52
Processing 53

Writing a converter—Encode 53
Inputs 54
Outputs 54
Processing 54

Chapter 9. The Web error program. . . 57
The Web error program — general 57

Inputs 57
Outputs 58
Processing 58

Chapter 10. 3270 applications on the
Web 59
Input to DFHWBTTA 59
Customizing the input to DFHWBTTA 61
Output from DFHWBTTA 61
Customizing the output from DFHWBTTA 62

Required contents for a heading template . . . 62
Required contents for a footing template . . . 63
Customizing with Encode 64
Lightpen operation 64

Chapter 11. Creating HTML templates
from BMS definitions 67
Standard generation 67
Why customize the generation of templates? . . . 67
Customization facilities 68
How to produce the HTML templates 68
Size restrictions of HTML templates 69
Writing a customizing macro definition 69
Customization examples 69
HTML and browser considerations 72

Limitations 72
The DFHMDX macro 73
The DFHWBOUT macro 77

Chapter 12. Writing CICS programs to
process HTTP requests 79
HTTP requests 79

How to receive an HTTP request 80
HTTP responses 81

How to send an HTTP response 82
Escaped Data 83

Handling escaped data in commarea applications 83
Symbols, symbol table, and symbol list 84

Symbols in an HTML template 84
Symbol lists 84
Operational example 86
Using the output of the environment variables
program 86

Sample application programs 86

Chapter 13. Displaying a template on a
Web browser 89
How to display a template on a Web browser . . . 89
Default CICS URL format 91

Chapter 14. Security for CICS Web
support 93
Security for the CICS Web support 93

Security for the HTML template manager PDS . 93
Security for CICS Web support transactions . . 93

Sample programs for security 94
The security sample programs 94
The basic authentication sample programs . . . 95

Chapter 15. Problem determination . . 97
Recovery procedures (CICS Web support) 98
Product design considerations (CICS Web support) 98
Troubleshooting 98

Defining the problem 98
Documentation about the problem. 99

Using messages and codes 99
CICS Web support and CICS business logic interface
trace information 99

Numeric values of symbolic codes 100
Dump and trace formatting 100
Debugging the user-replaceable programs 101

Using EDF 101
Using trace entries. 101
Writing messages 101
Abends 102

Part 3. The CICS business logic
interface 103

Chapter 16. Introduction to the CICS
business logic interface 105
Types of requester 105
Processing examples 106
Control flow in request processing 106

Using the CICS business logic interface to call a
program 107

iv CICS TS for OS/390: CICS Internet Guide

||

||
||
||
||
||

||
||
||
||
||

||

||
||

||
||

|
||
||
||

||

Using the CICS business logic interface to run a
terminal-oriented transaction 107

Data flow in request processing 108
Using the CICS business logic interface to call a
program 108
Request for a terminal-oriented transaction . . 109

Chapter 17. Configuring the CICS
business logic interface 113

Chapter 18. Programming tasks for
client systems 115

Part 4. Using secure sockets layer
(SSL) 117

Chapter 19. Introduction to secure
sockets layer (SSL) 119
Overview of SSL 119
SSL and the Web 120
Encryption and keys 120
Authentication and certificates. 121

Chapter 20. Configuring CICS to use
SSL 123
Hardware prerequisites 123
Software prerequisites 123
System set-up 123
System initialization parameters 124
Resource definitions 125
System programming. 126
Application programming 126
A sample application program: DFH0WBCA . . . 126

Part 5. CORBA client support . . . 127

Chapter 21. IIOP inbound to Java® 129
Workload balancing of IIOP requests 129
Terminology. 130
Execution flow 131
CORBA Services support 133

Chapter 22. Requirements for IIOP
applications 135
Environment 135
CICS parameters 135
.jar files 135
CICS libraries 136

IIOP and JCICS. 136
PDSE Program libraries 136

Resource definitions 136

Chapter 23. Processing the IIOP
request 137
Registering with the CICS TCP/IP Listener . . . 137

Using secure sockets layer (SSL) authentication 137
Dynamic Name Server 137

TCPIPSERVICE examples 138
Obtaining a CICS TRANSID 138

Generic pattern matching 139
REQUESTMODEL example. 139
Dynamic routing 140
Supplied REQUESTMODEL definitions. . . . 140

Obtaining a CICS USERID 140
Messages greater than 32K 142

Chapter 24. Developing IIOP
applications 143
The Interface Definition Language (IDL) 143
Programming model 144
Developing the server program 145

IDL example 147
Server implementation 147
Resource definition for example 147

Developing the client program 148
The GenFacIOR utility 148
Client example 148

Chapter 25. IIOP sample applications 151
Requirements to run the samples 151

Resource definitions 152
Generic Factory 153
CICS libraries 153

The HelloWorld sample 153
Building the server side HelloWorld application 153
Building the client side HelloWorld application 154
Running the HelloWorld sample application . . 154

The BankAccount sample 154
Create the VSAM file 154
Prepare CICS programs 154
Prepare BMS maps 155
Building the server side BankAccount
application 155
Building the client side BankAccount
application 155
Running the BankAccount sample application 155

Part 6. Appendixes 157

Appendix A. Reference information for
DFHWBBLI 159
Business logic interface 160

Appendix B. Reference information for
DFHWBADX 167
Summary of parameters 167
Function 168
Parameters 168
Responses and reason codes 170
DFHWBADX responses and reason codes 171

Appendix C. Reference information for
the converter 173
Decode 174
Encode 179

Contents v

|

||

|
||
||
||
||
||

|
||
||
||
||
||
||
||
||
||

||

||
||
||
||
||

|
||
||
||
||
||
||
||
||

|
||
||
||
||

||
||
||
||
||
||
||
||

|
||
||
||
||
||
||
||
||
||
||

||
||
||
||
||
||
||
||
||
||
||
||
||
|
||
|
||
||

|
||
||

Appendix D. Reference information for
DFHWBTL 183
Parameters in the communication area 184
Responses and reason codes 186

Appendix E. Reference information for
DFHWBENV 189

Appendix F. Reference information for
DFH$WBST and DFH$WBSR 193

Appendix G. Reference information
for DFHWBPA 195

Appendix H. Reference information for
DFHWBEP. 197
Parameters 197

Appendix I. HTML coded character
sets 201

Index 203

Sending your comments to IBM . . . 207

vi CICS TS for OS/390: CICS Internet Guide

|
||
||

Abstract

This manual describes various methods of accessing CICS transaction processing
services from outside CICS. It describes in detail:
v CICS Web support
v The CICS business logic interface
v CICS Transaction Gateway for OS/390
v Secure sockets layer (SSL)
v Internet Inter-orb Protocol (IIOP)

It provides installation, configuration, operation, programming, security, and
problem determination information.

© Copyright IBM Corp. 1994, 2000 vii

|

|

viii CICS TS for OS/390: CICS Internet Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.
Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

© Copyright IBM Corp. 1994, 2000 ix

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Programming interface information
This book is intended to help you use the external interfaces provided by the CICS
Transaction Server for OS/390. This book documents General-use Programming
Interface and Associated Guidance Information provided by CICS.

General-use programming interfaces allow the customer to write programs that
obtain the services of CICS.

This book also documents Product-sensitive Programming Interface and Associated
Guidance Information and Diagnosis, Modification or Tuning Information provided
by CICS.

Product-sensitive programming interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of CICS. Use of such interfaces creates dependencies on the detailed design
or implementation of the IBM software product. Product-sensitive programming
interfaces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that
programs written to such interfaces may need to be changed in order to run with
new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified, where it occurs, by an introductory statement to a chapter or section.

Diagnosis, Modification, or Tuning Information is provided to help you diagnose
problems in your CICS system.

Note: Do not use this Diagnosis, Modification, or Tuning Information as a
programming interface.

Diagnosis, Modification, or Tuning Information is identified, where it occurs, by an
introductory statement to a chapter or section.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AD/Cycle BookManager
C/370 CICS
CICS/ESA CICS/MVS
DB2 DFS
Enterprise Systems Architecture/390 IBM
IMS Language Environment
MQ MQSeries
MVS/ESA OpenEdition
OS/2 OS/390
RACF RT
SAA System/390
VTAM WebExplorer

x CICS TS for OS/390: CICS Internet Guide

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices xi

xii CICS TS for OS/390: CICS Internet Guide

Preface

What this book is about
This book describes how you can make the CICS® transaction processing services
of CICS TS for OS/390® available to a variety of Internet users and TCP/IP-based
applications.

How to use this book
This book is intended to complement the CICS External Interfaces Guide and to
show what CICS facilities are available to enable you to use your CICS system as a
non-SNA server. Read “Part 1. Overview” on page 1 for general information, and
for guidance about which other parts of the book to consult.

What you need to know to understand this book
This book assumes that you are familiar with CICS, either as a system
administrator or as a system or application programmer. Some parts of the book
assume additional knowledge about CICS and other products.

Notes on terminology
When the term “CICS” is used without any qualification in this book, it refers to
the CICS element of IBM® CICS Transaction Server for OS/390.

In this release, the CICS Web interface has split into the Listener support for
TCPIPSERVICE, and the protocol support for HTTP. This book now refers to the
HTTP protocol support as ″CICS Web support″. Within the product code, the term
″CICS Web interface″ remains synonymous with ″CICS Web support″.

In this release, there are two ways of coding Web application programs.
Commarea-style applications are those that take as input a communication area
containing an HTTP request, and build an HTTP response in the communication
area. Web API applications use the new WEB and DOCUMENT application
programming interface to process the inbound HTTP request and build the
response.

Determining if a publication is current
IBM regularly updates its publications with new and changed information. When
first published, both hardcopy and BookManager softcopy versions of a publication
are usually in step. However, due to the time required to print and distribute
hardcopy books, the BookManager version is more likely to have had last-minute
changes made to it before publication.

Subsequent updates will probably be available in softcopy before they are available
in hardcopy. This means that at any time from the availability of a release, softcopy
versions should be regarded as the most up-to-date.

For CICS Transaction Server books, these softcopy updates appear regularly on the
Transaction Processing and Data Collection Kit CD-ROM, SK2T-0730-xx. Each reissue
of the collection kit is indicated by an updated order number suffix (the -xx part).

© Copyright IBM Corp. 1994, 2000 xiii

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

For example, collection kit SK2T-0730-06 is more up-to-date than SK2T-0730-05. The
collection kit is also clearly dated on the cover.

Updates to the softcopy are clearly marked by revision codes (usually a “#”
character) to the left of the changes.

xiv CICS TS for OS/390: CICS Internet Guide

Figures

1. 5
2. Client access to existing business logic 6
3. TCP/IP protocols compared to the OSI and

SNA models 9
4. How applications are addressed 10
5. CICS functions in a single application program 14
6. Separation of business and presentation logic 14
7. Processing a request to CICS Web support 20
8. Processing a request from the IBM WebSphere

Application Server for OS/390 21
9. Calling a program with CICS Web

support—control flow 22
10. Running a transaction with CICS Web

support—control flow 24
11. Calling a program using the CICS Web

support commarea method—data flow . . . 25

12. Syntax of DFHMDX. 74
13. Processing a request from the EXCI 106
14. Processing a request from the ECI 106
15. Calling a program with the CICS business

logic interface—control flow 107
16. Running a transaction with the CICS business

logic interface—control flow 108
17. Calling a program with the CICS business

logic interface—data flow 109
18. Starting a terminal-oriented transaction—data

flow. 110
19. Continuing a terminal-oriented

transaction—data flow 111
20. Workload Balancing using DNS 130
21. IIOP request execution flow. 131
22. IDL and generated code 144

© Copyright IBM Corp. 1994, 2000 xv

||
||
||

xvi CICS TS for OS/390: CICS Internet Guide

Tables

1. Configuring CICS Web support 31
2. Parameters for the business logic interface 160
3. Parameters for the analyzer 167
4. Parameters for Decode 174
5. Parameters for Encode 179

6. Parameters for the HTML template manager 184
7. Parameters for the state management

program 193
8. Coded character sets 201

© Copyright IBM Corp. 1994, 2000 xvii

||
||

xviii CICS TS for OS/390: CICS Internet Guide

Bibliography

CICS Transaction Server for OS/390

CICS Transaction Server for OS/390: Planning for Installation GC33-1789
CICS Transaction Server for OS/390 Release Guide GC34-5352
CICS Transaction Server for OS/390 Migration Guide GC34-5353
CICS Transaction Server for OS/390 Installation Guide GC33-1681
CICS Transaction Server for OS/390 Program Directory GI10-2506
CICS Transaction Server for OS/390 Licensed Program Specification GC33-1707

CICS books for CICS Transaction Server for OS/390

General
CICS Master Index SC33-1704
CICS User’s Handbook SX33-6104
CICS Transaction Server for OS/390 Glossary (softcopy only) GC33-1705

Administration
CICS System Definition Guide SC33-1682
CICS Customization Guide SC33-1683
CICS Resource Definition Guide SC33-1684
CICS Operations and Utilities Guide SC33-1685
CICS Supplied Transactions SC33-1686

Programming
CICS Application Programming Guide SC33-1687
CICS Application Programming Reference SC33-1688
CICS System Programming Reference SC33-1689
CICS Front End Programming Interface User’s Guide SC33-1692
CICS C++ OO Class Libraries SC34-5455
CICS Distributed Transaction Programming Guide SC33-1691
CICS Business Transaction Services SC34-5268

Diagnosis
CICS Problem Determination Guide GC33-1693
CICS Messages and Codes GC33-1694
CICS Diagnosis Reference LY33-6088
CICS Data Areas LY33-6089
CICS Trace Entries SC34-5446
CICS Supplementary Data Areas LY33-6090

Communication
CICS Intercommunication Guide SC33-1695
CICS Family: Interproduct Communication SC33-0824
CICS Family: Communicating from CICS on System/390 SC33-1697
CICS External Interfaces Guide SC33-1944
CICS Internet Guide SC34-5445

Special topics
CICS Recovery and Restart Guide SC33-1698
CICS Performance Guide SC33-1699
CICS IMS Database Control Guide SC33-1700
CICS RACF Security Guide SC33-1701
CICS Shared Data Tables Guide SC33-1702
CICS Transaction Affinities Utility Guide SC33-1777

© Copyright IBM Corp. 1994, 2000 xix

CICS DB2 Guide SC33-1939

CICSPlex SM books for CICS Transaction Server for OS/390

General
CICSPlex SM Master Index SC33-1812
CICSPlex SM Concepts and Planning GC33-0786
CICSPlex SM User Interface Guide SC33-0788
CICSPlex SM Web User Interface Guide SC34-5403
CICSPlex SM View Commands Reference Summary SX33-6099

Administration and Management
CICSPlex SM Administration SC34-5401
CICSPlex SM Operations Views Reference SC33-0789
CICSPlex SM Monitor Views Reference SC34-5402
CICSPlex SM Managing Workloads SC33-1807
CICSPlex SM Managing Resource Usage SC33-1808
CICSPlex SM Managing Business Applications SC33-1809

Programming
CICSPlex SM Application Programming Guide SC34-5457
CICSPlex SM Application Programming Reference SC34-5458

Diagnosis
CICSPlex SM Resource Tables Reference SC33-1220
CICSPlex SM Messages and Codes GC33-0790
CICSPlex SM Problem Determination GC33-0791

Other CICS books

CICS Application Programming Primer (VS COBOL II) SC33-0674
CICS Application Migration Aid Guide SC33-0768
CICS Family: API Structure SC33-1007
CICS Family: Client/Server Programming SC33-1435
CICS Family: General Information GC33-0155
CICS 4.1 Sample Applications Guide SC33-1173
CICS/ESA 3.3 XRF Guide SC33-0661

If you have any questions about the CICS Transaction Server for OS/390 library,
see CICS Transaction Server for OS/390: Planning for Installation which discusses both
hardcopy and softcopy books and the ways that the books can be ordered.

Non-CICS books

OS/390 UNIX System Services
v OS/390 UNIX System Services User’s Guide, SC28-1891
v OS/390 UNIX System Services Command Reference, SC28-1892
v OS/390 UNIX System Services Programming Tools, SC28-1904
v OS/390 UNIX System Services Messages and Codes, SC28-1908
v OS/390 UNIX System Services Programming: Assembler Callable Services Reference,

SC28-1899
v OS/390 UNIX System Services File System Interface Reference, SC28-1909
v OS/390 Using REXX and OS/390 UNIX System Services, SC28-1905

xx CICS TS for OS/390: CICS Internet Guide

v OS/390 UNIX System Services Communications Server Guide, SC28-1906
v OS/390 UNIX System Services Parallel Environment: MPI Programming and

Subroutine Reference, SC33-6696

OS/390 eNetwork Communications Server
The OS/390 eNetwork Communications Server library is as follows:
v OS/390 eNetwork Communications Server: IP Configuration Guide, SC31-8513
v OS/390 eNetwork Communications Server: IP Planning and Migration Guide,

SC31-8512
v OS/390 eNetwork Communications Server: IP CICS Sockets Guide, SC31-8518
v OS/390 eNetwork Communications Server: IP Application Programming Interface

Guide, SC31-8516
v OS/390 eNetwork Communications Server: IP Programmer’s Reference, SC31-8515
v OS/390 eNetwork Communications Server: IP User’s Guide, GC31-8514
v OS/390 eNetwork Communications Server: Quick Reference, SX75-0121
v OS/390 eNetwork Communications Server: IP Diagnosis, SC31-8521
v OS/390 eNetwork Communications Server: High Speed Access Services, GC31-8676

Language Environment
v OS/390 Language Environment Programming Guide, SC28-1939
v OS/390 Language Environment Programming Reference, SC28-1940
v OS/390 Language Environment Customization, SC28-1941

Miscellaneous
The following publications contain related information:
v CICS 4.1 Sample Applications Guide, SC33-1173
v Accessing CICS Business Applications from the World Wide Web, SG24-4547
v IBM Internet Connection Server for MVS/ESA Up and Running!, SC31-8204
v How to Secure the Internet Connection Server for MVS/ESA, SG324-4803
v OS/390 Internet BonusPak, G221-9001
v IBM’s Official Guide to Building a Better Web Site, SR23-7270
v CICS Support, at: http://www.ibm.com/software/ts/cics/support

Information about Java can be found at: http://www.javasoft.com

Information on the World Wide Web
Information about the hypertext transfer protocol (HTTP), the hypertext markup
language (HTML), CORBA, and secure sockets layer (SSL) is to be found on the
World Wide Web. URLs are provided in this book with the caveat that their
permanence cannot be guaranteed.

HTTP/1.0
CICS supports HTTP/1.0. Unpredictable results can occur if you use
HTTP/1.1–specific headers. For HTTP/1.0 information, consult the following:
v Overview of HTTP –

http://www.w3.org/hypertext/WWW/Protocols/Overview.html

Bibliography xxi

|
|
|
|

|
|

|
|

http://www.ibm.com/software/ts/cics/support
http://www.javasoft.com
http://www.w3.org/hypertext/WWW/Protocols/Overview.html

The following references are to information about the ISO 8859-1 (Latin-1)
character set:
v ISO 8859-1:1987 (ordering information) – http://www.iso.ch/infoe/catinfo.html
v ISO 8859-1 (Latin-1) Characters List –

http://www.utoronto.ca/webdocs/HTMLdocs/NewHTML/iso_table.html
v Table of Latin-1 character glyphs –

http://www.w3.org/pub/WWW/MarkUp/Wilbur/latin1.gif

HTML
CICS has no dependency on the level of HTML used. For HTML information,
consult the following:
v Hypertext Markup Language (HTML) –

http://www.w3.org/pub/WWW/MarkUp/
v HTML, the complete guide –

http://www.emerson.emory.edu/services/html/html.html
v Introducing HTML 3.2 – http://www.w3.org/pub/WWW/MarkUp/Wilbur/
v Working draft of HTML 4.0 – http://www.w3.org/TR/WD-html40-970708/

Secure sockets layer (SSL)
For SSL information, consult the following:
v Overview of SSL – http://home.netscape.com/security/techbriefs/ssl.html
v Description of Public-key Cryptography Standards –

http://www.rsasecurity.com/rsalabs/pkcs/
v The ITU-T X.509 recommendation for certificates – http://www.itu.int//itudoc/itu-

t/rec/x/x500up/x509.html

CORBA
CICS supports IIOP 1.0 and a subset of CORBA 2.0 (see “Part 5. CORBA client
support” on page 127).

Note: When using SSL, IIOP 1.1 is supported, but GIOP1.1 message fragmentation
is not supported. (An example of the use of GIOP1.1 message fragmentation
is audio and video data streaming.)

The following URL contains CORBA architecture information:
http://www.omg.org/library

xxii CICS TS for OS/390: CICS Internet Guide

|

#

#

|

|

#

|
|

#
#

|

#
#

#
#
#

#
#

http://www.iso.ch/infoe/catinfo.html
http://www.utoronto.ca/webdocs/HTMLdocs/NewHTML/iso_table.html
http://www.w3.org/pub/WWW/MarkUp/Wilbur/latin1.gif
http://www.w3.org/pub/WWW/MarkUp/
http://www.emerson.emory.edu/services/html/html.html
http://www.w3.org/pub/WWW/MarkUp/Wilbur/
http://www.w3.org/TR/WD-html40-970708/
http://home.netscape.com/security/techbriefs/ssl.html
http://www.rsasecurity.com/rsalabs/pkcs/
http://www.itu.int//itudoc/itu-t/rec/x/x500up/x509.html
http://www.itu.int//itudoc/itu-t/rec/x/x500up/x509.html
http://www.omg.org/library

Summary of changes

Changes from the first edition are marked by # to the left of the changes.

This book is based on the CICS Internet and External Interfaces Guide for CICS
Transaction Server for OS/390 Release 2. Changes from that book are marked by
vertical lines to the left of the changes.

This softcopy version is based on the printed version of the CICS Internet Guide
for CICS Transaction Server for OS/390 Release 3, and includes the changes
indicated in the printed version by vertical bars. Formatting amendments have
been made to make this information more suitable for softcopy.

Changes for this edition
The major changes to this book from the first edition are:
v The removal of information about the CICS Transaction Gateway for OS/390.

This information can now be found in the CICS Transaction Gateway for OS/390
Administration Version 3.1, SC34–5528–01

The major changes to CICS that affected the first edition of this book were:
v The addition of information about IIOP inbound to Java.
v The addition of information about the EXEC CICS DOCUMENT commands.
v The addition of information about the EXEC CICS WEB commands.
v The addition of information about secure sockets layer.
v The addition of information about the Web error program, DFHWBEP.
v The addition of information about the TCPIPSERVICE resource definition.
v The addition of information about the DOCTEMPLATE resource definition.
v The business logic interface changed its name from DFHWBA1 to DFHWBBLI,

and its parameters changed from wba1_ to wbbl_.

© Copyright IBM Corp. 1994, 2000 xxiii

#

|
|
|

|
|
|
|

#

#

#
#
#

#

|

|

|

|

|

|

|

|
|

xxiv CICS TS for OS/390: CICS Internet Guide

Part 1. Overview

This part of the book outlines some of the ways in which you can make CICS
transaction processing services available to a variety of Internet users.

This part contains:
v “Chapter 1. Introduction” on page 3
v “Chapter 2. How this book is organized” on page 15

© Copyright IBM Corp. 1994, 2000 1

|

Overview

2 CICS TS for OS/390: CICS Internet Guide

Chapter 1. Introduction

This book describes the following sources of external requests, and the routes that
they can use into CICS:

Web browsers
Web browsers can use a variety of methods:

CICS Web support
CICS Web support is a CICS facility for supporting Web browsers.

IBM Websphere
This is an MVS application that supports Web browsers and routes their
requests into CICS.

CICS Transaction Gateway
This is a workstation application that can accept requests from Web
browsers and route them into CICS. It uses a CICS client and the EPI.

CORBA clients
CICS provides support for inbound IIOP requests for CICS Java applications.

JVM applications
Java Virtual Machine applications can use a local gateway connection that uses
the EXCI to pass requests to CICS.

Java-enabled Web browsers
Java-enabled Web browsers can use applets to communicate with CICS. The
applets can use CICS-provided Java classes to construct external call interface
(ECI) and external presentation interface (EPI) requests. The Web browsers
communicate with Web servers, and with one of the following:

CICS Transaction Gateway
This is a workstation application that uses a CICS client to route ECI and
EPI requests to a CICS server.

CICS Transaction Gateway for OS/390
This is a version of the CICS Transaction Gateway that runs on OS/390,
and uses the CICS external CICS interface (EXCI) to pass requests to CICS.
The CICS Transaction Gateway for OS/390 supports the use of ECI
requests, but not EPI requests.

The following types of external requests are described in other books:

3270 users
Users of the IBM 3270 Display System can start transactions. This is the most
familiar method of introducing work to CICS TS.

User socket applications
User socket applications can use the CICS Sockets feature of CICS TS. See the
OS/390 eNetwork Communications Server: IP CICS Sockets Guide, SC31-8518.

MQSeries® users
MQSeries users can use the 3270 CICS bridge to access CICS transactions. See
See the CICS External Interfaces Guide, SC33-1944 for information.

© Copyright IBM Corp. 1994, 2000 3

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

MVS™ applications
Applications running in MVS address spaces can use the External CICS
Interface (EXCI) to access CICS programs. See the CICS External Interfaces
Guide, SC33-1944.

CICS client applications
CICS client applications use a CICS client and the ECI or the EPI. See the CICS
Family: Client/Server Programming, SC33-1435.

DCE RPC clients
DCE RPC clients use the Application Support (AS) server to access CICS
programs. See the CICS External Interfaces Guide, SC33-1944.

ONC RPC clients
ONC RPC clients can use CICS ONC RPC support to access CICS programs.
See the CICS External Interfaces Guide, SC33-1944 for information about ONC
PRC.

Telnet clients
Telnet clients can use TN3270 to start transactions. See the OS/390 eNetwork
Communications Server: IP Configuration Guide, SC31-8513.

CICS programs
Programs running in CICS servers on any platform can use EXEC CICS LINK
to call a CICS program, or transaction routing to send transaction requests to
CICS TS. Programs running in CICS TS can use the CICS front end
programming interface (FEPI) to start transactions in the same or another
instance of CICS TS. See the CICS Front End Programming Interface User’s Guide,
SC33-1692.

Figure 2 on page 6 shows the principal ways of using CICS transaction processing
services from outside CICS.

4 CICS TS for OS/390: CICS Internet Guide

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|

Key to figure 2

= Sources of external requests

= Targets of external requests

= CICS provided interfaces

= CICS components

= Other product components

TC = Terminal Control
TR = Transaction Routing
DPL = Distributed Program Link
EXCI = EXternal CICS Interface
ECI = External Call Interfaces
EPI = External Presentation Interface
CWP = CICS WebServer Plugin

Figure 1.

Chapter 1. Introduction 5

Web
browser

CICS client
application

DCE RPC
client

CICS business
logic interface

WebSphere

CICS
Transaction

Gateway

AS
Server

CICS
Transaction Server

CICS
ONC RPC

CICS
sockets

MQ CICS
bridge

ONC RPC
client

MQSeries

User Socket
application

L

I

N

K

L

I

N

K

D

P

L

D

P

L

E

X

C

I

E

X

C

I

Target
COMMAREA

Program

CORBA
client TCPIPSERVICE

CORBA
support

Java
class

E
C
I

CICS TX Series

Java

JVM Java
application

Any MVS
application

CICS Transaction Server environment

CICS
TX Series

TN3270

IBM 3270

CICS
Transaction Server

T

C

T

C

T

R

T

R

T

R

T

R

Target
3270

Transaction

CICS client
application

E
P
I

Web
browser

Web
Sphere

CICS
Transaction

Gateway Java

MVS environment

3270
Bridge

MQ CICS
bridgeMQSeries

CWP

Web 3270
interface

TCPIPSERVICE

CICS Web
support

Web browser

Figure 2. Client access to existing business logic

6 CICS TS for OS/390: CICS Internet Guide

General concepts
All the mechanisms described in this book follow a similar pattern. A client is the
source of the external request which comes into CICS over a network using a
variety of transport protocols, or from another CICS region, using Inter Region
Communication (IRC). CICS (or another product) provides a transport-specific
listener (a long-running task) that starts another task (a facilitator such as an alias
or a mirror), to process the incoming request. The facilitator uses CICS services to
access the application.

The priorities of different alias transactions can be adjusted to determine the
service that a client request receives. There must be enough free tasks to service the
alias transactions as they are started by the listener. The CICS programs that
service the client requests are subject to contention for resources in the CICS
system, and to transmission delays if they are remote from the CICS system, or if
they request the use of remote resources by function shipping or distributed
program link.

The CICS server is independent of the application model (2/3-tier, 2/3 platforms).
The listener/facilitator deals with the different transports used and sets the rules
for which programming models are supported.

Distributed computing
Distributed computing involves the cooperation of two or more machines
communicating over a network. The machines participating in the system can
range from personal computers to super computers; the network can connect
machines in one building or on different continents.

The main benefit of distributed computing is that it enables you to optimize your
computing resources for both responsiveness and economy. For example, it enables
you to:
v Share the cost of expensive resources, such as a typesetting and printing service,

across many desktops. It also gives you the flexibility to change the
desktop-to-server ratio, depending on the demand for the service.

v Allocate an application’s presentation, business, and data logic appropriately.
Often, the desktop is the best place to perform the presentation logic, as it is
nearest to the end user and can provide highly responsive processing for such
actions as drag and drop GUI interfaces.
Conversely, you may feel that the best place for the database access logic is close
to the actual storage device - that is, on an enterprise or departmental server.
The most appropriate place for the business logic may be less clear, but there is
much to be said for placing this too in the same node as the data logic, thus
allowing a single desktop request to initiate a substantial piece of server work
without intervening network traffic.
Distributed computing enables you to make such trade-offs in a flexible way.

Along with the advantages of distributed computing come new challenges.
Examples include keeping multiple copies of data consistent, keeping clocks in
individual machines synchronized, and providing network-wide security. A system
that provides distributed computing support must address these new issues.

CICS supports distributed computing and the client/server model by means of:

Chapter 1. Introduction 7

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|

Internet Inter-Orb Protocol (IIOP)
CORBA clients can access CICS Java servers using IIOP.

Distributed Computing Environment (DCE)
The remote procedure call model implemented by the Open Software
Foundation’s DCE is supported in CICS.

Distributed program link (DPL)
This is similar to a DCE remote procedure call. A CICS client program passes
parameters to a remote CICS server program and waits for the server to send
data in reply. Parameters and data are exchanged by means of a
communications area.

The external CICS interface (EXCI)
An MVS client program links to a CICS server program. Again, this is similar
to a DCE RPC.

The external call interface (ECI)
The ECI enables CICS Transaction Server for OS/390 server programs to be
called from client programs running on a variety of operating systems. For
information about CICS Clients, see the CICS Family: Client/Server Programming
manual.

Function shipping
The parameters for a single CICS API request are intercepted by CICS code
and sent from the client system to the server. The CICS mirror transaction in
the server executes the request, and returns any reply data to the client
program. This can be viewed as a specialized form of remote procedure call.

Asynchronous transaction processing
A CICS client transaction uses the EXEC CICS START command to initiate
another CICS transaction, and pass data to it. The START request can be
intercepted by CICS code, and function shipped to a server system. The client
transaction and started transactions execute independently. This is similar to a
remote procedure call with no response data.

Distributed transaction processing
A program in the client system establishes a conversation with a
complementary program in the server, and exchanges messages. The programs
may use the APPC protocols.

Transaction routing
Terminals owned by one CICS system to run transactions owned by another.

The CICS family of products runs on a variety of operating systems, and provides
a standard set of functions to enable members to communicate with each other. For
information about the CICS family, see the CICS Family: Interproduct Communication
manual.

Security support
CICS Transaction Server for OS/390 supports:
v A single network signon (through the ATTACHSEC option of the DEFINE

CONNECTION command)
v Authentication of the client system through bind-time security.

RACF or an equivalent security manager provides mechanisms similar to the DCE
access control lists and login facility.

8 CICS TS for OS/390: CICS Internet Guide

|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|

|

|
|

|

|
|

There is no CICS concept similar to the DCE Directory Service. In all the above
scenarios the client environment must know which server CICS system to
communicate with. This is normally done by specifying the name of the required
remote CICS system in the definition of the relevant remote CICS resource, or in
the client application program.

TCP/IP protocols
TCP/IP is a communication protocol used between physically separated computer
systems. TCP/IP can be implemented on a wide variety of physical networks.

TCP/IP is a large family of protocols that is named after its two most important
members, Transmission Control Protocol and Interface Protocol. Figure 3 shows the
TCP/IP protocols used by CICS ONC RPC in terms of the layered Open Systems
Interconnection (OSI) model. For CICS users, who may be more accustomed to
SNA, the left side of Figure 3 shows the SNA layers that correspond very roughly
to the OSI layers.

The protocols used by TCP/IP are shown in the right-hand box in Figure 3.

Internet Protocol (IP)
In terms of the OSI model, IP is a network-layer protocol. It provides a
connectionless data transmission service, and supports both TCP and UDP.
Data is transmitted link by link; an end-to-end connection is never set up
during the call. The unit of data transmission is the datagram.

Transmission Control Protocol (TCP)
In terms of the OSI model, TCP is a transport-layer protocol. It provides a
connection-oriented data transmission service between applications, that is, a
connection is established before data transmission begins. TCP has more
error checking that UDP.

User Datagram Protocol (UDP)
UDP is also a transport-layer protocol and is an alternative to TCP. It
provides a connectionless data transmission service between applications.
UDP has less error checking than TCP. If UDP users want to be able to
respond to errors, the communicating programs must establish their own
protocol for error handling. With high-quality transmission networks, UDP
errors are of little concern.

ONC RPC and XDR
XDR and ONC RPC correspond to the sixth and seventh OSI layers.

Sockets
interface

SNA

Application

Presentation

Data flow

Transmission

Path control

Data link

Physical

OSI

Application

Presentation

Session

Transport

Network

Data link

Physical

7

6

5

4

3

2

1

TCP/IP family

RPC

XDR

(Empty)

TCP or UDP

IP

Subnetwork

Figure 3. TCP/IP protocols compared to the OSI and SNA models

Chapter 1. Introduction 9

|
|
|
|
|

Sockets interface
The interface between the fourth and higher layers is the sockets interface.
In some TCP/IP implementations, the sockets interface is the API that
customers use to write their higher-level applications.

TCP/IP internet addresses and ports
TCP/IP provides for process-to-process communication, which means that calls
need an addressing scheme that specifies both the physical host connection (Host
A and Host B in Figure 4) and the software process or application (C, D, E, F, G,
and H). The way this is done in TCP/IP is for calls to specify the host by an
internet address and the process by a port number. You may find internet addresses
also referred to elsewhere as internet protocol (IP) addresses or host IDs.

Internet addresses
Each host on a TCP/IP internet is identified by its internet address. An internet
address is 32 bits, but it is usually displayed in dotted decimal notation. Each byte
is converted to a decimal number in the range 0 to 255, and the four numbers are
separated by dots thus: 129.126.178.99.

Remember that an internet is a collection of networks — hence the internet address
must specify both the network and the individual host. How this is done varies
with the size of the network. For example, in Figure 4, 129.126 could specify the
network, and 178.99 could specify the host on that network.

Port numbers (for servers)
An incoming connection request specifies the server that it wants by specifying the
server’s port number. For instance, in Figure 4, a call requesting port number 21 on
host A is directed to process C.

Well-known ports identify servers that carry standard services such as the File
Transfer Protocol (FTP) or Telnet. The same service is always allocated the same
port number, so, for example, FTP is always 21 and Telnet always 23. Networks
generally reserve port numbers 1 through 255 for well-known ports.

Port numbers (for clients)
Client applications must also identify themselves with port numbers so that server
applications can distinguish different connection requests. The method of allocating
client port numbers must ensure that the numbers are unique; such port numbers
are termed ephemeral port numbers. For example, in Figure 4, process F is shown
with port number 3300 on host B allocated.

129.126.178.99

Host A Host B

21 23 4100

C D E

Host address

Port numbers

Processes

123.156.189.2

3300 3301 3302

F G H

Figure 4. How applications are addressed

10 CICS TS for OS/390: CICS Internet Guide

Programming models
The programming models implemented in CICS are inherited from those designed
for 3270s, and exhibit many of the characteristics of conversational,
terminal-oriented applications. There are basically three styles of programming
model:
v Terminal-initiated, that is, the conversational model
v Distributed program link, that is, the RPC model
v START, that is, the queuing model.

Once initiated, the applications typically use these and other methods of
continuing and distributing themselves, for example, with pseudoconversations,
RETURN IMMEDIATE or DTP. The main difference between these models is in the
way that they maintain state (for example, security), and hence state becomes an
integral part of the application design. This presents the biggest problem when you
attempt to convert to another application model.

A pseudoconversational model is mostly associated with terminal-initiated
transactions and was developed as an efficient implementation of the
conversational model. With increased use of 1-in and 1-out protocols such as
HTTP, it is becoming necessary to add the pseudoconversational characteristic to
the RPC model.

State management and its associated token management, which were previously
controlled by the terminal, now need additional techniques to support this move.
Similarly, when START requests are disassociated from the terminal, difficulties
arise in returning the requests to their starting point.

Comparing mechanisms
This topic compares accessing CICS from the Web, and using CICS with Java. It
lists some of the characteristics and benefits of each interface. Your decision about
which access mechanism to use depends on the type of client (for example, Web
browser, CORBA, Java). This affects the transport and presentation protocol that
you use, and may affect your decision on whether to use secure sockets layer
(SSL).

Accessing CICS from the Web
CICS Web support allows you to use a Web browser as a graphical user interface
for business logic applications. Its main purpose is to allow you to build CICS
HTML application utilities; it is not designed to perform as a full Web server. You
should use a separate Web server for facilities such as:
v supplying GIFs, applets, and other items referenced from the CICS pages
v supporting News, e-mail, FTP, and Gopher daemons
v providing the proxy, firewall, and gateway services needed when connecting to

the Internet.

Here are some of the things you should consider when choosing a CICS Web
solution:
v The programming model you intend to use. For example, whether the target

program is a commarea program or a 3270 transaction (BMS or non-BMS).

Chapter 1. Introduction 11

|

|
|
|
|

|

|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|

|

|

|
|

|
|

|
|

v How your applications are designed. Do you want a 2–tier solution, where a
Web browser talks directly to CICS Web support by means of a Web server
within OS/390, or a 3–tier solution, where the Web server is external to OS/390
(for example, on AIX).

v Whether your application is contained entirely within CICS, or is a program
outside CICS which needs access to CICS as part of a larger application.
If your program is entirely within CICS, you should consider using the CICS
business logic interface. This way, you can use different front ends to existing
programs without the need for the new client to understand the format of the
commarea, or for the program to be aware of the different callers. Because you
can use a converter, the format can be hidden and maintained in one place, and
changes either to the client or to the program require changes only to the
converter. The converter is then responsible for managing the translation of
formats, a different one being specified on the CICS business logic interface
depending on the caller.

v Whether the application is Web-aware. A Web-aware application understands
HTTP and produces HTML without the need for a converter. “Chapter 12.
Writing CICS programs to process HTTP requests” on page 79 describes two
methods of writing Web-aware applications:
– Web API applications, which use the EXEC CICS WEB and EXEC CICS

DOCUMENT application programming interface to process the inbound
HTTP request and build the response. This is the recommended method.

– Commarea-style applications, which accept as input a communication area
containing an HTTP request, and also build the HTTP response in the
communication area. This method is retained for compatibility with previous
releases.

CICS and Java
CICS supports two Java environments;
v Java support provided by the CICS Transaction Gateway for OS/390
v and inbound IIOP support of CORBA clients

This section outlines the differences between them.

CICS Transaction Gateway for OS/390
The Java language can be used to construct Java applets and Java applications,
both of which are used in the CICS Transaction Gateway for OS/390. Here, the
Java executes outside the CICS environment, and access into CICS is provided by
the Java classes supplied by the gateway. For example, an applet writen for the
Java gateway would use the ibm.cics.jgate.client.ECIRequest class to produce an
EXCI call to communicate with a COBOL program using a commarea.

Inbound IIOP support of CORBA clients
When CICS receives an IIOP request from a CORBA client (using the same listener
as CICS Web support), the request is processed in a Java environment within CICS.
In this environment, Java programs execute using JCICS classes as the CICS
application programming interface. For example, a Java class invoked by a CORBA
client results in an object being called in CICS that in turn may execute a JCICS
API request to do the equivalent of an EXEC CICS LINK. (The JCICS Java API is
defined in the Javadoc HTML provided in dfjcics_docs.zip, downloaded during
CICS installation.). The CORBA client support, which runs this Java environment
inside CICS, offers the following benefits:
v function encapsulation, enabling rapid reuse of applications

12 CICS TS for OS/390: CICS Internet Guide

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|

|

|

|

|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

v input and output data formatting when translation code is generated
v seamless integration with application data types, resulting in strong typing if

there are no coding errors in the input and output data
v the use of standard IIOP protocol provides client autonomy by means of a

vendor-independent client side
v object-oriented and procedural applications can co-exist in the same region,

providing seamless access to CICS services and existing applications.

Application design
You can access existing applications originally designed for other environments,
such as the Web use of the bridging facilities described in “Using CICS Web
support to run a terminal-oriented transaction” on page 23, or write new ones
specifically for a new environment. In general, it is good practice to split
applications into a part containing the business code that is reusable, and a part
responsible for presentation to the client. This technique enables you to improve
performance by optimizing the parts separately, and allows you to reuse your
business logic with different forms of presentation.

When separating the business and presentation logic, you need to consider the
following:
v Avoid affinities between the two parts of the application.
v Be aware of the DPL-restricted API; see the CICS Application Programming

Reference for details.
v Be aware of hidden presentation dependencies, such as EIBTRMID usage.

Separating business and presentation logic
Figure 5 on page 14 illustrates a simple CICS application that accepts data from an
end user, updates a record in a file, and sends a response back to the end user. The
transaction that runs this program is the second in a pseudoconversation. The first
transaction has sent a BMS map to the end user’s terminal, and the second
transaction reads the data with the EXEC CICS RECEIVE MAP command, updates
the record in the file, and sends the response with the EXEC CICS SEND MAP
command.

The EXEC CICS RECEIVE and EXEC CICS SEND MAP commands are part of the
transaction’s presentation logic, while the EXEC CICS READ UPDATE and EXEC
CICS REWRITE commands are part of the business logic.

Chapter 1. Introduction 13

|

|
|

|
|

|
|

|

A sound principle of modular programming in CICS application design is to
separate the presentation logic from the business logic, and to use a
communication area and the EXEC CICS LINK command to make them into a
single transaction. Figure 6 illustrates this approach to application design.

Once the business logic of a transaction has been isolated from the presentation
logic and given a communication area interface, it is available for reuse with
different presentation methods. For example, you could use CICS Web support
with the CICS business logic interface, to implement a two-tier model where the
presentation logic is HTTP-based.

Transaction program

. . .

. . .

. . .

. . .

. . .

EXEC CICS RECEIVE MAP ...

EXEC CICS READ UPDATE ...

EXEC CICS REWRITE ...

EXEC CICS SEND MAP ...

Figure 5. CICS functions in a single application program

. . .

EXEC CICS SEND MAP . . .

. . .

EXEC CICS LINK . . .

. . .

EXEC CICS RECEIVE MAP . . .

. . .

Presentation logic

EXEC CICS RETURN . . .

. . .

EXEC CICS REWRITE . . .

. . .

EXEC CICS READ UPDATE . . .

. . .

EXEC CICS ADDRESS COMMAREA . . .

Business logic

Figure 6. Separation of business and presentation logic

14 CICS TS for OS/390: CICS Internet Guide

Chapter 2. How this book is organized

Having read “Chapter 1. Introduction” on page 3 to get an understanding of the
different ways of introducing work into CICS, use the rest of the manual as
reference material. It is organized as follows:
v “Part 2. CICS Web support” on page 17 describes support for web browsers

through CICS Web support and through the IBM WebSphere Application Server
for OS/390.

v “Part 3. The CICS business logic interface” on page 103 describes the CICS
business logic interface

v “Part 4. Using secure sockets layer (SSL)” on page 117 describes the secure
sockets layer (SSL).

v “Part 5. CORBA client support” on page 127 describes the Internet Inter-orb
Protocol (IIOP).

© Copyright IBM Corp. 1994, 2000 15

|
|
|

16 CICS TS for OS/390: CICS Internet Guide

Part 2. CICS Web support

This part of the book describes CICS Web support.

It contains:
v “Chapter 3. Introduction to CICS Web support” on page 19
v “Chapter 4. Planning for CICS Web support” on page 27
v “Chapter 5. Configuring CICS Web support” on page 31
v “Chapter 6. The CICS WebServer Plugin” on page 41
v “Chapter 7. Writing an analyzer for CICS Web support” on page 45
v “Chapter 8. Writing a converter” on page 51
v “Chapter 9. The Web error program” on page 57
v “Chapter 10. 3270 applications on the Web” on page 59
v “Chapter 11. Creating HTML templates from BMS definitions” on page 67
v “Chapter 12. Writing CICS programs to process HTTP requests” on page 79
v “Chapter 13. Displaying a template on a Web browser” on page 89
v “Chapter 14. Security for CICS Web support” on page 93
v “Chapter 15. Problem determination” on page 97

© Copyright IBM Corp. 1994, 2000 17

CICS Web support

18 CICS TS for OS/390: CICS Internet Guide

Chapter 3. Introduction to CICS Web support

This part of the book describes CICS Web support, a function of CICS that
promotes access to CICS transaction processing services from outside CICS. It is
primarily, though not exclusively, concerned with access from Web browsers on the
Internet, or on an enterprise’s intranet:
v CICS Web support is a collection of CICS resources supporting direct access to

CICS transaction processing services from Web browsers.
v The CICS business logic interface is a callable program that allows a variety of

callers to access the same Web-aware business logic as CICS Web support, but
via a CICS link rather than via the CICS HTTP listener.

CICS Web support and the CICS business logic interface support the separation of
presentation logic from business logic in application design. They also support the
conversion of output that uses existing presentation methods, such as CICS basic
mapping support (BMS), into others, particularly hypertext markup language
(HTML). There is a brief discussion about the distinction between presentation
logic and business logic in “Separating business and presentation logic” on
page 13.

The rest of this chapter presents an overview of this facility. It contains the
following sections:
v “Types of requester”
v “Types of service” on page 20
v “Processing examples” on page 20
v “Control flow in request processing” on page 21
v “Data flow in request processing” on page 24

“Chapter 4. Planning for CICS Web support” on page 27 presents a list of tasks
associated with planning, installing, customizing, programming, and operating the
facilities.

Types of requester
The CICS Web support can deal with requests from these types of requester:
1. Web browsers that are connected to a TCP/IP port that is reserved for the CICS

Web support. A user-replaceable program relates the hypertext transfer protocol
(HTTP) request to the required CICS transaction processing services.

2. Web browsers that are connected to the IBM WebSphere Application Server for
OS/390. A CICS-provided WebServer Plugin that operates within the IBM
WebSphere Application Server for OS/390 uses user-provided definitions to
relate the HTTP request to the required CICS transaction processing services.
The CICS business logic interface services the request.

3. Non-HTTP clients — see “Dealing with non-HTTP requests” on page 23.
4. Web browsers connected to an HTTP server that invokes the CICS business

logic interface. See “Chapter 16. Introduction to the CICS business logic
interface” on page 105.

© Copyright IBM Corp. 1994, 2000 19

|
|

|
|
|
|
|

Types of service
CICS Web support supplies CICS transaction processing services in the following
ways:
1. Using a non-terminal transaction to run a CICS program. A user-replaceable

program maps data in the request to the communication area that the program
is expecting. The user-replaceable program also maps the output
communication area into the response format expected by the requester. If the
CICS program is written to accept and process HTTP and HTML, the
user-replaceable program might not be needed. CICS provides support for
manipulating HTML pages when the requester’s protocol includes HTML.

2. Starting a CICS terminal-oriented transaction. This service is designed to be
used when the request is an HTTP request, and contains HTML. CICS
recognizes that this is a request for a terminal-oriented transaction from the
format of the HTTP request. CICS provides a procedure and supporting tools
for mapping 3270 data streams, including those produced by BMS maps, into
HTML, and HTML into BMS. The user can customize this mapping, either by
creating a macro definition, or by providing a user-replaceable program, or
both.

Processing examples
Figure 7 shows how CICS Web support processes a request from a Web browser
that is connected to OS/390 eNetwork Communications Server.

The Web browser is an HTTP client. It constructs an HTTP request, which is
passed across the network to OS/390 eNetwork Communications Server in the
server. OS/390 eNetwork Communications Server relays the request to CICS Web
support, which provides the requested service. The output is sent back to the Web
browser in an HTTP response.

Figure 8 on page 21 shows how the CICS Web support processes a request from a
Web browser that is connected to the IBM WebSphere Application Server for
OS/390.

Server

OS/390

CICS Transaction Server

CICS
Web

support

Business
logic

interface

NetworkWeb
browsers

OS/390
eNetwork

Communications
Server

CICS
service

Figure 7. Processing a request to CICS Web support

20 CICS TS for OS/390: CICS Internet Guide

|
|
|

The Web browser constructs an HTTP request which is passed across the network
to OS/390 eNetwork Communications Server in the server. OS/390 eNetwork
Communications Server relays the request to the IBM WebSphere Application
Server for OS/390, which uses the CICS WebServer Plugin (CICS-provided code
and user-provided definitions) to construct a request for the CICS business logic
interface. The CICS business logic interface ensures that the CICS TS provides the
requested service, and returns any output in the communication area.

Control flow in request processing
To make decisions about the facilities you will use, and how you will customize
them, you need to understand how CICS Web support interacts with the CICS
business logic interface.

Using CICS Web support to call a program
Figure 9 on page 22 shows the control flow through CICS Web support to a CICS
program.

Server

OS/390

WAS

CICS
CWS Plugin

DLL

Network

EXCI

CICS Transaction Server

Web
browsers

OS/390
eNetwork

Communications
Server

Business
Logic

interfacec

CICS
service

Figure 8. Processing a request from the IBM WebSphere Application Server for OS/390

Chapter 3. Introduction to CICS Web support 21

|
|
|
|
|
|
|

1. An HTTP request arrives in OS/390 eNetwork Communications Server from a
Web browser.

2. The Sockets listener task monitors the OS/390 eNetwork Communications
Server interface for incoming HTTP requests.

3. The Sockets listener task attaches Web attach transaction CWXN. CWXN or its
alias should be specified as the TRANSACTION on the TCPIPSERVICE
definition.

4. Web attach processing receives the incoming request and calls DFHCCNV to
translate HTTP request headers from ASCII to EBCDIC.

5. Web attach processing links to the user’s analyzer.
6. If the analyzer requests conversion, Web attach processing calls DFHCCNV to

translate the body of the HTTP request from ASCII to EBCDIC.
7. Web attach processing starts an alias transaction to deal with all further

processing of the request in CICS, then terminates.

13

3

Alias

1 2

4

5

6

7

8

9

10

11

1214

15

OS/390

Converter
(Encode)

DFHCCNV

Request
from client

Reply to
client

CICS Transaction Server

DFHCCNV
(headers)

Analyzer

DFHCCNV
(user data)

Converter
(Decode)

CICS
program

Web
attach

processing

Sockets
listener

task
OS/390

Enetwork
Communications

Server

Figure 9. Calling a program with CICS Web support—control flow

22 CICS TS for OS/390: CICS Internet Guide

|
|

|
|

|
|
|

|
|

|

|
|

|
|

|

|
|
|

8. If the analyzer requests a converter, the alias calls it, requesting the Decode
function. Decode can modify the communication area for the CICS program.

9. The alias calls the CICS program that the analyzer or Decode specified. The
communication area passed to the CICS program is the one set up by Decode.
If no converter program was called, the communication area contains the
entire request.

10. The CICS program processes the request and builds a response using EXEC
CICS WEB WRITE and EXEC CICS WEB SEND commands, or returns output
in the communication area.

11. If the analyzer requested a converter, the alias calls the Encode function of the
converter, which uses either the EXEC CICS WEB commands or the
communication area to prepare the HTTP response. If no converter program
was called, and no EXEC CICS WEB SEND command issued, the alias
assumes that the CICS program has put the desired HTTP response in the
communication area.

12. If the analyzer or application requested data conversion, the alias calls
DFHCCNV to translate the HTTP response.

13. The alias returns the results to the Sockets domain, requests that the socket be
closed, and returns.

14. The Sockets domain issues a call to OS/390 eNetwork Communications Server
to send the response.

Some variations on this process are possible:
v You might not use a CICS program, but construct the response in the Decode or

Encode functions of the converter, or partly in both.
v You might not use a converter, but construct the response in the CICS program.

In this case the CICS program must be written either to accept an HTTP request
in its communication area, and to overwrite it with an HTTP response, or to use
the Web-related CICS application programming interface to process an HTTP
request and build an HTTP response.

v You might construct the response in the analyzer. In this case the alias does not
call a converter, or a CICS program, but does the data conversion (if requested
by the analyzer), and then sends the reply to the Web browser.

Dealing with non-HTTP requests
CICS Web support can be used to process requests that are not in the HTTP
format. If the Web attach transaction cannot parse the incoming request as an
HTTP request, the process illustrated in Figure 9 on page 22 is modified in various
ways:
v There is no translation of any part of the request before it is passed to the

analyzer. The analyzer must do its own translation, or work in the client code
page.

v If the analyzer asks for data conversion, the whole of the data is translated
before the alias is started.

Using CICS Web support to run a terminal-oriented
transaction

Figure 10 on page 24 shows the control flow through CICS Web support for a
request for a terminal-oriented transaction. The first part of the processing is the
same as for calling a program, but if you want to run a transaction, you must
specify DFHWBTTA as the CICS program to be called, followed by the name of the
transaction to be run.

Chapter 3. Introduction to CICS Web support 23

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|

1. If the analyzer requests a converter, the alias calls it, requesting the Decode
function. Decode sets up the communication area for DFHWBTTA.

2. The alias calls DFHWBTTA. The communication area passed to DFHWBTTA is
the one set up by Decode. If no converter program was called, the
communication area contains the entire request.

3. DFHWBTTA extracts the transaction ID for the terminal-oriented transaction
from the HTTP request, and starts a transaction that runs the CICS Web bridge
exit, DFHWBLT.

4. When the program attempts to write to its principal facility, the data is
intercepted by the CICS Web bridge exit, and returned to the alias. If the caller
requested a converter, the alias calls the Encode function of the converter,
which uses the communication area to prepare the response. If no converter
program was called, the alias assumes that the communication area contains
the desired response.

Data flow in request processing
To make decisions about the facilities you will use, and how you will customize
them, you need to understand how data is passed in the CICS Web support.

Using the CICS Web support commarea method to call a
program

Figure 11 on page 25 shows the data flow from client through CICS and back to the
client. As explained in “Using CICS Web support to call a program” on page 21,
some of these steps are optional. See “Chapter 12. Writing CICS programs to
process HTTP requests” on page 79 for more information about HTTP headers and
HTTP requests.

Bridge transaction

Transaction
program

CICS Web
bridge exit

Alias transaction

DFHWBTTAAlias

1

2 3 4

5

Converter
(Decode)

Converter
(Encode)

Figure 10. Running a transaction with CICS Web support—control flow

24 CICS TS for OS/390: CICS Internet Guide

|
|
|

1. A request arrives from a client, and the CICS Sockets listener transaction,
CSOL, starts the Web attach transaction, CWXN, and reads the request into
CICS temporary storage.

2. DFHCCNV translates the HTTP headers from ASCII into EBCDIC.
3. DFHCCNV translates the HTTP user data from the client code page into

EBCDIC.
4. The Decode function of the converter constructs the communication area for

the CICS program. This communication area can be constructed in-place in the
buffer provided by CICS. Decode can get a new buffer, or it can use the EXEC
CICS WEB application programming interface to retrieve the parts of the
incoming request.

5. The CICS program updates the communication area.
6. The Encode function of the converter constructs the HTTP response to be sent

to the client. The response can be constructed in-place in the communication
area. Encode can free the communication area and get a new buffer for the
response, or it can use the new Web application programming interface to
construct an HTTP response. The response consists of headers and user data.
You can make your response longer than 32K, as described in “HTTP
responses” on page 81.

CICS program

Communication area

Communication area

HTTP headers (EBCDIC) HTTP user data (EBCDIC)

HTTP headers (ASCII) HTTP user data (client code page)

1

3

5

HTTP user data (EBCDIC)

6

7 8

9

HTTP headers (EBCDIC)

HTTP headers (ASCII) HTTP user data (client code page)

2 DFHCCNV

DFHCCNV

4
Decode

Encode

DFHCCNV

DFHCCNV

Figure 11. Calling a program using the CICS Web support commarea method—data flow

Chapter 3. Introduction to CICS Web support 25

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

7. DFHCCNV translates the headers from EBCDIC to ASCII.
8. DFHCCNV translates the user data from EBCDIC to the client code page.
9. The alias sends the response to the client, and frees the storage.

26 CICS TS for OS/390: CICS Internet Guide

Chapter 4. Planning for CICS Web support

This chapter describes the planning tasks for CICS Web support. Major decisions
about the kinds of requests you are going to allow and kinds of services you are
going to provide are made here, and they affect the rest of the tasks involved in
setting up CICS Web support.

Task See... Task completed?

Ensure that you have the correct
prerequisites to use CICS Web support.

“Prerequisites for using
CICS Web support” on

page 28
YES / NO

Decide which CICS transaction
processing services are to be made

available to users of CICS Web support
and the CICS business logic interface.

These services can be CICS programs, or
CICS transactions.

For transactions, see
“Chapter 10. 3270

applications on the Web” on
page 59. For programs, see
“Chapter 12. Writing CICS
programs to process HTTP

requests” on page 79.

YES / NO

Decide how your Web-related work is to
be passed to CICS.

“Types of requester” on
page 19.

YES / NO

TCPIPSERVICE definitions form part of
the processing of incoming requests.

Decide which CICS resources are to be
accessed by which TCPIPSERVICE

definitions.

See the CICS Resource
Definition Guide for details

of the TCPIPSERVICE
definition, and

“TCPIPSERVICE
definitions” on page 34 for

Web-specific considerations.

YES / NO

Decide what level of security is required
for each Web application..

“Security for the CICS Web
support” on page 93

YES / NO

Decide on the URL format that you want
to use for your applications to gain

access to CICS services.
“URL format” on page 29 YES / NO

A user-replaceable program known as
the analyzer interprets incoming requests

and is required for CICS Web support.
You can write your own analyzer or you

can use the CICS supplied analyzer
DFHWBADX.

“Chapter 7. Writing an
analyzer for CICS Web

support” on page 45
YES / NO

A converter program may be required to
incorporate existing business logic into

your Web application.

“Chapter 8. Writing a
converter” on page 51

YES / NO

Decide whether to use the
communication area method or EXEC

CICS WEB commands in your
applications.

“Chapter 12. Writing CICS
programs to process HTTP

requests” on page 79
YES / NO

For CICS transactions that use BMS,
decide what customization of the HTML

output is necessary.

“Chapter 11. Creating
HTML templates from BMS

definitions” on page 67
YES / NO

© Copyright IBM Corp. 1994, 2000 27

Task See... Task completed?

Decide what client and server codepages
are to be used.

“Code page considerations
for Web API applications”

on page 47,“Code page
considerations for Web

commarea applications” on
page 48,“Defining a
conversion table” on

page 36, and “Appendix I.
HTML coded character

sets” on page 201

YES / NO

If you use HTML templates or
DOCTEMPLATEs, decide where they are

to be stored.

“DOCTEMPLATE
definitions” on page 32

YES / NO

If you are invoking CICS transactions,
decide how long CICS should wait

before deleting non-active resources.

“System initialization
parameters” on page 31

YES / NO

Prerequisites for using CICS Web support
This section describes the software requirements for using CICS Web support.

OS/390
The following must be installed on the OS/390 system:
v OS/390 eNetwork Communications Server Version 3.2.0 or above. Ports

belonging to OS/390 eNetwork Communications Server must be made available
for use by the CICS region involved.

v Language Environment. This provides the run-time libraries that are a
prerequisite for running CICS Web support.

The CICS region user ID must have an OS/390 UNIX System Services segment if it
is to use CICS Web support.

CICS
CICS must be set up for Language Environment support, as described in the CICS
System Definition Guide.

Note: OS/390 eNetwork Communications Server CICS Sockets is not a
prerequisite for CICS Web support.

OS/390 eNetwork Communications Server
Ports belonging to OS/390 eNetwork Communications Server must be made
available for use by the CICS region involved.

New port numbers below 1024 must be defined to UNIX System Services.

There are no prerequisites for running the CICS Web support.

28 CICS TS for OS/390: CICS Internet Guide

|

|

|

|

|
|
|

|
|

|
|

|

|
|

|
|

|

|
|

|

|

URL format
v If requests are received by CICS Web support, the decision about URLs will

affect the specification of the analyzer. “The default analyzer” on page 48
describes the conventions accepted by the default analyzer supplied with CICS
Web support.

v If HTTP requests are from the IBM WebSphere Application Server for OS/390,
the decision about URLs will affect the configuration statements that you supply
to the IBM WebSphere Application Server for OS/390. “Chapter 6. The CICS
WebServer Plugin” on page 41 describes the mapping of URLs from browsers
into CICS transaction processing services.

v If the requests are from other callers of the CICS business logic interface, you
must decide for yourself what the caller must supply to request CICS transaction
processing services. “Appendix A. Reference information for DFHWBBLI” on
page 159 describes the communication area that callers must supply, and
explains what the CICS business logic interface does with its input.

Operations tasks
v You can control the operation of CICS Web support by using CEMT or CPSM for

the following resource types:
– TCPIP
– TCPIPSERVICE
– WEB

and CEDA for these resource types:
– TCPIPSERVICE
– DOCTEMPLATE

See the CICS Resource Definition Guide and the CICS Supplied Transactions for further
information on these commands.

Chapter 4. Planning for CICS Web support 29

|
|
|
|
|

|
|
|

|

30 CICS TS for OS/390: CICS Internet Guide

Chapter 5. Configuring CICS Web support

This chapter explains how to configure CICS Web support. Table 1 is a checklist of
what you need to do.

Table 1. Configuring CICS Web support

Task See... Task completed?

Specify the appropriate
system initialization (SIT)

parameters.

“System initialization
parameters”

YES / NO

Create the necessary
resource definitions.

“Defining resources to CICS” on
page 32

YES / NO

Reserve ports for CICS Web
support

“Reserving ports for CICS Web
support” on page 38

YES / NO

Specify a name server
(optional).

“Specifying a name server” on
page 38

YES / NO

Enable lightpen support
(optional).

“Enabling lightpen support” on
page 38

YES / NO

Run the sample application
to test CICS Web support.

“Running the sample
application” on page 39

YES / NO

System initialization parameters
CICS Web support is controlled initially by system initialization parameters. When
CICS is running, you can make changes using CEMT and CEDA. There are four
CICS system initialization parameters relating to CICS Web support:
v If you are using Web 3270 support, you can use the WEBDELAY parameter to

fix:
– The length of time, in minutes, after which a Web task and its associated data

is marked for deletion if no activity takes place on it.
– The frequency, in minutes, with which the garbage collection transaction

CWBG is run to delete the marked tasks and their data.
v The TCPIP parameter specifies whether CICS TCPIP services are to be activated

at CICS startup. The default is NO, meaning that HTTP and IIOP services
cannot be enabled, and you cannot use any TCPIPSERVICE resources defined
with CEDA.. If TCPIP is set to YES, HTTP and IIOP services can be enabled and
can then process work.

v You are recommended to migrate any existing TST macros to RDO and specify
TST=NO in the system initialization table. If you have an assembled temporary
storage table (TST) that does not specify MIGRATE=YES and that has not been
migrated to RDO, message DFHAM4895 is issued during CICS initialization.
This means that the installation of the default TSMODEL has failed, and CICS
Web support will use auxiliary temporary storage.

v If you intend to use secure sockets layer (SSL), you must use:
– the ENCRYPTION parameter to specify the level of encryption you want to

use for TCP/IP connections using the SSL.
– the KEYFILE parameter to specify the key database.

See the CICS System Definition Guide for details of system initialization parameters.

© Copyright IBM Corp. 1994, 2000 31

#

##

###

#
#
#

#
##

#
#
#
##

#
#
#
##

#
#
#
##

#
#
#
##

#
#
#
##

#

#

#
#
#
#
#

|
|
|
|
|
|

Defining resources to CICS
This section describes the resources needed to configure CICS Web support. It
contains these topics:
v “CICS supplied resource definitions”
v “DOCTEMPLATE definitions”
v “TCPIPSERVICE definitions” on page 34
v “TRANSACTION definitions for extra alias transactions” on page 34
v “PROGRAM definitions for user-replaceable programs” on page 35
v “Setting up a PDS for the template manager” on page 35
v “Defining a conversion table” on page 36

CICS supplied resource definitions
CICS Web support provides an RDO group defining the CICS resources used by
the interface. The following definitions are in the locked group DFHWEB:
v Transactions required by CICS Web support (for example, CWBA and CWXN)
v Programs supplied with the CICS Web support
v The CICS Web support transient data queue for messages, CWBO
v A default TS queue model definition for DFHWEB. Note that because this is a

model definition, it is subject to the rules governing the use of TS models in
general. See the CICS Transaction Server for OS/390 Release Guide for details. If this
definition fails to install because of a non-migrated TST that does not specify
MIGRATE=YES, CICS will use auxiliary temporary storage.

To change these definitions, you must copy them to your own RDO group and
modify them there.

Sample CICS Web TCPIPSERVICE definitions are provided in the locked group
DFH$SOT. To change these definitions, you must copy them to your own group
and change them there.

The group DFH$WBSN contains the resource definitions for the security sample
programs described in “Sample programs for security” on page 94.

DOCTEMPLATE definitions
DOCTEMPLATE definitions allow you to perform variable substitution on
documents in a manner similar to that done by BMS for 3270 screens. Templates
can contain HTML, or binary data such as images. The template can reside in any
of the following places, and the data within it will be retrieved whenever a call is
made for the template by means of an EXEC CICS DOCUMENT CREATE or EXEC
CICS DOCUMENT INSERT command:
v MVS partitioned data set.
v CICS auxiliary temporary storage.
v CICS extrapartition transient data.
v CICS load module.
v CICS file.
v Exit program.

See the CICS Resource Definition Guide for details of how to define a
DOCTEMPLATE. The CICS Application Programming Guide provides information
about programming with documents and the associated EXEC CICS DOCUMENT
commands.

32 CICS TS for OS/390: CICS Internet Guide

|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

MVS partitioned data set
You can use ISPF to create the templates as members of this data set. The record
format can be FB (fixed blocked), VB (variable blocked), or U (undefined). The
templates can contain sequence numbers as follows:
v VB format: the sequence numbers must be in record positions 1 through 8.
v FB format, and LRECL 80: the sequence numbers must be in record positions 73

through 80.

In any other case, there must be no sequence numbers in the records. The template
manager decides whether there are sequence numbers by looking at the first
logical record of a member of the PDS, so members that are only partially
sequenced might be interpreted incorrectly. The data set must be defined in a DD
statementin the CICS JCL. The default DD name is DFHHTML. Multiple data sets
can be concatenated on this statement as long as they have the same record format
and LRECL length.

Whenever you change the contents of a template in a PDS, you must re-install its
associated DOCTEMPLATE definition; this lets CICS know that it must load a new
copy of the template.

To allocate a PDS containing templates to a specific DD name in order to install
templates from it, you can use the ADYN sample transaction. First install the
DFH$UTIL group, which contains ADYN and its related programs, then run
ADYN:
ADYN
ALLOC DDNAME(ddname) DATASET('template-pds') STATUS(SHR)

where ddname is the DDname specified in the DOCTEMPLATE definition, and
template-pds is the name of the PDS containing the template to be installed. For
further information on installing ADYN, see the CICS Customization Guide.

CICS temporary storage
Define one TSQUEUE for each template. The document handler domain returns an
error if a request for a template is made to a non-existent TSQUEUE.

CICS transient data
Define an extrapartition TDQUEUE for each template. If you use an intrapartition
transient data queue, your data is lost as soon as it has been read. If you use an
extrapartition data queue, you must reset the queue after reading it.

CICS load module
Compile and link-edit a data-only load module. For example, an Assembler CSECT
could contain a PROLOG containing your own control information, an ENTRY
statement, any number of DC statements containing the HTML you want to output
(you must put your own linefeeds in), and an END statement. CICS assumes that
the entry point of the load module delimits the start of the template.

CICS file
This can be any CICS-controlled file.

Exit program
This is called whenever a request is made for the template. CICS passes a
commarea to the exit program which is mapped by the following copybooks:
v DFHDHTXD (Assembler)
v DFHDHTXH (C)
v DFHDHTXL (PL/I)
v DFHDHTXO (COBOL)

Chapter 5. Configuring CICS Web support 33

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

The commarea contains the address (dhtx_buffer_ptr) and length
(dhtx_buffer_len) of a CICS-supplied buffer in which the EXITPGM must return
the template. The actual length of the template must be returned in
dhtx_template_len. If the template to be returned is longer than dhtx_buffer_len,
the template must be truncated to length dhtx_buffer_len and the EXITPGM must
set the length required in dhtx_template_len. The EXITPGM is then called again
with a larger buffer.

TCPIPSERVICE definitions
For HTTP requests to be submitted directly to CICS, you need one or more
TCPIPSERVICE resources to be installed.

The TCPIPSERVICE definition allows you to define which TCP/IP services are to
use CICS internal Sockets support. The internal CICS services that can be defined
are CICS Web support and IIOP.

The TCPIPSERVICE definition allows you to manage these internal CICS
interfaces, with CICS listening on multiple ports, with different flavors of CICS
Web or IIOP support on different ports.

You must install and open a TCPIPSERVICE definition for each port on which
CICS is to listen for incoming HTTP requests. You can create your own
TCPIPSERVICE definition, or copy the HTTPNSSL or HTTPSSL definitions from
the DFH$SOT group into your own group and modify them to meet your system
requirements.

The important parameters for a Web TCPIPSERVICE are:
v The STATUS must be OPEN
v The TRANSACTION to be attached by CICS when new work arrives on the

specified port must be CWXN or a user-defined alias of CWXN, which must
invoke DFHWBXN as the initial program.

v The port on which CICS is to listen
v The backlog of requests to be processed which OS/390 TCP/IP is to allow
v The name of the analyzer user-replaceable module to be driven for

TCPIPSERVICE
v An IP address on which CICS is to listen for incoming requests. If none is

specified, CICS listens on all addresses used by OS/390 TCP/IP in the OS/390
region on which CICS is running.

v A TS queue name. This is the 6–character prefix of TS queue names generated
by CICS Web support when writing inbound and outbound data to temporary
storage. This prefix should correspond to the prefix defined by an installed TS
model definition. If no prefix is supplied on the definitions, the default name of
DFHWEB is used to generate TS queue names.

For more information on defining Web TCPIPSERVICEs, see the CICS Resource
Definition Guide.

TRANSACTION definitions for extra alias transactions
Two CICS transactions are provided with CICS Web support:
v Web attach transaction (CWXN). This CICS-supplied transaction invokes the

analyzer program. It establishes the context in which the alias transaction CWBA
is to run, and issues the appropriate ATTACH command. When CWXN is
defined as the TRANSACTION on the TCPIPSERVICE definition, it is started by

34 CICS TS for OS/390: CICS Internet Guide

|
|
|
|
|
|
|

|

|
|

|
|
|

|
|
|

|
|
|
|
|

|

|

|
|
|

|

|

|
|

|
|
|

|
|
|
|
|

|
|

the sockets listener task CSOL when a new connection request is received on the
port specified on the TCPIPSERVICE definition. If the HTTP 1.0 Keep-Alive
header has been sent by the Web browser, CWXN remains in the system after
the alias has been attached, and attaches new alias transactions to process
further HTTP requests received from browser. If Keep-Alive has not been
specified, CWXN terminates after the alias has been attached.

v Alias transaction CWBA. An alias transaction is a CICS-supplied transaction that
is started by the Web attach transaction (CWXN) to process a single request.
Many instances of the alias transaction can be active in a CICS system at the
same time, each processing a different request. The alias transaction runs the
CICS-supplied alias program that calls the CICS program. If you wish, you may
set up additional transaction definitions for alias transactions, each using the
CICS-supplied alias program.

You may want to use other alias transaction names for various reasons:
v Auditing
v Resource and command checking
v Allocating initiation priorities
v Allocating database plan selection
v Assigning different runaway values to different CICS programs

If you do want to use other alias transaction names, you must copy the definition
of CWBA, making the necessary changes. The definition of CWBA is as follows:
DEFINE TRANSACTION(CWBA) GROUP(DFHWEB)

PROGRAM(DFHWBA) TWASIZE(0)
PROFILE(DFHCICST) STATUS(ENABLED)
TASKDATALOC(BELOW) TASKDATAKEY(USER)
RUNAWAY(SYSTEM) SHUTDOWN(ENABLED)
PRIORITY(1) TRANCLASS(DFHTCL00)
DTIMOUT(NO) INDOUBT(BACKOUT)
SPURGE(YES) TPURGE(NO)
RESSEC(NO) CMDSEC(NO)

You cannot change the program name in this definition. Only the CICS-supplied
alias program DFHWBA can be used. All the extra alias transactions must be local
transactions.

PROGRAM definitions for user-replaceable programs
Each incoming request is serviced by a CICS program that provides transaction
processing services, and by two other user-replaceable programs, an analyzer
(required) and a converter (optional).

If you are not using autoinstall for programs, you must define all the
user-replaceable programs you use. If you are using autoinstall for programs, you
do not need to define the converters. In any case analyzers must be defined with
EXECKEY(CICS). All the user-replaceable programs must be local to the system in
which CICS Web support is operating.

Setting up a PDS for the template manager
If you use the HTML template manager for constructing HTTP responses, you may
provide an MVS partitioned data set to hold the templates. You can use ISPF to
create the templates as members of this data set. The record format can be FB
(fixed blocked), VB (variable blocked), or U (undefined). The templates can contain
sequence numbers as follows:
v VB format: the sequence numbers must be in record positions 1 through 8.

Chapter 5. Configuring CICS Web support 35

v FB format, and LRECL 80: the sequence numbers must be in record positions 73
through 80.

In any other case, there must be no sequence numbers in the records. The template
manager decides whether there are sequence numbers by looking at the first
logical record of a member of the PDS, so members that are only partially
sequenced might be interpreted incorrectly.

Any DDname can be used to specify PDS member templates, as specified in the
DOCTEMPLATE definition. If you are using the template manager (DFHWBTL) or
the Web bridge (DFHWBTTA), references to templates that are not defined and
installed as DOCTEMPLATE definitions are resolved as members of the library
specified in DFHHTML. Multiple data sets can be concatenated on the DDname
statement.

Defining a conversion table
If you have commarea-style Web applications which do not use the Web API, or
you are using CICS Web support to run a terminal-oriented transaction, you need
to create or modify a DFHCNV table for data conversion to allow CICS to deal
with incoming requests. The use of the DFHCNV macro for defining the table is
described in CICS Family: Communicating from CICS on System/390. There are two
kinds of data conversion performed in CICS Web support:
v Conversion of the HTTP header information. This information is always

transmitted as ASCII data using the ISO 8859-1 (Latin-1) character set. This is the
base character set for HTTP and HTML. This data has to be translated into
EBCDIC. The conversion template name that the server controller supplies to the
DFHCCNV program, which does the translation, is DFHWBHH.

v Conversion of the HTTP user data. This information is transmitted in the code
page of the HTTP client, and can be translated into EBCDIC if required. The
conversion template name is supplied by the analyzer. If the request is not an
HTTP request, all the request is translated using the name supplied by the
analyzer.

For data conversion of the HTTP headers, you need to create a conversion
template as follows:
DFHCNV TYPE=ENTRY, *

RTYPE=PC, *
CLINTCP=8859-1, *
SRVERCP=037, *
RNAME=DFHWBHH, *
USREXIT=NO

DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=32767, *

LAST=YES

In the TYPE=ENTRY macro, the RNAME parameter must be DFHWBHH. The
code page specifications CLINTCP and SRVERCP will get the HTTP request
headers translated from ASCII to EBCDIC, and the HTTP response headers
translated from EBCDIC to ASCII. The TYPE=SELECT and TYPE=FIELD macros
must be coded exactly as shown.

For each name that the analyzer might specify for translating user data in the
request from the client code page into EBCDIC, and for translating the user data in
the response from EBCDIC to the client code page, you need to create a conversion
template as follows:

36 CICS TS for OS/390: CICS Internet Guide

|
|
|
|
|
|

#
#

#
#
#
#
#
#
#
#
#

DFHCNV TYPE=ENTRY, *
RTYPE=PC, *
CLINTCP=8859-1, *
SRVERCP=037, *
RNAME=DFHWBUD, *
USREXIT=NO

DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=32767, *

LAST=YES

In the TYPE=ENTRY macro, the CLINTCP parameter must specify the code page
of the client, and the RNAME parameter must specify the name that the analyzer
will supply. The sample entry above supports translation of user data in the
request from ASCII to EBCDIC, and of the user data in the response from EBCDIC
to ASCII, for the default analyzer, which uses the name DFHWBUD. You may code
the TYPE=SELECT and TYPE=FIELD macros in any way that is appropriate to the
format of the user data that the client sends.

You may use the TYPE=INITIAL macro to set defaults for some of the values
specified in these samples, as explained in CICS Family: Communicating from CICS
on System/390.

The following sample shows a complete definition of the conversion templates for
use with a Web browser using a Japanese double-byte character set. The code page
932 is one of several code pages for Japanese Web browsers, and 931 is one of the
corresponding System/390® code pages. This sample can be used with the default
analyzer.

DFHCNV TYPE=INITIAL
DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=DFHWBHH,USREXIT=NO, *

SRVERCP=037,CLINTCP=8859-1
DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=32767, *

LAST=YES
DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=DFHWBUD,USREXIT=NO, *

CLINTCP=932,SRVERCP=931
DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=32767, *

LAST=YES
DFHCNV TYPE=FINAL
END

A sample DFHCNV table, DFHCNVSW, is provided.

If the HTTP response being sent to the browser contains newline characters (x’15’)
instead of carriage return and linefeeds (x’0D25’)’, they are not interpreted
correctly, and unwanted characters appear on the browser. To correct this you must
code a user-defined conversion table to convert the EBCDIC newline (x’15’) to an
ASCII linefeed (x’0A’). The process of defining a user-defined conversion table is
described in CICS Family: Communicating from CICS on System/390. A sample set of
conversion templates and user-defined conversion tables that correct this problem
with newline characters for CLINTCP=8859–1 and SRVERCP=037 are provided in
DFHCNVWú.

Configuring the OS/390 eNetwork Communications Server
This section describes the changes you must make to the OS/390 eNetwork
Communications Server as part of configuring CICS Web support.

Chapter 5. Configuring CICS Web support 37

#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#

|

|
|

Reserving ports for CICS Web support
You are recommended to reserve as many ports as you need for CICS Web
support, and to ensure that CICS Web support has exclusive use of those ports.

Application programmers may use port numbers from 256 to 32 767 for
nonstandard servers. For MVS, new port numbers below 1024 must be defined to
UNIX System Services.

To reserve the port on which CICS Web support listens for incoming client
requests, you can specify the PORT option or the CICS jobname in the
tcpip.PROFILE.TCPIP data set, as described in the OS/390 eNetwork Communications
Server: IP Configuration Guide.

The maximum length of any queue of requests for a TCP/IP port on which a
program is listening is controlled by the SOMAXCONN parameter in the
tcpip.PROFILE.TCPIP data set. CICS listens on a TCP/IP port, so you must
coordinate the value of this parameter with the value chosen for the Backlog
parameter in the TCPIPSERVICE definition.

Specifying a name server
If you want full CICS function (that is, if you want to use DFH$WBSN and
DFHWBENV), CICS Web support needs to access a name server during its
operation. If the default name server is not suitable, you can specify another one
by providing its address in a file allocated to the SYSTCPD DD statement in your
CICS JCL (this sets the RESOLVER_CONFIG environment variable to the MVS
dataset you have specified). The contents of this file are described in the OS/390
eNetwork Communications Server: IP Configuration Guide. You must specify at least
the following:

NSINTERADDR n.n.n.n

where n.n.n.n is the dotted decimal address of the name server.

If the name server lookup fails when CICS runs:
v The security sample program DFH$WBSN does not execute correctly.
v The environment variables program DFHWBENV does not return a connection

name in SERVER_NAME, but the dotted decimal address of the connection, and
it also returns a null string for REMOTE_HOST.

Enabling lightpen support
To enable selector pen processing over the CICS Web support 3270 bridge, you
must define a bridge facility with lightpen support enabled. To do this, follow
these steps:
1. Copy the following definitions to a new group. Unless all applications running

on the CICS system require lightpen support, you should also rename both
definitions:
v The CICS-supplied bridge facility CBRF, in group DFHTERM.
v Its default TYPETERM, DFHLU2, in group DFHTYPE.

2. In the TYPETERM definition, change the LIGHTPEN option under ″DEVICE
PROPERTIES″ to YES.

3. In the TERMINAL definition, change the TYPETERM parameter to point to the
new TYPETERM.

38 CICS TS for OS/390: CICS Internet Guide

|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|

|

|

|
|
|

|
#

#
#
#

#
#
#

#

#

#
#

#
#

4. Install the definitions in the CICS region.
5. If you have created a new bridge facility definition, update the PROFILE

definition of the 3270 transaction which you are going to run with CICS Web
support, so that the bridge facility will be modelled on the new
TERMINAL/TYPETERM definition:
a. Identify the PROFILE that the transaction uses by using CEDA to view the

PROFILE parameter of the TRANSACTION definition.
b. If the profile is a CICS-supplied profile, make a copy of it to your own

group and rename it.
c. Alter the new PROFILE and enter the name of your new bridge facility in

the FACILITYLIKE parameter.
d. Alter your TRANSACTION definition to use the new PROFILE definition.

Running the sample application
A sample application DFH$WB1A is provided to help you test the operation of
CICS Web support. From a suitable Web browser, enter a URL that connects to
CICS Web support with absolute path /CICS/CWBA/DFH$WB1A. The response displays
the message “DFH$WB1A on system xxxxxxxx successfully invoked through the
CICS Web support.” with xxxxxxxx replaced by the application ID of the CICS
system in which CICS Web support is running.

Chapter 5. Configuring CICS Web support 39

#

#
#
#
#

#
#

#
#

#
#

#

#

|

40 CICS TS for OS/390: CICS Internet Guide

Chapter 6. The CICS WebServer Plugin

This supplied plugin enables a passthrough mechanism from the IBM WebSphere
Application Server for OS/390 through the EXCI and into CICS Web support,
using the CICS business logic interface.

Configuring the IBM WebSphere Application Server for OS/390
You have to change the configuration information in the IBM WebSphere
Application Server for OS/390 if it is to use the CICS business logic interface to
provide its service. Webmaster’s Guide Version 2 Release 1 gives details of the
configuration statements.

You can use the following procedure:
1. You must set up CICS as follows:

v Initialize the CICS region with ISC=YES
v Install the RDO group DFHWEB.
v Define a generic connection for EXCI (for example, by installing the sample

group DFH$EXCI).
v Ensure that IRC is open.

2. Define the CICSTS13.CICS.DFHDLL1 load library and
CICSTS13.CICS.DFHEXCI to RACF® Program Control. RACF Program control
notes the volume serial number of the volume containing the library, and does
not allow the use of a different volume. If you later move the load library or
the CICSTS13.CICS.DFHEXCI library to another volume, you must redefine it
to RACF Program Control.

3. Add the CICSTS13.CICS.DFHDLL1 data set and the CICSTS13.CICS.DFHEXCI
library to the STEPLIB concatenation in the JCL for the IBM WebSphere
Application Server for OS/390.

4. Use the following command in the directory that contains the httpd.conf file for
the IBM WebSphere Application Server for OS/390:
ln -e DFHWBAPI dfhwbapi.so

When it is used in the STEPLIB concatenation, this command establishes a link
from the IBM WebSphere Application Server for OS/390‘s home directory to
the DLL dfhwbapi.so in member DFHWBAPI in the CICSTS13.CICS.DFHDLL1
library.

5. Add one or more directives of the following format to the httpd.conf file:
Service /sourceurl/* /home/dfhwbapi.so:DFHService/targeturl/*

where the values are:

home is the directory that contains the httpd.conf file for the IBM WebSphere
Application Server for OS/390.

sourceurl
is a string of characters that selects an incoming URL to be processed
by DFHWBAPI. The asterisk following it is a wildcard string
representing the remaining characters of the incoming URL. sourceurl
can be in any format, so details such as the applid and the transaction
can be hidden from end users.

© Copyright IBM Corp. 1994, 2000 41

|

|

|
|
|

|
|

|
|
|
|

|

|

|

|

|
|

|

|
|
|
|
|
|

|
|
|

|
|

|

|
|
|
|

|

|

|

||
|

|
|
|
|
|
|

targeturl
targeturl is a string of characters that will be analyzed as the URL by
DFHWBAPI after the wildcard characters are appended. The target
URL must contain the applid of the target CICS region as its first
subfield, which must be followed by the standard fields for a CICS
URL, as described in “The default analyzer” on page 48. This means
that the target URL, after substitution of the wildcard, must be in the
format:
/applid/converter/tran/program/filename

where the values are:

applid the application id of the target CICS region

converter
the name of the converter program to be used in the CICS
region, or CICS if no converter is to be used.

tran the transaction to be executed in the CICS region. Because the
transaction is the target of an EXCI request, it should not be the
Web alias transaction CWBA, but should be a mirror
transaction, such as CSM3. The transaction receives targeturl/*,
not sourceurl/*, as the incoming URL.

program
the name of the program to be executed in the CICS region.

filename
is any further information that will be examined by program.

If targeturl is omitted, the incoming URL is passed directly to
DFHWBAPI and must therefore be in the format just described. You
can use the mapping from sourceurl to targeturl to change the URL
format from the standard one expected by CICS into the format
expected by DFHWBAPI. Use the following directive to do this:
Service /cics/cwba/* /home/dfhwbapi.so:DFHService/applid/CICS/CSM3/*

6. Some of the CICS-supplied template definitions for CICS-supplied transactions
contain references to graphics files in the format:
/dfhwbimg/filename

where DFHWBIMG is a special-purpose CICS-supplied converter program used
by the CICS Web bridge. If you want such graphics files to be displayed
correctly, you should include a directive as follows:
Service /dfhwbimg/* /home/dfhwbapi.so:DFHService/applid/DFHWBIMG/CSM3/*

where applid specifies the CICS system that will supply the graphics files (this
may not be the same CICS system that does the bridge work).

If you are accessing CICS Web application using both CICS Web support and the
IBM WebSphere Application Server for OS/390, you must specify the same host
codepage for both. The default host codepagefor CICS is IBM-037, but for the
WebSphere server it is IBM-1047. You can change the default codepage for the
WebSphere server by using the DefaultFsCp configuration directive. For example:
DefaultFsCp

To change the default codepage used by CICS, specify it in the DOCCODEPAGE
system initialization parameter (for example, DOCCODEPAGE=1047). Documents

42 CICS TS for OS/390: CICS Internet Guide

|
|
|
|
|
|
|
|

|

|

||

|
|
|

||
|
|
|
|

|
|

|
|

|
|
|
|
|

|

|
|

|

|
|
|

|

|
|

|
|
|
|
|

|

|
|

and document fragments referenced using this default must be encoded in the
specified codepage. In particular, if you are using document templates generated
from BMS map definitions, you should use a template customization macro to
change the codepage in which the templates are generated. Use the CODEPAGE
parameter of the DFHMDX macro to specify this. For example:
DFHMDX MAPSET=*,MAP=*,CODEPAGE=1047

For more information on customizing templates generated from BMS map
definitions, see “Chapter 11. Creating HTML templates from BMS definitions” on
page 67.

Chapter 6. The CICS WebServer Plugin 43

|
|
|
|
|

|

|
|
|

44 CICS TS for OS/390: CICS Internet Guide

Chapter 7. Writing an analyzer for CICS Web support

This chapter describes the analyzer program. It contains these sections:
v “The analyzer”
v “Inputs”
v “Outputs” on page 46
v “Processing” on page 46
v “Code page considerations for Web API applications” on page 47
v “Code page considerations for Web commarea applications” on page 48
v “Performance considerations” on page 48
v “The default analyzer” on page 48

The analyzer
The analyzer is a user-replaceable program for the CICS Web support. It interprets
the incoming request and specifies the CICS resources that are needed to provide
the requested service.

You must supply an analyzer, or use the IBM-supplied default analyzer
DFHWBADX.

You can write your analyzer in Assembler, C, COBOL, or PL/I.
Language-dependent header files, include files, and copy books are described in
“Appendix B. Reference information for DFHWBADX” on page 167.

There is an analyzer for each CICS Web support TCPIPSERVICE. The place of the
analyzer in CICS Web support is illustrated in Figure 9 on page 22. The analyzer is
expected to use information in the incoming request to decide what CICS resources
are needed to process the request. It can specify:
v The name of the CICS program that is to process the request.
v The name of the converter that is to process the request.
v The name of the alias transaction that is to process the request.
v A user ID or terminal to be associated with the alias transaction.
v Any code page conversion that is needed for user data.
v A modified value for the user data length.

For reference information for the analyzer, see “Appendix B. Reference information
for DFHWBADX” on page 167.

Inputs
The analyzer input includes:
v An eye-catcher for an analyzer parameter list
v The IP address of the client
v The IP address of the server
v An indicator of whether the request is an HTTP request

The analyzer input also includes the incoming request. If the request is an HTTP
request, various parts of the request are identified by pointers and lengths to make
processing easier:
v Version

© Copyright IBM Corp. 1994, 2000 45

|

v Method
v Absolute path
v Request header
v User data

(The version, method, absolute path, and request header have already been
translated into EBCDIC by CICS, but the user data is still in the client code page.)

If the analyzer is for a connection specified as SSL(CLIENTAUTH) in the
TCPIPSERVICE definition, a userid derived from the client certificate may be
provided as an input.

If the request is not an HTTP request, the input includes the entire request in the
client code page. The pointers and lengths apply only to the communication area
containing the first 32767 bytes of the incoming requests.

Outputs
The analyzer must provide the following output:
v A response code

It may also provide the following outputs:
v The name of the CICS program that is to service the request. If the request is for

a terminal-oriented transaction, the program name must be DFHWBTTA.
v The conversion template name for code page translation of the user data
v The transaction ID of the alias transaction that is to service the request
v The name of the converter that is to be used to service the request
v A user token that is to be passed to the converter functions
v A modified value for the user data length.
v If the userid is not changed by the analyzer, the userid passed on input is used,

if one was specified. If no userid is derived from anywhere, the CICS default
userid is used.

v A reason code

Processing
The inputs and outputs are presented in a CICS communication area. The analyzer
can use any of its inputs to determine the CICS resources that are to be used to
service the request, and the other outputs it might wish to supply.

To impose rules about which clients can use which services, you can use the input
client IP address and the contents of the request to decide if this client is allowed
to use this service. You can reject a client request by setting the output response to
a value other than URP_OK.

You can specify a different analyzer for each TCPIPSERVICE, allowing the port
number of the TCPIPSERVICE to determine which CICS resources are to process
the request.

If the code page of the client is not an EBCDIC code page, you can set the output
conversion template name. See “Code page considerations for Web commarea
applications” on page 48.

If the request can be satisfied in the analyzer, you do not need to set the converter
name or the CICS program name.

46 CICS TS for OS/390: CICS Internet Guide

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

If the request can be satisfied by the analyzer and a converter, you must set the
converter name, but not the CICS program name.

If you need a CICS program to service the request, and the program name can be
determined by the analyzer, you should set the output CICS program name. (If
you do not set it here, you must specify the use of a converter, and the converter
Decode function must set the program name.)

If the selected CICS program needs a converter, you must set the output converter
name.

If the service is to be provided under a user-defined alias transaction, you must set
the output transaction name.

To pass any other information to the converter functions, you can set an output
user token. This token could be a pointer to storage acquired with the SHARED
option by the analyzer to be freed by the converter. You may also make changes to
the contents of the request, and these will be visible to Decode and to the CICS
program. Any changes to the contents of the request held in the communication
area are not reflected in the data returned by the EXEC CICS WEB commands.

If you want to use EDF to test your CICS programs, analyzers, or converters, you
should use the CEDX transaction. The use of EDF is described in “Using EDF” on
page 101.

You can use various return codes and reason codes to report errors in the inputs
and processing. If the request is an HTTP request, some of the responses are
associated with architected HTTP responses. For details consult “Appendix B.
Reference information for DFHWBADX” on page 167. If you use any response
other than URP_OK, or if you use any reason codes, you should document the
responses and reason codes to help with problem determination.

If the request is a non-HTTP request, and you detect that there is more data to be
received, you can use the URP_EXCEPTION response to request CICS to receive
more data, and add it to that already in the input area. Web attach processing then
calls the analyzer again.

Code page considerations for Web API applications
If you are using the EXEC CICS WEB and EXEC CICS DOCUMENT commands,
you can specify the host and client codepages on the individual commands; these
override any DFHCNV key allocated to this transaction by the analyzer.

For EXEC CICS WEB RECEIVE, the host codepage must be a server codepage
supported by the CICS DFHCNV mechanism, and must therefore be set to one of
the server codepage values listed in CICS Family: Communicating from CICS on
System/390.

The client codepage must be one of those listed in “Appendix I. HTML coded
character sets” on page 201. You can specify either the IANA value or the IBM
CCSID value, as CICS performs mapping between the two.

If there is an error during the processing of an HTTP request, and the Web error
program is invoked, the DFHCNV key specified by the analyzer is used to
determine what codepage conversion should be performed on the error response
returned to the Web browser.

Chapter 7. Writing an analyzer for CICS Web support 47

|
|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

Code page considerations for Web commarea applications
When designing your analyzer, if you are not using the HTML base code page ISO
8859-1 (Latin-1) for user data, you need to specify the conversion template for the
code pages used. You must perform the following steps:
1. Identify the character sets that HTTP clients will be using. All the browsers that

have access to the CICS Web support might use the same code page, or you
might be able to tell the code page from the IP address of the client. It might be
possible to get the browsers to create URLs that include an indicator of the
code page. The HTTP request headers Content-Type and Content-Language
might contain useful information, but they are not used consistently by all web
browsers.

2. Use CICS Family: Communicating from CICS on System/390 to decide the kind of
conversion to be performed, and add a conversion template to the DFHCNV
table. For nonstandard conversion you need to create or modify the DFHUCNV
program.

3. Write an analyzer that decides what data conversion is needed, and sets the
name of the conversion template in the wbra_dfhcnv_key parameter.

If there is an error during the processing of an HTTP request, and the Web error
program is invoked, the DFHCNV key specified by the analyzer is used to
determine what codepage conversion should be performed on the error response
returned to the Web browser.

Performance considerations
You should use performance-efficient techniques such as index tables to resolve the
relations between request and CICS resources, rather than performing I/O
operations. You should avoid allocating storage, since this can introduce processing
delays.

CICS HTTP persistent connections support means that sockets connections with
Web browsers can be kept open after the initial HTTP request has been processed.
This has a significant effect on the amount of processing required for each HTTP
request in the network, particularly where SSL is being used. To enable CICS
persistent connections support you must specify either NO or a numeric value for
the SOCKETCLOSE keyword on the relevant TCPIPSERVICE definition. Note that
CICS supports only the HTTP 1.0 Keep-Aliveimplementation of the persistent
connections, not the HTTP 1.1 implementation.

To optimize the amount of processing required to retrieve a DOCTEMPLATE, you
should consider storing the DOCTEMPLATEs inside CICS, rather than in an MVS
PDS. The most efficient method of storing DOCTEMPLATEs is as load modules,
but the advantages of fast retrieval need to be weighed against the amount of CICS
storage occupied by the template.

The default analyzer
DFHWBADX is the default analyzer for the CICS Web support. The source code
for the analyzer is supplied in various languages, and you can use it as the basis of
your own analyzer. The source files are as follows:
v DFHWBADX (Assembler)
v DFHWBAHX (C)
v DFHWBALX (PL/I)
v DFHWBAOX (COBOL)

48 CICS TS for OS/390: CICS Internet Guide

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

The default analyzer is written for HTTP requests in which the absolute path has
one of the following five forms:

/converter/alias/program?token
/converter/alias/program
/converter/alias/program/filename
/converter/alias/program/filename?token
/converter/alias/program/?token

The default analyzer links to the CICS-supplied utility DFHWBUN to unescape the
user data in the communication area passed to the analyzer.

The default analyzer checks the eye-catcher, and then interprets the contents of the
absolute path as follows:
v converter must be between 1 and 8 characters long. It is converted to uppercase

and interpreted as the name of the converter to be called by the alias, unless it
has the value “CICS”, in which case the converter name is set to nulls to show
that no converter is to be used.

v alias must be between 1 and 4 characters long. It is converted to uppercase and
interpreted as the transaction ID of the alias transaction to be used to service the
request.

v program must be between 1 and 8 characters long. It is converted to uppercase
and interpreted as the name of the CICS program that is to be used to service
the request.

v filename can be any length, but it must not begin with a slash (“/”) or contain a
question mark. It must be made up of characters allowed in URLs. It is ignored
by the analyzer, but is available to the converter or the CICS program.

v token, a user-modifiable field. The first eight bytes are interpreted as the user
token to be passed to the converter.

If program is DFHWBTTA, the filename is treated as the ID of a transaction to be
run using the 3270 bridge facility. See “Chapter 10. 3270 applications on the Web”
on page 59 for details of the interface to DFHWBTTA.

The default analyzer sets the conversion template name to DFHWBUD.

The default analyzer diagnoses various errors, and the meanings of its responses
and reason codes are described in “DFHWBADX responses and reason codes” on
page 171.

Chapter 7. Writing an analyzer for CICS Web support 49

|
|

|
|

50 CICS TS for OS/390: CICS Internet Guide

Chapter 8. Writing a converter

This chapter describes the converter. It contains the following sections:
v “The converter”
v “Writing a converter—general”
v “Writing a converter—Encode” on page 53

You might not need to write any converters. If the analyzer or the caller of the
CICS business logic interface indicates that a converter is not required, the first
32K bytes of the request is passed to the CICS program in its communication area.

You may write your converters in Assembler, C, COBOL, or PL/I.
Language-dependent header files, include files, and copy books are described in
“Appendix C. Reference information for the converter” on page 173.

The converter
You can have many converter programs in a CICS system to support the operation
of CICS Web support. The place of converters in CICS Web support is illustrated in
Figure 9 on page 22 and Figure 10 on page 24. The converter must run in the same
CICS region as the TCPIPSERVICE which receives the request. Each converter
must provide two functions:
v Decode is used before the CICS program is called. It can:

– Use the data from the Web browser to build the communication area in the
format expected by the CICS program.

– Supply the lengths of the input and output data in the CICS program
communication area.

– Perform administrative tasks related to the request.
v Encode is used after the CICS program has been called. It can:

– Use the data from the CICS program to build the HTTP response and HTTP
response headers.

– Perform administrative tasks related to the response.

Writing a converter—general
The converter provides Decode and Encode functions for processing a request.

There are some restrictions on what these functions can do when the converter is
called from a CICS business logic interface that was called in offset mode. These
are described below.

Inputs
The converter input includes:
v An indicator of the function (Decode or Encode) that is to be performed
v Parameters for the function, as described in later sections

Outputs
The converter output must include a response, and might include a reason code.
The outputs are described in more detail for each function.

© Copyright IBM Corp. 1994, 2000 51

|
|
|
|
|

|

|
|

|
|

|

|

|
|

|

|

Processing
The inputs and outputs are presented in a CICS communication area. On entry to
the converter, it should check the input field converter_function to see whether the
requested function is Decode or Encode. The rest of the processing depends on the
function requested.

Performance considerations
The converter is called from the alias transaction, or from the CICS business logic
interface, and therefore its functions can only affect the performance of a single
client request.

You should avoid operations that introduce processing delays. If a converter
function needs to allocate storage, it should use the NOSUSPEND option of EXEC
CICS GETMAIN. The efficiency of later processing can be improved if Decode sets
decode_input_data_len to the exact length of the data to be passed to the CICS
program, since this optimizes the use of storage and data transmission facilities.

Writing a converter—Decode
This section gives informal descriptions of the inputs and outputs of Decode, and
gives some hints about processing.

Inputs
The inputs to Decode include:
v An eye-catcher for a Decode parameter list
v The IP address of the client
v The name of the CICS program that is to service the request, if this was set by

the analyzer, or the CICS business logic interface
v A pointer to the buffer containing the request (perhaps modified by the

analyzer)
v The user token supplied by the analyzer, or by the caller of the CICS business

logic interface
v A counter giving the number of times Decode has been entered in the current

Web request. This is useful for loopback requests.

If the incoming request is an HTTP request, various parts of the request are
identified by pointers and lengths to make processing easier:
v Version
v Method
v Absolute path
v Request header
v User data

Outputs
Decode must set the following outputs:
v A response code
v The length of the communication area to be passed to the CICS program

It might also provide the following outputs.
v A pointer to the communication area to be passed to the CICS program, if this is

not the input communication area.
v The name of the CICS program that is to service the request.

52 CICS TS for OS/390: CICS Internet Guide

|
|

v The user token to be passed to Encode.
v A reason code.

Processing
The main purpose of Decode is to provide the communication area for the CICS
program.
v If your converter is running as part of the CICS Web support, or as part of the

CICS business logic interface in pointer mode, the communication area passed to
the target program can be the storage addressed by DECODE_DATA_PTR on
entry to Decode, or you can use EXEC CICS GETMAIN to get new storage, and
update DECODE_DATA_PTR to address the new storage. If
DECODE_DATA_PTR is altered to address another storage location, it is the
converter program’s responsibility to freemain the original storage.

v If your converter is running as part of the CICS business logic interface in offset
mode, the buffer must occupy the same storage as the input communication
area. In this case you must not use EXEC CICS GETMAIN to get new storage,
and you must not change the data pointer in the parameter list.

You can set the output for the length of the communication area you pass to the
CICS program, and you can set an output for the returned length if this is less
than the length to be passed to the CICS program.

You can use the input user token passed by the analyzer, and if this is a pointer,
you can use and update the information in the storage it addresses. You can pass
the same token on to Encode, or you can replace it with another token.

The CICS program name as set by the analyzer, or by the caller of the CICS
business logic interface, is available for your use, and you can change it. If the
program name has not been set already, you must set it here, or no CICS program
will be called.

You can use various return codes and reason codes to report errors in the inputs
and processing. If the request is an HTTP request, some of the responses and
reason codes are associated with architected HTTP responses. For details consult
“Appendix C. Reference information for the converter” on page 173. If you use any
response other than URP_OK, or if you use any reason codes, you should
document the responses and reason codes to help with problem determination.

However, if this occurrence of the decode converter is a loop back from the Encode
converter, these pointers and lengths are set to zero (0), DECODE_ DATA_PTR
points to the request data from ENCODE_DATA_PTR, and
DECODE_INPUT_DATA_LEN is the length in bytes of the data pointed to by
DECODE_DATA_PTR. The user token is the same as it was from the exit of the
Encode converter. On these secondary occurrences of the Decode converter, you
can still access the same information (using the WEB EXTRACT command) that the
first occurrence could access. You can detect whether this is a loopback request by
checking the value of DECODE_ENTRY_COUNT and ENCODE_ENTRY_COUNT.
Their value will be greater than 1 on a looped back request.

Writing a converter—Encode
This section gives informal descriptions of the inputs and outputs of Encode, and
gives some hints about processing.

Chapter 8. Writing a converter 53

#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#

Inputs
The inputs to Encode include:
v An eye-catcher for an Encode parameter list
v A pointer to the communication area returned by the CICS program, and its

length
v The user token created by the analyzer and passed by Decode

v A counter giving the number of times Encode has been entered in the current
Web request. This is useful for loopback requests.

Outputs
Encode must set the following outputs:
v A response code
v A pointer to the buffer containing the response to be sent to the client

It might also provide the following outputs.
v A reason code

Processing
The main purpose of Encode is to provide the response to be sent to the client.
You can use the HTML template manager to help you to construct the HTTP
response; see “Appendix D. Reference information for DFHWBTL” on page 183. On
exit from Encode, ENCODE_DATA_PTR must point to the buffer containing the
response. You must set the output response length, and you must put the data
length (response length plus 4) in the first word of the buffer.
v If your converter is running as part of the CICS Web support, or as part of the

CICS business logic interface in pointer mode, the HTTP response can occupy the
storage addressed by ENCODE_DATA_PTR on entry to Encode, or you can use
EXEC CICS GETMAIN to get new storage and update ENCODE_DATA_PTR to
point to the new storage. On exit from Encode, this new buffer must contain the
HTTP response in the format described above.
If the request being processed was received by a CICS Web TCPIPSERVICE, and
ENCODE_DATA_PTR has been altered to address another storage location, it is
the converter program’s responsibility to freemain the original storage. CICS
frees the storage addressed by ENCODE_DATA_PTR after the HTTP response
has been sent. If the request being processed was not received by a CICS Web
TCPIPSERVICE, it is the responsiblity of the caller of the CICS business logic
interface to free the buffer addressed by ENCODE_DATA_PTR (that is, the
address returned in field WBBL_OUTDATA_PTR minus 4).

v If your converter is running as part of the CICS business logic interface in offset
mode, the buffer must occupy the same storage as the communication area
returned by the CICS program. In this case you must not use EXEC CICS
GETMAIN to get new storage, and you must not change the data pointer in the
parameter list.

You can use the input user token passed by Decode, and, if this is a pointer, you
can use the information in the storage it addresses. If it is a pointer, you must use
EXEC CICS FREEMAIN to free the storage it addresses.

You can use various return codes and reason codes to report errors in the inputs
and processing. If the request is an HTTP request, some of the responses and
reason codes are associated with architected HTTP responses. For details consult
“Appendix C. Reference information for the converter” on page 173. If you use any

54 CICS TS for OS/390: CICS Internet Guide

|
|

#
#
#
#
#
#

#
#
#
#
#
#

#
#
#
#
#
#
#
#

#
#
#
#
#

#

response other than URP_OK, or if you use any reason codes, you should
document the responses and reason codes to help with problem determination.

However, if the response code is URP_OK_LOOP, the CICS Web interface loops
back to the Decode converter. The data pointed to by ENCODE_DATA_PTR
should still be in the same format as a normal response (see “Appendix C.
Reference information for the converter” on page 173 for reference information).

Chapter 8. Writing a converter 55

#
#
#
#

56 CICS TS for OS/390: CICS Internet Guide

Chapter 9. The Web error program

This chapter contains Product-sensitive Programming Interface and Associated
Guidance Information. It describes the Web error program, DFHWBEP.

The Web error program — general
The Web error program, DFHWBEP, is a user-replaceable module driven by CICS
Web support when there is a failure in the processing of a Web request received by
a CICS Web TCPIPSERVICE. DFHWBEP allows you to modify the HTTP response
issued by CICS, or to put out an alternative message.

The parameter list passed to the Web error program contains a pointer to a buffer
containing the default HTTP response returned by CICS for the error detected, and
the length of the response. The Web error program can:
v leave the response unchanged.
v modify the response to be returned, and update the length in

WBEP_RESPONSE_LEN accordingly.
v GETMAIN a new buffer, build a new HTTP response, and pass back the address

of the new buffer in WBEP_RESPONSE_BUFFER and the length of the new
response in WBEP_RESPONSE_LEN.

The EXEC CICS WEB application programming interface is not available from the
Web error program. The data to be returned to the client must be in the buffer
addressed by WBEP_RESPONSE_PTR.

The default HTTP response is passed to the Web error program in its EBCDIC
form. CICS assumes that the HTTP response addressed by WBEP_RESPONSE_PTR
on exit from the Web error program is in EBCDIC, and performs codepage
conversion on the response to convert it to ASCII before returning it to the client.
The key used for this conversion is that selected by the analyzer user-replaceable
module. If none was selected, or the analyzer was not invoked before the error
occurred, the response is assumed to be in the ISO-8859–1 codepage.

If the error being processed is a sockets send or receive error, no error response is
returned to the browser before closing the socket.

Inputs
Input to DFHWBEP is:
v Name of target program
v Name of program in which error occurred
v Abend code
v Associated message number
v Pointer to HTTP response to be returned. DFHWBEP can overwrite the CICS

Web support response with its own HTTP response, which might be more
meaningful to users.

v Length of HTTP response. The maximum length of the response is 32K.
v Server and client IP address
v Error code identifying the nature of the error

© Copyright IBM Corp. 1994, 2000 57

|

|

|
|

|
|

|
|
|
|

|
|
|

|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|

|

|

|

|

|

|

|
|
|

|

|

|

v Response and reason codes returned by the analyzer or the converter program.

Outputs
DFHWBEP returns a user-defined HTTP response and its accompanying text to the
client.

Processing
The main purpose of the Web error program is to allow the CICS system
administrator to customize or tailor the default HTTP error response returned by
CICS for the error detected.

This ensures that the response that appears on the Web browser is meaningful to
the user.

For reference information for DFHWBEP, see “Appendix H. Reference information
for DFHWBEP” on page 197. For more information on user-replaceable modules,
see the CICS Customization Guide.

58 CICS TS for OS/390: CICS Internet Guide

|

|

|
|

|

|
|
|

|
|

|
|
|

Chapter 10. 3270 applications on the Web

This chapter contains Product-sensitive Programming Interface and Associated
Guidance Information.

DFHWBTTA is a callable CICS-supplied program that provides an interface
between Web browsers and CICS transactions. DFHWBTTA and its associated
programs perform the translation between HTML and 3270 data streams or BMS
maps. DFHWBTTA supports non-conversational, conversational, and
pseudoconversational transactions.

This chapter is intended for programmers who write converters that create or
modify requests to run CICS transactions, and for callers of DFHWBTTA who use
the CICS business logic interface.

Input to DFHWBTTA
The communication area for DFHWBTTA must contain an HTTP request for a
CICS transaction. There are two types of requests:
v Initial requests are requests that are not continuations of conversations or of

pseudoconversations. The request for the first transaction of a sequence of
transactions in a pseudoconversation is an initial request. The first request for a
conversational transaction is an initial request. The only request for a transaction
that is neither conversational nor pseudoconversational is an initial request.
To send data on the initial request, use plus signs (+) rather than blanks to
separate the transaction id and any further data. For example, to start
transaction CEMT with the string CEMT INQ TAS, use the following path on
the URL:
/cics/cwba/dfhwbtta/CEMT+INQ+TAS

CICS passes this data to the 3270 application in the form of a formatted 3270
datastream. The initial path can be in any format, as long as the transid follows
the last ″/″. The form used on subsequent HTTP responses for the same Web
3270 conversation uses the same path that was input to DFHWBTTA.

v Continuation requests are requests that continue a conversation or
pseudoconversation. DHFWBTTA retains information about conversations and
pseudoconversations that allows it to recognize a request as being a continuation
request. Identification of the retained information is passed in a hidden variable
in the HTML generated for the previous request.

The request must be encoded in EBCDIC. The format of the URL in the HTTP
request must be in one of the following two forms:

/converter/alias/program/tranid

/converter/alias/program/tranid?token

/converter/alias/program/keyword/tranid

/converter/alias/program/keyword/tranid?token

v converter must be between 1 and 8 characters long. It is ignored by DFHWBTTA.
v alias must be between 1 and 4 characters long. It is ignored by DFHWBTTA.

© Copyright IBM Corp. 1994, 2000 59

|
|
|
|

|

|
|
|
|

v program must be between 1 and 8 characters long. It is ignored by DFHWBTTA.
v keyword is optional and is not case sensitive. If it is present, it must have the

value UNFORMAT. If the UNFORMAT option is present, DFHWBTTA assumes
that the transaction id has been entered from an unformatted screen.

v token, if it is present, is ignored by DFHWBTTA.
v tranid can be of any length. For an initial request, DFHWBTTA interprets it as a

transaction ID. For a continuation request, it is ignored. If the tranid is less than
four characters in length and is followed by a token or by some initial data,
DFHWBTTA interprets this incorrectly and uses an invalid transaction ID.
To avoid this problem, you can use the ALIAS keyword (on the TRANSACTION
definition) with a 4–character transaction ID, then use the ALIAS in the URL, to
make CICS run the correct transaction. To generate this ALIAS transaction ID,
append a valid special character to the end of the current 3–character transaction
ID. Underscore (_), hyphen (-), and full stop (.) are all valid choices for use with
the 3270 Web bridge. For example, if you wanted to run transaction ″PLT″, you
could define its ALIAS as ″PLT-″, and the URL would then be:
http://host:port/cics/cwba/dfhwbtta/PLT-

A continuation request may also contain user data. This user data must consist of
URL-encoded data. URL-encoded data is data in the form of variable=value
elements separated by ampersands. The data is to be interpreted as a BMS map, or
as a 3270 data stream. The map or data stream is expected to be the browser’s
response to the previously output HTML. The variables are interpreted as follows:
v Retained data for a continuation request. The value of the variable

DFH_STATE_TOKEN identifies the retained data for the continuation request.
v Cursor position. Once a SEND MAP has been issued by CICS, for any

subsequent RECEIVE MAP for that map, the value of the variable
DFH_CURSOR is interpreted as the name of the field in which the cursor is to
appear. The corresponding cursor position is passed to the application program
in EIBCPOSN.

v AID indicator. The first occurrence of any of the following variables defines the
AID that will be passed to the application: DFH_ENTER, DFH_CLEAR,
DFH_PF1, ..., DFH_PF9, DFH_PF10, ..., DFH_PF24, DFH_PA1, ..., DFH_PA3,
DFH_PEN. The values associated with these variables are not significant in the
conversion of the data to a BMS map or 3270 data stream.

v Data fields. Each of the fields of the BMS map is represented by a variable
whose value is interpreted by DFHWBTTA as the value of the data supplied by
the browser. The name of each variable is the same as the name of the field in
the BMS map.

v Modified field indicators. Variables of the form DFH_NEXTTRANSID.n, where n
is a number, specify the names of the modifiable fields that will be searched to
find a transaction ID. The values of these variables are the names of other
variables in the URL-encoded data.

For a continuation request, DFHWBTTA determines the transaction ID as follows:
v If the request is part of a pseudoconversation, and the previous transaction

ended with RETURN IMMEDIATE TRANSID=, the specified transaction ID is
the one that will be used.

v If the request is part of a pseudoconversation, and the previous transaction
ended with RETURN TRANSID=, the specified transaction ID is the one that
will be used.

60 CICS TS for OS/390: CICS Internet Guide

|
|
|

#
#
#
#

#
#
#
#
#
#
#

#

#

#
#
#
#
#

|
|
|

v If the request is part of a pseudoconversation, but the previous transaction did
not specify a transaction ID on the RETURN command, but the AID is
associated with a transaction ID, that transaction ID is used.

v If the request is part of a pseudoconversation, but no transaction ID was
specified on the RETURN command, and there is no transaction ID associated
with the AID, then the first four bytes of data in the first modified field are
taken to be the transaction ID. If the data in the modified field has a blank in the
first four bytes, the transaction ID is the data up to the first blank. The method
of determining the first modified field is as follows:
1. Set n to 1.
2. Search for DFH_NEXTTRANSID.n.
3. If there is no occurrence of DFH_NEXTTRANSID.n, end the search.
4. If there is an occurrence of DFH_NEXTTRANSID.n, search for the variable

whose name is the value of DFH_NEXTTRANSID.n.
5. If there is such a variable, use the value to determine the transaction ID.
6. If there is no such variable, add 1 to n, and return to step 2.

v If the request is part of a conversation, then the waiting transaction is continued.

Customizing the input to DFHWBTTA
The HTTP request is prepared by the Decode function of the converter, if the caller
asks for a converter. The converter may make modifications to the request.

On input to Decode, exactly one of the AID variables is present in the user data,
and it is the one set by the browser. You can insert your own AID variable, or
modify the existing AID variable.

You can modify information about the cursor position by changing the value of
DFH_CURSOR. The value of DFH_CURSOR must be the name of one of the
variables that define the contents of the data fields. The standard technique for
generating HTML pages from BMS maps produces HTML pages that track cursor
movements in the Web browser, and report the final position of the cursor in
DFH_CURSOR.

You can insert or delete DFH_NEXTTRANSID.n variables to control the selection
of the next transaction ID that is described in “Input to DFHWBTTA” on page 59.
If you add an instance of DFH_NEXTTRANSID.n, use the name of one of the other
variables as the value of DFH_NEXTTRANSID.n.

Decode must not modify the value of DFH_STATE_TOKEN.

Output from DFHWBTTA
DFHWBTTA presents an HTTP response to the Encode function of the converter (if
any). The response is in a buffer that begins with a 32-bit unsigned number that
specifies the length of the buffer. The rest of the buffer is the HTTP response. The
HTML in the response is that corresponding to the output BMS map or 3270 data
stream from the transaction program. This output might have been customized as
described in “Chapter 11. Creating HTML templates from BMS definitions” on
page 67.

The HTTP headers in the HTTP response are generated automatically by
DFHWBTTA. The headers generated by DFHWBTTA are:
v Content-type: text/html

Chapter 10. 3270 applications on the Web 61

v Content-length: <length of user data>
v Pragma: no-cache
v Connection: Keep-Alive (if this is an HTTP 1.0 persistent connection)

If any additional headers are required, the Encode function of the converter should
be used to add them to the HTTP response.

Customizing the output from DFHWBTTA
If you are using the functions of DFHWBTTA that emulate the non-BMS terminal
commands, you can modify the appearance of the generated page by providing
header and footer information for the page. The main part of the page is generated
directly from an internal representation of a 3270 screen image, whose size is
determined from the DEFSCREEN and ALTSCREEN definitions on the
FACILITYLIKE terminal definition associated with your transaction. This screen
image is not directly customizable, unless you choose to modify it in your
ENCODE converter function (see “Customizing with Encode” on page 64).
However, you can specify HTML to be inserted before and after this screen image
representation by installing document templates containing customized markup.
You supply one or more of the following templates, whose names are defined in
the TEMPLATENAME fields of DOCTEMPLATE definitions:

tranHEAD
This is a template that is inserted at the head of the HTML page being
output for transaction tran, if it is installed.

CICSHEAD
This is a template that is inserted at the head of the HTML page being
output for transactions that do not have a corresponding tranHEAD
template installed.

tranFOOT
This is a template that is inserted at the foot of the HTML page being
output for transaction tran, if it is installed. If this template is not installed,
CICSFOOT is used instead.

CICSFOOT
This is a template that is inserted at the foot of the HTML page being
output for transactions that do not have a corresponding tranFOOT
template installed.

The HTML generated to represent the screen image is designed to be presented in
a non-proportional font, so that the column alignment implied by the 3270 screen
addresses is approximately preserved. CICS generates a <pre> tag at the beginning
of the page for you, but you should generate the closing </pre> tag yourself in
your customized footing template (tranFOOT or CICSFOOT). These tags ensure
that the screen image is successfully generated in a non-proportional font.

Required contents for a heading template
If you choose to supply heading or footing templates, you must supply some of
the required elements of an HTML page. A heading template should contain the
following HTML elements:
v A doctype tag. For example:

<!doctype html public "//W3C//DTD HTML 3.2//EN>

v An <html> tag
v A <head> tag
v A <title> tag. For example:

62 CICS TS for OS/390: CICS Internet Guide

|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|
|

|

|

|

|

|

<title>A sample title</title>

v A </head> tag
v A <body> tag. You can use this tag to specify text colors, or an image to be used

as the background for the page. For example:
<body background="/dfhwbimg/background2.gif" bgcolor=#FFFFFF"
text="#000000" link="#00FFFF" vlink="#800080" alink="#FF0000>

v Optionally, any masthead images, heading tags, navigational links, or anything
else needed to create your customized page.

The default header generated by CICS is as follows:
<!doctype html public "//W3C//DTD HTML 3.2//EN">
<html>
<head>
<title>CICS Web support screen emulation</title>
<script language="JavaScript">
</script>
<meta name="generator" content="CICS Transaction Server/1.3.0">
</head>
<body>

Required contents for a footing template
If you choose to supply heading or footing templates, you must supply some of
the required elements of an HTML page. A footing template should contain the
following HTML elements:
v A </pre> tag, to terminate the non-proportional text begun by CICS. If you do

not specify a </pre> tag, any input buttons you specify are displayed vertically
rather than horizontally.

v Input buttons to represent any programmed function keys or the ENTER key.
For example:
<input type="submit" name="DFH_PF1" value="Help">
<input type="submit" name="DFH_PF3" value="Quit">
<input type="submit" name="DFH_ENTER" value="Continue">

These form part of the HTML form begun by CICS. The buttons, when selected
by the user, produce the AID indicator discussed in “Input to DFHWBTTA” on
page 59, so should have the names described there. The value parameter specifies
the legend that appears on the generated button. It is not used by DFHWBTTA.

v A </form> tag
v Optionally, any other customizations of your pages
v A </body> tag to close the page
v An </html> tag

If you do not specify a footing template, the CICS-generated footing contains
buttons for all the possible AID indicators; this may not be suitable for your
customized page.

The default footer generated by CICS is as follows:
</pre>
<input type="submit" name="DFH_PF1" value="PF1">
<input type="submit" name="DFH_PF2" value="PF2">
<input type="submit" name="DFH_PF3" value="PF3">
<input type="submit" name="DFH_PF4" value="PF4">
<input type="submit" name="DFH_PF5" value="PF5">
<input type="submit" name="DFH_PF6" value="PF6">
<input type="submit" name="DFH_PF7" value="PF7">

Chapter 10. 3270 applications on the Web 63

|

|

|
|

|
|

|
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|

|

|

|

|

|
|
|

|

|
|
|
|
|
|
|
|

<input type="submit" name="DFH_PF8" value="PF8">
<input type="submit" name="DFH_PF9" value="PF9">
<input type="submit" name="DFH_PF10" value="PF10">
<input type="submit" name="DFH_PF11" value="PF11">
<input type="submit" name="DFH_PF12" value="PF12">

<input type="submit" name="DFH_PF13" value="PF13">
<input type="submit" name="DFH_PF14" value="PF14">
<input type="submit" name="DFH_PF15" value="PF15">
<input type="submit" name="DFH_PF16" value="PF16">
<input type="submit" name="DFH_PF17" value="PF17">
<input type="submit" name="DFH_PF18" value="PF18">
<input type="submit" name="DFH_PF19" value="PF19">
<input type="submit" name="DFH_PF20" value="PF20">
<input type="submit" name="DFH_PF21" value="PF21">
<input type="submit" name="DFH_PF22" value="PF22">
<input type="submit" name="DFH_PF23" value="PF23">
<input type="submit" name="DFH_PF24" value="PF24">

<input type="submit" name="DFH_PA1" value="PA1">
<input type="submit" name="DFH_PA2" value="PA2">
<input type="submit" name="DFH_PA3" value="PA3">
<input type="submit" name="DFH_CLEAR" value="Clear">
<input type="submit" name="DFH_ENTER" value="Enter">
<input type="submit" name="DFH_PEN" value="Pen">
<input type="reset" value="Reset">
</form>
</body>
</html>

Customizing with Encode
The Encode function may make changes to the response. If the transaction is
expecting a response from the user (either conversational or pseudoconversational),
the changes to the output must still allow the continuation request to be correctly
understood by the next part of the conversation or pseudoconversation.

Lightpen operation
CICS Web support allows applications that support selector pens to be run from a
Web browser. (For details of selector pens, see the CICS Application Programming
Guide.). To do this, the bridge facility associated with the transaction must be
properly configured, as explained in “Enabling lightpen support” on page 38. CICS
Web support recognises a field as being detectable only if:
v the field attribute byte identifies the field as being detectable or intensified (that

is, bright), and
v the first character of the field contains a valid designator character. This can be

an ampersand (&), a right angle bracket (>), a question mark (?), a blank, or a
null.

.

When a field is determined to be selector pen detectable, the field appears on the
browser with a checkbox preceding it. The designator character, which would have
appeared as the first character in the field on a 3270 device, is removed from the
field data, and only the remaining characters are displayed. The field length on the
browser is decreased by one character.

The checkbox contains a check symbol (U) only if the designator character is a
right angle bracket (>); to select a field, check or uncheck the checkbox accordingly.

64 CICS TS for OS/390: CICS Internet Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

|
|

|
|
|

|

|
|
|
|
|

|
|

If the field is a selection field, checking and unchecking the checkbox simulates
toggling the modified data tag (MDT) bit on and off. If you uncheck the checkbox
on an unprotected field and enter data, the MDT bit is not switched on. (Note that
this is different to what happens on a 3270 device.)

If the field is an attention field, checking the checkbox does not cause data to be
transmitted to the CICS region. To do this, check the checkbox associated with the
attention field and click on the button marked ″Pen″. If multiple attention fields are
checked, the attention field closest to the screen origin (that is, row 1 column 1)
will be used as the attention field. if no attention field is checked, CICS assumes
that the ENTER key has been pressed.

Chapter 10. 3270 applications on the Web 65

|
|
|
|

|
|
|
|
|
|

66 CICS TS for OS/390: CICS Internet Guide

Chapter 11. Creating HTML templates from BMS definitions

This chapter contains Product-sensitive Programming Interface and Associated
Guidance Information.

This chapter describes how to create HTML templates from an existing BMS
mapset definition. You can generate templates using standard generation, or
customized generation.

Source for BMS mapsets that are available only as load modules can, with some
limitiations, be recovered using DFHBMSUP. See CICS Operations and Utilities Guide
for details.

CICS provides a procedure for installing HTML templates created from a BMS
mapset. See CICS System Definition Guide for details.

Standard generation
A template generated by the standard method contains the following:
v Constants and input fields from the map
v Buttons to represent the following:

– ENTER key
– PA1, PA2, and PA3 keys
– Program function keys PF1 to PF24
– HTML reset

v Up to five hidden variables, DFH_NEXTTRANSID.1 to DFH_NEXTTRANSID.5,
whose values are the names of the first five fields in the map. The use of these
variables is explained in “Chapter 10. 3270 applications on the Web” on page 59.

v A hidden variable DFH_CURSOR whose value is the name of the field in which
the cursor is set in the map.

v A JavaScript function dfhsetcursor, which when invoked in the browser sets the
cursor position to the field whose name is the value of DFH_CURSOR.

v A JavaScript exception handler for the onLoad exception. This function invokes
dfhsetcursor, and tracks the movement of the cursor.

Why customize the generation of templates?
There are many reasons why you might wish to change the output from generating
a template for a BMS map. You can:
1. Support the application’s use of keys that are not in the standard output.
2. Suppress the HTML Reset function, which does not correspond to any 3270

function.
3. Change the appearance of the keys, or the text associated with them.
4. Provide an HTML title for the HTML page.
5. Provide a masthead graphic for the HTML page.
6. Change the color of the background, or specify a special background.
7. Modify the BMS colors. You might need to do this if the BMS colors do not

show up well against the background.
8. Suppress parts of the BMS map.

© Copyright IBM Corp. 1994, 2000 67

#
#

9. Add Web browser control functions, JavaScript functions for example, to the
HTML page.

10. Add text that appears only on the HTML page, but is not part of the BMS
map.

11. Add HTML header information to the HTML page.

Examples of these customizations are given in “Customization examples” on
page 69.

Customization facilities
There are two facilities provided to help you customize the HTML templates:
v The DFHMDX macro (invoked from within DFHMSX): You use the DFHMDX

macro to define your own customization macro that is used when the templates
are being created from the BMS map definitions. You use a customization macro
for the customizations numbered 1 to 9 in the list in “Why customize the
generation of templates?” on page 67.

v The DFHWBOUT macro: You add invocations of the DFHWBOUT macro to the
BMS map definitions. This macro inserts text in the HTML page, and you use it
for the customizations numbered 9 to 11 in the list in “Why customize the
generation of templates?” on page 67.

(For customization number 9 you have to coordinate what you put in the
customization macro with what you put in DFHWBOUT.)

How to produce the HTML templates
The procedure is as follows:
1. Review the application programs and their use of BMS to see if customization

is necessary.
2. For the applications that need customized HTML pages, create a customization

macro definition, and store it in a library in the concatenation of macro libraries
specified in the SYSLIB DD statement for the assembler. Write appropriate
DFHWBOUT macro invocations, and put them in the appropriate places in
your map definitions.

3. Assemble the existing map definitions with TYPE=TEMPLATE on the
DFHMSD macro, or SYSPARM=TEMPLATE in the parameters passed to the
assembler. Note that the label on the DFHMSD macro is used to name the
HTML templates produced for each map in the mapset being processed. The
HTML template names consist of the label from the DFHMSD macro plus one
character starting from ‘A’. For the bridge exit to match the HTML template
with the BMS map when a BMS SEND or RECEIVE is issued by a program, the
HTML template members must match the name of the mapset value used on
the SEND and RECEIVE statements.If you are using a customizing macro, you
must add the name of the customizing macro to the TYPE. The assembler
produces IEBUPDTE source statements that set up one template for each map
in a mapset.

4. Use IEBUPDTE to store the templates in the template library. If the record
format of the template library is not fixed blocked, you will need to store them
in another PDS, and then convert them to the record format of the template
library using, for instance, ISPF COPY.

5. If you want to put your templates in a PDS other than the one specified in the
DFHHTML DDname, you must define DOCTEMPLATE definitions for your
templates, and specify an alternate DDname. The alternate DDname must also
be specified in your CICS JCL.

68 CICS TS for OS/390: CICS Internet Guide

|

|
|
|
|

To allocate a PDS containing templates to a specific DD name in order to install
templates from it, you can use the ADYN sample transaction. First install the
DFH$UTIL group, which contains ADYN and its related programs, then run
ADYN:
ADYN
ALLOC DDNAME(ddname) DATASET('template-pds') STATUS(SHR)

where ddname is the DDname specified in the DOCTEMPLATE definition, and
template-pds is the name of the PDS containing the template to be installed. For
further information on installing ADYN, see the CICS Customization Guide.

Size restrictions of HTML templates
If the template is to be used by a transaction run using the 3270 Bridge, the size of
the template is restricted. If the template requires more than 32K of storage to be
read from the DFHHTML dataset, any attempt to use the 3270 Bridge results in
message DFHWB0133 being issued with a code of X’4119’.

Even if the template requires less than 32K of storage it can still cause an error if
symbol substitution significantly increases the amount of data.

When the template is generated, DFHWBTLG issues a message containing the
amount of storage required for each template to be read from the DFHHTML
dataset. It also issues warning messages when the size of the template exceeds 30K
and 32K.

Writing a customizing macro definition
You have to supply a complete assembler macro definition that is invoked by
CICS-supplied assembler macros. The definition of a customizing macro must be
written according to the rules for assembler macro definitions. The macro
invocations in the definition must also follow the rules for assembler language
macro statements. A customizing macro definition contains the following elements:
1. A MACRO statement to begin the definition.
2. The name of the macro.
3. Any number of invocations of the DFHMDX macro.

The syntax of DFHMDX is described in “The DFHMDX macro” on page 73,
and its use is described in “Customization examples”. DFHMDX is invoked
from within DFHMSX.

4. A MEND statement to end the definition.

Customization examples
The following sample shows a customizing macro definition. The first invocation
of DFHMDX sets defaults for the values to be applied to subsequent invocations of
DFHMDX by specifying * for the mapset name and map name. Later invocations
override or add to the parameters for specific maps in the mapset. The
continuation characters are in column 72, and the continued text is resumed in
column 16.

MACRO
DFHMSX
DFHMDX MAPSET=*,MAP=*, *

PF1='Help,PF3='Exit',PF4='Save',PF9='Messages'
DFHMDX MAPSET=DFHWB0,MAP=*, *

TITLE='CICS Web Interface', *

Chapter 11. Creating HTML templates from BMS definitions 69

|
|
|
|

|
|

|
|
|

|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

PF3='Messages'
DFHMDX MAPSET=DFHWB0,MAP=DFHWB02, *

TITLE='CICS Web Interface Enable', *
PF3='Save'
MEND

When CICS creates the templates, for each of your BMS map definitions it invokes
the DFHMSX customizing macro. Each DFHMDX macro is processed in sequence,
and if applicable, the parameter values are stored. Where a duplicate parameter is
specified for a particular map or mapset, the new value replaces the previous
value for that map or mapset only.

The first DFHMDX macro in this example, where MAPSET=* and MAP=*, specifies
a value of ″Exit″ for the PF3 keyword of any subsequent occurrence of DFHMDX.
This value applies to every mapset and map in every subsequent DFHMDX macro
until a new value is specified for the PF3 keyword. Here, PF3 remains as the ’Exit’
key for all mapsets and maps until it is set to ″Messages″ for all the maps in
mapset DFHWB0. It is then set to ″Save″ for map DFHWB02 only; in all the other
maps in DFHWB0, PF3 is still ″Messages″, and in all mapsets and maps outwith
DFHWB0, PF3 is still ″Exit″.

The customizations listed in “Why customize the generation of templates?” on
page 67 can be performed as follows:
1. Support the application’s use of keys that are not in the standard output.

You can add a key to the map AD001 as follows:
DFHMDX MAP=AD001,PF18='Resubmit'

The Web browser displays a key with the legend ″Resubmit″. If the user
presses this key, it is reported to the application as PF18.

2. Suppress the HTML Reset function.

You can suppress the Reset function for the map AD001 as follows:
DFHMDX MAP=AD001,RESET=NO

The Web browser displays a page that does not contain a Reset key.
3. Change the appearance of the keys, or the text associated with them.

You can change the legend on the PF1 key as follows:
DFHMDX PF1='Help'

The Web browser displays a key with the legend ″Help″. If the user presses
this key, it is presented to the application as PF1.

4. Provide an HTML title for the HTML page.

You can add a title to a displayed map as follows:
DFHMDX MAP=DFHWB01,TITLE='CICS Web Interface'

The Web browser displays ″CICS Web Interface″ as the title of the page.
5. Provide a masthead graphic for the HTML page.

Write a DFHMDX macro for the map that is to have the masthead. For
example:

DFHMDX MASTHEAD=(/dfhwbimg/masthead.gif,'CWI')

The Web browser uses the specified masthead, or will show ″CWI″ as the
masthead if it cannot find the graphic file.

6. Change the color of the background, or specify a special background.

70 CICS TS for OS/390: CICS Internet Guide

|
|
|
|
|

|
|
|
|
|
|
|
|

Write a DFHMDX macro for the map that is to have a special background. For
example:

DFHMDX MAP=AD001,BACKGROUND=/dfhwbimg/texture4.jpeg

The Web browser uses the specified file as a background for the page.

To change the color of the background, use the BGCOLOR parameter.
7. Modify the BMS colors.

To modify the BMS colors, write a DFHMDX macro like the following:
DFHMDX MAP=AD001,BLUE=AQUA,YELLOW=#FF8000

The Web browser shows BMS blue text in HTML aqua (the same as BMS
turquoise), and BMS yellow text in bright orange.

8. Suppress parts of the BMS map.

You can suppress a field in a map as follows:
DFHMDX MAP=AD001,SUPPRESS=((5,2),(6,2),(7,*))

The displayed page does not contain the field at row 5 column 2, nor the field
at row 6 column 2, nor any of the fields in row 7 of the map.

9. Add Web browser control functions.

If you want a JavaScript function to be invoked when a page is loaded, use
the ONLOAD parameter of the DFHMDX macro in your customization macro.
For example:

DFHMDX MAP=AD001,ONLOAD='jset(''CWI is wonderful'',''Hello there!'')'

will get the JavaScript function jset invoked with the given parameters when
the page is loaded.

To complete this customization, the definition of the jset function must be
added to the header of the HTML page with a DFHWBOUT macro. You must
put the macro invocation before the first DFHMDF macro in the BMS map
definition. Here is a sample:

DFHWBOUT '<script language="JavaScript">'
DFHWBOUT 'function jset(msg,wng)'
DFHWBOUT ' {window.status = msg; alert(wng)}'
DFHWBOUT '</script>'

When the page is loaded the status area at the bottom of the window contains
the message ″CWI is wonderful″, and an alert window opens that contains the
message ″Hello there!″.

10. Add text that appears only on the HTML page, but is not part of the BMS
map.

Put DFHWBOUT macros in the BMS map definition in the place that you
want the text to appear in. For example:

DFHWBOUT '<p>This text illustrates the use of the DFHWBOUT macro,'
DFHWBOUT 'which can be used to output text that should only appear'
DFHWBOUT 'in HTML templates, and will never appear in the'
DFHWBOUT 'corresponding BMS map.'

will produce the following lines in the HTML template:
<p>This text illustrates the use of the DFHWBOUT macro,
which can be used to output text that should only appear
in HTML templates, and will never appear in the
corresponding BMS map.

Chapter 11. Creating HTML templates from BMS definitions 71

11. Add HTML header information to the HTML page.

Put DFHWBOUT macros in the BMS map definition before the first occurrence
of DFHMDF. For example:

DFHWBOUT '<meta name="author" content="E Phillips Oppenheim">'
DFHWBOUT '<meta name="owner" content="epoppenh@xxxxxxx.yyy.co*

m">'
DFHWBOUT '<meta name="review" content="19980101">'
DFHWBOUT '<meta http-equiv="Last-Modified" content="&WBDATE&W*

BTIME GMT">'

will produce the following lines in the head section of the HTML template:
<meta name="author" content="E Phillips Oppenheim">
<meta name="owner" content="epoppenh@xxxxxxx.yyy.com">
<meta name="review" content="19980101">
<meta http-equiv="Last-Modified" content="23-Dec-1997 12:06:46 GMT">

DFHMSD sets the values of &WBDATE and &WBTIME to the time and date
at which the macro is assembled.

12. Using country-specific characters in JavaScript and HTML.

The default US code page 37, which is used to produce the template, can be
modified for different codepages. For example:
DFHMDX OPENSQ=[,CLOSESQ=],OPENBR={,CLOSEBR=},EXCLAM=!

This specifies the substitutions needed. The characters must be entered on a
terminal where the codepage corresponds to the SERVERCP on the DFHCNV
call.

HTML and browser considerations
When customizing a macro definition, the HTML specifications for white space
must be taken into consideration. For 3270 terminals, blanks (EBCDIC x’40’) and
nulls (EBCDIC x’00’) can be used to format screen data positions. When such a
datastream is converted into HTML, the browser interpretation of this generates
different output to that found on a 3270 terminal.

A string of blanks is ignored by a browser if it immediately follows a start tag, and
any subsequent sequence of contiguous blanks is interpreted as one blank. To force
the rendering of all blanks, you can use the <pre> and </pre> tags.

The handling of null characters is unspecified, and browsers handle them
inconsistently. They may or may not be displayed.

Limitations
CICS Web 3270 supports the following terminal control commands:
v EXEC CICS SEND (but not the STRFIELD option)
v EXEC CICS CONVERSE (but not the STRFIELD option)
v EXEC CICS RECEIVE

It also supports minimum function BMS and the EXEC CICS SEND TEXT
command.

The following limitations apply to CICS Web 3270 support:

72 CICS TS for OS/390: CICS Internet Guide

#

#
#

#

#
#
#

|

|
|
|
|
|

|
|
|

|
|

|

|

|

|

|

|
|

|

v The ATTRB=BRT option of a BMS field has no effect for an unprotected (input)
field. This applies if the field is defined with ATTRB=BRT in the map definition
or if the field attribute is changed to BRT dynamically on an EXEC CICS SEND
MAP command.

v If a BMS program changes the attribute of a field in the map dynamically (by
moving a 3270 attribute value to the attribute byte of a field named in the
logical map), this change is not reflected in the HTML template subsequently
sent to a browser. The template is sent as it is defined in the template dataset.

v The emulation of lightpens is not supported.
v There is no support for partitions, logical devices codes, magnetic slot readers,

outboard formatting, or other hardware features.
v EXEC CICS DEFRESP is ignored. This may affect application recovery.
v The COLOR option is not supported for terminal control commands.
v

User transactions can mix BMS and non-BMS requests, subject to the following
restrictions. Transactions not following these guidelines will abend AWC3:
– A BMS RECEIVE must follow a BMS SEND.
– A terminal control RECEIVE must follow a terminal control SEND.
– To change from using BMS requests to using non-BMS requests and vice

versa, use a SEND with the ERASE option.

These restrictions apply from one transaction to the next in a
pseudo-conversation. This means that if a transaction issues a SEND MAP and
then returns, the next transaction in the pseudo-conversation will have to issue a
RECEIVE MAP to get any data from the screen. If it issues a terminal control
RECEIVE, it will abend AWC3.

v DFHBMEOF, a 3270 attribute bit of the attribute byte of a field named in the
logical map, is not set if the field is emptied (for example, with the DEL key), or
if the field was already empty (nulls or spaces) on the previous SEND command
and that field’s Modified Data Tag (MDT) was off.

v You cannot construct a single HTML page from more than one BMS map: an
application program that builds a 3270 screen by issuing several EXEC CICS
SEND MAP commands will not work correctly when used with CICS Web
support. In this case, only the last map sent by the application program is used
to construct the HTML page.

The DFHMDX macro
The DFHMDX macro is invoked from within DFHMSX. Its syntax is shown in
Figure 12 on page 74.

Chapter 11. Creating HTML templates from BMS definitions 73

|
|
|
|

|
|
|
|

|

|
|

|

|

|

|
|

|

|

|
|

|
|
|
|
|

#
#
#
#

|
|
|
|
|

|

|

The keyword parameters to this macro can appear in any order.

MAPSET
specifies the name of the mapset that contains the map to which other
options refer. If you specify an asterisk, the options become the default to
all subsequent mapsets.

MODULE
specifies the name of the load module into which the mapset is link-edited.
You can only use this parameter if you do not specify MAPSET=*. The
name you specify (which can only be seven characters) is used to construct
the names of the templates by adding a single character suffix. The default
value is the name of the mapset.

MAP specifies the name of the map within the mapset specified in MAPSET to
which the options refer. If you specify an asterisk, the options become the
default to all subsequent maps.

DFHMDX

WW DFHMDX MAPSET= name
* ,MODULE=name

,MAP= name
*

W

W
,DOCTYPE= ’-//W3C//DTD HTML 3.2//EN’

doctype
,TITLE=’title-text’

W

W
,MASTHEAD= url

url,’alternate text’
,BACKGROUND=url ,BGCOLOR= color

W

W
,TEXT= color ,LINK= color ,VLINK= color ,ALINK= color

W

W

X

,

, key = button X

,

, bmscolor = color

YES
,RESET= NO

’text’

W

W

X

,

,SUPPRESS=((row,col))
,HEAD ,FOOT

,ONLOAD=’text’
W

W
,ONUNLOAD=’text’ NO

,PROPFONT= YES
OPENSQ = char

hex-value

W

W
CLOSESQ = char

hex-value
OPENBR = char

hex-value
CLOSEBR = char

hex-value

W

W
EXCLAM = char

hex-value
,CODEPAGE(datavalue)

WY

Figure 12. Syntax of DFHMDX

74 CICS TS for OS/390: CICS Internet Guide

DOCTYPE
specifies the DTD public identifier part of the <!doctype> tag that you
want to appear in the HTML template. The default is -//W3C//DTD HTML
3.2//EN, which specifies HTML 3.2. Level 3.2 is required for the color
support in certain HTML tags.

TITLE specifies the title to be used as the HTML title, and as the content of the
first <h1> tag.

MASTHEAD
specifies the URL of a masthead graphic to appear at the head of a page
before the first <h1> tag. If you supply alternate-text, the browser will use
the text if it cannot load the specified graphic.

BACKGROUND
specifies the URL of a graphic file for the page background.

BGCOLOR
specifies the color of the page background.

TEXT specifies the color of normal text.

LINK specifies the color of unvisited hypertext links on the page.

VLINK
specifies the color of visited hypertext links on the page.

ALINK
specifies the color of activated hypertext links on the page.

PF1-PF24
specifies the name or image to be assigned to the simulated button for the
corresponding 3270 program function key.

PA1-PA3
specifies the name or image to be assigned to the simulated button for the
corresponding 3270 program attention key.

CLEAR
specifies the name or image to be assigned to the simulated button for the
3270 Clear key.

ENTER
specifies the name or image to be assigned to the simulated button for the
3270 Enter key.

PEN specifies the name or image to be assigned to the simulated button for pen
selection.

BLUE specifies the color to appear in the HTML page where blue is specified in
the BMS map. The default is #0000FF.

GREEN
specifies the color to appear in the HTML page where green is specified in
the BMS map. The default is #008000.

NEUTRAL
specifies the color to appear in the HTML page where neutral is specified
in the BMS map. The default is #000000.

PINK specifies the color to appear in the HTML page where pink is specified in
the BMS map. The default is #FF00FF.

RED specifies the color to appear in the HTML page where red is specified in
the BMS map. The default is #FF0000.

Chapter 11. Creating HTML templates from BMS definitions 75

TURQUOISE
specifies the color to appear in the HTML page where turquoise is
specified in the BMS map. The default is #00FFFF.

YELLOW
specifies the color to appear in the HTML page where yellow is specified
in the BMS map. The default is #FFFF00.

RESET
specifies whether the HTML reset function is to be supported. Specify YES
to get a default reset button with the default legend Reset. Specify NO to
get no reset button. Specify your own text for a reset button with your
own legend.

SUPPRESS
specifies BMS map fields that are not to appear in the HTML page. Specify
any number of row and column pairs for the start positions of the fields to
be suppressed. The values rr and cc specified must correspond to the
POS=(rr,cc) specification on the DFHMDF macro for a field to be
suppressed. Each pair must be enclosed in parentheses, and the whole list
of pairs must be enclosed in parentheses. If you want to suppress all the
fields in a row, specify the row number and put an asterisk for the column
specification. The SUPPRESS parameter is ignored if you specify it with
MAP=* or MAPSET=*.

Use the keyword HEAD to suppress the heading information in the
template. Use the keyword FOOT to suppress the footer information in the
template.

If you wish to specify a list that exceeds the assembler’s limit of 256
characters for a character string in macro definitions, code extra DFHMDX
macros with the same MAPSET and MAP values, and put more values in
the SUPPRESS parameters.

ONLOAD
specifies the JavaScript text to be used to replace the standard onLoad
exception handler for the HTML page. The text must not contain double
quotes ("), and single quotes (') must be doubled ('') following the usual
assembler language conventions. If you use this parameter you will
suppress the setting of the cursor to the field indicated by DFH_CURSOR
provided by the standard onLoad exception handler. You can use the
function dfhsetcursor to set the cursor position.

ONUNLOAD
specifies the JavaScript text to be used as the onUnload exception handler
for the HTML page. The text must not contain double quotes ("), and
single quotes (') must be doubled (''), following the usual assembler
language conventions.

PROPFONT
specifies the font. If YES, the template will specify that text is to be
presented in a proportional font, and consecutive spaces are to be reduced
to a single space. If NO, the template will specify that text is to be
specified in a font of fixed pitch, and consecutive spaces are to be
preserved.

OPENSQ
The hex value or the character to be used to display an open square
bracket. The default is x’BA’ (codepage 37).

76 CICS TS for OS/390: CICS Internet Guide

|
|
|

CLOSESQ
The hex value or the character to be used to display a close square bracket.
The default is x’BB’ (codepage 37).

OPENBR
The hex value or the character to be used to display an open brace. The
default is x’C0’ (codepage 37).

CLOSEBR
The hex value or the character to be used to display a close brace. The
default is x’D0’ (codepage 37).

EXCLAM
The hex value or the character to be used to display an exclamation mark.
The default is x’5A’ (codepage 37).

CODEPAGE
specifies the IBM codepage number in which any text generated by the
template generation process is encoded. This codepage must match the
codepage used when the templates are used by CICS, either in the
HOSTCODEPAGE option of the EXEC CICS DOCUMENT command, or in
the SRVERCP option of the DFHCNV macro selected by the analyzer
program. The IBM host codepages supported by CICS are described in
CICS Family: Communicating from CICS on System/390. The default codepage
is 037.

color can be an explicit specification #rrggbb, where rr, gg, and bb are 2-digit
hexadecimal numbers giving the intensities of red, green, and blue in the requested
color, or it can be any one of the following color names: AQUA, BLACK, BLUE, FUCHSIA,
GRAY, GREEN, LIME, MAROON, NAVY, OLIVE, PURPLE, RED, SILVER, TEAL, WHITE, YELLOW.

key can be any of PF1 to PF24, PA1 to PA3, CLEAR, ENTER, and PEN.

button can be (IMAGE,url), where url specifies the URL of a graphic image to be
used for the button, or 'text', where text is the text to be put in the button, or NO if
the button is not to appear.

bmscolor can be any of BLUE, GREEN, NEUTRAL, PINK, RED, TURQUOISE, and YELLOW.

The DFHWBOUT macro
The DFHWBOUT macro is used to add text to the HTML page generated from a
BMS map. The text appears only as part of the HTML page. If the macro is used
before the first occurrence of DFHMDF in a map, the text is placed in the <head>
section of the HTML page. If the macro is used elsewhere in the map, the text is
placed inline in the HTML page immediately following the text generated by the
preceding DFHMDF macro.

DFHWBOUT

WW DFHWBOUT ’ text ’
NO

, SOSI = YES

WY

The parameters of this macro are as follows:

text The text that is to be inserted in the HTML page.

Chapter 11. Creating HTML templates from BMS definitions 77

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

SOSI Whether the text contains DBCS characters delimited by shift-out (X’0E’)
and shift-in (X’0F’). The default is SOSI=NO.

78 CICS TS for OS/390: CICS Internet Guide

Chapter 12. Writing CICS programs to process HTTP requests

This chapter describes facilities that help you to write CICS programs that process
HTTP/1.0 requests and responses. Note that unpredictable results may occur if
you use HTTP/1.1–specific headers.
v “HTTP requests” describes HTTP requests and how CICS handles them.
v “HTTP responses” on page 81 describes HTTP responses and how a CICS

program can construct them.
v “Sample application programs” on page 86 describes a small sample program

that you can use to test the operation of CICS Web support.

A CICS Web program can communicate with its caller by means of a CICS
communication area. If the program is supported by a converter, the
communication area contains the information put in it by Decode, otherwise it
contains the entire HTTP request. The HTTP header information is in EBCDIC, and
if the analyzer asks for data conversion, the user data has been translated using the
analyzer-specified key.

HTTP requests
This section gives an outline of the formats of HTTP requests. Detailed information
can be found in the references in “Information on the World Wide Web” on
page xxi.

A Web resource is identified by a uniform resource locator (URL), which identifies
the host, and the resource requested. A user of a Web browser can enter a URL like
the following:
http://www.ibm.com:80/Scripts/Global/nph-cc?cc=at

In this URL,
v www.ibm.com is the name of the host to which the request is to be sent.
v 80 is the TCP/IP port to which the request is to be sent. (80 is the default port

for HTTP, and is not usually specified.) If the port is omitted, so is the colon that
precedes it.

v /Scripts/Global/nph-cc is the absolute path, identifying a file to be retrieved, or
a CGI script to be executed.

v cc=at is the query string.

The URL is converted by the browser into an HTTP request. An HTTP request
consists of a request line followed by zero or more HTTP headers, each delimited
by a carriage return line feed (CRLF), followed by optional user data. An HTTP
header consists of a name, a colon, a space, and a value. An additional CRLF
delimits the headers from the user data.The HTTP request line derived from the
sample URL above contains:
GET /Scripts/Global/nph-cc?cc=at HTTP/1.0

The first part of the line is the method (GET), the second part is the absolute path
and query string, and the last part is the HTTP version.There may be headers
generated by the Web browser that sends the request. This request contains no user
data.

© Copyright IBM Corp. 1994, 2000 79

|
|

|
|

|
|
|
|
|
|

|

|

A common way of generating HTTP requests is by the use of HTML forms. The
designer of an HTML form can specify that some of the data entered by the end
user is to be transmitted as user data in the HTTP request.A request generated
from a form might therefore include user data as well as the headers described
above.

In CICS Web support, the HTTP request is received from the OS/390 eNetwork
Communications Server, and presented to the analyzer, which is a user-replaceable
program. The purpose of the analyzer is to decide what CICS resources are needed
to satisfy the request. The interpretation of the absolute path as a file reference is
not appropriate in the CICS Web support environment, so an enterprise can choose
to fix what absolute paths can be sent by browsers, and how the resulting request
is interpreted as a request for CICS resources. The functions of the analyzer are
described in “Chapter 7. Writing an analyzer for CICS Web support” on page 45.
The default analyzer, the URLs that it accepts, and the way it interprets them, are
described in “The default analyzer” on page 48.

In the CICS business logic interface, the request for CICS resources is constructed
by the caller.

How to receive an HTTP request
There are two ways to receive an HTTP request:
v Use the EXEC CICS WEB commands (this is the recommended method). See

“Using EXEC CICS WEB commands to receive an HTTP request”.
v Use the environment variables program DFHWBENV (this method is retained

for compatibility with previous releases). See “Using DFHWBENV to retrieve
information from an HTTP request” on page 81.

Using EXEC CICS WEB commands to receive an HTTP request
When an application receives an HTTP request, the EXTRACT WEB command
allows the application processing the request to retrieve information about the
inbound request.

This information includes, within the first line of the request, the method to be
applied to the resource, the identifier of the resource (URI), the protocol version in
use, and any query string supplied on the request.

The WEB READ/STARTBROWSE/READNEXT/ENDBROWSE
HTTPHEADERcommands allow the application to extract header information that
it wants to read from the HTTP header fields. These headers allow the client to
pass on information about the request, and about the client itself, to the server. For
example, the user agent indicates the browser being used, and the Content-length
gives the length of the body of the HTTP request.

The WEB READ/STARTBROWSE/READNEXT/ENDBROWSE
FORMFIELDcommands allow the application to extract name-value pair
information from the body of the HTTP request when the body contains HTML
froms data. Either URL-encoded or multipart forms data can be used. These
commands always return the data in its unescaped form.

Applications that construct symbol lists for the EXEC CICS DOCUMENT API
using name-value pairs extracted using the EXEC CICS WEB
READ/STARTBROWSE/READNEXT/ENDBROWSE FORMFIELD commands
must use the UNESCAPED option on the EXEC CICS DOCUMENT command. If a
value contains any ampersands, the application must build the symbol list using a

80 CICS TS for OS/390: CICS Internet Guide

|
|

|
|
|
|

#
#
#

#
#
#
#
#
#

#
#
#
#
#

#
#
#
#
#

different delimiter byte, and must specify the value of the delimiter on the
DELIMITER option of the EXEC CICS DOCUMENT command. The delimiter
chosen must not appear in any of the names or values specified in the symbol list.

The EXEC CICS WEB RECEIVE command allows an application to receive the
message body of the HTTP request into a buffer. This means that applications that
handle non-forms data, or that prefer to handle the forms data in its escaped form,
can then pass the received data unchanged as a symbol list on an EXEC CICS
DOCUMENT command.The EXEC CICS WEB RECEIVE command allows the
server to receive user data into a buffer and the HTTP Content-length header tells
the application the size of the information being sent.

Using DFHWBENV to retrieve information from an HTTP request
You can use the environment variables program DFHWBENV to retrieve the
following information present in the HTTP request:
v The IP address of the client
v The IP address of the host
v The local host name
v The HTTP method
v The HTTP version

You can also use the environment variables program to retrieve an indicator of the
CICS release under which the program is running. See “Appendix E. Reference
information for DFHWBENV” on page 189 for more information about
DFHWBENV and the format in which it presents its output.

You can use information from the environment variables program and the
information in the communication area to control processing in your CICS
program. You should restrict yourself to the DPL subset of the CICS application
programming interface. The DPL subset is documented in CICS Application
Programming Reference.

You can use DFHWBENV in the alias transaction to extract HTTP request header
information from the incoming request. Note that you can not invoke DFHWBENV
from the analyzer.

HTTP responses
After receiving and interpreting a request, a server responds with an HTTP
response.

An HTTP response consists of a status-line, response header fields and the
document data. The status-line contains a numeric status code (STATUSCODE)
which defines the response and its associated textual phrase (STATUSTEXT) which
gives a short description of the status code. For example:

404 Not Found
This status code indicates that the server has not found anything matching the
Request-URI.

See http://www.w3.org/Protocols/rfc2068/rfc2068 chapter 10 for more
information on status codes and reason phrases.

The HTTP response that is sent back to the requester consists of a response line,
headers, and optional user data.As in an HTTP request, the CRLF combination

Chapter 12. Writing CICS programs to process HTTP requests 81

#
#
#

#
#
#
#
#
#
#

|
|
|

|
|

separates the headers, and a null header separates the headers from the user data.
A typical response might begin with the response line and the three headers
shown:
HTTP/1.0 200 Document follows
Date: Fri, 05 Jan 1999 14:23:02 GMT
Server: NCSA/1.5
Content-type: text/html

In the first header, HTTP/1.0 is the HTTP version, 200 is the HTTP response code,
and Document follows is a user-readable comment. (There are several standard
3-digit response codes; 200 is a response that indicates successful completion of the
request.)The next three headers are the date header, the server header, and the
content header. The user data might consist of HTML pages, or might be plain text.
(In this case the content header promises HTML.)

You can use the EXEC CICS DOCUMENT, EXEC CICS WEB, and EXEC CICS
TCPIP application programming interface to build your response, which is the
recommended method, or you can use the HTML template manager DFHWBTL
with commarea support, which is retained for compatibility with earlier releases.

How to send an HTTP response
There are two ways to construct and send an HTTP response:
v Use the EXEC CICS application programming interface (this is the recommended

method).
v Use the HTML template manager (this method is retained for compatibility with

previous releases).

Using the EXEC CICS API to send an HTTP response

The HTTP header fields allow the server to pass additional information about the
response and itself. To add HTTP header information the EXEC CICS WEB WRITE
HTTPHEADER command is used. These header fields give information about the
server and about further access to the resource identified by the request-URI.

The EXEC CICS WEB SEND command selects a document for delivery. By
inserting a document name in the DOCTOKEN option you can specify the name of
a document that you wish to send. This document can be a document that has
been created using the EXEC CICS DOCUMENT commands. The EXEC CICS WEB
RETRIEVE command retrieves a document that has been passed to CICS on an
earlier WEB SEND into an application buffer.

The DOCUMENT application programming interface, which is described in the
CICS Application Programming Guide, allows you to manage CICS documents with
the following commands. If you have several different programs building an HTTP
response, you can use the combination of EXEC CICS WEB SEND and EXEC CICS
WEB RETRIEVE, along with EXEC CICS DOCUMENT CREATE, to pass the
partially completed document from one part of the application to the next.
v EXEC CICS DOCUMENT CREATE creates a new document.
v EXEC CICS DOCUMENT RETRIEVE retrieves a copy of the document from the

document domain to the application.
v EXEC CICS DOCUMENT INSERT inserts information at a specified point in the

document.
v EXEC CICS DOCUMENT SET manipulates symbols and their associated values.

82 CICS TS for OS/390: CICS Internet Guide

|
|
|

|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

|

|
|

|
|

|

Using the HTML template manager to construct an HTTP
response
The HTML template manager DFHWBTL allows you to insert templates in the
HTTP response, and to replace symbols in the templates with values that you
specify. This has been retained for compatibility with previous releases. See
“Appendix D. Reference information for DFHWBTL” on page 183 for more
information about the HTML template manager and its operation.

The storage containing the response must begin with a 32-bit integer specifying the
length of the response plus 4 for the integer. You can build the HTTP response in
the communication area, in which case the maximum length of the response is 4
less than the length of the communication area.
v If your program is operating under CICS Web support or under the CICS

business logic interface in pointer mode, you can build the response in any area
of storage other than the communication area, provided that you pass the
address of the storage to Encode in the communication area. In this way you
can build HTTP responses longer than 32K.

v If your program is operating under the CICS business logic interface in offset
mode, you can build the response only in the communication area provided.

The response can be constructed entirely by the CICS program, or partly by the
CICS program and partly by Encode. For commarea-style applications, translation
of the various parts of the response from EBCDIC to ASCII (for the headers) and to
the client code page (for the user data) is dealt with by the alias program. Web API
applications must specify the host and client code pages to be used on the relevant
API call.

Escaped Data
The HTTP protocol specifies a set of control characters that are used to define the
structure of the stream of data returned in an HTTP response. HTML forms data,
for example, uses the ″&″ character to delimit the end of a name/value pair, so if a
user enters an ″&″ into an HTML form, the HTTP client must send the ″&″ in a
way that does not prevent the HTTP server from correctly parsing the data. The
HTTP client does this by ″escaping″ the character in question. Escaping consists of
replacing the relevant character with the string ″%nn″, where nn is the ASCII value
for the character being unescaped.

Handling escaped data in commarea applications
For commarea-style Web application that have been invoked as a result of an
HTTP request being received by a CICS Web TCPIPSERVICE, the way in which
CICS handles escaped data depends up the analyzer being used for that
TCPIPSERVICE.

On linking to the analyzer program, the HTTP request is in its escaped form. The
analyzer can:
v set field WBRA_UNESCAPE to WBRA_UNESCAPE_NOT_REQUIRED, so that

the Web application sees the HTTP request in its escaped form.
v leave the data in its unescaped form and ask CICS to unescape the body of the

HTTP request by setting WBRA_UNESCAPE to
WBRA_UNESCAPE_REQUIRED.

v unescape the HTTP request, then set WBRA_UNESCAPE to
WBRA_UNESCAPE_NOT_REQUIRED. This is what the default analyzer
DFHWBADX does, to retain compatibility with earlier releases.

Chapter 12. Writing CICS programs to process HTTP requests 83

|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|

|
|

|
|

|
|
|

|
|
|

The operation of DFHWBUN and DFHWBPA (CICS-supplied utilities to help with
the processing of HTTP requests), is affected by whether the data they are
processing is escaped or unescaped. CICS uses the setting of WBRA_UNESCAPE
to determine this, so you must ensure that on exit from the analyzer URM,
WBRA_UNESCAPE is set to WBRA_UNESCAPE_NOT_REQUIRED only if the
data is unescaped, otherwise the HTML forms data may not be processed correctly.

If you are writing a commarea-style application that can be run either through
CICS Web support or through the CICS business logic interface, you must ensure
that WBRA_UNESCAPE is set to WBRA_UNESCAPE_NOT_REQUIRED, and that
any escaping is delegated to the Web application. If this is not done, the
application is passed unescaped data by the CICS business logic interface, and
escaped data by CICS Web support, which may cause unpredictable results. For
example, if you have an application which is run both by the WebServer Plugin for
IBM WebSphere Application Server for OS/390, and a CICS Web TCPIPSERVICE,
you should set WBRA_UNESCAPE to WBRA_UNESCAPE_NOT_REQUIRED, to
ensure that the body of the HTTP request passed to the application is in the same
form, irrespective of the caller of the Web application.

Symbols, symbol table, and symbol list
This section describes the symbols in an HTML template, and how the HTML
template manager uses the symbol table to replace the symbols with values. The
concept of symbol lists and variable substitution is the same for the EXEC CICS
WEB application programming interface as for DFHWBTL.

Symbols in an HTML template
In an HTML template, symbols begin with an ampersand (“&”) and end with a
semicolon (“;”), and contain up to 32 characters with no imbedded spaces. Thus
the following template contains &mytitle; as its only symbol.
<html>

<head>
<title>

&mytitle;
</title>

</head>
<body>

Symbol lists
This section describes symbol lists as used by the template manager DFHWBTL,
which has been retained for compatibility with earlier releases.

The template manager maintains a symbol table for each active page environment.
In WBTL_BUILD_HTML_PAGE and WBTL_ADD_HTML_TEMPLATE, the
template manager uses the input symbol list, if any, to create or update the symbol
table, and then replaces the symbols in the template by their values in the table.

A symbol list is a character string. It consists of one or more definitions with single
byte separators. By default, the single byte separator is an ampersand, but the
caller of the template manager may choose their own separator, as described in
“Operational example” on page 86. A definition consists of a name, an equals sign,
and a value. Here is an example:
mytitle=New Authors&auth1=Halliwell Sutcliffe&auth2=Stanley Weyman

The name must contain only uppercase and lowercase letters, numbers, and
underscores (“_”). The name is case-sensitive, so uppercase letters are regarded as

84 CICS TS for OS/390: CICS Internet Guide

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

#
#
#
#
#

different from lowercase letters. Unlike the symbols in the template, the names in
the symbol list have neither an ampersand at the beginning, nor a semicolon at the
end. The symbol &mytitle; in the template corresponds to the name mytitle in the
symbol list.

The caller of the template manager may specify their own symbol separator to
override the default of ampersand. Do this by inserting the character sequence
‘&DELIM=x&’ at the start of the symbol list. The ‘x’ is a single byte separator used
in the following list of symbols. The single byte may be any hexadecimal value
apart from:
v null (binary X’00’)
v shift in (binary X’0E’)
v shift out (binary X’0F’)
v space (binary X’40’)
v plus sign (binary X’4E’)
v percent sign (binary X’6C’)
v colon (binary X’7A’)
v equals (binary X’7E’)
v backslash (binary X’E0’)

If the separator is overridden, the application must ensure that the separator does
not appear in any symbol value in the symbol list. For this reason, the application
should avoid using alphanumeric and other printable characters as the separator.

If any of the above values are specified, they are disregarded, and the template
manager assumes that an ampersand is being used as a separator. If a valid
separator override is specified, the application must use it to separate symbol
values from the symbol names that follow them. The application must also
guarantee that the separator does not appear anywhere in a symbol value, and
ensure that WBTL_SYMBOL_LIST_LEN includes the length of ‘&DELIM=x&’.

If an application specifies a valid separator override, all symbol values in the
symbol list for this call to the template manager are treated as unescaped character
sequences. This means that they are substituted into the template without
undergoing any conversion. For example, a plus sign (“+”) remains as a plus, and
sequences such as %2B remain as they are rather than being converted to single
characters.

If the application does not specify its own valid separator, the following rules
apply to symbol values. The value in the symbol list can have any characters
except ampersand, but with some restrictions on the use of the percent sign (“%;”)
and the plus sign (“+”). A percent sign must be followed by two characters that are
hexadecimal digits. When the value is put into the symbol table, a plus sign is
interpreted as a space, a percent sign and the two hexadecimal digits following it
are interpreted as the EBCDIC equivalent of the single ASCII character denoted by
the two digits, and the remaining characters are left as they are. If you want a plus
sign in the value in the symbol table, you must put %2B; in the value in the symbol
list. If you want a percent sign in the value in the symbol table, you must put in
the value %25 ; in the symbol list. If you want an ampersand in the value in the
symbol table, you must put %26; in the value in the symbol list. If you want a
space in the value in the symbol table, the value in your symbol list may contain a
space, a plus sign, or %20;.

Chapter 12. Writing CICS programs to process HTTP requests 85

#
#
#
#
#

#

#

#

#

#

#

#

#

#

#
#
#

#
#
#
#
#
#

#
#
#
#
#
#

Operational example
The following symbol list
mytitle=New Authors&auth1=Halliwell Sutcliffe&auth2=Stanley Weyman

provides definitions of three symbols. Note that an ampersand is a separator that
separates a name from the following value, and is not part of the name that
follows it. In an HTML template, &mytitle; is replaced by New Authors, &auth1; by
Halliwell Sutcliffe, and &auth2; by Stanley Weyman.

Here is an example of how an application specifies its own separator:
&DELIM=!&COMPANY=BLOGGS & SON!ORDER=NUTS + BOLTS

Here the symbol COMPANY has a value of ‘BLOGGS & SON’. The symbol
ORDER has a value of ‘NUTS+BOLTS’. The delimiter used is ‘!’, but a
non-printable character should be used which will never appear in a symbol value.
The use of the UNESCAPED option ensures that the plus sign in ‘NUTS+BOLTS’ is
not converted to a space.

WBTL_SYMBOL_LIST_LEN would be set to decimal 48.

Using the output of the environment variables program
The environment variables program, DFHWBENV, is retained for compatibility
with earlier releases.

The output of the environment variables program, described in “Appendix E.
Reference information for DFHWBENV” on page 189, can be used as a symbol list
for the HTML template manager. If you want to use an environment variable that
is derived from one of the HTTP headers, you cannot always predict whether it
will appear in the environment variables string. Therefore, you should always
initialize the symbol table so that names that represent environment variables are
associated with default values. Then you can use the output from the environment
variables program as a symbol list. For example, if you want to use the
&HTTP_REFERER; and &HTTP_AUTHORIZATION; variables in your template, but you do
not know whether the client has set them, you could pass the following symbol
string to the template manager first:
HTTP_REFERER=&HTTP_AUTHORIZATION=

This associates both the names with a null string value in the symbol table.

Sample application programs
DFH$WB1A is a sample program provided with CICS Web support. It uses no
converter, and constructs a simple HTTP response whose body is an HTML page.
The sample program can be run by enabling CICS Web support with the default
analyzer DFHWBADX, and by entering a suitable URL such as the following on a
Web browser:
http://9.22.123.12:10004/cics/CWBA/DFH$WB1A

The format of the URL is described in “Default CICS URL format” on page 91. The
response displays the message “DFH$WB1A on system xxxxxxxx successfully
invoked through the CICS Web support.” with xxxxxxxx replaced by the
application ID of the CICS system in which CICS Web support is running.

86 CICS TS for OS/390: CICS Internet Guide

#

#

#
#
#
#
#

#

|
|

DFH$WB1C is another sample application. It has the same function as
DFH$WB1A, but is written in C.

Sample application DFH0WBCA demonstrates the use of the DOCUMENT API.

Chapter 12. Writing CICS programs to process HTTP requests 87

|

88 CICS TS for OS/390: CICS Internet Guide

Chapter 13. Displaying a template on a Web browser

This chapter contains a simple example of how you could use the WEB and
DOCUMENT programming interface and the DOCTEMPLATE and TCPIPSERVICE
resource definitions to display a document template on a Web browser. It is
supplied in this book as guidance only, and is not intended as comprehensive
programming information. Details of the syntax and parameters of the commands
used in this example can be found in the CICS Application Programming Reference.

In this example:
1. PROGRAM1 displays a template called TEMPLATE1, which invites the user to

enter their name.
2. The template specifies PROGRAM2 in its ″form action=″ field.
3. PROGRAM2 then runs, using as input the user’s name from PROGRAM1 and

displaying it on the browser as part of a template called TEMPLATE2.

How to display a template on a Web browser
This section provides information about the steps you might follow to display a
template:
1. Define and install a TCPIPSERVICE definition to specify the port on which you

want CICS and the browser to communicate:
TCpipservice ==> MYTCPIP
Group ==> MYGROUP
DEscription ==> Provides port number to display template on Web
URM ==> DFHWBADX
Portnumber ==> 10004
Certificate ==>
STatus ==> Open
SSl ==> No
TRansaction ==> CWXN
Backlog ==> 00001
TSqprefix ==>
Ipaddress ==>

2. Define and install two DOCTEMPLATE definitions. One specifies a
MEMBERNAME of TEMPLATE1 and a TEMPLATENAME=WEBDISPLAY1, as
follows:
DOctemplate ==> MYDOCT
Group ==> MYGROUP
DEscription ==> Template for display on Web
FULL TEMPLATE NAME
TEmplatename ==> WEBDISPLAY1
ASSOCIATED CICS RESOURCE
File ==>
TSqueue ==>
TDqueue ==>
Program ==>
Exitpgm ==>
PARTITIONED DATA SET
DDname ==> DFHHTML
Membername ==> TEMPLATE1

The second specifies a MEMBERNAME of TEMPLATE2 and a
TEMPLATENAME of WEBDISPLAY2.

© Copyright IBM Corp. 1994, 2000 89

3. Create the first template. In this example, the HTML data is in an MVS PDS
accessed in the JCL by DD statement DFHHTML in member TEMPLATE1:
<HTML>
<HEAD>
<TITLE>WEB TEMPLATE COMPANY</TITLE>
</HEAD>
<BODY>
<center>
<H2>CICS Web support at work</H2>
<H3>Please enter your first name:</H3>
<FORM METHOD=POST ACTION="http://mytso:10004/cics/CWBA/PROGRAM2">
Name:

<input type=text name=name size=20 maxlength=25>
<P>

<input type=submit value="Click here">
</form>
</center>
</BODY>
</HTML>

The URL format is described in “Default CICS URL format” on page 91.
4. Create the second template. In this example, the data is HTML in an MVS PDS

accessed in the JCL by DD card DFHHTML in member TEMPLATE2:
<HTML>
<HEAD>
<TITLE>WEB TEMPLATE COMPANY</TITLE>
</HEAD>
<BODY>
<center>
<H2>CICS Web support at work</H2>
<H3>Hello &name;, welcome to CICS Web support!</H3>
</center>
</BODY>
</HTML>

5. In your PROGRAM1 application program , define a 16–byte field called
TOKEN1 to hold the document token, then code the following commands:
EXEC CICS DOCUMENT CREATE

DOCTOKEN(TOKEN1)
TEMPLATE('WEBDISPLAY1')

where the TEMPLATE name is the name specified on the TEMPLATENAME
operand of the DEFINE DOCTEMPLATE command . This command creates a
document at the location in storage pointed to by TOKEN1. The document
contains the HTML in template WEBDISPLAY1.
EXEC CICS WEB SEND

DOCTOKEN(TOKEN1)
CLNTCODEPAGE('client codepage')

This command sends the specified document to a browser. CLNTCODEPAGE
can be any of the client codepages listed in “Appendix I. HTML coded
character sets” on page 201.

6. In your PROGRAM2 application program, define a buffer, DOCBUF, to hold
the retrieved document, a 16–byte field called TOKEN2 to hold the document
token, then code the following commands:
EXEC CICS WEB RECEIVE

INTO(DOCBUF)
LENGTH(DOCLENGTH)
MAXLENGTH(80)
CLNTCODEPAGE('client codepage')
HOSTCODEPAGE('host codepage')

90 CICS TS for OS/390: CICS Internet Guide

where CLNTCODEPAGE can be any of the client codepages listed in
“Appendix I. HTML coded character sets” on page 201, and HOSTCODEPAGE
can be any of the host codepages listed in the CICS Family: Communicating from
CICS on System/390. The default host codepage is 037.
EXEC CICS DOCUMENT CREATE

DOCTOKEN(TOKEN2)
TEMPLATE('WEBDISPLAY2')
SYMBOLLIST(DOCBUF)
LISTLENGTH(DOCLENGTH)

where the TEMPLATE name is the name specified on the TEMPLATENAME
operand of the DEFINE DOCTEMPLATE command. This command creates a
document at the location in storage pointed to by TOKEN2. The document
contains the HTML from template WEBDISPLAY2, with the symbol list
retrieved on the WEB RECEIVE command.
EXEC CICS WEB SEND

DOCTOKEN(TOKEN2)
CLNTCODEPAGE('client codepage')

This command sends the specified document to a browser. CLNTCODEPAGE
can be any of the client codepages listed in “Appendix I. HTML coded
character sets” on page 201.

7. On your browser, enter a URL like the following:
http://yoursystem:10004/cics/CWBA/PROGRAM1

The URL format is described in “Default CICS URL format”.

Default CICS URL format
The format of the URL used in this example is the default format used by the
analyzer (see “Chapter 7. Writing an analyzer for CICS Web support” on page 45).
The format is:

http is the protocol you want the browser to use. This can be http or https.
HTTPS is a variant of HTTP, used for handling secure transactions. You
should use the HTTPS protocol only if you have specified SSL=YES or
SLL=CLIENTAUTH in the TCPIPSERVICE definition (see “Part 4. Using
secure sockets layer (SSL)” on page 117 for information about SSL).

yoursystem
is the TCP/IP name or IP address for the OS/390 system on which CICS is
running. If none is specified, this defaults to the IP address of the default
TCP/IP stack for the OS/390 region on which CICS is running.

10004 is the port number you specified in the TCPIPSERVICE definition. If you
are using the HTTP protocol and you omit the port number, it defaults to
80. If you are using the HTTPS protocol and you omit the port number, it
defaults to 443.

cics is the converter name, if you use one, or cics if you do not want to use a
converter.

CWBA
is the CICS Web transaction.

PROGRAM1
is the name of your program.

Chapter 13. Displaying a template on a Web browser 91

92 CICS TS for OS/390: CICS Internet Guide

Chapter 14. Security for CICS Web support

This chapter is organized as follows:
v “Security for the CICS Web support” describes security considerations for the

HTML template manager PDS, and the CICS Web support transactions.
v “Sample programs for security” on page 94 describes the operation of the sample

security analyzer, converter, and sign-on program.

Security for the CICS Web support
This section describes security considerations for the HTML template manager
PDS, and the CICS Web support transactions.

Security for the HTML template manager PDS
If your CICS programs use the partitioned data set facilities of the HTML template
manager described in “Appendix D. Reference information for DFHWBTL” on
page 183, the CICS region user ID must have READ authority for the data set
described in the DOCTEMPLATE PDS definition. If you reference other partitioned
data sets by defining DOCTEMPLATEs with other DDnames, the CICS region
must also have READ authority for them.

Security for CICS Web support transactions
You can specify security requirements for each of the transactions that compose the
CICS Web support. In the following explanations:
v authority to attach means that the associated user must be given READ authority

to the named transaction in the resource class specified by the XTRAN system
initialization parameter.

v authority to START means that the associated user must be given READ authority
to the named transaction in the resource class specified by the XPCT system
initialization parameter.

v authority to specify a user ID means that the associated user must be given READ
authority to the userid.DFHSTART profile in the SURROGAT resource class, if the
XUSER system initialization parameter is specified as YES.

v authority to use a program means that the associated user must be given READ
authority to the named program in the resource class specified by the XPPT
system initialization parameter.

For more information, see the CICS RACF Security Guide.

Security for the alias
The alias transaction executes as a non-terminal CICS transaction. Its name is
user-specified. If you use the default analyzer described in “The default analyzer”
on page 48, the transaction name is the second “index level” in the absolute path
specified by the client, and is usually CWBA.

The alias transaction executes under the user ID specified in wbra_userid, if it is
specified by the analyzer, otherwise it executes under the CICS default userid. If
you are running with SSL=CLIENTAUTH (either as a SIT parameter or on a
TCPIPSERVICE definition), wbra_userid may contain a user ID on input to the
analyzer. If you use the CICS-supplied alias definition, this user ID must have the
following authority:

© Copyright IBM Corp. 1994, 2000 93

|

|
|
|
|
|
|

|
|
|
|
|
|

v The authority to attach the alias transaction

If you define your own alias transactions, this user ID must have the following
authorities:
v The authority to attach the alias transaction
v The authority to access any CICS resources used by the alias transaction, if it is

defined with the RESSEC(YES) option
v The authority to access any CICS system programming commands used by the

alias transaction, if it is defined with the CMDSEC(YES) option

Sample programs for security
Two sets of sample programs are provided:
v The security sample programs, described in “The security sample programs”:

– The security analyzer, DFH$WBSA
– The security converter, DFH$WBSC
– The sign-on program, DFH$WBSN

v The basic authentication sample programs, described in “The basic
authentication sample programs” on page 95:
– The basic authentication analyzer, DFH$WBAU
– The basic authentication converter, DFH$WBSB

The CICS resource definitions for these programs are in group DFH$WBSN.

The security sample programs
If you want a series of Web transactions to be executed under a user ID that is
specified by the Web client (the end user), you can use the security sample
programs to help you. To use the security analyzer sample program, you must
specify its name as the Analyzer Program name in the TCPIPSERVICE definition.

The security sample programs use the state management sample program,
DFH$WBST.

A typical sequence of interactions between a user and the CICS Web support might
be as follows:
1. The end user sends an HTTP request in which the URL has no query string.
2. The security analyzer checks the URL for a converter name, alias name,

program name, and query string. As there is no query string, it sets its
outputs so that the converter is the security converter sample program
DFH$WBSC, while the alias and CICS program are the ones requested in the
URL. The user token output is zeros.

3. The Decode function of the security converter, finding a zero user token, calls
the Create function of the state management sample program to assign a
token. It saves the token in its user token output. It uses the Store function of
the state management program to save the original URL. It sets the CICS
program name to DFH$WBSN, the security sign-on sample program.

4. The sign-on program builds an HTML form asking for a user ID and a
password. The form specifies an HTML ACTION that generates a URL. The
generated URL causes the sign-on program to be invoked again, but with the
state management token as its query string.

5. The Encode function of the security converter builds the HTTP response.
6. The user gets the form, fills in the user ID and the password, and sends it

back.

94 CICS TS for OS/390: CICS Internet Guide

|

|

|
|
|
|

7. The security analyzer finds a query string. It uses the Retrieve function of the
state management program to validate the token. As the token is not yet
associated with a valid user ID, it sets its outputs so that the converter name
is the security converter. The state management token is passed as the user
token.

8. The sign-on program extracts the user ID and password from the form, and
uses EXEC CICS VERIFY PASSWORD to validate the user ID. DFH$WBSN
passes the validated user ID in the commarea to the security converter
(DFH$WBSC), which uses the Store function of the state management
program.

9. The Encode function of the security converter builds the HTTP response, and
adds a redirection (HTTP response 302) to it, incorporating the original URL.

10. When the user has entered a valid userid and password, CICS issues an HTTP
Redirect response containing the original URL, with the security token
appended to it. When the browser resubmits the redirected request, CICS
knows that signon processing is complete, and processes the request.

11. The security analyzer finds that the query string is a valid user token
associated with a user ID, so the original request proceeds.

Once the user token has been established as the key to the authenticated user ID, it
is the responsibility of the CICS program, or the converter that builds the HTTP
response, to ensure that any URLs that are generated to continue the conversation
with the client contain the conversation token as query string. This ensures that
subsequent programs in the conversation execute under the specified user ID.
Since the CICS program is already running with the correct conversation token as
its query string, it can extract its value by using the environment variable program
to obtain the value of the query string. If necessary, the correct value for the
conversation token can be substituted into HTML templates by using the symbol
&QUERY_STRING;, provided that the environment variable string has first been
loaded into the symbol table in the template manager’s page environment.

The basic authentication sample programs
The basic authentication sample programs use HTTP basic authentication. On the
first reference by a Web browser to a CICS region (identified by its application ID),
the browser prompts the user for a user ID and password. The user ID and
password supplied at the prompt are sent to the CICS region for every request.
CICS validates the user ID and password for each request. There is no user prompt
for the second or later requests.

The user ID and password are encoded, but not encrypted, for transmission.

To use the security analyzer sample program, you must specify its name as the
TCPIPSERVICE definition.

The basic authentication analyzer searches the incoming HTTP headers for an
Authorization header with a ″Basic″ operand. If it finds one, it decodes the
BASE64-encoded user ID and uses it as the alias user ID. It always schedules
DFH$WBAU as the converter.

The basic authentication converter searches the incoming HTTP headers for an
Authorization header. It decodes the user ID and the password. It uses VERIFY
PASSWORD to validate the password. If the user ID and password combination is
invalid, or if the Authorization header is absent, an HTTP 401 response is returned

Chapter 14. Security for CICS Web support 95

#
#
#
#

to the Web browser, and the user is prompted for a password. If the user ID and
password combination is correct, the application continues, and runs under the
specified user ID.

96 CICS TS for OS/390: CICS Internet Guide

Chapter 15. Problem determination

This chapter contains Diagnosis, Modification, or Tuning Information.

This chapter helps you debug problems in CICS Web support and CICS business
logic interface user-replaceable programs, the IBM-supplied parts of CICS Web
support and CICS business logic interface, and the operating environment of CICS
Web support. If you suspect you have a problem in another part of CICS, refer to
the CICS Problem Determination Guide.

The formats of messages and trace outputs in CICS Web support and CICS
business logic interface are also described.

Diagnostic information is designed to provide first failure data capture, so that if
an error occurs, enough information about the error is available directly without
the need to reproduce the error situation. The information is presented in the
following forms:

Messages
CICS Web support and CICS business logic interface provide CICS
messages with the prefix DFHWB, and these are listed in CICS Messages
and Codes

Trace CICS Web support and CICS business logic interface output system trace
entries containing all the important information required for problem
diagnosis.

Dump Dump formatting is provided for data areas relating to CICS Web support
and CICS business logic interface.

Abend codes
Transaction abend codes are standard four-character names. The abend
codes are listed in CICS Messages and Codes.

This chapter is organized as follows:
v “Recovery procedures (CICS Web support)” on page 98 describes how CICS Web

support copes with software errors.
v “Product design considerations (CICS Web support)” on page 98 describes

aspects of the design of CICS Web support that you need to know for problem
determination.

v “Troubleshooting” on page 98 describes a method of analyzing problems in CICS
Web support and CICS business logic interface.

v “Using messages and codes” on page 99 describes how to find information about
messages and abend codes.

v “CICS Web support and CICS business logic interface trace information” on
page 99 describes CICS Web support and CICS business logic interface trace
information.

v “Dump and trace formatting” on page 100 describes how to control the
formatting of dumps and trace entries.

v “Debugging the user-replaceable programs” on page 101 gives hints about
debugging user-replaceable programs.

© Copyright IBM Corp. 1994, 2000 97

Recovery procedures (CICS Web support)
If a TCPIPSERVICE definition is installed and enabled when CICS fails, that
definition is re-installed and re-enabled when CICS recovers. Any changes made to
the TCPIPSERVICE with CEMT are not recovered.

If OS/390 eNetwork Communications Server abends, CICS Web support enters
immediate disable processing, but CICS continues to run.

The abending of an alias transaction might cause changes to recoverable resources
to be backed out.

Product design considerations (CICS Web support)
There are two CICS transactions for each HTTP request; CWXN (or an alias of
CWXN), and CWBA (or an alias of CWBA). These two transactions have different
logical units of work.

Troubleshooting
This section provides some hints on troubleshooting. It follows the general outline:
1. Define the problem.
2. Obtain information (documentation) on the problem.
3. Work out where in CICS Web support the problem is happening.

Defining the problem
When you have a problem, first try to define the circumstances that gave rise to it.
If you need to report the problem to the IBM software support center, this
information is useful to the support personnel.
1. What is the system configuration?

v CICS TS release
v OS/390 release
v Language Environment release

2. What operating options are in use?
3. When did the problem first occur?
4. What were you trying to accomplish at the time the problem occurred?
5. What changes were made to the system before the occurrence of the problem?

v To the OS/390 system
v To CICS Web support
v To the CICS program being called by the client
v To the converter being used in the call
v To the analyzer being used to interpret client requests
v To the client
v To CICS TS
v To the OS/390 eNetwork Communications Server

6. What is the problem?
v Incorrect output
v Hang/Wait: Use CEMT INQUIRE to display details of the transaction
v Loop: Use CEMT INQUIRE to display the details of the transaction
v Abend in a user-replaceable program
v Abend in a CICS program
v Abend in the IBM-supplied part of CICS Web support
v Performance problem
v Storage violation

98 CICS TS for OS/390: CICS Internet Guide

|
|
|

|

|
|
|

|

v Logic error
7. At what point in the processing did the problem occur? (Use Figure 12 on

page 74.)
8. What was the state of the OS/390 eNetwork Communications Server? (Try the

netstat command.)

Documentation about the problem
To investigate most problems, you must look at the dumps, traces, and logs
provided with MVS and CICS.
v System dump: This contains the CICS internal trace
v CICS auxiliary trace, if enabled
v TCP/IP trace
v GTF trace, if enabled
v Console log
v CSMT log
v CWBO log
v CICS job log

To identify which are likely to be useful for your problem, try to work out the area
of the CICS Web support giving rise to the problem, and read the relevant section
in the rest of this chapter.

Using messages and codes
CICS Web support and CICS business logic interface messages have identifiers of
the form DFHxxnnnn., where nnnn are four numeric characters indicating which
component generated the message, as shown in CICS Messages and Codes. xx
indicates which domain generated the message; WB indicates the Web domain, DH
indicates the document handler domain, and SO indicates the Sockets domain.

CICS Web support messages are sent to the CICS Web support message transient
data queue CWBO. CICS Sockets domain messages are sent to the CICS Sockets
domain message transient data queue CSOO. If you define CWBO as an indirect
destination for CSMT, the messages appear in CSMT. Some messages are sent to
the console.

When the CICS Web support or the CICS business logic interface issues a message
as a result of an error, it also makes an exception trace entry. The CICS Web
support also generates information messages, for instance during enable processing
and disable processing.

Messages are supplied in English, Japanese, Chinese, and Korean. The CICS
message editing utility can be used to translate them into other languages
supported by CICS, as described in the CICS Operations and Utilities Guide.

The CICS Web support and CICS business logic interface abend codes are listed in
CICS Messages and Codes.

CICS Web support and CICS business logic interface trace information
The CICS Web support and CICS business logic interface output CICS system
trace, which is formatted using software supplied as part of CICS.

Chapter 15. Problem determination 99

|
|

|
|
|
|
|

|
|
|

If selected, level 2 trace gives a full trace of the data being transmitted between the
client and the CICS program. CICS trace output is described in the CICS Problem
Determination Guide, and details of the contents of each trace point are given in the
CICS User’s Handbook.

Numeric values of symbolic codes
The response codes from the analyzer and the converter appear in the trace output
as numeric values as follows:
v URP_OK (0)
v URP_EXCEPTION (4)
v URP_INVALID (8)
v URP_DISASTER (12)
v URP_OK_LOOP (16)

The CICS-defined reason codes from the analyzer and converter appear in the trace
output as numeric codes as follows:
v URP_SECURITY_FAILURE (1)
v URP_CORRUPT_CLIENT_DATA (2)

The DFHWBTL function codes appear in the trace output as numeric values as
follows:
v WBTL_BUILD_HTML_PAGE (1)
v WBTL_START_HTML_PAGE (2)
v WBTL_ADD_HTML_SYMBOLS (3)
v WBTL_ADD_HTML_TEMPLATE (5)
v WBTL_END_HTML_PAGE (6)

The response codes from DFHWBTL appear in the trace output as numeric values
as follows:
v WBTL_OK (0)
v WBTL_EXCEPTION (4)
v WBTL_INVALID (8)
v WBTL_DISASTER (12)

The reason codes from DFHWBTL appear in the trace output as numeric values as
follows:
v WBTL_INVALID_FUNCTION (1)
v WBTL_INVALID_TOKEN (2)
v WBTL_INVALID_SYMBOL_LIST (3)
v WBTL_INVALID_BUFFER_PTR (4)
v WBTL_FEATURE_INACTIVE (5)
v WBTL_TEMPLATE_NOT_FOUND (6)
v WBTL_TEMPLATE_TRUNCATED (7)
v WBTL_PAGE_TRUNCATED (8)
v WBTL_GETMAIN_ERROR (9)
v WBTL_FREEMAIN_ERROR (10)

Dump and trace formatting
To select the level of dump formatting printed for the CICS Web support or CICS
business logic interface, you change the CICS VERBEXIT in the IPCS control
statement for dump formatting as follows:
IPCS VERBEXIT CICS530 WB=0|1|2|3,TR=1|2

The parameters have these meanings:

100 CICS TS for OS/390: CICS Internet Guide

#

WB=0 Suppress system dumps for the CICS Web support, and the CICS business
logic interface.

WB=1 Produce a system dump summary listing for the CICS Web support, and
the CICS business logic interface.

WB=2 Produce a system dump for the CICS Web support, and the CICS business
logic interface.

WB=3 Produce a system dump summary listing and a system dump for the CICS
Web support, and the CICS business logic interface.

TR=1 Produce an abbreviated trace.

TR=2 Produce a full trace.

CICS Web support output in the formatted dump consists of the major CICS Web
support control blocks, with interpretation of some of the fields.

The CICS Web support output can be found in the IPCS output by searching for
===WB. It is under the heading CICS Web support.

The CICS Sockets output can be found in the IPCS output by searching for ===SO.
It is under the heading CICS Sockets.

The document domain output can be found in the IPCS output by searching for
===DH. It is under the heading Document domain.

Debugging the user-replaceable programs
The user-replaceable programs are:
v The analyzer (CICS Web support only)
v The converters

Using EDF
You can use EDF with the analyzer, and you can also use it to debug the converter,
and the CICS program. If you want to use EDF, you must:
v Define EDF as a translator option when the program is translated.
v Define CEDF(YES) in the program definition of the converter, the CICS program,

or the analyzer.
v Enter CEDX xxxx at the terminal, where xxxx is either CWXN or an alias of

CWXN (to debug the analyzer), or CWBA or an alias of CWBA (to debug the
converter or the target program).

Using trace entries
You can output diagnostic information to the CICS trace by the use of the EXEC
CICS ENTER TRACENUM command. The amount of trace information and the
information contained within trace entries is at your discretion. See the CICS
Application Programming Reference for more information about this command.

Writing messages
You can write diagnostic messages by using EXEC CICS WRITEQ TD. Message
information content, message format, frequency, and destination are at your
discretion.

Chapter 15. Problem determination 101

|
|

|

|
|

|
|
|

|

Abends
You are recommended to use EXEC CICS HANDLE ABEND to trap abends. You
should collect the diagnostic information you need by tracing, and then return a
URP_DISASTER response.

102 CICS TS for OS/390: CICS Internet Guide

Part 3. The CICS business logic interface

This part of the book contains information about the CICS business logic interface.

It contains:
v “Chapter 16. Introduction to the CICS business logic interface” on page 105
v “Chapter 17. Configuring the CICS business logic interface” on page 113

© Copyright IBM Corp. 1994, 2000 103

104 CICS TS for OS/390: CICS Internet Guide

Chapter 16. Introduction to the CICS business logic interface

This part of the book describes the CICS business logic interface. CICS Web
support, as described in “Chapter 3. Introduction to CICS Web support” on
page 19, is a collection of CICS resources supporting direct access to CICS
transaction processing services from Web browsers. The CICS business logic
interface is a callable program that allows a variety of callers to access the same
Web-aware business logic as CICS Web support, but via a CICS link rather than via
the CICS HTTP listener.

The CICS business logic interface supports the separation of presentation logic
from business logic in application design. The converter program contains the
presentation logic and understands how data must be presented to the business
logic, which is contained in the application program. There is a brief discussion
about the distinction between presentation logic and business logic in “Separating
business and presentation logic” on page 13.

The rest of this chapter presents an overview of the CICS business logic interface.
It contains the following sections:
v “Types of requester”
v “Processing examples” on page 106
v “Control flow in request processing” on page 106
v “Data flow in request processing” on page 108

“Chapter 17. Configuring the CICS business logic interface” on page 113 provides
information about setting up the CICS business logic interface.

Types of requester
The CICS business logic interface can deal with requests from the following types
of requester. These callers provide a communication area that contains parameters
that specify the required CICS transaction processing services. For example:
v Users of the external CICS interface (EXCI):

– Web browsers connected to the IBM WebSphere Application Server for
OS/390.In the IBM WebSphere Application Server for OS/390, a
user-provided Common Gateway Interface (CGI) script builds the EXCI
request to the CICS business logic interface.

– Java applications using CICS-provided Java classes and local Gateway
facilities. The applications can create ECIRequest objects that communicate
with CICS without using a CICS Transaction Gateway. See the CICS
Transaction Gateway for OS/390 Version 3.1 Administration, SC34–5528–01, for
more information about the CICS-provided Java classes and the local
Gateway facilities.

v Users of the CICS Family: Client/Server Programming external call interface
(ECI).

v Any program running in a CICS application environment. The program uses
EXEC CICS LINK to the CICS business logic interface.

v ONC RPC clients. These programs can use CICS ONC RPC support to call the
CICS business logic interface.

© Copyright IBM Corp. 1994, 2000 105

|
|
|
|

Processing examples
Figure 13 shows how the CICS business logic interface processes a request from an
MVS application that uses the EXCI.

The MVS application constructs a communication area that contains parameters for
the CICS business logic interface, and calls it with EXCI. The CICS business logic
interface ensures that the CICS TS provides the requested service, and returns any
output in the communication area.

Figure 14 shows how the CICS business logic interface processes a request from a
CICS client that uses the ECI.

The client, running in a workstation environment, constructs a communication area
that contains parameters for the CICS business logic interface. It uses the ECI to
call the CICS business logic interface. The CICS business logic interface ensures
that the CICS TS provides the requested service, and returns any output in the
communication area. The ECI operates with either the SNA protocol or with
TCP62, which allows a SNA connection over TCP/IP (see the CICS Family:
Client/Server Programming for further information)..

Control flow in request processing
To make decisions about the facilities you will use, and how you will customize
them, you need to understand how the components of the CICS business logic
interface interact.

Server

OS/390

CICS Transaction Server

CICS
serviceBusiness

Logic
interface

EXCI
Any MVS

application

Figure 13. Processing a request from the EXCI

Server

OS/390

CICS Transaction Server

CICS
serviceBusiness

logic
interface

ECICICS
client

Workstation

Figure 14. Processing a request from the ECI

106 CICS TS for OS/390: CICS Internet Guide

Using the CICS business logic interface to call a program
Figure 15 shows the control flow through the CICS business logic interface to a
program. The CICS business logic interface is accessed by an EXEC CICS LINK
command to PROGRAM DFHWBBLI.

1. A request arrives for the CICS business logic interface.
2. If the caller requests a converter, the CICS business logic interface calls it,

requesting the Decode function. Decode sets up the communication area for
the CICS program.

3. The CICS business logic interface calls the CICS program that the caller
specified. The communication area passed to the CICS program is the one set
up by Decode. If no converter program was called, the communication area
contains the entire request.

4. The CICS program processes the request, and returns output in the
communication area.

5. If the caller requested a converter, the CICS business logic interface calls the
Encode function of the converter, which uses the communication area to
prepare the response. If no converter program was called, the CICS business
logic interface assumes that the CICS program has put the desired response in
the communication area.

6. The CICS business logic interface sends a reply back to the caller.

Using the CICS business logic interface to run a
terminal-oriented transaction

Figure 16 on page 108 shows the control flow through the CICS business logic
interface for a request for a terminal-oriented transaction. Note that the business
logic interface is running under a CICS mirror transaction, not a Web CICS
transaction. The first part of the processing is the same as for calling a program,
but if you want to run a transaction, you must specify DFHWBTTA as the CICS
program to be called, in wbbl_server_program_name.

Converter
(Decode)

1 2

4
3

56

Request from caller

Reply to caller

CICS
program

Converter
(Encode)

Business
logic

interface

Figure 15. Calling a program with the CICS business logic interface—control flow

Chapter 16. Introduction to the CICS business logic interface 107

|
|
|

|
|
|
|
|
|

1. If the caller requests a converter, the CICS business logic interface calls it,
requesting the Decode function. Decode sets up the communication area for
DFHWBTTA.

2. The CICS business logic interface calls DFHWBTTA. The communication area
passed to DFHWBTTA is the one set up by Decode. If no converter program
was called, the communication area contains the entire request.

3. DFHWBTTA extracts the transaction ID for the terminal-oriented transaction
from the HTTP request, and starts a transaction that runs the CICS Web bridge
exit.

4. When the program attempts to write to its principal facility, the data is
intercepted by the CICS Web bridge exit, and returned to the CICS business
logic interface. If the caller requested a converter, the CICS business logic
interface calls the Encode function of the converter, which uses the
communication area to prepare the response. If no converter program was
called, the CICS business logic interface assumes that the communication area
contains the desired response.

Data flow in request processing
To make decisions about the facilities you will use, and how you will customize
them, you need to understand how data is passed in the CICS business logic
interface.

Using the CICS business logic interface to call a program
Figure 17 on page 109 shows the data flow through the CICS business logic
interface to a program, and back to the requester.

Bridge transaction

Transaction
program

CICS Web
bridge exit

Mirror transaction

Converter
(Decode)

DFHWBTTA

Converter
(Encode)

3 4

1

2

5

Business
logic

interface

Figure 16. Running a transaction with the CICS business logic interface—control flow

108 CICS TS for OS/390: CICS Internet Guide

1. The caller of the CICS business logic interface provides a communication area
that contains the request to be processed. The contents of the communication
area must be in a code page acceptable to the subsequent processes. Usually
this means that they must be in EBCDIC.

2. If the caller requests a converter, the Decode function of the converter
constructs the communication area for the CICS program.

3. The CICS program updates the communication area.
4. If the caller requests a converter, the Encode function of the converter

constructs the communication area that is to be returned to the caller.
5. The CICS business logic interface returns to its caller, which can now use the

contents of the communication area.

Request for a terminal-oriented transaction
Figure 18 on page 110 shows the data flow for a request that starts a
terminal-oriented transaction.

Communication area

Encode

Communication area

CICS program

Communication area

Communication area

1

2

3

4

5

Decode

Figure 17. Calling a program with the CICS business logic interface—data flow

Chapter 16. Introduction to the CICS business logic interface 109

This figure shows the data flow through the CICS business logic interface for a
3270 BMS application. If CICS Web support processes the request, there is data
conversion of headers and user data as shown in Figure 11 on page 25.
1. The caller of the CICS business logic interface provides a communication area

that contains the request to be processed. The contents of the communication
area must be in a code page acceptable to the subsequent processes, and
DFHWBTTA requires EBCDIC.

2. You can use the Decode function of the converter to modify the request if
required.

3. As this is the first transaction of a conversation or pseudoconversation, the
request includes the transaction ID, and perhaps data to be made available to
the transaction program. DFHWBTTA extracts the data so that it can be made
available to the transaction program in EXEC CICS RECEIVE.

4. The transaction program uses EXEC CICS RECEIVE to receive the data. It then
constructs an output map, and uses EXEC CICS SEND MAP to send it to the
requester.

5. The map and its data contents are converted into HTML. This conversion uses
templates defined in DOCTEMPLATE definitions.

Template conversion Template library

Output map

Transaction program

Transaction data

Encode

Output HTML

Communication area

1

2 Decode

DFHWBTTA

Communication area

3

4

5

6

Communication area

7

Figure 18. Starting a terminal-oriented transaction—data flow

110 CICS TS for OS/390: CICS Internet Guide

|
|
|

|
|

6. You can use the Encode function of the converter to modify the response if
required.

7. The CICS business logic interface returns to its caller, which can now use the
contents of the communication area.

Figure 19 shows the data flow for a request that continues a terminal-oriented
transaction.

This figure shows the data flow when the CICS business logic interface processes
the request. If CICS Web support processes the request, there is data conversion of
headers and user data as shown in Figure 11 on page 25.
1. The caller of the CICS business logic interface provides a communication area

that contains the request to be processed. The contents of the communication

Communication area

1

2 Decode

Input map

Transaction program

Input HTML

DFHWBTTA

Communication area

3

4

5

Output map

Template conversion

Template conversion

Output HTML

6

Communication area

7

Template library

Template library

8

Encode

Figure 19. Continuing a terminal-oriented transaction—data flow

Chapter 16. Introduction to the CICS business logic interface 111

area must be in a code page acceptable to the subsequent processes. Usually
this means that they must be in EBCDIC.

2. The Decode function of the converter constructs the communication area for
DFHWBTTA.

3. As this is not the first transaction of a conversation or pseudoconversation, the
request includes HTML corresponding to the map that the transaction program
is expecting to receive. DFHWBTTA extracts the forms data to make it available
to the transaction program in EXEC CICS RECEIVE MAP.

4. The incoming forms input data is converted into a BMS map. This conversion
uses templates from DOCTEMPLATE definitions.

5. The transaction program uses EXEC CICS RECEIVE MAP to receive the data. It
then constructs an output map, and uses EXEC CICS SEND MAP to send it to
the requester.

6. The map and its data contents are converted into HTML. This conversion uses
templates from DOCTEMPLATE definitions.

7. The Encode function of the converter uses the HTML output from the
conversion process to construct the communication area to be returned to the
caller.

8. The CICS business logic interface returns to its caller, which can now use the
contents of the communication area.

112 CICS TS for OS/390: CICS Internet Guide

Chapter 17. Configuring the CICS business logic interface

The CICS business logic interface is a callable program that does not require the
support of special transactions. However, before you plan how to use the CICS
business logic interface, you need to know about the role of the converters.

You can have many converter programs in a CICS system to support the operation
of the CICS business logic interface. The place of converters in the CICS business
logic interface is illustrated in Figure 15 on page 107 and Figure 16 on page 108.
Each converter must provide two functions:
v Decode is used before the CICS program is called. It can:

– Use the data from the incoming request to build the communication area in
the format expected by the CICS program.

– Supply the lengths of the input and output data in the CICS program
communication area.

– Perform administrative tasks related to the request.
v Encode is used after the CICS program has been called. It can:

– Use the data from the CICS program to build the response.
– Perform administrative tasks related to the response.

There are some restrictions on the functions of the converter that depend on how
the CICS business logic interface was called. The two modes of calling the CICS
business logic interface are:
v Pointer mode
v Offset mode

The differences in the functions are described in “Chapter 8. Writing a converter”
on page 51, and in “Appendix C. Reference information for the converter” on
page 173. Converters called in offset mode are more restricted than converters
called in pointer mode. All requests from any of the following sources result in
offset mode calls to the CICS business logic interface:
v Web browsers using the IBM WebSphere Application Server for OS/390.
v Java applications using the local gateway function.
v DCE RPC clients.
v Web browsers using the CICS Transaction Gateway or the CICS Transaction

Gateway for OS/390.

You must set the WEBDELAY system initialization parameter, as described in
“System initialization parameters” on page 31.

If you are not using autoinstall for programs, you must define all the
user-replaceable programs (converters) that the callers of the CICS business logic
interface use. If you are using autoinstall for programs, you do not need to define
the converters. All the converters must be local to the system in which the CICS
business logic interface is operating.

Reference information for the business logic interface can be found in
“Appendix A. Reference information for DFHWBBLI” on page 159

© Copyright IBM Corp. 1994, 2000 113

|

114 CICS TS for OS/390: CICS Internet Guide

Chapter 18. Programming tasks for client systems
v Write MVS applications to use the EXCI to communicate with the CICS business

logic interface. There will be applications that use CICS programs for their
services, and applications that use CICS transactions for their services. See
“Appendix A. Reference information for DFHWBBLI” on page 159.

v Write workstation applications to use the ECI to communicate with the CICS
business logic interface. There will be applications that use CICS programs for
their services, and applications that use CICS transactions for their services. See
“Appendix A. Reference information for DFHWBBLI” on page 159.

v Write CICS applications to use EXEC CICS LINK to communicate with the CICS
business logic interface. There will be applications that use CICS programs for
their services, and applications that use CICS transactions for their services. See
“Appendix A. Reference information for DFHWBBLI” on page 159.

© Copyright IBM Corp. 1994, 2000 115

116 CICS TS for OS/390: CICS Internet Guide

Part 4. Using secure sockets layer (SSL)

This part of the book describes secure sockets layer (SSL). It contains:
v “Chapter 19. Introduction to secure sockets layer (SSL)” on page 119
v “Chapter 20. Configuring CICS to use SSL” on page 123

© Copyright IBM Corp. 1994, 2000 117

|

|

|

|

|

118 CICS TS for OS/390: CICS Internet Guide

Chapter 19. Introduction to secure sockets layer (SSL)

This chapter provides an overview of how secure sockets layer (SSL) provides
transaction security for CICS communications over TCP/IP. It includes the
following sections:
v “Overview of SSL”
v “SSL and the Web” on page 120
v “Encryption and keys” on page 120
v “Authentication and certificates” on page 121

Overview of SSL
SSL is a security protocol developed to provide security and privacy over the
Internet. The SSL protocol uses encryption and authentication to ensure:

Privacy
The data to be exchanged between the client and the server is encrypted,
so that only that client and that server can make sense of the data. SSL
uses public key encryption as a secure mechanism to distribute a secret key
between the server and the client. Public key encryption is a technique that
uses a pair of asymmetric keys for encryption and decryption. With SSL, a
secret (symmetric) key is passed between the client and the server, using
public key cryptography, and the key is then used to encrypt and decrypt
all traffic along the SSL connection. This encryption protects the data from
other parties trying to eavesdrop, as no other parties will have the secret
key needed to decrypt the data. This ensures that private information such
as a credit card number is transferred securely.

Integrity
The message transport includes a message integrity check based on a
secure hashing algorithm. This algorithm is performed when the message
is sent, and again when it is received. If the two hash values do not match,
the receiver is warned that the message may have been tampered with. A
128–bit encryption key can be used in the United States, in France a 40–bit
encryption key can be used, and in the rest of the world a 56–bit
encryption key can be used. The 128–bit encryption key is available outside
the United States to organizations that have been authorized by the United
States government.

Authentication
When a client establishes a connection with CICS, it may be required to
authenticate its details to the server. The authentication mechanism is
based on the exchange of digital certificates (X.509v3 certificates). These
digital certificates contain information about an entity, such as the system
name and public key, and the server’s digital signature. Digital certificates
are issued by a Certificate Authority (CA), and encrypted using the CA’s
private key. If you can decrypt the certificate using the CA’s public key,
you know that the information contained within the certificate can be
trusted (that is, that the certificate really does belong to whoever claims to
own it).

© Copyright IBM Corp. 1994, 2000 119

|

|

|
|
|

|

|

|

|

|
|

#
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

SSL and the Web
The HTTPS protocol is a variant of HTTP for handling secure Web transactions.
Most current browsers support the HTTPS URL access method to connect to HTTP
servers that use SSL. A secure connection is made with a URL such as
https://www.company.com

If you use the HTTPS protocol without specifying a port number, a default port
number of 443 is assumed.

Encryption and keys
The SSL protocol operates between the application layer and the TCP/IP layer.
This allows it to encrypt the data stream itself, which can then be transmitted
securely, using any of the application layer protocols. Two encryption technique are
used:
v Public key cryptography standard (PKCS), which encrypts and decrypts

certificates during the SSL handshake.Encryption keys are created in pairs, a
public key and its associated private key. Data encrypted with a given public
key can be decrypted only with the associated private key; this means that data
is readable by only the intended recipient. Data encrypted with a given private
key can be decrypted only with the associated public key; this means that
authentication data is assured to originate from the owner of the private key.

v A mutually agreed symmetric encryption technique, such as DES (data
encryption standard), or triple DES, is used in the data transfer following the
handshake.

PKCS, as used by SSL, works briefly as follows:
1. A key-pair is requested, usually as part of certificate application (see

“Authentication and certificates” on page 121.
2. As part of the certificate creation, a private key and public key are created by

means of an algorithm based on two random numbers. The resultant two keys
are related to each other, but it would be very difficult to deduce one from the
other.

3. The private key is stored securely, and is not made known to anyone but its
owner. The public key is freely available to anyone.

The private and public key pair is then used during the SSL handshake as follows:
1. A wants to send a private message to B, so A first encrypts the message using

B’s public key, which is freely available.
2. On receiving the message, B decrypts it with B’s private key. The relationship

between the public and private key is such that anything encrypted with a
given public key can be decrypted only by the associated private key. As long
as the private key is not divulged, any data encrypted with the associated
public key is safe.

In CICS, the system’s private and public key pair are held in a “key database”,
which is stored within the hierarchical file system (HFS) of OS/390 and which is
managed by the gskkyman utility.

120 CICS TS for OS/390: CICS Internet Guide

|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|

|
|
|
|

|
|

|

|
|

|
|
|
|
|

|
|
|

Authentication and certificates
To make an environment secure, you must be sure that any communication is with
″trusted″ sites whose identity you can be sure of. SSL uses certificates for
authentication — these are digitally signed documents which bind the public key
to the identity of the private key owner. Authentication happens at connection
time, and is independent of the application or the application
protocol.Authentication involves making sure that sites with which you
communicate are who they claim to be. With SSL, authentication is performed by
an exchange of certificates, which are blocks of data in a format described in ITU-T
standard X.509. The X.509 certificates are digitally signed by an external authority
known as a certificate authority. Using a search string such as certificate authority,
search the Web for companies that provide this service.

Certificates are digitally signed using the public-key encryption technique. The
signature is created by partially encrypting the certificate with the certificate
authority’s private key. A user of the certificate is assured of the origin of the
certificate when it is successfully decrypted by the certificate authority’s public key.

In SSL, the server certificate is mandatory, but the client certificate is optional, and
it is up to the server (that is, CICS) to decide whether to accept a connection from
a client without a certificate.

In CICS, the required server certificate and related information about certificate
authorities are held in a “key database”, which is stored within the hierarchical file
system (HFS) of OS/390. This file contains your system’s private and public key
pair, together with your server certificate and the certificates for all the certificate
authorities that might have signed the certificates you receive from your clients.

Chapter 19. Introduction to secure sockets layer (SSL) 121

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

122 CICS TS for OS/390: CICS Internet Guide

Chapter 20. Configuring CICS to use SSL

This chapter explains how to configure CICS to use SSL. It contains:
v “Hardware prerequisites”
v “Software prerequisites”
v “System set-up”
v “System initialization parameters” on page 124
v “Resource definitions” on page 125
v “System programming” on page 126
v “Application programming” on page 126
v “A sample application program: DFH0WBCA” on page 126

Hardware prerequisites
SSL does not require any additional hardware, but performance is improved if the
appropriate cryptographic hardware is installed. The Cryptographic Coprocessor
Feature is an optional feature of IBM S/390® Multiprise® 2000 and IBM S/390
Parallel Enterprise Server™ Generation 3 systems. It is standard on IBM S/390
Parallel Enterprise Server Generation 4 systems. The IBM 4753–014 Network
Security Processor can be attached to S/390 systems that do not include the
Cryptographic Coprocessor Feature.

Software prerequisites
These are the software prerequisites for using SSL:
v OS/390 Version 2 Release 7
v APAR PQ23421 must be applied to CICS TS Release 3 to enable SSL.
v The cryptographic hardware described in “Hardware prerequisites” is managed

by ICSF (Integrated Cryptographic Service Facility) software. See the OS/390
ICSF Administrator’s Guide for details on how to install ICSF.

System set-up
The following tasks are necessary for SSL to work with CICS:
v Obtain an X.509 certificate from a certificate authority such as Verisign, whose

Web page is at:
http://www.verisign.com/

v Use the gskkyman utility (supplied with OS/390 Unix System Services) to create
a key database to hold your public and private keys, your server certificate, and
the certificate information for each client you expect to communicate with.
When you create the key database with gskkyman, you will be prompted for a
password. This password is used to protect the database, and you will be
required to enter it whenever you access the database. Alternatively, you can use
gskkyman to create an encrypted password file, which allows CICS to access the
database without specifying the password.
When you add a server certificate to the key database, you can give the
certificate a name, or certificate label. You can also choose to make one of the
certificates the default certificate for that database.

© Copyright IBM Corp. 1994, 2000 123

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|
|
|

|
|

|

|

|

#
#
#

|
|

|

|
|

|

|
|
|

|
|
|
|
|

|
|
|

v If you have cryptographic hardware enabled and you use DES encryption, you
must ensure that the MAXLEN parameter in SYS1.PARMLIB(CSFPRMxx), which
defaults at installation to 64KB, is set to an appropriate value. The recommended
minimum value is one megabyte, but you should set it to a value at least as
large as the largest buffer you ever expect to transmit, up to a maximum value
of 2147834647 bytes.

v Ensure that the CICS region userid is an MVS OpenEdition® userid that is
authorized to read the HFS file specified in the KEYFILE attribute.

v If you intend to use client certificates to select the userids under which CICS
Web transactions execute, you need to receive the certificates from your clients
and install them in your External Security Manager. If you are using the S/390
Security Server, use the RACDCERT TSO command to do this. To add a
certificate, the command is:
RACDCERT ADD(datasetname) ID(userid) TRUST

For further information about the RACDCERT command, see the CICS RACF
Security Guide.

v Ensure that the CICS region has access to the OS/390 system SSL SGSKLOAD
dataset by means of the STEPLIB, JOBLIB, LNKLST, and other statements, as
appropriate.

System initialization parameters
There are five system initialization parameters relating to SSL:

ENCRYPTION=WEAK|NORMAL|STRONG
Specifies the level of encryption you want to use for TCP/IP connections using
the secure sockets layer. The parameter selects the list of ciphers that are
negotiated with the client program to choose the SSL encryption technique,
keysize, and message authentication code (MAC). You can specify an option
only if you have the underlying encryption support in the OS/390 operating
system. Possible values are:

WEAK
This is available with OS/390 V2R7 and later releases in all countries. It
specifies the following list of ciphers:
v RC4 encryption with a 40–bit key and an MD5 MAC
v RC2 encryption with a 40–bit key and an MD5 MAC
v No encryption with an MD5 MAC
v No encryption with an SHA MAC.

NORMAL
This is the default, but if it is specified for OS/390 V2R7 and DES
encryption is not available, CICS automatically resets it to WEAK.
NORMAL is available with OS/390 V2R8 and later releases in all countries
except France. It specifies the following list of ciphers:
v DES encryption with a 56–bit key and an SHA MAC
v RC4 encryption with a 40–bit key and an MD5 MAC
v RC2 encryption with a 40–bit key and an MD5 MAC
v No encryption with an MD5 MAC
v No encryption with an SHA MAC.

STRONG
This is available with OS/390 V2R7 and later releases in the USA and
Canada only. It specifies the following list of ciphers:

124 CICS TS for OS/390: CICS Internet Guide

#
#
#
#
#
#

|
|

|
|
|
|
|

|

|
|

#
#
#

|
|

|

|
|
|
|
|
|
#

#
#
#

#

#

#

#

#
#
#
#
#

#

#

#

#

#

#
#
#

v Triple DES encryption with a 168–bit key and an SHA MAC
v RC4 encryption with a 128–bit key and an MD5 MAC
v RC4 encryption with a 40–bit key and an SHA MAC
v DES encryption with a 56–bit key and an SHA MAC
v RC4 encryption with a 40–bit key and an MD5 MAC
v RC2 encryption with a 40–bit key and an MD5 MAC
v No encryption with an MD5 MAC
v No encryption with an SHA MAC.

KEYFILE
Use this to specify the fully qualified HFS file name of the key database
created by the GSKKYMAN utility program. The maximum length of the
KEYFILE parameter is 47 characters. When you specify this parameter, the
CICS region userid must be authorised to read the specified HFS file. Note that
the database name is case sensitive. You must also have used option 11 of the
GSKKYMAN utility to create a stashed password file. Here is an example of
how you might code KEYFILE:
KEYFILE=/u/cicsssl/keys/key.kdb

For more information on creating a key database file, see the OS/390
Cryptographic Services System SSL Programming Guide and Reference, SC24-5877.

SSLDELAY=600|number
Specifies the length of time in seconds for which CICS retains session IDs for
secure socket connections. Session IDs are tokens that represent a secure
connection between a client and an SSL server. While the session ID is retained
by CICS within the SSLDELAY period, CICS can continue to communicate
with the client without the significant overhead of an SSL handshake. The
value is a number of seconds in the range 0 through 86400.

SSLTCBS=8|number
Specifies the number of CICS subtask TCBs that will be dedicated to
processing secure sockets layer connections. The value is a number in the
range 0 through 255. It controls the number of simultaneous SSL connections
that CICS can establish. A value of 0 means that no SSL connections are to be
established. This number is independent of and in addition to the TCBs
specified in MAXOPENTCBS. The TCBs used by SSL can consume
considerable storage below 16MB.

TCPIP(NO|YES)
TCPIP specifies whether CICS TCPIP services are to be activated at CICS
startup. The default is NO, meaning that HTTP and IIOP services cannot be
enabled. If TCPIP is set to YES, these services can be enabled and can then
process work.

See the CICS System Definition Guide for details of the system initialization table.

Resource definitions
Install and activate a TCP/IP service for SSL use, either with or without client
authentication. The TCPIPSERVICE resource definition has three attributes relating
to SSL:
v PORTNUMBER. This is the TCP/IP port number on which the SSL service will

be provided.

Chapter 20. Configuring CICS to use SSL 125

#

#

#

#

#

#

#

#

#
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|
|

|
|

v CERTIFICATE(certificate-label). The TCP/IP service uses one of the certificates in
the key database as its server certificate. Use the CERTIFICATE option to specify
a particular certificate (certificate_label is the name that you assigned to the
certificate with gskkyman). If you do not specify CERTIFICATE, CICS uses the
default certificate in the key database.

v SSL(NO|YES|CLIENTAUTH). Use this to specify the level of SSL to be used.
NO specifies no SSL support. YES specifies that SSL support is to be activated,
and clients connecting to the specified port number must use the SSL protocol to
connect with CICS (that is, they must specify ″https″ rather than ″http″ as the
protocol in the URL used to access the service). CLIENTAUTH specifies that the
client, as well as the server, must have a certificate. The client certificate is
received by CICS during the SSL handshake, and can be used either to
determine the userid under which the CICS transaction can be executed, or to
provide information about the client by means of the EXEC CICS EXTRACT
CERTIFICATE command.

The TCPIPSERVICE definition must be activated, either by specifying
STATUS(OPEN) and installing the definition, or by installing the definition and
later using a CEMT SET TCPIPSERVICE OPEN command. The TCPIPSERVICE
definition is described in detail in the CICS Resource Definition Guide.

System programming
The SSL attribute of the INQUIRE TCPIPSERVICE command returns the level of
secure sockets support being used for this service (SSL=NO, SSL=YES, or
SSL=CLIAUTH).

Application programming
Examine existing application programs to see whether they can exploit the EXEC
CICS EXTRACT CERTIFICATE command. This command allows you to extract
information from any client certificate received over an SSL connection. See the
CICS Application Programming Reference for details of the command.

A sample application program: DFH0WBCA
DFH0WBCA is a sample program provided by CICS. It demonstrates how you can
extract information from an SSL client certificate and construct the response as a
CICS document with the EXEC CICS DOCUMENT commands. The CICS
Application Programming Guide contains guidance information about the EXEC CICS
DOCUMENT commands.

126 CICS TS for OS/390: CICS Internet Guide

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|

Part 5. CORBA client support

This part of the book describes CICS support for inbound IIOP requests for CICS
JAVA applications. It covers the following topics:
v “Chapter 21. IIOP inbound to Java®” on page 129
v “Chapter 22. Requirements for IIOP applications” on page 135
v “Chapter 23. Processing the IIOP request” on page 137
v “Chapter 24. Developing IIOP applications” on page 143
v “Chapter 25. IIOP sample applications” on page 151

© Copyright IBM Corp. 1994, 2000 127

|

|

|
|

|

|

|

|

|

IIOP inbound to Java

128 CICS TS for OS/390: CICS Internet Guide

Chapter 21. IIOP inbound to Java®

The Internet Inter-ORB protocol (IIOP), is an industry standard that defines
formats and protocols to provide client/server semantics for distributed
object-oriented application programs in a TCP/IP network. It is part of the
Common Object Request Broker Architecture (CORBA) specification.

CICS Transaction Server for OS/390 Release 3 provides support for inbound
requests to Java application programs, using the IIOP protocol. Execution of Java
server programs requires the VisualAge for Java, Enterprise ToolKit for OS/390.
For information about building Java applications to run in CICS, and the use of the
CICS Java classes, see the CICS Application Programming Guide.

A subset of CORBA services is provided, suitable for distributed objects that have
evolved from existing CICS applications and therefore have the following
characteristics:
v State by virtue of their explicit use of CICS resources, rather than state that is

managed by the Object Request Broker (ORB). State is initialized at the start of
each method call and referenced by explicit method parameters.

v Transaction and security contexts managed by CICS facilities, so these CORBA
services are not provided.

v CICS services used to reference distributed applications, so outbound object
references are not supported.

v Applications and their interfaces predefined, so the Dynamic Skeleton Interface
(DSI) is not supported.

With any distributed application, the client and server need basic information to be
able to communicate, such as information about the available operations the client
can request, and the arguments to the operations. This information is provided by
an interface that you define using the Object Management Group (OMG) Interface
Definition Language (IDL) to code a set of interface definitions.

Each method call is implemented as a CICS transaction.

Workload balancing of IIOP requests
Workload balancing of requests is implemented at three levels:

TCP/IP port sharing
TCP/IP port sharing is provided by the eNetwork Communications Server in
OS/390 Version 2 Release 5 or later. See TCP/IP for MVS: Customization and
Administration Guide and OS/390 eNetwork Communications Server: IP
Configuration Guide for further information.

Dynamic Domain Name Server (DNS) registration for TCP/IP
Balances IP connections and workload in a Sysplex domain. The Initial
Interoperable Object reference (IOR) to the CICSplex contains a generic host
name and port number. With dynamic DNS, multiple CICS systems are started
to listen for IIOP requests on the same port (using Virtual IP addresses), and
the host name in the initial IOR is resolved to an IP address by MVS DNS and
Workload Management (WLM) services.

© Copyright IBM Corp. 1994, 2000 129

|

|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|

|

|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

Connection Optimization in a Sysplex Domain is described in the OS/390
TCP/IP Update Guide GC31-8553.

CICS Dynamic Linkage
Balances method call invocations across CICS regions. The dynamic selection of
the target is provided by CICS services, selecting the least loaded or most
efficient application region.

The following diagram shows the two levels of workload balancing:

Terminology
the following terms are used throughout this part of the book:

OMG The Object Management Group. The consortium of software organizations
that has defined the CORBA architecture.

CORBA
The Common Object Request Broker Architecture. An architecture and a
specification for distributed object-oriented computing.

ORB The Object Request Broker. A CORBA system component that acts as an
intermediary between the client and server applications. Both client and
server platforms require an ORB; each is tailored for a specific
environment, but support common CORBA protocols and IDL.

IIOP The Internet Inter-Orb Protocol. An industry standard that defines formats
and protocols to provide client/server semantics for distributed
object-oriented applications in a TCP/IP network. It is part of the CORBA
architecture.

IDL Interface Definition Language. A definition language that is used in
CORBA to describe the characteristics and behavior of a kind of object,
including the operations that can be performed on it.

Module
This maps to a Java package.

Interface
Describes the characteristics and behavior of a kind of object, including the

Hostname
resolution

SYSPLEX

Dynamic
routing
of LINK

Listener AOR

Dynamic
DNS

Client

Figure 20. Workload Balancing using DNS

130 CICS TS for OS/390: CICS Internet Guide

|
|

|
|
|
|

|
|

|
|

|

||
|

|
|
|

||
|
|
|

||
|
|
|

||
|
|

|
|

|
|

|

|
|
|

operations that can be performed on those objects. This maps to a class. In
CORBA terminology, the client request specifies, in IDL, an interface that
defines the server object.

Operation
An action that can be performed on an object. This maps to a method. In
CORBA terminology, the client requests an operation, defined in IDL, that
is mapped to a method on the server object.

IOR Interoperable Object Reference. In a distributed environment this provides
enough information to locate the server and the object.

Stub or proxy
This is generated by the client IDL compiler. It is used by the ORB to
convert a local object reference to an IOR, and invoke translation of object
datatypes from/to the IIOP message syntax.

Skeleton
This is generated by the server IDL compiler. It is used by the ORB to
parse the message into a method call on a local (to the server) object.

Execution flow
The following diagram shows the execution flow of an incoming request:

Listener
The CICS TCP/IP listener monitors specified ports for inbound requests. IIOP
ports are specified by defining and installing TCPIPSERVICE resources. See
“Chapter 23. Processing the IIOP request” on page 137 for more information
about the TCPIPSERVICE resource.

The TCPIPSERVICE resource definition also controls dynamic DNS load
balancing.The selected Listener receives the incoming request and starts the
transaction specified in the TCPIPSERVICE definition for that port. For IIOP
services, this transaction should be CIOR, executing the CICS receiver program
DFHIIOP.

Establishing execution characteristics
DFHIIOP retrieves the incoming request and matches its interface and
operation (class and method) against templates defined by REQUESTMODEL

Listener

Reply

Attach

Attach
Link

Call

CIOD
Method

TRANSID?

USERID? (URM)

CIOR

CIOD

Request

Region Boundary

Java
main()

DFHIIOPA

DFHIIOP

DFJIIOP

Figure 21. IIOP request execution flow

Chapter 21. IIOP inbound to Java® 131

|
|
|

|
|
|
|

||
|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|

resource definitions. The selected REQUESTMODEL provides the name of the
CICS transaction under which the method will run. If no match is found, the
default transaction CIOD is used. You can define your own transaction, with
any name, to provide the transaction execution characteristics, but the program
name must be DFHIIOPA.

DFHIIOP then calls a User Replaceable Module (URM) to supply a USERID,
and attaches the requested CICS transaction, passing it the inbound IIOP
request data. You can define the name of the URM in the TCPIPSERVICE
resource definition for the IIOP port. If no name is specified, the default
DFHXOPUS will be called.

DFHIIOP then attaches the requested transaction (default CIOD) to run the
DFHIIOPA program with the requested USERID.

ORB function
DFHIIOPA links to DFJIIOP to handle the IIOP request. This linkage can
exploit CICS dynamic routing services to provide load balancing within the
CICSplex. Note that it is DFJIIOP that is routed, not the method. To do this,
you need to make copies of the supplied default transactions (CIOD and
CIOF), changing the PROGRAM name to DFHMIRS, and install them in the
AOR.

DFJIIOP analyzes the contents of the IIOP request (in the passed COMMAREA
or TS queue) and then:
v Instantiates the target object
v Demarshals the input parameters
v Invokes the requested method on the target object. This can access CICS

resources and link to other CICS application programs using the CICS Java
(JCICS) classes. (See the CICS Application Programming Guide for information
about the CICS Java API).

v Marshals the reply and returns it to DFHIIOPA for transmission back to the
sender of the IIOP request.

A client ORB may also generate IIOP LocateRequest messages, which are
handled in a similar manner.

Hot-pooling

When you execute a Java program object using the VisualAge for Java,
Enterprise ToolKit for OS/390, the Language Environment run-unit or enclave
is built and initialized for each invocation. You can reduce this performance
overhead for frequently run Java program objects by requesting that a
preinitialized and persistent enclave is reused for multiple invocations of the
program.

Hot-pooling is active for programs that are defined to CICS with Hotpool(Yes)
specified in the PROGRAM resource definition. For Java server programs that
are invoked by IIOP requests, the DFJIIOP program must be defined with
Hotpool(Yes) if you want to use hot-pooling.

132 CICS TS for OS/390: CICS Internet Guide

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

|

|

|
|
|
|

|
|

|
|

#

#
#
#
#
#
#

#
#
#
#

CORBA Services support
Name Server support

Name server support is not implemented in CICS. A stringified reference to the
CosLifeCycle::GenericFactory implemented in the server can be written to a file
using the GenFacIOR utility class, and you must ensure that this stringified
reference is available to clients.

Security support
Security support is provided by CICS rather than a CORBA IIOP mechanism.
All IIOP requests to CICS will run under a default USERID unless you provide
a user replaceable module to generate a USERID for each request. See
“Obtaining a CICS USERID” on page 140 for more information about the IIOP
user replaceable module.

Lifecycle support
Only the CORBA GenericFactory interface is supported, implemented in
program DFJGFAC. Unless overridden, GenericFactory requests will run under
the CIOF transaction, as shown in “Supplied REQUESTMODEL definitions” on
page 140.

Externalization
The externalization service is not supported.

Persistence
The persistence service is not supported.

Concurrency
The concurrency service is not supported.

Interface Repository Framework
The interface repository framework service is not supported.

Location service
The location service is not used. All object references refer either to a specific
server, or if workload balancing is in use, to a server group.

Chapter 21. IIOP inbound to Java® 133

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

134 CICS TS for OS/390: CICS Internet Guide

Chapter 22. Requirements for IIOP applications

This chapter describes the libraries and files that you will need to develop and run
IIOP applications, and the CICS resource definitions required.

Environment
To build a CICS Java server program, you will require the following environment:
v An MVS/ESA system configured with Full Function OS/390 UNIX System

Services (previously known as OpenEdition®)
v CICS Transaction Server for OS/390 Release 3 with Language Environment (LE)

active
v A Java compiler such as javac, installed on OS/390 UNIX System Services, or on

a workstation that can connect to the OS/390 UNIX System Services
environment to transfer data, or VisualAge for Java installed on a workstation

v The VisualAge for Java, Enterprise ToolKit for OS/390 installed on ESA

CICS parameters
You should review the following parameter settings in the CICS system
intialization table:

EDSALIM
Memory requirements to run Java programs using ET/390 are higher than for
conventional programs. You should set the system initialization parameter
EDSALIM to a high value (such as 100MB) when starting CICS, otherwise a
Short-on-Storage condition may occur. Note that this must be set by SIT
override, not using CEMT SET commands.

MXT
CICS requires two transactions to process each request, so you should increase
the maximum task limit (MAXTASKS) by setting the MXT parameter in the
CICS system initialization table appropriately. The CIOR transaction should be
defined in a TRANCLASS whose MAXACTIVE task value is less than half the
MXT value.

.jar files
The following CICS supplied files are required in your CLASSPATH. They are
stored in the OS/390 UNIX System Services HFS in a directory
$CICS_HOME/classes during CICS installation:

dfjcidl.jar
The CICS IDL compiler to be used in building the IIOP server application.

dfjcorb.jar
The CICS ORB classes, required to build the IIOP server application This
also contains the GenFacIOR utility that you need to build your client
program.

dfjcics.jar
The JCICS API classes, required for compilation of a Java server program
that uses JCICS to access CICS services.

© Copyright IBM Corp. 1994, 2000 135

|

|

|
|

|
|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|

$CICS_HOME is an environment variable defining the installation directory prefix:
/usr/lpp/cicsts/<username>

Where username is a name you can choose during the installation of CICS,
defaulting to cicsts13.

CICS libraries
The following CICS PDSE libraries are required in the CICS DFHRPL library
concatenation at run time.

IIOP and JCICS
The MVS PDSE library SDFJLOAD (or SDFJLOD1) is required. These libraries are
built during CICS installation. SDFJLOAD is maintained at a level compatible with
the current release of the VisualAge for Java, Enterprise ToolKit for OS/390
(ET/390), and SDFJLOD1 is maintained at a level compatible with Release 1. You
will only require one of these libraries and should choose the one that is
compatible with the release of ET/390 that you are using.

PDSE Program libraries
A PDSE library is required to hold the CICS Java server program objects that have
been bound by ET/390.

PDSE libraries are similar to PDS libraries. They contain directories and members,
but allow long-name aliases for the 8-byte Primary Member names. You can use
them either for data, or for programs (but not a mix of both), and combine both
PDS and PDSE libraries in the same concatenation.

APAR PQ35810:

Paragraph added by APAR PQ35810

If the long-name alias for a CICS Java IIOP program object is modified, the change
may not be immediately effective, if CICS has saved the alias in cache storage. You
can avoid this delay by issuing a CEMT SET PROGRAM() NEWCOPY or CEMT
SET PROGRAM() PHASEIN command for any program in the system. Issuing an
EXEC CICS SET PROGRAM() NEWCOPY or EXEC CICS SET PROGRAM()
PHASEIN command from an application program will have a similar effect.

Resource definitions
CICS resources, such as PROGRAMS and TRANSACTIONS must all be defined to
CICS. Resource definitions for the supplied IIOP components are provided in
group DFHIIOP, which is included in GRPLIST. You should not need to change
these definitions, but you must provide resource definitions for your own CICS
programs. See the CICS Resource Definition Guide for information about CICS
resource definition.

136 CICS TS for OS/390: CICS Internet Guide

|

|

|
|

|
|

|
|

|

|
|
|
|
|
|

|

|
|

|
|
|
|

|

|

#
#
#
#
#
#

|
|

|
|
|
|
|
|

Chapter 23. Processing the IIOP request

The IIOP request is received by the CICS TCP/IP Listener and the requested CICS
transaction is started. This part of the book tells you how to register an IIOP
service with the CICS TCP/IP Listener and what you need to do to establish the
execution environment for the CICS server ORB function. It covers the following
topics:
v “Registering with the CICS TCP/IP Listener”
v “Obtaining a CICS TRANSID” on page 138
v “Obtaining a CICS USERID” on page 140
v “Messages greater than 32K” on page 142

Registering with the CICS TCP/IP Listener
The CICS TCP/IP Listener receives incoming IIOP requests from the ports that you
have registered by defining and installing TCPIPSERVICE resources.

The TCPIPSERVICE definition allows you to specify:
v the port or IP address on which CICS will listen for incoming requests
v the CICS transaction to start when a request arrives. For an IIOP service, this

should be set to CIOR, as shown in the example
v the level of secure sockets layer (SSL) authentication to be used
v the name of the user replaceable module (URM) to be called. For IIOP, this

defaults to DFHXOPUS

See the CICS Resource Definition Guide for full details of the TCPIPSERVICE
resource definition.

Using secure sockets layer (SSL) authentication
To use SSL with IIOP, you should define the TCPIPSERVICE for the IIOP port with
SSL(YES) or SSL(CLIENTAUTH). A matching IOR is required when establishing a
connection to the SSL IIOP port. You can generate this matching IOR by defining
the —SSL parameter when you use the GenFacIOR utility program. If —SSL is set,
the port specified is treated as requiring an SSL connection by SSL-enabled CORBA
clients. See “Part 4. Using secure sockets layer (SSL)” on page 117 for more
information about SSL.

Note: If the SSL connection fails, some clients will attempt to retry on an
associated non-SSL port. CICS TS 1.3 defines this port to be SSL port–1. You
should ensure that this port (SSL port–1) is not defined for any other
purpose.

Dynamic Name Server
To select the dynamic name server (DNS), you need to use a TCPIPSERVICE
whose name begins with ’D’. The Listener registers with MVS workload
management services (WLM) using the following values:
v The TCPIPSERVICE TRANSID is passed to MVS as the Group name. If the

TCPIPSERVICE name is of the form Dxx.yyyy, CICS uses yyyy as a prefix to the

© Copyright IBM Corp. 1994, 2000 137

|

|

|
|
|
|
|

|

|

|

|

|
|

|
|

|

|

|
|

|

|
|

|
|

#

#
#
#
#
#
#
#

#
#
#
#

#

|
|
|

#
#

TRANSID name. For example, a TCPIPSERVICE of DEV.CICS with a TRANSID
of CIOR generates a group name of CICSCIOR.

v The APPLID specified in the system initialization table (SIT) is passed to MVS as
the Server. If the APPLID=(gname,sname) format is used in the SIT, then sname
is the value passed to MVS.

Notes:

1. Both the client and the CICS server must use the same TCP/IP nameserver

2. The nameserver must be able to perform a reverse look-up, that is, it must be
able to translate the IP address of the server into a full hostname

TCPIPSERVICE examples
The following sample TCPIPSERVICE resource definitions are supplied. You can
modify them to suit your requirements:
DEFINE TCPIPSERVICE(IIOPNSSL) GROUP(DFH$SOT)
DESCRIPTION(IIOP TCPIPSERVICE with no SSL)
BACKLOG(5)
PORTNUMBER(683)
TRANSACTION(CIOR)
SSL(NO)
STATUS(OPEN)

DEFINE TCPIPSERVICE(IIOPSSL) GROUP(DFH$SOT)
DESCRIPTION(IIOP TCPIPSERVICE with SSL)
BACKLOG(5)
PORTNUMBER(684)
TRANSACTION(CIOR)
SSL(YES)
STATUS(OPEN)

Obtaining a CICS TRANSID
When a request is received, the CIOR transaction is initiated and the CICS
provided DFHIIOP program receives control.

The incoming message has an IIOP standard format, defined by the CORBA
architecture. DFHIIOP compares the message with REQUESTMODEL resource
definitions that you have previously defined and installed, and selects the closest
match. The selected REQUESTMODEL provides the name of the CICS transaction
under which the method will run. If no match is found, this defaults to CIOD.

The matching process compares the Module name, Interface and Operation fields
contained within the IIOP message, against those defined in each installed
REQUESTMODEL, until the closest match is found. The following parameters can
be specified on a REQUESTMODEL resource definition:

REQUESTMODEL
The name of the REQUESTMODEL resource being defined.

DESCRIPTION
A description of the REQUESTMODEL resource being defined.

OMGMODULE
Defines a pattern which may match the qualified module name (coded in
OMG IDL) that defines the name scope of the interface and operation whose
implementation is to be executed. Each component of the module, and the
interface and operation names, are CORBA identifiers made up from the
following characters:

138 CICS TS for OS/390: CICS Internet Guide

#
#

|
|
|

|

|

|
|

#

#
#

#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#

#
|

|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|

v Alphabetic, including accented characters.
v Numeric digits
v Underscore

The first character must be alphabetic. Case is not significant, however, mixed
case is enabled for ease of use when referencing implementations in mixed
case, such as Java. Module components must be separated by a double colon
(::). This is the IDL equivalent of the Java package name.

OMGINTERFACE
Defines a pattern that may match the IDL interface name. This is the IDL
equivalent of the Java class name.

OMGOPERATION
Defines a pattern that may match the IDL operation name. This is the IDL
equivalent of the Java method name.

TRANSID
Defines the 4-character name of the CICS transaction to be executed when a
request matching the REQUESTMODEL is received. This transaction must be
defined to CICS with a TRANSACTION resource definition with the
PROGRAM parameter set to DFHIIOPA. You can base your transaction
definition on the supplied CIOF definition.

See the CICS Resource Definition Guide for full details of the REQUESTMODEL
resource definition.

Generic pattern matching
OMGINTERFACE, OMGMODULE, and OMGOPERATION can be defined as
generic patterns. The rules for pattern matching are summarized as follows:
v Double colons are used as component separators. Each component must be

between 1 and 16 characters long.
v Wildcard characters + and * are allowed, matching one (+) or more(*) characters

(excluding colons).
v Wildcard ’**’ matches any number of components of the module name. At most

one ’**’ can be used in a pattern, but it can be used in any position (beginning,
middle or end).

v If used, the ’*’ wildcard character must be the last character of a
double-colon-separated component.

If a request is received that matches several generic names, the least generic is
selected. The total length of the module pattern may be up to 58 characters. The
total length of the interface and operation patterns may be up to 31 characters.

REQUESTMODEL example
This is an example of a generic definition that accepts any OMGMODULE,
OMGINTERFACE, and OMGOPERATION. It would act as a default, replacing the
supplied default CIOD.
DEFINE REQUESTMODEL(GENERIC) GROUP(TEST)
DESCRIPTION(Generic definition for test purposes only)
OMGMODULE(**)
OMGINTERFACE(*)
OMGOPERATION(*)
TRANSID(FRED)

Chapter 23. Processing the IIOP request 139

|

|

|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|

|

|
|

|
|

|
|

|
|
|

|
|

|
|
|

|

|
|
|

|
|
|
|
|
|
|
|

Dynamic routing
If the method invocation is to be routed to another region (AOR), you must also
define the transaction in the AOR with the PROGRAM parameter set to DFHMIRS
and INBFMH set to ALL. You can base this transaction definition on CSMI.

Note that if you are distributing requests running under the CICS supplied
transactions CIOD and CIOF, then these transaction definitions must be replaced in
the AOR and defined as above. Alternatively, you may specify different default
and factory transactions in the TOR, with corresponding definitions in the AOR..

Supplied REQUESTMODEL definitions
The following REQUESTMODEL definition is supplied in group DFH$IIOP, which
is included in GRPLIST:
DEFINE REQUESTMODEL(DFJ$GFAC)
GROUP(DFH$IIOP)
DESCRIPTION(Generic Factory)
OMGMODULE(org::omg::CosLifeCycle)
OMGINTERFACE(GenericFactory)
OMGOPERATION(*)
TRANSID(CIOF)

Obtaining a CICS USERID
You may optionally provide a User Replaceable Module (URM), to examine
elements of the incoming IIOP request and generate a USERID to be used when
the TRANSID obtained from the selected REQUESTMODEL is started. If you do
not specify a URM name in the TCPIPSERVICE, CICS will call DFHXOPUS.

If no DFHXOPUS resource definition is supplied, or your URM does not supply a
USERID, a default USERID is used. This is the RACF USERID associated with the
SSL client certificate, if there is one. Otherwise, it is the USERID specified, or
allowed to default, in the CICS system initialization DFLTUSER parameter. The
CICS supplied sample URM, DFHXOPUS, accepts the RACF USERID associated
with the client certificate, if there is one.

If there is no RACF USERID associated with a certificate:
v For SSL(CLIENTAUTH), DFHXOPUS uses the first eight characters of the

COMMONNAME extracted from the client certificate.
v For SSL(YES) or SSL(NO), DFHXOPUS uses the first eight characters of the IIOP

Principal, if there is one.

If a USERID has not been found using these procedures, DFHXOPUS returns the
USERID set in the input parameter list by DFHIIOP.

DFHXOPUS may use CICS services, such as Task Related User Exits to access DB2,
and application parameters encoded within the body of the request. It is run under
a generic TRANSID and USERID, whose definitions can be overridden.

A new unit of work is begun using the newly determined USERID and TRANSID
to process the client request.

The following COMMAREA is passed to the URM. This structure is based on the
format of an IIOP message defined in The Common Object Request Broker:
Architecture and Specification obtainable from the OMG web site at:
http://www.omg.org/library

140 CICS TS for OS/390: CICS Internet Guide

|

|
|
|

|
|
|
|

|

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

#
#
#
#
#
#

#

#
#

#
#

#
#

|
|
|

|
|

|
|
|

|

Offset
Hex

Type Len Name

(0) STRUCTURE 60 sXOPUS
(0) FULLWORD 4 pIIOPData
(4) FULLWORD 4 lIIOPData
(8) FULLWORD 4 pRequestBody
(C) FULLWORD 4 lRequestBody

(10) FULLWORD 4 pOMGModule
(14 FULLWORD 4 lOMGModule

(18) FULLWORD 4 pOMGOperation
(1C) FULLWORD 4 lOMGOperation
(20) FULLWORD 4 pTRANSID
(24) FULLWORD 4 lTRANSID
(28) FULLWORD 4 pUSERID
(2C) FULLWORD 4 lUSERID
(30) CHARACTER 1 littleEndian
(31) CHARACTER 3 reserved
(34) FULLWORD 4 RETNCODE
(38) FULLWORD 4 REASCODE

pIIOPData
The address of the unconverted IIOP buffer.

lIIOPData
The length of the unconverted IIOP buffer.

pRequestbody
The address of the incoming IIOP request.

lRequestbody
The length of the incoming IIOP request.

pOMGModule
A pointer to the OMGModule name in EBCDIC.

lOMGModule
The length of the OMGModule name.

pOMGOperation
A pointer to the OMGOperation name in EBCDIC.

lOMGOperation
The length of the OMGOperation.

pTRANSID
A pointer to the TRANSID.

lTRANSID
The length of the TRANSID.

pUSERID
A pointer to the storage area where the USERID is to be returned.

lUSERID
The length of the USERID.

littleEndian
A byte-order indicator, where:

1 indicates little-endian

0 indicates not little-endian

Chapter 23. Processing the IIOP request 141

||
|
|||

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

||

||

RETNCODE
The return code.

REASCODE
The reason code.

The URM program returns the USERID at the address pUSERID, with lUSERID set
to the length (maximum 8 characters). RETNCODE is set to RCUSRID (X'01') if a
USERID is being returned. The URM may also change the TRANSID value, but all
other fields should be unchanged, or unpredictable results will occur.

See the CICS Customization Guide for information about installing user replaceable
modules.

Messages greater than 32K
If the request or reply data is less than 32K, it is passed to DFJIIOP in a
COMMAREA, but if it is greater than 32K, it is passed in a temporary storage (TS)
queue. The queue name used to pass incoming data has the prefix DFIO and the
queue name used to return data from the server has the prefix DFJO. You need to
define TSMODELs for these prefixes (DFIO and DFJO) to ensure that the TS
queues can be accessed from both the TOR and the AOR. These TSMODELs
should be defined with LOCATION (AUXILIARY) and RECOVERY(NO) and can
reside in a coupling facility or queue owning region (QOR).

If TST=NO is not specified in the system initialization table, the equivalent TST
entries should be defined. Note that the TSQPREFIX attribute on the
TCPIPSERVICE definition is not used here.

142 CICS TS for OS/390: CICS Internet Guide

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

Chapter 24. Developing IIOP applications

Applications are defined as interfaces and operations in IDL and implemented in
Java. The pieces of an application are:
v The IDL
v A client program that makes calls to the server based on the IDL definition
v A server program that implements the interfaces defined in the IDL
v CICS definitions for the server execution

The CORBA interface and operation names are mapped to corresponding Java
implementations. You can develop server implementations that use the CICS Java
classes (JCICS) to access CICS services. See the Javadoc HTML documentation for
details of the JCICS classes, and the CICS Application Programming Guide for an
explanation of how to develop server applications using them.

The JAVADOC HTML is stored in the OS/390 UNIX System Services HFS in the
directory $CICS_HOME/docs during CICS installation. You should transfer this
file in binary mode to a workstation, to a file system that can support long names,
such as OS/2 HPFS, FAT32 or NTFS, and unzip it. You can then read it using a
web browser. The following file is supplied:

dfjcics_docs.zip

This section tells you how to prepare the parts of the application. It covers the
following topics:
v “The Interface Definition Language (IDL)”
v “Programming model” on page 144
v “Developing the server program” on page 145
v “Developing the client program” on page 148
v “IDL example” on page 147

The Interface Definition Language (IDL)
Before you write a CORBA client or server application, you must first create an
OMG IDL file that contains the definitions of interfaces the server implementation
will support. An OMG IDL file describes the data-types, operations, and objects
that the client can use to make a request, and that a server must provide for an
implementation of a given object.

For information about writing IDL, see the OMG publication, Common Object
Broker: Architecture and Specification, obtainable from the OMG web site at:
http://www.omg.org/library

You process the IDL definitions with an IDL to Java compiler (sometimes called a
parser or generator). You must use a compiler provided by the server environment
to generate server-side skeletons and helper classes, and a compiler provided by
the client environment to generate client-side stub (sometimes called proxy) and
helper classes.

The proxies and skeletons provide the object-specific information needed for an
ORB to distribute a method invocation.

© Copyright IBM Corp. 1994, 2000 143

|

|

|
|

|

|

|

|

|
|
|
|
|

|
|
|
|
|

|

|
|

|

|

|

|

|

|
|

|
|
|
|
|

|
|

|

|
|
|
|
|

|
|

Note: The CICS compiler provided in dfjcidl.jar must be used to generate the
server-side skeleton and helper classes, otherwise errors will occur during
build or execution. If you are running both client and server IDL compilers
on the same workstation, you must ensure that CLASSPATH will locate the
correct compiler in each case, and that the output is written to separate
directories.

The following diagram shows how the same IDL file is used to generate different
classes used by the client and the server.

Programming model
From the client point of view, an object in a CICS IIOP ORB is just a collection of
methods, that is, a stateless object. Each method will represent a piece of logic that
may make one or more CICS API calls, including CICS LINKs, to existing CICS
programs. At the end of the method, no data is stored in attributes.

This implies that every method must be passed sufficient information in its
parameter list to enable it to complete its work. No information is passed to the
server by virtue of the object reference, except the object type, which is used to
find the class and methods of the implementation. The methods of the object may
save state in an application managed datastore between invocations. They will
need to ensure that sufficient information is passed as parameters to subsequent
methods so that the saved state can be retrieved.

Client
Application

Generated
by
IDL

Compiler

Client
Orb

Generated
by
IDL

Compiler

Server
Orb

Server
Application

Interface
Definition
Source

File

Figure 22. IDL and generated code

144 CICS TS for OS/390: CICS Internet Guide

|
|
|
|
|
|

|
|
||

|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

In order to access a server object, a reference to it is required. In a distributed
environment, an object reference, known as an Interoperable Object Reference
(IOR), is more than just a storage address obtained using new. It contains enough
information to allow:
v a request to be directed to the correct server (host, port number)
v an object to be located or created (classname, instance data)

IORs may be returned by server methods, but a factory class is needed to create an
initial IOR.

An implementation of the CosLifeCycle GenericFactory is provided for object
creation. (Note that for a stateless object, the GenericFactory is completely
adequate; there is no value in allowing more powerful factories such as application
specific factories). A utility, GenFacIOR is provided to create a stringified IOR of
the GenericFactory class.

Due to the stateless nature of the object, there is seldom any point in a client
creating more than one instance of a class. Once a client has created an instance of
an object, for example bankaccountfacilitator, the same object can be used to
access both Mr X’s account and Mr Y’s account; the account number is an input
parameter in every method.

Note: We have called the object in this example a bankaccountfacilitator so that
it can perform actions on any account. To have called it simply a
bankaccount might imply that the instance always represented Mr X’s
account.

In the server programming model, each method is a subroutine. The parameters
passed allow you to establish temporary variables from various existing databases
or applications, to perform business logic, to store data in the existing databases or
applications, and to return results when the subroutine returns.

Developing the server program
The server program can be developed on any platform that supports Java. For
example, an NT workstation, AIX or the OS/390 UNIX System Services
environment of ESA. The following steps are required:
1. Write the IDL definition of the interfaces and operations that form your

application.
2. Compile the IDL file to generate CORBA skeleton and helper classes using the

compiler provided by CICS.
The IDL compiler can be invoked (with dfjcidl.jar in your CLASSPATH) as
follows:
java com.ibm.idl.toJava.Compile [options] <idl file>

Where <idl file> is the name of the file containing the IDL definitions, and
[options] is any combination of the following options, which may appear in
any order. <idl file> is required and must appear last. At least -f must be
specified.

-d<symbol>
The equivalent of the following line in an IDL file: #define <symbol>

-emitAll
Emit all types, including those found in #included files.

Chapter 24. Developing IIOP applications 145

|
|
|
|

|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|

|
|

|

|
|
|
|

|
|

|
|

-f<side>
Define the bindings to emit. <side> can be:

client not applicable to CICS.

server does not generate sufficient classes for normal use.

all emits all bindings.

serverTIE
not supported in CICS.

allTIE not supported in CICS

If this option is not specified, then -fclient is assumed. In most cases
you should use -fall.

-i<include path>
Add another directory. By default, the current directory is scanned for
included files.

-keep If a file to be generated already exists, do not overwrite it. By default it
is overwritten.

-m Generate information to be included in a make description file; output
goes to a .u file.

-sep <string>
Replace the file separator character with <string> in the file names
listed in the .u file , if -m is specified.

-pkgPrefix <t> <pkg>
Make sure that wherever the type or module <t> is encountered, it
resides within <pkg> in all generated files. <t> is a fully qualified
Java-style name.

-v Verbose mode.

-bean Generate classes that can be used as Java beans.

-stateful
Parse stateful interface objects (used for Objects-by-value). Note that
this is non-standard IDL and is not supported by CICS.

3. Write your server implementation in Java. The idl compiler will generate an
abstract class called_interfacenameImplBase. Your program must extend this. If
objects of this type are to be created by the Generic Factory, it must be called
_interface nameImpl. For example:
public class _BankAccountImpl extends _BankAccountImplBase

This requires the CORBA classes from dfjcorb.jar and may use the CICS API
Java classes from dfjcics.jar supplied by CICS. See the CICS Application
Programming Guide for information about CICS support for Java programs.

4. Compile your program and the output from step 2, with the javac compiler or
an equivalent, such as VisualAge for Java, with the following files in your
CLASSPATH:
v dfjcorb.jar

v dfjcics.jar (if required)
5. If you are developing your program on a workstation, transmit the output from

step 4 to the OS/390 UNIX System Services (OpenEdition) environment in ESA.
6. The Java bytecode can then be processed by the binder provided by the

VisualAge for Java, Enterprise ToolKit for OS/390 to produce a Java program

146 CICS TS for OS/390: CICS Internet Guide

|
|

||

||

||

|
|

||

|
|

|
|
|

||
|

||
|

|
|
|

|
|
|
|

||

||

|
|
|

|
|
|
|

|

|
|
|

|
|
|

|

|

|
|

|
|

object that can be loaded and run by CICS. See the CICS Application
Programming Guide for information about using the VisualAge for Java,
Enterprise ToolKit for OS/390.

IDL example
The following example describes a bank account whose contents can be queried
and updated. Note that this example has a parameter that identifies the instance of
the BankAccount, to satisfy the ’stateless’ restriction. The following IDL defines the
interface and operations:

module bank {
struct BankData {
long acnum;
string custname;
string custaddr;
long balance;

};

// this interface is used to manage the bank accounts
interface BankAccount {

exception ACCOUNT_ERROR { long errcode; string message;};

// query methods
long querybalance(in long acnum) raises (ACCOUNT_ERROR);
string queryname(in long acnum) raises (ACCOUNT_ERROR);
string queryaddress(in long acnum) raises (ACCOUNT_ERROR);

// setter methods
void setbalance(in long acnum, in long balance) raises (ACCOUNT_ERROR);
void setaddress(in long acnum, in string address) raises (ACCOUNT_ERROR);

};
};

In this example, the module name is bank, the interface name is BankAccount and
the Operations are querybalance, and setbalance.

Server implementation
The server implementation of the above IDL must be called _BankAccountImpl if
objects of this type are to be created by the GenericFactory and must extend
_BankAccountImplBase, which is generated by the IDL compiler. It is part of the

Java package bank. You can see full details of this implementation in the
BAnkAccount sample application distributed in $CICS_HOME/samples/dfjcorb

Resource definition for example
The following REQUESTMODEL example associates the inbound request with a
TRANSID that gives the request the right execution characteristics.
DEFINE REQUESTMODEL(DFJIIBS)

GROUP(DFHœIIOP)
DESCRIPTION(Bank account sample)
OMGMODULE(bank)
OMGINTERFACE(BankAccount*)
OMGOPERATION(*)
TRANSID(BNKS)

The BNKS transaction defines execution characteristics for query and update
requests received using IIOP. It runs the DFHIIOPA program that links to DFJIIOP,
which invokes the methods in _BankAcctImpl.

Chapter 24. Developing IIOP applications 147

|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|

Developing the client program
1. Process the IDL file with an IDL to Java compiler suitable for your client

system (using the same IDL file that you used to build the server application).
2. Create a stringified object reference to the GenericFactory using the GenFacIOR

utility described in “The GenFacIOR utility”.
3. Write your client program, containing calls to the server. To obtain an initial

object reference, use the GenericFactory as shown in “Client example”.
4. Compile the client program, and the output from step1, with javac or an

equivalent compiler.

Note: You need dfjcorb.jar in the CLASSPATH when generating server side (CICS)
applications, and your client ORB vendor’s classes in the CLASSPATH when
generating client side applications.

The GenFacIOR utility
The GenFacIOR utility is a Java class used to generate a stringified IOR for a
GenericFactory on a given host and port. It stores the generated IOR in a file
named genfac.ior. GenFacIOR generates a reference to
org.omg.CosLifeCycle._GenericFactoryImpl. To create the IOR you must:
1. Ensure that dfjcorb.jar is in your classpath.
2. Use:

java com.ibm.cics.server.ts.iiop.GenFacIOR -d <directory>
-host <hostname> -port <port> -ssl

Where:

directory
is the destination for the IOR file. This defaults to the current directory.

hostname
is the string name used to identify the host. For example,
winmvs2c.hursley.ibm.com.

port is the port number of the TCPIPSERVICE. It defaults to the TCP/IP
well-known port value, which for IIOP is 683, and for IIOP-SSL is 684.

ssl specifies that the port is treated as requiring an SSL connection by
SSL-enabled CORBA clients.

3. Use this file in the client to get the IOR. If you generate this file in OS/390
UNIX System Services, then you must transfer it to the client, or make it
available as a text file.

If you need a client to access more than one TCP/IP port or use more than one
CICS region, you will need to generate an IOR for each host/port combination you
are intending to use. To keep the IORs separate, you will either need to rename the
generated file or place them in different directories.

Client example
The following example shows how the GenericFactory service is used by a client
program to create an account object. The client must first create a proxy for the
GenericFactory.

Java bindings for part of the CORBA CosLifeCycle and CosNaming modules are
required. If they are not provided by the client ORB, then you can build them
using the client ORB’s IDL to Java compiler, from the IDL given in the CORBA

148 CICS TS for OS/390: CICS Internet Guide

|
|

|
|

|
|

|
|

|
|

|
|
|

|

|
|
|
|

|

|

#
#

|

|
|

|
|
|

|#
#

##
#

|
|
|

|
|
|
|

|

|
|
|

|
|
|

specification, or alternatively, use the IDL subset provided in
$CICS_HOME/samples/dfjcorb. The following example, and the supplied samples,
require bindings that can be imported as org.omg.CosNaming and
org.omg.CosLifeCycle.

In order to create an account object, the client must first create a proxy for the
GenericFactory. The following example assumes that a stringified reference to the
GenericFactory exists in a file available to a client, and is returned by the
getFactoryIOR() method.
import java.io.*;
import org.omg.CORBA.*;
import org.omg.CosLifeCycle.*;
import org.omg.CosNaming.*;
public class bankLineModeClient{

//The following method reads the ior from a file and returns it in the string
String factoryIOR = getFactoryIOR();
// Turn the stringified reference into the proxy
org.omg.CORBA.Object genFacRef = orb.string_to_object(factoryIOR);
// narrow to correct interface
GenericFactory fact = GenericFactoryHelper.narrow(genFacRef);

Now that the client has a generic factory, it can use it to create an account object.
// The Generic factory needs a key, which is a sequence of namecomponents
NameComponent nc = new NameComponent("bank::BankAccount","object interface");
NameComponent key[] = {nc};
//The Generic factory also requires criteria (which it ignores)
NVP mycriteria[] = {};

Now create the object
org.omg.CORBA.Object objRef = fact.create_object(key, mycriteria);
// and narrow to correct interface
BankAccount acctRef = BankAccountHelper.narrow(objRef);

Now the client has an object, it can use it:
int ac1 = 1234; // Tony's account
int ac2 = 3456; // Lou's account
String name;
String address;
int balance;

try {
name=acctRef.queryname(ac1);
System.out.println("a/c num:"+ac1+" name:"+name");

}
catch (exception e) {

System.err.println("query error");
}

Note: NVP (Name Value Pair) is a datatype defined in the CORBA IDL for the
Generic Factory interface.

Chapter 24. Developing IIOP applications 149

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

150 CICS TS for OS/390: CICS Internet Guide

Chapter 25. IIOP sample applications

Two sample application that use IIOP and the CICS Java programming support are
shipped with CICS. These sample programs are designed to run using the
VisualAge for Java, Enterprise ToolKit for OS/390 to bind the server programs into
Java program objects that can be loaded and run by CICS.

The following sample applications are provided:

HelloWorld sample

This sample provides a simple test of the IIOP components. The client
program:
v reads the file genfac.ior to obtain a reference to the generic factory
v uses the generic factory to create a HelloWorld object
v invokes method sayHello to send a greeting to the server (Hello from

HelloWorldClient)and receive a greeting from it in reply (Hello from CICS
TS)

The design of the application is described in comments in the code.

BankAccount sample

The sample consists of the following main parts:
1. A traditional CICS application that uses BMS and the EXEC CICS API,

written in C. This application consists of two transactions:

BNKI Initializes a file with information about a number of bank accounts.
These accounts have numbers in the range 23 through 30.

BNKQ
Queries the information in the accounts. There is also a CICS
program, DFH$IICC, which performs a credit check for an account.

2. An implementation of an IDL interface that defines a bank account object.
The implementation is written in Java and runs as a CORBA server object
inside CICS. This implementation uses the bank account file to access bank
account information and the DFH$IICC credit check program to obtain
credit ratings.

3. A CORBA client application written in Java that displays information about
bank account objects.

The design of the application is described in comments in the code.

This chapter describes the samples and tells you how to run them. The following
topics are covered:

Requirements to run the samples
This section describes the specific requirements to run the sample applications, in
addition to those described in “Chapter 22. Requirements for IIOP applications” on
page 135.

© Copyright IBM Corp. 1994, 2000 151

|

|

|
|
|
|

|

|

|
|

|

|

|
|
|

|

|

|

|
|

||
|

|
|
|

|
|
|
|
|

|
|

|

|
|

|
|

|
|
|

The sample Java source and makefiles are stored in the OS/390 UNIX System
Services HFS during CICS installation, in the following directories:
v $CICS_HOME/samples/dfjcorb/HelloWorld
v $CICS_HOME/samples/dfjcorb/BankAccount

$CICS_HOME is an environment variable defining the installation directory prefix:
/usr/lpp/cicsts/<username>

Where username is a name you can choose during the installation of CICS,
defaulting to cicsts13.

The following CICS C language programs used by the BankAccount sample are
stored in SDFHSAMP during CICS installation.

DFH$IIBI
C program that initializes the BANKACCT file. Run by the BNKI
transaction.

DFH$IIBQ
C program that queries the accounts held in BANKACCT.

DFH$IICC
C program that performs a credit check. This is called by DFH$IIBQ.

DFH$IIMA
BMS mapset BANKINQ.

DFH$IIQR
Bank Query structure

DFH$IICH
Credit Check Structure

DFH$IIAT
Acctrec structure

Note: In the names of sample programs and files described in this book, the dollar
symbol ($) is used as a national currency symbol and is assumed to be
assigned the EBCDIC code point X’5B’. In some countries a different
currency symbol, for example the pound symbol (£), or the yen symbol (¥),
is assigned the same EBCDIC code point. In these countries, the appropriate
currency symbol should be used instead of the dollar symbol.

Resource definitions
CICS resource definitions for the sample applications are supplied in group
DFH$IIOP. This contains resource definitions required for the HelloWorld sample:
v DFJ$IIHE PROGRAM definition
v IIHE TRANSACTION definition
v DFJIIHE REQUESTMODEL definition

and resource definitions required for the BankAccount sample:
v DFH$IIBI PROGRAM definition
v DFH$IIBQ PROGRAM definition
v DFJ$IIBS PROGRAM definition
v DFH$IICC PROGRAM definition
v BANKINQ MAPSET definition

152 CICS TS for OS/390: CICS Internet Guide

|
|
|
|

|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

v BNKI TRANSACTION definition
v BNKQ TRANSACTION definition
v BNKS TRANSACTION definition
v BANKACCT FILE definition
v DFJIIBS REQUESTMODEL definition

Installing CICS resources
The CICS supplied group DFH$IIOP must be installed before you run the sample.
Do this by including the group DFH$IIOP in GRPLIST before starting CICS or by
using the CEDA option INSTALL to install the resources in CICS whilst it is
running. See the CICS Supplied Transactions for information about using CEDA to
install resource definitions.

Generic Factory
Java bindings for part of the CORBA CosLifeCycle and CosNaming modules are
required. If they are not provided by the client ORB, then you can build them
using the client ORB’s IDL to Java compiler, from the IDL given in the CORBA
specification, or alternatively, use the IDL subsets provided in
$CICS_HOME/samples/dfjcorb/.

Note: You may need to change the import statements in the client code to
correspond with the package name of the bindings generated by your ORB’s
IDL compiler. Alternatively, use your client ORB IDL compiler’s equivalent
of the -pkgPrefix option to set the package name to that required by the
Java program’s import statement.

You will need to create a genfac.ior file containing an object reference to your
server’s generic factory, and place it in the current directory.

CICS libraries
You will need to add $LIB_PREFIX.LOAD to the DFHRPL concatenation of your
CICS start-up jobstream. (Where $LIB_PREFIX is your PDSE dataset name prefix).

The HelloWorld sample
This section tells you what you need to do to run the HelloWorld sample
application. It covers the following topics:
v “Building the server side HelloWorld application”
v “Building the client side HelloWorld application” on page 154
v “Running the HelloWorld sample application” on page 154

Building the server side HelloWorld application
The makefile in $CICS_HOME/samples/dfjcorb/HelloWorld/server builds
everything required for the server side application. Before you can build the
sample, you need to:
1. Set up the following environment variables:

$LIB_PREFIX
Your PDSE dataset name prefix

$CICS_HOME
The installation directory prefix of CICS TS.

Chapter 25. IIOP sample applications 153

|

|

|

|

|

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

|
|

|

|
|

|
|

|
|

|

|

|

|

|
|
|

|

|
|

|
|

$JAVA_HOME
The installation directory prefix of the JDK.

2. Allocate a PDSE called $LIB_PREFIX.LOAD.

To build the programs, enter the following command from
$CICS_HOME/samples/dfjcorb/HelloWorld/server:
make

This makes DFJ$IIHE, the Java server program that implements the HelloWorld
object.

Building the client side HelloWorld application
$CICS_HOME/samples/dfjcorb/HelloWorld/client contains the CORBA client part
of the application. The source of the Java client application is called
HelloWorldClient.java. This application should run with any CORBA-compliant
ORB.

The following steps are required to build the Java client application:
1. Download the following files to the client workstation:

v .../dfjcorb/HelloWorld/HelloWorld.idl
v .../dfjcorb/HelloWorld/client/HelloWorldClient.java

2. Compile the provided IDL with the client ORB’s IDL-to-Java compiler to
produce the Java client side stubs required by the sample application.

3. Compile the client application, ensuring that the Java classes produced in the
previous step are available through the CLASSPATH environment variable.

Running the HelloWorld sample application
Run the client application using:
java HelloWorldClient

The BankAccount sample
This section tells you what you need to do to run the BankAccount sample
application. It covers the following topics:
v “Building the server side BankAccount application” on page 155
v “Building the client side BankAccount application” on page 155
v “Running the BankAccount sample application” on page 155

Create the VSAM file
Define the VSAM file to hold the bank account data, using the following IDCAMS
parameters:
DEFINE CLUSTER (-

NAME (CICS530.BANKACCT) -
CYLINDERS(01) -
REUSE -
KEYS(4 0) -
RECORDSIZE(168 168))

Prepare CICS programs
Translate, compile and link the CICS sample programs:
v DFH$IIBI

154 CICS TS for OS/390: CICS Internet Guide

|
|

|

|
|

|

|
|

|

|
|
|
|

|

|

|

|

|
|

|
|

|

|

|

|
|

|
|

|

|

|

|

|
|

|
|
|
|
|
|
|

|

|

|

v DFH$IIBQ
v DFH$IICC

Prepare BMS maps
The file DFH$IIMA contains one mapset BANKINQ with two maps. Compile and
link the mapset BANKINQ.

Building the server side BankAccount application
The makefile in $CICS_HOME/samples/dfjcorb/BankAccount/server builds
everything required for the CORBA part of the server side application. Before you
can build the sample, you need to:
1. Set up the following environment variables:

$LIB_PREFIX
Your PDSE dataset name prefix

$CICS_HOME
The installation directory prefix of CICS TS.

$JAVA_HOME
The installation directory prefix of the JDK.

2. Allocate a PDSE called $LIB_PREFIX.LOAD (or change the name by editing the
LM macro in
$CICS_HOME/samples/dfjcorb/BankAccount/server/Makefile.bank)

To build the programs, enter the following command from
$CICS_HOME/samples/dfjcorb/BankAccount/server:
make

This makes DFH$IIBS, the Java server program that implements the bank account
object.

Building the client side BankAccount application
$CICS_HOME/samples/dfjcorb/BankAccount/javaclient contains the CORBA
client part of the application. The source of the Java client application is called
bankLineModeClient.java. This application should run with any
CORBA-compliant ORB.

The following steps are required to build the Java client application:
1. Download the following files to the client workstation:

v .../dfjcorb/BankAccount/BankAccount.idl
v .../dfjcorb/BankAccount/javaclient/bankLineModeClient.java

2. Compile the provided IDL with the client ORB’s IDL-to-Java compiler to
produce the Java client side stubs required by the sample application.

3. Compile the client application, ensuring that the Java classes produced in the
previous step are available through the CLASSPATH environment variable.

Running the BankAccount sample application
The following steps are required to run the sample application:
1. Run the BNKI CICS transaction to load data into the account file.
2. Run the client application using:

java bankLineModeClient

Chapter 25. IIOP sample applications 155

|

|

|

|
|

|

|
|
|

|

|
|

|
|

|
|

|
|
|

|
|

|

|
|

|

|
|
|
|

|

|

|

|

|
|

|
|

|

|

|

|

|

156 CICS TS for OS/390: CICS Internet Guide

Part 6. Appendixes

© Copyright IBM Corp. 1994, 2000 157

|

158 CICS TS for OS/390: CICS Internet Guide

Appendix A. Reference information for DFHWBBLI

This section contains Product-sensitive Programming Interface and Associated
Guidance Information. It provides reference information for the business logic
interface.

© Copyright IBM Corp. 1994, 2000 159

|

|

|
|
|

Business logic interface

Summary of parameters
The names of the parameters and constants, translated into appropriate forms for
the different programming languages supported, are defined in files supplied as
part of the CICS Web support. The files for the various languages are as follows:

Language File

Assembler DFHWBBLD

C DFHWBBLH

COBOL DFHWBBLO

PL/I DFHWBBLL

These files give language-specific information about the data types of the fields in
the communication area.

In the following table, the names of the parameters are given in abbreviated form:
each name in the table must be prefixed with wbbl_ to give the name of the
parameter.

Table 2. Parameters for the business logic interface

Input
wbbl_

Inout
wbbl_

Output
wbbl_

client_address
client_address_length
client_address_string
converter_program_name
eyecatcher
header_length
header_offset
http_version_length
http_version_offset
indata_length
indata_offset
indata_ptr
length
method_length
method_offset
mode
prolog_size
resource_length
resource_offset
server_program_name
ssl_keysize
status_size
user_token
user_data_length
vector_size
version

outdata_length
outdata_offset
outdata_ptr

Function
The business logic interface allows callers to specify what presentation logic is to
be executed before and after a CICS program. It has two modes of operation:

160 CICS TS for OS/390: CICS Internet Guide

|
|

|

|
|
|

|||

||

||

||

||
|

|
|

|
|
|

||

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||
|
|

|

|

|
|

v Pointer mode: the input data for Decode is in storage allocated separately from
the communication area for the business logic interface. The communication area
contains a pointer (wbbl_data_ptr) to the input data for Decode. When the call
to the business logic interface ends, the output from Encode is in storage
allocated separately from the communication area for the business logic
interface, and the communication area contains a pointer (wbbl_outdata_ptr) to
the output from Encode.

v Offset mode: the input data for Decode is part of the communication area for
the business logic interface. The communication area contains the offset
(wbbl_data_offset) of the input data for Decode. When the call to the business
logic interface ends, the output from Encode is part of the communication area
for the business logic interface, and the communication area contains the offset
(wbbl_outdata_offset) of the output from Encode.

The caller of the business logic interface uses wbbl_eyecatcher to indicate which
mode of operation is to be used.

For information about writing a converter for the business logic interface, see
“Chapter 8. Writing a converter” on page 51.

Note: The business logic interface does not handle the response codes and reason
codes produced by the converter in the manner described in “Appendix C.
Reference information for the converter” on page 173, but as described in
“Responses” on page 164 under responses 400, 500, and 501.

Parameters
Before inserting the inputs into the communication area, you must clear it to
binary zeros.

wbbl_eyecatcher
(Input only)

A 14–character field that must be set to the standard eyecatcher string
>DFHWBBLIPARMS.

wbbl_client_address
(Input only)

A fullword 32–bit field that must be set to the binary IP address of the
client, if this is known.

wbbl_client_address_length
(Input only)

A 1–byte binary field that must be set to the length of
wbbl_client_address_string.

wbbl_client_address_string
(Input only)

A string of up to 15 characters that are the dotted decimal representation
wbbl_client_address, padded on the right with binary zeros.

wbbl_converter_program_name
(Input only)

The 8–character name of the program to be used to converter DECODE
and ENCODE functions.

wbbl_header_length
(Input only)

Appendix A. Reference information for DFHWBBLI 161

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

A fullword binary number that must contain the length of the HTTP
headers associated with this request.

wbbl_header_offset
(Input only)

A fullword binary number that must contain the offset (from the start of
the request data) of the HTTP headers associated with this request.

wbbl_http_version_length
(Input only)

A fullword binary number that must contain the length of the version of
the HTTP protocol to be used to process the request.

wbbl_http_version_offset
(Input only)

A fullword binary number that must contain the offset of the version of the
HTTP protocol to be used to process the request.

wbbl_indata_length
(Input only)

A fullword binary number that must be set to the length of the data
located by wbbl_indata_ptr or wbbl_indata_offset. If the analyzer
modified this value it is visible here. If the request is not an HTTP request,
do not set this field.

wbbl_indata_offset
(Input only)

If wbbl_mode is ″O″, this field is the offset (from the start of the parameter
list) of the HTTP request data to be passed to the application.

wbbl_indata_ptr
(Input only)

If wbbl_mode is ″P″, this is the address of the HTTP request data to be
passed to the application.

wbbl_length
(Input only)

A halfword binary number that must be set to the total length of the BLI
parameter list.

wbbl_method_length
(Input only)

A fullword binary number that must contain the length of the HTTP
method to be used to process the request. The method should be one of:
GET, POST, HEAD, PUT, DELETE, LINK, UNLINK, or REQUEUE.

wbbl_method_offset
(Input only)

A fullword binary number that must contain the offset (from the start of
the request data) of the HTTP method to be used to process the request.
The method should be one of: GET, POST, HEAD, PUT, DELETE, LINK,
UNLINK, or REQUEUE.

wbbl_mode
(Input only)

162 CICS TS for OS/390: CICS Internet Guide

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|
|

|
|

A single character that indicates the addressing mode for wbbl_indata and
wbbl_outdata. It must be set to ″P″ to indicate that these values are
pointers, or to ″O″ to indicate that these values are offsets from the start of
the parameter list.

wbbl_outdata_length
(Input only)

The fullword binary field in which DFHWBBLI returns the length of the
response data located by wbbl_outdata_ptr or wbbl_outdata_offset.

wbbl_outdata_offset
(Input only)

If wbbl_mode is ″O″, this is the fullword in which DFHWBBLI returns the
offset (from the start of the parameter list) of the response data from the
application. This address in not necessarily the same as
wbbl_indata_offset.

wbbl_outdata_ptr
(Input only)

If wbbl_mode is ″P″, this is the fullword address in which DFHWBBLI
returns the address of the response data from the application. This address
in not necessarily the same as wbbl_indata_ptr.

wbbl_prolog_size
(Input only)

A halfword binary number that must be set to 56 (that is, the length of the
wbbl_prolog substructure).

wbbl_resource_length
(Input only)

A fullword binary number that must contain the length of the URI resource
that is being requested (that is, the non-network part of the URL, starting
at the first slash (/) in the URL.

wbbl_resource_offset
(Input only)

A fullword binary number that must contain the offset (from the start of
the request data) of the URI resource that is being requested (that is, the
non-network part of the URL, starting at the first slash (/)in the URL.

wbbl_response
(Input only)

A fullword binary field in which DFHWBBLI returns its response code.

wbbl_server_program_name
(Input only)

The 8–character name of the application program that is to be used to
process the request and produce the response.

wbbl_ssl_keysize
(Input only)

The size of the encryption key negotiated during the SSL handshake, if
secure sockets layer is being used. It contains zero if SSL is not being used.

wbbl_status_size
(Input only)

Appendix A. Reference information for DFHWBBLI 163

|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

A 1–byte binary field that must be set to the length of the wbbl_status
substructure.

wbbl_user_data_length
(Input only)

A fullword binary number that must be set to the length of the user data.
If the analyzer modified this value it is visible here. If the request is not an
HTTP request, do not set this field.

wbbl_user_token
(Input only)

An 8–character field in which the caller of DFHWBBLI can pass data which
identifies the current conversational state with the client. It is usually set to
the first eight characters of the query-string portion of the URL (that is,
any data following a question mark (?).

wbbl_vector_size
(Input only)

A halfword binary number that must be set to 64 (that is, the length of the
wbbl_vector substructure.

wbbl_version
(Input only)

A halfword binary number that indicates which version of the BLI
parameter list is currently being used. It should be set using the constant
value wbbl_current_version.

Responses
One of the following values is returned in wbbl_response. These values
correspond to the intended HTTP responses to be sent to an HTTP client.

400 One of the converter functions returned a URP_EXCEPTION response with
a reason URP_CORRUPT_CLIENT_DATA. The business logic interface
writes an exception trace entry (trace point 4556) and issues a message
(DFHWB0120).

403 The EXEC CICS LINK to the program specified in
wbbl_server_program_name received a NOTAUTH response. The business
logic interface writes an exception trace entry (trace point 4556) and issues
a message (DFHWB0120).

404 The EXEC CICS LINK to the program specified in
wbbl_server_program_name received a PGMIDERR response. The
business logic interface writes an exception trace entry (trace point 4556)
and issues a message (DFHWB0120).

500 One of the following occurred:
v The business logic interface detected an abend. A message that depends

on the program that abended is issued. For the program specified in
wbbl_server_program_name, the message is DFHWB0125. For the
Encode function of the converter, the message is DFHWB0126. For the
Decode function of the converter, the message is DFHWB0127. For any
other program, the message is DFHWB0128. In any case an exception
trace entry (trace point 4557) is written.

v The EXEC CICS LINK to the program specified in
wbbl_server_program_name received an INVREQ or a LENGERR or an

164 CICS TS for OS/390: CICS Internet Guide

|
|

|
|

|
|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

|

|
|

||
|
|
|

||
|
|
|

||
|
|
|

||

|
|
|
|
|
|
|

|
|

unexpected response. The business logic interface writes an exception
trace entry (trace point 4556) and issues a message (DFHWB0120).

501 One of the following occurred:
v Decode returned a response of URP_EXCEPTION with an undefined

reason code. The business logic interface writes an exception trace entry
(trace point 455B) and issues a message (DFHWB0121).

v Decode returned a response of URP_INVALID. The business logic
interface writes an exception trace entry (trace point 455C) and issues a
message (DFHWB0121).

v Decode returned a response of URP_DISASTER. The business logic
interface writes an exception trace entry (trace point 455D) and issues a
message (DFHWB0121).

v Decode returned an undefined response. The business logic interface
writes an exception trace entry (trace point 455E) and issues a message
(DFHWB0121).

v Encode returned a response of URP_EXCEPTION with an undefined
reason code. The business logic interface writes an exception trace entry
(trace point 455B) and issues a message (DFHWB0122).

v Encode returned a response of URP_INVALID. The business logic
interface writes an exception trace entry (trace point 455C) and issues a
message (DFHWB0122).

v Encode returned a response of URP_DISASTER. The business logic
interface writes an exception trace entry (trace point 455D) and issues a
message (DFHWB0122).

v Encode returned an undefined response. The business logic interface
writes an exception trace entry (trace point 455E) and issues a message
(DFHWB0122).

503 One of the following occurred:
v The EXEC CICS LINK to the program specified in

wbbl_server_program_name received a TERMERR response. The
business logic interface writes an exception trace entry (trace point 4555)
and issues a message (DFHWB0120).

v The EXEC CICS LINK to the program specified in
wbbl_server_program_name received a SYSIDERR or ROLLEDBACK
response. The business logic interface writes an exception trace entry
(trace point 4556) and issues a message (DFHWB0120).

Appendix A. Reference information for DFHWBBLI 165

|
|

||

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

||

|
|
|
|

|
|
|
|

|

166 CICS TS for OS/390: CICS Internet Guide

Appendix B. Reference information for DFHWBADX

This section contains Product-sensitive Programming Interface and Associated
Guidance Information. It provides reference information for the analyzer, and
information about the responses and reason codes for the default analyzer,
DFHWBADX.

Summary of parameters
The names of the parameters and constants, translated into appropriate forms for
the different programming languages supported, are defined in files supplied as
part of the CICS Web support. The files for the various languages are listed in the
following table.

Language Parameters file Constants file

Assembler DFHWBTDD DFHWBUCD

C DFHWBTDH DFHWBUCH

COBOL DFHWBTDO DFHWBUCO

PL/I DFHWBTDL DFHWBUCL

These files give language-specific information about the data types of the fields in
the communication area. If you use these files you must specify
XOPTS(NOLINKAGE) on the Translator step; failure to do this causes the compile
to fail.

In the following table, the names of the parameters are given in abbreviated form:
each name in the table must be prefixed with wbra_ to give the name of the
parameter.

Table 3. Parameters for the analyzer

Input
wbra_

Inout
wbra_

Output
wbra_

client_ip_address
content_length
eyecatcher
function
http_version_length
http_version_ptr
method_length
method_ptr
request_header_length
request_header_ptr
request_type
resource_length
resource_ptr
server_ip_address
user_data_ptr

user_data_length
userid

alias_tranid
converter_program
dfhcnv_key
reason
response
server_program
user_token
unescape

© Copyright IBM Corp. 1994, 2000 167

|
|
|
|

|

|

Function
The analyzer is called by Web attach processing before it starts the alias. The
analyzer can examine the incoming request, and must specify the CICS resources
needed to process the request.

Parameters
wbra_alias_tranid

(Output only)

A string of length 4. The transaction ID of the alias that is to service the
request. If you do not set this field, or if you set it to blanks, CWBA is
used.

wbra_client_ip_address
(Input only)

The 32-bit IP address of the client.

wbra_content_length
(Input only)

A 32–bit binary representation of the user data length as specified by the
Content-Length HTTP header in the received data.

wbra_converter_program
(Output only)

A string of length 8. The name of the converter whose Decode and Encode
functions are used to process the request. If you do not set this field, no
converter is called.

wbra_dfhcnv_key
(Output only)

A string of length 8. The name of the conversion template in the DFHCNV
table for the code page translation of the user data for this request. If the
request is not an HTTP request, this name is used to translate the entire
request. The name you choose must be defined in the DFHCNV table, as
described in “Defining a conversion table” on page 36. If you do not set
this field, there is no translation.

wbra_eyecatcher
(Input only)

A string of length 8. Its value is ″>analyze″.

wbra_function
(Input only)

A code indicating that the analyzer is being called. The value is 1.

wbra_http_version_length
(Input only)

The length in bytes of the string identifying the HTTP version supported
by the client. If the request is not an HTTP request, this length is zero.

wbra_http_version_ptr
(Input only)

A pointer to the string identifying the HTTP version supported by the
client. If the request is not an HTTP request, do not use this pointer.

168 CICS TS for OS/390: CICS Internet Guide

|
|
|

|
|

|
|

wbra_method_length
(Input only)

The length in bytes of the string identifying the method specified in the
HTTP request. If the request is not an HTTP request, this length is zero.

wbra_method_ptr
(Input only)

A pointer to the method specified in the HTTP request. If the request is not
an HTTP request, do not use this pointer.

wbra_reason
(Output only)

A reason code—see “Responses and reason codes” on page 170.

wbra_request_header_length
(Input only)

The length of the first HTTP header in the HTTP request. If the request is
not an HTTP request, this length is zero.

wbra_request_header_ptr
(Input only)

A pointer to the first HTTP header in the HTTP request. The other HTTP
headers follow this one in the request buffer. If the request is not an HTTP
request, do not use this pointer.

wbra_request_type
(Input only)

If this is an HTTP request, the value is WBRA_REQUEST_HTTP. If this is
not an HTTP request, the value is WBRA_REQUEST_NON_HTTP.

wbra_resource_length
(Input only)

The length in bytes of the string identifying the HTTP absolute path
specified in the HTTP request. If the request is not an HTTP request, this
length is zero.

wbra_resource_ptr
(Input only)

A pointer to the string identifying the HTTP absolute path specified in the
HTTP request. If the request is not an HTTP request, do not use this
pointer.

wbra_response
(Output only)

A response—see “Responses and reason codes” on page 170.

wbra_server_ip_address
(Input only)

The 32-bit IP address of the OS/390 eNetwork Communications Server
region receiving the request.

wbra_server_program
(Output only)

A string of length 8. The name that is passed to Decode as
decode_server_program. If you do not set this field, the value passed is

Appendix B. Reference information for DFHWBADX 169

nulls. The program name must be set here or in the Decode function of the
converter specified in wbra_converter_program, or no CICS program will
be called.

wbra_unescape
(Output only)

The default CICS action for escaped HTTP data is to pass the data to the
application in its escaped form. To ensure that escaped characters are
unescaped before passing them to your application program, the value is
WBRA_UNESCAPE_REQUIRED; otherwise the value is
WBRA_UNESCAPE_NOT_REQUIRED.

wbra_user_data_length
(Input and output)

A 15–bit integer, representing the length of the user data in the HTTP
request. If the request is non-HTTP, this length is the length of the request.
The length passed to the analyzer includes any trailing carriage return and
line feed (CRLF) characters that may delimit the end of the user data.If the
length is reduced, the newly redundant bytes are replaced by null
characters, X’00’. The modified value is passed on to the CICS business
logic interface in field wbbl_user_data_length, and to the Decode program
in field decode_user_data_length.

wbra_user_data_ptr
(Input only)

A pointer to the user data in the HTTP request. If the request is not an
HTTP request, this is a pointer to the request.

wbra_user_token
(Output only)

A 64-bit token that is passed to Decode as decode_user_token. If you do
not set this field, the value passed is null. If there is no converter for this
request, the value is ignored.

wbra_userid
(Input and output)

A string of length 8. On input, it is the userid derived from the client
certificate, if one was used. On output, it is the userid under which the
alias executes. If it is blank or null on output, the CICS default userid is
used.

Responses and reason codes
You must return one of the following values in wbra_response:

URP_OK
Web attach processing starts the alias transaction.

URP_EXCEPTION
The alias transaction is not started. Web attach processing writes an
exception trace entry (trace point 4510), and issues a message
(DFHWB0523).

If the request is an HTTP request, response 400 is sent to the Web browser.

If the request is not an HTTP request, no response is sent, and the OS/390
eNetwork Communications Server socket is closed.

170 CICS TS for OS/390: CICS Internet Guide

|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

#

|
|
|

|

|
|

URP_INVALID
The alias transaction is not started. Web attach processing writes an
exception trace entry (trace point 4510), and issues a message
(DFHWB0523). If the request is an HTTP request, response 400 is sent to
the web browser. If the request is not an HTTP request, no response is
sent, and the OS/390 eNetwork Communications Server socket is closed.

URP_DISASTER
The alias transaction is not started. CICS writes an exception trace entry
(trace point 4510), and issues a message (DFHWB0523). If the request is an
HTTP request, response 400 is sent to the web browser. If the request is not
an HTTP request, no response is sent, and the OS/390 eNetwork
Communications Server socket is closed.

If you return any other value in wbra_response, Web attach processing writes an
exception trace entry (trace point 4510), and issues a message (DFHWB0523). If the
request is an HTTP request, response 400 is sent to the web browser. If the request
is not an HTTP request, no response is sent, and the OS/390 eNetwork
Communications Server socket is closed.

You may supply a 32-bit reason code in wbra_reason to provide further
information in error cases. The CICS Web support does not take any action on the
reason code returned by the analyzer. The reason code is output in any trace entry
that results from the invocation of the analyzer, and in message DFHWB0523.

See “Numeric values of symbolic codes” on page 100 for the numeric values of the
response and reason codes in trace output.

DFHWBADX responses and reason codes
The meanings of the responses produced by the default analyzer DFHWBADX are
as follows:

URP_OK
The analyzer found that the request conformed to the default HTTP
request format, and generated the appropriate outputs for the alias.

URP_EXCEPTION
The analyzer found that the request did not conform to the default format.
A reason code is supplied as follows:

1 The length of the resource was less than 6. (The shortest possible
resource specification is /A/B/C, asking for program C to be run
under transaction B with converter A.) This response and reason
are the ones used when the incoming request is not an HTTP
request.

2 The resource specification did not begin with a “/”.

3 The resource specification contained one “/”, but fewer than three
of them.

4 The length of the converter name in the resource specification was
0 or more than 8.

5 The length of the transaction name in the resource specification
was 0 or more than 4.

6 The length of the CICS program name in the resource specification
was 0 or more than 8.

Appendix B. Reference information for DFHWBADX 171

#
#
#
#
#

#

8 This is issued when:
v the resource specification did not contain a second “/”
v the resource specification did not contain contain a third “/”
v there was nothing after the second or third “/”.

URP_INVALID
The eye-catcher was invalid. This is an internal error.

172 CICS TS for OS/390: CICS Internet Guide

##

#

#

#

#

Appendix C. Reference information for the converter

This section provides:
v Reference information for the Decode function of the converter
v Reference information for the Encode function of the converter

The names of the parameters and constants in the communication area passed to
the converter, translated into appropriate forms for the different programming
languages supported, are defined in files supplied as part of the CICS Web
support. The files for the various languages are listed in the following table.

Language Parameters file Constants file

Assembler DFHWBCDD DFHWBUCD

C DFHWBCDH DFHWBUCH

COBOL DFHWBCDO DFHWBUCO

PL/I DFHWBCDL DFHWBUCL

These files give language-specific information about the data types of the fields in
the communication area. If you use these files you must specify
XOPTS(NOLINKAGE) on the Translator step; failure to do this causes the compile
to fail.

© Copyright IBM Corp. 1994, 2000 173

|
|
|
|

Decode

Summary of parameters
In the following table, the names of the parameters are given in abbreviated form:
each name in the table must be prefixed with decode_ to give the name of the
parameter.

Table 4. Parameters for Decode

Input
decode_

Inout
decode_

Output
decode_

client_address
client_address_string
eyecatcher
entry_count
function
http_version_length
http_version_ptr
method_length
method_ptr
request_header_length
request_header_ptr
resource_length
resource_ptr
user_data_length
user_data_ptr
version
volatile

data_ptr
input_data_len
server_program
user_token

output_data_len
reason
response

Function
If the analyzer, or the caller of the CICS business logic interface, specified a
converter name for the request, Decode is called before the CICS program that is
to service the request.

Parameters
decode_client_address

(Input only)

The 32-bit IP address of the client.

decode_client_address_string
(Input only)

The IP address of the client in dotted decimal format.

decode_data_ptr
(Input and output)

On input, a pointer to the request from the client (as modified by the
analyzer) or, if this call is a loop back from the Encode converter function,
a pointer to the response data of encode_data_ptr.

On output, pointer to the communication area to be passed to the CICS
program. You must ensure that the pointer points to a valid location, or
results can be unpredictable. Do not use this field as output when the
converter was called from a CICS business logic interface that was called
in offset mode.

174 CICS TS for OS/390: CICS Internet Guide

|

#
#

|
|
|

decode_entry_count
(Input only)

A count to say how many times the Decode converter has been entered for
the current Web request.

decode_eyecatcher
(Input only)

A string of length 8. Its value for Decode is “>decode”.

decode_function
(Input only)

A halfword code set to the constant value URP_DECODE, indicating that
Decode is being called.

decode_http_version_length
(Input only)

The length in bytes of the string identifying the HTTP version supported
by the client. If the request is not an HTTP request, this length is zero.

decode_http_version_ptr
(Input only)

A pointer to the string identifying the HTTP version supported by the
client. If the analyzer modified this part of the request, the changes are
visible here. If decode_http_version_length is zero, do not use this pointer.

decode_input_data_len
(Input and output)

On input, this is the length in bytes of the request data pointed to by
decode_data_ptr.

The value to be used for the DATALENGTH option of the EXEC CICS
LINK command for the CICS program. The default value if this output is
not set is 32K.

decode_method_length
(Input only)

The length in bytes of the method specified in the HTTP request. If the
request is not an HTTP request, this length is zero.

decode_method_ptr
(Input only)

A pointer to the method specified in the HTTP request. If the analyzer
modified this part of the request, the changes are visible here. If
decode_method_length is zero, do not use this pointer.

decode_output_data_len
(Output only)

The value to be used for the LENGTH option of the EXEC CICS LINK
command for the CICS program. The default value if this output is not set
is 32K.

decode_reason
(Output only)

A reason code—see “Responses and reason codes” on page 177.

Appendix C. Reference information for the converter 175

#
#

#
#

#

#
#

#
#
#

decode_request_header_length
(Input only)

The length of the first HTTP header in the HTTP request. If the request is
not an HTTP request, this length is zero.

decode_request_header_ptr
(Input only)

A pointer to the first HTTP header in the HTTP request. If the analyzer
modified this part of the request, the changes are visible here. If
decode_request_header_length is zero, do not use this pointer.

decode_resource_length
(Input only)

The length in bytes of the string identifying the HTTP absolute path
specified in the HTTP request. If the request is not an HTTP request, this
length is zero.

decode_resource_ptr
(Input only)

A pointer to the string identifying the HTTP absolute path specified in the
HTTP request. If the analyzer modified this part of the request, the changes
are visible here. If decode_resource_length is zero, do not use this pointer.

decode_response
(Output only)

A response—see “Responses and reason codes” on page 177.

decode_server_program
(Input and output)

A string of length 8. On input, the value supplied by the analyzer in
wbra_server_program, or the value supplied by the caller of the CICS
business logic interface. On output, the name of the CICS program that is
to service the request. The CICS program name must be set here or in the
analyzer, or no CICS program will be called.

decode_user_data_length
(Input only)

The length in bytes of the user data for this HTTP request. If the analyzer
modified this value, it is visible here. If there is no user data in the request,
the length is zero. If the request is not an HTTP request, this length is the
length of the request.

decode_user_data_ptr
(Input only)

A pointer to any user data for this HTTP request. If the analyzer modified
this part of the request, the changes are visible here. If there is no user data
in the request, the pointer is zero. If the request is not an HTTP request,
this pointer has the same value as decode_data_ptr.

decode_user_token
(Input and output)

A 64-bit token. On input, the user token supplied by the analyzer as
wbra_user_token, or the user token supplied by the caller of the CICS
business logic interface.On output, a token that is passed to Encode as
encode_user_token.

176 CICS TS for OS/390: CICS Internet Guide

|
|

decode_version
(Input)

A single-character parameter list version identifier, which changes
whenever the layout of the parameter list changes. Its value can be either
binary zero (X’00’), indicating a pre-CICS TS 1.3 version parameter list, or
a character zero (X’F0’), indicating a CICS TS 1.3 version parameter list.

decode_volatile
(Input)

A single-character code indicating whether the data area pointed to be
decode_data_ptr can be be replaced. Possible values are:

0 The area is part of another commarea and cannot be replaced.

1 The storage pointed to by decode_data_ptr can be freed and
replaced by a different size workarea.

Responses and reason codes
You must return one of the following values in decode_response:

URP_OK
The alias, or the CICS business logic interface, links to the CICS program
using the communication area provided by Decode.

URP_EXCEPTION
The CICS program is not executed.

If the alias was the caller, the action taken depends on the reason code:
v URP_SECURITY_FAILURE—the alias writes an exception trace entry

(trace point 455A), and issues a message (DFHWB0121). If the request is
an HTTP request, response 403 is sent to the Web browser. If the request
is not an HTTP request, no response is sent, and the OS/390 eNetwork
Communications Server socket is closed.

v URP_CORRUPT_CLIENT_DATA—the alias writes an exception trace
entry (trace point 4559), and issues a message (DFHWB0121). If the
request is an HTTP request, response 400 is sent to the Web browser. If
the request is not an HTTP request, no response is sent, and the TCP/IP
for MVS socket is closed.

v Any other value—the alias writes an exception trace entry (trace point
455B), and issues a message (DFHWB0121). If the request is an HTTP
request, response 501 is sent to the Web browser. If the request is not an
HTTP request, no response is sent, and the OS/390 eNetwork
Communications Server socket is closed.

If the CICS business logic interface was the caller, the action taken depends
on the reason code:
v URP_CORRUPT_CLIENT_DATA—the CICS business logic interface

writes an exception trace entry (trace point 4556), issues a message
(DFHWB0120), and returns a response of 400 to its caller.

v Any other value—the CICS business logic interface writes an exception
trace entry (trace point 455B), issues a message (DFHWB0121), and
returns a response of 501 to its caller.

URP_INVALID
The CICS program is not executed.

Appendix C. Reference information for the converter 177

If the alias was the caller, the alias writes an exception trace entry (trace
point 455C), and issues a message (DFHWB0121). If the request is an HTTP
request, response 501 is sent to the web browser. If the request is not an
HTTP request, no response is sent, and the OS/390 eNetwork
Communications Server socket is closed.

If the CICS business logic interface was the caller, the CICS business logic
interface writes an exception trace entry (trace point 455C), issues a
message (DFHWB0121), and returns a response of 501 to its caller.

URP_DISASTER
The CICS program is not executed.

If the alias was the caller, the alias writes an exception trace entry (trace
point 455D), and issues a message (DFHWB0121). If the request is an
HTTP request, response 501 is sent to the web browser. If the request is not
an HTTP request, no response is sent, and the OS/390 eNetwork
Communications Server socket is closed.

If the CICS business logic interface was the caller, the CICS business logic
interface writes an exception trace entry (trace point 455D), issues a
message (DFHWB0121), and returns a response of 501 to its caller.

If you return any other value in decode_response, the CICS program is not
executed.

If the alias was the caller, the alias writes an exception trace entry (trace point
455E), and issues a message (DFHWB0121). If the request is an HTTP request,
response 500 is sent to the web browser. If the request is not an HTTP request, no
response is sent, and the OS/390 eNetwork Communications Server socket is
closed.

If the CICS business logic interface was the caller, the CICS business logic interface
writes an exception trace entry (trace point 455E), issues a message (DFHWB0121),
and returns a response of 501 to its caller.

You may supply a 32-bit reason code in decode_reason to provide further
information in error cases. Neither the CICS Web support nor the CICS business
logic interface takes any action on the reason code returned by Decode, except as
indicated above under URP_EXCEPTION. The reason code is output in any trace
entry that results from the invocation of Decode.

See “Numeric values of symbolic codes” on page 100 for the numeric values of the
response and reason codes in trace output.

178 CICS TS for OS/390: CICS Internet Guide

Encode

Summary of parameters
In the following table, the names of the parameters are given in abbreviated form:
each name in the table must be prefixed with encode_ to give the name of the
parameter.

Table 5. Parameters for Encode

Input
encode_

Inout
encode_

Output
encode_

eyecatcher
entry_countfunction
input_data_len
user_tokenversion
volatile

data_ptr reason
response

Function
If the analyzer, or the caller of the CICS business logic interface, specified a
converter name for the request, Encode is called after the CICS program has
ended. It constructs the response from the contents of the communication area.

Parameters
encode_data_ptr

(Input and output)

On input, a pointer to the communication area returned by the CICS
program. If no CICS program was called, it is a pointer to the
communication area created by Decode.

On output, a pointer to the buffer containing the response to be sent to the
client. You must ensure that the pointer points to a valid location, or
results can be unpredictable. The buffer must be doubleword aligned. The
first four bytes must be a 32-bit unsigned number specifying the length of
the buffer. (In COBOL, specify this as PIC 9(8) COMP.) The rest of the
buffer is the response. Do not use this field as output when the converter
was called from a CICS business logic interface that was called in offset
mode.

encode_entry_count
(Input only)

A count to say how many times the Encode converter has been entered for
the current Web request.

encode_eyecatcher
(Input only)

A string of length 8. Its value for Encode is “>encode”.

encode_function
(Input only)

A halfword code set to the constant value URP_ENCODE, indicating that
Encode is being called.

encode_input_data_len
(Input only)

Appendix C. Reference information for the converter 179

|

#
#

|

#
#

#
#

The length of the communication area as specified by Decode in
decode_output_data_len.

encode_reason
(Output only)

A reason code—see “Responses and reason codes”.

encode_response
(Output only)

A response—see “Responses and reason codes”.

encode_user_token
(Input only)

The 64-bit token output by Decode as decode_user_token.

encode_version
(Input)

A single-character parameter list version identifier, which changes
whenever the layout of the parameter list changes. Its value can be either
binary zero (X’00’), indicating a pre-CICS TS 1.3 version parameter list, or
a character zero (X’F0’), indicating a CICS TS 1.3 version parameter list.

encode_volatile
(Input)

A single-character code indicating whether the data area pointed to be
encode_data_ptr can be be replaced. Possible values are:

0 The area is part of another commarea and cannot be replaced.

1 The storage pointed to by encode_data_ptr can be freed and
replaced by a different size workarea.

Responses and reason codes
You must return one of the following values in encode_response:

URP_OK
The response in the buffer pointed to by encode_data_ptr is sent to the
client.

URP_DISASTER
If the alias was the caller, the alias writes an exception trace entry (trace
point 455D), and issues a message (DFHWB0122). If the request is an
HTTP request, response 501 is sent to the web browser. If the request is not
an HTTP request, no response is sent, and the OS/390 eNetwork
Communications Server socket is closed.

If the CICS business logic interface was the caller, the CICS business logic
interface writes an exception trace entry (trace point 455D), issues a
message (DFHWB0122), and returns a response of 501 to its caller.

URP_OK_LOOP
The CICS Web interface loops back to the start of the Decode function. The
value stored in encode_user_token is copied to decode_user_token for the
Decode converter function to use.

If the alias was the caller and you return any other value in encode_response, the
alias writes an exception trace entry (trace point 455E), and issues a message
(DFHWB0122). If the request is an HTTP request, response 501 is sent to the web

180 CICS TS for OS/390: CICS Internet Guide

#
#
#
#

browser. If the request is not an HTTP request, no response is sent, and the OS/390
eNetwork Communications Server socket is closed.

If the CICS business logic interface was the caller and you return any other value
in encode_response, the CICS business logic interface writes an exception trace
entry (trace point 455E), issues a message (DFHWB0122), and returns a response of
501 to its caller.

You can supply a 32-bit reason code in encode_reason to provide further
information in error cases. Neither the CICS Web support nor the CICS business
logic interface takes any action on the reason code returned by Encode. The reason
code is output in any trace entry that results from the invocation of Encode.

See “Numeric values of symbolic codes” on page 100 for the numeric values of the
response and reason codes in trace output.

Appendix C. Reference information for the converter 181

182 CICS TS for OS/390: CICS Internet Guide

Appendix D. Reference information for DFHWBTL

The HTML template manager helps you to write CICS application programs that
create HTML pages to be sent to an HTTP client. You use EXEC CICS LINK to call
DFHWBTL.

An HTML page can be built from one or more templates. The templates can be
read from an MVS partitioned data set (PDS), or can be provided inline in your
application program, or can be defined in a DOCTEMPLATE definition.
DOCTEMPLATEs definte templates with 48–character names. The template name
used in DFHWBTL is padded with 40 blanks and the corresponding
DOCTEMPLATE is used if it exists. If there is no corresponding DOCTEMPLATE,
a definition for the PDS member in the DFHHTML DDname is created
dynamically.

Templates can contain HTML symbols, and the template manager replaces the
symbols with values from a symbol table as it adds the template to a page. The
template manager allows you to set up and modify a symbol table as you add
templates to the HTML page.

The functions of the template manager are summarized as follows:
v BUILD_HTML_PAGE combines the functions of START_HTML_PAGE,

ADD_HTML_TEMPLATE, and END_HTML_PAGE.
v START_HTML_PAGE establishes an environment for the next three functions,

and allows you to put values in the symbol table.
v ADD_HTML_SYMBOLS adds symbols to the symbol table. It also modifies the

values of symbols already defined in the symbol table.
v ADD_HTML_TEMPLATE adds a template to the HTML page, replacing symbols

in the template with the values defined in the symbol table.
v END_HTML_PAGE destroys the environment established in

START_HTML_PAGE, though the page remains in the storage in which it was
constructed.

You call the template manager using EXEC CICS LINK as follows:
EXEC CICS LINK PROGRAM(DFHWBTL) COMMAREA(...) LENGTH(...)

You supply the communication area addressed by the COMMAREA option of the
command. The contents of the communication area are described below.

In this chapter the various program elements (values) are given symbolic names.
These names, translated into appropriate forms for the different programming
languages supported, are defined in files supplied as part of the CICS Web
support. The files for the various languages are as follows:

Language File

Assembler DFHWBTLD

C DFHWBTLH

COBOL DFHWBTLO

PL/I DFHWBTLL

© Copyright IBM Corp. 1994, 2000 183

|
|
|
|
|
|
|
|

These files give language-specific information about the data types of the fields in
the communication area.

Parameters in the communication area
The following table summarizes the use of the parameters by function.

Table 6. Parameters for the HTML template manager

Function Parameters Usage

WBTL_START_HTML_PAGE wbtl_version_no
wbtl_function
wbtl_response
wbtl_reason
wbtl_connect_token
wbtl_symbol_list_ptr
wbtl_symbol_list_len

input
input
output
output
output
input
input

WBTL_ADD_HTML_SYMBOLS wbtl_version_no
wbtl_function
wbtl_response
wbtl_reason
wbtl_connect_token
wbtl_symbol_list_ptr
wbtl_symbol_list_len

input
input
output
output
input
input
input

WBTL_ADD_HTML_TEMPLATE wbtl_version_no
wbtl_function
wbtl_response
wbtl_reason
wbtl_connect_token
wbtl_template_name
wbtl_template_abstime
wbtl_template_buffer_ptr
wbtl_template_buffer_len
wbtl_html_buffer_ptr
wbtl_html_buffer_len

input
input
output
output
input
input
input
input
inout
inout

WBTL_END_HTML_PAGE wbtl_version_no
wbtl_function
wbtl_response
wbtl_reason
wbtl_connect_token

input
input
output
output
input

WBTL_BUILD_HTML_PAGE wbtl_version_no
wbtl_function
wbtl_response
wbtl_reason
wbtl_template_name
wbtl_template_abstime
wbtl_template_buffer_ptr
wbtl_template_buffer_len
wbtl_symbol_list_ptr
wbtl_symbol_list_len
wbtl_html_buffer_ptr
wbtl_html_buffer_len

input
input
output
output
input
output
input
input
input
input
inout
inout

wbtl_version_no
(Input only)

The version number of the template manager interface. Specify
WBTL_CURRENT_VERSION.

184 CICS TS for OS/390: CICS Internet Guide

|

|

|
|
|
|

wbtl_function
(Input only)

Specify the function you wish to perform as one of the following:
v WBTL_BUILD_HTML_PAGE
v WBTL_START_HTML_PAGE
v WBTL_ADD_HTML_SYMBOLS
v WBTL_ADD_HTML_TEMPLATE
v WBTL_END_HTML_PAGE

See “Numeric values of symbolic codes” on page 100 for the numeric
values of the functions in trace output.

wbtl_response
(Output only)

The response from the template manager to the function and inputs. See
“Responses and reason codes” on page 186.

wbtl_reason
(Output only)

Might contain additional information about an error for some responses.
See “Responses and reason codes” on page 186.

wbtl_connect_token
(Input and output)

As output from WBTL_START_HTML_PAGE, this token represents the
page environment established by WBTL_START_HTML_PAGE, and you
must save it for use with other functions. You can have several tokens in
use at once, and the template manager maintains separate page
environments for each token.

As input to WBTL_ADD_HTML_SYMBOLS,
WBTL_ADD_HTML_TEMPLATE, and WBTL_END_HTML_PAGE, this
token identifies the HTML page environment.

wbtl_template_name
(Input only)

As optional input to WBTL_BUILD_HTML_PAGE, and
WBTL_ADD_HTML_TEMPLATE, this is an 8-character field, padded on
the right with spaces. If you want the template manager to use a template
from the PDS, put the name of the member here. If you want the template
manager to use an inline template, put spaces here and use the
wbtl_template_buffer_ptr and wbtl_template_buffer_len fields.

wbtl_template_abstime
(Output only)

As output from WBTL_ADD_HTML_TEMPLATE and
WBTL_BUILD_HTML_PAGE when the template manager is requested to
use the PDS member specified by wbtl_tempate_name. This is the date and
time (in CICS ABSTIME format) when the template was last modified, if
the modification was made with the ISPF editor. Otherwise it is the current
date and time.

wbtl_template_buffer_ptr
(Input only)

As optional input to WBTL_BUILD_HTML_PAGE and
WBTL_ADD_HTML_TEMPLATE, this is the address of the template to be

Appendix D. Reference information for DFHWBTL 185

|
|

|
|
|
|
|
|

used. If you want the template manager to use an inline template, use this
field. If you want the template manager to use a template from the PDS,
do not use this field, but use wbtl_template_name instead. This field is
ignored if wbtl_template_name is specified.

wbtl_template_buffer_len
(Input only)

As optional input to WBTL_BUILD_HTML_PAGE and
WBTL_ADD_HTML_TEMPLATE, this is the length in bytes of the template
pointed to by wbtl_template_buffer_ptr. If you want the template
manager to use an inline template, use this field. If you want the template
manager to use a template from the PDS, do not use this field, but use
wbtl_template_name instead. This field is ignored if wbtl_template_name
is specified.

wbtl_symbol_list_ptr
(Input only)

This field is a required input to WBTL_ADD_HTML_SYMBOLS, and an
optional input to WBTL_BUILD_HTML_PAGE and
WBTL_START_HTML_PAGE. It is the address of the list of symbols to be
used to update the symbol table. The format of the list is described in
“Symbols, symbol table, and symbol list” on page 84. If the function is
WBTL_ADD_HTML_SYMBOLS, you must use wbtl_connect_token to
identify the page environment whose symbol table is to be updated.

wbtl_symbol_list_len
(Input only)

This field is a required input to WBTL_ADD_HTML_SYMBOLS, and an
optional input to WBTL_BUILD_HTML_PAGE and
WBTL_START_HTML_PAGE. It is the length in bytes of the list of symbols
to be used to update the symbol table.

wbtl_html_buffer_ptr
(Input and output)

As input to WBTL_BUILD_HTML_PAGE and
WBTL_ADD_HTML_TEMPLATE, this field is the address of the unused
portion of the buffer that contains the HTML page being constructed. As
output from WBTL_BUILD_HTML_PAGE and WBTL_ADD_TEMPLATE,
this field is the address of the remaining space in the buffer.

wbtl_html_buffer_len
(Input and output)

As input to WBTL_BUILD_HTML_PAGE and
WBTL_ADD_HTML_TEMPLATE, this is the length in bytes of the unused
portion of the buffer that contains the HTML page being constructed. As
output from WBTL_BUILD_HTML_PAGE and
WBTL_ADD_HTML_TEMPLATE, this is the length in bytes of the
remaining space in the buffer.

Responses and reason codes
WBTL_OK

The operation ended successfully.

186 CICS TS for OS/390: CICS Internet Guide

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

WBTL_EXCEPTION
The template manager detected an error in the operation. The following
reason values are possible:

WBTL_PAGE_TRUNCATED
There was not enough room left in the buffer for the page. The
HTML template manager has used all the space available, and
discarded the rest of the page.

WBTL_TEMPLATE_NOT_FOUND
The template manager could not find the template named in
wbtl_template_name in the PDS.

WBTL_TEMPLATE_TRUNCATED
There was not enough room left in the buffer for the template. The
HTML template manager has used all the space available, and
discarded the rest of the template.

WBTL_INVALID
The template manager detected an error in the parameters in the
communication area. The following reason values are possible:

WBTL_INVALID_BUFFER_PTR
The value in wbtl_html_buffer_ptr was zero when an address was
required.

WBTL_INVALID_FUNCTION
The value in wbtl_function was not recognized.

WBTL_INVALID_SYMBOL_LIST
An input symbol list was required, but either wbtl_symbol_list_ptr
was zero, or wbtl_symbol_list_len was zero.

WBTL_INVALID_TOKEN
The operation was expecting an input wbtl_connect_token, but
found its value was zero. All tokens output by the HTML template
manager are non-zero.

WBTL_DISASTER
The template manager detected an unrecoverable error. The following
reason values are possible:

WBTL_FREEMAIN_ERROR
There was an error while attempting to release storage.

WBTL_GETMAIN_ERROR
There was an error while attempting to acquire storage.

See “Numeric values of symbolic codes” on page 100 for the numeric values of the
response and reason codes in trace output.

Appendix D. Reference information for DFHWBTL 187

188 CICS TS for OS/390: CICS Internet Guide

Appendix E. Reference information for DFHWBENV

The environment variables program is DFHWBENV. It extracts information about
the server (the CICS region in which the server controller is running), and the
client (the Web browser that sent the current request). You can use EXEC CICS
LINK to call it. You must supply a communication area that is long enough to
contain the expected response. The exact length of the response depends on the
nature of your connection with the client, and the values set by the client’s browser
program, but 1024 bytes will usually be enough. On return, the communication
area contains a 32-bit integer followed by a sequence of values of environment
variables. The 32-bit integer specifies the length of the string that follows it. The
values are specified with the following format:
variable-name=value

Each value is separated from the following variable name by an ampersand. None
of the values contain an ampersand. This format is the same as that required for
input as a symbol list to the HTML template manager (DFHWBTL), and to the
parser (DFHWBPA). If the environment variables program cannot return any
variables, it returns a length of zero. If the communication area you provide is not
long enough to contain all the variables and their values, the program abends with
abend code AWBC.

DFHWBENV can be linked to only from the alias transaction. You cannot link to
DFHWBENV from the analyzer.

The meaning of the value for each variable name provided by CICS that can occur
in the communication area is as follows:

CONTENT_LANGUAGE
The national language of any user data in the HTTP request. The value
contains the ISO 3316 language code, optionally qualified by an ISO 639
country code. It is extracted from the Content-Language HTTP header. If
there is no Content-Language header, the value is a null string.

CONTENT_LENGTH
The character representation of the decimal length of any user data in the
HTTP request. It is extracted from the Content-Length HTTP header. If
there is no user data, the value is zero.

CONTENT_TYPE
The MIME format of any user data in the HTTP request. It is extracted
from the Content-Type HTTP header. If there is no user data, the value is a
null string.

QUERY_STRING
The query string from the HTTP request. Any ampersands in the query
string are expanded to %26;, and any equals signs are expanded to %3D;. If
there is no query string, the value is a null string.

REMOTE_ADDR
The IP address of the client in dotted decimal format.

REMOTE_HOST
The fully-qualified name of the client, if this can be obtained from the
name server. If the name cannot be found, the value is a null string.

© Copyright IBM Corp. 1994, 2000 189

|
|

REMOTE_USER
The user ID that has been assigned to the current request.

REQUEST_METHOD
The method name specified in the first HTTP header received from the
client. It is one of GET, POST, HEAD, SHOWMETHOD, PUT, DELETE,
LINK, UNLINK.

SERVER_NAME
The fully-qualified name of the connection, for example
www.hursley.ibm.com. If CICS was unable to obtain its own name from the
domain name server when the CICS Web support was enabled, the dotted
decimal address of the connection will be returned instead.

SERVER_PORT
The character representation of the decimal value of the TCP/IP port on
which the request was received, for example 80.

SERVER_PROTOCOL
The name of the Internet protocol describing the data received, usually
HTTP/1.0.

SERVER_SOFTWARE
The name and version of the CICS product.

All HTTP headers found in the inbound request are also placed in the commarea,
and are given the prefix HTTP_. A complete list of HTTP headers can be found at
http://ds.internic.net/rfc/rfc1945.txt. Any variables passed in an HTTP request
that do not conform to RFC 1945 naming standards are ignored by DFHWBENV
and are not returned in the commarea. Some examples of valid headers are:

HTTP_ACCEPT
The contents of all the Accept HTTP headers, separated by commas. These
values represent the MIME types that the browser is prepared to accept, so
the list should never be empty. However, if there are no Accept headers,
the value is a null string.

HTTP_ACCEPT_ENCODING
The contents of the Accept-Encoding HTTP header. If there is no
Accept-Encoding header, the variable is not returned.

HTTP_ACCEPT_LANGUAGE
The contents of the Accept-Language HTTP header. If there is no
Accept-Language header, the variable is not returned.

HTTP_AUTHORIZATION
The contents of the Authorization HTTP header. If there is no
Authorization header, the variable is not returned.

HTTP_CHARGE_TO
The contents of the Charge-To HTTP header. If there is no Charge-To
header, the variable is not returned.

HTTP_FROM
The contents of the From HTTP header. If there is no From header, the
variable is not returned.

HTTP_IF_MODIFIED_SINCE
The contents of the If-Modified-Since HTTP header. If there is no
If-Modified-Since header, the variable is not returned.

190 CICS TS for OS/390: CICS Internet Guide

|
|

HTTP_PRAGMA
The contents of the Pragma HTTP header. If there is no Pragma header, the
variable is not returned.

HTTP_REFERER
The contents of the Referer HTTP header. This is the URL of the page from
which the link was made. If there is no Referer header, the variable is not
returned.

HTTP_USER_AGENT
The contents of the User-Agent HTTP header. This is the product name of
the Web browser program. If there is no User-Agent header, the variable is
not returned.

Appendix E. Reference information for DFHWBENV 191

192 CICS TS for OS/390: CICS Internet Guide

Appendix F. Reference information for DFH$WBST and
DFH$WBSR

Two state management sample programs, DFH$WBST and DFH$WBSR are
supplied with the CICS Web Interface. They allow a transaction to save data for
later retrieval by the same transaction, or by another transaction. The saved data is
accessed by a token that is created by the state management program for the first
transaction. The first transaction must pass the token to the transaction that is to
retrieve the data. DFH$WBST uses EXEC CICS GETMAIN to allocate storage for
the saved data. DFH$WBSR saves the data in temporary storage queues, one for
each token, so that, with suitable temporary storage table definitions, the data can
be accessed from several CICS systems. The rest of this section applies equally to
either program.

The state management program and the tokens it allocates can be used in many
ways. Here are two suggestions:
v The token can be used as a conversation token, that is a token that identifies

information that is to be preserved throughout a pseudoconversation. A
conversation token can be managed by the converter or the CICS program, and
is best conveyed from program to program in a pseudoconversation as a hidden
field in an HTML form.

v The token can be used as a session token, that is a token that identifies
information that is to preserved throughout an extended interaction between an
end user and various CICS programs, perhaps over several pseudoconversations.
A session token can be managed by the analyzer, and is best conveyed from
interaction to interaction as a query string in a URL. This use of a state
management token is illustrated by the security analyzer, security converter, and
security sign-on sample programs described in “Sample programs for security”
on page 94.

The state management program provides the following operations:
v Create a new token.
v Store information and associate it with a previously-created token.
v Retrieve information previously associated with a token.
v Destroy information associated with a token, and invalidate the token.
v Remove information and tokens that have expired.

The last operation is an internal operation, not explicitly invoked by the caller.

The layout of the 268-byte communication area is shown in the following table.
You must clear the communication area to binary zeros before setting the inputs
for the function you require.

Table 7. Parameters for the state management program

Offset Length Type Value Notes

0 4 C Eyecatcher

4 1 C ’C’
’R’
’S’
’D’

Create
Retrieve
Store
Destroy
This is the function code. It is a required
input to every call.

© Copyright IBM Corp. 1994, 2000 193

Table 7. Parameters for the state management program (continued)

Offset Length Type Value Notes

5 1 X Return code. This is an output from every
call.

6 2 X Reserved.

8 4 F Token. This is an output from a Create call,
and an input to every other call.

12 256 C User data. This is an input to a Create call,
and an output from a Retrieve call. It is not
used in other calls.

The return codes are as follows:

0 The requested function was performed.
v If the function was Create, a new token is available at offset 8.
v If the function was Retrieve, the user data associated with the input

token at offset 8 is now in the user data area at offset 12.
v If the function was Store, the input user data at offset 12 is now

associated with the input token and offset 8. Any user data previously
associated with the token is overwritten.

v If the function was Destroy, the data associated with the input token at
offset 8 has been discarded, and the token is no longer valid.

2 The function code at offset 4 was not valid. Correct the program that sets
up the communication area.

3 The function was Create, but EXEC CICS GETMAIN gave an error
response.

4 The function was Retrieve, Store, or Destroy, but the input token at offset 8
was not found. Either the input token is not a token returned by Create, or
it has expired.

5 EXEC CICS WRITEQ TS gave an error response when writing internal data
to a temporary storage queue.

7 EXEC CICS ASKTIME gave an error response.

8 EXEC CICS READQ TS gave an error response when reading internal data
from a temporary storage queue.

9 EXEC CICS ASKTIME gave an error response during timeout processing.

11 The function was Create, but EXEC CICS WRITEQ TS gave an error
response. This return code is produced only by DFH$WBSR.

12 The function was Retrieve, but EXEC CICS READQ TS gave an error
response. This return code is produced only by DFH$WBSR.

13 The function was Store, but EXEC CICS WRITEQ TS gave an error
response. This return code is produced only by DFH$WBSR.

14 The function was Destroy, but EXEC CICS DELETEQ TS gave an error
response. This return code is produced only by DFH$WBSR.

194 CICS TS for OS/390: CICS Internet Guide

Appendix G. Reference information for DFHWBPA

The CICS Web support parser program is DFHWBPA. It parses strings of the form:
key1=value1&key2=value2&key3=value3 ...

key1 is a keyword, value1 is the corresponding value, and so on. The
keyword/value pairs must be separated by ampersands as shown in the example.
If there is only one keyword/value pair there must be no ampersand. A keyword
must contain only uppercase and lowercase letters, digits, and underscores (“_”). It
must not contain any imbedded blanks. A value can contain any character except
an ampersand. The kinds of strings that the parser accepts are the same as:
v Data transmitted by HTTP clients as query strings
v Forms data from HTTP clients
v Output from the environment variables program DFHWBENV
v Input to the HTML template manager

The parser accepts a string and a keyword as input, and returns the corresponding
value as output. If the string does not contain the keyword, the output is nulls.

The program is called by EXEC CICS LINK. You supply a communication area
containing the keyword to be found, two ampersands, and the string to be
searched. The communication area must not be more that 4096 bytes long.
EXEC CICS LINK PROGRAM(DFHWBPA) COMMAREA(...) LENGTH(...)

When the parser returns to your program, the communication area contains the
value followed by nulls.

The following example illustrates the operation of the parser. Suppose the input
communication area contains the following string:
a1&&myt=New Authors&a1=Halliwell Sutcliffe&a2=Stanley Weyman

The output is:
Halliwell Sutcliffe

The output is padded to 60 bytes (the length of the input communication area)
with nulls.

© Copyright IBM Corp. 1994, 2000 195

|

196 CICS TS for OS/390: CICS Internet Guide

Appendix H. Reference information for DFHWBEP

This chapter contains Product-sensitive Programming Interface and Associated
Guidance Information.

The names of the parameters and constants in the communication area passed to
DFHWBEP, translated into appropriate forms for the programming languages
supported, are listed in the following table.

Language Parameters file

Assembler DFHWBEPD

C DFHWBEPH

COBOL DFHWBEPO

PL/I DFHWBEPL

Parameters
All DFHWBEP parameters are input only, except wbep_response_ptr, which is
input and output.

wbep_abend_code
(Input only)

The 8–character abend code associated with this exception.

wbep_analyzer_reason
(Input only)

The reason code returned by the analyzer program, if invoked.

wbep_analyzer_response
(Input only)

The response code returned by the analyzer program, if invoked.

wbep_client_address
(Input only)

The 15–character TCPIP address of the client.

wbep_client_address_len
(Input only)

The length of the TCP/IP address contained in WBEP_CLIENT_ADDRESS.

wbep_converter_program
(Input only)

The name of the converter program, if one is used, for the failing request.

wbep_converter_reason
(Input only)

The reason code returned by the converter, if invoked.

wbep_converter_response
(Input only)

The response code returned by the converter, if invoked.

© Copyright IBM Corp. 1994, 2000 197

|

|

|
|

|
|
|

|||

||

||

||

||
|

|
|

|
|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

wbep_error_code
(Input only)

The error code identifying the error detected.

wbep_eyecatcher
(Input only)

A character field containing an eyecatcher to help with diagnostics.
DFHWBA sets this to >wbepca before calling the Web error program.

wbep_failing_program
(Input only)

The program in which the exception occurred.

wbep_http_response_code
(Input only)

The HTTP error response code returned by CICS for this error. You can
change this response code by manipulating the response in the buffer
pointed to by WBEP_RESPONSE_PTR.

wbep_length
(Input only)

The length of the DFHWBEPC copybook.

wbep_message_len
(Input only)

The length of the message addressed by WBEP_MESSAGE_PTR.

wbep_message_number
(Input only)

A fullword number of the CICS WB message associated with the error.

wbep_message_ptr
(Input only)

A pointer to the CICS message text associated with this exception.

wbep_response_len
(Input only)

The fullword length of the CICS message text associated with this
exception.

wbep_response_ptr
(Input and output)

A pointer to the response message text associated with this exception.

wbep_server_address
(Input only)

The 15–character TCPIP address of the server.

wbep_server_address_len
(Input only)

The length of the TCP/IP address contained in WBEP_SERVER_ADDRESS.

wbep_target_program
(Input only)

The target program associated with the Web request.

198 CICS TS for OS/390: CICS Internet Guide

|
|

|

|
|

|
|

|
|

|

|
|

|
|
|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|
|

|
|

|

|
|

|

|
|

|

|
|

|

wbep_tcpipservice_name
(Input only)

The name of the TCPIPSERVICE associated with this request.

wbep_version
(Input only)

The version of DFHWBEPC being passed by CICS.

Appendix H. Reference information for DFHWBEP 199

|
|

|

|
|

|

200 CICS TS for OS/390: CICS Internet Guide

Appendix I. HTML coded character sets

Table 8 lists the supported IANA charset= values and the IBM CCSID equivalents.
All of these values are valid for codepage conversions on the following commands:
v EXEC CICS WEB SEND
v EXEC CICS WEB RECEIVE
v EXEC CICS DOCUMENT RETRIEVE

On the CLNTCODEPAGE parameter of these commands, you can specify either
the IANA value or the IBM CCSID value, as CICS performs mapping between the
two.

Table 8. Coded character sets

Language Coded character set IANA charset IBM CCSID

Albanian ISO/IEC 8859-1 iso-8859-1 819

Arabic ISO/IEC 8859-6 iso-8859-6 1089

Bulgarian Windows 1251 windows-1251 1251

Byelorussian Windows 1251 windows-1251 1251

Catalan ISO/IEC 8859-1 iso-8859-1 819

Chinese (simplified) GB gb2312 1381 or 5477

Chinese (traditional) Big 5 big5 950

Croatian ISO/IEC 8859-2 iso-8859-2 912

Czech ISO/IEC 8859-2 iso-8859-2 912

Danish ISO/IEC 8859-1 iso-8859-1 819

Dutch ISO/IEC 8859-1 iso-8859-1 819

English ISO/IEC 8859-1 iso-8859-1 819

Estonian ISO/IEC 8859-1 iso-8859-1 819

Finnish ISO/IEC 8859-1 iso-8859-1 819

French ISO/IEC 8859-1 iso-8859-1 819

German ISO/IEC 8859-1 iso-8859-1 819

Greek ISO/IEC 8859-7 iso-8859-7 813

Hebrew ISO/IEC 8859-8 iso-8859-8 916

Hungarian ISO/IEC 8859-2 iso-8859-2 912

Italian ISO/IEC 8859-1 iso-8859-1 819

Japanese Shift JIS

EUC Japanese

x-sjis or shift-jis

euc-jp

943 (932, a subset
of 943, is also

valid)
5050 (EUC)

Korean EUC Korean euc-kr 970 (for AIX or Unix)

Latvian Windows 1257 windows-1257 1257

Lithuanian Windows 1257 windows-1257 1257

Macedonian Windows 1257 windows-1257 1251

Norwegian ISO/IEC 8859-1 iso-8859-1 819

© Copyright IBM Corp. 1994, 2000 201

|

Table 8. Coded character sets (continued)

Language Coded character set IANA charset IBM CCSID

Polish ISO/IEC 8859-2 iso-8859-2 912

Portuguese ISO/IEC 8859-1 iso-8859-1 819

Romanian ISO/IEC 8859-2 iso-8859-2 912

Russian Windows 1251 windows-1251 1251

Serbian (Cyrillic) Windows 1251 windows-1251 1251

Serbian (Latin 2) Windows 1250 windows-1250 1250

Slovakian ISO/IEC 8859-2 iso-8859-2 912

Slovenian ISO/IEC 8859-2 iso-8859-2 912

Spanish ISO/IEC 8859-1 iso-8859-1 819

Swedish ISO/IEC 8859-1 iso-8859-1 819

Turkish ISO/IEC 8859-9 iso-8859-9 920

Ukrainian Windows 1251 windows-1251 1251

UCS-2 iso-10646-ucs-2 1200 (growing) or
13488 (fixed)

202 CICS TS for OS/390: CICS Internet Guide

Index

Numerics
200 response

HTTP response 82
302 response

HTTP response 95
3270 applications 59
400 response

business logic interface 164
HTTP response 170, 171, 177

401 response
business logic interface 165

403 response
business logic interface 164
HTTP response 177

404 response
business logic interface 164

500 response
business logic interface 164
HTTP response 178

501 response
HTTP response 177, 178, 180

503 response
business logic interface 165

A
absolute path in URL 79
Accept-Encoding HTTP header 190
Accept HTTP header 190
Accept-Language HTTP header 190
ADYN transaction 33, 69
alias 93
alias transaction CWBA 35
analyzer 22, 45, 91

basic authentication sample 94
default 48, 171
designing and coding 45
programming reference 167
security sample 94

Authorization HTTP header 190

B
basic authentication analyzer 94
basic authentication converter 94
basic mapping support 19
BMS 19
business logic 19, 105

C
CA (certificate authority) 119
certificate authorities 121
certificate authority (CA) 119
certificates 121
CGI 105
character sets 201
Charge-To HTTP header 190
CICS business logic interface 19, 105

control flow for a program 107

CICS business logic interface 19, 105
(continued)

control flow for a transaction 108
data flow for a program 109
data flow for a

transaction(continue) 111
data flow for a transaction(start) 110
programming reference 159

CICS Family: Client/Server
Programming 105

CICS program
designing and coding 79

CICS system initialization parameters
ENCRYPTION 31
TCPIP 31
XPCT 93
XPPT 93
XTRAN 93
XUSER 93

CICS Web support 19, 105
control flow for a program 22
control flow for a transaction 24
data flow for a program 25
data flow for a transaction

(continue) 111
data flow for a transaction (start) 110
processing example 20

CICSFOOT 62
CICSHEAD 62
client codepages 91, 201
codepage 42
codepages 91, 201
Common Gateway Interface 105
connection-oriented data transmission 9
connectionless data transmission 9
CONTENT_LANGUAGE environment

variable 189
Content-Language HTTP header 48, 189
CONTENT_LENGTH environment

variable 189
Content-Length HTTP header 189
CONTENT_TYPE environment

variable 189
Content-Type HTTP header 48, 189
control flow

CICS business logic interface 107
CICS Web support 22
terminal oriented transaction 24, 108

conversation token 193
converter 51

basic authentication sample 94
designing and coding 51
programming reference 173
security sample 94

converter name in URL 91
CORBA 8, 129
CORBA clients 127
CRLF 79, 170
CWBA alias transaction 35
CWXN Web attach transaction 22, 34

D
data conversion 36
data flow

CICS business logic interface 109
CICS Web support 25
terminal-oriented transaction

(continue) 111
terminal-oriented transaction

(start) 110
datagram 9
DCE 8
decode_client_address field 174
decode_client_address_string field 174
Decode converter function

designing and coding 52
programming reference 174

decode_data_ptr field 174
decode_eyecatcher field 175
decode_function field 175
decode_http_version_length field 175
decode_http_version_ptr field 175
decode_input_data_len field 52, 175
decode_method_length field 175
decode_method_ptr field 175
decode_output_data_len field 175, 180
decode_reason field 175
decode_request_header_length field 176
decode_request_header_ptr field 176
decode_resource_length field 176
decode_resource_ptr field 176
decode_response field 176
decode_server_program field 169, 176
decode_user_data_length field 176
decode_user_data_ptr field 176
decode_user_token field 170, 176, 180
decode_version field 177
decode_volatile field 177, 180
default port number 120
default URL 49, 91
DefaultFsCp 42
DES (data encryption standard) 120, 124
DFH$WB1A 39, 86
DFH$WB1C 86
DFH$WBAU 94
DFH$WBSA 94
DFH$WBSB 94
DFH$WBSC 94
DFH$WBSN 38, 94
DFH$WBSN RDO group 32, 94
DFH$WBSR 193
DFH$WBST 193
DFH0WBCA sample application 126
DFHAM4895 31
DFHCCNV 22
DFHCNV table 36
DFHDHTXD 34
DFHDHTXH 34
DFHDHTXL 34
DFHDHTXO 34
DFHHTML DD name 33, 36
DFHIIOP 131

© Copyright IBM Corp. 1994, 2000 203

DFHMDX macro 73
DFHSIT 31
DFHWBA alias program 35
DFHWBADX 48, 171
DFHWBBLI 159
DFHWBENV (environment variables

program) 38, 81, 86, 189
DFHWBEP, Web error program 57
DFHWBHH conversion template 36
DFHWBHH conversion template

name 36
DFHWBOUT macro 77
DFHWBPA 195
DFHWBTL 183
DFHWBTTA 23, 59, 107
DFHWBUD conversion template 36
DFHWBUD conversion template

name 37, 49
DFHWEB RDO group 32
DFHXOPUS 140
digital certificate 119
digital signature 119
distributed application design 13
distributed computing 7
distributed transaction processing 8
dotted decimal 10
double-byte character set (DBCS) 37
DPL 8
DPL subset 81

E
ECI 105
ECI request

processing example 106
EDF 101
Encode converter function

designing and coding 53
programming reference 179

encode_data_ptr field 179
encode_eyecatcher field 179
encode_function field 179
encode_input_data_len field 179
encode_reason field 180
encode_response field 180
encode_user_token field 176, 180
encode_version field 180
encrypted password file 123
encryption 119, 120

128–bit 119
40–bit 119
56–bit 119
public key 119

ENCRYPTION system initialization
parameter 31

ENTER TRACENUM command 101
environment variables program

(DFHWBENV) 38, 81, 86, 189
ephemeral port numbers 10
EXCI 105
EXCI request

processing example 106
EXEC CICS commands

DOCUMENT 82
DOCUMENT CREATE 90
TCPIP 82
WEB 82
WEB ENDBROWSE FORMFIELD 80

EXEC CICS commands (continued)
WEB ENDBROWSE

HTTPHEADER 80
WEB EXTRACT 80
WEB READ FORMFIELD 80
WEB READ HTTPHEADER 80
WEB READNEXT FORMFIELD 80
WEB READNEXT HTTPHEADER 80
WEB RECEIVE 81, 90
WEB SEND 90
WEB STARTBROWSE

FORMFIELD 80
WEB STARTBROWSE

HTTPHEADER 80
WEB WRITE 82

EXEC CICS LINK 105
external call interface 105
external CICS interface 105
EXTRACT CERTIFICATE command 126

F
File Transfer Protocol 10
From HTTP header 190
function shipping 8

G
GenFacIOR utility 148
gskkyman utility 123

H
HANDLE ABEND command 102
hidden field in HTML form 193
host codepage 42
host name in URL 79
HTML 19
HTML form 80
HTML template manager 93, 183

programming reference 184
setting up a PDS 35

HTML templates 67
HTTP 19
HTTP_ACCEPT_ENCODING

environment variable 190
HTTP_ACCEPT environment

variable 190
HTTP_ACCEPT_LANGUAGE

environment variable 190
HTTP_AUTHORIZATION environment

variable 190
HTTP_CHARGE_TO environment

variable 190
HTTP_FROM environment variable 190
HTTP_IF_MODIFIED_SINCE

environment variable 190
HTTP method 79
HTTP_PRAGMA environment

variable 191
HTTP_REFERER environment

variable 191
HTTP request 79
HTTP request header 79

Accept 190
Accept-Encoding 190
Accept-Language 190

HTTP request header 79 (continued)
Authorization 190
Charge-To 190
Content-Language 48, 189
Content-Length 189
Content-Type 48, 189
From 190
If-Modified-Since 190
Keep-Alive 48
Pragma 191
Referer 191
User-Agent 191

HTTP response 81
HTTP response codes 82
HTTP response header 82
HTTP_USER_AGENT environment

variable 191
HTTP user data 80
HTTP version 79
HTTPS 120, 126
hypertext markup language 19
hypertext transfer protocol 19

I
IANA character set 201
IBM CCSID character set 201
IBM WebSphere Application Server for

OS/390 19, 20, 41, 105
processing example 21

IDL 143
If-Modified-Since HTTP header 190
IIOP 8

applications 143
BankAccount sample 154
client development procedure 148
client example 148
CORBA IDL 129
CORBA interface 129
CORBA operation 129
CORBA services support 133
DFHIIOP program 131
DFHIIOPA program 132
DFHXOPUS program 140
DNS 129
dynamic routing 140
Generic pattern matching 139
GenFacIOR utility 148
HelloWorld sample 153
hot-pooling 132
IDL 143
IDL example 147
inbound to Java 127
jar files 135
Load balancing 129
Obtaining a USERID 140
PDSE files 136
programming model 144
REQUESTMODEL processing 138
requirements 135
resource definition 136
sample applications 151
sample program components 151
server development procedure 145
TCP/IP Listener 131, 137
TCP/IP port sharing 129
TCPIPSERVICE 137
workload balancing 129

204 CICS TS for OS/390: CICS Internet Guide

IIOP client example 148
internet address 10
Internet Protocol (IP) 9
IPCS VERBEXIT 100
ISO 3316 language code 189
ISO 639 country code 189
ISO 8859-1 character set 36

J
Javadoc 143
JCICS

Javadoc 143

K
Keep—Alive header 48
KEYFILE system initialization

parameter 125

L
Latin-1 character set 36
lightpen operation 64
limitations of Web 3270 support 72
load balancing 132
load modules 33

M
MAXLEN parameter 124
messages and codes 99

N
name server 38
non-HTTP requests 23
NSINTERADDR 38

O
ORB function 132

P
parser program 195
partitioned data set 33
PDS 33
persistent connections 48
PKCS (public key cryptography

standard) 120
port number 10
port number in URL 79
port numbers 38
Pragma HTTP header 191
presentation logic 19, 105
processing examples

CICS Web support 20
ECI request 106
EXCI request 106
IBM WebSphere Application Server

for OS/390 21
PROGRAM definitions 35
programming models 11
pseudoconversational model 11

public key encryption 120

Q
QR TCB 98
QUERY_STRING environment

variable 189
query string in URL 79, 193

R
RACDCERT command 124
Referer HTTP header 191
REMOTE_ADDR environment

variable 189
REMOTE_HOST environment

variable 189
REMOTE_USER environment

variable 190
REQUEST_METHOD environment

variable 190
requester types 19, 105
REQUESTMODEL 138
RP TCB 98

S
sample application DFH0WBCA 126
samples

application 39, 86
basic authentication analyzer 94
basic authentication converter 94
security analyzer 94
security converter 94
sign-on program 94
state management program 193

secure sockets layer (SSL) 119, 123
secure transactions 120
security 93
security analyzer 94
security converter 94
security support 8
selector pen operation 64
SERVER_NAME environment

variable 190
SERVER_PORT environment

variable 190
SERVER_PROTOCOL environment

variable 190
SERVER_SOFTWARE environment

variable 190
service types 20
session token 193
sign-on sample program 94
SIT parameters for SSL 124
sockets interface 10
SSL (secure sockets layer) 119, 123
state management sample program 94,

193
symbol list 84
symbols in an HTML template 84
symmetric encryption 120
SYSTCPD DD name 38
system initialization parameters for

SSL 124

T
task control blocks 98
TCP/IP 9

TCP/IP Listener 137
TCP/IP port in URL 79
TCP62 106
TCPIP system initialization

parameter 31, 125
TCPIPSERVICE definition 34, 38
TCPIPSERVICE resource 137
TCPIPSERVICE resource examples 138
TD queue 33
Telnet 10
temporary storage queue 33
tools

environment variables program 189
HTML template manager 93, 183
parser program 195

transaction routing 8
transient data queue 33
Transmission Control Protocol (TCP) 9
TS queue 33

U
uniform resource locator 79
URL 79, 91

absolute path 79
host name 79
port number 79
query string 79

URL, default 91
URP_DISASTER response

in analyzer 171
in Decode 178
in Encode 180

URP_EXCEPTION response
in analyzer 170
in Decode 177

URP_INVALID response
in analyzer 171
in Decode 177

URP_OK_LOOP 180
URP_OK response

in analyzer 170
in Decode 177
in Encode 180

URP_RECEIVE_OUTSTANDING reason
code 170

User-Agent HTTP header 191
user data 80
User Datagram Protocol (UDP) 9
user-replaceable programs 35

V
VERBEXIT 100

W
wbbl_client_address 161
wbbl_client_address_length 161
wbbl_client_address_string 161
wbbl_converter_program_name 161
wbbl_eyecatcher field 161
wbbl_header_length 161
wbbl_header_offset 162
wbbl_http_version_length 162
wbbl_http_version_offset 162
wbbl_indata_length 162

Index 205

wbbl_indata_offset 162
wbbl_indata_ptr 162
wbbl_length field 162
wbbl_method_length 162
wbbl_method_offset 162
wbbl_mode field 162
wbbl_outdata_length 163
wbbl_outdata_offset 163
wbbl_outdata_ptr 163
wbbl_prolog_size 163
wbbl_resource_length 163
wbbl_resource_offset 163
wbbl_response field 163
wbbl_server_program_name 163
wbbl_ssl_keysize 163
wbbl_status_size 163
wbbl_user_data_length 164
wbbl_user_token 164
wbbl_vector_size 164
wbbl_version field 164
wbep_abend_code 197
wbep_analyzer_reason 197
wbep_analyzer_response 197
wbep_client_address 197
wbep_client_address_len 197
wbep_converter_program 197
wbep_converter_reason 197
wbep_converter_response 197
wbep_error_code 198
wbep_eyecatcher 198
wbep_failing_program 198
wbep_http_response_code 198
wbep_length 198
wbep_message_len 198
wbep_message_number 198
wbep_message_ptr 198
wbep_response_len 198
wbep_response_ptr 198
wbep_server_address 198
wbep_server_address_len 198
wbep_target_program 198
wbep_tcpipservice_name 199
wbep_version 199
wbra_alias_termid field 101
wbra_alias_tranid field 168
wbra_client_ip_address field 168
wbra_content_length field 168
wbra_converter_program field 168
wbra_dfhcnv_key field 168
wbra_eyecatcher field 168
wbra_function field 168
wbra_http_version_length field 168
wbra_http_version_ptr field 168
wbra_method_length field 169
wbra_method_ptr field 169
wbra_reason field 169
wbra_request_header_length field 169
wbra_request_header_ptr field 169
wbra_request_type field 169
wbra_resource_length field 169
wbra_resource_ptr field 169
wbra_response field 169
wbra_server_ip_address field 169
wbra_server_program field 169, 176
wbra_unescape 170
wbra_user_data_length field 170
wbra_user_data_ptr field 170

wbra_user_token field 170, 176

wbra_userid field 93, 170

wbtl_connect_token field 185

WBTL_DISASTER response 187

WBTL_EXCEPTION response 187

WBTL_FREEMAIN_ERROR reason 187

wbtl_function field 185

WBTL_GETMAIN_ERROR reason 187

wbtl_html_buffer_len field 186

wbtl_html_buffer_ptr field 186

WBTL_INVALID_BUFFER_PTR
reason 187

WBTL_INVALID_FUNCTION
reason 187

WBTL_INVALID response 187

WBTL_INVALID_SYMBOL_LIST
reason 187

WBTL_INVALID_TOKEN reason 187

WBTL_OK response 186

WBTL_PAGE_TRUNCATED reason 187

wbtl_reason field 185

wbtl_response field 185

wbtl_symbol_list_len field 186

wbtl_symbol_list_ptr field 186

wbtl_template_abstime field 185

wbtl_template_buffer_len field 186

wbtl_template_buffer_ptr field 185

wbtl_template_name field 185

WBTL_TEMPLATE_NOT_FOUND
reason 187

WBTL_TEMPLATE_TRUNCATED
reason 187

wbtl_version_no field 184

Web attach transaction CWXN 22, 34

Web error program, DFHWBEP 57

WebServer Plugin 19

well-known ports 10

WRITEQ TD command 101

X
XPCT system initialization parameter 93

XPPT system initialization parameter 93

XTRAN system initialization
parameter 93

XUSER system initialization
parameter 93

206 CICS TS for OS/390: CICS Internet Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To request additional publications, or to ask questions or make comments about
the functions of IBM products or systems, you should talk to your IBM
representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

Information Development Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–870229
– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink

™

: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:
v The publication number and title
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1994, 2000 207

����

Program Number: 5655-147

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5445-31

Sp
in
e
in
fo
rm
at
io
n:

�
�

�
C

IC
S

T
S

fo
r

O
S/

39
0

C
IC

S
In

te
rn

et
G

ui
de

R
el

ea
se

3

	Contents
	Abstract
	Notices
	Programming interface information
	Trademarks

	Preface
	What this book is about
	How to use this book
	What you need to know to understand this book
	Notes on terminology
	Determining if a publication is current

	Figures
	Tables
	Bibliography
	CICS Transaction Server for OS/390
	CICS books for CICS Transaction Server for OS/390
	CICSPlex SM books for CICS Transaction Server for OS/390
	Other CICS books

	Non-CICS books
	OS/390 UNIX System Services
	OS/390 eNetwork Communications Server
	Language Environment
	Miscellaneous

	Information on the World Wide Web
	HTTP/1.0
	HTML
	Secure sockets layer (SSL)
	CORBA

	Summary of changes
	Changes for this edition

	Part 1. Overview
	Chapter 1. Introduction
	General concepts
	Distributed computing
	Security support

	TCP/IP protocols
	TCP/IP internet addresses and ports
	Internet addresses
	Port numbers (for servers)
	Port numbers (for clients)

	Programming models
	Comparing mechanisms
	Accessing CICS from the Web
	CICS and Java
	CICS Transaction Gateway for OS/390
	Inbound IIOP support of CORBA clients

	Application design
	Separating business and presentation logic

	Chapter 2. How this book is organized
	Part 2. CICS Web support
	Chapter 3. Introduction to CICS Web support
	Types of requester
	Types of service
	Processing examples
	Control flow in request processing
	Using CICS Web support to call a program
	Dealing with non-HTTP requests

	Using CICS Web support to run a terminal-orientedtransaction

	Data flow in request processing
	Using the CICS Web support commarea method to call aprogram

	Chapter 4. Planning for CICS Web support
	Prerequisites for using CICS Web support
	OS/390
	CICS
	OS/390 eNetwork Communications Server

	URL format
	Operations tasks

	Chapter 5. Configuring CICS Web support
	System initialization parameters
	Defining resources to CICS
	CICS supplied resource definitions
	DOCTEMPLATE definitions
	MVS partitioned data set
	CICS temporary storage
	CICS transient data
	CICS load module
	CICS file
	Exit program

	TCPIPSERVICE definitions
	TRANSACTION definitions for extra alias transactions
	PROGRAM definitions for user-replaceable programs
	Setting up a PDS for the template manager
	Defining a conversion table

	Configuring the OS/390 eNetwork Communications Server
	Reserving ports for CICS Web support
	Specifying a name server

	Enabling lightpen support
	Running the sample application

	Chapter 6. The CICS WebServer Plugin
	Configuring the IBM WebSphere Application Server for OS/390

	Chapter 7. Writing an analyzer for CICS Web support
	The analyzer
	Inputs
	Outputs
	Processing
	Code page considerations for Web API applications
	Code page considerations for Web commarea applications
	Performance considerations
	The default analyzer

	Chapter 8. Writing a converter
	The converter
	Writing a converter—general
	Inputs
	Outputs
	Processing
	Performance considerations

	Writing a converter—Decode
	Inputs
	Outputs
	Processing

	Writing a converter—Encode
	Inputs
	Outputs
	Processing

	Chapter 9. The Web error program
	The Web error program — general
	Inputs
	Outputs
	Processing

	Chapter 10. 3270 applications on the Web
	Input to DFHWBTTA
	Customizing the input to DFHWBTTA
	Output from DFHWBTTA
	Customizing the output from DFHWBTTA
	Required contents for a heading template
	Required contents for a footing template
	Customizing with Encode
	Lightpen operation

	Chapter 11. Creating HTML templates from BMS definitions
	Standard generation
	Why customize the generation of templates?
	Customization facilities
	How to produce the HTML templates
	Size restrictions of HTML templates
	Writing a customizing macro definition
	Customization examples
	HTML and browser considerations
	Limitations

	The DFHMDX macro
	The DFHWBOUT macro

	Chapter 12. Writing CICS programs to process HTTP requests
	HTTP requests
	How to receive an HTTP request
	Using EXEC CICS WEB commands to receive an HTTP request
	Using DFHWBENV to retrieve information from an HTTP request

	HTTP responses
	How to send an HTTP response
	Using the EXEC CICS API to send an HTTP response
	Using the HTML template manager to construct an HTTPresponse

	Escaped Data
	Handling escaped data in commarea applications

	Symbols, symbol table, and symbol list
	Symbols in an HTML template
	Symbol lists
	Operational example
	Using the output of the environment variables program

	Sample application programs

	Chapter 13. Displaying a template on a Web browser
	How to display a template on a Web browser
	Default CICS URL format

	Chapter 14. Security for CICS Web support
	Security for the CICS Web support
	Security for the HTML template manager PDS
	Security for CICS Web support transactions
	Security for the alias

	Sample programs for security
	The security sample programs
	The basic authentication sample programs

	Chapter 15. Problem determination
	Recovery procedures (CICS Web support)
	Product design considerations (CICS Web support)
	Troubleshooting
	Defining the problem
	Documentation about the problem

	Using messages and codes
	CICS Web support and CICS business logic interface trace information
	Numeric values of symbolic codes

	Dump and trace formatting
	Debugging the user-replaceable programs
	Using EDF
	Using trace entries
	Writing messages
	Abends

	Part 3. The CICS business logic interface
	Chapter 16. Introduction to the CICS business logic interface
	Types of requester
	Processing examples
	Control flow in request processing
	Using the CICS business logic interface to call a program
	Using the CICS business logic interface to run aterminal-oriented transaction

	Data flow in request processing
	Using the CICS business logic interface to call a program
	Request for a terminal-oriented transaction

	Chapter 17. Configuring the CICS business logic interface
	Chapter 18. Programming tasks for client systems
	Part 4. Using secure sockets layer (SSL)
	Chapter 19. Introduction to secure sockets layer (SSL)
	Overview of SSL
	SSL and the Web
	Encryption and keys
	Authentication and certificates

	Chapter 20. Configuring CICS to use SSL
	Hardware prerequisites
	Software prerequisites
	System set-up
	System initialization parameters
	Resource definitions
	System programming
	Application programming
	A sample application program: DFH0WBCA

	Part 5. CORBA client support
	Chapter 21. IIOP inbound to Java®
	Workload balancing of IIOP requests
	Terminology
	Execution flow
	CORBA Services support

	Chapter 22. Requirements for IIOP applications
	Environment
	CICS parameters
	.jar files
	CICS libraries
	IIOP and JCICS
	PDSE Program libraries

	Resource definitions

	Chapter 23. Processing the IIOP request
	Registering with the CICS TCP/IP Listener
	Using secure sockets layer (SSL) authentication
	Dynamic Name Server
	TCPIPSERVICE examples

	Obtaining a CICS TRANSID
	Generic pattern matching
	REQUESTMODEL example
	Dynamic routing
	Supplied REQUESTMODEL definitions

	Obtaining a CICS USERID
	Messages greater than 32K

	Chapter 24. Developing IIOP applications
	The Interface Definition Language (IDL)
	Programming model
	Developing the server program
	IDL example
	Server implementation
	Resource definition for example

	Developing the client program
	The GenFacIOR utility
	Client example

	Chapter 25. IIOP sample applications
	Requirements to run the samples
	Resource definitions
	Installing CICS resources

	Generic Factory
	CICS libraries

	The HelloWorld sample
	Building the server side HelloWorld application
	Building the client side HelloWorld application
	Running the HelloWorld sample application

	The BankAccount sample
	Create the VSAM file
	Prepare CICS programs
	Prepare BMS maps
	Building the server side BankAccount application
	Building the client side BankAccount application
	Running the BankAccount sample application

	Part 6. Appendixes
	Appendix A. Reference information for DFHWBBLI
	Business logic interface

	Appendix B. Reference information for DFHWBADX
	Summary of parameters
	Function
	Parameters
	Responses and reason codes
	DFHWBADX responses and reason codes

	Appendix C. Reference information for the converter
	Decode
	Encode

	Appendix D. Reference information for DFHWBTL
	Parameters in the communication area
	Responses and reason codes

	Appendix E. Reference information for DFHWBENV
	Appendix F. Reference information for DFH$WBST andDFH$WBSR
	Appendix G. Reference information for DFHWBPA
	Appendix H. Reference information for DFHWBEP
	Parameters

	Appendix I. HTML coded character sets
	Index
	Sending your comments to IBM

